
mpatrol reference card

The mpatrol library can read certain options at run-time from
an environment variable called MPATROL OPTIONS. This variable
must contain one or more valid option keywords from the list
below and must be no longer than 1024 characters in length.
If MPATROL OPTIONS is unset or empty then the default settings
will be used.
The LOGDIR, PROFDIR and TRACEDIR environment variables are
also read in order to determine where the log file, profiling out-
put file and tracing output file should go. Note that if they are
set then the default filenames for the log file, profiling output
file and tracing output file will also be changed.

Library behaviour

HELP Displays a quick-reference option summary.

PROGFILE=<string> Specifies an alternative filename with
which to locate the executable file containing the pro-
gram’s symbols.

CHECK=<unsigned range> Specifies a range of allocation indices
at which to check the integrity of free memory and over-
flow buffers.

EDIT Specifies that a text editor should be invoked to edit any
relevant source files that are associated with any warn-
ings or errors when they occur.

LIST Specifies that a context listing should be shown for any
relevant source files that are associated with any warn-
ings or errors when they occur.

DEFALIGN=<unsigned integer> Specifies the default alignment
for general-purpose memory allocations, which must be
a power of two.

NOPROTECT Specifies that the mpatrol library’s internal data
structures should not be made read-only after every
memory allocation, reallocation or deallocation.

SAFESIGNALS Instructs the library to save and replace certain
signal handlers during the execution of library code and
to restore them afterwards.

CHECKFORK Checks at every call to see if the process has been
forked in case new log, profiling and tracing output files
need to be started.

USEMMAP Specifies that the library should use mmap() instead of
sbrk() to allocate user memory on UNIX platforms.

Logging and tracing

LOGFILE=<string> Specifies an alternative file in which to place
all diagnostics from the mpatrol library.

LOGALLOCS Specifies that all memory allocations are to be
logged and sent to the log file.

LOGREALLOCS Specifies that all memory reallocations are to be
logged and sent to the log file.

LOGFREES Specifies that all memory deallocations are to be
logged and sent to the log file.

LOGMEMORY Specifies that all memory operations are to be
logged and sent to the log file.

LOGALL Equivalent to the LOGALLOCS, LOGREALLOCS, LOGFREES

and LOGMEMORY options specified together.

TRACE Specifies that all memory allocations are to be traced
and sent to the tracing output file.

TRACEFILE=<string> Specifies an alternative file in which to
place all memory allocation tracing information from the
mpatrol library.

LEAKTABLE Specifies that the leak table should be automatically
used and a leak table summary should be displayed at
the end of program execution.

SHOWFREE Specifies that a summary of all of the free memory
blocks should be displayed at the end of program execu-
tion.

SHOWFREED Specifies that a summary of all of the freed memory
allocations should be displayed at the end of program
execution.

SHOWUNFREED Specifies that a summary of all of the unfreed
memory allocations should be displayed at the end of
program execution.

SHOWMAP Specifies that a memory map of the entire heap should
be displayed at the end of program execution.

SHOWSYMBOLS Specifies that a summary of all of the function
symbols read from the program’s executable file should
be displayed at the end of program execution.

SHOWALL Equivalent to the SHOWFREE, SHOWFREED, SHOWUNFREED,
SHOWMAP and SHOWSYMBOLS options specified together.

USEDEBUG Specifies that any debugging information in the ex-
ecutable file should be used to obtain additional source-
level information.

General errors

CHECKALLOCS Checks that no attempt is made to allocate a
block of memory of size zero.

CHECKREALLOCS Checks that no attempt is made to reallocate
a NULL pointer or resize an existing block of memory to
size zero.

CHECKFREES Checks that no attempt is made to deallocate a
NULL pointer.

CHECKMEMORY Checks that no attempt is made to perform a
zero-length memory operation on a NULL pointer.

CHECKALL Equivalent to the CHECKALLOCS, CHECKREALLOCS,
CHECKFREES and CHECKMEMORY options specified together.

ALLOCBYTE=<unsigned integer> Specifies an 8-bit byte pattern
with which to prefill newly-allocated memory.

FREEBYTE=<unsigned integer> Specifies an 8-bit byte pattern
with which to prefill newly-freed memory.

NOFREE=<unsigned integer> Specifies that a number of
recently-freed memory allocations should be prevented
from being returned to the free memory pool.

PRESERVE Specifies that any reallocated or freed memory allo-
cations should preserve their original contents.

Overwrites and underwrites

OFLOWSIZE=<unsigned integer> Specifies the size in bytes to
use for all overflow buffers, which must be a power of
two.

OFLOWBYTE=<unsigned integer> Specifies an 8-bit byte pattern
with which to fill the overflow buffers of all memory al-
locations.

OFLOWWATCH Specifies that watch point areas should be used for
overflow buffers rather than filling with the overflow byte.

PAGEALLOC=<LOWER|UPPER> Specifies that each individual mem-
ory allocation should occupy at least one page of virtual
memory and should be placed at the lowest or highest
point within these pages.

ALLOWOFLOW Specifies that a warning rather than an error
should be produced if any memory operation function
overflows the boundaries of a memory allocation, and
that the operation should still be performed.

Using with a debugger

ALLOCSTOP=<unsigned integer> Specifies an allocation index
at which to stop the program when it is being allocated.

REALLOCSTOP=<unsigned integer> Specifies an allocation index
at which to stop the program when a memory allocation
is being reallocated.

FREESTOP=<unsigned integer> Specifies an allocation index at
which to stop the program when it is being freed.

Testing

LIMIT=<unsigned integer> Specifies the limit in bytes at which
all memory allocations should fail if the total allocated
memory should increase beyond this.

FAILFREQ=<unsigned integer> Specifies the frequency at
which all memory allocations will randomly fail.

FAILSEED=<unsigned integer> Specifies the random number
seed which will be used when determining which memory
allocations will randomly fail.

UNFREEDABORT=<unsigned integer> Specifies the minimum
number of unfreed allocations at which to abort the
program just before program termination.

Profiling

PROF Specifies that all memory allocations are to be profiled
and sent to the profiling output file.

PROFFILE=<string> Specifies an alternative file in which to
place all memory allocation profiling information from
the mpatrol library.

AUTOSAVE=<unsigned integer> Specifies the frequency at
which to periodically write the profiling data to the
profiling output file.

SMALLBOUND=<unsigned integer> Specifies the limit in bytes up
to which memory allocations should be classified as small
allocations for profiling purposes.

MEDIUMBOUND=<unsigned integer> Specifies the limit in bytes
up to which memory allocations should be classified as
medium allocations for profiling purposes.

LARGEBOUND=<unsigned integer> Specifies the limit in bytes up
to which memory allocations should be classified as large
allocations for profiling purposes.

All of the function definitions in mpatrol.h can be disabled
by defining the NDEBUG preprocessor macro, which is the same
macro used to control the behaviour of the assert() function.
If NDEBUG is defined then no macro redefinition of functions will
take place and all special mpatrol library functions will evaluate
to empty statements. The mpalloc.h header file will also be in-
cluded in this case. It is intended that the NDEBUG preprocessor
macro be defined in release builds.
The MP MALLOC() family of functions that are defined in
mpalloc.h are also defined in mpatrol.h when NDEBUG is not
defined. The mpatrol versions of these functions contain more
debugging information than the mpalloc versions do, but they
do not call the allocation failure handler when no more memory
is available (they cause the OUTMEM error message to be given
instead).
There may be problems during preprocessing when the pre-
processor macros defining the replacement C++ operators
in mpatrol.h are used. If this is the case then either the
MP NOCPLUSPLUS preprocessor macro can be defined to disable
all C++ support, or the MP NONEWDELETE preprocessor macro
can be defined to prevent the debugging versions of operator

new and operator delete from being used by default. The pre-
processor macros MP NEW, MP NEW NOTHROW and MP DELETE will
then have to be used instead.
On systems that support it, global functions (with C linkage)
in an executable file or shared library whose names begin with
mp init will be noted when the mpatrol library first starts

up and is reading the symbols. Such functions will then be

called as soon as the mpatrol library is initialised, which can be
useful if the initialisation occurs before main() is called. These
functions must accept no arguments and must return no value.
Similar behaviour exists for global functions whose names be-
gin with mp fini , except that such functions will be executed
when the mpatrol library terminates.

C dynamic memory allocation functions

malloc() Allocates memory.

calloc() Allocates zero-filled memory.

memalign() Allocates memory with a specified alignment.

valloc() Allocates page-aligned memory.

pvalloc() Allocates a number of pages.

alloca() Allocates temporary memory.

strdup() Duplicates a string.

strndup() Duplicates a string with a maximum length.

strsave() Duplicates a string.

strnsave() Duplicates a string with a maximum length.

strdupa() Duplicates a string.

strndupa() Duplicates a string with a maximum length.

realloc() Resizes memory.

reallocf() Resizes memory and frees on failure.

recalloc() Resizes memory allocated by calloc().

expand() Resizes memory but does not relocate it.

free() Frees memory.

cfree() Frees memory allocated by calloc().

dealloca() Explicitly frees temporary memory.

C dynamic memory extension functions

xmalloc() Allocates memory without failure.

xcalloc() Allocates zero-filled memory without failure.

xstrdup() Duplicates a string without failure.

xrealloc() Resizes memory without failure.

xfree() Frees memory.

C dynamic memory alternative functions

MP MALLOC() Allocates memory without failure.

MP CALLOC() Allocates zero-filled memory without failure.

MP STRDUP() Duplicates a string without failure.

MP REALLOC() Resizes memory without failure.

MP FREE() Frees memory.

MP FAILURE() Sets the allocation failure handler.

C++ dynamic memory allocation functions

operator new Allocates memory.

operator new[] Allocates memory for an array.

operator delete Frees memory.

operator delete[] Frees memory allocated by new[].

set new handler() Sets up an allocation failure handler.

C memory operation functions

memset() Fills memory with a specific byte.

bzero() Fills memory with the zero byte.

memccpy() Copies memory up to a specific byte.

memcpy() Copies non-overlapping memory.

memmove() Copies possibly-overlapping memory.

bcopy() Copies possibly-overlapping memory.

memcmp() Compares two blocks of memory.

bcmp() Compares two blocks of memory.

memchr() Searches memory for a specific byte.

memmem() Searches memory for specific bytes.

mpatrol library functions

mp atexit() Registers termination functions.

mp setoption() Sets an mpatrol library option.

mp getoption() Returns an mpatrol library option.

mp libversion() Returns the mpatrol library version.

mp strerror() Returns an error message string.

mp function() Returns an allocation type function name.

mp setuser() Sets the user data for an allocation.

mp setmark() Sets the marked flag for an allocation.

mp info() Returns information for an allocation.

mp syminfo() Returns symbol information for an address.

mp symbol() Returns symbol name for an address.

mp printinfo() Displays information for an allocation.

mp snapshot() Returns the current heap event number.

mp iterate() Iterates over allocations in the heap.

mp iterateall() Iterates over all allocations in the heap.

mp addallocentry() Adds an allocation to the leak table.

mp addfreeentry() Adds a deallocation to the leak table.

mp clearleaktable() Clears the leak table.

mp startleaktable() Starts automatic leak table entries.

mp stopleaktable() Stops automatic leak table entries.

mp leaktable() Displays the leak table.

mp memorymap() Displays a map of memory in the heap.

mp summary() Displays a summary of library statistics.

mp stats() Returns statistics about the heap.

mp check() Validates memory in the heap.

mp prologue() Sets up an allocation prologue handler.

mp epilogue() Sets up an allocation epilogue handler.

mp nomemory() Sets up an allocation failure handler.

mp printf() Writes user data to the log file.

mp vprintf() Writes user data to the log file.

mp locprintf() Logs user data and the location.

mp vlocprintf() Logs user data and the location.

mp logmemory() Displays a hex dump of memory.

mp logstack() Displays the current call stack.

mp logaddr() Displays information for an allocation.

mp edit() Invokes a text editor on a source file.

mp list() Lists a source file at a specific line.

mp view() Edits or lists a source file.

mp readcontents() Reads the contents of a memory
allocation.

mp writecontents() Writes the contents of a memory
allocation.

mp cmpcontents() Compares the contents of a memory
allocation.

mp remcontents() Removes the contents of a memory
allocation.

mpatrol library variables

mp errno Contains the most recent error code.

The following table lists the warnings and errors that are likely
to appear in the mpatrol log file when problems with dynamic
memory allocations and memory operations occur. Other types
of warnings and errors may also appear in the log file, but they
are likely to be associated with parsing options and reading sym-
bols from executable files and so should be self-explanatory.

Error abbreviation codes

ALLOVF Allocation has a corrupted overflow buffer.

ALLZER Attempt to create an allocation of size 0.

BADALN Alignment is not a power of two.

FRDCOR Freed allocation has memory corruption.

FRDOPN Attempt to perform operation on freed memory.

FRDOVF Freed allocation has a corrupted overflow buffer.

FRECOR Free memory corruption.

FREMRK Attempt to free a marked memory allocation.

FRENUL Attempt to free a NULL pointer.

FREOPN Attempt to perform operation on free memory.

ILLMEM Illegal memory access.

INCOMP Attempt to resize or free memory allocated with an in-
compatible function.

MAXALN Alignment is greater than the system page size.

MISMAT Attempt to resize or free memory not pointing to the
start of a memory allocation.

NOTALL Pointer has not been allocated.

NULOPN Attempt to perform operation on a NULL pointer.

OUTMEM Out of memory.

PRVFRD Attempt to resize of free memory that has previously
been freed.

RNGOVF Attempt to perform a memory operation that overflows
a memory allocation.

RNGOVL Attempt to perform a non-overlapping memory opera-
tion that overlaps.

RSZNUL Attempt to resize a NULL pointer.

RSZZER Attempt to resize an allocation to size 0.

STROVF Attempt to perform a string operation that overflows a
memory allocation.

ZERALN Alignment 0 is invalid.

The commands that are distributed with the mpatrol library
all parse their command line options in a similar way to the
UNIX getopt() function. Only the long names of the options
are shown here. If an option has a single character equivalent
it will be listed in the —help output. Options that accept nu-
meric arguments can have their value specified in binary, octal,
decimal or hexadecimal notation.

mpatrol command options

—alloc-byte <unsigned integer> See ALLOCBYTE.

—alloc-stop <unsigned integer> See ALLOCSTOP.

—allow-oflow See ALLOWOFLOW.

—auto-save <unsigned integer> See AUTOSAVE.

—check <unsigned range> See CHECK.

—check-all See CHECKALL.

—check-allocs See CHECKALLOCS.

—check-fork See CHECKFORK.

—check-frees See CHECKFREES.

—check-memory See CHECKMEMORY.

—check-reallocs See CHECKREALLOCS.

—def-align <unsigned integer> See DEFALIGN.

—dynamic Specifies that programs which were not linked
with the mpatrol library should also be traced, but only
if they were dynamically linked.

—edit See EDIT.

—fail-freq <unsigned integer> See FAILFREQ.

—fail-seed <unsigned integer> See FAILSEED.

—free-byte <unsigned integer> See FREEBYTE.

—free-stop <unsigned integer> See FREESTOP.

—help Displays a quick-reference option summary.

—large-bound <unsigned integer> See LARGEBOUND.

—leak-table See LEAKTABLE.

—limit <unsigned integer> See LIMIT.

—list See LIST.

—log-all See LOGALL.

—log-allocs See LOGALLOCS.

—log-file <string> See LOGFILE.

—log-frees See LOGFREES.

—log-memory See LOGMEMORY.

—log-reallocs See LOGREALLOCS.

—medium-bound <unsigned integer> See MEDIUMBOUND.

—no-free <unsigned integer> See NOFREE.

—no-protect See NOPROTECT.

—oflow-byte <unsigned integer> See OFLOWBYTE.

—oflow-size <unsigned integer> See OFLOWSIZE.

—oflow-watch See OFLOWWATCH.

—page-alloc-lower See PAGEALLOC=LOWER.

—page-alloc-upper See PAGEALLOC=UPPER.

—preserve See PRESERVE.

—prof See PROF.

—prof-file <string> See PROFFILE.

—prog-file <string> See PROGFILE.

—realloc-stop <unsigned integer> See REALLOCSTOP.

—safe-signals See SAFESIGNALS.

—show-all See SHOWALL.

—show-env Displays the contents of the MPATROL OPTIONS en-
vironment variable.

—show-free See SHOWFREE.

—show-freed See SHOWFREED.

—show-map See SHOWMAP.

—show-symbols See SHOWSYMBOLS.

—show-unfreed See SHOWUNFREED.

—small-bound <unsigned integer> See SMALLBOUND.

—threads Specifies that the program to be run is multi-
threaded if the —dynamic option is used.

—trace See TRACE.

—trace-file <string> See TRACEFILE.

—unfreed-abort <unsigned integer> See UNFREEDABORT.

—use-debug See USEDEBUG.

—use-mmap See USEMMAP.

—version Displays the version number of the mpatrol com-
mand.

mprof command options

—addresses Specifies that different call sites from within the
same function are to be differentiated and that the names
of all functions should be displayed with their call site
offset in bytes.

—call-graph Specifies that the allocation call graph should
be displayed.

—counts Specifies that certain tables should be sorted by the
number of allocations or deallocations rather than the
total number of bytes allocated or deallocated.

—graph-file <file> Specifies that the allocation call graph
should also be written to a graph specification file for
later visualisation with dot.

—help Displays a quick-reference option summary.

—leaks Specifies that memory leaks rather than memory allo-
cations are to be written to the graph specification file.

—stack-depth <depth> Specifies the maximum stack depth
to use when calculating if one call site has the same call
stack as another call site. This also specifies the maxi-
mum number of functions to display in a call stack.

—version Displays the version number of the mprof com-
mand.

mptrace command options

The mptrace command can be built with GUI support on cer-
tain platforms. Any of the following options that are marked as
being specific to the GUI version of mptrace will be read by
the X command line parser rather than directly by mptrace.
As a result they are parsed according to X toolkit rules and do
not appear in the quick-reference option summary produced by
the —–help option. The application class for setting mptrace
X resources is called MPTrace.

—alloc <colour> Specifies the colour to use for displaying al-
located memory (GUI only).

—base <address> Specifies the base address of the visible ad-
dress space displayed in the memory map (GUI only).

—delay <length> Specifies that a small delay of a certain
length should be added after drawing each memory allo-
cation event (GUI only).

—free <colour> Specifies the colour to use for displaying free
memory (GUI only).

—gui Displays the GUI (if supported).

—height <size> Specifies the height (in pixels) of the drawing
area (GUI only).

—hatf-file <file> Specifies that the trace should also be writ-
ten to a file in Heap Allocation Trace Format (HATF).

—help Displays a quick-reference option summary.

—internal <colour> Specifies the colour to use for displaying
internal heap memory (GUI only).

—sim-file <file> Specifies that a trace-driven memory alloca-
tion simulation program written in C should be written
to a file.

—source Displays source-level information for each event in
the tracing table, if available.

—space <size> Specifies the size (in megabytes) of the visible
address space displayed in the memory map (GUI only).

—unalloc <colour> Specifies the colour to use for displaying
unallocated heap memory (GUI only).

—view-height <size> Specifies the height (in pixels) of the
window (GUI only).

—view-width <size> Specifies the width (in pixels) of the
window (GUI only).

—width <size> Specifies the width (in pixels) of the drawing
area (GUI only).

—verbose Specifies that the tracing table should be displayed.

—version Displays the version number of the mptrace com-
mand.

mleak command options

—help Displays a quick-reference option summary.

—ignore Specifies that the list of unfreed allocations in the
log file should be ignored.

—max-stack <depth> Specifies the maximum stack depth to
display.

—version Displays the version number of the mleak com-
mand.

mpsym command options

—help Displays a quick-reference option summary.

—version Displays the version number of the mpsym com-
mand.

mpedit command options

The mpedit command recognises the EDITOR environment
variable which can be used to specify the text editor that
it should use to edit source files. It also recognises the
MPATROL SOURCEPATH environment variable which can be used
to specify a colon-separated list of directories that should be
used to help search for source files.

—editor <filename> Specifies the text editor to use.

—help Displays a quick-reference option summary.

—listing Displays a context listing of the source line instead
of invoking the text editor.

—source-dir <directory> Adds a directory to the search path
used to locate the source file.

—version Displays the version number of the mpedit com-
mand.

hexwords command options

—help Displays a quick-reference option summary.

—match <exact|lower|upper|any> Sets the type of case-
sensitivity to use.

—maximum <count> Sets the maximum number of letters to
match.

—minimum <count> Sets the minimum number of letters to
match.

—version Displays the version number of the hexwords com-
mand.

Copyright c©1997-2001 Graeme S. Roy.

This reference card may be freely distributed under the terms
of the GNU General Public License.

