
Features

XVI32 is a free hex-editor with the following main features. Especially note the 
highlighted advantages.
4 Data Inspector to show permanently decoding of numbers
4 Built-in XVI32script interpreter allows to automate editing or share patches. More...
4 Computing of CRC16 (standard) and CRC32 (PKZIP compatible) checksums for complete file and 

selected block (only if block is currently selected)
4 Easily works with huge files. Try to open a 60 MB sized text file with some other hex editors (not to 

speak about Wordpad), then use XVI32...
4 XVI32 allows to edit files up to 2 GB (enough virtual memory provided, of course)
4 For your convenience, XVI32 stores settings and last used search strings etc. in XVI32.INI file
4 Progress indication in percent for most operations
4 You can abort nearly all operations (reading/writing files, search, replace, print...)
4 Display of both text (ASCII/ANSI) and hexadecimal representation
4 Two synchronous cursors in text and hex area
4 Wheel mouse support
4 Fully resizeable window (change number of rows and columns)
4 Font and font size adjustable
4 Overwrite or insert characters
4 Insert text or hex string n times
4 Switch byte offset (address) of first byte between 0 or 1 to examine also record structure of plain text 

files 
4 Search text or hex string, e.g. find "this text" or find "0D 0A" 
4 Search optionally with joker (wildcard) char that will match any character, e.g. find "A.C" or "00 2E 

2E 00" where "." = "2E" (user-defined) stands for any character
4 Fast searching algorithm (Quicksearch) for both search directions (down/up)
4 Count occurences of text or hex string
4 Replace text or hex string, e.g. replace "0D 0A" by "0A" or replace "0D 0A" by text "EOL"
4 Simplified search for Unicode Latin (UTF-16) strings
4 Extremely fast "replace all" mode (if needed, additional memory is allocated beforehead, not at every 

single replacing operation)
4 Auto-fill feature to copy bytes from current address into input field for hex string using right arrow key
4 Character conversion using self-defined character table
4 Easy converting of text to hex string in dialogs (e.g. "abc" -> "61 62 63")
4 Decoding and encoding of 1, 2, 4, and 8 byte integers and floats in 2 possible byte orders 

(optionally shown permanently by Data Inspector)
4 Bit manipulation (view or set bits)
4 Open file in Read Only mode (e.g. if opened by another application or to avoid unintentional 

modifications)
4 Insert file contents into file



4 Write block to file
4 Copy, move or delete block
4 Clipboard support
4 Goto address (absolute or relative up/down)
4 Bookmarks
4 Enter jump width and jump up/down (useful for files with fixed record length)
4 Patch BORLAND PASCAL 7.0 EXE files for execution on processors > 200 MHz
4 Printing with preview or print to file
4 Easily access most recently used files
4 No setup programm needed, doesn't write any data to registry
4 And last, but not least: XVI32 is free!

© 2002 by Christian Maas - All Rights Reserved
chmaas@handshake.de
www.chmaas.handshake.de

XVI32 was built using Borland Delphi.



History
At the begin of the 90s, my first hex editor XVI was developed under TURBO PASCAL (XVI stands for the
roman notation of the number 16). This was the ancestor of XVI32, limited to file sizes of 64 KB. In 1994, I
made the step towards object oriented programming with BORLAND PASCAL 6.0 using TURBO VISION 
as user interface. At this time, I developed TVXVI, still a real mode program, but now able to edit files up 
to around 400 KB by using an array of 64 KB sized arrays. Both XVI and TVXVI were never released to 
the public.
From 1995 until now, I developed with DELPHI 1.0, 2.0 and 4.0. Of course there was immediately the 
idea to develop a 32 bit version of XVI, but it was not before mid 1998 when I began this project.



Licence Agreement and Copyright
IMPORTANT - READ CAREFULLY
This license and disclaimer statement constitutes a legal agreement ("License Agreement") between you 
(either as an individual or a single entity) and Christian Maas (the "Author") for this software product 
("Software"), including any software, media, and accompanying on-line or printed documentation.

BY DOWNLOADING, INSTALLING, COPYING, OR OTHERWISE USING THE SOFTWARE, YOU 
AGREE TO BE BOUND BY ALL OF THE TERMS AND CONDITIONS OF THIS LICENSE AND 
DISCLAIMER AGREEMENT.

1. This software is freeware. You can use this software royalty-free for private and commercial 
purposes.

2. You can freely distribute copies of the main archive as long as no alterations are made to the 
contents and no charge is raised except a reasonable fee for distributing costs.

3. You may not modify, reverse engineer, decompile, or disassemble the object code portions of this 
software.

4. This Software is owned by Christian Maas and is protected by copyright law and international 
copyright treaty. Therefore, you must treat this Software like any other copyrighted material (e.g. a 
book).

5. This software is provided "as is" and without any warranties expressed or implied, including, but not 
limited to, implied warranties of fitness for a particular purpose.

6. In no event shall the author be liable for any damages whatsoever (including, without limitation, 
damages for loss of business profits, business interruption, loss of business information, or other 
pecuniary loss) arising out of the use of or inability to use this software or documentation, even if the 
author has been advised of the possibility of such damages.

7. Any feedback given to the author will be treated as non-confidential. The author may use any 
feedback free of charge without limitation.

© 2002 by Christian Maas - All Rights Reserved
chmaas@handshake.de
www.chmaas.handshake.de



XVI32 Window
This is XVI32 windows after a file has been opened. Click on the picture to get more information.



Menus
There are the following main menu items:

File The common file commands to open, save etc.
Edit Block commands, deleting and inserting
Search Search, count and replace
Address Address related commands (e.g. goto...)
Bookmarks Manage named bookmarks for up to 9 addresses
Tools Switch text and overwrite mode, tool functions (encode/decode number, 

patch BP 7.0 executables) and options
XVIScript Edit or execute XVIscript
Help The common help menu

This is the toolbar providing quick access to some often used functions. You can turn displaying on and 
off using the menu Tools|Options



Menu "File"
New Create a new file (EOF char generated depending on options 

settings)
Open Open file

If you check the appropriate box in the open dialog, the file will
be opened in Read Only mode (e.g. to avoid unintentional 
modifications). This mode is also suggested if a file is already 
opened by another application. In Read Only mode, the Save 
menu and tool button are disabled, but you can still edit the file
and use Save As

Reload Open current file again
Reopen Select a previously opened file to reopen it (history count 

depending on options settings)
Save Save file
Save As Save file under new name
Close Close file
Insert Insert contents of other file before current address
Write Block Write the currently marked block (refer to menu edit) to file
Print Print (with preview)
Exit Exit XVI32

Note: Since version 2.30, only the Windows standard dialogs to open or save files are available. The 
XVI32 proprietary dialogs are no longer supported.



Menu "Edit"
Insert string Enter text or hex string to be inserted <n> times
Overwrite string Overwrite existing characters with a text or hex string
Block mark Mark begin or end of block
Block <n> chars Mark block consisting of <n> chars beginning at current address
Block unmark Unmark current block
Block delete Delete current block
Block copy Copy block before current address
Block copy/overwrite Copy block at current address overwriting existing chars
Block move Move block before current address
Delete from cursor Delete all chars from current address (including) until EOF
Delete to cursor Delete all chars from begin of file until current address 

(including)
Clipboard Access to the clipboard functions; special menu items are

4 "Copy as hex string" to copy selected block as hex string (e.g.
"ABC" as "41 42 43")

4 "Paste from hex string” to paste a hex string like "41 42 43" or
"414243"

Read how to mark a block.



Menu "Search"
Find Find text or hex string
Find again down Repeat last search operation downwards
Find again up Repeat last search operation upwards
Count Count occurrences of text or hex string
Replace Replace text or hex string
Replace again down Repeat last replace operation downwards
Replace undo Undo last replace operation
Character conversion Convert characters from one character set into another, e.g. 

from DOS to Windows, by using a user-defined character 
conversion table

Menu "Address"
Goto Go to an absolute or relative address
Jump width Enter a number of bytes to jump down or up using one of the 

following menu items
Jump down Go previously entered number of bytes downwards
Jump up Go previously entered number of bytes upwards
Remember address Remember current address. You can also use bookmarks to 

remember up to 9 addresses.
Goto remembered Go to previously remembered address
Display difference Display difference <current address> - <remembered address>



Menu "Tools"
Text mode Toggle between text mode (text area is active, address is 

displayed in decimal format) and hex mode (hex area is active, 
address is displayed in hexadecimal format)

Overwrite Turn overwrite mode on (input is overwriting existing characters)
or off (input is inserted before current address)

Data Inspector Show or hide Data Inspector to view permanently decoded 
numbers

Decode number Decode from current address 1 byte as shortint, 2 bytes as 
integer and word, 4 bytes as longint, 4 and 8 bytes as float 
(provided bytes are existing); result can be copied into clipboard

Encode number Encode number as shortint, byte, word, integer, longint, or float; 
result can overwrite existing characters, be inserted before 
current address, or only be displayed in dialog

Bit manipulation Allows to view or set the bits of the byte at the current address
CRC Computing of CRC16 (standard) and CRC32 (PKZIP 

compatible) checksums for complete file and selected block (if 
block is currently selected).

Patch BP 7.0 EXE Due to a bug in unit CRT, BORLAND PASCAL 7.0 executables 
can't be executed on CPUs over 200 MHz. Simply open the file,
select this command and save the file. Note: The bug is fixed by
changing hex string F7 D0 F7 D2 B9 37 to F7 D0 F7 D2 
B9 7E

XVIscript Invoke XVIscript interpreter to edit, load/save script, perform 
syntax check on script, execute script.

Options Change general options, appearance, Data Inspector settings, 
and manage shortcut link 

Menu "XVIScript"
Editor... Invoke the XVIscript editor window to edit, load, save, syntax 

check or execute a script by built-in interpreter
Execute active Immediate execution of the script currently loaded within the 

script editor window

More about XVIscript



Menu "Help"
Contents Invokes online help
About Display information about the author and memory state (current 

file size, current allocated memory)



Installation
No special installation procedure is required. Just unzip the file XVI32.ZIP which contains the following 
files:

XVI32.EXE Executable
XVI32U.HLP Help file
XVI32U.CNT Help contents file
*.XCT Included files for character conversion
README.TXT Information about installation

Copy these files into a directory of your choice. No data will be written to registry, no DLLs are copied to 
your hard disk. The user defined settings are stored in a file XVI32.INI which is located in the same 
directory as the executable.
After Installation, you should go to the options page and create a shortcut link in Windows' SendTo folder. 
This enables you to right-click on any file in Windows Explorer and choose Send It There -> XVI32 to 
open it with XVI32.



Using Keys
Pos1 Go to first character of line
End Go to last character of line
CTRL-Pos1 Go to first character of page
CTRL-End Go to last character of page
PgUp Go one page up
PgDown Go one page down
CTRL-PgUp Go to first page of file
CTRL-PgDown Go to last page of file
Ins Switch between insert/overwrite mode
Tab Switch between text and hex mode (enabling either input as text or 

hex)

The shortcuts of common menu commands are indicated in the menu.



If this radio button is selected, the cursor automatically goes to the corresponding edit field where you can
enter a text string.



If this radio button is selected, the cursor automatically goes to the corresponding edit field where you can
enter a hex string (e.g. "0D 0A" for carriage return/line feed characters).



After entering text in the appropriate text edit field (e.g. "abc"), you can convert the text to the 
corresponding hex string ("61 62 63") using this button.



If this radio button is selected, the number in the corresponding edit field can be entered in decimal 
system. If the edit fields contains a hexadecimal value, it will automatically be converted.



If this radio button is selected, the number in the corresponding edit field can be entered in hexadecimal 
system. If the edit fields contains a decimal value, it will automatically be converted.



Check this box if search should be case sensitive according to the currently installed language driver. 
Note: Checking this option will increase search speed.



A search string can contain joker (wildcard) chars if the hexadecimal value of the desired joker char is 
entered in the appropriate edit field (default is 2E for ".") and the corresponding box is checked. A joker 
(wildcard) character will match any character. Note: Searching with joker chars will decrease search 
speed.



Search can be carried out downwards or upwards.



Replace all occurrences from current address until end of file without confirmation.



The target address to go to is
4 the indicated address (absolute)
4 the current address plus the indicated address (relative down)
4 the current address minus the indicated address (relative up)



Determines the data type for the integer to be encoded. The byte order (little endian or big-endian) can be
selected via Tools | Options | Data Inspector



The encoding is done in the indicated byte order. The output can be
4 inserted before the current address
4 overwriting existing characters beginning with the current address
4 displayed in the corresponding edit field (file will not be changed)
The byte order can be selected via Tools | Options | Data Inspector.



Here you can enter text (e.g. "abc")



Here you can enter a hex string (e.g. "61 62 63")



Title bar indicating the name of the edited file



Current address in decimal (when in text mode) or hexadecimal format (when in hex mode).
Note: This status panel is blank when no file is opened or file is empty.



Decimal code of character at current address.
Note: This status panel is blank when no file is opened or file is empty.



Indication for mode "Insert" (input is inserted before current address) or "Overwrite" (input is overwriting 
existing characters); switching is possible using <Ins> key or menu Tools | Overwrite



Hint for controls or currently performed operation. Here you can also see an information after a file was 
opened in Read Only mode.



This is the text area where the file contents is displayed in ASCII (if "Terminal" is chosen as font) or ANSI 
representation. If the text area is not grayed, it is enabled, and the file is edited in text mode, i.e. text 
characters are accepted as input.

In text mode, the current address is displayed in the status bar in decimal format.

Click on the disabled area, use the <TAB> key or the Tools | Text mode menu to toggle between text
and hex mode.

You can change the number of rows and columns used for both areas. Simply resize the window or use 
the menu Tools|Options (where you can change font and font size, too). Note that the minimum 
number of rows and columns is 10, whereas the maximum is depending on your screen resolution.



This is the hex area where the file contents is displayed in hexadecimal representation. If the hex area is 
not grayed, it is enabled, and the file is edited in hex mode, i.e. hex characters (0-9, A-F, a-f) are accepted
as input.

In hex mode, the current address is displayed in the status bar in hexadecimal format.

Click on the disabled area, use the <TAB> key or the Tools | Text mode menu to toggle between text
and hex mode.

You can change the number of rows and columns used for both areas. Simply resize the window or use 
the menu Tools|Options (where you can change font and font size, too). Note that the minimum 
number of rows and columns is 10, whereas the maximum is depending on your screen resolution.



Memory usage
XVI32 is loading the complete file into (virtual) memory. Memory is allocated dynamically, i.e. only as 
much memory as needed for the actual file size will be used. To achieve better performance,
4 a minimum of 512 KB is always allocated
4 if the file size is increasing, additional memory is allocated in chunks of 128 KB
4 if file size is decreasing, memory is released in chunks of 128 KB, if possible



4 Address of first byte can be displayed as 0 or 1
4 If "Save file with old date/time" is checked, the time stamp of the original file is not modified when using 
the Save or Save as commands
4 The item count of File | Reopen history can be adjusted between 1 and 9
4 If "Create new file with EOF char" is checked, File | New automatically generates the EOF char $1A.



4 Select the desired font using the font combo box
4 Adjust font size
4 Select color of chars in block
4 Adjust number of rows and columns (or simply resize XVI32 window)
4 Check "Hide toolbar" to have more space for text and hex representation available
4 Check "Hide Address of Rows" to turn off displaying of the address of the first byte of each row in 
hexadecimal representation
4 Check "Text grid on the left" to revert default position of text and hex area
4 Use the "Defaults" button to restore the original settings.



Using help in dialogs
All dialogs should be self-explaining. In addition, most of them provide context sensitive help. Simply use 
the "What' This?" button [s] to get help on the controls of each dialog.



Miscellaneous
4 Go to the options page to create a shortcut link in Windows' SendTo folder. This enables you to right-
click on any file in Windows Explorer and choose Send It There -> XVI32 to open it with XVI32.
4 When working with large files, inserting of single characters is relatively slow. Therefore, the function 

Edit | Insert string is recommended for inserting complete strings.
4 When you copy data to clipboard using Edit | Clipboard | Copy menu item, they have a XVI32 

binary format that can only be pasted from XVI32, not by other programs. But you can paste this 
binary format as well as text format copied within other applications.

4 Use Edit | Clipboard | Copy as hex string to copy selected block as hex string (e.g. "ABC"
as "41 42 43") to clipboard.

4 For searching and replacing with confirmation, use F3 for locating the next occurrence, decide whether 
to replace or not and press F4 if needed. Proceed pressing F3 - F4 until end of file is reached.

4 You can start XVI32 from command line with parameter, e.g.: XVI32 TEST.TXT starts XVI32 and 
opens the file Test.txt (enclose file name that contains space(s) within quotes, e.g. 
XVI32 "WITH SPACE.TXT")

4 You can open a file using drag and drop from Windows Explorer
4 When scrolling through a file, screen repainting may be slow



Insert string
When working with large files, inserting of chars is relatively slow. Therefore, this function is 
recommended for inserting consecutive chars (strings).

4 Enter a text (e.g. "abc") or hex string (e.g. "61 62 63")
4 Enter how often the string has to be inserted (as decimal or hexadecimal value)

Inserting Unicode strings
If you check the box ”as Unicode Latin”, the string will be internally converted into Unicode Latin (UTF-16)
format as follows:
4 Depending on the options set for the data inspector, little or big endian (UTF-16LE or UTF-16BE) is 
used for coding (as displayed by the label of the check box).
4 For little-endian encoding, a zero byte is inserted after each character
4 For big-endian encoding, a zero byte is inserted before each character

Please use the similar command Overwrite string... if you want to overwrite existing characters.



Find
This function will find the next occurrence of a string beginning at the current address (or at beginning or 
end of file) downwards or upwards.

4 Enter the string to be found as text (e.g. "abc") or hex string (e.g. "61 62 63")
4 For converting text to the corresponding hex string (that you want to change or extend), use the button 

"Text -> Hex"
4 Check the appropriate box if search should be case sensitive according to the currently installed 

language driver (Note: Checking this option will increase search speed)
4 A search string can contain joker (wildcard) chars if the hexadecimal value of the desired joker char is 

entered in the appropriate edit field (default is 2E for ".") and the corresponding box is checked. A 
joker (wildcard) character will match any character. (Note: Searching with joker chars will decrease 
search speed)

4 Select if search is to be carried out downwards or upwards
4 Search can begin at current address ("Cursor") respectively at beginning ("Begin") or end ("End") of file
4 Click on the "OK" button

Subsequently, you can find the next occurrence using Search | Find again down (F3) or Search |
Find again up (SHIFT-F3).

Searching for Unicode strings
If you check the box ”as Unicode Latin”, the string will be internally converted into Unicode Latin (UTF-16)
format as follows:
4 Depending on the options set for the data inspector, little or big endian (UTF-16LE or UTF-16BE) is 
used for coding (as displayed by the label of the check box).
4 For little-endian encoding, a zero byte is inserted after each character
4 For big-endian encoding, a zero byte is inserted before each character



Count
This function will count the occurrence of a string beginning at the current address (or at beginning or end
of file) downwards or upwards.

4 Enter the string to be counted as text (e.g. "abc") or hex string (e.g. "61 62 63")
4 For converting text to the corresponding hex string (that you want to change or extend), use the button 

"Text -> Hex"
4 Check the appropriate box if search should be case sensitive according to the currently installed 

language driver (Note: Checking this option will increase search speed)
4 A search string can contain joker (wildcard) chars if the hexadecimal value of the desired joker char is 

entered in the appropriate edit field (default is 2E for ".") and the corresponding box is checked. A 
joker (wildcard) character will match any character. (Note: Searching with joker chars will decrease 
search speed)

4 Select if counting is to be carried out downwards or upwards
4 Counting can begin at current address ("Cursor") respectively at beginning ("Begin") or end ("End") of 

file
4 Click on the "OK" button

Counting Unicode strings
If you check the box ”as Unicode Latin”, the string will be internally converted into Unicode Latin (UTF-16)
format as follows:
4 Depending on the options set for the data inspector, little or big endian (UTF-16LE or UTF-16BE) is 
used for coding (as displayed by the label of the check box).
4 For little-endian encoding, a zero byte is inserted after each character
4 For big-endian encoding, a zero byte is inserted before each character



Replace
You can replace the next or all occurrences of a string beginning at current address (or at beginning of 
file) until end of file.

4 Enter the string to be replaced as text (e.g. "abc") or hex string (e.g. "61 62 63")
4 For converting text to the corresponding hex string (that you want to change or extend), use the button 

"Text -> Hex"
4 Enter the string to replace with in the same manner
4 Check the appropriate box if search should be case sensitive according to the currently installed 

language driver (Note: Checking this option will increase search speed)
4 A search string can contain joker (wildcard) chars if the hexadecimal value of the desired joker char is 

entered in the appropriate edit field (default is 2E for ".") and the corresponding box is checked. A 
joker (wildcard) character will match any character. (Note: Searching with joker chars will decrease 
search speed)

4 Replacing can begin at current address ("Cursor") respectively at beginning ("Begin") of file
4 Click on the "OK" button to perform one replacement
4 Click on the "Replace all" button to replace all occurrences until end of file without confirmation

Subsequently, you can replace the next occurrence using Search | Replace again down (F4). Note
that you can undo only the last replacement by Search | Replace undo.

In addition, you can find the next occurrence using Search | Find again down (F3) or Search | 
Find again up (SHIFT-F3).

Replacing with confirmation:
4 Use F3 to locate the next occurrence
4 Decide whether to replace or not and press F4 to perform replacing
4 Proceed pressing F3 - F4 until end of file is reached

Searching/Replacing Unicode strings
If you check the box ”as Unicode Latin”, the string will be internally converted into Unicode Latin (UTF-16)
format as follows:
4 Depending on the options set for the data inspector, little or big endian (UTF-16LE or UTF-16BE) is 
used for coding (as displayed by the label of the check box).
4 For little-endian encoding, a zero byte is inserted after each character
4 For big-endian encoding, a zero byte is inserted before each character



Go to
You can go to an absolute or relative (to the current) address. Enter a decimal or hexadecimal value and 
select the appropriate go mode. The target address to go to is
4 the indicated address (absolute)
4 the current address plus the indicated address (relative down)
4 the current address minus the indicated address (relative up)



Encode number
You can encode integers as shortint, byte, word, integer or longint; floats in IEEE format (4 or 8 bytes). 
The result can
4 overwrite existing characters
4 be inserted before current address
4 only be displayed in dialog (file will not be changed)

At first you should select the desired byte order via options. Then proceed as follows:
4 Enter the value of the desired number
4 Select an integer or float type for encoding
4 Select where output will be done

Note to floats
4 You must enter the decimal point according to settings in control panel
4 Valid are both fixed (e.g. -1024.25 or 0.125) and scientific format (e.g. -1.02425E3 or 1.25E-1)



Mark a block
To mark a block of characters, use one of the following three methods:

1. Go to the first character of the desired block and select Edit | Block mark or press CTRL-B. 
Then go to the last character of the desired block and select Edit | Block mark or press CTRL-
B.

2. Go to the first or last character of the desired block, press and hold down SHIFT and use the cursor 
keys to extend the block.

3. Go to the first character of the desired block and select Edit | Block <n> chars to enter the 
number of chars the block should consist of.

A block can be deleted, moved or copied to clipboard.



Search begins at cursor position (if "Cursor" is checked) respectively at beginning ("Begin") or end ("End")
of file.



Character Conversion
This command is used to convert characters from one character set into another, e.g. from DOS to 
Windows, by using a user-defined character conversion table. Converting can start at the first character or
at the current address.
When selected, a window with a grid for the conversion table appears. This table displays in the first 
column all characters from $00 to $FF, whereas the second and the third column contain for the printable 
characters the representation of the character in ANSI respectively ASCII code.
Initially, the right column of the grid is empty. This means that no character will be converted, i.e. no 
replacements will be accomplished.
Supposed you want to convert the character $84 to $E4 (a German "Umlaut" from DOS/ASCII to 
WIN/ANSI). Use one of the following methods:

4 Enter E4 in the right column of the line for character 84 ("char 84, convert to E4")
OR
4 Use drag and drop: drag the field containing 84 ("convert 84...") and drop it to the last column of the line

for character E4 ("...to E4"). During dragging, move the mouse cursor to the upper or lower border of 
the grid if scrolling is needed. Note that after drag and drop, the line where dragging started is filled 
automatically with the character code of the line where dropping took place.

Repeat this for all characters you want to convert. When finished, save your conversion table to file using 
the "Save Table" button. By default, the file will be stored in the directory of the application with the 
extension ".xct" for XVI32 conversion table. Likewise, you can load a table from file.
Use the button "Convert" to perform the conversion starting at the first character or at the current address 
(depending on the setting of radio group "Scope from").
Note: XCT files are plain text, so you can create them also using a text editor. Just write for each 
character to convert a line with the hexadecimal character codes separated by semicolon, e.g. 80;C7 to 
replace character $80 by $C7.
Several XCT files are included.



For any character to convert, enter the new hexadecimal char code in this table. You can also use drag 
and drop, e.g. drag the first column containing 84 ("convert 84...") and drop it to the last column of the line
for character E4 ("...to E4"). An empty column "Convert to" means that no conversion for the appropriate 
character will be performed.



The term comes from 'Gulliver's Travels' by Jonathan Swift. The Lilliputians, being very small, had 
correspondingly small political problems. The Big-Endian and Little-Endian parties debated over whether 
soft-boiled eggs should be opened at the big end or the little end.



Included XCT files
file name used to convert from character set to character set
DOSWIN.XCT DOS codepage 850 Windows codepage 1252
WINDOS.XCT Windows codepage 1252 DOS codepage 850
WINEBCUS.XCT Windows codepage 1252 EBCDIC US
EBCUSWIN.XCT EBCDIC US Windows codepage 1252
WINEBCDE.XCT Windows codepage 1252 EBCDIC DE (Germany/Austria)
EBCDEWIN.XCT EBCDIC DE (Germany/Austria) Windows codepage 1252

Auto-fill feature
This feature facilitates searching or replacing strings.
When the cursor is positioned in an empty input field for a hex string and you press the right arrow key, 
the field will be filled automatically with hex values taken one after another from the current position within
the file:
4 Clear the input field
4 Hold down the right arrow key or press it several times
4 Auto-fill begins with the hex code of the character at the current file position
4 The hex codes of the following characters are filled in, respectively
4 This is feature is available in the Search, Count, Replace and Insert dialogs



Printing
You can select a printer, the font size and various options. Before printing, you will always preview the 
output with the option to print single pages or all pages. During printing it is possible to abort. Optionally, 
you can direct the output to a file.

Printing range
4 only current page
4 current selection (marked block)
4 all pages

Margins
4 in millimeters or inches
4 adjust left, right, top, and bottom margin
4 values below the physical printable area margins will be automatically corrected
4 you can't set the paper size, because the margins are applied to the printer's default paper size

Output format
4 portrait or landscape
4 select or enter number of bytes per row
4 offset in hexadecimal or decimal format (always zero-based, independent from the options settings)
4 print text below (in 2nd line) or on the right side

Output with text on the right side
Offset hex. 00 01 02 03 04 05 06 07
000000000:  41 42 43 44 45 46 47 48 ABCDEFGH
000000008:  49 4A 4B 4C 4D 4E 4F 50 IJKLMNOP
Note: In this case, any non-printable char is printed in text as dot.

Output with text below (in 2nd line)
Offset hex. 00 01 02 03 04 05 06 07
000000000:  41 42 43 44 45 46 47 48
             A  B  C  D  E  F  G  H 
000000008:  49 4A 4B 4C 4D 4E 4F 50
             I  J  K  L  M  N  O  P
Note: In this case, any non-printable char is printed in text as blank.



Print Preview
This windows shows all pages to print. Use the toolbar to
4 scroll through the pages back and forth
4 go to the first or last page
4 quick zoom between full page height or full page width
4 print only currently previewed page
4 print all pages

Left-click with the mouse within the previewed page to magnify, right-click to reduce the visible area. The 
PageUp and PageDown keys can be used to go to the previous and next page, respectively.



these margins are applied to the printer's default paper size



if checked, the output looks like follows:
Offset hex. 00 01 02 03 04 05 06 07
000000000:  41 42 43 44 45 46 47 48
             A  B  C  D  E  F  G  H
000000008:  49 4A 4B 4C 4D 4E 4F 50
             I  J  K  L  M  N  O  P

otherwise, the output looks like follows:
Offset hex. 00 01 02 03 04 05 06 07
000000000:  41 42 43 44 45 46 47 48 ABCDEFGH
000000008:  49 4A 4B 4C 4D 4E 4F 50 IJKLMNOP



please use this option, not a installed text file printer driver which may produce unsuitable output 
depending on the installed text driver



for redirecting output to file, don't use a installed text file printer driver, but check option "redirect output to 
file"



4 Easily create or remove a shortcut link in Windows' SendTo folder.
4 Under Windows 9x, the SendTo folder will usually be C:\Windows\SendTo.
4 Under Windows NT, this is a user specific folder like C:\Windows\Profiles\<USER>\SendTo, i.e. every 
user must create his own shortcut link.
4 Under Windows XP, the folder is located user-specific at C:\Documents and Settings\<USER>\SendTo



This is the menu bar.



Using Clipboard
XVI32 handles two clipboard formats: text and and a particular binary format.
4 The clipboard functions cut and copy are available after a block has been marked. They transfer data in

a XVI32 binary format to clipboard, i.e. these data can only be pasted from XVI32, not by other 
applications.

4 Use Edit | Clipboard | Copy as hex string to copy selected block as hex string (e.g. "ABC"
as "41 42 43") to clipboard. This is a text format and can be pasted within other applications.

4 Edit | Clipboard | Paste from hex string is providing the inverse operation, i.e. paste a 
hex string from clipboard into the file (e.g. "41 42 43" or "414243"). This can be used e.g. to apply 
binary patches. An error message appears, if the clipboard does not contain a valid hex string.

4 You can paste text copied to clipboard with other applications.
4 The block functions delete, copy and move don't use the clipboard and don't allocate additional 

memory. They are therefore recommended for operations within a file.



Bit manipulation
This dialog allows to view or set the status of each bit at the current address. The bits 0..7 are 
represented by the correspondent check boxes. In addition, the decimal, hexadecimal and binary 
representation of the current bit status is indicated.

Bit 7 6 5 4 3 2 1 0
Value 128 64 32 16 8 4 2 1

Buttons are provided for the following commands:
4 Set all bits to one ("Check all")
4 Set all bits to zero ("Uncheck all")
4 Toggle all bits
4 Set bit status for current address
4 Reread bit status for current address



View or set the status of each bit at the current address. The bits 0..7 are represented by the 
correspondent check boxes. Use the buttons to
4 Set all bits to one ("Check all")
4 Set all bits to zero ("Uncheck all")
4 Toggle all bits
4 Set bit status for current address
4 Reread bit status for current address



Here, the address of the first byte of the corresponding row is indicated in hexadecimal representation. 
You can hide this area by checking "Hide Address of Rows" in the Tools | Options menu.
Note: The address of the first byte of the file can be set to 0 or 1 using the Tools | Options menu.



What's a hex editor?
Some time ago, I received the following e-mail: 
Hello,
first of all thank you for your free hex editor.
I have never used one nor do I know exactly what it is for, but 2 people at alt.comp.freeware told me to 
get one so I could "see" the watermark/invisible imprint that a jpg compressor puts in the jpg's I compress!
Now that I have your program (thank you again)....
What is a hex editor? Why do I need one (beside the above problem)? How do I change the imprint I 
found....thanks to your program?

Here's my attempt to answer these questions.
A hex editor is mainly a tool to examine the structure of files. For every programmer (like me) this is an 
almost daily duty, but for "normal" users this may sound strange. But consider so called "plain text" files 
like the ubiquitous README.TXT files, created e.g. using notepad (without any layout like bold formatted 
words etc). They don't contain only the plain text, but also end-of-line marks (and often tabstops). 
Unfortunately, these end-of-line marks (not visible itself in notepad, you'll see only the breaking line) are 
coded differently under Windows, Unix, and Macintosh. If you happen to get a Unix or Mac text file over 
the net, it may cause problems under Windows (e.g. it will not show properly in notepad). Using XVI32 (or
another hex editor), you can look into the file, examine the end-of-line marks and replace if necessary 
(using Search | Replace | Replace all). Just open the README.TXT file that comes with XVI32.
The first 30 characters are looking in the hex area as follows: 
48 65 78 2D 65 64 69 74 6F 72 20 58 56 49 33 32
20 76 65 72 73 69 6F 6E 20 31 2E 35 0D 0A

These are the hexadecimal codes for each byte. The hexadecimal system is similar to our common 
decimal system (which has the digits 0, 1, ... 9), but with the additional digits A, B, C, D, E, F - and the 
meaning of those digits 10, 11, 12, 13, 14, 15. To write the number 10, you need two digits in the decimal 
system, but in the hexadecimal system one digit A is sufficient.

In the decimal and hexadecimal system, the weight of a digit depends from its position within a number. 
With each position, the weight of a digit is incremented by factor 10 (or 16). The decimal number 72 e.g. 
consists of the digit 7 (with weight 7 * 10) and digit 2 (with weight 2 * 1), i.e. the value of 72 is 7 * 10 + 2 * 
1. This may seem trivial to you, but consider now the hexadecimal system: the hex number 48 stands for 
4 * 16 + 8 * 1 = 72.

When you've openend README.TXT in XVI32, the decimal value of hex 48 is displayed in the status line 
behind "Char dec:". The hex code 48 represents the capital letter H. There are 256 possible values for 
each byte ranging from decimal 0 to 255 (or hex 0 to FF). These 256 "characters" comprise the 26 capital 
letters, 26 small letters, 10 digits, special characters e.g. like the German Umlaute, but also non-printable 
control codes. 

The last two bytes above (0D 0A = decimal 13 10) represent a line break under Windows. If this 
README.TXT were created under Unix, you would see only 0A. Try to download several HTML files 
(which are plain text in opposite to binary files like JPG, GIF etc. which have non human-readable 
contents) from the web and look for the end-of-line mark. Mostly you'll find 0D 0A, but sometimes 0A, 
depending from their origin (and the transfer mode to your PC). To convert Unix text files to Windows 
format, you need to change all occurrences of 0A by 0D 0A. 

Use XVI32 to open a document created with a word processor: Besides the text itself, you'll see additional
information. Most of them "unreadable" for you, but maybe there is also previously deleted text, your 
name, the complete path to your document and so on. BTW: This is a severe security problem! But be 
careful: Changing the contents of binary files may make them completely useless. Don't blame me if 
improper use of XVI32 will damage a valuable file...



So you need hex editors for mainly two reasons: 
4 Examining the structure of a file, because you don't see everything which is stored in a file using the 
application to open it (this is true also for so called "plain text" files as explained above). You need this 
knowledge e.g. to write by yourself an application that will interpret the contents of a file properly.
4 Changing the contents of a file deliberately. This also requires to know the exact structure of the file. If 
you don't know how watermarks are stored in JPGs, don't tamper with them - aside from the fact that it 
would be illegal to delete Copyright information.
I hope this helps and will be a starting point for further investigations done by yourself. But always 
remember: be careful to change file contents!



Overwrite string
This function is similar to Insert string... and allows to overwrite existing characters with a text or 
hex string. You can use this e.g. to apply binary patches: copy the hex string to the clipboard and paste it 
to the appropriate edit field.

4 Enter a text (e.g. "abc") or hex string (e.g. "61 62 63")



Menu "Bookmarks"
You can define up to 9 named bookmarks for important addresses of a file. The menu Bookmarks is 
providing the following commands:
4 Use Add to add a bookmark for the current address. Giving a name in the following dialog is optional.
4 Remove allows to remove a single bookmark from the current list.
4 Remove all clears the complete list of currently defined bookmarks.
4 Save to file will save the currently defined bookmarks to a XBM (XVI Bookmarks) file.
4 To reload bookmarks later, e.g. when you examine the same file or a file with similar structure, use 
Load from file.

Just click on the desired bookmark to return to the appropriate address. These bookmarks appear at the 
end of the bookmark menu with the following information:
4 Accelerator char.
4 Address in decimal (when editing the file in text mode) or hexadecimal (when in hex mode) format. 
Depending on the current options setting for offset, the displayed address is zero-based or one-based.
4 Name of the bookmark (if entered).

Example
1 $0: BOF
2 $36: EOF



XVIscript: Introduction
The built-in XVIscript interpreter is a powerful feature to automate tasks (e.g. apply binary patches). You 
can
4 create or edit scripts
4 load a script from a XSC (XVI Script) file; default directory is the XVI32 directory
4 save a script to file
4 perform a syntax check
4 execute a script

Suppose you have often to convert Unix text files into Windows format by replacing all EOF marks $0A by
$0D 0A. Although this is very easy to accomplish using the Search | Replace dialog, you could use 
the following almost self-explaining script:
REM goto begin of file (always zero-based)
ADR 0
REM replace all $0A by $0D 0A
REPLACEALL 0A BY 0D 0A

The interpreter is expecting hex strings to have spaces between each byte as shown in the above 
REPLACEALL command. These spaces must be entered manually, i.e. they are not filled automatically in 
contrast to other places in the program (e.g. search, replace).
All available script commands are explained in detail later. For now, just open a text file and select 
XVIscript | Editor... from the main menu. The script editor window appears where you can enter 
(or paste) the above script. But for the beginning, it's easier to select from the Insert command menu 
from a list of all available commands as shown below (similar commands are grouped into submenus).

When you select a command, it will be pasted at the current position within the editor. If a command 
needs additional argument(s), the pasted text does contain an appropriate explanation within <...>. This
explanation will be highlighted by default, so the next key press will overwrite it. Text within (...) is only 
an additional hint and will not be pasted into the editor; refer to ADREOF (go to end of file) in the 
above picture. Text within [...] is referring to optional parameters.



XVIscript: Syntax check and execution
Syntax check
If you press this button, only a syntax check of the script is performed. A Syntax check will never do 
apply changes to the file. The first syntax error will be reported, and the faulty line of the script will be 
marked. Note that a syntax check will not detect typically run-time errors (e.g. an ADR command with an 
invalid address or a VERIFY command that fails during execution).
Arguments of script commands containing run-time parameter(s) will be excluded from syntax check, e.g.
ADR %1
REPLACEALL %2 BY %3
The command itself must not be a parameter, so the following line would be illegal:
%4

Execution
This will automatically perform a syntax check beforehand.
4 If a syntax error does occur, an error message will appear. In this case, no changes are made to the 

file.
4 Only if the syntax check is passed successfully, the script will now be executed line by line, as 
commented in the previous topic example by the REM (remark) lines.
4 Errors during execution are reported, and the corresponding line will be highlighted automatically. In this
case, all previously made changes remain in effect.
4 A message informs you that    the script was executed without errors. You must close the script editor 
window to return to the XVI32 main window. You’re asked if the script should be saved to file if it was 
modified or not yet saved at all.

When you execute a script by pressing the appropriate button, XVI32 doesn't save the changes made 
automatically, so you must close the script editor window and save the edited file manually. But you have 
the possibility to invoke XVI32 from the command line so that the complete script will run automatically 
and save the file after successful execution.
You can also save or reload scripts from file using the appropriate menu or toolbar button. XVIscripts are 
saved as text files with the extension XSC (XVI script file). I'm sure you'll imagine already much more 
sophisticated things you can do with XVIscript...

Direct script execution
When a script is loaded by the script editor window, you can execute this script directly from the XVI32 
main window by menu XVIscript | Execute active or by pressing <Ctrl> <F9>. In this case, the 
editor window will only be displayed on syntax or run-time errors.



XVIscript: Error messages
The syntax check does recognize syntax errors within a script. To see what happens, just enter an invalid 
command, e.g.
CONVERTUNIXTOWINDOWS
ADR BOF
REPLACEALL CR BY LF
These invalid commands will result in
4 an error message
4 highlighting of the faulty line

Note that passing the syntax check does not always guarantee error-free execution of a script. During 
execution, run-time errors may occur (e.g. jump to an invalid address because the file is not large 
enough, e.g. ADR 100 when the file has only 10 bytes). Because script execution will normally modify the 
file contents (but syntax check does NO modifications), it would not make sense to look for invalid 
addresses during syntax check.
Run-time errors are also reported. But in this case, all previously made changes will remain in effect, so 
you should be extremely cautious before saving the file!



XVIScript: Command reference
The XVIscript editor window allows to select easily from the following available commands. Note that
4 each line can only contain one command
4 commands are not case sensitive, although in the documentation they are capitalized
4 trailing and leading spaces are ignored
4 empty lines are ignored
4 any line beginning with a semicolon is treated as comment (i.e. ignored)
4 the interpreter is expecting hex strings to have spaces between each byte which must be entered 

manually, i.e. they are not filled automatically in contrast to other places in the program (e.g. search, 
replace)

4 parameters enclosed within <> are necessary, parameters within [] are optional.

ADR <addr>
Go to address <addr>; <addr> is always zero-based and can be indicated either as decimal or 
hexadecimal (with prefix $) value. ADR should always be the first command in a script; if omitted, ADR 0 
will be used as default. If the indicated address is invalid, script execution will be aborted with an error 
message. Examples:
ADR 32
ADR $20

ADR+ <n>
Increment current address by <n> bytes; <n> can be indicated either as decimal or hexadecimal (with 
prefix $) value. If the computed new address is invalid, the script will be aborted with an error message. 
Examples:
ADR+ 16
ADR+ $10

ADR- <n>
Decrement current address by <n> bytes; <n> can be indicated either as decimal or hexadecimal (with 
prefix $) value. If the computed new address is invalid, the script will be aborted with an error message. 
Examples:
ADR- 20
ADR- $14

ADREOF
Go to end of file, i.e. last byte.

BITAND <hex byte> [byte count]
For [byte count] bytes beginning at the current address, perform a bitwise AND operation with <hex byte>.
Default for [byte count] is 1. Examples:
This will set the byte at the current address to zero:
BITAND 00
Set 20 bytes beginning at the current address to zero:
BITAND 00 20
Set $A = 10 bytes beginning at the current address to zero:
BITAND 00 $A

BITNOT [byte count]
For [byte count] bytes beginning at the current address, perform a bitwise NOT operation (i.e. each bit is 



inverted). Default for [byte count] is 1. Examples:
BITNOT
BITNOT 20
BITNOT $A

BITOR <hex byte> [byte count]
For [byte count] bytes beginning at the current address, perform a bitwise OR operation with <hex byte>. 
Default for [byte count] is 1. Examples:
This will set bit 1 of the byte at the current address to 1:
BITOR 02
Set bit 1 of 20 bytes beginning at the current address to 1:
BITOR 02 20
Set bit 1 of $A = 10 bytes beginning at the current address to 1:
BITOR 02 $A

BITSHL <bit count> [byte count]
For [byte count] bytes beginning at the current address, perform a logical left shift by <bit count> bits. 
Default for [byte count] is 1. Examples:
This will left shift the byte at the current address by 1 bit (= multiply byte by 2):
BITSHL 1
This will left shift 20 bytes beginning at the current address by 1 bit:
BITSHL 1 20
This will left shift $A = 10 bytes beginning at the current address by 1 bit:
BITSHL 1 $A

BITSHR <bit count> [byte count]
For [byte count] bytes beginning at the current address, perform a logical right shift by <bit count> bits. 
Default for [byte count] is 1. Examples:
This will right shift the byte at the current address by 1 bit (= divide byte by 2):
BITSHR 1
This will right shift 20 bytes beginning at the current address by 1 bit:
BITSHR 1 20
This will right shift $A = 10 bytes beginning at the current address by 1 bit:
BITSHR 1 $A

BITXOR <hex byte> [byte count]
For [byte count] bytes beginning at the current address, perform a bitwise XOR operation with <hex 
byte>. Default for [byte count] is 1. Examples:
BITXOR 02
BITXOR 02 20
BITXOR 02 $A

CHARCON <XCT file name>
Load indicated character conversion file and perform a character conversion beginning at current 
address. The XCT file must exist at run-time, otherwise the script will be aborted. Performing a character 
conversion will not change the current address. Example:
ADR 0
CHARCON C:\ProgramFiles\XVI32\DOSWIN.xct



DEL <n>
Delete <n> bytes; <n> can be indicated either as decimal or hexadecimal (with prefix $) value. The 
current address will not be changed as long at it remains valid; otherwise, the current address will be set 
to end of file. If n is less or equal 0, a syntax error occurs. If there are not enough bytes to delete, this will 
cause a run-time error. Examples:
DEL 64
DEL $40

EXIT
Terminate execution of script (without error). Useful e.g. to execute a script only partially. The EXIT 
command does not terminate syntax checking, i.e. the syntax check is always performed for the complete
script.

FIND <hex string>
Find next occurrence of <hex string>. If a joker (wildcard) byte was previously defined using the 
JOKERON command, the appropriate byte will match any byte within the file. If no match of <hex string> 
is found, this will cause a run-time error. Example:
FIND 0D 0A

FINDASC <string>
Find (case sensitive) next occurrence of <string>. If a joker (wildcard) byte was previously defined using 
the JOKERON command, the appropriate byte will match any byte within the file. If no match of <string> 
is found, this will cause a run-time error. Note: any usage of a % character within <string> will be 
considered as reference of a command line parameter. If a % character should be taken literally, you must
use the FIND command instead. Leading and trailing blanks within <string> are allowed. Example:
FIND Hello

INSERT <hex string>
Insert <hex string> before current address. Afterwards, the current address will be right after the last 
inserted byte. Example:
INSERT FF FF

JOKERON <hex char>
Define a joker (wildcard) byte that is used by all following FIND, REPLACE, and REPLACEALL 
commands. A joker (wildcard) byte will match any byte. If <hex char> is invalid (or more than one byte), 
this will cause a syntax error. Example:
JOKERON FF

JOKEROFF
Disable previously defined joker (wildcard) byte, i.e. all following FIND, REPLACE, and REPLACEALL 
commands will not use a joker byte.

MSG <message>
Display <message> on screen. This command is ignored when executing a script from the 
command line using the /S parameter. The message is shown within a memo, so you can copy it to 
clipboard.
The following placeholders are expanded (case sensitive; numbers are decoded in decimal format):

\n line break
$BYTE decode current address as byte
$WORD decode from current address 2 bytes as word (provided 2 bytes are existing)
$INT ditto 2 bytes as integer



$LONG ditto 4 bytes as long integer
$IEEE32 ditto 4 bytes as float
$IEEE64 ditto 8 bytes as float

Examples:
MSG File successfully patched!\nPlease save.
ADR 1023
MSG Decoded at address 1023\nWord: $WORD\nLong: $LONG

OVERWRITE <hex string>
Overwrite bytes beginning at current address with <hex string>. Afterwards, the current address will be 
right after the last byte that was overwritten. If there are not enough bytes to overwrite, this will cause a 
run-time error. Example:
OVERWRITE 00 00 00

REM
Line contains remark ignored by XVI32script. Lines beginning with a semicolon are also treated as 
comments. Examples:
REM This is a comment
;this line is ignored too

REPLACE <from hex string> BY <to hex string>
Find (case sensitive) next occurrence of <from hex string> and replace by <to hex string>. If a joker 
(wildcard) byte was previously defined using the JOKERON command, the appropriate byte will match 
any byte within the file. Afterwards, the current address will be at the last replaced byte. If no match of 
<from hex string> is found, this will cause no run-time error. Empty <to hex string> is allowed. Example:
REPLACE 0D 0A BY 0A

REPLACEALL <from hex string> BY <to hex string>
Same as above, but all occurrences are replaced.

REPLACEASC <from string> BY <to string>
Find next occurrence of ASCII-string <from string> and replace by <to string>. If a joker (wildcard) 
character was previously defined using the JOKERON command, the appropriate byte will match any 
character within the file. Afterwards, the current address will be at the last replaced byte. If no match of 
<from string> is found, this will cause no run-time error. Empty <to string> is allowed. Note: any usage of
a % character within <from string> or <to string> will be considered as reference of a command line 
parameter. If a % character should be taken literally, you must use the REPLACE command instead. 
Leading and trailing blanks within <from string> and <to string> are allowed, as shown in the following 
example where <from string> has both leading and trailing blank:
REPLACE  xvi32  BY xvi32
REM     ^-----^ leading and trailing blank

REPLACEALLASC <from string> BY <to string>
Same as above, but all occurrences are replaced.

VERIFY <hex string>
Verify that <hex string> is found at current address, otherwise execution of script will be aborted with an 
error message. Use ?? within the hex string as joker (wildcard) byte that matches any byte. It is also 
possible to indicate several alternative hex strings separated by OR. Examples:
VERIFY 0D 0A



VERIFY FF ?? FF
VERIFY FF 00 FF OR FF 01 FF
VERIFY FF 00 FF OR 00 ?? FF



XVIscript: Command line parameters
First parameter
When you start XVI32 from the command line with a file name as parameter, XVI32 will open this file 
automatically. Example:
XVI32.exe readme.txt

Second parameter
There is a second optional parameter: /S (or typed as /S=, -S, -S=). In this case, you must specify a script
file name right after /S, e.g.
XVI32.exe readme.txt /S=win2unix.xsc

This will start XVI32, open readme.txt and then execute the script win2unix.xsc automatically.
4 If no errors do occur and changes were made, the file will be automatically saved, and XVI32 will 

terminate afterwards.
4 In case of any syntax or run-time error, XVI32 will report this error. It's up to you to handle this situation, 
i.e. the file will not be saved automatically and XVI32 will not terminate.

Additional parameters
The 3rd, 4th, ..., 11th command line parameters of XVI32 will be passed to the script. Please reference 
these parameters within the script as %1, %2, ..., %9. Example (note the quotation marks neccessary to 
include spaces):
XVI32.exe readme.txt /S=c:\ProgramFiles\xvi32\universalrepl.xsc 0A "0D 0A"

In this example, 0A can be referenced as %1 and "0D 0A" as %2 within universalrepl.xsc as follows:
REM goto begin of file (always zero-based)
ADR 0
REM in above example %1 is 0A
REM and %2 is 0D 0A
REPLACEALL %1 BY %2

Arguments of script commands containing run-time parameter(s) will be excluded from syntax check, e.g.
REPLACEALL %1 BY %2
The command itself must not be a parameter, so the following line would be illegal:
%4
Note: Scripts containing run-time parameter(s) can't be executed in interactive mode, i.e. you 
must execute them from the command line.

Usage of batch file to process multiple files
Using the batch commands FOR and START allows to process multiple files by the same script. Example 
for a batch file that will convert all text files in the current directory to Unix:

FOR %%f IN (*.txt) DO START /W c:\ProgramFiles\xvi32\xvi32.exe %%f /S=c:\
ProgramFiles\xvi32\win2unix.xsc

The parameter /W of the START batch commands is ensuring that XVI32 will be relaunched not until the 
previous script execution has terminated. These examples are also very simple, but you probably can 
imagine much more sophisticated ones.



XVIscript: Example
On http://www.jps.net/thamiter/anitest/icon2cur.htm you'll find an explanation how to convert a Windows 
icon into a cursor file. To avoid mistakes while editing the file, the author of the above site could now 
publish simply the following XVIscript:
REM script to convert an icon to cursor
REM http://www.jps.net/thamiter/anitest/icon2cur.htm
ADR 0
REM it must be a single-icon with 16 colors
REM 32x32 pixels not required
REM 16 colors ------------------+
REM pixels    ------------+--+  |
REM 1 icon    ------+     |  |  |
REM                 |     |  |  |
VERIFY 00 00 01 00 01 00 ?? ?? 10 00
ADR 2
REM replace 01 by 02
OVERWRITE 02
REM this is decimal ($A is hex equivalent)
ADR 10
MSG Please enter coordinates in XVI32 as XX 00 XX and save file as .CUR

Unfortunately, you must manually enter meaningful coordinates depending on the shape of the icon. In 
the example on the above website, you should overwrite the three bytes at the current address with 10 
00 1D in XVI32.



Uninstall XVI32
To uninstall XVI32 completely, proceed as follows:

4 If you have created a shortcut link in the SendTo folder, start XVI32, go to the options dialog (Tools | 
Options... | Shortcut link) and click on the remove button. Under Windows NT, 2000, and XP, every 
user must log in and perform this task. It is also possible to remove the link(s) manually. The Send To
folder is located at C:\Windows\SendTo (Windows 9x), C:\Windows\Profiles\<USER>\SendTo 
(Windows NT), or C:\Documents and Settings\<USER>\SendTo (Windows XP).

4 Exit XVI32 and delete the complete folder where XVI32 was installed.



Options: General
4 Offset (address) of first byte can be set to 0 or 1.
4 If "Save file with old date/time" is checked, the time stamp of the original file is not modified when using 

the Save or Save as commands.
4 The item count of File | Reopen history can be adjusted between 1 and 9.
4 If "Create new file with EOF char" is checked, File | New automatically generates the EOF char $1A.



Options: Appearance
4 Select the desired font using the font combo box.
4 Adjust font size.
4 Select color of chars in block.
4 Adjust number of rows and columns (or simply resize XVI32 window).
4 Check "Hide toolbar" to have more space for text and hex representation available.
4 Check "Hide Address of Rows" to turn off displaying of the address of the first byte of each row in 

hexadecimal representation.
4 Check "Text grid on the left" to revert default position of text and hex area.
4 Uncheck "Show Grid Lines" to have a more conventional look
4 Uncheck "Use Blank to Display Control Characters" if you prefer to see characters below blank within 

the text area
4 Use the "Defaults" button to restore the original settings.



Options: Data Inspector
4 Select byte order for coding integers and floats: little-endian (Intel: least significant byte leftmost, most 

significant byte rightmost) or big-endian (Motorola: vice versa). Note that this byte order is also 
important when searching, counting, replacing, or inserting Unicode strings.

4 Select data types shown in Data Inspector. If "block size" is checked, you will also see the number of 
currently selected bytes in a marked block.

To view the Data Inspector, check the Options | Data Inspector menu item.



Options: Shortcut Link
To open any file with XVI32 from the Windows Explorer, you can create a shortcut link in the SendTo 
folder. Thus, you can select a file and choose Send To 4 XVI32.

4 Use the appropriate button to create or remove the shortcut link.
4 Under Windows 9x, the SendTo folder will usually be C:\Windows\SendTo.
4 Under Windows NT, this is a user specific folder like C:\Windows\Profiles\<USER>\SendTo, i.e. every 

user must create his own shortcut link.
4 Under Windows XP, the folder is located user-specific at C:\Documents and Settings\<USER>\SendTo



Data Inspector
The Data Inspector is a tool window (always staying on top) to view permanently decoding of numbers. 
The Tools | Options dialog (also selectable by the Data Inspector's context menu item 
Configure...) allows to select which of the following data types are shown:
4 short (one byte signed)
4 byte
4 word (two bytes unsigned)
4 integer (two bytes signed)
4 longint (four bytes signed)
4 IEEE single (four bytes)
4 IEEE double (eight bytes)
4 binary
If the additional item "block size" is checked, you will also see the number of currently selected bytes in a 
marked block.
To edit a number, simply double-click on the decoded value shown in the Data Inspector (or select from 
the context menu the item Edit...).



4 Select byte order for coding integers and floats
4 Select data types shown in Data Inspector
4 If "block size" is checked, you will also see the number of currently selected bytes in a marked block
4 To view the Data Inspector, check the Options | Data Inspector menu item



4 If checked, the string is internally converted into Unicode Latin (UTF-16) format
4 Depending on the options set for the data inspector, little or big endian (UTF-16LE or UTF-16BE) is 
used for coding
4 For little-endian encoding, a zero byte is inserted after each character
4 For big-endian encoding, a zero byte is inserted before each character




