Version 1.48

Getting Started With intent® on Linux®

T N 12 O] 5 10 [1 [0 N TR 4
T R O 1Y =) A 4
1.2. A NOTE ON INTERFACING TO NATIVE FILE SYSTEMS .. .cettiiiitiieieeei e eeeeteee st e e eeat e e s eaa e e s eaaeeeseansessennneesees 4
I T = 7N (o [N (0o)N 5
1.4, PATCHES AND PLATFORM RELEASES .. .cuuiittiiittiitiiitiiettestteestssttee st s st sestsesaa sttt estetaa s st estssstestnsanans 6
1.5, A NOTE ABOUT EXAMPLE CODE ..uuuiiuuiiitiitiiiiiieii e et e tte et s s s s st s e st e s s s e at e saa e s sba s e st e saa s st e st e saaestnenans 6

2. INTENT AND LINUX®couuiiiitiiiiiiie et e e e et e e e e et e e s aae e e s et e e e eaba s e s ssaaesse b esesesbn s eessannseseran 7
P2 N I = TN =1 0 Y-) = = ST 7
2.2. THE INTENT USER CONFIGURATION SCRIPT ..uuiiiittieetteteretieeeetaeesesaneesssteseessesssssesetaeeeeansesssaeeersnnns 8
P2 T 10 Y\ 0] = = @] = 0] NN 8
2.4. LOADER ENVIRONMENT VARIABLES ...itutiitniiitiitteitteetteeststsaesstaesssssssesanssstsstteranessteesnterseestneeseessnns 9

3. DEBUGGING INTENT Lttt ettt e e et e e e e e e e e e e e e e et e e e et e e e eaaa e s eaaa e e s et e eeeaanneesennneereren 10
G T T { = =1 U TR 11

4, INTENT HELP FUNCTIONS . ..ottt e e e e e e e e et e e e e et e e s eaaeeeeabaeeeeaaeeeereanneeeeeen 12

5. THE INTENT SHELL - AN INTRODUCTION ...ttt e e e e s e e st e s s e e s s eaaeesaean 13
5.1, COMMAND CONVENTIONS .. .ottuieietteeeetteesetaeeeeateeeeaaessateeretateeeaaaetetaeeretaseeeaneesetaseseanseerssnseeeees 13
5.2. MOST COMMONLY USED SHELL COMMANDSccutuuiiietttetetieeeettteeeeanaeesetaeeretaseeessnressraaeeresseeeesaeerees 13
5.3, SIMPLE COMMANDS ... eittetitetteeeeet e eeeeae e et et e e e e aa e eeeaaa e s s et eesetaseeesanesetaneesstassseennssesstansesesnnseeessnseseren 14

6. DIRECTORY STRUCTUREcui ittt ettt e e et e e e e e e e et e e e ea e e s et e e eeabn e e saeanneeeeren 15
6.1. MORE SIMPLE COMMANDS ...cuutittuttttiettetttessta ettt sttt eeaaestaaeastetststta e et tsttetsetantsstatesssststeestnsessneessseres 15

T. THE SYSBUILD UTILITY ettt et e et e et e e e e e e e e e ae e e et e e e e aa e e e eaaa e s e aaa e eeabaaeeenanneeseren 16

8. USING THE SYSGEN UTILITY Lottt ettt e et e e e e e e e e e e e et e e s et e e e eaan e e eaaaaneeeeeen 17

9. USING THE C /CH4 COMPILER ..ot et e e e et e e e et e e e et e e e eaaeeeeaan 18

10. USING THE VP ASSEMBLER ...ttt et e e et e e et e e e e e s e e e saa e e s et e e aenataaees 19

11. THE TRANSLATION PROCEDURE ..ottt e e e e e e e e e e et e e e s et eaeraaaeaaes 20

12. USING INTENT AND JAVA™ TECHNOLOGY ...cootiiiiiti ettt ettt e e et e st e e e et s e e eaaaaeesaes 21

13. INTRODUCTION TO THE INTENT MULTIMEDIA LIBRARIES ..o 22
13.1. SIMPLE ClUSTOMISATION . .ttt ttttttttiett ettt ettatesaaesstessasssae st ssaaeesteraasstatesaetstasesateesn et eessaestneesansssnns 22

S 5 1@ 1@ U 11,1 =tV 1N I (0]\ 23

T I 7 AN £\ 11N 2T 24
15.1. INTRODUCTION TO INTENT 1ttt ttttntttttettueetteestessaesstaesssaesssesansssasessessnsstasesssetsnesstaesssssteeesnsessnsessseees 24

Getting Started With intent® on Linux®

15.2. PRE-REQUISITES ...eeitieeeeeeteeeeeee et eeeeeee st e e et e ee e e e eeeesee et e ee st e e e eee et eeeeeeeeeee et e e se et eeeeeeeeeeeeeeenenenes
15.3. INTRODUCTION TO VP PROGRAMMINGeveveeeeeeesaeeeeeeseeeeseeseeeeeeeeeeeeeeeeeeseeeeeeeeseeeeeeeseeeeeneeeeeeanes
15.4. TAILORED COURSES. ... ueeueteeeeeeeeeeeee et et e e et e eee et e e e eeeeee e e et e e e e e et e e e et e e e et et e ee e e e eeeee e e e ee e e eenanes

Getting Started With intent® on Linux®

1. Introduction

intent® is a revolutionary content platform that can be used on anything from mobile phones to high end
servers. This complete portability is brought about by means of a Virtual Processor to which all intent
programs are written, without regard for the hardware platform. Once a simple program called the Translator
is written by Tao for the new architecture, all application software and libraries written for the virtual
processor can run immediately upon any platform or processor, with absolutely no need for any further
rewriting or recompilation. As a result of this intent constitutes an effective content layer across the very
broadest range of processors — RISC and CISC for example.

Its unique translation technology takes the Virtual Processor byte code and translates it into the native code
of the target processor. Normally, translation into efficient native code only takes place when loaded from
store, (e.g. disk or network), rather than at compile or link time. The translator knows which processor it is
running on and can generate the appropriate code. Programs for intent can currently be written in VP code,
the assembler language of the virtual processor, ‘C’, C++ or Java™. Demonstration programs in VP, the
Java language and C are available in the demo/example directory. More information on these can be found
later in the document.

intent incorporates the following features:

e Total Portability

e Minimal Footprint

* Vendor Definable Realtime Kernel

e Multitasking and Multithreading

e Parallel and Heterogeneous Processing
¢ A Unique Java ™ Implementation

The intent media system has been designed to drive interactive and other multimedia content across the
broad range of wireless and wired digital client devices including low powered, small footprint products. Tao's
drawing, windowing, compositing and gadget 2D libraries form the cornerstone of the multimedia toolkit for
creating differentiated, highly branded products. The intent system includes a Sun authorised implementation
of the Java Virtual Machine and libraries (intent Java™ Technology Edition) This has been meticulously
constructed over many years, incorporating a great many crucial innovations developed within Tao's
laboratories by its world-class engineering team, to bring desktop JIT performance to consumer electronics
devices whilst carefully constraining the overall footprint. The results are the world's fastest consumer based
Java engine and the most compelling multimedia, products of unrivalled excellence.

1.1. Overview

This document covers the basic details of installing, configuring, and using intent. Further technical
information is available, either in the form of online help or as printed user guides.

1.2. A Note on Interfacing to Native File Systems

The merge file system amalgamates several different filing system mount points into the merge device
driver's mount point. If two or more filing systems share directories that have the same path, then the
contents of these directories are concatenated together when accessed via the merge file system mount
point. If an attempt is made to modify a file within a read-only file system, the merge file system will make a
copy of the file on the first writable file system available. This copy is used for all subsequent accesses to the
file.

Getting Started With intent® on Linux®

MERGE FILE
SYSTEM

ELATE EISEE”“! Fil » File Block Driver

LINUX Linux File

system

*elate.efs is a file containing an image understood by the Elate file system
Figure 1. The Merge file system

The packaged version of intent sets up the root file system as a merge of the following components

¢ A shared read-only elate.efs
e Aread-write file system, rooted in the directory in which the user has installed it.

The read-only elate.efs file is only shared when no add-ons are installed. When an add-on is installed, the
shared elate.efs file is copied to the user’s intent directory and customised.

1.3. Basic Instructions

In cases where intent are shipped in the form of Red Hat packages (rpm files) or Debian packages (.deb
files) it should be installed on the system using the standard package management tools. For example:

Debian Packages

dpkg —i <packagefile. deb>

Red Hat Packages

rpm —Wh <packagefile.rpm

intent is shipped as four packages;

* intent—bin — The ‘host-side’ binaries and scripts

« intent-img — The various images and the file system image elate.efs, which must be installed

< intent-gpl-utils - This need only be installed if make, the C compiler and zip/unzip tools are required. This
also contains gzip and vim.

e intent-doc - This provides system documentation

Getting Started With intent® on Linux®

Please note that the intent SDK requires Red Hat 6.1 or Debian 2.2. intent may then be installed onto the
system, thereby making it available to all users. However, because each user may wish to have intent setup
in a different way, they must then run a user installation process. The user installation will configure a
directory to run intent with any add-ons (such as patches or the gpl tools) that the user may wish to install.
When a user first starts intent they will be informed that they have not run intent before and then asked if

they wish to run the user install process. Answering "y" or "Y" will run the user installation process, anything
else will exit. If the answer is 'yes' the user will be required to agree to a license agreement.

Furthermore, when intent is run after the initial installation it will assume that the directory from which intent
was started has already been configured. If this is not the case, then it will prompt the user to select an
installation or to create a new installation.

When intent is run in a directory that has already been configured it will check to see if any more add-ons or
patches have been installed on the system since the last time. If they have, the user is given the option to
install each of these into the currently configured directory. As such, this permits the user to have several
installations of intent installed, each with a different set of add-on packages.

If the user decides at a later date that they wish to install an add-on, which was not installed initially, then
they can run the installation program directly. This will prompt the user with all packages that they have not
installed rather than just the new ones.

1.4. Patches and Platform Releases

For Linux, patches and platform releases are available in RPM and DEB formats. These must be installed
onto the system in the usual manner. However, for these to be available to users they must choose to install
them (as add-ons) when they next run intent.

Please note that in cases where Tao Group had issued unofficial patches to the intent system, this will
prevent any further official upgrades from being accepted. Further unofficial patches will still work. In these
cases, it is suggested that users reinstall their original system in combination with an official patch at the
point where one becomes available. To ‘recover’ after adding unofficial patches users can create a fresh
intent installation with the user installation process. The RPMs do not need to be uninstalled then reinstalled.

User intent installations can be removed by deleting the directory into which it was installed.

Each user installation will create an entry in the .intentrc in the user’'s home directory. This file should not be
edited manually.

1.5. A Note about Example Code

The demonstration source code in demo/example and demo/ave is built into the intent filesystem. In order to
access this code, it is necessary to start the intent shell (as described later in this document). From an intent
shell prompt type, as required:

| s /deno/ ave

to get a listing of the demo source. Then run:

| t ouch/ deno/ ave/ *

from the shell, and intent will create copies of the demos and sources, making them accessible from the host
OS filesystem.

Getting Started With intent® on Linux®

2. intent and Linux®

2.1. The intent Loader

The intent loader is a Linux program, which forms the virtual hardware for an intent session. It provides the
interface between intent and the Linux system calls.

To start an intent session run one of the following wrapper scripts:

¢ intent — Start an intent shell session suitable for developing in VP or C
« intent_media — Start an intent session running the intent Media System

Both of these packages contain minimal PersonalJava classes and can therefore be used to develop with
the Java language.

These scripts will either use the current directory if it has been configured or prompt for an installation to use.

For example:

cd ~/intent
i nt ent

For convenience, some wrapper scripts have been provided to allow execution of Java applications and
applets directly from the Linux command line:

e intent_java_stdio — Run a Java application with stdin and stdout
« intent_java — Run a Java text or graphics application without stdin and stdout
« intent_applet — Run a Java applet embedded in a html page without stdin and stdout

intent_applet takes one argument, namely the html file containing the applet. Note that the applet or
application must be within the directory hierarchy rooted in the Linux directory where intent has been
installed.

For an example Java application:

cd \intent
i ntent_java —cl asspath exanpl e.jar —Dproperty=true exanple. Main

In this case, example.jar will be located in the directory where intent was installed. The classes can also be
extracted into the file system, starting from the directory where intent was installed.

For an example Java applet:

i ntent _appl et exanpl e. ht m

In this case, example.html will be located in the directory where intent was installed. The applet classes must
also be in this directory.

Each of these scripts will check the current directory for an intent installation, prompting the user for a valid
installation directory as and when appropriate. It will also check to see is any new intent add-ons have been
installed since the last time intent was run. If there are any, the user will be prompted for installation
instructions. These scripts also support the options —c, which stops the script checking for new add-ons, and
—d <dir>, which will use the <dir> for the intent installation. These options must go before any other options
on the command line.

Getting Started With intent® on Linux®

Please note that the current set of wrapper scripts may be re-organised in future releases. Their behaviour
may change fundamentally and some scripts may be removed.

2.2. The intent User Configuration Script

intent_cfg command [opti ons]

For example:

intent_cfg install ~/intent

This script allows the user to install and configure intent for their requirements. There are various add-on
packages available for intent, which can be installed on a per user basis from this program. The commands
for use in conjunction with this are as follows:

« install Creates an intent installation for the current user. The directory to use for the installation may
optionally be given on the command line. The program will list the available intent add-ons and allow the
user to select which ones they would like. The program then creates the required directory structure,
below the chosen installation directory, ready for running intent. The information gathered during the
install process is stored in the ~/.intentrc file.

e check Checks the intent installations, using either the current directory or the directory given on the
command line as the intent installation to be checked.

2.3. Loader options

The intent scripts described above only suffice for simpler invocations of intent. For more complex situations
the following command is required:

sys/platformlinux/elate —B sys/platform|inux/ix86/<image nane>.iny

The image name should be one of the following:

e develop — This is suitable for both text and graphics applications
« develop(t) — as above, with checking translator (adds additional assertions to assist debugging)

These contain minimal PersonalJava classes. Custom images, including those using the full PersonalJava
specification, can be created through the sysbuild utility. See the later section on this utility for more
information.

Note that the —B option is required as it defaults to f15.img. Valid options include:

-B<imagename> | Specify the name of the image to boot. This can be specified as an absolute filename, or
given relative to the current directory. The default is sys/platform/linux/f15.img; this is the
standard intent development system image that starts an intent shell.

-c<shellcmd> Specify an intent shell command to be run. If this switch is used, then instead of starting
the intent shell, the system will execute the command and exit. This can be useful for
automated tasks.

-I<directory> Specifies the directory to look for plugin DLLs in. This defaults to sys/platform/linux/ix86
and does not normally need to be specified.

Determines whether or not an interactive session (that is, a TTY device) is required.
interactive is either “0” (meaning an interactive session is not required) or “1” (meaning
an interactive session is required). if the -1 parameter is omitted, the default is

-| <interactive>

"interactive".

-M<memsize> Specify initial memory size to allocate, in kilobytes. Default initial memory size is 4096
KB.

-U<incsize> Specifies the amount of additional memory allocated from the system when intent runs

Getting Started With intent® on Linux®

out of memory. Whenever intent runs low, the loader will allocate this much more
memory. The default is 4096 KB.

-X<maxsize> Specify maximum amount of memory to use, in kilobytes. The default is now 128 MB.
-q Don't print the banner on startup.
-h Print usage message instead of starting intent.

Note that invoking intent in this manner does not check for add-ons.

2.4. Loader Environment Variables

Some features of loader behaviour may be modified by setting Linux environment variables. The following
variables may be set:

ELATE_ISINTERACTIVE When set to 0, disables terminal interface. Intended when you’re not using the
intent shell interactively, i.e. batch jobs. Default is 1.

ELATE_KTRACE When set redirects ktrace output to the specified file. Default is to send ktrace
output to the screen.
ELATE_BREAKCHAR Defines which character is used for the break character. Specify the ASCII

code of the character desired. The default is 29, 7.

For example:

ELATE_| SI NTERACTI VE=0 sys/platform linux/el ate
—B sys platfornm|inuxi x86/devel op.inmy —q —¢c “unane -a”

These environment variables may be used with both the wrapper scripts and the long form of intent
command, as described in section 2.3. The ELATE_ISINTERACTIVE variable should not be used with
intent_applet, intent_java or intent_java_stdio.

Getting Started With intent® on Linux®

3. Debugging intent

The fbug debugger is an interactive system level debugger for intent, which can either be used in text mode
or with a graphical user interface. The fbug debugger has been designed to perform such tasks as
debugging applications, device drivers and other pieces of intent code. The debugger can be of use in the
following areas:

« Examination and modification of registers e Setting and clearing multiple breakpoints
« Single stepping through code * Expression evaluation (VP and Native)
« Detecting Incorrect parameters* « Detecting misaligned loads and stores*

e ldentifying stack overflows*
* These features are only available with the developt image.

The fbug debugger can be invoked with either a text or graphical user interface. The basic format of fbug text
mode invocation is as follows:

sys/platform|inux/fbug [fbug options]
sys/platformlinux/elate -B sys/platfornm|inux/ix86/<inmge nane>.ing [intent
opti ons]

This will cause a window to appear on the screen upon which fbug commands can be entered. When some
part of the intent system or any application it is running causes a fault, or a SIGINT is sent to intent, the intent
system is stopped and fbug is entered into. It prints a brief description of the problem (e.g. a hard coded
breakpoint), a register dump, the name of the tool where the problem occurred and the offset into that tool,
and the source line where the problem occurred (only if the tool was assembled with the -g option). If source
is not available a disassembly of the instruction which caused the problem can be displayed.

For the common case of running the developt image with no intent or foug options, the following wrapper
scripts may be used.

« intent_debug :developt.ing - Starts a shell session under the fbugwin debugger
« intent_media_debug : developt.ing - Starts a intent Media System session under the fbugwin debugger

Note that these invoke the graphical user interface for fbug, known as fbugwin. For example:

cd ~/intent
i nt ent _debug

For command line invocation, Fbugwin should be started from the intent root directory as follows:

"sys/platform |inux/ix86/fbugwi n [options]"”

Fbugwin may start one of a selection of intent sessions whose parameters have previously been set up (for
example, develop, developt, a target board connected to using a serial line, another machine on the Internet
etc), exit the intent session, and then restart and continue debugging (without quitting fbugwin, and possibly
using a different target setup).

For more information on fbug and fbugwin please see the html documentation within the intent release, or
the fbug debugger user guide.

10

Getting Started With intent® on Linux®

3.1. Xfbug

Xfbug is a simple wrapper script for the fbug debugger which spawns a new xterm for the Elate® session's
I/O.

xfbug [<fbug options>] <elate driver> [<el ate_options>]

xfbug is a simple wrapper script for the fbug debugger on Linux when using ptrace debugging. It should be
invoked in exactly the same way as fbug. The only difference is that it spawns a new xterm window, which
will be used for the intent session's input and output. I/O from the debugger will go to the original terminal
window, stopping each from corrupting the other's display.

11

Getting Started With intent® on Linux®

4. intent Help Functions

Online help within intent is provided in standard html format, accessible through the following intent utilities:

help - view help file
html - view miscellaneous html file

If the intent-doc package has been installed both html documentation and .pdf manuals are available to
native Linux programs, in the /usr/doc/intent directory.

The syntax for the help command is

hel p <text>

For instance:

hel p grep

The documentation relating to the shell command grep is then displayed within the intent shell.

An index of all intent documentation available online can be found within the intent root directory. The
documentation is listed according to category, (i.e. device drivers, shell commands and so on). To view this
file type:

htm contents. htni

12

Getting Started With intent® on Linux®

5. The intent Shell - An Introduction

The intent shell is a scripting command language interpreter. It is able to read and execute commands from
the user, and can therefore provide an interface to the underlying mechanisms. Entered commands are dealt
with by the command processor, which calls on the services provided by the intent kernel as and when
required. The results of most commands are displayed to the location at which standard output has been
specified, for instance the screen. The intent shell has a similar feel to standard UNIX ® shells, but although
designed to offer a level of functionality comparable to a zsh shell, it also has a much smaller footprint.
Please note that the behaviour of the intent shell is not always identical to that of other shells, such as bash.

UTILITY OR
STANDARD USER STANDARD
INPUT FILE ——p PROGRAM — » OUTPUTFILE
(STDIN) (STDIN)
. 4

'

STANDARD
ERROR FILE
(STDERR)

5.1. Command Conventions

Commands can be entered at the $ prompt, displayed on the screen within the intent shell. Where a
command line is shown, text enclosed in angle brackets <thus> should be replaced by an actual parameter
when typing a command. Parts of the command line shown in square brackets [thus] are optional.

So for example :

command <par anet er 1> [<paraneter2> [<paraneter3> ...]]

In this case parameter 1 is mandatory, and parameters 2 and 3 are optional. However, parameter 3 cannot
be specified unless parameter 2 also is. Parameter 3 may be repeated.

Options

Commands can be modified by specifying additional options.

All options must be proceeded by “-“. Multiple options can be specified together, so for example, “-abc” would
behave identically to “-a -b -c”. However some options may take additional arguments, in which case multiple
options should not be specified.

Options can appear anywhere on the command line, between parameters. For clarity however, it is

recommended that options be placed immediately after the command name, and therefore before any
parameters.

5.2. Most Commonly Used Shell Commands

All of these commands can be run from the command line.

intent Command Unix Equivalent DOS® Equivalent
Is lists directories Is dir

speed benchmark - -

cat concatenates named files cat type

echo copies arguments to standard output echo echo

date displays date date date/time

13

Getting Started With intent® on Linux®

exit exit shell exit exit
shutdown quit Elate shutdown -
java runs Java™ class java java

5.3. Simple Commands

Listing directories - Is

This command lists the named files. If a directory is named, its contents are listed. If no filenames are given,
the contents of the current directory are listed instead. Typing this in after the command prompt:

$1Is [<filename> ...]

would produce something like this:

dev ebug. exe feq. exe | ang makefil e

app docn

Concatenate the Named Files - cat

By typing in this:

$ cat [<filename> ...]

it is possible to either place the content of any named files into a new file, or copy the input typed into the
keyboard.

Benchmark current speed - speed

This function benchmarks the speed of the current processor, and displays the results to standard output.
Typing in this after the command prompt:

$ speed

will result in something like this:

VP MOPS = 62.060606 (i nt eger)
VP MLOPS = 0.969696 (1 ong)
VP MFOPS = 0.290909 (f1oat)
VP MDOPS = 0.028985 (doubl e)

Millions of these ILFD operations are performed every second.
Leaving intent — Exit/Shutdown

Exit terminates the shell, while shutdown shuts down intent. These have almost the same effect from the
initial shell, but nowhere else.

14

Getting Started With intent® on Linux®

6. Directory Structure

Files within intent are organised into directory structures - as is commonly the case, a directory is itself a file,
containing the name and locations of the files it contains. Consequently any commands that apply to files are
also applicable to directories. One or more files can be specified. The following directory areas can be used
as a guide to locate files:

Applications app All applications

AVE ave Multimedia Toolkit

Com.uk com Java™ classes, following Java™ namespace conventions

Demonstration demo Example Programs

Device Drivers dev Device Drivers

TCP/IP Subsystem etc General configuration files often used by TCP/IP, network and Host OS
related files

Fonts fonts TrueType® and PostScript® Type 1 fonts.

Home home The user’s home directory

Java java Java™ Libraries

Languages lang Programming Languages

Libraries lib General Library

Sounds sounds Audio specific parts of multimedia toolkit

System Sys System Directory

It is easiest to find a required program by following this directory structure.

6.1. More Simple Commands
Change Directory - cd

cd [<directory>]

This function changes the current working directory to another specified directory.

Print Working Directory - pwd

pwd

Displays the name of the current directory to standard output.

Create New Directory - mkdir

nkdi r <pat hnanme>

Creates directories with the pathnames that have been specified.

15

Getting Started With intent® on Linux®

7. The Sysbuild Utility

The sysbuild utility can be used to generate system image files, suitable for downloading to the target
hardware. To do this, it calls upon the underlying functionality provided by the sysgen utility. To create an
application sysfile see the more detailed documentation located at sys/platform/sysbuildapp.html), or to
create a platform sysfile see sys/platform/sysbuildplat.html.

Demonstration application sysbuild files are available in the sys/platform directory, although it should be
noted that the file sysbuild.sys, in the same directory, is not a demo file. Each demo has a corresponding
.html file of the same name, which contains further information. Some demos may require third party
application files to work - where this is the case, it will be stated in their .html files.

To generate a bootable system image from an intent command line, type the following:

sysbui |l d <pl at f or n> <appsysfil e>

This is where:
<platform> Specifies the platform to create an image for. For example Linux/ix86.

<appsysfile> Specifies the application's sysbuild file. This file describes the application in terms of the tools
and data files required, as well as how to run the program. All application sys files must have the extension
.sys, but it does not need to be specified on the command line.

In particular, two sys files are provided; pjavafull.sys and pjavamin.sys. The pjavafull.sys file produces a full
PersonalJava image suitable for Java program development, whereas the pjavamin.sys file produces a
minimal PersonalJava image that does not include any of the optional PersonalJava components These
images can be used to run a Java application from the platform's file system. It is therefore only useful on a
hosted platform. To run a Java application the whole application and any data files must exist in the host file
system below the intent root directory. On the intent command line use the -c option to run the program, for
example to run the Java program my/java/app.class with the full PersonalJava image enter the following:

sys/ platform <pl atfornp/el ate
-Bsys/ pl atform <pl at f orme/ pj avaful | .ing
-c"jcode ny/javal app"

Further information is available from the following sources:

app/stdio/sysbuild.html How to use the sysbuild command.
sys/platform/sysbuildapp.html How to create a new application system configuration file.
sys/platform/sysbuildplat.html How to create a new platform system configuration file,
sys/platform/sysbuildref.html Reference guide to sysbuild values.

16

Getting Started With intent® on Linux®

8. Using The Sysgen Utility

The entirety of the intent platform is tailored around the needs of the application it is running, incorporating
the precise minimum set of tools needed to successfully run that application and no more. The sysgen utility
(system image generation) is used to generate a bootable system image from a collection of tools and a
specification of the user’s requirements.

Essentially sysgen takes an “instruction file”, and then follows the instructions contained within that file, to
make one or more intent system images. It does this by analysing the references made by the applications
and device drivers to the kernel, library and user tools, and determines the exact requirements of the target
system. All necessary tools are then loaded, translated, bound and written to an image file, along with any
necessary data.

intent is able to translate a tool from virtual byte codes (VP) to native code in any one of three ways:
Automatically when the tool is loaded from store (e.g. disk). This is suitable for a PC or workstation
environment, where the load time from store is long when compared to the time for translation. Tools can be
translated as and when loaded by intent without incurring any significant performance penalty in this
situation.

Manually from the shell prior to run-time of the program. This is performed using the translate command.
When the system image file is generated using sysgen. Using sysgen it is possible to pre-translate VP byte

codes into native code at the time the system is built. For example in a PDA, there is no hard disk from which
to load the tools the code typically being stored in ROM.

17

Getting Started With intent® on Linux®

9. Using the C /C++ Compiler

The compiler is used to convert C or C++ source code into VP source code. The assembler is then used to
convert this into VP binary code. Note that the compiler is only available if the gpl-utils option has been
selected.

SOURCE CODE - C/C++ COMPILER VP BINARY CODE

intent comes with a number of ‘C’ example programs for the new user to begin with, and these can be found
in the directory demo/example/c, as can the source code for the example program used here, ‘hello world’.
The following program was coded in source file demo/example/c/hello.c:

#i ncl ude <stdi 0. h>

int main (int argc, char **argv)

{
printf("Hello fromCn");
return O;

To compile this program type this in at the shell prompt $:

| $ vpcc deno/ exanpl e/ c/hello.c

This will then create a tool vpout.00 in the root directory. To then run that tool type this in at the shell prompt
$:

$. /vpout

To compile the program ‘hello.c’ while using more advanced options type the following at the intent
command prompt:

$ vpcc deno/ exanpl e/ c/hello.c —o deno/exanpl e/ c/world

The instruction to invoke the compiler is lang/cc/bin/vpcc. The compiler is then given the name of the source
program, including its full pathname, which it is to compile.

The option -o tells the compiler the name that it is to give to the output tool.

The line above invokes the compiler to compile the program demo/example/c/hello.c, telling it to output the
tool to the same directory location and to name the tool ‘world’. So, if there were no errors, the compiler will
have created a separate file with the name ‘world’, suffixed with .00. This is the executable file.

To run this program, type at the command prompt:

|$ deno/ exanpl e/ ¢/ wor | d

The words “Hello from C” are then printed to the screen.

N.B. Note that execution, compilation and assembly should be performed from the root directory in
intent.

18

Getting Started With intent® on Linux®

10. Using the VP Assembler

_--
VP SOURCE VP BINARY
CODE VP ASSEMBLER CODE

The intent assembler is used to take a source file, of either VP or native assembly source, assembles the
contents and outputs one or more files (typically in the form of an intent tool). To run an application or to call
a tool, they must have been assembled first. All VP source programs are usually suffixed with .asm to denote
that they are source.

To assemble the program ‘firsthello.asm’ type the following at the intent command prompt while in the root
directory :

$asm deno/ exanpl e/firsthello

If there were no errors, the assembler will have created a separate file with the name ‘firsthello’, suffixed with
.00. This is the executable file and to run, type from the command prompt:

|$derm/ exanpl e/firsthello

Please note that the full pathname is required but no suffix. The words “Hello world” are printed to the
screen.

N.B. Note that execution, compilation and assembly should be performed from the root directory in
intent.

19

Getting Started With intent® on Linux®

11. The Translation Procedure

VP CODE TEMPLATE TRANSLATOR LOADED TOOL
IN STORE AS NATIVE
CODE

Translators are used in three situations:

* When called by the sysgen utility.
* When called by the tool loader for loading tools (dynamic binding).
* “Pre-translation” of code using the “translate” command.

The translate command can be used to pre-translate a Java™ class (.class) to the VP tool (.00) files, or to
pre-translate a VP tool (.00) to a native tool (some other numerical extension, for example .15 for
Pentium™). Doing this means that sysgen and the tool loader will use the pre-translated versions, rather
than automatically calling the translator.

translate [options] <filenane> ...

For each specified file, a translator is run on the tool contained within that file. The translated tool is then
stored in a file with the same name except that an appropriate “.nn” suffix will be added, and any “.00” suffix
will be removed. Directories are created as necessary to do this. The translation of a VP code into native can
take significantly less time than that taken to load that code from storage.

The main option to be used with this command is:

-t<transl at or>

Use the specified translator. (By default the current system translator is used) The prefix ‘sys/tr/’ is added.

A more detailed list of options is described in “The intent Shell Commands Reference Manual’. Please note
that translation is normally carried out by the system as required. The programmer does not normally need to
use the translate command directly.

20

Getting Started With intent® on Linux®

12. Using intent and Java™ Technology

intent JTE supports the PersonalJava™ 1.1.3 and 1.2 specifications. A choice between the two of these will
be offered during the user installation process. Java™ applets and applications may be invoked through the
scripts discussed in section 1.2 of this document. Otherwise, the following command is used to load and, if
necessary, translate a Java class, so for example to run this demonstration application type the following at a
intent shell prompt:

| java denp. exanple.j. Hello

Itis also possible to format this command as follows:

| java deno/exanple/j/Hello

The java command starts a Java virtual machine (JVM) and proceeds to run a Java application within it.
Please note that the name given to the Java command needs to be the absolute name of the class file.
Execution starts in the main method of <classname>. Zip and jar files may be specified on the command line.
The classpath option simply specifies the classpath to be used when loading classes from the local
filesystem. Many directories or jar files can be specified, each separated by a *;'

The Jcode VM has a notion of two different types of classes, system classes and application classes (which
comprise of classes loaded through the classpath or by a classloader). System classes are those classes
comprising the Java libraries, and are loaded using a built in classpath of /' and will stay resident in memory
(i.e. translated and bound) during the lifetime of a VM and after the VM exits, until a tool flush event occurs.
Conversely, as far as application classes are concerned, the classpath is valid for the lifetime of the VM,
while a classloader is only valid during its own lifetime.

When looking for a class the VM first searches the system classpath (i.e. '/'), and then the application
classpath. The classpath used for application classes is specified by using the classpath option on the
command line; any mention of /' on the application classpath will be silently ignored. . There is no
mechanism for modifying the classpath used for system classes. For more information about other options to
this command, please see the file app/stdio/java.html.

In order to view an applet embedded in a html page, a command similar to the example below should be
entered at an intent shell prompt:

appl etvi ewer appl et. htm

Note that the html file processing will be different to other applet viewers, and <applet> tags in incorrect html
may not be recognised.

21

Getting Started With intent® on Linux®

13. Introduction to the intent Multimedia Libraries

The aim of the intent multimedia toolkit is to provide a component based user interface (i.e. a tool-kit which
provides the flexibility and modularity to build any form of audio visual environment). This allows multimedia
elements, such as an MPEG video player to have a standard programming interface, which can be
incorporated into any application.

Textarens

This 15 8 test section of tao S
if tha word wrap and lins fe
DOrTest

Thiz 12 3 gscond paragraph
2 | [k
LT

Fom sligplay T T
fR AL 1041 - S
£ The 1= test sectlon of text

] 1k i the word wrap and Lne e

The quick brown fox Jumps opg o=

With conventional operating systems with a Graphical User Interface [GUI] the limit of the functionality of the
program is directly imposed by the restrictions of the GUI. By contrast the intent multimedia toolkit imposes
no such limitations, and incorporating the ability for intent multimedia toolkit users to build their own gadgets
out of the tools provided, bypasses the problem of the predefined nature of the interface development kit
conditioning the end result. The final vendor solution reflects the requirements and restrictions of the
application, and not those of the Operating System or its graphical toolset. Because there are no restrictions
on the usage of the intent multimedia toolkit, there are no limitations upon what can be produced by it. The
advantages of this modular, object-based approach is that applications are not determined by the look-and-
feel of the user interface. From these tool-sets they will effectively be able to build their own GUI and
applications for PDAs, telephones, digital cameras, interactive television set-top boxes, workstations or any
other form of product.

Sample intent applications are provided in the directory demo/ave.

13.1. Simple Customisation

The file dev/ave/auto.scr contains a list of the applications that are to be automatically launched at start-up.
For example, the tiled intent backdrop can be configured to run a specific script when clicked. In practice,
any application could be started through these means. However, it defaults to the system menu program
dev/ave/dsk/runapp.scr.

This simply lists the directory tree rooted in /app/start/; each script file found here is displayed as a menu
item, while subdirectories become submenus. Thus, to add an option to the system menu, create a script file
to invoke an application at the appropriate place in the app/start/ directory tree (the script’s filename, minus
the extension, becomes the label).

22

Getting Started With intent® on Linux®

14. Documentation

The following documentation has been provided to assist the developer in all areas of using intent and
programming with Virtual Processor code:

e VP Programming Guide

* VP Reference Manual

¢ Object Based Programming Guide

e The Elate Device Driver Design Guide

e System Programming Guide

« Debugger User Guide

« Reference Manual for the Sysbuild Utility

* Reference Manual For The Sysgen Utility
e Porting Elate

e Introduction to Java™ Technology on intent
e Java And intent User Guide

¢ Intent Media Libraries Programming Guide
e C/C++ Compiler User Guide

¢ Glossary Of All Key Terms

Further information upon forthcoming Tao Group’s products can be obtained from www.tao-group.com,
where it is also possible to register upon the company email list.

23

Getting Started With intent® on Linux®

15. Training

Tao boasts a highly skilled training department, which is responsible for running training courses for all new
employees and new customers. Tao takes a relaxed but professional ‘workshop’ approach to training. The
courses are designed to be as ‘hands-on’ as possible while covering key theoretical concepts thoroughly.

Tao currently offer the following courses:

15.1. Introduction to intent

This is a course for the newcomer to intent. Topics covered include:

e Installation

* Architecture

e Configuration

o Utilities

¢ Intro to C, Java™ technology and VP programming tools
e System building

e Debugging

A complete list of all the topics covered in the course is available.

15.2. Pre-requisites

Delegates are not expected to have any previous experience of intent. They are expected, however, to have
some programming experience in a language such as C or assembler and familiarity with basic operating
system concepts.

15.3. Introduction to VP Programming

This course is designed to enable programmers to rapidly familiarise themselves with programming in VP
assembly language. The course also includes coverage of Object Based programming in VP.

15.4. Tailored Courses

Versions of the above course tailored to customer’s specific requirements can be created. For certain
situations we are prepared to hold the course at the customers location. Further information regarding this or
any other queries on training, please contact Tao’s Training Manager, Tony Bedford at bedford@tao-

group.com

24

Getting Started With intent® on Linux®

Java and all Java-based marks are trademarks or registered trademarks of Sun Microsystems, Inc. in the
U.S. and other countries.

© Tao Group Ltd or Tao Systems Ltd. 2000, 2001. All Rights Reserved.

Copyright in the software either belongs to Tao Group Ltd or Tao Systems Ltd. The software may not be
used, sold, licensed, transferred, copied or reproduced in whole or in part or in any manner or form other
than in accordance with the licence agreement provided with the software or otherwise without the prior
written consent of either Tao Group Ltd or Tao Systems Ltd.

No part of this publication may be reproduced in any material form (including photocopying or storing it in any
medium by electronic means and whether or not transiently or incidentally to some other use of this
publication) without the written permission of the copyright owner.

Elate®, intent® and the Tao logo are registered trademarks of Tao Group Ltd.

Digital Heaven™ is a trademark of Tao Group Ltd.
The rights of third party trademark owners are acknowledged.

25

