
 Using Compress and Expand

You can use the Microsoft File Compression Utility (Compress) and Microsoft File Expansion Utility
(Expand) to prepare your application files for distribution or as part of the installation process for your
application. Compress reduces the size of files so that more files can fit on a disk. Expand restores
compressed files to their original size. Both Compress and Expand are run from the operating-system
command line.

 Compress Utility

You can use the Compress utility (COMPRESS.EXE) to reduce one or more files to 25 to 45 percent of
their original size.

To use Compress, use the following syntax:

COMPRESS [/?] [[/r] source destination

Compress provides the following command-line options:

/?
Displays information on using Compress.

/r
Specifies that compressed files should be renamed.

-z
Specifies the MS-ZIP compression used for files distributed by Microsoft.

source
Specifies the source filename. The filename can include a drive letter, a directory path, or both; it
can also contain wildcards.

destination
Specifies the destination. This parameter can consist of a directory (with optional drive letter), a
filename, or any combination of the two.
If the source parameter contains wildcards and the destination parameter does not specify a
directory, the /r option must be used.
If the destination parameter does not contain a filename, the filename specified in the source option
will be used when the file is copied to the location specified by the destination option.

 Expand Utility

The Expand utility (EXPAND.EXE) restores compressed files to their original size.

To use Expand, use the following syntax:

EXPAND [/?] [[/r] source destination

Expand provides the following command-line options:

/?
Displays information on using Expand.

/r
Specifies that expanded files should be renamed.

Unlike the Compress utility (COMPRESS.EXE), Expand does not have a -z switch. Expand determines
the compression type used and automatically decompresses it. You can also use VerInstallFile to
expand MS_ZIP files.
source

Specifies the source filename. The filename can include a drive letter, a directory path, or both; it
can also contain wildcards.

destination
Specifies the destination. This parameter can consist of a directory (with optional drive letter), a
filename, or any combination of the two.
If the source parameter contains wildcards and the destination parameter does not specify a
directory, the file must be renamed using the /r option.
If the destination parameter does not contain a filename, the filename specified in the source option
will be used when the file is copied to the location specified by the destination parameter.

The following example shows how to expand all of the files on drive A and copy them to a directory on
drive C.

expand a:*.* c:\mydir

 Command Window Interface

This section describes the commands that you can run in the Command window. It describes the
commands that apply to debugging user-mode applications, as well as those that apply to debugging
kernel-mode drivers.

You can use standard editing keys when you enter a command. Use the UP ARROW and DOWN ARROW
keys to retrieve previous commands. Edit the current command line with the BACKSPACE, DELETE,
INSERT, and LEFT ARROW and RIGHT ARROW keys. Press the ESC key to clear the current line.

To copy text from a previous line in the Command window, highlight the text by holding down the left
mouse button and dragging the mouse pointer. Click the right mouse button to copy the highlighted text
to the Clipboard. Click the right button again to paste the text into the current command line. You can
use the same technique to copy text from other windows to the Command window. You can also press
CTRL+INS to copy highlighted text to the Clipboard and press SHIFT+INS to paste text from the Clipboard
to the insertion point.

 Command Conventions

Many commands in this section use a specific range syntax or process and thread syntax.

 Range Syntax

You can specify a range as either of the following:

· startaddress endaddress
· startaddress L length

With the first method, you specify the start and end addresses of the range. With the second method,
you specify the start address, the letter "L," and the number of data items in the range.

Note With the DC (Display Memory) and the U (Unassemble) commands, you can also use the
following to dump line instructions starting at startaddress:

startaddress I line

 Process and Thread Syntax

You can specify a process in the following ways:

Symbol Description
|. The current process.
|number The process number.
|* All processes.

You can specify a thread in the following ways:

Symbol Description
~. The current thread.
~numbe
r

The thread ID.

~* All threads.

If you do not specify a process or thread with a command, the command will act on the current process
or thread. To set the current process or thread, enter a process or thread specifier alone on a
command line.

To display the state of the processes or threads, type pipeline (|) or tilde (~) alone on the command
line.

In kernel debugging, threads represent the physical processors of the target computer: a two-processor
computer would have two threads, one for each processor. The single process represents the target
computer itself.

 Command List

The following table lists the commands that you can run in the Command window:

Command Definition
* Comment
; Command Separator
? Evaluate Expression
! User Extension DLL
| Display Process State
~ Display Thread State
Search for Disassembly Pattern
% Change Context
.attach Attach to Process
.cache Cache Size
.list Display Source/Assembly Listing
.logappend Append Log File
.logclose Close Log File
.logopen Open Log File
.reboot Reboot Target Machine
.reload Reload Symbols
BC Breakpoint Clear
BD Breakpoint Disable
BE Breakpoint Enable
BL Breakpoint List
BP Set Breakpoint
C Compare Memory
DA, DB, DC,
DD, DI, DS,
DT, DU, DW

Display Memory

EA, EB, ED,
EI, ES, ET,
EU, EW

Enter Values

F Freeze Thread
FIA, FIB,
FID, FII, FIS,
FIT, FIU, FIW

Fill Memory

FR Floating-Point Registers
G Go
GH Go-- Exception Handled
GN Go-- Exception not Handled
K, KB, KN,
KS, KV

Display Stack Backtrace

L Restart Debuggee
LM List Loaded Modules
LN List Nearest Symbols
M Move Memory

N Set Number Base
P Program Step
Q Quit WinDbg
R Registers
REMOTE Start Remote Server
RT Register Display Toggle
S+, S- Set Source/Assembly Mode
SA, SB, SD,
SI, SS, ST,
SU, SW

Search Memory

SEB, SEW Set Error Break, Set Error Warning
SX, SXD,
SXE, SXN

Set Exceptions

T Trace
U Unassemble
X Examine Symbols
Z Unfreeze Thread

 * (Comment)

Syntax

*

Description

If this character is at the start of a line, then the rest of the line is treated as a comment.

 ; (Command Separator)

Syntax

;

Description

Use this character to separate multiple commands on a single line. Commands are executed
sequentially from left to right. All commands on a single line refer to the current thread, unless
otherwise specified. If a command causes the thread to execute, the remaining commands on the line
will be deferred until that thread stops on a debug event.

 ? (Evaluate Expression)

Syntax

? expression [,format]

Parameters

expression
Expression to be evaluated with the expression evaluator.

format
C-style format characters. For example, to display a long int, use LI as the format specifier. Do not
use percent signs (%).

Description

Evaluates and displays the value of the expression or symbol in the context of the current thread and
process.

Note The C++ expression evaluator cannot calculate expressions that use the conditional operator
(?:).

 ! (User Extension DLL)

Syntax

! [filename.]function [string]

Parameters

filename
Name of the DLL to call (without the .DLL extension), followed by a period (.). The default filename is
NTSDEXTS.DLL.
In kernel debugging, the default extension DLL depends upon the target platform:
Target
platform

Default extension DLL

x86 KDEXTX86.DLL
MIPS KDEXTMIP.DLL
ALPHA KDEXTALP.DLL

function
Name of the DLL function to call.

string
String to pass to the DLL function.

Description

Calls a DLL function from WinDbg. Use this command to call special routines while debugging. For a
complete list of the built-in extension commands, enter !? at the WinDbg prompt.

 # (Search for Disassembly Pattern)

Syntax

[pattern] [address]

Parameters

pattern
The pattern to search for in the Disassembly window.

address
The address after which to search.

Description

Displays the first line of assembly code after address that contains the specified pattern.

 % (Change Context)

Syntax

%[frame]

Parameters

frame
The number of the frame on the call stack to change context to. The current procedure is number 0
on the stack.

Description

Changes the context to the specified frame. Updates the Locals window with the variables of the new
frame.

Use the KN command to list the call stack with the frame numbers.

 .ATTACH (Attach to Process)

Syntax

.ATTACH process

Parameter

process
Process ID of task to debug.

Description

Starts debugging the process specified by process. You can use PView to find process IDs of running
programs or use the Attach command from the Run menu to select a task.

This command is similar to the /P command-line option.

 .CACHE (Cache Size)

Syntax

.CACHE [cachesize]

Parameter

cachesize
The size of the kernel debugging cache, in MB. If you do not specify cachesize, the command
displays the status of the cache. If you issue .cache 0, the cache is disabled.

Description

Sets the size of the cache for WinDbg KD to use for memory values. Normal operations, such as
single-stepping or the G command, invalidate the cache. If WinDbg KD has frozen the target computer,
but hardware on the target can change memory (for example, through shared memory or DMA), you
must disable the cache to see the memory changes.

 .LIST (Display Source/Assembly Listing)

Syntax

.LIST [address]

Parameter

address
The address at which to start displaying the listing.

Description

Displays source-code lines and their corresponding assembly code, starting at address. If you do not
specify address, the display starts from the current address.

 .LOGAPPEND (Append Log file)

Syntax

.LOGAPPEND [filename]

Parameter

filename
Filename of the log file. The default filename is WINDBG.LOG.

Description

Sends a copy of the events and commands from the Command window to the given log file. If you are
already logging, that log file will be closed. If filename already exists, new information will be appended
to it.

 .LOGCLOSE

Syntax

.LOGCLOSE

Description

Closes any currently open log file.

 .LOGOPEN (Open Log File)

Syntax

.LOGOPEN [filename]

Parameter

filename
Filename of the log file. The default filename is WINDBG.LOG.

Description

Sends a copy of the events and commands from the Command window to the given log file. If you are
already logging, the current log file will be closed. If filename already exists, its contents will be
overwritten.

 .REBOOT (Reboot Target Machine)

Syntax

.REBOOT

Description

Reboots the target computer (WinDbg KD only).

 .RELOAD (Reload Symbols)

Syntax

.RELOAD [modulename]

Parameter

modulename
The name of the module whose symbols you want to reload.

Description

Loads symbols for the specified module on the target system. If you do not specify modulename, the
symbols for all loaded modules will be reloaded. This command is useful in the event of a system
crash, which can result in the loss of symbols for the target computer.

 BC (Breakpoint Clear)

Syntax

BC {breakpoint [breakpoint...] | *}

Parameter

breakpoint
The number of the breakpoint to be cleared. Use the Breakpoint List (BL) command to display
currently set breakpoints and their numbers. Specify ranges of breakpoints with a hyphen. Separate
multiple breakpoints with spaces or commas.

Description

Removes one or more previously set breakpoints from the system. BC* clears all breakpoints.

 BD (Breakpoint Disable)

Syntax

BD {breakpoint [breakpoint...] | *}

Parameter

breakpoint
The number of the breakpoint to be disabled. Use the Breakpoint List (BL) command to display
currently set breakpoints and their numbers. Specify ranges of breakpoints with a hyphen. Separate
multiple breakpoints with spaces or commas.

Description

Disables, but does not delete, one or more breakpoints. BD* disables all breakpoints. While a
breakpoint is disabled, the system does not check to see if the conditions specified in the breakpoint
are valid.

Use the Breakpoint Enable (BE) command to reenable a disabled breakpoint.

 BE (Breakpoint Enable)

Syntax

BE {breakpoint [breakpoint...] | *}

Parameter

breakpoint
The number of the breakpoint to be enabled. Use the Breakpoint List (BL) command to display
currently set breakpoints and their numbers. Specify ranges of breakpoints with a hyphen. Separate
multiple breakpoints with spaces or commas.

Description

Restores one or more breakpoints that were temporarily disabled by the Breakpoint Disable (BD)
command. BE* enables all breakpoints.

 BL (Breakpoint List)

Syntax

BL

Description

Lists all breakpoints. For each breakpoint, the command displays the following:

· The breakpoint number
· The breakpoint status, where "E" is for enabled, "D" is for disabled, "V" is for virtual, and "U" is for

unknown address. A virtual breakpoint is a breakpoint for code that is not currently loaded.
· The conditional information specifying the breakpoint, such as the address, expression, and length.

If a breakpoint has a pass count, the remaining number of times that the breakpoint will be ignored
is listed in parentheses.

BL also displays commands to execute, message/message classes (in the case of message
breakpoints), thread and process number.

 BP (Set Breakpoint)

Syntax

[thread] BP [breakpoint] [location] [condition] [option...]

Parameters

thread
The thread that the breakpoint will apply to. See Process and Thread Syntax for more information on
the thread syntax.

breakpoint
The breakpoint number to be set. If the given breakpoint number already exists, the new breakpoint
will replace the old.

location
The memory location of the breakpoint, in the format given in the table below.

condition
One of the breakpoint conditions given in the table below. You can specify multiple conditions for a
breakpoint.

option
One of the breakpoint options given in the table below. Separate multiple options with spaces.

Description

Sets a breakpoint. You can combine locations, conditions, and options to set different kinds of
breakpoints. If you do not specify a thread, the breakpoint will apply to all threads.

If you want to put a breakpoint on a C++ public, enclose the expression in parentheses. For example,
"BP (??MyPublic)" or "BP (operator new)".

On x86 computers, WinDbg will use debug registers to implement watchpoints if:

· There is a debug register available
· Memory size is 1
· Memory size is 2 and address is WORD aligned
· Memory size is 4 and address is DWORD aligned

You can use the following options when setting a breakpoint:

Location Description
[{[procedure],
[module],
[exe]}]address

The address for the breakpoint.

[{[procedure],
[module],
[exe]}]@line

The line number for the breakpoint.

Condition Description
?expression Break if expression is true.
=address [/Rcount] Break if memory at address has changed. Use

the /R option to specify the number of bytes to
check (default is 1).

Option Description
/Pcount Ignore the breakpoint count times.

/Ccmdlist Execute cmdlist when the breakpoint is hit. The
cmdlist parameter is a semicolon-separated list of
one or more debugger commands. If cmdlist
includes multiple commands, enclose it in quotes
(").

/Mmessagename
/Mmessageclass

Break only if the given message name or
message class has been received.

/Q Suppress the unresolved-breakpoint dialog box
for this breakpoint.

/Hprocess Specify the process number to attach the
breakpoint to. Defaults to all threads in process if
/T is not used.
If /H is not specified and no debuggee is running,
the default is process 0.

/Tthread Specify the thread number to attach the
breakpoint to. Defaults to current process if /H is
not used.

 C (Compare Memory)

Syntax

C range address

Parameters

range
The first memory area to compare. See Range Syntax for information on the range syntax.

address
The starting address of the second memory area.

Description

Compares the values held in two memory areas. Specify the first area with the range parameter.
Specify the starting address of the second area with address. The second area is the same length as
the first. If the two areas are not identical, WinDbg will display all memory addresses in range where
they do not agree.

 DA, DB, DC, DD, DI, DS, DT, DU, DW (Display Memory)

Syntax

D{A | B | C | D | I | S | T | U | W} [range]

Parameters

range
The memory area to display. See Range Syntax for information on the range syntax.

Description

Displays the contents of memory in the given range. Each line shows the address of the first byte in the
line, followed by the contents of memory at that and following locations.

If you omit range, the command will display memory starting at the ending location of the last Display
command. This allows you to continuously scan through memory.

When WinDbg is displaying ANSI or Unicode characters, it will stop displaying characters at the first
null byte. When displaying ANSI characters, all characters, including non-printable characters, are
displayed using the current code page character set. With Unicode, all nonprintable and nonmappable
characters are displayed as dots.

Comman
d

Definition Displays

DA Display ANSI ANSI (extended ASCII) characters
DB Display Bytes (char) Byte values and ANSI characters
DC Display Code Assembly-language instructions

(disassembly)
DD Display Doublewords

(long)
Doubleword (4-byte) values and ANSI
characters

DI Display 8-Byte Reals
(double)

8-byte hexadecimal values and
floating-point representations

DS Display 4-Byte Reals
(float)

4-byte hexadecimal values and
floating-point representations

DT Display 10-Byte Reals
(long double)

10-byte hexadecimal values and
floating-point representations

DU Display Unicode Unicode characters
DW Display Words (short) Word values and Unicode characters

Note With the DC (Dump Code) command, you can use the standard range syntax or startaddress I
line to dump line instructions starting at startaddress.

 EA, EB, ED, EI, ES, ET, EU, EW (Enter Values)

Syntax

E{A | B | D | I | S | T | U | W} address [values]

Parameters

address
The starting address to enter values.

values
One or more values to enter into memory. Separate multiple numeric values with spaces.

Description

Enters the values that you specify into memory. If you do not specify any values, the current address
and the value at that address will be displayed. You can then enter a new value, preserve the current
value in memory by pressing the space bar, or stop entering data by pressing ENTER alone.

When entering numeric values, you can use C-style radix prefixes to override the default radix. Prefix
octal constants with a "0o" (for example 0o1776), hexadecimal constants with "0x" (for example
0xF000), and decimal constants with "0t" (for example 0t199).

When entering ANSI or Unicode values, you can include space (" ") characters by enclosing the
character string in quotation marks (" or '). If you enclose the string in double quotation marks, WinDbg
will automatically null-terminate the string. Single quotation marks (') will not add a null character. You
can enter standard C escape characters, such as \t, \007, and \".

Comman
d

Definition Enter

EA Enter ANSI ANSI (extended ASCII)
characters

EB Enter Bytes (char) Byte values
ED Enter Doublewords (long) Doubleword (4-byte)

values
EI Enter 8-Byte Reals (double) Floating-point numbers
ES Enter 4-Byte Reals (float) Floating-point numbers
ET Enter 10-Byte Reals (long

double)
Floating-point numbers

EU Enter Unicode Unicode characters
EW Enter Words (short) Word values

 F (Freeze Thread)

Syntax

[thread] F

Parameter

thread
The thread to be frozen. See Process and Thread Syntax for information on the thread syntax.

Description

Freezes the given thread, causing it to wait until it is unfrozen. Other threads will continue to execute. If
no thread is specified, the current thread is frozen.

Use the Z (Unfreeze) command to reenable the thread.

 FIA, FIB, FID, FII, FIS, FIT, FIU, FIW (Fill Memory)

Syntax

FI{A | B | D | I | S | T | U | W} range pattern

Parameters

range
The memory area to fill. See Range Syntax for information on the range syntax.

pattern
One or more values to fill memory with. Separate multiple numeric values with spaces.

Description

Fills the memory area specified by range with the user-specified pattern. The entire range will be filled
by repeatedly storing pattern into memory.

When entering numeric values, you can use C-style radix prefixes to override the default radix. Prefix
octal constants with a "0o" (for example 0o1776), hexadecimal constants with "0x" (for example
0xF000), and decimal constants with "0t" (for example 0t199).

When entering ANSI or Unicode values, you can include space (" ") characters by enclosing the
character string in quotation marks (" or '). If you enclose the string in double quotation marks, WinDbg
will automatically null-terminate the string. Single quotation marks (') will not add a null character.
Standard C escape characters (such as \t, \007, and \") are also allowed.

Comman
d

Definition Fill

FIA Fill ANSI ANSI (extended ASCII)
characters

FIB Fill Bytes (char) Byte values
FID Fill Doublewords (long) Doubleword (4-byte) values
FII Fill 8-Byte Reals (double) Floating-point numbers
FIS Fill 4-Byte Reals (float) Floating-point numbers
FIT Fill 10-Byte Reals (long

double)
Floating-point numbers

FIU Fill Unicode Unicode characters
FIW Fill Words (short) Word values

 FR (Floating-Point Registers)

Syntax

[thread] FR [register [=value]]

Parameters

thread
The thread from which the floating-point registers are to be read. See Process and Thread Syntax
for information on the thread syntax.

register
The floating-point register to display or modify.

value
The floating-point value to assign to register.

Description

Displays or modifies floating-point registers. If no thread is specified, the current thread is used.

If you do not specify a register, all of the floating-point registers are displayed. If you specify a register,
the command displays the current value of the register and prompts for a new value. If you specify both
a register and a value, the command changes the register to contain the value.

Use the R command to view and modify standard registers.

 G (Go)

Syntax

[process|thread] G [breakaddress]

Parameters

process
The process to execute. See Process and Thread Syntax for information on the process syntax.

thread
The thread to execute. See Process and Thread Syntax for information on the thread syntax.

breakaddress
The address for an unconditional breakpoint.

Description

Starts executing the given process or thread. Execution will halt at the end of the program, when
breakaddress is hit, or when another event causes the debugger to stop.

Note The breakpoint associated with breakaddress will only be hit by the current thread. Other
threads that execute the code at that location will not be stopped.

 GH (Go Exception Handled)

Syntax

[thread] GH

Parameter

thread
The thread to execute. This thread must have been stopped by an exception. See Process and
Thread Syntax for information on the thread syntax.

Description

Marks the given thread's exception as being handled and allows the thread to continue execution at the
instruction that caused the exception. This allows the debuggee to handle the exception. Use the GN
(Go Exception Not Handled) command to continue execution without marking the exception as
handled.

 GN (Go Exception Not Handled)

Syntax

[thread] GN

Parameter

thread
The thread to execute. This thread must have been stopped by an exception. See Process and
Thread Syntax for information on the thread syntax.

Description

Continues execution of the given thread without marking the exception as having been handled. This
allows the debuggee's exception handler to handle the exception. Use the GH (Go Exception Handled)
command to continue execution after marking the exception as having been handled.

 K, KB, KN, KS, KV (Display Stack Backtrace)

Syntax

[thread] K[BNSV] [framecount]

Parameters

thread
The thread whose stack is to be displayed. See Process and Thread Syntax for information on the
thread syntax.

framecount
Number of stack frames to display.

Description

Displays the stack frame of the given thread. Each display line shows the name or address of the
procedure called, the arguments used on the call, and the address of the statement that called it. You
can use any or all of the options in a single command; for example, K, KB, and KBNSV are valid
commands. The following table describes the effect of the options:

Opti
on

Effect

none The K command without any options displays the basic call stack
based on debugging information in the executable. It displays the
frame pointer, return address, and function names.

B The B option causes the K command to additionally display the first
three parameters to the functions.

N The N option causes the K command to additionally display the
frame numbers for the calls.

S The S option causes the K command to additionally display source
module and line number information for the calls.

V The V option causes the K command to additionally display runtime
function information.

 L (Restart Debuggee)

Syntax

L [parameters]

Parameter

parameters
Command-line options for the debuggee.

Description

Restarts the debuggee with optional parameters supplied as command-line options.

 LM (List Loaded Modules)

Syntax

LM [/s [/o] [/f] [modulename]

Parameter

parameters
/s List segmented modules.
/f List flat modules.
/o Sorts segmented modules by selector.
modulename Module to list

Description

This command lists the specified loaded modules. If you do not specify a modulename, LM will list all
loaded modules. If /f and /s are both absent from the command line, LM will assume both; the following
two commands are equivalent:

> LM

> LM /f /s

Segmented modules are sorted by module name, then selector, unless you specified /o. Flat modules
are sorted by base address.

 LN (List Nearest symbols)

Syntax

LN address

Parameter

address
The address to search for symbols.

Description

Displays the symbols at or near the given address. You can use this command to help determine what
a pointer is pointing to. It also can be useful when looking at a corrupted stack to determine what
procedure made a call.

 M (Move Memory)

Syntax

M range address

Parameters

range
The memory area to copy. See Range Syntax for information on the range syntax.

address
The starting address of the destination memory area.

Description

Copies the contents of memory from one location to another. It is legal for address to be part of range.
Overlapping moves are handled correctly.

 N (Set Number Base)

Syntax

N radix

Parameter

radix
The default number base used for numeric display and entry. Legal values are 8 (octal), 10
(decimal), and 16 (hexadecimal).

Description

Sets the default number base to radix. You can use C-style radix prefixes to override the default radix.

WinDbg's default is base 16.

 P (Program Step)

Syntax

[thread] P [count]

Parameters

thread
The thread to step through. See Process and Thread Syntax for information on the thread syntax.

count
The number of instructions or source lines to step through before stopping.

Description

Executes the instruction (in ASM mode) or source line (in SRC mode) at the instruction pointer. If
WinDbg encounters a CALL instruction or interrupt while stepping, the called subroutine will execute
before control returns to the debugger.

Use the T (Trace) command to have WinDbg step through subroutine calls and interrupt-handling
routines.

 Q (Quit WinDbg)

Syntax

Q

Description

Exits WinDbg. This command is identical to choosing Exit from the File menu.

 R (Registers)

Syntax

[thread] R [register [=value]]

Parameters

thread
The thread from which the registers are to be read. See Process and Thread Syntax for information
on the thread syntax.

register
The register to display or modify.

value
The value to assign to register.

Description

Displays or modifies registers. If you do not specify a thread, the current thread is used.

If you do not specify a register, all of the registers are displayed. If you specify a register, the command
displays the current value of the register. If you specify both a register and a value, the command
changes the register to contain the value.

Use the FR (Floating-Point Registers) command to view and modify floating-point registers.

 REMOTE (Start Remote Server)

Syntax

REMOTE [pipename | STOP]

Parameters

pipename
The name that you want to use for the remote server pipe.

STOP
Ends a currently active remote server.

Description

Starts a remote server, which lets you get access to the Command window from another computer on
the network. You can then enter Command window commands on the other computer to debug the
application remotely.

If you do not specify any parameters to REMOTE, the command displays its connection status and the
name of the client.

To connect from another computer, run the following in a cmd shell (the Windows NT command
prompt):

remote /c hostname pipename

where hostname is the computer name of the computer that is running WinDbg and pipename is the
same as above.

You now have access from the remote computer to the WinDbg Command window.

 RT (Register Display Toggle)

Syntax

[thread] RT

Parameters

thread
The thread from which the registers are to be read. See Process and Thread Syntax for information
on the thread syntax.

Description

Toggles the register display (WinDbg KD only). The default is off.

 S+, S - (Set Source/Assembly Mode)

Syntax

S+
S -

Description

Use these commands to switch between source mode (where the debugger steps line-by-line through
the source code) and assembly-language mode (where the debugger steps instruction-by-instruction).
The S+ command switches to Source mode, and S - switches to assembly-language mode. The
status bar displays whether the current mode is SRC or ASM.

 SA, SB, SD, SI, SS, ST, SU, SW (Search Memory)

Syntax

S{A | B | D | I | S | T | U | W} range pattern

Parameters

range
The memory area to search through. See Range Syntax for information on the range syntax.

pattern
One or more byte values or ANSI or Unicode characters to search for. Separate multiple values with
spaces.

Description

Searches through memory to find a specific byte pattern. If the pattern is found, WinDbg will display the
first memory address in range where it was found.

When entering numeric values to search for, you can use C-style radix prefixes to override the default
radix. Prefix octal constants with a "0o" (for example 0o1776), hexadecimal constants with "0x" (for
example 0xF000), and decimal constants with "0t" (for example 0t199).

When entering Unicode values to search for, you can include space (" ") characters by enclosing the
character string in quotation marks (" or '). If you enclose the string in double quotation marks, WinDbg
will automatically null-terminate the string. Single quotation marks (') will not add a null character.
Standard C escape characters (such as \t, \007, and \") are also allowed.

Comman
d

Definition Fill

SA Search ANSI ANSI (extended ASCII)
characters

SB Search Bytes (char) Byte values
SD Search Doublewords (long) Doubleword (4-byte)

values
SI Search 8-Byte Reals (double) Floating-point numbers
SS Search 4-Byte Reals (float) Floating-point numbers
ST Search 10-Byte Reals (long

double)
Floating-point numbers

SU Search Unicode Unicode characters
SW Search Words (short) Word values

 SEB, SEW (Set Error Break, Set Error Warning)

Syntax

SEB [level]
SEW [level]

Parameters

level
The error level required to break into the debugger (SEB) or display a message (SEW). One of the
following:

Level Triggered by
0 Nothing. Disables breaks or warnings.
1 Severe errors only.
2 All errors.
3 All warnings and errors.

Description

The SEB command causes the debugger to break after the debuggee causes a system error or
warning of the appropriate level. The SEW command causes the debugger to display a message under
these conditions. If you do not specify a level, the commands will default to level 1.

The SEB command implies an SEW level equal to or greater than its own level. For example, SEB 3
causes the debugger to give warnings at levels 1 - 3.

These errors are triggered by the Windows subsystem. They are known as RIPs from Win16 where
they usually signal a fatal program error. They are often caused by passing a bad value to an API
function.

 SX (Set Exceptions)

Syntax

SX [exception]
SXE exception [message] [/Ccmdlist1] [/C2cmdlist2]
SX{D | N} exception [message] [/C2cmdlist2]

Parameters

exception
The exception number that the command acts upon, in the current radix. If you do not specify an
exception, the SX command will display information on all exceptions.

message
Message to display in the Command window when the exception is trapped.

cmdlist1
Semicolon-separated list of WinDbg commands to execute when an exception first occurs. The /C
option is permitted only with the SXE command. Enclose in quotes if cmdlist1 includes spaces or
semicolons.

cmdlist2
Semicolon-separated list of WinDbg commands to execute after an exception has not been handled.
Enclose in quotes if cmdlist2 includes spaces or semicolons.

Description

Controls the behavior of the debugger when trapping exceptions before executing exception-handling
code. The debugger always halts before execution returns from the exception handler.

Comman
d

Action

SX Displays the events that the debugger will halt for.
SXD Causes the debugger to ignore the specified exception and

issue an automatic GN command.
SXE Causes the debugger to halt at the specified exception.
SXN Causes the debugger to display a message before the

exception is passed to the debuggee, and causes the
debugger to issue a GN command after the message is
displayed.

The /C option (allowed only with SXE) tells WinDbg to execute the specified debugger commands on
the first chance (before the exception is passed to the debuggee). The /C2 option tells WinDbg to
execute the specified debugger commands on the second chance (if the exception is not handled by
WinDbg or the application). See your documentation on structured exception handling for more
information.

When the debugger stops due to an exception, only the GN (Go Exception Not Handled) and GH (Go
Exception Handled) commands can be used to continue execution. The SXD and SXN commands
automatically call GN.

 T (Trace)

Syntax

[thread] T [count]

Parameters

thread
The thread to trace through. See Process and Thread Syntax for information on the thread syntax.

count
The number of instructions or source lines (depending on the Source/Assembly mode) to step
through before stopping.

Description

Executes the instruction or source line at the instruction pointer and displays the resulting values of all
registers and flags.

Use the P (Program Step) command to have WinDbg execute subroutine calls or interrupts without
returning control to the debugger.

 U (Unassemble)

Syntax

U [[range]

Parameters

range
The memory area that contains the instructions to unassemble. See Range Syntax. You can use the
standard range syntax or startaddress I line to dump line instructions starting at startaddress.

Description

Displays the instructions of the program being debugged. If you do not specify range, the debugger
displays the instructions generated from the first eight lines of code at the current address.

The 80286 protected-mode mnemonics cannot be displayed.

 X (Examine Symbols)

Syntax

X [options] [{ [procedure], [module], [executable] }] [pattern]

Parameters

options
Specifies the scope of the symbol search. These options cannot be separated by spaces and must
immediately follow the X (for example, XEM). Use the following letters to specify scope:
Optio
n

Description

C Search current class.
E Search entire executable or DLL, except for current module.
F Search current function.
G Search all global symbols.
L Search current code block (lexical scope).
M Search current module.
P Search all public symbols.

procedure, module, executable
The area to search. For example,
{Function1, srcfile.c, target.dll}

will search Function1 from SCRFILE.C in TARGET.DLL. This is identical to the breakpoint context
operator.

pattern
A pattern to search for. The ? and * wildcards are supported.

Description

Displays the symbols in all contexts that match pattern. If you do not specify any options, all except
public symbols are searched. If you do not specify a pattern, all symbols will be displayed. The search
will be case-sensitive if the Ignore Case option is not checked in the Debug command from the Options
menu.

 Z (Unfreeze Thread)

Syntax

[thread] Z

Parameters

thread
The thread or threads to be unfrozen. See Process and Thread Syntax for information on the thread
syntax.

Description

Unfreezes the specified thread. If you do not specify the thread, this command unfreezes the thread
that caused the most recent exception, if any. You can freeze threads with the F (Freeze) command.

 Creating Help Files

Microsoft Windows Help provides online Help for users working with a Windows-based application.
Windows Help provides a practical way to present information about your application in a format users
can access easily.

This section introduces the tools you can use to develop Windows Help files and to incorporate Help in
Windows-hosted applications.

 About Windows Help Files

Windows Help files can display information by using the following elements:

· Text in multiple fonts, sizes, and colors
· Bitmaps and metafiles with up to 16 colors
· Segmented-graphics bitmaps with embedded hot spots
· Cross-reference jumps for links to additional information
· Pop-up windows to present text and graphics
· Secondary windows to present information without the full menus and buttons of Windows Help
· Keywords to help users find the information they need

You create Help files by creating topic and graphics files and a Help project file. A topic file contains the
text for the Help topic and contains the Help statements and macros that define the format of the text
and the position of graphics in each topic. The graphics files contain the bitmaps and metafiles you
want to display in the topics. The project file contains a description of how to build the Help file.

You use the Microsoft Help Compiler to build the final Help file. Combining the topic, graphics, and
project files, the compiler creates a single Help file (with the filename extension .HLP) that you can
open and view by using Windows Help.

 Creating Topic Files

A topic file contains the text for the Help file, as well as the statements and macros that define the
format of the text and the position of the graphics. Every topic file consists of one or more topics. A
topic is any distinct unit of information, such as a contents screen, a conceptual description, a set of
instructions, a keyboard table, a glossary definition, a list of jumps, a picture, and so on.

Windows Help displays only one topic at a time, but a user can view any topic in a Help file by using a
link to the topic or searching for keywords associated with the topic.

You create topic files directly by using a text editor and inserting Help statements. You can create them
indirectly by using a word processor that generates rich-text format (RTF) files. The Help statements
are an extended subset of the RTF statements, which provide a wide variety of formatting capabilities.

 Declaring Character Set, Fonts, and Colors

When you create a topic file, you must ensure that the entire contents of the file are enclosed in braces
({ }). The first statement in the file must be the \rtf statement; it immediately follows the first opening
brace. You should follow the \rtf statement with a \ansi statement (or a similar statement) that specifies
the character set used in the file. The following example shows the general form for a topic file:

{\rtf1\ansi
 .
 .
 .
}

You must declare the names of the fonts you use in the file by using a \fonttbl statement. The \fonttbl
statement, enclosed in braces, contains a list of font and family names and specifies a unique number
for each font. You use these numbers with \f statements later in the file to set specific fonts. The
following \fonttbl statement assigns font numbers 0, 1, and 2 to the TrueType® fonts Times New
Roman, Courier New, and Arial, respectively:

{\fonttbl
\f0\froman Times New Roman;
\f1\fdecor Courier New;
\f2\fswiss Arial;}

You should also use the \deff statement to set the default font for the file. Windows Help uses this
default font if no other font is specified. The following example sets the default font number to zero,
corresponding to the Times New Roman font specified in the previous \fonttbl statement:

\deff0

If you use specific text colors or choose not to rely on the default text colors set by Windows, you must
define your colors by using a \colortbl statement. The \colortbl statement, enclosed in braces, defines
each color by specifying the amount of each primary color (red, green, and blue) used in it. The
statement implicitly numbers the colors consecutively starting from zero. You use these color numbers
with \cf statements later in the file to set the color. The following example creates four colors (black,
red, green, and blue):

{\colortbl
\red0\green0\blue0;
\red255\green0\blue0;
\red0\green128\blue0;
\red0\green0\blue255;}

Although it is not shown here, you can put a semicolon immediately after the \colortbl statement to
define the default color as 0.

 Defining Individual Topics

Each topic starts with one or more \footnote statements and ends with a \page statement. All text and
graphics specified between these statements belong to the topic.

Every topic must have a context string. Windows Help uses the context string to locate the topic when
the user requests to view it. You assign a context string to a topic by using the \footnote statement and
the number sign (#) footnote character. Context strings can consist of letters, digits, and the underscore
character (_). To prevent conflicts, each context string in a Help file must be unique.

You can also assign a title to the topic by using the \footnote statement and the dollar sign ($) footnote
character. Windows Help uses the title to identify the topic in the History and Search dialog boxes. You
must provide a title if you assign keywords to the topic.

The following example defines a small topic having the context string "topic1" and the title "My Topic":

#{\footnote topic1}
${\footnote My Topic}
This is my first topic.
\par
\page

In general, you use the \par statement to mark the end of each paragraph. In this example, the \par
statement marks the end of the only paragraph in the topic.

You can add a macro to a topic by using the \footnote statement and the exclamation point (!) as the
footnote character. For example, the following \footnote statement adds the CopyTopic macro to the
topic:

!{\footnote CopyTopic()}

Windows Help executes the macro each time it displays the topic.

The total size of text and graphics data stored in a paragraph must not exceed 64K. (Bitmaps included
by using the bmc, bml, and bmr statements do not contribute to this total.)

 Setting Font Size and Name

You can set the font name and size by using the \f and \fs statements. The name is set by using a font
number specified in the \fonttbl statement. The size of the font is specified in half-points. The following
example sets the text to 10-point Times New Roman (if the \fonttbl statement matches the example in
Declaring Character Set, Fonts, and Colors):

\f0\fs20

Once you set the font name and size, the settings apply to all subsequent text up to the next \plain
statement or until you change the name or size by using the \f or \fs statement again. The \plain
statement resets the name and font to the defaults. The default font name is as set by the \deff
statement; the default font size is 12 points.

 Setting Space Before and After Paragraphs

You can set the amount of space before and after each paragraph by using the \sb and \sa statements.
These statements let you control the amount of space that appears between paragraphs. You specify
the space in twips. (A twip is 1/1440 inch, or 1/20 of a printer's point). The following example sets the
space before a paragraph to 360 twips:

\sb360
This paragraph has 360 twips space immediately before it.
\par
This paragraph also has 360 twips before it.
\par

Once you set the space before or after a paragraph, the spacing applies to all subsequent paragraphs
up to the next \pard statement or until you change the spacing by using the \sa and \sb statements
again. The \pard statement restores the default spacing.

 Setting the Left and Right Indents

When Windows Help displays its window, it automatically creates left and right margins and wraps text
to fit within these margins. The margins are positioned slightly within the left and right edges of the
window to prevent text in the topic from being clipped by the window.

You can override these margins by setting the left and right indents for a paragraph. The \li and \ri
statements set an indent to a position relative to the corresponding left and right margins. For example,
the following paragraph is indented 1 inch (1440 twips) from the left margin:

\li1440
This paragraph is indented 1 inch.
\par \pard
This paragraph is not indented.

Once indents are set, they apply to all subsequent paragraphs up to the next \pard statement. Note
that the \pard statement must follow the \par statement that ends the paragraph to be indented.

You can set an indent for the first line in a paragraph by using the \fi statement. This allows you to
create paragraphs with hanging indents. It is also useful for creating two-column lists.

 Setting Tab Stops

You can set tab stops by using the \tx statement. You can use one or more \tx statements, each setting
a specific position in twips relative to the left margin. Once you have set tab stops, you can use the \tab
statement to align subsequent text with the next tab. The tab settings remain active until you use the \
pard statement. The following example creates a two-column list by using a tab stop and paragraph
indenting:

\fi-1440\li1440\tx1440
left
\tab
right
\par
left
\tab
right
\par
\pard

 Breaking Lines

Ordinarily, Windows Help wraps all lines in a paragraph, fitting as many words on a line as will fit
between the current left and right indents. You can force Windows Help to break a line at a given place
by using the \line statement. You can control wrapping by using the \keep and \pard statements.

The following example uses the \keep statement to turn off word wrapping for three short lines and
uses the \pard statement to restore the default properties:

\keep
3 pairs black socks\line
5 pairs blue socks\line
2 pairs brown socks\line
\par
\pard

The following example uses the \keep and \pard statements to create three nonwrapping paragraphs:

\keep
3 pairs black socks
\par
5 pairs blue socks
\par
2 pairs brown socks
\par
\pard

 Creating Links and Pop-up Topics

Windows Help displays only one topic at a time. To enable users to view other topics, you must create
hot spots that link your topics to other topics. You create a hot spot by using the \strike, \ul, or \uldb
statement and a corresponding \v statement. When you create a link, you provide the text for the hot
spot and the context string for the topic that is to be jumped to or displayed. The following example
creates a hot spot named Glossary and establishes a link from the hot spot to the topic having the
context string "glo1":

You can find a list of terms used in this
help file in the {\uldb Glossary}{\v glo1}.

When Windows Help displays the topic with this hot spot, it places a line under the word Glossary and
colors the word green. The context string is not shown, but if the user clicks on the hot spot, Windows
Help jumps to and displays the corresponding topic.

The \strike and \uldb statements are used to create jumps to other topics. The \ul statement creates a
link to a pop-up topic. Windows Help displays pop-up topics in a pop-up window and leaves the current
topic in the main window.

You can also associate a Help macro with a hot spot in a topic. For example, the following \uldb and \v
statements create a hot spot for the ExecProgram macro:

{\uldb Clock}{\v !ExecProgram("clock.exe", 1)}

Windows Help executes the macro whenever the user chooses the hot spot. Windows Help continues
displaying the topic while it executes the macro, unless the macro causes a jump to another topic.

 Creating a Keyword List

You can also enable users to find and view topics by assigning keywords to the topics. You assign a
keyword by using the \footnote statement and the letter K as the footnote character. Windows Help
collects all keywords in a Help file and displays them in its Search dialog box. Using this dialog box, a
user can select a keyword and view the Help topics associated with it. The following example assigns
the keyword "Sample Topics" to the current topic:

#{\footnote topic1}
${\footnote My Topic}
K{\footnote Sample Topics}
This is my first topic.
\par
\page

If a keyword begins with the letter K, you must place an extra space before the word. Multiple keywords
for a topic are separated by semicolons.

A keyword can be assigned to any number of topics. When the user selects the keyword in the Search
dialog box, Windows Help displays all topics associated with the keyword. The user then picks the one
to view.

You can also create alternative keywords for a Help file for use with the WinHelp function.

 Creating Browse Sequences

You can enable users to browse through a sequence of Help topics by creating a browse sequence
and adding browse buttons to your Help file. A browse sequence typically consists of two or more
related topics that are intended to be read sequentially. You create a browse sequence by using the \
footnote statement and the plus-sign (+) footnote character to assign a sequence identifier. The
following example assigns a sequence identifier to the topic titled "A Topic":

#{\footnote topic5}
${\footnote A Topic}
+{\footnote shorttopics}
This is one topic in a browse sequence.
\par
\page

Windows Help adds topics with sequence identifiers to the browse sequence and determines the order
of topics in the sequence by sorting the identifiers alphabetically. If two topics have the same identifier,
Windows Help assumes that the topic that was compiled first is to be displayed first.

Windows Help uses the sequence only if the browse buttons have been enabled. You can enable the
buttons by placing the following statements in the Help project file:

[CONFIG]
BrowseButtons()

For more information about the project file, see Creating Help Project Files.

You can create more than one browse sequence in a Help file by using sequence numbers with
sequence identifiers. The sequence number consists of a colon (:) followed by an integer. Windows
Help combines all topics having the same sequence identifier (but different sequence numbers) into a
single browse sequence and determines the order of the topics by sorting them alphabetically. To
ensure that numerals are sorted correctly, they should have the same number of digits. For example,
the numerals 1 through 10 should be 01 through 10.

#{\footnote topic10}
${\footnote Alpha Topic #3}
+{\footnote alpha:3}
This topic is part of the alpha browse sequence.
\par
\page

 Using Graphics Files

You can add bitmaps and metafiles to your Help files by using the bml, bmc, and bmr statements.
These statements take the name of a graphics file and insert the corresponding bitmap or metafile into
the Help file at the specified position.

Windows Help requires graphics files to be in one of the following formats:

· Windows bitmap (.BMP)
· Placeable Windows metafile (.WMF)
· Multiple-resolution bitmap (.MRB)
· Segmented-graphics bitmap (.SHG)

Multiple-resolution bitmaps can be created by using the Microsoft Multiple-Resolution Bitmap Compiler
(MRBC). Segmented-graphics bitmaps can be created by using Microsoft Windows Hotspot Editor.
Only 16-color and monochrome bitmaps may be used. Windows Help does not support 256-color
bitmaps.

Although the \pict statement can also be used to add bitmaps and metafiles to a Help file, the bitmap
or metafile data must be inserted into the topic file rather than specified as a separate file.

 Inserting a Bitmap in Text

You can insert a bitmap into a paragraph as if it were a character by using the bmc statement. The
statement aligns the bottom of the bitmap with the base line of the current line of text and places the
left edge of the bitmap at the next character position. The following example inserts a bitmap into a line
of text:

Press the \{bmc enter.bmp\} key to complete the task and return to
the main window.

Since the bitmap is treated as text, any paragraph properties assigned to the paragraph also apply to
the bitmap. Windows Help places text following the bitmap on the same base line at the next available
character position.

In general, bitmaps inserted as characters should be clipped to the smallest possible size. Any extra
white space at the top or bottom of the bitmap image affects the alignment of the bitmap with the text
and may affect the spacing between lines.

You must not specify negative line spacing for paragraphs that contain bmc statements. Doing so
might cause the bitmap to appear on top of the paragraph.

 Wrapping Text Around a Bitmap

You can place a bitmap at the left or right margin of the Help window and have subsequent text wrap
around the bitmap by using the bml or bmr statement. The bml statement inserts a bitmap at the left
margin; bmr inserts it at the right.

If you want text to wrap around a bitmap, you must place the bml or bmr statement at the beginning of
a paragraph. Windows Help aligns the start of the paragraph with the top of the bitmap and wraps
around the left or right edge of the bitmap. The following example places the bitmap at the left margin
and subsequent text wraps around its right edge:

\{bml mybitmap.bmp\}
The text in this paragraph wraps around
the right edge of the bitmap.
\par

If you place a bml or bmr statement at the end of a paragraph, Windows Help places the bitmap under
the paragraph instead of wrapping the text around the bitmap. If you do not want text to wrap around a
bitmap, place \par statements immediately before and after the bml or bmr statement.

 Using a Bitmap as a Hot Spot

You can use bitmaps as hot spots. This enables you to create graphics, such as icons or buttons, and
use them as "jumps" to particular topics or as hot spots for macros. The following example uses the
bitmap in the MYBUTTON.BMP file to create a link. When the user clicks the bitmap, Windows Help
jumps to the topic identified by the context string "topic15":

{\strike \{bml mybutton.bmp\}}{\v topic15}

You can also divide a single bitmap into several hot spots and assign a different link or macro to each
hot spot. Such bitmaps, called segmented-graphics bitmaps, are created by using Hotspot Editor. For
example, if you have a bitmap of a dialog box, you can assign links to each of the control windows in
the dialog box, enabling the user to click a control window and view information about it. Segmented-
graphics bitmaps already contain the context strings needed for the links; only a bml or bmr statement
is needed to insert the bitmap. The \strike and \v statements must not be used.

\{bml mydialog.shg\}

 Using a Bitmap on Different Displays

A multiple-resolution bitmap is a single bitmap file that contains one or more bitmaps that have been
marked for use with specific displays, such as the CGA, EGA, VGA, or 8514 displays. You use
multiple-resolution bitmaps to avoid problems associated with displaying bitmaps designed for a single
type of display. Single-resolution bitmaps can have the following problems:

· Appear too big or too small on displays having different resolutions
· Appear stretched or compressed on displays with different aspect ratios
· Lack colors or use unintended colors on displays with different color capabilities

You create multiple-resolution bitmaps by using MRBC. The compiler, an MS-DOS program, has the
following command-line syntax:

mrbc [/s] filename

The filename parameter specifies the name of a Windows bitmap file. Typically, you specify several
filenames, one for each type of display. Wildcards can be used. The compiler uses the filename of the
first bitmap file as the name of the output file but gives the output file the filename extension .MRB. The
following example combines the bitmap files MYBUTTON.EGA, MYBUTTON.VGA, and
MYBUTTON.854 into the multiple-resolution bitmap file MYBUTTON.MRB:

mrbc mybutton.ega mybutton.vga mybutton.854

In this example, the compiler checks the biXPelsPerMeter and biYPelsPerMeter members of the
BITMAPINFOHEADER structure in each bitmap file to determine the display type for the bitmap. If
these members are set to zero, the compiler prompts for the display type with a message such as the
following:

Please enter the monitor type for the bitmap mybutton.ega:

You must enter at least the first character of one of the following display-type names: CGA, EGA, VGA,
or 8514. The compiler sets the display type you specify, but it does not check that the type is valid. For
example, if you specify VGA for an EGA bitmap, the compiler marks it as a VGA bitmap. The result may
be undesirable.

The /s option, specifying silent mode, speeds up compilation if the names of the bitmap files conform to
the MRBC filename convention. If you use the /s option, the compiler uses the first character of the
filename extension to determine the display type for the bitmap, as described in the following list:

Lett
er

Meaning

C CGA bitmap
E EGA bitmap
V VGA bitmap
8 8514 bitmap

If the filename extension starts with any other character, MRBC assumes a VGA bitmap. The following
example creates the multiple-resolution bitmap file MYBUTTON.MRB, containing bitmaps for EGA,
VGA, and 8514 displays:

mrbc /s mybutton.ega mybutton.vga mybutton.854

The compiler never writes over existing multiple-resolution bitmap files. If the output file already exists,
the compiler displays an error message.

You insert multiple-resolution bitmaps into your Help file by using the same statements as for Windows
bitmaps. For example, the following bmc statement inserts the bitmaps from the MYBUTTON.MRB file:

Click the \{bmc mybutton.mrb\} button to complete the task and
return to the main window.

Before displaying a multiple-resolution bitmap, Windows Help checks the display type for the computer
and then selects the bitmap that has the closest matching resolution, aspect ratio, and color
capabilities. Windows Help never displays more than one bitmap from a multiple-resolution bitmap file.

 Creating Help Project Files

This section describes the format and contents of the Help project file (.HPJ) used to build the Help file.
The project file contains all the information the Microsoft Help Compiler needs to combine topic files
and other elements into a Help file.

 Project File Sections

Every project file consists of one or more sections. Each section has a section name, enclosed in
brackets ([]), that defines the purpose and format of statements and options in the section. Following
are the sections used in project files:

Section Description
[OPTIONS] Specifies options that control the build process. This section

is optional. If this section is used, it should be the first
section listed in the project file, so that the options will apply
during the entire build process.

[FILES] Specifies topic files to be included in the build. This section
is required.

[BUILDTAG
S]

Specifies valid build tags. This section is optional.

[CONFIG] Specifies Help macros that define nonstandard menus,
buttons, and macros used in the Help file. This section is
required if the Help file uses any of these features. This
section is new for Windows 3.1.

[BITMAPS] Specifies bitmap files to be included in the build. This
section is not required if the project file lists a path for
bitmap files by using the BMROOT or ROOT option.

[MAP] Associates context strings with context numbers. This
section is optional.

[ALIAS] Assigns one or more context strings to the same topic. This
section is optional.

[WINDOWS] Defines the characteristics of the primary Help window and
the secondary-window types used in the Help file. This
section is required if the Help file uses secondary windows.
This section is new for Windows 3.1.

[BAGGAGE] Lists files that are to be placed within the Help file (which
contains its own file system). This section is optional.

Every project file requires a [FILES] section. This section names the topic files. Most project files also
have an [OPTIONS] section that specifies how to build the Help file. A very useful option in the
[OPTIONS] section is the COMPRESS option, which specifies whether the Help file should be
compressed or uncompressed. Compressing a Help file reduces its size considerably and saves
valuable disk space.

The following example creates a compressed Help file from two topic files, MAIN.RTF and
MENUS.RTF:

[OPTIONS]
COMPRESS=TRUE

[FILES]
MAIN.RTF
MENUS.RTF

 Using Macros in Project Files

You can add macros to the [CONFIG] section of a project file. Since Windows Help executes the
macros when it first opens the Help file, macros that create menus, menu items, and buttons are
typically placed in this section. If there is more than one macro listed in the [CONFIG] section,
Windows Help executes them in the order in which they are listed.

You can create new menu items and buttons for Windows Help by using such macros as
CreateButton and InsertMenu. These macros define other Help macros and associate them with the
menu items and buttons. Windows Help executes these macros when the user chooses a
corresponding menu item or button. Macros that create Help buttons, menus, or menu items remain in
effect until the user quits Windows Help or opens a new Help file.

You can extend the capabilities of Windows Help by developing your own dynamic-link libraries (DLLs)
and defining Help macros that call functions in the libraries. To define Help macros that call DLL
functions, you must register each function and its corresponding library by using the RegisterRoutine
macro in the [CONFIG] section of the project file.

 Sample Project File

The following example is a sample project file for the Cardfile application. Comments, marked by a
beginning semicolon (;), indicate the purpose of each section in the file:

; Options used to define the Help title bar and icon
[OPTIONS]
ROOT=C:\HELP
BMROOT=C:\HELP\ART
CONTENTS=cont_idx_card
TITLE=Cardfile Help
ICON=CARDHLP.ICO
COMPRESS=OFF
WARNING=3
REPORT=ON
ERRORLOG=CARD.BUG

; Files used to build Cardfile Help
[FILES]
RTFTXT\COMMANDS.RTF
RTFTXT\HOWTO.RTF
RTFTXT\KEYS.RTF
RTFTXT\GLOSSARY.RTF

; Button macros and Using Help file
[CONFIG]
CreateButton("btn_up", "&Up", "JumpContents('HOME.HLP')")
BrowseButtons()
SetHelpOnFile("APPHELP.HLP")

; Secondary-window characteristics
[WINDOWS]
picture = "Samples", (123,123,256,256), 0, (0,255,255), (255,0,0)

 Using Help in a Windows Application

Windows applications can offer help to their users by using the WinHelp function to start Windows
Help and display topics in the application's Help file. The WinHelp function gives a Windows
application complete access to the Help file, as well as to the menus and commands of Windows Help.
Many applications use WinHelp to implement context-sensitive Help. Context-sensitive Help enables
users to view topics about specific windows, menus, menu items, and control windows by selecting the
item with the keyboard or the mouse. For example, a user can learn about the Open command on the
File menu by selecting the command (using the direction keys) and pressing the F1 key.

 Choosing Help from the Help Menu

Every application should provide a Help menu to allow the user to open the Help file with either the
keyboard or the mouse. The Help menu should contain at least one Contents menu item that, when
chosen, displays the contents or the main topic in the Help file. To support the Help menu, the
application's main window procedure should check for the Contents menu item and call the WinHelp
function, as in the following example:

case WM_COMMAND:
 switch (wParam) {
 case IDM_HELP_CONTENTS:
 WinHelp(hwnd, "myhelp.hlp", HELP_CONTENTS, 0L);
 return 0L;
 .
 .
 .

 }
 break;

You can add other menu items to the Help menu for topics containing general information about the
application. For example, if your Help file contains a topic that describes how to use the keyboard, you
can place a Keyboard menu item on the Help menu. To support additional menu items, your application
must specify either the context string or the context identifier for the corresponding topic when it calls
the WinHelp function. The following example uses a Help macro to specify the context string
IDM_HELP_KEYBOARD for the Keyboard topic:

case IDM_HELP_KEYBOARD:
 WinHelp(hwnd, "myhelp.hlp", HELP_COMMAND,
 (LPSTR)"JumpID(\"myhelp.hlp\",\"IDM_HELP_KEYBOARD\")");
 return 0L;

A better way to display a topic is to use a context identifier. To do this, the Help file must assign a
unique number to the corresponding context string, in the [MAP] section of the project file. For
example, the following section assigns the number 101 to the context string IDM_HELP_KEYBOARD:

[MAP]
IDM_HELP_KEYBOARD 101

An application can display the Keyboard topic by specifying the context identifier in the call to the
WinHelp function, as in the following example:

#define IDM_HELP_KEYBOARD 101

WinHelp(hwnd, "myhelp.hlp", HELP_CONTEXT, (DWORD)IDM_HELP_KEYBOARD);

To make maintenance of an application easier, most programmers place their defined constants (such
as IDM_HELP_KEYBOARD in the previous example) in a single header file. As long as the names of
the defined constants in the header file are identical to the context strings in the Help file, you can
include the header file in the [MAP] section to assign context identifiers, as shown in the following
example:

[MAP]
#include <myhelp.h>

If a Help file contains two or more Contents topics, the application can assign one as the default by
using the context identifier and the HELP_SETCONTENTS value in a call to the WinHelp function.

 Choosing Help with the Keyboard

An application can enable the user to choose a Help topic with the keyboard by intercepting the F1 key.
Intercepting this key lets the user select a menu, menu item, dialog box, message box, or control
window and view Help for it with a single keystroke.

To intercept the F1 key, the application must install a message-filter procedure by using the
SetWindowsHook function. This allows the application to examine all keystrokes for the application,
regardless of which window has the input focus. If the filter procedure detects the F1 key, it posts a
WM_F1DOWN message (application-defined) to the application's main window procedure. The
procedure then determines which Help topic to display.

The filter procedure should have the following form:

int FAR PASCAL FilterFunc(nCode, wParam, lParam)
int nCode;
WORD wParam;
DWORD lParam;
{
 LPMSG lpmsg = (LPMSG)lParam;

 if ((nCode == MSGF_DIALOGBOX || nCode == MSGF_MENU) &&
 lpmsg->message == WM_KEYDOWN && lpmsg->wParam == VK_F1) {
 PostMessage(hWnd, WM_F1DOWN, nCode, 0L);
 }

 DefHookProc(nCode, wParam, lParam, &lpFilterFunc);

 return 0;
}

The application should install the filter procedure after creating the main window, as shown in the
following example:

lpProcInstance = MakeProcInstance(FilterFunc, hInstance);
if (lpProcInstance == NULL)
 return FALSE;

lpFilterFunc = SetWindowsHook(WH_MSGFILTER, lpProcInstance);

Like all callback functions, the filter procedure must be exported by the application.

The filter procedure sends a WM_F1DOWN message only when the F1 key is pressed in a dialog box,
message box, or menu. Many applications also display the Contents topic if no menu, dialog box, or
message box is selected when the user presses the F1 key. In this case, the application should define
the F1 key as an accelerator key that starts Help.

To create an accelerator key, the application's resource-definition file must define an accelerator table,
as follows:

1 ACCELERATORS
BEGIN
 VK_F1, IDM_HELP_CONTENTS, VIRTKEY
END

To support the accelerator key, the application must load the accelerator table by using the
LoadAccelerators function and translate the accelerator keys in the main message loop by using the
TranslateAccelerator function.

In addition to installing the filter procedure, the application must keep track of which menu, menu item,
dialog box, or message box is currently selected. In other words, when the user selects an item, the
application must set a global variable indicating the current context. For dialog and message boxes, the
application should set the global variable immediately before calling the DialogBox or MessageBox
function. For menus and menu items, the application should set the variable whenever it receives a
WM_MENUSELECT message. As long as identifiers for all menu items and controls in an application
are unique, an application can use code similar to the following example to monitor menu selections:

case WM_MENUSELECT:
 /*
 * Set dwCurrentHelpId to the Help ID of the menu item that is
 * currently selected.
 */

 if (HIWORD(lParam) == 0) /* no menu selected */
 dwCurrentHelpId = ID_NONE;
 else if (lParam & MF_POPUP) { /* pop-up selected */
 if ((HMENU)wParam == hMenuFile)
 dwCurrentHelpId = ID_FILE;
 else if ((HMENU)wParam == hMenuEdit)
 dwCurrentHelpId = ID_EDIT;
 else if ((HMENU)wParam == hMenuHelp)
 dwCurrentHelpId = ID_HELP;
 else
 dwCurrentHelpId = ID_SYSTEM;
 }

 else /* menu item selected */
 dwCurrentHelpId = wParam;

 break;

In this example, the hMenuFile, hMenuEdit, and hMenuHelp parameters must previously have been
set to specify the corresponding menu handles. An application can use the GetMenu and
GetSubMenu functions to retrieve these handles.

When the main window procedure finally receives a WM_F1DOWN message, it should use the current
value of the global variable to display a Help topic. The application can also provide Help for individual
controls in a dialog box by determining which control has the focus at this point, as shown in the
following example:

case WM_F1DOWN:
 /*
 * If there is a current Help context, display it.
 */

 if (dwCurrentHelpId != ID_NONE) {
 DWORD dwHelp = dwCurrentHelpId;

 /*
 * Check for context-sensitive Help for individual dialog
 * box controls.
 */

 if (wParam == MSGF_DIALOGBOX) {
 WORD wID = GetWindowWord(GetFocus(), GWW_ID);
 if (wID != IDOK && wID != IDCANCEL)
 dwHelp = (DWORD) wID;
 }

 WinHelp(hWnd, szHelpFileName, HELP_CONTEXT, dwHelp);

 /*
 * This call is used to remove the highlighting from the
 * System menu, if necessary.
 */

 DrawMenuBar(hWnd);
 }

 break;

When the application ends, it must remove the filter procedure by using the UnhookWindowsHook
function and free the procedure instance for the function by using the FreeProcInstance function.

 Choosing Help with the Mouse

An application can enable the user to choose a Help topic with the mouse by intercepting mouse input
messages and calling the WinHelp function. To distinguish requests to view Help from regular mouse
input, the user must press the SHIFT+F1 key combination. In such cases, the application sets a global
variable when the user presses the key combination and changes the cursor shape to a question-mark
pointer to indicate that the mouse can be used to choose a Help topic.

To detect the SHIFT+F1 key combination, an application checks for the VK_F1 virtual-key value in each
WM_KEYDOWN message sent to its main window procedure. It also checks for the VK_ESCAPE
virtual-key code. The user presses the ESC key to quit Help and restore the mouse to its regular
function. The following example checks for these keys:

case WM_KEYDOWN:
 if (wParam == VK_F1) {

 /* If Shift-F1, turn Help mode on and set Help cursor. */

 if (GetKeyState(VK_SHIFT)) {
 bHelp = TRUE;
 SetCursor(hHelpCursor);
 return DefWindowProc(hwnd, message, wParam, lParam);
 }

 /* If F1 without shift, call Help main index topic. */

 else {
 WinHelp(hwnd,"myhelp.hlp",HELP_CONTENTS,0L);
 }
 }
 else if (wParam == VK_ESCAPE && bHelp) {

 /* Escape during Help mode: turn Help mode off. */

 bHelp = FALSE;
 SetCursor((HCURSOR) GetClassWord(hWnd, GCW_HCURSOR));
 }

 break;

Until the user clicks the mouse or presses the ESC key, the application responds to WM_SETCURSOR
messages by resetting the cursor to the arrow and question-mark combination.

case WM_SETCURSOR:
 /*
 * In Help mode, it is necessary to reset the cursor in response
 * to every WM_SETCURSOR message. Otherwise, by default, Windows
 * will reset the cursor to that of the window class.
 */

 if (bHelp) {
 SetCursor(hHelpCursor);
 break;
 }

 return (DefWindowProc(hwnd, message, wParam, lParam));

case WM_INITMENU:
 if (bHelp) {
 SetCursor(hHelpCursor);
 }

 return (TRUE);

If the user clicks the mouse button in a nonclient area of the application window while in Help mode,
the application receives a WM_NCLBUTTONDOWN message. By examining the wParam value of this
message, the application can determine which context identifier to pass to WinHelp.

case WM_NCLBUTTONDOWN:
 /*
 * If in Help mode (Shift+F1), display context-sensitive
 * Help for nonclient area.
 */

 if (bHelp) {
 dwHelpContextId =
 (wParam == HTCAPTION) ?(DWORD) HELPID_TITLE_BAR:
 (wParam == HTSIZE) ? (DWORD) HELPID_SIZE_BOX:
 (wParam == HTREDUCE) ? (DWORD) HELPID_MINIMIZE_ICON:
 (wParam == HTZOOM) ? (DWORD) HELPID_MAXIMIZE_ICON:
 (wParam == HTSYSMENU) ?(DWORD) HELPID_SYSTEM_MENU:
 (wParam == HTBOTTOM) ? (DWORD) HELPID_SIZING_BORDER:
 (wParam == HTBOTTOMLEFT) ? (DWORD) HELPID_SIZING_BORDER:
 (wParam == HTBOTTOMRIGHT) ?(DWORD) HELPID_SIZING_BORDER:
 (wParam == HTTOP) ?(DWORD) HELPID_SIZING_BORDER:
 (wParam == HTLEFT) ?(DWORD) HELPID_SIZING_BORDER:
 (wParam == HTRIGHT) ?(DWORD) HELPID_SIZING_BORDER:
 (wParam == HTTOPLEFT) ?(DWORD) HELPID_SIZING_BORDER:
 (wParam == HTTOPRIGHT) ? (DWORD) HELPID_SIZING_BORDER:
 (DWORD) 0L;

 if (!((BOOL) dwHelpContextId))
 return DefWindowProc(hwnd, message, wParam, lParam);
 bHelp = FALSE;
 WinHelp(hWnd, szHelpFileName, HELP_CONTEXT, dwHelpContextId);
 break;
 }

 return (DefWindowProc(hWnd, message, wParam, lParam));

If the user clicks a menu item while in Help mode, the application intercepts the WM_COMMAND
message and sends the Help request:

case WM_COMMAND:

 /* In Help mode (Shift-F1)? */

 if (bHelp) {
 bHelp = FALSE;
 WinHelp(hWnd, szHelpFileName, HELP_CONTEXT, (DWORD)wParam);
 return NULL;
 }

 Searching for Help with Keywords

An application can enable the user to search for Help topics based on full or partial keywords. This
method is similar to employing the Search dialog box in Windows Help to find useful topics. The
following example searches for the keyword "Keyboard" and displays the corresponding topic, if found:

WinHelp(hwnd, "myhelp.hlp", HELP_KEY, "Keyboard");

If the topic is not found, Windows Help displays an error message. If more than one topic has the same
keyword, Windows Help displays only the first topic.

An application can give the user more options in a search by specifying partial keywords. When a
partial keyword is given, Windows Help usually displays the Search dialog box to allow the user to
continue the search or return to the application. However, if there is an exact match and no other topic
exists with the given keyword, Windows Help displays the topic. The following example opens the
Search dialog box and selects the first keyword in the list starting with the letters Ke:

WinHelp(hwnd, "myhelp.hlp", HELP_PARTIALKEY, "Ke");

When the HELP_KEY and HELP_PARTIALKEY values are specified in the WinHelp function, Windows
Help searches the K keyword table. This table contains keywords generated by using the letter K with \
footnote statements in the topic file. An application can search alternative keyword tables by
specifying the HELP_MULTIKEY value in the WinHelp function. In this case, the application must
specify the footnote character and the full keyword in a MULTIKEYHELP structure, as follows:

HGLOBAL hglblmkh;
MULTIKEYHELP FAR* mkh;
PSTR pszKeyword = "Frame";
UINT cb;

cb = sizeof(MULTIKEYHELP) + lstrlen(pszKeyword);

hglblmkh = GlobalAlloc(GHND, (DWORD) cb);
if (hglblmkh == NULL)
 break;
mkh = (MULTIKEYHELP FAR*) GlobalLock(hglblmkh);

mkh->mkSize = cb;
mkh->mkKeylist = 'L';
lstrcpy(mkh->szKeyphrase, pszKeyword);

WinHelp(hwnd, "myhelp.hlp", HELP_MULTIKEY, (DWORD) mkh);

GlobalUnlock(hglblmkh);
GlobalFree(hglblmkh);

If the keyword is not found, Windows Help displays an error message. If more than one topic has the
keyword, Windows Help displays only the first topic. (For a full description of the MULTIKEYHELP
structure, see the Microsoft Programmer's Reference.)

Applications cannot use alternative keyword tables unless the MULTIKEY option is specified in the
[OPTIONS] section of the project file.

 Displaying Help in a Secondary Window

An application can display Help topics in secondary windows instead of in the Windows Help main
window. Secondary windows are useful whenever the user does not need the full capabilities of
Windows Help. The Windows Help menus and buttons are not available in secondary windows.

To display Help in a secondary window, the application specifies the name of the secondary window
along with the name of the Help file. The following example displays the Help topic having the context
identifier IDM_FILE_SAVE in the secondary window named "wnd_menu":

WinHelp(hwnd, "myhelp.hlp>wnd_menu", HELP_CONTEXT, IDM_FILE_SAVE);

The name and characteristics of the secondary window must be defined in the [WINDOWS] section of
the project file, as in the following example:

[WINDOWS]
wnd_menu = "Menus", (128, 128, 256, 256), 0

Windows Help displays the secondary window with the initial size and position specified in the
[WINDOWS] section. However, an application can set a new size and position by specifying the
HELP_SETWINPOS value in the WinHelp function. In this case, the application sets the members in a
HELPWININFO structure to specify the window size and position. The following examples sets the
secondary window wnd_menu to a new size and position:

HANDLE hhwi;
LPHELPWININFO lphwi;
WORD wSize;
char *szWndName = "wnd_menu";

wSize = sizeof(HELPWININFO) + lstrlen(szWndName);
hhwi = GlobalAlloc(GHND, wSize);
lphwi = (LPHELPWININFO)GlobalLock(hhwi);

lphwi->wStructSize = wSize;
lphwi->x = 256;
lphwi->y = 256;
lphwi->dx = 767;
lphwi->dy = 512;
lphwi->wMax = 0;
lstrcpy(lphwi->rgchMember, szWndName);

WinHelp(hwnd, "myhelp.hlp", HELP_SETWINPOS, lphwi);

GlobalUnlock(hhwi);
GlobalFree(hhwi);

 Canceling Help

Windows Help requires an application to explicitly cancel Help so that Windows Help can free any
resources it used to keep track of the application and its Help files. The application can do this at any
time.

An application cancels Windows Help by calling the WinHelp function and specifying the HELP_QUIT
value, as shown in the following example:

WinHelp(hwnd, "myhelp.hlp", HELP_QUIT, NULL);

If the application has made any calls to the WinHelp function, it must cancel Help before it closes its
main window (for example, in response to the WM_DESTROY message in the main window
procedure). An application needs to call WinHelp only once to cancel Help, no matter how many Help
files it has opened. Windows Help remains running until all applications or dynamic-link libraries that
have called the WinHelp function have canceled Help.

 Windows Help Statements and Macros

This section describes the syntax and purpose of statements and macros used in topic and project files
for the Microsoft Windows Help application. The Windows Help statements define the format and
placement of text and graphics in the Help file. The Windows Help macros define actions to take while
the Help file is being viewed, such as creating custom buttons and carrying out menu commands.

 Help Statement Syntax

Windows Help statements are an extended subset of tokens defined by the rich-text-format (RTF)
standard. The statements specify character and paragraph properties, such as font, color, spacing, and
alignment for text in the Help file.

The Help statements are presented to the Microsoft Help Compiler in topic files, which are specified in
the [FILES] section of a project file. A topic file consists of statements, groups, and unformatted text.
Each statement consists of a backslash (\) followed by a statement name. For example, the following
line demonstrates usage of the \tab statement:

left column\tab right column

Statements must be separated from subsequent text or statement parameters by a delimiter. A
delimiter can be one of the following:

· A space.
· A digit or minus sign, which indicates that a numeric parameter follows. The subsequent digit

sequence is then delimited by a space or character other than a letter or digit.
· Any character other than a letter or digit.

When a space is used as a delimiter, the Microsoft Help Compiler discards it. If any other character is
used, the compiler processes it as text or the start of another statement. For example, if a backslash is
used as a delimiter, the compiler interprets it as the beginning of the next statement.

A group consists of Help statements and text enclosed in braces ({}). Formatting specified within a
group affects only the text within that group. Text within a group inherits any formatting of the text
preceding the group.

Unformatted text consists of any combination of 7-bit ASCII characters. Although characters whose
values are greater than 127 are not permitted in topic files, the \' statement can be used to insert them
in the final Help file. The Microsoft Help Compiler treats spaces as part of the text, but it discards
carriage return and linefeed characters.

Although the Microsoft Help Compiler supports many RTF tokens, it does not support them all. The
compiler ignores any RTF statement that is not explicitly defined in this section. Furthermore, the
compiler may interpret an RTF token differently than it is specified by the standard. For example, the
standard specifies that the \uldb statement indicates a double underline, but the Microsoft Help
Compiler uses this statement to indicate a hot spot.

 Help Macro Syntax

Windows Help macros specify actions that Windows Help takes when it loads Help or displays a topic.
(Help macros may also be executed when the user selects a hotspot or when the user clicks on a
designated segmented-graphic.) A Help macro consists of a macro name and parameters enclosed in
parentheses.

Macro names specify the action to take, such as creating buttons or inserting menu items. The names
are not sensitive to case, so any combination of uppercase and lowercase letters may be used.

Macro parameters specify the files, buttons, menus, or topics on which to carry out the action. The
parameters must be enclosed in parentheses and separated by spaces. Parameters in many macros
must also be enclosed in quotation marks. This is especially true if the parameter contains space
characters. The valid quotation characters are the matching double quotation marks (" ") and the
opening and closing single quotation marks (' '). If a quotation character is needed as part of a
parameter rather than to enclose a parameter, the parameter should be enclosed in single quotation
marks. When you use single quotation marks in this case, you can omit the backslash escape
character for the double quotation marks, as shown in the following:

'command "string as parameter"'

Macros can be used as parameters in other macros. In most cases, embedded macros must be
enclosed in quotation marks. If the embedded macro also has quoted parameters, the quotation
character that is used must be different than the quotation characters enclosing the macro. The
following example shows the correct way to use nested quotation marks:

CreateButton("time_btn", "&Time", "ExecProgram('clock', 0)")

A Help macro and all of its parameters must not exceed 512 characters.

Help macros can be combined into macro strings by separating the macros with semicolons (;). The
Microsoft Help Compiler processes the macro string as a unit and executes the individual macros
sequentially.

 Help Project File Reference

This section describes the different sections and options in a Help project file and gives examples of
their use. The entries are in alphabetic order.

 [ALIAS]

The [ALIAS] section assigns one or more context strings to the same topic alias. This section is
optional.

Syntax

context_string = alias
 . . .

Parameters

context_string
Specifies the context string that identifies a particular topic. This context string may be used in a
hotspot or in the [MAP] section to refer to a particular topic.

alias
Specifies the alternative string or alias name. This string is used in the \footnote statement. An alias
string has the same form and follows the same conventions as the topic context string. That is, it is
not case sensitive and may contain the alphabetic characters A through Z, the numeric characters 0
through 9, and the period and underscore characters.

Remarks

Because context strings must be unique for each topic and cannot be used for any other topic in the
Help project, the [ALIAS] section provides a way to delete or combine Help topics without recoding
your files. For example, if you create a topic that replaces information in three other topics, you could
manually search through your files for invalid cross-references to the deleted topics. The easier
approach, however, would be to use the [ALIAS] section to assign the name of the new topic to the
deleted topics.

The [ALIAS] section can also be used when your application has multiple context identifiers for one
Help topic. This situation occurs in context-sensitive Help.

Alias names can be used in a [MAP] section, but only if the [ALIAS] section precedes the [MAP]
section.

Example

The following example creates several aliases:

[ALIAS]
sm_key=key_shrtcuts
cc_key=key_shrtcuts
st_key=key_shrtcuts ; combined into Keyboard Shortcuts topic
clskey=us_dlog_bxs
maakey=us_dlog_bxs ; covered in Using Dialog Boxes topic.
chk_key=dlogprts
drp_key=dlogprts
lst_key=dlogprts
opt_key=dlogprts
tbx_key=dlogprts ; combined into Parts of Dialog Box topic.
frmtxt=edittxt
wrptxt=edittxt
seltxt=edittxt ; covered in Editing Text topic.

See Also

\footnote, [MAP]

 [BAGGAGE]

The [BAGGAGE] section lists files (typically multimedia elements) that the Microsoft Help Compiler
stores within the Help file's internal file system. Windows Help can access data files stored in the Help
file more efficiently than it can access files in the normal file system, since it doesn't have to read the
file allocation table from CD-ROM.

Syntax

filename
 . . .

Parameter

filename
Specifies the full path of a file. If a file cannot be found, the compiler reports an error.

Remarks

A maximum of 1000 files can be stored as baggage files.

If a file is listed in the [BAGGAGE] section, you must use or write a dynamic-link library that uses
Windows Help to read these files from the Help file.

See Also

ROOT

 [BITMAPS]

The [BITMAPS] section specifies the names and locations of the bitmap files specified in the bmc,
bml, and bmr statements.

Syntax

filename
 . . .

Parameter

filename
Specifies the full path of a bitmap file. If a file cannot be found, the compiler reports an error.

Remarks

For Windows 3.1, the [BITMAPS] section is not required if the bitmaps are located in the Help project
directory or if the path containing the bitmaps is listed in the BMROOT or ROOT option. If the project
file does not include either of these options, each bitmap filename must be listed in the [BITMAPS]
section of the project file.

Example

The following example specifies three bitmap files:

[BITMAPS]
BMP01.BMP
BMP02.BMP
BMP03.BMP

See Also

bmc, bml, bmr, BMROOT, ROOT

 BMROOT

The BMROOT option specifies the directory containing the bitmap files specified in the bmc, bml, and
bmr statements.

Syntax

BMROOT = path[, path]

Parameter

path
Specifies a drive and full path.

Remarks

If the project file has a BMROOT option, you do not need to list the bitmap files in the [BITMAPS]
section.

If the project file does not have a BMROOT option, the Help compiler looks for bitmaps in the
directories specified by the ROOT option. If the project file does not have a ROOT option or if the
ROOT option does not specify the directory containing the bitmap files, the filename for each bitmap
must be specified in the [BITMAPS] section.

Example

The following example specifies that bitmaps are in the \HELP\BMP directory on drive C and the \
GRAPHICS\ART directory on drive D:

[OPTIONS]
BMROOT=C:\HELP\BMP, D:\GRAPHICS\ART

See Also

[BITMAPS], bmc, bml, bmr, [OPTIONS], ROOT

 BUILD

The BUILD option specifies which topics containing build tags are included in a build. The BUILD
option does not apply to topics that do not contain build tags.

A topic contains a build tag if it contains a build-tag \footnote statement. Topics without build tags are
always compiled, regardless of the current build expression.

Syntax

BUILD = expression

Parameter

expression
Specifies the build expression. This parameter consists of a combination of build tags (specified in
the [BUILDTAGS] section) and the following operators:
Operat
or

Description

~ Applies the NOT operator to a single tag. The Help compiler
compiles a topic only if the tag is not present. This operator
has the highest precedence; the compiler applies it before any
other operator.

& Combines two tags by using the AND operator. The Help
compiler compiles a topic only if it contains both tags. The
compiler applies this operator only after the ~ operator has
been applied.

| Combines two tags by using the OR operator. The Help
compiler compiles a topic if it has at least one tag. This
operator has the lowest precedence; the compiler applies it
only after all other operators have been applied.

() Parentheses may be used to override operator precedence.
Expressions enclosed in parentheses are always evaluated
first.

Remarks

Only one BUILD option can be given per project file.

The Help compiler evaluates all build expressions from left to right, using the specified precedence
rules.

Example

The following examples assume that the [BUILDTAGS] section in the project file defines the build tags
DEMO, MASTER, and TEST_BUILD. Although the following examples show several BUILD options on
consecutive lines, only one BUILD option per project file is allowed.

BUILD = DEMO ; compile topics that have the DEMO tag
BUILD = DEMO & MASTER ; compile topics with both DEMO and MASTER
BUILD = DEMO | MASTER ; compile topics with either DEMO or MASTER
BUILD = ~DEMO ; compile topics that do not have DEMO
BUILD = (DEMO | MASTER) & TEST_BUILD
 ; compile topics that have TEST_BUILD and
 ; either DEMO or MASTER

See Also

\footnote, [BUILDTAGS], [OPTIONS]

 [BUILDTAGS]

The [BUILDTAGS] section defines the build tags for the Help file. The Help compiler uses these tags to
determine which topics to include when building the Help file.

This section is used in conjunction with the build-tag \footnote statements. These \footnote
statements associate a build tag with a given topic. If the build tag is also defined in the [BUILDTAGS]
section, the Help compiler compiles the topic; otherwise, it ignores the topic.

Syntax

tag
 . . .

Parameter

tag
Specifies a build tag consisting of any combination of characters except spaces. The Help compiler
strips any space characters from the tag. Also, the compiler treats uppercase and lowercase
characters as the same characters (that is, it is case-insensitive).

Remarks

The [BUILDTAGS] section is optional. If given, it can contain up to 30 build tags.

Example

The following example shows the form of the [BUILDTAGS] section in a sample project file:

[BUILDTAGS]
DEMO ; topics to include in demo build
MASTER ; topics to include in master help file
DEBUGBUILD ; topics to include in debugging build
TESTBUILD ; topics to include in a mini-build for testing

See Also

\footnote, BUILD

 CITATION

The CITATION option places a custom citation in the About dialog box of Windows Help. Windows Help
displays the citation immediately below the Microsoft copyright notice.

Syntax

CITATION = citation

Parameter

citation
Specifies the citation. The notice can be any combination of characters; its length must be in the
range 35 through 75 characters.

See Also

COPYRIGHT, [OPTIONS]

 COMPRESS

The COMPRESS option specifies the level of compression to be used when building the Help file.
Compression levels indicate either no compression, medium compression (approximately 40%), or
high compression (approximately 50%).

Syntax

COMPRESS = compression-level

Parameter

compression-level
Specifies the level of compression. This parameter can be one of the following values:
Value Meaning
0 No compression
1 High compression
FALSE No compression
HIGH High compression
MEDIUM Medium compression
NO No compression
TRUE High compression
YES High compression

Remarks

Depending on the degree of compression requested, the build uses either block compression or a
combination of block and key-phrase compression. Block compression compresses the topic data into
predefined units known as blocks. Key-phrase compression combines repeated phrases found within
the source file(s). The compiler creates a phrase-table file with the .PH extension if one does not
already exist. If the compiler finds a file with the .PH extension, it uses that file for the current
compilation. Because the .PH file speeds up the compression process when little text has changed
since the last compilation, you might want to keep the phrase file if you compile the same Help file
several times with compression. However, you will get maximum compression if you delete the .PH file
before starting each build.

See Also

[OPTIONS]

 [CONFIG]

The [CONFIG] section contains one or more macros that carry out actions, such as enabling browse
buttons and registering dynamic-link library (DLL) functions. Windows Help executes the macros when
it opens the Help file.

Syntax

macro
 . . .

Parameter

macro
Specifies a Windows Help macro. For more information about these macros, see the Microsoft
Windows Programmer's Reference, Volume 4.

Remarks

The [CONFIG] section may include any number of lines. Each line of the [CONFIG] section may be up
to 254 characters long.

Example

The following example registers a DLL, creates a button, enables the browse buttons, and sets the
name of the Help file containing information about how to use Help:

[CONFIG]
RegisterRoutine("bmp","HDisplayBmp","USSS")
RegisterRoutine("bmp","CopyBmp", "v=USS")
CreateButton("btn_up", "&Up", "JumpContents('HOME.HLP')")
BrowseButtons()
SetHelpOnFile("APPHELP.HLP")

 CONTENTS

The CONTENTS option identifies the context string of the highest-level or Contents topic. This topic is
usually a table of contents or index within the Help file. Windows Help displays the Contents topic
whenever the user clicks the Contents button.

Syntax

CONTENTS = context-string

Parameter

context-string
Specifies the context string of a topic in the Help file. The string can be any combination of
characters, except spaces, and must also be specified in a context-string \footnote statement in
some topic in the Help file.

Remarks

If the [OPTIONS] section does not include a CONTENTS option, the compiler assumes that the
Contents topic is the first topic encountered in the first listed topic file in the [FILES] section of the
project file.

The CONTENTS option is equivalent to the INDEX option that was available in Windows version 3.0.

Example

The following example sets the topic containing the context string "main_contents" as the Contents
topic:

CONTENTS=main_contents

See Also

\footnote, [FILES], [OPTIONS]

 COPYRIGHT

The COPYRIGHT option places a custom copyright notice in the About dialog box of Windows Help.
Windows Help displays the notice immediately below the Microsoft copyright notice.

Syntax

COPYRIGHT = copyright-notice

Parameter

copyright-notice
Specifies the copyright notice. The notice can be any combination of characters; its length must be
in the range 35 through 75 characters.

Remarks

The copyright notice is also appended to topics that are copied to the clipboard, unless it is replaced by
using the CITATION option.

See Also

CITATION, [OPTIONS]

 ERRORLOG

The ERRORLOG option directs the Help compiler to write all error messages to the specified file. The
compiler also displays the error messages on the screen.

Syntax

ERRORLOG = error-filename

Parameter

error-filename
Specifies the name of the file to receive the error messages. This parameter can be a full or partial
path if the error file should be written to a directory other than the project root directory.

Example

The following example writes all errors during the build to the HLPBUGS.TXT file in the Help project
root directory.

ERRORLOG=HLPBUGS.TXT

See Also

[OPTIONS]

 [FILES]

The [FILES] section lists all topic files used to build the Help file. Every project file requires a [FILES]
section.

Syntax

filename
 . . .

Parameter

filename
Specifies the full or partial path of a topic file. If a partial path is given, the Help compiler uses the
directories specified by the ROOT option to construct a full path. If a file cannot be found, the
compiler reports an error.

Remarks

The #include directive can also be used in the [FILES] section to specify the topic files indirectly by
designating a file that contains a list of the topic files.

Example

The following example specifies four topic files:

[FILES]
rtftxt\COMMANDS.RTF
rtftxt\HOWTO.RTF
rtftxt\KEYS.RTF
rtftxt\GLOSSARY.RTF

The following example uses the #include directive to specify the topic files indirectly. In this case, the
file RTFFILES.H must be in the project directory (the Help compiler does not use the INCLUDE
environment variable to search for files).

[FILES]
#include <rtffiles.h>

See Also

#include, ROOT

 FORCEFONT

The FORCEFONT option forces the specified font to be substituted for all requested fonts. The option
is used to create Help files that can be viewed on systems that do not have all fonts available.

Syntax

FORCEFONT = fontname

Parameter

fontname
Specifies the name of an available font. Font names must be spelled the same as they are in the
Fonts dialog box in Control Panel. Font names cannot exceed 20 characters. If an invalid font name
is given, the Help compiler uses the MS Sans Serif font as the default.

See Also

[OPTIONS]

 ICON

The ICON option identifies the icon to display when the user minimizes Windows Help.

Syntax

ICON = icon-file

Parameter

icon-file
Specifies the name of the icon file. This file must have the standard Windows icon-file format.

See Also

[OPTIONS]

 LANGUAGE

The LANGUAGE option sets the sorting order for keywords in the Search dialog box.

Syntax

LANGUAGE = language-name

Parameter

language-name
Specifies the language on which to base sorting. This parameter can be scandinavian, which sets
the sorting order to the Scandinavian-language order.

Remarks

The default sorting order is the English-language order.

Microsoft Windows Help version 3.1 supports only English and Scandinavian sorting.

See Also

[OPTIONS]

 [MAP]

The [MAP] section associates context strings (or aliases) with context numbers for context-sensitive
Help. The context number corresponds to a value the parent application passes to Windows Help in
order to display a particular topic. This section is optional.

Syntax

context-string context-number
 . . .

Parameter

context-string
Specifies the context string of a topic in the Help file. The string can be any combination of
characters, except spaces, and must also be specified in a context-string \footnote statement in
some topic in the Help file.

context-number
Specifies the context number to associate with the context string. The number can be in either
decimal or standard C hexadecimal format. Only one context number may be assigned to a context
string or alias. Assigning the same number to more than one context string generates a compiler
error. At least one space must separate the context number from the context string.

Remarks

You can define the context strings listed in the [MAP] section either in a Help topic or in the [ALIAS]
section. The compiler generates a warning message if a context string appearing in the [MAP] section
is not defined in any of the topic files or in the [ALIAS] section.

If you use an alias name, the [ALIAS] section must precede the [MAP] section in the Help project file.

The [MAP] section supports two additional statements for specifying context strings and their
associated context numbers. The first statement has the following form:

#define context-string context-number

The context-string and context-number parameters are as described in the Parameters section.

The second statement has the following form:

#include "filename"

The filename parameter, which can be enclosed in either double quotation marks or angle brackets
(<>), specifies the name of a file containing one or more #define statements. The file may contain
additional #include statements as well, but files may not be nested in this way more than five deep.

Example

The following example assigns hexadecimal context numbers to the context strings:

[MAP]
Edit_Window 0x0001
Control_Menu 0x0002
Maximize_Icon 0x0003
Minimize_Icon 0x0004
Split_Bar 0x0005
Scroll_Bar 0x0006
Title_Bar 0x0007
Window_Border 0x0008

See Also

#define, #include, [ALIAS]

 MAPFONTSIZE

The MAPFONTSIZE option maps font sizes specified in topic files to different sizes when they are
displayed in the Help window. This option is especially useful if there is a significant size difference
between the authoring display and the intended user display.

Syntax

MAPFONTSIZE = m:p

Parameter

m
Specifies the size of the source font. This parameter is either a single point size or a range of point
sizes. A range of point sizes consists of the low and high point sizes separated by a hyphen (-). If a
range is specified, all fonts in the range are changed to the size specified by the p parameter.

p
Specifies the size of the font for the Help file.

Remarks

Although the [OPTIONS] section can contain up to five font ranges, only one font size or range is
allowed with each MAPFONTSIZE statement. If more than one MAPFONTSIZE statement is included,
the source font size or range specified in subsequent statements cannot overlap previous mappings.

Example

The following examples illustrate the use of the MAPFONTSIZE option:

MAPFONTSIZE=8:12 ; display all 8-pt. fonts as 12-pt.
MAPFONTSIZE=12-24:16 ; display fonts from 12 to 24 pts. as 16 pts.

See Also

[OPTIONS]

 MULTIKEY

The MULTIKEY option specifies the footnote character to use for an alternative keyword table. This
option is intended to be used in conjunction with topic files that contain \footnote statements for
alternative keywords.

Syntax

MULTIKEY = footnote-character

Parameter

footnote-character
Specifies the case-sensitive letter to be used for the keyword footnote.

Remarks

Since keyword footnotes are case-sensitive, you should limit your keyword-table footnotes to one case,
usually uppercase. If an uppercase letter is specified, the compiler will not include footnotes with the
lowercase form of the same letter in the keyword table.

You may use any alphanumeric character for a keyword table except K and k, which are reserved for
Help's standard keyword table. There is an absolute limit of five keyword tables, including the standard
table. However, depending upon system configuration and the structure of your Help system, a
practical limit of only two or three tables may be more realistic. If the compiler cannot create an
additional keyword table, the additional table is ignored in the build.

Example

The following example illustrates how to enable the letter L for a keyword-table footnote:

MULTIKEY=L

See Also

\footnote, [OPTIONS]

 OLDKEYPHRASE

The OLDKEYPHRASE option specifies whether an existing key-phrase file should be used to build the
Help file.

Syntax

OLDKEYPHRASE = onoff

Parameters

onoff
Specifies whether the existing file should be used. This parameter can be one of the following
values:
Value Meaning
0 Recreate the file
1 Use the existing file
FALS
E

Recreate the file

NO Recreate the file
OFF Recreate the file
ON Use the existing file
TRUE Use the existing file
YES Use the existing file

See Also

[OPTIONS]

 OPTCDROM

The OPTCDROM option optimizes a Help file for display on CD-ROM by aligning topic files on
predefined block boundaries.

Syntax

OPTCDROM = yesvalue

Parameter

yesvalue
Specifies that the file should be optimized for CD-ROM. This parameter can be any of the values:
YES, TRUE, 1, or ON.

See Also

[OPTIONS]

 [OPTIONS]

The [OPTIONS] section includes options that control how a Help file is built and what feedback the
build process displays. If this section is included in the project file, it should be the first section listed, so
that the options will apply during the entire build process.

Syntax

option
 . . .

Parameters

option
Specifies one of the following project-file options:
Option Description
BMROOT Specifies the directory containing the bitmap files

named in the bmc, bml, and bmr statements in topic
files.

BUILD Specifies which topics to include in the build.
CITATION Specifies a string that is appended to topics that are

copied from Windows Help instead of the
COPYRIGHT string.

COMPRESS Specifies the type of compression to use during the
build.

CONTENTS Specifies the context string of the Contents topic for a
Help file.

COPYRIGHT Adds a unique copyright message for the Help file to
the About dialog box.

ERRORLOG Puts compilation errors in a file during the build.
FORCEFONT Forces all authored fonts in the topic files to appear in

a different font when displayed in the Help window.
ICON Specifies the icon file to be displayed when the Help

window is minimized.
LANGUAGE Specifies a different sorting order for Help files

authored in a Scandinavian language.
MAPFONTSIZE Maps a font size in the topic file to a different font size

in the compiled Help file.
MULTIKEY Specifies an alternative keyword table to use for

mapping topics.
OLDKEYPHRA
SE

Specifies whether the compiler should use the
existing key-phrase table or create a new one during
the build.

OPTCDROM Optimizes the Help file for CD-ROM use.
REPORT Controls the display of messages during the build

process.
ROOT Specifies the directories containing the topic and data

files listed in the project file.
TITLE Specifies the text displayed in the title bar of the Help

window when the file is open.
WARNING Specifies the level of error-message reporting the

compiler is to display during the build.

Remarks

These options can appear in any order within the [OPTIONS] section. The [OPTIONS] section is not
required.

 REPORT

The REPORT option displays messages on the screen during the build. These messages indicate
when the Help compiler is performing the different phases of the build, including compiling the file,
resolving jumps, and verifying browse sequences.

Syntax

REPORT = ON

See Also

[OPTIONS], WARNING

 ROOT

The ROOT option specifies the directories where the Help compiler looks for files listed in the project
file.

Syntax

ROOT = pathname[, pathname]

Parameter

pathname
Specifies either a drive and full path or a relative path from the project directory. If the project file has
a ROOT option, all relative paths in the project file refer to one of these paths. If the project file does
not have a ROOT option, all paths are relative to the directory containing the project file.

Remarks

If the project file does not have a BMROOT option, the compiler looks in the directories specified in the
ROOT option to find bitmaps positioned by using the bmc, bml, and bmr statements. If none of these
directories contains these bitmaps, the bitmap filenames must be listed in the [BITMAPS] section of the
project file.

Example

The following example specifies that the project root directory is C:\WINHELP\HELPDIR and is found
on drive C:

[OPTIONS]
ROOT=C:\WINHELP\HELPDIR

Given this root directory, if the [FILES] section contains the entry TOPICS\FILE.RTF, the full path for
the topic file is C:\WINHELP\HELPDIR\TOPICS\FILE.RTF.

See Also

bmc, bml, bmr, [BITMAPS], BMROOT, [OPTIONS], [FILES]

 TITLE

The TITLE option sets the title for the Help file. Windows Help displays the title in its title bar whenever
it displays the Help file.

Syntax

TITLE = titlename

Parameter

titlename
Specifies the title displayed in the Windows Help title bar. The title must not exceed 50 characters.

Remarks

If no title is specified by using the TITLE option, Windows Help displays the title Windows Help in the
title bar.

Example

The following example sets the Help-file title to ABC Help.

[OPTIONS]
TITLE=ABC Help

See Also

[OPTIONS]

 WARNING

The WARNING option specifies the amount of debugging information the Help compiler is to report.

Syntax

WARNING = level

Parameter

level
Specifies the warning level. This parameter may be one of the following values:
Valu
e

Meaning

1 Report only the most severe errors.
2 Report an intermediate number of errors.
3 Report all errors and warnings.

Example

The following example specifies an intermediate level of error reporting:

[OPTIONS]
WARNING=2

See Also

[OPTIONS], REPORT

 [WINDOWS]

The [WINDOWS] section defines the size, location, and colors for the primary Help window and any
secondary-window types used in a Help file.

The secondary windows defined in this section are intended to be used with Windows applications that
specify secondary windows when calling the WinHelp function.

Syntax

type = "caption", (x, y, width, height), sizing, (clientRGB), (nonscrollRGB), (fTop)
 . . .

Parameters

type
Specifies the type of window that uses the defined attributes. For the primary Help window, this
parameter is main. For a secondary window, this parameter may be any unique name of up to 8
characters. Any jumps that display a topic in a secondary window give this type name as part of the
jump.

caption
Specifies the title for a secondary window. Windows Help places the title in the title bar of the
window. To set the title for the primary Help window, use the TITLE option in the [OPTIONS] section.

x
Specifies the x-coordinate, in help units, of the window's upper-left corner. Windows Help always
assumes the screen is 1024 help units wide, regardless of resolution. For example, if the x-
coordinate is 512, the left edge of the Help window is in the middle of the screen.

y
Specifies the y-coordinate, in help units, of the window's upper-left corner. Windows Help always
assumes the screen is 1024 help units high, regardless of resolution. For example, if the x-
coordinate is 512, the top edge of the Help window is in the middle of the screen.

width
Specifies the default width, in help units, for a secondary window.

height
Specifies the default height, in help units, for a secondary window.

sizing
Specifies the relative size of a secondary window when Windows Help first opens the window. This
parameter can be one of the following values:
Val
ue

Meaning

0 Set the window to the size specified by the x, y, width, and height
parameters.

1 Maximize the window; ignore the x, y, width, and height
parameters.

clientRGB
Specifies the background color of the window. This parameter is an RGB color value consisting of
three 8-bit hexadecimal numbers enclosed in parentheses and separated by commas. If this
parameter is not given, Windows Help uses the default window color specified by Control Panel.

nonscrollRGB
Specifies the background color of the nonscrolling region (if any) in the Help window. This parameter
is an RGB color value consisting of three 8-bit hexadecimal numbers enclosed in parentheses and
separated by commas. If this parameter is not given, Windows Help uses the default window color
specified by Control Panel.

fTop
Specifies whether the secondary window is displayed on top of all other windows. When this
parameter is 1, the window is displayed over all windows that do not also use this attribute.
Otherwise, it should be zero. This parameter is optional.

Example

The following example defines two windows, the main window and a secondary window named
"picture". The main-window definition sets the background color of nonscrolling regions in the main
Help window to (128, 0, 128) but leaves several other values empty (for which Windows Help will
supply its own default values). The secondary-window definition sets the caption to "Samples" and sets
the width and height of the window to about one-quarter of the width and height of the screen. The
background colors for the window and nonscrolling region are (0, 255, 255) and (255, 0, 0),
respectively. The sizing parameter for both the main and secondary windows is zero.

[WINDOWS]
main=,,,,, 0,,,, (128, 0, 128)
picture = "Samples", (123,123,256,256), 0, (0,255,255), (255,0,0)

See Also

[OPTIONS], TITLE, WinHelp

 Help Macro Reference

This section lists the Microsoft Windows Help macros in alphabetic order.

 About

The About macro displays Windows Help's About dialog box.

Syntax

About()

Parameters

This macro does not take any parameters.

Remarks

Use of this macro in secondary windows is not recommended.

 AddAccelerator

The AddAccelerator macro assigns a Help macro to an accelerator key (or key combination) so that
the macro is carried out when the user presses the accelerator key(s).

Syntax

AddAccelerator(key, shift-state, "macro")

Parameters

key
Specifies the Windows virtual-key value. For a list of virtual-key codes, see the Microsoft Windows
Programmer's Reference, Volume 3.

shift-state
Specifies the combination of ALT, SHIFT, and CTRL keys to be used with the accelerator. This
parameter may be one of the following values:
Valu
e

Meaning

0 None
1 SHIFT

2 CTRL

3 SHIFT+CTRL

4 ALT

5 ALT+SHIFT

6 ALT+CTRL

7 SHIFT+ALT+CTRL

macro
Specifies the Help macro or macro string executed when the user presses the accelerator key(s).
The macro must appear in quotation marks ("). Multiple macros in a string must be separated by
semicolons (;).

Remarks

The AddAccelerator macro can be abbreviated as AA.

Example

The following macro executes the Windows Clock program when the user presses
ALT+SHIFT+CONTROL+F4:

AddAccelerator(0x73, 7, "ExecProgram('clock.exe', 1)")

See Also

RemoveAccelerator

 Annotate

The Annotate macro displays the Annotation dialog box from the Edit menu.

Syntax

Annotate()

Parameters

This macro does not take any parameters.

Remarks

Use of this macro in secondary windows is not recommended.

 AppendItem

The AppendItem macro appends a menu item to the end of a Windows Help menu.

Syntax

AppendItem("menu-id", "item-id", "item-name", "macro")

Parameters

menu-id
Specifies the name of a standard Windows Help menu or the name used in the InsertMenu macro
used to create the menu. This name must appear in quotation marks. The new item is appended to
this menu. For a standard menu, this parameter can be one of the following:
Name Menu
MNU_FILE File
MNU_EDIT Edit
MNU_BOOKMA
RK

Bookmark menu

MNU_HELP Help

item-id
Specifies the name that Windows Help uses internally to identify the menu item. This name must
appear in quotation marks ("). This name is used by the DisableItem or DeleteItem macros.

item-name
Specifies the name that Windows Help displays on the menu for the item. This name must appear in
quotation marks ("). Within the quotation marks, place an ampersand (&) before the character used
for the macro's accelerator key.

macro
Specifies one or more macros that are to be executed when the user chooses the menu item. The
macro must appear in quotation marks. Multiple macros in a string must be separated by semicolons
(;).

Remarks

Windows Help ignores this macro if it is executed in a secondary window.

If the keyboard accelerator conflicts with other menu access keys, Windows Help displays the error
message "Unable to add item" and ignores the macro.

Example

The following macro appends a menu item labeled "Tools" to a pop-up menu that has an identifier
"IDM_TLS". Choosing the menu item causes a jump to a topic with the context string "tpc1" in the
TLS.HLP file:

AppendItem("IDM_BKS", "IDM_TLS", "&Tools", "JI('tls.hlp', 'tpc1')")

See Also

DeleteItem, DisableItem, InsertMenu

 Back

The Back macro displays the previous topic in the history list. The history list is a list of the last 40
topics the user has displayed since starting Windows Help.

Syntax

Back()

Parameters

This macro does not take any parameters.

Remarks

Windows Help ignores this macro if it is executed in a secondary window.

If the Back macro is executed when the Back list is empty, Windows Help takes no action.

 BookmarkDefine

The BookmarkDefine macro displays the Define dialog from the Bookmark menu.

Syntax

BookmarkDefine()

Parameters

This macro does not take any parameters.

Remarks

Use of this macro in secondary windows is not recommended.

If the BookmarkDefine macro is executed from a pop-up window, the bookmark is attached to the
topic that invoked the pop-up window.

 BookmarkMore

The BookmarkMore macro displays the More dialog from the Bookmark menu. The More command
appears on the Bookmark menu if the menu lists more than nine bookmarks.

Syntax

BookmarkMore()

Parameters

This macro does not take any parameters.

Remarks

Use of the macro in secondary windows is not recommended.

 BrowseButtons

The BrowseButtons macro adds browse buttons to the button bar.

Syntax

BrowseButtons()

Parameters

This macro does not take any parameters.

Remarks

Windows Help ignores this macro if it is executed from a secondary window.

If the BrowseButtons macro is used with one or more CreateButton macros in the [CONFIG] section
of the project file, the order of the browse buttons on the Windows Help button bar is determined by the
order of the BrowseButtons macro in relation to the other macros listed in the [CONFIG] section.

Example

The following macros in the project file cause the Clock button to appear immediately before the two
browse buttons on the button bar:

[CONFIG]
CreateButton("&Clock", "ExecProgram('clock', 0)")
BrowseButtons()

See Also

[CONFIG], CreateButton

 ChangeButtonBinding

The ChangeButtonBinding macro assigns a Help macro to a Help button.

Syntax

ChangeButtonBinding("button-id", "button-macro")

Parameters

button-id
Specifies the identifier assigned to the button by the CreateButton macro or, for a standard Help
button, one of the following predefined button identifiers:
ID Description
BTN_CONTEN
TS

Contents

BTN_SEARCH Search
BTN_BACK Back
BTN_HISTOR
Y

History

BTN_PREVIO
US

Browse previous

BTN_NEXT Browse next

The button identifier must be enclosed in quotation marks (").
button-macro

Specifies the Help macro executed when the user selects the button. The macro must be enclosed
in quotation marks (").

Remarks

Windows Help ignores this macro if it is executed in a secondary window.

The ChangeButtonBinding macro can be abbreviated as CBB.

Example

In the following macro, "conts" is the context string for the table of contents in the DICT.HLP file:

ChangeButtonBinding("btn_contents", "JumpId('dict.hlp', 'conts')")

See Also

CreateButton

 ChangeItemBinding

The ChangeItemBinding macro assigns a Help macro to an item previously added to a Windows Help
menu using the AppendItem macro.

Syntax

ChangeItemBinding("item-id", "item-macro")

Parameters

item-id
Identifies the menu item appended by the AppendItem macro. The item identifier must be enclosed
in quotation marks (").

item-macro
Specifies the Help macro to execute when the user selects the item. The macro must be enclosed in
quotation marks (").

Remarks

Windows Help ignores this macro if it is executed in a secondary window.

The ChangeItemBinding macro can be abbreviated as CIB.

Example

The following macro changes the menu item identified by "time_item" so that it displays the Windows
clock:

ChangeItemBinding("time_item", "ExecProgram('clock', 0)")

See Also

AppendItem

 CheckItem

The CheckItem macro places a check mark beside a menu item.

Syntax

CheckItem("item-id")

Parameters

item-id
Identifies the menu item to check. The item identifier must be enclosed in quotation marks (").

Remarks

The CheckItem macro can be abbreviated as CI.

See Also

UncheckItem

 CloseWindow

The CloseWindow macro closes either a secondary window or the main Help window.

Syntax

CloseWindow("window-name")

Parameters

window-name
Specifies the name of the window to close. The name "main" is reserved for the main Help window.
For secondary windows, the window name is defined in the [WINDOWS] section of the project file.
This name must be enclosed in quotation marks (").

Example

The following macro closes the secondary window named "keys":

CloseWindow("keys")

See Also

[WINDOWS]

 Contents

The Contents macro displays the Contents topic in the current Help file. The Contents topic is defined
by the CONTENTS option in the [OPTIONS] section of the project file. If the project file does not have a
CONTENTS option, the Contents topic is the first topic of the first topic file specified in the project file.

Syntax

Contents()

See Also

CONTENTS, [OPTIONS]

 CopyDialog

The CopyDialog macro displays the Copy dialog from the Edit menu.

Syntax

CopyDialog()

Remarks

Use of this macro in secondary windows is not recommended.

 CopyTopic

The CopyTopic macro copies all the text in the currently displayed topic to the Clipboard.

Syntax

CopyTopic()

Remarks

Use of the macro in secondary windows is not recommended.

 CreateButton

The CreateButton macro adds a new button to the button bar.

Syntax

CreateButton("button-id", "name", "macro")

Parameters

button-id
Specifies the name that WinHelp uses internally to identify the button. This name must appear in
quotation marks ("). Use this name in the DisableButton or DestroyButton macro if you want to
remove or disable the button or in the ChangeButtonBinding if you want to change the Help macro
that the button executes in certain topics.

name
Specifies the text that appears on the button. To make a letter in this text the mnemonic for the
button, place an ampersand (&) before that letter. The button name is case sensitive and can have
up to 29 characters in it ¾ any additional characters are ignored.

macro
Specifies the Help macro or macro string executed when the user clicks on the button. Multiple
macros in a macro string must be separated by semicolons.

Remarks

Windows Help allows a maximum of 16 custom buttons. It allows a total of 22 buttons, including the
standard Browse buttons, on the button bar.

If the BrowseButtons macro is used with one or more CreateButton macros in the project file, the
buttons appear in the same order on the button bar as the macros appear in the project file.

Windows Help ignores this macro if it is executed in a secondary window.

The CreateButton macro can be abbreviated as CB.

Example

The following macro creates a new button labeled "Ideas" that jumps to the topic with the context string
"dir" in the IDEAS.HLP file when clicked:

CreateButton("btn_ideas", "&Ideas", "JumpId('ideas.hlp', 'dir')")

See Also

BrowseButtons, ChangeButtonBinding, DestroyButton, DisableButton

 DeleteItem

The DeleteItem macro removes a menu item that was added by using the AppendItem macro.

Syntax

DeleteItem("item-id")

Parameters

item-id
Specifies the item identifier used in the AppendItem macro. The item identifier must be enclosed in
quotation marks (").

Remarks

Windows Help ignores this macro if it is executed in a secondary window.

Example

The following macro removes the menu item "Tools" appended in the example for the AppendItem
macro:

DeleteItem("IDM_TOOLS")

See Also

AppendItem

 DeleteMark

The DeleteMark macro removes a text marker added with the SaveMark macro.

Syntax

DeleteMark("marker-text")

Parameters

marker-text
Specifies the text marker previously added by the SaveMark macro. The marker text must be
enclosed in quotation marks (").

Remarks

If the marker does not exist when the DeleteMark macro is executed, Windows Help displays a "Topic
not found" error message.

Example

The following macro removes the marker "Managing Memory" from a Help file:

DeleteMark("Managing Memory")

See Also

SaveMark

 DisableButton

The DisableButton macro grays out a button added with the CreateButton macro. This button cannot
be used in the topic until an EnableButton macro is executed.

Syntax

DisableButton("button-id")

Parameters

button-id
Specifies the identifier assigned to the button by the CreateButton macro. The button identifier must
be enclosed in quotation marks (").

Remarks

Windows Help ignores this macro if it is executed in a secondary window.

The DisableButton macro can be abbreviated as DB.

See Also

CreateButton, EnableButton

 DisableItem

The DisableItem macro grays out a menu item added with the AppendItem macro. The menu item
cannot be used in the topic until an EnableItem macro is executed.

Syntax

DisableItem("item-id")

Parameters

item-id
Identifies a menu item previously appended with the AppendItem macro. The item identifier must be
enclosed in quotation marks (").

Remarks

Windows Help ignores this macro if it is executed in a secondary window.

The DisableItem macro can be abbreviated as DI.

See Also

AppendItem, EnableItem

 DestroyButton

The DestroyButton macro removes a button added with the CreateButton macro.

Syntax

DestroyButton("button-id")

Parameters

button-id
Identifies a button previously created by the CreateButton macro. The button identifier must be
enclosed in quotation marks (").

Remarks

The button identifier cannot be an identifier for one of the standard Help buttons. For a list of those
identifiers, see the ChangeButtonBinding macro.

Windows Help ignores this macro if it is executed in a secondary window.

See Also

CreateButton, ChangeButtonBinding

 EnableButton

The EnableButton macro re-enables a button disabled with the DisableButton macro.

Syntax

EnableButton("button-id")

Parameters

button-id
Specifies the identifier assigned to the button by the CreateButton macro. The button identifier must
be enclosed in quotation marks (").

Remarks

Windows Help ignores this macro if it is executed in a secondary window.

The EnableButton macro can be abbreviated as EB.

See Also

CreateButton, DisableButton

 EnableItem

The EnableItem macro re-enables a menu item disabled with the DisableItem macro.

Syntax

EnableItem("item-id")

Parameters

item-id
Specifies the identifier assigned to the menu item by the AppendItem macro. The item identifier
must be enclosed in quotation marks (").

Remarks

Windows Help ignores this macro if it is executed in a secondary window.

The EnableItem macro can be abbreviated as EI.

See Also

AppendItem, DisableItem

 ExecProgram

The ExecProgram macro executes a Windows application.

Syntax

ExecProgram("command-line", display-state)

Parameters

command-line
Specifies the command line for the application to be executed. The command line must be enclosed
in quotation marks ("). Windows Help searches for this application in the current directory, followed
by the Windows directory, the user's path, and the directory of the currently viewed Help file.

display-state
Specifies a value indicating how the application is shown when executed. It may be one of the
following values:
Valu
e

Meaning

0 Normal
1 Minimized
2 Maximized

Remarks

The ExecProgram macro can be abbreviated as EP.

The backslash (\) character should not be used to escape double quotation-mark characters in macros.
Instead, you can enclose the command line in single quotation marks (') and omit the backslash for the
double quotation marks, as shown in the following:

'command "string as parameter"'

Note that the first single quotation mark must be an open quote and the last single quotation mark must
be a close quote.

Example

The following example executes the Clock application. The application is minimized when it starts:

ExecProgram('clock.exe', 1)

 Exit

The Exit macro exits the Windows Help application. It has the same effect as selecting Exit from the
File menu.

Syntax

Exit()

Parameters

This macro does not take any parameters.

 FileOpen

The FileOpen macro displays the Open dialog box from the File menu.

Syntax

FileOpen()

Parameters

This macro does not take any parameters.

Remarks

Use of the macro in secondary windows is not recommended.

 FocusWindow

The FocusWindow macro changes the focus to the specified window, either the main Help window or
a secondary window.

Syntax

FocusWindow("window-name")

Parameters

window-name
Specifies the name of the window to receive the focus. The name "main" is reserved for the main
Help window. For secondary windows, the window name is defined in the [WINDOWS] section of the
project file. This name must be enclosed in quotation marks (").

Remarks

This macro is ignored if the specified window does not exist.

Example

The following macro changes the focus to the secondary window "keys":

FocusWindow("keys")

See Also

[WINDOWS]

 GoToMark

The GoToMark macro jumps to a marker set with the SaveMark macro.

Syntax

GoToMark("marker-text")

Parameters

marker-text
Specifies a text marker previously defined by using the SaveMark macro.

Example

The following macro jumps to the marker "Managing Memory":

GoToMark("Managing Memory")

See Also

SaveMark

 HelpOn

The HelpOn macro displays the Help file for the Windows Help application. The macro carries out the
same action as choosing the How to Use Help command on the Help menu.

Syntax

HelpOn()

Parameters

This macro does not take any parameters.

 HelpOnTop

The HelpOnTop macro toggles the on-top state of Windows Help. It is equivalent to checking or
unchecking the Always On Top command in the Help menu.

Syntax

HelpOnTop()

Parameters

This macro does not take any parameters.

Remarks

Windows Help does not provide a macro to check the current state of the Always On Top command. It
is up to the user to determine whether the macro should be used to change the state of the command.

 History

The History macro displays the history list, which shows the last 40 topics the user has viewed since
opening a Help file in Windows Help. It has the same effect as choosing the History button.

Syntax

History()

Parameters

This macro does not take any parameters.

Remarks

Windows Help ignores this macro if it is executed in a secondary window.

 IfThen

The IfThen macro executes a Help macro if a given marker exists. It uses the IsMark macro to make
the test.

Syntax

IfThen(IsMark("marker-text"), "macro")

Parameters

marker-text
Specifies a text marker previously created by using the SaveMark macro. The marker must be
enclosed in quotation marks (").

macro
Specifies a Help macro or macro string to be executed if the marker exists. Multiple macros in a
macro string must be separated by semicolons (;).

Example

The following macro jumps to the topic with context string "man_mem" if a marker named "Managing
Memory" has been set by the SaveMark macro:

IfThen(IsMark("Managing Memory"), "JI('trb.hlp', 'man_mem')")

See Also

IsMark, SaveMark

 IfThenElse

The IfThenElse macro executes one of two Help macros depending on whether or not a marker exists.
It uses the IsMark macro to make the test.

Syntax

IfThenElse(IsMark("marker-text"), "macro1", "macro2")

Parameters

marker-text
Specifies a text marker previously created by using the IsMark macro. The marker must be
enclosed in quotation marks (").

macro1
Specifies a Help macro or macro string to be executed if the marker exits. Multiple macros in either
macro string must be separated by semicolons (;).

macro2
Specifies a Help macro or macro string to be executed if the marker does not exist. Multiple macros
in either macro string must be separated by semicolons.

Example

The following macro jumps to the topic with context string "mem" if a marker named "Memory" has
been set by the SaveMark macro. If the marker does not exist, it jumps to the next topic in the browse
sequence.

IfThenElse(IsMark("Memory"), "JI('trb.hlp', 'mem')", "Next()")

See Also

IsMark, SaveMark

 InsertItem

The InsertItem macro inserts a menu item at a given position on an existing menu. The menu can be
either one you create with the InsertMenu macro or one of the standard Windows Help menus.

Syntax

InsertItem("menu-id", "item-id", "item-name", "macro", position)

Parameters

menu-id
Identifies either a standard Windows Help menu or a menu previously created by using the
InsertMenu macro. For a standard menu, this parameter can be one of the following:
Name Menu
MNU_FILE File
MNU_EDIT Edit
MNU_BOOKMA
RK

Bookmark menu

MNU_HELP Help

For other menus, this parameter must be the name used with the InsertMenu macro. In all cases,
the menu identifier must be enclosed in quotation marks. The new item is inserted into this menu.

item-id
Specifies the name that Windows Help uses internally to identify the menu item. The item identifier
must be enclosed in quotation marks (").

item-name
Specifies the name Windows Help displays in the menu for the item. This name is case-sensitive
and must be enclosed in quotation marks. An ampersand (&) before a character in the name
identifies it as the item's keyboard access key.

macro
Specifies a Help macro or macro string to be executed when the user chooses the menu item. The
macro must be enclosed in quotation marks. Multiple macros in a string must be separated by
semicolons (;).

position
Specifies the position of the menu item in the menu. It must be an integer value. Position 0 is the
first or topmost position in the menu.

Remarks

The item-id parameter can be used in a subsequent DisableItem or DeleteItem macro to remove or
disable the item or to change the operations that the item performs in certain topics.

Windows Help ignores this macro if it is executed in a secondary window.

The specified keyboard access keys must be unique. If a key conflicts with other menu access keys,
Windows Help displays the error message "Unable to add item" and ignores the macro.

Example

The following macro inserts a menu item labeled "Tools" as the third item on a menu that has an
identifier "MNU_BKS". Selecting the menu item causes a jump to a topic with the context string "tls1" in
the TLS.HLP file:

InsertItem("mnu_bks", "m_tls", "&Tools", "JI('tls.hlp', 'tls1')", 3)

See Also

DeleteItem, DisableItem, InsertMenu

 InsertMenu

The InsertMenu macro inserts a new menu in the Windows Help menu bar.

Syntax

InsertMenu("menu-id", "menu-name", menu-position)

Parameters

menu-id
Specifies the name that Windows Help uses internally to identify the menu. The menu identifier must
be enclosed in quotation marks ("). This identifier can be used in the AppendItem macro to add
macros to the menu.

menu-name
Specifies the name that Windows Help displays on the menu bar. This name must be enclosed in
quotation marks. An ampersand (&) before a character in the name identifies it as the menu's
keyboard access key.

menu-position
Specifies the position on the menu bar of the new menu name. This parameter must be an integer
number. Positions are numbered from left to right, with position 0 the left-most menu.

Remarks

Windows Help ignores this macro if it is executed in a secondary window.

Example

The following macro adds a menu named "Utilities" to the Windows Help application. The label
"Utilities" appears as the fourth item on the Windows Help menu bar. The user presses ALT+U to open
the menu.

InsertMenu("IDM_UTIL", "&Utilities", 3)

See Also

AppendItem

 IsMark

The IsMark macro tests whether or not a marker set by the SaveMark macro exists. It is used as a
parameter to the conditional macros IfThen and IfThenElse. The IsMark macro returns nonzero if the
mark exists or zero if it does not.

Syntax

IsMark("marker-text")

Parameters

marker-text
Specifies a text marker previous created using the SaveMark macro.

Remarks

The Not macro can be used to reverse the results of the IsMark macro.

Example

The following macro jumps to the topic with the context string "man_mem" if a marker named
"Managing Memory" has been set by the SaveMark macro:

IfThen(IsMark("Managing Memory"), "JI('trb.hlp', 'man_mem')")

See Also

IfThen, IfThenElse, SaveMark

 JumpContents

The JumpContents macro jumps to the Contents topic of a specified file in the Help file. The Contents
topic is indicated by the CONTENTS option entry in the [OPTIONS] section of the project file. If the
CONTENTS option is not specified, Windows Help jumps to the first topic in the Help file.

Syntax

JumpContents("filename")

Parameters

filename
Specifies the name of the destination file for the jump. The filename must be enclosed in quotation
marks ("). If Windows Help cannot find this file, it displays an error message and does not perform
the jump.

Remarks

Windows Help ignores this macro if it is executed in a secondary window.

Example

The following macro jumps to the Contents topic of the PROGMAN.HLP file:

JumpContents("PROGMAN.HLP")

See Also

[OPTIONS], CONTENTS

 JumpContext

Syntax

JumpContext("filename", context-number)

Parameters

filename
Specifies the name of the destination file for the jump. The filename must be enclosed in quotation
marks ("). If Windows Help cannot find this file, it displays an error message and does not perform
the jump.

context-number
Specifies the context number of the topic in the destination file. The context number must be defined
in the [MAP] section of the project file. If the context number is not valid, Windows Help jumps to the
Contents topic or to the first topic in the file instead and displays an error message.

Remarks

The JumpContext macro can be abbreviated as JC.

Example

The following macro jumps to the topic mapped to the context number 801 in the PROGMAN.HLP file:

JumpContext("PROGMAN.HLP", 801)

See Also

[MAP]

 JumpHelpOn

The JumpHelpOn macro jumps to the Contents topic of the How to Use Help file. The How To Use
Help file is either the default WINHELP.HLP file shipped with Windows 3.1 or the Help file designated
by the SetHelpOnFile macro in the [CONFIG] section of the project file.

Syntax

JumpHelpOn()

Parameters

This macro does not take any parameters.

Remarks

If Windows Help cannot find the specified Help file, it displays an error message and does not perform
the jump.

Example

The following macro jumps to the Contents topic of the designated How to Use Help file:

JumpHelpOn()

See Also

[CONFIG], SetHelpOnFile

 JumpId

The JumpId macro jumps to the topic with the specified context string in the Help file.

Syntax

JumpId("filename", "context-string")

Parameters

filename
Specifies the name of the Help file containing the context string. The filename must be enclosed in
quotation marks ("). If Windows Help does not find this file, it displays an error message and does
not perform the jump.

context-string
Context string of the topic in the destination file. The context string must be enclosed in quotation
marks. If the context string does not exist, Windows Help jumps to the Contents topic for that file
instead.

Remarks

The JumpId macro may be abbreviated as JI.

Example

The following macro jumps to a topic with "second_topic" as its context string in the SECOND.HLP file:

JI("second.hlp", "second_topic")

 JumpKeyword

The JumpKeyword macro loads the indicated Help file, searches through the K keyword table, and
displays the first topic containing the index keyword specified in the macro.

Syntax

JumpKeyword("filename", "keyword")

Parameters

filename
Specifies the name of the Help file containing the desired keyword table. The filename must be
enclosed in quotation marks ("). If this file does not exist, Windows Help displays an error message
and does not perform the jump.

keyword
Specifies the keyword that the macro searches for. The keyword must be enclosed in quotation
marks. If Windows Help finds more than one match, it displays the first matched topic. If it does not
find any matches, it displays a "Not a keyword" message and displays the Contents topic of the
destination file instead.

Remarks

The JumpKeyword macro can be abbreviated as JK.

Example

The following macro displays the first topic that has "hands" as an index keyword in the CLOCK.HLP
file:

JumpKeyword("clock.hlp", "hands")

 Next

The Next macro displays the next topic in the browse sequence for the Help file.

Syntax

Next()

Parameters

This macro does not take any parameters.

Remarks

If the currently displayed topic is the last topic of a browse sequence, this macro does nothing.

Windows Help ignores this macro if it is executed in a secondary window.

 Not

The Not macro reverses the result (nonzero or zero) returned by the IsMark macro. It is used along
with the IsMark macro as a parameter to the conditional macros IfThen and IfThenElse.

Syntax

Not(IsMark("marker-text"))

Parameters

marker-text
Specifies a text marker previously created by using the SaveMark macro. The marker text must be
enclosed in quotation marks (").

Example

The following macro jumps to the topic with the context string "mem1" if a marker named "Memory" has
not been set by the SaveMark macro:

IfThen(Not(IsMark("Memory")), "JI('trb.hlp', 'mem1')")

See Also

IfThen, IfThenElse, IsMark, SaveMark

 PopupContext

The PopupContext macro displays in a pop-up window the topic identified by a specific context
number.

Syntax

PopupContext("filename", context-number)

Parameters

filename
Specifies the name of the file that contains the topic to be displayed. The filename must be enclosed
in quotation marks ("). If Windows Help cannot find this file, it displays an error message.

context number
Specifies the context number of the topic to be displayed. The context number must be specified in
the [MAP] section of the project file. If the context number is not valid, Windows Help displays the
Contents topic or the first topic in the file instead.

Remarks

The PopupContext macro can be abbreviated as PC.

Example

The following macro displays in a pop-up window the topic mapped to the context number 801 in the
PROGMAN.HLP file:

PopupContext("progman.hlp", 801)

See Also

[MAP]

 PopupId

The PopupId macro displays a topic from a specified file in a pop-up window.

Syntax

PopupId("filename", "context-string")

Parameters

filename
Specifies the name of the file containing the pop-up window topic. The filename must be enclosed in
quotation marks ("). If this file does not exist, Windows Help displays a warning.

context-string
Specifies the context string of the topic in the destination file. If the requested context string does not
exist, Windows Help displays the Contents topic or the first topic in the file.

Remarks

The PopupId macro can be abbreviated as PI.

Example

The following macro displays a pop-up window with context string "second_topic" from the
SECOND.HLP file:

PopupId("second.hlp", "second_topic")

 PositionWindow

The PositionWindow macro sets the size and position of a window.

Syntax

PositionWindow(x, y, width, height, state, "name")

Parameters

x
Specifies the x-coordinate, in help units, of the upper-left corner of the window. Windows Help
always assumes the screen (regardless of resolution) is 1024 help units wide. For example, if the x-
coordinate is 512, the left edge of the Help window is in the middle of the screen.

y
Specifies the y-coordinate, in help units, of the upper-left corner of the window. Windows Help
always assumes the screen (regardless of resolution) is 1024 help units high. For example, if the y-
coordinate is 512, the top edge of the Help window is in the middle of the screen.

width
Specifies the default width, in help units, of the window.

height
Specifies the default height, in help units, of the window.

state
Specifies how the window is sized. This parameter can be one of the following values:
Val
ue

Meaning

0 Normal size
1 Maximized

If the parameter is 1, Windows Help ignores the x, y, width, and height parameters.
name

Specifies the name of the window to position. The name "main" is reserved for the main Help
window. For secondary windows, the window name must be defined in the [WINDOWS] section of
the project file. This name must be enclosed in quotation marks (").

Remarks

If the window to be positioned does not exist, Windows Help ignores the macro.

The PositionWindow macro can be abbreviated as PW.

Example

The following macro positions the secondary window "Samples" in the upper-left corner (100, 100) with
a width and height of 500 (in help units):

PositionWindow(100, 100, 500, 500, 0, "Samples")

See Also

[WINDOWS]

 Prev

The Prev macro displays the previous topic in the browse sequence for the Help file. If the currently
displayed topic is the first topic of a browse sequence, this macro does nothing.

Syntax

Prev()

Parameters

This macro does not take any parameters.

Remarks

Windows Help ignores this macro if it is executed in a secondary window.

 Print

The Print macro sends the currently displayed topic to the printer. It should be used only to print topics
in windows other than the main Help window (for example, topics in a secondary window).

Syntax

Print()

Parameters

This macro does not take any parameters.

 PrinterSetup

The PrinterSetup macro displays the Printer Setup dialog box from the File menu.

Syntax

PrinterSetup()

Parameters

This macro does not take any parameters.

Remarks

Use of the macro in secondary windows is not recommended.

 RegisterRoutine

RegisterRoutine("DLL-name", "function-name", "format-spec")

The RegisterRoutine macro registers a function within a dynamic-link library (DLL). Registered
functions can be used in macro footnotes in topic files or in the [CONFIG] section of the project file, the
same as standard Help macros.

Syntax

Parameters

DLL-name
Specifies the filename of the DLL. The filename must be enclosed in quotation marks ("). If Windows
Help cannot find the library, it displays an error message.

function-name
Specifies the name of the function to execute in the designated DLL.

format-spec
Specifies a string indicating the formats of parameters passed to the function. The format string must
be enclosed in quotation marks. Characters in the string represent C parameter types:
Charact
er

Description

u unsigned short (WORD)
U unsigned long (DWORD)
i short int
I int
s near char * (PSTR)
S far char * (LPSTR)
v void

If the function is used as a Help macro, Windows Help makes sure the macro parameters match the
parameter types given in this macro.

Remarks

The RegisterRoutine macro can be abbreviated as RR.

Example

The following call registers a routine named PlayAudio in a DLL, MMLIB.DLL. PlayAudio takes
arguments of the far char *, int, and unsigned long types:

RegisterRoutine("MMLIB", "PlayAudio", "SIU")

See Also

[CONFIG]

 RemoveAccelerator

The RemoveAccelerator macro removes the assignment of a Help macro to an accelerator key (or
key combination). These assignments are made by using the AddAccelerator macro.

Syntax

RemoveAccelerator(key, shift-state)

Parameters

key
Specifies the Windows virtual-key value. For a list of Virtual-Key Codes, see the Microsoft Windows
Programmer's Reference, Volume 3.

shift-state
Specifies the combination of ALT, SHIFT, and CTRL keys that were used with the accelerator. This
parameter may be one of the following values:
Val
ue

Meaning

0 None
1 SHIFT

2 CTRL

3 SHIFT+CTRL

4 ALT

5 ALT+SHIFT

6 ALT+CTRL

7 SHIFT+ALT+CTRL

Remarks

The RemoveAccelerator macro can be abbreviated as RA. No error occurs when this macro is used
with an accelerator for which a macro was not defined.

Example

The following macro disassociates a macro from the ALT+SHIFT+CONTROL+F4 key combination:

RemoveAccelerator(0x73, 7)

See Also

AddAccelerator

 SaveMark

The SaveMark macro saves the location of the currently displayed topic and file and associates a text
marker with that location. The GotoMark macro can then be used to jump to this location.

Syntax

SaveMark("marker-text")

Parameters

marker-text
Specifies the text marker to be used to identify the topic location. This text must be enclosed in
quotation marks ("), and it must be unique. If the same text is used for more than one marker, the
most recently entered marker is used.

Remarks

A text marker can be used with the GotoMark, DeleteMark, IfThen, and IfThenElse macros.

If the user exits Windows Help, all text markers are deleted.

Example

The following macro saves the marker "Managing Memory" in the current topic:

SaveMark("Managing Memory")

See Also

DeleteMark, GotoMark, IfThen, IfThenElse

 Search

The Search macro displays the dialog for the Search button, which allows users to search for topics
using keywords defined by the K footnote character.

Syntax

Search()

Parameters

This macro does not take any parameters.

Remarks

Windows Help ignores this macro if it is executed in a secondary window.

 SetContents

The SetContents macro designates a specific topic as the Contents topic in the specified Help file.

Syntax

SetContents("filename", context-number)

Parameters

filename
Specifies the name of the Help file that contains the Contents topic. The filename must be enclosed
in quotation marks ("). If Windows Help cannot find this file, it displays an error message and does
not perform the jump.

context number
Specifies the context number of the topic in the specified file. The context number must be defined in
the [MAP] section of the project file. If the context number is not valid, Windows Help displays an
error message.

Example

The following example sets the topic mapped to the context number 801 in the PROGMAN.HLP file as
the Contents topic. After executing this macro, clicking the Contents button will cause a jump to the
topic specified by the context-number parameter:

SetContents("PROGMAN.HLP", 801)

See Also

[MAP]

 SetHelpOnFile

Syntax

SetHelpOnFile("filename")

Parameters

filename
Specifies the name of the replacement How to Use Help file. The filename must be enclosed in
quotation marks ("). If Windows Help cannot find this file, it displays an error message.

Remarks

If this macro appears in a topic in the Help file, the replacement file is set after execution of the macro.
If this macro appears in the [CONFIG] section of the project file, the replacement file is set when the
Help file is opened.

Example

The following macro sets the Using Help file to MYHELP.HLP:

SetHelpOnFile("myhelp.hlp")

See Also

[CONFIG]

 UncheckItem

The UncheckItem macro removes the check mark from a menu item.

Syntax

UncheckItem("item-id")

Parameters

item-id
Identifies the menu item to uncheck. The item identifier must be enclosed in quotation marks.

Remarks

The UncheckItem macro can be abbreviated UI.

See Also

CheckItem

 Help Statement Reference

This section lists the RTF keywords recognized by the Help compiler and the special Help statements
in alphabetic order. Help-specific commands that are not RTF keywords are marked "Help only." The
following table summarizes each RTF keyword and Help statement:

RTF Keyword Description
\' Inserts character by value
\ansi Specifies ANSI character set
\b Starts bold text
\bin Specifies picture (bitmap or metafile) data
bmc Displays picture in text (Help only)
bmcwd Displays picture in current line of text (Help only)
bml Displays picture at left margin (Help only)
bmlwd Displays picture at left margin (Help only)
bmr Displays picture at right margin (Help only)
bmrwd Displays picture at right margin (Help only)
\box Draws box
\brdrb Draws bottom border
\brdrbar Draws vertical bar
\brdrdb Sets double-lined borders
\brdrdot Sets dotted border
\brdrl Draws left border
\brdrr Draws right border
\brdrs Sets standard borders
\brdrt Draws top border
\brdrth Sets thick borders
\cell Marks end of table cell
\cellx Sets the position of cell's right edge
\cf Sets foreground color
\colortbl Creates color table
\deff Sets default font
emc Allows DLL to paint window in text (Help only)
eml Allows DLL to paint window at left margin (Help only)
emr Allows DLL to paint window at right margin (Help

only)
\fi Sets first-line indent
\fldrslt Result of field
\f Sets font
\fonttbl Creates font table
\footnote Defines topic-specific information
\fs Sets font size
\i Starts italic text
\intbl Marks paragraph as in table
\keep Makes text non-wrapping
\keepn Creates nonscrolling region

\li Sets left indent
\line Breaks current line
\mac Sets Apple® Macintosh® character set
\page Ends current topic
\par Marks end of paragraph
\pard Restores default paragraph properties
\pc Sets PC character set
\pichgoal Specifies desired picture height
\pich Specifies picture height
\picscalex Specifies horizontal scaling value
\picscaley Specifies vertical scaling value
\pict Creates picture
\picwgoal Specifies desired picture width
\picw Specifies picture width
\plain Restores default character properties
\qc Centers text
\ql Aligns text left
\qr Aligns text right
\ri Sets right indent
\row Marks end of table row
\rtf Specifies RTF version
\sa Sets spacing after paragraph
\sb Sets space before
\scaps Starts small capitals
\sect Marks end of section and paragraph
\sl Sets spacing between lines
\strike Creates hotspot
\tab Inserts tab character
\tqc Tabs and centers text
\tqr Tabs and aligns text right
\trgaph Sets space between text columns in table
\trleft Sets left margin for first cell
\trowd Sets table defaults
\trqc Sets relative column widths
\trql Left-aligns table row
\tx Sets tab stop
\ul Creates link to a pop-up topic
\uldb Creates hot spot
\v Creates link to a topic
\wbitmap Specifies Windows bitmap and its type
\wbmbitspixel Specifies number of bits per pixel
\wbmplanes Specifies number of planes
\wbmwidthbytes Specifies bitmap width in bytes
\windows Sets Windows character set

\wmetafile Specifies Windows metafile

 \'

The \' statement converts the specified hexadecimal number into a character value and inserts the
value into the Help file. The appearance of the character when displayed depends on the character set
specified for the Help file.

Syntax

\'hh

Parameter

hh
Specifies a two-digit hexadecimal value.

Remarks

Since the Microsoft Help Compiler does not accept character values greater than 127, the \' statement
is the only way to insert such character values into the Help file.

Example

The following example inserts a trademark in a Help file that uses the \ansi statement to set the
character set:

ABC\'99 is a trademark of the ABC Product Corporation.

See Also

\ansi, \mac, \pc

 \ansi

The \ansi statement sets the American National Standards Institute (ANSI) character set. The
Windows character set is essentially equivalent to the ANSI character set.

See Also

\mac, \pc

 \b

The \b statement starts bold text. The statement applies to all subsequent text up to the next \plain or \
b0 statement.

Remarks

No \plain or \b0 statement is required if the \b statement and subsequent text are enclosed in braces.
Braces limit the scope of a character property statement to just the enclosed text.

The \b0 statement was first supported in the Microsoft Help Compiler version 3.1

Example

The following example sets "Note" to bold:

{\b Note} Setting the Auto option frees novice users from determining their
system configurations.

See Also

\i, \plain, \scaps

 \bin

The \bin statement indicates the start of binary picture data. The Help compiler interprets subsequent
bytes in the file as binary data. This statement is used in conjunction with the \pict statement.

Syntax

\binn

Parameter

n
Specifies the number of bytes of binary data following the statement.

Remarks

A single space character must separate the \bin statement from subsequent bytes. The Microsoft Help
Compiler assumes that all subsequent bytes, including linefeed and carriage return characters, are
binary data. These bytes can have any value in the range 0 through 255. For this reason, the \bin
statement is typically used in program-generated files only.

If the \bin statement is not given with a \pict statement, the default picture data format is hexadecimal.

See Also

\pict

 bmc

The bmc statement displays a specified bitmap or metafile in the current line of text. The statement
positions the bitmap or metafile as if it were the next character in the line, aligning it on the base line
and applying the current paragraph properties.

Syntax

\{bmc filename\}

Parameter

filename
Specifies the name of a file containing a Windows bitmap, a placeable Windows metafile, a
multiresolution bitmap, or a segmented-graphics bitmap.

Remarks

Since the bmc statement is not a standard RTF statement, the Microsoft Help Compiler relies on the
opening and closing braces, including the backslashes (\), to distinguish the statement from regular
text.

If a file containing a metafile is specified, the file must contain a placeable Windows metafile; the
Microsoft Help Compiler will not accept standard Windows metafiles. Furthermore, Windows Help sets
the MM_ANISOTROPIC mode prior to displaying the metafile, so the placeable Windows metafile must
either set the window origin and extents or set some other mapping mode.

Example

The following example inserts a bitmap representing a keyboard key in a paragraph:

\par
Press the \{bmc escape.bmp\} key to return to the main window.
\par

See Also

bmr, bml, \wbitmap

 bmcwd

The bmcwd statement displays a specified bitmap or metafile in the current line of text. The statement
positions the bitmap or metafile as if it were the next character in the line, aligning it on the base line
and applying the current paragraph properties.

The bmcwd statement is intended to be used for small bitmaps or metafiles that appear only once in a
Help file.

Syntax

\{bmcwd filename\}

Parameter

filename
Specifies the name of a file containing a Windows bitmap, a placeable Windows metafile, a
multiresolution bitmap, or a segmented-graphics bitmap.

Remarks

Since the bmcwd statement is not a standard RTF statement, the Help compiler relies on the opening
and closing braces, including the backslashes (\), to distinguish the statement from regular text or RTF
codes.

If a file containing a metafile is specified, the file must contain a placeable Windows metafile; the Help
compiler will not accept standard Windows metafiles. Furthermore, Windows Help sets the
MM_ANISOTROPIC mode prior to displaying the metafile, so the placeable Windows metafile must
either set the window origin and extents or set some other mapping mode.

See Also

bmr, bml, bmc, \wbitmap

 bml

The bml statement displays a specified bitmap or metafile at the left margin of the Help window. The
first line of subsequent text aligns with the upper-right corner of the image and subsequent lines wrap
along the right edge of the image.

Syntax

\{bml filename\}

Parameter

filename
Specifies the name of a file containing a Windows bitmap, a placeable Windows metafile, a
multiresolution bitmap, or a segmented-graphics bitmap.

Remarks

Since the bml statement is not a standard RTF statement, the Microsoft Help Compiler relies on the
opening and closing braces, including the backslashes (\), to distinguish the statement from regular text
or RTF codes.

If a file containing a metafile is specified, the file must contain a placeable Windows metafile; the
Microsoft Help Compiler will not accept standard Windows metafiles. Furthermore, Windows Help sets
the MM_ANISOTROPIC mode prior to displaying the metafile, so the placeable Windows metafile must
either set the window origin and extents or set some other mapping mode.

Example

The following example places a bitmap at the left margin. The subsequent paragraph wraps around the
bitmap:

\par
\{bml roadmap.bmp\}
The map at the left shows the easiest route to the school.
Although many people use Highway 125, there are fewer stops
and less traffic if you use Ames Road.

See Also

bmc, bmr, \wbitmap

 bmlwd

The bmlwd statement displays a specified bitmap or metafile at the left margin of the Help window.
The first line of subsequent text aligns with the upper-right corner of the image and subsequent lines
wrap along the right edge of the image.

The bmlwd statement is intended to be used for small bitmaps or metafiles that appear only once in a
Help file.

Syntax

\{bmlwd filename\}

Parameter

filename
Specifies the name of a file containing a Windows bitmap, a placeable Windows metafile, a
multiresolution bitmap, or a segmented-graphics bitmap.

Remarks

Since the bmlwd statement is not a standard RTF statement, the Windows Help compiler relies on the
opening and closing braces, including the backslashes (\), to distinguish the statement from regular text
or RTF codes.

If a file containing a metafile is specified, the file must contain a placeable Windows metafile; the Help
compiler will not accept standard Windows metafiles. Furthermore, Windows Help sets the
MM_ANISOTROPIC mode prior to displaying the metafile, so the placeable Windows metafile must
either set the window origin and extents or set some other mapping mode.

See Also

bmc, bml, bmr, \wbitmap

 bmr

The bmr statement displays a specified bitmap or metafile at the right margin of the Help window. The
first line of subsequent text aligns with the upper-left corner of the image and subsequent lines wrap
along the left edge of the image.

Syntax

\{bmr filename\}

Parameter

filename
Specifies the name of a file containing a Windows bitmap, a placeable Windows metafile, a
multiresolution bitmap, or a segmented-graphics bitmap.

Remarks

Since the bmr statement is not a standard RTF statement, the Microsoft Help Compiler relies on the
opening and closing braces, including the backslashes (\), to distinguish the statement from regular text
or RTF codes.

If a file containing a metafile is specified, the file must contain a placeable Windows metafile; the Help
compiler will not accept standard Windows metafiles. Furthermore, Windows Help sets the
MM_ANISOTROPIC mode prior to displaying the metafile, so the placeable Windows metafile must
either set the window origin and extents or set some other mapping mode.

Example

The following example places a bitmap at the right margin. The subsequent paragraph wraps around
the bitmap:

\par
\{bmr roadmap.bmp\}
The map at the right shows the easiest route to the school.
Although many people use Highway 125, there are fewer stops
and less traffic if you use Ames Road.

See Also

bmc, bml, \wbitmap

 bmrwd

The bmrwd statement displays a specified bitmap or metafile at the right margin of the Help window.
The first line of subsequent text aligns with the upper-left corner of the image and subsequent lines
wrap along the left edge of the image.

The bmrwd statement is intended to be used for small bitmaps or metafiles that appear only once in a
Help file.

Syntax

\{bmrwd filename\}

Parameter

filename
Specifies the name of a file containing a Windows bitmap, a placeable Windows metafile, a
multiresolution bitmap, or a segmented-graphics bitmap.

Remarks

Since the bmrwd statement is not a standard RTF statement, the Windows Help compiler relies on the
opening and closing braces, including the backslashes (\), to distinguish the statement from regular text
or RTF codes.

If a file containing a metafile is specified, the file must contain a placeable Windows metafile; the Help
compiler will not accept standard Windows metafiles. Furthermore, Windows Help sets the
MM_ANISOTROPIC mode prior to displaying the metafile, so the placeable Windows metafile must
either set the window origin and extents or set some other mapping mode.

See Also

bmc, bml, bmr, \wbitmap

 \box

The \box statement draws a box around the current paragraph or picture. The statement applies to all
subsequent paragraphs or pictures up to the next \pard statement.

Remarks

For paragraphs, Windows Help uses the height of the paragraph, excluding space before or after the
paragraph, as the height of the box. For pictures (as defined by \pict statements), Windows Help uses
the specified height of the picture as the height of the box. For both paragraphs and pictures, the width
of the box is equal to the space between the left and right indents.

Windows Help draws the box using the current border style.

Example

The following example draws a box around the paragraph:

\par \box
{\b Note} Setting the Auto option frees novice users from
determining their system configurations.
\par \pard

See Also

\brdrb, \brdrl, \brdrr, \brdrt, \pard, \pict

 \brdrb

The \brdrb statement draws a border below the current paragraph or picture. The statement applies to
all subsequent paragraphs or pictures up to the next \pard statement.

Remarks

Windows Help draws the border using the current border style.

See Also

\box, \brdrbar, \brdrl, \brdrr, \brdrt, \pard

 \brdrbar

The \brdrbar statement draws a vertical bar to the left of the current paragraph or picture. The
statement applies to all subsequent paragraphs or pictures up to the next \pard statement.

Remarks

Windows Help draws the border using the current border style.

In a print-based document, the \brdrbar statement draws the bar on the right side of paragraphs on
odd-numbered pages, but on the left side of paragraphs on even-numbered pages.

See Also

\box, \brdrl, \brdrb, \brdrr, \brdrt, \pard

 \brdrdb

The \brdrdb statement selects a double line for drawing borders. The selection applies to all
subsequent paragraphs or pictures up to the next \pard statement.

See Also

\brdrdot, \brdrs, \brdrth, \pard

 \brdrdot

The Help compiler ignores this statement.

See Also

\brdrs, \brdrth, \brdrdb, \pard

 \brdrl

The \brdrl statement draws a border to the left of the current paragraph or picture. The statement
applies to all subsequent paragraphs or pictures up to the next \pard statement.

Remarks

Windows Help draws the border using the current border style.

See Also

\box, \brdrb, \brdrbar, \brdrr, \brdrt, \pard

 \brdrr

The \brdrr statement draws a border to the right of the current paragraph or picture. The statement
applies to all subsequent paragraphs or pictures up to the next \pard statement.

Remarks

Windows Help draws the border using the current border style.

See Also

\box, \brdrb, \brdrbar, \brdrl, \brdrt, \pard

 \brdrs

The \brdrs statement selects a standard-width line for drawing borders. The selection applies to all
subsequent paragraphs or pictures up to the next \pard statement.

Remarks

The Help compiler ignores this statement.

See Also

\brdrdb, \brdrdot, \brdrth, \pard

 \brdrt

The \brdrt statement draws a border above the current paragraph or picture. The statement applies to
all subsequent paragraphs or pictures up to the next \pard statement.

Remarks

Windows Help draws the border using the current border style.

See Also

\box, \brdrb, \brdrbar, \brdrl, \brdrr, \pard

 \brdrth

The \brdrth statement selects a thick line for drawing borders. The selection applies to all subsequent
paragraphs or pictures up to the next \pard statement.

See Also

\brdrdb, \brdrdot, \brdrs, \pard

 \cb

The Help compiler ignores this statement.

Syntax

\cbn

Parameter

n
Specifies the color number to set as the background color. The number must be an integer number
in the range 1 to the maximum number of colors specified in the color table for the Help file. If an
invalid color number is specified, Windows Help uses the default background color.

Remarks

The default background color is the window background color set by Control Panel.

See Also

\cf, \colortbl

 \cell

The \cell statement marks the end of a cell in a table. A cell consists of all paragraphs from a preceding
\intbl or \cell statement to the ending \cell statement. Windows Help formats and displays these
paragraphs using the left and right margins of the cell and any current paragraph properties.

Remarks

This statement was first supported in the Microsoft Help Compiler version 3.1.

Example

The following example creates a two-column table. The second column contains three separate
paragraphs, each having different paragraph properties:

\cellx2880\cellx5760
\intbl
Alignment\cell
\ql
Left-aligned
\par
\qc
Centered
\par
\qr
Right-aligned\cell
\row \pard

See Also

\cellx, \intbl, \row, \trgaph, \trleft, \trowd

 \cellx

The \cellx statement sets the absolute position of the right edge of a table cell. One \cellx statement
must be given for each cell in the table. The first \cellx statement applies to the left-most cell, the last
to the right-most cell. For each \cellx statement, the specified position applies to the corresponding cell
in each subsequent row of the table up to the next \trowd statement.

Syntax

\cellxn

Parameter

n
Specifies the position of the cell's right edge, in twips. The position is relative to the left edge of the
Help window. It is not affected by the current indents.

Remarks

A table consists of a grid of cells in columns and rows. Each cell has an explicitly defined right edge;
the position of a cell's left edge is the same as the position of the right edge of the adjacent cell. For the
left-most cell in a row, the left edge position is equal to the Help window's left margin position. Each cell
has a left and right margin between which Windows Help aligns and wraps text. By default, the margin
positions are equal to the left and right edges. The \trgaph and \trleft statements can be used to set
different margins for all cells in a row.

This statement was first supported in the Microsoft Help Compiler version 3.1.

Example

The following example creates a three-column table having two rows. The positions of the right edges
of the three cells are 2, 4, and 6 inches, respectively:

\cellx2880\cellx5760\cellx8640
\intbl
Row 1 Cell 1\cell
Row 1 Cell 2\cell
Row 1 Cell 3\cell
\row
\intbl
Row 2 Cell 1\cell
Row 2 Cell 2\cell
Row 2 Cell 3\cell
\row \pard

See Also

\cell, \intbl, \row, \trgaph, \trleft, \trowd

 \cf

The \cf statement sets the foreground color. The new color applies to all subsequent text up to the next
\plain or \cf statement.

Syntax

\cfn

Parameter

n
Specifies the color number to set as foreground. The number must be an integer number in the
range 1 to the maximum number of colors specified in the color table for the Help file. If an invalid
color number is specified, Windows Help uses the default foreground color.

Remarks

No \plain or \cf statement is required if the \cf statement and subsequent text are enclosed in braces.
Braces limit the scope of a character property statement to the enclosed text only.

If the \cf statement is not given, the default foreground color is the text color set by Control Panel.

Example

The following example displays green text:

{\colortbl;\red0\green255\blue0;}
{\cf1 This text is green.}

See Also

\colortbl, \plain

 \chftn

The Microsoft Help Compiler ignores this statement.

Syntax

\chftnn

Parameter

n
Specifies the footnote reference character.

See Also

\footnote

 \clmgf

The Microsoft Help Compiler ignores this statement.

Remarks

All cells between the \clmgf statement and a subsequent \clmrg statement are combined into a single
cell. The left edge of the new cell is the same as that of the leftmost cell to be merged; the right edge is
the same as that of the rightmost cell.

See Also

\clmrg

 \clmrg

The Microsoft Help Compiler ignores this statement.

Remarks

All cells between the \clmgf statement and a subsequent \clmrg statement are combined into a single
cell. The left edge of the new cell is the same as that of the leftmost cell to be merged; the right edge is
the same as that of the rightmost cell.

See Also

\clmgf

 \colortbl

The \colortbl statement creates a color table for the Help file. The color table consists of one or more
color definitions. Each color definition consists of one \red, \green, and \blue statement specifying the
amount of primary color to use to generate the final color. Each color definition must end with a
semicolon (;).

Syntax

{\colortbl
\redredval\greengreenval\blueblueval;
 . . .
}

Parameters

redval
Specifies the intensity of red in the color. It must be an integer in the range 0 through 255.

greenval
Specifies the intensity of green in the color. It must be an integer in the range 0 through 255.

blueval
Specifies the intensity of blue in the color. It must be an integer in the range 0 through 255.

Remarks

Color definitions are implicitly numbered starting at zero. A color definition's implicit number can be
used in the \cf statement to set the foreground color.

The default colors are the window-text and window-background colors set by Control Panel. To
override the default colors, both a \colortbl statement and a \cf statement must be given.

Example

The following example creates a color table containing two color definitions. The first color definition is
empty (only the semicolon is given), so color number 0 always represents the default color. The second
definition specifies green; color number 1 can be used to display green text:

{\colortbl;\red0\green255\blue0;}

See Also

\cf

 \deff

The \deff statement sets the default font number. Windows Help uses the number to set the default
font whenever a \plain statement is given or an invalid font number is given in a \f statement.

Syntax

\deffn

Parameter

n
Specifies the number of the font to be used as the default font. This parameter must be a valid font
number as specified by the \fonttbl statement for the Help file.

Remarks

If the \deff statement is not given, the default font number is zero.

See Also

\f, \fonttbl, \plain

 emc

The emc statement allows an external dynamic-link library to paint a window that is embedded in a
Help topic. This statement displays the window in the current line of text. The statement positions the
window as if it were the next character in the line, aligning it on the base line and applying the current
paragraph properties.

Syntax

\{emc module, class, data [, dx, dy]\}

Parameters

module
Specifies the name of the dynamic-link library that paints the embedded window.

class
Specifies the name of the registered window class for the embedded window.

data
Specifies a string that is passed to the embedded window in its WM_CREATE message.

dx
Specifies the suggested width of the embedded window. This parameter is optional.

dy
Specifies the suggested height of the embedded window. This parameter is optional.

Remarks

Since the emc statement is not a standard RTF statement, the Microsoft Help Compiler relies on the
opening and closing braces, including the backslashes (\), to distinguish the statement from regular text
or RTF codes.

See Also

bmr, bml, bmc, eml, emr, \wbitmap, WM_CREATE

 eml

The eml statement allows an external dynamic-link library to paint a window that is embedded at the
left margin in a Help topic. The first line of subsequent text aligns with the upper-right corner of the
window and subsequent lines wrap along the right edge of the window.

Syntax

\{eml module, class, data [, dx, dy]\}

Parameters

module
Specifies the name of the dynamic-link library that paints the embedded window.

class
Specifies the name of the registered window class for the embedded window.

data
Specifies a string that is passed to the embedded window in its WM_CREATE message.

dx
Specifies the suggested width of the embedded window. This parameter is optional.

dy
Specifies the suggested height of the embedded window. This parameter is optional.

Remarks

Since the eml statement is not a standard RTF statement, the Microsoft Help Compiler relies on the
opening and closing braces, including the backslashes (\), to distinguish the statement from regular text
or RTF codes.

See Also

bmr, bml, bmc, emc, emr, \wbitmap, WM_CREATE

 emr

The emr statement allows an external dynamic-link library to paint a window that is embedded at the
right margin in a Help topic. The first line of subsequent text aligns with the upper-left corner of the
window and subsequent lines wrap along the left edge of the window.

Syntax

\{emr module, class, data [, dx, dy]\}

Parameters

module
Specifies the name of the dynamic-link library that paints the embedded window.

class
Specifies the name of the registered window class for the embedded window.

data
Specifies a string that is passed to the embedded window in its WM_CREATE message.

dx
Specifies the suggested width of the embedded window. This parameter is optional.

dy
Specifies the suggested height of the embedded window. This parameter is optional.

Remarks

Since the emr statement is not a standard RTF statement, the Microsoft Help Compiler relies on the
opening and closing braces, including the backslashes (\), to distinguish the statement from regular text
or RTF codes.

See Also

bmr, bml, bmc, emc, eml, \wbitmap, WM_CREATE

 \f

The \f statement sets the font. The new font applies to all subsequent text up to the next \plain or \f
statement.

Syntax

\fn

Parameter

n
Specifies the font number. This parameter must be one of the integer font numbers defined in the
font table for the Help file.

Remarks

The \f statement does not set the point size of the font; use the \fs statement instead.

No \plain or \f statement is required if the \f statement and subsequent text are enclosed in braces.
Braces limit the scope of a character property statement to just the enclosed text.

If the \f statement is not given, the default font is defined by the \deff statement (or is zero if no \deff
statement is given).

Example

The following example uses the Arial font to display text:

{\fonttbl {\f0\fswiss Arial;}}
{\f0
This text illustrates the Arial font.}
\par

See Also

\deff, \fonttbl, \fs, \plain

 \fi

The \fi statement sets the first-line indent for the paragraph. The new indent applies to the first line of
each subsequent paragraph up to the next \pard statement or \fi statement. The first-line indent is
always relative to the current left indent.

Syntax

\fin

Parameter

n
Specifies the indent, in twips. This parameter can be either a positive or negative number.

Remarks

If the \fi statement is not given, the first-line indent is zero by default.

Example

The following example uses the first-line indent and a tab stop to make a numbered list:

\tx360\li360\fi-360
1
\tab
Insert the disk in drive A.
\par
2
\tab
Type a:setup and press the ENTER key.
\par
3
\tab
Follow the instructions on the screen.
\par \pard

See Also

\li, \pard

 \field

The Microsoft Help Compiler ignores this statement and all related field statements except the \fldrslt
statement.

See Also

\fldrslt

 \fldrslt

The \fldrslt statement specifies the most recently calculated result of a field. The Microsoft Help
Compiler interprets the result as text and formats it using the current character and paragraph
properties.

Remarks

The Help compiler ignores all field statements except the \fldrslt statement. Any text associated with
other field statements is ignored.

 \fonttbl

The \fonttbl statement creates a font table for the Help file. The font table consists of one or more font
definitions. Each definition consists of a font number, a font family, and a font name.

Syntax

{\fonttbl
 {\fn\family font-name;}
 . . .
}

Parameter

n
Specifies the font number. This parameter must be an integer. This number can be used in
subsequent \f statements to set the current font to the specified font. In the font table, font numbers
should start at zero and increase by one for each new font definition.

family
Specifies the font family. This parameter must be one of the following:
Value Meaning
fnil Unknown or default fonts (default)
froman Roman, proportionally spaced serif fonts (for example,

Times New Roman and Palatino)
fswiss Swiss, proportionally spaced sans serif fonts (for

example, Arial)
fmodern Fixed-pitch serif and sans serif fonts (for example,

Courier and Lucida Sans Typewriter)
fscript Script fonts (for example, Cursive and Lucida

Handwriting)
fdecor Decorative fonts (for example, Old English and Bodoni

Open)
ftech Technical, symbol, and mathematical fonts (for example,

Symbol)

font-name
Specifies the name of the font. This parameter should specify an available Windows font.

Remarks

If a font with the specified name is not available, Windows Help chooses a font from the specified
family. If no font from the given family exists, Windows Help chooses a font having the same character
set as specified for the Help file.

The \deff statement sets the default font number for the Help file. The default font is set whenever the \
pard statement is given.

See Also

\deff, \f, \fs, \pard

 \footnote

The \footnote statement defines topic-specific information, such as the topic's build tags, context
string, title, browse number, keywords, and execution macros. Every topic must have a context string,
at least, to give the user access to the topic through links.

Syntax

{n}{\footnote {n} text}

Parameter

n
Specifies the footnote character. It can be one of the following:
Value Meaning
* Specifies a build tag. The Microsoft Help Compiler uses build

tags to determine whether it should include the topic in the
Help file. The text parameter can be any combination of
characters but must not contain spaces. Uppercase and
lowercase characters are treated as equivalent characters
(case-insensitive). If a topic has build-tag statements, they
must be the first statements in the topic. The Microsoft Help
Compiler checks a topic for build tags if the project file
specifies a build expression using the BUILD option.

Specifies a context string. The text parameter can be any
combination of letters and digits but must not contain spaces.
Uppercase and lowercase characters are treated as
equivalent characters (case-insensitive). The context string
can be used with the \v statement in other topics to create
links to this topic.

$ Specifies a topic title. Windows Help uses the topic title to
identify the topic in the Search and History dialog boxes. The
text parameter can be any combination of characters
including spaces.

+ Specifies the browse-sequence identifier. Windows Help adds
topics having an identifier to the browse sequence and allows
users to view the topics by using the browse buttons. The text
parameter can be a combination of letters and digits.
Windows Help determines the order of topics in the browse
sequence by sorting the identifier alphabetically. If two topics
have the same identifier, Windows Help assumes that the
topic that was compiled first is to be displayed first. Windows
Help uses the browse sequence identifier only if the browse
buttons have been enabled by using the BrowseButtons
macro.

K Specifies a keyword. Windows Help displays all keywords in
the Help file in the Search dialog box and allows a user to
choose a topic to view by choosing a keyword. The text
parameter can be any combination of characters including
spaces. If the first character is the letter K, it must be
preceded with an extra space or a semicolon. More than one
keyword can be given by separating the keywords with
semicolons (;). A topic cannot contain keywords unless it also
has a topic title.

! Specifies a Help macro. Windows Help executes the macro
when the topic is displayed. The text parameter can be any
Help macro.

If n is any letter (other than K), the footnote specifies an alternative keyword. Windows applications
can search for topics having alternative keywords by using the HELP_MULTIKEY command with the
WinHelp function.

text
Specifies the build tag, context string, topic title, browse-sequence number, keyword, or macro
associated with the footnote. This parameter depends on the footnote type as specified by the n
parameter.

Remarks

Repetition of the footnote character, n, in the syntax is deliberate.

A topic can have more than one build-tag, context-string, keyword, and Help-macro statement, but
must not have more than one topic-title or browse-sequence-number statement.

In print-based documents, the \footnote statement creates a footnote. The footnote is anchored to the
character immediately preceding the \footnote statement.

The characters in a context string must be alphanumeric and can include underscore characters (_)
and periods (.).

The browse sequence string consists of a major sequence string and a minor sequence string,
delimited by a colon:

{+}{\footnote {+} major:minor}

This syntax specifies disjoint sets of ordered browse sequences. The major sequence string
determines which browse sequence a topic belongs to, while the minor sequence string determines its
position. Minor sequence strings are sorted alphabetically, not numerically; to use numbers, they
should be preceded with zeros so that they are all the same length. All topics with browse sequence
strings that omit the major sequence string are placed on the same browse sequence.

A topic cannot have more than one build tag footnote. If a topic has a build tag footnote, it must be the
first thing in that topic. The title, browse sequence, and macro must be in the first paragraph. Context
strings and keywords may appear anywhere; if placed in the middle of a topic, jumps to that context
string or keyword will bring you to the middle of that topic.

Example

The following example defines a topic titled Short Topic. The context string topic1 can be used to
create links to this topic. The keywords example topic and short topic appear in the Search dialog
box and can be used to choose the topic for viewing:

${\footnote Short Topic}
#{\footnote topic1}
K{\footnote example topic;short topic}
This topic has a title, context string, and two keywords.
\par
\page

See Also

\v

 \fs

The \fs statement sets the size of the font. The new font size applies to all subsequent text up to the
next \plain or \fs statement.

Syntax

\fsn

Parameter

n
Specifies the size of the font, in half points.

Remarks

The \fs statement does not set the font face; use the \f statement instead.

No \plain or \fs statement is required if the \fs statement and subsequent text are enclosed in braces.
Braces limit the scope of a character property statement to just the enclosed text.

If the \fs statement is not given, the default font size is 24.

Example

The following example sets the size of the font to 10 points:

{\fs20 This line is in 10 point type.}
\par

See Also

\plain, \f

 \i

The \i statement starts italic text. The statement applies to all subsequent text up to the next \plain or \
i0 statement.

Remarks

No \plain or \i0 statement is required if the \i statement and subsequent text are enclosed in braces.
Braces limit the scope of a character property statement to just the enclosed text.

Example

The following example sets "not" to italic:

You must {\i not} save the file without first setting the
Auto option.

See Also

\b, \plain, \scaps

 \intbl

The \intbl statement marks subsequent paragraphs as part of a table. The statement applies to all
subsequent paragraphs up to the next \row statement.

Remarks

This statement was first supported in Microsoft Help Compiler version 3.1.

Example

The following example creates a three-column table having two rows:

\cellx1440\cellx2880\cellx4320
\intbl
Row 1 Column 1\cell
Row 1 Column 2\cell
Row 1 Column 3\cell \row
\intbl
Row 2 Column 1\cell
Row 2 Column 2\cell
Row 2 Column 3\cell \row \pard

See Also

\cell, \cellx, \row, \trgaph, \trleft, \trowd

 \keep

The \keep statement prevents Windows Help from wrapping text to fit the Help window. The statement
applies to all subsequent paragraphs up to the next \pard statement.

Remarks

If the text in a paragraph exceeds the width of the Help window, Help displays a horizontal scroll bar.

In print-based documents, the \keep statement keeps paragraphs intact.

See Also

\keepn, \line

 \keepn

The \keepn statement creates a nonscrolling region at the top of the Help window for the given topic.
The \keepn statement applies to all subsequent paragraphs up to the next \pard statement. All
paragraphs with this paragraph property are placed in the nonscrolling region.

Remarks

If a \keepn statement is used in a topic, it must be applied to the first paragraph in the topic (and
subsequent paragraphs as needed). The Help compiler displays an error message and does not create
a nonscrolling region if paragraphs are given before the \keepn statement. Only one nonscrolling
region per topic is allowed.

Windows Help formats, aligns, and wraps text in the nonscrolling region just as it does in the rest of the
topic. It separates the nonscrolling region from the rest of the Help window with a horizontal bar.
Windows Help sets the height of the nonscrolling region so that all paragraphs in the region can be
viewed if the Help window is large enough. If the window is smaller than the nonscrolling region, the
user will be unable to view the rest of the topic. For this reason, the nonscrolling region is typically
reserved for a single line of text specifying the name or title of the topic.

In print-based documents, the \keepn statement keeps the subsequent paragraph with the paragraph
that follows it.

See Also

\keep, \page

 \li

The \li statement sets the left indent for the paragraph. The indent applies to all subsequent
paragraphs up to the next \pard or \li statement.

Syntax

\lin

Parameter

n
Specifies the indent, in twips. The value can be either positive or negative.

Remarks

If the \li statement is not given, the left indent is zero by default. Windows Help automatically provides
a small left margin so that if no indent is specified the text does not start immediately at the left edge of
the Help window.

Specifying a negative left indent moves the starting point for a line of text to the left of the default left
margin. If the negative indent is large enough, the start of the text may be clipped by the left edge of
the Help window.

Example

The following example uses the left indent and a tab stop to make a bulleted list. In this example, font
number 0 is assumed to be the Symbol font:

Use the Auto command to:
\par
\tx360\li360\fi-360
{\f0\'B7}
\tab
Save files automatically
\par
{\f0\'B7}
\tab
Prevent overwriting existing files
\par
{\f0\'B7}
\tab
Create automatic backup files
\par \pard

See Also

\fi, \pard, \ri

 \line

The \line statement breaks the current line without ending the paragraph. Subsequent text starts on the
next line and is aligned and indented according to the current paragraph properties.

See Also

\par

 \mac

The \mac statement sets the Apple Macintosh character set.

See Also

\ansi, \pc

 \page

The \page statement marks the end of a topic.

Remarks

In a print-based document, the \page statement creates a page break.

Example

The following example shows a complete topic:

${\footnote Short Topic}
#{\footnote short_topic}
Most topics in a topic file consist of topic-title and
context-string statements followed by the topic text. Every
topic ends with a {\b \\page} statement.
\par
\page

See Also

\par

 \par

The \par statement marks the end of a paragraph. The statement ends the current line of text and
moves the current position to the left margin and down by the current line-spacing and space-after-
paragraph values.

Remarks

The first line of text after a \par, \page, or \sect statement marks the start of a paragraph. When a
paragraph starts, the current position is moved down by the current space-before-paragraph value.
Subsequent text is formatted using the current text alignment, line spacing, and left, right, and first-line
indents.

Example

The following example has three paragraphs:

\ql
This paragraph is left-aligned.
\par \pard
\qc
This paragraph is centered.
\par \pard
\qr
This paragraph is right-aligned.
\par

See Also

\line, \page, \pard, \sect

 \pard

The \pard statement restores all paragraph properties to default values.

Remarks

If the \pard statement appears anywhere before the end of a paragraph (that is, before the \par
statement), the default properties apply to the entire paragraph.

The default paragraph properties are as follows:

Property Default
Alignment Left-aligned
First-line indent 0
Left indent 0
Right indent 0
Space before 0
Space after 0
Line spacing Tallest character
Tab stops None
Borders None
Border style Single-width

See Also

\par

 \pc

The \pc statement sets the OEM character set (also known as code page 437).

See Also

\ansi, \mac

 \pca

The Help compiler ignores this statement.

See Also

\ansi, \mac, \pc

 \pich

The \pich statement specifies the height of the picture. This statement must be used in conjunction
with a \pict statement.

Syntax

\pichn

Parameter

n
Specifies the height of the picture, in twips or pixels, depending on the picture type. If the picture is a
metafile, the width is in twips; otherwise, the width is, in pixels.

See Also

\pict, \picw

 \pichgoal

The \pichgoal statement specifies the desired height of a picture. If necessary, Windows Help
stretches or compresses the picture to match the requested height. This statement must be used in
conjunction with a \pict statement.

Syntax

\pichgoaln

Parameter

n
Specifies the desired height, in twips.

Remarks

The \pichgoal statement is not supported for metafiles. Applications should use the \pich statement,
instead.

See Also

\pich, \pict, \picwgoal

 \picscalex

The \picscalex statement specifies the horizontal scaling value. This statement must be used in
conjunction with a \pict statement.

Syntax

\picscalexn

Parameter

n
Specifies the scaling value as a percentage. If this value is greater than 100, the bitmap or metafile
is enlarged.

Remarks

If the \picscalex statement is not given, the default scaling value is 100.

See Also

\pict, \picscaley

 \picscaley

The \picscaley statement specifies the vertical scaling value. This statement must be used in
conjunction with a \pict statement.

Syntax

\picscaleyn

Parameter

n
Specifies the scaling value as a percentage. If this value is greater than 100, the bitmap or metafile
is enlarged.

Remarks

If the \picscaley statement is not given, the default scaling value is 100.

See Also

\pict, \picscalex

 \pict

The \pict statement creates a picture. A picture consists of hexadecimal or binary data representing a
bitmap or metafile.

Syntax

\pict picture-statements picture-data

Parameter

picture-statements
Specifies one or more statements defining the type of picture, the dimensions of the picture, and the
format of the picture data. It can be a combination of the following statements:

Statement Description
\wbitmap Specifies a Windows bitmap.
\wmetafile Specifies a Windows metafile.
\picw n Specifies the picture width.
\pich n Specifies the picture height.
\picwgoal n Specifies the desired picture width.
\pichgoal n Specifies the desired picture height.
\picscalex n Specifies the horizontal scaling value.
\picscaley n Specifies the vertical scaling value.
\wbmbitspixel n Specifies the number of bits per pixel.
\wbmplanes n Specifies the number of planes.
\wbmwidthbytes n Specifies the bitmap width, in bytes.
\bin n Specifies binary picture data and its length

in bytes.

picture-data
Specifies hexadecimal or binary data representing the picture. The picture data follows the last
picture statement.

Remarks

If a data format is not specified, the default format is hexadecimal.

See Also

\bin, \pich, \pichgoal, \picscalex, \picscaley, \picw, \picwgoal, \wbitmap, \wbmbitspixel, \
wbmplanes, \wbmwidthbytes, \wmetafile

 \picw

The \picw statement specifies the width of the picture. This statement must be used in conjunction with
a \pict statement.

Syntax

\picwn

Parameters

n
Specifies the width of the picture, in twips or pixels, depending on the picture type. If the picture is a
metafile, the width is in twips; otherwise, the width is in pixels.

See Also

\pict, \pich

 \picwgoal

The \picwgoal statement specifies the desired width of the picture, in twips. If necessary, Windows
Help stretches or compresses the picture to match the requested height. This statement must be used
in conjunction with a \pict statement.

Syntax

\picwgoaln

Parameter

n
Specifies the desired width, in twips.

Remarks

The \picwgoal statement is not supported for metafiles. Applications should use the \picw statement,
instead.

See Also

\pict, \picw, \pichgoal

 \plain

The \plain statement restores the character properties to default values.

Remarks

The default character properties are as follows:

Property Default
Bold Off
Italic Off
Small caps Off
Font 0
Font size 24

See Also

\b, \i, \scaps, \f, \fs

 \qc

The \qc statement centers text between the current left and right indents. The statement applies to
subsequent paragraphs up to the next \pard statement or text-alignment statement.

Remarks

If a \ql, \qr, or \qc statement is not given, the text is left-aligned by default.

See Also

\pard, \ql, \qr

 \qj

The Microsoft Help Compiler ignores this statement.

Remarks

If a \ql, \qr, \qc, or \qj statement is not given, the text is left-aligned by default.

See Also

\qc, \ql, \qr, \pard

 \ql

The \ql statement aligns text along the left indent. The statement applies to subsequent paragraphs up
to the next \pard statement or text-alignment statement.

Remarks

If a \ql, \qr, or \qc statement is not given, the text is left-aligned by default.

See Also

\pard, \qc, \qr

 \qr

The \qr statement aligns text along the right indent. The statement applies to subsequent paragraphs
up to the next \pard statement or text-alignment statement.

Remarks

If a \ql, \qr, or \qc statement is not given, the text is left-aligned by default.

See Also

\pard, \qc, \ql

 \ri

The \ri statement sets the right indent for the paragraph. The indent applies to all subsequent
paragraphs up to the next \pard or \ri statement.

Syntax

\rin

Parameter

n
Specifies the right indent, in twips. It can be a positive or negative value.

Remarks

If the \ri statement is not given, the right indent is zero by default. Windows Help automatically provides
a small right margin so that when no right indent is specified, the text does not end abruptly at the right
edge of the Help window.

Windows Help never displays less than one word for each line in a paragraph even if the right indent is
greater than the width of the window.

Example

In the following example, the right and left indents are set to one inch and the subsequent text is
centered between the indents:

\li1440\ri1440\qc
Microsoft Windows Help\line
Sample File\line

See Also

\li, \pard

 \row

The \row statement marks the end of a table row. The statement ends the current row and begins a
new row by moving down past the end of the longest cell in the row. The next \cell statement specifies
the text of the leftmost cell in the next row.

Remarks

This statement was first supported in the Microsoft Help Compiler version 3.1.

Example

The following example creates a table having four rows and two columns:

\cellx2880\cellx5760
\intbl
Row 1, Column 1\cell
Row 1, Column 2\cell \row
\intbl
Row 2, Column 1\cell
Row 2, Column 2\cell \row
\intbl
Row 3, Column 1\cell
Row 3, Column 2\cell \row
\intbl
Row 4, Column 1\cell
Row 4, Column 2\cell \row
\par \pard

See Also

\cell, \cellx, \intbl

 \rtf

The \rtf statement identifies the file as a rich-text format (RTF) file and specifies the version of the RTF
standard used.

Syntax

\rtfn

Parameter

n
Specifies the version of the RTF standard used. For the Microsoft Help Compiler version 3.1, this
parameter must be 1.

Remarks

The \rtf statement must follow the first open brace in the Help file. A statement specifying the character
set for the file must also follow the \rtf statement.

See Also

\ansi

 \sa

The \sa statement sets the amount of vertical spacing after a paragraph. The vertical space applies to
all subsequent paragraphs up to the next \pard or \sa statement.

Syntax

\san

Parameter

n
Specifies the amount of vertical spacing, in twips.

Remarks

If the \sa statement is not given, the vertical spacing after a paragraph is zero by default.

See Also

\sb, \pard

 \sb

The \sb statement sets the amount of vertical spacing before the paragraph. The vertical space applies
to all subsequent paragraphs up to the next \pard statement or \sb statement.

Syntax

\sbn

Parameter

n
Specifies the amount of vertical spacing, in twips.

Remarks

If the \sb statement is not given, the vertical spacing before the paragraph is zero by default.

See Also

\sa, \pard

 \scaps

The \scaps statement starts small-capital text. The statement converts all subsequent lowercase
letters to uppercase before displaying the text. This statement applies to all subsequent text up to the
next \plain or \scaps0 statement.

Remarks

The \scaps statement does not affect uppercase letters.

No \plain or \scaps0 statement is required if the \scaps statement and subsequent text are enclosed
in braces. Braces limit the scope of a character property statement to just the enclosed text.

The \scaps statement does not reduce the point size of the text. To reduce point size, the \fs statement
must be used.

Example

The following example displays the key name ENTER in small capitals:

Press the {\scaps enter} key to complete the action.

See Also

\fs, \plain

 \sect

The \sect statement marks the end of a section and paragraph.

See Also

\par

 \sl

The \sl statement sets the amount of vertical space between lines in a paragraph. The vertical space
applies to all subsequent paragraphs up to the next \pard or \sl statement.

Syntax

\sln

Parameter

n
Specifies the amount of vertical spacing, in twips. If this parameter is a positive value, Windows Help
uses this value if it is greater than the tallest character. Otherwise, Windows Help uses the height of
the tallest character as the line spacing. If this parameter is a negative value, Windows Help uses
the absolute value of the number even if the tallest character is taller.

Remarks

If the \sl statement is not given, Windows Help automatically sets the line spacing by using the tallest
character in the line.

See Also

\pard

 \strike

The \strike statement creates a hot spot. The statement is used in conjunction with a \v statement to
create a link to another topic. When the user chooses a hot spot, Windows Help displays the
associated topic in the Help window.

The \strike statement applies to all subsequent text up to the next \plain or \strike0 statement.

Remarks

No \plain or \strike0 statement is required if the \strike statement and subsequent text are enclosed in
braces. Braces limit the scope of a character property statement to just the enclosed text.

The \strike statement creates the same type of hot spot as the \uldb statement.

In print-based documents, or whenever it is not followed by \v, the \strike statement creates strikeout
text.

Example

The following example creates a hot spot for a topic. When displayed, the hot-spot text, "Hot Spot," is
green and has a solid line under it:

{\strike Hot Spot}{\v Topic}

See Also

\ul, \uldb, \v

 \tab

The \tab statement inserts a tab character (ASCII character code 9).

Remarks

The tab character (ASCII character code 9) has the same effect as the \tab statement.

See Also

\tqc, \tqr, \tx

 \tb

The Microsoft Windows Help Compiler ignores this statement.

See Also

\tab, \tqc, \tqr, \tx

 \tqc

The \tqc statement is used with the \tx statement to create a tab stop where text is centered. For
example, the following statement creates a centered tab stop at 2880 twips:

\tqc\tx2880

See Also

\tab, \tqr, \tx

 \tqr

The \tqr statement is used with the \tx statement to create a tab stop where text right-justified. For
example, the following statement creates a right-justified tab stop at 2880 twips:

\tqr\tx2880

See Also

\tab, \tqc, \tx

 \trgaph

The \trgaph statement specifies the amount of space between text in adjacent cells in a table. For
each cell in the table, Windows Help uses the space to calculate the cell's left and right margins. It then
uses the margins to align and wrap the text in the cell. Windows Help applies the same margin widths
to each cell ensuring that paragraphs in adjacent cells have the specified space between them.

The \trgaph statement applies to cells in all subsequent rows of a table up to the next \trowd
statement.

Syntax

\trgaphn

Parameter

n
Specifies the space, in twips, between text in adjacent cells. If this parameter exceeds the actual
width of the cell, the left and right margins are assumed to be at the same position in the cell.

Remarks

The width of the left margin in the first cell is always equal to the space specified by this statement. The
\trleft statement is typically used to move the left margin to a position similar to the left margins in all
other cells.

This statement was first supported in the Microsoft Help Compiler version 3.1.

Example

The following example creates a three-column table with one-quarter inch space between the text in
the columns:

\trgaph360 \cellx1440\cellx2880\cellx4320
\intbl
Row 1 Column 1\cell
Row 1 Column 2\cell
Row 1 Column 3\cell \row
\intbl
Row 2 Column 1\cell
Row 2 Column 2\cell
Row 2 Column 3\cell \row \pard

See Also

\cell, \cellx, \intbl, \row, \trleft, \trowd

 \trleft

The \trleft statement sets the position of the left margin for the first (leftmost) cell in a row of a table.
This statement applies to the first cell in all subsequent rows of the table up to the next \trowd
statement.

Syntax

\trleftn

Parameter

n
Specifies the relative position, in twips, of the left margin. This parameter can be a positive or
negative number. The final position of the left margin is the sum of the current position and this
value.

Remarks

This statement was first supported in the Microsoft Help Compiler version 3.1.

Example

The following example creates a three-column table with one-quarter inch space between the text in
the columns. The left margin in the first cell is flush with the left margin of the Help window:

\trgaph360\trleft-360 \cellx1440\cellx2880\cellx4320
\intbl
Row 1 Column 1\cell
Row 1 Column 2\cell
Row 1 Column 3\cell \row
\intbl
Row 2 Column 1\cell
Row 2 Column 2\cell
Row 2 Column 3\cell \row \pard

See Also

\cell, \cellx, \intbl, \row, \trgaph, \trowd

 \trowd

The \trowd statement sets default margins and cell positions for subsequent rows in a table.

Remarks

This statement was first supported in the Microsoft Help Compiler version 3.1.

See Also

\cell, \cellx, \intbl, \row, \trgaph, \trleft

 \trqc

The \trqc statement directs Windows Help to dynamically adjust the width of table columns to fit in the
current window.

Remarks

In a print-based document, the \trqc statement centers a table row with respect to its containing
column.

Windows Help will not resize a table to smaller than the widths specified in the \trqc statement.
Therefore, the table should be created in the smallest size in which it would ever be displayed. All
columns in the table are sized proportionally.

This statement was first supported in the Microsoft Help Compiler version 3.1.

See Also

\trowd, \trql

 \trql

The \trql statement aligns the text in each cell of a table row to the left.

Remarks

This statement was first supported in the Microsoft Help Compiler version 3.1.

See Also

\trowd, \trqc

 \tx

The \tx statement sets the position of a tab stop. The position is relative to the left margin of the Help
window. A tab stop applies to all subsequent paragraphs up the next \pard statement.

Syntax

\txn

Parameter

n
Specifies the tab stop position, in twips.

Remarks

If the \tx statement is not given, tab stops are set at every one-half inch by default.

See Also

\pard, \tab, \tqc, \tqr

 \ul

The \ul statement creates a link to a pop-up topic. The statement is used in conjunction with a \v
statement to create a link to another topic. When the user chooses the link, Windows Help displays the
associated topic in a pop-up window.

The \ul statement applies to all subsequent text up to the next \plain or \ul0 statement.

Remarks

No \plain or \ul0 statement is required if the \ul statement and subsequent text are enclosed in braces.
Braces limit the scope of a character property statement to just the enclosed text.

In print-based documents, or whenever it is not followed by \v, the \ul statement creates a continuous
underline.

Example

The following example creates a pop-up link for a topic. When displayed, the link text, "Popup Link," is
green and has a dotted line under it:

{\ul Popup Link}{\v PopupTopic}

See Also

\plain, \strike, \uldb, \v

 \uldb

The \uldb statement creates a hot spot. This statement is used in conjunction with a \v statement to
create a link to another topic. When the user chooses a hot spot, Windows Help displays the
associated topic in the Help window.

The \uldb statement applies to all subsequent text up to the next \plain or \uldb0 statement.

Remarks

No \plain or \uldb0 statement is required if the \uldb statement and subsequent text are enclosed in
braces. Braces limit the scope of a character property statement to just the enclosed text.

The \uldb statement creates the same type of hot spot as the \strike statement.

Example

The following example creates a hot spot for a topic. When displayed, the hot-spot text, "Hot Spot", is
green and has a solid line under it:

{\uldb Hot Spot}{\v Topic}

See Also

\plain, \strike, \ul, \v

 \v

The \v statement creates a link to the topic having the specified context string. The \v statement is
used in conjunction with the \strike, \ul, and \uldb statements to create hot spots and links to topics.

Syntax

{\v context-string}

Parameter

context-string
Specifies the context string of a topic in the Help file. The string can be any combination of
characters, except spaces, and must also be specified in a context-string \footnote statement in
some topic in the Help file.

Remarks

If the context string is preceded by a percent sign (%), Windows Help displays the associated hot spot
or link without applying the standard underline and color. If the context string is preceded by an asterisk
(*), Windows Help displays the associated hot spot or link with an underline but without applying the
standard color.

In print-based documents, the \v statement creates hidden text.

For links or hot spots, the syntax of the \v statement is as follows:

[%|*] context [>secondary-window] [@filename]

In this syntax, secondary-window is the name of the secondary window to jump to. When the
secondary window is not specified, the jump is to the same window as the current Help topic is using.
To jump to the main window, specify "main" for this parameter. This parameter may not be used with
pop-up windows.

The filename parameter specifies a jump to a topic in a different Help file.

For a macro hotspot, the syntax of the \v statement is as follows:

[%|*] ! macro [;macro][;]

Example

The following example creates a hot spot for the topic having the context string "Topic". Windows Help
applies an underline and the color green the text "Hot Spot" when it displays the topic:

{\uldb Hot Spot}{\v Topic}

See Also

\footnote, \strike, \ul, \uldb

 \wbitmap

The \wbitmap statement sets the picture type to Windows bitmap. This statement must be used in
conjunction with a \pict statement.

Syntax

\wbitmapn

Parameter

n
Specifies the bitmap type. This parameter is zero for a logical bitmap.

Remarks

The \wbitmap statement is optional; if a \wmetafile statement is not specified, the picture is assumed
to be a Windows bitmap.

Example

The following example creates a 32-by-8 pixel monochrome bitmap:

{\pict \wbitmap0\wbmbitspixel1\wbmplanes1\wbmwidthbytes4\picw32\pich8
3FFFFFFC
F3FFFFCF
FF3FFCFF
FFF3CFFF
FFFC3FFF
FFCFF3FF
FCFFFF3F
CFFFFFF3
}

See Also

bmc, bml, bmr, \pict, \wmetafile

 \wbmbitspixel

The \wbmbitspixel statement specifies the number of consecutive bits in the bitmap data that
represent a single pixel. This statement must be used in conjunction with the \pict statement.

Syntax

\wbmbitspixeln

Parameter

n
Specifies the number of bits per pixel.

Remarks

If the \wbmbitspixel statement is not given, the default bits per pixel value is 1.

See Also

\pict, \wbitmap, \wbmplanes

 \wbmplanes

The \wbmplanes statement specifies the number of color planes in the bitmap data. This statement
must be used in conjunction with a \pict statement.

Syntax

\wbmplanesn

Parameter

n
Specifies the number of bitmap planes.

Remarks

If the \wbmplanes statement is not given, the default number of planes is 1.

See Also

\pict, \wbitmap, \wbmbitspixel

 \wbmwidthbytes

The \wbmwidthbytes statement specifies the number of bytes in each scan line of the bitmap data.
This statement must be used in conjunction with the \pict statement.

Syntax

\wbmwidthbytesn

Parameter

n
Specifies the width of the bitmap, in bytes.

See Also

\pict, \wbitmap

 \windows

The \windows statement sets the Windows character set.

Remarks

If no \windows, \pc, or \pca statement is given in the Help file, the Windows character set is used by
default.

See Also

\ansi, \pc, \pca

 \wmetafile

The \wmetafile statement sets the picture type to a Windows metafile. This statement must be used in
conjunction with the \pict statement.

Syntax

\wmetafilen

Parameter

n
Specifies the metafile type. This parameter must be 8.

Remarks

Windows Help expects the hexadecimal data associated with the picture to represent a valid Windows
metafile. By default, Windows Help sets the MM_ANISOTROPIC mapping mode prior to displaying the
metafile. To ensure that the picture is displayed correctly, the metafile data must either set the window
origin and extents by using the SetWindowOrg and SetWindowExt records or set another mapping
mode by using the SetMapMode record.

Example

The following example creates a picture using a metafile:

{{\pict\wmetafile8\picw2880\pich2880
0100090000034f0000000200090000000000
050000000b0200000000050000000c026400
6400090000001d066200ff00640064000000
000008000000fa0200000200000000000000
040000002d01000005000000140200000000
050000001302640064000500000014020000
64000500000013026400000008000000fa02
00000000000000000000040000002d010100
04000000f00100000300000000004e0dff00
870020000050000020000000000000000000}
\par }

See Also

SetMapMode, SetWindowExt, SetWindowOrg, bmc, bml, bmr, \pict, \wbitmap

 Help Compiler Error Messages

This section lists the error messages displayed by the Microsoft Help Compiler when it encounters
errors in building a Help file. Whenever possible, the compiler displays the name of the file that
contains the error, as well as the number used to identify the specific line of the project file or the topic
that produced the error. Since topics are not actually numbered, the topic number given with an error
message refers to that topic's sequential position in the topic file.

 Interpreting Error Messages

The Microsoft Help Compiler displays either warning or fatal-error messages. A warning message
indicates a problem during compilation that was not severe enough to prevent the Help file from being
created. Microsoft Windows Help should be able to open the file but may encounter problems when
displaying some topics. A fatal error indicates a problem that prevents the compiler from creating a
Help file. The compiler always reports fatal errors, regardless of the current warning level or reporting
option.

While the Microsoft Help Compiler processes the project file, it ignores lines that contain errors and
attempts to continue. This means that errors encountered early in the file may result in many more
errors being reported as the compiler continues.

When the Microsoft Help Compiler processes topic files, it reports any errors it encounters, and if the
errors are not fatal, compilation continues. A single error in a topic file may result in more than one error
message being displayed by the compiler. For example, a typographic mistake in a topic's context
string will cause an error to be reported every time the compiler encounters a reference to the correct
topic identifier.

 Error Message Categories

Error-message numbers have four digits; the first one or two of those digits identify the message
category. The message-number prefixes and the categories they identify are defined as follows:

Prefix Error
1 Problems with files used to build the Help file
2 Problems with the project file
30 - 31 Problems with build tags or build-tag expressions
35 - 36 Problems with Help macros
40 - 41 Problems with context strings
42 - 45 Problems with footnotes
46 - 47 Problems with the topic file
5 Other problems

 File Errors

The following messages result from problems with files used to build a Help file. A description is given
for messages that are not self-explanatory.

Numb
er

File error message

1019 Project file extension cannot be .HLP or .PH.
1030 File name exceeds limit of 259 characters.

The combined length of the path and filename must not be more
than the MS-DOS limit of 259 characters.

1079 Out of file handles.
The compiler does not have enough available file handles to
continue. If possible, increase the FILES setting in the
CONFIG.SYS file.

1100 Cannot open file filename: permission denied.
Requested files must have at least read privilege to be opened.

1150 Cannot overwrite file filename.
Files with the read-only attribute cannot be overwritten.

1170 File filename is a directory.
A directory in the project directory has the same name as the
requested Help file.

1190 Cannot use reserved DOS file name filename.
Do not use reserved MS-DOS filenames, such as COM1, LPT2,
or PRN, when specifying topic or other data files.

1230 File filename not found.
The specified file could not be found or is unreadable.

1292 File filename is not a valid bitmap.
The specified bitmap file could not be found or is not in a
recognizable bitmap format.

1319 Disk full.
1513 Bitmap name filename duplicated.

The [BITMAPS] section contains duplicate bitmap names. The
compiler uses the first occurrence of the name.

1536 Not enough memory to compress bitmap filename.
The specified bitmaps cannot be compressed due to insufficient
memory.

 Project-File Errors

The following messages result from errors in the Help project file (with the .HPJ filename extension)
used to build a Help file. A description is given for messages that are not self-explanatory.

Numb
er

Project-file error message

2010 Include statements nested more than 5 deep.
The #include statement on the specified line has exceeded the
maximum of five include levels.

2030 Comment starting at line linenumber of file filename unclosed
at end of file.
The compiler has unexpectedly come to the end of the project file.
There may be an open comment in the project file or in an include
file.

2050 Invalid #include syntax.
The #include statement requires a filename.

2091 Bracket missing from section heading [sectionname].
2111 Section heading missing.

The section heading on the specified line is not complete. This
error is also reported if the first entry in the project file is not a
section heading.

2131 Invalid OPTIONS syntax: 'option=value' expected.
2141 Invalid ALIAS syntax: 'context=context' expected.
2151 Incomplete line in [sectionname] section
2171 Unrecognized text.
2191 Section heading [sectionname] unrecognized.
2214 Line in .HPJ file exceeds length limit of 2047 characters.
2273 [OPTIONS] should precede [FILES] and [BITMAPS] for all

options to take effect.
The [OPTIONS] section should be the first section in the project
file. Also, if the ERRORLOG option is used, that option should be
the first line in the [OPTIONS] section.

2291 Section sectionname previously defined.
The compiler ignores the lines under the duplicated section and
continues from the next valid section heading.

2305 No valid files in [FILES] section.
The file section is empty or contains only invalid files.

2322 Context string context_name cannot be used as alias string.
A context string that has been assigned an alias cannot be used
later as an alias for another context string. That is, you cannot
map a=b and then c=a in the [ALIAS] section. The compiler
ignores the attempted reassignment.

2331 Context number already used in [MAP] section.
The context number on the specified line in the project file was
previously mapped to a different context string.

2341 Invalid or missing context string.
The specified line is missing a context string before an equal sign.

2351 Invalid context identification number.
The context number on the specified line is empty or contains
invalid characters.

2362 Context string context_name already assigned an alias.
A context string can have only one alias. That is, you cannot map
a=b and then a=c in the [ALIAS] section. The specified context
string has already been assigned an alias in the [ALIAS] section.
The compiler ignores the attempted reassignment.

2372 Alias string aliasname already assigned.
You cannot alias an alias. That is, an alias string cannot, in turn,
be assigned another alias. You cannot map a=b and then b=c in
the [ALIAS] section. The compiler ignores the attempted
reassignment.

2391 Limit of 6 window definitions exceeded.
The maximum number of window definitions is one main-window
definition and five secondary-window definitions.

2401 Window maximization state must be 0 or 1.
The sizing parameter in a window definition must be either zero or
1.

2411 Invalid syntax in window color.
A window color in a window definition consists of three decimal
numbers enclosed in parentheses and separated by commas.

2421 Invalid window position.
The window position in a window definition consists of four
decimal numbers enclosed in parentheses and separated by
commas.

2431 Missing quote in window caption.
The window caption in a window definition must be enclosed in
quotation marks.

2441 Window name windowname is too long.
The window name exceeds the maximum length of 8 characters.

2451 Window position value out of range 01023.
One or more of the window-position coordinates exceed the
maximum limit of 1023.

2461 Window name missing.
A window definition in the project file is missing the window name.

2471 Invalid syntax in [WINDOWS] section.
2481 Secondary-window position required.

A window definition for a secondary window must specify the four
window-position parameters.

2491 Duplicate window name windowname.
Window names must be unique.

2501 Window caption windowcaption exceeds limit of 50 characters.
2511 Unrecognized option optionname in [OPTIONS] section.
2532 Option optionname previously defined.

The compiler ignores the attempted redefinition.
2550 Invalid path pathname in optionname option.

The compiler cannot find the path specified by the ROOT or
BMROOT option. The compiler uses the current working directory.

2570 Path in optionname option exceeds number of characters.
The specified root path exceeds the maximum limit for MS-DOS.
The compiler ignores the path and uses the current working
directory.

2591 Invalid MAPFONTSIZE option.
The font range syntax used is invalid. A font range consists of a
low and high point size, separated by a hyphen (-).

2612 Maximum of 5 font ranges exceeded.
The compiler ignores additional ranges.

2632 Current font range overlaps previously defined range.
The compiler ignores the second mapping.

2651 Font name exceeds limit of 20 characters.
2672 Unrecognized font name fontname in FORCEFONT option.

The compiler ignores the font name and uses the default Helvetica
font.

2691 Invalid MULTIKEY syntax.
The MULTIKEY option must specify a single capital letter other
than the letter K.

2711 Maximum of 5 keyword tables exceeded.
The compiler ignores the additional tables.

2732 Character already used.
A character used for indicating the keyword table was previously
used. The compiler ignores the line.

2752 Characters 'K' and 'k' cannot be used.
These characters are reserved for Help's standard keyword table.

2771 REPORT option must be 'ON' or 'OFF'.
2811 OLDKEYPHRASE option must be 'ON' or 'OFF'.
2832 COMPRESS option must be 'OFF', 'MEDIUM' or 'HIGH'.
2842 OPTCDROM option must be 'TRUE' or 'FALSE'.
2852 Invalid TITLE option.

The TITLE option defines a string that is empty or contains more
than 32 characters.

2872 Invalid LANGUAGE option.
You have specified an ordering that is not supported by the
compiler. The compiler uses English sorting order.

2893 Warning option must be 1, 2, or 3.
The compiler uses full reporting (level 3).

2911 Invalid icon file filename.
The compiler cannot find the icon file specified in the ICON option,
or the file is not a valid icon file.

2932 Copyright string exceeds limit of 50 characters.
The maximum length of the copyright string in the About box is
limited to 50 characters.

3011 Maximum of 32 build tags exceeded.

The compiler ignores the additional tags.
3031 Build tag length exceeds 32 characters.

The compiler ignores the build tag.
3051 Build tag tagname contains invalid characters.

Build tags can contain only alphanumeric characters or the
underscore (_) character.

3076 [BUILDTAGS] section missing.
The BUILD option declared a conditional build, but there is no
[BUILDTAGS] section in the project file. The compiler includes all
topics in the build.

3096 Build expression too complex.
The build expression has too many expressions (~, |, or &) or is
too deeply nested.

3116 Invalid build expression.
The syntax used in the build expression on the specified line
contains one or more logical or syntax errors.

3133 Duplicate build tag in [BUILDTAGS] section.
3152 Build tag tagname not defined in [BUILDTAGS] section.

The specified build tag has been assigned to a topic but not
declared in the project file. The compiler ignores the tag for the
topic.

3178 Build expression missing from project file.
The topics have build tags, but there is no build expression in the
project file. The compiler includes all topics in the build.

 Macro Errors

The following messages result from errors in the use of Help macros in footnotes, hot spots, and the
[CONFIG] section of the Help project file. A description is given for messages that are not self-
explanatory.

Numb
er

Macro error message

3511 Macro macrostring exceeds limit of 254 characters.
3532 Undefined function in macro macroname.

The specified macro is not on the list of macros supported by the
compiler, nor is it specified in the RegisterRoutine macro. The
compiler passes the macro to the Help file, however.

3552 Undefined variable in macro macroname.
3571 Wrong number of parameters to function in macro

macroname.
3591 Syntax error in macro macroname.
3611 Function parameter type mismatch in macro macroname.

There is a type mismatch (string or numeric) in the function call.
3631 Bad macro prototype.

The prototype string passed to the RegisterRoutine macro is
invalid.

3652 Empty macro string.
The ! footnote or a hidden text starting with "!" does not contain a
macro.

3672 Macro macroname nested too deeply.
Macro strings that contain macro strings as parameters may not
nest more than three deep.

 Context-String Errors

The following messages are caused by problems with context-string footnotes or context strings
specified in jumps or in Help project-file options. A description is given for messages that are not self-
explanatory.

Numb
er

Context-string error messages

4011 Context string contextname already used.
The specified context string was previously assigned to another
topic. The compiler ignores the latter string and the topic has no
identifier.

4031 Invalid context string contextname.
The context string footnote contains non-alphanumeric characters
or is empty. The compiler does not assign the topic an identifier.

4056 Unresolved context string specified in CONTENTS option.
The Contents topic defined in the project file could not be found.
The compiler uses the first topic in the build as the Contents topic.

4072 Context string exceeds limit of 255 characters.
The compiler ignores the context string.

4098 Context string(s) in [MAP] section not defined in any topic.
The compiler cannot find a context string listed in the [MAP]
section in any of the topics in the build.

4113 Unresolved jump or popup contextname.
The specified topic contains a context string that identifies a
nonexistent topic.

4131 Hash conflict between contextname and contextname.
The hash algorithm has generated the same hash value for both
of the listed context strings. Change one of the context strings
and recompile.

4151 Invalid secondary window name windowname.
The window name for the secondary window is "main" or another
disallowed member name.

4171 Cannot use secondary window with popup.
The hidden text defining the pop-up identifier contains a
secondary-window name.

4196 Jumps and lookups not verified.
Due to low memory conditions, the build continues without
verifying the validity of jumps and popups. (The reference to
"lookups" in the error message is incorrect.)

4211 Footnote text exceeds limit of 1023 characters.
Footnote text cannot exceed the limit of 1023 characters. The
compiler ignores the footnote.

4231 Footnote text missing.
The specified topic contains a footnote that has no characters.

4251 Browse sequence not in first paragraph.
The browse-sequence footnote is not in the first paragraph of the
topic. The compiler ignores the browse sequence.

4272 Empty browse sequence string.
The browse-sequence footnote for the specified topic contains no
sequence characters.

4292 Missing sequence number.
A browse-sequence number ends in a colon (:) for the specified
topic. Remove the colon or enter a "minor" sequence number and
then recompile.

4312 Browse sequence already defined.
A browse-sequence footnote already exists for the specified topic.
The compiler ignores the latter sequence.

4331 Title not in first paragraph.
The title footnote ($) is not in the first paragraph of the topic. The
topic will not have a topic title string.

4352 Empty title string.
The title footnote for the specified topic contains no characters.
The compiler does not assign the topic a title.

4372 Title defined more than once.
There is more than one title footnote in the specified topic. The
compiler uses the first title string.

4393 Title exceeds limit of 128 characters.
The compiler ignores the additional characters.

4412 Keyword string exceeds limit of 255 characters.
4433 Empty keyword string.

There are no characters in the keyword footnote.
4452 Keyword(s) defined without title.

The topic has a keyword assigned to it, but no title.
4471 Build tag footnote not at beginning of topic.

The build-tag footnote marker, if used, must be the first character
in the topic.

4492 Build tag exceeds limit of 32 characters.
The compiler ignores the tag for the topic.

4551 Entry macro not in first paragraph.
The ! footnote (for executing a macro) is not in the first paragraph
of the topic. The compiler ignores the macro.

 Topic-File Errors

The following messages result from problems in rich-text format (RTF) formatting in one or more topic
files. A description is given for messages that are not self-explanatory.

Numbe
r

Topic-file error message

4616 File filename is not a valid RTF topic file.
4639 Error in file filename at byte offset 0xoffset.

The specified file contains unrecognized RTF at that byte offset.
4649 File filename contains more than 32767 topics.
4652 Table formatting too complex.

The compiler encountered a table with borders, shading, or right
justification.

4662 Side by side paragraph formatting not supported.
The side-by-side paragraph formatting is not supported in
Microsoft Windows Help 3.1.

4671 Table contains more than 32 columns.
4680 Font fontname in file filename not in RTF font table.

The compiler uses the default system font.
4692 Unrecognized graphic format.

The compiler supports only Windows bitmaps, Windows
metafiles, segmented graphics, and multi-resolution graphics.
The compiler ignores the graphic.

4733 Hidden page break.
A page break is a part of the hidden text. A page break formatted
as hidden text will not separate two topics.

4753 Hidden paragraph.
A paragraph marker is part of the hidden text. The compiler
ignores the paragraph marker.

4763 Hidden carriage return.
A carriage return is part of the hidden text. The compiler ignores
the carriage return.

4774 Paragraph exceeds limit of 64K.
A single paragraph has more than 64K of text or 64K of graphics.
(This limit does not include graphics stored separately from the
data, using the bmc, bml, or bmr statements.)

4792 Non-scrolling region defined after scrolling region.
A \keepn statement precedes a paragraph that is not the first
paragraph in the topic. The compiler ignores the statement; the
paragraph is treated as regular text and is part of the regular
topic text.

4813 Non-scrolling region crosses page boundary.
A \pard statement must appear before the \page statement in a
topic containing a \keepn statement.

 Miscellaneous Errors

The following messages are caused by conditions such as operating-system file errors or out-of-
memory conditions. A description is given for messages that are not self-explanatory.

Numbe
r

Error message

5035 File filename not created.
There are no topics to compile or the build expression is false for
all topics. The compiler does not create a Help file.

5059 Not enough memory to build Help file.
To free memory, unload any unneeded applications, device
drivers, and memory-resident programs.

5075 Help Compiler corrupted. Please reinstall HC.EXE.
Virus-checking code has detected a corruption in the compiler.
Reinstall the compiler.

5098 Using old key-phrase table.
Maximum compression can result only by deleting the .PH file
before each recompilation of the Help topics or by setting the
OLDKEYPHRASE option to "0".

5115 Write failed.
Write-to-disk operation failed. Contact Microsoft Product Support
Services.

5139 Aborted by user.
Compilation was terminated when the user pressed CTRL+C.

 Using Symbolic Debuggers

The Microsoft Windows NT Software Development Kit (SDK) includes three symbolic debuggers:

· NTSD, the NT Symbolic Debugger with which you can debug user-mode programs.
· KD, the Kernel Debugger with which you can debug kernel-mode device drivers. KD provides

assembly language debugging and is intended for system developers and device driver authors.
NTSD and KD share much of their syntax and support many identical commands.

· WinDbg, the Windows-based source-level debugger with which you can debug both user-mode
programs and kernel-mode drivers.

In most cases, you can use WinDbg to debug application programs, user-mode drivers, and kernel-
mode drivers. You may have to use NTSD and KD to debug drivers that initialize before you can run
WinDbg or that interfere with WinDbg itself. KD is a kernel-mode remote debugger that runs on a
separate host computer. KD provides assembly language debugging and is intended for system
developers and device driver authors. NTSD and KD share much of their syntax and support many
identical commands. This section explains how to use NTSD and KD. Introducing WinDbg explains
how to use WinDbg.

NTSD supports multiple-thread and multiprocess debugging of user-mode applications and DLLs.
NTSD is extensible, and can read and write both paged and nonpaged memory.

Using NTSD, you can display and execute program code, set breakpoints, and examine and change
values in memory. Because NTSD can access memory locations through addresses, global symbols,
or line numbers, you can refer to data and instructions by name rather than by address, making it easy
to locate and debug specific sections of code. You can debug C programs at source-file level as well as
at machine level. You can display source statements, disassembled machine code, or a combination of
both.

KD supports debugging of kernel-mode code. It also supports multiprocessor debugging. Because it is
deficient in setting breakpoints in user-mode code and cannot be used to examine or deposit paged-
out memory, KD is not well suited to debugging user-mode programs. KD does not provide support for
threads.

KD runs on a host computer and communicates through a null-modem serial cable with the target
computer running NT. The host computer must be running Windows NT.

 The NT Symbolic Debugger (NTSD)

This section describes operation of the NT Symbolic Debugger. Summaries of NTSD commands are
included.

The following topics are covered:

· TOOLS.INI
· NTSD Command Line
· Using NTSD

For a complete reference of NTSD commands, see NTSD and KD Reference.

 TOOLS.INI

On startup, NTSD searches for an [NTSD] header in the TOOLS.INI file and extracts initialization
information from the entries under the header. The environment variable INIT must point to the
directory containing the TOOLS.INI file.

NTSD also attempts on startup to take commands from the file NTSD.INI in the current directory or in
the path specified in the TOOLS.INI file.

The TOOLS.INI entries for the [NTSD] section are as follows:

$u0-$u9
Assign values to user-defined pseudo registers.

DebugChildren
True or false. If true, NTSD debugs the specified application as well as any children that it may
spawn.

DebugOutput
True or false. If true, NTSD sends output and receives input through a terminal.

IniFile
Specifies the name of the script file NTSD takes commands from at startup.

LazyLoad
True or false. If true, NTSD performs lazy symbol loading; that is, symbols are not loaded until
needed and NTSD starts faster.

StopFirst
True or false. If true, NTSD stops on the first breakpoint it encounters.

StopOnProcessExit
True or false. If true, NTSD stops when it receives a process termination notification.

sxd, sxe
Set exception handling for the following events:
Cod
e

Description

3c Child App Termination (break on GUI application exit)
av Access Violation
cc CTRL+C

ct Create Thread
et Exit Thread
ep Exit Process
ld Load DLL

The sxe command enables the break status for an exception; the sxd command disables the break
status for an exception.

VerboseOutput
True or false. If true, NTSD will display detailed information on symbol handling, event notification,
and other run-time occurrences.

An example TOOLS.INI file follows:

[ntsd]
sxe: 3c
sxe: cc
$u0: VeryLongName
VerboseOutput:true

 NTSD Command Line

The NTSD command line uses the following syntax:

NTSD [options] imagefile

where imagefile is the name of the image to be debugged and options is one of the following:

Option Description
-2 Opens a new window for debugging character mode

applications.
-d Redirects output to the debugging terminal.
-g Causes execution past the first breakpoint

automatically.
-G Causes NTSD to exit immediately when the child

terminates.
-o Enables debugging of multiple processes. The

default is for one process directly spawned by the
debugger.

-p process-id Specifies debugging of the process identified by
process-id.

-v Produces verbose output.

 Using NTSD

Before using NTSD, follow these steps:

1. On x86 platforms, compile your program using the CL386 option /Zd. This generates debugger
symbol information for your .EXE file.

2. On x86 platforms, generate your object file using CVTOMF with the -g option.
3. Link your program using LINK with the /DEBUG:full option.

Note The MSTOOLS directory includes examples of these options.

 Starting NTSD

To start debugging your program with NTSD, enter the following:

ntsd yourexename.exe

This starts NTSD in the current console window and loads the application specified by
yourexename.exe. From the NTSD prompt, set any initial breakpoints with the bp command, and type
g (go) to start the application. The g command directs NTSD to pass control to the program. Execution
begins at the current code address.

Note NTSD cannot access symbols if the .EXE or .DLL being debugged is on drive C and the system
was restarted from a drive other than drive C.

If the application hits a breakpoint or has an access violation, you will be returned to the NTSD prompt.
It is often handy to run NTSD on the kernel debugging computer. This allows you to continue to watch
the NTSD screen while the application is running; you can break into NTSD with CTRL+C. To start
NTSD with its display redirected to KD, enter

ntsd -d appname

To break into NTSD, use the minus key (below PRINT SCREEN) on an 84-key keyboard; on a 101/102-
key keyboard, use F12.

On invocation of NTSD, you can use the -g option to go past the first breakpoint automatically. For
example, the command line

ntsd -g ls

causes NTSD to pass control to LS, which executes until it terminates or until an exception causes
NTSD to take control.

 Using Basic NTSD Commands

These are the most important commands for getting started debugging your application. NTSD and KD
Reference contains the complete list of NTSD commands.

Comman
d

Meaning

? Display command summary
bp Set breakpoint, for example "bp main"
g Go ¾ continue execution
ln List near symbols
p Single step
r Display register contents, set register
s+ Set source display mode
u "Unassemble" (disassemble)
v View source lines

 Canceling NTSD Commands

To cancel the current command, use SYS RQ on the target keyboard (ALT-SYS RQ on enhanced
keyboards) for MIPS platforms; for x86 platforms, use CTRL+C. This action is most useful for halting
commands that generate long output listings on the display.

If NTSD is running, program execution is stopped. Entering CTRL+C will not affect commands that pass
execution control to the application being debugged.

 Quitting NTSD

You can terminate NTSD at any time by using the q command to return to the operating system
prompt.

 Basic Debugging

Follow this sample procedure to get started debugging your application:

1. Type "ntsd yourappname" to start NTSD.
2. Set source display mode using the s+ command.
3. Set a breakpoint at "main" or "winmain" using the bp command.
4. Go to this breakpoint using the g command.
5. Unassemble code from this point using the u command.
6. Type "v .23 l10" to view 16 (10 hex) source lines starting at line 23.
7. Set more breakpoints as necessary. If the virtual address corresponding to the next line number you

want to stop at is 41000a, type "bp 41000a".
8. Use the p command to single step or the g command to run until the next breakpoint is encountered.

 The Kernel Debugger (KD)

This section describes basic procedures for using KD, the kernel debugger. The following topics are
included:

· Setting Up KD
· Using KD
· Quitting KD

 Setting Up KD

 Preparing a Cable

To use KD to debug kernel-mode executables from a remote location, you must connect a null-modem
serial cable to the serial ports of the host computer running KD and the NT computer running the
executables. The following two tables list these connections:

KD Serial Cable Connections
KD Serial
port

Connected to NT Serial port

Transmit Receive
Receive Transmit
Ground Ground

KD 9-pin and 25-pin D-subminiature Cable Connections
Pin Connected to Pin
2 3
3 2
7 7

 Connecting KD

First connect the Windows NT computer and KD computer with a standard null-modem serial cable. On
the Windows NT (target) computer, connect the cable to the highest-numbered serial port. For
example, on a computer with two serial ports, connect it to COM2. On the debugger (host) computer,
connect it to COM1. See the instructions below if you need to use a different port on the debugger
computer.

{ewl msdncd, EWGraphic, group10552 0 /a "SDK.BMP"} To connect KD
1. Install a debug version of Windows NT on the debugger computer.
2. For x86 platforms: copy \NT\MSTOOLS\BIN\I386KD.EXE from the development computer to \NT\

BIN on the debugger computer; alternatively, copy \DEBUG\MSTOOLS\BIN\I386\I386KD.EXE from
the CD-ROM to \NT\BIN on the debugger computer.
For MIPS platforms: copy \NT\MSTOOLS\BIN\MIPSKD.EXE from the development computer to \NT\
BIN on the debugger computer; alternatively, copy \DEBUG\MSTOOLS\BIN\MIPS\MIPSKD.EXE
from the CD-ROM to \NT\BIN on the debugger computer.

3. Create a batch file beginning with these two lines:
SET _NT_DEBUG_PORT=COM1
SET _NT_DEBUG_LOG_FILE_APPEND=C:\DEBUG.LOG

The last line in this batch file is platform dependent. For x86 platforms add
i386kd

and for MIPS platforms add
mipskd

4. Run the batch file to execute KD. The KD debugging session is logged in the file specified by the
_NT_DEBUG_LOG_FILE_APPEND variable. To connect the debugging cable to a port other than
COM1 (on the debugging computer), use the _NT_DEBUG_PORT variable to set the desired COM
port.

 Setting Environment Variables

Set environment variables on the debugger (host) computer as follows:

Variable Meaning
_nt_debug_port=portname Name of the debugger computer

port through which the debugger
computer and the target computer
are connected (for example,
_NT_DEBUG_PORT=COM1).

_nt_symbol_path=pathname Name of the root of a directory
tree containing image files
containing symbols (for example, if
you set _NT_SYMBOL_PATH=C:\
TESTROOT on the host, and you
run \NT\BINARY\TEST1.EXE on
the target computer, KD will try to
read symbols from C:\
TESTROOT\NT\BINARY\
TEST1.EXE on the host
computer.). If this variable is not
provided, X: is the default path.

_nt_debug_log_file_append=filename Name of the log file to which KD
appends output.

_nt_debug_log_file_open=filename Name of the log file to which KD
sends output.

 Starting KD

Note Remember to start KD before starting the Windows NT computer.

To start KD on x86 platforms, enter the following command line at the command prompt:

i386kd [-?|-h|-H] [-b[-n] [-v] exename

where exename is the pathname of the host computer's kernel image file for loading symbols.

To start KD on MIPS platforms, enter the following command line at the command prompt:

mipskd [-?] [-h] [-l image-file] [-n] [-t] [-v]

To start KD on PowerPC platforms, enter the following command line at the command prompt:

ppckd

A list of options and their meanings follows:

Option Meaning
-? Displays help
-b Causes initial break in the kernel ¾ x86 only
-h Displays help ¾ x86 only
-l image-
file

Load symbols from image-file immediately ¾ MIPS only

-n No lazy symbol loading
-t Time out between serial port character I/O ¾ MIPS only
-v Generates verbose messages for loads, deferred loads, and

unloads

If your debugger computer is running NT, entering "i386kd -?" (on an x86 platform), "mipskd -?" (on a
MIPS platform), or "ppckd -?" (on a PowerPC platform) at the command prompt gives information on
environment variables and control keys. At the debugger prompt, typing "?" gives help for built-in
commands, Entering "!?" gives help for extension commands, which start with a "!".

 Using KD

The following list gives suggestions for effective use of KD and summarizes the most common
commands:

Comma
nd

Description

ENTER Repeats the last command.
bp Sets a breakpoint. Breakpoints cannot be set in user space

(addresses below 80000000). Breakpoints in user space
transfer control to NTSD if it is debugging the thread that
encountered the breakpoint. Breakpoints in system space
transfer control to KD.

CTRL+R Synchronizes with the target computer. Use this command if the
debugger computer isn't responding.

CTRL+D Dumps the MIPSKD state.
CTRL+C Interrupts commands that generate long output listings on the

display (for x86 platforms only).

Note KD cannot dump floating-point registers, but it can dump floating-point variables.

 Canceling Commands

To cancel KD commands use the following commands:

· SYS RQ on the target keyboard (ALT-SYS RQ on enhanced keyboards)
· SYS RQ on the debugger (host) keyboard (ALT-SYS RQ on enhanced keyboards)
· CTRL+C on the target keyboard (for x86 platforms only)
· CTRL+C on the debugger (host) keyboard

 Quitting KD

Use the q command to save your log file and quit KD.

Try CTRL+R followed by ENTER on the debugger keyboard if the q command fails to work, and then try
using the q command again (to save your log file and quit). Otherwise, press CTRL+B followed by
ENTER to locally abort the current session and return to the local command prompt. The log file is not
saved when using CTRL+B to quit KD. Press CTRL+B to quit if both the host and target computers are
hung.

 NTSD and KD Debugging Topics

This section discusses selected aspects of using NTSD and KD.

 DLL Load Notification

Symbols are loaded from the DLL itself (if allowed) and are at the location specified by the pathname
for the DLL.

 Setting Breakpoints with Symbols

You can use the bp (breakpoint set) command and symbols to set breakpoints in your application code.
The bp command uses symbolic names to compute the breakpoint address. For example, for a
character mode application, the command

bp main

sets a breakpoint at the application's main function. For a Windows-based application, the command

bp winmain

sets a breakpoint at the application's winmain function.

On MIPS platforms, the breakpoint is automatically set after the prolog.

The "KB" stack trace uses the stack frame to determine which function is executing. Since the stack
frame is set up by the first two instructions, you should step a minimum of two assembly-language
instructions into a procedure to get an accurate stack trace.

A stack trace after an access violation in a window procedure may be uninformative, since the window
procedure is called via a function pointer. If you place a breakpoint in the offending function, you will
get a better stack trace.

KD supports virtual breakpoints. If an application has not been loaded, KD sets a virtual breakpoint. A
virtual breakpoint has no effect on execution until the application is actually loaded. Once an
application is loaded, KD computes the actual coded addresses of all virtual breakpoints and enables
them.

 Debugging Multiple Processors

KD supports multiple processor computer debugging. Processors are numbered 0 through n.

If the current processor is processor 0 (that is, if it is processor 0 that currently causes KD to be active),
you can look at the other noncurrent processors (processors 1 through n). However, you cannot
change anything in the noncurrent processors; you can only look at their state. For example, you can
run k and r commands on other processors, using "1r" to dump the registers of processor 1, and "2k"
to do a stack trace on processor 2, etc. But running "1r eax=8080808" gives a syntax error because
changing the state of noncurrent processors is not allowed.

The KD commands BA (data breakpoint, not implemented on MIPS or PowerPC) and BP (breakpoint)
apply to all processors of a multiple processor computer. For example, if the current processor is 63
and you type

bp SomeAddress

to put a breakpoint at SomeAddress, any processor (not just processor 63) executing at that address
will cause a breakpoint trap.

 Displaying Variables

Use the d command to display an application's global variables. These commands can use a variable's
symbol as an argument and compute the variable's address.

For example, the d command to dump a word

dw hwInstance

causes NTSD or KD to display the contents of the variable hwInstance, which might be:

00000235 0000 0000 0000 0000 0000 0000

To display an application's local variables on x86 platforms, first compile the application with the /Zi
compiler option. Use the "dot" command (.) to display the contents of local variables.

 Using Pseudoregisters

NTSD supports the use and definition of pseudoregisters. Four of these are automatically set to
specific debug information:

· $ea is set to the last effective address displayed
· $exp is set to the last expression evaluated
· $ra is set to the return address currently on the stack
· $p is set to the value printed by the last dd, dw, or db command

The pseudoregisters $u0 through $u9 are user-defined and can be used as macros. Pseudoregisters
can be used to eliminate typing of long or complex symbol names:

0:000> r $u0=usersrv!NameTooLongToWantToType
0:000> dw $u0+8

Here is another example using a pseudoregister to simplify typing of commands:

0:000> r $u5='dd esp 14;g'
0:000> bp Api1 $u5; bp Api2 $u5

The preceding expands to

bp Api1 'dd esp 14;g'

Note Recursive definitions such as the following are not supported:

0:000> r $u0=abc + $u1
0:000> r $u1=def + $u0

You can predefine pseudoregisters in your TOOLS.INI file by adding $u fields to your [NTSD] entry:

[NTSD]
$u0:_ntdll!_RtlRaiseException
$u1:"dd esp 14;g"
$u9:$u0 + $u7

 Extending NTSD

A debugger extension is an entry point in a DLL called by NTSD. Debugger extensions are called when
NTSD sees the following command:

![module-name.] extension-name [extension-arguments]

If the module name is specified, it is loaded into NTSD using a call to LoadLibrary(module-name).
Otherwise, the default extension module is loaded using LoadLibrary("ntsdexts").
After NTSD has loaded the extension library, NTSD calls GetProcAddress to locate the extension
name in the extension module. The extension name is case sensitive and must be entered exactly as it
appears in the extension module's .DEF file. If the extension address is found, the extension is called.

The header file NTSDEXTS.H specifies the extension protocol.

 NTSD and KD Reference

This section includes arguments and expressions used with NTSD and KD commands, as well as
predefined names used as register and register-flag names. Following these descriptions is an
alphabetic list of all NTSD and KD commands.

Note Several commands and command options listed in Commands and Command Arguments and
in Command Reference are unique to either NTSD or KD. NTSD does not support multiple processor
debugging. KD does not support threads or multiprocess debugging.

 Commands and Command Arguments

Any combination of uppercase and lowercase letters may be used in commands and arguments. If a
command uses two or more parameters, separate them with a single comma (,) or one or more
spaces.

Command arguments can be numbers, symbols, line numbers, or expressions. The arguments specify
addresses or values used by commands. The arguments and their meanings are listed below:

address
The relative or symbolic address of a variable or function. Flat addresses are prefixed with a percent
sign (%), when necessary, to distinguish them from addresses in other modes.

byte
A value argument representing a byte value. It must be within the range 0 to 255.

command-string
One or more commands. Multiple commands must be separated by a semicolon (;).

expression
A combination of arguments and operators representing a single value or address.

filename
The name of a file or a device. The filename must follow MS-DOS filename conventions.

id
A decimal number representing a breakpoint. The number must be within the range 0 to 31.

d-list
One or more unique decimal numbers representing a list of breakpoint identifiers. The numbers must
be within the range 0 to 31. Multiple numbers must be separated by spaces. The wildcard character
(*) can be used to specify all breakpoints.

list
One or more value arguments. The values must be within the range 0 to 2 (32) - 1. Multiple values
must be separated by spaces. A list can also be specified as a list of ASCII values. The list can
contain any combination of characters and must be enclosed in either single (') or double quotation
marks ("). If the enclosing mark appears within the list, it must be given twice.

range
A range of addresses. Address ranges have two forms: a starting- and ending-address pair and a
start address and object count. The first form is two address arguments, the first specifying the
starting address and the second specifying the ending address. The second form consists of an
address argument, the letter L, and a value argument. The address specifies the starting address;
the value specifies the number of objects to be examined or displayed. The size of an object
depends on the command. If a command requires a range but only a start address is given in the
command, the command assumes the range to have a default object count as follows:
Size Object count
ASCII 384
byte 128
word 64
doubl
e

32

This default count does not apply to commands that require a range followed immediately by a value
or an address argument.

register
The name of a CPU register or a floating point register. The register set is processor dependent. All
registers of interest to the application programmer are displayed. A name preceded by an at sign
(@) always indicates a register name. If no at sign is present, a name is tested to be first a variable,

then a hex number, and finally a register name.
symbol

The address of a variable, function, or segment. A symbol consists of one or more characters, but
always begins with a letter, underscore (_), question mark (?), at sign (@), or dollar sign ($). Any
combination of uppercase and lowercase letters can be used; NTSD and KD symbols are not case
sensitive. For some commands, the wildcard character (*) can be used as part of a symbol to match
any combination of characters; you can use a question mark (?) to match any single character.

process-id
A process identifier. A vertical bar (|) precedes the process identifier, which is one of the following:
Process
identifier

Description

. Current process
* All processes
ddd Decimal number of process ordinal

Processes are assigned ordinals as they are created.
Process specifiers appear as command prefixes. The current process is the process that caused the
debug exception. It defines the memory space and the set of threads used. That process remains
the current process until a new process is specified by a |s command.
Commands that are process-id specific are prefixed by a vertical bar (|) and can be followed by a
process number or special name as follows:
Process
option

Description

. Current process
Process causing present exception
ddd Decimal number of process ordinal

prefix!symbol
A symbol name may be prefixed by a DLL name. An exclamation mark (!) separates the DLL name
from the symbol.

threadspec
A thread specifier. A tilde (~) precedes the thread specifier, which is one of the following:
Thread
specifier

Description

. Current thread
Thread causing present exception
* All threads in the process
ddd Decimal number of the thread ordinal

Thread specifiers appear as command prefixes. Note that not all wildcards are available in all
commands using thread specifiers.

value
Specifies an integer number in octal, decimal, or hexadecimal format.

 Symbol Name Resolution

NTSD and KD attempt to match a symbol name in the following order:

1. Exact case match (sym)
2. Exact case match with leading underscore (_sym)
3. Mixed-case match (Sym or SYM)
4. Mixed-case match with leading underscore (_Sym or _SYM)

See also the rules for resolving register, hex, and DLL names listed in the preceding section.

 Address Modes and Segment Support

On x86 platforms, NTSD and KD support two addressing modes. These modes are distinguished by
their prefixes:

Prefix Name Mode prompt Address types
% flat

(also 16:32)
KD> 32-bit addresses (also 16-bit

selectors pointing to 32-bit
segments ¾ x86 only)

& virtual 86 VMKD> Real-mode addresses ¾ x86
only.

If you access memory through an addressing mode that is not the current default, you can use the
address mode prefixes to override the current address mode.

NTSD and KD support only the flat addressing mode on MIPS platforms.

 Address Arguments

Address arguments specify the location of variables and functions.

The following table explains the syntax and meaning of the various addresses used in NTSD and KD.

Syntax Meaning
offset Absolute 32-bit address in virtual memory space.
&[[segment:]]
offset

Real address ¾ x86 only.

%segment:
[[offset]]

Flat 32-bit address ¾ x86 only.

%[[offset]] Flat 32-bit address.
name[[+|-]]
offset

Flat 32-bit address; name can be any symbol. The offset
specifies the offset in bytes. The address can be
specified as a positive (+) or negative (-) offset.

 Line-Number Arguments

If source line information exists in the .EXE or .DLL file, the debugger can display a specified source
line. Line number syntax is:

[module ![filename[.expr]]]

Symbols are as follows:

Symb
ol

Meaning

module The name of an executable .EXE or .DLL file. The special name
nt indicates the kernel. If module is not given, the module
executing as the current process is the default.

filenam
e

The name of a source file, with no path or extension. If filename is
not given, the default source file (if available) is that of the module
currently executing.

expr A value in the range from 1 to the highest source-line number in
the specified source file. The default radix is 10 regardless of the
radix given in the n command.

Line number arguments are translated to the code address designated by the first source line in what
may be a multiline source statement. If a line number does not correspond to a source statement, an
error occurs. The v command is an exception to this rule: it causes the debugger to display the
specified source line, which may be a non-executable line such as a comment or blank line.

 Expressions

An expression is a combination of arguments and operators that evaluates to an 8-, 16-, or 32-bit
value. Expressions can be used as values in any command.

An expression can combine any symbol, number, or address with any of the unary and binary
operators in the tables in Unary Operators and Binary Operators. All unary operators have the highest
precedence; the precedence of binary operators is indicated by their position in the table.

 Unary Operators

Unary address operators assume DS as the default segment for addresses. Expressions are evaluated
in order of operator precedence. If adjacent operators have equal precedence, the expression is
evaluated from left to right. Use parentheses to override this order.

For symbols with the same character sequence as reserved words (for example, register names and
operators), prefix the symbol name with an at sign (@) to force symbol access.

The unary operators are listed below:

Operat
or

Meaning

+ Unary plus
- Unary minus
not one's complement
hi High 16-bits
low Low 16-bits
by Low-order byte from given address
wo Low-order word from given address
dw Double-word from given address
poi Pointer from given address (same as dw)

 Binary Operators

The binary operators are listed in the following table in their order of precedence. Operators with higher
precedence appear first.

Operator Meaning
* Multiplication
/ Integer division
mod (%) Modulus
+ Addition
- Subtraction
and Bitwise Boolean AND
xor Bitwise Boolean exclusive OR
or Bitwise Boolean OR

 Command Reference

This section describes the NTSD commands. The commands are summarized in NTSD and KD
Debugging Quick Reference.

 Enter (Repeat Last Command)

Syntax

ENTER

Repeats the last command typed.

 | (Process Status)

Syntax

|[. | # | * | process-id]

Prints the status of all processes in the system. If a process is specified, then status for the given
process only is printed.

 ~ (Thread Status)

Syntax

~[. | # | * | ddd]

Prints status for threads in the current process. If a thread is specified then status is printed for the
given thread only.

 # (Search for Disassembly Pattern)

Syntax

pattern address-expression

Displays the first line of assembly that contains the specified pattern after address.

For example,

strlen main

causes the debugger to look for the first reference to the function strlen after the entry point to main.

 ? (Display Help)

Syntax

?

Displays a list of all NTSD or KD commands and operators.

 ? (Display Expression)

Syntax

? expression

Displays the value of expression. The display includes a full address, a 16-bit hexadecimal value, a full
32-bit hexadecimal value, a decimal value (enclosed in parentheses), and a string value (enclosed in
double quotation marks). The expression parameter can include any combination of numbers, symbols,
addresses, and operators.

 $< (Redirect Input)

Syntax

$< filename

Redirects input to the specified file until the end of file is reached. When end of file is reached, input is
reset to the console.

 . (Display Local Variables)

Syntax

.

Displays local variables for the current function. This command is not implemented on MIPS or
PowerPC.

 a (Assemble)

Syntax

a [address]

Assembles instruction mnemonics and places the resulting instruction codes into memory at address. If
no address is given, the assembly starts at the address given by the current value of the instruction
pointer. To assemble a new instruction, type the desired mnemonic and press ENTER. To terminate
assembly, press ENTER only.

 ba, ~ba (Breakpoint Address)

Syntax

~[[threadspec] ba [io] option size address [value] [cmd-string]

Sets an address breakpoint at a given address. If threadspec is given, the breakpoints are set for the
specified threads. If your program accesses memory at this address, the debugger stops execution and
displays the current values of all registers and flags.

The option parameter specifies the type of breakpoint:

Option Action
E
(executable)

Breakpoint trap when the CPU fetches an instruction from
the given address.

R (read only) Breakpoint trap when the CPU reads or writes a byte, word,
or double-word at the given address.

W
(read/write)

Breakpoint trap when the CPU writes a byte, word, or
double-word at the given address.

The io parameter is an optional value in the range 0-31.

The address parameter can specify any valid address. Offsets only are supported.

The size parameter is the size in bytes. It can be 1, 2, or 4.

The optional value parameter specifies the number of times the breakpoint is to be ignored before
being taken. It can be any 16-bit value.

The cmd-string parameter specifies an optional list of commands to be executed each time the
breakpoint is taken. Each command in the list can include parameters and is separated from the next
command by a semicolon (;).

The bc, bd, be, and bl commands can all be used on these breakpoints.

This command is not implemented on MIPS or PowerPC.

 bc (Breakpoint Clear)

Syntax

bc [id-list]

Permanently removes one or more breakpoints. If id-list is given, the command removes the
breakpoints named in the list. The id-list can be any combination of integer values from 0 to 31. If the
id-list is a wildcard character (*), the command removes all breakpoints.

 bd (Breakpoint Disable)

Syntax

bd [id-list]

Disables, but does not delete, one or more breakpoints. If id-list is given, the command disables the
breakpoints named in the list. The id-list can be any combination of integer values from 0 to 31. If the
id-list is a wildcard character (*), the command disables all breakpoints.

 be (Breakpoint Enable)

Syntax

be [id-list]

Restores one or more breakpoints that were temporarily disabled by a bd command. If id-list is given,
the command enables the breakpoints named in the list. The id-list can be any combination of integer
values from 0 to 9. If the id-list is a wildcard character (*), the command enables all breakpoints.

 bl (Breakpoint List)

Syntax

bl

Lists current information about all breakpoints. The command displays the breakpoint number, the
enabled status, the address of the breakpoint, the number of passes remaining, and the initial number
of passes (in parentheses). The enabled status can be enabled (e) or disabled (d).

 bp (Breakpoint Set)

Syntax

~ [. | # | ddd | *] [threadspec] bp [id] address [value] [command-string]

Creates a "sticky" breakpoint at the given address. Sticky breakpoints stop execution and display the
current values of all registers and flags. Sticky breakpoints remain in the program until they are
removed by the bc command or temporarily disabled by the bd command.

If threadspec is given, breakpoints are set on the specified threads. For example, the ~*bp command
sets breakpoints on all threads; ~#bp sets a breakpoint on the thread causing the current exception;
and ~123bp sets a breakpoint on thread 123. The ~bp and ~.bp commands both set a breakpoint on
the current thread.

The debugger supports up to 32 breakpoints, which are numbered 0 through 31. The optional id
parameter specifies the number of the breakpoint to be created. If id is not given, the first available
breakpoint number is used.

The address parameter can be any valid instruction address (it must be the first byte of an instruction).

The optional value parameter specifies the number of times the breakpoint is to be ignored before
being taken. It can be any 16-bit value.

The optional command-string parameter specifies a list of commands to be executed each time the
breakpoint is taken. This command-string is executed only if the breakpoint is from a g command (and
not from a t or p command). Debugger commands in the list can include parameters; the commands
are separated by semicolons (;).

 c (Compare)

Syntax

c [range] address

Compares the bytes in the memory locations specified by range with the corresponding bytes in the
memory locations beginning at address. If all corresponding bytes match, the debugger displays its
prompt and waits for the next command. If one or more pairs of corresponding bytes do not match, the
debugger displays each pair of mismatched bytes.

 d (Dump)

Syntax

d [range]

Displays the contents of memory in range. The command displays data in the same format as the most
recent dump command (d, da, db, dd, dg, dh, dl, dq, dt, or dw).

If no range is given and no previous dump command has been used, the debugger displays bytes
starting at the current instruction pointer.

 da (Dump ASCII)

Syntax

da [range]

Displays the ASCII characters in the given range. Each line displays up to 48 characters. The display
continues until the first null byte or until all characters in range have been displayed. Nonprintable
characters, such as carriage returns and line feeds, are displayed as periods (.).

 db (Dump Bytes)

Syntax

db [range]

Displays the hexadecimal and ASCII values of the bytes in the given range. Each display line shows
the address of the first byte in the line, followed by up to 16 hexadecimal byte values. The byte values
are immediately followed by the corresponding ASCII values. The eighth and ninth hexadecimal values
are separated by a hyphen (-). Nonprintable ASCII values are displayed as periods (.).

 dd (Dump Double-Words)

Syntax

dd [range]

Displays the hexadecimal values of the double-words (4-byte values) in the given range. Each display
line shows the address of the first double-word in the line and up to four hexadecimal double-word
values.

 dw (Dump Words)

Syntax

dw [range]

Displays the hexadecimal values of the words (2-byte values) in the given range. Each display line
shows the address of the first word in the line and up to eight hexadecimal word values.

 e (Enter)

Syntax

e address [list]

Enters one or more values into memory. The size of the value entered depends on the most recently
used Enter command (e, ea, eb, ed, el, es, et, or ew). The default is eb (bytes). If no list is given, the
command displays the value at address and prompts for a new value. If list is given, the debugger
replaces the value at address and at each subsequent address until all values in the list have been
used.

 ea (Enter ASCII)

Syntax

ea address [list]

Enters an ASCII string into memory. If list is not given, the debugger displays the byte at address and
prompts for a replacement. If list is given, the debugger replaces the bytes at address, then displays
the next byte and prompts for a replacement.

 eb (Enter Bytes)

Syntax

eb address [list]

Enters one or more byte values into memory. If list is given, the debugger replaces the byte at address
and at each subsequent address until all values in the list have been used. If list is not given, the
debugger displays the byte at address and prompts for a new value. To skip to the next byte, enter a
new value or press SPACE. To move back to the previous byte, type a hyphen (-). To exit from the
command, press ENTER.

 ed (Enter Double-Words)

Syntax

ed address [list]

Enters a double-word value into memory. If list is not given, the debugger displays the double-word at
address and prompts for a replacement. If list is given, the debugger replaces the double-word at
address, then displays the next double-word and prompts for a replacement. Double-words must be
entered as two words separated by a colon (:).

 ew (Enter Words)

Syntax

ew address [list]

Enters a word value into memory. If list is not given, the debugger displays the word at address and
prompts for a replacement. If list is given, the debugger replaces the word at address, then displays the
next word and prompts for a replacement.

 f (Fill)

Syntax

f range list

Fills the addresses in range with the values in list. If range specifies more bytes than the number of
values in the list, the list is repeated until all bytes in the range are filled. If list has more values than the
number of bytes in the range, the debugger ignores the extra values.

 ~f (Freeze Thread)

Syntax

~ [. | # | * | ddd] f

Freezes the current thread. The ~*f command freezes all threads; ~#f freezes the thread causing the
current exception; and ~123f, for example, freezes thread 123.

 g (Go)

Syntax

[threadspec] g [= startaddress] [breakaddress] ...

Passes execution control to the program at startaddress. Execution continues to the end of the
program or until breakaddress is encountered. The program also stops at any breakpoints set using the
bp command.

If startaddress is not given, the debugger passes execution to the address specified by the current
value of the instruction pointer. If breakaddress is given, it must specify an instruction address (that is,
the address must contain the first byte of an instruction). Up to 10 break addresses, in any order, can
be given at one time.

If ~g is given then the go command is executed with the specified thread unfrozen, and all others
frozen. For example, if the command ~123g, ~#g, or ~*g is given, the specified threads are unfrozen
and all others are frozen.

 gh, gn (Go for Exceptions)

Syntax

~[threadspec] gh [= startaddress] [breakaddress] ...

~[threadspec] gn [= startaddress] [breakaddress] ...

Control exception handling. These commands can be used after the first break to an exception. The gh
command treats the exception as handled; gn treats the exception as not handled. See the sx
command for more details.

 ib, iw, id (Input from Port)

Syntax

i [b | w | d] address

Inputs and displays a byte, word, or double word (b, w, or d) from the port at the location given by
address (KD only).

 .inputfile (Read from Command File)

Syntax

.inputfile filename

Reads commands from filename until the end of file is reached or another .inputfile command is
executed. Input files are not recursive and cannot be nested: a .inputfile command in a log file causes
an immediate jump to the new log file with no return.

 j (Conditional Execution)

Syntax

j expression [']command1['] ; [']command2[']

Allows conditional execution of commands. If expression evaluates to a nonzero value, the string
command1 is executed, else the string command2 is executed. The optional single quotes are used to
group multiple commands (separated by semicolons) into a single command string. This command can
be combined with the bp command to create conditional breakpoints:

bp _foo "j (eax>0x1) 'dd app!bar;g;'u;|' "

 ~k (Backtrace Stack)

Syntax

~ [threadspec] k [value]

[processor-num] k [value]

Displays the current stack frame. Each line shows the name of a procedure, its arguments, and the
address of the statement that called it. If value is given, the command displays that many stack frames.

Using the k command at the beginning of a function (before the function prolog has been executed) will
give incorrect results. The debugger uses the frame register to compute the current backtrace, and this
register is not correctly set for a function until its prolog has been executed.

If a thread specifier is given, a backtrace for the given thread is printed.

With the kernel debugger, the process number can be specified to indicate the stack frame for a given
process. Default is 1.

 ln (List Near)

Syntax

ln address

Lists the nearest symbols before and after address.

 .logappend (Append to Log File)

Syntax

.logappend [file]

Appends history information to the current log file. The default filenames are NTSD.LOG and KD.LOG,
for NTSD.EXE and SDK.EXE, respectively.

 .logclose (Close Log File)

Syntax

.logclose

Closes the current log file.

 .logopen (Open Log File)

Syntax

.logopen [file]

Opens the log file and deletes any existing file. The default filenames are NTSD.LOG and KD.LOG for
NTSD.EXE and SDK.EXE, respectively.

Any current log file is closed.

 m (Move)

Syntax

m range address

Moves the block of memory specified by range to the location starting at address. All moves are
guaranteed to be performed without data loss.

 ob, ow, od (Output to Port)

Syntax

o [b | w | d] address value

Outputs a byte, word, or double word (b, w, or d) value to the port at address (KD only).

 p (Program Step)

Syntax

p [r] [= startaddress] [repeat]

Executes an instruction, then displays the current values of all registers and flags.

The r flag toggles display of register values.

If startaddress is given, the debugger starts execution at the given address. Otherwise, the debugger
starts execution at the instruction pointed to by the instruction pointer.

If repeat is given, the debugger executes repeat number of instructions before stopping. The debugger
automatically executes and returns from any call instructions or software interrupts it encounters,
leaving execution control at the next instruction after the call or interrupt.

With s - and s&, the p command steps one machine instruction; with s+, the p command steps one
source line.

 ~p (Program Thread Step)

Syntax

~ [. | # | * | ddd] p [r] [= startaddress] [repeat]

Steps execution with indicated threads thawed; all others are frozen. For example, ~*p steps with all
threads thawed; ~#p steps with only the current exception thread unfrozen; and ~123p, steps with
thread 123 thawed and all others frozen. The ~p and ~.p commands both step execution with the
current thread unfrozen.

 q (Quit)

Syntax

q

Terminates NTSD execution and returns control to the operating system.

 r, rf (Register Display)

Syntax

~ [. | # | ddd | *] r [register] [= [value]]

~ [. | # | ddd | *] rf [floatregister] [= [value]]

Display the contents of CPU registers and allow their contents to be changed to new values.

If register is not specified, the debugger displays all registers, all flags, and the instruction at the
address pointed to by the instruction pointer. If register is specified, the debugger displays the current
value of the register and prompts for a new value. If both register and value are specified, the debugger
changes the register contents to the specified value.

With the kernel debugger, a processor number can be specified to indicate the registers for a given
processor. The default is 0.

With the user-mode debugger, a thread specifier can be specified to display registers for a given
thread.

The rf command displays floating-point registers. Note that floating-point registers may be operated on
in the same way as other CPU registers.

 rt (Register Display Toggle)

Syntax

[threadspec] rt

Toggles the register display (KD only). The default is off.

With the kernel debugger, a processor number can be specified to indicate the registers for a given
processor. The default is 0.

 .reboot (Restart Target Computer)

Syntax

.reboot

Restarts the target computer (KD only, not implemented on MIPS or PowerPC). This command exits
the debugger, so that open symbol files are closed.

 !reload

Syntax

!reload

Loads symbols for all drivers that have been loaded on the target system. This command is useful in
the event of a system crash which may result in the loss of symbols for the target computer being
debugged. To load the correct symbols, invoke KD with an explicit path to the kernel, for example:

i386kd c:\nt\oskrnl.exe

Then you can type

!reload

and the debugger will load the symbols for the drivers that the target system has already loaded.

 s (Search)

Syntax

s range list

Searches the given range of memory locations for the byte values given in list. The debugger displays
the address of each byte found.

 ss (Set Suffix)

Syntax

ss [n | a | w]

Outputs the current state of the suffix value. Suffix values may be:

Suffi
x

Meaning

n No suffix
a ASCII
w Wide characters

For the a and w suffix values, any symbol that is undefined will have the suffix value appended to its
name, and the resulting symbol is searched for in the symbol table.

 sx, sxe, sxd (Set Exceptions)

Syntax

sx [e | d] [eventcode | exceptnum]

Control the behavior of the debugger when exceptions occur (NTSD only).

The sx command causes the debugger to display its break status for all events, including exceptions.

Followed by one of the two-letter event codes listed below or by an exception number, the sx
command causes the debugger to print its break status for the given event. Non-exception events are
identified by a two-letter combination:

Event
code

Meaning

av Access Violation
cc CTRL+C

ct Create Thread
et Exit Thread
ep Exit Process
ld Load DLL

The sx command also can be used to set the debugger's behavior on an event. The sxe command
enables the break status for an exception; the sxd command disables the break status of an exception.

On a break on an event, only the g command (not t or p) is allowed to continue execution.

On a first-time break to an exception, special versions of the go command can be used: gh treats the
exception as handled, and gu treats the exception as unhandled. A normal g command uses the
default disposition.

Second time exceptions always break into the debugger.

 s+, s&, s - (Set Source Display Mode)

Syntax

s+
s&
s -

Set the display mode for commands that display instruction code:

Comman
d

Action

s - Disassemble and display the instruction code in memory
s& Display the source line and the disassembled code
s+ Display the source line corresponding to the instruction to be

displayed

Source lines are identified by module.lineno, where module is the source filename (without a path or
extension) and lineno is the line number in the source file.

 |s (Set Process)

Syntax

| [. | # | process-id] s

Sets the current process number. If process-id is not given, information for the current process is
printed.

 ~s (Set Thread)

Syntax

~ [. | # | ddd] s

Sets the current thread number. If no thread number is given, information for the current thread is
printed.

 t (Trace)

Syntax

t [r] [= startaddress] [repeat]

Executes an instruction, then displays the current values of all registers and flags.

The r flag toggles display of register values.

If startaddress is given, the debugger starts execution at the given address. Otherwise, it starts
execution at the instruction pointed to by the instruction pointer.

If repeat is given, the debugger continues to execute repeat instructions before stopping.

In source-only mode (s+), t operates directly on source lines. The t command can be used to trace
instructions in ROM.

The t command with a repetition count outputs instructions for all repetitions.

 ~t (Trace Thread)

Syntax

~ [. | # | * | ddd] p [t] [= startaddress] [repeat]

Traces with indicated threads thawed; all others are frozen. For example, ~*t traces with all threads
thawed; ~#t traces with only the current exception thread thawed; and ~123t, traces with thread 123
thawed, and all others frozen. The ~t and ~.t commands both trace with the current thread thawed.

 u (Unassemble)

Syntax

u [range]

Displays the instructions and/or statements of the program being debugged. The s+, s - , and s&
commands set the display format.

If range is given, the debugger displays instructions generated from code within the given range.
Otherwise, the debugger displays the instructions generated from the first eight lines of code at the
current address.

The 80286 protected-mode mnemonics cannot be displayed.

 ~u (Unfreeze)

~ [. | # | * | ddd] u

Unfreezes the current thread. The ~*u command unfreezes all threads; ~#u unfreezes the thread
causing the current exception; and ~123u, for example, unfreezes thread 123.

 v (View Source Lines)

Syntax

v range

Displays source lines beginning at the specified range. The symbol file must contain line-number
information.

 x (Examine Symbols)

Syntax

x symbol

Displays all symbols matching symbol. The pattern match is case sensitive. The ? character matches
any character and the * character matches zero or more characters.

The x * form of the command displays module information. The x *!* command displays module and
line number information, when available, for all modules. The first asterisk is a wildcard for module
names and the second is a wildcard for line number expressions.

 NTSD and KD Debugging Quick Reference

The following table lists the command syntax for NTSD and KD debugging commands:

NTSD and KD Debugging Commands
Syntax Meaning
ENTER Repeat last command
| [. | # | * | process-id] Process status
~ [. | # | * | ddd] Thread status
pattern address=expression Search for dissassembly pattern
? Display debugger help
? expression Compute and display expression
$< filename Redirect input from filename
. Display local variables ¾ not

implemented on MIPS or PowerPC
a [address] Assemble instruction mnemonics
~ [threadspec] ba [io] option size
address [value] [cmd-string]

Set address breakpoint (KD only ¾
not implemented on MIPS or
PowerPC)

bc [id-list] Clear breakpoint(s)
bd [id-list] Disable breakpoint(s)
be [id-list] Enable breakpoint(s)
bl List breakpoint(s)
~ [. | # | ddd | *] [threadspec] bp [id]
address [value] [command-string]

Set breakpoints

c [range] address Compare
d [range] Dump memory using previous type
da [range] Dump memory ASCII
db [range] Dump memory bytes
dd [range] Dump memory double-words
dw [range] Dump memory words
e address [list] Enter using previous type
ea address [list] Enter ASCII
eb address [list] Enter bytes
ed address [list] Enter double-words
ew address [list] Enter words
f range list Fill range
~ [. | # | * | ddd] f Freeze thread
g, gh, and gn Go commands
i [b | w | d] address Input from port at address (KD only)
.inputfile filename Read from command file
j expression [']command1['] ;
[']command2[']

Conditional execution

~ [threadspec] k [value] Backtrace stack
ln address Lists first symbols before and after

address
.logappend [file] Append to the current log file
.logclose Close the current log file
.logopen [file] Open a log file
m range address Move
o [b | w | d] address value Output value to port at address (KD

only)
[. | # | * | ddd] p [r] [= startaddress]
[repeat]

Execute an instruction, then display
registers and flags

~ [threadspec] p [= startaddress]
[value]

Trace program instruction or call

q Quit
[threadspec] r [t] [register] [= [value]] Register set (rt toggles full register

display ¾ KD only)
[threadspec] rf [floatregister] [=
[value]]

Register set command for floating-
point values

.reboot Restart target computer (KD only ¾
not implemented on MIPS or
PowerPC)

!reload Load symbols for all the drivers that
have been loaded on the target
system.

s range list Search range for bytes in list
ss [n | a | w] Set suffix to n for none, a for ASCII,

or w for wide. With no argument,
prints current suffix setting.

sx [e | d] [eventcode | exceptnum] Set exceptions (NTSD only)
s+ Set source display only
s& Set mixed assembler and source

display mode
s - Set assembler display only
| [. | # | process-id] s Set process
~ [. | # | ddd] s Set thread
t [r] [= startaddress] [repeat] Trace program instruction
~ [. | # | * | ddd] p [t] [= startaddress]
[repeat]

Trace thread

u [range] Display unassembled instructions
~ [. | # | * | ddd] u Unfreeze thread
v range View source lines
x symbol Examine symbol(s)

 Debugging Programs

The WinDbg debugger lets you analyze the internal workings of your program by using the debugger to
set breakpoints and examine variables. In this section, you use the GENERIC program to learn
debugging strategies and techniques within WinDbg.

WinDbg supports debugging of EXEs and DLLs for Windows NT. This section describes how to debug
an .EXE project. If you want to debug a .DLL project, you must create an appropriate .EXE shell
program to call the DLL. Load the calling program from the command line or with the Open command
from the Program Menu, then run the EXE with the Go command.

 Using Debugging Information Windows

WinDbg displays information in a series of windows that you can view as you debug a program. You
activate these windows with commands from the Window menu.

These are the windows and information they show:

Window Information
Watch Monitor expressions set with the Watch Expression command.
Locals Values of local variables within the function currently being

stepped through.
Registers Current contents of the CPU registers.
Disassem
bly

Assembly-language instructions being debugged.

Comman
d

Allows you to enter debugger commands with the keyboard.
These commands are described in Command Window
Interface.

Floating-
Point
Registers

Current contents of floating-point registers and stack.

Memory Current contents of memory. Display format controlled by
Memory Options dialog box.

Calls Displays the current call stack and lets you jump to any stack
frame displayed.

You can size and minimize these windows during debugging so that you can see various types of
information at one time.

 Using the WinDbg Debugger

WinDbg lets you set breakpoints in the source code; view variables, memory, and registers; and control
program execution.

 Preparing a Debug Version of a Program

Before a program can be debugged, you must include debugging information with the project.

{ewl msdncd, EWGraphic, group10547 0 /a "SDK.BMP"} To build the GENERIC project for
debugging

1. Open a command-line session with the Windows NT Program Manager.
2. Move to the directory containing the GENERIC example program.
3. Build the executable by typing

NMAKE /A

4. Load the executable into WinDbg by typing
WINDBG GENERIC.EXE

Note If there are errors during the build, make sure that the build tools are in your path and that the
INCLUDE and LIB environment variables point to the directories containing the system .H and .LIB files
respectively.

 Setting and Removing Breakpoints

Breakpoints are useful when you have a general idea of where a bug occurs in a program. WinDbg
runs until it reaches a breakpoint, then stops. You can then step to the next line of code or trace
through a function until you find the problem.

{ewl msdncd, EWGraphic, group10547 1 /a "SDK.BMP"} To set a breakpoint in the GENERIC
program

1. Move the insertion point to the first line of the About function in the source code.
2. From the Debug menu, choose Breakpoints. The Breakpoints dialog box appears. (See the figure

below.)
3. From the Break list, select at Location.
4. Choose Add.
5. Choose OK.
{ewc msdncd, EWGraphic, group10547 2 /a "SDK.bmp"}

6. Choose Go from the Run menu. The GENERIC program begins to run.
7. While the program is running, choose About Generic from its Help menu. The program stops and the

breakpoint line is highlighted in the source window.

{ewl msdncd, EWGraphic, group10547 3 /a "SDK.BMP"} To remove a breakpoint
1. From the Debug menu, choose Breakpoints. The Breakpoints dialog box appears. (See the figure

above.)
2. Select the breakpoint to remove from the Breakpoints list.
3. Choose Delete.
4. Choose OK.

The Breakpoints dialog box offers a variety of options for setting breakpoints. You can set breakpoints
based on Windows messages, memory location, and the values in an expression. See the WinDbg
online help for details.

 Controlling Program Execution

Once a breakpoint is reached and the program stops, you can control execution with commands on the
Run menu. The following list shows the commands and their actions.

Command Action
Restart Resets execution to the first line of the program. It

reloads the program into memory and discards the
current values of all variables.

Stop Debugging Terminates the debugging session and returns to a
normal editing session.

Go Executes code from the current statement until a
breakpoint or the end of the program is reached.

Continue to
Cursor

Executes the program as far as the line that currently
has the cursor. This is equivalent to setting a temporary
breakpoint at the cursor location.

Trace Into Steps into a function when it is called and steps through
all of the instructions in the function.

Step Over Single-steps through instructions in the program. If this
command is used when you reach a function call, the
function is executed without stepping through the
function instructions.

Set Thread Selects thread to monitor with the debugger. This
determines which thread receives debugger commands
and is viewed by the display windows. Also freezes and
thaws individual threads.

Set Process Selects process to monitor with the debugger. This
determines which process receives debugger
commands and is viewed by the display windows.

Source/Asm
Mode

Toggles between source and assembly modes.

 Using Watch Expressions

The Watch Expressions command shows a variable's name and value in the Watch window. It updates
the window whenever the variable's value changes. This feature is useful during debugging to check
the value of a variable. You can enter expressions as well as variables.

{ewl msdncd, EWGraphic, group10547 4 /a "SDK.BMP"} To add a watch variable
1. In the GENERIC program, select the message variable in the About function.
2. From the Debug menu, choose Watch Expression. The selected message variable appears in the

Watch Expression text box.
3. Choose Add.
4. Choose OK. The Watch window opens, and it includes the message variable.
5. Resize the Watch window so it is visible with the source window displayed.
6. With the breakpoint in the GENERIC program still in place, choose Go from the Run menu. The

message variable is updated to show its new value.

{ewl msdncd, EWGraphic, group10547 5 /a "SDK.BMP"} To remove the message variable from
the Watch Expression list

1. From the Debug menu, choose Watch Expression.
2. Select Message from the Watch Expression list.
3. Choose Delete.
4. Choose Close.

 Using Quickwatch

Quickwatch gives you a fast way to view variables and expressions. Unlike Watch Expressions, which
are stored in the Watch window, the values of Quickwatch variables and expressions appear only in the
Quickwatch dialog box (see the figure below.) This is useful in exploratory debugging where you are
checking a number of variables that are suspect.

{ewl msdncd, EWGraphic, group10547 6 /a "SDK.BMP"} To use Quickwatch
1. With the breakpoint in the About procedure, run the GENERIC program, open the Help menu of the

Generic Sample Application, and select the About Generic command.
2. Move the insertion point in the source file to the message variable in the About function.
3. From the Debug menu, choose Quickwatch. You can also use the Quickwatch button on the Toolbar.
4. Choose Cancel to close the Quickwatch dialog box.

{ewc msdncd, EWGraphic, group10547 7 /a "SDK.bmp"}

The Quickwatch dialog box also lists commands that you can use to evaluate expressions, add
variables and expressions to the Watch Expression list, contract and expand structures, and modify
values.

 Using the Command Window

With the Command window, you can use the keyboard instead of the mouse to operate the debugger
using CodeView-style commands.

See the WinDbg online help or Command Window Interface for a detailed list of the commands
available in the Command window.

{ewl msdncd, EWGraphic, group10547 8 /a "SDK.BMP"} To debug a program from the
Command Window

1. Open the Command window by choosing Command from the Window menu.
2. Reset the program counter by choosing Restart from the Run Menu.
3. Type bl in the command window to list breakpoints. You should see the breakpoint in the About

procedure.
4. Type g to start program execution. After the program begins, open the Help menu of the Generic

Sample Application, and select the About Generic command.
5. Type dc to display the assembly language instructions following the breakpoint.

 Postmortem Debugging with WinDbg

When a program crashes (for example, after a general-protection fault), Windows NT automatically
invokes a debugger that is specified in the registry. To make WinDbg be that debugger, use
REGEDT32.EXE to edit the following registry key:

HKEY_LOCAL_MACHINE
SOFTWARE

Microsoft
Windows NT

CurrentVersion
AeDebug

Add or edit the Debugger value entry (REG_SZ). Give it the following string value:

windbg -p %ld -e %ld

You can also use the Attach command from the Run menu to attach the debugger to a process that is
already running.

 Remote Debugging

Remote debugging lets you debug a program from another computer. You run WinDbg on one
computer (the host) and install the program you are debugging on another (the target). You run a
remote monitor program (WinDbgRm) on the target computer to control the program you are
debugging. WinDbgRm communicates with WinDbg across a serial cable or across the network.

Remote debugging isolates WinDbg from the program being debugged so that errors in the program do
not affect the debugger, and the debugger does not affect the target system. If the program crashes the
remote system, your development system continues to run.

The remote monitor demands fewer system resources, and after starting and loading the program to be
debugged, it does not use the file system. Therefore, the monitor has no effect on the resources that
can change your program's behavior.

You can debug large programs or programs that destabilize the operating system. You can also debug
programs on smaller systems that cannot support the full debugger. Some bugs that you cannot
reproduce while running under the full debugger can appear under the remote monitor. Remote
debugging also allows the debugging of Win32 programs on Win32s™, since WinDbg will not run on
Win32s.

The process of debugging a program on a remote computer is almost the same as for local debugging.
The only difference is in how you start the session. The following sections describe the hardware and
files required for remote debugging and how to configure the debugger components on the host and
target computers.

 Requirements

Remote debugging requires two computers, the host running Microsoft Windows NT and the target
running under Windows NT or Win32s. Serial debugging requires a serial port connecting the host and
target computers (this is the only connection allowed when debugging Win32s applications).
Debugging through a named pipe requires that both computers be connected to a common network
that is supported by Windows NT. Network debugging is faster and does not require a special cable
between the two systems.

To remotely debug using the serial ports, connect the host and target computers with a null-modem
cable plugged into the serial ports on the two computers. A null modem is a serial cable that connects
the transmitting line at each end to the receiving line at the opposite end. You cannot use an extension
cable with "straight-through" connections.

Most computer stores stock or can assemble a null-modem cable for you with the correct wiring and
the appropriate connectors for your host and target computers.

 Starting a Remote Debugging Session

After the WinDbg components are in their locations and properly configured, you can begin a remote
debugging session.

{ewl msdncd, EWGraphic, group10547 9 /a "SDK.BMP"} To start a remote debugging session
1. If you are debugging across a serial cable, connect the cable to both the target and host.
2. On the target computer:

· Install your program and its DLLs. You do not need to have the source files on the target.
· Start WinDbgRm.
· WinDbgRm starts minimized as an icon. Its default is to communicate with WinDbg across the

network, using the named pipe "windbg". If you want to change how the host and target
communicate, double-click on the WinDbgRm icon and select the Transport DLL command from
the Options menu. Choose the appropriate transport layer in the Known Transport Layers list box.

3. On the host computer:
· Start WinDbg from the Windows NT command prompt:
start windbg yourprog.exe

· Use the Debugger DLLs command from the Options menu to change the transport layer to match
the one used by WinDbgRm on the target. If you are using named pipes, use the Change button
to modify the transport layer parameters so that the first parameter is the name of the target
computer.

· Select the Execution Model and Expression Evaluator to reflect the target computer.
· Use the User DLLs command from the Options menu to specify the symbol search path to your

program's symbols; use the Debug command from the Options menu to specify the source
search path to your source files.

· Select Go from the Run menu.

If you can start your program on the target before attaching the debugger to it, then you can change
step 3 as follows:

On the host computer:
· Start WinDbg.
· Use the Debugger DLLs command from the Options menu to change the transport layer to match

the one used by WinDbgRm on the target. If you are using named pipes, use the Change button
to modify the transport layer parameters so that the first parameter is the name of the target
computer.

· Select the Execution Model and Expression Evaluator to reflect the target computer.
· Use the User DLLs command from the Options menu to specify the symbol search path to your

program's symbols; use the Debug command from the Options menu to specify the source
search path to your source files.

· Select the Attach command from the Run menu.
· Select your program from the task list that the Attach command displays.

To connect to a computer with an IPC password, use the Windows NT NET USE command to manually
connect to the remote IPC$ share.

Use the .disconnect command to disconnect the host from the target. Use the .attach command to
reestablish the connection. Another computer can run WinDbg and use .attach to connect to the target
and debug your program. If you are still connected and another computer tries to connect to the target,
you will receive a popup notifying you of that fact. You have 20 seconds to cancel the pop-up, then you
will be disconnected and the other computer will be connected as the host of the remote debugging

session.

If problems occur, check connections and make sure that WinDbg and WinDbgRm are using the same
communications methods. If your system has trouble maintaining the communications link between the
host and target computers, when communicating through a serial port, reduce the transmission baud
rate.

 Creating Dialog Boxes

The Dialog Editor automates the process of creating dialog boxes. You can see your dialogs as you
design them without writing and compiling your own resource scripts.

The Dialog Editor works much like a paint program. You design dialogs interactively, placing and
moving graphical elements right on the screen. When you complete your design, the Dialog Editor
automatically creates the files you need to incorporate the dialogs in your program.

This section explains how to create dialog boxes and include them in an application. You can use the
Dialog Editor's online Help to get more information on specific features.

Note A dialog box that has not been compiled and exists only in resource script form is referred to as
a "dialog."

 Using the Dialog Editor

The following topics describe how to design, test, and include dialogs in your application.

Note The Dialog Editor requires a mouse or equivalent pointing device.

 Creating a New Dialog

{ewl msdncd, EWGraphic, group10548 0 /a "SDK.BMP"} To create your application's dialog
1. Start the Dialog Editor from its group icon in the Program Manager.
2. From the File menu, choose New.

The Properties Bar, the rectangular area immediately below the Dialog Editor's Menu Bar, displays the
screen coordinates of the currently selected dialog or control. When a dialog is selected, as it is after
you first choose New from the File menu, there are also three edit fields on the Properties Bar:

· Dlg. Sym., for your symbolic dialog name
· Caption, for your dialog title
· A dialog ID field

The small solid rectangles around the dialog border are called resize handles. They show that the
dialog is currently selected.

You can use the mouse to resize the dialog with the resize handles, and you can move the dialog with
the arrow keys or the mouse. To move the dialog with the mouse, click and drag its title bar or border.
The coordinates in the fields on the left side of the Properties Bar change as you move the dialog.

At times it may be useful to design the dialog in the graphical context in which it will be used. For
example, you may wish to see how the dialog box looks against the backdrop of the application (the
way users of your application will see it).

{ewl msdncd, EWGraphic, group10548 1 /a "SDK.BMP"} To design dialogs using your
application as a backdrop

1. Start your application.
2. Start the Dialog Editor.
3. Move the dialog you are designing outside the Dialog Editor window.
4. Reduce the Dialog Editor window in size and move it to a corner of the display.

You can design the dialog box on the screen where it will eventually appear.

 Adding a Control

The Toolbox on the right side of the screen contains icons of the mouse pointer and all supplied
controls. The mouse pointer, when pressed, indicates that no control has been selected. You can place
any of the other controls in a dialog, and you can also create and include your own custom controls.

{ewl msdncd, EWGraphic, group10548 2 /a "SDK.BMP"} To add a control to the dialog
1. In the Toolbox, click one of the control icons.
2. Click in the dialog.

You can use the mouse to resize a control with its resize handle. You can move a control with the
cursor keys when it is selected or by dragging it with the mouse.

When a control is selected or created, the Properties Bar displays information about it. The Symbol edit
field replaces the Dlg. Sym. edit field, and the Text edit field replaces the Caption edit field. The
numeric control ID edit field appears for controls just as for dialogs.

You can associate a symbolic name with the control's ID by typing the name in the Symbol edit field.
The Dialog Editor assigns each new control in a dialog an ID number. It assigns these numbers
sequentially, beginning with the number following the dialog ID. Even if you assigned it a zero-
terminated string and deleted the integer ID.

 Symbolic Names and ID Numbers

You select the new dialog by clicking anywhere outside a control in the dialog window. The Properties
Bar then displays the dialog's default title, "Dialog Title," and the default ID, which is 100 in this case.

Each dialog box in an application needs a unique integer ID. You use the ID in your application source
code to tell Windows which dialog box to call, and Windows uses the ID to search the resource file for
the dialog box.

You can associate a symbolic name with the ID by typing the name in the Dlg. Sym. edit field. It's
easier to refer to a dialog by a name than by a number. Alternatively you can name a dialog with a
zero-terminated string, although this is not as efficient.

{ewl msdncd, EWGraphic, group10548 3 /a "SDK.BMP"} To enter a zero-terminated string as a
dialog designator

1. Type the string in the Dlg. Sym. edit field.
2. Immediately tab to the field on the right (the Dialog ID edit field).
3. Delete the integer ID.
4. Press ENTER.

You can give your dialog a title by typing text in the Caption edit field. You can use the TAB key to move
the insertion point. From the Dlg. Sym. edit field, the insertion point first tabs to the Dlg. Sym. ID edit
field and then to the Caption edit field. You can also reposition the insertion point by clicking the mouse
pointer in the edit field you want to use.

When you select or create a control, the Symbol edit field replaces the Dlg. Sym. edit field. You can
associate a symbolic name with the control's ID by typing the name in the Symbol edit field, or by
choosing it from the list of available symbols (if you have any).

 The IDOK, IDCANCEL, and UNUSED Symbols

Because most dialog boxes have OK and Cancel buttons, Windows provides defined symbols for these
elements.

You use the defined symbol IDOK for an OK button in your dialog. When the user presses ENTER,
Windows sends your dialog procedure a message as if the OK button had been pressed. IDOK has an
ID value of 1.

You use IDCANCEL for a Cancel button in your dialog. When the user presses ESC, it's as if the Cancel
button had been pressed. IDCANCEL has an ID value of 2.

Some controls don't need a unique identifier. For example, you won't usually need to access a group
box frame, which simply frames other controls. You can assign all such controls the symbol "(Unused),"
which has an ID value of -1.

You can use the Symbols command on the Edit menu to display and edit the current symbols. The
Symbols dialog box displays a list box of symbols and corresponding IDs. You can add, change, and
delete symbols in the Symbols dialog box.

When you remove a control from a dialog, the symbol and ID for that control remain defined but not in
use. You can display unused symbols by checking the Show Unused Symbols Only check box in the
Symbols dialog box. You can then delete these unused symbols if you like.

The Text field on the Properties bar contains the button's default text, "Push."

{ewl msdncd, EWGraphic, group10548 4 /a "SDK.BMP"} To assign other text to the button
1. Type the text for the push button in the Text edit field.
2. Press ENTER.

For example, you might assign the symbol IDOK to your first push button and give it the text OK, and
then press ENTER.

You can use the Edit menu Size to Text command to make the width of a selected control better fit its
text. However, you cannot size a push button smaller than a default-sized push button. A push button
always automatically maintains a margin around its text. The following controls can be sized to their
text:

· Check box
· Push button
· Radio button
· Text
· Custom controls written to support this feature

{ewl msdncd, EWGraphic, group10548 5 /a "SDK.BMP"} To size a control to its text
1. Select the control.
2. From the Edit menu choose the Size to Text command, or press F7.

You can size a single control to fit its text, or you can select a group of controls and size them all at
once. If a group of controls is selected, only those controls that support sizing to fit their text will be
changed.

 Adding More Controls

Dialog boxes often include more than one control ¾ push buttons, list boxes, and check boxes are
common. This section shows you how to add controls and how to edit and organize these controls.

 Duplicating a Control

You will probably want to have more than one push button in your dialog.

{ewl msdncd, EWGraphic, group10548 6 /a "SDK.BMP"} To add another push button
1. Hold down the CTRL key.
2. Drag the existing push button to a new location and drop it.

You might give this second button the symbol IDCANCEL and the label Cancel.

You can repeat this process to create more push buttons. Or you can use the CTRL key when you
select controls from the Toolbox. If you hold down the CTRL key when you click a Toolbox button, the
Toolbox button stays down. You can then click repeatedly in the dialog and place a number of identical
controls. When you have all the controls you need of this kind, click the top control in the Toolbox, or
press ESC when the Toolbox has the focus.

 Adding a List Box

Now add a list box to the dialog, clicking its icon in the Toolbox (fourth row, second column) and
dropping it into the dialog box. A list box is a box of text strings with a scrollbar on its right side.

The list box appears only as an outline at this stage. You'll see more of the list box in a moment, when
you test the dialog.

 Adding Custom Controls

When a standard control ¾ such as a list box or edit field ¾ doesn't meet your needs, you can create a
custom control that performs a specific task. For example, the buttons on a toolbar can be custom
controls.

The code that defines a custom control resides in either a DLL or, occasionally, in the .EXE file that
calls the dialog box. For information about creating custom controls, see the Microsoft Windows 3
Developer's Workshop, by Richard Wilton.

The Dialog Editor supports custom-control DLLs and temporary custom controls, as described in the
following table:

Custom
Control

Description

DLL A dynamic-link library (DLL) that defines one or more
custom control classes.

Temporary A place holder for a custom control defined elsewhere.
The Dialog Editor creates a gray rectangle to indicate the
control's location and size. You can set the temporary
control's class name, size, and other attributes to match
the ones used by the final custom control.

Once opened by the Dialog Editor, custom-control DLLs remain available between Dialog Editor
sessions. Temporary custom controls are not saved between sessions.

When the Dialog Editor opens a .DLG file that contains a custom control, it searches its list of custom-
control DLLs to find a match. If a match is found (the controls have the same class name), the Dialog
Editor uses the information in the DLL to display the custom control. If a match is not found, the Dialog
Editor creates a temporary custom control with the given class name.

The Dialog Editor replaces any temporary custom control during an editing session when you open a
DLL custom control with the same name.

{ewl msdncd, EWGraphic, group10548 7 /a "SDK.BMP"} To add a new temporary custom
control

1. From the File menu, choose New Custom. The New Temporary Custom Control dialog box appears.
2. Type a name for the custom control in the Class Name edit field.
3. Optionally, change the other Control Defaults.
4. Choose OK.

The Dialog Editor adds the temporary control to the list of available custom controls. To use the
temporary control, click the custom control tool. You can use the following method to add either a
temporary custom control or a custom control DLL to a dialog box:

{ewl msdncd, EWGraphic, group10548 8 /a "SDK.BMP"} To add a custom control
1. Click the Custom Control (bottom right) tool on the Toolbox.

If you have more than one custom control installed (either temporary or from DLLs), the Select
Custom Control dialog box appears. If you only have one custom control, skip to Step 6.

2. From the Available Controls list box, select the custom control you want to add to the dialog box.
3. Choose OK.
4. Move the cursor into the dialog. A rectangle with the "move" icon inside replaces the cursor.
5. Press and hold the mouse button to see an outline of the control. The coordinates for the location of

the control are displayed in the Properties Bar.
You cannot move the outlined control outside of the dialog once you have pressed the mouse

button.
6. Drop the control by releasing the mouse button. The custom control is centered over the point where

you released the mouse button.

 Editing Groups of Controls

You'll often find it useful to edit an entire group of controls. You can drag, cut, copy, paste, align, and
size a group of controls.

First, enlarge the OK button by selecting it and then dragging one of its corner handles with the mouse.
Now select all three buttons by dragging open a rectangle with the mouse. To drag a rectangle open,
place the mouse pointer beside a control, then press and hold the left mouse button, and drag the
mouse. In this way you can select all the controls that are within or partially within the rectangle
boundaries.

Another way to select several controls at a time is to hold down the SHIFT key and click on each
control. This is useful for making a group out of a number of scattered controls. You can also toggle the
selection state of each control without affecting other controls by clicking on that control while holding
down the SHIFT key.

 The Anchor Control

In a selected group of controls, one of the controls has solid resize handles, while the others have
outlined handles. The button with the solid handles is called the anchor control. The anchor serves as a
guide for various group alignment and sizing operations. You can change the current anchor in a
selected group by clicking any control that is part of the group. Now make the third (unnamed) push
button the anchor by clicking it.

 Sizing and Aligning a Group

{ewl msdncd, EWGraphic, group10548 9 /a "SDK.BMP"} To make all the selected buttons the
same size as the anchor button

1. From the Arrange menu, choose the Same Size command.
2. Click the top option to make the buttons the same width.
3. Choose the Same Size command again.
4. Click the bottom option to make the buttons the same height.

All the buttons become the same size as the anchor button.

The two Push Button command options on the Arrange menu control the alignment of push buttons.
One centers buttons across the bottom of the dialog box, and the other arranges them down the right
side. Use the proper command option to arrange the buttons down the right side.

 Ordering Controls

You've now built a dialog with three push buttons and a list box. At this stage in the design, you'll often
refine the order of controls, that is, the order in which the user will move through them with the TAB key.

When the user of your dialog box presses the TAB key, the focus moves through the controls in order,
stopping at each one for which a tab stop is set. Some controls, such as a frame, have no need for a
focus. Controls that can use the focus have a tab stop set by default. Each control in your dialog
already has a tab stop.

 Changing Control Tabbing Order

To see the current tabbing order of your controls, choose the Order/Group command from the Arrange
menu. This brings up the Order/Group dialog box. All controls in your new dialog are listed in the list
box in their current tabbing order, which is the order in which you created them.

If this dialog box were opened in an application, by default the focus would begin with the first control
you created, the OK button. The user would probably prefer that the focus begin at the list box.

{ewl msdncd, EWGraphic, group10548 10 /a "SDK.BMP"} To change the tabbing order by moving
the list box control to the start of the list

1. Select the list box control from the list in the Order/Group dialog box by clicking its title once with the
mouse.

2. Move the mouse pointer to the start of the list. The mouse pointer changes shape at a valid insertion
point.

3. Click to reposition the list box.

 Making Groups

You can also use the Order/Group command to group controls in your dialog box. This allows the user
to cycle the focus through the members of a group using the arrow keys after moving to a group
member with the TAB key.

To be grouped together, controls must be contiguous in the Order/Group list box. Hence you should
define groups only after you have the tab order set as you want it.

{ewl msdncd, EWGraphic, group10548 11 /a "SDK.BMP"} To make and order a group of controls
1. From the Arrange menu, choose Order/Group. This brings up the Order/Group dialog box.
2. In the control list box, click the first control you want in a particular group.
3. Drag the mouse up or down to select the other controls in the group.
4. Choose Make Group.

Groups are shown by lines separating the control names in the list box.

If you have more than one logical group of radio buttons within a dialog, you should group them here
so that Windows will handle their logic properly.

 Changing Control Size and Placement

You can also use other commands on the Arrange menu to size and place groups of controls. Using
commands on the Arrange menu you can:

· Align controls along an edge (Align command)
· Distribute controls evenly with respect to an anchor control (Even Spacing command)
· Set controls to the same size (Same Size command)
· Distribute push buttons evenly along the bottom or side of the dialog (Push Buttons command)
· Change grid and spacing values for editing controls (Settings command)

You might want to experiment with these commands in the dialog you have just created. Click the
Arranging icon in Help for more information about these commands.

 Testing Your Dialog

To see how the controls in your dialog work, choose the Test Mode command from the Options menu.
Test Mode creates a functioning dialog box for testing. The list box becomes operational with a
scrollbar and lines of sample text.

The Dialog Editor inserts lines of sample text. You cannot insert lines of your own text directly into the
Dialog Editor. You can scroll the sample text, select it, and see how many lines and characters the box
can display, and you can test the changes you make using the Order/Group command.

You can also use Test Mode to investigate the various style options you can apply to controls and to
the dialog box itself (see Dialog and Control Styles).

To quit Test mode, choose the Test Mode command from the Options menu, or press ALT+F4.

 Dialog and Control Styles

Behind each control and the dialog itself are some associated attributes called styles. Styles govern
everything from the way a dialog or control appears to the way it behaves. So far, you've just used the
default styles.

Double-click the list box to open its Styles dialog box. You can also open the Styles dialog box for the
currently selected dialog box or control by choosing the Styles command from the Edit menu.

As you can see from the Styles dialog, you have many choices for dialog styles. Test Mode gives you a
hands-on way of exploring style. For example, turn on the list box's Extended Selection style, and then
close its Styles dialog box. Return to Test Mode. A default list box lets you select only one item from its
list, but now you can select a range of items from the list box by dragging down the list with the mouse.

 Designing Multiple Dialogs for an Application

You've now designed one dialog, but your application may need many. You can work on more than one
dialog at a time in the Dialog Editor.

Your first dialog was automatically started for you when you selected New from the File menu. To begin
work on a second dialog, select New Dialog from the Edit menu. Your first dialog still exists within the
editor. Use the Select Dialog command from the Edit menu to switch between the dialogs.

You can create as many dialogs as you need for your application. Each dialog is automatically
numbered in sequence (100, 200, and so on). You can use the Restore Dialog command to restore a
dialog to the state it was in before you selected it for editing. This allows you to abandon your most
recent changes.

You can continue creating more dialogs for your application using the New Dialog command. When you
are finished creating the new dialog, you can save it with your other dialogs by choosing the same
base file name. This is how you keep all the dialogs together for your application. The Dialog Editor
uses the same group of files to keep track of all dialogs that you save together. See the following
section for a description of the files the Dialog Editor writes when it saves a group of dialogs.

You can save each dialog you create separately. But if you save them together, the Dialog Editor can
avoid conflicts when it assigns ID values, and it can also alert you to conflicts when you choose
symbolic names and IDs. Also, for each dialog you save separately, you must place three include
statements in your project source code. For the typical application, this might amount to about 100
include statements. When you save an application's dialogs together, however, you need only three
include statements for your entire project.

Note If you choose New from the File menu and then save with the same base file name as you did
before, your previously-saved dialogs are overwritten.

 Including Dialogs in an Application

When you save a dialog or dialogs, the editor normally creates three files:

· The .RES (resource) file, a resource file dedicated to the Dialog Editor. This .RES file is read only by
the Dialog Editor and is not the same as the .RES file that is produced by the Resource Compiler
and linked into your application.

· The .DLG (dialog) script, a text file containing DIALOG and CONTROL statements that the
Resource Compiler interprets.

· The .H (include) file, a text file containing #define statements associated with the symbolic names of
controls in dialogs. (If you haven't defined any symbolic names in your dialogs, the editor won't
create an .H file.)

The .DLG and .H files are used to integrate the current dialogs into your application.

By default, the editor uses the same base name for all three files. Thus, if you use the editor's
suggested default name of DIALOGS, the editor writes DIALOGS.RES, DIALOGS.DLG, and
DIALOGS.H.

{ewl msdncd, EWGraphic, group10548 12 /a "SDK.BMP"} To include dialogs in your application
1. Use #include statements to include DIALOGS.H and DIALOGS.DLG in your application's resource

script (.RC) file. Place the DIALOGS.H statement before the DIALOGS.DLG statement.
#include "dialogs.h"
#include "dialogs.dlg"

2. Include DIALOGS.H in your source code.
3. Write a dialog procedure for each dialog to initialize controls and process their messages. Place

each dialog procedure name in the module definition file.
4. Compile your source code.
5. Use the Resource Compiler to compile the .RC file into the application's .RES file.
6. Link the .RES file into your application's .EXE file.

 The DIALOGS.RES File

The DIALOGS.RES and DIALOGS.H files are created by the Dialog Editor. Together they are an
archive of all the dialog information. The .RES file contains all the dialog information except the
symbolic names you've defined, which are in the .H file.

Don't confuse the .RES file written by the Dialog Editor with the .RES file produced by the Resource
Compiler that is linked into your application. The .RES file that the Dialog Editor writes is just an
archive for the Dialog Editor's use.

Note You must avoid name conflicts between the two .RES files. Failing to avoid name conflicts will
cause unpredictable results.

 The DIALOGS.DLG File

When you save a dialog, one of the files the Dialog Editor writes is the .DLG file. This text file contains
the information in the .RES file expressed as resource script statements. Each dialog is described in a
sequence of statements called a "template."

When you create a dialog in the editor, it has a unique ID number, which becomes a handle to the
template. When you want to create an instance of the dialog in your application, you pass this handle
to Windows in a call to the DialogBox function. Windows does the rest. Here's a typical .DLG script file
containing two simple dialogs:

100 DIALOG 6, 16, 148, 84
STYLE DS_MODALFRAME | WS_VISIBLE | WS_CAPTION | NOT WS_BORDER | WS_POPUP
CAPTION "Invert"
BEGIN
 PUSHBUTTON "Push This", 101, 54, 30, 40, 14,
END

200 DIALOG 6, 16, 148, 84
STYLE DS_MODALFRAME | WS_VISIBLE | WS_CAPTION | NOT WS_BORDER | WS_POPUP
CAPTION "Reverse"
BEGIN
 PUSHBUTTON "Push That", 101, 43, 30, 40, 14,
END

The handles to the two dialogs are 100 and 200. You can also define a corresponding symbolic name
for a dialog in the editor. It's easier to use a name than a number in your code.

The Dialog Editor cannot read the DIALOGS.DLG file. The data is saved and read from the .RES file.

 The DIALOGS.H File

If you define symbolic names in your dialogs, the Dialog Editor writes them to a .H file.

When you create a dialog control, it gets an ID number. You can also assign a symbolic name to the
control, and can refer to the control by name or number in your code. The .H file associates symbolic
names with corresponding ID numbers.

A typical .H file looks like this:

#define MYOPTION1 101
#define MYOPTION2 102

You can then refer to controls in this way:

BOOL FAR PASCAL FirstDlgProc(hDlg, wMessage, wParam, lParam)
 .
 .
 .
case WM_COMMAND:

switch (LOWORD(wParam))
{
 case IDOK :
 /* Respond to Ok button here */

 break;
 case IDCANCEL :

 /* Respond to Cancel button here */
 break;

 case MYOPTION1:
 /* Respond to MyOption1 button here */

 break;
 case MYOPTION2:
 /* Respond to MyOption2 button here */

 break;

 .
 .
 .

Remember that IDOK and IDCANCEL are defined by Windows and should be used for the OK and
Cancel buttons in your dialog box.

 Modifying a Dialog

Because they are text files, you may be tempted to modify the .DLG file and the .H file directly.
However, these two files are interdependent, and if you make a change to one, you risk creating a
conflict with the other. Also, changes you make in the .DLG file won't become a permanent part of a
dialog because the .DLG file is only written by the Dialog Editor, not read. The best way to modify a
dialog is to load it into the editor and make the changes there.

 Using the Editor for Existing Projects

If you begin using the Dialog Editor in an existing project, you may initially find the structure of the
project awkward. The project's dialogs may have been written by hand, and the resulting resource
script statements may be in an .RC file along with all the other resources for the application. The
project's dialog symbols may be in an .H file along with numerous other of the application's symbols. If
you don't restructure the project, you'll have to merge files by hand each time you create a dialog.

The easiest way to proceed is to read the application's .RES file with the Dialog Editor by loading it into
the editor and at the same time retrieve the dialog symbols by opening the appropriate .H file. You can
then save all the dialog information in the Dialog Editor's own dedicated .RES, .DLG, and .H files.

If you save the dialogs under the name DIALOGS, you can then use DIALOGS.DLG as a guide for
removing the appropriate resource script statements from the .RC file and substituting a
DIALOGS.DLG include statement. In the same way, remove the dialog symbols from the original .H file
and include DIALOGS.H in your application and .RC file.

You could continue to let the dialog symbols reside in the original .H file by using the Set Include
command on the File menu to associate that file with the dialogs. However, it will be easier for you if
you take the time to put the dialog symbols in their own file. Then if you later want to archive the
dialogs, examine the dialog files, or move the dialogs to another environment, all the information will be
readily available to you.

 Using the Editor

Use the WinDbg integrated text editor to edit source files. Writing text with the WinDbg editor is similar
to using most other editors. For example, to start a new line, press ENTER; to leave a blank line
between lines, press ENTER twice; If you make a mistake while typing, press BACKSPACE to delete the
error.

This section provides information on how to edit source files. Most of the procedures, such as file and
text handling and moving around in a file, follow basic Windows editing conventions.

 Managing Source Files

This section explains how to create, save, open, and close a file. To familiarize yourself with the steps,
you can use the sample program below. You can also use this program to try the other editing features
described in this section.

/* first sample program */

#include <stdio.h>

main()
{
 printf("Windows NT console I/O is easy!\n");
}

 Opening and Closing Source Files

{ewl msdncd, EWGraphic, group10549 0 /a "SDK.BMP"} To create a new source file
1. Choose New from the File menu.
2. Type your program into the new window.

New files are labeled "UNTITLED n" until they are saved.

Note Before you can save or close a window it must be active. To make a window active, either click
on the window or select the window name or number from the Window menu.

{ewl msdncd, EWGraphic, group10549 1 /a "SDK.BMP"} To open an existing source file
1. From the File menu, choose Open.
2. If the file is on a network share, click the Network button to select the share.
3. Choose a drive from the Drives list box. The default drive is the current drive.
4. From the Directories list box, double-click a directory where the file is stored (or down a directory

path to the directory where the file is stored.)
5. Choose a file type in the List Files of Type box. Only files with the chosen extension(s) are displayed

in the File Name box.
6. Double-click a filename, or click a filename and choose OK.

The names of the four most recently opened files are displayed at the end of the File menu. To open
one of these files, choose its name from the menu.

Because the editor works with any ASCII file, you can open and edit text files created with other
editors.

When a source file is opened, its name is added to the Window menu. If you want to see more than
one view of your source file, use the New Window command on the Window menu to open another
view. A file can be opened only once; if you try to open a file that is already open, the file's window will
activate, but the file will not be reloaded. You can, however, open multiple windows showing the same
source file, so that you can, for instance, compare two different sections of the file. If more than one
copy of the file is displayed, the window is titled filename:x, where x is a unique window number.

{ewl msdncd, EWGraphic, group10549 2 /a "SDK.BMP"} To save a source file
1. Activate the source window.
2. From the File menu, choose Save.
3. If your file is unnamed, WinDbg displays the Save As dialog box. Enter the file's name. If you are

using the sample program, name the file FIRST.C.
4. Select the drive and the directory to save the file to by choosing items from the Drives and

Directories list boxes.
5. Choose OK.

If the file has already been named, the Save command saves any changes without displaying the Save
As dialog box.

The title bar will display an asterisk (*) when the source file has been modified.

{ewl msdncd, EWGraphic, group10549 3 /a "SDK.BMP"} To save a source file under a different
name

1. Activate the source window.
2. From the File menu, choose Save As.
3. Type a new name for the file.

4. Choose OK.

This is useful for maintaining revised copies of a source file while keeping the original unchanged. You
can also use the Save As command to name and save a newly created file.

{ewl msdncd, EWGraphic, group10549 4 /a "SDK.BMP"} To save all open source files that are
new or have been changed

· Choose Save All from the File menu.

{ewl msdncd, EWGraphic, group10549 5 /a "SDK.BMP"} To close a source file
1. Activate the source window.
2. From the File menu, choose Close.

If you are using the sample program, use one of these techniques to close the FIRST.C source window.

If you create a new source file or modify an existing file and try to close it before saving, a message
appears asking if you want to save the changes before closing.

{ewl msdncd, EWGraphic, group10549 6 /a "SDK.BMP"} To activate a source window
· Click the title bar.

 - Or -

· Select it from the Window menu.
 - Or -

· Use the shortcut key listed on the title bar (ALT + # for windows 0 - 9,
ALT + CTRL + # for windows 10 - 19).

 - Or -

· Use CTRL + F6 to cycle through all active windows.

{ewl msdncd, EWGraphic, group10549 7 /a "SDK.BMP"} To close a source window
1. Activate the source window.
2. Double-click the document Control-menu box.

 - or -
Press CTRL + F4.

 Merging Source Files

The Merge command inserts another file at the insertion point. You can also use the command to
replace selected text within the active source window with the contents of another file.

{ewl msdncd, EWGraphic, group10549 8 /a "SDK.BMP"} To merge source files
1. Move the insertion point where you want to merge text, or select the text you want to replace.
2. From the File menu, choose Merge. The Merge dialog box appears.
3. Select the drive and directory where the source file to be inserted is stored. The default is the current

drive and directory.
4. Select the type of file to display.
5. Type a filename or select the name from the list of files.
6. Choose OK to merge the specified file at the insertion point.

As an alternative you can open a file with the editor and copy and paste text to another file.

 Moving Around Source Files

This section discusses some special techniques for moving around source files in WinDbg.

{ewl msdncd, EWGraphic, group10549 9 /a "SDK.BMP"} To move to a specific line within the
source window

1. From the View menu, choose Goto Line. The Line dialog box appears.
2. Enter the line number you wish to move to.
3. Choose OK.

{ewl msdncd, EWGraphic, group10549 10 /a "SDK.BMP"} To set a tag in the source window
1. Move the insertion point to the line where you want to set a tag.
2. From the View menu, choose Toggle Tag. The tagged line is highlighted.

You can tag frequently accessed lines in your source file and use menu commands to move quickly to
them. Tags can be cleared when you no longer need them.

{ewl msdncd, EWGraphic, group10549 11 /a "SDK.BMP"} To clear a tag
1. Move the insertion point to the tagged line.
2. From the View menu, choose Toggle Tag. The tag and the highlight are removed.

To remove all tags in a window, choose Clear All Tags from the View menu.

{ewl msdncd, EWGraphic, group10549 12 /a "SDK.BMP"} To move to the next tag after the
insertion point

· From the View menu, choose Next Tag, or press F2.

{ewl msdncd, EWGraphic, group10549 13 /a "SDK.BMP"} To move to the previous tag before the
insertion point

· From the View menu, choose Previous Tag, or press SHIFT + F2.

 Using the Keyboard Commands

The editor includes a number of special keystrokes for editing and moving around in a source file.
These are in addition to the familiar ARROW keys, SPACEBAR, and ENTER.

To move to Press
Word to left CTRL+LEFT ARROW

Word to right CTRL+RIGHT ARROW

Beginning of current
line

HOME

End of current line END

Beginning of file CTRL+HOME

End of file CTRL+END

See online Help for the complete set of WinDbg keyboard commands.

 Controlling the Source Window

The editor features a number of options that affect the source window. These include the ability to set
tabs, highlight language syntax within the window, and make the file read-only.

 Setting Tabs

You can set tab stops in a source file and save them as tabs or spaces when you save the file.

{ewl msdncd, EWGraphic, group10549 14 /a "SDK.BMP"} To set tabs
1. Choose Environment from the Options menu. The Environment dialog box appears.
2. Enter the number of spaces to be used as a tab stop in the Tab Stops text box.
3. Choose the Keep Tabs option to treat tabs as a single tab character when the source file is saved.

 - or -
Choose Insert Spaces to convert tabs to the number of spaces shown in the Tab Stops box.

4. Choose OK.

 Highlighting Language Syntax

WinDbg highlights language keywords, identifiers, comments, and strings in different colors. This
feature is useful when learning a language or when viewing lengthy and complex source files. For
example, if you are editing a file with a .C extension, all C keywords are highlighted.

 Making a File Read-Only

The Read Only command makes the active source window read-only. When you choose this
command, the window cannot be altered.

This command is useful when you are viewing a program and don't want to accidentally make any
changes to the window.

{ewl msdncd, EWGraphic, group10549 15 /a "SDK.BMP"} To make a source window read-only
1. Activate the window.
2. From the Edit menu, choose Read Only.

To deactivate the command, choose it again.

A check mark next to the Read Only menu item and the word READ in the status bar at the bottom of
the screen indicate that the source file is read-only.

 Finding and Replacing

The WinDbg editor offers advanced find and replace capabilities. You can search for literal text or use
regular expressions to find words or characters in the source window.

The Find command searches for specified text. The Replace command finds the text and replaces it
with other text.

 Finding Text

{ewl msdncd, EWGraphic, group10549 16 /a "SDK.BMP"} To find a character, word, or group of
characters in the active source window

1. Position the insertion point where you want to start the search.
2. From the Edit menu, choose Find. The Find dialog box appears.
3. In the Find What box, type the text you want to find, or choose from the 16 previous instances of text

searched for, which are listed in the drop-down box.
4. Choose any of the Find options, as described below.
5. Choose OK.

When you choose the Find command, the editor uses the location of the insertion point to select a
default search string. If the insertion point is inside a word, that word is displayed as the search text in
the Find What box.

If the insertion point is between words, the word to the right is displayed. If there is no word to the right,
the word to the left is displayed. If that is not possible, nothing is displayed.

The Find dialog box has these choices for locating text:

Command Description
Match Whole Word
Only

Searches for complete occurrences of the text. A
word contains only the characters a - z and A - Z,
the numbers 0 - 9, and the # or _ (underscore)
characters. If you don't select this option, the editor
finds embedded occurrences; for example, "main" in
"remainder".

Match Case Searches for text that matches the capitalization of
the search text.

Regular Expression Finds text using patterns. See the WinDbg help file
for details on regular expressions.

Direction The Up option searches from the insertion point to
the beginning of the file. The Down option searches
from the insertion point to the end of the file.

Tag All Searches for text and marks each line that contains
the text. Use the Tag commands from the View
menu to move to each marked line.

If the text is located, the source window scrolls to the text and highlights it. Choose Find Next from the
abbreviated Find dialog box to move to the next occurrence of the text.

 Replacing Text

{ewl msdncd, EWGraphic, group10549 17 /a "SDK.BMP"} To find and replace text
1. From the Edit menu, choose Replace. The Replace dialog box appears.
2. In the Find What box, type the search text or regular expression, or choose from the 16 previous

instances of text searched for, which are listed in the drop-down box.
3. In the Replace With box, type the replacement text, or choose from the 16 previous instances of text

searched for, which are listed in the drop-down box.
4. Set any change options you need. These options are the same as those in the Find dialog box (see

the previous section, "Finding Text").
5. Choose OK.

For information on default search strings, see the previous section, "Finding Text."

{ewl msdncd, EWGraphic, group10549 18 /a "SDK.BMP"} To repeat the last search or search and
replace

· Choose Find Next in the abbreviated Find or Replace dialog box. The abbreviated dialog box
remains active until the search reaches the starting location (after wrapping) or until you choose
Cancel.

 Introducing WinDbg

The WinDbg debugger is a powerful, graphically based tool that allows you to debug programs and edit
source code under Windows NT. Its user interface is similar to Microsoft QuickC for Windows 1.0, but
the debugger has been significantly enhanced to allow more flexible debugging and to provide full
support for the NT operating system.

You can use WinDbg to debug kernel-mode drivers.

This introduction explains how to install WinDbg and briefly introduces the WinDbg debugger. It
describes starting and quitting WinDbg, using WinDbg windows, and customizing WinDbg.

 Installing WinDbg

The WinDbg files are copied with other development files from the NT SDK CD-ROM. By default, the
files are held in the MSTOOLS\BIN directory. You can use the SDK SETUP program to install WinDbg.

 Starting and Quitting WinDbg

After you have installed WinDbg, start it by double-clicking its icon on the Program Manager. You can
also start WinDbg from the Windows NT command line by typing

windbg [-a] [-g] [-h] [-i] [-k[platform port speed]] [-l[text]] [-m] [-p id [-e event]] [-s[pipe]] [-v] [-w name] [-
y path] [-z crashfile] [filename[.ext] [arguments]]

The following table describes the command-line options.

WinDbg Command-Line Options
Option Description
-a Ignore all bad symbols (but still print warning message).
-g Go now; start executing the process.
-h Causes child processes to inherit access to WinDbg's

handles.
-i Ignore workspace; like running without any registry data.
-k [platform
port speed]

Run as a kernel debugger with the specified options:
 platform is the target computer type (i386, mips, alpha)
 port is the com port (com1 ... comn)
 speed is the com port speed (9600, 19200, 57600, ...)

-l [text] Sets the window title for WinDbg.
-m Start WinDbg minimized.
-p id Attach to the process with the given id.
-e event Signal an event after process is attached. Used only for post-

mortem debugging (AeDebug).
-s [pipe] Start a remote.EXE server, using the named pipe.
-v Verbose option; WinDbg prints module load and unload

messages.
-w name Load the named workspace.
-y path Search for symbols along the specified path. You can specify

multiple paths by separating them with semicolons.
-z crashfile Debug the specified crash dump file.
filename[.ex
t]

Program to debug or file to edit. If no extension is specified,
WinDbg assumes an .EXE extension. If the file is not
an .EXE or .COM file, WinDbg will try to load it as a text file.

arguments Arguments to program being debugged.

To quit WinDbg, choose Exit from the File menu. This returns you to the Windows NT Program
Manager.

 WinDbg Windows

WinDbg uses windows to present and enter information. These windows are like standard windows in
other applications for Windows.

 The Toolbar

The Toolbar appears beneath the menu bar (see the figure below). It provides shortcuts for menu
selections.

{ewc msdncd, EWGraphic, group10550 0 /a "SDKb.bmp"}

You can hide or display the Toolbar with the Toolbar command on the View menu. When this command
is checked, the Toolbar appears. When it is turned off (unchecked), the Toolbar is hidden. You turn the
command on or off by selecting it.

To issue debug commands, click one of the icons on the Toolbar:

Icon Action
{ewc
ï¿½}

Starts or continues execution. Execution proceeds until the program
reaches a breakpoint or the program ends. All threads and
processes are unfrozen. Equivalent to the Go command from the
Run menu.

{ewc
ï¿½}

Stops the program and its threads, allowing you to regain control of
the debugger. Equivalent to the Halt command from the Run menu.

{ewc
ï¿½}

Sets a breakpoint at the current line.

{ewc
ï¿½}

Displays the Quickwatch debugging dialog box. Equivalent to the
Quickwatch command from the Debug menu.

{ewc
ï¿½}

Steps into a function when it is called and steps through all of the
instructions in the function. Equivalent to the Trace Into command
from the Run menu.

{ewc
ï¿½}

Single-steps through instructions in the program. If this command is
used when you reach a function call, the function is executed
without stepping through the function instructions. Equivalent to the
Step Over command from the Run menu.

{ewc
ï¿½}

Switches between source and assembly mode. Equivalent to
switching modes with the Toggle Source/Asm Mode command from
the Run menu.

{ewc
ï¿½}

Switches between source and assembly mode. Equivalent to
switching modes with the Toggle Source/Asm Mode command from
the Run menu.

{ewc
ï¿½}

Opens the Options dialog, if any, for the current window.

When a button cannot be used (for example, a trace command while the debuggee is running), the
button is grayed.

Font selection is not available from the toolbar. You can change the typeface of the current source file
by choosing Font from the Options menu.

 The Status Bar

A status bar (see the figure below) appears at the bottom of the main WinDbg window. The status bar
provides information about WinDbg and the active source window, such as line and column position
and editor mode. When debugging, the status bar will also give the WinDbg process ID (PID) and
thread ID (TID) of the code being debugged.

The status bar displays the following information:

Contents Description
Message
box

Displays messages from the environment.

SRC/ASM Indicates whether WinDbg is in source or assembly mode.
pid Shows the ID number of the process being debugged.
tid Shows the ID number of the thread being debugged.
^Q Indicates a WordStar keystroke sequence.
OVR Indicates overtype mode.
READ Indicates read-only status.
CAPS Indicates that CAPS LOCK is on.
NUM Indicates that NUM LOCK is on.
Line Displays the line number at the insertion point in the current

window.
Column Displays the column number at the insertion point in the

current window.

{ewc msdncd, EWGraphic, group10550 10 /a "SDKa.bmp"}

You can hide or display the status bar with the Status Bar command on the View menu. When this
command is checked, the status bar appears. When it is turned off (unchecked), the status bar is
hidden. Turn the command on or off by selecting it.

 Customizing WinDbg

Many parts of WinDbg can be customized to suit your programming needs. This section discusses how
you can modify the appearance and functionality of WinDbg.

 Using the Program Registry

To start debugging a program from within WinDbg, you must first add it to the program registry (or use
the .ATTACH command). The WinDbg program registry is a list of programs that WinDbg can debug.
Each program in the registry has one or more workspaces associated with it. A workspace is a set of
WinDbg defaults that can be associated with a program.

{ewl msdncd, EWGraphic, group10550 11 /a "SDK.BMP"} To add a program to the registry
1. Choose Open from the Program menu.

The Program Open dialog will appear with a list of all of the programs in the registry.
2. Choose New.

The common Open dialog will appear.
3. Open the executable file that you want to debug, and choose OK.

The dialog boxes will close. WinDbg is now ready to begin debugging.

{ewl msdncd, EWGraphic, group10550 12 /a "SDK.BMP"} To load a program already in the
registry

1. Choose Open from the Program menu.
The Program Open dialog will appear with a list of all of the programs in the registry.

2. Select the program to debug from the Programs list.
3. Select the workspace to use from the Workspaces list.

For more information on workspaces, see the following section, "Using Workspaces."
4. Choose OK.

{ewl msdncd, EWGraphic, group10550 13 /a "SDK.BMP"} To delete a program
1. Choose Delete from the Program menu.
2. In the Program box, select the program that you want to delete.
3. Choose Delete. The selected program will disappear.
4. Choose OK.

 Using Workspaces

With workspaces, you can save and restore the state of WinDbg between debugging sessions and
customize WinDbg for different debugging situations. Workspaces are saved in the Windows NT
registry for each user.

When you debug a program for the first time or start WinDbg without loading a debuggee, you start
with the Common Workspace. The Common Workspace is different from other workspaces because it
is not associated with a particular program, but is available at all times. You can use the Common
Workspace as a starting point for custom workspaces that are saved with each program.

You can change the Common Workspace to reflect your preferences for WinDbg.

{ewl msdncd, EWGraphic, group10550 14 /a "SDK.BMP"} To change the Common Workspace
1. Configure WinDbg windows and options.
2. Choose Save Common from the Program menu.

Note Since the Common Workspace does not correspond to a specific program, breakpoints, watch
expressions, and other program-specific information are not saved.

{ewl msdncd, EWGraphic, group10550 15 /a "SDK.BMP"} To create a new workspace
1. Load a debuggee using Open from the Program menu.
2. Configure WinDbg windows, breakpoints, and options.
3. Choose Save As from the Program menu.
4. Enter a name for the workspace.

If you check the Make Default box, the workspace will be saved with the given name, and it will be
made the default workspace for the program when the Program Open Dialog box is next used.

5. Choose OK.

{ewl msdncd, EWGraphic, group10550 16 /a "SDK.BMP"} To delete a workspace
1. Choose Delete from the Program menu.
2. In the Program box, select the program that has the workspace that you want to delete.
3. In the Workspace box, select the workspaces that you want to delete.
4. Choose Delete. The selected workspaces will disappear.
5. Choose OK.

 Changing Display Colors

Using different colors for various language elements such as functions and variables gives you
immediate visual cues about the structure of your source code. You can change the default colors of
these elements as well as the color of other text in WinDbg, such as reserved words, breakpoints, and
information windows.

{ewl msdncd, EWGraphic, group10550 17 /a "SDK.BMP"} To change the colors in the source
window

1. From the Options menu, choose Color. The Color dialog box appears.
2. From the Items list select the item you want to change. For this example, select Source Window.
3. Select the color square from the palette to represent the foreground color. Press Set Foreground.

The new color combination is shown in the Items box.
4. Select the color square to represent the background color from the palette shown. Press Set

Background. The new color combination is shown in the Items box.
5. Choose OK to apply the change to the source window. You can change several items in the list

before choosing OK.

{ewl msdncd, EWGraphic, group10550 18 /a "SDK.BMP"} To change the source window back to
its original colors

1. From the Options menu, choose Color.
2. From the Items list, select Source Window.
3. Choose Set Default.
4. Choose OK.

{ewl msdncd, EWGraphic, group10550 19 /a "SDK.BMP"} To change all windows back to their
default colors

1. From the Options menu, choose Color.
2. Choose Select All.
3. Choose Set Default.
4. Choose OK.

 Setting Font Type and Size

You can specify which font type and size appear in WinDbg source windows. You can choose any font
type and size found within the Windows NT system.

{ewl msdncd, EWGraphic, group10550 20 /a "SDK.BMP"} To set the font type and size
1. From the Options menu, choose Font. The Font dialog box appears.
2. Select the font, font style, and size from the combo boxes. The words "sample text" will change to

the font you selected.
3. Choose OK.

The Make Default box in the Font dialog box sets the selected font and size as the default.

Text within the source window can be only one font and size. Multiple fonts cannot be displayed in the
same source window.

 Compiling Messages

The Microsoft Windows Message Compiler (MC) is a tool for the Microsoft Windows NT operating
system. This section describes how to create a message text file, and how to compile it for inclusion in
a resource script.

 About the Message Compiler

The Message Compiler (MC.EXE) converts message text files into binary files suitable for inclusion in a
resource script (.RC file). The Resource Compiler is then used to place the messages into a resource
for inclusion in an application or DLL.

Applications that perform event logging typically use an independent resource-only DLL that contains
the messages, rather than carry the messages in the application image.

 Using the Message Compiler

The Message Compiler utility has the following command-line syntax:

Syntax

MC [-v] [-w] [-s] [-d] [-h dir] [-e extension] [-r dir] filename[.MC]...

Parameters

-v
Generates verbose output to stderr.

-w
Generates a warning message whenever an insert escape sequence is seen that is a superset of
the type supported by the OS/2 MKMSGF utility. These are any escape sequences other than %0
and %n. This option is useful for converting MKMSGF message files to MC format.

-s
Adds an extra line to the beginning of each message that is the symbolic name associated with the
message identifier.

-d
Ouputs Severity and Facility constants in decimal. Sets the initial output radix for messages to
decimal.

-h dirs
Specifies the target directory of the generated include file. The include-file name is the base name of
the .MC file with a .H extension.

-e extension
Specifies the extension for the header file, which can be from one to three characters. The default
is .H.

-r dir
Specifies the target directory of the generated Resource Compiler script (.RC file). The script file
name is the base name of the .MC file with a .RC extension.

filename[.MC]
Specifies one or more input message files that is compiled into one or more binary resource files,
one for each language specified in the Message Compiler source files.

The Message Compiler reads the source file and generates a C/C++ include file containing definitions
for the symbolic names. For each LanguageId statement, MC generates a binary file containing a
message table resource. It also generates a single RC script file that contains the appropriate
Resource Compiler statements to include each binary output file as a resource with the appropriate
symbolic name and language type.

 Message Compiler Source Files

Message Compiler source files (default extension .MC) are converted into binary resource files by the
Message Compiler (MC.EXE). The binary resources are then passed to the Resource Compiler which
puts them in the resource table for an application or DLL. For applications performing event logging,
the messages are typically placed in a DLL that contains nothing but the message table. This DLL is
registered by the application as the source of message text for the events that it logs. The application
then uses the event logging functions or the FormatMessage function to retrieve and use the message
text.

Messages are defined using ASCII text in a text file. The Message Compiler source-format supports
multiple versions of the same message text, one for each national language supported by your
application. The Message Compiler automatically assigns numbers to each message, and generates a
C/C++ include file for use by the application to access a message using a symbolic constant. The
purpose of the message text file is to define all of the messages needed by an application, in a format
that makes it easy to support multiple languages with the same image file.

 Message Source File General Syntax

The general syntax for lines in the message source file is:

keyword=value

Spaces around the equal sign are ignored, and the value is delimited by white space (including line
breaks) from the next keyword=value pair. Case is ignored when comparing against keyword names.
The value portion can be a numeric integer constant using C/C++ syntax; a symbol name that follows
the rules for C/C++ identifiers; or a file name that follows the rules for the base name of a file with the
FAT file system (eight characters or less, with no periods).

 Message Source File Comments

Comment lines are allowed in the source file. A semicolon (;) begins a comment that ends at the end of
the line. A comment by itself on a line is copied to the generated include file with the semicolon
converted to the C++ line-comment delimiter (//).

 Header Section

The overall structure of a message text file consists of a header which defines names and language
identifiers for use by the message definitions in the body of the file. The header contains zero or more
of the following statements:

MessageIdTypedef = [type]
SeverityNames = (name=number[:name])
FacilityNames = (name=number[:name])
LanguageNames = (name=number:filename)
OutputBase = {number}

These keywords have the following meaning:

MessageIdTypedef = type
Gives a typedef name that is used in a type cast for each message code in the generated include
file. Each message code appears in the include file with the format:
#define name ((type) 0xnnnnnnnn)
The default value for type is empty, and no type cast is generated. It is the programmer's
responsibility to specify a typedef statement in the application source code to define the type. The
type used in the typedef must be large enough to accommodate the entire 32-bit message code.

SeverityNames = (name=number[:name])
Defines the set of names that are allowed as the value of the Severity keyword in the message
definition. The set is delimited by left and right parentheses. Associated with each severity name is a
number that, when shifted left by 30, gives the bit pattern to logical-OR with the Facility value and
MessageId value to form the full 32-bit message code.
The default value of this keyword is:
SeverityNames=(
 Success=0x0
 Informational=0x1
 Warning=0x2
 Error=0x3
)

Severity values occupy the high two bits of a 32-bit message code. Any severity value that does not
fit in two bits is an error. The severity codes can be given symbolic names by following each value
with :name

FacilityNames = (name=number[:name])
Defines the set of names that are allowed as the value of the Facility keyword in the message
definition. The set is delimited by left and right parentheses. Associated with each facility name is a
number that, when shifted left by 16 bits, gives the bit pattern to logical-OR with the Severity value
and MessageId value to form the full 32-bit message code.
The default value of this keyword is:
FacilityNames=(
 System=0x0FF
 Application=0xFFF
)

Facility codes occupy the low-order 12 bits of the high-order 16 bits of a 32-bit message code. Any
facility code that does not fit in 12 bits is an error. This allows for 4096 facility codes. The first 256
codes are reserved for use by the system software. The facility codes can be given symbolic names
by following each value with :name

LanguageNames = (name=number:filename)
Defines the set of names that are allowed as the value of the Language keyword in the message

definition. The set is delimited by left and right parentheses. Associated with each language name
are a number and a file name that are used to name the generated resource file that contains the
messages for that language. The number corresponds to the language identifier to use in the
resource table. The number is separated from the file name by a colon.
The initial value of LanguageNames is:
LanguageNames=(English=1:MSG00001)

Any new names in the source file which don't override the built-in names are added to the list of
valid languages. This allows an application to support private languages with descriptive names.

OutputBase = {number}
Sets the output radix for the message constants output to the C/C++ include file. It does not set the
radix for the Severity and Facility constants; these default to HEX, but can be output in decimal by
using the -d switch. If present, OutputBase overrides the -d switch for message constants in the
include file.
The legal values for number are 10 and 16.
You can use OutputBase in both the header section and the message definition section of the input
file. You can change OutputBase as often as you like.

 Message Definitions

Following the header section is the body of the Message Compiler source file. The body consists of
zero or more message definitions. Each message definition begins with one or more of the following
statements.

MessageId = [number|+number]
Severity = severity_name
Facility = facility_name
SymbolicName = name
OutputBase = {number}

The MessageId statement marks the beginning of the message definition. A MessageID statement is
required for each message, although the value is optional. If no value is specified, the value used is the
previous value for the facility plus one. If the value is specified as +number then the value used is the
previous value for the facility, plus the number after the plus sign. Otherwise, if a numeric value is
given, that value is used. Any MessageId value that does not fit in 16 bits is an error.

The Severity and Facility statements are optional. These statements specify additional bits to OR into
the final 32-bit message code. If not specified they default to the value last specified for a message
definition. The initial values prior to processing the first message definition are:

Severity=Success
Facility=Application

The value associated with Severity and Facility must match one of the names given in the
FacilityNames and SeverityNames statements in the header section.

The SymbolicName statement allows you to associate a C/C++ symbolic constant with the final 32-bit
message code.

The constant definition in the generated include file has the format:

//
// message text
//

#define name ((type) 0xnnnnnnnn)

The comment before the definition is a copy of the message text for the first language specified in the
message definition. The name is the value given in the SymbolicName statement. The type is the type
name specified in the MessageIdTypedef statement. If no type was specified, the cast is not
generated.

The following comment appears in each header file to explain the bit fields in the 32-bit message:

// Values are 32 bit values laid out as follows:
//
// 3 3 2 2 2 2 2 2 2 2 2 2 1 1 1 1 1 1 1 1 1 1
// 1 0 9 8 7 6 5 4 3 2 1 0 9 8 7 6 5 4 3 2 1 0 9 8 7 6 5 4 3 2 1 0
// +---+-+-+-----------------------+-------------------------------+
// |Sev|C|R| Facility | Code |
// +---+-+-+-----------------------+-------------------------------+
//

The meanings of the fields in the message code are:

Sev
The severity code:
Bits Meaning

00 Success
01 Informational
10 Warning
11 Error

C
The Customer code flag.

R
A reserved bit.

Facility
The facility code.

Code
The status code for the facility.

The OutputBase statement lets you set the output radix for the message constants output to the C/C+
+ include file. It does not set the radix for the Severity and Facility constants; these default to HEX,
but can be output in decimal by using the -d switch. If present, OutputBase overrides the -d switch for
message constants in the include file.

The legal values for number are 10 and 16

You can use OutputBase in both the header section and the message definition section of the input
file. You can change OutputBase as often as you like.

 Language-Specific Message Text Definitions

After the message definition statements, you specify one or more message text definitions.

Syntax

Language=language_name
messagetext
.

Each message begins with a Language statement that identifies the binary output file for this
message. The first line of the message text begins with the next line. The message text is terminated
by a line containing a single period at the beginning of the line, immediately followed by a new line. No
spaces are allowed around the terminating period. Within the message, blank lines and white space
are preserved as part of the message.

You can specify several escape sequences for formatting the message when the message text is used
by the application or an event viewer. The percent sign character (%) begins all escape sequences.

%0
Terminates a message text line without a trailing newline. This can be used to build up long lines or
to terminate the message without a trailing newline, which is useful for prompt messages.

%n[!printf-format-specifier!]
Identifies an insert. Each insert refers to a parameter used in a call to the FormatMessage function.
FormatMessage returns an error if the message text specifies an insert that was not passed to
FormatMessage.
The value of n can be between 1 and 99. The printf format specifier must be enclosed in
exclamation marks. It is optional and defaults to !s! if not specified.
The printf format specifier can contain the * specifier for either the precision or width components.
When specified, they consume inserts numbered n+1 and n+2 for their values at run time. MC prints
a warning message if these inserts are specified elsewhere in the message text.

Any character following a percent sign other than a digit is formatted in the output message without the
percent sign.

You can specify the following additional escape sequences:

%%
Generates a single percent sign in the formatted message text.

%\
Generates a hard line break when it occurs at the end of a line. Useful when FormatMessage is
supplying normal line breaks so the message fits in a certain width.

%r
Generates a hard carriage return, without a trailing newline character.

%b
Generates a space character in the formatted message text. This can be used to ensure there are
the appropriate number of trailing spaces in a message text line.

%.
Generates a single period in the formatted message text. This can be used to get a period at the
beginning of a line without terminating the message definition.

%!
Generates a single exclamation point in the formatted message text. This can be used to specify an
exclamation point immediately after an insert.

 Using PView

The PView process viewer lets you examine and modify many characteristics of processes and threads
running on your system.

PView can help you answer questions like these:

· How much memory does the program allocate at various points in its execution, and how much
memory is being paged out?

· Which processes and threads are using the most CPU time?
· How does the program run at different system priorities?
· What happens if a thread or process stops responding to DDE, OLE, or pipe I/O?
· What percentage of time is being spent running API calls?

Warning PView lets you modify the status of processes running on your system. As a result, by using
PView, you can stop processes and potentially halt the entire system. Make sure that you have saved
edited files before running PView.

 PView Main Dialog

The main PView dialog box consists of several boxes containing information on active processes and
threads, and controls to change their behavior (see the following figure).

{ewc msdncd, EWGraphic, group10553 0 /a "SDK.bmp"}

The following buttons control PView actions:

Exit
Closes PView.

Memory Details
Opens the Memory Details dialog box. See Memory Details Dialog for more information.

Kill Process
Removes the highlighted process from the system. This is different from choosing Close from the
system menu, because the process is not informed of the shutdown (with WM_DESTROY) before it
is stopped.

Refresh
Updates information in the main PView dialog box and the Memory Details dialog box.

Connect
View information about the computer specified in the Computer text box. The Computer box should
contain the network name of the computer that you wish to view. Your ability to connect to a remote
system may be affected by security on the target computer.

 Process Selection

The Process Selection list box displays information on the accessible processes running on the
system. From this list, you can select a process to use for future actions. All other information and
control areas in PView reflect the process chosen in this box.

Note Since Windows NT is a secure operating system, you may not be able to view or alter attributes
of some programs running on the system. See your NT User's Guide for more information on NT
security.

The fields in the Process Selection box are as follows:

Process
Name of the process on this line. Usually an .EXE filename.

CPU Time
Amount of CPU time that this process has used.

Privileged
Percentage of the CPU time that was spent executing privileged code (code in the NT Executive).

User
Percentage of the CPU time that was spent executing user code. This time includes time running
protected subsystem code.

 Process Memory Used

The Process Memory Used box displays information on the memory usage of the process selected in
the Process Selection box:

Working Set
The average amount of physical memory used by the process. The longer a process has been
running, the more accurate this value is.

Heap Usage
The current total heap being used by the process. Heap space is taken by dynamically allocated
data, including memory reserved by malloc, new, LocalAlloc, HeapAlloc, VirtualAlloc, and
GlobalAlloc.

 Priority

The Priority buttons let you change the base priority of the process highlighted in the Process Selection
box. This priority determines the activity of all threads of the selected process:

Very High
Maximum priority. CPU time is split between this and other Very High priority processes. Lower
priority processes will execute only when all Very High priority processes are blocked.

Normal
The standard-priority group, also known as "foreground." Most applications run with normal priority.

Idle
The lowest-priority group, also known as "background." Processes with this priority will execute only
when the system has no higher-priority processes that need CPU time. Screen savers run at this
priority.

 Thread Selection

The Thread Selection list box displays statistics for threads of the process selected in the Process
Selection box and lets you select a thread for further operations:

Threads
The thread ID number. This is the handle returned by CreateThread.

CPU Time
The amount of time that this instance of the thread has been running.

% Privileged
The percentage of the CPU time that was spent executing privileged code (code in the NT
Executive).

% User
The percentage of the CPU time that was spent executing user code. This time includes time
running protected subsystem code.

 Thread Information

The Thread Selection box displays execution information about the thread selected in the Thread
Selection box:

User PC Value
The value of the instruction pointer for this thread.

Start Address
The address of the entry point of this thread. This information is useful for debugging.

Context Switches
Number of times that this thread has received CPU attention.

Dynamic Priority
The current dynamic thread priority. This number is determined by many factors, including user
activity.

 Thread Priority

The Thread Priority box shows you the base priority of the thread selected in the Thread Selection box.
This is not an absolute priority, but is a range of priorities that can be selected by the operating system
for the selected thread:

Highest
The highest priority level allowed by the process priority.

Above Normal
Slightly elevated priority.

Normal
The standard priority level for the given process priority.

Below Normal
Reduced priority.

Idle
No CPU time will be spent on this thread unless all other threads are blocked.

 Memory Details Dialog

The Memory Details dialog box (see the following figure) gives information on the process selected by
the Process Selection box in the main PView dialog box. To update the information contained in this
dialog box, return to the main dialog box and click on the Refresh button.

{ewc msdncd, EWGraphic, group10553 1 /a "SDK.bmp"}

This dialog box consists of the following buttons:

OK
Returns to the main PView dialog box.

Process
The name and process ID of the process selected in the Process Selection box of the main dialog.

User Address Space for
Displays the statistics for specific .EXE or .DLL files or "Total Image Commit," which displays
statistics for all components of the currently selected process. These statistics are the following:
Inaccessible

Address space that cannot be accessed. This includes memory reserved by VirtualAlloc.
Read Only

Read-only data and code.
Writeable

Total data address space that can be written to.
Writeable (Not Written)

Data address space that can be written to, but has not been.
Executable

Code in selected EXEs and DLLs.
Virtual Memory Counts

Displays the following statistics on Virtual Memory usage:
Working Set

Average amount of virtual memory used by the process. The longer a process has been running,
the more accurate this value is.

Peak Working Set
Maximum value attained by the Working Set described above.

Private Pages
Number of pages marked as private.

Virtual Size
Current size of virtual memory for this process.

Peak Virtual Size
Maximum size of virtual memory for this process.

Fault Count
Number of page faults. Each page fault represents an attempt to access memory at an address
that was not in physical memory.

Paged
Number of pages currently in the swap file.

Peak Paged
Maximum number of pages currently in the swap file.

Non-Paged
Number of pages that have not been moved to the swap file.

 Compiling Resources

The Microsoft Windows Resource Compiler (RC) is a tool for the Microsoft Windows NT operating
system. This section describes how to create a resource-definition (script) file, and how to compile your
application's resources and add them to the application's executable file.

 Including Resources in an Application

To include resources in your 32-bit Windows application, do the following:

1. Create individual resource files for cursors, icons, bitmaps, dialog boxes, and fonts. To do this, you
can use Microsoft Image Editor and Dialog Editor (IMAGEDIT.EXE and DLGEDIT.EXE) and
Microsoft Windows Font Editor (FONTEDIT.EXE).

2. Create a resource-definition file (script) that describes all the resources used by the application.
3. Compile the script into a resource (.RES) file with RC.

4. Link the compiled resource files into the application's executable file.

Unlike the 16-bit versions of the Windows development system, you do not use RC to include compiled
resources into the executable file or to mark the file as a Windows application. The linker recognizes
the compiled resource files and links them to the executable file.

 Creating a Resource-Definition File

After creating individual resource files for your application's icon, cursor, font, bitmap, and dialog-box
resources, you create a resource-definition file, or script. A script file is a text file with the
extension .RC.

The script lists every resource in your application and describes some types of resources in great
detail. For a resource that exists in a separate file, such as an icon or cursor, the script names the
resource and the file that contains it. For some resources, such as a menu, the entire definition of the
resource exists within the script.

A script file can contain the following types of information:

· Preprocessing directives, which instruct RC to perform actions on the script before compiling it.
Directives can also assign values to names.

· Statements, which name and describe resources.

The following sections describe directives and statements you can use in a script. For detailed
descriptions and syntax for each statement, see Resource-Definition Statements.

 Preprocessing Directives List

The following directives can be used as needed in the script to instruct RC to perform actions or to
assign values to names:

Directi
ve

Description

#define Defines a specified name by assigning it a given value.
#elif Marks an optional clause of a conditional-compilation block.
#else Marks the last optional clause of a conditional-compilation block.
#endif Marks the end of a conditional-compilation block.
#if Conditionally compiles the script if a specified expression is true.
#ifdef Conditionally compiles the script if a specified name is defined.
#ifndef Conditionally compiles the script if a specified name is not

defined.
#includ
e

Copies the contents of a file into the resource-definition file.

#undef Removes the definition of the specified name.

The syntax and semantics for the RC preprocessor are the same as for a C compiler. For more
information on preprocessing in RC, see Preprocessing Reference.

 Single-Line Statements

A single-line statement can begin with any of the following keywords:

Keyword Description
BITMAP Defines a bitmap by naming it and specifying the

name of the file that contains it. (To use a particular
bitmap, the application requests it by name.)

CURSOR Defines a cursor by naming it and specifying the
name of the file that contains it. (To use a particular
cursor, the application requests it by name.)

FONT Specifies the name of a file that contains a font.
ICON Defines an icon by naming it and specifying the

name of the file that contains it. (To use a particular
icon, the application requests it by name.)

LANGUAGE Sets the language for all resources up to the next
LANGUAGE statement or to the end of the file.
When the LANGUAGE statement appears before
the BEGIN in an ACCELERATORS, DIALOG,
MENU, RCDATA, or STRINGTABLE resource
definition, the specified language applies only to
that resource.

MESSAGETABLE Defines a message table by naming it and
specifying the name of the file that contains it. The
file is a binary resource file generated by the
Message Compiler.

 Multiline Statements

A multiline statement can begin with any of the following keywords:

Keyword Description
ACCELERATOR
S

Defines menu accelerator keys.

DIALOG Defines a template that an application can use to create
dialog boxes.

MENU Defines the appearance and function of a menu.
RCDATA Defines data resources. Data resources let you include

binary data in the executable file.
STRINGTABLE Defines string resources. String resources are Unicode

strings that can be loaded from the executable file.

Each of these multiline statements allows optional statements before the BEGIN ... END block that
defines the resource. You can specify zero or more of the following statements:

Statement Description
CHARACTERISTICS dword User-defined information about the

resource that can be used by tools that
read and write resource files. The
value appears in the compiled resource
file. However, it is not stored in the
executable file and is not used by
Windows.

LANGUAGE language,
sublanguage

Specifies the language for the
resource. The parameters are
constants from WINNLS.H.

VERSION dword User-defined version number for the
resource that can be used by tools that
read and write resource files. The
value appears in the compiled resource
file. However, it is not stored in the
executable file and is not used by
Windows.

 Sample Resource-Definition File

The following example shows a script file that defines the resources for an application named Shapes:

#include "SHAPES.H"

ShapesCursor CURSOR SHAPES.CUR
ShapesIcon ICON SHAPES.ICO

ShapesMenu MENU
 BEGIN
 POPUP "&Shape"
 BEGIN
 MENUITEM "&Clear", ID_CLEAR
 MENUITEM "&Rectangle", ID_RECT
 MENUITEM "&Triangle", ID_TRIANGLE
 MENUITEM "&Star", ID_STAR
 MENUITEM "&Ellipse", ID_ELLIPSE
 END
 END

The CURSOR statement names the application's cursor resource ShapesCursor and specifies the
cursor file SHAPES.CUR, which contains the image for that cursor.

The ICON statement names the application's icon resource ShapesIcon and specifies the icon file
SHAPES.ICO, which contains the image for that icon.

The MENU statement defines an application menu named ShapesMenu, a pop-up menu with five
menu items.

The menu definition, enclosed by the BEGIN and END keywords, specifies each menu item and the
menu identifier that is returned when the user selects that item. For example, the first item on the
menu, Clear, returns the menu identifier ID_CLEAR when the user selects it. The menu identifiers are
defined in the application header file, SHAPES.H.

 Using RC (The RC Command Line)

To start RC, use the RC command. The following line shows RC command-line syntax:

RC [options] script-file

The RC command's options parameter can include one or more of the following options:

/?
Displays a list of RC command-line options.

/d
Defines a symbol for the preprocessor that you can test with the #ifdef directive.

/foresname
Uses resname for the name of the .RES file.

/h
Displays a list of RC command-line options.

/i
Searches the specified directory before searching the directories specified by the INCLUDE
environment variable.

/lcodepage
Specifies default language for compilation. For example, -l409 is equivalent to including the following
statement at the top of the resource script file:
LANGUAGE LANG_ENGLISH,SUBLANG_ENGLISH_US

/r
Ignored. Provided for compatibility with existing makefiles.

/v
Displays messages that report on the progress of the compiler.

/x
Prevents RC from checking the INCLUDE environment variable when searching for header files or
resource files.

Options are not case sensitive, and a hyphen (-) can be used in place of a slash mark (/). You can
combine single-letter options if they do not require any additional parameters. For example, the
following two commands are equivalent:

RC /V /X SAMPLE.RC
rc -vx sample.rc

The script-file parameter specifies the name of the resource-definition file that contains the names,
types, filenames, and descriptions of the resources to be compiled.

 Defining Names for the Preprocessor

You can specify conditional compilation in a script, based on whether a name is defined on the RC
command line with the /d option, or in the file or an include file with the #define directive.

For example, suppose your application has a pop-up menu, the Debug menu, that should appear only
with debugging versions of the application. When you compile the application for normal use, the
Debug menu is not included. The following example shows the statements that can be added to the
resource-definition file to define the Debug menu:

MainMenu MENU
BEGIN
 . . .
#ifdef DEBUG
 POPUP "&Debug"
 BEGIN
 MENUITEM "&Memory usage", ID_MEMORY
 MENUITEM "&Walk data heap", ID_WALK_HEAP
 END
#endif
END

When compiling resources for a debugging version of the application, you could include the Debug
menu by using the following RC command:

rc -d DEBUG myapp.rc

To compile resources for a normal version of the application¾one that does not include the Debug
menu¾you could use the following RC command:

rc myapp.rc

 Renaming the Compiled Resource File

By default, when compiling resources, RC names the compiled resource (.RES) file with the base
name of the .RC file and places it in the same directory as the .RC file. CVTRES must then be invoked
to convert the .RES file to a binary resource (.RBJ) format which can be understood by the linker. The
following example compiles MYAPP.RC and creates a compiled resource file named MYAPP.RES in
the same directory as MYAPP.RC:

rc myapp.rc

The /fo option gives the resulting .RES file a name that differs from the name of the corresponding .RC
file. For example, to name the resulting .RES file NEWFILE.RES, use the following command:

rc -fo newfile.res myapp.rc

The /fo option can also place the .RES file in a different directory. For example, the following command
places the compiled resource file MYAPP.RES in the directory C:\SOURCE\RESOURCE:

rc -fo c:\source\resource\myapp.res myapp.rc

 Searching for Files

By default, RC searches for header files and resource files (such as icon and cursor files) first in the
current directory and then in the directories specified by the INCLUDE environment variable. (The
PATH environment variable has no effect on which directories RC searches.)

 Adding a Directory to Search

You can use the /i option to add a directory to the list of directories RC searches. The compiler then
searches the directories in the following order:

1. The current directory
2. The directory or directories you specify by using the /i option, in the order in which they appear on

the RC command line
3. The list of directories specified by the INCLUDE environment variable, in the order in which the

variable lists them, unless you specify the /x option

The following example compiles the resource-definition file MYAPP.RC:

rc /i c:\source\stuff /i d:\resources myapp.rc

When compiling the script MYAPP.RC, RC searches for header files and resource files first in the
current directory, then in C:\SOURCE\STUFF and D:\RESOURCES, and then in the directories
specified by the INCLUDE environment variable.

 Suppressing the INCLUDE Environment Variable

You can prevent RC from using the INCLUDE environment variable when determining the directories to
search. To do so, use the /x option. The compiler then searches for files only in the current directory
and in any directories you specify by using the /i option.

The following example compiles the script file MYAPP.RC:

rc /x /i c:\source\stuff myapp.rc

When compiling the script MYAPP.RC, RC searches for header files and resource files first in the
current directory and then in C:\SOURCE\STUFF. It does not search the directories specified by the
INCLUDE environment variable.

 Displaying Progress Messages

By default, RC compiles quietly. It does not display messages that report on its progress. You can,
however, specify that RC is to display these messages. To do so, use the /v option.

The following example causes RC to report on its progress as it compiles the resource-definition file
SAMPLE.RC and creates the compiled resource file SAMPLE.RES:

rc /v sample.rc

 Resource-Definition Statements

This section describes the statements that define the resources that the Resource Compiler puts in the
resource (.RES) file. Once a resource is linked to the executable file, the application can load the
resource as it is needed at run time. All resource statements associate an identifying name or number
with a given resource.

 Common Statement Parameters

This section lists parameters in common among the resource or control statements. Occasionally, a
certain statement will use a parameter differently, or may ignore a parameter. The statement-specific
variation is described with the statement in the alphabetical reference.

 Common Control Parameters

The general syntax for a control definition, and the meaning of each parameter is as follows:

control [text,] id, x, y, width, height [, style [, extended-style]]

Horizontal dialog units are 1/4 of the dialog base width unit. Vertical units are 1/8 of the dialog base
height unit. The current dialog base units are computed from the height and width of the current system
font. The GetDialogBaseUnits function returns the dialog base units in pixels. The coordinates are
relative to the origin of the dialog box.

Parameters

control
Keyword that indicates the type of control being defined, such as PUSHBUTTON or CHECKBOX.

text
Specifies text that is displayed with the control. The text is positioned within the control's specified
dimensions or adjacent to the control.
This parameter must contain zero or more characters enclosed in double quotation marks (").
Strings are automatically null-terminated and converted to Unicode in the resulting resource file,
except for strings specified in raw-data statements (raw-data can be specified in RCDATA and user-
defined resources.) To specify a Unicode string in raw-data, explicitly qualify the string as a wide-
character string by using the L prefix.
By default, the characters listed between the double quotation marks are ANSI characters, and
escape sequences are interpreted as byte escape sequences. If the string is preceded by the L
prefix, the string is a wide-character string and escape sequences are interpreted as 2-byte escape
sequences that specify Unicode characters. If a double quotation mark is required in the text, you
must include the double quotation mark twice.
An ampersand (&) character in the text indicates that the following character is used as a mnemonic
character for the control. When the control is displayed, the ampersand is not shown, but the
mnemonic character is underlined. The user can choose the control by pressing the key
corresponding to the underlined mnemonic character. To use the ampersand as a character in a
string, insert two ampersands (&&).

id
Specifies the control identifier. This value must be a 16-bit unsigned integer in the range 0 through
65,535 or a simple arithmetic expression that evaluates to a value in that range.

x
Specifies the x-coordinate of the left side of the control relative to the left side of the dialog box. This
value must be a 16-bit unsigned integer in the range 0 through 65,535. The coordinate is in dialog
units and is relative to the origin of the dialog box, window, or control containing the specified
control.

y
Specifies the y-coordinate of the top side of the control relative to the top of the dialog box. This
value must be a 16-bit unsigned integer in the range 0 through 65,535. The coordinate is in dialog
units relative to the origin of the dialog box, window, or control containing the specified control.

width
Specifies the width of the control. This value must be a 16-bit unsigned integer in the range 1
through 65,535. The width is in 1/4-character units.

height
Specifies the height of the control. This value must be a 16-bit unsigned integer in the range 1
through 65,535. The height is in 1/8-character units.

style
Specifies the control styles. Use the bitwise OR (|) operator to combine styles.

extended-style
Specifies extended (WS_EX_xxx) styles. You must specify a style to specify an extended-style. See
also EXSTYLE.

 Common Resource Attributes

All resource-definition statements include a load-mem option that specifies the loading and memory
characteristics of the resource. These attributes are divided into two groups: load attributes and
memory attributes. The only attribute that is used by Win32 is the DISCARDABLE attribute. The
remaining attribute specifiers are allowed in the script for compatibility with existing scripts, but are
ignored.

Load Attributes

The load attributes specify when the resource is to be loaded. The load parameter must be one of the
following:

PRELOAD
Ignored. In 16-bit Windows, the resource is loaded with the executable file.

LOADONCALL
Ignored. In 16-bit Windows, the resource is loaded when called.

Memory Attributes

The memory attributes specify whether the resource is fixed or movable, whether it is discardable, and
whether it is pure. The memory parameter can be one or more of the following:

FIXED
Ignored. In 16-bit Windows, the resource remains at a fixed memory location.

MOVEABLE
Ignored. In 16-bit Windows, the resource can be moved if necessary in order to compact memory.

DISCARDABLE
Resource can be discarded if no longer needed.

PURE
Ignored. Accepted for compatibility with existing resource scripts.

IMPURE
Ignored. Accepted for compatibility with existing resource scripts.

The default is DISCARDABLE for cursor, icon, and font resources.

 Statement Reference

This section lists the resource and control statements in alphabetic order. For information on the
preprocessing directives, see Preprocessing Reference.

 ACCELERATORS Resource

The ACCELERATORS statement defines one or more accelerators for an application. An accelerator is
a keystroke defined by the application to give the user a quick way to perform a task. The
TranslateAccelerator function is used to translate accelerator messages from the application queue
into WM_COMMAND or WM_SYSCOMMAND messages.

Syntax

acctablename ACCELERATORS
[optional-statements]
BEGIN
 event, idvalue, [type] [options]
 . . .
END

Parameters

acctablename
Specifies either a unique name or a 16-bit unsigned integer value that identifies the resource.

optional-statements
Zero or more of the following statements:
Statement Description
CHARACTERISTICS dword User-defined information about a

resource that can be used by tools
that read and write resource files.

LANGUAGE language,
sublanguage

Specifies the language for the
resource. The parameters are
constants from WINNLS.H.

VERSION dword User-defined version number for the
resource that can be used by tools
that read and write resource files.

event
Specifies the keystroke to be used as an accelerator. It can be any one of the following character
types:
"char"

A single character enclosed in double quotation marks ("). The character can be preceded by a
caret (^), meaning that the character is a control character.

character
An integer value representing a character. The type parameter must be ASCII.

virtual-key character
An integer value representing a virtual key. The virtual key for alphanumeric keys can be specified
by placing the uppercase letter or number in double quotation marks (for example, "9" or "C").
The type parameter must be VIRTKEY.

idvalue
Specifies a 16-bit unsigned integer value that identifies the accelerator.

type
Required only when the event parameter is a character or a virtual-key character. The type
parameter specifies either ASCII or VIRTKEY; the integer value of event is interpreted accordingly.
When VIRTKEY is specified and event contains a string, event must be uppercase.

options
Specifies the options that define the accelerator. This parameter can be one or more of the following

values:
NOINVERT

Specifies that no top-level menu item is highlighted when the accelerator is used. This is useful
when defining accelerators for actions such as scrolling that do not correspond to a menu item. If
NOINVERT is omitted, a top-level menu item will be highlighted (if possible) when the accelerator
is used.

ALT
Causes the accelerator to be activated only if the ALT key is down.

SHIFT
Causes the accelerator to be activated only if the SHIFT key is down.

CONTROL
Defines the character as a control character (the accelerator is only activated if the CONTROL key
is down). This has the same effect as using a caret (^) before the accelerator character in the
event parameter.

The ALT, SHIFT, and CONTROL options apply only to virtual keys.

Example

The following example demonstrates the use of accelerator keys:

1 ACCELERATORS
BEGIN
 "^C", IDDCLEAR ; control C
 "K", IDDCLEAR ; shift K
 "k", IDDELLIPSE, ALT ; alt k
 98, IDDRECT, ASCII ; b
 66, IDDSTAR, ASCII ; B (shift b)
 "g", IDDRECT ; g
 "G", IDDSTAR ; G (shift G)
 VK_F1, IDDCLEAR, VIRTKEY ; F1
 VK_F1, IDDSTAR, CONTROL, VIRTKEY ; control F1
 VK_F1, IDDELLIPSE, SHIFT, VIRTKEY ; shift F1
 VK_F1, IDDRECT, ALT, VIRTKEY ; alt F1
 VK_F2, IDDCLEAR, ALT, SHIFT, VIRTKEY ; alt shift F2
 VK_F2, IDDSTAR, CONTROL, SHIFT, VIRTKEY ; ctrl shift F2
 VK_F2, IDDRECT, ALT, CONTROL, VIRTKEY ; alt control F2
END

See Also

TranslateAccelerator
Multiline Statements
CHARACTERISTICS, DIALOG, LANGUAGE, MENU, RCDATA, STRINGTABLE, VERSION

 AUTO3STATE Control

The AUTO3STATE statement creates an automatic 3-state check box. The control is an open box with
the given text positioned to the right of the box. When chosen, the box automatically advances
between three states: checked, unchecked, and disabled (grayed). The control sends a message to its
parent whenever the user chooses the control.

Syntax

AUTO3STATE text, id, x, y, width, height [, style [, extended-style]]

Parameters

style
Specifies styles for the control, which can be a combination of the BS_AUTO3STATE style and the
following styles: WS_TABSTOP, WS_DISABLED, and WS_GROUP.
The default style for this control is BS_AUTO3STATE and WS_TABSTOP.

For more information on the text, id, x, y, width, height, style, and extended-style parameters, see
Common Statement Parameters.

See Also

AUTOCHECKBOX, CHECKBOX, CONTROL, STATE3

 AUTOCHECKBOX Control

The AUTOCHECKBOX statement creates an automatic check box control. The control is a small
rectangle (check box) that has the specified text displayed next to it (typically, to the right). When the
user chooses the control, the control highlights the rectangle and sends a message to its parent
window. The AUTOCHECKBOX statement, which can only be used in the body of a DIALOG
statement, defines the text, identifier, dimensions, and attributes of the control.

Syntax

AUTOCHECKBOX text, id, x, y, width, height [, style [, extended-style]]

Parameters

style
Specifies the styles of the control. This value can be a combination of the button class style
BS_AUTOCHECKBOX and the WS_TABSTOP and WS_GROUP styles.
If you do not specify a style, the default style is BS_AUTOCHECKBOX and WS_TABSTOP.

For more information on the text, id, x, y, width, height, style, and extended-style parameters, see
Common Statement Parameters.

See Also

AUTO3STATE, CHECKBOX, CONTROL, STATE3

 AUTORADIOBUTTON Control

The AUTORADIOBUTTON control statement specifies an automatic radio button control. This control
automatically performs mutual exclusion with the other AUTORADIOBUTTON controls in the same
group. When the button is chosen, the application is notified with BN_CLICKED.

Syntax

AUTORADIOBUTTON text, id, x, y, width, height [, style [, extended-style]]

Parameters

text
The specified text appears next to the radio button.

style
Specifies styles for the automatic radio button, which can be a combination of BUTTON-class styles
and the following styles: WS_TABSTOP, WS_DISABLED, and WS_GROUP.
The default style for AUTORADIOBUTTON is BS_AUTORADIOBUTTON and WS_TABSTOP.

For more information on the text, id, x, y, width, height, style, and extended-style parameters, see
Common Statement Parameters.

See Also

CONTROL, RADIOBUTTON

 BITMAP Resource

The BITMAP resource-definition statement specifies a bitmap that an application uses in its screen
display or as an item in a menu or control.

Syntax

nameID BITMAP [load-mem] filename

Parameter

nameID
Specifies either a unique name or a 16-bit unsigned integer value identifying the resource.

load-mem
Specifies loading and memory attributes for the resource. For more information, see Common
Resource Attributes.

filename
Specifies the name of the file that contains the resource. The name must be a valid filename; it must
be a full path if the file is not in the current working directory. The path can either be a quoted or
nonquoted string.

Example

The following example specifies two bitmap resources:

disk1 BITMAP disk.bmp
12 BITMAP PRELOAD diskette.bmp

See Also

LoadBitmap

 CAPTION Statement

The CAPTION statement defines the title for a dialog box. The title appears in the box's caption bar (if
it has one).

The default caption is empty.

Syntax

CAPTION "captiontext"

Parameter

captiontext
Specifies a character string enclosed in double quotation marks (").

Example

The following example demonstrates the use of the CAPTION statement:

CAPTION "Error!"

 CHARACTERISTICS Statement

The CHARACTERISTICS statement allows the developer to specify information about a resource that
can be used by tools that read and write resource-definition files. The specified dword value appears
with the resource in the compiled .RES file. However, the value is not stored in the executable file and
has no significance to Windows.

The CHARACTERISTICS statement appears before the BEGIN in an ACCELERATORS, DIALOG,
MENU, RCDATA, or STRINGTABLE resource definition. The specified value applies only to that
resource.

Syntax

CHARACTERISTICS dword

Parameter

dword
A user-defined doubleword value.

See Also

Multiline Statements, ACCELERATORS, DIALOG, LANGUAGE, MENU, RCDATA, STRINGTABLE

 CHECKBOX Control

The CHECKBOX statement creates a check box control. The control is a small rectangle (check box)
that has the specified text displayed next to it (typically, to the right). When the user selects the control,
the control highlights the rectangle and sends a message to its parent window. The CHECKBOX
statement, which can only be used in a DIALOG statement, defines the text, identifier, dimensions, and
attributes of the control.

Syntax

CHECKBOX text, id, x, y, width, height [, style [, extended-style]]

Parameters

text
Specifies text that is displayed to the right of the control.

style
Specifies the control styles. This value can be a combination of the button class style
BS_CHECKBOX and the WS_TABSTOP and WS_GROUP styles.
If you do not specify a style, the default style is BS_CHECKBOX and WS_TABSTOP.

For more information on the text, id, x, y, width, height, style, and extended-style parameters, see
Common Statement Parameters.

Example

This example creates a check-box control that is labeled "Italic":

CHECKBOX "Italic", 3, 10, 10, 40, 10

See Also

AUTOCHECKBOX, AUTO3STATE, GetDialogBaseUnits, STATE3

 CLASS Statement

The CLASS statement defines the class of the dialog box. The CLASS statement appears in the
optional section before a DIALOG statement's BEGIN keyword. If no class is given, the Windows
standard dialog class is used.

Syntax

CLASS class

Parameters

class
Specifies a 16-bit unsigned integer or a string, enclosed in double quotation marks ("), that identifies
the class of the dialog box. If the window procedure for the class does not process a message sent
to it, it must call the DefDlgProc function to ensure that all messages are handled properly for the
dialog box. A private class can use DefDlgProc as the default window procedure. The class must be
registered with the cbWndExtra member of the WNDCLASS structure set to DLGWINDOWEXTRA.

Remarks

The CLASS statement should only be used with special cases, because it overrides the normal
processing of a dialog box. The CLASS statement converts a dialog box to a window of the specified
class; depending on the class, this could give undesirable results. Do not use the redefined control-
class names with this statement.

Example

The following example demonstrates the use of the CLASS statement:

CLASS "myclass"

See Also

DefDlgProc, DIALOG

 COMBOBOX Control

The COMBOBOX statement creates a combination box control (a combo box). A combo box consists
of either a static text box or an edit box combined with a list box. The list box can be displayed at all
times or pulled down by the user. If the combo box contains a static text box, the text box always
displays the selection (if any) in the list box portion of the combo box. If it uses an edit box, the user
can type in the desired selection; the list box highlights the first item (if any) that matches what the user
has entered in the edit box. The user can then select the item highlighted in the list box to complete the
choice. In addition, the combo box can be owner-drawn and of fixed or variable height.

Syntax

COMBOBOX text, id, x, y, width, height [, style [, extended-style]]

Parameters

style
Specifies the control styles. This value can be a combination of the COMBOBOX class styles and
any of the following styles: WS_TABSTOP, WS_GROUP, WS_VSCROLL, and WS_DISABLED.
If you do not specify a style, the default style is CBS_SIMPLE and WS_TABSTOP.

For more information on the text, id, x, y, width, height, style, and extended-style parameters, see
Common Statement Parameters.

Example

This example creates a combo-box control with a vertical scroll bar:

COMBOBOX 777, 10, 10, 50, 54, CBS_SIMPLE | WS_VSCROLL | WS_TABSTOP

 CONTROL: General Control

This statement defines a user-defined control window.

Syntax

CONTROL text, id, class, style, x, y, width, height [, extended-style]

Parameters

class
Specifies a redefined name, character string, or a 16-bit unsigned integer value that defines the
class. This can be any one of the control classes; for a list of the control classes, see the first list
following this description. If the value is a redefined name supplied by the application, it must be a
string enclosed in double quotation marks (").

style
Specifies a redefined name or integer value that specifies the style of the given control. The exact
meaning of style depends on the class value. The sections following this description show the
control classes and corresponding styles.

For more information on the text, id, x, y, width, height, style, and extended-style parameters, see
Common Statement Parameters.

The six possible control classes are described in the following sections.

 The Button Control Class

A button control is a small rectangular child window that represents a "button" that the user can turn on
or off by clicking it with the mouse. Button controls can be used alone or in groups, and can either be
labeled or appear without text. Button controls typically change appearance when the user clicks them.

A button can have only one of the following styles, with the exception of BS_LEFTTEXT, which can be
combined with check boxes and radio buttons:

BS_3STATE
Creates a button that is the same as a check box, except that the box can be grayed (dimmed) as
well as checked. The grayed state is used to show that the state of the check box is not determined.

BS_AUTO3STATE
Creates a button that is the same as a three-state check box, except that the box changes its state
when the user selects it. The state cycles through checked, grayed, and normal.

BS_AUTOCHECKBOX
Creates a button that is the same as a check box, except that an X appears in the check box when
the user selects the box; the X disappears (is cleared) the next time the user selects the box.

BS_AUTORADIOBUTTON
Creates a button that is the same as a radio button, except that when the user selects it, the button
automatically highlights itself and clears (removes the selection from) any other buttons in the same
group.

BS_CHECKBOX
Creates a small square that has text displayed to its right (unless this style is combined with the
BS_LEFTTEXT style).

BS_DEFPUSHBUTTON
Creates a button that has a heavy black border. The user can select this button by pressing the
ENTER key. This style is useful for enabling the user to quickly select the most likely option (the
default option).

BS_GROUPBOX
Creates a rectangle in which other controls can be grouped. Any text associated with this style is
displayed in the rectangle's upper-left corner.

BS_LEFTTEXT
Places text on the left side of the radio button or check box when combined with a radio button or
check box style.

BS_OWNERDRAW
Creates an owner-drawn button. The owner window receives a WM_MEASUREITEM message
when the button is created, and it receives a WM_DRAWITEM message when a visual aspect of the
button has changed. The BS_OWNERDRAW style cannot be combined with any other button styles.

BS_PUSHBUTTON
Creates a push button that posts a WM_COMMAND message to the owner window when the user
selects the button.

BS_RADIOBUTTON
Creates a small circle that has text displayed to its right (unless this style is combined with the
BS_LEFTTEXT style). Radio buttons are usually used in groups of related but mutually exclusive
choices.

 The Combobox Control Class

Combo-box controls consist of a selection field similar to an edit control plus a list box. The list box may
be displayed at all times or may be dropped down when the user selects a "pop box" next to the
selection field.

Depending on the style of the combo box, the user can or cannot edit the contents of the selection
field. If the list box is visible, typing characters into the selection box will cause the first list-box entry
that matches the characters typed to be highlighted. Conversely, selecting an item in the list box
displays the selected text in the selection field. Combo-box control styles are described below.

CBS_SIMPLE
Displays the list box at all times. The current selection in the list box is displayed in the edit control.

CBS_DROPDOWN
Similar to CBS_SIMPLE except that the list box is not displayed unless the user selects an icon next
to the selection field.

CBS_DROPDOWNLIST
Similar to CBS_DROPDOWN except that the edit control is replaced by a static text item which
displays the current selection in the list box.

CBS_OWNERDRAWFIXED
Specifies a fixed-height owner-draw combo box. The owner of the list box is responsible for drawing
its contents; the items in the list box are all the same height.

CBS_OWNERDRAWVARIABLE
Specifies a variable-height owner-draw combo box. The owner of the list box is responsible for
drawing its contents; the items in the list box can have different heights.

CBS_AUTOHSCROLL
Scrolls the text in the edit control to the right when the user types a character at the end of the line. If
this style is not set, only text that fits within the rectangular boundary is allowed.

CBS_SORT
Sorts strings entered into the list box.

CBS_HASSTRINGS
Specifies an owner-draw combo box that contains items consisting of strings. The combo box
maintains the memory and pointers for the strings so that the application can use the LB_GETTEXT
message to retrieve the text for a particular item.

CBS_OEMCONVERT
Converts text entered in the combo box edit control from the ANSI character set to the OEM
character set and then back to ANSI. This ensures proper character conversion when the application
calls the CharToOem function to convert an ANSI string in the combo box to OEM characters. This
style is most useful for combo boxes that contain filenames and applies only to combo boxes
created with the CBS_SIMPLE or CBS_DROPDOWN styles.

 The Edit Control Class

An edit control is a rectangular child window in which the user can enter text from the keyboard. The
user selects the control, and gives it the input focus, by clicking the mouse inside it or pressing the TAB
key. The user can enter text when the control displays a flashing insertion point. The mouse can be
used to move the cursor and select characters to be replaced, or to position the cursor for inserting
characters. The BACKSPACE key can be used to delete characters.

Edit controls use the fixed-pitch font and display Unicode characters. They expand tab characters into
as many space characters as are required to move the cursor to the next tab stop. Tab stops are
assumed to be at every eighth character position. Edit control styles are described below.

ES_LEFT
Justifies the text to the left.

ES_CENTER
Centers the text. This style is valid in multiline edit controls only.

ES_RIGHT
Justifies the text to the right. This style is valid in multiline edit controls only.

ES_LOWERCASE
Converts all characters to lowercase as they are typed into the edit control.

ES_UPPERCASE
Converts all characters to uppercase as they are typed into the edit control.

ES_PASSWORD
Displays all characters as an asterisk (*) as they are typed into the edit control. An application can
use the EM_SETPASSWORDCHAR message to change the character that is displayed.

ES_MULTILINE
Multiple-line edit control. (The default is single-line.) Shows as many lines of text as possible. The
following four styles specify options for horizontal and vertical scrolling.
ES_AUTOVSCROLL specified

Shows as many lines as possible and scrolls vertically when the user presses ENTER. (This is
actually the carriage-return character, which the edit control expands to a carriage-return -
linefeed combination.)

ES_AUTOVSCROLL not specified
Shows as many lines as possible and beeps if the user presses ENTER when no more lines can
be displayed.

ES_AUTOHSCROLL specified
Scrolls horizontally when the insertion point goes past the right edge of the control. To start a new
line, press ENTER.

ES_AUTOHSCROLL not specified
Wraps words to the beginning of the next line when necessary. A new line is also started if the
user presses ENTER. If the window size changes, the word-wrap position changes, and the text is
redisplayed.

Multiple-line edit controls can have scroll bars. An edit control with scroll bars processes its own
scroll-bar messages. Edit controls without scroll bars scroll as described above and process any
scroll messages sent by the parent window.

ES_AUTOVSCROLL
Scrolls text automatically up one page when the user presses ENTER on the last line.

ES_AUTOHSCROLL
Scrolls text automatically to the right by 10 characters when the user types a character at the end of
the line. When the user presses ENTER, the control scrolls all text back to position 0.

ES_NOHIDESEL
Overrides the default action, in which an edit control hides the selection when the control loses the

input focus. Inverts the selection instead.
ES_OEMCONVERT

Converts text entered in the edit control from the ANSI character set to the OEM character set and
then back to ANSI. This ensures proper character conversion when the application calls the
CharToOem function to convert an ANSI string in the edit control to OEM characters. This style is
most useful for edit controls that contain filenames.

 The Listbox Control Class

Listbox controls consist of a list of character strings. The control is used whenever an application needs
to present a list of names, such as filenames, that the user can view and select. The user can select a
string by pointing to the string with the mouse and clicking a mouse button. When a string is selected, it
is highlighted and a notification message is passed to the parent window. A scroll bar can be used with
a listbox control to scroll lists that are too long or too wide for the control window. Listbox control styles
are described below.

LBS_STANDARD
Strings in the list box are sorted alphabetically and the parent window receives an input message
whenever the user clicks or double-clicks a string. The list box contains borders on all sides.

LBS_DISABLENOSCROLL
Shows a disabled vertical scroll bar for the list box when the box does not contain enough items to
scroll. If this style is not specified, the scroll bar is hidden when the list box does not contain enough
items.

LBS_EXTENDEDSEL
The user can select multiple items using the mouse with the SHIFT and/or the CONTROL key or
special key combinations.

LBS_HASSTRINGS
An owner-draw list box contains items consisting of strings. The list box maintains the memory and
pointers for the strings so the application can use the LB_GETTEXT message to retrieve the text for
a particular item.

LBS_NOTIFY
The parent receives an input message whenever the user clicks or double-clicks a string.

LBS_MULTIPLESEL
The string selection is toggled each time the user clicks or double-clicks the string. Any number of
strings can be selected.

LBS_MULTICOLUMN
The list box contains multiple columns. The list box can be scrolled horizontally. The
LB_SETCOLUMNWIDTH message sets the width of the columns.

LBS_NOINTEGRALHEIGHT
The size of the list box is exactly the size specified by the application when it created the list box.
Normally, Windows sizes a list box so that the list box does not display partial items.

LBS_SORT
The strings in the list box are sorted alphabetically.

LBS_NOREDRAW
The list-box display is not updated when changes are made. This style can be changed at any time
by sending a WM_SETREDRAW message.

LBS_OWNERDRAWFIXED
The owner of the list box is responsible for drawing its contents; the items in the list box are all the
same height.

LBS_OWNERDRAWVARIABLE
The owner of the list box is responsible for drawing its contents; the items in the list box are variable
in height.

LBS_USETABSTOPS
The list box is able to recognize and expand tab characters when drawing its strings. The default tab
positions are set at every 32 dialog units. (A dialog unit is a horizontal or vertical distance. One
horizontal dialog unit is equal to 1/4 of the current dialog base width unit. The dialog base units are
computed from the height and width of the current system font. The GetDialogBaseUnits function
returns the size of the dialog base units in pixels.)

LBS_WANTKEYBOARDINPUT

The owner of the list box receives WM_VKEYTOITEM or WM_CHARTOITEM messages whenever
the user presses a key while the list box has input focus. This allows an application to perform
special processing on the keyboard input.

 The Scroll-Bar Control Class

A scroll-bar control is a rectangle that contains a scroll thumb and has direction arrows at both ends.
The scroll bar sends a notification message to its parent whenever the user clicks the mouse in the
control. The parent is responsible for updating the thumb position, if necessary. Scroll-bar controls have
the same appearance and function as the scroll bars used in ordinary windows. But unlike scroll bars,
scroll-bar controls can be positioned anywhere within a window and used whenever needed to provide
scrolling input for a window. Scroll-bar control styles are described below.

SBS_VERT
Vertical scroll bar. If neither SBS_RIGHTALIGN nor SBS_LEFTALIGN is specified, the scroll bar has
the height, width, and position given in the CreateWindow function.

SBS_RIGHTALIGN
Used with SBS_VERT. The right edge of the scroll bar is aligned with the right edge of the rectangle
specified by the x, y, width, and height values given in the CreateWindow function. The scroll bar
has the default width for system scroll bars.

SBS_LEFTALIGN
Used with SBS_VERT. The left edge of the scroll bar is aligned with the left edge of the rectangle
specified by the x, y, width, and height values given in the CreateWindow function. The scroll bar
has the default width for system scroll bars.

SBS_HORZ
Horizontal scroll bar. If neither SBS_BOTTOMALIGN nor SBS_TOPALIGN is specified, the scroll bar
has the height, width, and position given in the CreateWindow function.

SBS_TOPALIGN
Used with SBS_HORZ. The top edge of the scroll bar is aligned with the top edge of the rectangle
specified by the x, y, width, and height values given in the CreateWindow function. The scroll bar
has the default height for system scroll bars.

SBS_BOTTOMALIGN
Used with SBS_HORZ. The bottom edge of the scroll bar is aligned with the bottom edge of the
rectangle specified by the x, y, width, and height values given in the CreateWindow function. The
scroll bar has the default height for system scroll bars.

SBS_SIZEBOX
Size box. If neither SBS_SIZEBOXBOTTOMRIGHTALIGN nor SBS_SIZEBOXTOPLEFTALIGN is
specified, the size box has the height, width, and position given in the CreateWindow function.

SBS_SIZEBOXTOPLEFTALIGN
Used with SBS_SIZEBOX. The top-left corner of the size box is aligned with the top-left corner of the
rectangle specified by the x, y, width, and height values given in the CreateWindow function. The
size box has the default size for system size boxes.

SBS_SIZEBOXBOTTOMRIGHTALIGN
Used with SBS_SIZEBOX. The bottom-right corner of the size box is aligned with the bottom-right
corner of the rectangle specified by the x, y, width, and height values given in the CreateWindow
function. The size box has the default size for system size boxes.

 The Static Control Class

Static controls are simple text fields, boxes, and rectangles that can be used to label, box, or separate
other controls. Static controls take no input and provide no output. Static control styles are described
below.

SS_LEFT
A simple rectangle displaying the given text flush left. The text is formatted before it is displayed.
Words that would extend past the end of a line are automatically wrapped to the beginning of the
next line.

SS_CENTER
A simple rectangle displaying the given text centered. The text is formatted before it is displayed.
Words that would extend past the end of a line are automatically wrapped to the beginning of the
next line.

SS_RIGHT
A simple rectangle displaying the given text flush right. The text is formatted before it is displayed.
Words that would extend past the end of a line are automatically wrapped to the beginning of the
next line.

SS_LEFTNOWORDWRAP
A simple rectangle displaying the given text flush left. Tabs are expanded, but words are not
wrapped. Text that extends past the end of a line is clipped.

SS_SIMPLE
A simple rectangle with a single line of text flush left. The line of text cannot be shortened or altered
in any way. (The control's parent window or dialog box must not process the WM_CTLCOLOR
message.)

SS_NOPREFIX
Removes any ampersand (&) characters and underlines the next character in the string. Unless this
style is specified, Windows will interpret any ampersand characters in the control's text to be
accelerator prefix characters. If a static control is to contain text where this feature is not wanted,
SS_NOPREFIX may be added. This static-control style may be included with any of the defined
static controls.
You can combine SS_NOPREFIX with other styles by using the bitwise OR (|) operator. This is most
often used when filenames or other strings that may contain an ampersand need to be displayed in
a static control in a dialog box.

SS_ICON
An icon displayed in the dialog box. The given text is the name of an icon (not a filename) defined
elsewhere in the resource file. For the ICON statement, the width and height parameters in the
CreateWindow function are ignored; the icon automatically sizes itself.

SS_BLACKRECT
A rectangle filled with the color used to draw window frames. This color is black in the default
Windows color scheme.

SS_GRAYRECT
A rectangle filled with the color used to fill the screen background. This color is gray in the default
Windows color scheme.

SS_WHITERECT
A rectangle filled with the color used to fill window backgrounds. This color is white in the default
Windows color scheme.

SS_BLACKFRAME
Box with a frame drawn with the same color as window frames. This color is black in the default
Windows color scheme.

SS_GRAYFRAME
Box with a frame drawn with the same color as the screen background (desktop). This color is gray

in the default Windows color scheme.
SS_WHITEFRAME

Box with a frame drawn with the same color as window backgrounds. This color is white in the
default Windows color scheme.

SS_USERITEM
User-defined item.

 CTEXT Control

The CTEXT statement creates a centered-text control. The control is a simple rectangle displaying the
given text centered in the rectangle. The text is formatted before it is displayed. Words that would
extend past the end of a line are automatically wrapped to the beginning of the next line. The CTEXT
statement, which you can use only in a DIALOG statement, defines the text, identifier, dimensions, and
attributes of the control.

Syntax

CTEXT text, id, x, y, width, height [, style [, extended-style]]

Parameters

text
Specifies text that is centered in the rectangular area of the control.

style
Specifies the control styles. This value can be any combination of the following styles: SS_CENTER,
WS_TABSTOP, and WS_GROUP.
If you do not specify a style, the default style is SS_CENTER and WS_GROUP.

For more information on the text, id, x, y, width, height, style, and extended-style parameters, see
Common Statement Parameters.

Example

This example creates a centered-text control that is labeled "filename":

CTEXT "filename", 101, 10, 10, 100, 100

See Also

CONTROL, DIALOG, LTEXT, RTEXT

 CURSOR Resource

The CURSOR statement specifies a bitmap that defines the shape of the cursor on the display screen.

Syntax

nameID CURSOR [load-mem] filename

Parameters

nameID
Specifies either a unique name or a 16-bit unsigned integer identifying the resource.

load-mem
Specifies loading and memory attributes for the resource. For more information, see Common
Resource Attributes.

filename
Specifies the name of the file that contains the resource. The name must be a valid filename; it must
be a full path if the file is not in the current working directory. The path can either be a quoted or
nonquoted string.

Remarks

Icon and cursor resources can contain more than one image. If the resource is marked with the
PRELOAD option, Windows loads all images in the resource when the application executes.

Example

The following example specifies two cursor resources; one by name (cursor1) and the other by number
(2):

cursor1 CURSOR bullseye.cur
2 CURSOR "d:\\cursor\\arrow.cur"

 DEFPUSHBUTTON Control

The DEFPUSHBUTTON statement creates a default push-button control. The control is a small
rectangle with a bold outline that represents the default response for the user. The given text is
displayed inside the button. The control highlights the button in the usual way when the user clicks the
mouse in it and sends a message to its parent window.

Syntax

DEFPUSHBUTTON text, id, x, y, width, height [, style [, extended-style]]

Parameters

text
Specifies text that is centered in the rectangular area of the control.

style
Specifies the control styles. This value can be a combination of the following styles:
BS_DEFPUSHBUTTON, WS_TABSTOP, WS_GROUP, and WS_DISABLED.
If you do not specify a style, the default style is BS_DEFPUSHBUTTON and WS_TABSTOP.

For more information on the text, id, x, y, width, height, style, and extended-style parameters, see
Common Statement Parameters.

Example

This example creates a default push-button control that is labeled "Cancel":

DEFPUSHBUTTON "Cancel", 101, 10, 10, 24, 50

See Also

PUSHBUTTON, RADIOBUTTON

 DIALOG Resource

The DIALOG statement defines a window that an application can use to create dialog boxes. The
statement defines the position and dimensions of the dialog box on the screen as well as the dialog
box style.

Syntax

nameID DIALOG [load-mem] x, y, width, height
[optional-statements]
BEGIN
 control-statement
 . . .
END

Parameters

nameID
Identifies the dialog box. This is either a unique name or a unique 16-bit unsigned integer value in
the range 1 to 65,535.

load-mem
Specifies loading and memory attributes for the resource. For more information, see Common
Resource Attributes.

option-statements
Specifies options for the dialog box. This can be zero or more of the following statements:
CAPTION "text"

Specifies the caption of the dialog box if it has a title bar. See CAPTION for more information.
CHARACTERISTICS dword

Specifies a user-defined double-word value for use by resource tools. This value is not used by
Windows. For more information, see CHARACTERISTICS.

CLASS class
Specifies a 16-bit unsigned integer or a string, enclosed in double quotation marks ("), that
identifies the class of the dialog box. See CLASS for more information.

LANGUAGE language,sublanguage
Specifies the language of the dialog box. See LANGUAGE for more information.

STYLE styles
Specifies the styles of the dialog box. See STYLE for more information.

EXSTYLE=extended-styles
Specifies the extended styles of the dialog box. See EXSTYLE for more information.

VERSION dword
Specifies a user-defined doubleword value. This statement is intended for use by additional
resource tools and is not used by Windows. For more information, see VERSION.

For more information on the x, y, width, and height parameters, see Common Statement Parameters.

Remarks

The GetDialogBaseUnits function returns the dialog base units in pixels. The exact meaning of the
coordinates depends on the style defined by the STYLE option statement. For child-style dialog boxes,
the coordinates are relative to the origin of the parent window, unless the dialog box has the style
DS_ABSALIGN; in that case, the coordinates are relative to the origin of the display screen.

Do not use the WS_CHILD style with a modal dialog box. The DialogBox function always disables the
parent/owner of the newly created dialog box. When a parent window is disabled, its child windows are
implicitly disabled. Since the parent window of the child-style dialog box is disabled, the child-style

dialog box is too.

If a dialog box has the DS_ABSALIGN style, the dialog coordinates for its upper-left corner are relative
to the screen origin instead of to the upper-left corner of the parent window. You would typically use this
style when you wanted the dialog box to start in a specific part of the display no matter where the
parent window may be on the screen.

The name DIALOG can also be used as the class-name parameter to the CreateWindow function to
create a window with dialog box attributes.

Example

The following demonstrates the usage of the DIALOG statement:

#include <windows.h>

ErrorDialog DIALOG 10, 10, 300, 110
STYLE WS_POPUP|WS_BORDER
CAPTION "Error!"
BEGIN
 CTEXT "Select One:", 1, 10, 10, 280, 12
 PUSHBUTTON "&Retry", 2, 75, 30, 60, 12
 PUSHBUTTON "&Abort", 3, 75, 50, 60, 12
 PUSHBUTTON "&Ignore", 4, 75, 80, 60, 12
END

See Also

CONTROL, CreateDialog, CreateWindow, DialogBox, DIALOGEX, GetDialogBaseUnits, Multiline
Statements, ACCELERATORS, CHARACTERISTICS, LANGUAGE, MENU, RCDATA,
STRINGTABLE, VERSION

 DIALOGEX Resource

The DIALOGEX resource is an extension of the DIALOG resource. In addition to the functionality
offered by DIALOG, DIALOGEX allows for the following:

· Help IDs on the dialog itself as well as on controls within the dialog.
· Use of the EXSTYLE statement for the dialog itself as well as on controls within the dialog.
· Font weight and italic settings for the font to be used in the dialog.
· Control-specific data for controls within the dialog.
· Use of the BEDIT, IEDIT, and HEDIT predefined system class names.

Syntax

nameID DIALOGEX [load-mem] x, y, width, height [, helpID]
[optional-statements]
BEGIN
 control-statement
 . . .
END

Parameters

nameID
Identifies the dialog box. This is either a unique name or a unique 16-bit unsigned integer value in
the range 1 to 65,535.

load-mem
Specifies loading and memory attributes for the resource. For more information, see Common
Resource Attributes.

x
Specifies the location on the screen of the left side of the dialog, in dialog units.

y
Specifies the location on the screen of the top of the dialog, in dialog units.

width
Specifies the width of the dialog, in dialog units.

height
Specifies the height of the dialog, in dialog units.

helpID
Specifies a numeric expression indicating the ID used to identify the dialog during WM_HELP
processing.

optional-statements
Specifies options for the dialog box. This can be zero or more of the following statements:
CAPTION "text"

Specifies the caption of the dialog box if it has a title bar. See CAPTION for more information.
CHARACTERISTICS DWORD

Specifies a user-defined DWORD value for use by resource tools. This value is not used by
Windows. For more information see CHARACTERISTICS.

CLASS class
Specifies a 16-bit unsigned integer or a string, enclosed in double quotation marks ("), that
identifies the class of the dialog box. See CLASS for more information.

EXSTYLE=extended-styles
Specifies the extended styles of the dialog box. See EXSTYLE for more information.

FONT pointsize, typeface, weight, italic

pointsize
Specifies the size, in points, of the font.

typeface
Specifies the name of the typeface. This name must be identical to the name defined in the

[FONTS] section of WIN.INI. This parameter must be enclosed in double quotation marks (").
weight

Specifies a numeric expression for the font weight (explicit FW_* values defined in WINGDI.H
can be used by adding an include to the RC file: #include "WINGDI.H")
italic

Indicates whether the font should be italic or not. Specify either TRUE or FALSE for the italic
value.

LANGUAGE language, sublanguage
Specifies the language of the dialog box. See LANGUAGE for more information.

MENU menuname
Specifies the menu to use. This value is either the name of the menu or the integer identifier.

STYLE styles
Specifies the styles of the dialog box. See STYLE for more information.

VERSION DWORD
Specifies a user-defined DWORD value. This statement is intended for use by additional resource
tools and is not used by Windows. For more information, see VERSION.

The DIALOGEX body is marked with a BEGIN statement at the beginning of the body and an END
statement at the end of the body. The body is made up of any number of control statements. There are
four families of control statements: generic, static, button, and edit. While each of these families uses a
different syntax for defining specific features of its controls, they all share a common syntax for defining
the position, size, extended styles, help identification number, and control-specific data. That common
syntax is:

(controlType), x, y, cx, cy [, [exStyle] [, helpID]
 [BEGIN
 data-element-1 [,
 data-element-2 [,
 ...]]
 END]

(controlType)
Family-specific definition ¾ described below.
x

Specifies the location in the dialog of the left side of the control, in dialog units.
y

Specifies the location in the dialog of the top of the control, in dialog units.
cx

Specifies the width of the control, in dialog units.
cy

Specifies the height of the control, in dialog units.
exStyle

Specifies any number of extended window styles (explicit WS_EX_* style values defined in
winuser.h can be used by adding an include to the RC file: #include "winuser.h")

helpID
Specifies a numeric expression indicating the ID used to identify the control during WM_HELP
processing.

controlData
Marked by a nested BEGIN and END, specifies the control-specific data for the control. When a

dialog is created, and a control in that dialog which has control-specific data is created, a pointer
to that data is passed into the control's window procedure via the lParam to the WM_CREATE
message for that control.

Following is the family-specific syntax of the (controlType):

Generic control:

CONTROL controlText, id, className, style

controlText
Specifies the window text for the control. For more information, see Common Statement
Parameters.

id
Specifies the control identifier. For more information, see Common Statement Parameters.

className
Specifies the name of the class. This may be either a string enclosed in double quotation marks
(") or one of the following predefined system classes: BUTTON, STATIC, EDIT, LISTBOX,
SCROLLBAR, or COMBOBOX.

style
Specifies the window styles (explicit WS_*, BS_*, SS_*, ES_*, LBS_*, SBS_*, and CBS_* style
values defined in WINUSER.H can be used by adding an include to the RC file: #include
"WINUSER.H")

Static control:

staticClass controlText, id

staticClass {LTEXT | RTEXT | CTEXT}

controlText
Specifies the window text for the control. For more information, see "Common Statement
Parameters".

id
Specifies the control identifier. For more information, see "Common Statement Parameters".

Button control:

buttonClass controlText, id

buttonClass {AUTO3STATE | AUTOCHECKBOX | AUTORADIOBUTTON | CHECKBOX | PUSHBOX |
PUSHBUTTON | RADIOBUTTON | STATE3 | USERBUTTON}

controlText
Specifies the window text for the control. For more information, see "Common Statement
Parameters".

id
Specifies the control identifier. For more information, see "Common Statement Parameters".

Edit control:

editClass id

editClass {EDITTEXT | BEDIT | HEDIT | IEDIT}

id
Specifies the control identifier. For more information, see "Common Statement Parameters".

Arithmetic and Boolean Operations

Valid operations that may be contained in any of the numeric expressions in the statements of
DIALOGEX are:

· Add ('+')
· Subtract ('-')
· Unary minus ('-')
· Unary NOT ('~')
· AND ('&')
· OR ('|')

See Also

CONTROL, CreateDialog, CreateWindow, DialogBox, DIALOGEX, GetDialogBaseUnits, Multiline
Statements, ACCELERATORS, CHARACTERISTICS, LANGUAGE, MENU, RCDATA,
STRINGTABLE, VERSION

 EDITTEXT Control

The EDITTEXT statement defines an EDIT control belonging to the EDIT class. It creates a rectangular
region in which the user can type and edit text. The control displays a cursor when the user clicks the
mouse in it. The user can then use the keyboard to enter text or edit the existing text. Editing keys
include the BACKSPACE and DELETE keys. The user can also use the mouse to select characters to be
deleted or to select the place to insert new characters.

Syntax

EDITTEXT text, id, x, y, width, height [, style [, extended-style]]

Parameters

style
Specifies the control styles. This value can be a combination of the edit class styles and the
following styles: WS_TABSTOP, WS_GROUP, WS_VSCROLL, WS_HSCROLL, and
WS_DISABLED.
If you do not specify a style, the default style is ES_LEFT, WS_BORDER, and WS_TABSTOP.

For more information on the text, id, x, y, width, height, style, and extended-style parameters, see
Common Statement Parameters.

Example

The following example demonstrates the use of the EDITTEXT statement:

EDITTEXT 3, 10, 10, 100, 10

 EXSTYLE Statement

The EXSTYLE command allows you to designate a dialog box with the WS_EX_style styles. In a
resource definition, the EXSTYLE statement is placed with the optional statements before the BEGIN
keyword.

Syntax

EXSTYLE extended-style

Parameter

extended-style
The WS_EX_style style for the dialog box or control.

Remarks

It can also be placed with the load-mem parameters in a DIALOG statement as follows:

name DIALOG [load-mem] EXSTYLE=extended-style x, y, ...

For controls, extended styles are specified after the style option in any control definition, as follows:

control text, id, x, y, width, height, [style[, extended-style]]

See also

ACCELERATORS, CONTROL, DIALOG, MENU, POPUP, RCDATA, STRINGTABLE, User-Defined
Resource

 FONT Resource

The FONT resource-definition statement specifies a file that contains a font.

For a font resource, nameID must be a number; it cannot be a name.

Syntax

nameID FONT [load-mem] filename

Parameters

nameID
Specifies either a unique name or a 16-bit unsigned integer value identifying the resource.

load-mem
Specifies loading and memory attributes for the resource. For more information, see Common
Resource Attributes.

filename
Specifies the name of the file that contains the resource. The name must be a valid filename; it must
be a full path if the file is not in the current working directory. The path can either be a quoted or
nonquoted string.

Example

The following example specifies a single font resource:

5 FONT CMROMAN.FNT

 FONT Statement

The FONT statement defines the font with which Windows will draw text in the dialog box. The font
must have been previously loaded, either from the WIN.INI file or by calling the LoadResource
function.

Syntax

FONT pointsize, typeface

Parameters

pointsize
Specifies the size, in points, of the font.

typeface
Specifies the name of the typeface. This name must be identical to the name defined in the [FONTS]
section of WIN.INI. This parameter must be enclosed in double quotes (").

Example

The following example demonstrates the use of the FONT statement:

FONT 12, "MS Sans Serif"

See Also

DIALOG, LoadResource

 GROUPBOX Control

The GROUPBOX statement creates a group box control. The control is a rectangle that groups other
controls together. The controls are grouped by drawing a border around them and displaying the given
text in the upper-left corner. The GROUPBOX statement, which you can use only in a DIALOG
statement, defines the text, identifier, dimensions, and attributes of a control window.

When the style contains WS_TABSTOP or the text specifies an accelerator, tabbing or pressing the
accelerator key moves the focus to the first control within the group.

Syntax

GROUPBOX text, id, x, y, width, height [, style [, extended-style]]

Parameters

style
Specifies the control styles. This value can be a combination of the button class style
BS_GROUPBOX and the WS_TABSTOP and WS_DISABLED styles.
If you do not specify a style, the default style is BS_GROUPBOX.

For more information on the text, id, x, y, width, height, style, and extended-style parameters, see
Common Statement Parameters.

Example

This example creates a group-box control that is labeled "Options":

GROUPBOX "Options", 101, 10, 10, 100, 100

See Also

DIALOG

 ICON Resource

The ICON resource-definition statement specifies a bitmap that defines the shape of the icon to be
used for a given application.

Syntax

nameID ICON [load-mem] filename

Parameters

nameID
Specifies either a unique name or a 16-bit unsigned integer value identifying the resource.

load-mem
Specifies loading and memory attributes for the resource. For more information, see Common
Resource Attributes.

filename
Specifies the name of the file that contains the resource. The name must be a valid filename; it must
be a full path if the file is not in the current working directory. The path can either be a quoted or
nonquoted string.

Remarks

Icon and cursor resources can contain more than one image. If the resource is marked as PRELOAD,
Windows loads all images in the resource when the application executes.

Example

The following example specifies two icon resources:

desk1 ICON desk.ico
11 ICON DISCARDABLE custom.ico

 ICON Control

The ICON statement creates an icon control. This control is an icon displayed in a dialog box. The
ICON control statement, which you can use only in a DIALOG statement, defines the icon-resource
identifier, icon-control identifier, position, and attributes of a control.

Syntax

ICON text, id, x, y, [width, height, style [, extended-style]]

Parameters

text
Specifies the name of an icon (not a filename) defined elsewhere in the resource file.

width
This value is ignored and should be set to zero.

height
This value is ignored and should be set to zero.

style
Specifies the control style. This parameter is optional. The only value that can be specified is the
SS_ICON style. This is the default style whether this parameter is specified or not.

For more information on the text, id, x, y, width, height, style, and extended-style parameters, see
Common Statement Parameters.

Example

This example creates an icon control whose icon identifier is 901 and whose name is "myicon":

ICON "myicon" 901, 30, 30

See Also

DIALOG, ICON

 LANGUAGE Statement

The LANGUAGE statement sets the language for all resources up to the next LANGUAGE statement
or to the end of the file. When the LANGUAGE statement appears before the BEGIN in an
ACCELERATORS, DIALOG, MENU, RCDATA, or STRINGTABLE resource definition, the specified
language applies only to that resource.

Syntax

LANGUAGE language, sublanguage

Parameters

language
Language identifier. Must be one of the constants from WINNLS.H

sublanguage
Sublanguage identifier. Must be one of the constants from WINNLS.H

See Also

Multiline Statements, ACCELERATORS, CHARACTERISTICS, DIALOG, MENU, RCDATA,
STRINGTABLE, VERSION

 LISTBOX Control

The LISTBOX statement creates commonly used controls for a dialog box or window. The control is a
rectangle containing a list of strings (such as filenames) from which the user can select. The LISTBOX
statement, which can only be used in a DIALOG or WINDOW statement, defines the identifier,
dimensions, and attributes of a control window.

Syntax

LISTBOX text, id, x, y, width, height [, style [, extended-style]]

Parameters

style
Specifies the control styles. This value can be a combination of the list-box class styles and any of
the following styles: WS_BORDER and WS_VSCROLL.
If you do not specify a style, the default style is LBS_NOTIFY and WS_BORDER.

For more information on the text, id, x, y, width, height, style, and extended-style parameters, see
Common Statement Parameters.

Example

This example creates a list-box control whose identifier is 101:

LISTBOX 101, 10, 10, 100, 100

See Also

COMBOBOX, DIALOG

 LTEXT Control

The LTEXT statement creates a left-aligned text control. The control is a simple rectangle displaying
the given text left-aligned in the rectangle. The text is formatted before it is displayed. Words that would
extend past the end of a line are automatically wrapped to the beginning of the next line. The LTEXT
statement, which can be used only in a DIALOG statement, defines the text, identifier, dimensions, and
attributes of the control.

Syntax

LTEXT text, id, x, y, width, height [, style [, extended-style]]

Parameters

style
Specifies the control styles. This value can be any combination of the BS_RADIOBUTTON style and
the following styles: SS_LEFT, WS_TABSTOP, and WS_GROUP.
If you do not specify a style, the default style is SS_LEFT and WS_GROUP.

For more information on the text, id, x, y, width, height, style, and extended-style parameters, see
Common Statement Parameters.

Example

This example creates a left-aligned text control that is labeled "Filename":

LTEXT "Filename", 101, 10, 10, 100, 100

See Also

CONTROL, CTEXT, DIALOG, RTEXT

 MENU Resource

The MENU statement defines the contents of a menu resource. A menu resource is a collection of
information that defines the appearance and function of an application menu. A menu is a special input
tool that lets a user select commands from a list of command names.

Syntax

menuID MENU [load-mem]
[optional-statements]
BEGIN
 item-definitions
 . . .
END

Parameters

menuID
Identifies the menu. This value is either a unique string or a unique 16-bit unsigned integer value in
the range of 1 to 65,535.

load-mem
Specifies loading and memory attributes for the resource. For more information, see Common
Resource Attributes.

optional-statements
Zero or more of the following statements:
Statement Description
CHARACTERISTICS dword User-defined information about a

resource that can be used by tools
that read and write resource files.

LANGUAGE language,
sublanguage

Specifies the language for the
resource. The parameters are
constants from WINNLS.H.

VERSION dword User-defined version number for the
resource that can be used by tools
that read and write resource files.

Example

Following is an example of a complete MENU statement:

sample MENU
BEGIN
 MENUITEM "&Soup", 100
 MENUITEM "S&alad", 101
 POPUP "&Entree"
 BEGIN
 MENUITEM "&Fish", 200
 MENUITEM "&Chicken", 201, CHECKED
 POPUP "&Beef"
 BEGIN
 MENUITEM "&Steak", 301
 MENUITEM "&Prime Rib", 302
 END
 END
 MENUITEM "&Dessert", 103
END

See Also

MENUEX, MENUITEM, POPUP, Multiline Statements, ACCELERATORS, CHARACTERISTICS,
DIALOG, LANGUAGE, RCDATA, STRINGTABLE, VERSION

 MENU Statement

The MENU statement defines the dialog box's menu. If no statement is given, the dialog box has no
menu.

Syntax

MENU menuname

Parameter

menuname
Specifies the menu to use. This value is either the name of the menu or the integer identifier of the
menu.

Example

The following example demonstrates the use of the MENU dialog statement:

MENU errmenu

 MENUEX Resource

The MENUEX resource is an extension of the MENU resource. In addition to the functionality offered
by MENU, MENUEX allows for the following:

· Help IDs on popup menus.
· IDs on popup menus.
· Use of the menu type and state flags created for Windows 95 (MFT_* type flags and MFS_* state

flags).

Syntax

menuID MENUEX
BEGIN
 [{[MENUITEM itemText [, [id] [, [type] [, state]]]] |
 [POPUP itemText [, [id] [, [type] [, [state] [, helpID]]]]
 BEGIN
 popupBody
 END]} ...]
END

Parameters

MENUITEM statement
Defines a normal menu item
itemText

Specifies the string containing the text for the menu item. For more information, see MENUITEM.
id

Specifies a numeric expression indicating the ID of the menu item.
type

Specifies a numeric expression indicating the type of the menu item (explicit MFT_* type values
defined in WINUSER.H can be used by adding an include to the RC file: #include "WINUSER.H")

state
Specifies a numeric expression indicating the state of the menu item (explicit MFS_* state values
defined in WINUSER.H can be used by adding an include to the RC file: #include "WINUSER.H")

POPUP statement
Defines a menu item which has another menu (a submenu) associated with it.
itemText

Specifies a string containing the text for the menu item.
id

Specifies a numeric expression indicating the ID of the menu item.
type

Specifies a numeric expression indicating the type of the menu item (explicit MFT_* type values
defined in WINUSER.H can be used by adding an include to the RC file: #include
"WINUSER.H").

state
Specifies a numeric expression indicating the state of the menu item (explicit MFS_* state values
defined in WINUSER.H can be used by adding an include to the RC file: #include
"WINUSER.H").

helpID
Specifies a numeric expression indicating the ID used to identify the menu during WM_HELP
processing.

popupBody
Contain any combination of the MENUITEM and POPUP statements described above.

Remarks

Valid arithmetic and Boolean operations that may be contained in any of the numeric expressions in the
statements of MENUEX are:

· Add ('+')
· Subtract ('-')
· Unary minus ('-')
· Unary NOT ('~')
· AND ('&')
· OR ('|')

See Also

MENU, MENUITEM, POPUP, Multiline Statements, ACCELERATORS, CHARACTERISTICS,
DIALOG, LANGUAGE, RCDATA, STRINGTABLE, VERSION

 MENUITEM Statement

The MENUITEM statement defines a menu item.

Syntax

MENUITEM text, result, [optionlist]
MENUITEM SEPARATOR

Parameters

text
Specifies the name of the menu item.
The string can contain the escape characters \t and \a. The \t character inserts a tab in the string
and is used to align text in columns. Tab characters should be used only in pop-up menus, not in
menu bars. (For information on pop-up menus, see the POPUP statement.) The \a character aligns
all text that follows it flush right to the menu bar or pop-up menu.

result
Specifies the result generated when the user selects the menu item. This parameter takes an integer
value. Menu-item results are always integers; when the user clicks the menu-item name, the result
is sent to the window that owns the menu.

optionlist
Specifies the appearance of the menu item. This optional parameter takes one or more redefined
menu options, separated by commas or spaces. The menu options are as follows:
CHECKED

Item has a check mark next to it.
GRAYED

Item name is initially inactive and appears on the menu in gray or a lightened shade of the menu-
text color.

HELP
Identifies a help item.

INACTIVE
Item name is displayed but it cannot be selected.

MENUBARBREAK
Same as MF_MENUBREAK except that for pop-up menus, it separates the new column from the
old column with a vertical line.

MENUBREAK
Places the menu item on a new line for static menu-bar items. For pop-up menus, it places the
menu item in a new column with no dividing line between the columns.

The INACTIVE and GRAYED options cannot be used together.
SEPARATOR

The MENUITEM SEPARATOR form of the MENUITEM statement creates an inactive menu item
that serves as a dividing bar between two active menu items in a pop-up menu.

Example

The following example demonstrates the use of the MENUITEM and MENUITEM SEPARATOR
statements:

MENUITEM "&Roman", 206, CHECKED, GRAYED
MENUITEM SEPARATOR
MENUITEM "&Blackletter", 301

See Also

MENU, POPUP

 MESSAGETABLE Resource

The MESSAGETABLE resource-definition statement defines the ID and file of an application's
message table resource. Message tables are special string resources used in event logging and with
the FormatMessage function. The file contains a binary message table generated by the Message
Compiler. The Message Compiler also generates a resource script file that contains the
MESSAGETABLE statements you need to include the message table resources in the compiled
resource file. Use the #include directive to include this resource script into your main resource script.

Syntax

nameID MESSAGETABLE filename

Parameters

nameID
Specifies either a unique name or a 16-bit unsigned integer value identifying the resource.

filename
Specifies the name of the file that contains the resource. The name must be a valid filename; it must
be a full path if the file is not in the current working directory. The path can either be a quoted or
nonquoted string.

See Also

Compiling Messages, STRINGTABLE

 POPUP Resource

The POPUP statement marks the beginning of the definition of a pop-up menu. A pop-up menu (which
is also known as a drop-down menu) is a special menu item that displays a sublist of menu items when
it is selected.

Syntax

POPUP text, [optionlist]

BEGIN
 item-definitions
 .
 .
 .
END

Parameters

text
Specifies the name of the pop-up menu. This string must be enclosed in double quotation marks (").

optionlist
Specifies one or more redefined menu options that specify the appearance of the menu item. The
menu options follow:
CHECKED

Item has a check mark next to it. This option is not valid for a top-level pop-up menu.
GRAYED

Item name is initially inactive and appears on the menu in gray or a lightened shade of the menu-
text color.

INACTIVE
Item name is displayed but it cannot be selected.

MENUBARBREAK
Same as MF_MENUBREAK except that for pop-up menus, it separates the new column from the
old column with a vertical line.

MENUBREAK
Places the menu item on a new line for static menu-bar items. For pop-up menus, it places the
menu item in a new column with no dividing line between the columns.

The INACTIVE and GRAYED options cannot be used together.

Example

The following example demonstrates the use of the POPUP statement:

chem MENU
BEGIN
 POPUP "&Elements"
 BEGIN
 MENUITEM "&Oxygen", 200
 MENUITEM "&Carbon", 201, CHECKED
 MENUITEM "&Hydrogen", 202
 MENUITEM SEPARATOR
 MENUITEM "&Sulfur", 203
 MENUITEM "Ch&lorine", 204
 END

 POPUP "&Compounds"
 BEGIN
 POPUP "&Sugars"
 BEGIN
 MENUITEM "&Glucose", 301
 MENUITEM "&Sucrose", 302, CHECKED
 MENUITEM "&Lactose", 303, MENUBREAK
 MENUITEM "&Fructose", 304
 END
 POPUP "&Acids"
 BEGIN
 "&Hydrochloric", 401
 "&Sulfuric", 402
 END
 END
END

See Also

MENU, MENUITEM

 PUSHBOX Control

The PUSHBOX statement creates a push-box control, which is identical to a PUSHBUTTON, except
that it does not display a button face or frame; only the text appears.

Syntax

PUSHBOX text, id, x, y, width, height [, style [, extended-style]]

Parameters

style
Specifies styles for the pushbox, which can be a combination of the BS_PUSHBOX style and the
following styles: WS_TABSTOP, WS_DISABLED, and WS_GROUP.
The default style is BS_PUSHBOX and WS_TABSTOP.

For more information on the text, id, x, y, width, height, style, and extended-style parameters, see
Common Statement Parameters.

See Also

PUSHBUTTON

 PUSHBUTTON Control

The PUSHBUTTON statement creates a push-button control. The control is a round-cornered
rectangle containing the given text. The text is centered in the control. The control sends a message to
its parent whenever the user chooses the control.

Syntax

PUSHBUTTON text, id, x, y, width, height [, style [, extended-style]]

Parameters

style
Specifies styles for the pushbutton, which can be a combination of the BS_PUSHBUTTON style and
the following styles: WS_TABSTOP, WS_DISABLED, and WS_GROUP.
The default style is BS_PUSHBUTTON and WS_TABSTOP.

For more information on the text, id, x, y, width, height, style, and extended-style parameters, see
Common Statement Parameters.

Example

The following example demonstrates the use of the PUSHBUTTON statement:

PUSHBUTTON "ON", 7, 10, 10, 20, 10

See Also

GetDialogBaseUnits

 RADIOBUTTON Control

The RADIOBUTTON statement creates a radio-button control. The control is a small circle that has the
given text displayed next to it, typically to its right. The control highlights the circle and sends a
message to its parent window when the user selects the button. The control removes the highlight and
sends a message when the button is next selected.

Syntax

RADIOBUTTON text, id, x, y, width, height [, style [, extended-style]]

Parameters

style
Specifies styles for the radio button, which can be a combination of BUTTON-class styles and the
following styles: WS_TABSTOP, WS_DISABLED, and WS_GROUP.
The default style for RADIOBUTTON is BS_RADIOBUTTON and WS_TABSTOP.

For more information on the text, id, x, y, width, height, style, and extended-style parameters, see
Common Statement Parameters.

Example

The following example demonstrates the use of the RADIOBUTTON statement:

RADIOBUTTON "Italic", 100, 10, 10, 40, 10

See Also

GetDialogBaseUnits

 RCDATA Resource

The RCDATA statement defines a raw data resource for an application. Raw data resources permit the
inclusion of binary data directly in the executable file.

Syntax

nameID RCDATA [load-mem]
[optional-statements]
BEGIN
 raw-data
 . . .
END

Parameters

nameID
Specifies either a unique name or a 16-bit unsigned integer value that identifies the resource.

load-mem
Specifies loading and memory attributes for the resource. For more information, see Common
Resource Attributes.

optional-statements
Zero or more of the following statements:
Statement Description
CHARACTERISTICS dword User-defined information about a

resource that can be used by tools
that read and write resource files.

LANGUAGE language,
sublanguage

Specifies the language for the
resource. The parameters are
constants from WINNLS.H.

VERSION dword User-defined version number for the
resource that can be used by tools
that read and write resource files.

raw-data
Specifies raw data consisting of one or more integers or strings of characters. Integers can be
specified in decimal, octal, or hexadecimal format. RC does not automatically append a terminating
null character to a string. The string is a sequence of the specified ANSI (byte) characters unless
explicitly qualified as a wide-character string with the L prefix. Strings in all resources other than
RCDATA and user-defined resources are Unicode strings.
The block of data begins on a DWORD boundary and RC performs no padding or alignment of data
within the raw-data block. It is the programmer's responsibility to ensure the proper alignment of
data within the block.

Example

The following example demonstrates the use of the RCDATA statement:

resname RCDATA
BEGIN
 L"Here is a Unicode string\0", /* A Unicode string. Note: explicitly
 null-terminated */
 1024, /* int */
 0x029a, /* hex int */
 0o733, /* octal int */
 "\07" /* octal byte */
END

See Also

Multiline Statements, ACCELERATORS, CHARACTERISTICS, DIALOG, LANGUAGE, MENU,
STRINGTABLE, VERSION

 RTEXT Control

The RTEXT statement creates a right-aligned text control. The control is a simple rectangle displaying
the given text right-aligned in the rectangle. The text is formatted before it is displayed. Words that
would extend past the end of a line are automatically wrapped to the beginning of the next line.

Syntax

RTEXT text, id, x, y, width, height [, style [, extended-style]]

Parameters

style
Specifies styles for the text control, which can be any combination of the following: WS_TABSTOP
and WS_GROUP.
The default style for RTEXT is SS_RIGHT and WS_GROUP.

For more information on the text, id, x, y, width, height, style, and extended-style parameters, see
Common Statement Parameters.

Example

The following example demonstrates the use of the RTEXT statement:

RTEXT "Number of Messages", 4, 30, 50, 100, 10

See Also

CONTROL, CTEXT, DIALOG, LTEXT

 SCROLLBAR Control

The SCROLLBAR statement creates a scroll-bar control. The control is a rectangle that contains a
scroll box and has direction arrows at both ends. The scroll-bar control sends a notification message to
its parent whenever the user clicks the mouse in the control. The parent is responsible for updating the
scroll-box position. Scroll-bar controls can be positioned anywhere in a window and used whenever
needed to provide scrolling input.

Syntax

SCROLLBAR text, id, x, y, width, height [, style [, extended-style]]

Parameters

style
Specifies a combination (or none) of the following styles: WS_TABSTOP, WS_GROUP, and
WS_DISABLED.
In addition to these styles, the style parameter may contain a combination (or none) of the
SCROLLBAR-class styles. The default style for SCROLLBAR is SBS_HORZ.

For more information on the text, id, x, y, width, height, style, and extended-style parameters, see
Common Statement Parameters.

Example

The following example demonstrates the use of the SCROLLBAR statement:

SCROLLBAR 999, 25, 30, 10, 100

 STATE3 Control

The STATE3 statement defines a three-state check box control. The control is identical to a
CHECKBOX, except that it has three states: checked, unchecked, and disabled (grayed).

Syntax

STATE3 text, id, x, y, width, height [, style [, extended-style]]

Parameters

text
Specifies text that is displayed to the right of the control.

style
Specifies the control styles. This value can be a combination of the button class style BS_3STATE
and the WS_TABSTOP and WS_GROUP styles.
If you do not specify a style, the default style is BS_3STATE and WS_TABSTOP.

For more information on the text, id, x, y, width, height, style, and extended-style parameters, see
Common Statement Parameters.

See Also

AUTOCHECKBOX, CHECKBOX, CONTROL

 STRINGTABLE Resource

The STRINGTABLE statement defines one or more string resources for an application. String
resources are simply null-terminated Unicode strings that can be loaded when needed from the
executable file, using the LoadString function.

Syntax

STRINGTABLE [load-mem]
[optional-statements]
BEGIN
 stringID string
 . . .
END

Parameter

load-mem
Specifies loading and memory attributes for the resource. For more information, see Common
Resource Attributes.

optional-statements
Zero or more of the following statements:
Statement Description
CHARACTERISTICS dword User-defined information about a

resource that can be used by tools
that read and write resource files.

LANGUAGE language,
sublanguage

Specifies the language for the
resource. The parameters are
constants from WINNLS.H.

VERSION dword User-defined version number for the
resource that can be used by tools
that read and write resource files.

stringID
Specifies an unsigned 16-bit integer that identifies the resource.

string
Specifies one or more strings, enclosed in double quotation marks. The string must be no longer
than 255 characters and must occupy a single line in the source file. To add a carriage return to the
string, use this character sequence: \012. For example, "Line one\012Line two" would define a string
that would be displayed as follows:
Line one
Line two

Remarks

Grouping strings in separate sections allows all related strings to be read in at one time and discarded
together. When possible, an application should make the table movable and discardable. RC allocates
16 strings per section and uses the identifier value to determine which section is to contain the string.
Strings with the same upper-12 bits in their identifiers are placed in the same section.

Example

The following example demonstrates the use of the STRINGTABLE statement:

#define IDS_HELLO 1
#define IDS_GOODBYE 2

STRINGTABLE
BEGIN
 IDS_HELLO, "Hello"
 IDS_GOODBYE, "Goodbye"
END

See Also

LoadString, Multiline Statements, ACCELERATORS, CHARACTERISTICS, DIALOG, LANGUAGE,
MENU, RCDATA, VERSION

 STYLE Statement

The STYLE statement defines the window style of the dialog box. The window style specifies whether
the box is a pop-up or a child window. The default style has the following attributes: WS_POPUP,
WS_BORDER, and WS_SYSMENU.

Syntax

STYLE style

Parameter

style
Specifies the window style. This parameter takes an integer value or redefined name. The following
lists the redefined styles:
DS_LOCALEDIT

Specifies that edit controls in the dialog box will use memory in the application's data section. By
default, all edit controls in dialog boxes use memory outside the application's data section. This
feature can be suppressed by adding the DS_LOCALEDIT flag to the STYLE command for the
dialog box. If this flag is not used, EM_GETHANDLE and EM_SETHANDLE messages must not
be used since the storage for the control is not in the application's data section. This feature does
not affect edit controls created outside of dialog boxes.

DS_MODALFRAME
Creates a dialog box with a modal dialog box frame that can be combined with a title bar and
System menu by specifying the WS_CAPTION and WS_SYSMENU styles.

DS_NOIDLEMSG
Suppresses WM_ENTERIDLE messages that Windows would otherwise send to the owner of the
dialog box while the dialog box is displayed.

DS_SYSMODAL
Creates a system-modal dialog box.

WS_BORDER
Creates a window that has a border.

WS_CAPTION
Creates a window that has a title bar (implies the WS_BORDER style).

WS_CHILD
Creates a child window. It cannot be used with the WS_POPUP style.

WS_CHILDWINDOW
Creates a child window that has the WS_CHILD style.

WS_CLIPCHILDREN
Excludes the area occupied by child windows when drawing within the parent window. Used when
creating the parent window.

WS_CLIPSIBLINGS
Clips child windows relative to each other; that is, when a particular child window receives a
WM_PAINT message, this style clips all other top-level child windows out of the region of the child
window to be updated. (If the WS_CLIPSIBLINGS style is not given and child windows overlap, it
is possible, when drawing in the client area of a child window, to draw in the client area of a
neighboring child window.) For use with the WS_CHILD style only.

WS_DISABLED
Creates a window that is initially disabled.

WS_DLGFRAME
Creates a window with a modal dialog box frame but no title.

WS_GROUP
Specifies the first control of a group of controls in which the user can move from one control to the

next by using the arrow keys. All controls defined with the WS_GROUP style after the first control
belong to the same group. The next control with the WS_GROUP style ends the style group and
starts the next group (that is, one group ends where the next begins). This style is valid only for
controls.

WS_HSCROLL
Creates a window that has a horizontal scroll bar.

WS_ICONIC
Creates a window that is initially iconic. For use with the WS_OVERLAPPED style only.

WS_MAXIMIZE
Creates a window of maximum size.

WS_MAXIMIZEBOX
Creates a window that has a Maximize box.

WS_MINIMIZE
Creates a window of minimum size.

WS_MINIMIZEBOX
Creates a window that has a Minimize box.

WS_OVERLAPPED
Creates an overlapped window. An overlapped window has a caption and a border.

WS_OVERLAPPEDWINDOW
Creates an overlapped window having the WS_OVERLAPPED, WS_CAPTION, WS_SYSMENU,
WS_THICKFRAME, WS_MINIMIZEBOX, and WS_MAXIMIZEBOX styles.

WS_POPUP
Creates a pop-up window. It cannot be used with the WS_CHILD style.

WS_POPUPWINDOW
Creates a pop-up window that has the WS_POPUP, WS_BORDER, and WS_SYSMENU styles.
The WS_CAPTION style must be combined with the WS_POPUPWINDOW style to make the
System menu visible.

WS_SIZEBOX
Creates a window that has a size box. Used only for windows with a title bar or with vertical and
horizontal scroll bars.

WS_SYSMENU
Creates a window that has a System-menu box in its title bar. Used only for windows with title
bars. If used with a child window, this style creates a Close box instead of a System-menu box.

WS_TABSTOP
Specifies one of any number of controls through which the user can move by using the TAB key.
The TAB key moves the user to the next control specified by the WS_TABSTOP style. This style is
valid only for controls.

WS_THICKFRAME
Creates a window with a thick frame that can be used to size the window.

WS_VISIBLE
Creates a window that is initially visible. This applies to overlapping and pop-up windows. For
overlapping windows, the y parameter is used as a parameter for the ShowWindow function.

WS_VSCROLL
Creates a window that has a vertical scroll bar.

Remarks

If the redefined names are used, you must include WINDOWS.H.

 User-Defined Resource

A user-defined resource statement specifies a resource that contains application-specific data. The
data can have any format and can be defined either as the content of a given file (if the filename
parameter is given) or as a series of numbers and strings (if the raw-data block is given).

Syntax

nameID typeID [load-mem] filename

The filename specifies the name of a file containing the binary data of the resource. The contents of
the file are included as the resource. RC does not interpret the binary data in any way. It is the
programmer's responsibility to ensure that the data is properly aligned for the target computer
architecture.

A user-defined resource can also be defined completely in the resource script using the syntax:

nameID typeID [load-mem]
BEGIN
 raw-data
END

Parameters

nameID
Specifies either a unique name or a 16-bit unsigned integer that identifies the resource.

typeID
Specifies either a unique name or a 16-bit unsigned integer that identifies the resource type. If a
number is given, it must be greater than 255. The numbers 1 through 255 are reserved for existing
and future redefined resource types.

load-mem
Specifies loading and memory attributes for the resource. For more information, see Common
Resource Attributes.

filename
Specifies the name of the file that contains the resource data. The parameter must be a valid
filename; it must be a full path if the file is not in the current working directory.

raw-data
Specifies raw data consisting of one or more integers or strings of characters. Integers can be
specified in decimal, octal, or hexadecimal format. RC does not automatically append a terminating
null character to a string. The string is a sequence of the specified ANSI (byte) characters unless
explicitly qualified as a wide-character string with the L prefix. Strings in all resources other than
RCDATA and user-defined resources are Unicode strings.
The block of data begins on a DWORD boundary, and RC performs no padding or alignment of data
within the raw-data block. It is the programmer's responsibility to ensure the proper alignment of
data within the block.

Example

The following example shows several user-defined statements:

array MYRES data.res
14 300 custom.res
18 MYRES2
BEGIN
 "Here is a data string\0", /* A string. Note: explicitly
 null-terminated */
 1024, /* int */
 0x029a, /* hex int */
 0o733, /* octal int */
 "\07" /* octal byte */
END

 VERSION Statement

The VERSION statement allows the developer to specify version information about a resource that can
be used by tools that read and write resource files. The specified dword value appears with the
resource in the compiled .RES file. However, the value is not stored in the executable file and has no
significance to Windows.

The VERSION statement appears before the BEGIN in an ACCELERATORS, DIALOG, MENU,
RCDATA, or STRINGTABLE resource definition. The specified value applies only to that resource.

Syntax

VERSION dword

Parameter

dword
A user-defined doubleword value.

See Also

Multiline Statements, ACCELERATORS, CHARACTERISTICS, DIALOG, LANGUAGE, MENU,
RCDATA, STRINGTABLE

 VERSIONINFO Resource

The VERSIONINFO statement creates a version-information resource. The resource contains such
information about the file as its version number, its intended operating system, and its original filename.
The resource is intended to be used with the File Installation library functions.

Syntax

versionID VERSIONINFO fixed-info
BEGIN
 block-statement
 . . .
END

Parameters

versionID
Specifies the version-information resource identifier. This value must be 1.

fixed-info
Specifies the version information, such as the file version and the intended operating system. This
parameter consists of the following statements:
FILEVERSION version

Specifies the binary version number for the file. The version consists of two 32-bit integers,
defined by four 16-bit integers. For example, "FILEVERSION 3,10,0,61" is translated into two
doublewords: 0x0003000a and 0x0000003d, in that order. Therefore, if version is defined by the
doublewords dw1 and dw2, they need to appear in the FILEVERSION statement as follows:
HIWORD(dw1), LOWORD(dw1), HIWORD(dw2), LOWORD(dw2).

PRODUCTVERSION version
Specifies the binary version number for the product with which the file is distributed. The version
parameter is two 32-bit integers, defined by four 16-bit integers. For more information about
version, see the FILEVERSION description.

FILEFLAGSMASK fileflagsmask
Specifies which bits in the FILEFLAGS statement are valid. If a bit is set, the corresponding bit in
FILEFLAGS is valid.

FILEFLAGS fileflags
Specifies the Boolean attributes of the file. The fileflags parameter must be the combination of all
the file flags that are valid at compile time. For Windows 3.1, this value is 0x3f.

FILEOS fileos
Specifies the operating system for which this file was designed. The fileos parameter can be one
of the operating system values given in the Comments section.

FILETYPE filetype
Specifies the general type of file. The filetype parameter can be one of the file type values listed
in the Comments section.

FILESUBTYPE subtype
Specifies the function of the file. The subtype parameter is zero unless the type parameter in the
FILETYPE statement is VFT_DRV, VFT_FONT, or VFT_VXD. For a list of file subtype values,
see the Comments section.

block-statement
Specifies one or more version-information blocks. A block can contain string information or variable
information.

Remarks

To use the constants specified with the VERSIONINFO statement, the WINVER.H file (included in

WINDOWS.H) must be included in the resource-definition file.

The following list describes the parameters used in the VERSIONINFO statement:

fileflags
Specifies a combination of the following values:
VS_FF_DEBUG

File contains debugging information or is compiled with debugging features enabled.
VS_FF_INFOINFERRED

File contains a dynamically created version-information resource. Some of the blocks for the
resource may be empty or incorrect. This value is not intended to be used in version-information
resources created by using the VERSIONINFO statement.

VS_FF_PATCHED
File has been modified and is not identical to the original shipping file of the same version
number.

VS_FF_PRERELEASE
File is a development version, not a commercially released product.

VS_FF_PRIVATEBUILD
File was not built using standard release procedures. If this value is given, the StringFileInfo
block must contain a PrivateBuild string.

VS_FF_SPECIALBUILD
File was built by the original company using standard release procedures but is a variation of the
standard file of the same version number. If this value is given, the StringFileInfo block must
contain a SpecialBuild string.

fileos
Specifies one of the following values:
Value Description
VOS_UNKNOWN Operating system for which the file was

designed is unknown to Windows.
VOS_DOS File was designed for MS-DOS.
VOS_NT File was designed for Windows NT.
VOS_WINDOWS16 File was designed for Windows version 3.0

or later.
VOS_WINDOWS32 File was designed for 32-bit Windows.
VOS_DOS_WINDOWS1
6

File was designed for Windows version 3.0
or later running with MS-DOS.

VOS_DOS_WINDOWS3
2

File was designed for 32-bit Windows
running with MS-DOS.

VOS_NT_WINDOWS32 File was designed for 32-bit Windows
running with Windows NT.

The values 0x00002L, 0x00003L, 0x20000L and 0x30000L are reserved.

filetype
Specifies one of the following values:
Value Description
VFT_UNKNOWN File type is unknown to Windows.
VFT_APP File contains an application.
VFT_DLL File contains a dynamic-link library (DLL).
VFT_DRV File contains a device driver. If the dwFileType

member is VFT_DRV, the dwFileSubtype member

contains a more specific description of the driver.
VFT_FONT File contains a font. If the dwFileType member is

VFT_FONT, the dwFileSubtype member contains
a more specific description of the font.

VFT_VXD File contains a virtual device.
VFT_STATIC_LIB File contains a static-link library.

All other values are reserved for use by Microsoft.
subtype

Specifies additional information about the file type.
If the FILETYPE statement specifies VFT_DRV, this parameter can be one of the following values:
Value Description
VFT2_UNKNOWN Driver type is unknown to Windows.
VFT2_DRV_COMM File contains a communications driver.
VFT2_DRV_PRINTER File contains a printer driver.
VFT2_DRV_KEYBOARD File contains a keyboard driver.
VFT2_DRV_LANGUAGE File contains a language driver.
VFT2_DRV_DISPLAY File contains a display driver.
VFT2_DRV_MOUSE File contains a mouse driver.
VFT2_DRV_NETWORK File contains a network driver.
VFT2_DRV_SYSTEM File contains a system driver.
VFT2_DRV_INSTALLAB
LE

File contains an installable driver.

VFT2_DRV_SOUND File contains a sound driver.

If the FILETYPE statement specifies VFT_FONT, this parameter can be one of the following values:
Value Description
VFT2_UNKNOWN Font type is unknown to Windows.
VFT2_FONT_RASTER File contains a raster font.
VFT2_FONT_VECTOR File contains a vector font.
VFT2_FONT_TRUETYPE File contains a TrueType font.

If the FILETYPE statement specifies VFT_VXD, this parameter must be the virtual-device identifier
included in the virtual-device control block.
All subtype values not listed here are reserved for use by Microsoft.

langID
Specifies one of the following language codes:
Code Language Code Language
0x0401 Arabic 0x0415 Polish
0x0402 Bulgarian 0x0416 Brazilian Portuguese
0x0403 Catalan 0x0417 Rhaeto-Romanic
0x0404 Traditional Chinese 0x0418 Romanian
0x0405 Czech 0x0419 Russian
0x0406 Danish 0x041A Croato-Serbian (Latin)
0x0407 German 0x041B Slovak
0x0408 Greek 0x041C Albanian
0x0409 U.S. English 0x041D Swedish

0x040A Castilian Spanish 0x041E Thai
0x040B Finnish 0x041F Turkish
0x040C French 0x0420 Urdu
0x040D Hebrew 0x0421 Bahasa
0x040E Hungarian 0x0804 Simplified Chinese
0x040F Icelandic 0x0807 Swiss German
0x0410 Italian 0x0809 U.K. English
0x0411 Japanese 0x080A Mexican Spanish
0x0412 Korean 0x080C Belgian French
0x0413 Dutch 0x0C0C Canadian French
0x0414 Norwegian - Bokml 0x100C Swiss French
0x0810 Swiss Italian 0x0816 Portuguese
0x0813 Belgian Dutch 0x081A Serbo-Croatian (Cyrillic)
0x0814 Norwegian - Nynorsk

charsetID
Specifies one of the following character-set identifiers:
Identifie
r

Character Set

0 7-bit ASCII
932 Windows, Japan (Shift - JIS X-0208)
949 Windows, Korea (Shift - KSC 5601)
950 Windows, Taiwan (GB5)
1200 Unicode
1250 Windows, Latin-2 (Eastern European)
1251 Windows, Cyrillic
1252 Windows, Multilingual
1253 Windows, Greek
1254 Windows, Turkish
1255 Windows, Hebrew
1256 Windows, Arabic

string-name
Specifies one of the following redefined names:
Comments

Specifies additional information that should be displayed for diagnostic purposes.
CompanyName

Specifies the company that produced the file¾for example, "Microsoft Corporation" or "Standard
Microsystems Corporation, Inc." This string is required.

FileDescription
Specifies a file description to be presented to users. This string may be displayed in a list box
when the user is choosing files to install¾for example, "Keyboard Driver for AT-Style Keyboards"
or "Microsoft Word for Windows". This string is required.

FileVersion
Specifies the version number of the file¾for example, "3.10" or "5.00.RC2". This string is required.

InternalName
Specifies the internal name of the file, if one exists¾for example, a module name if the file is a
dynamic-link library. If the file has no internal name, this string should be the original filename,

without extension. This string is required.
LegalCopyright

Specifies all copyright notices that apply to the file. This should include the full text of all notices,
legal symbols, copyright dates, and so on¾for example, "Copyright© Microsoft Corporation 1990-
1992". This string is optional.

LegalTrademarks
Specifies all trademarks and registered trademarks that apply to the file. This should include the
full text of all notices, legal symbols, trademark numbers, and so on¾for example, "Windows™ is
a trademark of Microsoft® Corporation". This string is optional.

OriginalFilename
Specifies the original name of the file, not including a path. This information enables an
application to determine whether a file has been renamed by a user. The format of the name
depends on the file system for which the file was created. This string is required.

PrivateBuild
Specifies information about a private version of the file¾for example, "Built by TESTER1 on \
TESTBED". This string should be present only if the VS_FF_PRIVATEBUILD flag is set in the
dwFileFlags member of the VS_FIXEDFILEINFO structure of the root block.

ProductName
Specifies the name of the product with which the file is distributed¾for example, "Microsoft
Windows". This string is required.

ProductVersion
Specifies the version of the product with which the file is distributed¾for example, "3.10" or
"5.00.RC2". This string is required.

SpecialBuild
Specifies how this version of the file differs from the standard version¾for example, "Private build
for TESTER1 solving mouse problems on M250 and M250E computers". This string should be
present only if the VS_FF_SPECIALBUILD flag is set in the dwFileFlags member of the
VS_FIXEDFILEINFO structure in the root block.

A string information block has the following form:

BLOCK "StringFileInfo"
BEGIN
 BLOCK "lang-charset"
 BEGIN
 VALUE "string-name", "value"
 . . .
 END
END

Following are the parameters in the StringFileInfo block:

lang-charset
Specifies a language and character-set identifier pair. It is a hexadecimal string consisting of the
concatenation of the language and character-set identifiers listed earlier in this section.

string-name
Specifies the name of a value in the block and can be one of the redefined names listed earlier in
this section.

value
Specifies, as a character string, the value of the corresponding string name. More than one VALUE
statement can be given.

A variable information block has the following form:

BLOCK "VarFileInfo"

BEGIN
 VALUE "Translation",
 langID, charsetID
 . . .
END

Following are the parameters in the variable information block:

langID
Specifies one of the language identifiers listed earlier in this section.

charsetID
Specifies one of the character-set identifiers listed earlier in this section. More than one identifier
pair can be given, but each pair must be separated from the preceding pair with a comma.

 Preprocessing Reference

The syntax and semantics for the RC preprocessor are the same as for the preprocessor in a C
compiler. Single-line comments begin with two forward slashes (//) and run to the end of the line. Block
comments begin with an opening delimiter (/*) and run to a closing delimiter (*/). Comments do not
nest.

You use the #define directive to define symbols for your resource identifiers in a header file. You
include this header both in the resource script and your application source code. Similarly, the values
for attributes and styles are defined by including the C header files for Windows.

You can also define macros. The standard C preprocessing operators (#, ##) can be used in a macro
definition. For detailed information on preprocessing and defining macros, see your C compiler
documentation.

The rest of this section describes each of the preprocessing directives in alphabetical order.

 #define

The #define directive assigns the given value to the specified name. All subsequent occurrences of the
name are replaced by the value.

Syntax

#define name value

Parameters

name
Specifies the name to be defined. This value is any combination of letters, digits, and punctuation.

value
Specifies any integer, character string, or line of text.

Example

This example assigns values to the names "NONZERO" and "USERCLASS":

#define NONZERO 1
#define USERCLASS "MyControlClass"

See Also

#ifdef, #ifndef, #undef

 #elif

The #elif directive marks an optional clause of a conditional-compilation block defined by a #ifdef,
#ifndef, or #if directive. The directive controls conditional compilation of the resource file by checking
the specified constant expression. If the constant expression is nonzero, #elif directs the compiler to
continue processing statements up to the next #endif, #else, or #elif directive and then skip to the
statement after #endif. If the constant expression is zero, #elif directs the compiler to skip to the next
#endif, #else, or #elif directive. You can use any number of #elif directives in a conditional block.

Syntax

#elif constant-expression

Parameter

constant-expression
Specifies the expression to be checked. This value is a defined name, an integer constant, or an
expression consisting of names, integers, and arithmetic and relational operators.

Example

In this example, #elif directs the compiler to process the second BITMAP statement only if the value
assigned to the name "Version" is less than 7. The #elif directive itself is processed only if Version is
greater than or equal to 3.

#if Version < 3
BITMAP 1 errbox.bmp
#elif Version < 7
BITMAP 1 userbox.bmp
#endif

See Also

#else, #endif, #if, #ifdef, #ifndef

 #else

The #else directive marks an optional clause of a conditional-compilation block defined by a #ifdef,
#ifndef, or #if directive. The #else directive must be the last directive before the #endif directive.

This directive has no arguments.

Syntax

#else

Example

This example compiles the second BITMAP statement only if the name "DEBUG" is not defined:

#ifdef DEBUG
 BITMAP 1 errbox.bmp
#else
 BITMAP 1 userbox.bmp
#endif

See Also

#elif, #endif, #if, #ifdef, #ifndef

 #endif

The #endif directive marks the end of a conditional-compilation block defined by a #ifdef directive.
One #endif is required for each #if, #ifdef, or #ifndef directive.

Syntax

#endif

This directive has no arguments.

See Also

#elif, #else, #if, #ifdef, #ifndef

 #if

The #if directive controls conditional compilation of the resource file by checking the specified constant
expression. If the constant expression is nonzero, #if directs the compiler to continue processing
statements up to the next #endif, #else, or #elif directive and then skip to the statement after the
#endif directive. If the constant expression is zero, #if directs the compiler to skip to the next #endif,
#else, or #elif directive.

Syntax

#if constant-expression

Parameter

constant-expression
Specifies the expression to be checked. This value is a defined name, an integer constant, or an
expression consisting of names, integers, and arithmetic and relational operators.

Example

This example compiles the BITMAP statement only if the value assigned to the name "Version" is less
than 3:

#if Version < 3
BITMAP 1 errbox.bmp
#endif

See Also

#elif, #else, #endif, #ifdef, #ifndef

 #ifdef

The #ifdef directive controls conditional compilation of the resource file by checking the specified
name. If the name has been defined by using a #define directive or by using the /d command-line
option with the Resource Compiler, #ifdef directs the compiler to continue with the statement
immediately after the #ifdef directive. If the name has not been defined, #ifdef directs the compiler to
skip all statements up to the next #endif directive.

Syntax

#ifdef name

Parameter

name
Specifies the name to be checked by the directive.

Example

This example compiles the BITMAP statement only if the name "Debug" is defined:

#ifdef Debug
BITMAP 1 errbox.bmp
#endif

See Also

#define, #endif, #if, #ifndef, #undef

 #ifndef

The #ifndef directive controls conditional compilation of the resource file by checking the specified
name. If the name has not been defined or if its definition has been removed by using the #undef
directive, #ifndef directs the compiler to continue processing statements up to the next #endif, #else,
or #elif directive and then skip to the statement after the #endif directive. If the name is defined,
#ifndef directs the compiler to skip to the next #endif, #else, or #elif directive.

Syntax

#ifndef name

Parameter

name
Specifies the name to be checked by the directive.

Example

This example compiles the BITMAP statement only if the name "Optimize" is not defined:

#ifndef Optimize
BITMAP 1 errbox.bmp
#endif

See Also

#elif, #else, #endif, #if, #ifdef, #undef

 #include

The #include directive causes Resource Compiler to process the file specified in the filename
parameter. This file should be a header file that defines the constants used in the resource-definition
file.

Syntax

#include filename

Parameter

filename
Specifies the name of the file to be included. If the file is in the current directory, the string must be
enclosed in double quotation marks; if the file is in the directory specified by the INCLUDE
environment variable, the string must be enclosed in less-than and greater-than characters (<>). You
must give a full path enclosed in double quotation marks (") if the file is not in the current directory or
in the directory specified by the INCLUDE environment variable.

Example

This example processes the header files WINDOWS.H and HEADERS\MYDEFS.H while compiling the
resource-definition file:

#include <windows.h>
#include "headers\mydefs.h"

See Also

#define

 #undef

The #undef directive removes the current definition of the specified name. All subsequent occurrences
of the name are processed without replacement.

Syntax

#undef name

Parameter

name
Specifies the name to be removed. This value is any combination of letters, digits, and punctuation.

Example

This example removes the definitions for the names "nonzero" and "USERCLASS":

#undef nonzero
#undef USERCLASS

See Also

#define

 RC Diagnostic Messages

This section contains descriptions of diagnostic messages produced by the Microsoft Resource
Compiler (RC) for Windows NT. Many of these messages appear when RC is not able to compile
resources properly. The descriptions clarify the cause of each message. The messages are listed in
alphabetic order.

A capital V in parentheses (V) at the beginning of a message description indicates that the message is
displayed only if RC is run with the /v (verbose) option. These messages are generally informative and
do not necessarily indicate errors.

 A

Accelerator Type required (ASCII or VIRTKEY)
The type parameter in the ACCELERATORS statement must contain either the ASCII or VIRTKEY
value.

 B

BEGIN expected in Accelerator Table
An ACCELERATORS statement was not followed by the BEGIN keyword.

BEGIN expected in Dialog
A DIALOG statement was not followed by the BEGIN keyword.

BEGIN expected in menu
A MENU statement was not followed by the BEGIN keyword.

BEGIN expected in RCData
An RCDATA statement was not followed by the BEGIN keyword.

BEGIN expected in String Table
A STRINGTABLE statement was not followed by the BEGIN keyword.

BEGIN expected in VERSIONINFO resource
A VERSIONINFO statement was not followed by the BEGIN keyword.

Bitmap file resource-file is not in version-number format.
Use Microsoft Image Editor (IMAGEDIT.EXE) to convert old resource files to the current format.

 C

Cannot Re-use String Constants
You are using the same value twice in a STRINGTABLE statement. Make sure that you have not
mixed overlapping decimal and hexadecimal values.

Control Character out of range [A - Z]
A control character in the ACCELERATORS statement is invalid. The character following the caret (^)
must be in the range A through Z.

Could not find RCPP.EXE
The preprocessor (RCPP.EXE) must be in the current directory or in a directory specified in the PATH
environment variable.

Could not open in-file-name
Microsoft Windows Resource Compiler (RC) could not open the specified file. Make sure that the file
exists and that you typed the filename correctly.

Couldn't open resource-name
Microsoft Windows Resource Compiler (RC) could not open the specified file. Make sure that the file
exists and that you typed the filename correctly.

Creating resource-name
(V) Microsoft Windows Resource Compiler (RC) is creating a new binary resource (.RES) file.

 E

Empty menus not allowed
An END keyword appears before any menu items are defined in the MENU statement. Empty menus
are not permitted by Microsoft Windows Resource Compiler (RC). Make sure that you do not have any
opening quotation marks within the MENU statement.

END expected in Dialog
The END keyword must appear at the end of a DIALOG statement. Make sure that there are no
opening quotation marks left from the preceding statement.

END expected in menu
The END keyword must appear at the end of a MENU statement. Make sure that there are no
mismatched BEGIN and END statements.

Error Creating resource-name
Microsoft Windows Resource Compiler (RC) could not create the specified binary resource (.RES) file.
Make sure that it is not being created on a read-only drive. Use the /v option to find out whether the file
is being created.

Expected Comma in Accelerator Table
Microsoft Windows Resource Compiler (RC) requires a comma between the event and idvalue
parameters in the ACCELERATORS statement.

Expected control class name
The class parameter of a CONTROL statement in the DIALOG statement must be one of the following
control types: BUTTON, COMBOBOX, EDIT, LISTBOX, SCROLLBAR, STATIC, or user-defined.
Make sure that the class is spelled correctly.

Expected font face name
The typeface parameter of the FONT statement in the DIALOG statement must be a character string
enclosed in double quotation marks ("). This parameter specifies the name of a font.

Expected ID value for Menuitem
The MENU statement must contain a MENUITEM statement, which has either an integer or a symbolic
constant in the MenuID parameter.

Expected Menu String
Each MENUITEM and POPUP statement must contain a text parameter. This parameter is a string
enclosed in double quotation marks (") that specifies the name of the menu item or pop-up menu. A
MENUITEM SEPARATOR statement requires no quoted string.

Expected numeric command value
Microsoft Windows Resource Compiler (RC) was expecting a numeric idvalue parameter in the
ACCELERATORS statement. Make sure that you have used a #define constant to specify the value
and that the constant used is spelled correctly.

Expected numeric constant in string table
A numeric constant, defined in a #define statement, must immediately follow the BEGIN keyword in a
STRINGTABLE statement.

Expected numeric point size
The pointsize parameter of the FONT statement in the DIALOG statement must be an integer point-
size value.

Expected Numerical Dialog constant
A DIALOG statement requires integer values for the x, y, width, and height parameters. Make sure that
these values, which are included after the DIALOG keyword, are not negative.

Expected String in STRINGTABLE
A string is expected after each numeric stringid parameter in a STRINGTABLE statement.

Expected String or Constant Accelerator command
Microsoft Windows Resource Compiler (RC) was not able to determine which key was being set up for
the accelerator. The event parameter in the ACCELERATORS statement might be invalid.

Expected VALUE, BLOCK, or END keyword.
The VERSIONINFO structure requires a VALUE, BLOCK, or END keyword.

Expecting number for ID
A number is expected for the id parameter of a CONTROL statement in the DIALOG statement. Make
sure that you have a number or a #define statement for the control identifier.

Expecting quoted string for key
The key string following the BLOCK or VALUE keyword should be enclosed in double quotation marks.

Expecting quoted string in dialog class
The class parameter of the CLASS statement in the DIALOG statement must be an integer or a string
enclosed in double quotation marks (").

Expecting quoted string in dialog title
The captiontext parameter of the CAPTION statement in the DIALOG statement must be a character
string, enclosed in double quotation marks (").

 F

File not found: filename
The file specified in the rc command was not found. Make sure that the file has not been moved to
another directory and that the filename or path is typed correctly.

Font names must be ordinals
The pointsize parameter in the FONT statement must be an integer, not a string.

 I

Insufficient memory to spawn RCPP.EXE
There wasn't enough memory to run the preprocessor (RCPP.EXE).

Invalid Accelerator
An event parameter in the ACCELERATORS statement was not recognized or was more than two
characters long.

Invalid Accelerator Type (ASCII or VIRTKEY)
The type parameter in the ACCELERATORS statement must contain either the ASCII or VIRTKEY
value.

Invalid control character
A control character in the ACCELERATORS statement is invalid. A valid control character consists of a
caret (^) followed by a single letter.

Invalid Control type
The CONTROL statement in a DIALOG statement must be one of the following: AUTO3STATE,
AUTOCHECKBOX, AUTORADIOBUTTON, CHECKBOX, COMBOBOX, CONTROL, CTEXT,
DEFPUSHBUTTON, EDITTEXT, GROUPBOX, ICON, LISTBOX, LTEXT, PUSHBOX, PUSHBUTTON,
RADIOBUTTON, RTEXT, SCROLLBAR, STATE3.

Invalid directive in preprocessed RC file
The specified filename has an embedded newline character.

Invalid .EXE file
The executable (.EXE) file is invalid. Make sure that the linker created it correctly and that the file
exists.

Invalid switch, option
An option used was invalid. For a list of the command-line options, use the rc /? command.

Invalid switch, too many -D switches
Too many -d options were specified. To define a large number of symbols, use the #include directive
to include a file of definitions.

Invalid type
The resource type was not among the types defined in the include file.

Invalid usage. Use RC -? for Help
Make sure that you have at least one filename to work with. For a list of the command-line options, use
the rc -? command.

I/O error reading file
Read failed. Since this is a generic routine, no specific filename is supplied.

I/O error seeking in file
Seeking in file failed. Since this is a generic routine, no specific filename is supplied.

I/O error writing file
Write failed. Since this is a generic routine, no specific filename is supplied.

 N

No resource binary filename specified.
The /fo option was used, but no binary resource (.RES) file was specified.

 O

Old DIB in resource-name. Pass it through IMAGEDIT.
The resource file specified is not compatible with Win32. Make sure you have read and saved this file
using the latest version of Microsoft Image Editor (IMAGEDIT.EXE).

Out of heap memory
There was not enough memory.

Out of memory, needed n bytes
Microsoft Windows Resource Compiler (RC) was not able to allocate the specified amount of memory.

 R

Redefinition of Button Type
The specified button styles conflict with or modify the style specified by the control keyword. This is a
warning only and may be ignored.

The following common method of declaring an automatic radio button generates this warning:

RADIOBUTTON "&Italic", MYRB_ITALIC, 10, 10, 30, 12, BS_AUTORADIOBUTTON

To avoid the warning, use the control statement appropriate for the type of button that you want to
define. In this example, the corrected statement is:

AUTORADIOBUTTON "&Italic", MYRB_ITALIC, 10, 10, 30, 12

RC: Invalid switch: option
An option used was invalid. For a list of the command-line options, use the rc /? command.

RC: RCPP.ERR not found
The RCPP.ERR file must be in the current directory or in a directory specified in the PATH environment
variable.

RC terminated by user
A CTRL+C key combination was pressed, exiting Microsoft Windows Resource Compiler (RC).

RC terminating after preprocessor errors
For information about preprocessor errors, see the documentation for the preprocessor.

RCPP.EXE is not a valid executable
The preprocessor (RCPP.EXE) may have been altered. Try copying the file again from the Microsoft
Windows Software Development Kit (SDK) disks.

Resource file resource-name is not in version-number format.
Make sure your icons and cursors have been read and saved using the latest version of Microsoft
Image Editor (IMAGEDIT.EXE).

 T

Text string or ordinal expected in Control
The text parameter of a CONTROL statement in the DIALOG statement must be either a text string or
an ordinal reference to the type of control that is expected. If using an ordinal, make sure that you have
a #define statement for the control.

 U

Unable to create destination
Microsoft Windows Resource Compiler (RC) was not able to create the destination file. Make sure that
there is enough disk space.

Unbalanced Parentheses
Make sure that you have closed every opening parenthesis in the DIALOG statement.

Unexpected value in RCData
The values for the raw-data parameter in the RCDATA statement must be integers or strings,
separated by commas. Make sure that you did not leave out a comma or a quotation mark around a
string.

Unexpected value in value data
A statement contained information with a format or size different from the expected value for that
parameter.

Unknown DIB header format
The device-independent bitmap (DIB) header is not a BITMAPCOREHEADER or
BITMAPINFOHEADER structure.

Unknown error spawning RCPP.EXE
For an unknown reason, the preprocessor (RCPP.EXE) has not started. Try copying the file again from
the distribution disks.

Unknown Menu SubType
The item-definitions parameter of the MENU statement can contain only MENUITEM and POPUP
statements.

Unrecognized VERSIONINFO field; BEGIN or comma expected
The format of the information following a VERSIONINFO statement is incorrect.

 V

Version WORDs separated by commas expected
Values in an information block for a VERSIONINFO statement should be separated by commas.

 W

Warning: ASCII character not equivalent to virtual key code
An invalid virtual-key code exists in the ACCELERATORS statement. The ASCII values for some
characters such as *, ^, or & are not equivalent to the virtual-key codes for the corresponding keys. In
the case of the asterisk (*), the virtual-key code is equivalent to the ASCII value for 8, the numeric
character on the same key. Therefore, the statement VIRTKEY '*' is invalid.

Warning: SHIFT or CONTROL used without VIRTKEY
The ALT, SHIFT, and CONTROL options apply only to virtual keys in the ACCELERATORS statement.
Make sure that the VIRTKEY option is used with one of these other options.

Writing resource type image lang:language size:size
(V) Microsoft Windows Resource Compiler (RC) is writing the specified resource. The type is the
resource type. It may be a number or a string. The image can be a number or a string. The language is
the national language of the resource. The size is the decimal size of the resource in bytes.

 Monitoring Messages and Data

Microsoft Windows NT Spy (SPY.EXE) and DDESpy (DDESPY.EXE) are monitoring tools for the
Microsoft Windows NT operating system. Spy makes it possible for you to monitor messages sent to
one or more windows and to examine the values of message parameters. DDESpy lets you monitor
dynamic data exchange (DDE) activity in the Microsoft Windows NT operating system. This section
describes the use of both Spy and DDESpy.

 Spy

This section describes how to use the Spy, Edit, Options, and Start!/Stop! menus to specify how Spy is
to operate.

 The Spy Menu

Use the Spy menu to select the window you want Spy to monitor. The Spy menu contains the following
commands:

Select Window
Specifies the window that Spy is to monitor. By default, all windows are selected. When you choose
the Window command, Spy displays the Spy Window dialog box. This dialog box displays
information about the window in which the cursor is located. As you move the cursor from window to
window, the following information is updated:
Item Description
Windo
w

Handle of the window.

Class Window class.
Parent Handle of the parent window and the name of the program

that created the parent window.
Rect Upper-right and lower-left coordinates of the window and the

window size in screen coordinates.
Style Style bits of the window in which the cursor is located, the

principal style of the window, and an identifier if the window is
a child window. The principal style can be WS_POPUP,
WS_ICONIC, WS_OVERLAPPED, or WS_CHILD.

All
Windo
ws

Specifies that Spy is to display messages received by all
windows.

About
Provides information about the version of Spy you are using.

Exit
Closes Spy.

 The Edit Menu

You can use the Edit menu to Cut, Copy, and Clear information from the Spy window to the clipboard.

Comman
d

Description

Cut Cuts the selected text to the clipboard.
Copy Copies the selected text to the clipboard.
Clear Clears the selected text from the Spy window.

 The Options Menu

The Options menu displays a dialog box in which you make selections about the following:

· Which message types Spy is to monitor
· Which font Spy should use
· Which output device Spy is to send messages to

You make your selections from items displayed under Messages, Font, and Output.

 Selecting Message Types

Under Messages, you can select any of the following message types you want Spy to monitor:

Message Description
DDE Dynamic data exchange (DDE) messages, such as

WM_DDE_REQUEST
Clipboard Clipboard messages, such as WM_RENDERFORMAT
Mouse Mouse messages, such as WM_MOUSEMOVE and

WM_SETCURSOR
Non
Client

Windows nonclient messages, such as WM_NCDESTROY and
WM_NCHITTEST

Keyboard Keyboard messages, such as WM_KEYDOWN and
WM_ACTIVATE

Button
Control

Button control messages, such as BN_CLICKED and
BM_GETCHECK

Combo
Box
Control

Combo Box control messages, such as CB_ADDSTRING and
CB_LIMITTEXT

Editfield
Control

Editfield control messages, such as EM_GETSEL and
EM_UNDO

Listbox
Control

Listbox control messages, such as LB_GETSEL and
LB_GETCARETINDEX

Static
Control

Static control messages, such as STM_GETICON and
WM_CTLCOLORSTATIC

WM_US
ER

Application-defined WM_USER messages

Unknown Messages other than those explicitly listed

By default, Spy monitors all messages.

 Selecting the Font

Under Font, you can select which font you would like Spy to use in its window. This dialog box allows
you to choose the font name, font style and point size, and displays a sample of the font you have
chosen.

 Selecting the Output Device

Under Output, you can select which of the following output devices you want Spy to send messages to:

Devic
e

Description

Windo
w

Spy displays messages in the Spy window. You can specify how
many messages Spy stores in its buffer. By default, Spy stores up
to 250 lines of messages, which you can view by scrolling through
the Spy window. You can also change the maximum number of
lines that can be stored in the buffer.

Com1 Spy sends messages to the COM1 port.
File Spy sends messages to the specified file. The default output file is

SPY.LOG.

 The Start!/Stop! Menu

After using the Options and Spy menus to make your selections, start Spy by clicking the Start! menu.

To stop monitoring messages, click the Stop! menu.

 DDESpy

This section describes how to use DDESpy. For more information about dynamic data exchange, see
the Microsoft Windows 32-Bit API Programmer's Reference.

DDESpy is a typical DDE monitoring application. Because DDE is a cooperative activity, DDE
monitoring applications must follow certain guidelines for your Windows system to operate properly
while they are in use. In particular, DDE monitoring applications should not perform DDE server or
client communications ¾ problems may arise when the monitoring application intercepts its own
communications.

 The Output Menu

DDESpy can display DDE information in a window or on your debugging terminal or can save the
displayed information in a file for later use.

You use the Output menu to select where DDESpy is to send output. If you choose the File command,
you must specify the name of an output file. After you have chosen the File command once, DDESpy
prompts you for an output filename every time you restart the application.

From the Output menu, you can choose to send your output to either a debug terminal or to the
DDESpy window. You can also choose the Clear Screen command to clear the display window. Use
the Mark command to add text to the display as a marker ¾ for example, before a DDE event to make
it easier to find the event in the output file.

 The Monitor Menu

You use the Monitor menu to specify one or more types of DDE information that DDESpy is to display.
The following information can be displayed:

· String handle data
· Posted DDE messages
· Callbacks
· Errors
· Filters

The Dynamic Data Exchange protocol passes information by using shared memory. The contents of
the shared memory depend on the type of DDE transaction. Several structures have been defined to
allow applications using DDE to access the information in shared memory. DDESpy displays the
contents of the appropriate structure for the DDE activity being monitored.

You can use the Filters option to choose the type of DDE messages and types of DDE callbacks to
monitor.

 Monitoring String-Handle Data

The DDE protocol uses the MONHSZSTRUCT structure to pass string-handle data. DDESpy displays
the following information from this structure:

· Task (application instance)
· Time, in milliseconds, since you started Windows
· Activity type (create, destroy, or increment)
· String handle
· String contents

The following example shows a typical DDESpy display of string-handle data:

Task:0x94f, Time:519700, String Handle Created: c4a4(this is a test)
Task:0x94f, Time:526126, String Handle Created: c4aa(another test)

 Monitoring Posted DDE Messages

The DDE protocol uses the MONMSGSTRUCT structure to post DDE messages. DDESpy displays the
following information from this structure:

· Task
· Time
· Handle of receiving window
· Transaction type (sent or posted)
· Message type
· Handle of sending application
· Other message-specific information

The following example shows a typical DDESpy display of DDE message activity:

Task:0x8df Time:642402 hwndTo=0x38dc Message(Sent)=Initiate:
 hwndFrom=9224, App=0xc35d("Server")
 Topic=*
Task:0x94f Time:642457 hwndTo=0x2408 Message(Sent)=Ack:
 hwndFrom=9396, App=0xc35d("Server")status=c35d(fAck fBusy)
 Topic=Item=0xc361("System")

 Monitoring Callbacks

The DDE protocol uses the MONCBSTRUCT structure to pass information to application callback
functions. DDESpy displays the following information from this structure:

· Task
· Time
· Transaction type
· Exchanged-data format, if any
· Conversation handle
· String handles and their referenced strings
· Transaction-specific data

The following example shows a typical DDESpy display of callback activity:

Task:0x8df Time:2882628 Callback:
 Type=Advstart, fmt=0x1("CF_TEXT"), hConv=0xc24b4,
 hsz1=0xc361("System") hsz2=0xc4df("xxcall"), hData=0x0,
 lData1=0x83f0000, lData2=0x0
 return=0x0

 Monitoring Errors

When an error occurs during a DDE transaction, the DDE protocol places the error value and
associated information in a MONERRSTRUCT structure. DDESpy uses this structure to display the
following information about the error:

· Task (the handle of the application that caused the error)
· Time
· Error value and name

 Tracking Options

DDESpy can also display information about aspects of DDE communication in your Windows system:

· String handles
· Conversations
· Links
· Services

You can use the Track menu to specify which DDE activity DDESpy is to track. When you choose a
command from the Track menu, DDESpy creates a separate window for the display of information in
conjunction with the DDE functions. For each window created, DDESpy updates the displayed
information as DDE activity occurs. Events that occurred prior to creation of the tracking window are
not displayed in the tracking window.

DDESpy can sort the displayed information in the tracking window. If you select the heading for a
particular column in the tracking window, DDESpy will sort the displayed information based on the
column you selected. This can be useful if you are searching for a particular event or handle.

 Tracking String Handles

Windows maintains a system-wide string table containing the string handles that applications use in
DDE transactions. To display the system string table so that the string, the string handle, and the string
usage count are shown, choose the String Handles command from the Track menu.

 Tracking Conversations

To see a display of all active DDE conversations in your Windows system, choose the Conversations
command from the Track menu. The Conversations window shows the service name, the current topic,
and the server and client handles for each active conversation.

 Tracking Links

To see a display of all active DDE advise loops, choose the Links command from the Track menu. The
Links window shows the server name, topic, item format, transaction type, client handle, and server
handle for every active advise loop in your Windows system.

 Tracking Services

Server applications use the DdeNameService function to register with the DDE protocol. When the
DDE protocol receives the DdeNameService function call, it adds the server name and an instance-
specific name to a list of registered servers. To see a list of registered servers, choose the Services
command from the Track menu.

 The About Menu

Provides information about the version of DDESpy you are using.

 Creating a Setup Program

When you install a Microsoft software program on your computer, you may be using Setup and its
supporting functions to decompress and copy the program files onto your hard disk. Setup is a tool that
you can use to create programs that will install your application on a user's computer. Microsoft is
providing the Setup toolkit as part of the SDK so that you can take advantage of its many automated
procedures when you create an installation program for your own product.

 The Basic Components of Setup

The Setup toolkit includes the following basic components:

· Sample dialog box templates and procedures (DIALOGS.DLG, DIALOGS.RES, and DIALOGS.C),
which you modify using the Windows Dialog Editor to create the dialog and message boxes you need
for your installation.

· Five .DLL files that contain useful routines for detecting the hardware and software environment,
managing dialog and message boxes, copying files, modifying .INI files, and performing other
program management functions. These procedures are described in Setup Procedures. you will use
them to create your Setup program.

· Disk Layout Utilities, DISKLAYT.EXE and DISKLAYT2.EXE, which you use to create the installation
disks you will ship with your product.

Use these components as described in the next section to create your own Setup program. Using Setup
for your product installations will ensure that the process is safe and efficient, and that the installation
meets Windows programming standards.

 Steps for Creating a Setup Program

Use the following procedure to create a Setup program for your product. The remainder of this section
discusses each step in more detail.

{ewl msdncd, EWGraphic, group10538 0 /a "SDK.BMP"} To create a Setup installation
program

1. Identify the files that will be installed for your product.
2. Design the directory structure for those files.
3. Identify all user-defined parameters.
4. Design the dialog boxes you will need for the installation.
5. Create the code that will install your product's files.
6. Create the images for the installation disks using the Disk Layout Utilities.
7. Test your installation.

 Step 1: Identify the Files That Will Be Installed for Your Product

Before you start modifying sample code and dialog box templates, it's a good idea to make a list of the
files you will need to install. For each file that you will install, answer the following questions:

1. Is this file unique for your product, is it a shared resource, or is it a system resource? For example, a
shared resource could be a language dictionary used by more than one product for your company. A
system resource could be a TrueType font. If the file is a shared file or a system file, you will want
your code to check to see if it already exists and whether it is currently in use before copying it onto
the user's hard disk.

2. Can the user decide whether to install this file? For example, is the installation of tutorial files
optional? If so, you'll need to design a dialog box that asks the user to choose the files to install.

3. If an older version of the file already exists, should you overwrite it or rename it? Or, if you want to
delete it, is the older version of the file under a different filename? If so, you will want your code to
remove it, as well as install its newer version.

Beside each filename on your list, make notations indicating the answers to these questions. These
notations will help you later when you design dialog boxes or set the properties for each file with the
Disk Layout Utilities.

 Step 2: Design the Directory Structure for the Installable Files

Take the time now to sketch out the directory structure for your product by organizing the installable files
into categories that make sense. For example, you might put all computer-based training files in one
subdirectory and all font files in another. You may need to place some files in the Windows directory or in
one of its subdirectories. On the other hand, one directory (with no subdirectories) may suffice for a
product that has only a few files.

 Step 3: Identify All User-Defined Parameters

Identify the dialog and message boxes you will need for your Setup program. What input does the user
provide during installation? For example, will you store the user's name, the company name, and the
product serial number in a file? Can the user decide which directory to use for installation? Can the user
decide not to install some of the product files? You should also note whether you will allow network
installations and, if so, how the installation process will differ when installing to a network drive.

Are there any issues that you need to communicate to the user? For example, do you need a message
box to notify the user that you will be updating or deleting existing files? If so, note these as well.

 Step 4: Design Dialog Boxes

Make a rough sketch of each dialog box and identify the controls (buttons, check boxes, and list boxes)
that will be needed. This will help you choose the most appropriate template to modify. Then use the
Windows Dialog Editor to customize the templates. You may also need to modify the dialog box
procedures (in DIALOGS.C) to process the user's responses. For more information about this process,
see Designing Dialog Boxes.

 Step 5: Create Your Installation Program

Starting from the sample program provided in the toolkit, you will create your own Setup program. For
more information, see Building a Setup Program. For descriptions of the functions used in these files,
see Setup Procedures.

 Step 6: Create the Images for the Installation Disks

Gather all of your product files and installation program files into the directory structure that you
sketched out earlier. Then use the Disk Layout Utilities to define each file's properties (such as whether
it can be put on a writable disk) and to create the images for the installation disks. The Disk Layout
Utilities automatically create the .INF file as part of this process.

You can use the Disk Layout Utilities throughout your software development project, until you create
your master disks. Each time you release another version of your product, use the Disk Layout Utilities
to update the .INF file and disk images.

For more information about the Disk Layout Utilities, see Using the Disk Layout Utilities.

 Step 7: Test Your Installation Program

Once you've created your own Setup installation program, test it thoroughly. Test your code under a
variety of situations and computer configurations. Check the results by verifying that the files were
copied to their appropriate directories and that system files were updated correctly. When you are
satisfied that the installation is correct, create your master disks by copying the disk images onto media
that you've chosen to deliver your product.

 Designing Dialog Boxes

The Setup toolkit includes dialog box templates that you can customize to meet your installation's
specific needs. You can use the Microsoft Windows Dialog Editor (DLGEDIT.EXE) to edit the
templates.

The Dialog Editor is a tool that lets you design and test a dialog box on the display screen instead of
defining dialog statements in a resource script. Using the Dialog Editor, you can add, modify, and
delete controls in a dialog box. The Dialog Editor saves the changes you make as resource script
statements. You then compile these statements into a binary resource file that is linked to your Setup
application's executable file of dialog procedures.

The Setup toolkit provides the following files that contain sample dialog box templates and procedures:

· DIALOGS.DLG, which contains dialog box templates and is used to create MSCUISTF.DLL. See the
table below for descriptions of these templates. DIALOGS.DLG is updated automatically when you
use the Dialog Editor to read the companion file that the editor creates, DIALOGS.RES.

· DIALOGS.RC, which contains the resource statements for the bitmaps and the icons that are used
in the DIALOGS.DLG and DIALOGS.H sample files.

· DLGPROCS.C, which contains the C code for sample dialog box procedures associated with each
template and is used to create MSCUISTF.DLL. You modify this file to update the procedures for the
dialog box templates that you edited using the Dialog Editor. You can also add new dialog
procedures to this file.

· DIALOGS.H, which contains the dialog control identification number definitions and is used to create
MSCUISTF.DLL. This file is updated automatically when you use the Dialog Editor.

· CUI.H, which is the header file for the Setup toolkit dialog box C functions.
· MAKEFILE, which you can use to compile the preceding files.

Use these files with the Dialog Editor, the C compiler, and the linker to create your own dialog boxes.

To customize the dialog box templates for your installation program, follow these steps
1. Use the Dialog Editor to modify DIALOGS.RES. For each dialog box that you need, choose a

template that closely resembles the design of the dialog box and modify it as necessary.
2. When you save your changes, the Dialog Editor updates the script statements in DIALOGS.DLG

and the constants in DIALOGS.H.
3. If necessary, edit DLGPROCS.C to update the dialog box procedures for the templates that you

modified.
The Setup toolkit provides a set of functions that you can use in the dialog procedures in addition to
the standard Windows functions. These Setup functions are written in C and are described in detail
in the following section.

Note DLGPROCS.C uses the Symbol Table, a temporary storage area in memory, to transfer
information between dialog box procedures and Setup. The comments embedded in the code for each
dialog box procedure identify the symbols the procedure uses. For more information about the Symbol
Table, see Building a Setup Program.

Note Two constants are defined in CUI.H that can directly affect dialog box procedures:
STF_REINITDIALOG and STF_ACTIVATEAPP. If your dialog box procedure has called the UIStartDlg
function for a dialog box that is already on top of the dialog box stack (that is, to update the contents of
the dialog box), Windows returns the STF_REINITDIALOG constant to let you know. If the user has
switched to another application during your installation, Windows returns the STF_ACTIVATEAPP
constant to let you know that control has returned to your Setup program.

3. Compile the dialog box procedures with MAKEFILE to create the .DLL file with your changes.

MAKEFILE compiles the dialog procedures and dialog resources into MSCUISTF.DLL. You then use
the name of the .DLL file, the resource identification numbers of the dialog boxes, the help description
resource identification numbers, and the names of the associated dialog box procedures as
parameters for the UIStartDlg procedure, which is called from the installation program.

Note All dialog boxes must have a style of WS_CHILD in order to run properly.

The following table provides a quick guide to the dialog box procedures provided in DLGPROCS.C and
their associated templates provided in DLGPROCS.DLG. Each procedure in DIALOGS.C is preceded
with comments indicating what the procedure does and what symbols it uses. You can also preview
each template using the Dialog Editor to open DIALOGS.RES.

Dialog Box Procedures
Procedure name Used for Associated

template(s)
FCheckDlgProc Dialog boxes with one

to ten check boxes.
CHECK

FCustInstDlgProc Dialog boxes with one
to ten check boxes.
Each check box can
have an associated
push button. This
procedure also supports
a push button that
displays the current
installation path and
allows the user to
change it.

CUSTINST

FEditDlgProc Dialog boxes that
contain one edit control.

DESTPATH

FHelpDlgProc Dialog boxes that
contain help messages.

APPHELP

FInfoDlgProc Dialog boxes that
present information to
the user. The user must
respond.

WELCOME

FInfo0DlgProc This procedure is the
same as FInfoDlgProc
but does not support an
Exit button.

BADPATH
EXITFAILURE
EXITQUIT
EXITSUCCESS
TOOBIG

FListDlgProc Dialog boxes that
contain one single-
selection list box.

SINGLELIST

FModelessDlgProc Dialog boxes that
present information to
the user during lengthy
operations. The user
does not have to
respond.

MODELESS

FMultiDlgProc Dialog boxes with one EXTENDEDLIST

multiple-selection list
box.

MULTILIST

FQuitDlgProc Dialog boxes that let the
user either quit or
resume the installation
process.

ASKQUIT

FRadioDlgProc Dialog boxes with a
single group of one to
ten radio buttons.

OPTIONS

For information about the UIStartDlg procedure, see Setup Procedures. For information about using
the Dialog Editor, refer to "Designing Dialog Boxes: The Dialog Editor" in Microsoft Windows
Programming Utilities.

 Dialog Box Functions

 AsciiToInt

int AsciiToInt(LPSTR sz);

The AsciiToInt function converts an ASCII string representing a positive value into an integer.

Argument

sz
A non-null zero-terminated string to convert.

Return Value

Returns the integer that is represented by sz.

Comments

The integer to convert must be both positive and less than 100.

See Also

IntToAscii

 AssertSzUs

void AssertSzUs(LPSTR, unsigned fValue);

The AssertSzUs function asserts whether a boolean expression is true when the DEBUG compiler flag
is defined. When DEBUG is not defined, the function is ignored.

Argument

fValue
Specifies the Boolean value that you want to assert.

Return Value

This function has no return value.

Comments

If the asserted value is true, the Assert function simply returns. If the asserted value is false, the
program displays a message box containing the source filename and the line number of the failed
assertion. You must click OK to continue.

 CbGetListItem

int CbGetListItem(LPSTR szListSymbol, unsigned n, LPSTR szListItem, unsigned cbMax);

The CbGetListItem function copies the specified list item into the provided buffer as a zero-terminated
string.

Arguments

szListSymbol
Specifies the name of the symbol whose associated value is the list you want.

n
Specifies the index number (one-based) for the list item you want to copy into the buffer.

szListItem
Specifies the buffer for the copy of the list item.

cbMax
Specifies the size of the buffer.

Return Value

If the function is successful, the return value is the length (in bytes) of the full string of the specified list
item. If szListSymbol or n doesn't exist, the return value is zero and the empty string is placed in the
buffer.

Comments
If you specify a buffer that is smaller than the length of the symbol value, the CbGetListItem function
will copy in as many characters as will fit (including a trailing zero). However, the return value will be
the full length of the string.

See Also

UsGetListLength, FAddListItem, FReplaceListItem. For information about setting symbol values in
the Symbol Table, see FSetSymbolValue.

 CbGetSymbolValue

int CbGetSymbolValue(LPSTR szSymbol, LPSTR szValue, unsigned Length);

The CbGetSymbolValue function copies the specified value from the symbol-value pair in the Symbol
Table into a buffer.

Arguments

szSymbol
Specifies the name of the symbol whose value you want to copy into the buffer.

szValue
Specifies a buffer for the value associated with the symbol.

Length
Specifies the length, in bytes, of the buffer.

Return Value

If the function is successful in copying the value into the buffer, the return value is the length of the
value string (excluding the terminating zero). If the symbol does not exist or is an empty string, the
return value is zero.

Comments

If you specify a buffer length that is smaller than the length of the value, the function will copy in as
many characters as will fit (including a trailing zero). However, the return value will be the full length of
the specified value.

See Also

FSetSymbolValue, FRemoveSymbol

 DoMsgBox

int DoMsgBox(LPSTR lpText, LPSTR lpCaption, unsigned wType);

The DoMsgBox function launches a Windows message box of the style specified by wType. The return
value is the identification for the user's response, such as IDOK.

Arguments

lpText
Specifies the text you want to appear in the message box.

lpCaption
Specifies the caption for the message box.

wType
Specifies the contents of the message box. wType can be a combination of values.

Return Value

The return value is the value of the button control that the user selected (such as IDOK). If there is not
enough memory to create the message box, the return value is zero.

Comments

This function is similar to the Windows MessageBox function. The valid message box values and
control values are the same as for the MessageBox function.

See Also

For more information on the MessageBox function, see the Microsoft Windows Programmer¢s
Reference.

 FAddListItem

BOOL FAddListItem(LPSTR szListSymbol, LPSTR szListItem);

The FAddListItem function adds the specified item to the end of the list of items associated with the
symbol in the Symbol Table.

Arguments

szListSymbol
Points to a zero-terminated string that identifies the symbol.

szListItem
Points to a zero-terminated string that identifies the item you want to add to the list associated with
szSym.

Return Value

If the function is successful in adding the item, the return value is fTrue (one). Otherwise, the return
value is fFalse (zero).

Comments

You can initialize an empty list by setting its associated symbol value to "" with the FSetSymbolValue
function. You can then add values to the list using FAddListItem.

See Also

FReplaceListItem, CbGetListItem, UsGetListLength

 FCloseHelp

BOOL FCloseHelp();

The FCloseHelp function closes the currently open help dialog box, if one exists.

Return Value

The return value is fTrue (one) if the help dialog box is successfully closed. Otherwise, it is fFalse
(zero).

See Also

HdlgShowHelp

 FHandleOOM

BOOL FHandleOOM();

The FHandleOOM function displays a message box when an "Out Of Memory" error occurs and waits
for a user response. This function lets the user switch out of the current application and free up some
memory by closing other applications.

Return Value

If the user presses the RETRY button, the return value is fTrue (one). If the user presses the ABORT
button, the return value is fFalse (zero).

 FRemoveSymbol

BOOL FRemoveSymbol(LPSTR szSym);

The FRemoveSymbol function removes a symbol and its associated value from the Symbol Table.

Argument

szSym
Specifies the name of the symbol you want to remove.

Return Value

If the function is successful, the return value is fTrue (one). Otherwise, the return value is fFalse
(zero).

See Also

FSetSymbolValue

 FReplaceListItem

BOOL FReplaceListItem(LPSTR szListSymbol, unsigned n, LPSTR szListItem);

The FReplaceListItem function replaces the specified item in the list of items associated with the
symbol in the Symbol Table.

Arguments

szListSymbol
Specifies the name of the symbol. szSym must be a zero-terminated string.

n
Specifies the index number (one-based) of the item you want to replace.

szListItem
Identifies the item you want to use to replace the existing item. szItem must be a zero-terminated
string.

Return Value

If the function successfully replaces the item, the return value is fTrue (one). If the index is invalid or
the application is out of memory, the return value is fFalse (zero).

See Also

FAddListItem, CbGetListItem, UsGetListLength

 FSetSymbolValue

int FSetSymbolValue(LPSTR szSymbol, LPSTR szValue);

The FSetSymbolValue function inserts a new symbol-value pair into the Symbol Table. If the symbol
already exists, the function replaces the symbol's associated value.

Arguments

szSymbol
Specifies the name of the symbol you want to create or whose associated value you want to
replace.

szValue
Specifies the value you want to add or replace. If szValue is NULL, an empty string is added or used
to replace the existing value.

Return Value

If the function is successful, the return value is fTrue (one). If the application is out of memory, the
return value is fFalse (zero).

See Also

CbGetSymbolValue, FRemoveSymbol

 HdlgShowHelp

HWND HdlgShowHelp();

The HdlgShowHelp function displays the help dialog box for the dialog box that is currently on the top
of the dialog box stack.

Return Value

The return value is the handle to the help dialog. If the help dialog does not exist and cannot be
created, the return value is NULL.

See Also

FCloseHelp

 IntToAscii

int IntToAscii(int i, LPSTR sz);

The IntToAscii function converts a positive integer (< 100) into a string that represents its value.

Arguments

i
The integer to convert.

sz
The buffer to hold the converted string (at least 3 bytes).

Return Value

Returns the ASCII value of the provided integer (sz).

Comments

The integer to convert must be both positive and less than 100.

See Also

AsciiToInt

 ReactivateSetupScript

void ReactivateSetupScript();

The ReactivateSetupScript function returns control to the Setup program.

Return Value

This function has no return value.

Comments

This function is the vehicle for returning from a dialog box procedure to the Setup program.

 SzDlgEvent

LPSTR SzDlgEvent(WORD wParam);

The SzDlgEvent function gets the string values for the following WM_COMMAND events:

IDC_B, IDC_C, IDC_X, and IDCANCEL.

Argument

wParam
Event parameter value.

Return Value

Returns a pointer to string value constant. If the event is unknown, SzDlgEvent returns NULL.

See Also

SzLastChar

 SzLastChar

LPSTR SzLastChar(LPSTR sz);

The SzLastChar function finds the last character in a string.

Argument

sz
Specifies the non-null zero-terminated string to search.

Return Value

Returns NULL for an empty string. If the string is not empty, SzLastChar returns a non-Null string
pointer to the last valid character in sz.

See Also

SzDlgEvent

 UsGetListLength

int UsGetListLength(LPSTR szSymbol);

The UsGetListLength function determines the number of items in the list associated with the specified
symbol.

Argument

szSymbol
Specifies the name of the symbol. szSym must be a zero-terminated string.

Return Value

The return value is the number of items in the list associated with the symbol.

See Also

CbGetListItem, FReplaceListItem

 Building a Setup Program

Once you've identified the list of files you need to install and used the Windows Dialog Editor to design
dialog boxes and message boxes, you're ready to create an C program that contains the commands
and procedure calls that Setup uses to install your product on the user's system.

Start by reviewing the files that make up the Setup toolkit. The following table lists the name and
purpose of each file in the toolkit.

Setup Toolkit Files
Filename Description
SETUP.EXE
 (required)

The program that you write to copy your files to the
user's hard disk.

Setup .DLL files:
 (required)

MSCOMSTF.DLL

MSDETSTF.DLL

MSINSSTF.DLL

MSUILSTF.DLL

MSSHLSTF.DLL

These .DLL files contain the code for the Setup
procedures that you call from your installation program.
You should list them in the SETUP.LST file and include
them on the first installation disk.
The common library, which contains supporting
routines for the other .DLL files.
The detection library, which contains procedures that
return information about the user's system, such as the
version of Windows.
The install library, which contains procedures that
install files on the user's hard disk.
The user interface library, which contains procedures
that manipulate the user interface, such as displaying a
dialog box or deleting a dialog box from the dialog
stack.
The shell library, which contains the routines that
manage the frame window.

README.TXT A text file that contains information about Setup that
could not be included in this documentation. You
should read this file before creating an installation
program. Do not include this file on your installation
disks.

The rest of this section explains the process of creating an installation program and defining which files
you need to include on the first installation disk.

 Modifying the Sample Installation Program

At this point, you have defined the list of files you will be installing and designed the dialog boxes you
will need. Your focus has been on identifying the choices you will ask the user to make ¾ for example,
determining the directory in which you will install your product.

To create the installation program, your focus must now shift slightly. When you create the code that
handles the dialog boxes and installs the product files, you must pay attention to designing a safe and
efficient installation process. Therefore, before you start modifying the Setup sample program, answer
these questions:

· How much disk space wnill the installation use? Is it a significant amount? If so, you will need to
ensure that the user's hard disk has enough disk space available. Also, if your product includes
optional files that the user has chosen, you may want to inform the user how much disk space each
optional file will use.

· Does your product have minimum hardware and system software requirements? If so, you may want
to check the version of your operating system, or check for the existence of, for example, a math
coprocessor. If the user's system falls below your minimum requirements, you will want to display a
warning message.

· Will you be installing shareable files? For example, does your product require a spelling dictionary
that the user already may have installed with another product? If so, you will need to take some
special steps to handle these files.

· Will you be installing any system files? If so, you may need to use special Setup functions to exit
Windows and update files that would be in use while Windows is running.

· What other parts of your installation have associated risks? Do you need to post warnings of any
kind for the user? Do you need to check the validity of paths and filenames the user enters?

The answers to these questions provide the information you need to design your installation code. You
should design the installation program just as you would any other program: Identify the types of
routines you will need, determine the logical order in which those routines should occur, and then draw
a flowchart of the installation process.

 Using the Symbol Table

Whether your installation is simple or complex, you will probably use the Symbol Table to store values.
The Symbol Table is a temporary storage area in memory that contains a table of text symbols and
their associated text values. Setup uses the Symbol Table to store information such as directory names
and data that is passed between the installation program and the .DLL files.

Setup automatically creates and sets three symbols that you can use:

· STF_SRCDIR, which is the source directory
· STF_CWDDIR, which is the current working directory or the temporary directory for Setup
· STF_SRCINFPATH, which is the path for the .INF file (usually empty, unless you or the user

supplied it as part of the SETUP.EXE command line)

The procedures in MSCUISTF.DLL (the customized dialog box routines) also use the Symbol Table to
store the user's responses.You'll see other uses of the Symbol Table interspersed throughout the
sample code. Use the Symbol Table to pass data between your installation program and the .DLL files.

Note To conserve memory, clear all Symbol Table strings after you use them.

 Installing Shared Files or System Files

If you are planning to install shared files or system files, you must handle that part of the installation
with extra care. This section describes some of the issues involved with installing shared files or
system files and how Setup handles them.

Shared Files

A shared file is a file that may be used by more than one application on the user's system. For
example, your company may have two products that use the same spelling dictionary. If the user has
already installed one of the products, that dictionary file may already be installed. Furthermore, if the
user has that product running during the installation process, the dictionary file may be in use, in which
case it can't be updated.

To handle this problem, the CopyFilesInCopyList procedure checks each file listed in your .INF file
with the SHARED attribute to see if the file is in use. If so, Setup displays an error message. The user
can fix the problem by:

· Switching out of Setup, closing the other application, switching back into Setup, and then choosing
the Retry button.

· Exiting Setup and rerunning the installation after closing the other application.
· Ignoring the message. If the file is marked as vital, Setup will display another error message. If the

file is not vital, Setup skips it but continues to copy other files in the list.

System Files

A system file is a file that may be in use by Windows when Windows is running. The
CopyFilesInCopyList procedure checks each file listed in your .INF file with the SYSTEM attribute to
see if the file is in use. If so, the procedure copies the file to a temporary location (the restart directory)
and adds a command to the _MSSETUP.BAT file.

Toward the end of the installation, your program should call the RestartListEmpty function. If the
function returns zero, there are system files that must be updated. You should inform the user about
this and then use the ExitExecRestart function to shut down Windows, update the files, and restart
Windows.

For more information, see CopyFilesInCopyList, RestartListEmpty, and ExitExecRestart, and
Setup Procedures.

 Using the Disk Layout Utilities

The Disk Layout Utilities automate tedious, error-prone tasks by taking your project files and creating
efficiently organized disk images for your product installation. As part of this process, the Disk Layout
Utilities also creates the .INF file.

Typically, you will use the Disk Layout Utilities in the following manner:

· As soon as you have a distributable product release, even if it is planned for internal release within
your company, use the Disk Layout Utilities to create the .INF file and the disk images.

· For each subsequent release, run the Disk Layout Utilities to update the directory of disk images for
any files you may have added or changed.

After the first time you use the Disk Layout Utilities to create a software release, the program
remembers which files have already been included and tells you if you have added any new files. The
Disk Layout Utilities also update disk images and compressed files only when they change.

This chapter describes the disk layout process and explains the use of the Dsklayt and Dsklayt2
programs to create a layout file, disk images, and the .INF file.

 Understanding the Disk Layout Process

The Disk Layout Utilities consist of two parts:

· A Windows-based program (Dsklayt) that you use to specify the properties for all files that will go
into your product release

· An Win32-based program (Dsklayt2) that creates the disk images and the .INF file for the installation

You use Dsklayt to create a layout file containing file specifications. Dsklayt2 then uses the directives in
the layout file to create the disk images and the .INF file. You can use Dsklayt2 as part of your product
build process.

{ewl msdncd, EWGraphic, group10542 0 /a "SDK.BMP"} To run Dsklayt
1. In File Manager, choose Run from the File menu.
2. In the Command Line box, type \MSTOOLS\MSSETUP\DISKLAY\DSKLAYT, and then click OK.

The main window for Dsklayt appears with an open dialog box.
3. In the Microsoft Disk Layout Utilities dialog box, click either Open Layout to open an existing layout

file or New Layout to create a new layout file.
4. If you are opening an existing layout file, specify the name of the file and click OK. If you are creating

a new layout file, specify the directory where your product files are stored and click OK.

The files from the source directory appear in the list box on the left side of the main window. You can
then select one or more files from the list box and specify their properties.

 Using the Disk Layout Utilities Commands

Dsklayt has a main window and three menus ¾ File, Options, and Help. This section describes the
contents of the main window and each of the commands on the menus.

 Dsklayt Main Window

You can use the options in the main window to set most of the file specifications for your installation. To
set specifications for one file or for a group of files, you simply select the file(s) you want to affect from
the list box and specify the options you want the file(s) to have.

The Dsklayt main window options are divided roughly into two types: layout time options, which affect
how the files are stored on the installation disks, and install time options, which affect how the files are
copied onto the user's hard disk. Each option is described below.

Source Directory
Displays the name of the top-level directory for your product files.

List box
Displays all the files in the source directory and its subdirectories. Choose files from this list to set
their attributes. You can choose:
· A single file, by clicking on it.
· A contiguous range of files, by clicking on the first file, holding down the SHIFT key, and then

clicking on the last file.
· A discontiguous range of files, by holding down the CTRL key and clicking on each file.

Just Show New
Checking this box displays only the files that are new or have been updated since you last created
the layout file. Use this option when you are doing successive product releases and only need to
add specifications for the new or changed source files.

Layout Time Options:

File Destination
Determines the type of disk on which the selected file can be placed. Choose one of five options:
1. Any Diskette: Indicates that the selected file can go on any diskette in the installation set. This

option is the default.
2. Writable Diskette: Indicates that the selected file must go on a disk that Setup can write to.
3. Read-Only Diskette: Indicates that the selected file must go on a write-protected disk. For

example, you may want to store uncompressed binary files (.EXE files) that might be targets of
viruses on a read-only diskette.

4. Setup Diskette (#1): Indicates that the selected file must go on the first disk in the installation
disk set. For example, you would choose this option for your Setup program.

5. Do Not Lay Out File: Indicates that the selected file should not be placed on an installation disk.
Use this option for files that reside in your project directories but are not part of the product
installation, such as source code management files.

File Attributes
Marks a file in the layout file as having one or more attributes. Check one or more of the following:
· System File: The file is a system file, such as WINHELP.EXE or GDI.EXE.
· Shared File: The selected file may be shared by one or more applications, such as a common

code library that ships with all of your company products.
· Vital File: The installation will fail unless the selected file is installed successfully. This option is

the default.
Set File Date

Specifies the date stamp used for the file when it is copied into a disk image directory by Dsklayt2
and when Setup copies the file onto the user's hard disk. Choose one of the following options:
· Source Date: Uses the date of the installable file.
· Other: Uses the date you specify in the adjacent text box (in the format YYYY-MM-DD). Use this

option when you want the date on all installed files to be a significant date, such as the product

release date.
Compress

Determines whether the selected file should be compressed by Dsklayt2.
Check For Version

Tells Dsklayt2 to check the source file for the existence of a version resource. If the version resource
exists, Dsklayt2 puts this information into the .INF file. Otherwise, Dsklayt2 issues a warning and
leaves this portion of the file description blank in the .INF file.

Reference Key
Specifies a unique reference for the selected file. Use this option when you want the Setup program
to determine whether to install the selected file based on information available at the time of the
installation. For example, the type of monitor on the user's system could affect the files you install for
your product. You can also use this option when you want to display reference keys rather than
filenames in the dialog boxes displayed by the installation, because the keys are more descriptive
than the filenames.

Put In Section
Specifies a unique .INF section name for the selected file. Use this field when you want installation
files organized by categories rather than all listed in the default "Files" section of the .INF file.

Install-Time Options:

Overwrite
Specifies what should happen if the selected file already exists on the user's hard disk. Choose one
of the following options:
· Always: The installed file will always overwrite any existing version of the file.
· Never: The installed file will never overwrite an existing version of the file.
· Older: The installed file will overwrite an existing version of the file only if the existing version is

older. Setup will look for version information; if none exists, it will use the file dates to determine
which file is older.

· Unprotected: The installed file will overwrite an existing version of the file only if the existing
version has a file attribute of "Write."

Decompress
Indicates that Setup should check to see if the source file is compressed and, if so, decompress it
before copying it onto the user's hard disk. You should leave this option checked in most cases,
even if the source file is not compressed.

Mark as Read Only
Indicates that you want the file to have a file attribute of "Read Only" when it is copied onto the
user's hard disk.

Rename Copied File
Indicates that you want to rename the file to the filename you supply in the adjacent text box when it
is copied onto the user's hard disk.

Backup Existing File
Indicates that you want to back up an existing version of the file to the filename you supply in the
adjacent text box before copying the source file. If you type an asterisk (*), Setup will back up the file
to the same name with a .BAK extension.

 File menu

New

Creates a new, untitled layout file.

Open

Displays a dialog box that you can use to open an existing layout file so that you can update it. Dsklayt
checks for new product files and notifies you if there are any.

Save

Saves any changes you have made to the currently open layout file.

Save As

Displays a dialog box that you can use to save the current layout file under a name you specify.

Exit

Exits Dsklayt and returns you to the most recently active window. If you have made changes but did not
save them, Dsklayt prompts you to save.

 Options menu

Disk Labels

Displays a dialog box that lets you add, delete, or modify the disk labels for your installation disks.

To insert a new label, select the label in the list box that you want to follow the new label, type the new
label name in the text box, and then click Add. To delete a label, select it from the list box and then click
Delete. To modify a label, select it from the list box, click Delete, type the correct text in the text box,
and then click Add.

You can use generic labels, such as "Disk 1," until you see how the files are organized on the disks.
You can then rename the labels to reflect the content of the disks.

You can specify which disk label goes on the writable disk by selecting the label in the drop-down list
box at the bottom of the dialog box.

Note The order in which you add disk labels is the order in which Dsklayt2 will apply them to the disk
images.

Remove Files List

Displays a dialog box in which you can create one or more lists of files that you want Setup to remove
from the user's hard disk during product installation. Use this list to remove obsolete files or older
versions of files whose names differ from the newer versions.

To add a file to a removal list, type its filename in the Filename box, type the name of the .INF section
in the .INF Section box (if necessary), and then click Add. If you don't type a section name in the .INF
Section box, Dsklayt2 adds the name of the file to the "Files" section in the .INF file.

To delete a file from a removal list, select it from the list box and click Delete. To modify a filename in a
removal list, select it from the list box, click Delete, type the correct filename in the Filename box, and
then click Add.

 Help menu

About

Displays a dialog box that provides copyright and version information for Dsklayt.

 Using the Dsklayt2 Program

After saving your specifications in a layout file, use the Dsklayt2 program to generate disk images and
the .INF file for your product installation. Dsklayt2 reads the directives in the layout file and creates a
directory of disk images that you can copy onto disks using the Diskcopy command.

The Dsklayt2 program has the following command line syntax:

Dsklayt2 [drive:][path]layout_filename [[drive:][path]INF_filename] [options]

Parameter Description
drive:path for
layout_filename

The drive letter and path of the layout file.

layout_filename The name of the layout file that Dsklayt2
should read to create the disk images. This
argument is required.

drive:path for .INF_filename The drive letter and path of the .INF file.
INF_filename The name of the .INF file that you want

Dsklayt2 to create. If you do not specify a
filename, Dsklayt2 uses SETUP.INF.

Options:
 /k{n}

Specifies the type of disk Dsklayt2 should
target when creating the disk images. For n,
you can specify:
· A standard size ("360," "720," "12," or
"144"), "N" for Network
· O n/m for Other, where n/m is the bytes per
cluster and the cluster per disk, respectively.
The default is 1.2 MB.

 /f Specifies that Dsklayt2 should overwrite the
existing .INF file, if necessary.

 /w{n} Specifies the writable disk. For n, specify a
disk number. This field overrides the
specification in the layout file. If you omit this
option, Dsklayt2 makes the last disk in the
installation the writable disk. If you specify
the option without a disk number, Dsklayt2
assumes that all disks are read-only.

 /d{destdir} Specifies the destination directory for the
disk images. Dsklayt2 creates a directory for
each disk image, named DISK 1, DISK 2,
and so on. If your product will be installed
from a network drive (that is, if the /k option
specifies a network device), all files are
placed at the top-level destination directory.
If you omit this option, Dsklayt2 will not
create any files in the destination directory.

 /c{compdir} Specifies the directory where Dsklayt2 can
put compressed versions of the files. If you
specify the same directory each time you run
Dsklayt2, the program adds or updates only
those files that are new or have changed. If
you omit this option, Dsklayt2 creates a
COMP subdirectory in the parent of the

source directory. If the source directory is the
root directory, Dsklayt2 displays an error
message and aborts.

 /z{compcmd} Specifies a compression utility that Dsklayt2
can use to compress files. For compcmd,
specify the operating system command that
will execute the compression utility. Dsklayt2
will call this command with two arguments:
the source directory and the destination
directory. If this option is not specified,
Dsklayt2 looks for COMPRESS.EXE in the
path. (To specify internal compression only
use lzi.)

 Setup Procedures

This chapter describes the functions and subroutines that you can call in your installation program.
They are listed in alphabetical order.

Note All functions and subroutines are declared in the Setup .C files. The descriptions in this chapter
show the calling syntax for each procedure.

To: Use these procedures:
Manipulate what the user sees
on the screen

DoMsgBox
InitSetupToolkit
RestoreCursor
SetBeepingMode
SetBitmap
SetCopyGaugePosition
SetSilentMode
SetTitle
ShowWaitCursor
UIPop
UIPopAll
UIStartDlg

Manipulate a list associated with a
symbol in the Symbol Table

AddListItem
GetListItem
GetListLength
GetSymbolValue
MakeListFromSectionKeys
RemoveSymbol
ReplaceListItem
SetSymbolValue

Modify the contents of the global
list of installable files (the copy list)

AddSectionFilesToCopyList
AddSectionKeyFileToCopyList
AddSpecialFileToCopyList
ClearCopyList
CopyFilesInCopyList
DumpCopyList
GetCopyListCost

Control aspects of the copy list
installation

SetCopyMode
SetDecompMode

Manipulate billboard dialog boxes
and the global billboard list

AddBlankToBillboardList
AddToBillboardList
ClearBillboardList

Manipulate a file on the user's
system

BackupFile
CopyAFile
DoesFileExist
FindFileInTree
FindFileUsingFileOpen
FindTargetOnEnvVar
GetDateOfFile
GetSizeOfFile
GetVersionNthField
GetVersionOfFile
HandleSharedFile
InStr

IsFileWritable
PrependToPath
RemoveFile
RenameFile
RightTrim
StampResource
SzCatStr
SzCat2Str
SzCat3Str

Manipulate a directory on the
user's system

CreateDir
RemoveDir
DoesDirExist
GetWindowsDir
IsDirWritable

Update an .INI file CreateIniKeyValue
CreateSysIniKeyValue
DoesIniKeyExist
DoesIniSectionExist
FValidIniFile
GetIniKeyString
GetNthFieldFromIniString
RemoveIniKey
RemoveIniSection

Create a Program Manager group
and item for your product

CreateProgmanGroup
CreateProgmanItem
ShowProgmanGroup

Add information to or get
information
from the Registration Database

CreateRegKey
CreateRegKeyValue
DeleteRegKey
DeleteAllSubkeys
DoesRegKeyExist
GetRegKeyValue
SetRegKeyValue

Install system resources (that may
be
in use while Windows is running)

ExitExecRestart
RestartListEmpty
SearchForLocationForSharedFile
SetRestartDir

Create a record of what occurred
during
an installation

CloseLogFile
OpenLogFile
SetAbout
WriteToLogFile

Query the user's environment FValidDrive
GetConfigLastDrive
GetConfigNumBuffers
GetConfigNumFiles
GetConfigRamdriveSize
GetConfigSmartdrvSize
GetDOSMajorVersion
GetDOSMinorVersion
GetEnvVariableValue
GetFreeSpaceForDrive
GetLocalHardDrivesList
GetNetworkDrivesList

GetNumWinApps
GetParallelPortsList
GetProcessorType
GetRemovableDrivesList
GetScreenHeight
GetScreenWidth
GetSerialPortsList
GetTotalSpaceForDrive
GetTypeFaceNameFromTTF
GetValidDrivesList
GetWindowsMajorVersion
GetWindowsMinorVersion
GetWindowsMode
GetWindowsSysDir
Has87MathChip
HasMonochromeDisplay
HasMouseInstalled
IsDriveLocalHard
IsDriveNetwork
IsDriveRemovable
IsDriverInConfig
IsDriveValid
IsWindowsShared

Parse a date field GetDayFromDate
GetHourFromDate
GetMinuteFromDate
GetMonthFromDate
GetSecondFromDate
GetYearFromDate

Retrieve information about the
topmost frame window

HinstFrame
HwndFrame

Read or manipulate information
from the .INF file

FValidInfSect
GetSectionKeyDate
GetSectionKeyFilename
GetSectionKeySize
GetSectionKeyVersion
MakeListFromSectionDate
MakelistFromSectionFilename
MakeListFromSectionKeys
MakeListFromSectionSize
MakeListFromSectionVersion
ReadInfFile
RemoveSymbol
ReplaceListItem

Set and remove environment
variable values.

SetEnvVariable
RemoveEnvVariable

Uninstall an installation. FStoreUninstallData
FUninstall

 AddBlankToBillboardList

VOID AddBlankToBillboardList(LONG lTicks);

AddBlankToBillboardList adds a hidden dialog box to the global billboard list. The hidden dialog box
destroys the previous billboard dialog box and delays the display of the next billboard dialog box.

Argument

lTicks
Defines the amount of time you want to delay the display of the next billboard dialog box. The unit is
arbitrary, relative to a total number of units.

Comments

Use AddBlankToBillboardList prior to calling CopyFilesInCopyList.

 AddListItem

int AddListItem(LPSTR szListSymbol, LPSTR szListItem);

AddListItem adds a new item to the end of the list associated with the specified symbol name.

Arguments

szListSymbol
Specifies the name of the symbol in the Symbol Table to which the list is associated.

szListItem
Specifies the item that you want to add to the list.

Comments

If szListSymbol is previously undefined, a new list with the specified item is created and associated
with the symbol name. You can create a new, empty list by using SetSymbolValue and specifying the
value as " ".

 AddSectionFilesToCopyList

VOID AddSectionFilesToCopyList(LPSTR szSect, LPSTR szSrc, LPSTR szDest);

AddSectionFilesToCopyList adds all file descriptions from the specified section of the .INF file to the
global list of installable files (the copy list).

Arguments

szSect
Specifies the name of the section in the .INF file that contains the files you want to add to the copy
list.

szSrc
Specifies the full path of the directory where the files currently reside. Typically, you use the value
associated with the symbol STF_SRCDIR for szSrc.

szDest
Specifies the full path of the directory to which the files will be copied.

Comments

You must call ReadInfFile before using AddSectionFilesToCopyList.

 AddSectionKeyFileToCopyList

VOID AddSectionKeyFileToCopyList(LPSTR szSect, LPSTR szKey, LPSTR szSrc, LPSTR szDest);

AddSectionKeyFileToCopyList adds a file description identified by the reference key from the .INF
file to the global list of installable files (the copy list).

Arguments

szSect
Specifies the name of the section in the .INF file that contains the file you want to add to the copy
list.

szKey
Specifies the reference key for the file you want to add to the copy list.

szSrc
Specifies the full path of the directory where the file currently resides. Typically, you use the value
associated with the symbol STF_SRCDIR for szSrc$.

szDest
Specifies the full path of the directory to which the file will be copied.

Comments

You must call ReadInfFile before using AddSectionKeyFileToCopyList.

 AddSpecialFileToCopyList

VOID AddSpecialFileToCopyList(LPSTR szSect, LPSTR szKey, LPSTR szSrc, LPSTR szDest);

AddSpecialFileToCopyList adds the file description of a special file, such as a shared resource, from
the .INF file to the global list of installable files (the copy list).

Arguments

szSect
Specifies the name of the section in the .INF file that contains the file you want to add to the copy
list.

szKey
Specifies the reference key for the file you want to add to the copy list.

szSrc
Specifies the full path of the directory where the file currently resides. Typically, you use the symbol
STF_SRCDIR for szSrc$.

szDest
Specifies the full path of the file to be copied.

Comments

You must call ReadInfFile before using AddSpecialFileToCopyList.

 AddToBillboardList

VOID AddToBillboardList(LPSTR szDll, INT idDlg, LPSTR szProc, LONG lTicks);

AddToBillboardList adds a billboard dialog box to the end of the global billboard list. The dialog box
will be displayed during the next CopyFilesInCopyList call.

Arguments

szDll
Specifies the name of the .DLL file that contains the dialog box resource and procedure.

idDlg
Specifies the dialog box resource identification number.

szProc
Specifies the name of the dialog box procedure.

lTicks
Defines the amount of time you want the billboard dialog box to display. The unit is arbitrary, relative
to the total number of units specified at the time the files are copied onto the user's hard disk or
network drive.

 BackupFile

VOID BackupFile(LPSTR szFullPath, LPSTR szBackup);

BackupFile backs up the specified file by renaming it.

Arguments

szFullPath
Specifies the full path and name of the file you want to create a copy of.

szBackup
Specifies the filename of the copy.

Comments

The copy is placed in the same directory as the original file(as specified by szFullPath). BackupFile is
identical to RenameFile.

 ClearBillboardList

VOID ClearBillboardList(VOID);

ClearBillboardList deletes all dialog boxes from the global billboard list.

 ClearCopyList

VOID ClearCopyList(VOID);

ClearCopyList removes all file entries from the global list of installable files (or copy list).

 CloseLogFile

VOID CloseLogFile(VOID);

CloseLogFile closes the currently open log file.

 CopyAFile

VOID CopyAFile(LPSTR szFullPathSrc, LPSTR szFullPathDst, INT cmo, INT fAppend);

CopyAFile copies the specified file from its source directory to its destination directory.

Arguments

szFullPathSrc
Specifies the full path of the file you want to copy.

szFullPathDst
Specifies the full path of the destination directory for the file.

cmo
Specifies one or more command option flags. You can use one or more of the following for cmo (by
adding them together): cmoDecompress, cmoTimeStamp, cmoReadOnly, cmoOverwrite, cmoNone,
or cmoAll .

fAppend
Specifies whether you want any existing file to be appended to. A value of one indicates that you
want to append to an existing file; zero indicates that you want to remove the existing file before
copying the new file.

 CopyFilesInCopyList

VOID CopyFilesInCopyList(VOID);

CopyFilesInCopyList sorts the file descriptions in the global list of installable files (the copy list) and
then copies them from their source directory to their destination directory.

Comments

The files are sorted by their source disk identification number to minimize the number of times the user
has to insert disks during the installation. The source and destination directories are specified in the
functions that add the files to the copy list.

 CreateDir

VOID CreateDir(LPSTR szDir, INT cmo);

CreateDir creates a directory with the specified path and name.

Arguments

szDir
Specifies the complete path and name of the directory you want to create (starting with the disk drive
letter and backslash).

cmo
Specifies a command option flag. You can use cmoVital or cmoNone. If the directory already exists,
the subroutine does nothing.

 CreateIniKeyValue

VOID CreateIniKeyValue(LPSTR szFile, LPSTR szSect, LPSTR szKey, LPSTR szValue, INT cmo);

CreateIniKeyValue creates a symbol and an associated value in the designated section of the .INI file.

Arguments

szFile
Specifies the name of the .INI file in which you want to create the symbol and value. If the file you
specify is WIN.INI, you do not have to provide the full path. If the file you specify does not exist, it is
created.

szSect
Specifies the section name in which you want to create the symbol and value. szSect must be a
non-empty string.

szKey
Defines the name of the symbol you want to create. If szKey already exists, CreateIniKeyValue will
fail unless you specify cmoOverwrite for the command option flag.

szValue
Defines the value that will be associated with the symbol.

cmo
Specifies the command option flag. You can use cmoVital, cmoNone, cmoAll, or cmoOverwrite.

 CreateProgmanGroup

VOID CreateProgmanGroup(LPSTR szGroup, LPSTR szPath, INT cmo);

CreateProgmanGroup creates a new Program Manager group with the specified name.

Arguments

szGroup
Specifies the name of the Program Manager group you want to create. This name will be displayed
in the group window title bar (or below the icon when the group window is minimized).

szPath
Specifies the name and path for the Program goup that you want to create. If you provide an empty
string for szPath (the suggested method), a default file is created.

cmo
Specifies the command option flag. You can use cmoVital or cmoNone.

Comments

Typically, you should use an empty string for szPath.

 CreateProgmanItem

VOID CreateProgmanItem(LPSTR szGroup, LPSTR szItem, LPSTR szCmd, LPSTR szOther, INT
cmo);

CreateProgmanItem creates a new item in the specified Program Manager group.

Arguments

szGroup
Specifies the name of the Program Manager group in which you want to create the item. If szGroup
does not exist, CreateProgmanItem does nothing.

szItem
Specifies the description that will be displayed below the item.

szCmd
Specifies the path and executable filename for the new item.

szOther
Specifies an optional icon file, icon resource index, x and y icon positions for the new item, and the
working directory, separated by commas. If you provide an empty string for szOther, defaults are
used. However, if you need to specify one of the latter options in the string, you must specify the
preceding ones.

cmo
Specifies the command option flag. You can use cmoVital or cmoOverwrite. If you use cmoOverwrite
and the user is running Windows version 3.1, Setup will replace an existing Program Manager item.

See Also

Command Option Flags, Guide to Programming.

 CreateRegKey

void CreateRegKey(LPSTR szKey);

CreateRegKey creates a Registration Database key that is a subkey of HKEY_CLASSES_ROOT.

Argument

szKey
Specifies the name of the key you want to create. This key will have no associated value.

 CreateRegKeyValue

void CreateRegKeyValue(LPSTR szKey, LPSTR szValue);

CreateRegKeyValue creates a Registration Database key that is a subkey of
HKEY_CLASSES_ROOT and associates a value with the key.

Arguments

szKey
Specifies the name of the key you want to create.

szValue
Specifies the value you want to associate with the key.

 CreateSysIniKeyValue

VOID CreateSysIniKeyValue(LPSTR szFile, LPSTR szSect, LPSTR szKey, LPSTR szValue, INT
cmo);

CreateSysIniKeyValue adds the specified symbol and its associated value to the .INI file.

Arguments

szFile
Specifies the full path of the .INI file. CreateSysIniKeyValue should not be used to modify WIN.INI.

szSect
Specifies the name of the section in which you want to add the symbol-value pair. szSect$ must be
a non-empty string.

szKey
Specifies the name of the symbol you want to add. This string does not have to be unique.

szValue
Defines the value you want to associate with the symbol.

cmo
Specifies the command option flag. You can use cmoVital or cmoNone.

Comments

Use CreateSysIniKeyValue, rather than CreateIniKeyValue, to add symbol-value pairs with non-
unique keys to the .INI file. For example, you could add a line such as

DEV = *.VGA
where DEV = is likely to occur several times in the file.

 DeleteAllSubKeys

BOOL DeleteAllSubKeys(HKEY hKey, LPCTSTR szKey);

DeleteAllSubkeys deletes a subkey and all of its subkeys.

Argument

hKey
Specifies the handle of an open key.

szKey
Address of the name of the subkey to delete.

 DeleteRegKey

void DeleteRegKey(LPSTR szKey);

DeleteRegKey removes the specified Registration Database key, its associated values, and subkeys.

Argument

szKey
Specifies the name of the key you want to remove.

 DoesDirExist

BOOL DoesDirExist(LPSTR szDir);

DoesDirExist determines if the specified directory exists.

Argument

szDir
Specifies the name of the directory.

Return Value

If the directory exists, the return value is one. Otherwise, the return value is zero.

 DoesFileExist

BOOL DoesFileExist(LPSTR szFile, int mode);

DoesFileExist determines if the specified file exists, can be read from, can be written to, or all of these
states.

Arguments

szFile
Specifies the name of the file you want to inquire about.

mode
Specifies the file exist mode (femExists, femRead, femWrite, femReadWrite) you want to inquire
about.

Return Value

If the answer is yes, the return value is one. Otherwise, the return value is zero.

 DoesIniKeyExist

BOOL DoesIniKeyExist(LPSTR szFile, LPSTR szSect, LPSTR szKey);

DoesIniKeyExist determines if the specified key exists in the specified section of the .INI file.

Arguments

szFile
Specifies the name of the .INI file. If you specify WIN.INI, you do not have to provide the full path.

szSect
Specifies the section of the file. szSect must be a non-empty string.

szKey
Specifies the key (or symbol) you are looking for.

Return Value

If the key exists, the return value is one. Otherwise, the return value is zero.

 DoesIniSectionExist

BOOL DoesIniSectionExist(LPSTR szFile, LPSTR szSect);

DoesIniSectionExist determines if the specified section exists in the .INI file.

Arguments

szFile
Specifies the name of the .INI file. If you specify WIN.INI, you do not have to provide the full path.

szSect
Specifies the section of the file. szSect must be a non-empty string.

Return Value

If the section exists, the return value is one. Otherwise, the return value is zero.

 DoesRegKeyExist

int DoesRegKeyExist(LPSTR szKey);

DoesRegKeyExist checks for the existence of the specified key in the Registration Database.

Argument

szKey
Specifies the name of the key. This key is assumed to be a subkey of HKEYS_CLASSES_ROOT.

Return Value

If the key exists, the return value is one. Otherwise, the return value is zero.

 DoesSharedFileNeedCopying

BOOL DoesSharedFileNeedCopying(VOID);

 DoMsgBox

int DoMsgBox(LPSTR lpText, LPSTR szCaption, INT wType);

DoMsgBox launches a Windows message box containing the specified caption and text.

Arguments

szText
Specifies the text you want to appear in the message box.

szCaption
Specifies the caption for the message box.

wType
Specifies the contents of the message box. wType can be a combination of values.

Return Value

The return value is the value of the button control that the user selected (such as IDOK). If there is not
enough memory to create the message box, the return value is zero.

Comments

DoMsgBox is similar to the Windows MessageBox function. The valid message box values and
control values are the same as for MessageBox.

See Also

For more information on MessageBox, message box values, and control values, see the
Programmer's Reference.

 DumpCopyList

VOID DumpCopyList(LPSTR szFile);

DumpCopyList prints the contents of the global list of installable files (the copy list) to the specified
file.

Argument

szFile
Specifies the path and name of the file to which you want the list to be copied.

Comments

Use DumpCopyList when debugging your installation files.

 EndSetupToolkit

VOID EndSetupToolkit(VOID);

 ExitExecRestart

int ExitExecRestart(VOID);

ExitExecRestart installs system resources that may be in use by Windows (and therefore can't be
overwritten).

Return Value

If the function succeeds, it doesn't return. The return value is true (one) if the restart list is empty or the
user is running Windows version 3.0 (see comments below). The return value is false (zero) if there are
write errors, the restart fails, Windows can't exit, or the function can't find _MSSETUP.EXE.

Comments

This function returns a value but can fail for one of three reasons: if the restart list is empty, if the user
is running Windows version 3.0 (which does not support the function), or if an error occurs (such as
Windows not exiting because of open MS-DOS boxes or applications). Therefore, you should use the
RestartListEmpty function to determine the contents of the restart list before calling this function. You
should also check the current version of Windows. If the user is running Windows version 3.0, you will
need to provide a message box explaining that the user must exit Windows and run the batch file to
update the shared resources. In addition, you should warn the user to close all MS-DOS boxes and
applications.

ExitExecRestart exits Windows and executes _MSSETUP.EXE to read any commands that have
been placed in _MSSETUP.BAT. (Commands are placed in _MSSETUP.BAT when a file in the copy list
is specified as a system resource, Setup determines that it is a newer version, and it is currently in
use.) ExitExecRestart will then delete _MSSETUP.EXE and _MSSETUP.BAT before restarting
Windows. You must call SetRestartDir before using ExitExecRestart.

 FindFileInTree

LPSTR FindFileInTree(LPSTR szFile, LPSTR szDir, LPSTR szBuf, int cbBuf);

FindFileInTree searches for the specified file in a directory and its subdirectories.

Arguments

szFile
Specifies the name of the file you are trying to locate.

szDir
Specifies the top-level directory of the tree structure you want to search.

szBuf
Points to the destination buffer that will receive the path string.

cbBuf
Length, in bytes, of the destination buffer.

Return Value

The return value is the full path of the first instance of the file. If the file isn't found, the return value is
an empty string.

 FindFileUsingFileOpen

LPSTR FindFileUsingFileOpen(LPSTR szFile, LPSTR szBuf, INT cbBuf);

FindFileUsingFileOpen locates a file by using the Windows FileOpen function.

Arguments

szFile
Specifies the name of the file you want to find.

szBuf
Points to the destination buffer that will receive the path string.

cbBuf
Length, in bytes, of the destination buffer.

Return Value

The return value is the full path of the file. If the file isn't found, the return value is an empty string.

 FindTargetOnEnvVar

LPSTR FindTargetOnEnvVar(LPSTR szFile, LPSTR szEnvVar, LPSTR szBuf, int cbBuf);

FindTargetOnEnvVar searches for the specified file in directories based on the designated
environment variable (such as PATH).

Arguments

szFile
Specifies the name or partial path of the file you are trying to locate.

szEnvVar
Specifies the environment variable for the search.

szBuf
Points to the destination buffer that will receive the string.

cbBuf
Length, in bytes, of the destination buffer.

Return Value

The return value is the full path of the specified file. If the file isn't found, the return value is an empty
string.

 FStoreUninstallData

BOOL FStoreUninstallData(LPSTR szUninstallDataFile);

FStoreUninstallData stores information on the current installation. It stores the files, directories,
environment variables, and Program Manager items and groups that were installed. This information is
required for a subsequent call to FUninstall.

Argument

szUninstallDataFile
Specifies the name of the file in which to store the installation information.

Return Value

If the function succeeds, it returns fTrue.

If the function fails, it returns fFalse.

See Also

FUninstall

 FUninstall

BOOL FUninstall(LPSTR szUninstallDataFile, LPSTR szNewPath);

FUninstall removes the files, directories, environment variables. and Program Manager items and
groups created during installation.

Arguments

szUninstallDataFile
Specifies the name of the file that contains the installation data. This file was previously created by
FStoreUninstallData, which should be run at the end of the initial setup.

szNewPath
Specifies a directory to place files that were found in the installation directory structure, but which
were not part of the installation. If szNewPath is NULL, then these files will be left in the installation
directory.

Return Value

If the function succeeds, it returns fTrue.

If the function fails, it returns fFalse.

See Also

FStoreUninstallData

 FValidDrive

int FValidDrive(LPSTR szDrive);

FValidDrive determines whether or not a specified pathname begins with a valid drive letter. For
example, if the the first character is between a and z and the next character is either a NULL or a colon
(:), the pathname is valid.

Arguments

szDrive
The specified pathname.

 FValidInfSect

int FValidInfSect(LPSTR szSect);

FValidInfSect determines if the specified .INF section name is valid.

Arguments

szSect
Specifies the .INF section name.

Return Value

Returns a 0 if the section name is invalid and a 1 if the section name is valid.

 FValidIniFile

int FValidIniFile(LPSTR szFile);

int FValidIniFile determines if the path to an .INI file is valid.

Arguments

szFile
Specifies the full path to the .INI file.

Return Value

Returns TRUE if the path is either valid or szfile equals WIN.INI.

 GetConfigLastDrive

LPSTR GetConfigLastDrive(LPSTR szBuf, int cbBuf);

GetConfigLastDrive determines the LASTDRIVE set in the CONFIG.SYS file.

Arguments

szBuf
Points to the destination buffer that will receive the string.

cbBuf
Length, in bytes, of the destination buffer.

Return Value

The return value is the string for LASTDRIVE.

 GetConfigNumBuffers

int GetConfigNumBuffers(VOID);

GetConfigNumBuffers determines the number of BUFFERS set in the CONFIG.SYS file.

Return Value

The return value is the number of BUFFERS.

 GetConfigNumFiles

int GetConfigNumFiles(VOID);

GetConfigNumFiles determines the number of FILES set in the CONFIG.SYS file.

Return Value

The return value is the number of FILES.

 GetCopyListCost

LONG GetCopyListCost(LPSTR szExtraList, LPSTR szCostList, LPSTR szNeedList);

GetCopyListCost examines the files listed in the global list of installable files (the copy list) and
determines the amount of disk space needed to copy, back up, and overwrite files. The values retrieved
are associated with symbols in the Symbol Table.

Arguments

szExtraList
Symbol whose associated value identifies the extra, or incidental, disk space needed on each disk
drive to update files such as .INI files. The symbol value is a list of as many as 26 integers. Missing
values are assumed to be zero.

szCostList
Symbol whose associated value is set to a list of 26 numbers, each of which identifies the cost per
disk drive to copy and update files. A positive number is the amount of free space that will be used
by new or larger files. A negative number is the amount of space that will be freed by removing files
or replacing existing files with smaller versions.

szNeedList
Symbol whose associated value is set to a list of 26 numbers, each of which identifies the additional
space needed per disk drive. Each entry in szCostList that is not zero has a corresponding entry in
this list that is the value in szCostList minus the current free space on that disk drive. A positive
number indicates that the new files will not fit (and by how much). A negative number indicates how
much free space will be left after the new files are copied.

Return Value

The return value is the total additional free disk space needed. This value is the sum of the positive
numbers in szNeedList. If there is enough free disk space on the appropriate disk drives for
CopyFilesInCopyList to succeed, the return value is zero.

 GetDateOfFile

LPSTR GetDateOfFile(LPSTR szFile, LPSTR szBuf, int cbBuf);

GetDateOfFile determines the file date of the specified file.

Arguments

szFile
Specifies the full path of the file.

szBuf
Points to the destination buffer that will receive the date string.

cbBuf
Length, in bytes, of the destination buffer.

Return Value

The return value is the date in YYYY-MM-DD-HH-MM-SS format. If szFile does not exist, or if it has an
invalid date, the return value will be 1980-01-01-00-00-00.

 GetDayFromDate

int GetDayFromDate(LPSTR szDate);

GetDayFromDate retrieves the day field from the return value for GetDateOfFile.

Argument

szDate
Specifies the date in YYYY-MM-DD-HH-MM-SS format. This value is obtained from the
GetDateOfFile function.

Return Value

The return value is an integer with a valid range from 1 through 31.

 GetDOSMajorVersion

int GetDOSMajorVersion(void);

GetDOSMajorVersion determines the major version number of the currently installed MS-DOS.

Return Value

The return value is the major version number of MS-DOS.

 GetDOSMinorVersion

int GetDOSMinorVersion(void);

GetDOSMinorVersion determines the minor version number of the currently installed MS-DOS.

Return Value

The return value is the minor version number of MS-DOS.

 GetEnvVariableValue

LPSTR GetEnvVariableValue(LPSTR szEnvVar, LPSTR szBuf, int cbBuf);

GetEnvVariableValue determines the associated value for the specified environment variable.

Arguments

szEnvVar
Specifies the environment variable name.

szBuf
Points to the destination buffer that will receive the string.

cbBuf
Length, in bytes, of the destination buffer.

Return Value

The return value is the string associated with the environment variable. If there is no associated value,
the string is empty.

 GetFreeSpaceForDrive

LONG GetFreeSpaceForDrive(LPSTR szDrive);

GetFreeSpaceForDrive determines the amount of free space available on the specified disk drive.

Argument

szDrive
Specifies a string identifying the disk drive letter (A through Z).

Return Value

The return value is the amount of free disk space. If szDrive is not a valid disk drive, the return value is
zero.

 GetHourFromDate

int GetHourFromDate(LPSTR szDate);

GetHourFromDate retrieves the hour field from the return value for GetDateOfFile .

Argument

szDate
Specifies the date in YYYY-MM-DD-HH-MM-SS format. This value is obtained from GetDateOfFile.

Return Value

The return value is an integer with a valid range from 0 through 23.

 GetIniKeyString

LPSTR GetIniKeyString(LPSTR szFile, LPSTR szSect, LPSTR szKey, LPSTR szBuf, int cbBuf);

GetIniKeyString searches the .INI file for the specified key string.

Arguments

szFile
Specifies the .INI file that you want to search. If you specify WIN.INI, you do not have to provide the
full path.

szSect
Specifies the section of the file to be searched. szSect must be a non-empty string.

szKey
Specifies the key or symbol you want to search for.

szBuf
Points to the destination buffer that will receive the string.

cbBuf
Length, in bytes, of the destination buffer.

Return Value

If the key is found, the return value is the full string associated with the key. Otherwise, the return value
is an empty string.

 GetListItem

LPSTR GetListItem(LPSTR szSymbol, INT n, LPSTR szBuf, INT cbBuf);

GetListItem retrieves a single item from the list associated with the specified symbol name.

Arguments

szSymbol
Specifies the name of the symbol in the Symbol Table with which the list is associated.

n
Specifies the index (one-based) of the item you want to retrieve.

szBuf
Points to the destination buffer that will receive the string.

cbBuf
Length, in bytes, of the destination buffer.

Return Value

The return value is the item from the list.

Comments

If the string is empty, the symbol or item does not exist.

 GetListLength

int GetListLength(LPSTR szSymbol);

GetListLength determines the number of items in the list associated with the specified symbol name.

Argument

szSymbol
Specifies the name of the symbol in the Symbol Table with which the list is associated.

Return Value

The return value is the number of items in the list.

 GetLocalHardDrivesList

void GetLocalHardDrivesList(LPSTR szSymbol);

GetLocalHardDrivesList sets the specified symbol to a list of all local hard drives (that is, "A", "B", and
so on).

Argument

szSymbol
Specifies the name of the symbol to associate with the list.

 GetMinuteFromDate

int GetMinuteFromDate(LPSTR szDate);

GetMinuteFromDate retrieves the minute field from the return value for GetDateOfFile.

Argument

szDate
Specifies the date in YYYY-MM-DD-HH-MM-SS format. This value is obtained from the
GetDateOfFile function.

Return Value

The return value is an integer with a valid range from 0 through 59.

 GetMonthFromDate

int GetMonthFromDate(LPSTR szDate);

GetMonthFromDate retrieves the month field from the return value for GetDateOfFile.

Argument

szDate
Specifies the date in YYYY-MM-DD-HH-MM-SS format. This value is obtained from GetDateOfFile.

Return Value

The return value is an integer with a valid range from 1 through 12.

 GetNetworkDrivesList

void GetNetworkDrivesList(LPSTR szSymbol);

GetNetworkDrivesList sets the specified symbol to a list of all network drives (that is, "A", "B", and so
on).

Argument

szSymbol
Specifies the name of the symbol to associate with the list.

 GetNthFieldFromIniString

LPSTR GetNthFieldFromIniString(LPSTR szLine, INT iField, LPSTR szBuf, INT cbBuf);

GetNthFieldFromIniString extracts the specified comma-separated field from the specified string.

Arguments

szLine
Specifies the string from which you want to extract the field.

iField
Specifies the index (one-based) of the field that you want to extract.

szBuf
Points to the destination buffer that will receive the string.

cbBuf
Length, in bytes, of the destination buffer.

Return Value

The return value is the field. If the requested field doesn't exist or is invalid, the return value is an empty
string.

 GetNumWinApps

int GetNumWinApps(void);

GetNumWinApps determines the number of unique instances of Windows applications currently
running in the system.

Return Value

The return value is the number of applications.

 GetParallelPortsList

void GetParallelPortsList(LPSTR szSymbol);

GetParallelPortsList sets the specified symbol to a list of all parallel ports (that is, "LPT1","LPT2",_).

Argument

szSymbol
Specifies the name of the symbol to associate with the list.

 GetProcessorType

int GetProcessorType(void);

GetProcessorType determines the type of processor being run on the user's system.

Return Value

The return value is either zero (for 8086), one (for 80186), two (for 80286), three (for 80386), or four
(for 80486).

 GetRegKeyValue

LPSTR GetRegKeyValue(LPSTR szKey, LPSTR szBuf, int cbBuf);

GetRegKeyValue determines the value associated with the specified Registration Database key.

Argument

szKey
Specifies the name of the key whose value you want to retrieve. Because all keys are assumed to
be subkeys of HKEYS_CLASSES_ROOT, you only have to specify the name of the key.

szBuf
Points to the destination buffer that will receive the string.

cbBuf
Length, in bytes, of the destination buffer.

Return Value

The return value is the value associated with szKey in the Registration Database.

 GetRemovableDrivesList

void GetRemovableDrivesList(LPSTR szSymbol);

GetRemovableDrivesList sets the specified symbol to a list of all removable drives (that is, "A", "B",
and so on).

Argument

szSymbol
Specifies the name of the symbol to associate with the list.

 GetScreenHeight

int GetScreenHeight(void);

GetScreenHeight determines the height of the screen.

Return Value

The return value is the height of the screen (in pixels).

 GetScreenWidth

int GetScreenWidth(void);

GetScreenWidth determines the width of the screen.

Return Value

The return value is the width of the screen (in pixels).

 GetSecondFromDate

int GetSecondFromDate(LPSTR szDate);

GetSecondFromDate retrieves the seconds field from the return value for GetDateOfFile.

Argument

szDate
Specifies the date in YYYY-MM-DD-HH-MM-SS format. This value is obtained from the
GetDateOfFile function.

Return Value

The return value is an integer with a valid range from 0 through 59.

 GetSectionKeyDate

LPSTR GetSectionKeyDate(LPSTR szSect, LPSTR szKey, LPSTR szBuf, INT cbBuf);

GetSectionKeyDate retrieves the date from a file description in the .INF file.

Arguments

szSect
Specifies the name of the section where the file description resides.

szKey
Specifies the name of the key associated with the file description.

szBuf
Points to the destination buffer that will receive the string.

cbBuf
Length, in bytes, of the destination buffer.

Return Value

The return value is the date. This string can be parsed by GetDayFromDate, GetMonthFromDate,
and GetYearFromDate.

 GetSectionKeyFilename

LPSTR GetSectionKeyFilename(LPSTR szSect, LPSTR szKey, LPSTR szBuf, INT cbBuf);

GetSectionKeyFilename retrieves the filename from a file description in the .INF file.

Arguments

szSect
Specifies the name of the section where the file description resides.

szKey
Specifies the name of the key associated with the file description.

szBuf
Points to the destination buffer that will receive the string.

cbBuf
Length, in bytes, of the destination buffer.

Return Value

The return value is the filename.

 GetSectionKeySize

LONG GetSectionKeySize(LPSTR szSect, LPSTR szKey);

GetSectionKeySize retrieves the file size from a file description in the .INF file.

Arguments

szSect
Specifies the name of the section where the file description resides.

szKey
Specifies the name of the key associated with the file description.

Return Value

The return value is the file size in bytes.

 GetSectionKeyVersion

LPSTR GetSectionKeyVersion(LPSTR szSect, LPSTR szKey, LPSTR szBuf, INT cbBuf);

GetSectionKeyVersion retrieves the version number from a file description in the .INF file.

Arguments

szSect
Specifies the name of the section where the file description resides.

szKey
Specifies the name of the key associated with the file description.

szBuf
Points to the destination buffer that will receive the string.

cbBuf
Length, in bytes, of the destination buffer.

Return Value

The return value is the version number. This string can be parsed by GetVersionNthField.

 GetSerialPortsList

void GetSerialPortsList(LPSTR szSymbol);

GetSerialPortsList sets the specified symbol to a list of all serial ports (that is, "COM1","COM2", and
so on).

Argument

szSymbol
Specifies the name of the symbol to associate with the list.

 GetSizeOfFile

LONG GetSizeOfFile(LPSTR szFile);

GetSizeOfFile determines the size of the specified file.

Argument

szFile
Specifies the path and name of the file.

Return Value

The return value is the size of the file in bytes. If szFile is invalid or does not exist, the return value is
zero.

 GetSymbolValue

LPSTR GetSymbolValue(LPSTR szSymbol, LPSTR szBuf, INT cbBuf);

GetSymbolValue finds the value associated with a symbol in the Symbol Table.

Arguments

szSymbol
Specifies the name of the symbol to be found in the Symbol Table.

szBuf
Points to the destination buffer that will receive the string.

cbBuf
Length, in bytes, of the destination buffer.

Return Value

The return value is the value associated with szSymbol in the Symbol Table. If there is no value
associated with szSymbol, the return value is an empty string.

Comments

Use this function to retrieve information stored in the Symbol Table by other .DLL file procedures.

 GetTotalSpaceForDrive

LONG GetTotalSpaceForDrive(LPSTR szDrive);

GetTotalSpaceForDrive determines the total amount of disk space for the specified disk drive.

Argument

szDrive
Specifies a string identifying the disk drive letter (A through Z).

Return Value

The return value is the total capacity in bytes of the disk drive. If szDrive is not a valid disk drive, the
return value is zero.

 GetTypeFaceNameFromTTF

int GetTypeFaceNameFromTTF(LPSTR szFile, LPSTR szBuf, int cbBuf);

GetTypeFaceNameFromTTF extracts the typeface name from a TrueType font file.

Arguments

szFile
Specifies the name of the TrueType font file.

szBuff
Specifies the buffer you are providing for the storage of the typeface name.

cbBuff
Specifies the size of the buffer you are providing.

Return Value

If the file you specified is not a TrueType font file, the return value is zero. Otherwise, the return value is
the actual length of the typeface name.

Comments

Check to ensure that the return value is not greater than the size of szBuff. If the return value is
greater, the typeface name has been truncated.

 GetValidDrivesList

void GetValidDrivesList(LPSTR szSymbol);

GetValidDrivesList sets the specified symbol to a list of all valid disk drives (that is, "A", "B", and so
on).

Argument

szSymbol
Specifies the name of the symbol to associate with the list.

 GetVersionNthField

LONG GetVersionNthField(LPSTR szVersion, int nField);

GetVersionNthField extracts the specified field from the return value for GetVersionOfFile.

Arguments

szVersion
Specifies the string returned from GetVersionOfFile.

nField
Specifies the number of the field you want to extract (1 through 4 from the version string).

Return Value

The return value is the integer extracted from szVersion.

 GetVersionOfFile

LPSTR GetVersionOfFile(LPSTR szFile, LPSTR szBuf, int cbBuf);

GetVersionOfFile determines the version of the specified file.

Argument

szFile
Specifies the path and name of the file.

szBuff
Specifies the buffer you are providing for the storage of the typeface name.

cbBuff
Specifies the size of the buffer you are providing.

Return Value

The return value is a string in the format N.N.N.N, where each N is an integer.

 GetWindowsDir

LPSTR GetWindowsDir(LPSTR szBuf, INT cbBuf);

GetWindowsDir determines the name and path of the Windows directory.

Arguments

szBuff
Specifies the buffer you are providing for the storage of the typeface name.

cbBuff
Specifies the size of the buffer you are providing.

Return Value

The return value is the path name terminated with a backslash; for example, "C:\WINDOWS\".

 GetWindowsMajorVersion

int GetWindowsMajorVersion(void):

GetWindowsMajorVersion determines the major version number for the currently installed Windows
software.

Return Value

The return value is the Windows major version number.

 GetWindowsMinorVersion

int GetWindowsMinorVersion(void);

GetWindowsMinorVersion determines the minor version number for the currently installed Windows
software.

Return Value

The return value is the Windows minor version number.

 GetWindowsMode

int GetWindowsMode(void);

GetWindowsMode determines the current mode of Windows.

Return Value

The return value is zero for Real mode, one for Standard mode, or two for Enhanced mode.

 GetWindowsSysDir

LPSTR GetWindowsSysDir(LPSTR szBuf, INT cbBuf);

GetWindowsSysDir determines the name and path of the Windows system directory.

Arguments

szBuff
Specifies the buffer you are providing for the storage of the typeface name.

cbBuff
Specifies the size of the buffer you are providing.

Return Value

The return value is the path which ends with a backslash.

 GetYearFromDate

int GetYearFromDate(LPSTR szDate);

GetYearFromDate retrieves the year field from the return value for GetDateOfFile.

Argument

szDate
Specifies the date in YYYY-MM-DD-HH-MM-SS format. This value is obtained from GetDateOfFile.

Return Value

The return value is an integer with a valid range from 1980 through 2099.

 HandleSharedFile

LPSTR HandleSharedFile(LPSTR szInfSection, LPSTR szInfKey, LPSTR szSubDir, LPSTR
szRegDbKey, LPSTR szWinIniSect, LPSTR szWinIniKey, int iWinIniField, LPSTR szBuf, int cbBuf);

HandleSharedFile checks a shared file already exists, based on szWinIniKey. If the file does not exist,
it is added to WIN.INI.

Arguments

szInfSection
Specifies the .INF Section that contains the shared application description line.

szInfKey
Specifies the .INF reference key for the shared application description line.

szSubDir
Specifies the shared application WIN.INI key (such as PROOF, TEXTCONV, or MSDRAW).

szRegDbKey
Specifies the Registration Database key that might contain the full path of an existing copy of the
shared application.

szWinIniSect
Specifies the WIN.INI section that might contain the full path of an existing copy of the shared
application (such as "MS Proofing Tools").

szWinIniKey
Specifies the WIN.INI key which might reference the full path of an existing copy of the shared
application (such as "Spelling 1033,0").

iWinIniField
An index of the path in szWinIniKey (such as "1" for speller, "2" for dictionary).

szBuf
Specifies the destination buffer for the full path of the shared application.

cbBuf
The size of szBuf.

 Has87MathChip

BOOL Has87MathChip(void);

Has87MathChip checks for an 87 math coprocessor on the user's system.

Return Value

If an 87 math coprocessor exists, the return value is one. Otherwise, the return value is zero.

 HasMonochromeDisplay

BOOL HasMonochromeDisplay(void);

HasMonochromeDisplay checks for a monochrome display on the user's system.

Return Value

If the monochrome display exists, the return value is one. Otherwise, the return value is zero.

 HasMouseInstalled

BOOL HasMouseInstalled(void);

HasMouseInstalled determines if a mouse is installed on the user's system.

Return Value

If a mouse exists, the return value is one. Otherwise, the return value is zero.

 HinstFrame

handle HinstFrame(void);

HinstFrame retrieves the instance handle for the Setup program.

Return Value

The return value is the instance handle.

 HwndFrame

int HwndFrame(void);

HwndFrame provides the handle for the Setup application frame window (the main window).

Return Value

The return value is the handle of the frame window (the main window).

Comments

Use the return value from this function for the hwnd argument in procedures that require it.

 InitSetupToolkit

int InitSetupToolkit(LPSTR szCmdLine);

InitSetupToolkit creates the Setup Toolkit window.

Argument

szCmdLine
Specifies the command line passed in to Setup, which must be called at the beginning of every
Setup application.

 InStr

int InStr(INT cch, LPSTR sz1, LPSTR sz2);

InStr determines if sz2 is contained in sz1, starting at the character cch.

cch
Position to compare from, must be 1 or greater.

sz1
Source string.

sz2
String to search for in sz1.

 IsDirWritable

int IsDirWritable(LPSTR szDir);

IsDirWritable determines if the specified directory is writable (so that Setup can create a file in it).

Argument

szDir
Specifies the name of the directory.

Return Value

If the directory is writable, the return value is one. Otherwise, the return value is zero.

 IsDriveLocalHard

BOOL IsDriveLocalHard(LPSTR szDrive);

IsDriveLocalHard determines whether the specified disk drive is a local hard disk.

Argument

szDrive
Specifies a string identifying the disk drive letter (A through Z).

Return Value

If the disk drive is a local hard disk, the return value is one. Otherwise, the return value is zero.

 IsDriveNetwork

BOOL IsDriveNetwork(LPSTR szDrive);

IsDriveNetwork determines if the specified disk drive is a network drive.

Argument

szDrive
Specifies a string identifying the disk drive letter (A through Z).

Return Value

If the disk drive is a network drive, the return value is one. Otherwise, the return value is zero.

 IsDriveRemovable

BOOL IsDriveRemovable(LPSTR szDrive);

IsDriveRemovable determines if the specified disk drive is a removable disk drive.

Argument

szDrive
Specifies a string identifying the disk drive letter (A through Z).

Return Value

If the disk drive is removable, the return value is one. Otherwise, the return value is zero.

 IsDriverInConfig

BOOL IsDriverInConfig(LPSTR szDrv);

IsDriverInConfig determines if the specified device driver is in the CONFIG.SYS file.

Argument

szDrv
Specifies the name of the device driver you want to find.

Return Value

If the device driver statement is found, the return value is one. Otherwise, the return value is zero.

 IsDriveValid

BOOL IsDriveValid(LPSTR szDrive);

IsDriveValid determines if the specified disk drive exists.

Argument

szDrive
Specifies a string identifying the disk drive letter (A through Z).

Return Value

If the specified disk drive is valid, the return value is one. Otherwise, the return value is zero.

 IsFileWritable

bool IsFileWritable(LPSTR szFile);

IsFileWritable determines whether the specified file is writable.

Argument

szFile
Specifies the full path and name of the file you want to write to.

Return Value

If the file is writable, the return value is one. Otherwise, the return value is zero.

 IsWindowsShared

bool IsWindowsShared(void);

IsWindowsShared determines if Windows is shared by comparing the Windows and system
directories.

Return Value

If Windows is shared, the return value is one. Otherwise, the return value is zero.

 MakeListFromSectionDate

VOID MakeListFromSectionDate(LPSTR szSym, LPSTR szSect);

MakeListFromSectionDate creates a string with all of the dates from the specified .INF section.

Arguments

szSym
Specifies the buffer to receive the list of dates.

szSect
Specifies the section name.

 MakeListFromSectionFilename

VOID MakeListFromSectionFilename(LPSTR szSym, LPSTR szSect);

MakeListFromSectionFilename creates a string with all of the filenames from the specified .INF
section.

Arguments

szSym
Specifies the buffer to receive the list of filenames.

szSect
Specifies the section name.

 MakeListFromSectionKeys

VOID MakeListFromSectionKeys(LPSTR szSymbol, LPSTR szSect);

MakeListFromSectionKeys creates a list of the reference key values found in a section of the
currently open .INF file and associates the list with the specified symbol name.

Arguments

szSymbol
Specifies the symbol name of the list in the Symbol Table.

szSect
Specifies the name for the section in the .INF file that contains the reference key values.

Comments

Use this function to create a list that can be used in dialog list boxes.

 MakeListFromSectionSize

VOID MakeListFromSectionSize(LPSTR szSym, LPSTR szSect);

MakeListFromSectionSize creates a string with all of the sizes from the specified .INF section.

Arguments

szSym
Specifies the buffer to receive the list of sizes.

szSect
Specifies the section name.

 MakeListFromSectionVersion

VOID MakeListFromSectionVersion(LPSTR szSym, LPSTR szSect);

MakeListFromSectionVersion creates a string with all of the version numbers from the specified .INF
section.

Arguments

szSym
Specifies the buffer to receive the list of versions.

szSect
Specifies the section name.

 OpenLogFile

VOID OpenLogFile(LPSTR szFile, INT fAppend);

OpenLogFile opens a log file that the Setup program or your script can use for writing status
information.

Argument

szFile
Specifies the path and name of the log file. If this file does not exist, it is created.

fAppend
Specifies whether to add information to the log file or overwrite the existing contents of the file.
Specify one to add information and zero to overwrite information.

 PrependToPath

VOID PrependToPath(LPSTR szSrc, LPSTR szDst, LPSTR szDir, INT cmo);

PrependToPath modifies the specified AUTOEXEC.BAT to add a specified directory to the head of the
PATH environment variable.

Arguments

szSrc
Specifies the full path to file to modify. If NULL or empty (" "), just create a new, one line szDst file.

szDst
Specifies the valid full path for the resulting modified file.

szDir
Specifies the valid path to add.

cmo
Specifies the command option flag. You can use : cmoOverwrite, which overwrites any existing
szDst file, or cmoVital, which calls the Vital command handler if an error occurs.

Comments

The directory is added to the head of the first PATH statement of the file and to every following PATH
statement that doesn't contain a %PATH% reference. PrependToPath does not check for resulting file
line length or duplicate directory nodes in the path and dynamically allocates a buffer for the whole file.

Returns

Returns fTrue if the function is successful and fFalse if an error occurs.

 ReadInfFile

VOID ReadInfFile(LPSTR szFile);

ReadInfFile opens and reads the contents of the specified .INF file.

Arguments

szFile
Specifies the path and name of the .INF file.

Comments

The Setup program should call ReadInfFile to read an .INF file before attempting to call any of the
procedures that access .INF file information.

 RemoveDir

VOID RemoveDir(LPSTR szDir, INT cmo);

RemoveDir deletes the specified directory.

Arguments

szDir
Specifies the path and the name of the directory to be deleted.

cmo
Specifies the command option flag. You can use either cmoVital or cmoNone for the command
option flag.

 RemoveEnvVariable

BOOL RemoveEnvVariable(LPSTR szName, LPSTR szValue);

RemoveEnvVariable removes the specified value from the specified environment variable. Under
Windows NT, the environment variables affected are the ones specified in the registry. Under Windows
95, autoexec.bat is modified to remove the values.

Arguments

szName
Specifies the name of the environment variable.

szValue
Specifies the value that you want to remove from the environment variable.

Return Value

If the function succeeds, it returns fTrue.

If the function fails, it returns fFalse.

See Also

SetEnvVariable

 RemoveFile

VOID RemoveFile(LPSTR szFullPathSrc, INT cmo);

RemoveFile deletes the specified file.

Arguments

szFullPathSrc
Specifies the full path of the file you want to delete.

cmo
Specifies the command option flag. You can use cmoVital, cmoForce, or cmoNone.

 RemoveIniKey

VOID RemoveIniKey(LPSTR szFile, LPSTR szSect, LPSTR szKey, INT cmo);

RemoveIniKey deletes a symbol from the specified .INI file.

Arguments

szFile
Specifies the name of the .INI file. If the .INI file is WIN.INI, you do not have to provide the full path.

szSect
Specifies the name of the section where the symbol to be deleted exists. szSect$ must be a non-
empty string.

szKey
Specifies the name of the symbol you want to delete.

cmo
Specifies the command option flag. You can use cmoVital or cmoNone.

 RemoveIniSection

VOID RemoveIniSection(LPSTR szFile, LPSTR szSect, INT cmo);

RemoveIniSection deletes the specified section from the designated .INI file.

Arguments

szFile
Specifies the name of the .INI file. If the .INI file is WIN.INI, you do not have to provide the full path.

szSect
Specifies the name of the section you want to delete. szSect$ must be a non-empty string.

cmo
Specifies the command option flag. You can use cmoVital or cmoNone.

 RemoveSymbol

VOID RemoveSymbol(LPSTR szSym);

RemoveSymbol deletes a symbol from the Symbol Table.

Argument

szSym
Specifies the name of the symbol in the Symbol Table.

Comments

Use RemoveSymbol to free up space occupied by unused symbols and their associated values in the
Symbol Table.

 RenameFile

VOID RenameFile(LPSTR szFullPath, LPSTR szBackup);

The RenameFile renames the specified file.

Arguments

szFullPath
Specifies the full path and name of the file you want to rename.

szBackup
Specifies the new name for the file.

Comments

The renamed file is placed in the same directory as the original file (as specified by szFullPath).
RenameFile is the same as BackupFile.

 ReplaceListItem

VOID ReplaceListItem(LPSTR szSymbol, INT n, LPSTR szItem);

ReplaceListItem replaces an item in the list associated with the specified symbol.

Arguments

szSymbol
Specifies the name of the symbol whose associated value is the list.

n
Specifies the index (one-based) of the item to be replaced.

szItem
Specifies the new item.

 RestartListEmpty

bool RestartListEmpty(void);

RestartListEmpty determines if any files have been added to _MSSETUP.BAT that need to be copied
or deleted by ExitExecRestart when Windows is restarted.

Return Value

If the restart list is empty, the return value is one. Otherwise, the return value is zero.

Comments

Setup adds files to _MSSETUP.BAT as a result of reading the .INF file and finding files identified as a
system resource (that is, the file description contains a SYSTEM flag). If the file is newer than the file
on the user's system, Setup adds its name to _MSSETUP.BAT.

 RestoreCursor

VOID RestoreCursor(int hPrev);

The RestoreCursor restores the previous cursor state.

Argument

hPrev
Specifies the identification number of the previous cursor state. Use the return value from
ShowWaitCursor for this parameter.

 RightTrim

VOID RightTrim(LPSTR sz);

RightTrim removes any trailing spaces from a string.

Argument

sz
Specifies the string to be trimmed.

 SearchForLocationForSharedFile

LPSTR SearchForLocationForSharedFile (LPSTR szRegDbKey, LPSTR szWinIniSect, LPSTR
szWinIniKey, LPSTR iWinIniField, LPSTR szDefault, LPSTR szVersion, LPSTR szBuf, int cbBuf);

SearchForLocationForSharedFile uses information from the Registration Database and WIN.INI to
determine where the specified shared file should be installed and whether the file will actually be
copied.

Arguments

szRegDbKey
Specifies the Registration Database key that might have an associated value that is the path of an
existing copy of the file. You can tell the function to ignore the Registration Database in its search by
specifying an empty string for this argument.

szWinIniSect
Specifies the section in the WIN.INI file that might have an entry that is the path of an existing copy
of the file. You can tell the function to ignore WIN.INI in its search by specifying an empty string for
this argument.

szWinIniKey
Specifies the key for the WIN.INI file that will contain a path to an existing copy of this shared file.

iWinIniField
Specifies the index (one-based) of the field in the WIN.INI line entry that contains a path to an
existing copy of this shared file.

szDefault
Specifies the default path of the file if no existing copy can be found.

szVersion
Specifies the version for the new copy of the file as a string of 1 to 4 integers separated by periods;
for example, 3.1.0.16.

szBuf
Specifies the source buffer.

cbBuf
Size of the source buffer.

Return Value

The return value is the full path for installing the shared file. This function also sets the global variable
SharedFileNeedsCopying to one (if the file should be copied) or zero (if the file shouldn't be copied).

Comments

To determine a location for the shared file, the function first uses the Registration Database path. If this
file doesn't exist, the function will retrieve only the filename from the Registration Database and
perform a FileOpen function to try to determine the path. If either of these methods works and the file
found is writable or newer, the function returns that path. If these methods fail, the function uses the
path from the WIN.INI field. If that file doesn't exist in the WIN.INI field, the function uses the path from
WIN.INI and searches by using a FileOpen function. If these two methods don't succeed, szDefault is
used.

After determining where the file should be installed, the function then determines if the file will be
copied later when CopyFilesInCopyList is called. SearchForLocationForSharedFile then sets the
value of the global variable SharedFileNeedsCopying accordingly.

 SetAbout

VOID SetAbout(LPSTR szAbout1, LPSTR szAbout2);

SetAbout adds the specified strings to Setup's About dialog box.

Arguments

szAbout1
Specifies the first string you want to add to the dialog box, typically the product name.

szAbout2
Specifies the second string you want to add to the dialog box, typically the product version, the date,
or the copyright notice.

 SetBeepingMode

int SetBeepingMode(int mode);

SetBeepingMode allows the Setup script to specify whether error messages, requests for diskettes,
and similar messages will be accompanied by a beep.

Argument

mode
Specifies the beeping mode value. If mode is one, beeping mode is on and the message will
generate beeps. If mode is zero, beeping mode is off.

Return Value

The return value is the value of the previous beeping mode.

 SetBitmap

VOID SetBitmap(LPSTR szDll, int Bitmap);

SetBitmap defines the logo bitmap used in the background of the frame (or main) window.

Arguments

szDll
Specifies the name of the .DLL file that contains the bitmap resource.

Bitmap
Specifies the identification number of the bitmap resource.

Comments

It is best to use a plain white bitmap. SetBitmap automatically adds a shadow down the right side to
give the impression that the bitmap is above the plane of the background.

 SetCopyGaugePosition

VOID SetCopyGaugePosition(int x, int y);

SetCopyGaugePosition specifies the display position of the Copy Gauge dialog box during
subsequent CopyFilesInCopyList calls.

Arguments

x
Specifies the x coordinate in dialog units relative to the upper-left corner of the client window frame.
A value of 1 precisely centers the dialog box horizontally.

y
Specifies the y coordinate in dialog units relative to the upper-left corner of the client window frame.
A value of 1 centers the dialog box vertically one-third of the distance from the top margin.

Comments

By default, the Copy Gauge dialog box is centered over the client window frame. However, the default
position can interfere with the display of billboard dialog boxes, depending on how the user has resized
the window, the size of the monitor, and so on. Use SetCopyGaugePosition to control the position of
the Copy Gauge dialog box.

 SetCopyMode

int SetCopyMode(int fMode);

SetCopyMode specifies whether the files from the copy list will actually be copied.

Argument

fMode
Specifies whether copy mode is on (one) or off (zero). If the copy mode is off, the files will not be
copied when the script calls CopyFilesInCopyList.

Return Value

The return value is the prior value for the copy mode.

Comments

Use this function to streamline testing of your Setup program.

 SetEnvVariable

BOOL SetEnvVariable(LPSTR szName, LPSTR szValue, CMO cmo);

SetEnvVariable sets the specified environment variable to a certain value. The environment variable
can also be elongated by specifying the command option flag fAppend or fPrepend. Under Windows
NT, the environment variables affected are the ones specified in the registry. Under Windows 95,
autoexec.bat is modified to set the values.

Arguments

szName
Specifies the name of the environment variable.

szValue
Specifies the new value that you want to associate with the environment variable.

cmo
Specifies the command option flag. You can use fOverwrite, fAppend, or fPrepend.

Return Value

If the function succeeds, it returns fTrue.

If the function fails, it returns fFalse.

See Also

RemoveEnvVariable

 SetDecompMode

int SetDecompMode(int fMode);

SetDecompMode specifies whether compressed files will be decompressed when they are copied.

Argument

fMode
Specifies whether decompression is on (one) or off (zero). When decompression is off,
CopyFilesInCopyList copies compressed files byte for byte without decompressing them.

Return Value

The return value is the prior value for decompression.

Comments

You can use SetDecompMode to install compressed files on a network drive.

 SetRegKeyValue

void SetRegKeyValue(LPSTR szKey, LPSTR szValue);

SetRegKeyValue replaces the value associated with the specified Registration Database key with the
specified value.

Arguments

szKey
Specifies the name of the key. All keys are assumed to be subkeys of HKEY_CLASSES_ROOT;
therefore, you only have to specify the name of the key.

szValue
Specifies the new value you want to associate with the key.

 SetRestartDir

VOID SetRestartDir(LPSTR szDir);

SetRestartDir establishes the restart directory where _MSSETUP.EXE and _MSSETUP.BAT (used to
restart the system) will be located.

Argument

szDir
Specifies the name of the directory. If szDir does not exist, it is created.

 SetSilentMode

int SetSilentMode(INT mode);

SetSilentMode allows the Setup script to determine whether or not the copy gauge, error messages,
billboards, and so on will be displayed.

Argument

mode
Specifies the silent mode value. If mode is one, silent mode is on and the Setup procedures cannot
display message-related dialog boxes. If mode is zero, silent mode is off.

Return Value

The return value is the value of the previous silent mode.

 SetSymbolValue

VOID SetSymbolValue(LPSTR szSymbol, LPSTR szValue);

SetSymbolValue associates a value with a symbol in the Symbol Table.

Arguments

szSymbol
Specifies the name of the symbol in the Symbol Table.

szValue
Specifies the value you want to associate with the symbol.

Comments

Use SetSymbolValue to store information that can be shared among .DLLs and the Symbol Table.

 SetTitle

VOID SetTitle(LPSTR sz);

SetTitle defines the title used in the frame (or main) window.

Argument

sz
Defines the title used in the frame window.

 ShowProgmanGroup

VOID ShowProgmanGroup(LPSTR szGroup, INT Cmd, INT cmo);

ShowProgmanGroup minimizes, maximizes, or restores the window of the specified Program
Manager group.

Arguments

szGroup
Specifies the name of the Program Manager group.

Cmd
Specifies the operation you want to perform on the group window. To activate and display the group
window, use one; to activate and display the group window icon, use two; and to activate and
display the group window maximized, use three.

cmo
Specifies the command option flag. You can use cmoVital or cmoNone.

Comments

Creating a new item in a Program Manager group causes the Program Manager to become active and
its window to come to the front. You can use ShowProgmanGroup to determine what state the group
window will be in when it comes to the front.

 ShowWaitCursor

int ShowWaitCursor(void);

ShowWaitCursor loads and displays the wait cursor.

Return Value

The return value is the previous cursor state.

Comments

Use the return value of this function for the hPrev parameter in RestoreCursor.

 StampResource

VOID StampResource(LPSTR szSect, LPSTR szKey, LPSTR szDst, int wResType, int wResId,
LPSTR szData, int cbData);

StampResource modifies the first cbData bytes of a file resource with the specified data.

Arguments

szSect
Specifies the section of the .INF file that contains the description line of the file to be modified.

szKey
Specifies the reference key to the description line of the file to be modified.

szDst
Specifies the destination directory where the file to be modified resides.

wResType
Specifies the resource identification type.

wResId
Specifies the resource identification number.

szData
Defines the data that will be used to modify the resource.

cbData
Specifies how many bytes of data will be replaced with szData.

 SzCatStr

LPSTR SzCatStr(LPSTR sz1, LPSTR sz2);

SzCatStr appends sz2 to sz1 and returns the concatenated string.

Argument

sz1
Specifies the string to which sz2 is added.

sz2
Specifies the string to append to sz1.

Return Value

SzCatStr returns the concatenated string.

 SzCat2Str

LPSTR SzCat2Str(LPSTR sz1, LPSTR sz2, LPSTR sz3);

SzCat2Str appends sz2 and sz3 to sz1 so that sz1 becomes sz1+sz2+sz3.

Arguments

sz1
Specifies the original string to which the others are appended.

sz2
Specifies the first string to be appended to sz1.

sz3
Specifies the string to be appended to sz1+sz2.

Return Value

SzCat2Str returns the concatenated string sz1+sz2+sz3.

 SzCat3Str

LPSTR SzCat3Str(LPSTR sz1, LPSTR sz2, LPSTR sz3, LPSTR sz4);

SzCat3Str appends sz2, sz3, and sz4 to sz1 so that sz1 becomes sz1+sz2+sz3+sz4.

Arguments

sz1
Specifies the original string to which the others are appended.

sz2
Specifies the first string to be appended to sz1.

sz3
Specifies the string to be appended to sz1+sz2.

sz4
Specifies the string to be appended to sz1+sz2+sz3.

Return Value

SzCat2Str returns the concatenated string sz1+sz2+sz3+sz4.

 UIPop

void UIPop(int n);

UIPop destroys dialog boxes and removes them from the top of the dialog stack in memory.

Argument

n
Identifies the number of dialog boxes you want to destroy and remove from the dialog stack.

Comments

If n is greater than the number of dialog boxes in the dialog stack, the subroutine will destroy all the
dialog boxes in the dialog stack.

 UIPopAll

VOID UIPopAll(void);

UIPopAll destroys all dialog boxes and removes them from the dialog box stack in memory.

 UIStartDlg

LPSTR UIStartDlg(LPSTR szDll, int Dlg, LPSTR szDlgProc, int HelpDlg, LPSTR szHelpProc, LPSTR
szBuf, int cbBuf);

UIStartDlg launches a dialog box and adds it to the top of the dialog stack in memory.

Arguments

szDll
Specifies the name of the .DLL file that contains the dialog box template resources and procedures.

Dlg
Specifies the identification number of the dialog box template resource in the .DLL file.

szDlgProc
Specifies the name of the dialog box procedure exported in the .DLL file.

HelpDlg
Specifies the identification number of the associated help dialog box template resource in the .DLL
file.

szHelpProc
Specifies the name of the associated help dialog box procedure exported in the .DLL file.

szBuf
Points to the destination buffer that will receive the string.

cbBuf
Length, in bytes, of the destination buffer.

Return Value

UIStartDlg returns a string that is the value associated with the DLGEVENT symbol at the time the
dialog ends.

Comments

If the dialog box is modeless, UIStartDlg returns immediately; if the dialog box is modal, it returns after
a user action.

 WriteToLogFile

VOID WriteToLogFile(LPSTR szStr);

WriteToLogFile writes the specified string to the log file.

Argument

szStr
Defines the information you want to write to the log file. The string is written and terminated with a
new-line character.

Comments

If the log file is not open, WriteToLogFile does nothing.

 INF File Format

This appendix provides information about the format of the .INF file. You do not need to create the .INF file
yourself; the Disk Layout Tools will do it for you. Refer to the information below when you are using the Disk
Layout Tools to define the properties of installable files.

The Setup toolkit contains a single sample .INF file: SAMPLE.INF. Look at this file as an example of a
typical .INF file.

An .INF file will have at least three sections:

· Source Media Descriptions, which describes each of the disks in the installation set
· Files, which lists each of the files that will be installed by Setup
· Default File Settings, which describes the defaults Setup uses to install a file

The Files section can be split into as many sections as you want; you specify these section names using the Disk
Layout Tools. You can also specify one or more sections for files that you want to remove during the installation.
Throughout the .INF file, you will see lines that begin with a semicolon at the left margin. These are comment
lines.

 Source Media Descriptions

This section of the .INF file contains one line for each of the disks you use to install your product. Source Media
Description lines must be indented and contain four quoted strings, separated by commas:

· The disk identification number, which is a unique integer between 1 and 999
· The disk label, which you create using the Disk Layout Tools
· The tag filename, which is the name of a file that resides on the diskette
· The relative path for SETUP.EXE. This fourth string exists only if the installable files reside on a

network disk drive

The following is the Source Media Descriptions line for the first installation disk. Its tag file is SETUP.EXE:

"1","My Disk Label 1","SETUP.EXE,""

 Files

Each line in this section of the .INF file has one of two formats:

1. The first format begins at the left margin with the identification number for the disk on which the file resides,
followed by the filename and a list of nineteen file properties, separated by commas (see the table below).
These entries are not enclosed in quotation marks. The following line, from SAMPLE1.INF, is a typical
example of this format:
1, bldcui\dialogs.res,,,,1992-01 30,,,,,,,ROOT,,, 13839,,6,,,

2. The second format begins at the left margin with a reference key enclosed in quotation marks, followed by an
equal sign and an unquoted disk identification number. (A disk with that identification number must have a
description line in the Source Media Descriptions section.) The reference key and disk identification number
are followed by the filename and the list of file properties. The following line, from SAMPLE3.INF, describes
a shared file with the reference key CustDict (for customer dictionary) :
"CustDict" = 1, custom.dic, ,,,1992-01-13,,, OLDER,,,,,, SHARED, 69632, ,,, 0.2.0.2,

The following table lists the file properties that can be included in a file description line:

File Properties
Property Possible values Meaning
Append <empty>

valid filename

Don't append to an existing file, overwrite it
instead.
Append to the specified file.

Note: You cannot append the installable file
to an existing file if you have specified
Rename, Root, or Backup.

Backup <empty>
*

valid filename

Use the default setting.
Back up the file to the same filename with
a .BAK extension.
The filename you want to use for the backup
copy.

Copy COPY

!COPY

Copy the file onto the user's hard disk or
network server.
Don't copy the file.

Date <empty>
YYYY-MM-DD

Use the default setting.
Specify a date with a range from 1980-01-01
through 2099-12-31.

Decompress <empty>
DECOMPRESS
!DECOMPRESS

Use the default setting.
Decompress the file.
Don't decompress the file.

Destination <empty>

full path of a valid
directory

Use the destination directory specified in the
script (for example, in the
AddSectionFilesToCopyList subroutine).
Override the specified destination directory
with this one.

Overwrite <empty>
ALWAYS
NEVER
OLDER
UNPROTECTED

Use the default setting.
For information about these values, see
Using the Disk Layout Utilities.

ReadOnly <empty> Use the default setting.

READONLY

!READONLY

Set read-only attributes on the file after it
has been installed.
Don't set read-only attributes.

Remove <empty>
REMOVE

!REMOVE

Copy the file using other properties.
Remove the file from the user's hard disk or
network server.
Copy the file using other properties.

Rename <empty>
valid filename

Use the source filename when the file is
copied.
Use the specified filename when the file is
copied.

Note: You cannot specify a filename for this
property if you have also specified Root or
Append.

Root <empty>
ROOT

!ROOT

Use the default setting.
Strip any subdirectories from the filename
when the file is copied.
Don't strip subdirectories from the filename
when the file is copied.

Note: You cannot specify Root or Append if
you have specified that the file be renamed
when it is copied.

SetTimeSta
mp

<empty>
SETTIME
!SETTIME

Use the default setting.
Use the DATE property.
Use the current system time.

Shared SHARED

<empty> or !
SHARED

Treat the file as if it is a shared file that is, an
existing version of it may be in use during
installation.
Do not treat the file as if it is a shared file.

Size integer Size of the file in bytes (uncompressed).
System SYSTEM

<empty> or !
SYSTEM

This is a system file; therefore, it will be
replaced during system restart.
Treat the file as if it is not a system file.

TimeToCop
y

<empty>
integer

Use the default setting.
Increment the progress indicator by integers.
This is an arbitrary number of time units
relative to the other file description lines.

Reserved <empty> This is a reserved field and must be empty.
Version <empty>

1 to 4 integers
separated by
periods

There is no version resource in source file.
The version of the file. For information
about this format, see the Microsoft
Windows SDK documentation.

Vital <empty>
VITAL

!VITAL

Use the default setting.
The installation will fail if this file cannot be
successfully installed.
The installation will not fail if this file
cannot be successfully installed.

 Default File Settings

This section contains default values that Setup uses if a file description line in the .INF file has no entry for the
field. These lines always begin at the left margin with a quoted symbol name, followed by an equal sign and
another quoted string that is the value associated with the symbol. The value is required but may be an empty
string.

The following line is an example of a default setting from SAMPLE1.INF:

"STF_COPY" = "YES"

The following table lists the default settings.

Default File Settings
Attribute/Symbol Possible values or format Default
STF_BACKUP "*" = create a .BAK file or

 " " = don't create one
" "

STF_COPY "YES" = copy or
 " " = don't copy

"YES"

STF_DECOMPRES
S

"YES" = decompress or
" " = don't decompress

" "

STF_OVERWRITE "ALWAYS" = always overwrite an
existing version of the file, "NEVER" =
never overwrite an existing version of the
file, "OLDER" = overwrite the existing
version of the file if it is older, or
"UNPROTECTED" = overwrite the
existing version of the file if it is not
write-protected

"ALWAYS"

STF_READONLY "YES" = when the file is copied, set the
read-only file attribute or
 " " = do not set the read-only file
attribute

" "

STF_ROOT "YES" = when copying the file, strip any
subdirectories from the path of the file in
the .INF file description or
" " = use the entire path for the file in
the .INF file decription

" "

STF_SETTIME "YES" = use the contents of the Date file
property in the .INF file description to set
the creation date of the copied file or
" " = leave the creation date as is (the
time at which the file was copied onto the
user's hard disk)

"YES"

STF_TIME non-negative integer = use this number to
calculate the display of the copy gauge or
"" = use the value entered for the Size file
property in the .INF file decription

value of Size

STF_VITAL "YES" = this is a vital file that must be
successfuly copied to the user's hard disk
or the installation will fail; or

" " = the file is
not vital to the
success of the
installation

"YES

 Command Option Flags

This appendix provides a list of the command option flags that you can specify as parameters for many
of the Setup script procedures. Use the list below to determine which command option flag to use for a
function or subroutine. You can use combinations of command option flags with logical operators (such
as AND or OR). For more information about Setup procedures and which ones use command option
flags, see Setup Procedures.

Command Option Flags
Name Meaning
cmoVital This function must be successfully completed or

the installation will fail and Setup will be
terminated.

cmoDecompress The file should be decompressed as it is copied. If
this option is not specified, the file will be copied
byte by byte, whether or not it is compressed.

cmoTimeStamp Set the timestamp on the file after it has been
copied.

cmoReadOnly Set a read-only attribute on the file after it has
been copied.

cmoBackup Back up any existing version of the file (using the
same filename with a .BAK extension) before the
source file is copied onto the user's hard disk or
network server.

cmoForce Force the removal of a file from the user's hard
disk or network server, even if it has a file attribute
of read-only.

cmoOverwrite Overwrite any existing version of the file on the
user's hard disk or network server. Or, overwrite
the entry in the .INI file.

cmoAppend Append the file to the existing file on the user's
hard disk or network server rather than replacing
the existing file. Or, append the value to the
existing value in the .INI file.

cmoPrepend Prepend the value to the existing .INI value rather
than replacing the value.

cmoNone No command option flag is specified.
cmoAll All command option flags are specified.

 Legal Notice

Information in this document is subject to change without notice. Companies, names, and data used in
examples herein are fictitious unless otherwise noted. No part of this document may be reproduced or
transmitted in any form or by any means, electronic or mechanical, for any purpose, without the
express written permission of Microsoft Corporation.

Portions of this document contain information pertaining to prerelease code that is not at the level of
performance and compatibility of the final, generally available product offering. This information may be
substantially modified prior to the first commercial shipment. Microsoft is not obligated to make this or
any later version of the software product commercially available. APIs that constitute prerelease code
are marked as "Preliminary Windows 95" or "Preliminary Windows NT" (as applicable). If your
application is using any of these APIs, it must be marked as a BETA application. For further details and
restrictions, see Sections 1 and 3 of the License Agreement.

Microsoft may have patents or pending patent applications, trademarks, copyrights, or other intellectual
property rights covering subject matter in this document. The furnishing of this document does not give
you any license to these patents, trademarks, copyrights, or other intellectual property rights except as
expressly provided in any written license agreement from Microsoft.

© 1985-1995 Microsoft Corporation. All rights reserved.

Microsoft, Microsoft Press, MS, MS-DOS, Visual Basic, Windows, Win32, and Win32s are registered
trademarks; and Visual C++ and Windows NT are trademarks of Microsoft Corporation. OS/2 is a
registered trademark licensed to Microsoft Corporation.

Adaptec is a registered trademark of Adaptec, Inc.

Macintosh and TrueType are registered trademarks of Apple Computer, Inc.

Asymetrix and ToolBook are registered trademarks of Asymetrix Corporation.

CompuServe is a registered trademark of CompuServe, Inc.

Sound Blaster and Sound Blaster Pro are trademarks of Creative Technology, Ltd.

Alpha AXP and DEC are trademarks of Digital Equipment Corporation.

Kodak is a registered trademark of Eastman Kodak Company.

PANOSE is a trademark of ElseWare Corporation.

Future Domain is a registered trademark of Future Domain Corporation.

Hewlett-Packard, HP, LaserJet, and PCL are registered trademarks of Hewlett-Packard Company.

AT, IBM, Micro Channel, OS/2, and XGA are registered trademarks, and PC/XT and RISC
System/6000 are trademarks of International Business Machines Corporation.

Intel and Pentium are registered trademarks, and i386 and i486 are trademarks of Intel Corporation.

Video Seven is a trademark of Headland Technology, Inc.

Lotus is a registered trademark of Lotus Development Corporation.

MIPS is a registered trademark of MIPS Computer Systems, Inc.

Arial, Monotype, and Times New Roman are registered trademarks of The Monotype Corporation.

Motorola is a registered trademark of Motorola, Inc.

NCR is a registered trademark of NCR Corporation.

Nokia is a registered trademark of Nokia Corporation.

Novell and NetWare are registered trademarks of Novell, Inc.

Olivetti is a registered trademark of Ing. C. Olivetti.

PostScript is a registered trademark of Adobe Systems, Inc.

R4000 is a trademark of MIPS Computer Systems, Inc.

Roland is a registered trademark of Roland Corporation.

SCSI is a registered trademark of Security Control Systems, Inc.

Epson is a registered trademark of Seiko Epson Corporation, Inc.

Silicon Graphics is a registered trademark and OpenGL is a trademark of Silicon Graphics, Inc.

Stacker is a registered trademark of STAC Electronics.

Tandy is a registered trademark of Tandy Corporation.

Unicode is a registered trademark of Unicode, Incorporated.

UNIX is a registered trademark in the United States and other countries, licensed exclusively
through X/Open Company, Ltd.

VAX is a trademark of Digital Equipment Corporation

Yamaha is a registered trademark of Yamaha Corporation of America.

Paintbrush is a trademark of Wordstar Atlanta Technology Center.

Microsoft Win32 Developer’s Reference
You have requested information from the Microsoft Win32 Developer’s Reference. One or more of
these help files is not available on your system.

