
The Elate® Device Driver Design Guide

Version 1.31

The Elate® Device Driver Design Guide

Page 2

1. Introduction ..4
1.1 WHAT ARE DEVICE DRIVERS? ..4
1.2 THE ARCHITECTURE OF AN ELATE DEVICE DRIVER..4

1.2.1 Which Programming Language?...4
1.2.2 Loading a Device Driver ..5
1.2.3 Remote Devices ..5

1.3 PREPARING TO WRITE A DEVICE DRIVER ..5
1.3.1 Memory Mapping (Platform Isolation Interface (PII))...5
1.3.2 I/O Access ...5
1.3.3 Exclusive Software Resource Access...5
1.3.4 Exclusive Hardware Resource Access (I/O or Memory) ...6
1.3.5 Protecting a Memory Area against Paging Out ...6
1.3.6 Read and Write Policy...6

2. Creating a Device Driver Object in Memory ..8

3. Defining a Class and Method Coding...10
3.1.1 Class code...10
3.1.2 Include files..10
3.1.3 Method code..10

3.2 INITIALISING THE OBJECT IN MEMORY ..12
3.2.1 Locking the I/O address ..12
3.2.2 Detecting and setting up hardware..12
3.2.3 Accessing shared memory ..12
3.2.4 Loading the Interrupt Service Routine (ISR) ...12
3.2.5 Generating Interrupts ..12

4. The Interrupt Service Routine (ISR) ...13

5. Calling a device from an application..15
5.1.1 Looking up a Device..15
5.1.2 Tool lib/fgetobj ...16

6. Loading a Device Driver into Memory..17
6.1.1 How to use devstart...17
6.1.2 How to use .obj..17

6.2 UNLOADING A DEVICE DRIVER ..18
6.3 DEVICE DRIVER VERSION INFORMATION..18
6.4 API SPECIFICATIONS FOR METHODS ...18

6.4.1 Method _init ...19
6.4.2 Method _deinit ...19
6.4.3 Method info..20
6.4.4 Method open..22
6.4.5 Method close ...23
6.4.6 Method reference ..24
6.4.7 Method flush ..24
6.4.8 Method sync ..24
6.4.9 method defaultmethod...25

7. Remote Devices..26

8. Asynchronous IO Tools...27
8.1 STRUCTURE AIO..27
8.2 AIO TOOLS..28

9. Device Driver Helper Tools..29
9.1 GENERAL HELPER TOOLS ..29

9.1.1 Helper IO Tools ...29

The Elate® Device Driver Design Guide

Page 3

9.1.2 Asynchronous IO Tools ...29
9.1.3 Handle Management Tools ...29

9.2 SERIAL DEVICE DRIVER HELPER TOOLS..30
9.2.1 General Tools..30
9.2.2 Modem Status Tools..30

10. Error Tracking Macros ...31
10.1 OVERVIEW...31
10.2 ERRORS ..31
10.3 ERROR, DETECT, TRACE AND TRAP MACROS ...31

10.3.1 PROGRAM_ERROR...32
10.3.2 CONFIGURATION_ERROR ...32
10.3.3 ENVIRONMENT_ERROR...33
10.3.4 EXPANSION CONTROL MACROS ..34

11. Glossary of Terms ..36

12. Examples ...37

12.1 INTENT MULTIMEDIA TOOLKIT KEYBOARD DRIVER..37
12.2 PC BUS MOUSE DRIVER USING SERIAL HARDWARE INTERRUPTS...40

The Elate® Device Driver Design Guide

Page 4

1. Introduction
Elate®’s unique translation technology enables applications to be transparently transferred across
different hardware platforms. Programs are written for a Virtual Processor (VP) allowing
independence from the underlying technology. The VP Binary code generated is translated into the
target processor native code at load time and is executed as native code at runtime. Source programs
can be written in the assembler language for the Virtual Processor (VP Code), by writing in ‘C’ or ‘C++’
or by writing native code for the target processor.

1.1 What are Device Drivers?
Device Drivers provide a range of services from interfacing to hardware, such as I/O ports, to
providing software only services, such as runtime interfaces to host operating systems. A Device
Driver is a piece of software, which offers a generic Application Programmer Interface (API) to a
device family. The API remains the same for each device of that family but each Device Driver
includes platform and processor specific code. In this way, the implementation of any Device Driver
remains transparent to the application, which has no knowledge of how the device provides its
services.

1.2 The Architecture of an Elate Device Driver
The Elate operating system supports an object based programming style. A Device Driver within Elate
is programmed as an object. Therefore, it is strongly recommended that a full appreciation of object
oriented programming within Elate is acquired before attempting to write a Device Driver. This
information is available in the manual, ‘Object Programming with Elate’.

OB_CLASS _init

...
info

close
open

_deinit

DEVICE
INSTANCE

CLASS
TOOL

_init

...

info

close

open

_deinit

METHOD
TOOLS

Figure 1 Architecture of a Device Driver

1.2.1 Which Programming Language?
Currently, there are restrictions as to which language is available to code each section of a Device
Driver. The table below outlines which language can be used for each section.

Language App. Interface Class Code Method Code ISR Code
VP Y Y Y Y
C Y N Y✘ Y
C++ Y N Y✘ Y
Native Y N Y Y

Table 1 Language Availability

The Elate® Device Driver Design Guide

Page 5

✘ - It is not possible to program the method code using native, ‘C’ or ‘C++’ if it is coded within the
main body of the class code. However, if the method makes a qcall to an external tool, the source
code to this external tool can have been written in VP, C or C++ (See the manuals “VP Tool
Programming Guide” and “Elate Tool Programming Guide (C)”).

1.2.2 Loading a Device Driver
For an application to use a Device Driver, it must be mounted. Elate provides various ways of easily
doing this (see Chapter 6). All the procedures place a reference to the Device Driver in a look-up table
called a Mount List and a <name> that is associated with this reference.

All applications, whether originally written in ‘C’, ‘C++’, VP, or native code, can access the device by
using the <name>, which it has been given when placed in the Mount List. In this way, a new Device
Driver can be written, and can take the place of a previous version in the Mount List, and as long as it
is given the same <name> as the previous driver, the application is able to access it without being
aware of the change.

For those programmers intending to write in C or C++, please refer to the manual “Elate Tool
Programming Guide (C).”

1.2.3 Remote Devices
Elate technology also has the capability of allowing an application on one processor to utilise a Device
Driver on a different processor. This is of great importance, as Elate is capable of allowing any
number of heterogeneous processors in a network to work together, in parallel. (See Remote Device
Driver Access, Chapter 7).

1.3 Preparing to Write a Device Driver
Before undertaking the implementation of a Device Driver with Elate, knowledge of the device and an
understanding of its characteristics and ambiguities is required. The device will have special features
that will affect the driver’s implementation and how those features are supported. The device manual
itself is therefore essential.

At the back of this manual is a Device Driver template with an actual implementation of a specific
device. Studying this will help in understanding the implementation of Device Drivers for Elate.

1.3.1 Memory Mapping (Platform Isolation Interface (PII))
The Platform Isolation Interface (PII) provides portability of some kernel tools by separating the
independent sections of the kernel from those that are platform dependent.

Memory mapping between physical and virtual addresses is done by PII map functions. Device Driver
programmers will require information about mapping. All information on PII functions, such as map,
and other platform dependencies can be found in "The Platform Isolation Interface Reference Manual,"
contained within the Elate build, within the sys/pii/ directory.

1.3.2 I/O Access
It is possible to access the hardware using input and output assembler macros, which perform I/O
through a system specific I/O space.

• ioin Reads a unit of data from I/O address space
• ioout Writes a unit of data to I/O address space
• ioinblk Reads a block of data from I/O address space
• iooutblk Writes a block of data to I/O address space

1.3.3 Exclusive Software Resource Access
When an application requests a service from a Device Driver, it is quite often the case that the device
will only allow one process at any one time to have access to the variables or hardware, in order to
ensure data integrity. An exclusive access technique to ensure the integrity of any operations, whilst
performing a service, is therefore required.

The Elate® Device Driver Design Guide

Page 6

Elate kernel mutex objects can be used to guarantee exclusive access to critical sections of code,
memory, I/O ports, etc.

1.3.4 Exclusive Hardware Resource Access (I/O or Memory)
On initialisation it may be advisable to lock the device (using dev/lockio), defined by its 'base address,'
'length' and 'type.' If the base address and length does not overlap with any of the previously locked
items (of the same type), then the new item is considered to be locked.

1.3.5 Protecting a Memory Area against Paging Out
During interrupt routines and Direct Memory Access (DMA), a technique for protecting memory
regions containing code or data from paging out is required, to ensure data integrity. The Elate
mechanism for locking pages is sys/kn/mem/lock.

1.3.6 Read and Write Policy
When creating a Device Driver which is capable of reading or writing (or both), the nature of the
read/write policy will affect the performance and memory requirements of the Device Driver.

Three forms of reading and writing to a device are possible possible - Blocking, Nonblocking and
Asynchronous. Device drivers targeted at specific applications need only provide the method required
by that application. Normally device drivers should provide all three forms.

However, in most cases, the device driver only needs to provide the asynchronous forms (for example,
reada and writea). The base class for all device drivers will implement the synchronous forms (for
example, read and write) by calling the asynchronous forms followed either by a wait operation
(blocking) or a cancel operation (nonblocking).

If this is likely to cause a problem for the target applications, the device driver should also provide its
own asynchronous forms.

• Blocking – the driver blocks until the IO is complete.

Figure 2: A Blocking Call

• Non-blocking – the driver returns immediately having processed some data (if it is able to).

• Asynchronous – the driver returns immediately having initiated the IO. At a later point it will
indicate that the IO has been completed.

Device Driver ISR

Hardware

Interrupt

Application

The Elate® Device Driver Design Guide

Page 7

Figure 3: An Asynchronous Call

Device Driver ISR

Hardware

Interrupt

Application Application
Callback

The Elate® Device Driver Design Guide

Page 8

2. Creating a Device Driver Object in Memory
In order for an application to call a service from a device, it is necessary for an instance of the Device
Driver object to be in memory. An allocation and de-allocation policy must be decided upon by the
Device Driver programmer but the conventional way of allocating memory for the instance is by
creating an allocator tool called _new. A tool carries out memory allocation because the object has
not yet been created and a method cannot be called from an object that does not yet exist!

Once the instance data structure has been successfully allocated, the instance header is initialised to
point to the class tool. The rest of the memory will have undefined data within it which will also require
initialising. This is performed by the _init method. (See Chapter 3.1)

The instance data structure must be large enough to contain the private instance variables, with space
for the standard memory block header of size MH_SIZE. Size is always object specific and is usually
defined within an include file. The memory is allocated by using the Elate function
sys/kn/mem/allocdef. Since there is no guarantee that the C Library is available, it is not possible to
use the C Library function for this.

The assembled _new tool must be placed in the same directory as the Device Driver’s class, i.e.
<pathname>/_new, where <pathname> is the same as the class directory.

Example Code:

tool 'dev/*/_new'
ent - : p0
cpy MH_SIZE + DEVICE_SIZE,i0
qcall sys/kn/mem/allocdef (i0: p0 i~)

After successful memory allocation, an instance pointer to the memory block header, defined by
MH_SIZE, is returned. The instance pointer must be adjusted to point to the start of the un-initialised
memory area that is beyond the memory block header. The instance pointer in VP is always the first
pointer available.

if p0!=0
add MH_SIZE,p0

To initialise the object header and reference the class, the macro refclass is used with the full name of
the class tool. refclass searches for the class tool, bringing it into memory from store, and translating
it only if it is not already present on the tool list.

refclass p0,dev/*/class
endif
ret

toolend

If the _new tool is successful, OB_CLASS is set-up to point to the instance of the class tool containing
the methods. If the allocation fails the return value is 0 (OB_SIZE is defined in the include file
lang/asm/include/equs.inc).

The Elate® Device Driver Design Guide

Page 9

Memory

Header
BlockMH_SIZE

INSTANCE
POINTER

Programmer
defined

private data
area with

resource lock
area

OB_CLASS OB_SIZE

DEVICE_SIZE

 Figure 4 Schematic of Instance Data Structure in memory

The Elate® Device Driver Design Guide

Page 10

3. Defining a Class and Method Coding
A Device Driver within Elate is an object and, like other objects, can inherit from a parent class. If a
new Device Driver belongs to an existing family of devices, it inherits from the existing parent driver
thereby gaining access to common methods (services). An example of this is dev/mouse/pcbus,
where the pcbus mouse driver inherits common mouse methods coded in dev/mouse. For the
implementation of a new family of Device Drivers, the dev/<newfamily> driver must inherit from the
generic base class called dev/class.

dev/class allows the inheritance of File Descriptors (FD) from remote systems, performing a reverse
look-up in the mount table to ensure that the correct instance of the device driver is being used.
dev/class not only allows FD inheritance but it also implements the following:

• method open opens a device from an application
• method close de-references the handle for the object and closes the device
• method reference increments the reference count for the specified handle
• method getflags returns the flags which are currently set
• method setflags changes flags currently set, for blocking/unblocking etc.

It is possible to re-implement any of the above methods in a device driver. However, it must be noted
that if one is changed, all must be changed.

dev/<newfamily> must include the code associated with Remote Devices (See Chapter 7).

3.1.1 Class code
The class code is the framework within which the object’s methods are coded. class is a special type
of tool provided by Elate which has specific macros provided to build the class contents. The name of
the class is defined immediately after the first macro class. The name is the full <pathname> plus
class, e.g. class ‘dev/*/class’. To inherit from another device driver class, the full <pathname> plus
class, e.g. class dev/*/class, omitting the quote marks.

class 'dev/mouse/pcbus/class',dev/mouse/class,VP

The classend macro defines the end of the class. All the methods for the object's services are coded
within these two macros.

3.1.2 Include files
It is not unusual, when programming in VP, for the _new tool to be coded in the same source file.
Therefore the include file which defines the memory size must be included here. These are entered
before the class code. The standard Tao include file, 'tao inc,’ must also be included. It is only
necessary to enter include files once per source file. (See Manual – “VP Tool Programming”).

3.1.3 Method code
A method defines a service which a Device Driver object can perform. Each method manipulates the
hardware by using the variables within the instance data structure plus parameters from the
application, to provide the service and possibly return a result. Coding a Device Driver method is
identical to coding any other object method, using the macro method and terminating with ret.

There are a number of methods that must be defined for a Device Driver. These are _init, _deinit,
info, reference, close and open as well as defaultmethod. The _init method initialises the object
instance while the _deinit method reverses it. The info, reference, close, open and any other methods
are private to the particular device. Coding a method can be done in two ways:

• By putting all the code within the method macro (currently this means it must be written in VP).
• By making a call to an external tool (the tool could be written in ‘VP,’ ‘C’, ‘C++’ or native).

Conventionally, if a tool is coded in native, a second VP (or C, or C++) tool is always coded to ensure
system portability. An advantage of making an external call to a tool is that it allows dynamic

The Elate® Device Driver Design Guide

Page 11

downloading and translation from storage only when required. By adding VIRTUAL+FIXUP after the
name of the tool the tool will be loaded only on the first occasion the call is made, and from that point
on is fixed in memory.

Example Code:

.include ‘tao’

.include '/dev/*/device.inc'
class ‘dev/*/class’,VP

method _init
ent p0 p1 i0:i0

…
ret

method _deinit
ent p0:i0

…
ret

method other
ent p0 p1 i0 i1:i0

qcall dev/*/other,(*:*),VIRTUAL+FIXUP
ret

defaultmethod
entd
ret

classend

Note:

One implementation of a method may be to set up the hardware to allow it to generate an interrupt.
To avoid wasting CPU cycles whilst waiting for the hardware to complete the command, the process
should suspend. Setting up the hardware and the ISR are device specific but possible
implementations may involve the use of the sys/kn/proc/sleep and sys/kn/mbx/timedread functions,
with the ISR resuming the suspended process by use of the sys/kn/int/proc/wake function.

The Elate® Device Driver Design Guide

Page 12

3.2 Initialising the object in memory
Once the _new tool has allocated the instance data structure, it must be initialised with the private or
constant data for the object, including any mutex structures if resource locking is required. All of this is
device specific but some of the considerations and procedures are outlined below.

The _init method is called after the _new tool has been successfully called. This may be carried out
automatically by using the Elate provided utilities (see Chapter 6) or directly by the application itself.
Any default values set up by the _init method may be overwritten at device initialisation, as user
configured arguments can be processed from the command line.

3.2.1 Locking the I/O address
Once the instance data structure is initialised, the Device Driver may need to request permission for
exclusive access to a range of I/O space. An atomic test and set can be carried out by making a call
to the tool dev/lockio. If the range is free it is reserved. The task is not de-scheduled or suspended on
failure.

3.2.2 Detecting and setting up hardware
The implementation of detecting and setting up the hardware is device specific, but if the hardware
detected is not the one expected then the Device Driver must fail initialisation. However, if the
hardware detected is correct, it must be set up for use by the Device Driver. Part of the set up must
be to ensure that no interrupts are generated before the ISR is ready for use. Any pending interrupts
must therefore be cleared.

3.2.3 Accessing shared memory
A Device Driver may utilise a shared memory area. In this case, the variables are shared between the
Device Driver method code and the ISR and can be modified by either. This memory area may be
obtained from system memory, pre-allocated as part of the device instance data structure, or through
a private allocation technique specific to the actual hardware. If the latter, it must then be initialised to
hold the variables that are to be used by the ISR.

3.2.4 Loading the Interrupt Service Routine (ISR)
When the hardware is correctly set up, the ISR is loaded with any necessary locking. The IRQ number
and interrupt routine are set up for the interrupt number given, as well as the address of the loaded
code contained in the ISR tool. An Elate tool, called dev/loadisr, is provided to do this.

3.2.5 Generating Interrupts
For hardware that generates interrupts, any previous interrupt sources must be cleared. Interrupts can
then be enabled, but as an interrupt could be generated immediately, the ISR must make provision for
this. Implementation is hardware specific.

The Elate® Device Driver Design Guide

Page 13

4. The Interrupt Service Routine (ISR)
The ISR is code, which services the interrupts generated by the hardware. How the ISR services the
interrupt is device specific and cannot be addressed here.

However, care should be taken if the device is sharing the same IRQ number with any other devices.
The ISR must check that the hardware which generated the interrupt is the device’s own hardware. If
the Device Driver has ascertained that it is not the correct hardware, the ISR should exit with a ret and
Elate will call the next chained interrupt handler.

Figure 5: Sharing IRQ Numbers
If the interrupt is generated by the hardware being maintained, then the ISR must service it. After the
interrupt has been serviced, any waiting Device Driver processes should be woken up.

Example code:

.include 'tao'

tool 'dev/*/isr'

;Inputs: p0=Data pointer specified to loadisr
;Outputs: None

ent p0:-

cpy.p MY_STATUS,p1
i0in.6 p1,i0
bool i0!?DATA_BIT,exitisr
cpy.p MY_DATA,p1
i0in.6 p1,i0
cpy.b i0,[p0+SAVED_DATA]
cpy [p0+PID],i0
qcall sys/kn/int/proc/wake,(i0:i~)

exitisr:
ret

toolend

Device A Device B

Interrupt

Shared IRQ Line

FLIH

ISR B ISR AChain

The Elate® Device Driver Design Guide

Page 14

Only certain tools can be called from the ISR. Generally it is wisest to assume that a tool cannot be
called from within an ISR unless the documentation for that particular tool states that this is permitted.
For API and more detailed information on each specific tool, please refer to the manual ‘The Elate
Kernel’ or use the on-line help within the Elate shell.

• sys/kn/int/proc/wake
• sys/kn/int/proc/suspend
• sys/kn/int/proc/resume
• sys/kn/int/proc/terminate
• sys/kn/int/proc/getparams
• sys/kn/int/proc/setparams
• sys/kn/int/sem/post
• sys/kn/int/evf/set
• sys/kn/int/mbox/send
• sys/kn/int/timer/set
• sys/kn/int/timer/unset

Interrupt Service Routines can be coded in C or C++ in the normal way. Please refer to the manual
‘Elate Tool Programming Guide (C)’ before attempting to write in C or C++.

The Elate® Device Driver Design Guide

Page 15

5. Calling a device from an application
For an application to be able to access the services provided by a device, the Device Driver object
must be in memory and have been initialised.

The application must obtain the Device Driver object’s instance pointer and then open the device.
Once this has been successfully achieved, the application can make method calls to the object for the
services it requires. Once finished with, the application must close the Device Driver object, so that it
is available for another application to gain access.

Applications can be written in ‘C’, ‘C++’ or VP code. VP code has many ‘C’ library function tools
already available. Figure 3 gives the algorithm used for opening and calling a method from a device.
On the left of the diagram are the ‘C’ code calls and on the right is the VP code. The ‘C’ calls are all
available in VP as library calls.

ncall p0,

read
write
seek

synch
flush

status
info
etc.

START

Request Service

Close Object

Finished?

EXIT

VP Code calls'C' Code calls

Get Object
Instance Pointer

Call Open method

sys/kn/dev/lookup

ncall p0, open

ncall p0, close

OPEN
OBJECTlib/open

lib/read
lib/write
lib/seek
lib/sync
lib/flush

lib/status
lib/info

...
lib/fgetobj

lib/close

Y

N

Figure 6 Algorithm of application code for calling a method (service)

5.1.1 Looking up a Device
The kernel function sys/kn/dev/lookup looks up the specified device by matching the specified name
against mounted devices. It is common for matches to be incomplete: for example, a lookup of the
name var/tmp/tmpfile0001 may match with the var device. In this case, a string pointer would be

The Elate® Device Driver Design Guide

Page 16

returned, pointing to the end of the matched string within the input string, eg tmp/tmpfile0001. Note
that the leading slash is stripped off. Obviously this string represents the filename relative to the root
of the matched device.

Many systems have a filesystem device mounted as an empty string. This will match any name. In
the above example, however, the lookup would still match with var as that is a closer match.

5.1.2 Tool lib/fgetobj
The tool lib/fgetobj returns the instance data and handle associated with a file descriptor, thereby
enabling an application to ncall a device object directly. Its API is as follows:
Inputs

• Ptr = location where the instance data will be stored
• Ptr = location where the handle will be stored
• Int = file descriptor

Outputs
• Int = handle, or -1 if error (errno set to error code)

Note:

By using the ‘C’ Library function lib/open, the file descriptor also becomes inheritable, whereas an ncall
to a method open does not.

The Elate® Device Driver Design Guide

Page 17

6. Loading a Device Driver into Memory
For an application to be able to make calls to a device, an instance of the class of the Device Driver
for that device must be in memory. There are two ways provided for easily creating a Device Driver
instance in memory and these are:

• .obj as used by the Sysgen utility
• devstart

Sysgen provides a mechanism for building a single file containing all the kernel functions and system
boot code required. It may also contain an application; in addition, all its dependent tools required to
run that application. This file can either be loaded into memory from a file system or blown into ROM.
For more detailed information please refer to ‘The Sysgen Reference Manual’.

Both devstart and the .obj call the _new tool for the specified Device Driver class. If the call to the
_new tool is successful, the class tool for the Device Driver is now loaded into memory, if not already
available.

If a method was written with a call to an external tool, it may or may not be loaded until the method is
actually called from the application, at which time it would be loaded transparently.

Once the instance data structure is in memory the _init method is called. Any parameters entered on
the command line are now processed. Pointers to the command line parameters are automatically
passed into the _init method for processing.

If the call to the method _init is successful, the Device Driver's <name> is loaded into the Mount List
making the device available for use by applications. in order to gain access to the Device Driver,
applications must specify <name> exactly as in the Mount List.

The <name>, which is used within the Mount List, is specified by the user when either devstart or .obj
is run. By using different names, more than one instance of a Device Driver can be in memory at any
one time. The <name> within the Mount List is associated with a pointer to the Device Driver's class
instance data variables.

6.1.1 How to use devstart
Type in the command directly from a keyboard or use the configuration file. devstart takes the first
parameter to be the <name> by which the Device Driver is to be known in the Mount List. The second
parameter is taken to be the <pathname> of the directory location of the Device Driver class. Any
additional parameters are passed to the _init method.

Example code:
$devstart /device/joystick dev/joystick/pc -p$201

This code loads a PC specific joystick driver into the Mount List with the name /device/joystick. The -p
specifies the port address which is the default address for the joystick interface for the PC.

6.1.2 How to use .obj
The syntax for loading a Device Driver using .obj is as follows:

.obj (newtool=“<_new filename>”, mountstr=“<mountname>”, cmdline=“<textual
parameters>”)

Example code:
.obj (newtool=“dev/joystick/pc/_new”, mountstr=“/device/joystick”,
cmdline=“joystick -p$201”

If any of the operations are unsuccessful, devstart and .obj will back out cleanly, de-allocating the
memory and returning without having loaded the Device Driver.

The Elate® Device Driver Design Guide

Page 18

6.2 Unloading a Device Driver
An Elate shell command is provided called devstop which removes a Device Driver from the system,
thereby making it no longer available for use by applications.

devstop searches the Mount List for the <name> specified. If the <name> is found, it calls the _deinit
method of the Device Driver. The _deinit method is called to de-initialise the hardware and the
devstop deletes the object instance. The <name> is removed from the Mount List. This is a matched
pair with devstart.

Example code:
$devstop /device/joystick -@0

6.3 Device Driver Version Information
The info method coded in the class code will hold information such as the version number of the
Device Driver as well as other information about the device. To be able to look at this information, an
Elate shell command is made available called devinfo. The Mount List is searched for the name
specified and if found, calls the info method which will print the returned information to stdout. For
more information upon this command, please see the "Shell User Guide."

Example code:
$devinfo /device/joystick

6.4 API Specifications for methods
All device drivers implement certain methods: _init, _deinit, info, open, close, reference, flush and
sync. The open method may return ENOTSUP, in which case the close, reference and (for Character,
Pointer and Keyboard device drivers) getflags and setflags methods are not required. Some of these
may be handled by the base device driver class (see defaultmethod) if the default action is suitable for
the device. All other methods are family specific.

Methods normally return a success or error indicator. Error codes are always in the range -128 to -1,
but should be tested using the Elate VP2 macros iferrno, ifnoterrno, boolerrno, boolnoterrno,
breakiferrno, breakifnoterrno or the C macro is Elate errno. All other values indicate success.

The following table shows the methods that are implemented by all device drivers of a particular
family.

Method Block Character Pointer Keyboard Filesystem
_alias * * * *
_deinit * * * * *
_getattr *
_init * * * * *
_setattr
bcleara *
bsize *
cancel * * * *
clearerror *
close * * * * *
defaultmethod * * * * *
fgetattr *
flush * * * * *
fsetattr *
fsync * *
getattr *
getflags * * * *

The Elate® Device Driver Design Guide

Page 19

info * * * * *
mkboot *
mkdr *
open * * * * *
read * * * *
reada * * * *
reference * * * * *
remove *
rename *
seek *
setattr *
setflags * * * *
statfs *
status * * *
statusa * * *
sync * * * * *
write * * * *
writea * * * *

Please note that read and write need not be implemented if the driver implements reada and writea. The base
class for drivers will read and write to reada and writea.

Other methods may also be implemented. These methods would be device driver specific. For
example, setbaud would be implemented by a serial driver. Other examples of device driver specific
methods are:

• cdeject
• cdload
• cdplaytrack

Please note that block device drivers do not support non blocking reads or writes.

6.4.1 Method _init
Initialises the object data structure.
Inputs:

• p0 = Instance pointer
• p1 = argv
• i0 = argc

Outputs:
• i0 = success, else error code

Errors codes:
• EACCES = Permission denied obtaining resource
• EINVAL = Invalid parameter
• ENODEV = No such device exists
• ENOMEM = Not enough memory

Description
This method initialises the object data structure, set up by the _new tool, allocating any memory
required for internal buffers, ISR, list headers, etc.

6.4.2 Method _deinit
De-initialises the object just prior to the its deletion.
Inputs:

• p0 = Instance pointer
Outputs:

• i0 > 0 if success, = 0 if device still in use, else error code

The Elate® Device Driver Design Guide

Page 20

Errors codes:
• EIO = Error de-initialising device.

Description
This method is called to de-initialise the object, just before the object is deleted. This includes de-
initialising and restoring hardware settings, freeing any allocated memory (except the object instance
data structure), closing any child processes, etc.

The return value from this method indicates whether the deinit has successfully completed, failed, or
whether the device is still in use.

If the device is in use, then the hardware should not be de-initialised, a value of 0 is to be returned.
The caller should not delete the object instance. The caller may retry the _deinit call a short while later.

If the device is not in use and the de-initialisation of the hardware is successful then a value of greater
than zero is returned to the caller. The caller can then proceed to delete the object instance.

If the device is not actually in use, but there is some failure during the de-initialisation of the hardware,
which prevents the device from being un-installed, then an error code is returned. This is to notify the
caller that there is a failure and so prevent the caller from retrying indefinitely.

6.4.3 Method info
Provides information about the device object.
Inputs:

• p0 = Instance pointer
• p1 = Handle or NULL
• p2 = Pointer to buffer
• i0 = Length of buffer

Outputs:
• i0 = Number of bytes written to buffer

Description
This method copies information about the device object into a buffer provided by the caller. The handle
may be NULL if the information is not required.

The format of the information is as follows:
int32 SIZE
int32 <Device Family>

Followed by one or more:
int32 <Device Family Information Flags>

Followed by an optional number of:
int32 <Parameter Type> <Parameter1> <Parameter2>

Followed by:
int32 DD_TERMINATOR (32 bit zero)
<NUL terminated string>

The size field is to enable an application to find out how large its buffer is to be, so as to accommodate
all the information data which may be returned. If the caller makes the info call with i0 = 4, the size of
the full info block is returned. The caller can use this information to allocate a buffer of exactly the
correct size.

Device Family (Class) can be one of the following:
• DF_UNDEFINED Unknown or undefined devices
• DF_BLOCK Block devices (e.g. HDD)
• DF_CHAR Character devices (e.g. Serial)
• DF_SOUND Sound devices (e.g. WAV)

The Elate® Device Driver Design Guide

Page 21

• DF_KEYBOARD Keyboard devices
• DF_POINTER Pointer devices (e.g. Mouse)
• DF_FILESYS File System devices (e.g. FAT)
• DF_TABLET Tablet devices (e.g. penpad)
• DF_PROTOCOL Protocol devices (e.g. TCP/IP)
• DF_NETWORK Network devices (e.g. Ethernet Adapters)
• DF_MESSENGER Messenger driver
• DF_LINK Link devices
• DF_GRAPHIC Graphic devices (for the intent multimedia toolkit)
• DF_AVE AVE devices (for the intent multimedia toolkit)
• DF_TIMER RTC timer devices
• DF_JOYSTICK Joystick device
• DF_CPLOADER Co-processor loader device
• DF_CPDISPATCHER Co-processor dispatcher device
• DF_PLANE Plane device
• DF_MSGPIPE Message-based pipe device
• DF_CLIPBOARD Clipboard device
• DF_POWER Power management device

• Device Family Information Flags:

These define attributes of the device family. There is one common flag, DFI_MOREFLAG, which if
clear indicates that this is the last flag field. If set it indicates that there are more Device Family
Information Flag fields. The last Device Family Information Flag field will have the DFI_MOREFLAG
flag clear.

• Device Family Information Flags for Block devices:

• DFI_REMOVABLE Media is removable
• DFI_LOCKABLE Media may be locked
• DFI_EJECT Media may be software ejected
• DFI_MUSIC Start, Stop and other CD Music commands supported

• Device Family Information Flags for Character devices:

• DFI_SERIAL Serial device supporting setbaud
• DFI_SCATTER Scatter/gather IO supported
• DFI_I2C i2c device

• Device Family Information Flags for Sound devices:

None

• Raw Keyboard Devices

• DFI_REPEAT Keyboard auto-repeats

• Device Family Information Flags for Pointer devices:

• DFI_2BUTTON Two buttons available
• DFI_3BUTTON Three buttons available
• DFI_WHEEL Pointer has a wheel

• Device Family Information Flags for File System devices:

• DFI_MERGE Merge Filesystem

The Elate® Device Driver Design Guide

Page 22

Device Family Information Flags for Protocol devices:

• DFI_GETXBYY Device supports getXbyY methods

• For any type of device the optional fields must be one of the following:
• DD_TERMINATOR end marker
• DD_POLLING 1 word field
• DD_IRQ 2 word field
• DD_DMA 2 word field
• DD_MEM 2 word field
• DD_IO 2 word field
• DD_MEMRANGE 3 word field
• DD_IORANGE 3 word field

• Example Code:

For a Serial device loaded onto COM1 ($3F8 to $3ff inclusive), using IRQ 4, the following info block
may be returned:

dc.i 59 ;number of bytes including length and final 0
dc.i DF_CHAR
dc.i DFI_SERIAL|DFI_SCATTER
dc.i DD_IORANGE,$3f8,$3ff
dc.i DD_IRQ,4
dc.i DD_TERMINATOR
dc.b "PC Serial Port Driver Version 2.00",0

6.4.4 Method open
Opens the device from an application.
Inputs:

• p0 = Instance pointer
• p1 = Name pointer
• i0 = Flags
• i1 = Mode

Outputs:
• p0 = Handle if success else error code

Errors codes:
• EACCES = Permission denied
• EBUSY = The object is in use
• ENOENT = The object does not exist
• ENODEV = The device does not support open

Description

This method is a request from the application to open the device. If successful a handle which refers
to that open is returned. The handle is used by other methods to refer to this device in future calls.

The handle returned by this function may be any value except -128 to -1, as long as it uniquely refers
to the opened device. If the device does not support opens it must return error code ENODEV.

The handle is new, and therefore is not shared with any other process in the system. The current
access position should be set to the beginning of the device where appropriate.

The file status and access modes of the new handle are set according to the value of the flags
parameters passed in an int. The value of this parameter is the bitwise inclusive OR of values from the
lists overleaf (defined in "lang/asm/include/filesys.inc" and "lang/cc/include/fcntl.h").

The Elate® Device Driver Design Guide

Page 23

Open flags
Exactly one of the following flags should be specified:

• O_RDONLY Open for reading only
• O_WRONLY Open for writing only
• O_RDWR Open for reading and writing

Any combination of the remaining flags may be specified:

• O_APPEND If this flag is set, the file offset is set to the end of the device prior to each
write

• O_CREAT If the specified file exists, this flag has no effect except as noted in the
section on O_EXCL, below. If the file does not exist, it is created. In this
case, the creation mode flags are significant, as it represents the file
creation mode.

• O_TRUNC If the file exists and is a normal file, and the file is successfully opened
O_RDWR or O_WRONLY, it is truncated to 0 length.

• O_EXCL Request for exclusive access to the device. This flag has no effect if the
O_CREAT flag is not also set. If O_CREAT and O_EXCL are set, a check
is performed for the existence of the specified file. The open action fails if
the specified file already exists.

• O_NONBLOCKING If this flag is set, operations on this file complete immediately, and do not
block until the whole operation can be completed.

• O_ TEXT This flag signifies that the file is text. Some host file systems store text files
in a different format to binary files.

Any combination of the following flags may be specified:

S_IRUSR 00400 user has read permission
S_IWUSR 00200 user has write permission
S_IXUSR 00100 user has execute permission
S_IRWXG 00070 group has read, write and execute permission
S_IRGRP 00040 group has read permission
S_IWGRP 00020 group has write permission
S_IXGRP 00010 group has execute permission
S_IRWXO 00007 others have read, write and execute permission
S_IROTH 00004 others have read permission
S_IWOTH 00002 others have write permission
S_IXOTH 00001 others have execute permission

S_IAUSR = S_IRUSR + S_IWUSR + S_IXUSR
S_IAGRP = S_IRGRP + S_IWGRP + S_IXGRP
S_IAOTH = S_IROTH + S_IWOTH + S_IXOTH

If a device driver does not include an open method, the default action is to open the device and
return a handle that can be used on subsequent methods.

6.4.5 Method close
De-references the handle for the object and closes the device.
Inputs:

• p0 = instance pointer
• p1 = handle

Outputs:
• i0 = success, else error code

Errors code:
• EBADF = The handle is invalid

Description

The Elate® Device Driver Design Guide

Page 24

The close method de-references the handle. If the reference count for the handle reaches 0, the
handle should be deleted and the device closed. Any outstanding asynchronous operations for the
handle are cancelled.

The method should block until all the data buffered for output has been written.

Upon successful completion, a value of 0 is returned, otherwise an error code to indicate the error
condition must be returned.

6.4.6 Method reference
Increments the reference count for the specified handle.
Inputs:

• p0 = instance pointer
• p1 = handle

Outputs:
• i0 if success, or error code if failed

Errors codes:
• EBADF = The handle is invalid

This method increments the reference count for the specified handle. The reference count is
initialised to 1 when the handle is allocated by the open method, and it is decremented when the
handle is closed.

Usage of this method allows the implementation of handle inheritance and handle duplication. If
successful, the reference method returns any valid success value, otherwise an error code to indicate
the error condition.

6.4.7 Method flush
Inputs:

• p0 = Object data structure
• p1 = Handle

Outputs:
• i0 = 0 if success, else error code

Error codes:

• EBADF = The handle is invalid.

This method discards all unwritten data for the specified file.

6.4.8 Method sync
Inputs:

• p0 = Object data structure
• p1 = Handle

Outputs:
• i0 = 0 if success, else error code

Error codes:

• EBADF = The handle is invalid.

The Elate® Device Driver Design Guide

Page 25

This method ensures that all information for the specified file, including filesystem information, is
written to the underlying device.

6.4.9 method defaultmethod
Inputs:

• None
Outputs:

• None

In most Device Drivers the following code is used:

Example Code:

defaultmethod
entd
parentclass
ret

Note:
The ent directive must be replaced with entd which indicates that this is a defaultmethod and that
responsibility is passed back to the parentclass of the object.

The Elate® Device Driver Design Guide

Page 26

7. Remote Devices
Elate is a heterogeneous multi-processor operating environment. It is therefore useful to have a
mechanism to allow an application on one processor to have access to a Device Driver on a different
processor. This allows one processor to concentrate on handling the Device Drivers whilst leaving any
others to handle the application, e.g. a graphics card with a specialist graphics processor.

Elate provides such a mechanism and an alias object is created on the same processor as an
application, when this application is not on the same processor as the Device Driver. The current
implementation is to have this mechanism in a base class for the family of devices from which all
members of that family can inherit. It is not essential that it is done this way, but obviously it avoids
extra method coding in the specific family member.

When an application makes a call to sys/kn/dev/lookup to open the Device Driver, the Mount List is
checked for the <name> of the Device Driver. One of the Mount List components is a processor id
number and this is also checked.

If the application and Device Driver have two different processor id numbers, sys/kn/dev/lookup
automatically initiates the creation of an agent process on the processor handling the Device Driver.
An alias object is then created on the same processor as the application calling the device. The alias
object is able to receive ncalls from the application as if it were the actual Device Driver. It packages
the parameters into a mail message sending it to the agent process, which in turn passes on the
parameters to the Device Driver. Return parameters from the device are then re-packaged in a return
message and sent back to the alias object, which returns these back to the application. The agent
process and alias object are only created the first time the remote Device Driver is accessed. The
application believes that it is talking directly to the device, regardless of whether the device is actually
on the same processor, or not.

Messenger

Device
Driver

Agent

Processor 1

Link

Messenger

Application

Alias

Processor 1

Link
Network

Figure 7: Remote Devices

The Elate® Device Driver Design Guide

Page 27

8. Asynchronous IO Tools

Asynchronous IO (AIO) enables layers of device drivers to communicate efficiently with each other
without the need for multiple helper processes for each blocked action. This is particularly important
for low usage APIs, such as power management.

It should be noted that each AIO operation requires its own AIO block. This can be reused only when
the AIO operation has completed.

8.1 Structure AIO

The asynchronous IO structure contains the following fields that may be used by device drivers
implementing asynchronous operations:

• List Header

The driver can use the Elate list header at the start of the structure to queue the operation. Once the
driver calls dev/iocomplete the List Header field may not be used.

• AIO_OFFSET

This long field is normally used to allow an application to specify the seek offset for the associated
asynchronous read or write operation, if the device is seekable. It may be used by the device driver for
any purpose, including the return of a long value.

• AIO_LENGTH

The driver may store any value in the AIO_LENGTH field during the operation. It is conventionally
used for the length requested by the caller.

• AIO_HANDLE

The driver should normally save the handle in the AIO_HANDLE field when an asynchronous
operation is started. This enables the driver to cancel the operation if the handle is closed.

• AIO_CANCEL

The driver can use this field to install a cancel function for the asynchronous operation.
The field is initially set to NULL by the IO prepare tools. The driver can put the address of a cancel
function in this field. If the cancel method is invoked, the device driver base class will call this function
with the same parameters as passed to the cancel method.

• AIO_DEVCALLBACK

The driver can use this field to get a call back at process time to enable tidy up actions for an
asynchronous operation. It is normally used to unlock user buffers and the AIO structure itself. The
field is initially set to NULL by the IO prepare tools. The driver must ensure the field is NULL when
dev/iocomplete is called if the callback is not required.

• AIO_DEVDATABACK

The driver can use this field for any purpose during the asynchronous operation. The value in this field
is passed to the AIO_DEVCALLBACK function.

• AIO_DEVPTR1

The driver can use this field for any purpose.

The Elate® Device Driver Design Guide

Page 28

• AIO_DEVPTR2

The driver can use this field for any purpose.

An example of an asynchronous input operation is provided by the intent multimedia toolkit keyboard
driver in chapter 11.

8.2 AIO Tools
dev/ioprepcallback Prepares an asynchronous IO structure to be used with any

asynchronous IO method supported by a device driver
dev/ioprepdevcallback As for dev/ioprepcallback but where the callback should be run within the

context of a device driver process rather than the current user process
dev/ioprepsignal When the AIO completes, marks the signal as pending
dev/ioprepevf When the AIO completes, sets the event flag
dev/iogetresp Gets the status of the AIO operation identified by the AIO structure
dev/iowait Sleeps until the AIO operation identified by the AIO structure is complete,

then returns the final status of the operation
dev/iotimedwait This tool sleeps until the asynchronous IO operation identified by the AIO

structure is complete or the timeout given by the parameter expired.
dev/iocomplete Completes the AIO operation

The Elate® Device Driver Design Guide

Page 29

9. Device Driver Helper Tools
Helper tools provide functions that are commonly required by device drivers. They are intended to
make the implementation of device drivers easier, as well as reducing code size. Some of the helper
tools use an extensible standard handle structure.

While some helper tools may share the same name as the device driver base class methods, they do
not directly implement these base class methods. They may also differ in the parameters specified,
which allows the caller to modify the functionality.

9.1 General Helper Tools

9.1.1 Helper IO Tools

dev/lockio Locks an item defined by its base address, length and type
dev/unlockio Unlocks an item previously locked by dev/lockio
dev/loadisr Loads an Interrupt Service Routine (ISR) on behalf of a device driver
dev/unloadisr Unloads an ISR loaded by dev/loadisr

9.1.2 Asynchronous IO Tools
As asynchronous IO queues may be accessed from different threads (and from interrupts in some
cases), these queues need some form of exclusion protection. Although these helper tools do not
mandate a specific method, certain tools may be easier to use with particular methods.

dev/status Returns the current status of the handle
dev/setstatus Sets the status of the handle
dev/setstatuschange Identical to setstatus but with additional parameters
dev/initstatus Sets up the status data structure for handling AIO requests
dev/deinitstatus Deinitialises the statusa support mechanism
dev/statusa A simple implementation of statusa for device drivers
dev/statuscancel A cancel handler suitable for use with the statusa queue
dev/cancel A simple general purpose cancel handler
dev/ioprep Fills in the fields of the AIO structure to ready it for use
dev/cancelqueue Cancels all requests in an AIO queue, ignoring the AIO_CANCEL field.

The queue is protected by disabling interrupts
dev/cancelqueuemtx Identical to dev/cancelqueue but a mutex used to protect the queue

9.1.3 Handle Management Tools
If multiple handles are supported on a single device in a device driver that supports asynchronous
requests, the device driver has to keep track of both which handle an asynchronous request is
attached to (so that it can be cancelled if the handle is closed) and also the list of asynchronous
requests for each device. This obviously makes it harder to manipulate the asynchronous requests.

The handle management helper tools do not mandate a method for a device driver to manage
handles. However, if the handles for a particular device are stored in a simple list, dev/open is able to
check for access conflicts. These tools rely on the handle becoming invalid once the reference count
reaches 0.

dev/open Creates a new handle and checks compatibility of flags
dev/close Deinitialises a handle
dev/reference Modifies the reference count
dev/getflags Returns the device flags for the handle
dev/setflags Sets the device flags for the handle

The Elate® Device Driver Design Guide

Page 30

9.2 Serial Device Driver Helper Tools

9.2.1 General Tools

dev/serial/checkflags Checks and updates the flags supplied to the setbaud method

9.2.2 Modem Status Tools
These tools provide a simple implementation of modemstatus and modemstatusa for device drivers
that do not require a more sophisticated implementation.

A modem status structure is defined (with size MODEMSTATUS_SIZE) which contains a copy of the
physical status of the modem and the header of a list of AIO structures representing the asynchronous
requests.

dev/serial/initmodemstatus Initialises the data area used by the other modem status tools
dev/serial/deinitmodemstatus Deinitialises the modem status structure
dev/serial/modemstatus Simple implementation of the modemstatus method
dev/serial/modemstatusa Simple implementation of the modemstatusa method
dev/serial/setmodemstatus Updates the modem status and processes AIO requests for

modem status

The Elate® Device Driver Design Guide

Page 31

10. Error Tracking Macros

10.1 Overview
The error tracking macro scheme exists to improve the process of dealing with the various errors that
can occur in a module or system. The scheme is intended to assist a programmer with identifying the
errors which can occur, and remedying them.

The macros provide an easy to use mechanism that allows the programmer to build in code to a
module, as it is being written, in order to deal with errors.

The macros are defined in the 'devices' include file 'lang/asm/include/devices.inc'.

10.2 Errors
The error tracking macro scheme provides macros to DETECT, TRACE, and TRAP (but not HANDLE)
errors.

Each error is classified into one of the following 'types':

PROGRAM errors
• These are errors that occur because of a programming problem
• An example of a program error is the value of a state variable being '7' when only values '0','1' and

'2' are legal values

CONFIGURATION errors
• These are errors that occur because the module or system configuration is not set up correctly
• An example of a configuration error is the modem driver detecting that no ATD dial command

string has been set up in the appropriate configuration file when it has been asked to dial up a link

ENVIRONMENT errors
• These are errors that occur due to a problem with the environment
• An example of an environment error is a kernel tool returning a 'no resources currently available'

error to a module
• The error values defined in ‘lang/asm/include/errno.inc’ ERRNO.INC are generally environment

errors (e.g. ENOMEM, EBUSY)

10.3 Error, Detect, Trace and Trap Macros

The following macros are provided to DETECT, TRACE, and TRAP errors:

• PROGRAM_ERROR DETECT condition

• PROGRAM_ERROR DETECT condition

The following macros are provided to TRACE errors:

• CONFIGURATION_ERROR TRACE condition, TRACE description format string, <TRACE
arguments>

• ENVIRONMENT_ERROR TRACE description format string, <TRACE arguments>

These are described below:

The Elate® Device Driver Design Guide

Page 32

10.3.1 PROGRAM_ERROR

The macro is invoked as follows:

PROGRAM_ERROR DETECT condition

DETECT condition
• This is the DETECT condition to be tested

If the DETECT condition is true, the macro will cause the 'filename' and 'line number' of the macro
invocation line to be output to the trace device.

The macro TRAPS the error (i.e. generates an exception to stop the program).

This macro only has one argument to be exactly synonymous with the ASSERT macro in 'C'. No
facility is provided for outputting additional trace text (other than FILE and LINE NUM) to the trace
device. This means that no extra trace strings will be included in object files for those modules that
have the macro expansion enabled, thus minimising object file 'bloat'.

e.g:

cpy.i [InstP + AWD_CONNECTION_STATE],State
PROGRAM_ERROR (State != AWD_ACTIVATED)
;State should be 'activated' at this point

trace output:
dev/msg/elate/class.asm:1269

10.3.2 CONFIGURATION_ERROR

This macro is used to TRACE configuration errors.

The code that DETECTS and HANDLES configuration errors should be present before and/or after the
macro invocation.

The expected normal usage is for configuration error DETECTION and HANDLING code to always be
present in the module (or to be conditionally assembled using some scheme outside the scope of the
error tracking macros).

A module containing configuration error TRACE code is expected to provide a command line option,
which will allow the configuration error TRACE to be switched on and off.

The macro is invoked as follows:

 CONFIGURATION_ERROR TRACE condition, TRACE description format string, <TRACE string
qualifier values>

The CONFIGURATION_ERROR macro has the following arguments:

TRACE condition
• This is the 'is configuration error trace enabled?' condition to be tested
• In general a module has a control flag in its instance data, which may be set by a command line

option to enable the tracing of configuration errors (e.g. the '-d' option in AWD and PPP). This
condition is tested to establish if the tracing of configuration errors is enabled

• (Note that this 'trace condition' is not the 'has a configuration error occurred?' failure condition, i.e.
it is not the same as the 'DETECT condition' argument passed to the PROGRAM_ERROR
macro)

The Elate® Device Driver Design Guide

Page 33

• The code that DETECTS and HANDLES, configuration errors should always be present.

TRACE description format string
• String containing description of the error

<TRACE string qualifier values>
• Optional %d %x values for the description string

If the TRACE condition is true, the macro will cause the TRACE description string to be output. The
macro does not generate an exception, and the program will continue.

e.g:

;get the dial string to send to the modem
qcall dev/network/awd/get_call_mode,(InstP BufP BufSize : Result)
if (Result != SUCCESS)

CONFIGURATION_ERROR ([InstP + AWD_FLAGS] bit
BAWD_CONFIG_TRACE_ENABLED),"awd/activate: no modem dial command string set
up\n"

;no dial string has been set up by the user in config file
;handle configuration error
;free resources just acquired
;report this as a 'no resources' "environment" error to PPP

else

endif

Trace output:
CONFIGURATION ERROR: awd/activate: no modem dial command string set up

NOTE that the condition '([InstP + AWD_FLAGS] bit
BAWD_CONFIG_TRACE_ENABLED)' is a TRACE condition, not a DETECT condition.

10.3.3 ENVIRONMENT_ERROR

This macro is used to TRACE environment errors.

The code that DETECTS and HANDLES configuration errors should always be present before and/or
after the macro invocation.

The macro is invoked as follows:

ENVIRONMENT_ERROR TRACE description format string, <TRACE string qualifier values>

The ENVIRONMENT_ERROR macro has the following arguments:

TRACE description format string
• String containing description of the environment error

<string qualifier values>
• Optional %d %x values for the description string

The macro does not perform any condition test.
The macro will cause the 'file_name' and 'line_number' to be output to 'tracef'.
The macro will cause the ‘filename’ and ‘line number’ of the macro invocation line to be output to the
trace device.
The TRACE description string will also be output, allowing any returned error values to be traced.
The macro does not generate an exception - the program will continue.

The Elate® Device Driver Design Guide

Page 34

e.g.

;get memory for circuit cell
qcall sys/kn/mem/allocdef,(Size : CircuitCellP Size)
if (CircuitCellP == NULL)

ENVIRONMENT_ERROR "mpc800_i2c/open: allocdef failed
CircuitCellP=NULL\n"

;no memory available for circuit cell
;handle environment error

;free any other resources just acquired

;return 'no resources' error to caller
cpy.p ENOMEM,HandleP
ret

else

endif

trace output:
dev/amino/intact/i2c/class.asm:1263 mpc800_i2c/open: allocdef failed

CircuitCellP=NULL

10.3.4 EXPANSION CONTROL MACROS

The following macros are provided to control what macro expansions take place when the
PROGRAM_ERROR, CONFIGURATION_ERROR, and ENVIRONMENT_ERROR macros are
invoked in a source file.

• INCLUDE_PROGRAM_ERROR_CHECKS
• INCLUDE_CONFIGURATION_ERROR_TRACE
• INCLUDE_ENVIRONMENT_ERROR_TRACE

• EXCLUDE_PROGRAM_ERROR_CHECKS
• EXCLUDE_CONFIGURATION_ERROR_TRACE
• EXCLUDE_ENVIRONMENT_ERROR_TRACE

These macros are used at the top of a source file to select the set of error tracking macro expansions
that are included when the file is assembled.

For example:

• To assemble with full error checking and trace code present, the source will include:

;enable all error checking and tracing
INCLUDE_PROGRAM_ERROR_CHECKS
INCLUDE_CONFIGURATION_ERROR_TRACE
INCLUDE_ENVIRONMENT_ERROR_TRACE

• To assemble with only CONFIGURATION and ENVIRONMENT error tracing, the source will
include:

;enable configuration and environment error tracing only
EXCLUDE_PROGRAM_ERROR_CHECKS

The Elate® Device Driver Design Guide

Page 35

INCLUDE_CONFIGURATION_ERROR_TRACE
INCLUDE_ENVIRONMENT_ERROR_TRACE

• To assemble without any error checking and trace code present, the source will include:

;exclude all error checking and trace code
EXCLUDE_PROGRAM_ERROR_CHECKS
EXCLUDE_CONFIGURATION_ERROR_TRACE
EXCLUDE_ENVIRONMENT_ERROR_TRACE

A nested macro definition scheme is used such that (for example) the
'INCLUDE_PROGRAM_ERROR_CHECKS' macro invocation will define the full 'PROGRAM_ERROR'
macro, and the 'EXCLUDE_PROGRAM_ERROR_CHECKS' macro invocation will define
a 'null macro' for the 'PROGRAM_ERROR' macro.

The Elate® Device Driver Design Guide

Page 36

11. Glossary of Terms

• Dynamic Binding

'Just-in-time' loading of tools.
Tool

Tools are re-entrant, re-locatable, loaded & bound on demand and are executable pieces of code.
• Ncall

Provides encapsulation (data hiding, bundling together data and access procedures), inheritance (the
ability to include previously defined attributes in your new object) and polymorphism (the ability to run
code with the same name and interface on different data types).
• Qcall

Performs a gos to a tool that may or may not be in memory.
• Message

Objects communicate by sending messages. There are different types of message which Elate is able
to operate on, such as library messages, data messages and many more (see TAO_EQUS.INC).
Messages are data structures. Both messages and objects are constructed from the basic node
structure, but they fulfil very different roles. Objects are active entities which may send passive
messages between one another.
• Mailbox

Messages are sent to mailboxes. An object must have a mailbox to receive messages.
• Virtual + Fixup

By adding Virtual + Fixup after a qcall, it indicates that a tool should be loaded on the first occasion the
call is made, and from that point onwards be fixed in memory.

The Elate® Device Driver Design Guide

Page 37

12. Examples

12.1 intent Multimedia Toolkit Keyboard Driver
.include 'tao'
.include 'dev/ave/tao/class'
.include 'ave/avo/class'

structure
struct KEY_GLB_DATA,KB_SIZE
struct KEY_GLB_AIO,AIO_SIZE
pointer KEY_GLB_AVEDEV
pointer KEY_GLB_KEYDEV
pointer KEY_GLB_KEYHANDLE
pointer KEY_GLB_DEVNAME
int32 KEY_GLB_FLAGS
size KEY_GLB_SIZE

tool 'dev/ave/dsk/keyboard',VP,F_MAIN,16384,KEY_GLB_SIZE

ent -:-

defbegin 0
defp argv,ave,app,kdev,khdl,aio,msg
defi evt,flag,key

;set priority to above applications
qcall sys/kn/proc/chpri,(64:i~)

;get args, initialise any instance variable defaults
qcall lib/argcargv,(-:argv,i~)
cpy keyboardname,[gp+KEY_GLB_DEVNAME]
clr [gp+KEY_GLB_FLAGS]

;process any command line options
qcall lib/opts,(argv,options.p,gp:i~,i~)

;lookup ave
qcall sys/kn/dev/lookup,(avename.p:ave,app)
ifnoterrno ave,true

;open ave
ncall ave,open,(ave,app,0,0:app)
ifnoterrno app,true

;lookup keyboard
qcall sys/kn/dev/lookup,([gp+KEY_GLB_DEVNAME].p:kdev,khdl)
ifnoterrno kdev,true

;open keyboard
ncall kdev,open,(kdev,khdl,O_EXCL|O_RDONLY,0:khdl)
ifnoterrno khdl,true

;get the AIO structure for loop
cpy (gp+KEY_GLB_AIO),aio

;save device instances for callbacks later
cpy ave,[gp+KEY_GLB_AVEDEV]
cpy kdev,[gp+KEY_GLB_KEYDEV]
cpy khdl,[gp+KEY_GLB_KEYHANDLE]

;prepare the callback block (needs to be done every
time...)

qcall dev/ioprepcallback,(aio,keyboard_callback.p,gp:-)

;call asynchronous read to get KB_SIZE bytes
ncall kdev,reada,(kdev,khdl,gp,aio,KB_SIZE:flag)
ifnoterrno flag

repeat
;wait until callback or event wakes us up
ncall app,getevent,(app,-1.l:p~,msg,evt)

;quit if asked
if msg!=0

;free event
ncall ave,freeevent,(ave,msg:-)

The Elate® Device Driver Design Guide

Page 38

breakif evt=EV_QUIT
endif

;leave if there was error in callback
until [gp+KEY_GLB_FLAGS] geu -128

;loop until we've cancelled
repeat

;call cancel and then sleep to enable
callback

ncall kdev,cancel,(kdev,khdl,aio:flag)
breakif flag eq EINVAL
qcall sys/kn/proc/sleep,(-1.l:i~)

;get asynchronous response and loop again
qcall dev/iogetresp,(aio:flag)

until flag!=EINPROGRESS
endif

;close keyboard device
ncall kdev,close,(kdev,khdl:i~)

endif
endif

;close ave
ncall ave,close,(ave,app:i~)

endif
endif

;close io, return error code
qcall lib/exit,(0:-)
ret

defendnz

keyboard_callback:
;inputs
;p0=aio
;p1=data

ent p0-p1:-

defbegin 0
defp aio,data,ave,kdev
defi len
defl time

;get the state and jump to exit if error value (stop recursion)
qcall dev/iogetresp,(aio:len)
ifnoterrno len

;load up ave device and dispatch
if len>0

if len<KB_SIZE
qcall sys/kn/time/get,(-:time)

else
cpy [data+KB_TIMESTAMP],time

endif
cpy [data+KEY_GLB_AVEDEV],ave
ncall ave,dispatchk,(ave,[data+KB_KEY],time:-)

endif

;prepare the callback block (needs to be done every time...)
qcall dev/ioprepcallback,(aio,keyboard_callback.p,data:-)

;get the device and app instance to make the callback
cpy [data+KEY_GLB_KEYDEV],kdev
ncall kdev,reada,(kdev,[data+KEY_GLB_KEYHANDLE].p,data,aio,KB_SIZE:len)

endif

cpy len,[data+KEY_GLB_FLAGS]
ret

defendnz

setd:
;set device name

The Elate® Device Driver Design Guide

Page 39

ent p0-p2 i0:p0 i0

cpy p1,[p2+KEY_GLB_DEVNAME]
add 4,p0
ret

data

options:
;options table for command line processing
dc.i ('d'),setd
dc.i 0

avename:
dc.b '/device/ave/'

appname:
dc.b 'Keyboard',0

keyboardname:
dc.b '/device/keyraw',0

toolend

.end

The Elate® Device Driver Design Guide

Page 40

12.2 PC BUS Mouse Driver using serial hardware interrupts
.include 'taort'
.include 'dev/mouse/pcbus/class'
.include 'dev/mouse/pcbus/pcbus'

.remacro tracef

.endm

class 'dev/mouse/pcbus/class',dev/mouse/class,VP

method _init
ent p0 p1 i0 : i0

cpy i0, i1

; parent class init
pcall p0,_init,{p0 p1 i1 : i0}
if i0>=0

;sub class init
qcall dev/mouse/pcbus/_init,{p0 p1 i1:i0}
if i0<0

;sub class init failed so deinit parent classs
pcall p0,_deinit, {p0 : i1}

endif
endif
ret

method _deinit
ent p0 : i0
qcall dev/mouse/pcbus/_deinit,{p0:i0},VIRTUAL+FIXUP
if i0!=0

;parent class deinit
pcall p0,_deinit,{ p0 : i0 }

endif
ret

method open
ent p0 p1 i0 i1:p0
cpy.p p0,p2
or O_EXCL,i0 ;Force one opener.
pcall p2,open,{p2 p1 i0 i1:p0}
ifnoterrno p0

clr [p2+(PCBUSMS_ISR_VARS+PCBUSMSISR_XPOSN)]
clr [p2+(PCBUSMS_ISR_VARS+PCBUSMSISR_YPOSN)]

endif
ret

method close
ent p0 p1:i0

pcall p0,close,(p0 p1:i0) ;Return the open count
if i0==0 ;If open count is zero then cancel all AIOs

qcall dev/mouse/pcbus/close,(p0 p1:i0)
endif
ret

method reada
ent p0-p3 i0:i0
qcall dev/mouse/pcbus/reada, {p0-p3 i0:i0}, VIRTUAL+FIXUP
ret

method info
ent p0 p1 p2 i0:i0
qcall dev/mouse/pcbus/info,{p0 p1 p2 i0:i0},VIRTUAL+FIXUP
ret

method cancel
ent p0 p1 p2:i0
qcall dev/mouse/pcbus/cancel,(p0,p1,p2:i0),VIRTUAL+FIXUP
ret

defaultmethod
entd

The Elate® Device Driver Design Guide

Page 41

parentclass
ret

classend

tool 'dev/mouse/pcbus/_new',VP,0
;inputs
; none
;outputs
; p0 = instance pointer, else NULL if error
;
ent -:p0

cpy MH_SIZE+PCBUSMS_SIZE,i0
qcall sys/kn/mem/allocdef,{i0:p0 i~}
if.p p0!=NULL

;make instance pointer
add.p MH_SIZE,p0

;initialise the header for the object
refclass p0,dev/mouse/pcbus/class

endif
ret

toolend

tool 'dev/mouse/pcbus/_init',VP,0
;inputs
; p0 = instance pointer
; p1 = ARGV
; i0 = ARGC
;outputs
; i0 = 0, else error code
;
ent p0 p1 i0 : i0

tracef "dev/mouse/pcbus/init: starting %X\n", p0
;
; Initialise any instance variable defaults
;
cpy 2, [p0+PCBUSMS_RESOLUTION]
cpy 80, [p0+PCBUSMS_SAMPLERATE]
clr [p0+(PCBUSMS_ISR_VARS+PCBUSMSISR_NUM)]
clr [p0+(PCBUSMS_ISR_VARS+PCBUSMSISR_ERROR)]
clr [p0+(PCBUSMS_ISR_VARS+PCBUSMSISR_MSFLAGS)]
clr [p0+(PCBUSMS_ISR_VARS+PCBUSMSISR_XPOSN)]
clr [p0+(PCBUSMS_ISR_VARS+PCBUSMSISR_YPOSN)]
clr [p0+(PCBUSMS_ISR_VARS+PCBUSMSISR_BUTTONS)]
cpy pstate_init, [p0+(PCBUSMS_ISR_VARS+PCBUSMSISR_STATE)]
clr [p0+(PCBUSMS_ISR_VARS+PCBUSMSISR_LOCK_HANDLE_PORT_1)]
clr [p0+(PCBUSMS_ISR_VARS+PCBUSMSISR_LOCK_HANDLE_PORT_2)]
clr [p0+(PCBUSMS_ISR_VARS+PCBUSMSISR_LOCK_HANDLE_IRQ)]
clr [p0+(PCBUSMS_ISR_VARS+PCBUSMSISR_ISR_HANDLE)]

;
; Set default PC values for IRQ=12, port base=$60 & stride=4:
; Note that i/o buffer register is at port base &
; ctrl and status register is at port base + stride
cpy D_IRQ,[p0+(PCBUSMS_IRQ)]
cpy D_PORT_BASE,[p0+(PCBUSMS_ISR_VARS+PCBUSMSISR_PORT_BASE)]
cpy D_STRIDE,[p0+(PCBUSMS_ISR_VARS+PCBUSMSISR_STRIDE)]

;
; Setup input queues
;
cpy.p (p0+(PCBUSMS_ISR_VARS+PCBUSMSISR_CBUFF)), p2
cpy.p (p0+(PCBUSMS_ISR_VARS+PCBUSMSISR_INBUFFER)), p3
circlebuff_init p2, p3, PCBUSMS_INQSIZE, MS_SIZE

;
; Process any command line options
;
cpy.p options, p2
qcall lib/opt, {p1 p2 p0 i0:i0 i~}

The Elate® Device Driver Design Guide

Page 42

if i0=-1
cpy EINVAL, i0
go init_exit

endif

;
; Initialise the mutex
;
cpy.p {p0+PCBUSMS_MTX}, p1
cpy MTX_PRIO|MTX_BPIP|MTX_SIGMASK, i0
cpy 0, i1
tracef "dev/mouse/pcbus/init: Initialising mutex %X\n", p1
qcall sys/kn/mtx/init, {p1 i0 i1:i0}
tracef "dev/mouse/pcbus/init: Mtx/init returned %d\n", i0
boolerrno i0, init_exit

;
; Book the io addresses to ensure shared access. Do this
; before poking anything to the hardware.
;
tracef "dev/mouse/pcbus/init: lock io\n"
; i/o buffer address = PCBUSMSISR_PORT_BASE,
cpy [p0+PCBUSMS_ISR_VARS+PCBUSMSISR_PORT_BASE],i0 ;get port address to lock
cpy 1, i1 ;number of bytes of io space to

lock
cpy LK_IO, i2 ;IO space
qcall dev/lockio, {i0 i1 i2:p1}
bool p1=-1, error_lkio
cpy p1, [p0+(PCBUSMS_ISR_VARS+PCBUSMSISR_LOCK_HANDLE_PORT_1)]

; control/status register address = PCBUSMSISR_PORT_BASE+PCBUSMSISR_STRIDE
cpy

([p0+PCBUSMS_ISR_VARS+PCBUSMSISR_PORT_BASE]+[p0+PCBUSMS_ISR_VARS+PCBUSMSISR_STRIDE]),i0
;get port address to lock

qcall dev/lockio, {i0 i1 i2:p1}
bool p1=-1, error_lkio
cpy p1, [p0+(PCBUSMS_ISR_VARS+PCBUSMSISR_LOCK_HANDLE_PORT_2)]

;
; Book the irq to ensure shared access.
;
tracef "dev/mouse/pcbus/init: lock irq\n"
cpy [p0+PCBUSMS_IRQ], i0 ;get irq to lock
cpy 1, i1 ;number of irqs
cpy LK_IRQ, i2 ;IRQ space
qcall dev/lockio, {i0 i1 i2:p1}
bool p1=-1, error_lkirq
cpy p1, [p0+(PCBUSMS_ISR_VARS+PCBUSMSISR_LOCK_HANDLE_IRQ)]

;
; Load interupt service tool
;
tracef "dev/mouse/pcbus/init: load isr\n"
cpy.p isrtoolname, p2
cpy.p (p0+PCBUSMS_ISR_VARS), p1
cpy PCBUSMS_ISR_VARS_SIZE, i0
cpy [p0+PCBUSMS_IRQ], i1 ;get irq to lock
tracef "dev/mouse/pcbus/_init: calling loadisr %x %x %d %d\n", p1, p2, i0, i1
qcall dev/loadisr, {p1 p2 i0 i1:p1 i~}
tracef "dev/mouse/pcbus/_init: loadisr returned %x\n", p1
bool p1=0, error_isr
cpy p1, [p0+(PCBUSMS_ISR_VARS+PCBUSMSISR_ISR_HANDLE)]

;
; Initialise AIO list
;
cpy.p (p0+(PCBUSMS_ISR_VARS+PCBUSMSISR_AIOHEAD)), p1
initlist p1

;
; Initialise rest of instance variables and any hardware
;
tracef "dev/mouse/pcbus/init: initialise instance vars\n"
cpy [p0+PCBUSMS_SAMPLERATE], i0
if i0<15

cpy 10, i0

The Elate® Device Driver Design Guide

Page 43

elseif i0<30
cpy 20, i0

elseif i0<50
cpy 40, i0

elseif i0<70
cpy 60, i0

elseif i0<90
cpy 80, i0

elseif i0<150
cpy 100, i0

else
cpy 200, i0

endif
cpy i0, [p0+PCBUSMS_SAMPLERATE]

;
; Disable controller interrupts
;
tracef "dev/mouse/pcbus/init: disable controller interrupts\n"
poll_aux_status i0, i1, p1 ,p0
aux_write_cmd AUX_INTS_OFF, i1, i2, p1, p0

;
; Enable aux port
;
tracef "dev/mouse/pcbus/init: enable aux port\n"
poll_aux_status i0, i1, p1, p0
cpy AUX_ENABLE, i0
; control/status register address = PCBUSMSISR_PORT_BASE+PCBUSMSISR_STRIDE
cpy.p

([p0+PCBUSMS_ISR_VARS+PCBUSMSISR_PORT_BASE]+[p0+PCBUSMS_ISR_VARS+PCBUSMSISR_STRIDE]),p1
outb_p i0, p1

;
; Set sample rate and resultion
;
aux_write_ack AUX_SET_SAMPLE, i1, i2, p1, p0
aux_write_ack [p0+PCBUSMS_SAMPLERATE], i1, i2, p1, p0
aux_write_ack AUX_SET_RES, i1, i2, p1, p0
aux_write_ack [p0+PCBUSMS_RESOLUTION], i1, i2, p1, p0

cpy AUX_SET_SCALE11, i0
if [p0+(PCBUSMS_ISR_VARS+PCBUSMSISR_MSFLAGS)]?BM_TWOTIMES

cpy AUX_SET_SCALE21, i0
endif
aux_write_ack i0, i1, i2, p1, p0
aux_write_ack AUX_SET_STREAM, i1, i2, p1, p0
poll_aux_status i0, i1, p1, p0

;
; Enable aux device
;
tracef "dev/mouse/pcbus/init: enable aux device\n"
aux_write_dev AUX_ENABLE_DEV, i1, i2, p1, p0

;
; Enable controller interrupts
;
aux_write_cmd AUX_INTS_ON, i1, i2, p1, p0
poll_aux_status i0, i1, p1, p0

cpy.l CLOCKS_PER_SEC/10, l0
tracef "dev/mouse/pcbus/init: sleep for 0.1 sec\n"
qcall sys/kn/proc/sleep, {l0:i~}
tracef "dev/mouse/pcbus/init: sleep returned %d\n", i0

;
; Mark as in runing state
;
cpy PSTATE_0, [p0+(PCBUSMS_ISR_VARS+PCBUSMSISR_STATE)]

clr i0 ; Exit OK

init_exit:
tracef "dev/mouse/pcbus/init: returning %d\n", i0
ret

The Elate® Device Driver Design Guide

Page 44

error_lkio:
tracef "Lock IO failed on port %d\n", i0
cpy ENOLCK, i0
go error_exit

error_lkirq:
cpy [p0+PCBUSMS_IRQ],i0
tracef "Lock IO failed on port %d\n", i0
cpy ENOLCK, i0
go error_exit

error_isr:
cpy [p0+PCBUSMS_IRQ],i0
tracef "Lock IO failed on port %d\n", i0
cpy EFAULT, i0
go error_exit

error_exit:
if [p0+(PCBUSMS_ISR_VARS+PCBUSMSISR_ISR_HANDLE)] != 0

cpy.p [p0+(PCBUSMS_ISR_VARS+PCBUSMSISR_ISR_HANDLE)], p1 ;get irq
lock handle to unlock

qcall dev/unloadisr, {p1:-}
endif
cpy.p [p0+(PCBUSMS_ISR_VARS+PCBUSMSISR_LOCK_HANDLE_IRQ)], p1 ;get

irq lock handle to unlock
if p1<>0

qcall dev/unlockio, {p1:-}
endif
cpy.p [p0+(PCBUSMS_ISR_VARS+PCBUSMSISR_LOCK_HANDLE_PORT_2)], p1 ;get port

lock handle to unlock
if p1<>0

qcall dev/unlockio, {p1:-}
endif
cpy.p [p0+(PCBUSMS_ISR_VARS+PCBUSMSISR_LOCK_HANDLE_PORT_1)], p1 ;get port

lock handle to unlock
if p1<>0

qcall dev/unlockio, {p1:-}
endif

cpy.p {p0+PCBUSMS_MTX}, p1
qcall sys/kn/mtx/destroy, {p1:i~}
ret

; defcall a,dev/mouse/pcbusold/isr ; Make sure the isr is available.
__resource dev/mouse/pcbus/isr ; Make sure the isr is available.

aresolution:
ent p0-p2 i0:p0-p1 i0

qcall lib/optval, {p0-p1:p0-p1}
if p1!=0

cpy.b [p1], i1
clr i1
if i1='$'

inc p1
cpy 16, i1

endif
cpy.p NULL, p3
qcall lib/strtol, {p1 p3 i1:l0}
and 3, l0
cpy {l2i l0}, [p2+PCBUSMS_RESOLUTION]

endif
ret

asamplerate:
ent p0-p2 i0:p0-p1 i0

qcall lib/optval, {p0-p1:p0-p1}
if p1!=0

cpy.b [p1], i1
clr i1
if i1='$'

inc p1
cpy 16, i1

The Elate® Device Driver Design Guide

Page 45

endif
cpy.p NULL, p3
qcall lib/strtol, {p1 p3 i1:l0}
cpy {l2i l0}, [p2+PCBUSMS_SAMPLERATE]

endif
ret

twotimes:
ent p0-p2 i0:p0-p1 i0

or M_TWOTIMES, [p2+(PCBUSMS_ISR_VARS+PCBUSMSISR_MSFLAGS)]
add 4, p0
ret

exponent:
ent p0-p2 i0:p0-p1 i0

or M_EXP, [p2+(PCBUSMS_ISR_VARS+PCBUSMSISR_MSFLAGS)]
add 4, p0
ret

lefthand:
ent p0-p2 i0:p0-p1 i0

or M_LEFTHAND, [p2+(PCBUSMS_ISR_VARS+PCBUSMSISR_MSFLAGS)]
add 4, p0
ret

intelli:
ent p0-p2 i0:p0-p1 i0

or M_INTELLI, [p2+(PCBUSMS_ISR_VARS+PCBUSMSISR_MSFLAGS)]
add 4, p0
ret

; store value of port base
port_base:

ent p0-p2 i0 : p0-p1 i0

qcall lib/optval,(p0 p1 : p0 p1) ;extract parameter
if.p p1 ne NULL

cpy.b [p1],i1
if i1='$'

inc p1
cpy 16,i1 ;use base 16

else
cpy 0,i1 ;context sensitive mode

endif
cpy.p NULL,p3 ;don't store result
qcall lib/strtol,(p1 p3 i1: l0)
cpy l2i l0,[p2 + (PCBUSMS_ISR_VARS+PCBUSMSISR_PORT_BASE)]

endif
ret

; store irq
interrupt:

ent p0-p2 i0 : p0-p1 i0

qcall lib/optval,(p0 p1 : p0 p1) ;extract parameter
if.p p1 ne NULL

cpy.b [p1],i1
if i1='$'

inc p1
cpy 16,i1 ;use base 16

else
cpy 0,i1 ;context sensitive mode

endif
cpy.p NULL,p3 ;don't store result
qcall lib/strtol,(p1 p3 i1 : l0)
cpy l2i l0,[p2 + PCBUSMS_IRQ]

endif
ret

; store register stride
stride:

The Elate® Device Driver Design Guide

Page 46

ent p0-p2 i0 : p0-p1 i0

qcall lib/optval,(p0 p1 : p0 p1) ;extract parameter
if.p p1 ne NULL

cpy.b [p1],i1
if i1='$'

inc p1
cpy 16,i1 ;use base 16

else
cpy 0,i1 ;context sensitive mode

endif
cpy.p NULL,p3 ;don't store result
qcall lib/strtol,(p1 p3 i1: l0)
cpy l2i l0,[p2 + (PCBUSMS_ISR_VARS+PCBUSMSISR_STRIDE)]

endif
ret

data
options:

;options table for command line processing
dc.i 1,1
dc.i ('l'),lefthand
dc.i ('r'),aresolution
dc.i ('2'),twotimes
dc.i ('s'),asamplerate
dc.i ('e'),exponent
dc.i ('w'),intelli

; command line irq, port base and register stride
dc.i ('i'),interrupt
dc.i ('p'),port_base
dc.i ('t'),stride
dc.i 0

isrtoolname:
dc.b 'dev/mouse/pcbus/isr', 0

toolend

tool 'dev/mouse/pcbus/_deinit',VP,0
;inputs
; p0 = instance pointer
;outputs
; i0 = deinit code
;
ent p0 : i0

tracef "dev/mouse/pcbus/_deinit: started %x\n", p0
;lock instance
cpy {p0+PCBUSMS_MTX},p1
qcall sys/kn/mtx/lock,{p1:i0}
boolerrno i0,deinit_exit

tracef "dev/mouse/pcbus/_deinit: wait for interrupt to get to start state\n"
;wait for interupt to get to start state
cpy {[p0+(PCBUSMS_ISR_VARS+PCBUSMSISR_MSFLAGS)] bset

BM_QUIT},[p0+(PCBUSMS_ISR_VARS+PCBUSMSISR_MSFLAGS)]
if [p0+(PCBUSMS_ISR_VARS+PCBUSMSISR_STATE)]!=PSTATE_0

repeat
tracef "dev/mouse/pcbus/_deinit: calling sys/kn/proc/deschedule\n"
qcall sys/kn/proc/deschedule,{-:-}

until [p0+(PCBUSMS_ISR_VARS+PCBUSMSISR_STATE)]=PSTATE_0
endif

;disable interupts
tracef "dev/mouse/pcbus/_deinit: disable interrupts\n"
aux_write_dev AUX_DISABLE_DEV, i0, i1, p1, p0
aux_write_cmd AUX_INTS_OFF, i0, i1, p1, p0
poll_aux_status i0, i1, p1, p0
cpy AUX_DISABLE, i0
cpy.p

([p0+PCBUSMS_ISR_VARS+PCBUSMSISR_PORT_BASE]+[p0+PCBUSMS_ISR_VARS+PCBUSMSISR_STRIDE]), p1

The Elate® Device Driver Design Guide

Page 47

outb_p i0, p1
poll_aux_status i0, i1, p1, p0

tracef "dev/mouse/pcbus/_deinit: unload isr\n"
;
; Unload isr tool
;
cpy [p0+(PCBUSMS_ISR_VARS+PCBUSMSISR_ISR_HANDLE)], p1
tracef "dev/mouse/pcbus/_deinit: calling unloadisr %x\n", p1
qcall dev/unloadisr,{p1:-}

tracef "dev/mouse/pcbus/_deinit: unlock locks\n"
;unlock all locks
cpy.p [p0+(PCBUSMS_ISR_VARS+PCBUSMSISR_LOCK_HANDLE_IRQ)],p1 ;get irq lock

handle to unlock
tracef "dev/mouse/pcbus/_deinit: calling unlockio %x\n", p1
qcall dev/unlockio,{p1:-}

cpy.p [p0+(PCBUSMS_ISR_VARS+PCBUSMSISR_LOCK_HANDLE_PORT_2)],p1 ;get port lock
handle to unlock

tracef "dev/mouse/pcbus/_deinit: calling unlockio %x\n", p1
qcall dev/unlockio,{p1:-}

cpy.p [p0+(PCBUSMS_ISR_VARS+PCBUSMSISR_LOCK_HANDLE_PORT_1)],p1 ;get port lock
handle to unlock

tracef "dev/mouse/pcbus/_deinit: calling unlockio %x\n", p1
qcall dev/unlockio,{p1:-}

;mark as deinited
cpy 1,i0

tracef "dev/mouse/pcbus/_deinit: unlock instance\n"
;unlock instance
cpy {p0+PCBUSMS_MTX},p1
qcall sys/kn/mtx/unlock,{p1:i~}
qcall sys/kn/mtx/destroy,{p1:i~}

deinit_exit:
ret

toolend

tool 'dev/mouse/pcbus/close', VP, 0
;inputs
; p0 = instance pointer
; p1 = handle (ignored)
;
;outptus
; i0 = 0 = success
;
;Calls the cancel method for all AIOs in PCBUSMSISR_AIOHEAD queue.
;The cancel method removes the AIO from the queue and deals with
;mutex and interrupt protection. The cancel method can return an error
;
ent p0 p1:i0

tracef "dev/mouse/pcbus/close: open count = 0 so cancelling any AIOs\n"

clr.i i0 ;Indicate device closed
successfully

cpy.p p0+(PCBUSMS_ISR_VARS+PCBUSMSISR_AIOHEAD), p2 ;Reference AIO queue
while [[p2 + LH_HEAD] + LN_SUCC] != NULL ;While there's an AIO at the head

of the queue
;

cpy.p [p2],p3
qcall dev/mouse/pcbus/cancel,(p0 p1 p3 : i~) ;Call cancel method on

AIO.
;No important error codes are

returned
; ;unless some horrible programming

error occures
endwhile
ret

toolend

The Elate® Device Driver Design Guide

Page 48

tool 'dev/mouse/pcbus/reada', VP, 0
;inputs
; p0 = instance pointer
; p1 = handle
; p2 = data buffer pointer
; p3 = AIO pointer
; i0 = number of bytes to read
;outputs
; i0 = bytes read, else error code
ent p0-p3 i0:i0

tracef "dev/mouse/pcbus/reada: started with %x %x %x %x %d\n", p0, p1, p2, p3, i0

if i0 == 0
qcall dev/iocomplete, (p3, 0.i : i~)
clr.i i0
go reada_exit

endif

if i0<MS_SIZE
tracef "dev/mouse/pcbus/reada: buffer too small, needs to be at least %x

bytes\n", MS_SIZE
cpy EINVAL, i0
go reada_exit

endif

;
; Lock instance
;
cpy (p0+PCBUSMS_MTX), p4
tracef "dev/mouse/pcbus/reada: set lock %x\n", p4
qcall sys/kn/mtx/lock, {p4:i0}
boolerrno i0, reada_exit
tracef "dev/mouse/pcbus/reada: got mtx\n"

;
; See if there is any data in the buffer
;
clr i0
qcall sys/pii/int_off, {-:i4}
cpy.p (p0+(PCBUSMS_ISR_VARS+PCBUSMSISR_CBUFF)), p5
circlebuff_front p5, i1
circlebuff_back p5, i2
if i1 != i2

tracef "dev/mouse/pcbus/reada: Data available\n"
;
; Get the data and update circular buffer indexes
;
circlebuff_readpos p5, i2, p4

circlebuff_elementsize p5, i3
cpbb p4, p2, i3

tracef "dev/mouse/pcbus/reada: updating buffers\n"
circlebuff_frontnext p5, i2

cpy i3, i0

if [p0+(PCBUSMS_ISR_VARS+PCBUSMSISR_ISRHELD)] != 0
circlebuff_front p5, i1
circlebuff_back p5, i2
if i1 = i2

;
; Queue empty - restart ISR
;
tracef "dev/mouse/pcbus/reada: starting isr\n"
clr [p0+(PCBUSMS_ISR_VARS+PCBUSMSISR_ISRHELD)]
cpy (p0+PCBUSMS_ISR_VARS), p4
qcall dev/mouse/pcbus/isr, {p4:-}

endif
endif

endif

if i0 != 0

The Elate® Device Driver Design Guide

Page 49

qcall sys/pii/int_restore, {i4:-}

tracef "dev/mouse/pcbus/reada: calling iocomplete with %x %d\n", p3, i0
qcall dev/iocomplete, {p3 i0:i0}

else
if p3 = NULL

cpy EAGAIN, i0
else

cpy.p p2, [p3+AIO_DEVPTR1]
reftool dev/mouse/pcbus/cancel,p4
cpy.p p4,[p3+AIO_CANCEL]
tracef "dev/mouse/pcbus/reada: adding AIO to list\n"
cpy.p (p0+(PCBUSMS_ISR_VARS+PCBUSMSISR_AIOHEAD)), p4
addtail p4, p3, p5

endif

qcall sys/pii/int_restore, {i4:-}
endif

;
; Unlock instance
;
tracef "dev/mouse/pcbus/reada: unlocking mutex\n"
cpy.p (p0+PCBUSMS_MTX), p4
qcall sys/kn/mtx/unlock, {p4:i~}

reada_exit:
ret

toolend

tool 'dev/mouse/pcbus/info',VP,0
;inputs
; p0 = instance pointer
; p1 = handle
; p2 = data buffer pointer
; i0 = size of buffer
;outputs
; i0 = bytes returned
;
ent p0 p1 p2 i0:i0

;smaller of buffer size or info block
cpy (devinfoend-devinfo),i1
if i0>i1

cpy i1,i0
endif

;copy info block to buffer
cpy.p (devinfo),p3
cpbb p3,p2,i0

;
; Put in actual current values for the io range and irq
; overwrite the fields just copied to the callers memory
; (range check, caller may request 1st 4 bytes to obtain
; length).
; i/o buffer address = PCBUSMSISR_PORT_BASE,
; control/status register address = PCBUSMSISR_PORT_BASE+PCBUSMSISR_STRIDE
;
cpy [p0+(PCBUSMS_ISR_VARS+PCBUSMSISR_MSFLAGS)],i2
if i2?M_INTELLI

or DFI_WHEEL,[p2+8] ;Pointer has a wheel
endif

; Insert value of irq and address of control & buffer registers
bcn i0 lt (io_off+4),info_exit
cpy [p0 + (PCBUSMS_ISR_VARS+PCBUSMSISR_PORT_BASE)],[p2 + io_off] ;patch

buffer reg
bcn i0 lt (io_off+12),info_exit
cpy ([p0 + (PCBUSMS_ISR_VARS+PCBUSMSISR_PORT_BASE)] +

[p0+(PCBUSMS_ISR_VARS+PCBUSMSISR_STRIDE)]),[p2 + (io_off+8)] ;patch ctrl reg
bcn i0 lt (irq_off+4),info_exit
cpy [p0+PCBUSMS_IRQ],[p2 + irq_off]
;patch irq

The Elate® Device Driver Design Guide

Page 50

info_exit:
ret

data
devinfo:

;size of info data
dc.i devinfoend-devinfo

;family device type
dc.i DF_POINTER
dc.i 0

;use default values for irq & address of control & buffer registers
irq_off=16

dc.i DD_IRQ,D_IRQ
io_off=24

; i/o buffer address = D_PORT_BASE,
; control/status register address = D_PORT_BASE+D_STRIDE
dc.i DD_IO,D_PORT_BASE
dc.i DD_IO,D_PORT_BASE+D_STRIDE
dc.i DD_TERMINATOR
revision "PC Bus Mouse Driver Version ", $Revision: 1.21 $, 0

devinfoend:

toolend

tool 'dev/mouse/pcbus/cancel', VP, 0
;inputs
; p0 = driver instance pointer
; p1 = handle (ignored)
; p2 = AIO pointer
;outputs
; i0 = zero or error code
; note that no data is ever returned as half a mouse packet is useless
;
ent p0 p1 p2 : i0

tracef "dev/mouse/pcbus/cancel: requesting mutex lock\n"
cpy.p (p0 + PCBUSMS_MTX),p1
qcall sys/kn/mtx/lock, (p1:i0)
boolerrno i0, mutex_error
tracef "dev/mouse/pcbus/cancel: granted mutex lock\n"

qcall sys/pii/int_off,(-:i1) ;Protect this to prevent both cancel
method

; and the ISR calling dev/iocomplete

reftool dev/mouse/pcbus/cancel,p1 ;Is this method associated with this AIO?
if.p [p2 + AIO_CANCEL] == p1
; ;YES

clr.i [p2 + AIO_CANCEL] ;Prevent another cancel taking place

cpy.p p2,p1 ;Remove AIO from PCBUSMSISR_AIOHEAD list
remove p1,p3 ; (destroys p1 & p3, hence copying)

qcall sys/pii/int_restore,(i1:-) ;ISR can't touch AIO when not in queue
; so turn ints back on

cpy.i ECANCELED,i0
qcall dev/iocomplete,(p2,i0:i~) ;Complete AIO with ECANCELLED error code
clr.i i0 ;Indicate success of cancel routine

tracef "dev/mouse/pcbus/cancel: cancelled the AIO\n"
;
else
; ;NO

qcall sys/pii/int_restore,(i1:-) ;Ints back on

cpy.i EINVAL,i0 ;Indicate cancel didn't happen

tracef "dev/mouse/pcbus/cancel: AIO not cancelled\n"
;
endif

cpy.p (p0 + PCBUSMS_MTX),p1

The Elate® Device Driver Design Guide

Page 51

qcall sys/kn/mtx/unlock, (p1:i1)
boolerrno i1,mutex_error

tracef "dev/mouse/pcbus/cancel: unlocked mutex\n"
go exit

mutex_error:
tracef "dev/mouse/pcbus/cancel: cannot unlock mutex\n"
cpy.i EINVAL,i0
go exit

exit:
ret

toolend

tool 'dev/mouse/pcbus/isr', VP, 0
;inputs
; p0 = interrupt structure
;outputs
; none
ent p0:-

isrstart:
cpy.p (p0+PCBUSMSISR_CBUFF), p6
if [p0+PCBUSMSISR_STATE] = PSTATE_0

;
; Check for room in the buffer before we try to read it
;
cpy.p [p0+(PCBUSMSISR_AIOHEAD+LH_HEAD)], p1
if [p1+LN_SUCC] = NULL

circlebuff_noroom p6, i1
cpy i1, [p0+PCBUSMSISR_ISRHELD]

endif
endif

getevent:
;
; We have room so get an event from the mouse
;
if [p0+PCBUSMSISR_STATE] <> PSTATE_0

bool [p0+PCBUSMSISR_MSFLAGS]?BM_QUIT, finished
endif

gos get_byte, {p0:i0 i1}
bool i1 = 0, exit

cpy [p0+PCBUSMSISR_STATE], i1
bool i1 = PSTATE_INIT, state_init

bool i1 = PSTATE_0, state0
bool i1 = PSTATE_1, state1
bool i1 = PSTATE_2, state2

inc [p0+PCBUSMSISR_ERROR]
cpy PSTATE_0, [p0+PCBUSMSISR_STATE]
go exit

state_init:
cpy [p0+PCBUSMSISR_PS2DATA], i0
go exit

state0:
cpy i0, [p0+PCBUSMSISR_INTDATA0]
cpy PSTATE_1, [p0+PCBUSMSISR_STATE]
go exit

state1:
cpy i0, [p0+PCBUSMSISR_INTDATA1]
cpy PSTATE_2, [p0+PCBUSMSISR_STATE]
go exit

state2:
cpy i0, [p0+PCBUSMSISR_INTDATA2]

The Elate® Device Driver Design Guide

Page 52

process:
;
; Reset to state 0
;
cpy PSTATE_0, [p0+PCBUSMSISR_STATE]

;
; Process the data
;
cpy [p0+PCBUSMSISR_INTDATA0], i0
and 3, i0
cpy i0, [p0+PCBUSMSISR_BUTTONS]
bool [p0+PCBUSMSISR_MSFLAGS]?BM_EXP, exp1

cpy (b2i [p0+PCBUSMSISR_INTDATA1]), i0
cpy i0, [p0+PCBUSMSISR_XPOSN]
cpy (b2i [p0+PCBUSMSISR_INTDATA2]), i0
neg i0
cpy i0, [p0+PCBUSMSISR_YPOSN]
go finished

exp1:
cpy (b2i [p0+PCBUSMSISR_INTDATA1]), i0
if i0<0

cpy (i0*i0), i0
neg i0

else
cpy (i0*i0), i0

endif
add i0, [p0+PCBUSMSISR_XPOSN]

cpy (b2i [p0+PCBUSMSISR_INTDATA2]), i0
if i0<0

cpy (i0*i0), i0
neg i0

else
cpy (i0*i0), i0

endif
sub i0, [p0+PCBUSMSISR_YPOSN]

finished:
;
; Check for waiting AIOs
;
cpy.p [p0+(PCBUSMSISR_AIOHEAD+LH_HEAD)], p1

if [p1+LN_SUCC] = NULL
;
; No AIOs so put into circular buffer
;
circlebuff_back p6, i1
circlebuff_start p6, p3

if [p0+PCBUSMSISR_ISRHELD] = 0
cpy.p (p3+i1), p3

endif
clr.p p1

else
;
; Put data into AIO buffer and remove AIO from list
;
cpy.p p1, p4
cpy.p [p1+AIO_DEVPTR1], p3
remove p4, p5

endif

;
; Copy the data
;
; Scale deltas to the same order of magnitude as plane coordinates.
cpy ((ld.i [p0+PCBUSMSISR_XPOSN]) lsl 7), [p3+MS_X]
cpy ((ld.i [p0+PCBUSMSISR_YPOSN]) lsl 7), [p3+MS_Y]
cpy [p0+PCBUSMSISR_BUTTONS], [p3+MS_BUTTONS]
qcall sys/kn/time/get, (-:l0)
cpy.l l0, [p3+MS_TIMESTAMP]

The Elate® Device Driver Design Guide

Page 53

if p1 = NULL
circlebuff_backnext p6, i1
circlebuff_rollup p6, i1

else
clr.p [p1+AIO_CANCEL]
circlebuff_elementsize p6, i0
qcall dev/iocomplete, {p1 i0:i~}

endif

go isrstart

exit:
ret

;
;---
;
; get a byte of data from the bus port
;
get_byte:

;inputs
; p0 = instance pointer
;outputs
; i0 = byte read from mouse (if i1=1)
; i1 = 0 if no data read from mouse, 1 if data read from mouse
;
ent p0 :i0 i1

clr i1

;
; Read status register
;
; control/status register address = PCBUSMSISR_PORT_BASE+PCBUSMSISR_STRIDE
cpy.p ([p0+PCBUSMSISR_PORT_BASE]+[p0+PCBUSMSISR_STRIDE]),p1
ioin.b p1, i0
bool i0!?0, nodata
bool i0!?5, nodata

;
; Read data
;
; i/o buffer address = PCBUSMSISR_PORT_BASE,
cpy.p [p0+PCBUSMSISR_PORT_BASE],p1
ioin.b p1, i0
inc i1

nodata:
ret

toolend

.end

© Tao Group Ltd or Tao Systems Ltd. 2000, 2001. All Rights Reserved.

Copyright in the software either belongs to Tao Group Ltd or Tao Systems Ltd. The software may not
be used, sold, licensed, transferred, copied or reproduced in whole or in part or in any manner or form
other than in accordance with the licence agreement provided with the software or otherwise without
the prior written consent of either Tao Group Ltd or Tao Systems Ltd. No part of this publication may
be reproduced in any material form (including photocopying or storing it in any medium by electronic
means and whether or not transiently or incidentally to some other use of this publication) without the
written permission of the copyright owner.

Elate®, intent® and the Tao logo are registered trademarks of Tao Group Ltd.
Digital Heaven™ is a trademark of Tao Group Ltd.
The rights of third party trademark owners are acknowledged.

