# Omni TA128

# User's Manual



## ZyXEL Limited Warranty

ZyXEL warrants to the original end user (purchaser) that this product is free from any defects in materials or workmanship for a period of up to two (2) years from the date of purchase. During the warranty period, and upon proof of purchase, should the product have indications of failure due to faulty workmanship and/or materials, ZyXEL will, at its option, repair or replace the defective products or components without charge for either parts or labor, and to whatever extent it shall deem necessary to restore the product or components to proper operating condition. Any replacement will consist of a new or remanufactured functionally equivalent product of equal value, and will be solely at the option of ZyXEL. This warranty shall not apply if the product is modified, misused, tampered with, damaged by an act of God, or subjected to abnormal working conditions. Note: Repair or replacement, as provided under this warranty, is the exclusive remedy of the purchaser. This warranty is in lieu of all other warranties, express or implied, including any implied warranty of merchantability or fitness for a particular use or purpose. ZyXEL shall in no event be held liable for indirect or consequential damages of any kind or character to the purchaser.

To obtain the services of this warranty, please contact ZyXEL's Service Center, refer to the separate Warranty Card for your Return Material Authorization number (RMA). Products must be returned Postage Prepaid. It is recommended that the unit be insured when shipped. Any returned products without proof of purchase or those with an outdated warranty will be repaired or replaced (at the option of ZyXEL) and the customer will be billed for parts and labor. All repaired or replaced products will be shipped by ZyXEL to the corresponding return address, Postage Paid (USA and territories only). If the customer desires some other return destination beyond U.S. borders, the customer shall bear the cost of the return shipment. This warranty gives you specific legal rights, and you may also have other rights which vary from state to state.

### Copyright © 1996 by ZyXEL

The contents of this book may not be reproduced (in any part or as a whole) or transmitted in any form or by any means without the written permission of the publisher.

Published by ZyXEL Communications, Inc. All rights reserved.

**Notice:** ZyXEL does not assume any liability arising out of the application or use of any products, or software described herein. Neither does it convey any license under its patent rights nor the patents rights of others. ZyXEL further reserves the right to make changes in any products described herein without notice. This document is subject to change without notice.

#### Acknowledgments

Trademarks and brands mentioned in this manual are used for plain informational purposes. All trademarks and brands remain the properties of their respective owners.

## FCC Part 15 Information

This device complies with Part 15 of FCC rules. Operation is subject to the following two conditions:

- 1) This device may not cause harmful interference.
- 2) This device must accept any interference received, including interference that may cause undesired operations.

This equipment has been tested and found to comply with the limits for a CLASS B digital device pursuant to Part 15 of the FCC Rules. These limits are designed to provide reasonable protection against harmful interference in a residential installation. This equipment generates, uses, and can radiate radio frequency energy, and if not installed and used in accordance with the instructions, may cause harmful interference to radio communications. However, there is no guarantee that interference will not occur in a particular installation.

If this equipment does cause harmful interference to radio/television reception, which can be determined by turning the equipment off and on, the user is encouraged to try to correct the interference by one or more of the following measures:

- Reorient or relocate the receiving antenna.
- Increase the separation between the equipment and the receiver.
- Connect the equipment into an outlet on a circuit different from that to which the receiver is connected.
- Consult the dealer or an experienced radio/TV technician for help.

Changes or modifications not expressly approved by the party responsible for compliance could void the user's authority to operate the equipment. Shielded RS-232 cables are required to be use

d to ensure compliance with FCC Part 15, and it is the responsibility of the user to provide and use shielded RS-232 cables.

#### Omni TA128; FCC ID# i88OMNITA128U

## **Information for Canadian Users**

The Industry Canada (IC, formerly DOC) label identifies certified equipment. This certification means that the equipment meets certain telecommunications network protective, operational, and safety requirements. IC does not guarantee that the equipment will operate to a user's satisfaction.

Before installing this equipment, users should ensure that it is permissible to be connected to the facilities of the local telecommunications company. The equipment must also be installed using an acceptable method of connection. In some cases, the company's inside wiring associated with a single line individual service may be extended by means of a certified connector assembly (telephone extension cord). The customer should be aware that the compliance with the above conditions may not prevent degradation of service in some situations.

Repairs to certified equipment should be made by an authorized Canadian maintenance facility designated by the supplier. Any repairs or alterations made by the user to this equipment, or equipment malfunctions, may give the telecommunications company cause to request the user to disconnect the equipment.

For their own protection, users should ensure that the electrical ground connections of the power utility, telephone lines, and internal metallic water pipe system, if present, are connected together. This precaution may be particularly important in rural areas.

# Caution: Users should not attempt to make such connections themselves, but should contact the appropriate electrical inspection authority, or electrician, as appropriate.

The Load Number (LN) assigned to each terminal device denotes the percentage of the total load to be connected to the telephone loop used by the device without overloading. The termination on a loop may consist of any combination of devices, subject only to the requirement that the total of the Load Numbers of all the devices not exceed 100.

This digital apparatus does not exceed the class B limits for radio noise emissions from digital apparatus set out in the radio interference regulations of Industry Canada (formerly Canadian DOC).

# Table of Contents

| Foreword                                        | ii          |
|-------------------------------------------------|-------------|
| ZyXEL Limited Warranty                          | ii          |
| Copyright © 1996 by ZyXEL                       |             |
| Acknowledgments                                 | ii          |
| FCC Part 15 Information                         |             |
| Information for Canadian Users                  | <i>iv</i>   |
| Chapter 1 - Introduction                        | 1-1         |
| Key Features of the Omni TA128                  | 1-1         |
| U-Interface Option                              | 1-3         |
| Unpacking Your Omni TA128                       | 1-3         |
| How to Become a Registered Owner                | 1-3         |
| Chapter 2 - Installing your Omni TA128          | 2-1         |
| Connecting Your Omni TA128 to the Power Supply  | 2-1         |
| Connecting the Omni TA128 to Your Computer      | 2-2         |
| Connecting the Omni TA128 to Your ISDN Line     | 2-3         |
| S/T Interface Model                             |             |
| U Interface Model                               | 2-4         |
| Power On and Self Diagnostics                   | 2-4         |
| Omni TA128 Front Panel                          | 2-5         |
| The LED Indicators                              | 2-5         |
| Front Panel Switch                              | 2-6         |
| Understanding AT Commands                       | 2-6         |
| Supported AT command types:                     |             |
| Quick Tips when issuing AT commands:            | 2-7         |
| Chapter 3 - Configuring Your ISDN Line and      | Network.3-1 |
| ZyXEL Configuration Manager Software            | 3-1         |
| Configuring your Modem using a Terminal program |             |
| Getting a Terminal Program Ready                |             |
| Configuring Your ISDN Line Switch Type and SPID |             |
| Switch Type Configuration                       |             |
| SPID Setup                                      |             |
| Testing your Connection                         |             |

| Chapter 4 - ISDN Communication Basics                            | 4-1        |
|------------------------------------------------------------------|------------|
| Outgoing Calls                                                   | 4-1        |
| Dialing out using ISDN mode                                      |            |
| Dialing out using ISDN mode optional Speech Bearer Service       |            |
| Dialing out for Analog Adapter Port 1                            |            |
| Manually switching communication modes                           |            |
| Placing the Call                                                 |            |
| Incoming Calls                                                   |            |
| Answering a Call using MSN                                       |            |
| Data over Speech Channel<br>Best-effort call answering           |            |
| Ambiguity resolution switch for voice calls                      | 4-0<br>4-6 |
| Multi auto-answering of data calls                               |            |
| Chapter 5 - Setup for Windows 95 and NT                          | 5-1        |
| Installing the Windows 95 Driver (INF file)                      | 5-1        |
| Configuring Windows 95 Dial-Up Networking                        | 5-3        |
| Windows NT RAS Setup                                             | 5-7        |
| Chapter 6 - Async to Sync PPP and SLIP                           | 6-1        |
| Internet and Remote Access PPP and SLIP                          |            |
| Making Async to Sync PPP and SLIP calls                          |            |
| Keeping a Line Connection During Idle Time                       |            |
| Answering Async to Sync PPP calls                                | 6-2        |
| Multilink PPP                                                    | 6-2        |
| Making a call using Multilink PPP                                |            |
| Endpoint Discriminator                                           | 6-3        |
| Dynamic Bandwidth Allocation                                     | 6-4        |
| Chapter 7 - V.120 ISDN Communications                            | 7-1        |
| Placing outgoing calls                                           | 7-1        |
| Answering incoming calls                                         | 7-2        |
| Speeds of 128Kbps                                                |            |
| Identifying your line provisioning                               |            |
| Making a Bundled Call with V.120                                 |            |
| Dialing pre-stored phone numbers<br>Dynamic Bandwidth Allocation |            |
| Error Correction and Data Compression with V.120                 |            |
| Selecting V.120 for European ISDN (DSS1) switch                  |            |
| Selecting V.120 for Germany National ISDN (1TR6)                 |            |
|                                                                  |            |
| Chapter 8 - X.75 ISDN Communications                             | 8-1        |

| Answering an X.75 call                                                    | 8-1   |
|---------------------------------------------------------------------------|-------|
| Making an X.75 Call                                                       |       |
| Making a Bundled Call with X.75                                           |       |
| Dynamic Bandwidth Allocation                                              | 8-3   |
| Invoking V.42bis Data Compression                                         | 8-4   |
| Data Encryption                                                           |       |
| Manual DES Key Generation                                                 |       |
| Control of Data Encryption                                                | 8-8   |
| Chapter 9 - V.110 ISDN Communications                                     | 9-1   |
| Answering a V.110 call                                                    | 9-1   |
| Making V.110 Calls                                                        |       |
| Asynchronous V.110 Calls                                                  |       |
| Synchronous V.110 calls                                                   |       |
| Chapter 10 - Handling Analog Calls                                        | 10-1  |
| Placing a Call from the Analog Adapter                                    |       |
| Accepting an Incoming Call                                                |       |
|                                                                           |       |
| Chapter 11 - Advanced ISDN Call Control                                   | 11-1  |
| Call Control for DSS1 (Digital Subscriber Signaling #1)                   |       |
| Control of Outgoing Service Indicator                                     |       |
| Control of ISDN Phone Number and Sub-address                              |       |
| Call Control for 1TR6 (Old German ISDN)                                   |       |
| Control of Outgoing Service Indicator                                     |       |
| Control of ENDGERÄTEAUSWAHLZIFFER (EAZ)                                   |       |
| Answering a Call                                                          |       |
| Answering a Call for DSS1                                                 |       |
| Answering a Call for 1TR6                                                 |       |
| Best-effort Call Answering<br>Ambiguity Resolution Switch for Voice Calls |       |
| Multi-Auto-Answering of Data Calls                                        |       |
| Disable inbound call connection                                           |       |
| Point-to-Point Configuration                                              |       |
| Placing a Call                                                            |       |
| Placing a call for DSS1                                                   |       |
| Placing a call for 1TR6                                                   |       |
| User-To-User Information                                                  | 11-11 |
| Chapter 12 - Security Functions                                           | 12-1  |
| Password Security Functions                                               |       |
| Security Types and Levels                                                 |       |
| Setting and Modifying Passwords                                           |       |
|                                                                           |       |

| Non-password Auto Call Back Function                              |      |
|-------------------------------------------------------------------|------|
| Chapter 13 - Upgrading Your Omni TA128                            | 13-1 |
| Upgrading with Flash EPROM                                        | 13-1 |
| Chapter 14 - Usage of DTE Port 2                                  | 14-1 |
| Selection of the Two DTE Port Mode                                | 14-1 |
| Configuration of the DTE Port 2                                   | 14-2 |
| Basic "AT" Command Set                                            |      |
| Extended "AT&" Command Set                                        |      |
| Setting of DTE port 2 Speed                                       |      |
| Call Control of the DTE Port 2                                    | 14-5 |
| Chapter 15 - Diagnostics and Protocol Analyzer                    |      |
| Diagnostics                                                       |      |
| Power-on Self-test                                                | 15-1 |
| ISDN Loopback test (AT&T9)                                        |      |
| Loopback with Self-test (AT&T10)<br>The Diagnostic Command (ATCG) |      |
| Resetting The Omni TA128                                          |      |
| Using The Embedded Protocol Analyzer                              |      |
| Setting up the Embedded EPA                                       |      |
| Capturing the Protocol Data                                       |      |
| Analyzing the Captured Data                                       | 15-4 |
| Chapter 16 - AT Command Set Reference                             | 16-1 |
| Operation Modes of the DTE Interface                              |      |
| Simplex mode                                                      |      |
| Multiplex mode                                                    |      |
| AT Command Descriptions                                           |      |
| Basic "AT" Command Set                                            |      |
| Extended "AT&" Command Set<br>Extended "AT*" Command Set          |      |
| Chapter 17 - Status Registers and Result Codes                    |      |
|                                                                   |      |
| Viewing and Setting S-Registers                                   |      |
| S-Register Descriptions                                           |      |
| Basic S-Registers "ATSn=x"                                        |      |
| Extended S-Registers "ATSn=x"<br>"ATXn" Result Code Option Table  |      |
| Result Code Field Descriptions                                    |      |
| Connect Strings for Error Corrected Connections                   |      |
| Chapter 18 - ISDN General Reference                               | 18-1 |

| Terminal Adapter                              |      |
|-----------------------------------------------|------|
| Basic Rate Interface (BRI)                    |      |
| D channel Protocol                            |      |
| Rate Adaptation & B channel Protocol          |      |
| Out-of-band signaling                         | 18-2 |
| ISDN Basic Rate Interface Points              | 18-3 |
| Chapter 19 - Ordering Your ISDN Line          | 19-1 |
| ISDN Service Ordering Information             |      |
| ZyXEL ISDN Order Form - Switch: AT&T 5ESS     |      |
| ZyXEL ISDN Order Form - Switch: DMS-100       | 19-3 |
| ZyXEL ISDN Order Form - Switch: EWSD          | 19-4 |
| ISDN Service Ordering Checklist               |      |
| What are SPIDs?                               |      |
| Chapter 20 - Contacting ZyXEL                 | 20-1 |
| ZyXEL Phone Numbers                           |      |
| Online Access                                 |      |
| Internet                                      |      |
| CompuServe                                    |      |
| Appendix A - Phone Jack Pinout Assignments    | A-1  |
| RJ-45 Connector for the S/T Interface Model   |      |
| RJ-45 Connector for the U Interface Model     |      |
| RJ-11 Analog Adapter (Phone 1&2)              | A-1  |
| Appendix B - Serial Port Interface            | B-1  |
| EIA-232D 25 Pin Serial Port Interface         | B-1  |
| 9 Pin Serial Port Interface                   |      |
| Async. Hardware Flow Control Cable Connection |      |
| •                                             |      |
| Appendix C - INDEX                            | C-1  |

## **Chapter 1 - Introduction**

The ZyXEL's Omni TA128 ISDN Terminal Adapter (TA) sets a new price/performance standard for the explosively growing Internet and telecommuting applications.

When used with off-the-shelf Internet or remote access client software, the Omni TA128 enables mobile or home users to connect to the Internet or branch offices over ISDN lines Hassle Free! The same device also allows a user to connect to the analog world via a modem, fax machine, or telephone connected directly to the Omni TA128.

With ZyXEL's Common Application Programming Interface for ISDN published by Telekom Roland in Germany, a user may run most commercially available ISDN applications with the Omni TA128.

To take advantage of constant new developments, the Omni TA128 employs flash EPROMs, which allow for convenient uploading of newly available firmware which preserves your hardware investment.

The Omni TA128 supports both D and B Channels protocols. For the D Channel, it supports DSS1, 1TR6, DMS-100, AT&T Custom, and NI-1. For the B Channels, X.75 SLP, V.120, V.110, PPP Async-to-sync Conversion and Bundle (128Kbps).

ZyXEL's expertise in data compression has been brought to the Omni TA128. With its V.42bis compression on the B Channels using either X.75 or V.120, the Omni TA128 can effectively communicate at speeds up to 512Kbps over ISDN lines.

The Omni TA128 also has two analog ports to connect analog devices such as fax machines, modems, and telephones. Two different analog devices can communicate over the two B channels to two different locations simultaneously, so you can send a fax and make a voice call at the same time! The analog ports also recognize standard DTMF tones as well as pulse dialing.

## Key Features of the Omni TA128

### Speed and Compatibility

- Plug and Play support for Win95 environment
- Full compatibility with both ISDN and remote PSTN via ISDN
- Multiple signaling protocol compatibility with the following network switches: DSS1, 1TR6, NI-1, AT&T 5ESS, and Northern Telecom DMS 100
- Supports X.75, V.110, V.120, and PPP Async-to-Sync Conversion B Channel protocols
- B Channel speed 56Kbps and 64Kbps
- 112Kbps/128Kbps channel bundling (for DTE #1 only): MLP, CCB, and Multilink PPP(RFC1717)
- V.42bis data compression using the X.75, V.120, and Bundle protocols

- Two application program interfaces:
  - ZyXEL ISDN AT Commands
  - CAPI 1.1a (CAPI 2.0 will be available by firmware upgrade.)

### **Intelligent Features**

- Automatic ISDN/analog call detection
- Two analog telephone jacks (analog adapters) with metering pulse function
- Embedded protocol analyzer with color (ANSI) display
- Built-in internal speaker with volume control
- Push-button switch for quick dial and tear down
- Call-back security with password protection
- Flash EPROM memory for easy firmware upgrades

## **Technical Specifications**

- Status Display: 13 LED indicators
- Flow Control: Software XON/XOFF or hardware CTS/RTS
- Configuration Setting: Software programmable with nonvolatile memory for profile storage
- Diagnostics: Self test and loopback
- Two independent DTE ports:

DTE Port #1:

- Asynchronous: Auto Baud Rate up to 460.8Kbps
- Synchronous: Configurable Rate up to 128Kbps
- DTE Port #2:
  - Asynchronous: Data Rate up to 230.4Kbps
  - Synchronous mode
- *Note:* At the time of its initial release on the market, the Omni TA128's Synchronous DTE mode is not available. This feature will be firmware upgradeable at a later time (date to be confirmed).

## **Physical Charachteristics**

- Line Interface: RJ-45 for S/T or U interface, RJ-11 for built-in terminal adapter
- DTE Interface: DB-25 connector for DTE#1, DB-9 connector for DTE#2
- Weight (g): 369, Dimensions (cm): L-13.1 x W-17.9 x H-3.8

## **U-Interface Option**

For the North American ISDN, ZyXEL provides an optional 2B1Q U-interface which allows direct connection to the network without the use of an external NT-1 device.

## Unpacking Your Omni TA128

Your Omni TA128 modem should come with the equipment listed below. If any item is missing or damaged, please contact your Dealer or ZyXEL Customer Service Department immediately.

- 1) one (1) Omni TA128 ISDN Terminal Adapter
- 2) one (1) power adapter
- 3) two (2) RJ11 telephone cables
- 4) one (1) RJ45 ISDN telephone cable
- 5) one (1) shielded RS-232 25-pin to 25-pin cable (6 feet)
- 6) one (1) short shielded cable for RS-232 9-pin to 25-pin conversion
- 7) one (1) 3.5" driver and utility disk
- 8) what software to be included
- 9) one (1) warranty/registration card
- 10) one (1) Omni TA128 User's Manual
- 11) one (1) Quick Reference Guide

## How to Become a Registered Owner

Complete the pre-addressed registration card and place it in the mail. Registered owners will receive future product information and update announcement. Please also save your dated invoice as proof of purchase.

## Chapter 2 - Installing your Omni TA128

## Connecting Your Omni TA128 to the Power Supply

You will find the following switch and connectors on the back panel of Omni TA128:

| ON/OFF   | Power switch; turns the TA ON or OFF                                                                                                                         |
|----------|--------------------------------------------------------------------------------------------------------------------------------------------------------------|
| POWER    | Input terminal for power adapter                                                                                                                             |
| To DTE 1 | Serial port DB25 female connector for connection to the serial port of a DTE (computer/terminal). This is the DTE Port #1.                                   |
| To DTE 2 | Serial port DB9 female connector for connection to the serial port of a DTE (computer/terminal). This is the DTE Port #2. This port is currently not in use. |
| ISDN     | ISDN RJ45 terminal jack; connects to a S/T interface or a U interface (depending on the Omni TA128 model purchased).                                         |
| PHONE 1  | RJ11 terminal jack for analog adapter 1; for connecting to analog equipment (phone, fax, answering machine, etc.)                                            |
| PHONE 2  | PI11 terminal lock for analog adapter 2: for connecting to analog                                                                                            |

**PHONE 2** RJ11 terminal jack for analog adapter 2; for connecting to analog equipment.

The signal-pin assignment of the RJ45 and RJ11 phone jacks are listed in Appendix A.

To Connect your Omni TA128 to the power supply, follow these instructions:

- 1) Turn off your computer.
- 2) Make sure the power switch on the Omni TA128 is in the OFF (down) position.
- 3) Connect the round end of the power adapter to the POWER JACK on the modem's back panel (see Figure 2-1).
- 4) Plug the power supply unit to an AC wall jack then turn on the power switch on the Omni TA128.
- 5) Observe the LED light status on the front panel of your Omni TA128 and make sure PWR LED is on.

*Note:* Use only the power adapter supplied with your modem. Never use a power adapter designed for a different product.

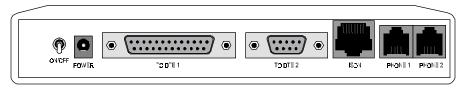



Figure 2-1

## Connecting the Omni TA128 to Your Computer

Your Omni TA128 comes with two **serial ports** (RS232C port), one with 25 pin connector and one with 9 pin connector. *When you first install the Omni TA128 The main serial port (the one with 25 pin connector) should be used* 

Your Omni TA128 comes with a 25 pin, male to female cable, which is to be used to connect the main serial port of Omni TA128 to your computer serial port. Please see diagrams below:

## Connecting the Omni TA128 to your Computer Serial Port

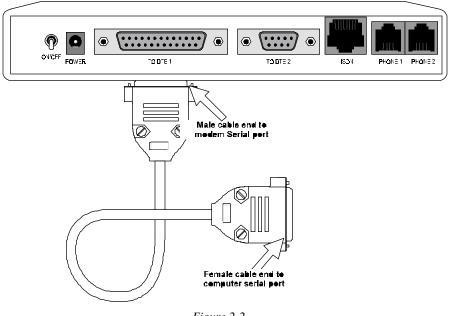



Figure 2-2

- 1) Find the 25 pin serial port of your Omni TA128.
- 2) Connect the male end of the 25 pin cable to the serial port of the Omni TA128.
- 3) Connect the other end of the cable (female end) to your computer's serial port. In case your computer only supplies a 9 pin serial connector, you will need to use a 25 pin to 9 pin converter (9 pin female to 25 pin male). If you have another type of serial port connector, such as on the Macintosh, you will need a special cable for the connection.
- 4) Once the connection is made, you can turn the computer back on.

## Connecting the Omni TA128 to Your ISDN Line

The Omni TA128 comes with a choice of two types of ISDN line interfaces:

- Omni TA128 comes with an S/T interface. This can only connect to your NT-1 (Network Termination) device.
- Omni TA128U comes with a U interface. This allows you to connect directly to your ISDN wall jack.

## S/T Interface Model

If you have purchased the Omni TA128 or Omni TA128S/T model, you will need an NT-1 device to connect to the network.

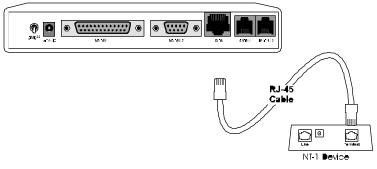



Figure 2-3

Although there are a lot of NT-1s on the market, most of them have two sets of RJ-11 or RJ-45 jacks:

- One set will be marked "Line," "ISDN," "Wall," or "U." It should be a single RJ-11 or RJ-45 jack.
- The other set will be marked "Terminal" or "S/T." It can be either a single or multiple RJ-45 jack(s).

Before making the connection, make sure that the termination is set up properly. The termination set-up depends on the number of devices connected to the NT-1 and how the devices are connected. It also depends on the distance from the device(s) to the NT-1. Please refer to the NT-1 manual for more information.

When the telephone company installs your ISDN line, you can specify the type of jack you want installed. You should order the jack that is recommended by the NT-1 device. In most cases, RJ-11 jacks will be installed unless you specified otherwise (In Canada, RJ-45 jack will be installed). The NT-1 device should come with the proper cable for connection from the wall jack and the NT-1's line jack.

No matter what kind of wall jack you have installed, only the center two pins are connected.

The cable connecting the NT-1 device to the Omni TA128 is provided for you. It is an RJ-45 to RJ-45 cable with four conductors running through it.

Once everything is set up, connect the Omni TA128 to your ISDN line:

- 1) Use the phone cable (RJ-45) that is included, connect the Omni TA128 "ISDN S" jack to your NT-1 "Terminal" or "S/T" jack.
- 2) Using the proper cable, connect your NT-1 "line" or "U" jack to the wall jack installed by your phone company.
- 3) Make sure all the connectors are properly inserted.
  - Note: If you are using the ISDN line for all your communications, we recommend that you use a UPS (Uninterruptable Power Supply) to provide backup power for the NT-1 and the Omni TA128. Otherwise, these units as well as any devices attached to the POTS port will not function in the event of a power loss at your location.

#### **U Interface Model**

If you have purchased the Omni TA128U, you can connect the U-Interface directly to the wall jack.

In most cases, the ISDN jack installed by the phone company is a RJ-11 jack (except in Canada, where RJ-45 jack will be installed), and the U-Interface jack on the back of the Omni TA128U is a RJ-45 jack. A RJ-45 to RJ-45 (or RJ-11 to RJ-45, depends on your regional distributor's request) phone cable is included with your Omni TA128U.

To connect the Omni TA128 to your ISDN line:

- Connect the RJ-45 connector to the "ISDN U" jack on the back of the Omni TA128.
- 2) Connect the other end of the RJ-45 cable (or RJ-11) to your wall jack.

## Power On and Self Diagnostics

Once you have completed all of the installation steps above, flip the Omni TA128's On/Off switch to the ON (up) position.

The unit should cycle through a self test sequence, where you should see a series of LED lights blinking. After this cycle is complete, the PWR light should stay on.

If the test routine fails, the LNK LED flashes. Please refer to Chapter 15 "**Diagnostics** and **Protocol Analyzer**" for more information on the self-test and its error codes.

If you have a communication program loaded and active (connected to the same serial port that the Omni TA128 is connected to), you should see the DTR on DTE1 lights go ON after the self test.

*Note:* The Omni TA128 takes longer to initialize than a regular modem because it requires that communication first be established with your local switch when it is powered on.

# Omni TA128 Front Panel

| <br>C | mni TA128 | ZyXEL |  |  |
|-------|-----------|-------|--|--|

Figure 2-4

## The LED Indicators

**PWR** Power on indicator; lights up when the Omni TA128's power is turned ON.

- **LNK** Physical layer (layer 1) active indicator; lights up when Layer 1 of the S0 interface is active; flashes when the data link layer of D channel is in multiple frame mode.
- **B1 B1** channel connection indicator; lights up when B1 channel is established; flashes when there are re-transmissions of packets.
- **B2 B2** channel connection indicator; lights up when B2 channel is established; flashes when there are re-transmissions of packets.
- AA Auto-answer indicator; lights up when the Omni TA128 is in Auto Answer mode; flashes when it rings.

#### DTE 1

- **DTR** Data terminal ready indicator; lights up when the DTE or Computer connected to the DTE Port #1 indicates that it is ready for communication by raising the corresponding RS232 signal.
- **TXD** Transmit data indicator; flashes when the DTE/Computer is transmitting data to the DTE Port #1 of the Omni TA128.

**RXD** Receive data indicator; lights up when the DTE/Computer is receiving data from the DTE Port #1 of the Omni TA128.

#### DTE 2

- **DTR D**ata terminal ready indicator, lights up when the DTE or Computer connected to the DTE Port #2 indicates that it is ready for communication by raising the corresponding RS232 signal.
- **TXD** Transmit data indicator; flashes when the DTE/Computer is transmitting data to the DTE Port #2 of the Omni TA128.
- **RXD** Receive data indicator; lights up when the DTE/Computer is receiving data from the DTE Port #2 of the Omni TA128.

#### Phone

- 1 Hook status of the analog adapter 1, lights up when the telephone handset is picked up (off-hook).
- 2 Hook status of the analog adapter 2, lights up when the telephone handset is picked up (off-hook).

### **Front Panel Switch**

When the TA128 is in **command state**, pressing the front panel button causes the Omni to dial the default phone number pre-stored in the NVRAM. The default number pointer to the telephone directory is assigned by the **AT\*D***n* command.

When the Omni TA128 is **on-line**, pressing the button will tear down the connection and bring it into command state.

To restore the Omni TA128 to its factory default settings and initiate the loop-back test, press and hold the switch for 3 seconds while turning the power ON.

## Understanding AT Commands

The Omni TA128 communicates asynchronously with computers using AT commands. AT commands are used to configure and control the Omni TA128. A command statement is usually sent to the modem by being typed from the computer keyboard.

Command statements must be written in a specific form in order for the Omni TA128 to recognize them. A command statement begins with the letters "AT" or "at". It is then followed by one or more commands and then by a<Enter>.

AT commands can only be issued when the Omni TA128 is in "command" or "off-line" mode.

Once the Omni TA128 has established a connection with the remote device, it goes into "on-line" mode, and the characters sent from your computer (through the Omni TA128) are transmitted to the remote device.

In order to issue an AT command statement, you first need to run your communications software and configure it to the port connected to the Omni TA128. Please refer to your communications software manual if this is not the case.

Once the communication terminal program is running and the Omni TA128 is connected:

Type:

```
AT<Enter>
```

Omni TA128 responds: OK

This confirms that the TA and your computer are communicating correctly.

#### Supported AT command types:

| Type of AT Command                                  | Example           |
|-----------------------------------------------------|-------------------|
| Basic AT (Hayes compatible)                         | ATB0              |
| Basic AT\$ (on line help)                           | AT\$              |
| Extended AT&                                        | AT&N0             |
| Extended AT* command                                | AT*I1             |
| S-Register command                                  | ATS0=1            |
| S-Register bit-mapped command (set S-Register bit 1 | ATS13.1=1         |
| equal to 1)                                         |                   |
| S-Register inquiry command                          | ATS0? Or ATS13.1? |

You may also browse the list by using the on-line help commands: AT\$, AT\*\$, AT&\$, and ATS\$.

### Quick Tips when issuing AT commands:

The ENTER or RETURN key must be pressed to execute a command.

Multiple AT commands can be combined into one line. For example, AT&O2and ATB02 can be combined into one line AT&O2B02.

The Omni TA128 processes commands from left to right. The AT command that appears to the right might over-write the command to the left. For example, ATB1B0 will result in ATB0 since both B1 and B0 can not co-exist.

If you see duplicated characters for each one you type, your Omni TA128 and software both have their echo feature turned on (the Omni TA128 defaults to enable command echo). To eliminate the double characters, turn off software command echo.

Use "A/" to repeat the last command. No 'AT' prefix is needed for this command.

The Omni TA128 supports either verbose result code (i.e. "OK") or numerical result code (i.e. "0"). You can use **ATV***n* command to set it one way or the other:

| Command | Description                  |
|---------|------------------------------|
| ATV0    | Select numerical result code |
| ATV1    | Select verbose result code   |

# Chapter 3 - Configuring Your ISDN Line and Network

You are now ready to set-up your ISDN network. Based on our experience, most problems can be traced back to two factors. Either the line was not ordered correctly, or the line was ordered correctly, but not programmed correctly.

It would be wise to have your Omni TA128 ready to use before your phone company comes to install your line. That way, you can enter the SPID to your line and confirm that the ISDN network is responding properly before the phone installation people leave.

There is a simple Windows 3.x or Windows 95 utility provided by ZyXEL to help you set-up the network. This set-up procedure needs to be done only once. The network information will be stored in the non-volatile memory of the Omni TA128. Turning the power off will not erase the information. The only time you will need to reconfigure your line is when you perform a hardware reset on your modem or when you change options on your ISDN line.

## ZyXEL Configuration Manager Software

Along with your Omni TA128, you will find a disk labeled "ZyXEL ISDN Configuration Manager". The Configuration Manager utility is an easy way to set up and configure your Omni TA128 without the use of a terminal program. To install this software simply run the setup file from the Run line. Refer to your Quick Start Guide for instructions on using the ZyXEL ISDN Configuration Manager.

| Options Help |                        |           |          |                |                     |
|--------------|------------------------|-----------|----------|----------------|---------------------|
|              | ZyXEL                  | Omni TA12 | 8 USA: V | 1.01           |                     |
| Link         | General                | Protocol  | Subs     | criber Number  |                     |
|              | ISDN Setup             |           |          | Mode Setup     |                     |
| Monitor      | Switch Type            |           |          | Mode 1         |                     |
|              | Northern Telecom D     | MS-100    | -        |                | nalog Ports         |
| Apply All    | Service Profile Identi | if        |          | and 1 DTI      | E Port              |
|              | 71455512120656         | mer o     | _        | O Mode 2       |                     |
|              | Directory Number 0     |           |          | and 2 DTE      | nalog Ports<br>Port |
| Save         | 7145551212             |           | _        |                |                     |
|              |                        |           |          | 56kbps B-      | Channel             |
| Help         | Service Profile Identi | ifier 1   |          | in composition | onumor              |
|              | 71455512130657         |           |          | Ring Volume 🖪  |                     |
|              | Directory Number 1     |           |          |                |                     |
| Exit         | 7145551213             |           |          | Apply          | Cancel              |

Figure 3-1 ISDN Configuration Manager

If your Omni TA128 is not going to be set-up by a computer running Windows, you will need some type of terminal program that allows you to send AT commands to the modem and receive responses from the modem.

## Configuring your Modem using a Terminal program

## Getting a Terminal Program Ready

If you are not using the ISDN configuration utility that is packaged with the Omni TA128, you will need a terminal program to from which to configure the unit. The Omni should work with any asynchronous terminal program that can communicate directly with one of the communication ports on your system. If you do not know how to use a terminal program, please refer to the instructions that came with the terminal program.

Make sure the program is set up to communicate with the COM port that the Omni TA128 is connected to. You can check to see if the DTR LED is on when the terminal program is active. In most cases, if the terminal program is active and ready to communicate with the port that the Omni TA128 is connected to, it will activate the DTR signal. This will cause the DTR LED to light up. If DTR is not ON, you will need to check the program's settings.

The communication speed can be set to anywhere between 1,200bps and 460,800bps, but 115,200bps is a good default value. The Omni TA128 will automatically adjust its speed to match your communication speed.

Once the terminal communication program is ready, you can type a simple command to see if the Omni TA128 responds to it.

```
Type:

AT<Enter>

Omni TA128 should respond:

OK

Type:

ATI<Enter>

Omni TA128 should respond:

1281

Type:

ATII<Enter>

Omni TA128 should respond:

Omni TA128 uSA: V 1.00a (Firmware version number)

7607 (Firmware checksum will change based on your firmware version)

OK
```

Once the Omni TA128 accepts the commands that you typed, it is ready to be programmed and ready to operate with your ISDN network. If you do not see any response from the device, go over your installation procedures again or contact the ZyXEL Technical Support.

## Configuring Your ISDN Line Switch Type and SPID

#### Switch Type Configuration

In North America there are three popular types of switches, they are:

- AT&T 5ESS
- Northern Telecom DMS100
- Siemens EWSD

These switches are either running software that conforms to the National ISDN-1 standard, or a custom version. Currently, the Omni TA128 supports a total of 6 different combinations, listed in Table 3-1.

You must have the switch type information available when you install your ISDN line. If you used the ZyXEL ISDN order forms to order your ISDN service, you should have recorded this information on the order form.

The ATPn command is used to program the D channel protocol. This is to allow the Omni TA128 to work with the type of switch your ISDN line is connected to. "n" is a digit that indicates the type of switch. Please use the following table for the "n" value.

The Omni TA128 is shipped with a default value of ATP0, which is Northern Telecom's DMS-100 switch with Custom protocol.

| ISDN Network | Switch              | AT      | # of  |
|--------------|---------------------|---------|-------|
| Switch       | Version (protocol)  | Command | SPIDs |
| AT&T 5ESS    | Point-to-Point      | ATP4    | 0     |
|              | Point-to-Multipoint | ATP5    | 1     |
|              | Point-to-Multipoint | ATP6    | 2     |
|              | National ISDN-1     | ATP1    | 1     |
|              | National ISDN-1     | ATP2    | 2     |
| NT DMS 100   | Custom              | ATP0    | 2     |
|              | National ISDN-1     | ATP1    | 1     |
|              | National ISDN-1     | ATP2    | 2     |
| Siemens EWSD | National ISDN-1     | ATP1    | 1     |
|              | National ISDN-1     | ATP2    | 2     |
| Other        | National ISDN-1     | ATP1    | 1     |
|              | National ISDN-1     | ATP2    | 2     |

Table 3-1

Once you have identified the switch you have, enter the proper value.

Example: if your switch type is DMS 100 with Custom protocol:

Type:

ATPO<Enter>

Omni TA128 should respond:

OK

Switch Type: Northern Telecom DMS100

At this point you should save the settings in the power-up.

Type:

AT&WZ<Enter>

The Omni TA128 responds:

OK

## SPID Setup

You are ready to enter the SPID (Service Profile Identifier) number. Unless your switch type is AT&T 5ESS with Point-to-Point protocol, SPID(s) will be needed. The ISDN switches use Service Profile Identifier (SPID) to represent the network services to which the Omni TA128 has subscribed. Each 0SPID corresponds to one Terminal End point Identifier. Different switches may provide different rules for the SPID number format. You should get the SPID number from your local phone company.

To program your SPID number into the Omni TA128:

Type:

```
ATSPID0=n (n is the SPID provided by your phone company)
```

Omni TA128 should respond:

OK

If a second SPID is required.

Type:

ATSPID1=*n* (n is the second SPID provided by your phone company)

Omni TA128 should respond:

OK

If the response is:

SPID Error!

This indicates an error entering the SPID number.

Once the SPID(s) are entered and accepted, toggle the Omni TA128 power off then back on. Wait until you see the **LNK** LED light up (this indicates an open communication link between your TA and the local switch). If you are not able to get the **LNK** LED to light up, verify the SPID number(s) with your phone company again. You should recheck all your cable connections before calling your phone company. If it still does not work, you will need your phone company's support to make sure the SPIDs are correct and the line you ordered has been correctly setup.

*Note:* We recommend that you always make sure the cable connections are correct and securely in place. This will make it easier for you to isolate

the problem area when talking to our technical support staff or the phone company.

Correctly entered and accepted SPID numbers will be stored in nonvolatile memory. That way you won't need to enter the SPID again, even if the power is turned off. However, if you perform a hardware reset, you will need to re-enter the SPID number(s) and switch type again. Make sure you write down or store all the relevant information so it can be retrieved at a later date.

#### **Testing your Connection**

After the SPID number(s) are entered and accepted, use your terminal program to dial ZyXEL V.120 number (714-263-0398 or 714-263-0498) to see if you can get a "CONNECT" message.

Follow these instructions to make your test call:

```
Type:
AT<Enter>
Omni TA128 responds:
OK
Type:
AT&F<Enter>
Omni TA128 responds:
OK
Type:
ATDI7142630398<Enter>
Omni TA128 responds:
```

CONNECT 115200/V.120 56000/LAPD

You may only get a "CONNECT" message and no other communication. This is OK. In Chapter 4 - "ISDN Communication Basics" you will learn how to setup your Omni TA128 to connect and then communicate over the line.

## Making Your First ISDN Data Connection

Your Omni TA128 should already be connected to you ISDN line properly. Also make sure that the **LNK** LED light is on. If the LED is unlit, check that your ISDN switch setup and SPID number(s) are correct. (Refer to the previous section.)

Start your terminal program.

```
Type:
AT&V<Enter>
```

Omni TA128 responds:

```
Current settings .....
Switch Type : Northern Telecom DMS
ISDN Outgoing Service : V.120 56K
E1 L0 M1 N2 P0 Q0 V1 X5 Z0
```

```
&D2 &E0 &H3 &J0 &K00 &O2 &R1 &S0
*A0 *C0 *D0 *M0 *N0 CB0 CC0 CD0 CP0
S00 = 0 S01 = 0 S02 = 43 S03 = 13 S04 = 10 S05 = 8 S06 = 3 S07 = 60
S08 = 2 S09 = 6 S10 = 7 S11 = 70 S12 = 0 S13 = 0 S14 = 2 S15 = 2
S16 = 0 S17 = 30 S18 = 0 S19 = 17 S20 = 8 S21 =178 S22 = 0 S23 =105
s24 =138 s25 = 0 s26 = 0 s27 =155 s28 = 68 s29 = 0 s30 = 0 s31 = 17
s32 = 19 s33 = 0 s34 = 30 s35 = 34 s36 = 0 s37 = 0 s38 = 0 s39 = 0
S40 = 0 S41 = 0 S42 = 0 S43 = 0 S44 = 0 S45 = 100 S46 = 28 S47 = 64
s48 = 0 s49 = 0 s50 = 0 s51 = 0 s52 = 0 s53 = 0 s54 = 0 s55 = 0
S56 = 0 S57 = 0 S58 = 0 S59 = 0 S60 = 0 S61 = 0 S62 = 0 S63 = 0
                                                                 0
s64 = 0 \ s65 = 0 \ s66 = 0 \ s67 = 0 \ s68 = 0 \ s69 = 0 \ s70 = 0 \ s71 = 0
s72 = 0 s73 = 0 s74 = 0 s75 = 0 s76 = 0 s77 = 0 s78 = 0 s79 = 0
s80 = 0 s81 = 62 s82 = 62 s83 = 32 s84 = 0 s85 = 0 s86 = 0 s87 = 0
S88 =
      2 S89 = 0 S90 = 0 S91 = 0 S92 = 0 S93 = 0 S94 = 0 S95 =
                                                                 0
      0 S97 = 0 S98 = 0 S99 = 0 S100= 0 S101= 62 S102= 62 S103=
S96 =
                                                                 0
S104= 0 S105= 0 S106= 0 S107= 0 S108= 0 S109= 0 S110= 0 S111= 0
S112= 8 S113= 0 S114= 8 S115= 0 S116= 0 S117= 0 S118= 0 S119= 0
S120= 0 S121= 0 S122= 0 S123= 0 S124= 0 S125= 0 S126= 0 S127= 0
OK
```

Please make sure that you are using V.120 with a 56K channel. The **ATB20** command switches to V.120 mode, and **AT&E1** tells the Omni TA128 to utilize the 56K bandwidth.

Now you are ready for your first call. As a test, you may dial into our ISDN BBS line at **714-263-0398.** 

Type:

```
ATDI17142630398<Enter>
```

You should now see the B1 LED go on.

Omni TA128 responds:

CONNECT 115200/V120 56000/LAPD FrontDoor 2.20c.mL/OX000046; MultiLine Press <<Esc>> twice for ZyXEL BBS

From this screen, you can either continue the session or hang up.

#### **Dual B Channel Connection**

To make a bundled connection, follow the above instructions, with one change. You must let the Omni TA128 know that you want to make a bundled connection. Typing **AT&J3** will tell the Omni TA128 to set up a bundled call.

When dialing into an AT&T 5ESS or a Seimens EWSD switch, dial a normal ATD<<number>>. If you are dialing into a DMS switch, then tell the remote Omni TA128 that it needs to make 2 separate connections.

To dial our BBS, type:

AT&J3<Enter> (set bundled B channel mode)

ATDI17142630398+17142630498<Enter>

Omni TA128 responds:

CONNECT 115200/V120 112000/LAPD

FrontDoor 2.20c.mL/OX000046; MultiLine
Press <Esc> twice for ZyXEL BBS

From this screen, you can either continue or hang up.

## Chapter 4 - ISDN Communication Basics

In this chapter, we will cover how to initiate and receive calls over digital lines using your Omni TA128.

## **Outgoing Calls**

The Omni TA128 has 3 modes in which to send communication over ISDN network.

- ISDN data
- Analog port, Phone 1 communication
- Analog port, Phone 2 communication

These modes are auto-switching based on the commands you issue. Let's take a look at how the communication mode is automatically switched. At your terminal program, proceed with the following instructions:

## Dialing out using ISDN mode

The command "ATDI" tells your Omni TA128 that you want to make an ISDN data call and to therefore use the ISDN mode to call out.

Type:

ATDI17142630398<enter> (Make an ISDN call)

## Dialing out using ISDN mode optional Speech Bearer Service

Omni TA128 supports ISDN data utilizing Speech Bearer Service. To Enable this function, you need to set S-register S83 bit 7 to 1, or ATS83.7=1. This function is useful in the areas where ISDN service providers charge lower usage rate for voice (speech) calls. To enable this function, type:

```
ATS83.7=1<enter>
To disable it, type:
ATS83.7=0<enter>
```

## **Dialing out for Analog Adapter Port 2**

Using the "B" command following the "ATD" will tell your Omni TA128 to automatically switch call to analog adapter, Phone 2, once dialing is complete.

```
Type:
ATDB17146930762<enter>
```

## **Dialing out for Analog Adapter Port 1**

Using the "A" command following the "ATD" will tell your Omni TA128 to automatically switch call to analog adapter, Phone 1, once dialing is complete.

Type:

ATDA17146930762<enter>

*Note:* You must have an analog modem connected to your POTS port before you issue this command.

#### Manually switching communication modes

The manual switching functions will only be necessary if your communication software does not allow you to change your dial-up string.

Conventional dialing commands: ATD, ATDT and ATDP, used by many existing communication software, can be mapped onto one of the new dialing commands according to the AT&O setting as follows:

| AT Command | Dial string it will map to              |
|------------|-----------------------------------------|
| AT&O0      | ATD, ATDT and ATDP are the same as ATDB |
| AT&O2      | ATD, ATDT and ATDP are the same as ATDI |
| AT&O3      | ATD, ATDT and ATDP are the same as ATDA |

The factory default is **AT&O2**. This means the modem will select ISDN data mode when you do not specify which communication mode to use in your dial command (i.e. ATD or ATDT).

### Placing the Call

To initiate a call, choose the proper communication mode and configure the mode according to the bearer service (or protocol) you want to use. Here are some simple commands that will be useful when placing a call:

| Command | Description                               |
|---------|-------------------------------------------|
| ATBn    | Changes ISDN B channel protocol setting   |
| ATDL    | Re-dials the last dialed telephone number |

## Incoming Calls

When a call comes in, it will be carried by one of the following protocols:

- V.120
- HDLC PPP, MPPP or SLIP
- V.110
- X.75

or the call may be initiated by an analog device.

This section will provide some general guidelines for setting up the device for call answer handling. Be aware that the Omni TA128 will not automatically answer a call unless S-register **S0** is set to a value greater than 0 (zero). If S-register S0=0, the Omni TA128 will only report "RING" to your terminal program. It can also respond with an audible tone that will allow you to decide whether or not you should to take any action.

When an ISDN data call comes in, the Omni TA128 will try to negotiate a connection using the proper ISDN protocol. When an analog call comes in, the Omni TA128 will send the call to the analog port as the factory default, Phone 1 and then Phone 2.

## Digital Data

The Omni TA128 currently supports Circuit Switched Data (CSD) for ISDN data applications. The CSD protocols supported by the Omni TA128 include: PPP, MPPP, V.120, X.75, and V.110. PPP is the most popular protocol used in North America; it is used by most of Internet service providers. Once the Omni TA128 answers a call, it will examine the incoming data to determine which protocol to use, and automatically switch to this mode. This operates transparently to the user. The Omni TA128 is able to auto-switch for PPP, MPPP, V.120, X.75, V.110, and above protocols over speech channel. In most cases, you can rely on the auto-switching feature for your applications. If you need more specific settings for answering calls, please refer to the section entitled "Answering a Call using MSN" found later in this chapter.

## **Determining the Packet Length**

The user's information is sent on a frame-by-frame basis for V.120. Sometimes we call it "packetized." The maximum frame length on the sending side should not exceed the maximum frame length that the receiving side allows. Sometimes this information will be exchanged during handshaking. However, few manufacturers, if any, have implemented this mechanism.

If the sending side sends packets greater than what the receiving side allows, the receiving side will discard the frame and reply with a Frame Reject Frame (FRMR). The FRMR indicates that the information received is too long. Both sides will then reset their link layer negotiation and re-send the frame again. Usually this will happen repeatedly until the call gets disconnected.

The Omni TA128 has a fixed maximum receiving frame size of 2048 bytes which is larger than most devices can support. The default maximum sending frame size is 252 bytes, which is small enough that it should not create any problems. If you need to change the maximum sending frame size, the ATCL command should be used.

Type:

ATCL252<Enter> (Set the frame size to 252 octets, user value between 1-2048)

Omni TA128 responds: OK

Type:

ATCL?<Enter> (To inquire about the current setting of the packet length)

#### Omni TA128 responds:

Maximum user data length in a packet (byte) : 252

## Answering a Call using MSN

When answering an incoming call, the call will first be identified if the caller number matches the MSN settings.

The Multiple Subscriber Number (MSN) supplementary service enables multiple ISDN numbers to be assigned to a single ISDN BRI line. It allows the caller to select, via the public network, one or more distinct terminals from a variety of terminal choices. Since the Omni supports many different communication protocols and two analog adapters, each of these ports can be assigned to an ISDN number using the following command:

| AT&ZIn=s | (where 's' is the MSN)                        |
|----------|-----------------------------------------------|
| &ZI0=s   | assigns MSN 's', phone number for X.75        |
| &ZI1=s   | assigns MSN 's', phone number for V.110       |
| &ZI2=s   | assigns MSN 's', phone number for V.120       |
| &ZI3=s   | assigns MSN 's', phone number for PPP, MPPP   |
| &ZI4=s   | assigns MSN 's' for ISDN data, protocol auto- |
|          | detection                                     |
| &ZI5=s   | assigns MSN 's', phone number for PPP, MPPP   |
| &ZI6=s   | assigns MSN 's', phone number for Phone 2     |
| &ZI7=s   | assigns MSN 's', phone number for Phone 1     |

Table 4-1

**AT&ZI?** can be used to display the MSN numbers. The factory default for these numbers are UNASSIGNED.

If an incoming SETUP message is offered with addressing information (i.e. the appropriate part of the called\_party\_number), this address will be compared with the MSN numbers assigned by the AT&ZIn=s commands. The call will be accepted using the specific protocol, if the assigned number of this protocol matches the received called party number.

Note: You are not required to enter the complete number string for the AT&ZIn command. The last few distinguishable digits will be enough for the Omni TA128 to make the decision. Two phone number strings are said to be matched if their least significant "n" digit(s) are identical, where "n" is the number of digits in the shorter string.

Called\_Party\_Subaddress information within the incoming SETUP message is not used by the Omni TA128 to select the protocols or services. It just indicates the subaddress (if any) to the DTE.

## Data over Speech Channel

If you are expecting ISDN data calls through Speech (Voice) channel, you would need to setup MSN for it. If no MSN entries are found in MSN ISDN data lists, all Speech (Voice) calls will be send to either Phone 1 jack or Phone 2 jack. Which entry to use would depend on the type of data call that you are expecting. If you only expect PPP type of calls, you should enter the number that remote user will use to dial in into entry #3 (AT&ZI3=xxx) or entry #5 (A&ZI5=xxx). Once this is set, when the caller dials into

this number, Omni TA128 will attempt to use PPP protocol to handshake with remote no matter what the setup message is coming from the switch indicates either a ISDN data call or Speech (Voice) call.

### **Best-effort call answering**

If some numbers have been set using &ZIn command (as can be seen by the AT&ZI? command) and they are not matched with the address of the incoming call, the Omni TA128 will, by default, ignore the call as it may be intended for other devices that share the same S/T interface (S0 bus) with the TA128.

If you want the Omni TA128 to answer inbound calls using all possible protocols, you can set the best-effort call answering bit as follows:

| Command    | Function                                          |
|------------|---------------------------------------------------|
| ATS119.3=0 | Answer call only when number matched (by default) |
| ATS119.3=1 | Best effort call answering                        |

## Ambiguity resolution switch for voice calls

For a Speech or voice-band-data call, if the &ZI number assignment can tell which of the analog adapters is being addressed, then the call will be delivered to the proper destination. But sometimes, ambiguity of address matching may exist. This may happen if the &ZIn numbers of the various protocols are either unassigned or not matched or the address information is absent in the incoming SETUP message. In this case, users may wish to set answering priority to an analog port. The **AT&Ln** command sets the address ambiguity resolution flag as follows.

**AT&L0** The analog adapter 1 has the higher priority to answer a voice or voice-bandanalog-data call; if the analog adapter 1 is busy, the call will be routed to the analog adapter, Phone 2.

**AT&L1** The analog adapter 2 has the higher priority to answer a voice or voice-bandanalog-data call; if the analog adapter 2 is busy, the call will be routed to the analog adapter, Phone 1.

### Multi auto-answering of data calls

When an ISDN data call comes in, the Omni TA128 can determine the protocol to be used in one of two exclusive ways.

- By way of the information conveyed by the SETUP message (for DSS1, these include the Bearer-Capability, Low-Layer-Compatibility, or High-Layer-Compatibility information elements; for 1TR6, these include the Service Indicator as well as an Additional Octet of the Service Indicator)
- 2) By the Multi Auto-answering process. The Omni TA128 determines the protocol by monitoring the B channel signal sent by the calling site.

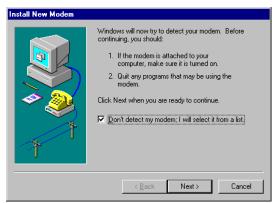
With either method, the data call can be identified by the Omni TA128 to be X.75, V.110, V.120, or PPP, MPPP Async-to-Sync conversion.

If the address-matching process is again unable to tell which protocol to use, the Omni TA128 will go into its "Multi Auto-answering Routine," by examining the B channel data pattern and hence determine the protocol to use.

When alerted, the Omni TA128 will send a RING message to the DTE in the following format:

RING

FM:17145522863 TO:17142630398


## Chapter 5 - Setup for Windows 95 and NT

This chapter contains step by step procedures for installing the Windows 95 and NT drivers, and configuring Dial-up Networking for the Omni TA128.

## Installing the Windows 95 Driver (INF file)

**Step 1** - Open the Control Panel by double clicking the "Control Panel" icon in your "My Computer" folder.

**Step 2** - Double click "Modems," then click the "Add" button. The following dialog box will appear.



Step 3 - Select "Don't detect my modem; I will select from a list." Then click "Next."

| Install New Modem                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Click the manufacturer and model of your modem. If your modem is not listed,<br>or if you have an installation disk, click Have Disk.                                                                                                                                                                                                                                                                                                                                        |
| Manufacturers:     Models       (Standard Modem Types)     Standard     300 bps Modem       (VoiceView Modem Types)     Standard     1200 bps Modem       Acer     Standard     400 bps Modem       Apex Data Inc.     Standard     9600 bps Modem       AST     Standard     9200 bps Modem       Standard     9200 bps Modem     Standard       Standard     9200 bps Modem     Standard       AST     Standard     9200 bps Modem       Standard     9200 bps Modem     T |
| <back next=""> Cancel</back>                                                                                                                                                                                                                                                                                                                                                                                                                                                 |

Step 4 - Click the "Have Disk" button.



**Step 5** - Insert the ZyXEL Windows 95 driver disk into your floppy drive and click OK. If you have downloaded an updated INF file from ZyXEL's FTP, Website, or BBS, use "Browse" to find the location of the updated .INF file, click "Open," then click "OK."

| <b>9</b>                                           | Click the manul<br>or if you have a                                                                                     |                                                       |                                              |                              | f your mod | em is not listed  |
|----------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------|----------------------------------------------|------------------------------|------------|-------------------|
| ZyXEL<br>ZyXEL<br>ZyXEL<br>ZyXEL<br>ZyXEL<br>ZyXEL | ISDN X 75 MLP<br>MODEM V.34 26<br>Omni 2885 v1.1:<br>Omni TA128<br>SPEECH v1.x cc<br>SPEECH v2.x cc<br>I-Online Service | 3k8, Elite 286<br>x<br>onnection (ov<br>onnection (ov | 4I ISDN v2.x<br>er ab-Adapte<br>er ab-Adapte | r), Elite 21<br>r), Elite 21 | 641 ISDN   |                   |
|                                                    |                                                                                                                         |                                                       |                                              |                              |            | <u>H</u> ave Disk |
|                                                    |                                                                                                                         |                                                       |                                              |                              |            |                   |

**Step 6** - Select the Omni TA128 driver with the protocol that your host is using. Generally, the samples listed below will work. However, we recommend that you check with your ISP to verify the protocol they use.

If you are connecting to an Internet Service Provider (ISP), select:

#### Omni TA128 V1.xx PPP

If the ISP has **not** upgraded to an ASEND compatible server, select:

#### Omni TA128 V1.xx V.120

If you are calling another location such as a BBS system, select:

#### Omni TA128 V1.xx V.120

If you dial up to CompuServe, select:

#### Omni TA128 V1.xx V.120

If you are calling MicroSoft Network's (MSN) ISDN line, select:

#### Omni TA128 V1.xx PPP

After you have completed the selections above, click "Next."



**Step 7** - Select the COM port your modem is connected to and click "Next." A final dialog will appear. Click "Finish." You should see a window similar to the one below.

| are set up on this compute |
|----------------------------|
|                            |
|                            |
|                            |
| ve Properties              |
|                            |
|                            |
| n                          |
| ify how your calls are     |
| roperties                  |
|                            |

**Step 8** - Click "Close." This completes the installation of your Omni TA128 modem driver. You may now use programs such as "Dial-Up Networking" with your Omni TA128.

## Configuring Windows 95 Dial-Up Networking

This section assumes you have already fully installed Windows 95. If you have not installed the Dial-Up Networking feature in Windows 95, please install it before you continue.

**Step 1** - Double click on the "My Computer" icon and then double click on the "Dial-up Networking" icon. From within the Dial-up Networking folder, double click on the "Make New Connection" icon.



**Step 2** - Choose a name for your connection and select your modem type from the drop down window. Then click on the "Next" button.

| Make New Connection | Type the phone number for the computer you want to call:<br>Area code: Lelephone number:<br>555  • 555-1234<br>Country code:<br>United States of America (1)  • |
|---------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                     | < Back Next > Cancel                                                                                                                                            |

**Step 3** - Type the phone number of your ISP or whatever host you will be calling. Click on the "Next" button.



Click on the Finish button. A new icon is created in the Dial-up Networking folder.

Step 4 - Right click on this icon, then select "Properties" from the menu.

| y Connection |                           | ?         |
|--------------|---------------------------|-----------|
| General      |                           |           |
|              | Connection                |           |
| ·            | CONTRACTOR                |           |
| Phone numb   | er:                       |           |
| Area code    |                           |           |
| 555          | ▼ - 555-1234              |           |
| Country co   | de:                       |           |
| United St    | ates of America (1)       | -         |
| ✓ Use co     | ountry code and area code |           |
|              |                           |           |
| Connect usin | g:                        |           |
| - 🔊 🛛        | ZyXEL Omni TA128          | -         |
|              | <u>C</u> onfigure Ser     | rver Type |
|              |                           |           |
|              |                           | 94.5°     |
|              | OK                        | Cancel    |

**Step 5** - Make sure your Omni TA128 modem appears in the "Connect Using" box. Then click on the "Server Type" button.

| Server Types                                       | ? × |
|----------------------------------------------------|-----|
| Type of Dial-Up <u>S</u> erver:                    |     |
| PPP: Windows 95, Windows NT 3.5, Internet          | •   |
| Advanced options:                                  |     |
| ☑ Log on to network                                |     |
| Enable software compression                        |     |
| Require encrypted password                         |     |
| Allowed network protocols:                         |     |
| ₩etBEUI                                            |     |
| V IPX/SPX Compatible                               |     |
| <u>ICP/IP</u> <u>ICP/IP</u> <u>TCP/IP</u> Settings |     |
| OK Cano                                            | el  |

These options are mostly host or server specific.

- If you are using PPP, use the default settings shown above.
- If you are connecting to a LAN, then select "Login to Network."
- If you are logging on to a Microsoft Windows network, select "NetBEUI."
- If you are logging on to a Novell network, then select "IPX/SPX Compatible."
- If you are logging on to an Internet connection, then select "TCP/IP."

Step 6 - Click on "TCP/IP Settings."

| CP/IP Settings                             | ? ×                 |  |  |  |  |
|--------------------------------------------|---------------------|--|--|--|--|
| Server assigned IP address                 |                     |  |  |  |  |
| ∫ <sup>C</sup> Specify an I <u>P</u> addre | 225                 |  |  |  |  |
| IP <u>a</u> ddress:                        | 0.0.0.0             |  |  |  |  |
| C Server assigned na                       | me server addresses |  |  |  |  |
| • Specify name serve                       |                     |  |  |  |  |
| Primary <u>D</u> NS:                       | 0.0.0.0             |  |  |  |  |
| Secondary D <u>N</u> S:                    | 0.0.0.0             |  |  |  |  |
| Primary <u>W</u> INS:                      | 0.0.0.0             |  |  |  |  |
| Secondary WINS:                            | 0.0.0.0             |  |  |  |  |
| Use IP header compression                  |                     |  |  |  |  |
| ✓ Use default gateway on remote network    |                     |  |  |  |  |
| OK Cancel                                  |                     |  |  |  |  |

If your host requires you to specify an IP address (Static IP), then click on the "Specify an IP address" radio button and enter your IP address. If your host assigns an IP when you log in (Dynamic IP), then leave the "Server assigned IP address" checked. Most servers assign an IP to you when you log in.

Click the "Specify name server address" radio button and enter your primary and secondary DNS (Domain Name Server) IP.

In most cases, you should leave "Use IP header compression" and "Use default gateway on remote network" checked. When all of the selections have been made, click "OK."

**Step 7** - This completes the remote connection definition. Locate the new connection icon in your "Dial-up Networking" folder, and double click on it.

| 🚦 Connect To          |                  | ? × |
|-----------------------|------------------|-----|
| <b>Ц</b> Му           | Connection       |     |
| <u>U</u> ser name:    | USERNAME         |     |
| Password:             | ******           |     |
|                       | Save password    |     |
| Phone <u>n</u> umber: | 5552345          | _   |
| Dialing <u>f</u> rom: | Default Location | es  |
|                       | Connect Cancel   |     |

**Step 8** - If the **User name** and **Password** are incorrect or are not there, type them in. Click on the Connect button and your Omni TA128 will dial the number and establish a connection.

# Windows NT RAS Setup

- From the NT Program Manager open the "Main" program group and double click on "Control Panel," then double click on Network. This will bring up Network Settings. If you have not already done so, create a Computer name and Workgroup name for your system.
- 2) In the "Network Software and Adapters Cards" group window, there is a list box. Scroll through this list and see if you have "Remote Access Service" listed as one of the installed components. If you do not, then click on the "Add Software" button and install the remote access service.
- 3) Find the .INF file (either from the driver disk or that you downloaded from ZyXEL) and copy it to replace the MODEM.INF in your \WINNT35\SYSTEM32\RAS directory. Then reboot your computer to load the new drivers into memory.
- 4) Once done, open "Control Panel" and "Network" then select the Remote Access Service option in the list box and click on the "Configure" button.
- 5) You will be presented with a new window. This is where you setup your modem. If your modem is not setup, click on "Add" to set it up.
- 6) Use the drop down list box to select the COM port your modem is connected to, then click "OK." In the new dialog box, click on CANCEL to select the modem for yourself.
- 7) Here you can select whether you want dial out only capabilities, receive or both. Unless you intend to connect to your computer from another location, select "Dial out only." Click on OK and you will be returned to the previous window.
- 8) Find your modem in the list box and select it, then click on the "Network" button.
- 9) This is where you define the Dial out Protocol you will be using. Generally speaking, only "TCP/IP" should be selected. "IPX" should be selected only if you are connecting to a Novell Network. "NetBEUI" should be selected for a Windows Network. Once the selections are made, click OK. You should now reboot your computer.
- 10) Once your computer has rebooted, double click on the Remote Access Service group icon. Now double click on the Remote Access icon in this group.
- 11) If you already have a connection, just leave it as is. Otherwise it will tell you the phone book is empty and to "Press OK to add a new entry." Just click OK, or the Add button if you have an existing entry and you will get the next window. From here, click on the "Advanced" button.
- 12) Type in a name for your connection in the "Entry Name" field, the phone number you wish to connect to in the "Phone Number" field, and a description of the connection (optional).
- 13) Now click on the down arrow button in the "Port" field and select the COM port your modem is attached to. Then click on the "Modem" button.

- 14) In this dialog box, click on the down arrow of the "Initial speed (BPS)" field and select the maximum speed of your modem (DTE Speed). From "Hardware features," select all three options. When all these selections are made, click on OK. You will then be returned to the previous window.
- 15) Click on the Network button. Select the PPP radio button, then select "TCP/IP," and "Request LCP extensions (RFC 1570)." Now click on the "TCP/IP Settings" button.
- 16) Click the IP address option that is required by your ISP (usually server assigned IP address). Now select the "Use specific name server addresses" and enter the DNS and DNS backup IP addresses given to you by your ISP. Also select the "Use VJ header compression" and "Use default gateway on remote network" selections if your ISP supports these features.
- 17) Click the OK buttons until you return to the "Edit Phone Book Entry" window, then click on the "Security" button. The rest of this is dependent on your ISP. If you are making an NT to NT server just check "Accept Authentication," and click OK.
- 18) Finally Click OK again, then click "Dial." Your Omni TA128 will dial the number and establish a connection.

# Chapter 6 - Async to Sync PPP and SLIP

#### Internet and Remote Access PPP and SLIP

More and more Internet Service Providers are offering their services through dial-up ISDN lines for higher data bandwidth. The equipment used at the service provider's location are frequently ISDN LAN routers which, unlike terminal adapters, do not have asynchronous capability. For this reason, terminal adapters that support only V.120 or asynchronous protocol will not work with this type of equipment.

The Omni TA128 is able to convert the asynchronous data it receives from your computer to synchronous format in order to communicate with ISDN LAN routers. We call this process asynchronous to synchronous HDLC conversion. To simplify it, we call it Async to Sync PPP (Point-to-Point Protocol) or Async to Sync SLIP (Serial Line Internet Protocol) protocol.

# Making Async to Sync PPP and SLIP calls

In order to communicate with an ISDN LAN router (from vendors such as Ascend and Cisco), you'll need to set the Omni TA128 B channel protocol to one of the following:

ATB40<Enter> (HDLC PPP)

or

ATB41<Enter>(HDLC SLIP)

You should also set the DTE speed based on the bandwidth that the switches support.

Most of the time, you will only use this protocol for making calls to remote sites with ISDN LAN Routers. If the remote access site you are calling uses a Terminal Adapter such as the Omni TA128, you can use V.120 (see next chapter), as it provides data compression.

Before making the call, check which protocol is set for the ISDN mode using the &V command to view the settings.

Type:

AT&V<Enter>

The Omni TA128 responds:

Current Settings...

Switch Type: Northern Telecom DMS

ISDN Outgoing Service: PPP Async-to-Sync Conv 64K

If the settings displayed match your current setup, you are ready to place the call.

Type:

ATDI<remote\_access\_number><Enter>

Omni TA128 will respond:

Connect 115000/64000 PPP/None

#### **Keeping a Line Connection During Idle Time**

If you are using the PPP to access a Server, more often than not, the Server will have a watchdog timer to monitor the line activity. If the idle time exceeds some time interval (usually 1 minute), the Server will release the connection for other clients to dial in. As a user, you could be very annoyed in some circumstances since, once disconnected, you have to dial to the server again and repeat the login procedure. The value in register S124 (in seconds) is used as the idle time gauge. If the idle time exceeds this guarding period, the Omni TA128 will send out a dummy PPP packet to the Server to keep it from disconnecting the line.

Example: If the server you are calling disconnects after 1 minute of inactivity, issue the following command before connecting:

```
ATS124=59<Enter> (send dummy PPP packet after 59 sec of inactivity)
```

Setting S124=0 will disable this function.

## Answering Async to Sync PPP calls

There is no need to configure the ISDN mode to the protocol of an incoming call. If it is set to auto-answer or an answering command is issued, the Omni TA128 will be able to determine the correct protocol to use by examining the data coming in from the remote site. One exception to this is when the ISDN data call is carried through a Speech bearer. In this case you would need to set up an MSN entry for the phone number of the calling party, so calls from this number will be answered properly. To do this, use **AT&ZI3=xxx**; where 'xxx' is the number that the call is expected to come in from. Please refer to the section entitled "Data over Speech Channel" in Chapter 4 for details.

To allow the Omni TA128 to automatically answer the incoming call, you need to set S0 to a value greater than 0 (i.e. ATS0=1). Omni TA128 will answer the call and use asynchronous to synchronous conversions to and from the DTE. If S0 is not set (S0=0), the DCE will report "RING" and will also make an audible ring notification.

# Multilink PPP

Multilink PPP (MPPP) is a protocol that allows virtual bundling of the two B channels, for connection speeds of 128Kbps. MPPP support is a standard feature of Omni TA128 models.

### Making a call using Multilink PPP

A Multilink PPP connection is initiated at the calling site when **ATB40** (B channel protocol HDLC PPP) has been selected and the Multilink PPP mode has been enabled by an **AT&Jn** command:

| AT&J0 | Disables Multilink PPP                              |
|-------|-----------------------------------------------------|
| AT&J1 | Enables Multilink PPP in answer mode only           |
| AT&J2 | Enables Multilink PPP in call mode only             |
| AT&J3 | Enables Multilink PPP in both call and answer modes |

By default, the Omni TA128 dials the same number for both Multilink PPP connections. If the destination you are dialing requires two different telephone numbers to establish a two channel Multilink PPP connection, then the following command can be used:

ATDIphone\_number\_1+phone\_number\_2

where phone\_number\_1 and phone\_number\_2 are the phone numbers of the destination.

If the destination refuses the Multilink PPP during the LCP negotiation, a single B channel PPP connection will be established. Whether or not the Multilink PPP connections have be establish, the connection message will be the same.

#### **Dialing Pre-stored Phone Numbers**

Use ATDSn, n=0,1,...,39, to dial the (n+1)th phone number twice for both the Multilink PPP connections. Use ATDSn+Sm, (n and n=0,1,...,39) to dial the (n+1)th phone number for the first connection and the (m+1)th phone number for the second connection.

For example, ATDIS0+S1<Enter> will dial the number stored in location '0', and the number stored in location '1' for the MPPP connection.

#### **Endpoint Discriminator**

The Endpoint Discriminator option represents identification of the system transmitting the packet. This option advises a system that the peer on this link could be the same as the peer on another existing link. Some Multilink PPP implementations require the use of the Endpoint Discriminator option.

The Endpoint Discriminator consists of two components: Class and Address.

The Class field is one octet as stored in S-register S85 and indicates the identifier address space. Valid values of S85 are assigned as follows:

| 0 | - Null Class (by default)                  |
|---|--------------------------------------------|
| 1 | - Locally Assigned Address                 |
| 2 | - Internet Protocol (IP) Address           |
| 3 | - IEEE 802.3 Globally Assigned MAC Address |
| 4 | - PPP Magic-Number Block                   |
| 5 | - Public Switched Network Directory Number |

The Endpoint Discriminator Address field is of variable length from 0 to 20 octets and can be assigned by the ATEPD command:

ATEPD = <Octet\_1,Octet\_2,Octet\_3,..,Octet\_n>

Each Octet\_i is in the range from 0 to 255. The angle brackets '<' and '>' are part of the this command. The command ATEPD? can be used to view current setting of the Endpoint Discriminator Address.

*Note*: The Endpoint Discriminator option is not required in most cases, thus users don't have to change the default settings. The system administrator of your corporate or the Internet service provider will provide these values if the Endpoint Discriminator option is required.

### Dynamic Bandwidth Allocation

When dynamic bandwidth allocation (DBA) is enabled (by default), you can place or answer a voice call (and only one) from a device that is attached to one of the a/b adapters while a Multilink PPP call is active. The Omni TA128 automatically removes one of the Multilink PPP connections and uses it for the voice call. Once the voice call ends, the Omni TA128 automatically reestablishes that channel for Multilink PPP operation. The dynamic bandwidth allocation function can only be effective when the Omni TA128 is in the calling site (the client site). The following command can be used to select the DBA function:

| ATCE0 | Disable the DBA function          |
|-------|-----------------------------------|
| ATCE1 | Enable the DBA function (default) |

# Chapter 7 - V.120 ISDN Communications

This chapter describes how to set-up and configure your Omni TA128 with the V.120 ISDN protocol.

# Placing outgoing calls

Some switches transmit all network signals through the D channel, allowing both B channels to be used exclusively for your communication purposes. This allows for throughput of 64Kbps per channel. However, not all switches support out-of-band signaling at this time. For switches that do not support out-of-band signaling, network signals are transmitted through the B channels. This reduces the bandwidth to 56Kbps.

When you are making a V.120 call, make sure that the communication supports out-ofband signaling. If it does not support out-of-band signaling, you'll need to set your Omni TA128 to 56K mode using the AT&E1 command (AT&E0 to set it back to 64k mode.) If your Omni TA128 is on the receiving end, you can keep the setting at AT&E0, 64k data mode. The Omni TA128 will automatically switch between the two speeds in answer mode.

### Configuring the V.120 mode

To configure for a 56K V.120 call, type:

ATB20<Enter> (Select V.120 for communication)

Omni TA128 responds:

OK

Type:

AT&E1<Enter> (Select 56K data mode)

Omni TA128 responds:

OK

Now you are ready to dial the phone number. If you need to save the setting into non-volatile RAM, issue the commands:

Type:

```
AT&WO<Enter> (Save the settings to profile 0) [Profiles available: 0-3]
```

Omni TA128 responds:

OK

Type:

```
ATZO<Enter> (Save stored settings as the power on settings to profile 0)
[Profiles available: 0-3]
```

Omni TA128 responds:

OK

All the above commands can be simplified by combining all of the commands onto one line as follows:

AT&B20&E1&WZ0<Enter>

### Dialing in V.120 mode

Finally, use the **ATD***n* command to make the call (*n* is the phone number you wish to dial). Once the connection is made, you should see the following connect message.

CONNECT 115200/V120 56000/LAPD

This indicates that the connection is made with:

DTE speed of 115,200bps Protocol V.120 Data Speed 56,000bps Error Control LAPD

# Answering incoming calls

In most cases, there is no need to configure the Omni TA128 to properly answer calls. The Omni TA128 is able to decide which protocol to use by detecting the type of data that is coming in. All you need to do is set S0 to greater than or equal to 1, so the Omni TA128 will automatically answer an incoming call. If S0=0, the DCE will simply report "RING" to your terminal and sound a ring notification.

One exception to this is when the ISDN data call is carried through Speech bearer. In this case, you would need to make an MSN entry for the phone number that you are expecting the Data-over-Speech-bearer call to be coming for V.120 protocol. Use **AT&ZI2=n**. Please refer to the section entitled "Data over Speech Channel" in Chapter 4 for details.

# Speeds of 128Kbps

BRI ISDN consists of three (2B+D) logical channels. Each B channel can be used independently for a dial-up connection running at 56Kbps or 64Kbps (bits per second).

The two B channels can be used together for a single data connection to provide 112K (with In-Band Signaling) or 128K (when Out-of-Band Signaling is used). It is called a "Bundle Connection" (different from BONDING).

The type of channel bundling described in the V.120 section is supported between two ZyXEL Omni TA128's or Elite 2864I's only, and uses Multiple Link Protocol (MLP).

To make bundled connections to other ISDN TA's as well as ZyXEL TA's, refer to the section entitled "Multilink PPP" in the preceding chapter.

### Identifying your line provisioning

For bundled connections, the two B channels of your ISDN line must be able to handle data circuit switch connections with unrestricted 64K or 56Kbps line speeds. Two separate data calls will be established consecutively.

#### Making a Bundled Call with V.120

A bundled V.120 connection is initiated at the calling site when **ATB20** (B channel protocol V.120) has been selected and the channel bundling mode has been enabled by an **AT&J3** command. The channel bundling command (AT&J3) must be set on both the calling and receiving sides, otherwise a single channel connection will be made.

Type:

```
ATB20<Enter> (Set B channel protocol to V.120)
```

AT&J3<Enter> (Set the Omni TA128 to make a bundled call)

Type:

AT&WZ<Enter> (If you want to save the setting)

Once this is done, the ATD command will generate two consecutive SETUP messages to invoke bundle initiation.

For the Northern Telecom switch, each BRI phone number can only be called once at any given time. So if you dial this number, it will report "busy" to any other incoming calls. In order to use two B channels for aggregation, we must place two calls with different phone numbers. To do this, separate the two numbers with a "+" sign after the "ATD" command:

ATDI[phone\_number\_1]+[phone\_number\_2]<Enter>

The answering Omni TA128 determines that the call is a bundle request: when AT&J3 is set, and two consecutive SETUP messages are received. The two data calls are established as one message. The phone company's ISDN line splits it off into two messages. That is, the ISDN network treats them as two independent calls. Finally, the receiving side receives one bundled message into the computer's serial port.

The success of a bundle connection initiation is indicated by the connect message reported to the DTE:

CONNECT 115200/V120M 128K/LAPD

or

CONNECT 115200/V120M 128K/LAPD/V42b (with data compression)

If you are not using American ISDN, you can have a choice between Multiple Link Protocol (MLP) or "cFos" channel bundling (CCB) two bundle protocols. You can set it by the following commands:

```
ATS100=0 MLP channel bundling
ATS100=1 CCB channel bundling
```

#### **Dialing pre-stored phone numbers**

Use ATDSn, n=0,1,...,39, to dial the (n+1)th phone number twice for both the bundle connections. Use ATDSn+Sm, (n and n=0,1,...,39) to dial the (n+1)th phone number for the first connection and the (m+1)th phone number for the second connection.

For example, ATDIS0+S1<Enter> will dial the number stored in location '0', and the number stored in location '1' for the bundle connection.

### Dynamic Bandwidth Allocation

When dynamic bandwidth allocation (DBA) is enabled (by default), you can place or answer a voice call (and only one) from a device that is attached to one of the a/b adapters while a CCB call is active. The Omni TA128 automatically removes one of the CCB connections and uses it for the voice call. Once the voice call ends, the Omni TA128 automatically reestablishes that channel for CCB operation. The dynamic bandwidth allocation function can only be effective when the Omni TA128 is in the calling site (the client site). The following command can be used to select the DBA function:

| ATCE0 | Disable the DBA function          |  |
|-------|-----------------------------------|--|
| ATCE1 | Enable the DBA function (default) |  |

|                   | Multiple Link<br>Protocol (MLP) | 'cFos' Channel<br>Bundling (CCB) | Multilink PPP |
|-------------------|---------------------------------|----------------------------------|---------------|
| Enable Channel-   | AT&J3                           | AT&J3                            | AT&J3         |
| Bundling          |                                 |                                  |               |
| Applicable Data   | X.75 (ATB0n), V.120             | X.75 (ATB0n), V.120              | PPP (ATB40)   |
| Protocols         | (ATB20)                         | (ATB20)                          |               |
| Dynamic Bandwidth | No                              | Yes                              | Yes           |
| Allocation        |                                 | (ATCE1)                          | (ATCE1)       |
| Bundle Type       | S100=0                          | S100=1                           | N/A           |
| Selection         |                                 |                                  |               |
| V.42bis           | Yes (AT&K44)                    | Yes (AT&K44)                     | No            |
| In-band Bundle    | No                              | No                               | Yes           |
| Negotiation       |                                 |                                  |               |
| End Point         | N/A                             | N/A                              | Optional      |
| Discrimination    |                                 |                                  |               |

The availability of DBA for the various bundle protocols is outlined below:

# Error Correction and Data Compression with V.120

With V.120, the default setting is for LAPD error correction only. No data compression will be negotiated. The following AT commands are used to switch the V.42bis data compression on or off for ISDN data calls when using V.120 protocol.

- AT&K44 enable V.42bis on ISDN call
- AT&K00 disable V.42bis on ISDN call

With the &K44 setting, the Omni TA128 will try to connect using V.42bis data compression. If the remote device doesn't support V.42, then LAPD error correction will be used.

When a connection is made using V.42bis compression, the following connect message will be displayed.

```
CONNECT 115200/V120 56000/LAPD/V42b.
```

It takes extra time for the calling ISDN TA to negotiate V.42bis. If you know in advance that the called site has no V.42bis capability, it would be better to issue the AT&K00 command beforehand in order to get a quick connection.

V.42bis is an international data compression standard commonly used in modem communications. This standard provides real time data compression. ZyXEL's expertise in data compression has been brought into ISDN applications, which are much faster in speed than modem communications.

Since the V.42bis algorithm needs an error-free transmission channel between the compression and decompression processes, it can only work with a protocol with error control competence. X.75 and V.120 are such protocols that can be used together with V.42bis data compression. The V.110, on the other hand, is just an R-interface layer 1 adaptation protocol without error-control and is thus inadequate for V.42bis.

### Bundle Connection with V.42bis Data Compression

If both sites have set **AT&K44** to enable V.42bis negotiation then XID frames will be exchanged through the main B channel which corresponds to the call established by the first SETUP message.

Only one data compression channel will be used in bundle connection. That means the compression is done before packet disassembly and the decompression is done after packet assembly. The compression ratio of V.42bis is commonly recognized as up to 4:1 for text files. If the line speed is 128K bps, then the DTE speed may reach 512K bps. This makes the DTE's normal RS-232 serial port unsuitable for bundle applications. Special I/O card on the computer side is required in this situation for external models.

# Selecting V.120 for European ISDN (DSS1) switch

With European ISDN, V.120 is an option in the Bearer Capability (BC) information element, which is a mandatory information element in the SETUP message. Although we can specify V.120 in the Low-Layer-Compatibility (LLC) information element, some switches just don't deliver the LLC. Other switches do deliver the LLC, but the V.120 selection will be discarded mid way.

If the called TA doesn't get any B channel protocol information from the incoming SETUP message and the remote device is a ZyXEL ISDN device, the Omni TA128 will be able to identify the V.120 protocol automatically with the Multi Auto-answer routine. Otherwise, the handshake will fail.

# Selecting V.120 for Germany National ISDN (1TR6)

With 1TR6 switch, data connections are achieved by setting the **Service Indicator** to 7 (Daten\_bertragung 64Kbps) and the **Additional Information** octet is used to select B channel protocols. Since there is no pre-defined code for asynchronous V.120, Omni TA128 uses the synchronous V.120 code to fill in the additional information octet. This approach might not work all the time.

# Chapter 8 - X.75 ISDN Communications

This chapter will describe how to set-up and configure your Omni TA128 with X.75 protocols. It will also describe Data Encryption Standard (DES) and its application within a growing market of companies and individuals who are concerned with sending and receiving secured messages.

X.75 was originally designed for packet-switched signaling systems in public networks to provide data transmission services. But it is now also used as the link layer for telematic services (as defined in T.90) in ISDN. These services include both ISDN circuit-switched mode (DTE-DTE communication) and ISDN packet-switched mode (DTE-DCE communication). Table 3-1 shows the specifications of different ISDN protocols.

|                 | V.110         | V.120      | X.75              |
|-----------------|---------------|------------|-------------------|
| Layer 1         | 80 Bits       | HDLC       | HDLC              |
|                 | Framing       |            |                   |
| Layer 2         | None          | LAPD       | LAPB Transparent  |
| Layer 3         | None          | V.120      | ISO8208T.70 NL    |
| Error Control   | No            | Yes        | Yes               |
| V.42bis         | No            | Yes        | Yes               |
| Async or Sync   | Async and     | Async Only | Async Only        |
| if used with V- | Sync          |            |                   |
| Series DTE      |               |            |                   |
| Bundle          | No            | Yes        | Yes               |
| Max. Line       | Async: 38.4   | 64Kbps     | 64Kbps            |
| Speed           | Kbps Sync: 64 | 128Kbps    | 128Kbps           |
|                 | Kbps          |            |                   |
| AT-Command      | ATB10         | ATB20      | ATB0: Transparent |
| Configuration   |               |            | ATB01: T.70 NL    |

Table 8-1

# Answering an X.75 call

There is no need to configure the ISDN mode to the protocol of an incoming call. The Omni TA128 will be able to determine the correct protocol to use by examining the data coming in from the remote site if the device is set to auto-answer or once an answering command is issued.

One exception to this is when the ISDN data call is carried through Speech bearer. In this case, you would need to make an MSN entry for the phone number from which you are expecting the Data-over-Speech-bearer call to be coming, for X.75 protocol. Use **AT&ZI0=n**. Please refer to the section entitled "Data over Speech Channel" in Chapter 4 for details.

To allow the Omni TA128 to answer the incoming call, you need to set S0 to a value greater than 0 (i.e. ATS0=1). The Omni TA128 will answer the call and use asynchronous to synchronous conversions to and from the DTE. If S0 is not set (S0=0), the DCE will report "RING" and will also make an audible ring notification.

# Making an X.75 Call

CAPI 1.1a specifies X.75 with T.70 NL as its default.

CAPI 2.0 specifies X.75 with transparent layer 3 as its default.

The default data protocol of the Omni TA128 is ATB20 (V.120). X.75 protocols can be chosen using the following AT commands:

- **ATB00** X.75 with transparent layer 3
- **ATB01** X.75 with T.70 NL
- ATB04 BTX (Datex-J)

The ATB0x commands not only specify the outgoing protocol, but also set the default layer 3 for an incoming X.75 call without layer 3 information. It is important for both ends of an X.75 connection to execute the same pre-assigned layer 3 protocol, as it reduces the chance that the Omni TA128 will make the wrong protocol selection.

For European ISDN (DSS1), the Low-Layer-Compatibility (LLC) information element in the SETUP message can be used to specify the layer 3 protocol. Since this is an option for ISDN switches, some of the switches might not deliver the LLC information element to the remote end. There is no provision for 1TR6 switch to specify the layer 3 protocol for X.75 type of calls.

## Making a Bundled Call with X.75

A bundle connection is initiated at the calling site by sending two consecutive SETUP messages to the network. The two SETUP messages are all the same except for the Call Reference values.

AT&J*n* can be used for bundle configuration as follows.

- AT&J0 Disables B channel bundling
- AT&J1 Enables B channel bundling in answer mode only
- AT&J2 Enables B channel bundling in call mode only
- AT&J3 Enables B channel bundling in both call and answer modes

The bundle protocol can be selected as follows.

- ATS100=0 MLP channel bundling
- ATS100=1 CCB channel bundling

If channel bundling is enabled, the **ATDIs** command will generate two consecutive **SETUP** messages to invoke bundle initiation.

For Northern Telecom ISDN, each BRI destination phone number can only be called once in any time. In order to use two B channels for aggregation, we must place two calls with different phone numbers. The following command can be used for this purpose.

ATDIphone\_number\_1+phone\_number\_2

If the called site receives two consecutive SETUP messages with the same Calling Party Number and Bearer Capability (or Origination Address for and Service Indicator for

*1TR6*) then it is deemed as a bundle request. The two data calls are established following normal call control procedures. That is, the network treats them as two independent calls.

The TAs in the two sites then use **X.75 Multiple Link Protocol** or '**cFos**' **channel bundling protocol** to coordinate the two B channels. The former would need an overhead of two octets for each packet. The success of bundle connection initiation is indicated by the connect message reported to DTE as follows:

```
CONNECT 460800 / X.75M 128K / V42b
```

If any B channel is unavailable in any site then the bundle initiation will fall back to single channel connection. In this case the connect message may be as follows:

```
CONNECT 460800 / X.75 64000 / V42b
```

#### **Dialing Pre-stored Phone Numbers**

The 40 phone numbers stored in the NVRAM can also be used to placing a bundle call.

- Use **ATDS***n*, (*n*=0-39), to dial the (n+1)th phone number twice for both the bundle connections.
- Use ATDSn+, (*n*=0-38), to dial the (n+1)th phone number for the first connection and to dial the (n+2)th phone number for the second connection.
- Use ATDSn+Sm, (*n*=0-39; *m*=0-39), to dial the (n+1)th phone number for the first connection and the (m+1)th phone number for the second connection.

### **Dynamic Bandwidth Allocation**

When dynamic bandwidth allocation (DBA) is enabled (by default), you can place or answer a voice call (and only one) from a device that is attached to one of the a/b adapters while a CCB call is active. The Omni TA128 automatically removes one of the CCB connections and uses it for the voice call. Once the voice call ends, the Omni TA128 automatically reestablishes that channel for CCB operation. The dynamic bandwidth allocation function can only be effective when the Omni TA128 is in the calling site (the client site). The following command can be used to select the DBA function.

- ATCE0 (Disable the DBA function)
- ATCE1 (Enable the DBA function) Default

The availability of DBA for the various bundle protocols is outlined below:

|                   | Multiple Link       | 'cFos' Channel      | Multilink PPP |
|-------------------|---------------------|---------------------|---------------|
|                   | Protocol (MLP)      | Bundling (CCB)      |               |
| Enable Channel-   | AT&J3               | AT&J3               | AT&J3         |
| Bundling          |                     |                     |               |
| Applicable Data   | X.75 (ATB0n), V.120 | X.75 (ATB0n), V.120 | PPP (ATB40)   |
| Protocols         | (ATB20)             | (ATB20)             |               |
| Dynamic Bandwidth | No                  | Yes                 | Yes           |
| Allocation        |                     | (ATCE1)             | (ATCE1)       |

| Bundle Type<br>Selection | <i>S100=0</i> | <i>S100=1</i> | N/A      |
|--------------------------|---------------|---------------|----------|
| V.42bis                  | Yes (AT&K44)  | Yes (AT&K44)  | No       |
| In-band Bundle           | No            | No            | Yes      |
| Negotiation              |               |               |          |
| End Point                | N/A           | N/A           | Optional |
| Discrimination           |               |               |          |

# Invoking V.42bis Data Compression

The following AT commands are used to switch the V.42bis data compression on or off for ISDN data calls when using X.75 or V.120 protocols.

- AT&K44 (enable V.42bis on ISDN call)
- AT&K00 (disable V.42bis on ISDN call)

For X.75, to negotiate compression parameters with the remote ISDN terminal, we exchange XID frames before the Link Layer is established. The calling site will send an XID frame with V.42bis request to the called site. If the called site understands this XID's meaning, it will either reply to an XID frame with V.42bis request. If it is able to execute V.42bis; it will ignore the XID or reply an XID frame with V.42bis reject or empty information field.

The calling site will assume that the remote site is unable to execute V.42bis if it gets no reply for a period of time after sending the request XID. In this situation, normal connection without data compression will be established.

It takes about 2 seconds for the calling ISDN TA to send XID and wait until time out. If you know in advance that the called site has no V.42bis capability, it would be better to issue the AT&K00 command beforehand in order to get a quick connection.

Although not defined in X.75, XID frame is based on the encoding in ISO Standard 8885 and being used in V.42/V.42bis. In addition to the compression parameters, XID can be used to negotiate the packet parameters as window size, packet size, and so on. Thus we appeal to other vendors to use this scheme to make X.75 more compatible. Any suggestion on this issue is highly appreciated.

If you are interested in the V.42bis negotiation procedure, you can use the embedded protocol analyzer to capture and analyze the exchanged XID frames.

### Bundle Connection with V.42bis Data Compression

If both sites have set **AT&K44** to enable V.42bis negotiation then XID frames will be exchanged through the main B channel which corresponds to the call established by the first SETUP message.

Only one data compression channel will be used in bundle connection. That means the compression is done before packet disassembly and the decompression is done after packet assembly. The compression ratio of V.42bis is commonly recognized as up to 4:1 for text files. If the line speed is 128K bps, then the DTE speed may reach 512K bps. This makes the DTE's normal RS-232 serial port unsuitable for bundle applications. Special I/O card on the computer side is required in this situation for external models.

# Data Encryption

#### PLEASE NOTE:

In response to customer needs and requirements, ZyXEL has taken the initiative to implement Data Encryption into the Omni TA128. Implementation of this public DES algorithm has been arranged exclusively by ZyXEL, without violation of any patents. Its use with the Omni TA128 is free for all. ZyXEL however, will not be responsible for any contrary rules that apply in the countries where the Data Encryption feature is being used. It is the sole responsibility of the user to be aware of established rules and regulations in their respective countries regarding the use of Data Encryption. Users intending to export the Omni TA128 should investigate and adhere to local export laws.

For many years, the cryptographic protection of data communication has been a matter of importance only to military or government security agencies. But during the last two decades, with the advance of microelectronics and computer-communication technology, the following trends may change its significance and application:

- Companies and individual users rely more on data communication to exchange sensitive information. Specifically, more and more people are using ISDN for LANto-LAN interconnection and Internet services.
- 2) Inexpensive but powerful equipment makes the interception job of wire-tapers or hackers easier than before.
- 3) It is possible now for civilians to employ security practices that can protect against powerful adversaries.
  - *Note:* ZyXEL does not assume any liability arising out of the application or use of any of the security functions described in this chapter. Neither does it convey any license under its patent rights nor the rights of others.

### Data Encryption Standard (DES)

DES is a Federal Information Processing Standard in the United States. DES is a block cipher - that means it encrypts data in 64-bit blocks. A 64-bit block of plain text goes in one end of the algorithm, and a 64-bit block comes out of the other end. Both encryption and decryption use the same algorithm. The key length is 56 bits. Some of the 56-bit numbers are considered to be weak keys. But the weak keys will be automatically avoided by Omni TA128. One major criticism of the DES standard is that its key is too short to survive the brute force (exhaustive search) attack of today's technology.

Triple DES, which uses two DES keys, has been adopted to improve the DES algorithm in the ISO 8732 standard. This way, the equivalent key length is 112 bits, and the resultant cipher text is much harder to break using an exhaustive search :  $2^{112}$  attempts instead of  $2^{56}$  attempts.

The table below is an estimation of security, depending on key length using the 1990s' technology: (Please refer to Dr. Dobb's Journal, April 1994 for more detailed information):

| Key Length | Time Required for a \$1M<br>Machine to Break | Time for a \$1B<br>Machine to Break |
|------------|----------------------------------------------|-------------------------------------|
| 56Bits     | 3.5 hours                                    | 13 seconds                          |
| 100Bits    | 7 billion years                              | 7 million years                     |
| 128Bits    | $10^{18}$ years                              | $10^{15}$ years                     |

### **Manual DES Key Generation**

The Omni TA128 currently supports encryption with X.75 protocol. The key used by DES can be manually entered via an AT command before each connection is made (the Omni TA128 will not remember the Key you used).

Type:

ATCK<DES\_Key><Enter>

Example: ATCK<678901234567890><Enter>

*Note:* The "<" and ">" are required characters for the DES\_Key parameter

Use the above example to preset the DES key. The DES\_Key is a string of printable characters. The number of characters in the string should be larger than 15 and less than 65. The AT command interpreter will convert the string DES\_Key to a real DES key. The Omni TA128 will check to see if the converted key is a weak key for DES, if so, it modifies the key according to a predetermined algorithm to get a non-weak key.

Both ends of an ISDN link should key in the same DES\_Key before a DES ISDN call can be established. Failure to do so will cause either an immediate disconnection or an unintelligible connection.

You can combine the DES\_Key with your dialing string when you are making a call or combining it with your answering string when you are answering a call. For example:

```
When dialing type:
ATCK<678901234567890>D6931111<Enter>
```

When answering type: ATCK<678901234567890>A<Enter>

This way, the encryption key is given to Omni TA128 just before it is needed.

| S Register setting | Description                       |
|--------------------|-----------------------------------|
| ATS89.0 = 1        | DES is desired                    |
| ATS89.0 = 0        | DES is disabled (Default)         |
| ATS89.1 = 1        | Triple DES is preferred           |
| ATS89.1 = 0        | Single DES is preferred (Default) |
| ATS89.2 = 1        | Use a manually generated key      |

**Control of Data Encryption** 

The AT commands to control the data encryption are as follows :

The DES request as well as any key distribution parameters, are exchanged via XID frames in the same way as V.42bis negotiation. Interested users can use the embedded protocol analyzer to examine the structure of XID frames. Both V.42bis and the data encryption functions can be invoked simultaneously for an ISDN data call. But the DES can not be used for bundle connections, due to the limitation of computing resources.

## **LED Indicators For Data Encryption**

The B channel LED indicator (B1 or B2) lights up when the B channel is connected. A single blinking LED indicates that data transmission is protected by Data Encryption Standard (DES). A triple blinking LED indicates that data is protected by triple DES.

# **Chapter 9 - V.110 ISDN Communications**

|                  | V.110         | V.120      | X.75              |  |
|------------------|---------------|------------|-------------------|--|
| Layer 1          | 80 Bits       | HDLC       | HDLC              |  |
|                  | Framing       |            |                   |  |
| Layer 2          | None          | LAPD       | LAPB Transparent  |  |
| Layer 3          | None          | V.120      | ISO8208T.70 NL    |  |
| Error Control    | No            | Yes        | Yes               |  |
| V.42bis          | No            | Yes        | Yes               |  |
| Async or Sync if | Async and     | Async Only | Async Only        |  |
| used with V-     | Sync          |            |                   |  |
| Series DTE       |               |            |                   |  |
| Bundle           | No            | Yes        | Yes               |  |
| Max. Line        | Async: 38.4   | 64Kbps     | 64Kbps            |  |
| Speed            | Kbps Sync: 64 | 128Kbps    | 128Kbps           |  |
|                  | Kbps          |            |                   |  |
| AT-Command       | ATB10         | ATB20      | ATB0: Transparent |  |
| Configuration    |               |            | ATB01: T.70 NL    |  |

V.110 is most popular in Japan. This table shows the specifications of different ISDN protocols.

Table 9-1

There are two modes of V.110 synchronous operation :

- 1) Asynchronous commands, synchronous data (AT&M1): The Omni TA128 accepts AT commands in asynchronous mode. Once the call is connected, it enters synchronous mode for data transmission.
- Synchronous mode (AT&M3): The Omni TA128 accepts synchronous commands (V.25 bis) and exchanges data synchronously with a remote TA.

# Answering a V.110 call

Once you set the proper V.110 communication mode, either asynchronous or synchronous mode there is no need to configure the ISDN mode to the protocol of an incoming call. The Omni TA128 will be able to determine the correct protocol to use by examining the data coming in from the remote site if the device is set to auto-answer or once an answering command is issued.

One exception to this is when the ISDN data call is carried through Speech bearer. In this case, you would need to make an MSN entry for the phone number from which you are expecting the Data-over-Speech-bearer call to be coming, for X.75 protocol. Use **AT&ZI1=n**. Please refer to the section entitled "Data over Speech Channel" in Chapter 4 for details.

To allow the Omni TA128 to answer the incoming call, you need to set S0 to a value greater than 0 (i.e. ATS0=1). Omni TA128 will answer the call and use asynchronous to

synchronous conversions to and from the DTE. If S0 is not set (S0=0), the DCE will report "RING" and will also make an audible ring notification.

# Making V.110 Calls

### **Asynchronous V.110 Calls**

Before ATDIxxx command is issue to make the dialing, you need to make sure that the Omni TA128 is in the asynchronous mode (AT&M0). Then use the following commands to configure V.110:

| AT Command | Description                 |
|------------|-----------------------------|
| ATB10      | User rate follows DTE speed |
|            | (see note below)            |
| ATB13      | User rate = 2400bps         |
| ATB14      | User rate = 4800bps         |
| ATB15      | User rate = 9600bps         |
| ATB16      | User rate = 14400bps        |
| ATB17      | User rate = 19200bps        |
| ATB18      | User rate = 38400bps        |
| ATB19      | User rate = 57600bps        |
|            | (Japanese version only)     |

Table 9-2

The highest Async V.110 user rate depends on bit 4 of S119 as follows:

| ■ S119.4=0 | 19200 bps                            |
|------------|--------------------------------------|
| ■ S119.4=1 | 38400 bps for areas other than Japan |
| ■ S119.4=1 | 57600 bps for Japanese version       |

If the DTE speed is higher than what has been set, the user rate on above table will be used.

The X bits in the 80-bit frame will be used for remote flow control.

### Synchronous V.110 calls

Omni TA128 does not support synchronous operation currently. The following information is provided for future when the upgrade is available.

Use the following commands to configure V.110 for synchronous operation :

| Command | Function                       |
|---------|--------------------------------|
| ATB10   | 64K or 56Kbps transparent mode |
| ATB13   | User rate = 2400bps            |
| ATB14   | User rate = 4800bps            |
| ATB15   | User rate = 9600bps            |
| ATB16   | User rate = 14400bps           |
| ATB17   | User rate = 19200bps           |

| ATB18 | User rate = 48000bps    |
|-------|-------------------------|
| ATB19 | User rate = 56000bps    |
| ATB11 | User rate = $64000$ bps |

Table 9-3

*Note:* The Omni TA128 does not support network independent clock compensation. The synchronous timing source must be supplied by the Omni TA128, which is phase locked to the network synchronous clock.

# Chapter 10 - Handling Analog Calls

The analog adapters enable you to connect analog devices (e.g. telephone, fax, PBX, or modem) to an ISDN Basic Rate line. Any conventional analog telephony equipment which supports DTMF tone/pulse dialing can be plugged into any one of the two RJ-11 sockets (labeled phone 1 and phone 2) of the Omni TA128.

This chapter will outline the steps you need to take to place and answer analog calls via your ISDN line.

The analog adapters use RJ-11 phone jacks. The pin assignment of the jacks are shown in a later chapter.

Note for German ZyXEL customers: The inner two pins of the RJ-11 are used for the Tip and Ring (or a and b signals in Germany, the two signals that connect to a telephone set). This is the standard pin assignment, but some BZT-approved telephones use the outer two pins for a and b. If this is the case, use the attached TAE adapter which has a unique interface definition or use an RJ-11 cable that connects the inner pins on one end and the outer pins on the other end.

| The following table shows some of the most frequently used AT commands for your |
|---------------------------------------------------------------------------------|
| reference:                                                                      |
|                                                                                 |

| AT Command | Description                                                 |
|------------|-------------------------------------------------------------|
| ATDAs      | Automatically dials out for device connects to Phone 1, "s" |
|            | represents the number string to dial                        |
| ATDBs      | Automatically dials out for device connects to Phone 2      |
| AT&V6      | View current setting of analog adapter, Phone 1             |
| AT&V7      | View current setting of analog adapter, Phone 2             |
| AT&L0 or   | Assigns analog calls to Phone 1 if the line is not in use   |
| ATS84.5=0  |                                                             |
| AT&L1 or   | Assigns analog calls to Phone 2 if the line is not in use   |
| ATS84.5=1  |                                                             |
| AT&ZIn=s   | MSN setting, assigns Called phone number, "s," to be        |
|            | answered by "n" port (where n=6 for Phone 1 and n=7 for     |
|            | Phone 2):                                                   |
| AT&ZI6=s   | Assign the Called phone number for analog adapter, Phone 1  |
| AT&ZI7=s   | Assign the Called phone number for analog adapter, Phone 2  |
| ATS56=n    | Flash timer, in 100 ms unit, to set maximum duration of ON- |
|            | OFF hook transition to be recognized as "Flash"             |
|            | European switch specific                                    |
| ATS89.6=0  | To disable the metering pulse for analog adapter, Phone 1   |
| ATS89.6=1  | To enable the metering pulse for analog adapter, Phone 1    |
| ATS89.5=0  | To disable the metering pulse for analog adapter, Phone 2   |
| ATS89.5=1  | To enable the metering pulse for analog adapter, Phone 2    |

Table 10-1

# Placing a Call from the Analog Adapter

Making a call from the analog adapter is as easy as picking up the telephone connected to the analog port and dialing. With a terminal program's assistance you can also use the Omni TA128 to dial the number for you.

Type: ATDB714-693-0808<Enter> (Dial the number) Omni TA128 returns:

CONNECT (Dialing is complete)

Now, just pick up the phone handset and wait for the remote device to answer.

Use **ATDAs** (**ATDBs**) to place a call for the analog adapter 1 (analog adapter 2)

The way the analog ports work for Omni TA128 is: once the analog adapter's hook sensor detects that the telephone device's handset is picked up (off hook), it sends a **SETUP** message to the ISDN central exchange to request a connection. One B channel, if available, will be assigned to this connection and the exchange will wait for the dialed number to route the call. At the same time, a dial tone is presented to the adapter port to prompt the user to dial. Both tone and pulse dialing are accepted.

A busy tone will be heard on the handset if:

- 1) B channel is unavailable
- 2) the dialed number is undeliverable
- 3) the called party is busy

This indicates the failure of the attempt to connect. To place another call, hang up the phone, then pick it up again. If the called party is being alerted, a ring-back tone will be heard.

# Accepting an Incoming Call

Incoming ISDN calls are directed to one of the analog adapters if:

- 1. Voice call will be send to one of the two analog adapters automatically when it received. As the manufacture default, the call will be send to analog adapter, Phone 1 first, then Phone 2 if Phone 1 is busy.
- 2. The MSN is set (AT&ZIn=s, as shown in Table 4-1) where you specify the phone number, "s", the remote user dialed to be send to specific analog adapter, "n".
- 3. The MSN setting for the phone number in the incoming SETUP message is acceptable to both the analog adapters, the ambiguity resolution bit (Bit 5 of S84, or &Ln) is set to 0 (analog adapter 1 has the higher priority) or 1 (analog adapter 2 has the higher priority).
  - *Note:* The default MSN Sub-address(or EAZ for 1TR6) of the analog adapter is 4. For a detailed description of the call addressing scheme, please refer to later chapter, Advanced ISDN Call Control.

# Chapter 11 - Advanced ISDN Call Control

# Call Control for DSS1 (Digital Subscriber Signaling #1)

In order to initiate an DSS1 ISDN call, two information elements are necessary:

- 1) The **Bearer Capability** element indicates what kind of bearer service is desired. It is also used for compatibility checking in the addressed entity.
- 2) The **Called Party Number** element provides necessary information for the telephone company Central Office (CO) to direct the call to the destination.

Other optional information elements which are pertinent to call control include:

- High-Layer-Compatibility
- Low-Layer-Compatibility
- Calling-Party-Number
- Called-Party-Number
- Calling-Party-SubAddress
- Called-Party-SubAddress

#### **Control of Outgoing Service Indicator**

The **High-Layer-Compatibility** and **Low-Layer-Compatibility** information provides a means for compatibility checking by the called party. They are transferred transparently by the ISDN network between the call originating entity (e.g. the calling user) and the addressed entity.

The outgoing **High-Layer-Compatibility** can be controlled by setting the value of S-register S(108+n) as follows

| n=0 | (S108) | Setting for analog adapter 2 |
|-----|--------|------------------------------|
| n=2 | (S110) | Setting for ISDN data calls  |
| •   | (0111) |                              |

n=3 (S111) Setting for analog adapter 1

| S(108+n=) | Function                                                  |
|-----------|-----------------------------------------------------------|
| 0         | No High-Layer-Compatibility info element will be sent     |
|           | (default)                                                 |
| 1         | Telephony                                                 |
| 4         | Facsimile Group 2/3                                       |
| 40        | Teletex service (Rec. F.220)                              |
| 49        | Teletex service (Rec. F.200)                              |
| 50        | International interworking for video services (Rec. F.300 |
|           | and T.110)                                                |
| 53        | Telex service (Rec. F.60)                                 |
| 56        | Message Handling Systems (MHS) (Rec. X.400 series)        |
| 65        | OSI application (Rec. X.200 series)                       |

Example: ATS111=4 sets Fax compatibility message for Analog Port 1.

**Bearer-Capability** and **Low-Layer-Compatibility** information elements will be determined when you configure the B channel protocols using the command **ATBnn**. The outgoing Low-Layer-Compatibility information element can be turned on or off by setting **S80 bit** '*n*' as follows:

n = 4 for the analog adapter 2 n = 6 for ISDN data calls n = 7 for the analog adapter 1

S80.n=0Disable outgoing Low-Layer-Compatibility (default)S80.n=1Enable outgoing Low-Layer-Compatibility

*Example*: ATS80.4=0 disables Low-Layer-Compatibility message for Analog Port 2.

#### **Control of ISDN Phone Number and Sub-address**

The **Calling-Party-Number** information element identifies the *origin* of a call, and the **Called-Party-Number** information element identifies the *destination* of a call.

The **Calling-Party-Subaddress** information element identifies the Subaddress associated with the *origin* of a call. The **Called-Party-Subaddress** information identifies the Subaddress of the *destination* of a call.

Each type of outgoing call can be assigned with one Number/Subaddress pair by using the command AT&ZOx=s. The possible values for *x* are as follows.

| $x = \mathbf{I}$ for | ISDN | data | calls |
|----------------------|------|------|-------|
|----------------------|------|------|-------|

 $x = \mathbf{B}$  for the analog adapter 2

The number-Subaddress-string 's' is defined as:

#### *s* = [[Y*n*][N*n*]own-number][/[[Z*n*]own-Subaddress]/]

where **Y***n* specifies the type of number:

| Y0        | unknown (default if Yn is omitted) |
|-----------|------------------------------------|
| Y1        | international number               |
| Y2        | national number                    |
| <b>Y3</b> | network specific number            |
| Y4        | subscriber number                  |
|           |                                    |

**N***n* is the identifier of numbering plan:

| N0 | unknown (default if Nn is omitted) |
|----|------------------------------------|
| N1 | ISDN numbering plan (Rec. E.164)   |
| N3 | data numbering plan (Rec. X.121)   |
| N4 | telex numbering plan (Rec. F.69)   |
| N8 | national standard numbering plan   |
| N9 | private numbering plan             |

**Z***n* specifies the Subaddress type:

| ZO | NSAP (Rec. X.213) with AFI=0x50, IA5 characters |
|----|-------------------------------------------------|
|    | (default if Zn is omitted)                      |
| Z2 | user specified, IA5 characters                  |

The command AT&ZOx=// will remove the Number/Subaddress assignment.

The number and Subaddress assigned by **AT&ZO***x*=*s*, if any, will be used for Calling-Party-Number and Calling-Party-Subaddress information elements respectively while dialing.

The default settings of the Phone Number and Subaddress of all the types of calls are **UNASSIGNED** - meaning the SETUP message sent by the Omni TA128 contains neither Calling-Party-Number nor Calling-Party-Subaddress information elements.

The command **AT&ZO**? can be used to browse the current settings of the own numbers and subaddresses.

## Call Control for 1TR6 (Old German ISDN)

In order to initiate an 1TR6 ISDN call, two information elements are necessary:

- 1) Service Indicator
- 2) **Destination Address**

The **Service Indicator** determines what kind of bearer services are desired. The **Destination Address** provides necessary information for the telephone company Central Office (CO) to direct the call to the remote party.

### **Control of Outgoing Service Indicator**

The **Outgoing Service Indicator** will be assigned when you configure the B channel protocols using the command **ATBnn**. (See Chapter 7 for a more detailed description.)

Since there are a number of combinations of voice or voice-band-data services on the analog adapters, users may want to control the outgoing Service Indicator themselves for some specific applications.

The following table is recommended to configure **S104/S107** (Service Indicator) and **S108/S111** (Additional Information Octet) according to the terminal types :

|           | Service Indicator<br>S107 : analog adapter,<br>Phone 1<br>S104 : analog adapter,<br>Phone 2 | Addi. S. I.<br>S111 : analog adapter,<br>Phone 1<br>S108 : analog adapter,<br>Phone 2 |
|-----------|---------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------|
| Telephone | 1 (Fernsprechen)                                                                            | 1 (3.1 KHz)                                                                           |
| Modem     | 2 (analog - dienste)                                                                        | 3 (Daten Über Modem) or                                                               |
|           |                                                                                             | 4 (Btx Über Modem)                                                                    |
| G3 Fax    | 3 (analog - dienste)                                                                        | 2 (Fax Gruppe 3)                                                                      |

## Control of ENDGERÄTEAUSWAHLZIFFER (EAZ)

**EAZ** (or Terminal Selection Code) is the last digit of an ISDN phone number in 1TR6. Usually EAZ=0 indicates that a global call (any terminal on the S0 interface) which is service-compatible with the incoming call, can answer the call.

Other values of EAZ (1,2,....,9) provides the possibility for assigning multiple ISDN numbers to a single ISDN BRI line. A calling user can select, via the public network, one or more distinct terminals on a single BRI line.

With its highly integrated, multi-function features, the Omni TA128 can be imagined as a "black box" containing multiple distinct terminals. Each of these "internal terminals" can be assigned one EAZ using the command **AT&ZIn=m**, where n=0-7 and m=0-9.

| Command        | Function                                           |
|----------------|----------------------------------------------------|
| &ZI0= $m$      | assigns EAZ for X.75                               |
| &ZI1= <i>m</i> | assigns EAZ for V.110                              |
| &ZI2= $m$      | assigns EAZ for V.120                              |
| &ZI3= <i>m</i> | assigns EAZ for PPP, MPPP                          |
| &ZI4= $m$      | assigns EAZ for ISDN data, protocol auto-detection |
| &ZI5= <i>m</i> | assigns EAZ for PPP, MPPP                          |
| &ZI6= <i>m</i> | assigns EAZ for Phone 2                            |
| &ZI7= <i>m</i> | assigns EAZ for Phone 1                            |

Table 11-1

The default EAZ of each protocol is as follows :

| &ZI <b>0=1</b> | for <b>Data;</b>                 |
|----------------|----------------------------------|
| &ZI <b>4=2</b> | for <b>Data;</b>                 |
| &ZI <b>6=3</b> | for the analog adapter, Phone 2; |
| &ZI <b>7=4</b> | for the analog adapter, Phone 1. |

**AT&ZI?** can be used to display the EAZ numbers assigned by the AT&ZI*n=m* commands.

The EAZ (last digit) of the destination address in an incoming SETUP message will be checked with each protocol's EAZ. If there is a match and the service indicated is compatible with this protocol, the call will be accepted using the protocol.

Note: The EAZs must be assigned precisely in order to accept calls accordingly.

The suffix digit to an ISDN phone number in a dial out command will be used as the destination EAZ (in the Destination Address W-element) in the SETUP message sent to the destination. If this suffix digit is omitted, the switch will assume the EAZ as 0.

Each type of outgoing call of the Omni TA128 can be assigned with one origination EAZ by using the command **AT&ZOx=Origination\_EAZ**, (where  $x = \mathbf{I}$  for ISDN data calls, **A** for the analog adapter 1, and **B** for the analog adapter 2).

The command **AT&ZOx=**// removes the assignment of the origination EAZ.

The number assigned by **AT&ZOx=Origination\_EAZ**, if any, will be used for the Origination Address W-element while dialing. The default settings of origination EAZ of all the types of calls are **UNASSIGNED**, meaning the SETUP message sent by the Omni TA128 contains no Origination Address W-element.

The command AT&ZO? can be used to list the current settings of the origination EAZs.

# Answering a Call

The incoming call will first be identified as either an ISDN data call or a voice call (including the voice-band-data). ISDN data calls will be routed to the digital communications portion of the Omni TA128. Voice calls or voice-band-data calls will be assigned to the analog adapters.

### Answering a Call for DSS1

**The Multiple Subscriber Number** (MSN) supplementary service provides the possibility for assigning multiple ISDN numbers to a single ISDN BRI line. Calling users can select, via the public network, one or more distinct terminals on a BRI line.

In some areas however, it is very expensive to get additional subscriber numbers. The Subaddress, which is transferred transparently by the ISDN network between the call originating entity (e.g. the calling user) and the addressed entity, can be used for the same purpose as the MSN. Since the Omni TA128 is highly integrated and multi-functional, it can be imagined as a "black box" that contains multiple distinct terminals. Each of these "internal terminals" can be assigned one ISDN number using the **AT&ZIn=xxxx**... command.

The number assigned by AT&ZIn=xxxx... can be interpreted as either the MSN or the Subaddress. This is determined by the bit 5 of S119 as follows.

- **S119.5=0** number is treated as the MSN (default)
- **S119.5=1** number is treated as the Subaddress

The factory default for these numbers are unassigned. If an incoming **SETUP** message is offered with addressing information (i.e. the appropriate part of the called party number or the called party Subaddress), this address will be compared with the MSN/Subaddress numbers assigned by the AT&ZIn=xxxx... commands. The call will be accepted using the specific protocol if the assigned number of this protocol matches with the received called party number or called party Subaddress.

*Note*: Two phone number strings are said to be matched if their least significant "n" digit(s) are identical, where "n" is the number of digits of the shorter string. Usually one digit is enough to distinguish the various protocols.

### Answering a Call for 1TR6

If an incoming **SETUP** message is offered with addressing information (i.e. the destination address W-element). This address will be compared with the EAZ numbers

assigned by the AT&ZI*n*=*m* commands. The call will be accepted using the specific protocol if the assigned number of this protocol matches with the received address.

### **Best-effort Call Answering**

If some numbers have been set using &ZI command (as can be seen by the AT&ZI? command) and they are not matched with the address of the incoming call, the Omni TA128 will, by default, ignore the call as it may be intended for other devices that share the same S/T interface (S0 bus) with the Omni TA128.

If you want the Omni TA128 to answer inbound calls as often as possible, you can set the best-effort call answering bit as follows:

**S119.3=0** Answer call only when number matched (by default)

S119.3=1 Best effort call answering

### Ambiguity Resolution Switch for Voice Calls

For a voice or voice-band-data call, if the &ZI number assignment can tell which of the analog adapters is being addressed, then the call will be delivered to the proper destination. But sometimes, ambiguity of address matching may exist. This may happen if the &ZI numbers of the various protocols are either unassigned or not matched or the address information is absent in the incoming SETUP message. In this case, users may wish to set the priority of answering a call by the analog adapter, Phone 1, or the analog adapter, Phone 2. The AT&Ln command sets the address ambiguity resolution flag :

| AT&L0 | The analog adapter 1 has the higher priority to answer a voice or voice-band-data call; if the analog adapter 1 is busy, the call will be routed to the analog adapter, Phone 2. |
|-------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| AT&L1 | The analog adapter 2 has the higher priority to answer a voice or voice-band-data call; if the analog adapter 2 is busy, the call will be routed to the analog adapter, Phone 1. |

### Multi-Auto-Answering of Data Calls

For an ISDN data call, if the Omni TA128 can exclusively determine the protocol to be used by means of the information conveyed by the SETUP message (for DSS1, these include the Bearer-Capability, Low-Layer-Compatibility, or High-Layer-Compatibility information elements; for 1TR6, these include the Service Indicator as well as the Additional Octet of Service Indicator), then the indicated protocol will be used. Otherwise, the Multi-Auto answering process will be invoked. The Omni TA128 can monitor the B channel signal sent by the calling site.

The data call can be identified by the Omni TA128 to be X.75, V.110, V.120, or PPP Async-to-Sync, conversion and MPPP.

### **Data Call Indication**

Data calls are accepted the same way as in any modem. When alerting, the Omni TA128 will send the first RING message to the DTE with a format as follows:

```
RING <CR><LF>
[FM:[[Prefix]Calling-Party-Number][/Subaddress/]]
[TO:[Called-Party-Number][/Subaddress/]] <CR><LF>
RING <CR><LF>
RING <CR><LF>
......
```

The display of address information between the first RING and the second RING can be disabled by setting **ATS84.4=1**. The term [Prefix] is a predefined number string to be added in front of the Calling-party-number before indicating it to the DTE. This is useful for some automatic dial-back-up systems. The number string can be assigned as follows:

| ATCI <prefix></prefix> | When and only when the type-of-number denotes an international number will this "Prefix" be added to the Calling-party-number before indicating it to the DTE. |
|------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------|
| ATCI<>                 | Disables the international number prefix-adding function.<br>(Default)                                                                                         |
| ATCN <prefix></prefix> | When and only when the type-of-number denotes a national<br>number will this "Prefix" be added to the Calling-party-number<br>before indicating it to the DTE. |
| ATCN<>                 | Disable the national number prefix-adding function. (Default)                                                                                                  |

*Note:* The angle brackets '<' and '>' are part of this command.

#### **Disable inbound call connection**

In some cases, the user may require the Omni TA128 **not** to answer any incoming calls. This can be done by setting the bit 0 of S-register S118:

| S118.0=0 | Enable the TA128 to answer a call (by default) |
|----------|------------------------------------------------|
| S118.0=1 | Disable the TA128 to answer any call           |

#### **Point-to-Point Configuration**

In some areas, since the Direct-Dial-In (DDI) number is less expensive than the MSN, users may want to subscribe to point-to-point ISDN to employ the DDI function. In this case, only one TA can be connected to the ISDN line and the TEI (Terminal Equipment Identifier) is always ZERO. This can be done by setting the bit 1 of S-register S119:

| S119.1 = 0 | Disable point-to-point DDI function (default) |
|------------|-----------------------------------------------|
| S119.1 = 1 | Enable point-to-point DDI function            |

# Placing a Call

To initiate a call, configure the Omni TA128 according to the Bearer Service (or protocol) you want to use.

ATBnn for ISDN data call

#### Placing a call for DSS1

The **ATD***x* command is used for dialing as follows.

#### ATDx[Yn][Nn]called\_party\_number[/[Zn]called-party-subaddress/]

x = I (for ISDN data calls), **A** (for the analog adapter 1), or **B** (for the analog adapter 2).

**Y***n* specifies the type of number:

- Y0 unknown (default if Yn is omitted)
- Y1 international number
- Y2 national number
- Y3 network specific number
- Y4 subscriber number

**N***n* is the identifier of numbering plan:

| NO | unknown (default if Nn is omitted) |
|----|------------------------------------|
| N1 | ISDN numbering plan (Rec. E.164)   |
| N3 | data numbering plan (Rec. X.121)   |
| N4 | telex numbering plan (Rec. F.69)   |
| N8 | national standard numbering plan   |
| N9 | private numbering plan             |

Zn specifies the type of the Subaddress:

- **Z0** NSAP (Rec. X.213) with AFI=0x50, IA5 characters (default if Zn is omitted)
- **Z2** user specified, IA5 characters

The **called\_party\_number** or an appropriate part of it, will be sent to the addressed entity. The **called\_party\_subaddress** will be transferred transparently by the ISDN network to the destination.

Use ATDL to redial the last dialed telephone number (and/or Subaddress).

#### Placing a call for 1TR6

The ATDx[Yn][Nn]destination\_address command is used for dialing as follows.

 $\mathbf{x} = \mathbf{I}$  (ISDN data),  $\mathbf{A}$  (the analog adapter 1), or  $\mathbf{B}$  (the analog adapter 2)

**Yn** specifies the type of address:

- Y0 unknown (default if Yn is omitted)
- Y1 international number
- Y2 national number

**Nn** is the identifier of numbering/addressing plan:

- **N0** unknown (default if Nn is omitted)
- N1 ISDN numbering plan (Rec. E.164)

The **destination\_address** is the ISDN phone number of the called party. The last digit of this number is the EAZ. Use **ATDL** to redial the last dialed ISDN phone number.

Note: For those users who like to look into ISDN communications and the communications between Omni TA128 and computer system, it is recommended that you use the Embedded Protocol Analyzer, please refer to the chapter "Diagnostics and Protocol Analyzer" The Analyzer gives you a complete detail of ISDN call control and allows you to see your activities on the Omni TA128.

# User-To-User Information

Omni TA128 supports user-to-user information exchange via the D channel. To transmit a message, use **ATT4<message.....>** command. The angle brackets '<' and '>' are part of the this command. The message will be included in an User-To-User Information Element which is sent with the first valid MESSAGE that follows.

If the **ATT4<message.....>** command is issued before dialing, the User-To-User Information Element will be sent in the SETUP message. Whether the Information Element can be sent to the called party or not is switch dependent. If it does, the called party can see the message before the call is answered.

During a call connection session the D channel can still be used to exchange user-to-user information. For the single stream configuration, both sides must be in 'Escaped' state, because only so can they send the AT commands and view the responses.

The user-to-user information is a supplementary service that has to be invoked on a per-call basis.

# **Chapter 12 - Security Functions**

## **Password Security Functions**

#### **Security Types and Levels**

The Omni TA128 provides security functions that may be enabled to prevent unauthorized connections. Two types of security functions are provided.

- **Type 1** security is to be used when the remote TA is a ZyXEL ISDN TA
- **Type 2** security is to be used when the remote TA is non-ZyXEL.

With a **Type 1** connection, the dial-in (remote) TA will send in its supervisor password for matching with local Omni TA128's pre-stored password list. With a **Type 2** connection, the remote terminal will be prompted to enter the password at the initial connection and the local Omni TA128 will match the entered password with the pre-stored password list.

|                       | Type 1 Security          | Type 2 Security                 |
|-----------------------|--------------------------|---------------------------------|
| Remote (Calling) Site | ZyXEL ISDN device only   | Can be TA of any brand          |
| Password Check        | Automatic                | Interactive                     |
| Protocols Supported   | X.75, V.120              | Any data protocol               |
| AT Commands           | *G1 for Level 1 security | *G3 for Level 1 security        |
|                       | *G2 for Level 2 security | *G4 for Level 2 security        |
|                       |                          | <b>*G5</b> for Level 3 security |

The two types of security are summarized in the table below:

#### Level 1 security

Will only perform password checking. With Level 1 security, the local TA will maintain the connection if the password is matched, the line will be disconnected otherwise.

#### Level 2 security

Provides extra Calling Party Number checking and call-back, the call-back number is prestored in the password table. If the password has been matched (*in a maximum of 3 tries over a 40 second time period*) with its pre-stored password list, the local TA will check the Calling Party Number (CPN) (or Origination Address for 1TR6) against the pre-stored number corresponding to the password. If they are matched, the local TA will choose either to keep the connection or to disconnect and then call back according to the setting of bit 6 of S119:

S119.6=0 Disconnect and then call back

S119.6=1 Keep the connection

If the CPN does not match with what is stored in the table, the local TA will disconnect the call. If CPN is unavailable in the SETUP message, the local TA will disconnect the call and then call back using the pre-stored number corresponding to the dial-in password.

#### Level 3 security

Once the password is matched the local TA will prompt the remote user to enter a call back number.

|                   | Level 1        | Level 2             | Level 3                   |
|-------------------|----------------|---------------------|---------------------------|
| Password Check    | Yes            | Yes                 | Yes                       |
| CPN Check OK      | N/A            | Call back           | N/A                       |
| and S119.6=0      |                |                     |                           |
| CPN Check OK      | N/A            | Keep the connection | N/A                       |
| and S119.6=1      |                |                     |                           |
| CPN unmatched     | N/A            | Disconnect          | <i>N/A</i>                |
| CPN not Available | N/A            | Call back using the | Prompts the remote user   |
|                   |                | corresponding pre-  | to enter call back number |
|                   |                | stored number       | for calling back.         |
| AT Commands       | *G1 for Type 1 | *G2 for Type 1      | *G5 for Type 2            |
|                   | *G3 for Type 2 | *G4 for Type 2      |                           |

The three levels of security are summarized in the table below:

#### Setting and Modifying Passwords

40 user passwords may be defined by **AT\*H***n* command, where "*n*" represents the index to the entry, numbers between 0-39 are accepted.

The corresponding 40 call-back numbers are defined by AT&Zn=xxx command, where "*n*" represents the index to the entry, and "*xxx*" represents the assigned call-back phone number. Any character (ASCII 0-127) can be used in the password table, the maximum password length is 8 characters for each entry.

The security functions are only accessible through AT commands in terminal mode. Supervisory password is required for adding or to modify the entries. The default supervisor password is **ZyXEL** when Omni TA128 is shipped from the factory. This supervisory password is send to remote if Type 1 security is set at remote end.

To modify the supervisor password, use AT\*HS.

You will be asked for the original password and a new password and then to re-enter the new password for verification. For example:

```
Password:

******* (Enter current supervisory password)

Password:

******* (Enter new supervisory password)

Verify:

******* (Enter the new supervisory password again)

OK
```

Use command  $\mathbf{AT^*Hn}$  to modify the "*n*"th user password. You will be prompted to enter the supervisory password first and then the user's password for this entry will be requested and verified. The command  $\mathbf{AT^*V}$  will list the 40 user passwords and the supervisor password on the screen for viewing.

## Non-password Auto Call Back Function

In addition to the standard modem-like security functions described in the previous section, the Omni TA128 provides another simpler call back function. The Calling Party Number (origination address) will be checked against the 5 pre-stored call-back numbers before the B channel is connected. If the CPN is matched with any one of the numbers, the incoming call will be rejected (without connection, hence without any charge) and the TA128 will automatically call back using the matched phone number.

This function can be controlled by the following command:

| AT*GC0 | disable the auto call back function (default) |
|--------|-----------------------------------------------|
| AT*GC1 | enable the auto call back function            |

The pre-stored numbers can be set using the following command:

AT\*HCn=xxxx, n=0,1,...,4

You will be prompted to enter the supervisory password first.

The AT\*VC command can be used to list all the pre-stored numbers.

# Chapter 13 - Upgrading Your Omni TA128

This chapter describes how to upgrade flash EPROM firmware when it is available.

## Upgrading with Flash EPROM

Your Omni TA128 modem employs a flash EEPROM that lets you conveniently download updated firmware and program the modem with new features and enhanced functions.

- Obtain the new firmware from ZyXEL's BBS, WWW, or FTP site. (Refer to the chapter entitled "Contacting ZyXEL.") The firmware is distributed in a file "TA128d.vvv", where the extension vvv denotes the version of this firmware. The modifier *d* in the filename has the following definitions:
  - G German national ISDN (1TR6)
  - **E** European ISDN (DSS1), also used in most other countries including Asian countries.
  - A American ISDN(AT&T 5ESS, Northern Telecom DMS-100, or National ISDN-1, the active D channel protocol can be chosen by an AT command)
  - Note: The American firmware version supports both the S/T interface and U interface models. During power-on test, it checks the hardware configuration and follows the initialization procedures of the specific interface.
- 2) Make sure your Omni TA128 is turned ON.
- Start any communications program that supports the Xmodem protocol, and type: ATUPX<Enter>

Omni TA128 responds:

You have chosen Xmodem (128 bytes of data with checksum) protocol to update your modem. Data in Flash ROM will be erased !!!

Are you sure (Y/N) ?

4) Press Y. The following message then appears:

Start programming, please upload

5) Use the Xmodem protocol to upload the file TA128d.vvv to your modem. This step updates the modem's flash EEPROM with the new firmware. When installation is complete, the modem will restart automatically.

In the unlikely event that your modem fails to respond to AT commands after upgrading the EEPROM follow the procedure below.

- 1) Power cycle the Omni TA128. The Cold reset will prompt the TA to check the integrity of the codes in the flash EEPROM.
- 2) If proper valid firmware can not be verified, the Omni TA128 will initiate Kernal Mode. Once it is in Kernal mode, you can issue limited "AT" commands. From this point, you can start from item 3 or our upgrading procedure.

# Chapter 14 - Usage of DTE Port 2

This chapter describes how to set the TA128 into Two-DTE Port and One Analog Port mode in which two users can use the TA128 simultaneously to place two independent calls to access the Internet. The two-DTE-port feature is also ideal for Service Providers in that two users can be serviced concurrently through two COM ports, one TA128, and one ISDN BRI line.

## Selection of the Two DTE Port Mode

By default, one DTE port and two POTS ports of the TA128 are operable. But more often than not, since there are two B channels for your ISDN line, two users may want to share the TA128 to access the Internet simultaneously. To make use of the second DTE port, please set bit 0 of the S125 via DTE port 1.

| ATS125.0=0 | One DTE port and two POTS port mode (default) |
|------------|-----------------------------------------------|
| ATS125.0=1 | Two DTE ports and one POTS port mode          |

The mode selection command must be followed by the following procedures:

- 1. AT&Wn to save the configuration as a user profile n, where n=0,1,2, or 3.
- 2. ATZn to select the said user profile n as the power-on default settings.
- 3. Turn off the TA128 for a while and then turn it on again.

Now the DTE port 2 is ready to be used.

**Note:** (1) Once the two-DTE-port mode is selected, the POTS port marked "Phone 2" is disabled, i.e. it can neither be used to place a call nor to answer a call. The POTS port marked "Phone 1" is operable as usual.

| Mode                                                                | DTE Port 1 | DTE Port 2 | POTS Port 1 | POTS Port 2 |
|---------------------------------------------------------------------|------------|------------|-------------|-------------|
| ATS125.0=0<br>One DTE Port<br>and Two POTS<br>Ports<br>(by default) |            | ×          | 2           | 2           |
| ATS125.0=1<br>Two DTE Ports<br>and One POTS<br>Port                 |            |            | 2           | ×           |

## Configuration of the DTE Port 2

The functions of DTE port 2 is quite simple compared with those of DTE port 1. Major differences between DTE port 1 and DTE port 2 are listed in the table below:

| Functions                       | DTE Port 1                                  | DTE Port 2                                                 |
|---------------------------------|---------------------------------------------|------------------------------------------------------------|
| DTE Speed (Baud)                | Up to 460.8 Kbps                            | Up to 115.2 Kbps                                           |
| Auto Bauding                    | Yes                                         | No<br>(Rate must be set via DTE<br>port 1)                 |
| B Channel Protocols             | PPP/MP, X.75, V.110, V.120, and Bundle      | PPP Async-to-Sync<br>Conversion                            |
| AT Commands and S-<br>registers | Fully configurable                          | Only a few commands can be used                            |
| User Profiles in NVRAM          | Four User Profiles                          | Not Available                                              |
| Flow Control                    | Software(XON/XOFF), or<br>Hardware(RTS/CTS) | Hardware(RTS/CTS) only                                     |
| Serial Port Async Format        | Configurable                                | Fixed at No Parity, 8-bit data character, and one STOP-bit |
| Plug-and-Play for Windows       | Yes                                         | No                                                         |
| RS-232 Connector                | DB25 Female                                 | DB9 Female                                                 |

The following tables list all of the AT commands for DTE port 2 supported by the Omni TA128. An asterisk \* following a command option or value indicates that it is a default setting when the modem is shipped.

#### Notes for techies: To maximize the TA128's compatibility among various systems, DTE port 2 will, by default, ignore all unrecognized AT commands such that they will be responded to with "OK" without any action. This conforms to the SIMPLICITY principle of DTE port 2. You can set ATS128.7=1, however, to resume the normal operation mode in which any unrecognized commands will cause an "ERROR" indication.

| Command                   | Options                                 | Function & Description Ref.                    |  |  |
|---------------------------|-----------------------------------------|------------------------------------------------|--|--|
| <any key=""></any>        | y> Terminate current connection attempt |                                                |  |  |
|                           |                                         | entered in handshaking state.                  |  |  |
| +++                       |                                         | Escape sequence code, entered in data state,   |  |  |
|                           |                                         | wait for the Omni TA128 to return to           |  |  |
|                           |                                         | command state.                                 |  |  |
| All the Foll              | owing Con                               | nmands Require an "AT" Prefix                  |  |  |
| А                         |                                         | Go on-line in answer mode.                     |  |  |
| Bnn                       |                                         | Select ISDN Teleservice                        |  |  |
|                           |                                         | 'B' must be followed by two digits.            |  |  |
|                           | B40 * PPP async to sync conversion      |                                                |  |  |
|                           |                                         | All other values are invalid                   |  |  |
| Ds                        |                                         | Dial s (numbers and options) that follows. The |  |  |
|                           |                                         | options of s are listed as follows:            |  |  |
| Y0 Unknown type of number |                                         | Unknown type of number                         |  |  |
|                           | Y1 International number                 |                                                |  |  |

### **Basic "AT" Command Set**

|                                                         | Y2         | National number                                   |        |
|---------------------------------------------------------|------------|---------------------------------------------------|--------|
|                                                         | Y3         | Network specific number                           |        |
|                                                         | Y4         | Subscriber number                                 |        |
|                                                         | Y6         | Abbreviated number                                |        |
|                                                         | ZO         | Type of sub-address, NSAP with AFI=\$50,          |        |
|                                                         |            | IA5 characters                                    |        |
|                                                         | Z2         | Type of sub-address, user specified, IA5          |        |
|                                                         |            | characters                                        |        |
|                                                         | N0         | Unknown numbering plan                            |        |
| N1 ISDN/Telephony numbering plan (CCITT<br>E.164/E.163) |            |                                                   |        |
|                                                         | N3         | Data numbering plan (CCITT X.121)                 |        |
|                                                         | N8         | National standard numbering plan                  |        |
|                                                         | N9         | Private numbering plan                            |        |
|                                                         | /          | Called party sub-address delimiters               |        |
|                                                         | Format of  | [[Yn][Nn]called_party_number] or                  |        |
|                                                         | "s"        | [[Yn][Nn]called_party_number][/[Zn]called_pa      |        |
|                                                         |            | rty_subaddress/]                                  |        |
| DIs                                                     |            | Same as <b>D</b> s                                |        |
| DL                                                      |            | Repeat last ATD command                           |        |
| DMs                                                     |            | Same as <b>D</b> s                                |        |
| En                                                      |            | Command mode local echo control                   | S128.1 |
|                                                         | E0         | Echo off                                          |        |
|                                                         | E1 *       | Echo on                                           |        |
| Н                                                       |            | Hang up (on-hook) the ISDN connection             |        |
| In                                                      |            | Display inquired information                      |        |
|                                                         | IO         | Display product code, same as 'ATI'               |        |
|                                                         |            | Results:                                          |        |
|                                                         |            | 1281 (USA)                                        |        |
|                                                         |            | 1282 (DSS1)                                       |        |
|                                                         |            | 1283 (1TR6)                                       |        |
|                                                         | I1         | Display product information and ROM               |        |
|                                                         |            | checksum                                          |        |
|                                                         |            | Results: Omni TA128 <switch>: V x.xx</switch>     |        |
|                                                         |            | where <switch>= USA, DSS1, or 1TR6</switch>       |        |
|                                                         | I9         | Display Microsoft PnP code                        |        |
| 0                                                       |            | Return to on-line state                           |        |
| S0=n                                                    |            | Set S-register s0. 'n' must be a decimal number   | S0     |
|                                                         |            | between 0 and 255                                 |        |
|                                                         | n=0        | Non-automatic call answering                      |        |
|                                                         | n!=0       | Automatic call answering after n times of ringing |        |
| Vn                                                      |            | 66                                                | C100 C |
| VII                                                     | V0         | Sets display type for Result Codes                | S128.6 |
|                                                         | V0<br>V1 * | Display result code in numeric form.              |        |
|                                                         | VI "       | Display result code in verbose form.              |        |

| Х | (n | n=0-7 | Result code options, see the Options Table in | S131.3-5 |
|---|----|-------|-----------------------------------------------|----------|
|   |    | 5 *   | Chapter 16 "AT Command Set Reference"         |          |

### Extended "AT&" Command Set

| Command | Options | Function & Description                         | Ref.   |
|---------|---------|------------------------------------------------|--------|
| &Cn     |         | Carrier Detect (CD) options                    |        |
|         | &C1 *   | CD tracks presence of carrier                  |        |
|         |         | All other values are invalid                   |        |
| &Dn     |         | Data Terminal Ready (DTR) options.             |        |
|         | &D2 *   | 108.2, Data Terminal Ready, DTR OFF            |        |
|         |         | causes the TA to hang up.                      |        |
|         |         | All other values are invalid                   |        |
| &En     |         | B channel line speed for ISDN data call        | S128.2 |
|         | &E0 *   | 64Kbps                                         |        |
|         | &E1     | 56Kbps (Default for American ISDN)             |        |
| &F      |         | Load factory settings to RAM as the active     |        |
|         |         | configuration.                                 |        |
| &Hn     |         | Data flow control, DTE/DCE.                    |        |
|         | &H3 *   | Hardware (CTS/RTS) flow control                |        |
|         |         | All other values are invalid                   |        |
| &On     |         | Set default call type for conventional dialing |        |
|         |         | commands                                       |        |
|         | &02 *   | ATDs, ATDPs, and ATDTs default to              |        |
|         |         | make ISDN data calls                           |        |
|         |         | All other values are invalid                   |        |
| &Sn     |         | Data Set Ready (DSR) function selection.       |        |
|         | &S0 *   | DSR overridden, DSR always ON.                 |        |
|         |         | All other values are invalid                   |        |
| &Vn     |         | View profile settings.                         |        |
|         | &V0     | View current active settings.                  |        |
|         | &V5     | View factory default settings.                 |        |
|         | &V6     | View analog adapter, Phone 1 setting           |        |
|         | &V7     | View analog adapter, Phone 2 setting           |        |
| &ZIn=s  | s=phone | MSN setting.                                   |        |
|         | number  |                                                |        |
|         | n=5     | Assign the phone number for DTE port 2         |        |
|         |         | All other values are invalid                   |        |
| &ZI?    |         | Display the phone number for various B         |        |
|         |         | channel protocols                              |        |
| &ZO?    |         | Display the &ZOn setting                       |        |

| &ZOn=x | Write own phone number (including<br>subaddress, if any). The number specified<br>will be used as the calling party number<br>while dialing. Value for "n"<br>I = ISDN data |  |
|--------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
|        | A= analog adapter, Phone 1                                                                                                                                                  |  |
|        | B= analog adapter, Phone 2                                                                                                                                                  |  |

### Setting of DTE port 2 Speed

The DTE speed of DTE port 2 can be configured **ONLY through DTE port 1**. The command **AT\*An** can be used for this purpose:

| *A1 | 115200 bps (by default) |
|-----|-------------------------|
| *A2 | 76800 bps               |
| *A3 | 57600 bps               |
| *A4 | 38400 bps               |
| *A5 | 19200 bps               |
| *A6 | 9600 bps                |
| *A7 | 2400 bps                |

## Call Control of the DTE Port 2

To place a call through DTE port 2, please use the ATDxxxx command. If the Calling Party Number (the original address) is required in the outgoing SETUP message, it can be pre-stored using the AT&ZOI=xxxx command. Once the PPP connection is established, the TA128 will indicate the connection message with DTE speed as follows:

#### CONNECT 115200 PPP

Use ATV0, if numerical result code is required.

To answer a call through the DTE port 2, the MSN(or subaddress) must have been set by the **AT&ZI5=xxxx** command and the number **xxxx** must be matched with the Called Party Number (the destination address) of the incoming call. Please refer to the section entitled "Answering a Call using MSN" in Chapter 4 for more information.

# **Chapter 15 - Diagnostics and Protocol Analyzer**

This chapter provides quick easy-reference diagnostic tables for the Omni TA128. The Omni TA128 can perform its own diagnostic tests, which can provide invaluable information about each of its functions.

### Diagnostics

The Omni TA128 ISDN TA provides several diagnostic capabilities:

- Embedded Protocol Analyzer
- Power-on Self-test
- Local Digital Loopback Test
- Diagnostic Command
- Omni TA128 Reset

#### **Power-on Self-test**

At each power-up or upon a reset command from the panel, the TA will test the ROM code checksum, system RAM memory, EEPROM, digital circuits and analog circuit calibrations.

| Test | LED | LED | LED | LED | Test Description          |
|------|-----|-----|-----|-----|---------------------------|
| Seq. | LNK | B1  | B2  | AA  |                           |
| 1    | on* | off | off | off | Memory test               |
| 2    | off | on* | off | off | ISDN chip interface test  |
| 3    | off | off | on* | off | ISDN chip functional test |
| 4    | off | off | off | on* | HDLC functional test      |

The following table is a summary of the Omni TA128's self-test:

\* Note: The LED lights up while test is going and blinks if test fails.

The LNK LED will light up for half a second to indicate the success of the Omni TA128's power- on self-test. After this, the LNK LED will become the normal physical layer (layer 1) active indicator.

#### ISDN Loopback test (AT&T9)

The AT&T9 command will invoke an ISDN loopback test connection. The loopback point is in the S/T interface chip (Siemens 2086 chip) or the U interface chip (Siemens 2091 chip) just behind the line transformers, thus it checks almost every part of the ISDN TA and RS-232 cable except the passive front-end of the ISDN S/T or U interface.

During this test, data from the terminal or computer is sent through the DTE interface to the ISDN TA's transmitter and is packetized to the proper frame format according to the B channel protocol selected and then loop-backed to the receiver, de-packetized, and sent through the DTE interface back to the terminal or computer's screen. You can tell if anything is wrong by looking at the screen. The screen should show the data you have sent to the ISDN TA.

#### Loopback with Self-test (AT&T10)

The AT&T10 command will invoke an ISDN loopback connection with self-test. The data is generated by the ISDN TA and will go through the same path as the above Loopback Test does. The data pattern is printable ASCII characters. You can see the result on the screen. The loop backed data is compared with the transmitted data. Should an error happen, the LNK LED will start to flash. Send any character through the DTE interface to the ISDN TA will discontinue the test.

### The Diagnostic Command (ATCG)

The ATCG command can be used to test and isolate fault if there is any the hardware problem of the Omni TA128. Some of the tests are interactive operations, just follow the indications prompted on the screen to carry out the tests. If the Omni TA128 is in the normal condition, the test results will be as follows:

| System address & data bus test                                               | OK         |
|------------------------------------------------------------------------------|------------|
| Layer 1 hardware test                                                        | OK         |
| Layer 2 hardware test                                                        | OK         |
| Layer 1 activation test                                                      | OK         |
| First B channel hardware test                                                | OK         |
| Second B channel hardware test                                               | OK         |
| Listen to the Ring and then pick up phone set #1                             | !!         |
| Off-hook action is detected, (Hook Interrupt)                                | OK         |
| Listen to the dial tone and then dial 1234567890*# in sequence. 1234567890*# | 11         |
| Dialed digits detected, please hang-up the handset                           | 11         |
| On-hook action is detected, (Hook Interrupt)                                 | OK         |
| Listen to the RING and then pick up phone set $\#2$                          | 11         |
| Off-hook action is detected, (Hook Interrupt)                                | OK         |
| Listen to the dial tone and then dial 1234567890*# in sequence. 1234567890*# | 11         |
| Dialed digits detected, please hang-up the handset                           | 11         |
| On-hook action is detected, (Hook Interrupt)                                 | OK         |
| Listen to the prompt signal of the Internal Speaker and then press switch!!  | the button |
| Button switch is pushed (Button Interrupt)                                   | OK         |

### Resetting The Omni TA128

If you have modified the Omni TA128's setting and cannot get it back because of the unit is locking up, or you just want to reset it back to the factory default state, the following reset procedure will help you to reset the Omni TA128 back to the factory default state.

Holding the DATA/VOICE key down while turn the unit ON, keep holding down the switch for 3 seconds after the power switch is turned ON then release the switch. Omni TA128 will reset itself back to the factory setting and it will also run a continuous loop-back self-test. Printable characters will show on the terminal screen if it is connected to one.

## Using The Embedded Protocol Analyzer

### Setting up the Embedded EPA

The embedded protocol analyzer (hereafter abbreviated as EPA) records and analyzes various protocols on the B channel, D channel and DTE-DCE interface. The results are displayed with ANSI color. This professional tool is designed for hobbyists as well as users with technical backgrounds. The EPA enables you to examine messages exchanged between your Omni TA128 and the Central Exchange office when making an ISDN call. You can review the packets sent or received through the B channel (for X.75 or V.120) to or from the remote site. You can also check the AT commands issued from an application software program. This will help you understand their causal relationship with other events.

In addition to its tutorial purpose, the EPA is very useful for diagnostics. If you have compatibility problems with your Central Exchange or with the TA at the remote site, the EPA will be your first aid resource. According to the EPA's analysis, you may decide to fix the problem yourself (e.g. modify the configuration and try again) or log the analyzed results as a file (a very comprehensive bug report), and then send it to ZyXEL's Tech Support department.

#### **Capturing the Protocol Data**

The data captured by the EPA can be classified into three categories:

- B channel user data protocols
- D channel signaling protocols
- DTE-DCE protocols

The D channel signaling protocols include layer 2 and layer 3 call control protocols. Frames and messages exchanged via the D channel are all recorded for further analysis. These data messages are essential to understanding interactive operations between an ISDN TA and the ISDN network. They contain the compatibility information for the Omni TA128 and your Central Exchange.

The B channel user data protocols include X.75 and V.120. Only the layer 2 header (addresses and control bytes) and layer 3 header are captured. Since X.75 may be used with various layer 3 protocols (e.g. T.70, T.90, and ISO8208), only the first 8 octets of the information field are recorded as the layer 3 header, and are displayed in raw data form. The analysis of the protocol data will be carried out by ZyXEL's Technical Support department.

The DTE-DCE protocols (at the R reference point according to the ISDN nomenclature) include the AT commands/responses as well as the CAPI internal interface. The CAPI internal interface is used with ZyXEL CAPI driver. The ZyXEL CAPI driver communicates with the Omni TA128 through this internal interface. It is not recommended that users get involved in this internal interface. The AT commands/responses, on the other hand, are in a standard user interface. An analysis of these commands and responses might prove very informative. All messages captured by the EPA are tagged with a time stamp according to a free running timer that starts at the beginning of data capture. The resolution of this timing information is in 0.01 second.

| AT Command |             | Description                                                  |
|------------|-------------|--------------------------------------------------------------|
| ATCDn      |             |                                                              |
|            | n=0         | Disable the capture of D channel protocols                   |
|            | <i>n</i> =1 | Enable the capture of D channel protocols (default)          |
| ATCBn      |             |                                                              |
|            | n=0         | Disable the capture of B channel protocols (default)         |
|            | <i>n</i> =1 | Enable the capture of B channel protocols                    |
| ATCCn      |             |                                                              |
|            | <i>n</i> =0 | Disable the capture of DTE-DCE interface protocols (default) |
|            | <i>n</i> =1 | Enable the capture of DTE-DCE interface protocols            |

The following commands determine the kind of protocol data to be captured by the EPA:

The EPA starts to capture data when the command ATCT is issued. This capturing process will continue until the command ATC\$ is issued. The EPA maintains 8 Kbytes RAM as a ring buffer. In case the buffer is full, the earliest data captured will be overwritten by the latest data.

#### Analyzing the Captured Data

To view the analyzed result, use the command ATC\$. For your convenience, the relevant AT commands are summarized as follows:

| AT Command | Description                                                                                               |
|------------|-----------------------------------------------------------------------------------------------------------|
| ATCT       | Clears buffer and starts the embedded protocol analyzer.                                                  |
|            | Captures data immediately and starts the timer.                                                           |
| ATC\$      | Invokes the interpretation function of the embedded protocol analyzer and displays the results on the DTE |
|            | screen.                                                                                                   |

The analyzed results can be viewed as if it were in a full screen editor. Several number keys are used to control the display. For PC users, it is convenient to use the keys on the numeric keypad (make sure that Num-Lock is on.).

The functions of the control keys follow:

| Key  | Function    | Description                     |
|------|-------------|---------------------------------|
| 1    | End         | Display to the end of buffer    |
| 2    | Cursor down | Scroll one line up              |
| 3    | Page down   | Display the next page           |
| 7    | Home        | Display the first page          |
| 8    | Cursor up   | Scroll one line down            |
| 9    | Page up     | Display the previous page       |
| Q, q | Quit        | Quit embedded protocol analyzer |

Any other key will pop up this control menu.

# **Chapter 16 - AT Command Set Reference**

### **Operation Modes of the DTE Interface**

There are two operation modes for the DTE interface :

- Simplex mode is used for conventional AT Command operation.
- Multiplex mode is used as an internal interface for ZyXEL CAPI drivers.

#### Simplex mode

In simplex mode, the Omni TA128 is used just like an ordinary modem. The DTE interface will be either in the command state or in the data state. At most, only one data connection session is possible at any time.

To invoke various functions of the Omni TA128, a number of different AT Commands can be used. The simplex mode is designed for the AT Command users. The guides and descriptions throughout the rest of this manual, if not otherwise specified, are applicable to this mode. The power-on default of the DTE interface is in simplex mode as well.

#### Multiplex mode

The multiplex mode is designed for ZyXEL CAPI drivers. It can also be used by third parties to develop various drivers on different platforms for public domain or for commercial purpose.

Conceptually, there are four DTE channels :

| DTE channel 0 | for the analog adapter 2 |
|---------------|--------------------------|
| DTE channel 1 | for ISDN data            |
| DTE channel 2 | for ISDN data            |
| DTE channel 3 | for the analog adapter 1 |

The commands or data are **packetized.** Each packet has its own destination address. All the DTE channels can be accessed individually by way of multiplexing.

Since it is not intended for all users, the specifications and manual for the multiplex mode will be available in a separate text file, and will only be available in the electronic format upon request.

```
Note: To use the CAPI driver, please refer to the file "CAPIMENU.TXT" in the attached floppy disk.
```

## AT Command Descriptions

An AT Command is a command in asynchronous data format issued by the computer to the modem through the asynchronous computer-modem interface. AT Commands control the modem's behavior and actions. To send an AT Command from a computer to the modem, you must be running a communication software and the modem must be in the command state.

Exceptions to this are A/, A>, and +++. These commands are not preceded by AT, or followed by any more characters.

- A/ re-executes the last command once
- A> re-executes the last command once or repeats the last call up to 9 times until aborted by pressing down on any key on the keyboard or front panel or until a successful connection with a remote modem has been made.
- +++ is the escape sequence code that is entered in data state to return the modem to command state. The modem will accept AT commands only while it is in command state.

The AT command prefix may be typed in either upper 'AT' or lower case 'at'. Do not use a combination of upper and lower cases in the prefix.

The following tables list all of the AT commands supported by the Omni TA128. An asterisk \* following a command option or value indicates that it is a default setting when the modem is shipped.

| Command            | Options   | Function & Description                            | Ref. |
|--------------------|-----------|---------------------------------------------------|------|
| Α/                 |           | Re-execute the last command once                  |      |
| A>                 |           | Re-execute the last command once or repeat the    |      |
|                    |           | last call up to 9 times. (See also S8)            |      |
| <any key=""></any> |           | Terminate current connection attempt when         |      |
|                    |           | enter in handshaking state.                       |      |
| +++                |           | Escape sequence code, entered in data state, wait |      |
|                    |           | for modem to return to command state.             |      |
| All the Follo      | owing Com | mands Require a "AT" Prefix                       |      |
| А                  |           | Go on-line in answer mode. (See also S39.2,       |      |
|                    |           | S43.6)                                            |      |
| Bnn                |           | Select ISDN Teleservice                           | S82  |
|                    |           | 'B' must be followed by two digits.               | S102 |
|                    | B00       | X.75 Transparent                                  |      |
|                    | B01       | X.75 T.70                                         |      |
|                    | B04       | BTX (Data X-J)                                    |      |
|                    | B10       | V.110 user rate follows DTE speed (async.) or     |      |
|                    |           | V.110 user rate determined by in-band             |      |
|                    |           | negotiation (sync.)                               |      |
|                    | B13       | V.110 user rate = $2400$ bps                      | S117 |
|                    | B14       | V.110 user rate = $4800$ bps                      |      |
|                    | B15       | V.110 user rate = $9600 \text{ bps}$              |      |
|                    | B16       | V.110 user rate = $14400$ bps                     |      |
|                    | B17       | V.110 user rate = 19200 bps                       |      |
|                    | B18       | V.110 user rate = $384000$ bps (sync only)        |      |
|                    | B19       | V.110 user rate = $576000$ bps (sync only)        |      |
|                    | B20       | V.120                                             |      |
|                    | B40       | PPP async to sync conversion                      |      |

**Basic "AT" Command Set** 

| Command                                                                                                     | Options      | Function & Description                                      | Ref.  |
|-------------------------------------------------------------------------------------------------------------|--------------|-------------------------------------------------------------|-------|
|                                                                                                             | B41          | SLIP async to sync conversion                               |       |
| CBn                                                                                                         |              | Configuration of embedded protocol analyzer                 | S84.1 |
|                                                                                                             | CB0          | Disable the capture of B channel protocols                  |       |
|                                                                                                             | CB1          | Enable the capture of B channel protocols                   |       |
| CCn                                                                                                         |              | Configuration of embedded protocol analyzer                 | S84.0 |
|                                                                                                             | CC0          | Disable the capture of DTE-DCE interface                    |       |
|                                                                                                             | 000          | protocols                                                   |       |
|                                                                                                             | CC1          | Enable the capture of DTE-DCE interface                     |       |
|                                                                                                             | 001          | protocols                                                   |       |
| CDn                                                                                                         |              | Configuration of embedded protocol analyzer                 | S84.2 |
| CDn                                                                                                         | CD0          | Disable the capture of D channel protocols                  | 504.2 |
|                                                                                                             | CD0<br>CD1   | Enable the capture of D channel protocols                   |       |
| CE                                                                                                          | CDI          |                                                             |       |
| CLIP                                                                                                        |              | Dynamic bundling function for cFos                          |       |
| CH?                                                                                                         |              | Display the accumulated charging unit of the last call.     |       |
| CI <prefix></prefix>                                                                                        |              | Prefix number string to be added to the Calling-            |       |
| _                                                                                                           |              | party-number before indicating to the DTE when              |       |
|                                                                                                             |              | the type of number denotes international.                   |       |
| CK <des_ke< td=""><td>ey&gt;</td><td>Set the key for DES (Data Encryption Standard)</td><td></td></des_ke<> | ey>          | Set the key for DES (Data Encryption Standard)              |       |
| CLn                                                                                                         | n=0-2048     | Maximum size of user data in a packet (number               |       |
|                                                                                                             |              | of bytes)                                                   |       |
| CL?                                                                                                         |              | Inquire current setting of ATCLn                            |       |
| CN <prefix></prefix>                                                                                        |              | Prefix number string to be added to the Calling-            |       |
|                                                                                                             |              | party-number before indicating to the DTE when              |       |
|                                                                                                             |              | the type of number denotes national.                        |       |
| CPn                                                                                                         |              | Loopback 4 control                                          | S83.0 |
|                                                                                                             | CP0          | Disable Loopback 4                                          |       |
|                                                                                                             | CP1          | Enable Loopback 4                                           |       |
| CR <u>n</u>                                                                                                 | n=0-3        | Resumes a previously suspended call, n is the               |       |
| _                                                                                                           | 0 *          | call identifier(Europe)                                     |       |
| CSn                                                                                                         | n=0-3<br>0 * | Suspend a call, n is the call identifier (Europe)           |       |
| СТ                                                                                                          | 0 ·          | Clear buffer and start the embedded protocol                |       |
| CI                                                                                                          |              | Clear buffer and start the embedded protocol                |       |
|                                                                                                             |              | analyzer. Capture data immediately and start                |       |
| C¢                                                                                                          |              | timer.                                                      |       |
| C\$                                                                                                         |              | Invoke the interpretation function of the                   |       |
|                                                                                                             |              | embedded protocol analyzer and display the results on DTE   |       |
| Ds                                                                                                          |              | Dial s (numbers and options) that follow (see               |       |
|                                                                                                             |              | also S38.0, S35.4). The options of s are listed as follows: |       |
|                                                                                                             |              | Pause for a time specified in S6. Remaining digits          |       |
|                                                                                                             | ,            |                                                             |       |
|                                                                                                             | <u> </u>     | will be dialed as in-band DTMF.                             |       |
|                                                                                                             | +            | Prefix for the second number string, to be used             |       |
|                                                                                                             |              | in making bundling or MPPP calls                            |       |

| Command | Options | Function & Description                                                | Ref.  |
|---------|---------|-----------------------------------------------------------------------|-------|
|         | W       | Wait for second dial tone. Remaining digits will                      |       |
|         |         | be dialed as in-band DTMF. <isdn numbering<="" td=""><td></td></isdn> |       |
|         |         | options>                                                              |       |
|         | Y0      | Unknown type of number                                                |       |
|         | Y1      | International number                                                  |       |
|         | Y2      | National number                                                       |       |
|         | Y3      | Network specific number                                               |       |
|         | Y4      | Subscriber number                                                     |       |
|         | Y6      | Abbreviated number                                                    |       |
|         | ZO      | Type of sub-address, NSAP with AFI=\$50, IA5                          |       |
|         | 20      | characters                                                            |       |
|         | Z2      | Type of sub-address, user specified, IA5                              |       |
|         | 22      | characters                                                            |       |
|         | NO      | Unknown numbering plan                                                |       |
|         | N1      | ISDN/Telephony numbering plan (CCITT                                  |       |
|         | 181     |                                                                       |       |
|         | N12     | E.164/E.163)                                                          |       |
|         | N3      | Data numbering plan (CCITT X.121)                                     |       |
|         | N8      | National standard numbering plan                                      |       |
|         | N9      | Private numbering plan                                                |       |
|         | /       | Called party sub-address delimiters                                   |       |
|         |         | [[Yn][Nn]called_party_number][[W][,]]inband_d                         |       |
|         | "s"     | tmf_number                                                            |       |
|         |         | or                                                                    |       |
|         |         | [[Yn][Nn]called_party_Number][/[Zn]called_part                        |       |
|         |         | y_subaddress/]                                                        |       |
| Das     |         | Dial s (number and options) that follows for the                      |       |
|         |         | Analog adapter, Phone 1                                               |       |
| DBs     |         | Dial s (number and options) that follows for the                      |       |
|         |         | Analog adapter, Phone 2                                               |       |
| Dis     |         | Dial s (number and options) that follows for                          |       |
|         |         | ISDN data call                                                        |       |
| DL      |         | Repeat last ATD command                                               |       |
| DMs     |         | Dial s (number and options) that follows for the                      |       |
|         |         | internal fax/modem                                                    |       |
| DSn     | n=0-39  | Dial number stored in non-volatile RAM at                             | S44.3 |
|         |         | location 'n'; use "+" to dial two consecutive                         |       |
|         |         | numbers for bundling or MPPP calls                                    |       |
| En      |         | Command mode local echo of keyboard                                   | S23.0 |
|         |         | commands                                                              |       |
|         | E0      | Echo off                                                              |       |
|         | E1 *    | Echo on                                                               |       |
| Hn      |         | On/off hook control                                                   |       |
| 11/1    | H0 *    | Hang up (on-hook) the modem or ISDN, same                             |       |
|         | 110 .   | as 'ATH'                                                              |       |
|         | Ц2      | Hang up the analog adapter, Phone 1                                   |       |
|         | H3      |                                                                       |       |
|         | H4      | Hang up the analog adapter, Phone 2                                   |       |

| Command | Options   | Function & Description                               | Ref.    |
|---------|-----------|------------------------------------------------------|---------|
| In      |           | Display inquired information                         |         |
|         | IO        | Display product code, same as 'ATI'                  |         |
|         |           | Results:                                             |         |
|         |           | 1281 (USA)                                           |         |
|         |           | 1282 (DSS1)                                          |         |
|         |           | 1283 (1TR6)                                          |         |
|         | I1        | Display product information and ROM checksum         |         |
|         |           | Results: Omni TA128 <switch>: V x.xx</switch>        |         |
|         |           | where <switch>= USA, DSS1, or 1TR6</switch>          |         |
|         | I3        | Display link status report                           |         |
|         | I9        | Display Microsoft PnP code                           |         |
| Ln      | n=0-3     | Speaker volume control. The higher the value,        | S24.4-5 |
|         | 2 *       | the higher the volume                                |         |
| Mn      | M=0-2     | Speaker control                                      | S21.1-2 |
|         | M0        | Speaker always OFF                                   |         |
|         | M1 *      | Speaker ON until call is answered                    |         |
|         | M2        | Speaker always ON                                    |         |
| Nn      | n=0-3     | Ring volume control.'N0' will disable the audio      | S24.0-1 |
|         | 3 *       | ring function                                        |         |
| 0       | -         | Return to on-line state                              |         |
| Pn      | n=0-6     | D channel protocol selection (USA) for American      | S86     |
|         |           | Version                                              |         |
|         | P0 *      | Northern Telecom proprietary ISDN                    |         |
|         | P1        | National ISDN 1 (1 SPID)                             |         |
|         | P2        | National ISDN 1 (2 SPID)                             |         |
|         | P3        | Reserved                                             |         |
|         | P4        | AT&T custom point-to-point                           |         |
|         | P5        | AT&T custom point-to-multipoint (1 SPID)             |         |
|         | P6        | AT&T custom point-to-multipoint (2 SPID)             |         |
| Qn      | n=0-1     | Result code displayed                                | S23.7   |
|         | Q0 *      | Modem returns result code                            | ~       |
|         | Q1        | Modem does not return result code                    |         |
| Sr.b=n  | X-        | Set bit 'b' of S-register 'r' to value 'n'. 'n' is a |         |
|         |           | binary digit '0' or '1'                              |         |
| Sr.b?   |           | Display value of bit 'b' of S-register 'r'           |         |
| Sr=n    |           | Set S-register 'r' to value 'n'. 'n' must be a       |         |
|         |           | decimal number between 0 and 255                     |         |
| Sr?     |           | Display value stored in S-register 'r'               |         |
| SPIDn=m |           | User enters Service Profile ID "m" (SPID), for       |         |
|         |           | USA switches                                         |         |
|         | SPID0     | First SPID number                                    |         |
|         | SPID1     | Second SPID Number, if any                           |         |
| SPID?   | 1.51 1.01 | Display the SPID setting(s)                          |         |
|         |           |                                                      |         |
| Т       |           | Repeat last user-to-user information (Europe)        |         |

| Command              | Options | Function & Description                                       | Ref.    |
|----------------------|---------|--------------------------------------------------------------|---------|
| Tn <string></string> |         | The <string> will be sent to the called party via a</string> |         |
|                      |         | user-to-user information element in the next                 |         |
|                      |         | message. Characters other than the alpha-                    |         |
|                      |         | numeric values can be represented by <nnn> in</nnn>          |         |
|                      |         | the string, where nnn is the unsigned value of the           |         |
|                      |         | character. The maximum number of characters                  |         |
|                      |         | in the string is 31 for ETSI.                                |         |
|                      | T0      | User-specific protocol                                       |         |
|                      | T1      | OSI high layer protocol                                      |         |
|                      | T2      | X.244                                                        |         |
|                      | T3      | Reserved for system management convergence                   |         |
|                      |         | function                                                     |         |
|                      | T4 *    | IA5 characters                                               |         |
|                      | T7      | ITU-TS recommendation V.120 rate adoption                    |         |
|                      | T8      | Q.931 user-network call control message                      |         |
| UPX                  |         | Download firmware to the Flash EPROM using                   |         |
|                      |         | Xmodem protocol                                              |         |
| Vn                   |         | Sets display type for Result Codes                           | S23.6   |
|                      | V0      | Display result code in numeric form. (See also               |         |
|                      |         | S35.7 and the result code table of 'ATXn')                   |         |
|                      | V1 *    | Display result code in verbose form.                         |         |
| Xn                   | n=0-7   | Result code options, see the Options Table                   | S23.3-5 |
|                      | 5 *     |                                                              |         |
| Zn                   | n=0-4   | Reset modem and set power-on profile.                        | S15.5-7 |
|                      | Zn      | Reset modem and load user profile n (0-3).                   |         |
|                      | Z4      | Reset modem and load factory settings.                       |         |
| \$                   | •       | Basic command summary help                                   |         |

### **Description of ATI3 Output:**

The Link Status Report output appears as follows:

ZYXEL ISDN MODEM LINK STATUS REPORT

| Connect DTE Speed      | :  |     |
|------------------------|----|-----|
| Error Control Level    | :  |     |
| Protocol Link Speed    | :  |     |
| Bytes Received         | :  | 0   |
| Bytes Sent             | :  | 0   |
| Cause                  | :  |     |
| Cause Value            | :  | 0   |
| HDLC FCS Error         | :  | 0   |
| HDLC Receive Over-run  |    |     |
| HDLC Transmit Under-ru | ın | : 0 |
|                        |    |     |

| Output Parameter        | Output Value Description                                 |
|-------------------------|----------------------------------------------------------|
| Connect DTE Speed       | Current on-line DTE speed                                |
| Error Control Level     | Error control protocol used for current session          |
| Protocol Link Speed     | Current on-line DCE speed, line speed                    |
| Bytes Received          | Number of data bytes received from remote                |
| Bytes Sent              | Number of data bytes sent to remote                      |
| Cause                   | Verbose disconnection reason for the last session        |
| Cause Value             | Numerical disconnection reason for the last session      |
| HDLC FCS Error          | Errors in frame (block) checksum (If there were many FCS |
|                         | Errors, you may have experienced problems on the line)   |
| HDLC Transmit Under-run | For modem's processor power measurement.                 |
| HDLC Receive Over-run   | For modem's processor power measurement.                 |

### Extended "AT&" Command Set

| Command | Options | Function & Description                                                                       | Ref.    |
|---------|---------|----------------------------------------------------------------------------------------------|---------|
| &Cn     |         | Carrier Detect (CD) options                                                                  | S21.4   |
|         | &C0     | CD always ON (See also S42.7)                                                                |         |
|         | &C1 *   | CD tracks presence of carrier (See also S38.3, S42.7)                                        |         |
| &Dn     |         | Data Terminal Ready (DTR) options. (See also S25)                                            | S21.6-7 |
|         | &D0     | Ignore DTR signal, assume DTR is always ON.                                                  |         |
|         | &D1     | 108.1, DTR OFF-ON transition causes dial of the default number. (See also 'AT*Dn' and S48.4) |         |
|         | &D2 *   | 108.2, Data Terminal Ready, DTR OFF causes the modem to hang up.                             |         |
|         | &D3     | Same as &D2 but DTR OFF causes the modem to hang up and reset from profile 0.                |         |
| &En     |         | B channel line speed for ISDN data call                                                      | S118.2  |
|         | &E0 *   | 64Kbps                                                                                       |         |
|         | &E1     | 56Kbps (Default for American ISDN)                                                           |         |
| &F      |         | Load factory settings to RAM as active configuration.                                        |         |

| Command     | Options | Function & Description                         |         |  |  |  |  |
|-------------|---------|------------------------------------------------|---------|--|--|--|--|
| &Hn         |         | Data flow control, DTE/DCE.                    | S27.3-5 |  |  |  |  |
|             | &H0     | Flow control disabled.                         |         |  |  |  |  |
|             | &H3 *   | Hardware (CTS/RTS) flow control                |         |  |  |  |  |
|             | &H4     | Software (XON/XOFF) flow control.              |         |  |  |  |  |
| &Jn         |         | Bundle selection (See also S100)               | S87.5-6 |  |  |  |  |
|             | &J0 *   | Bundle connection is disabled                  |         |  |  |  |  |
|             | &J1     | Bundle connection is enabled in answer         |         |  |  |  |  |
|             |         | mode only                                      |         |  |  |  |  |
|             | &J2     | Bundle connection is enabled in call mode      |         |  |  |  |  |
|             |         | only                                           |         |  |  |  |  |
|             | &J3     | Bundle connection is enabled in both           |         |  |  |  |  |
|             |         | directions                                     |         |  |  |  |  |
| &Knn        |         | V.120/X.75 compression control.                | S83.2   |  |  |  |  |
|             |         | &K must be followed by two digits.             |         |  |  |  |  |
|             | &K00    | Disable V.42bis                                |         |  |  |  |  |
|             | &K44    | Enable V.42bis                                 |         |  |  |  |  |
| &Ln         |         | Analog port selection during call answering    | S84.5   |  |  |  |  |
|             | &L0     | Set priority to analog port, Phone 1           |         |  |  |  |  |
|             | &L1     | Set priority to analog port, Phone 2           |         |  |  |  |  |
| &On         |         | Set default call type for conventional dialing | S83.4-5 |  |  |  |  |
|             |         | commands                                       |         |  |  |  |  |
|             | &O0     | ATDs, ATDPs, and ATDTs default to              |         |  |  |  |  |
|             |         | make calls for analog adapter, Phone 2         |         |  |  |  |  |
|             | &O2     | ATDs, ATDPs, and ATDTs default to              |         |  |  |  |  |
|             |         | make ISDN data calls                           |         |  |  |  |  |
|             | &03     | ATDs, ATDPs, and ATDTs default to              |         |  |  |  |  |
|             |         | make calls for the analog adapter, Phone 1     |         |  |  |  |  |
| &Sn         |         | Data Set Ready (DSR) function selection.       | S21.3   |  |  |  |  |
|             | &S0 *   | DSR overridden, DSR always ON.                 |         |  |  |  |  |
|             | &S1     | DSR according to CCITT (ITU-TSS). (See         |         |  |  |  |  |
|             |         | also S41.5, S44.4)                             |         |  |  |  |  |
| &T <i>n</i> |         | TA testing.                                    |         |  |  |  |  |
|             | &T9     | Initiate ISDN Loopback test                    |         |  |  |  |  |
|             | &T10    | Initiate ISDN Loopback with self test          |         |  |  |  |  |
| &Vn         |         | View profile settings.                         |         |  |  |  |  |
|             | &V0     | View current active settings.                  |         |  |  |  |  |
|             | &V1-4   | View the (n-1)th user profile settings         |         |  |  |  |  |
|             | &V5     | View factory default settings.                 |         |  |  |  |  |
|             | &V6     | View analog adapter, Phone 1 setting           |         |  |  |  |  |
|             | &V7     | View analog adapter, Phone 2 setting           |         |  |  |  |  |
| &Wn         | n=0-3   | Write current settings to user profile n in    |         |  |  |  |  |
|             |         | non-volatile RAM. (See also S35.6)             |         |  |  |  |  |
| &Z?         |         | Display all the phone numbers stored in        |         |  |  |  |  |
|             |         | non-volatile RAM.                              |         |  |  |  |  |

| Command | Options | Function & Description                       | Ref. |
|---------|---------|----------------------------------------------|------|
| &Zn=s   | n=0-39  | Write phone number/s to NVRAM at             |      |
|         |         | location n (n=0-39) use AT*Dn or             |      |
|         |         | ATS29=n to set the default dial pointer.     |      |
| &ZIn=s  | n=0-7   | MSN setting. Assign the phone number         |      |
|         | s=phone | (including subaddress, if any) for various B |      |
|         | number  | channel protocols. In answer mode, these     |      |
|         |         | numbers will be compared with the received   |      |
|         |         | called_party_number and                      |      |
|         |         | called_party_subaddress information. The     |      |
|         |         | call will be accepted using the specific     |      |
|         |         | protocol if the assigned number of this      |      |
|         |         | protocol matches with the                    |      |
|         |         | called_party_number.                         |      |
|         | n=0     | assigns MSN 's', phone number for X.75       |      |
|         | n=1     | assigns MSN 's', phone number for V.110      |      |
|         | n=2     | assigns MSN 's', phone number for V.120      |      |
|         | n=3     | assigns MSN 's', phone number for PPP,       |      |
|         |         | MPPP                                         |      |
|         | n=4     | assigns MSN 's' for ISDN data, protocol      |      |
|         |         | auto-detection                               |      |
|         | n=5     |                                              |      |
|         | n=6     | Assign the phone number 's' for analog       |      |
|         |         | adapter, Phone 1                             |      |
|         | n=7     | Assign the phone number 's' for the analog   |      |
|         |         | adapter, phone 2                             |      |
| &ZI?    |         | Display the phone number (including          |      |
|         |         | subaddress, if any) for various B channel    |      |
|         |         | protocols                                    |      |
| &ZO?    |         | Display the &ZOn setting                     |      |
| &ZOn=x  |         | Write own phone number (including sub-       |      |
|         |         | address, if any). The number specified will  |      |
|         |         | be used as the calling party number whiling  |      |
|         |         | dialing. Value for "n"                       |      |
|         |         | I = ISDN data                                |      |
|         |         | A= analog adapter, Phone 1                   |      |
|         |         | B= analog adapter, Phone 2                   |      |

| Command |        | Function & Description                          | Ref.    |
|---------|--------|-------------------------------------------------|---------|
| *An     | n=0-7  | DTE speed for second DTE port                   | S43.0-2 |
|         | *A0    | 230400                                          |         |
|         | *A1    | 115200                                          |         |
|         | *A2    | 76800                                           |         |
|         | *A3    | 57600                                           |         |
|         | *A4    | 38400                                           |         |
|         | *A5    | 19200                                           |         |
|         | *A6    | 9600                                            |         |
|         | *A7    | 2400                                            |         |
| *Cn     | n=0-3  | Character length, including start, stop and     | S15.3-4 |
|         |        | parity bit.                                     |         |
|         | *C0 *  | 10-bit character length.                        |         |
|         | *C1    | 11-bit character length.                        |         |
|         | *C2    | 9-bit character length.                         |         |
|         | *C3    | 8-bit character length.                         |         |
| *Dn     | n=0-39 | Set default dial pointer at telephone directory | S29     |
|         |        | location n.                                     |         |
|         | *D0 *  | (See also S35.4 and S38.0)                      |         |
| *GCn    | n=0-1  | Call-back function selection                    |         |
|         | *GC0   | Disable call-back function                      |         |
|         | *GC1   | Enable call-back function                       |         |
| *HCn=s  | n=0-4  | Assign call-back phone number, "s" to storage   |         |
|         |        | location, "n"                                   |         |
| *Hn     | n=0-39 | Modify user password table at location n.       |         |
| *HS     |        | Modify supervisory password (Default:           |         |
|         |        | "ZyXEL")                                        |         |
| *Mn     | M=0-2  | Second DTE port flow control                    |         |
|         | *M0    | Flow control disabled                           |         |
|         | *M1    | Hardware flow control, RTS/CTS                  |         |
|         | *M2    | Software flow control, XON/XOFF                 |         |
| *Nn     | n=0-2  | Second DTE port line setting                    |         |
|         | *N0    | No parity, 8 data bit, 1 stop bit               |         |
|         | *N1    | Even parity, 7 data bit, 1 stop bit             |         |
|         | *N2    | Odd parity, 7 data bit, 1 stop bit              |         |
| *T      |        | Recall the last CND (Caller ID) information.    |         |
| *V      |        | View the Password table                         |         |
| *VC     |        | View the Call-back Number table                 |         |

### Extended "AT\*" Command Set

# **Chapter 17 - Status Registers and Result Codes**

S-registers (Status Registers) contain values that determine and reflect how your Terminal Adapter (TA) operates and executes commands. You can read the values and change them, either using terminal commands or the modem's panel controls with the same results.

Every user profile corresponds to a separate set of S-register values, but when we mention S-registers, we are referring to the ones that correspond to the active profile. If you want to read or change the values in a profile that is currently inactive, you will first have to recall that profile to make it active.

At the time this manual was written, Omni TA128 was equipped with 124 S-registers, from S0 to S124. S0 to S11 are standard AT S-registers, and S12 to S124 are mostly bit-map configured. Changes in the bit-map configuration can have the same effect as issuing AT Commands. However, it is recommended to use equivalent AT Commands.

### Viewing and Setting S-Registers

There are several AT Commands that are used to view the values stored in the S-registers.

#### **Viewing S-registers**

To display the value stored in S-register 'r' with AT Commands, use:

ATSr?

To view all of the S-resister settings use the &Vn command:

#### AT&Vn

| n=0   | View S-register settings for current active profile |
|-------|-----------------------------------------------------|
| n=1-4 | View settings for user profile number (n-1)         |
| n=5   | View the factory default settings                   |
| n=6   | View the analog adapter's setting, Phone 1          |
| n=7   | View the analog adapter's setting, Phone 2          |

The S-register values may be displayed in either Decimal or Hexadecimal format when using the preceding commands. Bit 3 of S-register 84 sets which numbering system is used for display.

ATS84.3=0 (for decimal format) ATS84.3=0 (for Hex format)

To display the value of bit b of S-register r, type:

ATSr.b?

#### **Setting S-registers**

In order to change the value in S-register 'r' to value 'n' use:

```
ATSr=n (range 0-255)
```

In order to change the value in a specific bit (b) of S-register r, use:

```
ATSr.b=n (range 0-1)
```

In both commands, n is a decimal number in the given range. While the first command modifies all bits in the S-register simultaneously, the second command lets you change bit b without affecting other bits in this S-register. When using **ATSr=n**, you need to do a conversion to or from the binary number to find out which bits you manipulate.

For example, if you want to set S38 bit 3 to 1 for a specific application, you may either use **ATS38.3=1** (simple) or use the following (difficult):

*Note:* The values used in the example below differ from the actual values in the S-register and are used for demonstration purposes only.

Read the value from S38 using ATS38?

Convert it to binary, using the following weight table.

| Bit | Binary value | Decimal value | Hexadecimal value |
|-----|--------------|---------------|-------------------|
| 0   | 00000001     | 1             | \$01              |
| 1   | 00000010     | 2             | \$02              |
| 2   | 00000100     | 4             | \$04              |
| 3   | 00001000     | 8             | \$08              |
| 4   | 00010000     | 16            | \$10              |
| 5   | 00100000     | 32            | \$20              |
| 6   | 01000000     | 64            | \$40              |
| 7   | 10000000     | 128           | \$80              |

To set bit 3 to 1 (binary), do a logic OR operation with the value.

| Operation | Example-1 |      |      | Example-2 |      |      |
|-----------|-----------|------|------|-----------|------|------|
|           | Binary    | Dec. | Hex. | Binary    | Dec. | Hex. |
|           | 10001000  | 136  | \$88 | 01000000  | 64   | \$40 |
| OR        | 00001000  | 8    | \$08 | 00001000  | 8    | \$08 |
|           | 10001000  | 136  | \$88 | 01001000  | 72   | \$48 |

To set bit 3 to 0 (binary), you must invert the value using a logic NOT operation and then do an logic AND operation.

| NOT | 00001000 | 8   | \$08 | 00001000 | 8   | \$08 |
|-----|----------|-----|------|----------|-----|------|
|     | 11110111 | 247 | \$F7 | 11110111 | 247 | \$F7 |
| AND | 10001000 | 136 | \$88 | 01000000 | 64  | \$40 |
|     | 10000000 | 128 | \$80 | 01000000 | 64  | \$40 |

Finally, using the *result* decimal value, issue an **ATS38=n** to set the register.

## S-Register Descriptions

The descriptions for each S-register. In most bit-mapped S-registers, the default bit value is 0 (which is the normal situation) and only the non-default situation is described. Some reserved bits are for factory use and the user should not change them.

Values followed by an asterisk \* are the factory default settings.

| Command | Function & Description                                                                                                       | Ref. |
|---------|------------------------------------------------------------------------------------------------------------------------------|------|
| S0=     | Set the number of rings on which the modern will answer.                                                                     | +000 |
|         | 0 value disable auto-answer                                                                                                  |      |
| S1=     | Counts and stores number of rings from an incoming call                                                                      | +000 |
| S2=     | Define escape code character, default <+> (43 dec.)                                                                          | +043 |
| S3=     | Define ASCII Carriage Return                                                                                                 | +013 |
| S4=     | Define ASCII Line Feed                                                                                                       | +010 |
| S5=     | Define ASCII Backspace                                                                                                       | +008 |
| S7=     | Set duration, in number of seconds, modem waits for a carrier                                                                | +060 |
| S8=     | Set duration, in seconds, for pause (,) option in Dial command and pause between command re-executions for Repeat (>)command | +002 |

#### Basic S-Registers "ATSn=x"

#### Extended S-Registers "ATSn=x"

| Command | bit | dec | hex  | Function and description                          | Ref. |
|---------|-----|-----|------|---------------------------------------------------|------|
| S15=    | bit | dec | hex  | Bit-mapped register                               | +130 |
|         | 0,1 | 0   | 0    | Even parity                                       |      |
|         |     | 1   | 1    | Odd parity                                        |      |
|         |     | 2   | 2 *  | No parity                                         |      |
|         | 2   | 0   | 0 *  | 1 stop bit                                        |      |
|         |     | 4   | 4    | 2 stop bits                                       |      |
|         | 4,3 | 0   | 0 *  | 10 bit character length                           | *C0  |
|         |     | 8   | 8    | 11 bit                                            | *C1  |
|         |     | 16  | 10   | 9 bit                                             | *C2  |
|         |     | 24  | 18   | 8 bit                                             | *C3  |
|         | 7-5 | 0   | 0    | Profile 0 as active settings after power ON       | Z0   |
|         |     | 32  | 20   | Profile 1 as active settings after power ON       | Z1   |
|         |     | 64  | 40   | Profile 2 as active settings after power ON       | Z2   |
|         |     | 96  | 60   | Profile 3 as active settings after power on       | Z3   |
|         |     | 128 | 80 * | Factory default as active settings after power ON | Z4   |
| S16=    |     | dec | hex  | Test status register                              | +000 |
|         |     | 0   | 0    | No test in progress                               | &T0  |
|         |     | 1   | 1    | Loopback test in progress                         | &T1  |
|         |     | 9   | 9    | Loopback test in progress                         | &T9  |
|         |     | 10  | А    | Loopback with self test in progress               | &T10 |

| Command | bit | dec | hex                                 | Function and description                     | Ref. |
|---------|-----|-----|-------------------------------------|----------------------------------------------|------|
| S18=    |     | dec |                                     | Force modem or TA to fix baud rate when      | +000 |
|         |     |     |                                     | idle                                         |      |
|         |     | 0 * |                                     | Disable fixed baud function                  |      |
|         |     | n+1 |                                     | Enable baud rate fixing at idle, n=0-15      |      |
|         |     |     |                                     | baud rate value settings (n) the same as     |      |
|         |     |     |                                     | S20 value                                    |      |
| S20=    |     | dec | hex                                 | DTE speed (bps). Auto detected from AT       | +003 |
|         |     |     |                                     | Command                                      |      |
|         |     | 0   | 0                                   | 921600 bps                                   |      |
|         |     | 1   | 1                                   | 460800 bps                                   |      |
|         |     | 2   | 2                                   | 230400 bps                                   |      |
|         |     | 3   | 3                                   | 115200 bps                                   |      |
|         |     | 8   | 8                                   | 57600 bps                                    |      |
|         |     | 9   | 9                                   | 38400 bps                                    |      |
|         |     | 10  | А                                   | 19200 bps                                    |      |
|         |     | 11  | В                                   | 9600 bps                                     |      |
|         |     | 12  | С                                   | 4800 bps                                     |      |
|         |     | 13  | D                                   | 2400 bps                                     |      |
|         |     | 14  | Е                                   | 1200 bps                                     |      |
| S21=    | bit | dec | hex                                 | Bit mapped register                          |      |
|         | 1-2 | 0   | 0                                   | Speaker always Off                           | M0   |
|         |     | 2   | 2                                   | Speaker On until carrier is detected         | M1   |
| 3       |     | 4   | 4                                   | Speaker always On                            | M2   |
|         | 3   | 0   | 0                                   | DSR always On                                | &S0  |
|         | 8   | 8   | According to CCITT (see also S44.4, | &S1                                          |      |
|         |     |     |                                     | S41.5)                                       |      |
|         | 4   | 0   | 0                                   | CD always On                                 | &C0  |
|         |     | 16  | 10                                  | CD tracks presence of data carrier (see      | &C1  |
|         |     |     |                                     | also \$38.3)                                 |      |
|         | 6-7 | 0   | 0                                   | Assume DTR always On                         | &D0  |
|         |     | 64  | 40                                  | 108.1, DTR Off-On transition causes dial     | &D1  |
|         |     |     |                                     | of the default number                        |      |
|         |     | 128 | 80                                  | 108.2 Data Terminal Ready, DTR Off           | &D2  |
|         |     |     |                                     | causes the modem to hang up and return to    |      |
|         |     |     |                                     | command state                                |      |
|         |     | 192 | C0                                  | 108.2, DTR off causes the modem to hang      | &D3  |
|         |     |     |                                     | up and reset the modem to profile #0 after   |      |
|         |     |     |                                     | DTR dropped                                  |      |
| S23=    | bit | dec | hex                                 | Bit mapped register                          | +105 |
|         | 0   | 0   | 0                                   | Command echo disabled                        | E0   |
|         |     | 1   | 1                                   | Command echo enabled                         | E1   |
|         | 2   | 0   | 0                                   | Insertion is not allowed during a phone call |      |
| 3-      |     | 4   | 4                                   | Insertion is allowed during a phone call     |      |
|         | 3-5 | 0   | 0                                   | ATX0 (See result code table)                 |      |
|         |     | 8   | 8                                   | ATX1 dec hex AT                              |      |
|         |     | 16  | 10                                  | ATX2 40 28 X5                                |      |
|         |     | 24  | 18                                  | ATX3 48 30 X6                                |      |
|         | 1   | 32  | 20                                  | ATX4 56 38 X7                                | 1    |

| Command | bit | dec   | hex  | Function and description                   | Ref.    |
|---------|-----|-------|------|--------------------------------------------|---------|
|         | 6   | 0     | 0    | Display result code in numeric format (see | V0      |
|         |     |       |      | \$35.7)                                    |         |
|         |     | 64    | 40   | Display result code in verbose format      | V1      |
| S24=    | bit | dec   | hex  | Bit mapped register                        |         |
|         | 0-1 | 0-3   | 0-3  | Ring volume control, increments of 1 in    | N0-3    |
|         |     |       |      | decimal                                    |         |
|         | 2   | 0     | 0    | Ignore S21.1-2 when Phone 1 key pad        |         |
|         |     |       |      | dialed                                     |         |
|         |     | 4     | 4    | Do not ignore S21-2 when Phone 1 key       |         |
|         |     |       |      | pad dialed                                 |         |
|         | 3   | 0     | 0    | Ignore S21.1-2 when Phone 2 key pad        |         |
|         |     |       |      | dialed                                     |         |
|         |     | 8     | 8    | Do not ignore S21-2 when Phone 2 key       |         |
|         |     |       |      | pad dialed                                 |         |
|         | 5-4 |       |      | Speaker volume control, in increments of   | L0-3    |
|         |     |       |      | 16 in decimal value                        |         |
| S25=    |     | 0-255 | 0-FF | Specify the time delay that DTR signal     | +000    |
|         |     |       |      | needs to be OFF before it will be          |         |
|         |     |       |      | recognized, in 10 ms units. If S25=0, the  |         |
|         |     |       |      | delay time is set to 4 ms                  |         |
| S27=    | bit | dec   | hex  | Bit mapped register                        |         |
|         | 3-5 | 0     | 0    | Flow control disabled                      | &H0     |
|         |     | 24    | 18   | Hardware (RTS/CTS) flow control            | &H3     |
|         |     | 32    | 20   | Software (XON/XOFF) flow control           | &H4     |
|         |     | 40    | 28   | Reserved                                   | &H5     |
| S29=    |     | 0-39  | 0-39 | Set default dial phone number pointer, use | +000 *D |
|         |     |       |      | AT&Zn=s to store phone numbers             |         |
| S31=    |     | 0-255 | 0-FF | Holds the ASCII decimal value of the       | +017    |
|         |     |       |      | XON                                        |         |
| S32=    |     | 0-255 | 0-FF | Holds the ASCII decimal value of the       | +019    |
|         |     |       |      | XOFF                                       |         |
| S35=    | bit | dec   | hex  | Bit mapped register                        |         |
|         | 4   | 16    | 10   | When Data/Voice with is pressed, modem     | *Dn     |
|         |     |       |      | will dial the default number.              | S29     |
|         | 7   | 128   | 80   | Enable extended numerical result codes     | V0      |
|         |     |       |      | from 50-71 when an error corrected         | S23.6   |
|         |     |       |      | connection is made. Use with ATVO. (see    |         |
|         |     |       |      | result code table)                         |         |
| S38=    | bit | dec   | hex  | Bit mapped register                        | +000    |
|         | 0   | 1     | 1    | Repeatedly dialing default number          | *Dn S29 |
|         | 3   | 8     | 8    | DCD on/off sequence follows UNIX           | &C1     |
|         |     |       |      | standard, DCD high before connect          | S21.4   |
|         |     |       |      | message is sent, DCD off after last DCE    |         |
|         |     |       |      | response is sent                           |         |
| S40=    | bit | dec   | hex  | Bit mapped register                        | +000    |
|         | 1   | 2     | 2    | No result code displayed in answer mode    | Q2      |
| S41=    | bit | dec   | hex  | Bit mapped register                        | +000    |

| Command   | bit        | dec   | hex       | Function and description                                     | Ref.        |
|-----------|------------|-------|-----------|--------------------------------------------------------------|-------------|
|           | 3          | 8     | 8         | Enable CCITT signals 140 and 141 on                          |             |
|           |            |       |           | EIA-232D interface                                           |             |
| S42=      | bit        | dec   | hex       | Bit mapped register                                          | +000        |
|           | 3          | 8     | 8         | Disable escape sequence code in answer                       |             |
|           |            |       |           | mode                                                         |             |
|           | 5          | 32    | 20        | Disable Data/Voice button                                    |             |
|           | 6          | 64    | 40        | Disable <ringing> result code</ringing>                      | Xn          |
| S43=      |            | dec   | hex       | Second DTE port speed setting                                | +003        |
|           |            | 0     |           | 230400                                                       |             |
|           |            | 1     |           | 115200                                                       |             |
|           |            | 2     |           | 76800                                                        |             |
|           |            | 3     |           | 57600                                                        |             |
|           |            | 4     |           | 38400                                                        |             |
|           |            | 5     |           | 19200                                                        |             |
|           |            | 6     |           | 9600                                                         |             |
|           |            | 7     |           | 2400                                                         |             |
| S44=      | bit        | dec   | hex       | Bit mapped register                                          | +000        |
| ~ ' ' ' - | 3          | 8     | 8         | ATDSn initiates auto-dial of the stored                      | DSn         |
|           | 5          | 0     | 0         | numbers consecutively until connection is                    | DOI         |
|           |            |       |           | made                                                         |             |
|           | 4          | 16    | 10        | DSR follows DTR (see also S41.5)                             | &S1         |
| S45=      | bit        | 10    | 10        | Second DTE port flow control                                 | +001        |
| 545-      | 1-0        |       |           | Flow control disabled                                        | *M0         |
|           | 1-0        | 1     | 1         | Hardware (RTS/CTS) flow control                              | *M1         |
|           |            | 2     | 2         | Software (XON/XOFF) flow control                             | *M2         |
| S46=      | bit        | dec   | hex       | Second DTE port line setting                                 | +000        |
| 540-      | 1-0        | 0     | 0         | None parity, 8 data bit, 1 stop bit                          | +000<br>*N0 |
|           | 1-0        | 1     | 1         | Even parity, 7 data bit, 1 stop bit                          | *N1         |
|           |            | 2     | 2         | Odd parity, 7 data bit, 1 stop bit                           | *N2         |
| 054       |            | 0-255 | 2<br>0-FF | Hook flash detect time for Analog Adapter                    | +050        |
| S56=      |            | 0-233 | 0-11      | (POTS port); units 10ms                                      | +030        |
| S80=      | bit        | dec   | hex       | Bit-mapped register:                                         | +000        |
| 380=      | ы<br>4     | 0 *   | 0         | Do not send Low Layer Compatibility                          | +000        |
|           | 4          | 0 *   | 0         | information for Phone 2 (TA128) or                           |             |
|           |            |       |           | internal fax/modem (2864I)                                   |             |
|           |            | 16    | 10        | Send Low Layer Compatibility for Phone 2                     |             |
|           |            | 10    | 10        | (TA128) or internal fax/modem (2864I)                        |             |
|           | 6          | 0 *   | 0         | Do not send Low Layer Compatibility                          |             |
|           | 0          | 0 .   | 0         | information for ISDN data call                               |             |
|           |            | 64    | 40        | Send Low Layer Compatibility for ISDN                        |             |
|           |            | 04    | 40        | data call                                                    |             |
|           | 7          | 0 *   | 0         | Do not send Low Layer Compatibility                          |             |
|           | '          | 0.    | 0         |                                                              |             |
|           |            |       |           | information for Phone 1 (TA128) or analog                    |             |
|           |            | 128   | 80        | adapter (2864I)<br>Send Low Layer Compatibility for Phone 1  |             |
|           |            | 128   | 00        |                                                              |             |
|           |            | 1     |           | (TA128) or analog adapter (2864I)<br>ISDN B channel protocol | Bn          |
| 600       | S82= dec60 |       |           |                                                              |             |

| Command | bit | dec      | hex | Function and description                                                        | Ref. |
|---------|-----|----------|-----|---------------------------------------------------------------------------------|------|
|         |     | 61       | •   | V.120 56000                                                                     |      |
|         |     | 62       |     | X.75 64000 Transparent                                                          |      |
|         |     | 63<br>64 |     | X.75 56000 Transparent                                                          |      |
|         |     |          |     | X.75 64000 T.70                                                                 |      |
|         |     | 65       |     | X.75 56000 T.70                                                                 |      |
|         |     | 70       |     | X.75 64000 BTX                                                                  |      |
|         |     | 71       |     | X.75 56000 BTX                                                                  |      |
|         |     | 72       |     | V.110 64000                                                                     |      |
|         |     | 73       |     | V.110 56000                                                                     |      |
|         |     | 74       |     | PPP async to sync 64K                                                           |      |
|         |     | 75       |     | PPP async to sync 56K                                                           |      |
|         |     | 76       |     | SLIP to sync HDLC conversion 64K                                                |      |
|         |     | 77       |     | SLIP to sync HDLC conversion 56K                                                |      |
| S83=    | bit | dec      | hex | Bit-mapped register:                                                            | +000 |
|         | 0   | 0        | 0   | Disable loopback 4 test                                                         | CP0  |
|         |     | 1        | 1   | Enable loopback 4 test                                                          | CP1  |
|         | 2   | 0        | 0   | ISDN without V.42bis                                                            | &K00 |
|         |     | 4        | 4   | ISDN with V.42bis if applicable                                                 | &K44 |
|         | 4-5 | 0 *      | 0   | ATDs, ATDPs, and ATDTs is mapped to                                             | &O0  |
|         |     |          |     | ATDMs                                                                           |      |
|         |     | 32       | 20  | ATDs, ATDPs, and ATDTs is mapped to                                             | &O2  |
|         |     |          |     | ATDIs                                                                           |      |
|         |     | 48       | 30  | ATDs, ATDPs, and ATDTs is mapped to                                             | &O3  |
|         |     |          |     | ATDBs                                                                           |      |
| S84=    | bit | dec      | hex |                                                                                 |      |
|         | 0-2 |          |     | Embedded protocol analyzer control                                              | CCn  |
|         |     | 1        | 1   | Capture DTE-DCE interface protocol                                              |      |
|         |     | -        |     | information                                                                     |      |
|         |     | 2        | 2   | Capture the B channel (X.75 or V.120)                                           |      |
|         |     | 4        | 4   | frames                                                                          |      |
|         | 2   | 8        | 4   | Capture the D channel protocol information                                      |      |
|         | 3   | 8        | 8   | Display S register value in hex format<br>Indicate Caller ID after the 1st RING |      |
|         | 4   | 0 *      | 0   | message                                                                         |      |
|         |     | 16       | 10  | Disable Caller ID indication                                                    |      |
|         | 5   | 0        | 0   | Phone 1 (TA128) or analog port (2864I)                                          | &L0  |
|         | 5   | 0        | 0   | has higher priority for answering an analog                                     | alu  |
|         |     |          |     | call                                                                            |      |
|         |     | 32       | 20  | Phone 2 (TA128) or Internal device                                              | &L1  |
|         |     |          |     | (2864I) has higher priority for answering an                                    |      |
|         | 1   |          |     | analog call                                                                     |      |
| S86=    | •   | dec      | hex | D channel protocol selection (USA) The                                          | Pn   |
|         |     |          | 1   | following number is valid only for American                                     |      |
|         |     |          |     | version:                                                                        |      |
|         |     | 0        | 0   | Northern Telecom proprietary ISDN                                               |      |
|         |     | 1        | 1   | National ISDN 1 (1 SPID mode)                                                   |      |
|         |     | 2        | 2   | National ISDN 1 (2 SPID mode)                                                   |      |
|         |     | 3        | 3   | Reserved                                                                        |      |

| Command  | bit  | dec    | hex  | Function and description                              | Ref.     |
|----------|------|--------|------|-------------------------------------------------------|----------|
|          |      | 4      | 4    | AT&T proprietary point-to-point                       |          |
|          |      | 5      | 5    | AT&T proprietary point-to-multi-point (1              |          |
|          |      |        |      | SPID mode)                                            |          |
|          |      | 6      | 6    | AT&T custom point-to-multipoint (2                    |          |
|          |      |        |      | SPID mode)                                            |          |
| S87=     | bit  | dec    | hex  | ,                                                     |          |
|          | 5-6  | 0 *    | 0    | Bundle connection is disabled                         | &Jn      |
|          |      | 32     | 20   | Bundle connection is enabled in answer                |          |
|          |      |        |      | mode only                                             |          |
|          |      | 64     | 40   | Bundle connection is enabled in call mode             |          |
|          |      | ~ .    |      | only                                                  |          |
|          |      | 96     | 60   | Bundle connection is enabled in both                  |          |
|          |      |        |      | directions                                            |          |
| S89=     | bit  | dec    | hex  | Bit-mapped register                                   |          |
| 507-     | 5    | 0      | 0    | Disable the metering pulse of analog                  |          |
|          | 5    | Ŭ      | Ŭ    | adapter, Phone 2                                      |          |
|          |      | 32     | 32   | Enable the metering pulse of analog                   |          |
|          |      | 52     | 52   | adapter, Phone 2                                      |          |
|          | 6    | 0      | 0    | Disable the metering pulse of analog                  |          |
|          | U U  | U      | Ŭ    | adapter, Phone 1                                      |          |
|          |      | 64     | 40   | Enable the metering pulse of analog                   |          |
|          |      | 04     | 40   | adapter, Phone 1                                      |          |
| S100=    |      | dec    | hex  | B channel bundling protocol selection                 |          |
|          |      | 0 *    | 0    | Multiple Link Protocol (MLP)                          |          |
|          |      | 1      | 1    | cFossil channel bundling, for European                |          |
|          |      | 1      | 1    | Switches only (cFos)                                  |          |
| S102=    |      |        |      | Outgoing ISDN data type. Value has the                | Bnn      |
| 5102-    |      |        |      | same definition as S82                                | Dilli    |
| S104+n=  |      | dec    | hex  | Outgoing Service Indicator (for 1TR6                  |          |
| 5104711- |      | uec    | псл  | only).                                                |          |
|          |      |        |      | n=0, analog adapter, Phone 2                          |          |
|          |      |        |      | n=2, ISDN data                                        |          |
|          |      |        |      | n=3, analog adapter, Phone 1                          |          |
|          |      | 1      | 1    | Fernsprechen                                          |          |
|          |      | 2      | 2    | a/b - Dienste                                         |          |
|          |      | 2<br>7 | 7    | Daten bertragung 64 Kbps. The defaults                |          |
|          |      | /      | /    | are :                                                 |          |
|          |      |        |      | * s104=1 - for a/b adapter 2                          |          |
|          |      |        |      | * s104 = 1 - 101 a/0 adapter 2<br>* s105 = - reserved |          |
|          |      |        |      | * s105= - for ISDN data                               |          |
|          |      |        | 1    | * s107=1 -  for a/b adapter 1                         |          |
| S108+n=  |      | dec    | hex  | Outgoing Service Additional (for 1TR6                 |          |
| 5100 m   |      | acc    | INCA | only) Information                                     |          |
|          |      |        | 1    | n=0, analog adapter, Phone 2                          |          |
|          |      |        | 1    | n=2, ISDN data                                        |          |
|          |      |        |      | n=3, analog adapter, Phone 1                          |          |
|          | SI=1 | 1      | 1 *  | ISDN-Fernsprechen 3.1 kHz                             |          |
|          | 51-1 | 2      | 2    | Fernsprechen analog                                   | <b> </b> |

| Command | bit  | dec                  | hex    | Function and description                | Ref. |
|---------|------|----------------------|--------|-----------------------------------------|------|
| •••••   | SI=2 | 2                    | 2      | Fax Gruppe 3                            |      |
|         | ~    | 3                    | 3 *    | Daten Ober Modem                        |      |
|         |      | 4                    | 4      | Btx Ober Modem                          |      |
|         | SI=7 | 0                    | 0      | Daten bertragung 64 Kbps (X.75 SLP)     |      |
|         | 51-7 | 11                   | •      | Async. V.110                            |      |
|         |      | 01                   |        | Extensions of async.                    |      |
|         |      | 0                    | *      | 3                                       |      |
|         |      | 1                    |        | Number of data bits: 7                  |      |
|         |      |                      | *      |                                         |      |
|         |      | 1-                   |        | Number of stop bits: 2                  |      |
|         |      |                      | ) *    |                                         |      |
|         |      | 1                    |        | Even parity                             |      |
|         |      | 11                   |        | 1200 bps                                |      |
|         |      | 11                   |        | 2400 bps                                |      |
|         |      | 11                   |        | 4800 bps                                |      |
|         |      | 11                   |        | 4800 bps<br>9600 bps                    |      |
|         |      | 11                   |        | 1                                       |      |
|         |      |                      | -110 * | 14400 bps                               |      |
|         |      |                      |        |                                         |      |
|         |      | 01000                |        | 38400 bps                               |      |
|         |      | 1010                 |        | Sync. V.110                             |      |
|         |      | 10100000             |        | 1200 bps                                |      |
|         |      | 10100011             |        | 2400 bps                                |      |
|         |      | 10100100             |        | 4800 bps                                |      |
|         |      | 10100101             |        | 9600 bps                                |      |
|         |      | 10100110             |        | 14400 bps                               |      |
|         |      | 10100111             |        | 19200 bps                               |      |
|         |      | 10101000<br>10101001 |        | 48000 bps                               |      |
|         |      |                      |        | 56000 bps                               |      |
|         |      | 10101010             |        | 56000 bps for 56kbit-network            |      |
|         |      | 10101111             |        | In band negotiation                     | -    |
| S108+n= |      | dec                  | hex    | High Layer Compatibility (Non-1TR6)     |      |
|         |      |                      |        | n=0, analog adapter, Phone 2            |      |
|         |      |                      |        | n=2, ISDN data                          |      |
|         |      |                      |        | n=3, analog adapter, Phone 1            |      |
|         |      | 0 *                  | 0      | No High-Layer-Compatibility information |      |
|         |      |                      |        | element will be sent                    |      |
|         |      | 1                    | 1      | Telephone                               |      |
|         |      | 4                    | 4      | Facsimile Group 2/3                     |      |
|         |      | 40                   | 28     | Teletex service (Rec.F.220)             |      |
|         |      | 49                   | 31     | Teletex service (Rec.F.200)             |      |
|         |      | 50                   | 32     | Information Interworking for Video      |      |
|         |      |                      |        | Services (Rec.F.300 T.110)              |      |
|         |      | 53                   | 35     | Telex service (Rec.F.60)                |      |
|         |      | 56                   | 38     | Message Handling Systems (MHS)          |      |
|         |      |                      |        | (Rec.X.400 series)                      |      |
|         |      | 65                   | 41     | OSI application (Rec.X.200 series)      |      |
| S114=   |      |                      |        | I-field data length (MSB byte)          |      |
| S115=   |      |                      |        | I -field data length (LSB byte)         |      |

| Command | bit                                        | dec                                                  | hex | Function and description                   | Ref. |  |  |  |
|---------|--------------------------------------------|------------------------------------------------------|-----|--------------------------------------------|------|--|--|--|
| S117=   |                                            |                                                      |     | V.110 user rate                            | B1n  |  |  |  |
| S118=   | bit                                        | dec                                                  | hex |                                            |      |  |  |  |
|         | 0                                          | 0                                                    | 0   | Enable dial-in call                        |      |  |  |  |
|         |                                            | 1                                                    | 1   | Disable dial-in call (dial out only)       |      |  |  |  |
|         | 2                                          | 0                                                    | 0   | Default B channel line speed is 64Kbps for | &E0  |  |  |  |
|         |                                            |                                                      |     | ISDN data call                             |      |  |  |  |
|         |                                            | 4                                                    | 4   | Default B channel line speed is 56Kbps for | &E1  |  |  |  |
|         |                                            |                                                      |     | ISDN data call                             |      |  |  |  |
|         | 4                                          | 0 *                                                  | 0   | Use 3.1KHz Bearer service whenever         |      |  |  |  |
|         |                                            |                                                      |     | possible for analog adapter, Phone 2       |      |  |  |  |
|         |                                            | 16                                                   | 10  | Use Speech Bearer service whenever         |      |  |  |  |
|         |                                            |                                                      |     | possible for analog adapter, Phone 2       |      |  |  |  |
|         | 5 0 * 0 Use 3.1KHz Bearer service whenever |                                                      |     |                                            |      |  |  |  |
|         |                                            |                                                      |     |                                            |      |  |  |  |
|         |                                            | 32                                                   | 20  | Use Speech Bearer service whenever         |      |  |  |  |
|         |                                            |                                                      |     | possible for analog adapter, Phone 1       |      |  |  |  |
|         | 6                                          | 0 *                                                  | 0   |                                            |      |  |  |  |
|         |                                            | 5 0 * 0 Enable analog adapter to accept global calls |     |                                            |      |  |  |  |
|         |                                            | 64                                                   | 40  | Forbid the analog adapter to accept global |      |  |  |  |
|         |                                            |                                                      |     | calls with MSN unmatched                   |      |  |  |  |
|         |                                            |                                                      |     | (see AT&ZIn=s)                             |      |  |  |  |
|         | 7 0 * 0 Enable analog incoming calls       |                                                      |     |                                            |      |  |  |  |
|         |                                            | 128                                                  | 80  | Reject analog incoming calls               |      |  |  |  |
| S119=   | bit                                        | dec                                                  | hex |                                            |      |  |  |  |
|         | 0                                          | 0 *                                                  | 0   | Disable call-back function                 | *GC  |  |  |  |
|         |                                            | 1                                                    | 1   | Enable call-back function                  |      |  |  |  |
|         | 1                                          | 0 *                                                  | 0   | Disable point-to-point signaling DDI       |      |  |  |  |
|         |                                            |                                                      |     | function                                   |      |  |  |  |
|         |                                            | 2                                                    | 2   | Enable point-to-point signaling DDI        |      |  |  |  |
|         |                                            |                                                      |     | function                                   |      |  |  |  |
|         | 2                                          | 0 *                                                  | 0   | Disable point-to-multipoint signaling DDI  |      |  |  |  |
|         |                                            |                                                      |     | function                                   |      |  |  |  |
|         |                                            | 4                                                    | 4   | Enable point-to-multipoint signaling DDI   |      |  |  |  |
|         |                                            |                                                      |     | function                                   |      |  |  |  |
|         | 3                                          | 0 *                                                  | 0   | Inbound call ignored when no MSN (EAZ)     |      |  |  |  |
|         |                                            |                                                      |     | is matched                                 |      |  |  |  |
|         |                                            | 8                                                    | 8   | Inbound call accepted using default        |      |  |  |  |
|         |                                            |                                                      |     | protocol when no MSN (EAZ) is matched      |      |  |  |  |
|         | 4                                          | 0 *                                                  | 0   | V.110 user rate = 19200 bps if DTE         |      |  |  |  |
|         |                                            |                                                      |     | speed greater than 19200 bps               |      |  |  |  |
|         |                                            | 16                                                   | 10  | V.110 user rate = $38400$ bps if DTE       |      |  |  |  |
|         |                                            |                                                      |     | speed greater than 38400 bps               |      |  |  |  |
|         | 5                                          | 0 *                                                  | 0   | Enable normal MSN function                 | &ZIn |  |  |  |
|         |                                            | 32                                                   | 20  | Treat the number assigned by &ZI=n as      |      |  |  |  |
|         |                                            |                                                      |     | sub-address, and match with the            |      |  |  |  |
|         |                                            |                                                      |     | called_party_subaddress for inbound call   |      |  |  |  |
|         |                                            |                                                      |     | routing                                    |      |  |  |  |

| Command | bit | dec     | hex  | Function and description                 | Ref. |
|---------|-----|---------|------|------------------------------------------|------|
| S120=   |     |         |      | Accumulated charging unit (MSB byte) for |      |
|         |     |         |      | B1 channel                               |      |
| S121=   |     |         |      | Accumulated charging unit (LSB byte) for |      |
|         |     |         |      | B1 channel                               |      |
| S122=   |     |         |      | Accumulated charging unit (MSB byte) for |      |
|         |     |         |      | B2 channel                               |      |
| S123=   |     |         |      | Accumulated charging unit (LSB byte) for |      |
|         |     |         |      | B2 channel                               |      |
| S124=   |     | dec hex |      | Empty IP packet interval for PPP         | +000 |
|         |     | 0-255   | 0-FF | Units of 1 sec.                          |      |

Bit S-register bit number, 'b', used in 'ATSr.b=n' and 'ATSr.b=?'

dec Decimal value, 'x', used in 'ATSn=x'

hex Equivalent Hexadecimal value.

+nnn Factory default when listed in 'Reference' column.

#### "ATXn" Result Code Option Table

The following table shows the different options available when setting the ATXn command. The default value for 'n' is 5 when the Omni TA128 is shipped.

| ATV0 | ATV1           | X0 | X1 | X2 | X3 | X4 | X5 | X6 | X7 |
|------|----------------|----|----|----|----|----|----|----|----|
| 0    | OK             | V  | V  | V  | V  | V  | V  | V  | V  |
| 1    | CONNECT        | V  | V  | V  | V  | V  | @  | \$ | #  |
| 2    | RING           | V  | V  | V  | V  | V  | V  | V  | V  |
| 3    | NO CARRIER     | V  | V  | V  | V  | V  | V  | V  | V  |
| 4    | ERROR          | V  | V  | V  | V  | V  | V  | V  | V  |
| 5    | CONNECT 1200   |    | %  | %  | %  | %  | @  | \$ | #  |
| 6    | NO DIAL TONE   |    |    | V  |    | V  | V  | V  | V  |
| 7    | BUSY           |    |    |    | V  | V  | V  | V  | V  |
| 8    | NO ANSWER      |    |    |    | V  | V  | v  | V  | V  |
| 9    | RINGING*       |    |    |    | V  | V  | V  | V  | V  |
| 10   | CONNECT 2400   |    | %  | %  | %  | %  | @  | \$ | #  |
| 11   | CONNECT 4800   |    | %  | %  | %  | %  | @  | \$ | #  |
| 12   | CONNECT 9600   |    | %  | %  | %  | %  | @  | \$ | #  |
| 14   | CONNECT 19200  |    | %  | %  | %  | %  | @  | \$ | #  |
| 15   | CONNECT 7200   |    | %  | %  | %  | %  | @  | \$ | #  |
| 16   | CONNECT 12000  |    | %  | %  | %  | %  | @  | \$ | #  |
| 17   | CONNECT 14400  |    | %  | %  | %  | %  | @  | \$ | #  |
| 18   | CONNECT 16800  |    | %  | %  | %  | %  | @  | \$ | #  |
| 19   | CONNECT 38400  |    | %  | %  | %  | %  | @  |    |    |
| 20   | CONNECT 57600  |    | %  | %  | %  | %  | @  |    |    |
| 21   | CONNECT 76800  |    | %  | %  | %  | %  | @  |    | -  |
| 22   | CONNECT 115200 |    | %  | %  | %  | %  | @  |    |    |
| 23   | CONNECT 230400 |    | %  | %  | %  | %  | @  |    |    |
| 24   | CONNECT 460800 |    | %  | %  | %  | %  | @  |    |    |
| 25   | CONNECT 921600 |    | %  | %  | %  | %  | @  |    |    |
| 26   | CONNECT 307200 |    | %  | %  | %  | %  | @  |    |    |
| 27   | CONNECT 153600 |    | %  | %  | %  | %  | @  |    |    |
| 28   | CONNECT 102400 |    | %  | %  | %  | %  | @  |    |    |
| 29   | CONNECT 61440  |    | %  | %  | %  | %  | @  |    |    |

| ATV0 | ATV1           | X0 | X1 | X2 | X3 | X4 | X5 | X6 | X7 |
|------|----------------|----|----|----|----|----|----|----|----|
| 30   | CONNECT 51200  |    | %  | %  | %  | %  | @  |    | -  |
| 31   | CONNECT 62400  |    | %  | %  | %  | %  | @  |    |    |
| 32   | CONNECT 124800 |    | %  | %  | %  | %  | @  |    | -  |
| 33   | CONNECT 62400  |    | %  | %  | %  | %  | @  |    |    |
| 34   | CONNECT 41600  |    | %  | %  | %  | %  | @  |    |    |
| 35   | CONNECT 31200  |    | %  | %  | %  | %  | @  | \$ | #  |
| 36   | CONNECT 249600 |    | %  | %  | %  | %  | @  |    | -  |
| 37   | CONNECT 20800  |    | %  | %  | %  | %  | @  |    | -  |
| 38   | CONNECT 33600  |    | %  | %  | %  | %  | @  | \$ | #  |
| 39   | CONNECT 28800  |    | %  | %  | %  | %  | @  | \$ | #  |
| 40   | CONNECT 26400  |    | %  | %  | %  | %  | @  | \$ | #  |
| 41   | CONNECT 24000  |    | %  | %  | %  | %  | @  | \$ | #  |
| 42   | CONNECT 21600  |    | %  | %  | %  | %  | @  | \$ | #  |
| 43   | CONNECT 48000  |    | %  | %  | %  | %  | @  | \$ | #  |
| 44   | CONNECT 56000  |    | %  | %  | %  | %  | @  | \$ | #  |
| 45   | CONNECT 64000  |    | %  | %  | %  | %  | @  | \$ | #  |
| 46   | CONNECT 112000 |    | %  | %  | %  | %  | @  | \$ | #  |
| 47   | CONNECT 128000 |    | %  | %  | %  | %  | @  | \$ | #  |

\* Use S42.6 to disable 'RINGING' result code

#### **Result Code Chart Symbol Reference:**

| V  | Supported                                                                       |
|----|---------------------------------------------------------------------------------|
| %  | Reports the DTE Speed as: <cr><lf>CONNECT DTE_Speed<cr><lf></lf></cr></lf></cr> |
| @  | CONNECT DTE_Speed/Protocol DCE_Speed/Error_Control **                           |
|    | Example: CONNECT 115200/V120 64000/LABD                                         |
| \$ | <cr><lf>CONNECT DCE_Speed[/Error_Code]<cr><lf></lf></cr></lf></cr>              |
|    | Example: CONNECT 64000/ARQ                                                      |
| #  | CONNECT DCE _Speed/Error_Code/Error_Control                                     |
|    | Example: CONNECT 64000/ARQ/V42b                                                 |

#### **Result Code Field Descriptions**

| Field Name       | Possible Values                                              |
|------------------|--------------------------------------------------------------|
| Error_Code       | NONE, ARQ                                                    |
| Error_Control    | LAPB, LAPD, V42                                              |
|                  | (This field will not show if no error control is negotiated) |
| Data_Compression | V42b                                                         |
| DCE_Speed        | All possible DCE speeds supported                            |
| DTE_Speed        | All possible DTE speeds supported                            |
| Protocol         | Only ISDN protocols are listed here                          |
|                  | X.75                                                         |
|                  | X.75M (X.75 with MLP Bundle)                                 |
|                  | X.75C (X.75 with cFos Bundle)                                |
|                  | V110                                                         |
|                  | V120                                                         |
|                  | V120M (V.120 with MLP Bundle)                                |
|                  | V120C (V.120 with cFos Bundle)                               |
|                  | SLIP                                                         |
|                  | PPP                                                          |

BTX

#### **Connect Strings for Error Corrected Connections**

To enable the following numerical (ATV0) and verbose (ATV1) result codes when an error corrected connection is made, set S35 bit 7 to 1.

```
ATS35.7=1<enter>
```

| ATV0 | ATV1          | ATV0 | ATV1           |
|------|---------------|------|----------------|
| 50   | CONNECT       | 61   | CONNECT 24000  |
| 51   | CONNECT 1200  | 62   | CONNECT 26400  |
| 52   | CONNECT 2400  | 63   | CONNECT 28800  |
| 53   | CONNECT 4800  | 64   | CONNECT 31200  |
| 54   | CONNECT 7200  | 65   | CONNECT 33600  |
| 55   | CONNECT 9600  | 66   | CONNECT 38400  |
| 56   | CONNECT 12000 | 67   | CONNECT 48000  |
| 57   | CONNECT 14400 | 68   | CONNECT 56000  |
| 58   | CONNECT 16800 | 69   | CONNECT 64000  |
| 59   | CONNECT 19200 | 70   | CONNECT 112000 |
| 60   | CONNECT 21600 | 71   | CONNECT 128000 |

# **Chapter 18 - ISDN General Reference**

This chapter is designed to get you acquainted with ISDN. It includes explanations of all the technical terms you need to know and will even take the guess-work out of setting up ISDN communications with your local telephone company.

**ISDN** or **Integrated Services Digital Network** is a global system that provides a variety of high speed digital communication solutions, while maintaining compatibility with existing analog voice, modem, data and fax protocols.

ISDN is based on various standards that define communications between switches and the equipment that connects to them. These standards allow most types of equipment to communicate across different types of switches in every part of the world.

The implementation of "network switches" by telephone companies differs from country to country. We will focus our discussions to the North American continent. If you plan to use the Omni TA128 in an area other than North America, please contact your local ZyXEL distributor for specific documentation and firmware and hardware upgrades to ensure proper operation of the ZyXEL Omni TA128 with your local ISDN switch and network.

In North America, a separate ISDN standard called National ISDN (NI-1) is currently being adopted by network providers and equipment manufacturers. When fully deployed, NI-1 will make the installation of ISDN equipment much easier. Currently, many different types of custom signaling protocols are used. Therefore, you will need to configure your ZyXEL Omni TA128 for the type of signaling that is used by the network it is connected to.

# Terminal Adapter

A Terminal Adapter (TA) allows users to send and receive data over the ISDN network. Users can send and receive both data and voice simultaneously by using both B channels. The analog adapters in the Omni TA128 allows users to connect an analog devices to the TA to make out-going calls as well as receive in-coming calls. With its auto detect feature, the Omni TA128 monitors incoming calls from both analog or digital devices. It monitors these calls without user intervention and makes connections accordingly.

# Basic Rate Interface (BRI)

When you order a Basic Rate Interface (BRI) ISDN line, you receive what is known as the "2B+D" service. This provides two B channels that can transmit at 64Kbps per channel for user information and a D channel that can communicate between the user and the ISDN network at 16Kbps.

#### **D** channel Protocol

The D channel is used to manage communication between the equipment and the switch. It is used mainly to exchange signal messages with the switch, and for setting up and releasing calls. In most cases, if there is any incompatibility issue raised, it is the D channel signaling protocol that is causing the problem. Currently, the Omni TA128 does not allow the user to use the D channel for sending and receiving user data.

The Omni TA128 currently supports the following switch types and D channel protocols:

- AT&T 5ESS Custom and National ISDN-1 protocol
- Northern Telecom DMS-100 Custom and National ISDN-1 protocol
- Siemens EWSD National ISDN-1 protocol

#### **Rate Adaptation & B channel Protocol**

The Omni TA128 currently supports the following Protocols:

- V.120
- X.75
- V.110
- Async to Sync. PPP, MPPP or SLIP

The B channels are used for carrying user communication information. This information can be data, voice or fax. Voice and analog data must be sent on the B channels. Unlike the asynchronous communications between most PC computers and your Omni TA128, the B channel operates in synchronous mode. In order to convert the asynchronous communication to synchronous communication, it is necessary to use a Rate Adaptation protocol.

In North America, V.120 is the most popular rate adaptation Protocol used. V.120 is an ITU-T protocol that supports synchronous and asynchronous rate adaptation and provides link-layer error control. ZyXEL also implements V.42bis data compression and/or channel bundling on top of V.120, allowing the user to achieve even higher data communication throughput.

Channel Bundling combines two B channels' bandwidth for one communication session. This combination establishes a 128Kbps or 112Kbps communication link.

The Omni TA128 also supports HDLC asynchronous to synchronous conversion for Point-to-Point Protocol (PPP) and Serial Line Internet Protocol (SLIP). These protocols are very popular for Internet access and Remote Access applications.

Currently, most of us still use Plain Old Telephone Service (POTS) for our regular communication needs. The Omni TA128 provides 2 analog ports for you to connect analog devices. This lets you continue to use analog communications. You can connect phones, fax machines, or modems to the analog ports, while using one of the idle B channels (even if the Omni TA128 is busy doing data communications).

#### **Out-of-band signaling**

Some switches transmit all the network signals through the D channel, allowing both B channels to be used exclusively for your communication. This allows a throughput of 128Kbps (64Kbps per channel. For the switches that do not support out-of-band signaling, network signals are transmitted through the B channels only, which reduces the useable bandwidth to 56Kbps.

#### **ISDN Basic Rate Interface Points**

In the interest of supporting deregulated Customer Premises Equipment (CPE), the Exchange Carrier Standard Association in the United States established a basic rate transmission standard for CPE. These standards are defined for equipment to connect to different reference points of the ISDN link. Some of these reference points are S, T, and U. They have very specific definitions and provide standard interfaces for equipment connected to them. The following diagram shows these interface points.

Not all the interfaces must exist in actual implementations. For example, not all the houses are equipped with a PBX (NT2) - in this case, the U interface is provided by the NT-1. The Omni TA128 connects to the NT-1.

An ISDN terminal adapter can be constructed with the functionality of a NT-1. In this case, the terminal adapter will connect directly to the U-interface. The Omni TA128U connects you directly to a U-interface without an NT-1, which can sometimes be quite expensive.

The Omni TA128 comes with a choice two different interface options:

- The Omni TA128 comes with a S/T interface
- The Omni TA128U comes with a U interface

You can connect the Omni TA128-U direct to the ISDN jack installed by the phone company. The Omni TA128 requires an NT-1 interface in between.

# **Chapter 19 - Ordering Your ISDN Line**

Phone companies have significantly simplified the ordering process for ISDN lines. In Table 19-1, you will find a list of all the regional RBOC's and a telephone number to call to order your ISDN line.

| Phone Company  | Phone Contact | World Wide Web       |
|----------------|---------------|----------------------|
| Amertiech      | 800-TEAM-DATA | www.ameritech.com    |
| Bell Atlantic  | 800-570-ISDN  | www.bellatlantic.com |
| Bellsouth      | 800-858-9413  | www.bellsouth.com    |
| Nynex          | 800-GET-ISDN  | www.nynex.com        |
| Pacific Bell   | 800-4PB-ISDN  | www.pacbell.com      |
| Southwest Bell | 800-734-7630  | www.swbell.com       |
| US West        | 800-603-6000  | www.uswest.com       |

Table 19-1

#### **ISDN Service Ordering Information**

The following guidelines can be used to order basic BRI-ISDN service from the telephone company.

#### Local ISDN Switch

The Omni TA128 series supports the switch types and protocols listed below. Before you order your ISDN line you will need to call your local phone company and find out what switch they use. After you have got this information simply fax them the appropriate order form created below. Ordering an ISDN line through your local phone company will generally take 10 to 15 working days.

Select the switch type that your local phone company uses and fax them the appropriate order sheet:

□ AT&T 5ESS - Point-to-Point

AT&T 5ESS - Multipoint

- □ Northern Telecom DMS-100
- □ Siemens EWSD

## **ZyXEL** ISDN Order Form - Switch: AT&T 5ESS NI-1, Point-to-Point or Multipoint

To order ISDN service for the AT&T switch, simply provide the table below to your local phone company. You can normally photocopy and fax this order form to them.

#### **General Information:**

| First Name:   | Last Name: |      |
|---------------|------------|------|
| Address:      |            |      |
| City:         | State:     | Zip: |
| Tel (Analog): |            |      |

#### **ISDN Line Configuration Table:**

| Line Type                            | Standard (2B+D) NI-1 or Custom   |
|--------------------------------------|----------------------------------|
| Data Line Class                      | Point-to-Point(PP) or Multipoint |
| Line Code                            | 2B1Q                             |
| Interface Type                       | U interface with RJ45 jack       |
| B1 Service                           | On Demand (DMD)                  |
| B2 Service                           | On Demand (DMD)                  |
| Access Rate                          | 64Kbps                           |
| Maximum B Channels                   | 2                                |
| Circuit-switched Voice               | 2                                |
| Circuit-switched Voice Channel       | Any                              |
| Circuit-switched Data                | 2                                |
| Circuit-switched Data Channel        | Any                              |
| D Channel Packet                     | No                               |
| Electronic Key Telephone Sets (EKTS) | No                               |
| Terminal Type                        | Type A                           |
|                                      |                                  |

#### Information the phone company must provide:

| Switch Protocol: | 🗆 NI-1   | D Point-   | to-Point    | □ Multipoint |
|------------------|----------|------------|-------------|--------------|
| Number of SPIDs: | $\Box 0$ | <b>□</b> 1 | $\square 2$ |              |
| ISDN Number 1    |          |            | SPID #1_    |              |
| ISDN Number 2    |          |            | SPID #2_    |              |

## **ZyXEL** ISDN Order Form - Switch: DMS-100 NI-1 or Custom

To order ISDN service for the DMS-100 switch, simply provide the table below to your local phone company. You can normally photocopy and fax this order form to them.

#### **General Information:**

| First Name:   | Last Name: |      |
|---------------|------------|------|
| Address:      |            |      |
| City:         | State:     | Zip: |
| Tel (Analog): |            |      |

#### **ISDN Line Configuration Table:**

| Standard (2B+D) NI-1 or Custom                    |
|---------------------------------------------------|
| 2B1Q                                              |
| U interface with RJ45 jack                        |
| 64Kbps                                            |
| 2                                                 |
| Circuit Switch Voice and Data on any B<br>Channel |
| Yes                                               |
| No                                                |
| Dynamic                                           |
| No                                                |
| No                                                |
|                                                   |

#### Information the phone company must provide

| Switch Protocol: | □ NI-1 | □ Custom |  |
|------------------|--------|----------|--|
| ISDN Number 1    |        | SPID #1  |  |
| ISDN Number 2    |        | SPID #2  |  |

## **ZyXEL** ISDN Order Form - Switch: EWSD *NI-1 only*

To order ISDN service for the EWSD switch, simply provide the table below to your local phone company. You can normally photocopy and fax this order form to them.

#### **General Information:**

| First Name:   | Last Name: |      |
|---------------|------------|------|
| Address:      |            |      |
| City:         | State:     | Zip: |
| Tel (Analog): |            |      |

#### **ISDN Line Configuration Table:**

| Line Type                            | Standard (2B+D) NI-1                 |
|--------------------------------------|--------------------------------------|
| Line Code                            | 2B1Q                                 |
| Interface Type                       | U interface with RJ45 jack           |
| Access Rate                          | 64Kbps                               |
| Directory Numbers, Logical Terminals | 2                                    |
| Bearer Service                       | Circuit Switch Voice and Data on any |
|                                      | B Channel                            |
| Circuit Switched Service             | Yes                                  |
| Packet Switched Service              | No                                   |
| Terminal Endpoint Identifier (TEI)   | Dynamic                              |
| Electronic Key telephone sets (EKTS) | No                                   |
|                                      |                                      |

#### Information the phone company must provide:

| Switch Protocol: | 🗆 NI-1 | □ Custom |
|------------------|--------|----------|
| ISDN Number 1    |        | SPID #1  |
| ISDN Number 2    |        | SPID #2  |

## ISDN Service Ordering Checklist

- 1. Confirm the switch that has been installed. If it is an AT&T 5ESS switch, then the phone company must inform you whether it is Point-to-Point or Multi-point. Either option must then be programmed into the Omni TA128.
- 2. Note whether the switch is using a Custom protocol or National ISDN-1 (NI-1).
- 3. If the line is not an AT&T Point-to-Point, you should receive a unique SPID number for each of the B channels. Then both SPID numbers must be programmed into the Omni TA128. The configuration will be explained in the following chapters. Please take careful note of the prefixes and suffixes.
- 4. Confirm the 7-digit Local Directory Number (LDN) for each of the B channels.
  - *Note:* These parameters are very important in installing the Omni TA128. They will allow the Omni TA128 to perform to its maximum potential.

## What are SPIDs?

The Service Profile Identifier (SPID), is a string of 3 to 20 numeric digits that is assigned to the user by the telephone company. The user must program the SPID into the terminal. The terminal will send this information (SPID) to the central office before it is initialized. When the switch receives the SPID, it will then allow the user to begin to dial out and receive calls.

# Chapter 20 - Contacting ZyXEL

ZyXEL takes pride in it products and its customers. We are continually striving to improve our line by engineering them with your current and future needs in mind.

To help us in that effort, we encourage your comments. For your convenience, we have listed below various means by which you can contact ZyXEL directly.

## **ZyXEL Phone Numbers**

#### **Voice Telephone Numbers**

You can reach ZyXEL in the U.S. between 8:00 am and 5:00 PM PST at (714) 693-0808

In Taiwan: 011-886-35-774848

#### **Fax Numbers**

ZyXEL provides the following 24-hour fax numbers for technical support and other comments.

In the U.S.: (714)693-8811

In Taiwan: 011-886-35-782439

#### ZyXEL BBS Number

ZyXEL operates a 4-node BBS 24 hours a day. This BBS contains updates to ZyXEL's ZFAX communications software, modem configuration guidelines, software set-up instructions, and the latest firmware. Sysop pricing information and order forms are also available from the BBS.

To call the ZyXEL analog BBS, configure your modem 8 data bits, no parity bit, and 1 stop bit. Then dial (714) 693-0762.

To call the ZyXEL ISDN BBS using one B channel, configure your modem and then dial (714)263-0398.

To call ZyXEL ISDN BBS using both B channels, configure your modem and then call (714)263-0398 + (714) 263-0498.

## **Online Access**

You can also contact ZyXEL via the Internet using E-mail, our Web site, or FTP, and through CompuServe.

#### Internet

#### E-mail

Sales inquiries: sales@zyxel.com Technical support: support@zyxel.com; in the U.S. or support@zyxel.hinet.net; outside the U.S.

#### World Wide Web

ZyXEL has a home page on the World Wide Web(WWW). If you have a WWW browser, such as Netscape, you can access this page at the following location: http://www.zyxel.com

#### ■ FTP

Information, such as ZyXEL software and ROM updates for the U.S. can be found at this FTP address: ftp.zyxel.com for European versions and related files, use the address: ftp.zyxel.co.at

#### CompuServe

CIS ID: 71333,2734 Forum: GO ZyXEL

# **Appendix A - Phone Jack Pinout Assignments**

The Omni TA128 features one RJ-45 phone jack and two RJ-11 phone jacks. The RJ-45 labeled "ISDN S" jack is for ISDN line connection (S/T interface), and the RJ-11 jack labeled "PHONE" (also known as an analog adapter in European countries) is for an optional connection to analog telephone equipment such as a telephone set, answering machine, fax machine or analog modem.

### RJ-45 Connector for the S/T Interface Model

- 1. Not Connected
- 2. Not Connected
- 3. RCV +
- 4. XMT +
- 5. XMT -
- 6. RCV-
- 7. -48V
- 8. -48V RTN

### **RJ-45** Connector for the U Interface Model

- 1. Not Connected
- 2. Not Connected
- 3. Not Connected
- 4. Ring
- 5. Tip
- 6. Not Connected
- 7. -48V
- 8. -48V RTN

#### RJ-11 Analog Adapter (Phone 1&2)

- 1. Not Connected
- 2. Ring
- 3. Tip
- 4. Not Connected

# Appendix B - Serial Port Interface

| Pin    | ITU-TSS | EIA    | Signal/Pin Description         | Signal        |
|--------|---------|--------|--------------------------------|---------------|
| Number | Signal  | Signal | Signal/I in Description        | Direction     |
| Tumber | Name    | Name   |                                | DTE -DCE      |
| 1      | 101     | AA     | Protective Ground (GND).       | ⇔             |
| 2      | 103     | BA     | Transmitted Data(TXD).         | $\Rightarrow$ |
| 3      | 104     | BB     | Received Data(RXD).            | 1)            |
| 4      | 105     | CA     | Request To Send (RTS).         | $\Rightarrow$ |
| 5      | 106     | CB     | Clear To Send (CTS).           | $\Downarrow$  |
| 6      | 107     | CC     | Data Set Ready (DSR).          | Û             |
| 7      | 102     | AB     | Signal Ground (GND).           | ⇔             |
| 8      | 109     | CF     | Data Carrier Detected (DCD).   | $\Downarrow$  |
| 15     | 114     | DB     | Transmit Clock Signal (source: | Û             |
|        |         |        | DCE).                          |               |
| 17     | 115     | DD     | Synchronous Receive Clock.     | $\Leftarrow$  |
| 18     | 141     |        | Local Analog Loopback Test.    | $\Rightarrow$ |
| 20     | 108/2   | CD     | Data Terminal Ready (DTR).     | $\Rightarrow$ |
|        | 108/1   |        | Connect DCE to line.           |               |
| 21     | 140     |        | Remote Digital Loop Test.      | $\Rightarrow$ |
| 22     | 125     | CE     | Ring Indicator(RI).            | $\Leftarrow$  |
| 24     | 113     | DA     | Transmit Clock Signal (source: | $\Rightarrow$ |
|        |         |        | DTE).                          |               |
| 25     | 142     |        | Test Indicator.                | $\Leftarrow$  |

## EIA-232D 25 Pin Serial Port Interface

## 9 Pin Serial Port Interface

| Pin<br>Number | ITU-TSS<br>Signal<br>name | EIA<br>Signal<br>name | Signal/Pin Description       | Signal<br>Direction<br>DTE -DCE |
|---------------|---------------------------|-----------------------|------------------------------|---------------------------------|
| 1             | 109                       | CF                    | Data Carrier Detected (DCD). | ¢                               |
| 2             | 104                       | BB                    | Received Data(RXD).          | ¢                               |
| 3             | 103                       | BA                    | Transmitted Data(TXD).       | $\Rightarrow$                   |
| 4             | 108/2                     | CD                    | Data Terminal Ready (DTR).   | $\Rightarrow$                   |
|               | 108/1                     |                       | Connect DCE to line.         |                                 |
| 5             | 102                       | AB                    | Signal Ground (GND).         | $\Leftrightarrow$               |
| 6             | 107                       | CC                    | Data Set Ready (DSR).        | ŧ                               |
| 7             | 105                       | CA                    | Request To Send (RTS).       | $\Rightarrow$                   |
| 8             | 106                       | CB                    | Clear To Send (CTS).         | ¢                               |
| 9             | 125                       | CE                    | Ring Indicator(RI).          | ¢                               |

| Modem<br>(DCE)<br>DB25 | Signal   | to PC<br>(DTE)<br>DB 9 | to DCE<br>(Null)<br>DB25 | to<br>MAC<br>Mini 8 | to NeXT<br>68,040<br>Mini 8 |
|------------------------|----------|------------------------|--------------------------|---------------------|-----------------------------|
| 2                      | TXD      | 3                      | 3                        | 3                   | 3                           |
| 3                      | RXD      | 2                      | 2                        | 5                   | 5                           |
| 4                      | RTS      | 7                      | 5                        | 1                   | 6                           |
| 5                      | CTS      | 8                      | 4                        | 2                   | 8                           |
| 6                      | DSR      | 6                      | 20                       |                     |                             |
| 7                      | Ground   | 5                      | 7                        | 4,8                 | 4                           |
| 8                      | CD (DCD) | 1                      | 20                       |                     | 2                           |
| 20                     | DTR      | 4                      | 6,8                      | 1                   | 1                           |
| 22                     | RI       | 9                      |                          |                     |                             |

# Async. Hardware Flow Control Cable Connection

# Appendix C - Index

## 1

| 1TR6             |            |
|------------------|------------|
| Answering a call |            |
| Placing a call   | 11-3, 11-8 |

## A

| ambiguity resolution 10-2, 11-6     |
|-------------------------------------|
| American ISDN 1-2, 7-3, 13-1, 14-4, |
| 16-7                                |
| analog calls10-1                    |
| answering 10-2                      |
| placing                             |
| analog ports 1-1, 10-2              |
| ANSI                                |
| Answering a call11-5                |
| 1TR6                                |
| Best effort 11-6                    |
| DSS111-5                            |
| DTE Port 2 14-5                     |
| Multi-Auto-Answer11-6               |
| using MSN4-4                        |
| V.110                               |
| V.1207-2                            |
| X.758-1                             |
| 1 0 (                               |
| asynchronous2-6                     |
| AT commands                         |
|                                     |
| AT commands                         |
| AT commands<br>capture commands15-4 |
| AT commands<br>capture commands     |

| understanding            | 2-6  |
|--------------------------|------|
| V.110                    | 9-2  |
| V.42bis compression      | .7-4 |
| AT&T                     |      |
| 5ESS                     |      |
| Order Form               | 9-2  |
| ATDI                     | 8-2  |
| auto answer              | 8-1  |
| Automatic call detection | 1-2  |
| auto-switch 4-1,         | 4-3  |
|                          |      |

### В

| B channel 7-5, 10-2, 11-6, 14-4, 15-3,   |
|------------------------------------------|
| 16-7, 17-9, 20-1                         |
| Bunding6-2                               |
| Bundling7-2, 7-3, 8-2, 17-8              |
| changing4-2                              |
| LED                                      |
| Multi Auto4-5                            |
| protocol 6-1, 7-6, 11-3, 14-4, 15-1,     |
| 15-3, 15-4, 16-3, 16-9, 17-6, 18-2       |
| Best-effort1-2, 4-5, 11-6                |
| BONDING7-2                               |
| BRI 1-5, 4-4, 7-2, 7-3, 8-2, 11-4, 11-5, |
| 14-1                                     |
| bundle connections                       |
| V.1207-3                                 |
| X.758-2                                  |
| BZT10-1                                  |
|                                          |

# С

| Switching        | 4-2  |
|------------------|------|
| connecting       | 2-1  |
| Contacting ZyXEL | 20-1 |
| CSD              | 4-3  |
| Customer Service | 20-1 |

# D

| D channel 2-5, 3-3, 11-9, 13-1, 15-    |
|----------------------------------------|
| 3, 15-4, 16-5, 17-7, 18-1              |
| Data call indication                   |
|                                        |
| data encryption                        |
| control of                             |
| LED indicators                         |
| Data Encryption StandardSee DES        |
| Data-over-Speech bearer                |
| DBA6-4, 8-3                            |
| DDI11-7                                |
| DES8-1, 8-5, 8-6, 8-7, 16-3            |
| Diagnostics15-1                        |
| Dialing pre-stored numbers             |
| Direct-Dial-In See DDI                 |
| DMS-100                                |
| Order Form 19-3                        |
| DSS18-2                                |
| Answering a call 11-5                  |
| Placing a call                         |
| DTE                                    |
| DTE Port 214-1                         |
| Answering                              |
|                                        |
| Configuration 14-1, 14-5               |
| Placing call                           |
| DTMF                                   |
| dynamic bandwidth allocation . See DBA |

# E

| EAZ11-4                              |
|--------------------------------------|
| assigning11-4                        |
| embedded protocol analyzerSee EPA    |
| ENDGERÄTEAUSWAHLZIFFER <i>See</i>    |
| EAZ                                  |
| Endpoint Discriminator               |
| EPA 1-4, 1-2, 8-7, 15-1, 15-3, 15-4, |
| 17-7                                 |
| EPROM1-1, 1-2                        |
| error correction7-4                  |
| European ISDN 7-6, 8-2, 13-1         |
|                                      |

#### EWSD

| Order Form | <br>19-4 |
|------------|----------|
| Order Form | <br>19-4 |

## F

| factory settings                          |
|-------------------------------------------|
| restoring2-6                              |
| firmware 1-1, 1-2, 13-1, 13-2, 16-6, 18-1 |
| Frame Reject FrameSee FRMR                |
| FRMR                                      |
| front panel switch                        |

# G

| German national ISDN  | 13-1 |
|-----------------------|------|
| Germany National ISDN | 7-6  |

# Η

| hardware reset           | 3-1, 3-5   |
|--------------------------|------------|
| HDLC 4-2, 6-1, 6-2, 8-1, | 16-7, 18-2 |
| High-Layer-Compatibility | 4-5, 11-1, |
| 11-6, 17-9               |            |

# I

| inbound calls See Answerin | ıg a call |
|----------------------------|-----------|
| Disabeling                 | 11-7      |
| ISDN protocols             | 9-1       |
| ISO Standard               | 8-4       |

## K

| Kernal  | Mode  | 13-2 |
|---------|-------|------|
| ixcinai | 10000 | 15-2 |

# L

| LAPD                   | 7-4      |
|------------------------|----------|
| LDN                    | 19-5     |
| LED                    | 1-2, 2-4 |
| Described              |          |
| LNK                    | 2-4      |
| PWR                    | 2-4      |
| Level 1 security       | 12-1     |
| Level 2 security       |          |
| LLC                    |          |
| Local Directory Number | 19-5     |
|                        |          |

Loopback 1-4, 15-1, 15-2, 16-3, 16-8, 17-3, B-1 Loopback test......15-1 Low-Layer-Compatibility 4-5, 7-6, 8-2, 11-1, 11-2, 11-6. See LLC

## Μ

| making a callSee Placing a call         |
|-----------------------------------------|
| metering pulse1-2, 10-1, 17-8           |
| MLP 1-1, 7-2, 7-3, 7-4, 8-2, 8-3, 17-8, |
| 17-12                                   |
| MLP(Multiple Link Protocol)7-3          |
| mode                                    |
| command2-6                              |
| off-line2-6                             |
| on-line2-6                              |
| modes                                   |
| 64k data7-1                             |
| answer6-2, 7-1, 8-2, 16-8, 16-9, 17-5,  |
| 17-6, 17-8                              |
| asynchronous9-1                         |
| channel bundling7-3                     |
| synchronous9-1                          |
| V.110                                   |
| V.120                                   |
| MPPP 4-2, 4-3, 4-4, 4-5, 6-2, 6-3, 11-  |
| 4, 11-6, 16-4, 16-9, 18-2               |
| MSN 4-4, 5-2, 8-1, 10-2, 11-5, 11-7,    |
| 14-4, 14-5, 16-9, 17-10                 |
| Multi-Auto-Answer                       |
| Multilink PPP 1-1, 6-2, 6-3, 6-4        |
| Withink 111 1-1, 0-2, 0-3, 0-4          |

### Ν

NVRAM ......2-6, 8-3, 14-2, 16-9

## 0

| off-line mode2-6                 | j |
|----------------------------------|---|
| on-line mode2-6                  | j |
| operation modes                  |   |
| Multiplex                        |   |
| Simplex                          |   |
| Opgrading13-1                    |   |
| Order Form 1-5, 19-2, 19-3, 19-4 | ŀ |
| AT&T                             |   |
| 5ESS switch19-2                  | 2 |

| DMS-100                    | 19-3          |
|----------------------------|---------------|
| EWSD                       | 19-4          |
| Ordering Checlkist         | 19-5          |
| outgoing calls See P       | lacing a call |
| Outgoing Service Indicator | 11-3          |
| out-of-band signaling      | 7-1, 18-2     |

### Р

| Passwords12-2                           |
|-----------------------------------------|
| PassworsdSee Security                   |
| physical specs1-2                       |
| Placing a call 11-8                     |
| 1TR611-3, 11-8                          |
| Analog                                  |
| DSS111-8                                |
| DSS111-1                                |
| DTE Port 2 14-5                         |
| Phone 1(Port 1)4-1                      |
| Phone 2(Port 2)4-1                      |
| using ISDN mode4-1                      |
| using Speech Bearer 4-1                 |
| V.110                                   |
| V.1207-1                                |
| Bundled7-3                              |
| X.758-2                                 |
| Point-to-Point protocol See PPP         |
| power supply2-1                         |
| PPP 1-2, 1-1, 3-4, 4-2, 4-3, 4-4, 4-5,  |
| 5-2, 5-5, 5-8, 6-1, 6-2, 6-3, 6-4, 8-3, |
| 11-4, 11-6, 14-2, 14-5, 16-2, 16-4, 16- |
| 9, 17-7, 17-11, 17-12, 18-2             |
| Pre-stored numbers7-3                   |
| Protocall Anayzer 15-1                  |
| PSTN1-1                                 |
|                                         |

### R

| registering                | 1-3             |
|----------------------------|-----------------|
| Remote Access              | .5-7, 6-1, 18-2 |
| restoring factory settings | See             |

## S

| S/T interface | 2-1, 2-3, 4-5, 11-6, 13- |
|---------------|--------------------------|
| 1, 18-3, A-1  |                          |
| S104/S107     |                          |
| S108/S111     |                          |

| Security                            |
|-------------------------------------|
| levels                              |
| non passwords12-3                   |
| passwords12-2                       |
| types12-1                           |
| self test                           |
| Service Profile Identifier See SPID |
| Speech bearer4-2, 8-1, 11-3, 11-8   |
| SPID 3-1, 3-4, <b>19-5</b>          |
| Support                             |
| switches                            |
| AT&T 5ESS 1-1, 3-3, 3-4, 3-6, 13-   |
| 1, 18-2, 19-5                       |
| AT&T 5ESS switch3-3                 |
| DMS 100 1-1, 3-3                    |
| Northern Telecom 1-1, 3-3, 3-4, 3-  |
| 5, 6-1, 7-3, 8-2, 13-1, 16-5, 17-7, |
| 18-2, 19-1                          |
| Siemens EWSD 3-3, 15-1, 18-2, 19-1  |
|                                     |

### Т

| TAE adapter                   | . 10-1 |
|-------------------------------|--------|
| TEI                           | .11-7  |
| Terminal Adapter              | 1-1    |
| Terminal Equipment Identifier | . 11-7 |
| Terminal Selection Code       | . 11-4 |

## U

| U interface    | 1-2, 2-1, 2-3, 15-1, 18- |
|----------------|--------------------------|
| 3, 19-2, 19-3, | 19-4                     |
| Updgrading     |                          |

## V

| V.110                    |     |
|--------------------------|-----|
| Answering                | 9-1 |
| AT Commands              | 9-2 |
| Placing calls            | 9-2 |
| V.120                    |     |
| Bundled calls            | 7-3 |
| configuring              |     |
| error correction         | 7-4 |
| European ISDN            |     |
| Germany National ISDN    |     |
| Placing calls            |     |
| V.42bis data compression |     |
| voice                    |     |
| Voice Calls              |     |

## W

| Windows | 951 | -1 |
|---------|-----|----|

# Х

| X.75           |            |
|----------------|------------|
| Answering      |            |
| Bundled calls  |            |
| Placing a call |            |
| XID            |            |
| Xmodem         | 13-1, 16-6 |

## Ζ