
Script Reference

Introduction
What Is a Script
Running a Script
Your First Script: What Is Your Name

Data Types
Integer, String, Character, Boolean, Date, Time

Variables
Variable Identifier, Variable Declarations, Predefined Variables

Expressions
Rule Of Precedence, Arithmetic Operators, Boolean Operators, Relational Operators

Statements
What Is a Statement
Comment, Assignment
If...Else...ElseIf...EndIf, Switch...EndSwitch
While...EndWhile Loop, Repeat...Until Loop
Break Statement
Stop Statement
#include Directive

Procedures
What Is a Procedure
Procedure Declaration, Parameter Declaration
Calling Procedure and Parameter Passing
Nested Procedures and Scope of Variables
Return Statement

Built-in Procedures by Category
COM I/O, Console I/O, File Handling, String Handling, Others

Built-in Procedures by Alphabet

Built-in Procedure by Alphabet

Append Opens a text file and moves the file pointer to the end.
Atoi Converts a string to an integer.
ChDir Changes current directory.
Close Closes a file.
Concat Appends one string to another.
Create Creates a new text file or rewrites an existing one.
Date Gets system date.
Delay Suspends script execution for an interval.
Delete Deletes one or more files.
FileExist Determines if a file or directory is exist.
FileSize Gets file size in bytes.
Get Gets a string from remote system.
GetCh Gets a character from remote system.
HangUp HangUps the modem.
Image Captures the terminal screen into an image file.
Input Reads a string from the keyboard.
InputCh Reads a character from the keyboard.
Itoa Converts an integer to a string.
Length Calculates the length of a string.
LogOff Closes the log file.
LogOn Opens a log file and captures incoming data into the file.
LogPause Pauses capturing incoming data into the log file.
LogResume Resumes capturing incoming data into the log file.
Open Opens a text file for reading or writing.
Print Prints integers or strings to the terminal screen.
Put Sends strings or integers to the remote system.
Query Queries option value.
Read Reads a string from a text file.
ReadCh Reads a character from a text file.
Receive Receives (Downloads) one or more files from the remote system.
Rename Renames a file.
Seek Repositions the file pointer.
Send Sends (uploads) one or more files to remote system.
Set Sets option value.
StrDel Deletes characters from a string.
StrIns Inserts a string into another string.
StrPos Scans a string for the occurrence of a given substring.
StrSet Sets part of a string to a given character.
SubStr Returns a substring from a given string.

Tell Returns the current file pointer.
Time Gets system time.
Waitfor Waits for one of the given strings from the remote system.
WaitUntil Waits until the specified time exceeded.
When Sends a response string to the remote system whenever a given string is matched.
WhenIdle Sends a string to the remote system if there is no COM Input/Output in the specified time.
Write Writes integers or strings to a text file.

COM I/O

Put Sends strings or integers to the remote system.
Get Gets a string from remote system.
GetCh Gets a character from remote system.
HangUp HangUps the modem.
Image Captures the terminal screen into an image file.
LogOff Closes the log file.
LogOn Opens a log file and captures incoming data into the file.
LogPause Pauses capturing incoming data into the log file.
LogResume Resumes capturing incoming data into the log file.
Receive Receives (Downloads) one or more files from the remote system.
Send Sends (uploads) one or more files to remote system.
Waitfor Waits for one of the given strings from the remote system.
WaitUntil Waits until the specified time exceeded.
When Sends a response string to the remote system whenever a given string is matched.
WhenIdle Sends a string to the remote system if there is no COM Input/Output in the specified time.

Console I/O

Print Prints integers or strings to the terminal screen.
Input Reads a string from the keyboard.
InputCh Reads a character from the keyboard.

File Handling

Open Opens a text file for reading or writing.
Append Opens a text file and moves the file pointer to the end.
Create Creates a new text file or rewrites an existing one.
Close Closes a file.
ChDir Changes current directory.
Delete Deletes one or more files.
FileExist Determines if a file or directory is exist.
FileSize Gets file size in bytes.
Read Reads a string from a text file.
ReadCh Reads a character from a text file.
Rename Renames a file.
Seek Repositions the file pointer.
Tell Returns the current file pointer.
Write Writes integers or strings to a text file.

String Handling

Atoi Converts a string to an integer.
Concat Appends one string to another.
Itoa Converts an integer to a string.
Length Calculates the length of a string.
StrDel Deletes characters from a string.
StrIns Inserts a string into another string.
StrPos Scans a string for the occurrence of a given substring.
StrSet Sets part of a string to a given character.
SubStr Returns a substring from a given string.

Other Procedures

Date Gets system date.
Delay Suspends script execution for an interval.
Query Queries option value.
Set Sets option value.
Time Gets system time.

Introduction

What Is a Script
TWScript allows you to write procedures to perform repetitive functions, such as a log on script, as well
as specific applications, such as a host mode.
TWScript is designed to be a easy-to-use language. TWScript looks similar to the Pascal language and
the syntax is as loose as that of BASIC language. For most of the users, only the WAITFOR, PUT and
maybe the WHEN statements are necessary. For those users who have experience in the other
programming language, TWScript is a powerful tool for communication related application.
A script file can be created using almost all editors. The source file is a normal ASCII text file which
contains a sequence of instructions telling Telemate what to perform next. The source file should use
the extension .TWS to indicate that it is a 'S'ource script file. When the run the script file, Telemate
compile it automatically and produce a .TWC file which indicate a 'C'omplied script file.

Running a Script
There are several ways to run a script.
1. Pressing [Alt S] at the Terminal Window opens the File Dialog and you are asked to identify which

script file to be executed.
2. Put the script name in the link-script field of the phone directory. When the BBS is connected, the

link-script is executed automatically. Link-scripts are sometimes referred as logon scripts because
they perform repetitive logon procedure.

3. You may assign a function key to execute a script file using the "^\" macro sequence. For example,
the function key [Alt 4] is "^\host", when you press [Alt 4], the host script will be executed.

4. The SCRIPT statement allows you run another script in a script program. Please refer the
description of the SCRIPT statement.

Your First Script: What Is Your Name
The first example program is a simple logon script. It waits for the logon prompts and sends the
response to the remote system.
WAITFOR "What is your name?" ; wait for the logon prompt
PUT "my name" ; send your name to remote system
WAITFOR "is your password?" ; wait for the password prompt
PUT "my password" ; send your name to remote system

A script can be as simple as that and it will help you to logon to the remote system automatically.

Data Types

Integer
Ordinary number notation is used for integers. Decimal and engineering notation (e or E followed by an
exponent) is not supported. Integer must within the range from -2147483648 to 2147483647.

String
A string is a sequence of zero or more characters from extended ASCII character set (0-255), enclosed
by quotation marks. A string with nothing in it is called a empty string. Two sequential quotation marks in
a string denote a single character, an quotation mark.
TWScript allows control characters to be embedded in strings. The ^ character followed by a letter (A-Z,
a-z), @ or [denotes a character of the ASCII code [Ctrl A] to [Ctrl Z], NULL, or ESC respective.
Here are some examples of strings
"TELEMATE"
"This is a '""'."
"^K^D" ; [Ctrl K] [Ctrl D]

Character
Character is represented as a string that contains only one character. For example, "A" is a character.
Control codes are often used in script programs and are represented as

Code String Description
Ctrl-@ ^@ NULL
Ctrl-A ^A
...
Ctrl-H ^H Backspace
Ctrl-I ^I Tab
Ctrl-J ^J Line feed, LF
...
Ctrl-M ^M Carriage return, CR, [Enter]
...
Ctrl-Z ^Z
Ctrl-[^[Escape

Boolean
Boolean (TRUE or FALSE) is represented as a integer. A integer is said to be TRUE if it is not equal to
zero, FALSE if it is equal to zero.
When testing a boolean condition, you should not use the following code,
IF CONNECTED=1

...
ENDIF

because the variable CONNECTED may have other values. Instead, you should use
IF CONNECTED

...
ENDIF

to test if CONNECTED is TRUE. And
IF NOT CONNECTED

...
ENDIF

to test if CONNECTED is FALSE.

Date
Date is represented as a string with the format "MM-DD-YYYY". When a date string is compared with
another date string, they are first converted to the internal format "YYYYMMDD" so that the comparison
returns the correct result.
Note that the date format option in the main program does not affect the format in the script. For date
conversion, see ConvertDate command in toolbox #3.

Time
Time is also represented as a string but with the format "HH:MM:SS".    When two time strings are being
compared, they are converted to the internal format "HHMMSS" such that the comparison can the
correct result.

Variables

Variable Identifiers
A variable identifier can contain letters and digits. However, a variable can only start with a letter. Case
is not significant, in the other word, the variable <notdone> is the same as <NotDone>. A variable
identifier can be of any length, but only the first 8 characters are significant.    For examples, the variable
identifier <Number12> is the same as <Number123>.

Variable Declarations
A variable declaration embodies a list of identifiers that designate new variables and their type. For
example,
INTEGER lower,upper,step ; integers
STRING message,filename ; strings
INTEGER true,false ; boolean
STRING ch,letter ; character

The variable declaration part should be placed at the beginning of a script or of a procedure. In
TWScript, variables need not declared before use if no procedure is defined. Therefore, the variable
declaration part can be skipped.

Predefined Variables
TWScript built in procedures do not return value. Several predefined variables are set to the resulting
value. They are CONNECTED, FOUND, SUCCESS, and LOGGING.

CONNECTED

CONNECTED is set to the number of the connected dial entry. The variable CONNECTED returns to
FALSE as soon as the carrier lost. On the other hand, if the state of the carrier changes from OFF to
ON, CONNECTED is set to TRUE.
IF NOT CONNECTED

PRINT "It is not connected to a remote system."
STOP

ENDIF
SWITCH CONNECTED

CASE 1: PRINT "connected to #1"
CASE 3: PRINT "connected to #3"
CASE 6: PRINT "connected to #6"

ENDSWITCH
The CONNECTED variable is also used in conjunction with the DIAL statement. If the dialing is
successful and connect to a remote system, the variable is set to the number of the connected entry. If
the DIAL statement aborts without connection, the variable CONNECTED is set to FALSE, indicating
that the DIAL statement is aborted by operator or the number of attempt exceeds the dial attempt
setting.
For example,
DIAL "1 3 6"
IF NOT CONNECTED

PRINT "Dialing process aborted"
STOP

ENDIF
SWITCH connected

CASE 1: PRINT "connected to #1"
CASE 3: PRINT "connected to #3"
CASE 6: PRINT "connected to #6"

ENDSWITCH
Note that this variable reflects the online status only if your modem reports so. You should check your
modem manual to ensure that the modem CD (carrier detect) signal is reflecting the actual online
status. Most modems use a "&C1" AT command to set it and you should add it to the modem init string.

FOUND

This variable is set to resulting value after the WAITFOR statement is executed. It is set to FALSE if
time exceeded. Otherwise, it is set to the string number of the matched string.

Example
WAITFOR "NO CARRIER","thanks for calling","hang up now",100
SWITCH FOUND

CASE 1: PRINT "NO CARRIER found"
CASE 2: PRINT "thanks for calling found"
CASE 3: PRINT "hang up now found"

ENDSWITCH

SUCCESS

This variable is used by several statements. The resulting values and descriptions is shown in the
following table.

Statement Value Description
Append TRUE the file is successfully opened or created

FALSE cannot create file
ChDir TRUE directory changed

FALSE invalid path
Close TRUE file closed

FALSE cannot close file
Create TRUE the file is successfully created

FALSE cannot create file
Delete TRUE the file is successfully deleted

FALSE cannot delete file
FileSize TRUE the file size is determined successfully

FALSE cannot open file
InputCh ch TRUE a character is read into <ch>

FALSE no character is available
LogOn TRUE the log file is successfully opened

FALSE the log file cannot be created
Open TRUE the file is successfully opened

FALSE the file does not exist
Read str TRUE a line is read into <str>

FALSE end of file encountered
ReadCh ch TRUE a character is read into <ch>

FALSE end of file encountered
Receive TRUE all files are received successfully

FALSE file transfer aborted

Rename TRUE the file is successfully renamed
FALSE cannot rename file

Seek TRUE the file pointer is moved successfully
FALSE disk error

Send TRUE all files are sent successfully
FALSE file transfer aborted

Tell pos TRUE the file pointer is stored in <pos>
FALSE disk error

Write TRUE write successary to file
FALSE cannot write to file

LOGGING

This variable reflects the current file log status and has the values

Value Description
0 Log file close or log file not in use
1 Log file open and capturing incoming data
2 Log file in pause state

Expressions

Rule Of Precedence
Expressions are made up of operators and operands. In complex expressions, rule of precedence
clarify the order in which operations are performed.

Operator Precedence
*, / first (high)
+, - second
=, <>, <, >, <=, >= third
not forth
and, or, xor fifth (low)

There are the rules of precedence
1. First, an operand between two operators of difference precedence is bound to the operator with

higher precedence.
2. Second, an operand between two equal operators is bound to the one on its left.
3. Third, expressions within parentheses are evaluated prior to being treated as a single operand.

Arithmetic Operators
The types of operands for arithmetic operators are shown in the following table.

Operator Operation Operand Type

+ addition integer
- subtraction integer
* multiplication integer
/ division integer

For example, the formula to convert Fahrenheit temperature to Celsius equivalents is
celsius = (fahr-32) * 5 / 9

Boolean Operators
The types of operands for arithmetic operators are shown in the following table.

Operator Operation Operand Type
not negation boolean
and logical and boolean
or logical or boolean
xor logical xor boolean

Normal Boolean logic governs the results of these operations. For instance, a and b is TRUE only if
both <a> an are TRUE.

Relational Operators

The types of operands for arithmetic operators are shown in the following table. They all have the same
precedence.

Operator Operation Operand Types
= equal to integer, string, date ,time
<> not equal to integer, string, date ,time
> greater than integer, string, date ,time
>= greater or equal to integer, string, date ,time
< less then integer, string, date ,time
<= greater or equal to integer, string, date ,time

When the operands are integer, date or time, the comparison will produce the usual result such as

Condition Result Operand Type
1 > 2 FALSE integer
"12-31-1989" < "01-01-1990" TRUE date
"00:00:00" > "23:59:59" FALSE time

However, if the operands are strings, the operators "<", ">" and "<>" have another meaning such that
you can determine if a string is a sub-string of another string.
s1 < s2 if s1 is a sub-string of s2
s3 > s4 if s3 is a super-string of s4
s5 <> s6 if s5 is not a sub-string of s6 and
 s5 is not a super-string of s6

Example

Condition Result Explanation
"hello" =    "Hello" TRUE TWScript is not case

sensitive.
"goodbye" <    "bye" TRUE "bye" is a sub-string of

"goodbye"
"dog" <> "car" TRUE The string is not equal
"abc" >= "xyz" FALSE "abc" is not a super-string of

"xyz" and they are not equal.

Statements

Statements describe algorithmic actions that can be executed.
Comment
Assignment
If...Else...ElseIf...Endif
Switch...EndSwitch
While...EndWhile Loop
Repeat...Until Loop
Break Statement
#include Directive

Comment

Any characters after ";" are ignored by the TWScript compiler.

Example
WAITFOR "What is your name?" ; wait for the logon prompt
PUT "my name" ; send your name to remote system
WAITFOR "is your password?" ; wait for the password prompt
PUT "my password" ; send your name to remote system

Assignment

Assignment statements replace the current value of a variable with a new value specified by an
expression. The expression must be assignment-compatible with the type of the variable.

Example
The program prints the following table of Fahrenheit temperatures and their centigrade or Celsius
equivalents.
0 -17
20 -6
40 4
... ...
280 137
300 148

Here is the program itself.
; Print Fahrenheit-Celsius table
; for f = 0, 20, ... , 300

INTEGER lower,upper,step
INTEGER fahr,celsius

lower = 0 ; lower limit of temperature table
upper = 300 ; upper limit
step = 20 ; step size

fahr = lower ; first item in the table
WHILE fahr <= upper

celsius = (fahr-32) * 5 / 9 ; calcuate the values
PRINT fahr,"^I",celsius ; print the result
fahr = fahr + step ; next item in the table

ENDWHILE

If...Else...ElseIf...EndIf

The general form for IF statement is
IF condition

statements

ENDIF
The <statements> is executed only if <condition> is TRUE. Another form is
IF condition

statements-1
ELSE

statements-2
ENDIF

One and only one of the two statements associated with an <if-else> is done. If the <condition> is true,
<statements-1> is executed; if not, <statements-2> is executed.
The construction
IF condition-1

statements-1
ELSE

IF condition-2
statements-2

ELSE
IF condition-3

statements-3
ENDIF

ENDIF
ENDIF

occurs so often that it is worth a new keyword ELSEIF. The statement can be re-written as
IF condition-1

statements-1
ELSEIF condition-2

statements-2
ELSEIF condition-3

statements-3
ENDIF

See also
Switch...EndSwitch

Switch...EndSwitch

The SWITCH statement is a special multi-way decision maker that tests whether an expression
matches one of a number of values, an branches accordingly. The syntax for SWITCH statement is
SWITCH expression

CASE value-1:
statements-1

CASE value-2,value-3:
statements-2

OTHERWISE:
statements-3

ENDSWITCH
The SWITCH evaluates the expression and compares its value to all the cases. Each cases must be
labeled by the values of the same type as the expression. Several values can be separated by comma.
If a case matches the expression value, execution starts at that case and ends at the next case label.
The case labeled OTHERWISE is executed if none of the other cases is satisfied. A OTHERWISE is
optional; if it isnt there and if none of the cases matches, no action at all takes place.    However,
OTHERWISE, if exists, must be placed after all the case labels.

See also
If...Else...ElseIf...EndIf

Example
The program counts digits, blanks, others.
nDigit = 0 ; digit
nBlank = 0 ; blank
nOther = 0 ; others
OPEN "MYFILE" ; open the file "MYFILE"
READCH ch ; read the first character
WHILE success ; if not end of file
SWITCH ch

CASE "0","1","2","3","4","5","7","8","9": ; is digit
nDigit = nDight + 1

CASE " ": ; is blank
nBlank = nBlank + 1

OTHERWISE: ; others
nOther = nOther + 1

ENDSWITCH
READCH ch ; read next character

ENDWHILE
CLOSE ; close the file
PRINT nDigit ; print the results
PRINT nBlank
PRINT nOther

While...EndWhile Loop

The WHILE loop is the most general loop. The syntax is
WHILE condition

statements

ENDWHILE
The <condition> is tested. If it is true, the body of the loop (all the statements before the keyword
ENDWHILE is executed. Then the condition is re-tested, and if true, the body is executed again. When
the test becomes false the loop ends, and execution continues at the statements that follows the loop.

See also
Repeat...Until, Break Statement

Example
For example, to print the value from 1 to 100, you can write
i = 1 ; start from 1
WHILE i<=100 ; check if it in the range

PRINT i ; print the number
i = i + 1 ; increase the counter by 1

ENDWHILE

Repeat...Until Loop

While the WHILE loop test the condition at the top, the REPEAT loop test it at the bottom. It tests at the
bottom after making each pass through the loop body; the body is always executed at least once.
Consider the loop
REPEAT

statements
UNTIL condition

The statements is executed, then the condition is evaluated. If it is false, the statements is evaluated
again, and so on. If the condition becomes true, the loop terminates.

See also
While...EndWhile, Break Statement

Example
For example, to print the value from 1 to 100, you can write
i = 1 ; start from 1
REPEAT

PRINT i ; print the number
i = i + 1 ; increase the counter by 1

UNTIL i>100 ; repeat until it is NOT in the range

Break Statement

It is sometimes convenient to be able to control loop exits other than by testing at the top or bottom. The
BREAK statement provides an early exit from the loops. A BREAK statement causes the innermost loop
to be broken immediately.
The following program accept strings from keyboard, using a BREAK to exit from the loop when the
string contains an [Esc] ("^[").

Example
REPEAT

INPUT s
IF "^[" <= s ; test if [Esc] is a sub-string of s

BREAK ; before printing it
ENDIF
PRINT s

UNTIL s = "" ; repeat until an empty string is entered

Stop Statement

The STOP statement terminates the execution of the current script program. It is usually used when an
error is encountered.

Example
OPEN "MYFILE" ; open a file
IF NOT SUCCESS

PRINT "File not found."
STOP ; terminate if file not found

ENDIF

#include Directive

This compiler directive allows you to write reusable procedures in a eparate file and imports the
procedures conveniently. The syntax is
#include "include_file"

The <include_file> will be inserted as if it is physical appear in this oint. The <includefile> must be a
pathname with extension. For example,
#include "TOOLBOX.TWS"
#include "MYLIB.TWS"

inserts the TOOLBOX.TWS and MYLIB.TWS into this point.
The #include directive can be nested as deep as 10 levels.

Procedures

What Is a Procedure
In TWScript, a procedure is equivalent to a subroutine or function in Fortran, or procedure in Pascal, C
etc. A procedure provides a convenient way to encapsulate some computation in a black box, which
can then be used without worrying about its innards.
For example, to swap the values of two variables, <i> and <j>, you have to write three lines as follows
temp = i ; put <i> into a temporary variable
i = j ; put <j> into <i>
j = temp ; now put the value of <i> into <j>

Suppose in your script there are a lot of swapping, it will be convenient to define a procedure called
<swap> to perform the swapping. Then your main program will look like
i = 1
j = 2
swap i,j ; now i=2, j=1
PRINT i ; 2
PRINT j ; 1

This is only a small usage of procedure. Imagine if the procedure is very complex, you can use it again
and again once it is tested and performs what you need.

Procedure Declaration
The syntax of a procedure definition is
PROCEDURE <procname> <parameter declaration>
<local variable declaration>
<statement part>
ENDPROC

<procname> is any valid identifier. <parameter declaration> can be omitted if the procedure does not
required parameters. See next section for details on parameter declaration.
<local variable declaration> made within a given procedure are visible only within that procedure. This
part should ALWAYS be included in order to make the program easy to be traced although the
declarations may be omitted.

<statement part> can be considered as a sub-program of the main program and obeys all the rule
described above.

Parameter Declaration
Parameter declaration is similar to variable declaration. For example,
PROCEDURE sample STRING s,t,INTEGER i,j

declares the procedure <sample> with two string parameters <s> and <t> and two integer parameters
<i> and <j>. You may use any combination of STRING and INTEGER to define parameters. For
example,
PROCEDURE sample INTEGER i,STRING p,q,r,s,INTEGER j,k,STRING z

We can write the <swap> procedure as
PROCEDURE swap INTEGER value1,value2 ; swap two integers
INTEGER temp ; declare a local variable
temp = value1 ; store the first value
value1 = value2 ; replace with the second value
value2 = temp ; replace with the first value

ENDPROC
After that, the main program may look like
i = 1
j = 2
k = 3
swap i,j ; now i=2, j=1
swap j,k ; now j=3, k=1
PRINT i,j,k ; 2,3,1

Calling Procedure and Parameter Passing
Once the procedure is defined, it can be called by putting the procedure name in the statement part. In
the example, the statements
i = 1
j = 2
swap i,j ; now i=2, j=1
PRINT i,j ; 2,1

call the <swap> procedure with the parameters <i> and <j>.
In the above example, the method used to pass <i> and <j> to the procedure <swap> is called pass by
reference because <i> and <j> can be changed when return. There is another method called pass by
value of which the parameter cannot be changed.
Consider the following procedure
PROCEDURE countDown INTEGER num ; print from <num> to 1
WHILE num >= 1 ; check if it is in the range

PRINT num ; print it
num = num-1 ; decrease until num=0
ENDWHILE

ENDPROC

countDown 100 ; pass by value
n = 100
countDown n*2 ; pass by value (200)
PRINT n ; n = 100
countDown (n) ; pass by value (100)
PRINT n ; n = 100
countDown n ; pass by reference
PRINT n ; n = 0 !

If we supply <countDown> with the parameter 100, n*2 or (n), they are pass by value. On the other
hand, <n> is pass by reference in the last statement.
The general rule of method of passing parameters is:

When the parameter is a constant, an expression or surrounded by parentheses, it is pass by value.
Otherwise, it is a variable and is pass by reference.

The rule applies to string parameter as well. To prevent confusion, we should rewrite the <countDown>
procedure by introducing a local variable.
PROCEDURE countDown INTEGER num ; print from <num> to 1
INTEGER count ; introduce a local variable
count = num ; if neccessary
WHILE count >= 1 ; check if it is in the range

PRINT count ; print it
count = count-1 ; decrease until 0

ENDWHILE
ENDPROC ; this does not change <num>

Nested Procedures and Scope of Variables
TWScript allows nested procedures; you can declare one procedure inside of another. For example,
PROCEDURE outer
STRING i,j

PROCEDURE inner
INTEGER i
i = 100
PRINT "i = ",i
PRINT "j = ",j
ENDPROC

i = "This is string 'i'."
j = "This is string 'j'."
inner
PRINT "i = ",i
PRINT "j = ",j
ENDPROC

The <outer> procedure declares two string variables, <i> and <j>.    These two variables can be
accessed by both the <outer> procedure and the <inner> one because they are declared before the
<inner> procedure.
The <inner> procedure declares an integer variable <i>. Although the two <i>s share the same name,
they are not identical. The inner <i> is visible in the <inner> procedure but not in the <outer> procedure.
On the other hand, the outer <i> can no longer be accessible in the <inner> procedure. The statement
i = 100

does not affect the outer <i>. This is called the scope rule.
The output of the program is
i = 100
j = This is string 'j'.
i = This is string 'i'.
j = This is string 'j'.

Return Statement
Like the BREAK statement, it is sometimes convenient to be able to return from a procedure at the
middle of the procedure.
The following procedure accept strings from keyboard and print it, using a RETURN to return from the
procedure when the string contains an [Esc] ("^[").
PROCEDURE acceptString STRING s
INPUT s
IF "^[" <= s ; test if [Esc] is a sub-string of s

RETURN ; before printing it
ENDIF
PRINT s
ENDPROC

Append

Syntax
APPEND filename

Description
Opens a text file, creates it if necessary, and moves the file pointer to the end of the file.
APPEND opens the text file as a read/write file and strip the ending EOF [Ctrl Z].

Return value
Upon successful completion, SUCCESS is set to TRUE. If the file cannot be created, SUCCESS is set
to FALSE.

Atoi

Syntax
ATOI s,i

Description
Converts a string to an integer.

Return value
<i> contains the converted value or 0 if <s> cannot be converted to a number.

See also
Itoa

ChDir

Syntax
CHDIR path

Description
Changes current directory.
CHDIR causes the directory specified by <path> to become the current working directory. <path> must
specify an existing directory.
A drive can also be specified in <path> but it changes only the current directory on that drive; it doesn't
change the active drive.

Return value
Upon successful completion, SUCCESS is set to TRUE; otherwise, SUCCESS is FALSE.

See also
Delete, FileExist, Rename

Close

Syntax
CLOSE

Description
Closes a file.

Return value
Upon successful completion, SUCCESS is set to TRUE; otherwise, SUCCESS is FALSE.

See also
Open, Read, Write

Concat

Syntax
CONCAT dest,src

Description
Appends one string to another.
CONCAT appends a copy of <src> to the end of the string <dest>.
If the backspace character "^H" is encountered in <src>, the last character of the concatenating string is
erased.

Return value
<dest> contains the concatenated string.

See also
Length, StrDel, StrIns

Example
s = "abc" ; s = "abc"
CONCAT s,"xyz" ; s = "abcxyz"
CONCAT s,"^H" ; s = "abcxy"
CONCAT s,"pq" ; s = "abcxypq"

Create

Syntax
CREATE filename

Description
Creates a new text file or rewrites an existing one.
CREATE creates the new text file <filename>. If the file already exists, the old file is deleted.

Return value
Upon successful completion, SUCCESS is set to TRUE; otherwise, SUCCESS is FALSE.

See also
Append, Open

Date

Syntax
DATE today

Description
Gets system date.
DATE fills the string <today> with the current date.
Dates can be compared with the usual '<', '>' and '=' relational operator.
The date format option in the main program does not affect the format in the script language.

Return value
<today> contains the system current date in MM-DD-YYYY format.

See also
Time

Example
DATE today
IF today>="01-01-91" AND today<"01-05-91"

PRINT "Happy New Year!"
ENDIF

Delay

Syntax
DELAY t

Description
Suspends script execution for an interval.
With a call to DELAY, the script program is suspended from execution for the number of tenth seconds
specified by <t>.

Example
DELAY 15 ; wait for one and a half second

Delete

Syntax
DELETE filename

Description
Deletes one or more files.
DELETE deletes one or more files specified by <filename>.

Wildcards are allowed in <filename>.

Return value
On successful completion, SUCCESS is set to TRUE; otherwise, SUCCESS is FALSE.

See also
FileExist, Rename

FileExist

Syntax
FILEEXIST filename,existFlag

Description
Determines if a file or directory is exist.
FILEEXIST checks the file named by <filename> to determines if it is exists. Wildcards are allowed in
<filename>.

Return value
If the file is exist, <existFlag> is set to TRUE; otherwise, <existFlag> is FALSE.

See also
Delete, Rename

FileSize

Syntax
FILESIZE filename,size

Description
Gets file size in bytes.
FILESIZE returns the length, in bytes, of the file specified by <filename>.

Return value
If <filename> exist, <size> is set to the file size and SUCCESS is set to TRUE; otherwise, SUCCESS is
set to FALSE.

See also
Read, Seek

Get

Syntax
GET s

Description
Gets a string from remote system.
GET collects a string, terminated by a carriage return, from the remote system.
GET does not eliminate the BackSpace character [Ctrl H] from the input, therefore a CONCAT
statement should be perform after the GET statement to eliminate the BackSpace character.

Return value
<s> contains the collected string. The ending carriage return is discarded.

See also
GetCh

Example
GET s ; get a string from remote system
filename = "" ; prepare the variable
CONCAT filename,s ; eliminate the BackSpace

GetCh

Syntax
GETCH ch

Description
Gets a character from remote system.
GETCH gets a single character from the remote system. If no character is available, GETCH return
immediately. GETCH statement, like the INKEY$ function in BASIC, does not wait.

Return value
If a character is successfully read into <ch>, SUCCESS is set to TRUE; otherwise, SUCCESS is set to
FALSE.

See also
Get

Example
REPEAT ; to wait for a character,

GETCH ch ; repeat the GETCH until
UNTIL SUCCESS ; a character is available

HangUp

Syntax
HANGUP

Description
HangUps the modem.
HANGUP sends the modem hangup string to modem. If the hangup string is the "^#" macro sequence,
Telemate hangs up the modem by dropping DTR.

Image

Syntax
IMAGE
IMAGE filename

Description
Captures the terminal screen into an image file.
IMAGE captures the terminal screen into an image file by appending the screen to the file <filename>. If
no <filename> is supplied, the last image filename is used.

See also
LogOn

Input

Syntax
INPUT s

Description
Reads a string from the keyboard.
INPUT collects a string, terminated by a [Enter], from the keyboard.
When the INPUT statement in the script is executed, the following input characters are placed in a
keyboard buffer no matter if they are to be read or not. As a result, they NOT sent to the remote system
automatically. It is important to give up the control of keyboard whenever no more keyboard input is
needed using the CLEAR KEY statement.
INPUT does not eliminate the BackSpace character [Ctrl H] from the input, therefore a CONCAT
statement should be perform after the INPUT statement to elimate the BackSpace character.

Return value
<s> contains the collected string. The ending [Enter] is discarded.

See also
InputCh

Example
INPUT s ; get a string from remote system
filename = "" ; prepare the variable
CONCAT filename,s ; eliminate the BackSpace
CLEAR KEY ; give up keyboard control such that
 ; following keys are sent to remote
 ; system automatically

InputCh

Syntax
INPUTCH ch

Description
Reads a character from the keyboard.
INPUTCH gets a single character from the keyboard. If no character is available, INPUTCH returns
immediately.
INPUTCH statement, like the INKEY$ function in BASIC, does not wait. When the INPUTCH statement
in the script is executed, the following input characters are placed in a keyboard buffer no matter if they
are to be read or not. As a result, they are NOT sent to the remote system automatically. It is important
to give up the control of keyboard whenever no more keyboard input is needed using the CLEAR KEY
statement.

Return value
If a character is successfully read into <ch>, SUCCESS is set to TRUE; otherwise, SUCCESS is set to
FALSE.

See also
Input

Example
REPEAT ; to wait for a character,

INPUTCH ch ; repeat the INPUTCH until
UNTIL SUCCESS ; a character is available
CLEAR KEY ; give up keyboard control such that
 ; following keys are sent to remote
 ; system automatically

Itoa

Syntax
ITOA i,s

Description
Converts an integer to a string.
ITOA converts the integer <i> to a string and store it into <s>.

Return value
<s> contains the string representation of the value <i>.

See also
Atoi

Length

Syntax
LENGTH s,len

Description
Calculates the length of a string.

Return value
<len> is the length of <s>. If <s> is an empty, <len> is 0.

LogOff

Syntax
LOGOFF

Description
Closes the log file.
LOGOFF closes a previous opened log file.

Return value
LOGGING is set to 0 (FALSE).

See also
LogOn, LogPause, LogResume

LogOn

Syntax
LOGON
LOGON filename

Description
Opens a log file and captures incoming data into the file.
LOGON opens the log file <filename> and starts capturing the incoming data into it.
If <filename> is not supplied, the filename specified in the last LOGON statement is used. If there is no
prevous LOGON statement, the one in the log file field of the phone directory is used. If this field is
empty, "TM.LOG" is used.

Return value
Upon successful completion, SUCCESS is set to TRUE and LOGGING is set to 1 (TRUE); otherwise,
SUCCESS is 0 (FALSE).

See also
LogOff, LogPause, LogResume

LogPause

Syntax
LOGPAUSE

Description
Pauses capturing incoming data into the log file.
LOGPAUSE pauses capturing incoming data. The LOGGING variable should be checked to determine
if a log file open. A value of 1 indicates a log file is open.

Return value
LOGGING is set to 2.

See also
LogOff, LogOn, LogResume

LogResume

Syntax
LOGRESUME

Description
Resumes capturing incoming data into the log file.
LOGRESUME resumes capturing incoming data. The LOGGING variable should be checked to
determine if the log file is in pause. A value of 2 indicates the log file is in pause.

Return value
LOGGING is set to 1.

See also
LogOff, LogOn, LogPause

Open

Syntax
OPEN filename

Description
Opens a text file for reading or writing.
OPEN opens the text file <filename> for reading and writing and strip the ending EOF [Ctrl Z].
OPEN closes the previously open file automatically if no CLOSE command is issued to that file.

Return value
Upon successful completion, SUCCESS is set to TRUE. If <filename> does not exist, SUCCESS is
FALSE.

See also
Append, Close, Create, FileExist, FileSize, Read, Seek, Tell, Write

Example
OPEN "MYFILE" ; open the file "MYFILE"
IF NOT SUCCESS ; report if not found

PRINT "File not found."
STOP

ENDIF
READ s ; read the first line
PRINT s ; print it
CLOSE ; close the file

OPEN "FILE1" ; open FILE1
OPEN "FILE2" ; close FILE1 and open FILE2

Print

Syntax
PRINT
PRINT s
PRINT i
PRINT s1,s2,i1,i2,s3, ...
PRINT s1,s2,i1,i2,s3, ... ,

Description
Prints integers or strings to the terminal screen.
PRINT outputs variables or constants of integer or string to the terminal screen. Each two arguments
are separated by a comma.
PRINT supplies a newline by default. If a comma follows, no newline is supplied.

Example
PRINT "hello, world" ; say hello to everyone
PRINT "hello, ", ; say that again

PRINT "world",
PRINT

PRINT "x = ",x ; output multiple strings or integers
PRINT "My name is ",firstName," ",lastName

Put

Syntax
PUT
PUT s
PUT i
PUT s1,s2,i1,i2,s3, ...
PUT s1,s2,i1,i2,s3, ... ,

Description
Sends strings or integers to the remote system.
Like the PRINT statement, PUT sends variables or constants of types integer or string to the remote
system. Each two arguments are separated by a comma. Integers are converted to their string
representation automatically before transmitting to the remote system.
PUT supplies a carriage return [Ctrl M] by default. If a comma follows, no carriage return is supplied.
Control characters can be sent by using the '^' prefix. For example, "^C" represents the [Ctrl C], "^M"
the carriage return [Enter] and "^[" the Escape key [Esc].
The following macro symbol have special functions.

Symbol Function
^^ Send the character '^'
^~ Send the character '~'
~ Pause 0.5 second
^! Send the user ID from the dial entry
^& Send the password from the dial entry
^$ Send the memo from the dial entry
^(Initialize the modem
^) Switch the modem to answer mode
^* Hang up modem
^# Drop DTR
^% Send break signal

See also
Waitfor

Example
PUT "first last" ; transmit first name and last name
 ; then a carriage return (^M)
PUT "first ", ; same as above
PUT "last",
PUT

PUT ; these two lines are
PUT "^M", ; equivalent
firstName = "first" ; set first and last name
lastName = "last"
password = "^&" ; use the password field in TM.FON
PUT firstName," ",lastName,"^M~~~~",password
 ; send name, [Enter], wait for 2 seconds
 ; then send the password, [Enter]

PUT "~^#~~^)", ; wait 0.5 second, drop DTR,
 ; wait 1 second, then sends the
 ; modem answer string

Query

Syntax
QUERY <OPTION>,<VALUE>

Description
Queries option value.
The QUERY statement gives you the ability to peek most of the system options.
All the options that the SET command accept can be queried by the QUERY command.

Option Value Description
AutoStop 0 / 1 return the AutoStop flag
This command should be used to store the value of an option before modifying the option and then
restore the option to its original before the execution stops.

See also
Set

Example
INTEGER flag
QUERY AutoStop, flag ; query the AutoStop flag
PRINT flag

Read

Syntax
READ s

Description
Reads a string from a text file.
READ reads characters from the file into <s>.
READ does not place the newline sequence CR-LF into the string.

Return value

On success, <s> contains the string read and SUCCESS is set to TRUE. SUCCESS is FALSE on end-
of-file or error.

See also
Close, Open, ReadCh, Seek, Tell

Example
OPEN "MYFILE" ; count lines in the file MYFILE
IF NOT SUCCESS

PRINT "File not found."
STOP ; stop if file not found

ENDIF
n = 0 ; number of line = 0
READ str ; read a line
WHILE SUCCESS ; repeat until end of file

n = n + 1 ; increase counter
READ str ; read the next string

ENDWHILE
CLOSE ; close the file
PRINT "There are ",n," lines in the file"
OPEN "TM.FON" ; read a record from the phone directory
recno = 10 ; read the record #10
reclen = 131 ; record length of a entry
SEEK recno*reclen ; seek to the record position
READ record ; read the record
CLOSE

ReadCh

Syntax
READCH ch

Description
Reads a character from a text file.
READCH reads a single character from the file into <ch>.
In a text file, a CR [Ctrl M] followed by a LF [Ctrl J] indicates end-of-line.

Return value
On success, <ch> contains the character read and SUCCESS is set to TRUE. SUCCESS is FALSE on
end-of-file or error.

See also
Close, Open, Read, Seek, Tell

Receive

Syntax
RECEIVE protocol
RECEIVE protocol,filename

Description
Receives (Downloads) one or more files from the remote system.
RECEIVE receives (download) one or more files from the remote system using the protocol <protocol>.
<protocol> can be one of the following or the menu key for external protocol.

Protocol Filename needed
"Zmodem" No
"Ymodem" No
"Ymodem-G" No
"Xmodem" Yes
"Xmodem-CRC" Yes
"Xmodem-1K" Yes
For protocols, such as Xmodem, which does not pass the name, <filename> should contains the name
being received. Wildcards are not allowed. If <filename> is "" and <GuessFile> option is on, the
guessing name is used.
Zmodem has the ability to start automatically which is called Zmodem AutoDownload - the
<zAutoDownload> option. To prevent the download starts before the command RECEIVE "Z" is issued,
the <zAutoDownload> option should be turned off before telling the remote system to start the transfer.

Return value
If the file transfer is successful, SUCCESS is set to TRUE; SUCCESS is FALSE if the transfer abort.

See also
Send, Waitfor

Example
RECEIVE "Xmodem-CRC","file.zip" ; Xmodem needs the filename
RECEIVE "Ymodem" ; Ymodem doesnt

RECIEVE "Xmodem-CRC","" ; use the guessing name as filename

WAITFOR "command",10 ; the remote system to send the files,
PUT "d z *.zip" ; otherwise, the systems AutoDownload
RECEIVE "Zmodem" ; procedure will take the control and
 ; the RECEIVE command will return a
 ; wrong SUCCESS value, after the
IF SUCCESS

PRINT "File received successfully"
ELSE

PRINT "File transfer aborted"
ENDIF

Rename

Syntax
RENAME oldname,newname

Description
Renames a file.
RENAME changes the name of a file from <oldname> to <newname>.
Directories in <oldname> and <newname> need not be the same, therefore, RENAME can be used to
move a file from one directory to another. Wildcards are not allowed.

Return value
On successfully renameing the file, SUCCESS is set to TRUE; otherwise, SUCCESS is FALSE.

See also
Delete, FileExist

Seek

Syntax
SEEK filepos

Description
Repositions the file pointer.
SEEK sets the file pointer to the new position <filepos>. At the beginning of a file, the file pointer is 0.
If <filepos> is -1, the file pointer is moved to the end of the file.

Return value
If the pointer is successfully moved, SUCCESS is set to TRUE; otherwise, SUCCESS is FALSE.

See also
Read, ReadCh, Tell, Write

Send

Syntax
SEND protocol,filenames

Description
Sends (uploads) one or more files to remote system.
SEND sends (uploads) one or more files to the remote system using the protocol <protocol>.
<protocol> can be one of the following or the menu key for external protocol.

Protocol Send multiple files
"Zmodem" Yes
"Ymodem" Yes
"Ymodem-G" Yes
"Xmodem" No
"Xmodem-CRC" No
"Xmodem-1K" No
<filenames> is a list of filenames to be sent, wildcard characters * and ? can be used. If <filename> is ""
and filename guessing option is on, the guessing name is used. Multiple files are separated by a space.
For example,
"\TMW\TMW100.ZIP \TMW\README.TXT"
"*.ZIP \UTIL*.EXE *.TXT"

For protocols, such as Xmodem, which cannot transfer multiple files, only the first file in <filenames> is
used.

Return value
If the file transfer is successful, SUCCESS is set to TRUE; SUCCESS is FALSE if the transfer abort.

See also
Receive, Waitfor

Example
SEND "Ymodem" ; use the guessing name as filename
SEND "Zmodem","*.rep" ; send multiple files

IF SUCCESS
PRINT "File sent successfully"

ELSE
PRINT "File transfer aborted"

ENDIF

Set

Syntax
SET <OPTION>,<VALUE>
SET <OPTION>,<TOKEN>

Description
Sets option value.
The SET statement gives you control over many of the system options. The possible options and values
are listed below.

Option Value Description
AutoStop Off (0)

On (1)
when On, the script will stop
automatically upon carrier lost,
this setting is reset to Off at the
beginning of every script. This
flag is usually set on the very
beginning of a script

Example
SET AutoStop, On ; stop the script when disconnected

StrDel

Syntax
STRDEL str,pos,count

Description
Deletes characters from a string.
STRDEL deletes <count> characters from the position <pos> of the string <str>.
The first character position is 1.

Return value
<str> contains the new string.

See also
Concat, Length, StrIns, StrPos, StrSet, SubStr

Example
str = "abcXYZdef"
STRDEL str,4,3 ; delete "XYZ"
PRINT str ; "abcdef"

StrIns

Syntax
STRINS str,substr,pos

Description
Inserts a string into another string.
STRINS inserts a string <substr> into another string <str> at position <pos>.
If <pos> is larger than the length of <str>, the gap is filled with spaces. The first character position is 1.

Return value

<str> contains the new string.

See also
Concat, Length, StrDel, StrPos, StrSet, SubStr

Example
str = "abcdef"
STRINS str,"XYZ",4 ; insert "XYZ"
PRINT str ; "abcXYZdef"

str = "abc"
STRINS str,"xyz",10 ; <count> is larger than the length of <str>
PRINT str ; "abc xyz"

StrPos

Syntax
STRPOS str,substr,pos

Description
Scans a string for the occurrence of a given substring.
STRPOS scans <str> for the first occurrence of the substring <substr>.    Case is not sensitive.
The first character position is 1.

Return value
If <substr> is a substring of <str>, <pos> is the position of the substring; otherwise, <pos> is 0.

See also
Concat, Length, StrDel, StrIns, StrSet, SubStr

Example
STRPOS "abcdef","def",pos
PRINT pos ; 4

StrSet

Syntax
STRSET str,ch,pos,count

Description
Sets part of a string to a given character.
STRSET sets the string <str> starting from position <pos> with <count> character <ch>.
If <pos> is larger than the length of <str>, the gap is filled with spaces. The first character position is 1.

Return value
<str> contains the new string.

See also

Concat, Length, StrDel, StrPos, StrIns, SubStr

Example
str = "abc"
STRSET str,"X",3,10
PRINT str ; "abXXXXXXXXXX"

SubStr

Syntax
SUBSTR src,pos,count,dest

Description
Returns a substring from a given string.
SUBSTR returns a substring in the string <src> starting at <pos> of length <count> into the string
<dest>.
The first character position is 1.

Return value
<dest> contains the substring.

See also
Concat, Length, StrDel, StrPos, StrIns, StrSet

Example
SUBSTR "abcdef",1,3,dest
PRINT dest ; "abc"

Tell

Syntax
TELL filepos

Description
Returns the current file pointer.
TELL returns the current file pointer. <filepos> is measured in bytes from the beginning of the file. At the
beginning of the file, <filepos> is 0.
Sometime it is neccessary to open more than one file, you can implement it by storing the file position
of the original file, then restore it after the other file operation is completed.

Return value
<filepos> is the current file pointer.

See also
Seek, Read, Write

Example
i = 1

filepos = 0 ; at at beginning of file
WHILE i<=10

OPEN "bbsname" ; open data file
SEEK filepos ; move the previous position
READ name ; read a bbs name
TELL filepose ; store the current position
CLOSE ; close the file
PhoneFind name,number ; find the board in TM.FON

 ; suppose the PhoneFind procedure
 ; open the TM.FON

IF number<>0 ; yes, it is in TM.FON
PRINT name," found is entry #",number

ENDIF
ENDWHILE

Time

Syntax
TIME now

Description
Gets system time.
TIME fills the string <now> with the current time.
Times can be compared with the usual '<', '>' and '=' relational operator.

Return value
<now> contains the system current date in HH:MM:SS 24 hour format.

See also
Date

Example
TIME now
IF now>"07:00:00" AND now<="07:59:59"

PRINT "Good morning."
ENDIF

Waitfor

Syntax
WAITFOR t
WAITFOR s1,s2, ... , sN
WAITFOR s1,s2, ... , sN, t

Description
Waits for one of the given strings from the remote system.
The 'WAITFOR t' format set the default waiting time to <t>, in second. If <t> is 0, no time checking is
performed. If <t> is -1, no time checking is performed, but the waiting time is considered to be

exceeded when a key is hit.
The 'WAITFOR s1,s2, ... , sN' format waits until one of the given string is received from the remote
system or the default waiting time exceeded.
The 'WAITFOR s1,s2, ... , sN,t' format set the default waiting time to <t>, in second and waits until one
of the given string is received from the remote system or the waiting time exceeded.
Case is not sensitive when comparing the given string with the characters received from the remote
system.
Sometimes the remote system need a slight delay between the prompt and the response, you can use
DELAY or the "~" half-second marco before the PUT command.

Return value
If the waiting time exceeded, FOUND is set to 0 (FALSE); otherwise, FOUND is set the string number of
the matched string.

See also
Delay, Put, Receive, Send, WaitUntil, When, WhenIdle

Example
WAITFOR "first",30 ; wait for "first" in 30 seconds
IF NOT FOUND

PRINT "Not found." ; if not found, stop
STOP

ELSE
DELAY 5
PUT "^!" ; else send the user ID

ENDIF

; The following is usually placed at the end of a script file.
; It waits for disconnection and print which string is found.
WAITFOR "NO CARRIER","thanks for calling","hang up now",0
PRINT "Ending connection"

; The following simulates the AutoDownload feature for protocols
; does not support this feature.
WAITFOR "Download protocol is",0
WAITFOR "Xmodem","Ymodem",5
IF FOUND

SWITCH FOUND
CASE 1: RECEIVE "Xmodem-CRC","" ; Xmodem, use guessing name
CASE 2: RECEIVE "Ymodem" ; Ymodem download

ENDSWITCH
ENDIF

WaitUntil

Syntax
WAITUNTIL t

Description
Waits until the specified time exceeded.
WAITUNTIL pauses the execution and waits until the time <t>, in HH:MM:SS 24 hour format, exceeded.

See also
Waitfor

Example
WAITUNTIL "23:10:30" ; pause until 11:10:30pm.

When

Syntax
WHEN <waitString>,<resonseString>
WHEN <waitString>,""

Description
Sends a response string to the remote system whenever a given string is matched.
The WHEN statement is usually used in the beginning of the script file and it is active until the end of
the script file.
Whenever the <waitString> is received from the remote system, the <responseString> is transmitted.
The response string can be changed. To cancel a WHEN statement, "" should be put in in
<responseString>.
Case is not sensitive when comparing the <waitString> with the characters received from the remote
system.

See also
Waitfor, WhenIdle

Example
WHEN "Press ENTER","^M" ; set response strings
WHEN "More [y,n]?","y^M"
WAITFOR "main menu",0 ; wait for "main menu"
WHEN "Press ENTER","" ; cancel response string
WHEN "More [y,n]?","n^M" ; change response string
REPEAT ; make the WHEN statements
UNTIL NOT CONNECTED ; active until disconnected.

WhenIdle

Syntax
WHENIDLE t,s

Description
Sends a string to the remote system if there is no COM Input/Output in the specified time.
WHENIDLE monitors the COM Input/Output and sends the string <s> to the remote system if COM I/O
is idle for the specified time <t>, in second.
Like the WHEN statement, WHENIDLE is active until the end of the script program.
<s> can contain macro sequence, such as "^*", the modem hangup string.
If <t> is equal to 0 or <s> is a empty string, the WHENIDLE statement will be cancel.

See also
Waitfor, When

Example
WAITFOR "message command",0 ; wait for command prompt
PUT "r" ; read message
WHENIDLE 30," ^H" ; prevent inactive timeout
REPEAT ; make the WHENIDLE statement
UNTIL NOT CONNECTED ; active until disconnected

; There are several usages of this command. The above example
; shows the way to prevent inactive timeout. However, it can
; also be used to handle inactive timeout in the host script
; mode. For example,

WHENIDLE 180,"Inactive timeout^M^J~^*"

; this command checks if the COM I/O is idle for 3 minuates,
; sends a timeout message to the user and, finally, sends the
; hangup string, the hangup macro sequence "^*", to the modem.

; Sometimes the phone line is too noisy that some characters
; cannot be received correctly. The worst case is that those
; characters appear in the WAITFOR string. To prevent inactive
; timeout or waste of connect time, the WHENIDLE can be used as
; follows.

WHENIDLE 5,"^M" ; send a carriage return if idle
 ; for 5 seconds
WAITFOR "first name" ; now start the log on sequence
PUT "^!"
WAITFOR "password" ; send password macro
PUT "^&"
WHENIDLE 0,"" ; cancel the WHENIDLE statement

Write

Syntax
WRITE
WRITE s
WRITE i
WRITE s1,s2,i1,i2,s3, ...
WRITE s1,s2,i1,i2,s3, ... ,

Description
Writes integers or strings to a text file.
Like the PRINT statement, WRITE sends variables or constants of types integer or string to the remote
system. Each two arguments are separated by a comma. Integers are converted to                            their
string representation automatically before transmitting to the remote system.
WRITE supplies a carriage return [Ctrl M] and a line feed [Ctrl J] by default. If a comma follows, no
carriage return and line feed is supplied.

Return value
Upon successful completion, SUCCESS is set to TRUE; otherwise, SUCCESS is FALSE.

See also
Read, Seek, Tell

Example
CREATE "COUNT" ; write a hundred line into "COUNT"
counter = 1 ; initiate the counter
WHILE counter<=100 ; repeat 100 times

RITE "This is line ",counter
NDWHILE

CLOSE ; close the file

