
The Elate® Object Based Programming Guide

3

Version 1.20

The Elate® Object Based Programming Guide

2

1. INTRODUCTION ...3

2. MEMORY STRUCTURE ...4

3. ALLOCATION AND DE-ALLOCATION OF MEMORY...5

4. DEFINING A CLASS AND METHOD CODING ..6

5. ALLOCATION AND DE-ALLOCATION OF MEMORY...7

5.1 ALLOCATING MEMORY USING THE _NEW TOOL ...7

5.2 DE-ALLOCATING MEMORY USING THE _DELETE TOOL ...8

6. INITIALISING AND DE-INITIALISING THE INSTANCE DATA STRUCTURE9

7. DEFINING A BASECLASS ...10

8. DEFINING A SUBCLASS..12

9. CALLING AN OBJECT FROM WITHIN AN APPLICATION ..15

10. A NOTE ON THE EXAMPLE CODE...18

11. GLOSSARY OF TERMS...19

12. EXAMPLE CODE ..20

The Elate® Object Based Programming Guide

3

1. Introduction

Elate® allows applications to be designed and written in an object-based style. Object Based
programming within Elate utilises the philosophy of small tools held in store, dynamically loaded only
when required. (See the manual ‘VP Programming with Elate.’)

A number of design issues need to be addressed before coding can begin. The programmer needs to
consider:

a) The definition of the instance data structure for the object and where it is to be defined, how it is to
be allocated and initialised and how it is to be de-initialised and de-allocated when no longer
required. In traditional OOP terms this would be comparable to declaring class member variables
(aka class properties). The initialisation and de-initialisation code would be comparable to code
typically found in constructor and destructor methods of traditional OOP classes.

b) Whether all the method code should be written within the class or whether it would be more

beneficial to dynamically load a tool from store when the method is actually called, thereby
minimising the amount of memory required when first loading the class into memory. The tool is
called using the VIRTUAL or VIRTUAL+FIXUP options to achieve this.

It is normally the responsibility of the application using the object to allocate and initialise the instance
in line with the policy defined by the class programmer. If the object has already been allocated and
initialised then the application is not responsible for this. E.g. a device driver object may have been
allocated and initialised when the system was first booted.

The Elate® Object Based Programming Guide

4

2. Memory Structure

The definition of the instance data structure for the class instance can be defined either within the
class itself or as an include file. If the structure is defined within the class then it will be difficult to
inherit from that class. It is therefore recommended that the structure be defined in an include file
which is then referenced at the beginning of the class source file. A baseclass structure's first offset
must always be defined as OB_SIZE.

A subclass structure must begin at the size of the baseclass from which it is inheriting.

It is also necessary to check whether an include file has already been included elsewhere. This is to
avoid redefinition errors if multiple source files are included in the same structures.

In the examples below, the class properties include parameters to hold the location and size of a
buffer area.

Example Code of baseclass include file:

.if ~?def(BASECLASS_SIZE); if not defined then define BASECLASS_SIZE
structure OB_SIZE ; must always use OB_SIZE for base class
int32 PROPERTY1 ; properties of class
int32 PROPERTY2
int32 PROPERTY3
size BASECLASS_SIZE ; size of this base class structure

.endif

Example Code of subclass include file:

.if ~?def(SUBCLASS_SIZE)
; include properties of baseclass
.include ‘demo/example/baseclass/class’

structure BASECLASS_SIZE ; offset is baseclass structure size
int32 SUBCLASS_PROPERTY1
size SUBCLASS_SIZE ; size of subclass structure

.endif

The Elate® Object Based Programming Guide

5

3. Allocation and de-allocation of Memory

The allocation and de-allocation of an instance of a class is the responsibility of the application.
Objects are usually allocated memory via calls to an appropriate library function, e.g.
sys/kn/mem/allocdata. Typically, the programmer writes an allocator tool called _new, whose main
task is to allocate memory for the object. There will also be a corresponding de-allocator tool, called
_delete, which frees up memory allocated to the object. These special tools are normally coded in the
same source file as the class methods.

In summary, the programmer will code the class properties in a class.inc file. The class methods will
be coded in a file called class.asm, which will also include the special allocator and de-allocator tools,
_new and _delete respectively. Note that because of this naming convention each class will need its
own sub-directory.

The Elate® Object Based Programming Guide

6

4. Defining a Class and Method Coding
Within Elate, a class is a distinct type of tool with particular macros provided to build the contents. The
name of the class is defined immediately after the first macro class. The name is the full pathname of
the class tool. By convention, the name of the class tool is 'class' within the same directory as the
'_new' and '_delete' tools.

The classend macro defines the end of the class. All the methods for the object's services including
the initialisation, de-initialisation methods and defaultmethod are coded within these two macros.

method is a macro, which defines a named service of the class. The macro is immediately followed by
a subroutine containing code for the service. This may be all the code required or it may be a call to
an external tool. If the method code is held as a tool, it can be coded in the same source file as the
class, although it will be held separately on disk once assembled.

Note that a subroutine does not have to end with a ret; it has to end with something which does not
permit execution to fall through it, i.e. one of ret, go, endloop (for a loop which does not contain a
break[if] in it), parentclass, chain, or chainclass. Also note that noret is allowed; this is an indication
that the call just before it is guaranteed not to return (e.g. when it throws an error and does not return).
For more information on these terms, please see the ‘VP Reference Manual.’

Example baseclass method code framework:

; demo/example/baseclass/class.asm
.include 'tao'

.include 'demo/example/baseclass/class'

class 'demo/example/baseclass/class',VP

method _init
ent p0:i0
tracef "baseclass : _init\n"
clr [p0+BASECLASS_PROPERTY1]
clr [p0+BASECLASS_PROPERTY2]
clr [p0+BASECLASS_PROPERTY3]
clr i0 ; return 0 if OK
ret

method _deinit
ent p0:i0
tracef "baseclass : _deinit\n"
cpy 1,i0 ; drivers use <0 error, 0= in use, 1 as OK
ret

defaultmethod
entd

tracef "baseclass : default method called.\n"
ret

classend

Two methods, _init and _deinit, must be defined in the class code as well as a defaultmethod. The
_init method initialises the object instance and the _deinit method performs the opposite of _init. All
other methods are private to the particular class.

The defaultmethod defines the code to be executed if a method called is not provided. The method
name called by the application must match exactly the method name defined within the class,
otherwise the defaultmethod will be called instead. The defaultmethod can code for an error.

defaultmethod
entd

The Elate® Object Based Programming Guide

7

; method name not recognised handler code
ret

If the default method of a subclass is called, control is transferred to the baseclass default method.
Note that the baseclass is also known as the parent class.

defaultmethod
entd
parentclass ; call baseclass default method

Note that defaultmethod is not always necessary when its parent class is the only requirement. If it is
included, a ret will not be required, as above. When defaultmethod is not included, the system will
provide one. If this happens to be a subclass, the system version will provide a parentclass. If it is a
baseclass, the system will execute a noret, will produce undefined behaviour, except when running
with pentiumt, when it will produce a breakpoint trap.

For more information upon this, please see the documentation on entd provided within the Elate build.

Another method type that may be defined within the class file is xmethod, e.g.

:
xmethod char

ent p0 p1 i0 i1 i2 i3 i4 i5 i6:i0 i1
qcall lib/grf/fnt/chardraw,(p0,p1,i0,i1,i2,i3,i4,i5,i6:i0,i1),VIRTUAL|FIXUP

ret
:

This allows the programmer to make a call of the type :

ncall p0,@char,(p0:p3)

A call of this type (with @) returns a pointer to the method code, in this case in p3. The method code
can thus be invoked subsequently without the overhead of a normal ncall by using a gos instruction,
e.g.

gos p3,(p0,p1,i0,i1,i2,i3,i4,i5,i6:i5,i9)

It is also still possible to use a normal ncall to invoke the method code.

5. Allocation and De-allocation of Memory

For the methods of an object to be accessed by an application, an instance of the class of the object
must be in memory. An allocation and de-allocation policy must be decided upon by the application
programmer but conventionally the class programmer will provide a tool to allocate memory, called
_new, and a tool to deallocate, called _delete.

There are several Elate functions available for memory allocation, but for this example we will use
sys/kn/mem/allocdata. For memory allocation in device drivers it is preferable to use
sys/kn/mem/allocdef, as this allocates memory from a pool that can be shared by multiple processes
and can also remain once the allocating process has closed. The ANSI library functions are not
usually used in this situation as they may not be available to device drivers.

5.1 Allocating memory using the _new tool
Memory allocation is carried out by a tool because an instance of the object has not yet been created.
However, the source of the _new tool can be coded within the same source file as the class but is held
separately once assembled, and which is stored in the same directory as that of the object.

The Elate® Object Based Programming Guide

8

The _new tool allocates the memory, and it must also reference the class and return the instance
pointer in p0. To allocate a memory block of the correct size, we need to allocate the size of the
instance data structure as defined in the instance include file.

cpy BASECLASS_SIZE,i0
qcall sys/kn/mem/allocdata,(i0 : p0,i0)

To initialise the object header and reference the class, the macro refclass is used with the full name of
the class tool. refclass searches for the class tool, bringing it into memory from store, and translating
it, only if it is not already present on the tool list.

refclass p0,demo/example/baseclass/class

Example code:
; allocator tool in demo/example/baseclass/class.asm

tool 'demo/example/baseclass/_new'
ent - : p0 ; return instance pointer
cpy.i BASECLASS_SIZE,i0
qcall sys/kn/mem/allocdata,(i0:p0,i0)
if.p p0 != NULL

refclass p0,demo/example/baseclass/class
endif
ret

toolend

5.2 De-allocating memory using the _delete tool
The _delete tool reverses the _new tool provided by the class programmer. The _delete tool can be
coded within the same source file as the class but it is held separately once assembled. Note it is
stored in the same directory as that of the object.

The _delete tool de-references the class, using the macro derefclass, and then frees the memory.

Example code:
; de-allocator tool in class.asm
tool 'demo/example/baseclass/_delete'

ent p0 : -
derefclass p0
qcall sys/kn/mem/free,(p0 : -)
ret

toolend

The Elate® Object Based Programming Guide

9

6. Initialising and de-initialising the instance data structure
Once an object has been allocated memory and referenced, the application has access to the
methods within the class. The instance data structure should be initialised by calling the _init method,
before any of the other methods will be available for use. Otherwise, member variables in the instance
data structure will not be in an initialised state.

The coding of the _init method of a class will depend on the type of object that is to be initialised. It
may take the form of private memory allocation or setting up values within all or part of the instance
data structure.

If initialisation should fail, a tidy up routine must be carried out by the application to delete the object.

If the instance being initialised is a subclass, the baseclass section of the instance data structure must
be initialised first. This is effected by calling the baseclass _init method. If this is successful, the
subclass section can then be initialised.

If the subclass _init method was unsuccessful, but the baseclass _init was successful, the baseclass
_deinit method must be called before returning failure to the application.

Once initialisation has been successful, the instance of the class i.e. the object, is available for use by
the application.

Once an object is no longer required, the instance must be de-initialised before it can be deleted. The
_deinit method must be a complete reversal of the _init method and is again private to the object.
Once de-initialisation has been successful, the instance may then be deleted.

The Elate® Object Based Programming Guide

10

7. Defining a Baseclass

The definition of a class, be it base or sub, requires that the correct include files are defined at the
beginning of the class source file. These are normally the standard Elate include file, 'tao,' and any
private include files specifying the structure of the instance data.

If the instance data structure is not to be defined within an include file it can be defined within the class
source file, before the class macro. However, it should be remembered that if the instance data
structure is defined inside the class source file, it will not be possible to inherit from the class easily.

Once the include files and instance data structure have been defined, these must be immediately
followed by the class macro as described earlier.

The two compulsory methods, _init and _deinit, are defined next. Like all methods, the _init and
_deinit methods can make external calls to tools, for greater memory efficiency.

method _init
ent p0:i0
tracef "baseclass : _init\n"
clr [p0+BASECLASS_PROPERTY1]
clr [p0+BASECLASS_PROPERTY2]
clr [p0+BASECLASS_PROPERTY3]
clr i0 ; return 0 if OK
ret

The defaultmethod is coded after all the other methods. The defaultmethod must come after all other
methods in order for the class to be created correctly. The code within the defaultmethod is specific to
the class, as are all other methods, but it will normally be coded to log an error or throw an exception
when in a baseclass. Sometimes the baseclass method will be written simply to return and perform no
other action.

To close the definition of the class tool, the classend macro is used.

Structure Size

References
Include Files

_init method

_deinit method

method

defaultmethod

CLASS

_new tool

_delete tool

OB_SIZE

Class Source File Class Include File

Other Include Files
e.g. tao

method

Class Properties

Class Properties

Figure 1: The Baseclass

The Elate® Object Based Programming Guide

11

Example code for baseclass :

; class.asm -- baseclass

.include 'tao'

.include 'demo/example/baseclass/class'

class 'demo/example/baseclass/class',VP

method _init
ent p0:i0
tracef "baseclass : _init\n"
clr [p0+BASECLASS_PROPERTY1]
clr [p0+BASECLASS_PROPERTY2]
clr [p0+BASECLASS_PROPERTY3]
clr i0 ; return 0 if OK
ret

method _deinit
ent p0:i0
tracef "baseclass : _deinit\n"
cpy 1,i0 ; drivers use <0 error, 0= in use, 1 as OK
ret

method getval
ent p0:i0
tracef "baseclass : getVal\n"
cpy [p0+BASECLASS_PROPERTY1],i0
ret

method setval
ent p0 i0 : -
tracef "baseclass : setVal\n"
cpy i0,[p0+BASECLASS_PROPERTY1]
ret

defaultmethod
entd

tracef "baseclass : default method called.\n"
ret

classend

tool 'demo/example/baseclass/_new'
ent - : p0 ; return instance pointer
tracef "baseclass : _new\n"
cpy.i BASECLASS_SIZE,i0
qcall sys/kn/mem/allocdata,(i0:p0,i0)
if.p p0 != NULL

tracef "referencing base class\n"
refclass p0,demo/example/baseclass/class

endif
ret

toolend

tool 'demo/example/baseclass/_delete'
ent p0 : -
tracef "baseclass : _delete\n"
derefclass p0
qcall sys/kn/mem/free,(p0 : -)
ret

toolend
.end

The Elate® Object Based Programming Guide

12

8. Defining a Subclass

A subclass is defined in a similar manner to a baseclass with some alterations (see Figure 2).

Baseclass Source File

Baseclass Include File

Subclass Source File

Subclass Include File

References
Include Files

CLASS

References
Include Files

CLASS

Include

pcall

pcall

Override

parentclass

Include
Include

_init method

_deinit method

method

method

defaultmethod

_new tool

_delete tool

_init method

_deinit method

method

method

defaultmethod

_new tool

_delete tool

Baseclass Structure Size

Class Properties

Subclass Structure Size

Class Properties

Override

Figure 2: The Subclass

The subclass name is defined after the class macro, with the name of the baseclass added before the
language definition. Note there are no quotes around the baseclass name.

class ‘demo/example/subclass/class’,demo/example/baseclass/class,VP

The _init method is still required, but the subclass _init method must now include a call to the
baseclass _init method to initialise the baseclass section of the instance data structure so that its
methods are also available for use. This is achieved by using pcall (parent call) within the subclass
_init method. Note that a pcall can only be made from within a class tool, unless a large method's
code is moved into a separate tool, in which case the programmer may use the __extends macro at
the start of that tool to enable you the usage of the pcall macro in that tool.

pcall p0,_init,(p0:i0)

The _deinit method of the subclass must also call the baseclass _deinit method by using pcall after
de-initialising the subclass section of the instance data structure.

pcall p0,_deinit,(p0:i0)

The defaultmethod must pass responsibility to the baseclass as a method called and not found may be
within the baseclass. The command for this is parentclass.

The Elate® Object Based Programming Guide

13

defaultmethod
entd

; additional code here if required
parentclass

ret

All other methods are private to the subclass. Any methods defined in the subclass, with the same
name as methods defined in the baseclass, will override such baseclass methods. To close the
definition of the subclass code, the classend macro is used as before.

Example code for a subclass:

The Elate® Object Based Programming Guide

14

; class.asm -- subclass

.include 'tao'

.include 'demo/example/baseclass/subclass/class'

class
'demo/example/baseclass/subclass/class',demo/example/baseclass/class,VP

method _init
ent p0:i0
tracef "subclass : _init\n"
pcall p0,_init,(p0:i0) ; init baseclass
ifnoterrno i0

; baseclass init was OK so init subclass instance data
cpy 456,[p0+SUBCLASS_PROPERTY1]

endif
ret

method _deinit
ent p0:i0
tracef "subclass : _deinit\n"
pcall p0,_deinit,(p0:i0) ; base class deinit
ret

method scmethod
ent p0 i0:-

tracef "subclass : subclassmethod.\n"
cpy i0,[p0+SUBCLASS_PROPERTY1]
tracef "[p0+SUBCLASS_PROPERTY1] =

%d\n",[p0+SUBCLASS_PROPERTY1]
ret

defaultmethod
entd

parentclass
ret

classend

tool 'demo/example/baseclass/subclass/_new'
ent - : p0 ; return instance pointer
cpy.i SUBCLASS_SIZE,i0
qcall sys/kn/mem/allocdata,(i0:p0,i0)
if.p p0 != NULL

refclass p0,demo/example/baseclass/subclass/class
endif
ret

toolend

tool 'demo/example/baseclass/subclass/_delete'
ent p0 : -
derefclass p0
qcall sys/kn/mem/free,(p0:-)
ret

toolend
.end

The Elate® Object Based Programming Guide

15

9. Calling an object from within an application

For an application to be able to call a method of an object, it is necessary for an instance of the class
to be in memory. This can be achieved by the application calling the _new tool of the class required.

qcall demo/example/baseclass/_new,(-:p0) ; object reference returned

In some circumstances, memory for the object will be allocated from within the application, in which
case the application must reference the class by using the refclass macro and create the instance, in
the same manner as the _new tool.

If the object was successfully created p0 will be the instance pointer, and the object can then be
initialised.

To call a method we use the Elate named call, ncall.

ncall p0,_init,(p0:i0)

If the initialisation was successful, all of the methods of the object will be available to be called. The
application has no knowledge of whether the object instance is a subclass or a baseclass and has no
interest in how the services are provided by the object. All the methods can be called by using ncall
and the specific method name. If the method name is not called correctly or is not available, the
defaultmethod will be invoked.

Once the object is no longer required, it is the job of the application to de-initialise and delete the
instance in line with the policy defined, calling the _deinit method, and then either calling the _delete
tool or de-referencing the class and freeing the instance memory.

The Elate® Object Based Programming Guide

16

Example code to test baseclass :

; test.asm

.include 'tao'

tool 'demo/example/baseclass/test',VP,TF_MAIN,8192,0

ent - : -

cpy.p 0,p1

; new instance
qcall demo/example/baseclass/_new,(-:p0) ; p0 object ref

if p0==0
tracef "out of memory creating first baseclass object\n"
go tidyup

endif
ncall p0,_init,(p0:i0)
iferrno i0

tracef "error initialising first baseclass object\n"
qcall demo/example/baseclass/_delete,(p0:-)

cpy.p 0,p0
go tidyup

endif

; another new instance
qcall demo/example/baseclass/_new,(-:p1) ; p1 object ref

if p1==0
tracef "out of memory creating second baseclass object\n"
go tidyup

endif
ncall p1,_init,(p1:i0)
iferrno i0

tracef "error initialising second baseclass object\n"
qcall demo/example/baseclass/_delete,(p1:-)

cpy.p 0,p1
go tidyup

endif

cpy.i 4,i0
ncall p0,setval,(p0 i0:-)

cpy.i 123,i0
ncall p1,setval,(p1 i0:-)

clr i1
ncall p0,getval,(p0 : i1)
tracef "getval returned : %d \n",i1

clr i1
ncall p1,getval,(p1 : i1)
tracef "getval returned : %d \n",i1

ncall p0,fred,(-:i0)

tidyup:
if p0!=0

; Deinitialise and destroy first object
ncall p0,_deinit,(p0:i0)

qcall demo/example/baseclass/_delete,(p0:-)
endif
if p1!=0

; Deinitialise and destroy first object

The Elate® Object Based Programming Guide

17

ncall p1,_deinit,(p1:i0)
qcall demo/example/baseclass/_delete,(p1:-)

endif

; shutdown
qcall lib/exit,(0:-)
ret

toolend
.end

Example code to test subclass :

; test.asm

.include 'tao'

tool 'demo/example/baseclass/subclass/test',VP,TF_MAIN,8192,0

ent - : -

; new instance
qcall demo/example/baseclass/subclass/_new,(-:p0) ; p0 object ref

if p0==0
tracef "out of memory creating subclass object\n"
go tidyup

endif
ncall p0,_init,(p0:i0)

iferrno i0
tracef "error initialising subclass object\n"
qcall demo/example/baseclass/subclass/_delete,(p0:-)
cpy.p 0,p0
go tidyup

endif

cpy 4,i0
ncall p0,setval,(p0,i0:-)

clr i1
ncall p0,getval,(p0:i1)
tracef "returned by method : %d \n",i1

; this method not defined
ncall p0,fred,(-:-)

; defined subclass method
ncall p0,scmethod,(p0,i0:-)

tidyup:
if p0!=0

ncall p0,_deinit,(p0:i0)
qcall demo/example/baseclass/subclass/_delete,(p0:-)

endif

; shutdown
qcall lib/exit,(0:-)
ret

toolend
.end

The Elate® Object Based Programming Guide

18

10. A note on the Example Code

Generally in the Elate system the class hierarchy is reflected in the directory hierarchy. Subclasses
should be located in directories below the parent class. For the example used in this manual the
directory structures should be:

demo/example/baseclass/class.asm

demo/example/baseclass/subclass/class.asm

If this structure was used a call to create a subclass object would be:

qcall demo/example/baseclass/subclass/_new,(-:p0)

In other words, the directory structure should be reflected throughout the class definitions. This
approach was not used in this manual to help keep the names more manageable, but this may change
for future versions of this document.

For the very latest version of the code referred to in this manual please see demo/example/*.

The Elate® Object Based Programming Guide

19

11. Glossary of Terms

Object based programming
Provides encapsulation (data hiding, bundling together data and access procedures), inheritance (the
ability to include previously defined attributes in your new object) and polymorphism (the ability to run
code with the same name and interface on different data types).

Data hiding
The internal functionality within an object is often ‘hidden’ from the application programmer. The
programmer normally manipulates the object through a set API of methods. These methods may
manipulate the internal data (properties) of the object. It is safer to manipulate this data through the
API as the methods can perform error checking on the request to manipulate properties.

Object
Objects provide services and are classified according to the services they provide. An application
requesting services has no knowledge of the way in which the object implements those services. An
object is an instantiation of a class. Each object is manipulated via the methods and properties of that
class of object.

Class
A Class defines the functionality of objects of that class and the services that such objects provide. A
class can be thought of as an object framework. It is possible to instantiate multiple objects of the
same class, each object having unique properties.

Instance
An Object is an Instance of a Class. The Instance is the data structure that holds the private data of
the object. There can be more than one instance of a class in memory at one time with each instance
being unique.

Method
A Method defines a service that an object can perform. Methods can be inherited or overridden by
subclasses. This list of methods of a class defines the API for that class.

Defaultmethod
If the named method called by an application is not present in a class, the defaultmethod will
automatically be executed instead. The defaultmethod can code for an error or if coded in a subclass,
it can pass responsibility for handling the method to the parent class.

Inheritance
Every object is or has a baseclass (parent class). A similar object may reference within its class code,
a baseclass thereby inheriting its methods (services), which have already been coded. In this way,
subclasses have access to the methods of the baseclass without being aware of their implementation.
Each subclass is only aware of its own parent which may itself be a subclass of another class.

Ncall
An ncall is a named method call on an object. It is the means by which an object’s method code is
invoked.

Classname
Normally the class methods are coded in a file class.asm. Each class will therefore have it’s own
subdirectory e.g. /path/myclass/class.asm. In addition to the class.asm file there will be a class.inc
file, which defines the data structure (properties) for that class, e.g. /path/myclass/class.inc

The Elate® Object Based Programming Guide

20

12. Example code
The following simple example code demonstrates the principles that have been discussed in this
manual.

In this example, four classes are used: node, job, list and queue. There is also a simple test program.

Code for node class include file:

; demo/example/node/class.inc
;
.if ~?def(NODE_SZ)

structure OB_SIZE
int32 ITEM
pointer NEXT
pointer PREV

size NODE_SZ
.endif

Code for node class file :
; demo/example/node/class.asm

.include 'tao'

.include 'demo/example/node/class'

class 'demo/example/node/class',VP

method _init
ent p0 i0: -
cpy i0,[p0+ITEM] ; init node
cpy.p NULL,[p0+NEXT]
cpy.p NULL,[p0+PREV]
ret

method _deinit
ent p0 : -
cpy 0,[p0+ITEM] ; deinit node
cpy.p NULL,[p0+NEXT]
cpy.p NULL,[p0+PREV]
ret

method get_node_item
ent p0 : i0
cpy [p0+ITEM],i0
ret

method get_node_next
ent p0 : p0
cpy.p [p0+NEXT],p0
ret

method set_node_next
ent p0 p1: -
cpy.p p1,[p0+NEXT]
ret

method set_node_item
ent p0 i0 : -
cpy i0,[p0+ITEM]
ret

defaultmethod

The Elate® Object Based Programming Guide

21

entd
tracef “node class default method.\n”

ret
classend

tool 'demo/example/node/_new'
ent - : p0

;tracef "debug: creating new node ...\n"
cpy NODE_SZ,i0

;tracef "debug: NODE_SZ = %d\n",i0
qcall sys/kn/mem/allocdata,(i0 : p0 i~)
refclass p0,demo/example/node/class
ret

toolend

tool 'demo/example/node/_delete'
ent p0 : -
derefclass p0
qcall sys/kn/mem/free,(p0 : -)
ret

toolend
.end

Code for job class include :
; demo/example/job/class.inc
; inherits from node
.if ~?def(JOB_SZ)
.include 'demo/example/node/class'

structure NODE_SZ
int32 PRIORITY

size JOB_SZ
.endif

Code for job class :

; demo/example/job/class.asm -- sub-class of node

.include 'tao'

.include 'demo/example/job/class'

.include 'demo/example/node/class'

class 'demo/example/job/class',demo/example/node/class,VP

method _init
ent p0 i0: i0
pcall p0,_init,(p0 i0 : -)
cpy 0,[p0+PRIORITY]
ret

method _deinit
ent p0 : -
pcall p0,_deinit,(p0 : -)
cpy 0,[p0+PRIORITY]
ret

method get_job_pri
ent p0 : i0
cpy [p0+PRIORITY],i0
ret

method set_job_pri
ent p0 i0 : -

The Elate® Object Based Programming Guide

22

cpy i0,[p0+PRIORITY]
ret

defaultmethod
entd

parentclass
ret

classend

tool 'demo/example/job/_new'
ent - : p0
cpy JOB_SZ,i0
qcall sys/kn/mem/allocdata,(i0 : p0 i0)
refclass p0,demo/example/job/class
ret

toolend

tool 'demo/example/job/_delete'
ent p0 : -
derefclass p0
qcall sys/kn/mem/free,(p0 : -)
ret

toolend
.end

Code for list class include file :

; demo/example/list/class.inc

.if ~?def (LIST_SZ)
; list header
structure OB_SIZE

pointer HEAD
pointer TAIL
int32 COUNT

size LIST_SZ

.endif

Code for list class :

; demo/example/list/class.asm

.include 'tao'

.include 'demo/example/list/class'

class 'demo/example/list/class',VP

; methods

method _init
ent p0 : -
; init list structure
cpy.p NULL,[p0+HEAD]
cpy.p NULL,[p0+TAIL]
cpy.i 0,[p0+COUNT]
ret

method _deinit
ent p0 : -
ncall p0,zap_list,(p0 : -)
ret

The Elate® Object Based Programming Guide

23

method add_node
; adds node object to end of list
; p0 is list object
; p1 is node object to add
ent p0 p1 : -
if.p [p0+HEAD] = NULL

cpy.p p1,[p0+HEAD] ; update head
cpy.p p1,[p0+TAIL] ; tail and head point to same node

endif
cpy.p [p0+TAIL],p2 ; p2 is tail
ncall p2,set_node_next,(p2 p1 : -)
cpy.p p1,[p0+TAIL]
cpy.p NULL,p2
ncall p1,set_node_next,(p1 p2 : -)
inc [p0+COUNT]
ret

method print_list
; p0 is list object to print
ent p0 : -
clr i0
clr i1
cpy.p [p0+HEAD],p1
tracef "list contains\n"
while.p p1 != NULL

ncall p1,get_node_item,(p1:i1)
tracef "item %d:%d ",i0,i1
ncall p1,get_node_next,(p1:p1)
inc i0

endwhile
tracef "\ndebug: count is %d items\n",[p0+COUNT]
tracef "debug: count is %d items\n",i0

ret

method zap_list
; p0 is list object to zap
ent p0 : -
clr i0
clr i1
cpy.p [p0+HEAD],p1
tracef "zapping list...\n"
while.p p1 != NULL

ncall p1,get_node_next,(p1:p2) ; save p1->next
ncall p1,get_node_item,(p1:i1)

tracef "debug: deleting node containing %d\n",i1
ncall p1,_deinit,(p1:-)
ncall p1,_delete,(p1:-)
cpy.p p2,p1
inc i0

endwhile
tracef "debug: %d nodes deleted.\n",i0

ret

defaultmethod
entd

tracef “List class default method.\n”
ret

classend

tool 'demo/example/list/_new'
ent - : p0
cpy LIST_SZ,i0
qcall sys/kn/mem/allocdata,(i0 : p0)
refclass p0,demo/example/list/class

The Elate® Object Based Programming Guide

24

ret
toolend

tool 'demo/example/list/_delete'
ent p0 : -
derefclass p0
qcall sys/kn/mem/free,(p0 : -)
ret

toolend
.end

Code for queue class include :

; demo/example/queue/class.inc
; inherits from list
;
.if ~?def (QUEUE_SZ)
.include 'demo/example/list/class'

structure LIST_SZ
; same as list at present

size QUEUE_SZ

.endif

The Elate® Object Based Programming Guide

25

Code for queue class :

; demo/example/queue/class.asm
; Code TPB 98

.include 'tao'

.include 'demo/example/queue/class'

class 'demo/example/queue/class',demo/example/list/class,VP

; methods

method _init
ent p0 : -
pcall p0,_init,(p0 : -)
ret

method _deinit
ent p0 : -
pcall p0,zap_list,(p0 : -)
ret

method add_job
ent p0 p1 : -
; p0 queue
; p1 job to add
clr i0
clr i1
cpy.p [p0+TAIL],p4 ; save tail
ncall p1,get_job_pri,(p1 : i1)
if.p [p0+HEAD]=NULL ; list empty add to head

ncall p0,add_node,(p0 p1:-)
else

if.p p4 != NULL
ncall p4,get_job_pri,(p4:i0)
if i0 >= i1

ncall p0,add_node,(p0 p1:-) ; add on end
else

cpy.p [p0+HEAD],p2
ncall p2,get_job_pri,(p2:i0)
if i0 < i1

; add before current head
ncall p1,set_node_next,(p1 p2:-)
cpy.p p1,[p0+HEAD]
inc [p0+COUNT]

else
while.p p2 != NULL

ncall p2,get_job_pri,(p2:i0)
if i0 < i1

; insert job
ncall p1,set_node_next,(p1 p2:-)
ncall p3,set_node_next,(p3 p1:-)
inc [p0+COUNT]

endif
cpy.p p2,p3 ; save
ncall p2,get_node_next,(p2:p2)

endwhile
endif

endif
endif

endif
ret

method despatch_job
ent p0 : -

The Elate® Object Based Programming Guide

26

; not coded
ret

defaultmethod
entd

parentclass
ret

classend

tool 'demo/example/queue/_new'
ent - : p0
cpy QUEUE_SZ,i0
qcall sys/kn/mem/allocdata,(i0 : p0)
refclass p0,demo/example/queue/class
ret

toolend

tool 'demo/example/queue/_delete'
ent p0 : -
derefclass p0
qcall sys/kn/mem/free,(p0 : -)
ret

toolend
.end

© Tao Group Ltd or Tao Systems Ltd. 2000, 2001. All Rights Reserved.

Copyright in the software either belongs to Tao Group Ltd or Tao Systems Ltd. The software may not
be used, sold, licensed, transferred, copied or reproduced in whole or in part or in any manner or form
other than in accordance with the licence agreement provided with the software or otherwise without
the prior written consent of either Tao Group Ltd or Tao Systems Ltd.

No part of this publication may be reproduced in any material form (including photocopying or storing it
in any medium by electronic means and whether or not transiently or incidentally to some other use of
this publication) without the written permission of the copyright owner.

Elate®, intent® and the Tao logo are registered trademarks of Tao Group Ltd.
Digital Heaven™ is a trademark of Tao Group Ltd.
The rights of third party trademark owners are acknowledged.

