
Release 3.3 Copyright ã1995 by NeXT Computer, Inc.    All Rights Reserved.

3.3 Release Notes:
Object Links

There are no new Object Link features or bug fixes in Release 3.3, 3.2, or 3.1.    This 
file contains release notes for Release 3.0.

Notes Specific to Release 3.0

NEXTSTEP 3.0 supports the dynamic sharing of data between documents owned by 
different applications via Object Links.    As a typical example, imagine a user copies 
an illustration from Draw (the "source" application) and pastes it into a report being 
written in Edit (the "destination" application).    If the user chooses this data to be 
linked, then later changes in the source drawing are automatically reflected in the 
report. Object Links free the user from the tedious and error prone task of manually 
updating dependant documents when original sources change, and allow users to 
share data between documents.    Object Links also support hypertext-style, 
navigational links between documents.

In 3.0, the bundled applications that support Object Links are Draw (both as a source 
and destination), Edit (destination only) and IconBuilder (source only).    Since Draw 



is an example as well as a demo, the source for its Object Links support is available, 
mostly contained in the file gvLinks.m.

New Classes and Architecture

Applications participate in Object Links using the classes NXDataLinkManager and 
NXDataLink.    A DataLink Manager coordinates link operations for a particular 
document.    A DataLink represents a particular link between documents.

For each document that an application opens, it creates a DataLink Manager for that 
document.    The DataLink Manager has a delegate, which is set to a custom object 
within the application.    The DataLink Manager and its delegate cooperate to let 
others link to their document, to create new links to other documents and to manage 
existing links.    The DataLink Manager does most of the real work of managing links, 
including storing the links and the interprocess communication used to implement 
links.    The delegate is called on for various application-specific operations, e.g., 
incorporating new data for a link into a destination document.

paste.eps ¬

A key component of Object Links is a way for the system and other applications to 
refer to parts of a given document.    A reference to a piece of a document is held in a 
NXSelection object.    As part of creating a link to a document, an application provides 



a Selection object that represents the current selection.    Later the DataLink Manager 
may ask the delegate for a copy of the data for that selection as part of a link update. 
The creator of a Selection provides an arbitrary number of bytes which identify the 
part of the document.    Since a Selection may be held by the system or other 
applications, its data can't be updated over time.    A Selection must remain a valid 
reference to its part of the document, even if the document is edited in the meantime. 
Deciding how to represent selections of a document's data is the most difficult part of 
supporting Object Links, and will be elaborated on further.

A fourth class used to implement Object Links is NXDataLinkPanel (titled "Link 
Inspector" in the user interface).    This subclass of Panel provides a standard user 
interface for inspecting links.

The Pasteboard class is used as the data transfer mechanism of Object Links.    
Pasteboards help make it easy for an application to participate in Object Links, since 
data transfer is implemented with existing copy and paste code.    Because the owner 
of a Pasteboard can be lazy in providing the actual data for the types it declares, 
applications can freely declare as many types as they can support, yet only do the 
work to produce data for the types that are requested by the receiver of the data. 

Creating a DataLink Manager

Before doing anything with Object Links, an application must create a DataLink 
Manager for each of its documents.    This is not expensive, and should be done 



whenever a document is opened.    At creation time, the delegate for the DataLink 
Manager is provided, which will provide the application specific behavior for links for 
that document.    If an existing document is being opened, the path is also passed.

  
MyCustomObjectClass *delegate;

linkManager = [[NXDataLinkManager alloc]
        initWithDelegate:delegate fromFile:pathOfDocBeingOpened];

If the document is untitled, a DataLink Manager should still be created, but only the 
delegate is passed.

 
MyCustomObjectClass *delegate;

linkManager = [[NXDataLinkManager alloc] initWithDelegate:delegate];

Creating an Object Link via the Pasteboard

The user creates an Object Link using an extension of the Copy/Paste metaphor.    
Let's take the example of a Draw illustration pasted into Edit.    First, the user selects 
some objects within Draw and does a "Copy".    In addition to its normal copy 
operation, Draw puts a link to the data being copied in the Pasteboard.    It does this 
by creating a Selection that refers to the data the user is copying, and a DataLink 
containing that Selection.    Draw then writes this DataLink to the Pasteboard.    Draw 
must also declare an additional type to the Pasteboard, NXDataLinkPboardType (the 
link writes its data under this type).    When the link is created, Draw declares what 



data types will be able to provide when data is requested for that link (see "Updating 
an Object Link", below).    The types available for the link can be a subset of the types 
initially declared to the Pasteboard, but usually are the same except for the 
NXDataLinkPboardType.

Pasteboard *pboard;
NXDataLink *newLink;
NXSelection *srcSel;
const char * const *types;

/* data types we can provide */
int numTypes;

/* number of types */
const char * const *lTypes;

/* data types we can provide later for the link */
int numLTypes;

pboard = [Pasteboard new];

/* types includes NXDataLinkPboardType */
[pboard declareTypes:types num:numTypes];

/* ...write data for any types that aren't lazy... */
srcSel = /* a selection for the current selection */

/* srcSel is handed off to the link, no need to free it */
newLink = [[NXDataLink alloc]
        initLinkedToSourceSelection:srcSel
        managedBy:myDocsLinkManager
        supportingTypes:newTypes count:numTypes];
[newLink writeToPasteboard:pb];
[newLink free];



The user now switches to Edit to complete the link.    However, instead of choosing 
"Paste", the user chooses "Paste and Link".    Edit first executes its normal pasting 
code, choosing its favorite data type from the Pasteboard's types and incorporating 
the data into its document.    To complete the linkage to the source document, it then 
reads the link that Draw put in the Pasteboard, and adds it to its document via the 
DataLink Manager.    It passes a Selection that refers to the newly pasted data.

Pasteboard *pboard;
NXDataLink *newLink;
NXSelection *destSel;

pboard = [Pasteboard new];
/* ...choose types, do normal pasting code... */
newLink = [[NXDataLink alloc] initFromPasteboard:pboard];
destSel = /* a selection for the pasted data */
if ([myLinkManager addLink:newLink at:destSel]) {
        /* destSel is handed off to Link Manager, no need to free it */
        /* redisplay doc with newly pasted data */
} else {
        /* link failed to be added, Link Manager puts up an Alert */
        /* rip out pasted data, since the operation failed */
[newLink free];
[destSel free];
}

 
It is quite possible for the addLink:at: method to fail, in which case the entire "Paste 
and Link" command should fail (the result should not be an unlinked paste of data, as 
the user can get this by doing "Paste").    Instead of the above code, it may be easier 
for some applications to not incorporate the data from the Pasteboard into their 



document until they know the link has been successfully added to the document.    
This technique works as long as you can still generate the destination Selection 
before attempting to add the link. 

Creating an Object Link to a File

In NEXTSTEP the preferred user interface for importing a file into a document is to 
allow the user to just drag and drop the file from Workspace into a document window. 
In addition, the application can let the user link a file into his document instead of 
copying it (the user performs the drag and drop with the control key down, just as 
links are made within Workspace ± see the AppKit release notes on the new image 
dragging support).    In this case, the application imports the file's data as usual, and 
then adds a DataLink pointing to the imported file to its document's DataLink 
Manager.

char *filename = /* file to link to, often from dragging pboard */;
Pasteboard *pboard;
NXDataLink *newLink;
NXSelection *destSel;

newLink = [[NXDataLink alloc] initLinkedToFile:filename];

/* sel is handed off to Link Manager, no need to free */
destSel = /* a selection for the imported data */
if ([myLinkManager addLink:newLink at:destSel]) {
        /* destSel is handed off to Link Manager, no need to free it */
        /* import the file's data and redisplay */
} else {



        /* link failed to be added, Link Manager puts up an Alert */
        /* don't import the file's data, since the operation failed */
[newLink free];
[destSel free];
}

Updating an Object Link

An Object Link update is the process of sending a new version of the linked data 
from the source to the destination.    A number of events can cause a link to be 
updated:    the system may notice that source document has changed, the user may 
explicitly request an update, or an application may programmatically initiate an 
update.

An update begins with the system making sure the source document is open, 
launching the responsible application if necessary.    The source document's DataLink 
Manager then asks the delegate to copy a certain part of the document to a 
Pasteboard.    It indicates the part of the document by passing the Selection that the 
delegate previously generated as part of the "Copy" when the link was created.    
Note that since the Pasteboard works lazily, the delegate doesn't have to actually 
produce any data at this time, but just declare the types it can provide to the 
Pasteboard.    A further optimization is may be taken if the "cheap copy" flag is set.    
Normally an application that provides data to the Pasteboard lazily must put at least 
one representation of the data into the Pasteboard at copy time, so that when other 
representations are requested it has the original data to convert from.    The 
application can't use data in the document itself, since this may be edited by the user 



in the interim between the copy and the paste.    If cheap copy is allowed, then the 
application does not need to write any representations at copy time, because it is 
guaranteed that there will be no events processed before the owner is asked to 
provide data for the types it declares (for example, Draw uses the optimization to 
avoid archiving the objects in the selection for later conversion to EPS or TIFF, and 
instead produces the EPS or TIFF directly from the object in the document ± see 
Draw's source code).

- copyToPasteboard:(Pasteboard *)pboard at:(NXSelection *)selection
cheapCopyAllowed:(BOOL)flag 

{
        /* ...copy new data into pboard... */
}

The update continues as the new data is transferred into the destination document.    
The document's DataLink Manager asks its delegate to paste the contents of the 
Pasteboard previously set up by the source, passing a Selection to indicate the 
location.

- pasteFrom:(Pasteboard *)pboard at:(NXSelection *)selection 
{
        /* ...paste new data from pboard... */
}

If the link was created to a file instead of via the Pasteboard, then a source 
application is not involved, and the delegate of the destination is simply told to import 
new data from that file.



- importFile:(const char *)filename at:(NXSelection *)selection 
{
        /* ...import new data from file... */
}

Copying and Pasting Data Containing Object Links

What happens if the user copies some data that is already linked?

When copying data between applications, since none of the standard Pasteboard 
types are rich enough to describe what components are linked and how they can be 
updated, links are usually not transferred.    For example, imagine a user creates a 
graph in a charting application and pastes it, with linking, into Draw for annotation.    
The user then scales the whole graph down, and adds some titles and call-outs.    He 
then selects the entire result in Draw, and does a "Copy".

1) If he then goes to Edit and does a "Paste", an EPS representation of the data will 
be pasted into the Edit document, but there will be no link made in the Edit 
document.    Changes to the chart will be propagated to the Draw document, but 
the user will have to manually re-copy the data into Edit to have the new chart 
appear in Edit.

2) If the user does a "Paste and Link", a link will be made from Edit to Draw.    
Changes in the graph will propagate to Draw, and these changes will then 
propagate to Edit.    Note that the linking from the Edit document to the graph 



must go through Draw, because only Draw knows how to scale the graph and add 
its call-outs to create the final illustration.

When copying data within a single application, representations of the data that are 
richer than the standard Pasteboard types are usually transferred.    This is also the 
case when copying linked items within an application.    In this case, links should be 
preserved.    For example, imagine a user has some RTF in Edit containing a linked 
illustration from Draw.    She selects a range of text that includes the graphic.

3) If she then goes to another Edit document, or a different place in the same 
document, and does a "Paste", a copy of the text and the graphic is pasted, and 
the new graphic is still linked.    This behavior also implies that a linked graphic 
can be cut from one part of a document and pasted into another part without the 
graphic becoming non-linked.

4) If she does a "Paste and Link", a link is made to the material that was copied.    In 
this case the "Paste and Link" must be done in a different document than the copy 
(circular links are not allowed).    Doing "Paste and Link" always creates a new link 
to the place where the last "Copy" was done.    (This example is actually fictitious 
since Edit does not support being a link source, so it cannot be linked to.)

To implement case 3) above, if an application is copying data that contains linked 
items, it should message the DataLink Manager to write the link data for the 
document to the Pasteboard along with the private data it normally copies.    It should 
not try to write the DataLinks themselves along with its private data.    When the 



private data is pasted, this link information will be used to create new links in the 
pasted data.

[myLinkManager writeLinksToPasteboard:pboard];

When the user does a "Paste" and the private data type is being inserted into the 
destination, as the paster encounters the previously linked items embedded in the 
private data it asks its DataLink Manager to incorporate each incoming link from the 
pasteboard into the receiving document.    At this point, a DataLink is created and 
returned.

Pasteboard *pboard;
NXDataLink *newLink;
NXSelection *oldDestSel;
NXSelection *newDestSel;

pboard = [Pasteboard new];

/* while pasting private data from board, the following is done
      for each linked item encountered in the data being pasted
*/

oldDestSel = /* the selection for the link in the old document */;
newDestSel = /* a selection for the newly pasted data */
newLink = [myLinkManager addLinkPreviouslyAt:oldDestSel
                                                          fromPasteboard:pboard at:newDestSel];
if (newLink) {
        /* newDestSel is handed off to Link Manager, no need to free */
        [oldDestSel free];
} else {
        /* paste fails */
        [newDestSel free];



        [oldDestSel free];
}

Keeping the DataLink Manager Informed

In order for the DataLink Manager to keep linked data up to date, it must be kept 
apprised of the state of the document.    The delegate fulfills this duty by sending the 
DataLink Manager messages when various commands are applied to the document, 
such as "Save", "Save As", "Save To", "Revert to Saved" and "Close".    The delegate 
also sends a message to the DataLink Manager whenever any part of the document 
is edited.    The messages are

- documentSaved;
- documentReverted;
- documentSavedAs:(const char *)path;
- documentSavedTo:(const char *)path;
- documentClosed;
- documentEdited;

Learning that the Document's Link Data has been Edited

Since the data kept for Object Links is part of the destination document,    the 
document should be considered edited when this information is changed.    The link 
data is edited when the user changes the update mode of a link, or when the 
information used to find the source files of links is changed.    The delegate should 
mark the document as edited in its implementation of the method



- dataLinkManagerDidEditLinks:(NXDataLinkManager *)sender;

Creating Selections

In order for an application's documents to be sources of linked data, it must be able 
to produce Selection objects which represent parts of a document.    A Selection 
contains an application determined array of bytes of any length (the Selection's 
"description").    Selections are persistent, immutable references.    It is desirable that 
Selections be maintainable without having to store state in the document to whose 
parts they refer.    This allows users to link to documents which they have permission 
to read but not modify.

For example, in a drawing program, each figure created in a document could be 
assigned an incrementing integer.    A given selection of objects would then be 
represented as the list of their integers.    Or if the user selects an area of the 
illustration, the rectangle selected would represent the selection.    It is common to 
link to the entire contents of a document (e.g., a whole graph linked into a report, or a 
whole text file linked into a page layout).    In this case, a special selection can 
created that means "the same selection that results from the user performing 'Select 
All'" by using the allSelection factory method of NXSelection.    All these types of 
Selections will hold their meaning even if the illustration is edited, and do not require 
writing to the source document.

It is more difficult some applications to produce Selections that can withstand edits to 



the document while still not writing to the document.    For example, linking to an 
arbitrary range of text usually requires that the range is recorded with the document, 
so that subsequent edits can keep it current.    In some applications, it may be 
possible to link to certain selections only if the document can be modified, while 
simpler selections do not require saving state in the document.    For example, it 
should be possible to link to the entire contents of a text file without having to record 
state in the document.    Even linking to whole paragraphs should also be possible, 
since they could each be given a unique ID.

When an application is about to generate a Selection for which it will need to store 
state in the document to maintain the Selection, it should be sure it has permission to 
write to the document.

If an application needs to store state in its document when it generates a selection, 
there is also an issue of when this state is reaped.    If an application is generating 
this state on every "Copy" command, most of this information will become garbage 
because creating a link is much rarer than simply pasting data.    To find out whether 
the link put in the Pasteboard is actually used, the app can implement the method 
startTrackingLink: to find out when a link is actually added to a destination 
document (see "Update Modes for Object Links", below).    The application can also 
be notified when it loses ownership of the Pasteboard by having the owner declared 
to the Pasteboard implement the method pasteboardChangedOwner:.    At this 
point, it can know not to retain the state it kept in the document for that link.    Once 
the link is completed, and the selection state is committed to the source document, 
there is currently no way to know a safe time to reap this state, because destinations 



of this link can be copied and stored on removable media.

Applications that are both link sources and destinations will sometimes use different 
types of Selection descriptions in these scenarios.    Since a user's selection may be 
quite complex, but the destination of a link is usually a single graphic, source 
Selections are often more complex.    One important difference is that the API 
requires an application to resolve source Selections (e.g., finding the source data 
during an update), but never to exactly regenerate them.    There may be more than 
one Selection that validly refers to a given user selection.    On the other hand, the 
API does require that an application regenerate destination Selections.    This is used 
when previously linked data is being pasted to refer to the links in the copying 
document.    Destination Selections are also used as the keys for finding a particular 
link in a destination document.    For example, when a linked item is deleted, the 
DataLink Manager's delegate must break that link, and it looks up that link by its 
destination Selection.

Sometimes if an application uses different strategies for Selections descriptions, one 
of the first bytes can be used to indicate the type of Selection.    This byte can also be 
used for versioning.

Selection descriptions should also be architecture independent.    One way to do this 
is to use an ASCII string.    Another is to use the the first byte to indicate the byte-sex 
of the data.



Storing Object Link Information

Information about Object Links persists only in the destination document.    This 
allows read-only documents to be linked to.    How does the DataLink Manager store 
this information along with the document?

Documents that hold links to other documents are required to be file packages (i.e., 
the document is a directory instead of a single file).    The DataLink Manager is then 
able to store its information in a file within the package without interfering with the 
storage of the rest of the document.    This solution also has the advantage that the 
system can see what links a document has without having to launch the application 
to parse this information out of its private document format.

Update Modes for Object Links

Object Links have three different update modes, which determine how often a link is 
updated.    In manual mode, links are updated only when the user explicitly requests 
an update.    In when-source-saved mode, links are updated when the system 
determines that the source has changed since the last update.    Such updates can 
occur when documents are opened or saved.    In continuous mode, links are 
updated whenever the source data is changed.    The update mode of a link can be 
set by the user in the Link Inspector.    The initial mode of a new link is controlled by 
the default "NXDataLinkUpdateMode", which may be set globally for all applications 
or specifically for a given application.



A DataLink Manager delegate must do a little extra work to support continuous 
updating; otherwise this option will not be available to the user.    The delegate must 
be able to tell the DataLink Manager whenever the sources of links are edited.    It 
must first respond YES to the message

- (BOOL)dataLinkManagerTracksLinksIndividually;

How does it know what parts of its document it should be tracking as sources of 
links?    As the DataLink Manager for the source document learns of dependant 
documents that are currently open, it learns of selections within the source document 
that are linked to.    The delegate can be notified as these associations are made by 
implementing

- dataLinkManager:(NXDataLinkManager *)sender
        startTrackingLink:(NXDataLink *)link;
- dataLinkManager:(NXDataLinkManager *)sender
        stopTrackingLink:(NXDataLink *)link;

The delegate asks these links for their source selection, and then tracks changes to 
these selections.    When one of these pieces of the document is edited, it messages 
the link corresponding to that selection.

[link sourceEdited];                      /* after link's source data is edited */

These messages drive the continuous updates.    Implementing this fine grained 
tracking of changes also allows the DataLink Manager to take some optimizations 



when updating automatic links during a save of the source document, since it knows 
specifically which dependants need to be updated.

Link Buttons

Link Buttons are diamond shaped buttons that take the user to a place in another 
document when clicked.    They are used in the Help System and Object Links.

The user creates a Link Button by starting in the source document and doing a 
"Copy".    In the destination, she then chooses "Paste Link Button".    The 
destination's implementation is similar to that of "Paste and Link", except simpler 
since no data is transferred with Link Buttons.

Pasteboard *pboard;
NXDataLink *newLink;
NXSelection *destSel;

pboard = [Pasteboard new];
newLink = [[NXDataLink alloc] initFromPasteboard:pboard];
destSel = /* a selection for the pasted data */
if ([myLinkManager addLinkAsMarker:newLink at:destSel]) {
        /* destSel is handed off to Link Manager, no need to free it */
        /* import the Link Button image, redisplay doc */
} else {
        /* link failed to be added, Link Manager puts up an Alert */
        [newLink free];
        [destSel free];
}



There are named NXImages for the Link Button ("NXLinkButton") and the highlighted 
Link Button ("NXLinkButtonH").    By default these images are about 12 units high.    If 
you wish to use larger buttons, or if your application allows the user to scale them, 
you may create larger images by first copying the named NXImage and then 
changing your copy's size.    Don't try to scale the named NXImage, since other 
objects in the system will be affected.    Draw demonstrates this in the source file 
Image.m.    (Note: In the 3.0 Beta Release, Draw has some vestigial tiff images for 
links in its project, which it does not even use in its code.    Be sure to use the named 
images for Link Buttons provided by the AppKit).

When the user clicks on a link button, applications should track the mouse as they 
would for any button, so the user can move the mouse in and out of the button and 
see feedback in the way the button is highlighted.    It is acceptable to track the 
rectangle enclosing the button instead of the diamond shape itself.    For Link Buttons 
in a text streams, this means that clicking in a Link Button and dragging should not 
initiate text selection tracking.    For Link Buttons in drawing applications, clicking one 
the button and moving may collide with the gesture used to move the Link Button 
graphic.    We recommend that you treat the button as a button if it is not a selected 
graphic, and treat it as a normal graphic if it is selected.    In addition, if the graphic is 
"locked", then it can always be treated as a button (thus authors can lock the Link 
Buttons so they function unambiguously for their end users).    Draw demonstrates 
this behavior.

Showing Destination Object Links



Applications that serve as link destinations should allow the user to see which items 
are links.    The DataLink Manager delegate should implement the method

- dataLinkManagerRedrawLinkOutlines:(NXDataLinkManager *)sender;

When it receives this method, it should redraw the linked items currently in view.    
Whenever linked items are drawn, they should ask their DataLink Manager whether 
links are currently being show with the method

- (BOOL)areLinkOutlinesVisible;

If links are visible, they should be drawn with link outlining, using the C function

void NXFrameLinkRect(const NXRect *aRect, BOOL isDestination);

This function draws a distinctive link outline just outside the provided rectangle.    For 
destination links isDestination should always be YES.    For erasure or other 
purposes, the thickness of this outline can be found be calling 
NXLinkFrameThickness().

Do not draw link outlines around Link Buttons.    They are already clearly identifiable 
as links, and the border around them is superfluous.

Showing Source Object Links



In applications that serve as link sources, the DataLink Manager delegate should 
implement two simple methods to allow the Open Source command to function 
properly.

- windowForSelection:(NXSelection *)selection;
- showSelection:(NXSelection *)selection;

The first of these simple returns the Window object that is displaying the given 
selection.    Since most documents only have one window, this should be trivial for 
the delegate to implement.    The second method is used during open source to show 
the user the source of the link.    This method should scroll into view the data 
references by the given selection.    It may also draw link borders around the source 
data using NXFrameLinkRect() with isDestination passed as NO.

The Link Inspector

The Link Inspector lets the user perform a few basic operations on the Object Links 
in a document.    Since linking state is only stored in the destination document, this 
panel is only available to inspect links within the destination application.    The panel 
allows the user to manually update a link, open the source of a link, break a link (i.e., 
prevent any future updates), break all links and set the update mode of a link.

The    menu item that brings up the panel should send the 
orderFrontDataLinkPanel: message to NXApp.



Similar to the Font Panel, the DataLink Panel must track the user's selection as she 
selects data that is linked or contains links.    It is the application's responsibility to 
send the panel a message as the selection changes.    Be sure to keep the panel up 
to date when documents are opened, become key and are closed.    Since this state 
needs to be tracked even before the panel is created, these messages can be sent 
to the factory as well as instances of the panel.

[NXDataLinkPanel setLink:currentlySelectedLink
        andManager:myLinkManager
        isMultiple:flag];

Breaking and Deleting Object Links

When the user deletes a linked item, the DataLink Manager's delegate should inform 
the manager that the link is no longer part of the document.    It can do this by simply 
sending the appropriate DataLink the break method.    After the link is no longer part 
of the destination DataLink Manager, it may be freed.

NXDataLink *linkToBreak;
NXSelection *destSel;

destSel = /* a selection for the data begin deleted */
linkToBreak = [myLinkManager findDestinationLinkWithSelection:destSel];
if (linkToBreak) {
        [linkToBreak break];
        [linkToBreak free];
}



When a link is broken, the DataLink Manager sends its delegate the message

- dataLinkManager:(NXDataLinkManager *)sender
        didBreakLink:(NXDataLink *)link;

The delegate will probably wish to note that the graphic in question is no longer a 
linked item, and redraw without link borders if links are being shown.    If the link 
transfers no data (i.e., its a Link Button), the button should be deleted, since it has no 
reason to exist as a broken link.

Publishing an Object Link

Sometimes it is convenient for users to be able to save an Object Link in the file 
system, instead of moving the link between documents via the Pasteboard.    For 
example, there may be a specific picture or range of spreadsheet cells that a 
document owner may want others to link to.    The user does this with the "Publish 
Selection" command.      The DataLink class' saveLinkIn: method supports this 
feature.

NXDataLink *newLink;
NXSelection *srcSel;
char *directoryName;        /* the directory of the doc we are publishing from */
const char * const *lTypes;
/* data types we can provide later for the link */
int numLTypes;



srcSel = /* a selection for the current selection */
/* srcSel is handed off to the link, no need to free it */
newLink = [[NXDataLink alloc]
        initLinkedToSourceSelection:srcSel
        managedBy:myDocsLinkManager
        supportingTypes:lTypes count:numLTypes];
[newLink saveLinkIn:directoryName];
[newLink free];

On the destination side, the link is imported by the user by dragging it into the 
destination document.    The destination can recognize a published link being 
imported by the ".objlink" suffix.    Handling a published link is very similar to 
implementing "Paste and Link".    The destination application simply instantiates a 
DataLink from the file, and adds it to its DataLink Manager.

char *filename;                    /* name of file being imported */
NXDataLink *newLink;
NXSelection *destSel;

newLink = [[NXDataLink alloc] initFromFile: filename];
destSel = /* a selection for the pasted data */
if ([myLinkManager addLink:newLink at:destSel]) {
        /* destSel is handed off to Link Manager, no need to free it */
        [newLink update];        /* get initial copy of the data */
} else {
        /* link failed to be added, Link Manager puts up an Alert */
        [newLink free];
        [destSel free];
}

 

Object Links Menu Items



The recommended menu structure for Object Links starts a submenu of the "Edit" 
menu titled "Link".    This item should come immediately after the "Paste" command 
and any variants of "Paste".    The items in the "Link" menu should be, in order,

        Paste and Link
        Paste Link Button
        Publish Selection...
        Show Links
        Link Inspector...

"Paste and Link" has an optional command key equivalent of "V".    Additional menu 
items may be added after "Publish Selection...".    "Show Links" should toggle to 
"Hide Links" when links are being shown already for the document of the key 
window.    All these menu items and their behavior can be seen in Draw.

Control double-clicking on a linked item is the recommended accelerator for doing an 
"Open Source" on that link.    This is implemented by looking up the DataLink for that 
link and sending it the openSource message.

Proper Launch Behavior

When an application is launched to open the Source of an Object Link it is not 
appropriate for the application to create a new document, as it might otherwise do on 



launch.    The application may detect this case by checking for the NXServiceLaunch 
default (which is also set when the app is launched to provide a service).    Often this 
check is made in the appDidInit: method of NXApp's delegate.

if (!NXGetDefaultValue([self appName], "NXServiceLaunch"))
        /* make a new document on launch */

Choices when Control-Dragging files

When the user control-drags a file into a document window, there are three different 
options available to the application:

1) Import the file's data, and create an Object Link to that file (this is only possible of 
the file's data is of a type that can be imported).

2) Show a Workspace-style icon for the file, which serves as a navigational link to the 
file.

3)    Show a Link Button, which serves as a navigational link to the file.

If your app supports two or more of these options, the recommended way to make 
this decision is to put up an Alert prompting the user to make a choice.    See Draw 
for an example of this behavior.    Note that Draw puts up this Alert in its 
concludeDragOperation: method, because the earlier drag methods are sensitive 
to timeouts and the user may take an arbitrarily long time to dismiss the Alert.


