
DataRescue sa/nv

IDA Pro

An Advanced Interactive Multi-Processor Disassembler
by Ilfak Guilfanov

IDA Pro 3.8x
QuickStart Guide

DataRescue sa/nv
45 quai de la Dérivation

4020 Liège, Belgium
tel : +32-4-3446510
fax : +32-4-3446514

www.datarescue.com/ida.htm

Copyright Notice

IDA Pro and its manual are proprietary copyrighted material and no part of either may be
reproduced, transmitted, stored or translated without the express prior written permission
of DataRescue sa/nv

The software described in this manual is provided by DataRescue sa/nv under a DataRescue
license agreement. It can be used only in accordance with the terms of this agreement.

Information in this manual may change without notice and does not represent a commitment on
the part of DataRescue sa/nv.

Trademarks

IBM, PC, AT, XT, OS/2 and Warp are registered trademarks of International Business
Machines Corporation.

386, Pentium, Pentium Pro are registered trademarks of Intel Corporation

Windows, Windows 95, Windows 98, Windows NT, MS-DOS are trademarks of MicroSoft Corporation

Netware is a registered trademark of Novell Corporation.

Other trademarks are registered trademarks of their respective companies.

NOTE

IDA Pro incorporates compression code by the Info-ZIP group. There are no extra charges or
costs due to the use of this code, and the original compression sources are freely
available from CompuServe in the IBMPRO forum and by anonymous ftp from the Internet site
ftp.uu.net:/pub/archiving/zip. We will also, upon request, mail you the full sources on a
3.5" MSDOS-format diskette for the cost of mailing.

Edition

Summer 1999, rev 3.8x
© 1996-99 DataRescue sa/nv
Proudly Made in Europe

Published by

DataRescue sa/nv
45 Quai de la Dérivation
4020 Liège
Belgium
+32-4-3446510 (tel)
+32-4-3446514 (fax)

http://www.datarescue.com

A few words from the team

First of all, we would like to thank you for purchasing or considering the purchase of IDA Pro. If
you decide to buy IDA Pro, let us stress that we don't see this as an end, but rather as the beginning of a
relationship : our goal is not only to offer timely technical support but also to respond to your future needs.
That is why your feedback is so valuable to us : please fell free to contact us; IDA Pro's users have made it
what it is now.

Based on your feedback, we continue to improve IDA Pro. Be sure to regularly check our web
pages for enhancements, corrections and new releases. All IDA Pro customers are entitled to free updates
over the Internet for one year.

Writing a manual for IDA Pro is probably an impossible task : disassembler users are highly skilled
specialists, IDA itself is hard to use, counterintuitive at times and, difficult to master. In addition, IDA Pro is
so versatile that what applies to Java class disassemblies hardly matters for segmented 80x86 architectures
and vice-versa. No matter how hard we try, the perfect manual is out of our reach. It is unlikely that we
will ever be able to cover all your questions in advance but we are here to help you. Therefore, this startup
guide does not aim to be an exhaustive introduction to IDA Pro. Rather, our hope is that it will expose the
general philosophy behind its operation and help you get a faster start with IDA Pro.

Ilfak Guilfanov, Main Developer
Pierre Vandevenne, Manager

Screen Resolution
IDA Pro also runs on non-Windows platforms, that is why it is still a character mode application. The
default 80x25 text screen is probably not the environment you want to work in. When it first starts, IDA
Pro will offer you a choice of available resolutions.

If you run the DOS32 version of IDA Pro (IDAX), the program will adapt to any active resolution,
provided it is within bounds accepted by your video card. For further configuration, you may want to
examine the IDA.CFG configuration file and customize the workspace resolution to your liking.

Load this file in any text editor and search for SCREEN_MODE. You'll find something like this, where

#ifdef __MSDOS__

SCREEN_MODE = 0 // Screen mode to use
 // 0 - don't change screen mode
 // DOS: AL for INT 10
#else

SCREEN_MODE = 0x8040 // Screen mode to use
 // high byte/cols, low byte/rows //
i.e. 0x5020 is 80cols, 32rows

which we suggest you adapt to your need.

Processors, Processors
When IDA Pro loads a binary image, it will try to determine the format of the image and the

processor that was targeted. If it cannot automatically make this determination, you will see the following
dialog

You can then select the appropriate processor for your project. Some of the processors we support need
to be specified explicitly, for example if you want to force the endianness (ARM) or use specific processor
extensions such as MMX or 3D-Now, you will have to select them manually.

Often, IDA Pro will auto detect the processor type (Intel 386 in protected mode for example), the
file type (Portable Executable for example) and will use the information collected from the header of the file
to initiate auto-analysis. This will start exploring the obvious execution paths in the target program.

Analysis Options
Analysis options can be defined initially from this menu.

The defaults are usually good for most purposes and will not be reviewed in details here.

Remember that all the IDA Pro analysis parameters can also be configured through the IDA Pro
configuration file and the application menus. It should be noted that the configuration file is probably the
best place to store settings which you frequently use.

Defining Code
Sometimes, either because the file has no specific entry point (a ROM for example) or because the

automatic analysis has not found an execution path, it will be necessary to help IDA Pro. This combination
of automatic analysis and human intervention is what allows IDA Pro to obtain results that the
non-interactive products cannot reach.

In the following situation, assume IDA Pro hasn’t recognized that this sequence of byte is actually a
meaningful code sequence. Move your cursor on the seg000:0b91 line and press C

seg000:0B9B db 0B0h ; _
seg000:0B9C db 90h ; É
seg000:0B9D db 26h ; &
seg000:0B9E db 88h ; ê
seg000:0B9F db 4 ;
seg000:0BA0 db 0BEh ; ¥
seg000:0BA1 db 1 ;
seg000:0BA2 db 0 ;
seg000:0BA3 db 26h ; &
seg000:0BA4 db 8Ah ; è
seg000:0BA5 db 4 ;
seg000:0BA6 db 3Ch ; <
seg000:0BA7 db 20h ;
seg000:0BA8 db 0C7h ; Ã
seg000:0BA9 db 6 ;
seg000:0BAA db 0Fh ;
seg000:0BAB db 5 ;
seg000:0BAC db 1 ;
seg000:0BAD db 0 ;
seg000:0BAE db 0F8h ; °
seg000:0BAF db 0Fh ;
seg000:0BB0 db 84h ; ä
seg000:0BB1 db 0C1h ; -
seg000:0BB2 db 0 ;

And IDA Pro converts this sequence to

seg000:0B9B mov al, 90h

seg000:0B9D mov es:[si], al
seg000:0BA0 mov si, 1
seg000:0BA3 mov al, es:[si]
seg000:0BA6 cmp al, 20h
seg000:0BA8 mov word_148_50F, 1
seg000:0BAE clc
seg000:0BAF jz loc_0_C74

IDA Pro will not always automatically recognize all the code in a given program : this situation is
perfectly normal. It is possible to influence how IDA Pro handles unrecognized code through the analysis
option configuration panel. The kernel analysis options have an impact on the auto-analysis IDA Pro
performs.

In most cases, the default options offer a good compromise between accuracy and convenience. If
IDA Pro identified code where it should not have, it may be a good idea to try deactivating the Make
final analysis pass option. In those situations, where some code is not identified because it is not located
in expected locations, Coagulate Data Segments may be useful. Remember that these analysis options
can also be defined through the configuration file and, in most cases, this is the best place to modify them.

** When the input program or binary has been encrypted or compressed, IDA Pro will not
be able to disassemble the part of the program that is not in clear text. In this situation, you have
to solutions - either write a decryptor in IDA C or use a file unpacker to pre-process the target
file.

Pressing ‘C’ in an undefined section restarts the IDA Pro code analyzer. All execution paths
starting from the newly defined code will be explored and analyzed. Sometimes, a simple manual
code definition will help IDA Pro discover dozens of execution paths. Note : this operation will not
adversely affect what you have already defined.

Defining Strings and Data
In this situation, IDA Pro failed to identify what is clearly an ASCII string. This misidentification

occurred because the string is not actually directly referenced by the program

dseg:0146 db 0Dh ;
dseg:0147 db 14h ;
dseg:0148 db 43h ; C
dseg:0149 db 61h ; a
dseg:0149 db 61h ; a
dseg:014A db 6Eh ; n
dseg:014B db 20h ;
dseg:014C db 6Eh ; n
dseg:014D db 6Fh ; o
dseg:014E db 74h ; t
dseg:014F db 20h ;
dseg:0150 db 6Fh ; o
dseg:0151 db 70h ; p
dseg:0152 db 65h ; e
dseg:0153 db 6Eh ; n
dseg:0154 db 20h ;
dseg:0155 db 66h ; f
dseg:0156 db 69h ; i
dseg:0157 db 6Ch ; l

dseg:0158 db 65h ; e

dseg:0159 db 20h ;
dseg:015A db 2Eh ; .
dseg:015B db 24h ; $

Move your cursor on the dseg:0148 line and press A. The string is now defined and an automatic
name has been generated. From now on, this name will be used by all past and future references to this
string, either the ones IDA Pro will discover or the ones you will tell IDA about.

dseg:0148 aCanNotOpenFile db 'Can not open file .$'

This string is $ terminated. IDA Pro usually handles most string types automatically. Special
situations are best handled through the ASCII Style dialog box.

The word at dseg:0146 is actually an attribute used when the string is displayed. Moving the cursor
on that line and pressing 'D' will eventually cycle through the 'db' and the 'dw' data type. Either one could
be the one you wish to define, depending on how the program actually handles those values. Had the next
word been undefined, dseg:0146 could eventually have been defined as a a 'dd'. You may also define a
structure.

Undefining Things
In this admittedly artificial example, a sequence of spaces has been wrongly converted to three dd's

and a meaningless sequence of instructions. (these conversions do not occur anymore in IDA Pro 3.82 and
up)

dseg:02B6 dd 20202020h
dseg:02BA dd 20202020h
dseg:02BE dd 20202020h
dseg:02C2 ; ---------------------------------
dseg:02C2 and [bx+si], ah
dseg:02C4 and [bx+si], ah
dseg:02C6 and [bx+si], ah
dseg:02C8 and [bx+si], ah
dseg:02CA and [bx+si], ah
dseg:02CC and [bx+si], ah
dseg:02CE and [bx+si], ah
dseg:02D0 and [bx+si], ah
dseg:02D2 and [bx+si], ah
dseg:02D4 and [bx+si], ah
dseg:02D6 and [bx+si], ah
dseg:02D8 and [bx+si], ah
dseg:02DA and [bx+si], ah
dseg:02DC and [bx+si], ah
dseg:02DE and [bx+si], ah
dseg:02E0 and [si], ah

It is not possible to redefine them immediately as an ASCII string. Incorrect definitions must be
undefined before new definitions are applied.

First move the cursor on dseg:02B6 and press 'U' to undefine all dd's in turn, then undefine the
stream of instructions. Now, the 'A' key can be used to redefine the stream of 20h as an ASCII string. By
now you are probably thinking that this is a bit slow. Isn't there a faster way ? You bet there is. Simply
move the cursor on the first line you want to undefine, press SHIFT and DOWN ARROW simultaneously
to mark the area to undefine and then press 'U'.

The Undefine command is your best friend. Although IDA Pro Is not likely to produce an output as
outrageous as our example, misdefinitions can happen, particularly if data is moved around at run-time and
references to some addresses are meaningless on the binary itself. Because one single change code
definition can change the whole disassembly, a typical undo is not practical in IDA Pro as it would force
IDA Pro to save the state of the entire disassembly, a time consuming operation.

Arrays
Arrays are a fairly obvious extension to the standard data types. Their definition is

straightforward and controlled by this dialog box that pops whenever you attempt to define an array.

Tip ! One of the most frequently asked question about array definition is : "How do I fit more items
on a line". Well, the answer is at the same time obvious and hard to find : you just increase the line length.
Consider these examples :

Now this

See the difference ? The Text Representation menu is the key to wider arrays !

Operands
IDA Pro has a wide array of options when it comes to operand, as shown in the following menu.

One interesting thing to know is that the block shortcut first encountered with the undefine command still
works. Define a block and convert "en-masse".

Using Structures
Soon, you will want to use IDA Pro more advanced features - for example structures. It is possible

to interactively define and manipulate structures in the disassembly. Consider this simple sample C
program:

#include <stdio.h>
struct client {
 char code;
 long id;
 char name[32];
 client *next;
};

void print_clients(client *ptr) {
 while (ptr != NULL) {
 printf("ID: %4ld Name: %-32s\n",ptr->id,ptr->name);
 ptr = ptr->next;
 }
}

Here is the disassembly without any structures defined, as IDA Pro automatically generates it:

@print_clients$qp6client proc near

ptr = word ptr 4

push bp
mov bp, sp
push si
mov si, [bp+ptr]
jmp short loc_1_32

loc_1_19: ; CODE XREF: print_clients(client *)+24j
mov ax, si
add ax, 5
push ax

push word ptr [si+3]
push word ptr [si+1]
mov ax, offset aId4ldName32s
push ax
call _printf
add sp, 8
mov si, [si+25h]

loc_1_32: ; CODE XREF: print_clients(client *)+7j
or si, si
jnz loc_1_19
pop si
pop bp
retn

@print_clients$qp6client endp

In order to use meaningful names instead of numbers, we open the structure view (View -
Structure) and press 'Ins' to define a new structure type. Structure members are then added with the 'D'
key for data and the 'A' key for ASCII strings. As we add new structure members, IDA Pro automatically
names them. Thereafter, you may change any member's name by pressing N.

client_t struc
code db ?
id dd ?
name db 32 dup(?)
next dw ?
client_t ends

Finally, the defined structure type can be used to specify the type of an instruction operand. (menu
Edit|Operand types|Struct offset).

@print_clients$qp6client proc near
ptr = word ptr 4

push bp
mov bp, sp
push si
mov si, [bp+ptr]
jmp short loc_1_32

loc_1_19: ; CODE XREF: print_clients(client *)+24j
mov ax, si
add ax, client_t.name
push ax
push word ptr [si+client_t.id+2]
push word ptr [si+client_t.id]
mov ax, offset aId4ldName32s
push ax
call _printf
add sp, 8
mov si, [si+client_t.next]

loc_1_32: ; CODE XREF: print_clients(client *)+7j
or si, si
jnz loc_1_19
pop si
pop bp
retn

@print_clients$qp6client endp

What about structures within structures ?

 Yes, it is possible. First, define each structure by itself. Then, from within the higher level
structure, use alt-Q to embed an instance of the member structure. Here is the result.

Enumerated Types
You can use IDA Pro to interactively define and manipulate enumerated types in the disassembly.

Consider this simple sample C program:

enum color_t {
 BLACK, /* dark colors */
 BLUE,
 GREEN,
 CYAN,
 RED,
 MAGENTA,
 BROWN,
 LIGHTGRAY,
 DARKGRAY, /* light colors */
 LIGHTBLUE,
 LIGHTGREEN,
 LIGHTCYAN,
 LIGHTRED,
 LIGHTMAGENTA,
 YELLOW,
 WHITE
};

enum day_t { MONDAY, TUESDAY, WEDNESDAY, THUSDAY, FRIDAY, SATURDAY, SUNDAY };

enum bool_t { FALSE, TRUE };

int is_suitable_color(day_t day,color_t color) {
 if ((day == SUNDAY || day == SATURDAY) && color == RED) return TRUE;
 if (color == BLACK || color == BLUE) return TRUE;
 return FALSE;

}

In order to use meaningful names instead of numbers, you simply have to open the enums window and
press insert to define a new enumerated type.

Stack Variables
Obviously the following disassembly could be improved : the parameter passing is far from evident,

we simply know that a certain number of bytes are passed to the function.

IDA Pro will automatically recognize the parameters passed on the stack. Don't you prefer this
representation ?

Just as about everything in IDA Pro, stack variables may be given meaningful names. Here is how
to do it. The stack variables of any function can be reached by pressing "CTRL-K" when the cursor is

located at any position in that function. The local stack window appears and the 'N' key can be used to
name stack variables. Try it an see for yourself !

.

Programming with IDC
In a typical disassembly, there are a lot of repetitive tasks that could be automated or special

situations that require an additional bit of control. IDA Pro offers IDC, a powerful internal C-Like
language. It is documented in the IDC.IDC files and several samples examples are provided with the
standard distribution. You may want to examine them carefully. Below is a real life practical example.

Using IDC to analyze encrypted code

This small tutorial demonstrates how to use IDC to decrypt part of a program during analysis. The
sample file is a portion of the Ripper virus.

The binary image of the virus is loaded into IDA and analysis is started at the entry point.

Obviously, the bytes right after the call don't make sense, but the call gives us a clue : it is a decryption
routine. What we need is a small IDC routine to mimic the decryption and get at the plain text bytes.

We create a small IDC program that mimics the decryption routine.

static decrypt(from, size, key) {
 auto i, x; // we define the variables
 for (i=0; i < size; i=i+1) {
 x = Byte(from); // fetch the byte
 x = (x^key); // decrypt it
 PatchByte(from,x); // put it back
 from = from + 1; // next byte
 }
}

We save this IDC routine into a file and press F2 to load it into IDA's interpreter.

Then, we press shift-F2 to call it with the appropriate values. Please note the linear address used for the
starting point. Pressing OK executes the statement.

Now that the bytes are decrypted

We move the cursor to offset 0x50 and press C to inform IDA that there is now code at that location.

And the code to allocate memory for the virus appears, along with a rather impolite message... We can
now resume analyzing the rest of the virus.

FLIRT
Fast Library Identification and Recognition Technology is another revolutionary IDA Pro

capability. This technology allows IDA Pro to automatically recognize calls to the standard libraries of a
long list of compilers. It makes the disassembly easier to read and saves your time. Who would want to
waste time disassembling long runs of code, only to discover that is was a sequence of calls to the standard

library functions ?

As you can see in the above screen capture, IDA Pro usually detects supported compilers
automatically. However, this identification is not always 100% successful, for example because the
application you are disassembling has been compiled with some specific version of a widespread compiler :
this is the case for small Microsoft Windows utilities such as clock.exe. One other situation where the
identification may fail is when compiler information has been stripped out of the target program, as it
happens with some viruses written in high-level languages. Finally, if the compiler is not supported,
recognition will fail.

If you suspect that the target program has been compiled with a supported compiler but FLIRT
does not kick in automatically, you can force the application of library identifications signatures. In the
example pictured on the following page - program compiled with Delphi 3 - FLIRT has not recognized the
compiler, as the signature view does not list any signature set as applied.

Pressing the INS key in the signature window displays the list of available signatures.

Applying the Delphi 3 Visual Component Library gives returns this result

1697 functions have been identified, resulting in a much more understandable disassembly. What if your
compiler is unsupported, you still may benefit from the FLIRT technology, at least if you have access to
your compiler libraries. By downloading our tools and generating your own FLIRT databases, you will be
able to attain the same high level of recognition that you get with the shipping defaults.

Processor SDK
A processor SDK exists. It is available for free to all of our existing customers. At this stage, it is

officially unsupported, although we do provide some support when we can. How difficult is it to create
your own processor module ? Well, frankly, it is not an easy task....

To be continued and expanded...

