Generic MakeMethodlnstance
For 16/32 Bit Applications

by John Chaytor

Aren’t you just sick of the way
that, whenever you want to

use that handy little routine that
someone else has written, the job
becomes ever more complicated
as they rely on callback routines
which, unfortunately, cannot ac-
ceptan object method as a parame-
ter? Well | am! The routines were
probably written well before
Delphi made an appearance on the
scene, so they know nothing of the
calling conventions required for
Delphi methods.

| faced such a problem when,
after creating various classes, |
needed to use some of the vendor’s
utility tools to maintain my data-
bases. Unfortunately, all the rou-
tines | needed to use relied heavily
on callback functions. Also, the
routines | would like to make use of
in the callback functions were hid-
den away well within objects which
made it difficult to get at them from
outside the class. After a few
choice words | decided to do a bit
of investigation.

What | needed was the ability to
call these routines from within the
class, passing a method for the
callback. | knew of the built-in
MakeObjectInstance function, which
allows you to have a method indi-
rectly called from Windows, so |
knew what | had in mind could be
done. It quickly became apparent
that the problem would be easier
to solve than | had thought.

So What Is The Problem?

The problem arises because Delphi
methods accept one more para-
meter than a standard Pascal
function.

Consider the following declara-
tion for a function which returns
the maximum integer of the two
passed:

function MaxInt(

A, B : Integer) : Integer;

42

This function expects two integer
parameters to be passed on the
stack. Now, if the same function
were a method of a class (Ok, soit’s
a silly example!):

function TMyClass.MaxInt(
A, B : Integer) : Integer;

it would expect three parameters
on the stack: the two integers as
before, plus a hidden parameter
which identifies the instance of the
object. This is the Self variable
which is available in all methods
even though you never see it
explicitly declared anywhere.

So, because a method expects an
additional parameter the above
two functions are not equivalent
and the compiler will stop you from
using one when the other type is
required. Even if you managed to
fool the compiler by typecasting or
some other underhand way you are
going to face grief sooner or later
as the stack will not be being proc-
essed correctly. Note that you
don’t need to worry about the re-
sult as it is passed back in a CPU
register, not on the stack.

The Solution

What we really need to do is insert
the Self parameter into the stack
whenever our function is called
from outside the class (yes, you
read that correctly, ‘insert’ is what
| said!). This will allow all methods
to work correctly as they will have
the correct value for the Self vari-
able. Going back to our two exam-
ples for the MaxInt function, Figure
1 shows the state of the stack at the
beginning of each function before
any code is executed.

As you can see, the Self parame-
ter for the MaxInt method has been
placed at the end of the explicitly
declared parameters but before
the return address (the stack
grows downwards, this is why Top

The Delphi Magazine

Standard Method
Method MaxInt
Bottom Bottom
of stack of stack
Value Value
of A of A
Value Value
of B of B
Return Self
Address Pointer
Return
Address
Top of Top of
Stack Stack
O Figure 1

of stack appears below Bottom of
stack in the figure). This illustrates
graphically why the method and
standard functions are incompat-
ible. It is the Se1f parameter which
will be inserted between the last
parameter (B in Figure 1) and the
return address, by manipulating
the stack.

General Overview

This section gives a general con-
ceptual overview of how the prob-
lem was tackled, as there are
differences in implementation be-
tween Delphi 1 and Delphi 2. The
general concept is that the routine
dynamically builds a small ma-
chine code routine which changes
the contents of the stack then calls
our original method. It is not re-
stricted by the number and types
of parameters passed.

For example, if this routine were
implemented for the MaxInt
method in Figure 1 the stack will be
changed from the Standard to the

Issue 18

Method version in this stub routine
prior to executing the method. So
the method never knows we were
involved.

We will create a new function
called MakeMethodInstance which
will do the following...

Firstly, we allocate just a few
bytes of memory to contain the
dynamically created stub code. We
only need 13 bytes for Delphi 2 and
19 bytes for Delphi 1. This memory
must remain at a fixed address
until the callback is no longer
active.

Then we ensure that the memory
is allowed to be executed. When
you allocate memory it is normally
used for data. Due to this, Windows
will stop this memory from being
executed as a program. If you at-
temptthisviaacall or jump instruc-
tion you will get a GPF. However,
this is exactly what we need to do
so we use the facilities of the oper-
ating system to ensure that the
memory we have just allocated is
marked as executable. When it is
later called Windows will be happy
that the memory has execute
privilege and won’t complain.

Next we must dynamically build
machine code instructions and
place them in memory. This is what
the code is trying to achieve:

0 Listing 1

type
PJumpBlock = ATJumpBlock;
TJumpBlock = packed record

POP_EAX_OpCode: Byte;
Push_Immed_OpCode: Byte;
Self_Value: Pointer;
PUSH_EAX_OpCode: Byte;
Jmp_OpCode: Byte;
Method_Addr: Pointer;
DummyAddr: Byte;

end;

function MakeMethodInstance(Code,Data:

begin

O Remove the return address off
the stack and store it.

0O Put the object instance (Self)
variable onto the stack.

O Put the return address back on
the stack.

0O Jump to the original method
entry point.

Luckily, due the fact that the Self

parameter is after the explicitly de-

clared parameters, the routine is

not dependant upon the number or

types of parameters. It will work for

any method.

To make this easier to implement
and understand | have created re-
cord structures for both implemen-
tations then built the machine code
by populating the record structure
with the values which represent
the machine code instructions and
parameters. | assure you that this
will be easy to understand once
you see the code!

Finally we return the address
back to the caller. After we have
allocated the memory, ensured
that it is executable and built the
required machine code, we pass
the address of this memory back to
the caller. This address should
then be passed to the callback
routine. When this is called from
the external program it will execute
the machine code we have just

Pointer): Pointer;

Result := VirtualAlloc(nil, sizeof(TJumpBlock),

MEM_COMMIT, PAGE_EXECUTE_READWRITE);

if Result <> nil then

with PJumpBlock(Result)” do begin

$58; { POP Return address into EAX register }

$68; { PUSH DWORD following this instruction }
Data; { Set DWORD to object instance address }

$50; { Push the return address back on stack }
$E9; { JIMP to relative offset following this opcode }
Pointer(LongInt(Code)-LongInt(@DummyAddr));

POP_EAX_OpCode
Push_Immed_0OpCode
Self_Value
PUSH_EAX_OpCode
Jmp_OpCode
Method_Addr
end;
end;

procedure FreeMethodInstance(Instance: Pointer);

begin
if Instance <> nil then

VirtualFree(Instance,0,MEM_DECOMMIT) ;

end;

February 1997

The Delphi Magazine

created. This is why the memory
must remain at a fixed position as
long as the callback is active.
When the callback is no longer
required we should call Free-
MethodInstance to free up all the
resources which were allocated by
MakeMethodInstance.

32-Bit Implementation

Listing 1 shows the code specific to
the 32-bitimplementation. You can
see the first thing this method does
is allocate memory using the Vir-
tualAlloc API. Refer to the on-line
help for additional information on
this call. All we need to concern
ourselves with here is that the
memory allocated is of type
PAGE_EXECUTE_READWRITE. This me-
ans it can contain executable code.
We then populate the record struc-
ture with valid Intel machine code.
All the fields with the suffix OpCode
will be set to values which are ma-
chine code instructions, the others
are the parameters those instruc-
tions use (some OpCodes don’t have
any parameters). The comments
indicate what each step does.
Remember that, although you are
looking at a record structure, this
will be executed by the CPU.

If you don’t know (or don’t want
to know!) assembler don’t be too
concerned: all you need to know is
that the stack holds temporary
data (the last value added will be
the first removed), POP removes
data off the stack, PUSH puts data on
the stack and JMP jumps to the
specified address. From the com-
ments you should get a rough idea
of what is being done.

We will step through the 32-bit
version in detail to see how it
builds the machine code and how
each step affects the stack. The 16-
bit version follows exactly the
same principle so will not be
described in such detail. This dis-
cussion assumes we are referring
to the MaxInt function described
earlier (see Figure 1).

Building The Machine Code

Each field of the record structure
TJumpBlock is populated in turn to
create the machine code. The field
POP_EAX_OpCode is set to $58. When
the CPU executes this instruction it

43

will remove the DWORD off the top of
the stack (which is the caller’s re-
turn address) and put it in the EAX
register. The return address is no
longer on the stack after this in-
struction: B is now at the top of the
stack. The next field to be popu-
lated is Push_Immed_OpCode, which is
set to $68. When the CPU executes
thisinstruction it will take the DWORD
immediately following the instruc-
tion and place it on the stack. As
the field following Push_Immed_Op-
Code is Self_Value we need to set
thatto the objectinstance address.
This is why we pass Self to the
MakeMethodInstance function (as
the Data parameter). The value
passed is copied to the field
Self_value. Therefore, when the
CPU executes the $68 opcode Self
is placed on the stack. Now, at this
point Self is at the top of the stack.
All that remains to be done, as far
as the stack is concerned, is to put
the return address back on the
stack.

As the CPU knows that the $68
instruction is followed by a DWORD
parameter, the next instruction it
executes will be the contents of
PUSH_EAX_OpCode. This is set to $50.
When the CPU encounters this in-
struction it pushes the content of
the EAX register onto the stack. As
we had previously popped the
return address into this register, it
is placed back on the stack. At this
point, the stack has been con-
verted from the standard function
style to the method style (see
Figure 1). Now, the only problem
remaining is that we need to get the
CPU to start executing the code for
the original method. The field
Jmp_OpCode is the next instruction
that will be executed and is set to
$£9. This instruction causes the
CPU to start executing code at a
different address. To calculate the
value of that address it will take the
DWORD immediately following this in-
struction and start executing code
at that relative address (forwards
or backwards in memory). This is
where the DummyAddr field is used,
simply as a means of calculating
the relative offset of the method
entry point (the code parameter)
to the current CPU execution ad-
dress. As you can see from the

44

code in Listing 1, some simple
arithmetic is used to calculate the
relative offset and this is assigned
to the Method_Addr field. We have
now completed the creation of the
machine code stub. The memory
now contains a fully functional
piece of machine code which can
be called by callback functions.
When the callback is no longer
required FreeMethodInstance is
called which simply frees the
memory, calling VirtualFree.

Optimisation
Delphi 2 performs various optimi-
sation tricks, one of which is to

0 Listing 2

type

PJumpBlock = ATJumpBlock;

TJdumpBlock = packed record
POP_AX_OpCode: Byte;
POP_CX_OpCode: Byte;
Push_Seg_Immed_OpCode:
Self_Seg_Value: Word;
Push_0fs_Immed_OpCode:
Self_0fs_Value: Word;
PUSH_CX_OpCode: Byte;
PUSH_AX_OpCode: Byte;
Jmp_OpCode: Byte;
Method_Addr: Pointer;

Byte;

Byte;

pass up to three parameters in reg-
isters rather than on the stack. The
parameters are placed in the EAX,
EDX and ECX registers (in that order)
as required. For a method the rela-
tive position of the Se1f parameter
is dependent upon the calling con-
vention used.

If a method is declared with the
register keyword (it is by default if
you don’t specify pascal, cdecl or
stdcall) then the Self parameter is
optimised and processed before
the explicitly declared parameters
and is passed in the EAX register.
Up to two of the remaining explic-
itly declared parameters can be

{ Specific information needed for 16 bit segmented memory }

DataSelector: THandle;
CodeSelector: THandle;
end;

function MakeMethodInstance(Code,Data:

var
WrkHData,WrkHCode: THandle;
begin
WrkHData
Result := GloballLock(WrkHData);
if Result <> nil then
With PJumpBlock(Result)” do begin
POP_AX_OpCode := $58;
POP_CX_0OpCode := $59;
Push_Seg_Immed_OpCode
Self_Seg_Value
Push_Ofs_Immed_OpCode := $68;
Self_0fs_Value
PUSH_CX_OpCode
PUSH_AX_OpCode
Jmp_0OpCode
Method_Addr
WrkHCode
PtrRec(Result).Seg

$68;

Code;

Pointer): Pointer;

:= GlobalAlloc(HeapAllocFlags,SizeOf(TJumpBlock));

{ POP Return address ofs into EAX register }
{ POP Return address seg into ECX register }
{ PUSH Self segment value onto stack }
PtrRec(Data).Seg;

{ PUSH Self segment offset onto stack }
PtrRec(Data).0fs;

$51; { PUSH the CX register back onto the stack }
$50; { PUSH the AX register back onto the stack }
$EA; { JMP to the address following this opcode }

AllocDsToCSATias(PtrRec(Result).Seg);
:= WrkHCode;

{ Store the code and data selectors for FreeMethodInstance }

WrkHData;
WrkHCode;

DataSelector
CodeSelector
end;
end;

procedure FreeMethodInstance(Instance:

var
WrkHData,WrkHCode: THandle;
begin
if Instance <> nil then

With PJumpBlock(Instance)” do begin

WrkHData := DataSelector;
WrkHCode := CodeSelector;
GlobalUnlock(WrkHData) ;
GlobalFree(WrkHData) ;
FreeSelector(WrkHCode) ;
end;
end;

The Delphi Magazine

Pointer);

Issue 18

Number of parameters optimised

Processing involved

0

Copy Self value to EAX
JMP to original entry point

Copy EAX register to EDX
Copy Self value to EAX
JMP to original entry point

Copy EDX register to ECX
Copy EAX register to EDX
Copy Self value to EAX
JMP to original entry point

‘Insert’ ECX register into stack
Copy EDX register to ECX
Copy EAX register to EDX
Copy Self value to EAX

JMP to original entry point

0O Table 1

optimised into the EDX and ECX reg-
isters. This is incompatible with
the way MakeMethodInstance works.
Therefore, for MakeMethodInstance
to work, both the callback type
definition and the callback method
must specify the pascal keyword to
ensure that the parameters are
passed on the stack (see later for
details of an enhanced routine
which does cater for the register
calling convention).

16-Bit Implementation

Listing 2 shows the code specific to
the 16-bit implementation. You will
see that there are several changes,
which are all related to the specif-
ics of 16-bit memory management.
To allocate the memory in the 16-
bit version we call GlobalA11oc and
Globallock. This results in a piece
of memory which is in a fixed place
but without execute privilege.

To obtain execute privilege for
the memory we call AllocDsToC-
SAlias which accepts a selector for
adata segment and returns a differ-
ent selector to the same memory:
the difference being that the new
selector has execute privilege for
that memory. The segment value of
the result is then changed to this
‘execute enabled’ selector rather
than the original data selector re-
turned from the GlobalLock func-
tion. This ensures that the callback
address used has execute privilege
(if the original data selector were
used a GPF would be generated
even though the same block of
memory was being executed).

February 1997

Two extra fields have been
added to the TJumpBlock record
structure (DataSelector and Code-
Selector) to store the selector
handles which are required in
FreeMethodInstance.

If you look at the way the ma-
chine code is built up, each PUSH
and PoP has been done in two steps
as the addresses are manipulated
in WORD rather than DWORD values.
Also the jump instruction has been
changed to use the actual address
rather than a relative address.
However, the functionality of this
code is exactly the same as the
32-bit version.

De-allocating memory in the 16-
bit version of FreeMethodInstance
takes more steps due to the need
to free selector handles. Free-
MethodInstance first takes a copy of
the two selector values from the
dynamically allocated memory
then unlocks that memory (which
is now invalid: that is why we took
a copy of the selectors). It then
frees the two selectors to ensure
Windows resources are released.

Enhancements

For the 16-bit implementation,
MakeMethodInstance uses two selec-
tors each time it is called, as it
allocates a new block of memory.
An enhancement would be to allo-
cate a block of memory on the first
call and sub-allocate parts of it for
each new caller. This would reduce
the number of selectors used. Take
alook at the source for MakeObject-
Instance to see how this has been

The Delphi Magazine

done in that function. | didn’t add
it to this version of MakeMethodIn-
stance as it would complicate the
discussion. This same approach
could be taken for the 32-bit ver-
sion as VirtualAlloc will always
allocate at least 4Kb of memory.
This has been left as an exercise for
the reader...

| have created an enhanced ver-
sion of the routine called Make-
MethodInstance32Reg which caters
for the register calling convention
used in Delphi 2. This could be
used if you do not want to change
the source code (or cannot, if, for
example, the unit has been pre-
compiled) to use the pascal calling
convention. This function accepts
an additional parameter which is
the number of parameters opti-
mised into the registers. It then
changes the register values and
stack as required. Unfortunately,
there is no way to programmati-
cally determine how many parame-
ters have been optimised. You
should refer to Chapter 17 of the
Language Guide for guidance. This
value must be between 0 and 3.

Table 1 details the processing
performed in the stub code created
by MakeMethodInstance32Reg de-
pending upon the number of opti-
mised parameters. The basic
processing is that the Self variable
is placed in the EAX register after
the other optimised parameters
have been shifted to their new po-
sition (ie EAX is copied to EDX, EDX iS
copied to ECX and ECX is inserted in
the stack as required). Note that,
unless three parameters have been
optimised, the stack is not changed
in any way. The stub code simply
changes register values then jumps
to the original method entry point.
If three parameters have been opti-
mised then the stack does needs to
be changed.

Demo Application

A demonstration project is in-
cluded on this month’s disk, called
MAKEMI.DPR, which can be com-
piled in Delphi 1 or 2. It consists of
four files. MAKEMIU.PAS/DFM is
the main form, MAKEMIC.PAS
contains the MakeMethodInstance,
MakeMethodInstance32Reg and Free-
MethodInstance functions and the

45

i MakeMethodinstance demo E

0 Figure 2

—Directary detail

Directany: |E:MWINNT4EIEI

2BBcolor bmp [a] Size; 19934
aDF=. BAK. [a] Size: 854
Adfe.ini [a] Size: 1758
AMMTOOLS.IMI [a] Size: 1636
arcade.bmp [a] Size: 530
arches. bmp [a] Size: 10358
argyle.brp [a] Size: 630
ASYM . BAK [a] Size: 1080
azym.ini [a] Size: 1198

[V ReadOnly [Hidden
¥ Sustem W Archive

Stat | Stat R1| StatR2]

=

~

[~ Directary

Cancel

{ From DIRLIST.PAS }
type

{ TScanDirCallBack is defined with the pascal calling convention for
Win32. The 16 bit version does not specify this keyword as it is

invalid in that environment and al
{$IFNDEF WIN32}

1 parameters are passed on the stack }

TScanDirCallBack = function(CurrentFile: string; Attr: Byte): Boolean;

{$ELSE}
TScanDirCallBack =

function(CurrentFile: string; Attr: Byte): Boolean; pascal;

{ From MAKEMIU.PAS }

{ FCallBack is declared as: }
FCall1Back: TScanDirCallBack;

{ The Start button event procedure contains: }

MakeMethodInstance(@TForml.ScanDirCall
ScanDir(BaseDirectory.Text,FCallBack);
FreeMethodInstance(@FCal1Back);

Back,Self);

{ The callback method is declared as follows: }

{$IFNDEF WIN32}

function TForml.ScanDirCallBack(CurrentFile: string; Attr: Byte): Boolean;

{$ELSE}

function TForml.ScanDirCallBack(CurrentFile: string; Attr: Byte):

Boolean; pascal;
{$ENDIF}

0 Listing 3

file DIRLIST.PAS contains the func-
tions which call the callback rou-
tines. Figure 2 shows the form
displayed in the 32-bit version (the
16-bit version will not have the
Start R1, Start R2 and Start R3
buttons).

Whenyou click the Start buttons
a function called ScanDir is called
which simply passes all files in the
specified directory to the supplied
callback function in turn. The call-
back function can return True if it
wishes the ScanDir function to stop

46

processing. Listing 3 shows the
important pieces of code.
Referring to Listing 3 you can see
that the only difference in the
TScanDirCallBack procedure type
declaration between Win32 and
Win16 is that the former has the
pascal keyword. This ensures that
both pass all parameters on the
stack which, you may recall, is a
requirement of MakeMethodInstance.
You should also note that the
actual declaration for the callback
method is defined in the same way.

The Delphi Magazine

In the event procedure, Make-
MethodInstance is called passing
the method address and the object
instance: this is stored in FCall-
Back. Then ScanDir is called,
passing the specified directory and
the address of the stub code
created by MakeMethodInstance.
When ScanDir processes each file
in the directory ScanDirCallBack
will be called for each: this function
can return True to stop ScanDir
from processing any more files (an
artificial delay has been built into
the callback method to give you a
chance to do this before ScanDir
ends). When ScanDir ends the code
in the event procedure calls Free-
MethodInstance to free Windows
resources.

In Delphi 2 the StartR1, ...2,
...3 buttons perform the same
function as the Start button. The
only difference is that the callback
functions have been changed for
each one to ensure that parame-
ters are optimised into registers
(one for Start R1, two for Start R2
and three for Start R3). In these
cases MakeMethodInstance32Reg is
called instead of MakeMethodIn-
stance. By examining the code you
can see that the procedure declara-
tion for each has been changed
accordingly.

Conclusions

I hope that you have found this
article both informative and useful.
You should certainly be able to use
the functions provided (even if you
don’t understand a word of how it
is done!) by referring to the demon-
stration application provided.

John Chaytor is a freelance pro-
grammer who lives and works in
Brighton, UK, and can be con-
tacted via CompuServe as
100265,3642

Issue 18

	So What Is The Problem?
	The Solution
	General Overview
	32-Bit Implementation
	Optimisation
	16-Bit Implementation
	Enhancements
	Demo Application
	Conclusions

