
Release 3.3 Copyright ã1995 by NeXT Computer, Inc.    All Rights Reserved.

2

Design Philosophy

A user interface must meet the needs of both novice and experienced users:

· For the novice or infrequent user, it must be simple and easy both to learn and to remember.    It 
shouldn't require any relearning after an extended absence from the computer.

· For the more experienced user, it must be fast and efficient.    Nothing in the user interface should 
get in the way or divert the user's attention from the task at hand.

The challenge is to accommodate both these goals in ways that don't conflictÐto combine simplicity 
with efficiency.

A graphical (window-based) user interface is well suited to this task.    Because graphical objects can 
be endowed with recognizable features of real objects, users can borrow on their everyday 
experience when they approach the computer.    Graphical buttons work like you'd expect real 
buttons to work, windows behave much like separate tablets or sheets of paper, sliders and other 
graphical objects act like their physical counterparts off-screen.    The computer becomes less an 
entirely new world with its own rules, and more an extension of the more familiar world away from 
the computer screen.

This not only makes the user interface easier to learn and remember, it also permits operations to be 
simpler and more straightforward.    Picking an option is as easy as flicking a switch.    Resizing a 
window is as direct and simple as pulling on a tab.    The same attributes of the user interface that 
provide simplicity for novice users can also result in efficiency for more expert users.

Basic Principles
The NEXTSTEP user interface is designed with certain basic principles in mind.    Four are 
especially important:

· The interface should be consistent across all applications.
· The user is in charge of the workspace and its windows.
· The interface should feel natural to the user.
· The mouse (not the keyboard) is the primary instrument for user input.

Each of these principles is discussed in more detail in the sections that follow.

Consistency
When all applications have the same basic user interface, every application benefits.    Consistency 
makes each application easier to learn, thus increasing the likelihood of its acceptance and use.



Just as drivers become accustomed to a set of conventions on public highways, so users tend to learn 
and rely on a set of conventions for their interaction with a computer.    Although different 
applications are designed to accomplish different tasks, they all share, to one degree or another, a set 
of common operationsÐselecting, editing, scrolling, setting options, making choices from a menu, 
managing windows, and so on.    Reliable conventions are possible only when these operations are 
the same for all applications.

The conventions permit users (like drivers) to develop a set of habits, and to act almost instinctively 
in familiar situations.    Instead of being faced with special rules for each application (which would 
be like each town defining its own rules of the road), users can carry knowledge of how one 
application works on to the next application.

User Control
The workspace and the tools for working in it (the keyboard and mouse) belong to the user, not to 
any one application.    Users should always be free to choose which application and which window 
they will work in, and to rearrange windows in the workspace to suit their own tastes and needs.

When working in an application, the user should be afforded the widest possible freedom of action. 
It's inappropriate for an application to arbitrarily restrict what the user can do.    If an action makes 
sense, it should be allowed.

Modes

In particular, applications should avoid setting up arbitrary modes, periods when only certain actions 
are permitted.    Modes often make programming tasks easier, but they usurp the users' prerogative 
of deciding what will be done.    They can thus feel annoying and unreasonable to users who aren't 
concerned with implementation details.

On occasion, however, modes are a reasonable approach to solving a problem.    Because they let the 
same action have different results in different contexts, they can be used to extend functionality.    
When permitted, a mode should be freely chosen, provide an easy way out, be visually apparent, and 
keep the user in control.    In the NEXTSTEP user interface, modes are used in only three situations:

· In the modal tool paradigm, discussed under ªAction Paradigmsº later in this chapter
· In attention panels, discussed in Chapter 5, ªPanelsº
· In ªspring-loadedº modes that last only while the user holds a key or mouse button down

Acting for the User

Even though the user is in control, sometimes it's appropriate for an application to act on the user's 
behalf without waiting for the user's instructions.    For example, if a user will always select an item 
after bringing up a panel, perhaps the panel should already have an item that's selected. 

The purpose of acting on behalf of the user is to simplify the task at handÐto make a user action 
possibly unnecessary.    Therefore, the end result of the application's action must be the same as if 
the user had performed the action.    For example, if the panel's display changes whenever the user 
selects an item, then the display must also change when the application selects an item.    Actions 
made on the user's behalf should be simple and convenient.    Otherwise, they can be annoying or 
confusing, weakening the user's sense of control over the system.

If there's any doubt as to whether an application should act on the user's behalf, then it probably 
shouldn't.    It's better for the application to do too little than too much.



Naturalness
The great advantage of a graphical user interface is that it can feel natural to the user.    The screen 
becomes a visual metaphor for the real world, and the objects it displays can be manipulated in ways 
that reflect the ways familiar objects in the real world are manipulated.    This is what's meant when 
a user interface is said to be ªintuitiveºÐit behaves as we expect based on our experience with real 
objects in the real world.

The similarity of graphical to real objects is at a fundamental rather than a superficial level.    
Graphical objects don't need to resemble physical objects in every detail.    But they do need to 
behave in ways that our experience with real objects would lead us to expect.

For example, objects in the real world stay where we put them; they don't disappear and reappear 
again, unless someone causes them to do so.    The user should expect no less from graphical objects. 
Similarly, although a graphical dial or switch doesn't have to duplicate all the attributes of a real dial 
or switch, it should be immediately recognizable by the user and should be used for the sorts of 
operations that real dials and switches are used for.

Each application should try to maximize the intuitiveness of its user interface.    Its choice of 
graphical objects should be appropriate to the tasks at hand, and users should feel at home with the 
operations they're asked to perform.    The more natural and intuitive the user interface, the more 
successful an application can be.

Using the Mouse
All aspects of the user interface are represented by graphical objects displayed on-screen, and all 
graphical objects are operated mainly by the mouse, not the keyboard.    The keyboard is principally 
used for entering text.    The mouse is the more appropriate instrument for a graphical interface.

Nevertheless, it's often a good idea to provide keyboard alternatives to mouse actions (see 
ªKeyboard Alternativesº in Chapter 3, ªUser Actions: The Keyboard and Mouseº).    They can be 
efficient shortcuts for experienced users.    Keyboard alternatives are always optional, however.    
Visual representations on the screen never are.    A keyboard operation without a corresponding 
mouse-oriented operation on-screen isn't appropriate.

One of the goals of the user interface is to extend to mouse operations the same naturalness and 
consistency that the keyboard provides for experienced typists.    This is possible only if mouse 
operations follow established paradigms that users can come to rely on.    The next section defines 
the paradigms used in the NEXTSTEP user interface.

Action Paradigms
Graphical user interfaces such as NEXTSTEP work best when there are well-defined paradigms for 
using the mouse.    The paradigms must be broad enough to encompassactions for the widest 
possible variety of applications, yet precise and limited enough so that users are always aware of 
what actions are possible and appropriate. 

The NEXTSTEP user interface supports these three paradigms of mouse action:

· Direct manipulation 
· Targeted action 
· Modal tool



Direct Manipulation
Most objects respond directly to manipulation with the mouseÐa button is highlighted when 
pressed, a window comes forward when clicked, the knob of a slider moves when dragged.    Direct 
manipulation is the most intuitive of the action paradigms and the one best suited for modifying the 
position and size of graphical objects.    Windows, for example, are reordered, resized, and moved 
only through direct manipulation.

By directly manipulating icons that represent documents, applications, mail messages, or other 
objects stored in the computer's memory, users can manipulate the objects the icons represent.    For 
example, dragging an icon to a new location can change the position of a file in the file system's 
hierarchy.

Even objects that use the targeted-action or modal-tool paradigm must respond to direct 
manipulation.    For example, although buttons and menu commands can't be resized or moved, they 
nevertheless respond to direct manipulation as a way of giving feedback to the user.    The 
responseÐmainly highlightingÐshows that the user's action has successfully invoked one of the 
other paradigms.

Targeted Action
ControlsÐbuttons, scrollers, and the likeÐare vehicles for the user to give instructions to an 
application.    By manipulating a control object, the user controls what the application does.    
Clicking a close button, for example, not only causes the button to become highlighted, it also 
removes the window from the screen.    The button is simply a control deviceÐlike a light switch or 
a steering wheelÐthat lets the user carry out a certain action.

All controls have one thing in common:    They act on a target.    Some control objects (such as the 
Quit menu command) act on an entire application.    Others (such as the close button in a window's 
title bar) act on a window.    Still others (such as the Cut menu command) act on a subset of a 
window's contents (such as text) that the user has selected.

Sometimes the user must explicitly select the target, and sometimes not.    When the user selects the 
target, it's usually editable graphics or text.    However the target can also be another type of object, 
such as a window (the target of the Close Window menu command) or a file icon (the target of the 
Workspace Manager Destroy command).

When the user needs to explicitly select a targetÐno matter whether it's a window or a line of 
textÐthe user always selects the target before choosing the control.    For example, a user might 
select a range of text in a file, then choose the Cut command from the Edit menu to remove it.

Targeted action with explicit selection is the normal paradigm for controlling or operating on 
objects.    It has the advantage that a sequence of different actions can apply to the same target.    For 
example, selected text can be changed first to a different font, then to a different point size, and then 
perhaps copied to the pasteboard.    Another advantage is that a single control can act on a number of 
different user-selected targets, making it extremely efficient and powerful.    The Cut command, for 
example, can delete text, as well as graphics, icons, and other objects.

In situations where direct manipulation is the most natural way to do an operation, it's preferable to 
targeted action.    However, since direct manipulation isn't sufficient for many operations, targeted 
action is the most commonly used paradigm.    For example, although direct manipulation is an easy, 
natural way to resize a window (by dragging), it normally isn't easy or natural to set the size of text 
by dragging the letters to a new height.



Modal Tool
In the modal-tool paradigm, users can change the meaning of subsequent mouse actions by selecting 
an appropriate tool, often displayed in a palette with several other tools.    Each tool controls a 
certain set of operations that are enabled only after it's chosen.    For example, a graphics editor 
might provide one tool for drawing circles and ovals, another for rectangles, and still another for 
simple lines.    Depending on which tool is chosen, mouse actions (clicking and dragging) will 
produce very different visual results.    The cursor assumes a different shape for each tool, so that it's 
apparent which one has been selected, and the tool itself remains highlighted.

Each tool sets up a modeÐa period of time when the user's actions are interpreted in a special way.    
A mode limits the user's freedom of action to a subset of all possible actions, and for that reason is 
usually undesirable.    But in the modal tool paradigm, the mode is mitigated by a number of factors:

· The mode isn't hidden.    The altered shape of the cursor and highlighted state of the tool make it 
apparent which actions are appropriate.

· The mode isn't unexpected.    It's the result of a direct user choice, not the by-product of some 
other action.

· The way out of the mode (usually clicking in another tool) is apparent and easy.    It's available to 
the user at any time.

· The mode mimics the way things are done in the real world.    Artists and workers choose an 
appropriate tool (whether it's a brush, a hammer, a pen, or a telephone) for the particular task at 
hand, finish the task, and choose the next tool. 

The modal-tool paradigm is appropriate when a particular type of operation is likely to be repeated 
for some length of time (for example, drawing lines).    It's not appropriate if the user would be put in 
the position of constantly choosing a new tool before each action.

Below is a typical palette of modal tools, along with the cursor that shows that a mode is in effect.

Extensions
Users will come to count on a basic set of familiar operations throughout the user interface.    It's 
each application's responsibility to make the action paradigms it uses apparent to the userÐcontrols 
should look like controls (like objects that fit into the targeted-action paradigm), palettes of tools 
should be self-evident, and so on.

An application should also make certain that its paradigms fit the action.    It wouldn't be 
appropriate, for example, to force users to choose a ªmoving toolº or a control just to move an 
object.    Graphical objects should move, as real objects do, through direct manipulation.

Properly used, the paradigms described above can accommodate a wide variety of applications.    Yet 
over time, as programmers develop innovative software, new and unanticipated operations might 
require extending the user interface.

An extension should be a last resort.    All possible solutions within the standard user interface 
described in this chapter should be exhausted first.    Added functionality must be carefully weighed 
against the ill effects of eroding interapplication consistency for the user.    Any extension should be 
clearly different to the user from existing paradigms.

If an extension is required, it should be designed to grow naturally out of the standard user interface, 



and must adhere to the general principles discussed above.

Testing User Interfaces
The success of an application's interface depends on real users.    There's no substitute for having 
users try out the interfaceÐeven before there's any functionality behind itÐto see whether it makes 
sense to them and lets them accomplish what they want.    Some books with information on user 
testing are listed in the ªSuggested Readingº section at the end of this book.


