
The intent® Shell User Guide

Version 1.17

The intent® Shell User Guide

6 2

1. THE INTENT SHELL - AN INTRODUCTION .. 4

1.1 USING THE INTENT SHELL ... 4

1.2 OPTIONS .. 4

1.3 EXAMPLE COMMANDS... 5

1.3.1 Listing Files - ls .. 5

1.3.2 Concatenating Files - cat ... 5

1.3.3 Change Directory - cd.. 5

1.3.4 Print Working Directory – pwd ... 5

1.3.5 Create New Directory – mkdir.. 6

1.3.6 Leaving intent - Exit/Shutdown .. 6

1.4 DIRECTORY STRUCTURE... 6

2. AVAILABLE EDITORS.. 6

2.1 THE SHELL LINE EDITOR ... 6

2.1.1 Key Bindings.. 8

2.2 ED.. 9

2.2.1 Regular Expressions.. 9

2.2.2 Addresses.. 9

2.2.3 Ranges... 10

2.2.4 Commands... 10

2.2.5 Options... 12

2.3 JOVE .. 12

2.3.1 Invoking Jove... 12

2.3.2 Options... 13

3. RECONFIGURING SHELL INTERACTION .. 13

3.1 SHELL INTERACTION ... 13

3.1.1 Options... 13

4. ADVANCED USAGE ... 14

4.1 MULTITASKING FUNCTIONS ... 14

5. RUNNING SHELL SCRIPTS ... 16

6. SHELL VARIABLES.. 16

6.1 VARIABLES NAMES.. 17

6.2 $ EXPANSION OF ENVIRONMENTAL VARIABLES... 17

7. FILENAME GENERATION (GLOBBING)... 19

7.1 PATTERN MATCHING... 19

8. REDIRECTIONS .. 20

8.1 PIPING ... 20

The intent® Shell User Guide

6 3

9. EXCEPTIONS .. 22

10. SHELL GRAMMAR REFERENCE GUIDE.. 24

10.1 EBNF SYNTAX ... 24

10.2 COMMAND LISTS ... 24

10.3 COMMANDS.. 24

10.4 SIMPLE COMMANDS .. 24

10.5 REDIRECTIONS ... 25

10.6 ARGUMENTS... 26

10.7 WHITESPACE.. 26

The intent® Shell User Guide

6 4

1. The intent® Shell - An Introduction

The intent® shell is a scripting command language interpreter. It is able to read and execute commands
from the user, and can therefore provide an interface to the underlying Operating System.

Commands can be entered at the $ command line prompt, which are then dealt with by the command
processor, which calls on the services provided by the intent kernel as and when required. The results of
most commands are displayed to the location at which standard output has been specified, for instance the
screen. The intent shell has a similar feel to standard UNIX ® shells, but although designed to offer a level of
functionality comparable to a zsh shell, it also has a much smaller footprint.

1.1 Using The intent Shell
All stdio programs can be run from the shell prompt. All the commands described in this document are to be
found in the 'app/stdio/' directory, although it is perfectly possible to run external commands that don't exist
anywhere in the filesystem.. The shell searches all directories in the path ($shell.path), which is normally set
up to contain only /app/stdio.

For further information upon the intent Shell Commands please see “The intent Shell Commands Reference
Manual. “

Commands can be entered at the $ prompt. Where a brackets <thus> should be replaced by an actual
parameter when typing a command. Parts of the command line shown in square brackets [thus] are optional.

So for example:

command <parameter1> [<parameter2> [<parameter3> ...]]

In this case parameter 1 is mandatory, and parameters 2 and 3 are optional. However, parameter 3 cannot
be specified unless parameter 2 also is. Parameter 3 may be repeated.

1.2 Options
Commands can be modified by specifying additional options. All options must be proceeded by "-". Multiple
options can be specified together, so for example, "-abc" would behave identically to "-a -b -c". However
some options may take additional arguments, in which case multiple options cannot be specified. Options
can appear anywhere on the command line, between parameters. For clarity however, it is recommended
that options be placed immediately after the command name, and therefore before any parameters.

Utility or User
Program

Standard
input file
(stdin)

Standard
output file
(stdout)

Standard
error file
(stderr)

The intent® Shell User Guide

6 5

Simple Shell Processing

1.3 Example Commands

1.3.1 Listing Files - ls

The ls command lists the named files. If a directory is named, its contents are listed. If no filenames are
given, the contents of the current directory are listed instead. Typing this in after the command prompt:

$ ls

would produce something like this:

dev ebug.exe feq.exe lang makefile

app docn

1.3.2 Concatenating Files - cat
The cat command is used to concatenate the contents of any named files. By typing in this:

$ cat

it is possible create a new file, from text entered at stdin. When a filename is specified like so:

$ cat [<filename> ...]

the file in question is printed to the screen. For example:

$ cat demo/example/hello.asm

Multiple files can be specified.

1.3.3 Change Directory - cd

 cd [<directory>]

This function changes the current working directory to another specified directory.

1.3.4 Print Working Directory – pwd

pwd

Displays the name of the current directory to standard output.

Shell Command?
Execute

command

No

Yes

The intent® Shell User Guide

6 6

1.3.5 Create New Directory – mkdir

mkdir <pathname>

Creates directories with the pathnames that have been specified.

1.3.6 Leaving intent - Exit/Shutdown
Exit terminates the shell, while shutdown shuts down intent. These have almost the same effect from the
initial shell, but nowhere else.

1.4 Directory Structure
Files within intent are organised into directory structures - as is commonly the case, a directory is itself a file,
containing the name and locations of the files it contains. Consequently any commands that apply to files are
also applicable to directories.

One or more files can be specified. The following directory areas can be used as a guide to locate files:

Applications app All applications
AVE ave Multimedia Toolkit
Com.uk com Java™ classes, following Java™ namespace conventions
Demonstration demo Example Programs
Device Drivers dev Device Drivers
TCP/IP Subsystem etc General configuration files often used by TCP/IP, network and Host OS

related files
Fonts fonts TrueType® and PostScript® Type 1 fonts.
Home home The user’s home directory
Java java Java™ Libraries
Languages lang Programming Languages
Libraries lib General Library
Sounds sounds Audio specific parts of multimedia toolkit
System sys System Directory

It is easiest to find a required program by following this directory structure.

2. Available Editors

2.1 The Shell Line Edito r
The Shell Line Editor (SLE) is a command line editor for the intent shell. It consists primarily of shell
functions, with a few builtins to perform the basic operations. The following keys can be used to perform a
variety of operations, although it should be stressed that this choice of keymappings is easily re-configurable.

^A, Home key beginning of line
^E, End key end of line
^B, Left arrow key back one character
^F, Right arrow key forward one character
^D, delete character under cursor
^H, ^? delete character to left of

cursor
^K, delete to end of line
^C, delete entire line
^P, Up arrow key previous line in history
^N, Down arrow key next line in history

The intent® Shell User Guide

6 7

Page Up key Beginning of history
Page Down key End of history
^Q, ^V insert next character literally

Please note that the SLE reserves all environment variables whose names start with "sle.".

The default intent keymapping is as follows. It is similar to the Emacs keymapping, except that Esc and Del
act as they do in the doskey keymapping.

^A
Home

Go To Beginning of Line

^B
Left Arrow Key

Go Back A Character

^C Delete Whole Line
^D Delete Character or End of Line

^E End of Line Go to End of Line
^F
Right Arrow Key

Go Forward a Character

^H Backwards Delete a Character
^I Line Completion

^J ^M Accept or Newline
^K Delete to End
^L Clear Screen

^N
Down Arrow Key

Downwards Command History

^P
Up Arrow Key

Upwards Command History

^Q Quoted Insert
^R Redraw
^U Delete Whole Line
^V VI Quoted Insert
Esc Delete Whole Line
^? Forward Delete Characters
PgUp Go To Beginning of Command History
PgDn Go To End of Command History
anything else Self Insert

The following command can be used to re-set the default keymapping as and when required.

set sle.keymap elate

A range of keymappings is available within intent, the details of which are provided here for ease of
reference. The following command will set the emacs keymapping as the default.

set sle.keymap emacs

The complete list of variables is as follows; "sle.keymap.elate", "sle.keymap.emacs", "sle.keymap.doskey."

The intent® Shell User Guide

6 8

2.1.1 Key Bindings
These bindings are merely the default. It is possible to reconfigure the intent Shell so as to obtain a key
binding for any desired type of text editor, by redefining sle keymap within the file:

elate/home/*/shell.rc.

In terms of the overall character set, the intent Shell has been configured to emulate the key bindings as
recognised by UNIX ® as a default.

See also - parse, and display in “The intent Shell Commands Reference Manual. “

The intent® Shell User Guide

6 9

2.2 ed
Synopsis

ed [<filename>]

Description

ed is the standard text editor. ed is a line editor, and reads textual commands from standard input.
Consequently it can be used in scripts, to automate editing tasks, in addition to being usable interactively.

At all times, ed maintains a buffer. When editing a file, the buffer contents are not automatically reflected in
the file contents - when editing is complete, the buffer must be explicitly written back to the file.

If a filename is specified on the command line, an `e' command with that filename as its argument will be
executed before starting to read commands.

2.2.1 Regular Expressions
ed regular expressions are POSIX Basic Regular Expressions. Regular expressions are always delimited by
a specific character, most commonly "/",the delimiter is not treated as a delimiter if it appears in the regular
expression escaped by a backslash. Newlines cannot appear in regular expressions, which are always
matched against single lines.

Where a regular expression can legitimately appear at the end of a line, the closing delimiter may be omitted,
in which case the closing delimiter is implicitly added, and a `p' appended after the delimiter.

An empty regular expression is equivalent to the last regular expression encountered.

2.2.2 Addresses
Each address refers to a line in the buffer. There is also a notional `line zero', which does not correspond to
any line in the buffer and is not valid for all commands. There is at all times an address known as the `current
line'.

The following address forms are understood:

. The current line
$ The last line in the buffer (line zero if there are none).
<number> The line with the specified number (which may be zero).
'<letter> The mark referred to by the specified lowercase letter. Marks are defined

using the `k' command.
/<BRE>/ The first line matching the specified regular expression. The search starts

on the line following the current line, and if it reaches the end of the buffer
will wrap back to the first line and continue up to and including the current
line. It is an error if no line matches.

?<BRE>? The first line matching the specified regular expression, searching
backwards. The search starts on the line preceding the current line, and if
it reaches the start of the buffer will wrap back to the last line and continue
up to and including the current line. It is an error if no line matches.

The first line matching the specified regular expression, searching
backwards. The search starts on the line preceding the current line, and if
it reaches the start of the buffer will wrap back to the last line and continue
up to and including the current line. It is an error if no line matches.

[<address>]+[<number>] The specified address (defaulting to the current line) is evaluated, and the
specified offset (default 1) added.

[<address>]-[<number>] The specified address (defaulting to the current line) is evaluated, and the
specified offset (default 1) subtracted.

The intent® Shell User Guide

6 10

2.2.3 Ranges
Where a command expects a range - two addresses - two addresses may be specified separated by "," or
";". If separated by a comma, the two addresses are evaluated normally. If separated by a semicolon, the
first address is evaluated normally, but the second address is evaluated with the current line temporarily set
to the first address.

A range can also be specified as a single address, in which case the range endpoints are identical. The
special range "," is shorthand for "1,$", and ";" similarly stands for ".,$".

In any case, to be valid, the endpoint of a range must not precede the start, in the buffer.

2.2.4 Commands
ed commands have a consistent form. There is an optional address or range, followed by a single-letter
command, possibly followed by arguments. The command letter, and each part of the address, may be
preceded by whitespace.

After the arguments, most commands may be suffixed by `l', `n' or `p'. This has the effect of executing the `l',
`n' or `p' command after the main command has completed. These suffixes cannot be used on certain
commands, noted below, that would interpret them as arguments.

Each command can be preceded by zero, one or two addresses. It is illegal to give a command more
addresses than it wants. Each command that requires addresses has a default which is used if it is given
zero addresses, and a single address can always be used as a range in which both addresses are
identical. The command synopses below indicate the default address and the number of addresses required
for each command. Address zero is invalid except where noted.

. a Reads lines of text, terminated by either a line containing only "." or by the end of input.
The text is inserted into the buffer after the addressed line. Address zero is valid, and
causes the text to be inserted at the beginning of the buffer. The current line is set to
the last inserted line, or the
addressed line if there were none.

.,. c The addressed lines are deleted, and then replaced by text read in the same manner
as for the `a' command. The current line is set to the last inserted line. If no lines were
inserted, the current line is set to the line after the last line deleted; if the lines were
deleted from the end of the buffer then the current line is set to "$".

.,. d Deletes the addressed lines from the buffer. The current line is set to the line after the
last line deleted; if the lines were deleted from the end of the buffer then the current
line is set to "$".

e []
The filename argument, if present, may be preceded by whitespace, and extends to
the end of the line. Suffixes cannot be used.

The entire contents of the buffer is deleted, and then the specified file read in in the
manner of the `r' command. If no filename is specified then the currently remembered
filename is used. The currently remembered filename is set to the filename that is
used; if a shell escape is used as the
filename then no filename is remembered.

The user is protected from destroying a modified buffer with this command in the same
way as described for the `q' command.

E [] This is identical to the `e' command, except that the user is not protected from
destroying the buffer.

f [] The filename argument, if present, may be preceded by whitespace, and extends to
the end of the line. Suffixes cannot be used. If a filename is specified, the currently
remembered filename is set to the specified filename. Whether the name is changed or
not, the currently remembered filename is then displayed on standard output.

h A help message is displayed on standard output, explaining the last error that
occurred.

H Toggles a mode (initially off) in which a help message is displayed for each error that
occurs, immediately after the "?" notification. If turning the mode on, and an error has
already occurred, it is explained in the manner of the `h' command.

. i Reads text in the same manner as the `a' command, inserting it before the addressed

The intent® Shell User Guide

6 11

line. The current line is set to the last inserted line, or the addressed line if there were
none.

.,.+1 j If only one line is addressed, do nothing. Otherwise, join the addressed lines together,
removing the intermediate newlines, and set the current line to the joined line.

. k Sets the specified mark to the addressed line. There are 26 marks, referred to by
lowercase letters. Marks remain attached to the same line regardless of how that line
moves.

.,. l Writes the addressed lines to standard output in a visually unambiguous form.
Unprintable characters and backslashes are represented in the C backslash escape
form; long lines are split with a backslash newline sequence; and each line is
terminated by a "$". This is identical to the output form of sed's `l' command. The
current line is set to the last line displayed.

.,. n The addressed lines are written to standard output, each preceded by its line number
and a tab character. The current line is set to the last line displayed.

.,. p The addressed lines are written to standard output. The current line is set to the last
line displayed.

P Toggles the display of a prompt when reading commands (initially off). The prompt is
"*". The -p option sets the prompt string and causes prompt display to be initially
enabled.

q Causes ed to exit. End of file is also treated as a `q' command.

If the buffer contents has been modified since the last `e' command or `w' command
that wrote the entire buffer to a file, it is an error. However, if the `q' command is then
repeated with no intervening commands, it will execute normally.

Q Causes ed to exit. This is identical to the `q' command, except that the user is not
protected from destroying a modified buffer.

$ r [] The filename argument, if present, may be preceded by whitespace, and extends to
the end of the line. Suffixes cannot be used. The specified file is read (by default the
currently remembered filename). If the filename given begins with "!", the rest of the
line is taken as a shell command which is run, and its output is read instead.

If the last byte read is not a newline, then a newline is silently appended. The number
of bytes read is written to standard output. The data read is inserted into the buffer
after the addressed line. Address zero is valid, and causes the data to be inserted at
the beginning of the buffer. The current line is set to the last inserted line, or the
addressed line if there were none. If there is no currently remembered filename, and a
filename not beginning with "!" is specified, then this filename becomes the currently
remembered filename.

.,.s/ <BRE>/
<replacement>
/ <flags>

Any character ("/" here) may be used to delimit the regular expression and replacement
string. The closing delimiter of the replacement string may be omitted, in which case a
`p' suffix will be implicitly appended to the command.

On each of the addressed lines, search for the specified regular expression, and
replace the first match with the specified replacement string. The current line is set to
the last line on which a substitution occurred; it is an error if no substitutions occur.

In the replacement string, "&" is replaced by the portion of the line that matched the
regular expression, and "\1", "\2", etc. are replaced by the corresponding matching
subexpression. Any character other than digits can be escaped by preceding it with a
backslash.

The flags can be:

g Substitute all substrings matching the pattern, not just the first.
<number> Substitute the matching substring, instead of the first.
.,.
t[<address>]

Inserts a copy of the addressed lines after the specified address (by default the current
line). Address zero is valid for the target, and causes the text to be inserted at the
beginning of the buffer. It is not permitted for the target to be within the range of copied
lines. The current line is set to the last inserted line.

u Undoes the last modification to the buffer, and sets the current line to what it was before
the modification. The `u' command itself counts as a modification, so repeated use of the
`u' command will flip between two states of the buffer.

The intent® Shell User Guide

6 12

Note that changing marks and the current line does not count as a modification.
Conversely, commands capable of modifying the buffer, such as `a', count as undoable
modifications even if they don't actually change the buffer contents.

1,$ w
[<filename>]

The filename argument, if present, may be preceded by whitespace, and extends to the
end of the line. Suffixes cannot be used.

The addressed lines are written to the specified file (by default the currently remembered
filename). If the filename given begins with "!", the rest of the line is taken as a shell
command which is run, and the lines are written to its input. The number of bytes written
is written to standard output.

If there is no currently remembered filename, and a filename not beginning with "!" is
specified, then this filename becomes the currently remembered filename.

$ = The line number of the addressed line is written to standard output. Address zero is
valid.

!<command> The command argument extends to the end of the line. Suffixes cannot be used. The
specified command is executed. When it completes, a "!" is written to standard output. If
the first character of the command is "!", it is replaced by the last shell command used
via `!'; thus the ed command "!!" repeats the last `!' command.

.+1 The null command defaults to the `p' command, but has a different default address and
only accepts a single address.

2.2.5 Options
-i Enable interactive mode. By default, ed is in interactive mode if and only if its standard

input is a tty. This mode affects the handling of error conditions. Whenever an error
occurs, a "?" is displayed on standard output. In non-interactive mode, ed then
terminates immediately. In interactive mode, however, only the current command is
aborted, and further commands are accepted. In either case, when exiting, ed will exit
with a non-zero exit status if and only if at least one error occurred.

-I Disable interactive mode. See the description of interactive mode for the -i option.
-p <string> Set the prompt string to the specified string, and enable its display. (See the description

of the `P' command.)
-s By default, the file reading and writing commands report the number of bytes they read

or wrote, and the `!' command upon completion outputs a "!" to indicate so. This option
suppresses these outputs. This is useful in scripts.

2.3 jove
Synopsis

jove [-d directory] [-w] [-t tag] [+[n] file] [-p file] [files] jove -r

Description

JOVE is based on the original EMACS editor written at MIT by Richard Stallman. Although JOVE is
compatible with EMACS, there are some differences between the two editors and the user should not
assume that the behaviour will be identical.

2.3.1 Invoking Jove
If JOVE is run with no arguments the user will be placed in an empty buffer, called Main. Otherwise, any
arguments supplied are considered file names and each is "given" its own buffer. Only the first file is actually
read in - reading other files is deferred until you actually try to use the buffers they are attached to.

This is for efficiency's sake, as most of the time, when JOVE is run on a big list of files, only a few of them
are actually edited.

The intent® Shell User Guide

6 13

The names of all of the files specified on the command line are saved in a buffer, called *minibuf*. The mini-
buffer is a special JOVE buffer that is used when JOVE is prompting for some input to many commands (for
example, when JOVE is prompting for a file name). When the user is being prompted for a file name, they
can type Ctrl N and Ctrl P to cycle through the list of files that were specified on the command line. The file
name will be inserted where the user is typing, who can then edit it, as if they had typed it in themselves.

Help on jove commands should be accessed via jove itself. To access it press Escape followed by ?. This
will bring the 'describe-command' prompt. The user should then enter the command they want help on and it
displays information on what keys are set up for that command and a short description of the command.

2.3.2 Options
-d The following argument is taken to be the name of the current directory. This is for systems that don't

have a version of C shell that automatically maintains the CWD environment variable. If -d is not
specified on a system without a modified C shell, JOVE will have to figure out the current directory
itself, which may be slower than normal. It is possible to simulate the modified C shell, by putting the
following lines into the C shell initialisation file:

(.cshrc): alias cd 'cd \!*; setenv
CWD $cwd' alias popd 'popd \!*;
setenv CWD $cwd' alias pushd 'pushd \!*; setenv CWD $cwd'

+n This option reads the file, as designated by the following argument, and positions the point at the n'th
line instead of the (default) 1'st line. This can be specified more than once, although this is unlikely to
be necessary. If no numeric argument is given after the +, the point is positioned at the end of the file.

-p This option parses the error messages in the file designated by the following argument. The error
messages are assumed to be in a format similar to the C compiler, LINT, or GREP output.

-t This option runs the find-tag command on the string of characters, immediately following the –t if
there is one (as in -tTagname), or on the following argument (as in -t Tagname) otherwise (see
ctags(1)).

-w This option divides the window in two. When this happens, either the same file is displayed in both
windows, or the second file in the list is read in and displayed in its window.

3. Reconfiguring Shell Interaction

3.1 Shell Interaction
The intent Shell reads input from a source which can be selected as described in the Options section below.
(If invoked with no arguments or options, it executes the interact command. For further information upon this
command please see ‘The intent Shell Commands Reference Manual.’) The input is interpreted in
accordance with the grammar presented below. The shell exits with the status of the last command it
executed, or zero if it didn't have any commands to execute.

Synopsis

shell [<arg> ...]

This runs a shell. Shells may be run recursively to any number of levels (limited only by available memory).

3.1.1 Options
-c <command> This function will only execute the specified command, in the manner of the eval

command (please see list of shell commands for further information). This takes
precedence over -s.

-s Read commands from standard input. By default, commands are read from standard
input if there are no command line arguments. If arguments are given, and this option is
not used, the first argument is taken as a filename, and commands are read from that
file, in the manner of the source command.

-I This function commands the shell to cease being interactive. By default, the shell is

The intent® Shell User Guide

6 14

interactive if it is reading commands from standard input. If this is not the case the shell
cannot be interactive.

An interactive shell will prompt for each line of input. It will execute each complete
command as soon as it is read, rather than parsing the entire input before doing
anything, and on a parse error or other meta-error will scrap only the current line and will
prompt for a new command.

4. Advanced Usage

4.1 Multitasking Functions
In certain places a command may be run in a subshell, (if for instance, it is necessary to "background" a
process). using the sub function means that the command is run in a separate process from the current shell
environment. Redirections and shell variable settings in the subshell cannot affect the main shell. This is
carried out by using the sub command. The syntax for this is:

sub <command>

If backgrounding of a process is required, then the -b option should be specified on the command line. Use
of this option causes the shell to not wait for the subprocess to terminate before returning. Sub's exit status is
zero. Exceptions thrown in a subshell cannot be caught in the invoking shell process, and the subshell's exit
status is truncated to the size of a process exit status. The shell variable shell.pid always refers to the main
shell's PID, even in a subshell.

Shell Background Process

To obtain information about all processes being run by intent the user should use the ps command.

ps [<pid-list> ...]

This function displays the status of processes. The requisite processes may be specified by their process ID,
but otherwise the status of all processes will be displayed. For instance:

SHELL Command? Background?

Start New
Shell Process

Execute
Command

Yes

Yes

No

The intent® Shell User Guide

6 15

Additional information concerning the sub or ps commands may be obtained from ‘The intent Shell
Commands Reference Manual.‘

The intent® Shell User Guide

6 16

5. Running Shell Scripts
To create a shell script type in the following:

$ cat > myscript.scr
ls
echo myscript.scr executed
Ctrl-D

To run this script enter either of the following commands at the shell prompt:

$ source myscript.scr

$ shell myscript.scr

By default script files are stored wherever they are created. Script files can contain any number of shell
commands lines. Each line is executed sequentially, unless specified otherwise.

6. Shell Variables
As is the case with most programming languages the shell allows you to define variables, and can then keep
track of an arbitrary number of them. The variables are local to the shell process, but are exported to the
environment, which is itself a set of variables which all commands run have access to. Variables are
initialised from the shell's environment.

The working environment is defined at login, and is set by using the values that the shell reads as it starts up.
You can change your working environment by editing these files and setting new values for their variables.
This can be done by using the set command, which is used to set the value of the specified shell variable to
the array consisting of any arguments that may have been specified.

set <var> [<arg> ...]

For example:

$ set myvar /home/ hello

Following this type in:

$ ls $myvar

Note that this will turn the shell prompt into a part of the variable name. Further information upon this function
can be found in ‘The intent Shell Commands Reference Manual. ‘

All shell variables are one-dimensional arrays of strings. The empty array is permitted, and is distinct from
the array containing only the empty string. These are both, in turn, distinct from an unset variable, which has
no value.

In the case of a variable whose value is the empty array, or has more than one element, the corresponding
environment variable is only an approximation of the true value of the variable. However, the true array value
is actually encoded in another environment variable , with a special name. This means that programs that
know about this mechanism, such as the shell itself, can inherit array variable values.

The intent® Shell User Guide

6 17

6.1 Variables names
The shell permits any string to be used as a variable name. By convention, variable names are hierarchical,
with a prefix indicating which part of the system uses the variable.

However, the shell reserves all variables whose names start with "shell.". Such variables may be modified at
any time by the shell, and modifying them may have unexpected consequences.

The following shell variables have special meanings:

shell. This prefix is reserved for use by the shell.
shell.argv This is initialised to the shell's command line arguments, possibly after

one has been taken as a script file name.
shell.func.<func> Stores the definition of the shell function <func>.
shell.argv0 This is initialised to the shell's argv[0]. If a shell script file was specified on

the shell's command line, its name is used instead.
shell.binpath An array of directories to search to find tools to execute as builtin

commands. If it is not set in the environment, the shell will initialise it to a
suitable value to make it possible to execute the "set" command.

shell.path An array of directories to search to find scripts and tools to execute as
external commands.

shell.pid Initialised to the process ID of the shell.
shell.ppid Initialised to the parent process ID of the shell.
shell.spath An array of tools to execute to try executing simple commands. Each tool

on this path gets an attempt at each command, until one of them declares
that it has succeeded in executing the command. If it is not set in the
environment, the shell will initialise it to a suitable value to make it
possible to execute builtin commands. This at least makes it possible to
modify this variable.

shell.opt.glob This variable contains the default options for globbing, when using the
shorthand forms of globbing (ie, not using the glob modifier explicitly). If it
is set to "N", glob commands will be expanded to the pattern if there are
no matching files. If it is set to "n", a shell exception will be thrown if there
are no matching files.
The default value in interactive mode is "n". In non-interactive mode, the
default value is "N".

shell.opt.interactive This variable contains 0 if the shell is in non-interactive mode, or 1 if the
shell is in interactive mode. This variable may be modified, which sets the
shell into the specified mode, modifying the behaviour of various parts of
the shell.

sys. This prefix is reserved for system library use.
sys.cwd The system uses the value of this environment variable as the "current

directory" of each process. The shell itself does not treat this specially, but
will be so affected by changes in its value. user.

This prefix is reserved for user configuration parameters.
user.locale The user's locale, used to determine how dates should be printed, what

language messages should be displayed in, and so on. If not set, the
default locale ("C") will be used.

user.tmp The directory where temporary files should be stored (default "/tmp"). If
this directory doesn't exist, or is not a directory, many programs will not be
able to function correctly.

user.home The user's home directory (default "/"). This is the default argument of the
cd command

6.2 $ Expansion of Envi ronmental Variables
The shell automatically expands environment variables, and replaces them with their true value, so that
should any word of any command executed, or the filename in any file redirection contain $ sequences, they
will be expanded before the command is actually executed. There are two means by which this can be done.

The intent® Shell User Guide

6 18

The simpler form looks like

"$myvar"

It takes the name of the specified shell variable (in this case myvar), and expands to the value of that
variable. Note that all normal characters are valid after the $, so:

"$shell.pid"

expands to the contents of the environment variable "shell.pid". It is an error for the variable not to exist.

If the variable name cannot be entered in this manner, it must be quoted and then wrapped in braces

"${thus}",

so:

"${{}}"

expands to the contents of the environment variable with the zero-length name. In the simplest case, the
expression contains only a variable name, and the expansion is the variable's value. Unlike the form without
braces, it is possible to specify a variable name that contains special characters, by quoting them, like
"${this\!}". If the variable name is omitted entirely, "${}", the expression expands to the empty array.

A ${} expression may be modified by appending a modifier introduced by a "!". Each modifier looks much like
a normal command, but modifiers and commands are not interchangeable. Modifiers don't process options.
Modifiers can take arguments, separated by whitespace. Multiple modifiers can be used in one expression,
each one modifying the value resulting from the previous modifier. For example,

${foo ! e 3 !q}

takes the value of the variable foo, filters it through the modifier e with an argument of 3, and then filters the
result of that through the modifier q.

Each modifier has its own documentation entry, which can be found in the appendix attached to this
document. The most important modifiers are:

c count array length
e select array elements
q quote strings

If a $ sequence expands to more than one word, everything that precedes and follows it in that word are
duplicated, and are prepended and appended to each element of the expansion. If more than one $
sequence in a single word does this, each one multiplies the number of resulting words. A $ sequence
expanding to the empty array (not the empty string) causes the word containing it to disappear. Each $
sequence in a word is only expanded once, no matter how many words result.

The intent® Shell User Guide

6 19

7. Filename Generation (Globbing)
This section describes how the user can match a character or pattern that they have specified against the
files in any directory, then making and displaying a list of all the matches. This is called globbing.

Each word of each command executed, and the filename in each file redirection, may contain special
globbing characters. The reader should note that if a word contains any of the special characters in the table
below, it is subject to filename generation, and will be replaced by a list of all files matching the glob pattern it
represents, and should therefore bear this in mind when writing scripts and so on. The special sequences
are:

? match any single character
* match any sequence of characters
[...] match any of the enclosed characters
[^...] match any character not listed
[!...] same as [^...]
&[...|...|...] match any of the listed patterns
x` match zero or one x's
x' match zero or more x's
x" match one or more x's

The globbing characters are used in conjunction with the standard shell functions. For example,

ls -l *.txt

would produce a listing of all files bearing the suffix .txt.

All normal characters, and all quoted characters, stand for themselves. All characters that result from $
expansion are regarded as quoted for this purpose.

Inside a [...] list, a range of characters can be given, as with regular expressions. "[a-e]" is thus equivalent to
"[abcde]". For example:

ls -l [a-f]*.*

would match the listed characters in any files, while this:

ls -l [^acdef]*.*

would match any character not listed.

Any character inside [...] can be quoted using a backslash; this is the preferred way to get a literal "-" into the
list. Alternatively, "-" can be placed first or last in the list. "]" can also be included literally by placing it first in
the list.

A "/" must be matched explicitly. Pathname components starting with "." can only be matched if the
corresponding component of the pattern starts with a literal ".". Pathname components "." and ".." can only
be matched exactly.

7.1 Pattern Matching
When a shell builtin command or other shell internal provides pattern matching facilities, patterns may be
specified as glob patterns. These are defined as in the above section, except that "/" and "." are not treated
specially. Also, in most cases all non-glob characters stand for themselves, whereas in normal globbing
cases many other special characters are active.

A repeat symbol (', " or `) can be followed by a ` to make it match the smallest number of times possible,
rather than the largest.

The intent® Shell User Guide

6 20

8. Redirections
The characters described below can be used to redirect standard input (stdin), standard output (stdout), so
that the output produced by one program is redirected to another file.

For example:

ls > demo/example/test.txt

Rather than printing to the screen it prints to demo/example/test.txt file In this instance demo/example/test.txt
is standard output for the ls process. It is also possible to redirect input so that whereas a program would
otherwise obtain input from the stdin file, it can acquire it from demo/example/in.dat instead.

The symbols used for redirection are as follows:

> Redirection of output
>> Output appended to the end of the specified file rather than overwriting it. For instance:

$ ls >> test.txt

will produce a listing within test.txt appended to the end of the file.
< Redirection of input
<> Redirection of both input and output

The output redirections will automatically create the file if it does not already exist. If the argument specified
expands to multiple words, it is equivalent to specifying a separate redirection for each word, in sequence.

Where multiple redirections appear in a sequence, they are processed in order. A duplication duplicates the
state of the file descriptor at that point in the sequence. The first redirection on any file descriptor replaces
the former disposition of that file descriptor. Subsequent non-close redirections on the same file descriptor
add to that file descriptor; multiple output redirections are implicitly "tee'd" (copied from standard input to
standard output), multiple input redirections are implicitly concatenated. Multiple bidirectional redirections, or
multiple redirections of incompatible modes, are an error.

8.1 Piping
Piping is a way for two processes to communicate with each other. Instead of redirecting to a file it is
possible to pipe to another process. The '|' character redirects the stdout of the command on its left to the
stdin of the command on its right. For instance,

dir | sort

Pipes output to another program. The basic variants upon this are as follows:

Redirect stdout to a file:

x >file

Redirect stdout appending to a file:

x >>file

Redirect stderr to a file:

x >(2)file

Redirect both stdout and stderr to the same file:

The intent® Shell User Guide

6 21

x >file >(2)=1

Pipe stdout to the stdin of the command y:

x | y

Pipe stderr to stdin:

x |(2>0) y

The capability is actually much wider than the standard piping syntax. In particular the shell also enables the
user to use zsh-style multios. For instance:

ls >x >y

copies output to more than one place, and

tr a-z A-Z <x <y

concatenates input from more than one place (the tr command copies standard input to standard output,
modifying the data as specified by any options and arguments. For more information upon this command
please see ‘The intent Shell Commands Reference Manual’). Combining these capabilities,

ls | < x tr a-z A-Z

takes input both from a command and a file (concatenating). However,

ls > x | tr a-z A-Z

will not copy output to both a file and a command, because pipelines associate left-to-right.

tr a-z A-Z |(<) ls > x

will copy output to a command and a file, or it can be more clearly expressed as

ls >x %>{tr a-z A-Z}

The intent® Shell User Guide

6 22

9. Exceptions
In order to avoid the necessity for special casing the shell supports an exception mechanism. An exception is
identified by an arbitrary string, determined when the exception is thrown. Unless caught, an exception will
abort enclosing shell constructs, and ultimately terminate the shell.

Exceptions can be generated by error conditions detected by the shell, or by user commands. As exceptions
are purely a shell concept, external commands cannot generate exceptions - only things done within the
shell, including builtin commands and shell functions, can.

Exceptions conventionally start with a hierarchical identifier, in the manner of environment variable names.
This makes it easy to use pattern matching to classify an exception with any desired granularity. Following
the hierarchical part, exceptions may contain an error message, separated by a "!". If an uncaught exception
causes the shell to terminate, this error message is displayed. If the exception does not have such an error
message, a standard message is used instead.

The exceptions used by the shell are:

shell All shell-generated exceptions have this prefix
shell.err Error detected by the shell
shell.err.emptycmd An empty simple command was executed
shell.err.ext Error creating process for external command
shell.err.file Error reading file
shell.err.glob Globbing error
shell.err.mod Error executing expansion modifier
shell.err.nocmd A non-existent command was executed
shell.err.novar A non-existent variable was referenced
shell.err.parse Parse error
shell.err.redir Redirection error
shell.err.sub. Error creating process for subshell
shell.err.usage Bad usage of a builtin command
shell.exit Shell exiting
shell.return Returning from a shell function
shell.return.g Return from the innermost function
shell.return.s.<func> Return from function <func>
shell.return.x.<except> Return and propagate exception <except>

Exceptions can be manually thrown using the builtin command throw, and caught using the shell function
catch. For further information upon these please see ‘The intent Shell Commands Reference Manual.‘

throw <exception> [<status>]

Description

This throws the specified exception. The specified numerical status (default zero) is used for this.

catch <try-command> <exception-variable> <status- variable> <catch-command>

Description

This function executes the <try-command>, and saves its exit status in the variable <status-variable>. If it
has exited normally, set <exception-variable> to an empty array, and return that status. If it exited with an
exception, save the exception in <exception-variable>, and execute the <catch-command>.

Normally the <catch-command> should rethrow the caught exception if it is of no interest.

Under normal circumstances, one does not wish to catch absolutely all exceptions, and must therefore be
careful to rethrow a caught exception. Typically this looks like this:

The intent® Shell User Guide

6 23

catch {
... # code that might throw an exception
}
except status {(Note 1)
case -- $except ~ (Note 2)

{...} {
... # handle an exception of interest
} ~ ...
{*} { (Note 3)
throw -- $except $status (Note 4)
}

}

}

Note 1. This should not be represented as $except or $status - these are arguments to the catch command,
telling it the names of the variables in which to store the exception and exit status.

Note 2. The tilde here prevents the following newline from terminating the command.

Note 3. The asterisk here is a pattern matching anything - the default case.

Note 4. This default exception handler is used to rethrow the code if required.

The intent® Shell User Guide

6 24

10. Shell Grammar Reference Guide

10.1 EBNF syntax
This section describes the basic syntax of the shell programming language. It is laid out in the form of BNF
syntax, i.e recursively with each following line defining its predecessor. However two extensions to common
Backus Nauer Form syntax are used:

FOO-seq : FOO
“ | FOO-seq FOO
FOO-opt : <empty> FOO

In the first of these FOO-seq may stand either for a single command, or for a sequence of commands. FOO-
opt represents optional commands, which may not be specified, or may be specified as an option to another
command.

10.2 Command lists
CMD-LIST : COMMAND-1-seq-opt

COMMAND
COMMAND-1 : COMMAND TERM
COMMAND : LWSP-opt CMD
TERM : <newline> | ";"

Here a command list is at least one command, or a list of commands. The input must be a sequence of
COMMANDs, separated by TERMs. Please note that TERM is a separator, not a terminator; the final
command is delimited by the end of input. In turn a command must be followed by a term, so that a
command list could either be one command or a series of commands either separated by ; symbols or by
newlines.

A command is a command followed bu an optional whitespace followed by a command. See below for more
information upon whitespace characters.

10.3 Commands
CMD : <empty> | PIPELINE

The empty command does nothing; its sole effect is to permit multiple adjacent terminators. The pipeline is
the usual form of command. As seen below a pipeline is either a simple command such as ls or dir, or an
input redirection.

: SIMPLE-CMDPIPELINE
| PIPELINE PIPE-REDIR SIMPLE-
CMD

The pipeline really runs its final simple command; the "pipeline pipe-redir" part acts like an command
redirection for the simple command.

PIPE-REDIR : "|" PIPE-SPECS-opt WSP-opt

The | PIPELINE PIPE-REDIR SIMPLE-CMD e pipe-redir is syntactic sugar for a command redirection.
"PIPELINE | CMD" is equivalent to "%<{PIPELINE} CMD" (see below). If a PIPE-SPECS is specified, it
overrides the default. The usual syntax is reversed; "PIPELINE |(2>0) CMD" translates to
"%(0<2){PIPELINE} CMD".

10.4 Simple Commands
: PRE-REDIR-opt ARG CMD-PART-
seq-opt LWSP-opt

SIMPLE-CMD

| REDIR-LWSP-seq

The intent® Shell User Guide

6 25

PRE-REDIR : REDIR-LWSP-seq-opt REDIR
LWSP

CMD-PART : LWSP-opt REDIR | LWSP ARG
REDIR-LWSP : REDIR LWSP-opt

A simple command consists of a (possibly empty) sequence of redirections, and a (non-empty) sequence of
arguments, intermixed freely. See below for further information on arguments. When a simple command is
run, it does not terminate until not only the main command process, but also the processes associated with
any command redirections, including pipelines have also terminated. The exit status of the whole
command is the bitwise OR of the exit status of all these processes.

If no arguments are listed - only redirections - the redirections are applied to the shell itself, affecting all
future commands. In this case, the processes associated with command redirections will not be not waited
for.

10.5 Redirections
: REDIR-OP FD-opt LWSP-opt
REDIR-ARG

REDIR

| CMD-REDIR
: ">"
| ">>"
| "<"

REDIR-OP

| "<>"
FD : "(" DIGIT-seq-opt ")"

: ARG
| "=" LWSP-opt DIGIT-seq

REDIR-ARG

| "=" LWSP-opt "-"

The "REDIR-OP" indicates the mode of the file descriptor affected, and determines which file descriptor is
affected by default, i.e it determines to where output is to be redirected, and how. This is as follows:

 > 1 Output
>> 1 Output (append)*
< 0 Input
<> 0 Input and output

• >> will append to the end of the file rather than overwrite that file.

The output redirections will create the file if it doesn't exist. If the ARG specified expands to multiple words, it
is equivalent to specifying a separate redirection for each word, in sequence. If the ARG expands to no
words, the redirection is ignored.

If "=" and a file descriptor are specified instead of a filename, the specified file descriptor is duplicated. A "-"
means to close the file descriptor being modified.

Where multiple redirections appear in a sequence, they are processed in order. A duplication duplicates the
state of the file descriptor at that point in the sequence. The first redirection on any file descriptor replaces
the former disposition of that file descriptor. Subsequent non-close redirections on the same file descriptor
add to that file descriptor; multiple output redirections are implicitly tee'd, multiple input redirections are
implicitly cat'd. Multiple bidirectional redirections, or multiple redirections of incompatible modes, are an error.

CMD-REDIR : "%" PIPE-SPECS-1 LWSP-opt
: PIPE-OPPIPE-SPECS-1
| PIPE-SPECS
: "(" ")"PIPE-SPECS
| "(" PIPE-SPEC PIPE-SPEC-1-
seq-opt ")"

PIPE-SPEC-1 : ";" PIPE-SPEC
: DIGIT-seq PIPE-OP DIGIT-seqPIPE-SPEC
| "<" | ">"

PIPE-OP : "<" | ">" | "<>"

The intent® Shell User Guide

6 26

The CMD-LIST is executed in parallel with the main command. Pipes are constructed between these two
processes. The CMD-REDIR construct acts like a sequence of redirections to the main process' end of these
pipes.

Each PIPE-SPEC specifies a pipe; it contains the main process' file descriptor, the direction of the pipe, and
the subordinate process' file descriptor, in that order. "<" indicates a pipe directed from the subordinate
process to the main process (an input redirection), ">" the reverse, and "<>" a bidirectional
pipe.

The commonest PIPE-SPECs can be abbreviated; "<" means "0<1", and ">" means "1>0". The entire PIPE-
SPECS list can be similarly abbreviated: "<" means "(0<1)" ("(<)"), ">" means "(1>0)" ("(>)"), and "<>" means
"(0<1;1>0)" ("(<;>)"). It is an error to mention a file descriptor on either side more than once in the PIPE-
SPECS.

10.6 Arguments
ARG : ARG-1-seq
ARG-1 : ARG-NORM | GLOB-PART
ARG-NORM : NORM-CHAR | QUOTE |

EXPANSION
: "\" <any char except NUL>QUOTE
| BRACE-QUOTE

BRACE-PART : QUOTE | <any char except
NUL, "\", "{" or "}">

Arguments can contain quoting, globbing and various forms of expansion. In a BRACE-QUOTE, only the
outer braces are stripped off: everything inside them is a quoted part of the argument. This can be used to
quote an arbitrarily complex set of shell commands as a single argument to a command.

: "$" NORM-CHAR-seqEXPANSION
| "$" "{" LWSP-opt NAME-CHAR-
seq-opt LWSP-opt MODIFIER-seq-
opt "}"

NAME-CHAR : NORM-CHAR | QUOTE
MODIFIER : "!" LWSP-opt NORM-ARG MOD-

ARG-seq-opt LWSP-opt
MOD-ARG : LWSP NORM-ARG
NORM-ARG : ARG-NORM-seq

This syntax provides access to a wide range of forms of expansion. See the section "$ Expansion" above.

: GLOB-SPEC GLOB-REP-optGLOB-PART
| ARG-NORM GLOB-REP
: "*" | "?"
| "[" RANGE-NEG-opt "]"-opt
RANGE-CHAR-seq "]"

GLOB-SPEC

| "&" "[" ARG-1-seq-opt "]"
RANGE-NEG : "^" | "!"

: NORM-CHARRANGE-CHAR
| "\" <any char except NUL>

GLOB-REP : "`" | "'" | """

Globbing is described in the section "Filename Generation", above.

10.7 Whitespace
: <whitespace characters
except newline>

LWSP-2

| COMMENT
COMMENT : "#" COMMENT-PART-seq-opt

The intent® Shell User Guide

6 27

(see note below)
COMMENT-PART : QUOTE |

: LWSP-2LWSP-1
"~" LWSP-2-seq-opt <newline>:

LWSP : LWSP-1-seq
WSP-1 : LWSP-1 | <newline>
WSP : WSP-1-seq

The COMMENT symbol always matches as much input as possible; it can only be followed by a newline, "}",
end of input, or an incomplete QUOTE.

"#" starts a comment that continues to the end of the line. The content of comments must have balanced
quoting, so that code containing comments will itself have balanced quoting. "~" can be used to continue a
command across multiple lines.

© Tao Group Ltd or Tao Systems Ltd. 2000, 2001. All Rights Reserved.

Copyright in the software either belongs to Tao Group Ltd or Tao Systems Ltd. The software may not be
used, sold, licensed, transferred, copied or reproduced in whole or in part or in any manner or form other
than in accordance with the licence agreement provided with the software or otherwise without the prior
written consent of either Tao Group Ltd or Tao Systems Ltd.

No part of this publication may be reproduced in any material form (including photocopying or storing it in any
medium by electronic means and whether or not transiently or incidentally to some other use of this
publication) without the written permission of the copyright owner.

Elate® is a registered trademark of Tao Group Ltd
intent™ is a trademark of Tao Group Ltd
Digital Heaven™ is a trademark of Tao Group Ltd
The rights of third party trademark owners are acknowledged.

