
iii

DocMe

User's Guide

Copyright   1998 by Pickle Software, Inc.  749 Saranac Drive Sunnyvale, CA 94087
All rights reserved.  Copyright protection includes material generated from our software
programs and displayed on the screen, such as icons, screen displays, and the like.  No part of
this publication may be reproduced, stored in a retrieval system, or transmitted, in any form or
by any means, electronic, mechanical, photocopying, recording, or otherwise, without the prior
written permission of the publisher.  Technologies described herein are either covered by
existing patents or patent applications are in progress.
Information in this document is subject to change without notice and does not represent a
commitment on the part of Realtime Performance, Inc..



iv

Contents
1. Introduction to DocMe ........................................................ 1

1.1 Overview..............................................................................................1
1.1.1 Summary...................................................................................1
1.1.2 Features and Functions.............................................................1
1.1.3 Top Level Architecture...............................................................1

2. Installing DocMe .................................................................. 3

3. Support ................................................................................. 4

4. Creating Files for DocMe .................................................... 5
4.1 Item Types ...........................................................................................5
4.2 Sub-headings ......................................................................................5
4.3 Text ......................................................................................................6

4.3.1 Text Formatting Commands ......................................................6

5. Sample Document ............................................................... 8
5.1 Sample API Text..................................................................................8
5.2 DocMe Output ...................................................................................11

5.2.1 MMMControl worktemp.txt 2 Class ..........................................11
5.2.2 MMMAddress worktemp.txt 20 Data Type ...............................12
5.2.3 MMMInitialize worktemp.txt 53 C++ Method ............................13

5.3 Help Files...........................................................................................14
5.3.1 HTML Help File .......................................................................14

5.4 Word Documents ..............................................................................15
5.5 Cross Reference File ........................................................................15
5.6 Source Code Content Rules.............................................................15
5.7 Spaces and Carriage Returns ..........................................................16
5.8 Creating Lists ....................................................................................16
5.9 Templates for Formatting Source Code ..........................................17

6. Running DocMe ................................................................. 18
6.1 Setting Up the DocMe Files ..............................................................18
6.2 The Program DocMe.exe ..................................................................18

6.2.1 Parameters and Options..........................................................18
6.3 The List File .......................................................................................19
6.4 Creating a Microsoft Help File..........................................................20
6.5 The make.bat File..............................................................................20
6.6 Creating a Word Document ..............................................................21

7. Item Prototypes.................................................................. 22
7.1 Class = <C++ Class Name> ..............................................................22
7.2 C++ Method = <C++ Method Name> ................................................23
7.3 Constant = <Constant Name> ..........................................................24
7.4 Data Type = <Data Type Name> .......................................................25
7.5 Function = <Function name> ...........................................................26
7.6 Function Type = <Function Type Name>.........................................27
7.7 Macro = <Macro Name>....................................................................28



v

7.8 Module = <Module Name> ............................................................... 29
7.9 Object = <Object Name>.................................................................. 29
7.10 Term = <Term Name>....................................................................... 29
7.11 Variable = <Variable Name>............................................................. 30





1

1. Introduction to DocMe
1.1 Overview
1.1.1 Summary
DocMe provides a system for the rapid production of correct documentation for computer code.
The software developer inserts comments and explanations within the source files bracketed by
DocMe format codes. The DocMe program accepts the source code file and converts it into an
.rtf document, a Microsoft Help File and an HTML help file. The .rtf file can be opened in
Microsoft WordTM and assigned a DocMe template which formats a finished document.
DocMe provides the following benefits to software developers:
o  Code and documentation are maintained in the same files for optimum safety and simplicity

of maintenance.
o  Changes to code and documentation are made in the same place, resulting in consistent and

timely upgrades to documentation.
o  The documentation exactly matches the documentation of the source code, which reduces

frustrating situations for users.
o  The time to produced parallel documentation copy, Microsoft Help files, and HTML Help

files is reduced to minutes. This yields dramatic cost reductions and allows frequent
production of updated documentation.

o  In line documentation makes programs easy to understand for later debugging, maintenance
and upgrades.

1.1.2 Features and Functions
DocMe provides the following features and functions:
o  DocMe provides a variety of headings and subheading items appropriate for organizing

software code.
o  Each heading is associated with a collection of required, optional, and unavailable

subheading items. The restrictions enforce a consistent documentation style.
o  DocMe extracts blocks of text based on block begin and end codes. These codes allow the

extraction of text to be seen by users and text to be seen in-house.
o  DocMe imbedded codes set bold, underlined, or italicized font styles.
o  DocMe interprets embedded pointer codes to automatically create hot button jumps to

definitions of entities in the Word document, Microsoft Help file and HTML Help file.
o  DocMe allows a list of files to be processed together into a single document. The list may be

arranged into outline form with multiple heading levels for conceptual organization.
o  DocMe allows the entities of the same type to be automatically listed alphabetically or left in

edited order.

1.1.3 Top Level Architecture
Formatting codes and keywords are inserted in source code to direct the operation of the
DocMe compiler. A list of the file names is created and a copy is sent to the DocMe.exe
program. The program creates four files, a cross reference file, a Microsoft Word .rtf file, a help
reference file, and an HTML Help file. The Word File may be assigned a template and edited. the



2

help reference file is sent to the Microsoft help compiler program hcrtf.exe which creates a
Microsoft Help file. The following figure illustrates the sequence of the process.

Cross Reference Help ReferenceMS Word .RTF HTML Help

File01 File02 File03

List File
(Ultima.lst)

Working List
(worktemp.lst)

docme.exe

Microsoft
hcrtf.exe

Microsoft
Word

Microsoft
Help

Word
Document

Figure 1 - The DocMe processing sequence



3

2. Installing DocMe
Please follow this simple few steps for installation:
§ Unzip the library into a directory named DocMe.
§ Copy  Microsoft help compiler HCW.EXE, RTF compiler HCRTF.EXE and the support

DLL, HWDLL.DLL to the BIN directory  under the DocMe directory
§ You are ready to go.
Note
The recommended way to use the product is to include it is the post build action. This action will
generate a fresh documentation from the source code.



4

3. Support
For support questions recommendations and requests, please contact Pickle Software via:
Koby@msn.com



5

4. Creating Files for DocMe
DocMe documents consist of sections which define entities. Each entity has an item type and a
name. Subsections describe the properties of the entity.

4.1 Item Types
Each item heading is indicated by a key word, followed by an equal sign, followed by the name
of the item. For example, a class named Control is introduced by the expression:

Class = Control
DocMe will later create a heading Class. The sub-heading Name will be automatically added
with the name Control inserted.
The following item types are available:

Class C++ class
C++ Method C++ methods
Constant constants, #defined constants, variables declared as constants
Data type data types   structures, enumerated types, typedefs, etc.
Function functions
Function Type data types that are pointers to functions
Macro macros
Module modules
Object object descriptions
Term special term which requires definition
Variable variables

4.2 Sub-headings
Each item type heading is followed by a number of subheadings. Some subheadings are required
for the item type, some sub-headings are optional, some sub-headings are unavailable.
A sub-heading is introduced by by a colon (:) prefix followed by an appropriate keyword. For
example a Class entity may have an :overview sub-heading, a :description sub-heading, and a
:see also sub-heading, as shown below:
Class = MMMControl

:overview
This is the overview text.

:description
This is the description text.

:see also
This text describes other references.

The following table shows all sub-headings and the item types to which they apply. The headings
are either required (R), optional (O), or not available (Blank) for each of the item types:



6

1 2 3 4 5 6 7 8 9 10 11

Subsection Headings Meth Class Const Type Func FncTyp Macr0 Note Objct Term Var

Overview R R R R R R R R R R R
Syntax R R R R O R
PRototype-In R R R R O O O
Prototype R R R R
Defined-In O R R O O O R
Files O O O
Preconditions O O O O O O O
Parameters R O O O O R O
Fields O O O
Elements O O O
Tokens
Events
Event-Data
Confirm-Data
Attributes O O O O O O O O O
Data Types O O O O O O O O O
Methods O O O O O O O O O
Description R R R R R R R R R R R
Assumptions O O O O O O O O O
Used-By O O O O O O O O O
Remarks O O O O O O O O O O O
Limitations O O O O O O O O O
Return Value O O O O O O O
Portability O O O O O O O O O O
Example R O O O R R R O O O
Data Members O
Creation type O
See Also R R R R R R R O R R R

4.3 Text
Explanatory text may be inserted below the sub-headings. Formatting codes may be imbedded in
the text to create bulleted lists, special font characteristics, or to indicate a pointer.
DocMe will automatically add Word styles for the headings and text.

4.3.1 Text Formatting Commands
The following formatting codes can be imbedded in the text:
@ bulleted, indented paragraph
/*+<text>+*/ text selected for customer documentation output.
/#<text>#/ used instead of /* and */ for comments within the DocMe Item

Description.   The C compiler interprets  */ as a signal to end the
Description (/*+ and +*/) instead of the comment within the
description.  The source code will be read incorrectly by the ‘C’ compiler
and, in most cases, this will cause fatal errors in the compilation!

|<text> set text line with mono font
^x<text>^n link to definition, mono font
^l<text>^n set text with mono font all words that relate to code, such as function

names, variables, parameter names, constants, file names, directory
listings, etc.,

^e<text>^n set text with italics
^b<text>^n set text with bold



7

^u<text>^n set text with underline.
Notes
The font styles may be mixed. For example, ^b^u<text>^n yields bold underlined text.
The codes may be expressed in either upper case or lower case.
Single spaces which are inserted between the ^L, <text>, and ^N will be ignored by the DocMe
utility.  DocMe ignores any spaces at the end of a text line. If there is more than one sentence in
a text block, avoid ending a sentence at the end of a line. The resulting text will have no spaces
between the two sentences.
Do not use ^L, ^N, | , or other special formatting characters in the :overview or :see also
sections.  The DocMe utility formats these sections.



8

5. Sample Document
The following is a sample of API text formatted for the DocMe utility. The DocMe formatted
.rtf output is shown after the text file

5.1 Sample API Text
/*+-----------------------------------------------------------------
Class = MMMControl

:Overview
Initialize and do message dispatching for user applications.

:Prototype In
| mmm.h

:Description
An ^LMMMControl^N object initializes user applications with the
^XMMMInitialize^N method. The objects provide message queuing, and
message dispatching, for both repeater applications and user
applications. The ^LMMMControl^N object creates a message queue for
its applications and dispatches messages to the application callback
function, if one is specified.

:See Also
^XMMMInitialize^N

----------------------------------------------------------------- +*/

/*+-----------------------------------------------------------------
Data Type  = MMMAddress

:Overview
  A structure containing a transport protocol and an address.

:Syntax
  |typedef struct
  |{
  |   unsigned short        transport_identifier;
  |   MMMTransportAddress   transport_address;
  |} MMMAddress;

:Defined In
  |mmm.h

:Description
  The data type ^LMMMAddress^n is a structure that is used to
specify a transport stack protocol and a network address for a
network repeater.



9

:Fields
  ^Ltransport_identifier ^N identifies the transport stack protocol.
The valid values are:
  @  ^LMMM_TRANSPORT_TCP ^N -transport control protocol, for both
user and repeater communications
  @  ^LMMM_TRANSPORT_RMTP ^N - reliable multicast transport protocol,
for user communication
  @  ^LMMM_TRANSPORT_RMP ^N - reliable multicast protocol, for
repeater communication
^Ltransport_address ^N is a NULL terminated string specifying a
network address in the form hostname:port.

:See Also
MMMTransportAddress

----------------------------------------------------------------- +*/

/*+-----------------------------------------------------------------

C++ Method = MMMInitialize

:Overview
  This method is used to initialize a remote user application.

:Prototype
  |MMMError MMMInitialize
  |(
  |   MMMVersion       mmm_version_requested,         // INPUT
  |   MMMAddress       mmm_repeater_address,         // INPUT
  |   MMMVersion       * mmm_version,                  // OUTPUT
  |);

:Prototype In
  |mmm.h

:Description
The C++ method ^LMMMInitialize() ^N initializes the remote user's
^XMMMControl^N object and returns the negotiated version of MMM.

:Parameters
  ^Lmmm_version_requested ^N - the version of the MMM API which the
application requires
  ^Lmmm_repeater_address ^N - an ^XMMMAddress^N structure containing
the address of the repeater server
  ^Lmmm_version^N - a pointer to a structure containing the version
that will be used

:Return Value
  @  If successful, this method returns the value
^LMMMERROR_NO_ERROR ^N. A non-zero return indicates the specific
failure condition.
  @  ^LMMMERROR_ALREADY_REGISTERED ^N - The application has already
been initialized by the MMM system.
  @  ^LMMMERROR_GLOBAL_MANAGER_NOT_RESPONDING ^N - The global manager
is not responding to requests.



10

  @  ^LMMMERROR_INVALID_PARAMETER ^N - One of the parameters to the
request is invalid.
  @  ^LMMMERROR_NO_ERROR ^N - The function call was successful.
  @  ^LMMMERROR_NO_REPEATER_PROFILE ^N - The repeater profile is not
available.

:Example
  - REQUIRED -
  The following example shows the method code in use....

:See Also
^XMMMControl^N

----------------------------------------------------------------- +*/



11

5.2 DocMe Output
The following shows the DocMe formatted .rtf output. The headings have been modified for
insertion into this document.

5.2.1 MMMControl worktemp.txt 2 Class

Names

MMMControl
Overview

Initialize and do message dispatching for user applications.
Prototype In

mmm.h

Description

An MMMControl object initializes user applications with the MMMInitialize  method.
The objects provide message queuing, and message dispatching, for both repeater
applications and user applications. The MMMControl object creates a message queue
for its applications and dispatches messages to the application callback function, if
one is specified.

See Also

MMMInitialize



12

5.2.2 MMMAddress worktemp.txt 20 Data Type

Names

MMMAddress
Overview

A structure containing a transport protocol and an address.
Syntax

typedef struct
{
  unsigned short        transport_identifier;
  MMMTransportAddress   transport_address;
} MMMAddress;

Defined In
mmm.h

Description

The data type MMMAddress is a structure that is used to specify a transport stack
protocol and a network address for a network repeater.

Fields

transport_identifier  identifies the transport stack protocol. The valid values are:
l MMM_TRANSPORT_TCP  -transport control protocol, for both user and repeater

communications
l MMM_TRANSPORT_RMTP  - reliable multicast transport protocol, for user communication
l MMM_TRANSPORT_RMP  - reliable multicast protocol, for repeater communication
transport_address  is a NULL terminated string specifying a network address in the
form hostname:port.

See Also

MMMTransportAddress



13

5.2.3 MMMInitialize worktemp.txt 53 C++ Method

Names

MMMInitialize
Overview

This method is used to initialize a remote user application.
Prototype

MMMError MMMInitialize
(
  MMMVersion       mmm_version_requested,         // INPUT
  MMMAddress       mmm_repeater_address,         // INPUT
  MMMVersion       * mmm_version,                  // OUTPUT
);

Prototype In
mmm.h

Description

The C++ method MMMInitialize()  initializes the remote user's MMMControl object
and returns the negotiated version of MMM.

Parameters

mmm_version_requested  - the version of the MMM API which the application
requires mmm_repeater_address  - an MMMAddress structure containing the address of
the repeater server mmm_version  - a pointer to a structure containing the version that
will be used

Return Value
l If successful, this method returns the value MMMERROR_NO_ERROR . A non-zero return

indicates the specific failure condition.
l MMMERROR_ALREADY_REGISTERED  - The application has already been initialized by the

MMM system.
l MMMERROR_GLOBAL_MANAGER_NOT_RESPONDING  - The global manager is not responding

to requests.
l MMMERROR_INVALID_PARAMETER  - One of the parameters to the request is invalid.
l MMMERROR_NO_ERROR  - The function call was successful.
l MMMERROR_NO_REPEATER_PROFILE  - The repeater profile is not available.

Example

- REQUIRED - The following example shows the method code in use....
See Also

MMMControl



14

5.3 Help Files
The DocMe utility automatically creates a Microsoft Help file and an HTML Help file. The files
are formatted and hot buttons are added at the words and phrases indicated by imbedded codes.
The worktemp.lst file (filled from Ultima.lst) is used to create the table of contents for the help
files. The initial portion of the HTML Help file for the source file is shown below:

5.3.1 HTML Help File

MyApi
Table of Contents

• MyApi
• Product API

Generated: Fri Sep 25 09:20:56 1998

Sections
Product API
MMMControl Class Initialize and do message dispatching for user applications.
MMMAddress Data Type A structure containing a transport protocol and an address.
MMMInitialize C++ Method This method is used to initialize a remote user application.

MMMControl worktemp.txt:2 Class

Names:
MMMControl

Overview:
Initialize and do message dispatching for user applications.

Prototype In:

mmm.h

Description:
An MMMControl  object initializes user applications with the MMMInitialize  method.
The objects provide message queuing, and message dispatching, for both repeater
applications and user applications. The MMMControl  object creates a message queue for its
applications and dispatches messages to the application callback function, if one is specified.

See Also:
MMMInitialize



15

5.4 Word Documents
The DocMe.dot template may be used to format the .rtf file as a Word file. This template creates
an index based on the item type headings.

5.5 Cross Reference File
The output cross reference file, worktemp.xref in this example, shows references to and from
each items. Here is the cross reference file from the source file above:

 -------------- DocMe - Cross Reference --------------

  1 - MMMControl
      refers to...
           3 - MMMInitialize  ( MMMInitialize)
           3 - MMMInitialize  ( MMMInitialize)
      referred by...
           3 - MMMInitialize
           3 - MMMInitialize

  2 - MMMAddress
      refers to...
      referred by...
           3 - MMMInitialize

  3 - MMMInitialize
      refers to...
           1 - MMMControl  ( MMMControl)
           2 - MMMAddress  ( MMMAddress)
           1 - MMMControl  ( MMMControl)
      referred by...
           1 - MMMControl
           1 - MMMControl

5.6 Source Code Content Rules
Source code documentation is converted to the On-Line help and Reference Manuals for each
product.  Attention to detail pays-off in the creation of more usable documentation for your
customers.
• Source files must contain all required reference documentation items.
• No customer exposed data types should be contained in a .c file.
• No function should be described in an .h file.
• Item descriptions for functions, macros, etc.,  should be contained in the .c file that contains

the definition of that item.
• Item descriptions for data types, function types (pointers to functions), constants, etc.,

should be contained in the .h files that contain the definition of that item.
• All other related documentation should be included in the Developer’s Guide or

Programming Manual of that product.



16

5.7 Spaces and Carriage Returns
DocMe ignores spaces and carriage returns when formatting. The example below shows text
with arbitrary carriage returns and spaces. The .rtf output from DocMe will be formatted without
the extraneous carriage returns and spaces..

:Description
The MMM dictionary command ^L PortAssociate^N creates an
association between
the
two ports represented by the tokens ^L PortID1^N and ^L PortID2^N.
This command
first translates the two tokens from the ^L .BTC^N file into the
appropriate
parameters that are required for making the association between
the two ports,
and then it performs the association.

Here is the DocMe formatted version.

Description
The MMM dictionary command PortAssociate  creates an association between the two
ports represented by the tokens PortID1 and PortID2.   This command first translates
the two tokens from the .BTC file into the appropriate parameters that are required for
making the association between the two ports, and then it performs the association.

5.8 Creating Lists
Lists require the use of bullets, or special formatting.  The following code will not produce a
numbered list:

:Description
  The function takes the following values:
   1) 60A349h
   2) 60B349h
   3) 60C349h
   4) 60D349h

DocMe produces the following output:

Description
The function takes the following values: 1) 60A349h 2) 60B349h 3) 60C349h 4) 60D349h

The DocMe compiler ignores spaces and carriage returns in order to create a clean document
from a text based source file.  To create a list, use the bulleted list delimiter '@', or use the '|'
character on a line between each list item.  The following examples illustrate the techniques.



17

:Description
  The function takes the following values:
   @ 60A349h
   @ 60B349h
   @ 60C349h
   @ 60D349h

or:

:Description
The function takes the following values:
   |
   1) 60A349h
   |
   2) 60B349h
   |
   3) 60C349h
   |
   4) 60D349h

5.9 Templates for Formatting Source Code
Templates are available for each of the different item types in the file template.c.



18

6. Running DocMe
6.1 Setting Up the DocMe Files
The following sub-directory structure illustrates one method of running DocMe:

\DocMe
DocMe.exe the DocMe program
make.bat a batch file to control DocMe
ultima.lst the primary list of work files for DocMe to process
\input

worktemp.txt a work file to process
worktemp2.h another work file to process
...

\output the DocMe output files will go here

In production settings the files can also be left in place, rather than using the \input directory.
The make.bat file should be changed accordingly.

6.2 The Program DocMe.exe
6.2.1 Parameters and Options
The program DocMe.exe accepts a number of parameters which determine its output and
operates on the files listed in the file named in the last parameter.

DocMe [options]  [<list_file_path>]
options:

-d print debug info
-g w4w generate a Word for Windows .rtf file
-g winhelp generate a Windows Help reference .htf file
-g html generate an .html Help file
-g xref generate a cross reference file
-h print this usage help message
-p include proof reading information
-q suppress diagnostic messages
-s sort alphabetically
-t <title> set document title
-S print valid entry sections

For example,
DocMe.exe  -g  xref  -g  winhelp  -g  w4w  -g  html  -p  worktemp.lst



19

The file, worktemp.lst in this example, contains a list of one or more files to be processed. The
name, worktemp, of this file determines the names of all the output files. The DocMe.exe
program creates the following files:
o  worktemp.xref a cross reference file
o   worktemp.htf a Microsoft Help reference file, used to make the Help file
o  worktemp.rtf a rich text format file to be formatted as a document
o  worktemp.html an html help file

The file Ultima.lst will be copied to create worktemp.lst. This allows the worktemp files to be
cleared while compiling intermediate versions of a document without losing the list file contents.
The make.bat file will handle clearing and copying.

6.3 The List File
The file worktemp.lst (copied by make.bat from the original version stored in Ultima.lst)
contains a list of files to be processed, organized into an outline structure. Lines prefixed with '$',
'$$', or '$$$' are arbitrary outline headings chosen by the author. The '$$' prefix indicates an
indented line. Here is a sample list file. In this case only a single file input\worktemp.txt will be
processed.

$MyApi
$$Product API

input\worktemp.txt
The list of files may be extensive and may be organized in more detail, as the following example
illustrates:

$RPKernel
$$RPKernel

$$$Tasks
X:\kernel\new\ker_tsk.c
X:\kernel\new\ker_scd.c

$$$Semaphores
X:\kernel\new\ker_sem.c

$$$Messages/Queues
X:\kernel\new\ker_msg.c

$$$Tokens
X:\kernel\new\ker_tkn.c

$$$Timers
X:\kernel\new\ker_utm.c

$$$General
X:\kernel\new\ker_hdl.c
X:\kernel\new\ker_man.c
X:\kernel\new\kernel.d
X:\kernel\new\ker_cpu._d
X:\kernel\new\ker_asn.c
X:\kernel\new\ker_err.c
X:\kernel\new\ker_rtc.c



20

X:\kernel\new\ker_vct._d
X:\kernel\new\ker_dgn.c
X:\kernel\new\kdbg_xx.d

$$$Dos Manager
X:\kernel\new\386\dos_man.c
X:\kernel\new\386\kerdos.d

The $, $$ and $$$ indicators are used  to create titles and the user menus for the Microsoft Help
file and the HTML Help file.

6.4 Creating a Microsoft Help File
In the current example, DocMe creates a Microsoft Help reference file worktemp.htf. The
batch file make.bat causes this file to be processed by the Microsoft Help program hcrft.exe to
create a Microsoft Help file worktemp.hlp. In order to create a Microsoft Help file, the
Microsoft Help Workshop files , hcrft.exe, hcw.exe and hwdll.dll must be on the path or in
the DocMe directory.
The command,

hcrtf -o worktemp.hlp -xr worktemp.htf
generates the Microsoft Window Help file, worktemp.hlp, from the reference file
worktemp.htf.

6.5 The make.bat File
The batch file, make.bat, automates the job process. The contents of worktemp.lst containing
the list of files to be processed will be stored in a file ultima.lst for reference and copied to
worktemp.lst when required. This allows files to be worktemp.* files to be erased without
loosing the list of files. The batch file will clear out old versions, worktemp.*, copy ultima.lst to
worktemp.lst, run DocMe.exe, create the Windows Help file, move the files to the \output
directory, and start the help files for checking.
The batch file, make.bat, looks like this:

Rem - Delete old output files from the output directory.
@for %%f in (worktemp.* output\*.*) do del %%f /q

Rem - copy the configuration file ultima.lst to the temporary file worktemp.lst.
copy ultima.lst worktemp.lst

Rem - Run DocMe.exe using info in worktemp.lst.
DocMe.exe -g xref -g winhelp -g w4w -g html -p  worktemp.lst

Rem - Run the MS Help compiler to create file worktemp.hlp using file worktemp.htf.
hcrtf -o worktemp.hlp -xr worktemp.htf

Rem - Move all files created to the output directory.
@for %%f in (worktemp.*) do move %%f output



21

Rem - Start the MS Help and the HTML Help to check them out.
start output\worktemp.hlp
start output\worktemp.html
:end

6.6 Creating a Word Document
The template file DocMe.dot should previously be copied into the root of your Word for
Windows directory (or your assigned Word for Windows Templates directory)
o  Start Word for Windows.
o  Select File/New
o  Select DocMe.dot as your template.
Upon entering the file, you will be prompted to enter the File/Properties/Summary
Information.
o  Enter the Title column only, the rest of the information is already setup.  Press OK.
Load the .rtf documentation file as follows:
o  Press the Yellow Smiley Icon on the top tool bar.
o  Select Load new documentation (.rtf) file.
o  Select OK to delete all existing DocMe example documentation before loading the new

documentation file.
o  Select the .rtf file to be processed. Press OK and allow conversion.
o  When prompted to update, press OK. DocMe will format the document.
o  Save the document in Word format.



22

7. Item Prototypes
This section provides examples of the DocMe item types, along with a full list of required and
typical optional entries for each item.  Each entry field is described, shown in the proper order,
and in some cases, examples are provided.

7.1 Class = <C++ Class Name>
Overview

[Required]  A short description of the C++ class’ functionality.  This is used as the
heading for locating the item in the On-Line help systems.  In order to make the
Windows Help menu system easy to navigate and simple to use, do not make your
Overview entries longer than 65 characters.

Prototype In
[Required]  The name of the .HPP file that contains the prototype of the C++
Method.

Description
[Required]   This is a more detailed description of the item’s function than noted in the
Overview.  Since there are no limits on the length of the description, you may find it
easier to write the description first then develop the shorter Overview statement from
that.

Remark
[Optional]

Return Value
[Optional]

Portability
[Optional]

Example
[Optional]

See Also
[Required]



23

7.2 C++ Method = <C++ Method Name>
Overview

[Required]  A short description of the C++ Method’s functionality.  This is used as the
heading for locating the item in the On-Line help systems.  In order to make the
Windows Help menu system easy to navigate and simple to use, do not make your
Overview entries longer than 65 characters.

Prototype
[Required]  A complete listing of the C++ Method.
reactivate(DFEState* state)

Prototype In
[Required]  The name of the .HPP file that contains the prototype of the C++
Method.

Description
[Required]   This is a more detailed description of the item’s function than noted in the
Overview.  Since there are no limits on the length of the description, you may find it
easier to write the description first then develop the shorter Overview statement from
that.  The description for C++ Methods are for internal use only.

Preconditions
[Optional]  If applicable, one or more possible preconditions that are required by the
C++ Method.

Parameters
[Required if Parameters exist]  A complete list of all parameters for the C++ Method.

Remarks
[Optional]  If it has not already been covered under other entry headings, include here
anything that would help the reader to a better understanding of the C++ Method’s
purpose and function.

Limitations
[Optional]  Define any limitations that could be assigned to the C++ Method.

Return Value
[Required]  List all possible return values of the C++ Method.

Portability
[Optional]  If applicable, describe whether C++ Method is portable to other versions or
revisions.

Example
[Required]  An example will often explain more than any written statement how and
why the item functions.

See Also
[Required]  Use this section to refer the reader to any other items which are related.
Be sure to reference to object classes.



24

7.3 Constant = <Constant Name>
Overview

[Required]  A short description of the constant definition.  This is used as the heading
for locating the item in the On-Line help systems.  In order to make the On-Line help
menu systems easy to navigate and simple to use, do not make your Overview entries
longer than 65 characters in Windows NT-based software and 40 characters in DOS-
based software.

Syntax
[Required]   A complete listing of the constant.
Example:
#define EBUS_WAIT_INFINITE     ((long)-1)

Example:
Const int   MY_VAR   14;

Defined In
[Required]  The name of the .H file where the constant is defined.

Description
[Required]  This is a more detailed description of the constant’s definition than noted
in the Overview.  Since there are no limits on the length of the description, you may find
it easier to write the description first then develop the shorter Overview statement from
that.

Remarks
[Optional]  If it has not already been covered under other entry headings, include here
anything that would help the reader to a better understanding of the constant’s purpose
and function.

Example
[Optional]  An example will often explain more than any written statement how and why
the constant functions.

See Also
[Required]  Use this section to refer the reader to any other items which are related.



25

7.4 Data Type = <Data Type Name>
Overview

[Required]   A short description of the data type’s functionality.  This is used as the
heading for locating the item in the On-Line help systems.  In order to make the On-
Line help menu systems easy to navigate and simple to use, do not make your Overview
entries longer than 65 characters in Windows NT-based software and 40 characters in
DOS-based software.

Syntax
[Required]   A complete listing of the data type.  For example:
typedef struc
{
   char Name[] = “Enter your name here\0”;
   UINT8 Age;
   enum  Sex = {Male, Female};
} PersonnelRecord

Defined In
[Required]   The name of the file where data type is defined.

Description
[Required]   This is a more detailed description of the item’s function than noted in the
Overview.  Since there are no limits on the length of the description, you may find it
easier to write the description first then develop the shorter Overview statement from
that.

Fields
[Required for structures]  List of fields, if the data type is a structure.

Elements
[Required for enumerations]  List of elements ,if the data type is an enumeration.

Portability
[Optional]   If applicable, describe whether data type is portable to other versions or
revisions.

Example
[Optional]   Highly recommended.  An example will often explain how the data type is
used more than any written statement.

See Also
[Required]   Use this section to refer the reader to any other items which are related.



26

7.5 Function = <Function name>
Overview

[Required]   A short description of the function’s purpose.  This is used as the heading
for locating the item in the On-Line help systems.  In order to make the On-Line help
menu systems easy to navigate and simple to use, do not make your Overview entries
longer than 65 characters in Windows NT-based software and 40 characters in DOS-
based software.

Prototype
[Required]  A complete listing of the function.  Example:

IOBusStatus IOEventCreate
(
  IMC_HDL        Hdl,
  char           * EventName,
  IOEventData    * EventData,
  IOHdl          * EventHdl
);

Prototype In
[Required]   The name of the .H file that contains the prototype of the function.

Description
[Required]   This is a more detailed description of the item’s function than noted in the
Overview.  Since there are no limits on the length of the description, you may find it
easier to write the description first, then develop the shorter Overview statement from
that.

Preconditions
[Optional]  If applicable, one or more possible preconditions that are required by the
item.

Parameters
[Optional]  A complete list of all parameters for the item.

Remarks
[Optional]  If it has not already been covered under other entry headings, include here
anything that would help the reader to a better understanding of the item’s purpose and
function.

Limitations
[Optional]  Define any limitations that could be assigned to the item.

Return Value
[Required]   List all possible return values of the item.

Example
[Required]   An example will often explain more than any written statement how and
why the item functions.

See Also
[Required]  Use this section to refer the reader to any other items which are related.
Be sure to include all relevant data types listed in the function’s syntax.



27

7.6 Function Type = <Function Type Name>
Overview

[Required]   A short description of the function type’s purpose.  This is used as the
heading for locating the item in the On-Line help systems.  In order to make the On-
Line help menu systems easy to navigate and simple to use, do not make your Overview
entries longer than 65 characters in Windows NT-based software and 40 characters in
DOS-based software.

Prototype
[Required]   A complete listing of the function type.  Example:
typedef  SINT32 (* IOPointEventFilterFunc)
  (
    char     * IOPointName,
   void     *PointValue
  );

Defined In
[Required]  The name of the .H file where function type is defined.

Description
[Required]  This is a more detailed description of the item’s function than noted in the
Overview.  Since there are no limits on the length of the description, you may find it
easier to write the description first then develop the shorter Overview statement from
that.  The description is used in the Reference Manual.

Preconditions
[Optional]  If applicable, one or more possible preconditions that are required by the
function type.

Parameters
[Optional]  A complete list of all parameters for the function type.

Remarks
[Optional]  If it has not already been covered under other entry headings, include here
anything that would help the reader to a better understanding of the function types
purpose.

Limitations
[Optional]  Define any limitations that could be assigned to the function type.

Return Value
[Required]  List all possible return values of the function type.

Portability
[Optional]  If applicable, describe whether item is portable to other versions or
revisions.

Example
[Required]   An example will often explain more than any written statement how and
why the item functions.

See Also
[Required]   Use this section to refer the reader to any other items which are related.
Be sure to include all relevant data types listed in the function type’s syntax.



28

7.7 Macro = <Macro Name>
Overview

[Required]   A short description of the macro’s functionality.  This is used as the
heading for locating the item in the On-Line help systems.  In order to make the On-
Line help menu systems easy to navigate and simple to use, do not make your Overview
entries longer than 65 characters in Windows NT-based software and 40 characters in
DOS-based software.

Syntax
[Required]   A complete listing of the data type.  Example:
TIMER_ACTION_POST_AND_COUNT32
(
  KerMsgQHdl queue,
  KerMsg msg,
  SINT32 *adr,
  SINT32 step
);

Prototype In
[Required]  The name of the .H file that contains the prototype of the macro.

Description
[Required]   This is a more detailed description of the macro’s function than noted in
the Overview.  Since there are no limits on the length of the description, you may find it
easier to write the description first then develop the shorter Overview statement from
that.  The description is used in the Reference Manual.

Parameters
[Required]  A complete list of all parameters for the macro.

Remarks
[Optional]  If it has not already been covered under other entry headings, include here
anything that would help the reader to a better understanding of the macro’s purpose
and function.

Limitations
[Optional]  Define any limitations that could be assigned to the macro.

Portability
[Optional]  If applicable, describe whether macro is portable to other versions or
revisions.

Example
[Required]   An example will often explain more than any written statement how and
why the item functions.

See Also
[Required]  Use this section to refer the reader to any other items which are related.



29

7.8 Module = <Module Name>
Overview

[Required]   A short description what the module.  In order to make the On-Line help
menu systems easy to navigate and simple to use, do not make your Overview entries
longer than 65 characters in Windows NT-based software and 40 characters in DOS-
based software.

Description
[Required]   This is a more detailed description of the object than noted in the
Overview.  Since there are no limits on the length of the description, you may find it
easier to write the description first then develop the shorter Overview statement from
that.

See Also
[Required]  Use this section to refer the reader to any other items which are related.

7.9 Object = <Object Name>
Overview

[Required]   A short description of the object.  In order to make the On-Line help
menu systems easy to navigate and simple to use, do not make your Overview entries
longer than 65 characters in Windows NT-based software and 40 characters in DOS-
based software.

Description
[Required]   This is a more detailed description of the object than noted in the
Overview.  Since there are no limits on the length of the description, you may find it
easier to write the description first then develop the shorter Overview statement from
that.

Example
[Optional]   An example will often explain more than any written statement how and
why the item functions.

See Also
[Required]  Use this section to refer the reader to any other items which are related.

7.10 Term = <Term Name>
Overview

[Required]   A short description of the term.  In order to make the On-Line help menu
systems easy to navigate and simple to use, do not make your Overview entries longer
than 65 characters in Windows NT-based software and 40 characters in DOS-based
software.

Description
[Required]   This is a more detailed description of the term than noted in the
Overview.  Since there are no limits on the length of the description, you may find it
easier to write the description first then develop the shorter Overview statement from
that.

Example
[Optional]   An example will often explain more than any written statement how and
why the item functions.

See Also
[Required]  Use this section to refer the reader to any other items which are related.



30

7.11 Variable = <Variable Name>
Overview

[Required]   A short description of the variable.  In order to make the On-Line help
menu systems easy to navigate and simple to use, do not make your Overview entries
longer than 65 characters in Windows NT-based software and 40 characters in DOS-
based software.

Syntax
[Required]  A complete listing of the variable type.

Defined In
[Required]  The name of the .H file where function type is defined.

Description
[Required]   This is a more detailed description of the variable than noted in the
Overview.  Since there are no limits on the length of the description, you may find it
easier to write the description first then develop the shorter Overview statement from
that.

Example
[Optional]   An example will often explain more than any written statement how and
why the item functions.

See Also
[Required]  Use this section to refer the reader to any other items which are related.


