
Salford C++ Help

Help on SCC Help

Functions

Compiler command line options

Salford C++ Functions

assert.h

clib.h

ctype.h

dir.h

dos.h

error.h

float.h

limits.h

locale.h

math.h

setjmp.h

signal.h

stdarg.h

stdio.h

stdlib.h

string.h

time.h

!
Empty

A

abort

abs

acos

asctime

asin

assert

atan2

atan

atexit

atof

atoi

atol

B

bdos

_bdos

bioscom

biosequip

bios_equiplist

bioskey

_bios_keybrd

biosmemory

_bios_memsize

biosprint

_bios_printer

_bios_serialcom

biostime

_bios_timeofday

bsearch

C

calloc

ceil

cgets

_cgets

chdir

chmod

_chmod

clearerr

clock

cos

cosh

cprintf

_cprintf

cscanf

_cscanf

ctime

D

difftime

div

_dos_getdate

_dos_gettime

_dos_setdate

_dos_settime

E

ecvt

_ecvt

exists

exit

_exit

exp

F

fabs

fault_malloc_failure

fclose

fcloseall

fcvt

_fcvt

feof

ferror

fflush

fgetc

fgetpos

fgets

fileno

findfirst

findnext

floor

flushall

fmod

fopen

_fpreset

fprintf

fputc

fputs

fread

free

freopen

frexp

fscanf

fseek

fsetpos

ftell

fwrite

G

gcvt

_gcvt

getc

getch

_getch

getchar

getche

_getche

getcwd

getdate

getdfree

getdisk

getenv

_get_file_structure

gets

gettime

gmtime

H
Empty

I

index

inp

inport

inport32

inportb

_inpw

int86

int86x

intdos

intdosx

isalnum

isalpha

isascii

__isascii

iscntrl

isdigit

isextended

isgraph

islower

isprint

ispunct

isspace

isupper

isxdigit

itoa

J
Empty

K

kbhit

_kbhit

L

labs

ldexp

ldiv

lfind

_lfind

localeconv

localtime

log10

log

longjmp

_lrotl

_lrotr

lsearch

_lsearch

ltoa

M

malloc

memchr

memcmp

memcpy

memicmp

_memicmp

memmove

memset

mktime

modf

N
Empty

O

_OFFSET

_outp

outport

outport32

outportb

_outpw

P

perror

pow

printf

putch

_putch

putc

putchar

puts

Q

qsort

R

raise

rand

realloc

remove

rename

rewind

rindex

_rotl

_rotr

S

scanf

searchpath

_SEGMENT

setbuf

setdate

setdisk

setjmp

setlocale

setmode

settime

setvbuf

signal

sin

sinh

sizeof

sprintf

sqrt

srand

sscanf

stpcpy

strcat

strchr

strcmp

strcmpi

strcmpl

strcoll

strcpy

strcspn

strdup

strend

strerror

_strerror

strftime

stricmp

strlen

strlwr

strncat

strncmp

strncpy

strnicmp

_strnicmp

strpbrk

strrchr

strrev

_strrev

strspn

strstr

strtod

strtok

strtol

strtoul

strupr

strxfrm

swab

_swab

system

T

tan

tanh

time

tmpfile

tmpnam

toascii

__toascii

tolower

_tolower

toupper

_toupper

U

ultoa

_ultoa

ungetc

ungetch

_ungetch

unlink

utoa

V

va_arg

va_end

va_start

vfprintf

vprintf

vsprintf

W
Empty

X
Empty

Y
Empty

Z
Empty

Help on using SCC Help

1. The help system is hierarchical.    Use the browse << and >> buttons to obtain
other topics on the same level.    Use the Up button to jump to the corresponding
branch point on the level above.

2. Use the Copy button to copy a topic to the clipboard.

3. Some topics have an illustrative example that can be viewed by clicking on an
Example button at the head of the topic (or by pressing ENTER).    If you want to
copy the example to the clipboard, then click on the Copy button that appears in
the pop-up "Example" window (or press ENTER).

Salford C++ command line options

Compiler options arranged by function

Program listing

Run-time checking

Load and go

Error messages

Properties of the code

Linker control

Destination of the code

Optional syntax restrictions

Optimisation of the code

Compilation statistics

Reading compiler options from a file

General instructions
The compilation/loading process

The command line

Compiler source input

Configuring the SCC command

Controlling compile-time messages

Index
Index of compiler options

The compilation/loading process
A C/C++ program must be converted to binary form before it can be executed.    The
process of producing an executable program takes place in two phases.

o Compilation: where the C/C++ program is checked for syntactic and semantic
correctness and re-locatable binary code is output to an intermediate file,   
<filename>.OBJ, where <filename>.C is the name of the source file.

o Loading: using the Salford C++ Linker, LINK77, where the re-locatable binary
code is loaded together with any other re locatable binary code files, library files
that might have been produced by previous compilation(s) with Salford C++ (or
other compatible compilers, such as FTN77 or Sheffield Pascal) and routines
from the C/C++ and other system libraries.

Note that .OBJ files produced by Salford C++ cannot be loaded using the MS-DOS
linker, which is only suitable for 16-bit code.    Likewise, LINK77 cannot be used to
load real mode object files.

Salford C++ allows the user to combine these two phases by means of the “load-
and-go” facility in which no permanent object file is produced.

Compiler source input
The compiler reads programs from MS-DOS ASCII files which have been created by
any of the various PC text editors.

The source file should be specified using the first parameter to the SCC command
as follows:

SCC <pathname>

The compiler searches for the file <pathname>.CPP and if it finds it, the file is
compiled.    Otherwise, the compiler outputs an error message, as in this example:

SCC SOCRATES

SOCRATES.CPP File not found

Source files must have .CPP as a suffix, or be specified with an explicit suffix.    Any
filename acceptable to MS-DOS can be used.    In order to compile the program in
file MYPROG.CPP, the following command should be used:

SCC MYPROG

In this case MYPROG.CPP is a local file in the current directory.    An example of
<pathname> specification might be:

SCC C:\SCC\PROJECT\MYPROG

In this case the compiler searches for the file
C:\SCC\PROJECT\MYPROG.CPP

Only one source file name may be specified unless wild cards are used.    For
example:

SCC *.CPP

would compile all of the .CPP files in the current directory.    An explicit extension
(like .CPP) is essential. The object code can be output to a single file by using the
/BINARY option.

The command line
Compiler options are specified as part of the SCC command line, for example:

SCC MYPROG /LIST

causes SCC to compile a program held in a source file called MYPROG.CPP.    The
suffix .CPP is assumed by default.    However, if you specify a file with an explicit
suffix, then the file with that suffix will be used.    Furthermore, the assumed .CPP
suffix can be changed by configuring the options .

Note that:

o SCC can be operated in ANSI C mode (using the /ANSI_C option or a .C suffix),
when it conforms to the standard with a few extensions (see also /AUTO_SUFFIX
), or in C++ mode by default.

o the option /LIST    tells SCC to generate a compilation listing of the program
source in a file MYPROG.LIS.

Note that options may be abbreviated, but care should be exercised to ensure that
the abbreviated form is unique.

The compiler option defaults described in this help system are those provided when
Salford C++ is distributed.

Configuring the SCC command
The SCC command has many options and it is often convenient to alter the default
settings, or to create alternative versions of the command for specific purposes.    For
example, you might wish to create a command which would run a program with
/ANSI_C, /LGO and    /CHECK using a default file suffix of    .C.    To configure your
compiler type:

SCC /CONFIG

You will be presented with a master configuration menu of four options thus:

a) The default options

b) The compiler messages

c) The source file suffix (the default is .CPP)

d) Save configuration information and exit

In general you will select one or more of items (a)-(c), followed by (d) to save the
results.    When you specify option (d) you will be prompted to save the results in the
existing compiler file (e.g.SCC.EXE) or to create a new one.    In general we
recommend that you do not alter the supplied compiler file (SCC.EXE).    If at any
time you decide to abandon configuration process, press the ESC key.

o Selecting option (a) presents a screen of compiler command line options.    An
option may be selected using the cursor keys and may be toggled on or off by
pressing the spacebar.    An arrow next to the option indicates that it is currently
configured on by default.    A brief explanation of the currently selected option is
available at the bottom of the screen.    Press ENTER to return to the main
configuration menu.

o Selecting option (b) from the main configuration menu presents a scrollable list of
messages generated by the compiler at compile time (i.e. not link or run time
diagnostics).

The compilation diagnostic messages are split into three groups:

Ÿ “comments” that are provided for information only,

Ÿ “warnings” that are designed to show possible areas which may lead to
misleading results,

Ÿ “errors” that are caused by incorrect program code.

Both warnings and comments may be configured to be on, off or to be treated as
errors.    A particular type of error (designated as “fatal”) causes immediate
termination of the compilation regardless of the number of errors have have
already occurred.

After selecting a message you may alter it as follows:

o Pressing E will convert the message into an error.    This may be useful if
you wish to enforce certain programming standards.    For example, you
could configure a compiler which would not compile programs with
variables which were declared but never used.

o Pressing W will convert the message to a warning.

o Pressing C will convert the message to a comment.

o Pressing S or the spacebar will suppress the message entirely.

o Press ENTER to return to the main menu.

Messages defined to be errors in SCC cannot be downgraded, as this could
result in unpredictable results at link/run time, however, error messages created
by a previous configuration can be changed.

o Selecting option (c) from the main menu will present the current default source
file suffix and enable you to modify it.    The new suffix must contain between one
and three characters.    Press ENTER to return to the main menu.

o Use option (d) from the main menu to save the configuration information.    The
configuration information is actually stored in the compiler .EXE file itself.    You
will be presented with the full path name of the compiler.    You may alter the
current file by simply pressing ENTER, or modify the file name as required.

Notes:

Ÿ The pathname you choose must have the .EXE suffix.

Ÿ If at any time you receive a fresh version of Salford C++ you must recreate any
configured versions of the SCC command.

Ÿ If at any point you decide to abandon the configuration process press ESC.

Controlling compile-time messages
SCC can issue a large variety of error, warning, and comment messages.    In
general it is undesirable to allow the compiler to generate large numbers of warnings
or comments, as this will make it difficult to recognise those messages that are
significant.    The following facilities are available to control these messages.

o All warnings and comments may be suppressed using the /SILENT    option.   
This option should only be used if you are sure that these messages are of no
interest to you.

o The compiler can be configured to suppress particular warnings or comments, or
to upgrade such messages to errors, which will cause the compilation to fail (see
Configuring the SCC command).

o By including the line
#pragma suppress <n>

in a program you can suppress message number <n>.    The number of the
message you want to suppress can be obtained by including the
/ERROR_NUMBERS    option in an earlier compilation.    You can include as
many suppress pragmas as you require, and by incorporating them in conditional
compilation blocks it is even possible to adjust the message suppression
automatically.

A given message will be suppressed for the remainder of the code or until a
corresponding

#pragma enable <n>

is encountered.

o Sometimes you may wish to suppress an unwanted warning message in a
particular context.    The “silent” pragma is useful in these cases.    For example:

#pragma silent
 while(*p++ = *q++)

Here the pragma will suppress any warnings or comments (but not errors)
relating to the following line (and this line only).    This means that in the above
example a warning about the use of “=” rather than the expected “= =” inside the
while statement would not be issued (unless the compiler had been configured to
convert this message into an error).

Index of compiler options
ANNOTATE_CLASSES

ANSI_C

ASMBREAK

AUTO_SUFFIX

BINARY

BREAK

BRIEF

CHECK

CONFIG

C++

CRX1

CRX2

CRX3

CRX4

CRX5

DBREAK

DEBUG

DEFINE

DELETE_OBJ_ON_ERROR

ERROR_NUMBERS

EXPLIST

FORTRAN_CALLS

FULL_UNDEF

HARDFAIL

INCLUDE

LGO

LIBRARY

LINK

LINK_MAP

LIST

LIST_INSERT_FILES

NESTED_COMMENTS

NEVER_INLINE

NO_ACCESS_CONTROLS

NO_CLASS_CONSISTENCY

NO_CODE

NO_GUESSES

NO_LINE

NO_OFFSETS

NO_ZEROISE

ONLY_PREPROCESS

OPTIMISE

OPTIONS

PARAMS

PROFILE

PROTOTYPES

SHOW_PREPROCESS

SILENT

STATISTICS

UNDEF

UNDERFLOW

UNLIMITED_ERROS

WINDOWS

Program listing options
The options within this group specify the kind of program listing that the compiler is
to provide.

LIST

LIST_INSERT_FILES

EXPLIST

NO_OFFSET

ONLY_PREPROCESS

SHOW_PREPROCESS

/LIST <pathname> or /LIST
During compilation and loading, a listing can be output to a file. This file is
specified by the /LIST compiler option.    If <pathname> is omitted, then the default
name for the listing file is <filename>.LIS.

When a compilation listing is produced, it always contains the following
information:

Ÿ Date and time of compilation

Ÿ Source file pathname

Ÿ Compiler version number

Ÿ Compiler options in use

Ÿ Source statement listing

Ÿ Error, warning and comment messages

Depending on the options chosen, assembly language instructions corresponding
to statements in the program can be output to the listing file.

The relative address of each statement is printed in hexadecimal at the right of the
line (unless the /NO_OFFSETS option is used to suppress the printing of these
addresses).    Relative addresses allow the user to locate the source of run-time
errors which occur in parts of the program where no checks have been specified.   
The relative address is the byte address of the first machine instruction
corresponding to the statement, relative to the start of the current function.    The
relative address is incremented for each statement for which the compiler
generates code.    Code generation ceases for the remainder of the source file
when a compilation error is found.

/LIST_INSERT_FILES
By default the contents of included files (e.g. compiler header files) are not
included in the listing file, however the option /LIST_INSERT_FILES when
included with /LIST    can be used to override the default.    When this option is
used, line numbers in the listing file relate to the current include level (which may
be nested).    The numbers are preceded by the include level in the form    include
level/line number.

/EXPLIST
This option causes each source statement to be followed by the 32-bit Intel
assembler statements into which it was compiled. The assembly language listing is
fully symbolic and even includes some comments.    Information on 32-bit Intel
assembler can be found in the Intel 80386 Programmer’s Reference Manual.    If
/EXPLIST is omitted, no assembly language listing is produced.

/SHOW_PREPROCESS and /ONLY_PREPROCESS
Both of these options send the output from the preprocessor to a file.    The file
name is generated from the source file name by appending .PRE to the root of the
file name.    The /SHOW_PREPROCESS option continues to compile the program
as well as generate the preprocessor output file.    /ONLY_PREPROCESS will only
generate the preprocessor file.    The latter option allows the preprocessor to be
used on files other than C++ source files.

/NO_OFFSETS
Suppresses the address information in the listing file.

Run-time checking options
One of the most powerful features of Salford C++ lies in its ability to detect runtime
errors such as illegal references to memory and references through NULL pointers.
Compiler options which enable runtime checking are listed here for reference.   
Further information is given in chapter 5 of the manual.

DEBUG

CHECK

UNDEF

FULL_UNDEF

NEVER_INLINE

NO_ZERIOSE

PROFILE

/DEBUG
This option causes SCC to activate the symbolic debugger (when fatal errors
occur).    Since /DEBUG is implicit in the /CHECK and /UNDEF options, it is used
in the absence of these options in order to allow the debugger to be used on “dirty”
code.

/CHECK
The /CHECK option (which implies /DEBUG) causes the compiler to produce
code which checks at run time for misuse of pointers and certain other errors.   
The use of /CHECK is fully described in chapter 5 of the manual.

/UNDEF and /FULL_UNDEF
The /UNDEF option (which implies /CHECK) includes checking for the use of
undefined variables.    /UNDEF checks for undefined arithmetic and pointer
variables whilst /FULL_UNDEF works with character variables as well.    If this
option is used in conjunction with /NO_ZEROISE then static and external
arithmetic variables are also checked.

/NEVER_INLINE
This forces the compiler to call static versions of inline functions rather than
merging the contents of the function into the code each time it is used.    One use
for this option is in conjunction with the /DEBUG option to enable the contents of
inline functions to be debugged.    Note that this option is implied in CHECK mode.

/NO_ZEROISE
Standard C sets static and external arithmetic variables to be zero and pointer
variables to be NULL.    The /NO_ZEROISE option generates a bit pattern which
represents an uninitialised state and stores this in the appropriate locations.    By
using the /UNDEF option, you can trap the use of this type of variable when it has
not been assigned a value.

/PROFILE
It is often useful to know how many times each statement in a program has been
executed.    Such information may reveal logical errors and can often help in
tracing the execution path in the event of a run-time failure.    It will also indicate
which parts of a program are most heavily used so that those parts can be
examined and recoded to improve execution speed should this be considered
worthwhile.    The /PROFILE option activates this facility.    The /PROFILE option
has a further use in ensuring that test data exercises all parts of a program.

To obtain a profile listing you should compile your program with the /PROFILE
option and execute it using /BREAK    (to enter the symbolic debugger, see section
7.1 of the manual), run the program - either to a breakpoint or to completion - and
issue the command

PROFILE <pathname>

from the source window.    The profile information will then be written to
<pathname> (which should be a different name from the listing file name) in the
form of an annotated source listing.    If you omit the pathname the profile
information will be overlaid on the source listing and directed to the screen (this
can also be achieved by pressing the F9 function key).

Note that the PROFILE facility cannot be applied simultaneously to more than one
source file.

Load and go
Salford C++ provides a load-and-go facility so that even quite large and complex
programs which require libraries can automatically and quickly be linked, loaded and
executed.    No permanent object file is produced (although there must be enough
disk space to accommodate a temporary object file).    These features make this
facility invaluable for teaching, testing and development where repeated
compilations and test runs are the norm.

Note: If a program is required to be linked (that is, a .EXE file produced) but not
executed immediately, the /LINK option may be used.

All the standard compiler options are available together with a number of extra
options which allow the following:

o Specification of library and relocatable binary files

o Underflow trapping

o Interactive debugging

LGO

LIBRARY

ASMBREAK

BREAK

DBREAK

HARDFAIL

PARAMS

UNDERFLOW

LGO option
The load-and-go facility is invoked by the /LGO option.    For example:

SCC MYPROG /CHECK /LGO

would compile, load and execute the program held in the source file MYPROG.CPP.
The order of specifiers on the command line is immaterial, except when an option
requires a name, in which case the name must follow the option.

The options /BREAK and /DBREAK both imply /LGO.    These options also imply
either /DEBUG or /CHECK.    These four options are summarised in the following
table for easy reference.

Option Debug code
planted

Check code
planted

Immediate entry
to debugger

/LGO implied

/DEBUG ü

/CHECK ü ü

/BREAK ü ü ü ü

/DBREAK ü ü ü

/ASMBREAK
Implies /CHECK and /LGO and is used to enter the machine code debugger at first
assembler code instruction.

/BREAK
This option implies /CHECK and /LGO and causes program execution to be
suspended at the first instruction in the main program with entry to the debugger.

/DBREAK
/DBREAK is like /BREAK but does not include the planting of code to check for
runtime errors (i.e. it implies /DEBUG but otherwise not /CHECK) and causes
program execution to be suspended at the first instruction in the main program
with entry to the debugger.

Using /LIBRARY with /LGO
The use of the /LGO option is not restricted to programs that require only the Salford
C++ library.    Other system libraries, user libraries and relocatable binary input files
can be specified.    These files can be specified in any combination of the following:

r By using the /LIBRARY option.    For example:
SCC MYPROG /LGO /LIBRARY GKSLIB

r By using a #pragma library directive (see chapter 8 of the manual).

If a library filename (GKSLIB in the above command line) does not include path
information, the current directory is searched, followed by the directory containing
the Salford C++ compiler.

Notes:

Ÿ The compiler will automatically search first for a library or relocatable binary file
with the name suffixed by .OBJ (even though it does not appear with suffix in the
command line), and then for the unsuffixed filename .

Ÿ Dynamic link libraries can be listed in a directory called LIBRARIES.DIR, see
section 13.7.2 of the manual for further details.

The /HARDFAIL option
If a program is compiled using the /LGO option and an error occurs, the program is
suspended and the debugger is entered.    If this is considered to be undesirable, the
use of the /HARDFAIL option causes run time errors to produce a machine level
message and a return to MSDOS, rather than entering the symbolic debugger.    This
is sometimes useful if the program contains assembler code.

The /PARAMS option
The /PARAMS option is provided for use with /LGO, /BREAK and /DBREAK so that
the user can introduce command line options and filenames that relate to his own
object program rather than to the compiler.    This option prevents the compiler from
scanning the remainder of the SCC command line before the user’s program is
executed.    For example:
#include <stdio.h>
int main(int argc,char *argv[])
{ FILE *source,*dest;
 char ch;
 source=fopen(argv[1],"r");
 dest=fopen(argv[2],"w");
 while(!feof(source))
 {
 ch=fgetc(source);
 fputc(ch,dest);
 }
 fclose(source);
 fclose(dest);
 return 0;
}

The command line:
SCC FILECOPY /LGO /PARAMS DATA1 DATA2

will load and execute the program in the file FILECOPY.CPP, which copies the file
DATA1 to the file DATA2.

The /UNDERFLOW option
In /LGO mode, the compiler normally generates zero values when floating point
underflow occurs.    Use of the /UNDERFLOW option ensures that the first
occurrence of underflow in an arithmetical computation is treated as a failure and is
not ignored.    A large number of occurrences of underflow during execution can
result in long execution times because of the way in which the underflow condition is
treated.    If an underflow is trapped, the message
 ERROR: Floating point arithmetic underflow

is output and the interactive debugger is entered (see chapter 7 of the manual).    If
underflows occur during program execution and the /UNDERFLOW option is not
used, a message is output specifying the number of underflows that have occurred.

Error message options
All error, warning and comment messages are output to the screen and to the
compilation listing file if one is specified or implied.    Messages fall into three
categories namely: error, warning and comment messages.    Warning and comment
messages can be suppressed.

The following list includes options for disabling certain messages and options for
specifying what constitutes an error.

ANSI_C

AUTO_SUFFIX

ANNOTATE_CLASSES

BRIEF

C++

ERROR_NUMBERS

NESTED_COMMENTS

NO_CLASS_CONSISTENCY

NO_GUESSES

PROTOTYPES

SILENT

UNLIMITED_ERRORS

/ANSI_C
When the /ANSI_C option is used, the compiler uses ANSI C rules where these
conflict with C++.    In particular, the use of this option means that C++ keywords
are treated as ordinary tokens.    Note, however, that the following two C++
extensions are also available in ANSI C mode (i.e. when /ANSI_C is used):

o the use of “//” for comments is permitted,

o when calling a function, parameters may be called by reference.

If ANSI C is set as the default mode using the /CONFIG option, then C++ mode
can be reselected by using /C++.

/AUTO_SUFFIX
By default, files that have a .C extension are compiled in ANSI C mode.   
Unless /ANSI_C is used (or SCC is reconfigured to make /ANSI_C a default
option), any other file will be compiled in C++ mode.    This is called
AUTO_SUFFIX mode and is selected by default in the /CONFIG menu when the
compiler is shipped.    The /AUTO_SUFFIX option is only needed when
AUTO_SUFFIX mode has been switched off in the /CONFIG menu and the user
wishes to temporarily switch AUTO_SUFFIX mode back on.

/ANNOTATE_CLASSES
Using this option causes the compiler to output comments which identify
constructors, destructors, and certain other special member functions of classes.

/BRIEF
Causes all errors, warnings and comments to be output in a form which is
compatible with the BRIEF text editor.    Programs can then be compiled and then
edited whilst still within BRIEF (see chapter 15 of the manual).

/ERROR_NUMBERS
This option causes the compiler to include the message number with each
message (warning, error, or comment) that it generates.    This is useful in order to
obtain numbers for the #pragma “suppress” feature (see section 8.2 of the
manual).

/NESTED_COMMENTS
allows the use of nested comments within a program.    For example in
/*
 int i;
 char *ptr; /* pointer to character */
*/

the initial “/*” will be matched with the final rather than the first “*/”.

/NO_CLASS_CONSISTENCY
By default, the compiler informs the linker about every class, struct, or union
used in a program.    The size of the object, together with a hash code derived from
the entire structure of the class, is passed to the linker.    The linker will report
warnings if a named class, struct, or union is used inconsistently in separately
compiled modules.    Often this is a consequence of a change of a definition in an
include file, and is an indication that some files have not been recompiled to
incorporate the change.    The /NO_CLASS_CONSISTENCY option suppresses
this information.    (See also section 8.2 of the manual for a mechanism to
suppress this feature for specific classes.)

/NO_GUESSES
When reporting an error the compiler will often offer a guess as to what was
intended.    For example, if it found “Int” in a context where a keyword was
required, it would suggest that “int” was intended.    The /NO_GUESSES option
suppresses this feature.

/PROTOTYPES
This option is used when operating in ANSI C mode to demand that a function be
prototyped before it is used.    This option should always be used when new C
code is being developed in ANSI C mode, as mismatches between assumed
function prototypes and actual functions can cause serious problems in C.    This
option is not required in C++ mode, where functions must always be prototyped.

/SILENT
This option suppresses the printing of warning and comment messages.    Unless
the /SILENT option is in force, the message that is output on the screen at the end
of compilation includes the numbers of warning and comment messages as in the
following example:
NO ERRORS,3 WARNINGS,2 COMMENTS [Salford C++/x86]

/UNLIMITED_ERRORS
Normally compilation stops after issuing 12 error messages.    This option allows
compilation to continue until the entire source file has been processed.

Properties of the code
This group consistutes a miscellany of options that control various properties of the
object code.

DEFINE

FORTRAN_CALLS

INCLUDE

NO_ACCESS_CONTROLS

NO_LINE

WINDOWS

/DEFINE
This allows a preprocessor macro to be defined from the command line.    The
macro cannot be a function like macro, it can only take a simple value.    If a value
for the definition is not specified, a default value of 1 is assigned.    For example:
SCC MYPROG /DEFINE ARRAY_SIZE=34

will define a macro ARRAY_SIZE to have a value of 34,    whilst
SCC MYPROG /DEFINE DEBUG

will simply define a macro DEBUG which may be used with #ifdef.

/FORTRAN_CALLS
This option causes SCC to load the ESI register before calling a function.    This
instruction is only required if the called function is compiled with FTN77.    By
default, SCC only loads ESI if the target name contains the @ symbol, or the
function has been declared extern "FORTRAN".    In general it is better to declare
functions extern "FORTRAN" and avoid unnecessary code for other calls to C
functions.

/INCLUDE <pathname>
This option extends the search path sequence.    Normally the sequence consists
of the current directory followed by the system include directory.    The use of the
option changes this to the current directory followed by pathname (enclosed in
quotation marks " ") and then the system include directory.

/NO_ACCESS_CONTROLS
This option causes the C++ access control for classes to be ignored.    This
removes the protection of private and protected data members of a class.    This
may be useful when debugging to enable a private member of a class can be
printed out.

/NO_LINE
This option instructs the compiler to ignore #line directives.    When #line
directives are used, the resulting executable code will use line numbers and
filenames generated by the directive instead of those relating directly to the C
program.    /NO_LINE cancels this effect.

/WINDOWS
The /WINDOWS option is used for programs which are designed to run under
Microsoft Windows 3.x.    With this option the program will start by generating a call
to a function which initialises the windows environment (see sections 13.2.1, 8.2
and 8.7 of the manual,    and the ClearWin Reference Manual for further details).

Optimisation of code

/OPTIMISE
This causes the compiler to generate optimised code.    This option is not effective
when used in conjuction with either /CHECK or /DEBUG.

Linker control
The following options are provided to invoke the linker or to pass information to it.

LINK LINK_MAP LIBRARY

See also /LGO.

/LINK <filename> or <directory_name>
After compilation is complete, the linker will be invoked to generate an executable
file.    If <filename> is not specified, the name of the executable file is generated
from the source file name, otherwise <filename> is the name of the resulting
executable file.    If <directory_name> is not specified, then the executable file will
be placed in the same directory as the source file, otherwise it will be placed in the
specified directory.

/LINK_MAP
This option can be used in conjunction with the /LINK or /LGO options in order to
provide a linker map.    It may be followed by the name of a file into which a linker
map is to placed, otherwise the default file name for the map has the form
<filename>.MAP.

/LIBRARY <filename>
This causes the file <filename> to be searched for any functions that are found to
be missing in a subsequent linking process.    <filename> must include an explicit .
OBJ or .LIB extension.    The option is particularly useful when used in conjunction
with /LINK    or /LGO (see also #pragma <filename> in section 8.2 of the manual).

/STATISTICS
This causes the compiler to output a message on the screen stating the number of
lines compiled (including all header files) and the compilation time.

Destination of the code
By default the compiler produces relocatable binary code even when errors are
encountered in the source file.    If this code is error free it can either be loaded
automatically using the /LGO option or be made available to a file for loading with
LINK77.    When /LGO is not used, by default a binary file is created which has a
name based on the source file name but with the .OBJ extension.    The following
options provide alternatives to the default response.

BNARY NO_CODE DELETE_OBJ_ON_ERROR

/BINARY <filename>
This option specifies <filename> as the name of the resulting object file, over-
riding the default name.    This is particularly useful when used in conjunction with
wild cards where the effect is to output all of the code into one file (see Compiler
source input).

/NO_CODE
causes the creation of a binary file to be suppressed.

/DELETE_OBJ_ON_ERROR
causes the binary file to be deleted if the code is not error free.

Optional syntax restrictions
One problem with the C and C++ languages, especially for beginners, is the ease
with which a mistake can appear to the compiler as valid syntax with a totally
different meaning.    The following options may be used to restrict the syntax which
the compiler accepts in order to control these problems.    It is expected that these
options will be used by teachers, who will configure the compiler to turn these
options on, or    by programmers who wish to impose a “house style”.    Other
restrictions can be imposed by configuring certain warnings as errors.

Because the meaning of these restrictions is subtle, no attempt has been made to
give them meaningful names.    The following options are available:

CRX1

CRX2

CRX3

CRX4

CRX5

/CRX1
This restriction prevents a named structure, class, or union being defined and used
to declare data items (outside the class) on the same line.    Thus the following will
generate an error if this option is used:
class test{
int alpha;
}
foo(int j);

Presumably foo is supposed to be an integer function and the programmer has
missed the semicolon at the end of the class definition.    Unnamed aggregate
definitions can still define data, as otherwise they would be useless!

/CRX2
Forces the declaration or definition of a function to include a return type (rather
than taking the default int type).    If this option is used, even the main function
must be defined with a return type.

/CRX3
Stops the compiler accepting traditional C style function declarations such as:

int foo(a,b)
int a;
float b;
{
}

/CRX4
Prevents the compiler from accepting goto statements.

/CRX5
This option prevents the declaration of float objects (as opposed to double), and
faults any attempt to perform single precision floating point arithmetic.    This can
be useful when porting code from a machine with a higher floating point precision.
Including this option will ensure that floating point arithmetic is performed to 64-bit
precision.

Reading compiler options from a file
/OPTIONS

Compiler options can be read from a file.    The contents of the file will be used as
a set of options which will be combined with the command line.    For example,
suppose you had a file called MYOPT containing the following:
/ANSI_C /LIST

The effect of the above SCC command could be obtained by typing
SCC MYPROG /OPTIONS MYOPT

You can use multiple and/or nested options files, but such files must not contain
options that will be passed to the program to be run using the /PARAMS
mechanism.

Functions defined in ctype.h

isalnum

isalpha

iscntrl

isextended

isdigit

isgraph

islower

isprint

ispunct

isspace

isupper

isxdigit

tolower

toupper

About functions defined in ctype.h

The <ctype.h> header provides prototypes for a number of functions which can be
used in the analysis and mapping of text data.    These functions enable the
programmer to determine whether a character is alphabetic, alphanumeric, etc..   
The programmer should ensure that all input values either lie in the range 0..255 or
take the value EOF.    Other values will produce unpredictable results.    In particular,
separate provision should be made for non-ASCII characters such as the UK
currency symbol.    Make and break keyboard codes will need to be appropriately
masked before input in order to remove unwanted data.

isalnum
Purpose To test for an alphanumeric character.

Syntax #include <ctype.h>
int isalnum(int c);

Return value isalnum returns a non-zero value if c is the ASCII value for an
alphanumeric character (0..9, A..Z, or a..z); zero if not.

isalpha
Purpose To test for an alphabetic character.

Syntax #include <ctype.h>
int isalpha(int c);

Return value isalpha returns a non-zero value if c is the ASCII value for an
alphabetic character (A..Z, or a..z); zero if not.

iscntrl
Purpose To test for a control character.

Syntax #include <ctype.h>
int iscntrl(int c);

Return value iscntrl returns a non-zero value if c is the ASCII value for a “control”
character; zero if not.    A control character is defined as not a “printing”
character (see isprint).

isextended
Purpose To test for a character in the extended set.

Syntax #include <ctype.h>
int isextended(int c);

Return value isextended returns a non-zero value if c is the ASCII value for a
character in the extended ASCII set (ASCII values 128..255); zero if not.

isdigit
Purpose To test for a digit character.

Syntax #include <ctype.h>
int isdigit(int c);

Return value isdigit returns a non-zero value if c is the ASCII value for a digit
character (0..9); zero if not.

isgraph
Purpose To test for a graphic character.

Syntax #include <ctype.h>
int isgraph(int c);

Return value isgraph returns a non-zero value if c is the ASCII value for a graphics
character which is defined as a printing character (see isprint) but not a
space.

islower
Purpose To test for a lower case alphabetic character.

Syntax #include <ctype.h>
int islower(int c);

Return value islower returns a non-zero value if c is the ASCII value for a lower case
letter (a..z); zero if not.

isprint
Purpose To test for a printing character.

Syntax #include <ctype.h>
int isprint(int c);

Return value isprint returns a non-zero value if c is the ASCII value for a “printing”
character; zero if not.    The definition of a “printing” character may be
both implementation and locale dependent.

ispunct
Purpose To test for a punctuation character.

Syntax #include <ctype.h>
int ispunct(int c);

Return value ispunct returns a non-zero value if c is the ASCII value for a
“punctuation” character i.e. one of:

!"#$%&’()*+,-./:;<=>?@[\]^_‘{|}~

A punctuation character is a character in the non-extended ASCII set
which is neither a control nor an alphanumeric nor a space character.

isspace
Purpose To test for a white-space character.

Syntax #include <ctype.h>
int isspace(int c);

Return value isspace returns a non-zero value if c is the ASCII value for a white-
space character (ASCII values 9,10,11,12,13,32); zero if not.    These
normally correspond to tab, line-feed, vertical-tab, form-feed, return and
space.

isupper
Purpose To test for an upper case alphabetic character.

Syntax #include <ctype.h>
int isupper(int c);

Return value isupper returns a non-zero value if c is the ASCII value for an upper
case letter (A..Z); zero if not.

isxdigit
Purpose To test for a hexadecimal digit character.

Syntax #include <ctype.h>
int isxdigit(int c);

Return value isxdigit returns a non-zero value if c is the ASCII value for a
hexadecimal digit (0..9, A..F, or a..f); zero if not.

Example

#include <stdio.h> // for printf,EOF
#include <ctype.h> // for isalpha etc.
int main()
{
 for(int i=EOF;i<256;i++)
 if(isalnum(i)) printf("%c",i);
 return 0;
}

tolower
Purpose To change any upper case alphabetic characters to lower case.

Syntax #include <ctype.h>
int tolower(int c);

Return value tolower returns the lower case ASCII value in the range a..z when c is
the ASCII value for one of the letters A..Z.    Other values are left
unchanged.

See also strlwr.

toupper
Purpose To change any lower case alphabetic characters to upper case.

Syntax #include <ctype.h>
int toupper(int c);

Return value toupper returns the upper case ASCII value in the range A..Z when c is
the ASCII value for one of the letters a..z.    Other values are left
unchanged.

See also strupr.

Example

#include <stdio.h> // for printf
#include <ctype.h> // for tolower
int main()
{
 for (int i=65;i<91;i++) printf("%c %c\n",i,tolower(i));
 return 0;
}

Functions defined in math.h

acos

asin

atan

atan2

ceil

cos

cosh

exp

fabs

floor

fmod

frexp

ldexp

log

log10

modf

pow

sin

sinh

sqrt

tan

tanh

About functions defined in math.h

The <math.h> header provides prototypes for various mathematical functions.    It
also includes the following definitions.

#define HUGE_VAL 1e308
#define EDOM_VAL 1e308
#define M_E 2.718281828459045235 // exp(1)
#define M_LOG2E 1.442695040888963407 // 1/ln2
#define M_LOG10E 0.434294481903251828 // 1/ln10
#define M_LN2 0.693147180559945309 // ln(2)
#define M_LN10 2.302585092994045684 // ln(10)
#define M_PI 3.141592653589793238 // PI
#define M_PI_2 1.570796326794896619 // PI/2
#define M_PI_4 0.785398163397448310 // PI/4
#define M_1_PI 0.318309886183790672 // 1/PI
#define M_2_PI 0.636619772367581343 // 2/PI
#define M_1_SQRTPI 0.564189583547756287 // 1/sqrt(PI)
#define M_2_SQRTPI 1.128379167095512574 // 2/sqrt(PI)
#define M_SQRT2 1.414213562373095049 // sqrt(2)
#define M_SQRT_2 0.707106781186547524 // 1/sqrt(2)

A particular function call will lead to a “domain error” if an input argument lies outside
the interval over which the mathematical function is defined.    In such cases the
function returns the value of the macro EDOM_VAL and sets errno to EDOM (see
also error.h header).    Similarly a “range error” will occur when the result of the
function cannot be expressed as a double value.    In such cases the function returns
the macro HUGE_VAL (with an appropriate sign) and sets errno to ERANGE.    If
the result of a function underflows then zero is returned and errno is not set (this
feature is implementation dependent).    A closed interval which includes an end point
is denoted below by square brackets.    An open interval which does not include an
end point is denoted by round brackets.    e.g. (0,3] includes 3 but not 0.

acos
Purpose To compute the arc cosine of a double value.

Syntax #include <math.h>
double acos(double x);

Return value acos returns the radian value in the range [0,p] for the inverse cosine of
x.

Notes Gives a domain error if the magnitude of x is greater than 1 (returns
EDOM_VAL and sets errno to EDOM).

asin
Purpose To compute the arc sine of a double value.

Syntax #include <math.h>
double asin(double x);

Return value asin returns the radian value in the range [-p/2,p/2] for the inverse sine
of x.

Notes Gives a domain error if the magnitude of x is greater than 1 (returns
EDOM_VAL and sets errno to EDOM).

atan
Purpose To compute the arc tangent of a double value.

Syntax #include <math.h>
double atan(double x);

Return value atan returns the radian value in the range (-p/2,p/2) for the inverse
tangent of x.

Example atan(1.0) gives 0.785398... (p/4)

atan2
Purpose To compute the arc tangent for a pair of double values.

Syntax #include <math.h>
double atan2(double y,double x);

Return value atan2 returns the radian value in the range (-p,p] for the inverse tangent
of y/x , using the signs of both arguments to determine the quadrant of
the returned value.    This function is more robust than atan.

Notes Gives a domain error if x=0 and y=0.

Example atan2(-1.0,0.0) gives -1.570796...(-p/2).

ceil
Purpose To find the next (ceiling) integer above a given double value.

Syntax #include <math.h>
double ceil(double x);

Return value ceil returns the value of x rounded to the next integer above.

Example ceil(1.1) gives 2.0.

cos
Purpose To compute the cosine of a double value.

Syntax #include <math.h>
double cos(double x);

Return value cos returns the value in the range [-1,1] for the cosine of x which should
be supplied in radians.

cosh
Purpose To compute the hyperbolic cosine of a double value.

Syntax #include <math.h>
double cosh(double x);

Return value cosh returns the value for the hyperbolic cosine of x.

Notes A range error occurs if the magnitude of x is too large (returns
HUGE_VAL and sets errno to ERANGE).

exp
Purpose To compute the standard exponential function for a double value.

Syntax #include <math.h>
double exp(double x);

Return value exp returns the value for .

Notes A range error occurs if the value of x is too large (returns HUGE_VAL
and sets errno to ERANGE).

fabs
Purpose To compute the modulus or absolute value of a double value.

Syntax #include <math.h>
double fabs(double x);

Return value fabs(x) returns x if x ³ 0, -x otherwise.

See also abs, labs

Example fabs(-1.0) gives 1.0.

floor
Purpose To compute the next (floor) integer below a given double value.

Syntax #include <math.h>
double floor(double x);

Return value floor returns the value of x rounded to the next integer below.

Example floor(1.9) gives 1.0.

fmod
Purpose To compute the floating point remainder of two double values.

Syntax #include <math.h>
double fmod(double x,double y);

Return value fmod returns the floating point remainder of x/y.    This is the value x-i*y
where the integer i is that which causes the result to have the same sign
as x and the magnitude of the result is less than the magnitude of y.   
The sign of y is therefore not significant.

Notes A domain error occurs if    y = 0.    (returns EDOM_VAL and sets errno
to EDOM).

Example fmod(4.0,3.5) gives 0.5.
fmod(-4.0,1.5) gives -1.0.

frexp
Purpose To reduce a double value to mantissa and exponent form.

Syntax #include <math.h>
double frexp(double x, int *expon);

Description frexp splits x into a normalised fraction whose magnitude lies in the
interval [0.5,1.0) or zero; and an exponent which is an integral power of
2 returned in expon.

x=fraction*().

Return value frexp returns the normalised fraction.

Example frexp(0.3,&expon) gives 0.6 with expon=(-1).

ldexp
Purpose To load a mantissa and exponent into a double value.

Syntax #include <math.h>
double ldexp(double x,int expon);

Return value ldexp returns x*().

Notes A range error will occur if the combination is too large (returns
HUGE_VAL, and sets errno to ERANGE).

Example ldexp(0.6,-1) gives 0.3.

log
Purpose To compute the natural logarithm of a double value.

Syntax #include <math.h>
double log(double x);

Return value log returns the natural logarithm of x.

Notes A domain error occurs if x < 0
(returns EDOM_VAL and sets errno to EDOM).
A range error occurs if x = 0
(returns -HUGE_VAL and sets errno to ERANGE).

log10
Purpose To compute the logarithm to the base 10 of a double value.

Syntax #include <math.h>
double log10(double x);

Return value log10 returns logarithm to the base 10 of x.

Notes A domain error occurs if x < 0
(returns EDOM_VAL and sets errno to EDOM).
A range error occurs if x = 0
(returns -HUGE_VAL and sets errno to ERANGE).

modf
Purpose To reduce a double value to its integer and fractional parts.

Syntax #include <math.h>
double modf(double x, double *ipart);

Description modf splits x into its integer part which is returned in ipart and its
fractional part.    Each part has the same sign as x.

Return value modf returns the signed fractional part.

Example modf(-1.5,&ipart) gives -0.5 with ipart = (-1.0).

pow
Purpose To compute the power of a double value.

Syntax #include <math.h>
double pow(double x,double y);

Return value pow returns .

Notes A domain error occurs if x < 0 and y is not an integer.    A domain error
occurs if x = 0 and y < 0    (returns EDOM_VAL and sets errno to
EDOM).    A range error occurs if the combination is too large (returns
HUGE_VAL and sets errno to ERANGE).

sin
Purpose To compute the sine of a double value.

Syntax #include <math.h>
double sin(double x);

Return value sin returns the value in the range [-1,1] for the sine of x which should be
supplied in radians.

sinh
Purpose To compute the hyperbolic sine of a double value.

Syntax #include <math.h>
double sinh(double x);

Return value sinh returns the value for the hyperbolic sine of x.

Notes A range error occurs if the magnitude of x is too large (returns
HUGE_VAL with the appropriate sign and sets errno to ERANGE).

sqrt
Purpose To compute the positive square root of a double value.

Syntax #include <math.h>
double sqrt(double x);

Return value sqrt returns the positive square root of x.

Notes A domain error occurs if x < 0
(returns EDOM_VAL and sets errno to EDOM).

tan
Purpose To compute the tangent of a double value.

Syntax #include <math.h>
double tan(double x);

Return value tan returns the value for the tangent of x which should be supplied in
radians.

tanh
Purpose To compute the hyperbolic tangent of a double value.

Syntax #include <math.h>
double tanh(double x);

Return value tanh returns the value in the range (-1,1) for the hyperbolic tangent of x.

Functions defined in stdio.h

clearerr

fclose

fcloseall

feof

ferror

fflush

fgetc

fgetpos

fgets

flushall

fopen

fprintf

fputc

fputs

fread

freopen

fscanf

fseek

fsetpos

ftell

fwrite

getc

getchar

gets

perror

printf

putc

putchar

puts

remove

rename

rewind

scanf

setbuf

setvbuf

sprintf

sscanf

tmpfile

tmpnam

ungetc

unlink

vfprintf

vprintf

vsprintf

About functions defined in stdio.h

The <stdio.h> header provides prototypes for a number of standard input
and standard output functions.    It also defines a number of types and
macros.    Those referred to in this section are listed below:

typedef unsigned int size_t;
typedef int fpos_t;

#define _IONBF 0
#define _IOLBF 1
#define _IOFBF 2

#define EOF (-1)

#define FOPEN_MAX 20
#define FILENAME_MAX 80

#define L_tmpnam 15
#define TMP_MAX 9999

#define BUFSIZ 512
#define STDIN_OUT_BUFSIZ 80

#define SEEK_SET 0
#define SEEK_CUR 1
#define SEEK_END 2

The FILE structure

The stdout, stdin and stderr streams

The FILE structure

Data is normally transmitted to and from files, and to and from the console.
A particular input/output stream is referenced by a pointer to an associated
FILE structure.    This structure contains details of the stream and its
current state, together with a “buffer” which is a temporary store for the
accumulation of data before transmission to the relevant device.    The
details of the FILE structure are implementation dependent and normally
are of no interest to the user since the usage is hidden within the coding of
the functions.    The current definition can be found in the header file.

The stdout_ stdin and stderr streams

The stream stdout refers to the standard output stream, normally
associated with the console, stdin refers to the standard input stream,
normally associated with the keyboard, whilst stderr refers to the standard
error stream, normally associated with the console.    Each of these
streams is automatically opened when the program is started and closed
when it terminates.    These streams cannot be opened or closed in any
other way.    They are line-buffered text streams with a buffer size of
_STDIN_OUT_BUFSIZ    (see setvbuf for details of buffering strategies).   
stdout, stdin and stderr are coded as pointers to FILE structures.

clearerr
Purpose To clear the error and end-of-file flags for a given stream.

Syntax #include <stdio.h>
void clearerr(FILE *stream);

Return value None.

Example clearerr(stdin);

fclose
Purpose To close a stream.

Syntax #include <stdio.h>
int fclose(FILE *stream);

Description The fclose function flushes all buffers associated with the stream and
de-allocates them (unless they were assigned by setbuf or setvbuf).   
The file is closed and disassociated from the stream.

stdin, stdout and stderr cannot be closed using fclose (an attempt to
do so is not flagged as an error).

Return value fclose returns zero for success and non-zero for failure.

Notes fclose will fail if the stream does not exist or if its buffers cannot be
flushed.

See also fcloseall

fcloseall
Purpose To close any open streams.

Syntax #include <stdio.h>
int fcloseall(void);

Description The function fcloseall closes all the streams that have been
successfully opened by calls to fopen or freopen .    This does not
include the standard streams stdin, stdout and strerr.    See fclose for
further details.

Return value fcloseall returns the number of streams that have been closed or EOF
if one or more of the open streams could not be closed.

Notes An error will occur if, for example, a stream could not be flushed.

feof
Purpose To test if the end-of-file flag is set for a given stream.

Syntax #include <stdio.h>
int feof(FILE *stream);

Return value feof returns a non-zero value if the flag is set, otherwise feof returns
zero.

Example See fsetpos and rewind.

ferror
Purpose To test if the error flag is set for a given stream.

Syntax #include <stdio.h>
int ferror(FILE *stream);

Return value ferror returns a non-zero value if the flag is set, otherwise ferror returns
zero.

fflush
Purpose To flush a stream.

Syntax #include <stdio.h>
int fflush(FILE *stream);

Description The fflush function causes any unwritten data in the output buffer
associated with a given stream to be delivered to its destination.    The
stream remains open.    fflush is not relevant to input streams.

Return value fflush returns zero for success and non-zero for failure.

See also flushall

fgetc
Purpose To get a character from an input stream.

Syntax #include <stdio.h>
int fgetc(FILE *stream);

Description The function fgetc gets an unsigned char from the given stream and
converts it to an int.    Where appropriate the buffer position indicator is
advanced.

Return value fgetc either

o returns the character read or,

o if the buffer is empty, fgetc returns EOF and sets an end-of-file
flag such that feof(stream) is true (non-zero).

Notes If a read error occurs, fgetc returns EOF and sets an error flag such
that ferror(stream) is true (non-zero).

See also getc, getchar, ungetc, fputc

Example

// fgetc.cpp
#include <stdio.h> // for fgetc, etc.
int main()
{
 FILE *infile;
 int c;
 infile=fopen("test.tmp","r"); // file created by fprintf.cpp
 do
 {
 c=fgetc(infile);
 putchar(c);
 } while (c != EOF);
 if (ferror(infile)) printf("ERROR:Read error in fgetc\n");
 fclose(infile);
 return 0;
}

fgetpos
Purpose To get the current value of the file position indicator.

Syntax #include <stdio.h>
int fgetpos(FILE *stream, fpos_t *pos);

Description The fgetpos function stores the current value of the file position
indicator (for the given stream) in the object of type fpos_t pointed to by
pos.    This value is then available for a later call of the fsetpos function.
fgetpos is related to fsetpos in the same way that ftell is related to
fseek.

Return value fgetpos returns zero if successful, non-zero otherwise.

fgets
Purpose To get a string from a stream.

Syntax #include <stdio.h>
char *fgets(char *s, int n, FILE *stream);

Description The function fgets reads a string of characters from a stream and puts it
into the array pointed to by s.    n is the maximum number of characters
to be transmitted including a terminating null.    Reading stops when a
newline character is encountered if this occurs before n-1 characters
have been read.    In this case the newline character is also transmitted.
Reading also stops when end-of-file is encountered.

Return value fgets returns s if successful.

Notes If end-of-file is encountered before any characters are transmitted then
fgets returns a NULL pointer and the array pointed to by s is
unchanged.

If a read error occurs, a NULL pointer is returned and the array pointed
to by s will be incomplete.

See also gets, fputs

Example

// fgets.cpp
#include <stdio.h> // for fgets, etc.
int main()
{ FILE *infile;
 char str[80];
 infile=fopen("test.tmp","r"); // file created by fprintf.cpp
 while (fgets(str,80,infile)) puts(str);
 if (ferror(infile)) printf("ERROR:Read error in fgets\n");
 fclose(infile);
 return 0;
}

flushall
Purpose To flush all open output streams.

Syntax #include <stdio.h>
int flushall(void);

Description The function flushall flushes all the output streams that are currently
open, including stdout and stderr.    See fflush for further details.

Return value flushall returns a count of the number of streams that are open
(including stdin, stdout and stderr).    Note, however, that the function
has no effect on input streams.

fopen
Purpose To open a file and associate a new stream with it.

Syntax #include <stdio.h>
FILE *fopen(const char *filename,
 const char *mode);

Description filename points to the name of a file which is opened by fopen and
which associates the file with a stream.    The name refers to the default
directory unless a pathname is included.    The DOS PATH environment
variable is not effective.
mode points to a string consisting of one of the following options:

mode Description

r Open file for reading only.

w Create and open a file for writing only or open and clear an
existing file for writing.

a Create and open a file for writing only or open an existing file
for writing at end-of-file.

r+ Open file for update (reading and writing).

w+ Create and open a file for update or open and clear an existing
file for update.

a+ Create and open a file for update or open an existing file for
update, writing at end-of-file.

In these forms the file is assumed to be a text file.    A binary file is
designated by an appended letter b (e.g. “rb+” or “r+b” etc.).    Similarly
a letter t designates a text file (the    default).

When a file is opened for update, both reading and writing are possible
on the associated stream but writing cannot be followed by reading
without an intervening fsetpos, fseek or rewind.    Similarly reading
cannot be followed by writing without an intervening fsetpos, fseek,
rewind or a read that encounters an end-of-file marker.

fopen allocates space for a buffer of type _IOFBF (fully buffered, see
setvbuf for details) and size BUFSIZ.    To change either of these
values use setvbuf.

FOPEN_MAX (or possibly more) files can be opened simultaneously.   
FILENAME_MAX    is the maximum length of a filename string.

Return value fopen returns a pointer to the new stream or a NULL if the function

fails.

Notes If the mode is invalid or the file cannot be opened then the global
variable errno will indicate the cause of failure (see perror).

See also freopen

Example

// fopen.cpp
#include <stdio.h> // for fopen,perror etc.
int main()
{
 char fname[80],mode[10];
 FILE *tfile;
 while(1)
 {
 printf("Filename:"); gets(fname);
 if(!*fname) break;
 printf("Mode :"); gets(mode);
 tfile=fopen(fname,mode);
 if (tfile)
 {
 printf("File opened OK\n");
 fclose(tfile); // note file is not ’removed’
 }
 else perror("Error in fopen");
 }
 return 0;
}

fprintf
Purpose To write formatted output to a stream.

Syntax #include <stdio.h>
int fprintf(FILE *stream,
 const char *format,...);

Description fprintf is the same as printf except that the output is directed to a
specified stream.    See printf for further details.

Return value fprintf returns the number of characters transmitted.

See also sprintf

Example

// fprintf.cpp
#include <stdio.h> // for fprintf, etc.
int main()
{
 FILE *outfile;
 outfile=fopen("test.tmp","w");
 fprintf(outfile,"Buffer size:%d\n",outfile->buffer_size);
 fprintf(outfile,"Buffer type:%d\n",outfile->buffer_type);
 fprintf(outfile,"File name :%s\n",outfile->name);
 fprintf(outfile,"File handle:%d\n",outfile->handle);
 fclose(outfile);
 printf("Now list the file test.tmp....");
 return 0;
}

fputc
Purpose To write a character to a stream.

Syntax #include <stdio.h>
int fputc(int c, FILE *stream);

Description The function fputc writes c as an unsigned char to the given stream at
the position given by the file position indicator.    The buffer position
indicator is advanced (unless the stream is unbuffered).

Return value fputc returns the character c.

Notes If a write error occurs, fputc returns EOF and sets an error flag such
that ferror(stream) is true (non-zero).

See also putc, putchar, fgetc

Example

// fputc.cpp
#include <stdio.h> // for fputc, etc.
#include <ctype.h> // for toupper
int main()
{ FILE *infile,*outfile;
 int c;
 infile =fopen("test.tmp","r"); // file created by fprintf.cpp
 outfile=fopen("test.new","w");
 do
 {
 c=fgetc(infile);
 fputc(toupper(c),outfile); // change to upper case
 } while (c != EOF);
 if (ferror(outfile)) printf("ERROR:Write error in fputc\n");
 fclose(infile);
 fclose(outfile);
 remove("test.tmp");
 rename("test.new","test.tmp");
 return 0;
}

fputs
Purpose To write a string to a stream.

Syntax #include <stdio.h>
int fputs(const char *s, FILE *stream);

Description fputs writes the string pointed to by s to the given stream.    The
terminating null is not copied and (in contrast to puts) a newline
character is not appended.

Return value fputs returns zero or a positive value if successful, otherwise, if a write
error occurs, fputs returns EOF.

See also fgets

Example

// fputs.cpp
#include <stdio.h> // for fputs, etc.
#include <string.h> // for strupr
int main()
{ FILE *infile,*outfile;
 char str[80];
 infile=fopen("test.tmp","r"); // file created by fprintf.cpp
 outfile=fopen("test.new","w");
 while (fgets(str,80,infile))
 fputs(strupr(str),outfile); // change to upper case
 if (ferror(outfile)) printf("ERROR:Write error in fputs\n");
 fclose(infile);
 fclose(outfile);
 remove("test.tmp");
 rename("test.new","test.tmp");
 return 0;
}

fread
Purpose To read data from a stream.

Syntax #include <stdio.h>
size_t fread(void *ptr, size_t s, size_t n,
 FILE *stream);

Description The function fread reads data from the given stream into the array
pointed to by ptr. n elements of size s are read into the array so the
number of bytes is (s*n). ptr is a pointer to an array of any type.    The
file position indicator is advanced by the number of bytes read.

Return value fread returns the number of elements of size s that have been
successfully read or a value less than n if a read error occurs.    If either
n or s is zero then there is no change to the array or the stream and
fread returns a zero.

Notes The cause of failure is given by the value of the global variable errno.

See also fwrite

Example

// fread.cpp
#include <stdio.h> // for fread, etc.
#include <string.h> // for memset
#include <stdlib.h> // for atoi
int main()
{ FILE *tfile;
 char buf[256];
 int n,m;
 tfile=fopen("test.$$$","r"); // file created by fwrite.cpp
 printf("Number of characters in file:48\n");
 printf("Number to read in :");
 gets(buf); n=atoi(buf);
 memset(buf,0,256);
 m=fread(buf,1,n,tfile);
 printf("Number successfully read :%d\n",m);
 if (m<n) perror("Error in fread ");
 printf("The buffer contains :\n%s\n",buf);
 fclose(tfile);
 return 0;
}

freopen
Purpose To open a file and associate an existing stream with it.

Syntax #include <stdio.h>
FILE *freopen(const char *filename,
 const char *mode, FILE *stream);

Description The freopen function calls upon fclose to flush the buffer associated
with the stream (but not to de-allocate the space for the FILE structure)
and then reopens the stream with the new filename by calling upon
fopen.    For example, it may be used to change or allocate a filename
in association with stdin, stdout, or stderr.

A failure to fclose the stream is ignored.    See fclose and fopen for
further details.

Return value freopen returns the same value as fopen.

Notes See notes for fopen.

Example

// freopen.cpp
#include <stdio.h> // for freopen,perror etc.
int main()
{ char fname[80],mode[10];
 FILE *tfile;
 tmpnam(fname);
 tfile=fopen(fname,"w"); // note file is not ’removed’
 while(1)
 {
 printf("Filename:"); gets(fname);
 if(!*fname) break;
 printf("Mode :"); gets(mode);
 tfile=freopen(fname,mode,tfile);//note file is not ’removed’
 if (tfile) printf("File reopened OK\n");
 else perror("Error in freopen");
 }
 return 0;
}

fscanf
Purpose To scan and format input from a stream.

Syntax #include <stdio.h>
int fscanf(FILE *stream, char *format,...);

Description fscanf is the same as sscanf except that the input is read from a
stream (rather than a string).    Encountering the end-of-file marker is
equivalent to reaching the end of a string in sscanf.

A subsequent call of fscanf will continue to read data from the position
in the stream at which the last call stopped (this will not be the expected
position if an earlier call was not completely successful).    See sscanf
for further details.

fscanf can produce unexpected results when the end of a line is
incorrectly scanned; fgets with sscanf is normally preferred.

Return value fscanf returns the number of input items assigned.

See also scanf

Example

// fscanf.cpp
#include <stdio.h> // for fscanf, etc.
int main()
{ FILE *infile;
 int size,type,handle;
 char name[80],d[20];
 infile=fopen("test.tmp","r"); // file created by fprintf.cpp
 fscanf(infile,"%s%d%s%d%s%s%s%d",d,&size,d,&type,d,name,d,&handle);
 printf("size :%d\ntype :%d\nname :%s\nhandle:%d\n",
 size,type,name,handle);
 fclose(infile);
 return 0;
}

fseek
Purpose To set the current value of the file position indicator.

Syntax #include <stdio.h>
int fseek(FILE *stream, long offset,
 int whence);

Description The fseek function sets the file position indicator for the given stream to
a new value as follows.    The value and meaning of whence is one of:

whence position

SEEK_SET Beginning of file

SEEK_CUR Current position

SEEK_END End-of-file

whilst offset is the number of characters to be added to this position.   
Commonly whence is set to SEEK_SET and offset is a value returned
by an earlier call to ftell.

fseek discards any characters pushed back into the stream by ungetc
and clears the end-of-file flag for the stream.    An fseek call on an
update stream (see fopen) can be followed by either an input or an
output operation.

Return value fseek returns zero for success and non-zero for failure.

Notes The cause of failure is given by the value of the global variable errno.

See also fsetpos

Example See ftell and rewind.

fsetpos
Purpose To set the value of the file position indicator.

Syntax #include <stdio.h>
int fsetpos(FILE *stream, const fpos_t *pos);

Description The fsetpos function sets the value of the file position indicator (for the
given stream) as the value of the object of type fpos_t pointed to by
pos.    This is the value given by an earlier call of the fgetpos function.

fsetpos is equivalent to fseek (with whence=SEEK_SET).

fsetpos discards any characters pushed back into the stream by
ungetc and clears the end-of-file flag for the stream.    An fsetpos call
on an update stream (see fopen) can be followed by either an input or
an output operation.

Return value fsetpos returns zero for success and non-zero for failure.

Notes The cause of failure is given by the value of the global variable errno.

Example

// fsetpos.cpp
#include <stdio.h> // for fsetpos, etc.
#include <stdlib.h> // for atoi
int main()
{ FILE *tfile;
 fpos_t line_pos[10];
 char buf[80];
 int i;
 tfile=fopen("test.$$$","r"); // file created by fwrite.cpp
 for(i=1;!feof(tfile);i++)
 {
 fgetpos(tfile,&line_pos[i]);
 printf("position of line %d:%d\n",i,line_pos[i]);
 fgets(buf,80,tfile);
 };

 while(1)
 {
 printf("Line number:"); gets(buf); i=atoi(buf);
 if (!*buf) break;
 fsetpos(tfile,&line_pos[i]);
 buf[0]=’\0’;
 fgets(buf,80,tfile);
 puts(buf);
 }
 fclose(tfile);
 return 0;
}

ftell
Purpose To get the current value of the file position indicator.

Syntax #include <stdio.h>
long ftell(FILE *stream);

Description The ftell function returns the current value of the file position indicator
(for the given stream).

This value is then available for a later call of the fseek function.

Return value ftell returns the value of the file position indicator or -1 for failure.

See also fgetpos

Example See also rewind.

Example

// ftell.cpp
#include <stdio.h> // for ftell, etc.
#include <stdlib.h> // for atoi
int main()
{
 FILE *tfile;
 long line_pos[10];
 char buf[80];
 int i;
 tfile=fopen("test.$$$","r"); // file created by fwrite.cpp
 for(i=1;!feof(tfile);i++)
 {
 line_pos[i]=ftell(tfile);
 printf("position of line %d:%d\n",i,line_pos[i]);
 fgets(buf,80,tfile);
 };

 while(1)
 {
 printf("Line number:"); gets(buf); i=atoi(buf);
 if (!*buf) break;
 fseek(tfile,line_pos[i],SEEK_SET); buf[0]=’\0’;
 fgets(buf,80,tfile); puts(buf);
 }
 fclose(tfile);
 return 0;
}

fwrite
Purpose To write data to a stream.

Syntax #include <stdio.h>
size_t fwrite(const void *ptr, size_t s,
 size_t n,FILE *stream);

Description The function fwrite writes data from the array pointed to by ptr to the
given stream.

n elements of size s are written to the stream so the number of bytes is
(s*n).    ptr is a pointer to an array of any type.    For a buffered stream,
the file position indicator is advanced by the number of bytes written.

Return value fwrite returns the number of elements of size s that have been
successfully written or a value less than n if a write error occurs.    If
either n or s is zero then there is no change to the stream and fwrite
returns a zero.

Notes The cause of failure is given by the value of the global variable errno.

See also fread

Example

// fwrite.cpp
#include <stdio.h> // for fwrite, etc.
#include <string.h> // for strlen
int main()
{
 FILE *tfile;
 char buf[]="**First line**\n**Second line**\n**Third line**\n";
 int n,m;
 tfile=fopen("test.$$$","w");
 n=strlen(buf);
 printf("Number of characters in string:%d\n",n);
 m=fwrite(buf,1,n,tfile);
 printf("Number successfully written :%d\n",m);
 if (m<n) perror("Error in fwrite ");
 fclose(tfile);
 return 0;
}

getc
Purpose To get a character from an input stream.

Syntax #include <stdio.h>
int getc(FILE *stream);

Description The function getc is identical to fgetc.    See fgetc for further details.

See also getchar, ungetc, fputc

getchar
Purpose To get a character from stdin.

Syntax #include <stdio.h>
int getchar(void);

Description The function getchar is equivalent to fgetc(stdin).    See fgetc for further
details.

gets
Purpose To get a string from stdin.

Syntax #include <stdio.h>
char *gets(char *s);

Description The function gets reads a string of characters from the standard input
stream and puts it (including a terminating null) into the array pointed to
by s.

Reading stops when a newline character is encountered but (in contrast
to fgets) the newline is not transmitted.    Reading also stops when end-
of-file is encountered but this will not occur unless stdin is redirected
using freopen.    Otherwise, in the default state, the system will wait for
input from the keyboard.

Return value gets returns s if successful.

Notes If end-of-file is encountered before any characters are transmitted then
gets returns a NULL pointer and the array pointed to by s is
unchanged.

If a read error occurs, a NULL pointer is returned and the array pointed
to by s will be incomplete.
The user should ensure that the array s is long enough to store the
input string.

See also fputs

Example

// gets.cpp
#include <stdio.h> // for gets, etc.
int main()
{
 char str[80];
 printf("Input:\n");
 do
 {
 gets(str);
 puts(str);
 } while (*str);
 if (ferror(stdin)) printf("ERROR:Read error in gets\n");
 return 0;
}

perror
Purpose To print an error message to stderr.

Syntax #include <stdio.h>
void perror(const char *s);

Description The perror function prints an error message to the standard error
stream stderr (the console by default).    The message corresponds to
the current value of the global variable errno (see <errno.h>).

First, if s is not NULL, the string pointed to by s is printed, followed by a
colon and a space (the user may supply this in order to point to the
place where the error occurred).    Then a message corresponding to
the value of errno is printed (this is given by strerror(errno)) followed by
a newline.

Return value None.

See also strerror

printf
Purpose To write formatted output to stdout.

Syntax #include <stdio.h>
int printf(const char *format,...);

Description The function printf writes output from a list of arguments to the stdout
stream using format specifiers given in the string pointed to by format.

For each argument in the list (denoted by ...) there must be a
corresponding format specifier in the string pointed to by format.    If
insufficient arguments are provided then the outcome is unsafe and
possibly fatal (The /CHECK option will detect this fault reliably, see also
chapter 5 in the manual).

A specifier consists of a % character followed by a number of characters
which describe how the corresponding argument is to be presented.   
Characters which are not part of a specifier are copied to the output
stream.

A format specifier has the following general form:

                        % [flags] [width] [.precision] [size] type

where the brackets signify an optional element.    The details are given
below.

Type conversion specifier:
In the following table, dddd    denotes a decimal digit (0..9) string of arbitrary
length.    For floating-point arguments, the number of digits after an optional
decimal point will be determined by the [.precision] element or by default
precision values given later.

char: type: format of output:

d integer [-]dddd

i integer [-]dddd

o unsigned integer octal form

u unsigned integer decimal form

x unsigned integer hexadecimal form, lower case letters

X unsigned integer hexadecimal form, upper case letters

p pointer hexadecimal form of a pointer

f floating-point [-]dddd.ddddd

e floating-point [-]d.dddde(+/-)ddd

E floating-point [-]d.ddddE(+/-)ddd
the exponent contains at least two digits, if the value is

zero the exponent is 00

g,G floating-point either f or e/E; trailing zeros are removed (unless the #
flag is used); the e/E form is only used if the exponent is
less than -4 or greater than or equal to the precision value

c integer conversion to unsigned char

s pointer to string string

% none the % character

n pointer to int A count of the number of characters written so far is
stored in the location pointed to by the argument.

Size modifier:
The size of the input argument is assumed be sizeof(int) for integer values
and sizeof(double) for floating-point arguments unless the size is modified by
using h (for short int), l (for long int), or L (for long double).

Precision modifier:
The precision modifier begins with a full stop (.) and is followed by either a
decimal digit string (denoted by n) representing the precision or an asterisk (*)
which signifies that the precision is given by the next argument in the argument
list.    The details are as follows.    Default values appear towards the end of the
table.    Initially n denotes a positive integer.

modifier type specifier precision of output

.n d,i,o,u,x,X n is the minimum number of digits to be printed, using
zeros to pad out on the left if necessary, more than n
characters can still be output (padding for [precision]
should not be confused with padding for [width]);

.n f n is the number of decimal places; if necessary the last
digit is rounded;

.n e,E n is the number of decimal places with one non-zero digit
before the point (unless the value is zero); if necessary
the last digit is rounded;

.n g,G n is the maximum number of significant digits to be
printed; if necessary the last digit is rounded;

.n s n is the maximum number of characters to be printed;

.n c no effect

.* any as for .n but the precision n is supplied as the next
argument in the argument list which will come before the
value in question

default d,i,o,u,x,X n=1

default f,e,E,g,G n=6

default s terminate at null

.0 or . d,i,o,u,x,X n=1

.0 or . f,e,E n=0; no decimal point (unless # flag is used)

.0 or . g,G n=1; no decimal point (unless # flag is used)

Width modifier:
The width modifier can be used to specify the minimum width of the field for
output; more characters will be printed if necessary rather than truncate the
result.    Where fewer than the minimum is required, the field is padded out (on
the left with spaces unless a flags modifier is used, see below).

A decimal digit string representing an integer value n signifies that at least n
characters are printed, padding if necessary; An asterisk (*) signifies that the
width is supplied as the next argument in the argument list which will come
before the value in question.

Flags modifier:
The modifiers “default”, “-”, and “0” below relate to the padding operation
associated with the [width] modifier, in the absence of which these [flags]
modifiers are redundant.    “+” and “space” are used to force a + sign or space
in a non-negative result.    “#” is used to convert certain results can to what is
called an “alternative form”.

modifier type specifier format of output

default result is right justified in the field padding with
spaces

- result is left justified in the field padding with
spaces

0 f,e,E,g,G result is right justified in the field padding with
zeros; (ignored if - flag is used)

0 d,i,o,u,x,X result is right justified in the field padding with
zeros; (ignored if - flag is used, ignored if precision
is specified)

+ not c or s forces a ’+’ sign for a signed conversion with a
non-negative result

space not c or s forces a space for a signed conversion with a non-
negative result    (ignored if + flag is used)

o zero is inserted before the value, and after any
padding

x,X 0x (or 0X) is inserted before the value, and after
any padding

e,E,f,g,G forces a decimal point when zero precision is
specified

g,G forces a decimal point and prevents trailing zeros
from being removed

Return value printf returns the number of characters output.

See also fprintf, sprintf

Examples k=12.

f printf(f,k) f printf(f,k)
"%6d" 12 "%6.4x" 000c

"%6.4d" 0012 "%#6X" 0XC

"%-6.4da" 0012 a "%#6.4x" 0x0c

"%06d" 000012 "%0#6x" 0000xc

"%+6.4d" +00012 "%#8.6x" 0x000c

x=3.45 y=3.45e-2

f printf(f,x) f printf(f,y)
"%6.3f" 3.450 "%f 0.034500

"%06.2f" 003.45 "%.3e" 3.450e-02

"%-6.2fa" 3.45 a "%-10.2ea" 3.45e-02 a

"%+6.2f" +3.45 "%010.2E" 003.45E-02

"%#6.0f" 3. "%#8.0e" 3.e-02

putc
Purpose To write a character to a stream.

Syntax #include <stdio.h>
int putc(int c, FILE *stream);

Description The function putc is identical to fputc.    See fputc for further details.

See also putchar, fgetc

putchar
Purpose To write a character to stdout.

Syntax #include <stdio.h>
int putchar(int c);

Description The function call putchar(c) is equivalent to
putc(c,stdout).    See fputc for further details.

See also fgetc

puts
Purpose To write a string to stdout.

Syntax #include <stdio.h>
int fputs(const char *s);

Description puts writes the string pointed to by s to the standard output stream.   
The terminating null is not copied but (in contrast to fputs) a newline
character is appended.

Return value put returns zero or a positive value if successful, otherwise, if a write
error occurs, puts returns EOF.

See also fgets

remove
Purpose To erase a file.

Syntax #include <stdio.h>
int remove(const char *filename);

Description The remove function erases the file whose name is given by the string
pointed to by filename.    The file should either be in the default directory
or the name may include a DOS pathname.    Relative pathnames (e.g.
“..\file”) are also accepted.    The name should correspond to a single
file; wild cards (* or ?) are not accepted.    A directory cannot be
accessed via the DOS PATH environment variable.    remove is similar
in some respects to the DOS ERASE command.

Return value remove returns zero for success and non-zero for failure.

Notes The cause of failure is given by the value of the global
variable errno (see perror).

A file that is open, should be closed before being removed.

Example

// remove.cpp
#include <stdio.h> // for remove etc
int main()
{ char fname[80];
 while(1)
 {
 printf("Delete filename:"); gets(fname);
 if (!*fname) break;
 if (remove(fname)==0) printf("%s removed\n",fname);
 else perror("Error in remove");
 }
 return 0;
}

rename
Purpose To rename a file.

Syntax #include <stdio.h>
int rename(const char *oldfile,
 const char *newfile);

Description The rename function changes the name of the file whose name is given
by the string pointed to by oldfile, to the name given by the string
pointed to by newfile.    Either the directory will be the default directory
for both files, or both names will include a DOS pathname which may be
different for the two files provided that the disc drive is the same.

A directory cannot be accessed via the DOS PATH environment
variable.    Wildcards (* or ?) are not permitted.

rename is similar to the DOS RENAME command.

Return value rename returns zero for success and non-zero for failure.

Notes The cause of failure is given by the value of the global variable errno
(see perror).    For example, if the file newfile already exists then
rename will fail.

Example

// rename.cpp
#include <stdio.h> // for rename etc
int main()
{ char oldfile[80],newfile[80];
 while(1)
 {
 printf("Old name:"); gets(oldfile);
 if (!*oldfile) break;
 printf("New name:"); gets(newfile);
 if (rename(oldfile,newfile)==0)

printf("%s renamed to %s\n",oldfile,newfile);
 else perror("Error in rename");
 }
 return 0;
}

rewind
Purpose To set a file position indicator to the beginning of the file.

Syntax #include <stdio.h>
void rewind(FILE *stream);

Description The rewind function sets the value of the file position indicator (for the
given stream) to the beginning of the file and clears the error flag for the
stream.

rewind is equivalent to fseek(stream,0,SEEK_SET) followed by a call to
clearerr.

Return value None.

See also fseek

Example

// rewind.cpp
#include <stdio.h> // for rewind, etc.
#include <stdlib.h> // for atoi
int main()
{ FILE *tfile;
 long line_pos[10];
 char buf[80];
 int i,j;
 tfile=fopen("test.$$$","r+"); // file created by fwrite.cpp
 i=1;
 do
 { line_pos[i++]=ftell(tfile);
 buf[0]=’\0’;
 fgets(buf,80,tfile);
 printf("%s",buf);
 } while (!feof(tfile));
 while(1)
 {
 printf("Change line number :"); gets(buf); i=atoi(buf);
 if (!*buf) break;
 printf("Change character number:"); gets(buf); j=atoi(buf);
 printf("Change character to :"); gets(buf);
 fseek(tfile,line_pos[i]+j-1,SEEK_SET);
 fputc(buf[0],tfile);
 rewind(tfile);
 do
 {
 buf[0]=’\0’;
 fgets(buf,80,tfile);
 printf("%s",buf);
 } while(!feof(tfile));
 }
 fclose(tfile);
 return 0;
}

scanf
Purpose To scan and format input from stdin.

Syntax #include <stdio.h>
int scanf(char *format,...);

Description scanf is the same as fscanf except that the input is read from stdin.   
See sscanf for further details.

scanf can produce unexpected results when the end of a line is
incorrectly scanned; gets with sscanf is normally preferred.

Return value scanf returns the number of input items assigned.

setbuf
Purpose To assign a new buffer to a stream.

Syntax #include <stdio.h>
void setbuf(FILE *stream, char *buf);

Description setbuf is a special case of setvbuf to which the reader is referred for
details.    If buf is not a NULL pointer then the stream is fully buffered
and the size of the buffer is BUFSIZE (i.e.
setvbuf(stream,buf,_IOFBF,BUFSIZE)).

If buf is a NULL pointer then the stream is unbuffered (i.e.
setvbuf(stream,NULL,_IONBF,0)).

Notes See notes for setvbuf.

setvbuf
Purpose To assign a new buffer to a stream.

Syntax #include <stdio.h>
void setvbuf(FILE *stream, char *buf,
 int mode, size_t size);

Description The setvbuf function is used to assign a new buffer to a stream.    For
example, it may be used to change the buffering of one of the standard
streams (stdin, stdout, stderr) or to create a buffer with a size or
buffering strategy different from the default.    It may only be used after
the stream has been associated with an open file.    If the old buffer is
not empty then the function fails.    Where possible, space for the old
buffer is de-allocated.    If buf is NULL then space for the new buffer is
allocated by setvbuf otherwise buf points to the new buffer.    In both
cases the size of the buffer is size bytes.

The type of buffer is given by the value of mode as follows:

mode Description

_IONBF The file is unbuffered: The buf and size values are
ignored.    Input is read directly from the file.    Output is
written immediately to the file.

_IOLBF The file is line buffered: Data is transmitted to the buffer
whilst it is not full.    The buffer is automatically flushed
when a newline is encountered or when the buffer is full.

_IOFBF The file is fully buffered: Data is transmitted to the buffer
whilst it is not full.    The buffer is automatically flushed
when it is full.

Return value setvbuf returns zero for success and non-zero for failure.

Notes setvbuf fails if the original buffer was not empty or if a new buffer could
not be created with the given size or if an invalid mode value was
supplied.    The cause of failure is given by the value of the global
variable errno (see perror).

See also setbuf

Example

// setvbuf.cpp
#include <stdio.h> // for setvbuf, etc.
#include <string.h> // for memset
int main()
{
 char buff[21],str[80];
 FILE *outfile;
 outfile=fopen("test.tmp","w");
 setvbuf(outfile,buff,_IOFBF,20);
 memset(buff,’*’,20);
 buff[20]=’\0’;
 while(1)
 {
 printf("input :"); gets(str);
 if (!*str) break;
 if (*str==’@’) fflush(outfile);
 else fputs(str,outfile);
 printf("buffer:%s\n",buff);
 }
 return 0;
}

sprintf
Purpose To write formatted output to a string.

Syntax #include <stdio.h>
int sprintf(char *s, const char *format,...);

Description sprintf is the same as printf except that the output is directed to the
string pointed to by s (rather than a stream).    A null character is
appended.    See printf for further details.

Return value sprintf returns the number of characters transmitted excluding the
terminating null.

See also fprintf

sscanf
Purpose To scan and format input from a string.

Syntax #include <stdio.h>
int sscanf(const char *s, char *format,...);

Description The sscanf function reads input from the string pointed to by s under
the control of the contents of the string pointed to by format.    The string
s contains a number of “fields” that are to be scanned and converted
according to “specifiers” that appear in the format string.    Normally, for
each field and specifier, there will be a corresponding pointer in a list of
pointers (designated by “...” above) to objects which are to receive the
converted input.

If insufficient pointers are provided then the outcome is unsafe and
possibly fatal (the /CHECK option will detect this fault reliably, see also
chapter 5 in the manual).

The format string contains three types of objects:

o a    sequence of white-space characters (as specified in the
description of the isspace function) including spaces, tabs ('\t')
and new lines ('\n'),

o a sequence of ordinary characters; an ordinary character is
defined here to be a non-white-space character excluding an
isolated % character,

o a sequence of characters (denoting a “specifier”) which begins
with a % character, followed by other characters in accordance
with the rules given below.

As the format string is read, white-space characters in the format string
are passed over and ignored.    Ordinary characters are matched with
corresponding characters in the input string s.    If the characters fail to
match then sscanf terminates at this point.    If they do match, then
these characters in the input string are passed over and otherwise
ignored.    %% in the format string is matched by % in the input string.

A specifier has the following general form:

 % [skip] [width] [size] type

where the brackets signify an optional element.

If the width is not specified, a field in the input string is terminated either
by a white-space character or by a character that cannot be converted
according to the current specifier or by a null character (EOF for input
from a stream using scanf, fscanf etc.).    Leading white-space
characters are skipped except under %c.

Type conversion specifier.

The base below refers to an argument in the function strtol or strtoul (one or
other of these functions is implicitly called in each case where the base is
given).    A zero value for base means that the radix is 8,10,or 16 depending on
leading characters in the field.    Under field expected, dddd denotes a
sequence of decimal digits (0..9) of arbitrary length and n denotes a non-zero
decimal digit (1..9).    The type of argument given is the default type which may
be modified by using the [size] element.    Where a list of alternatives appear
under char, in this context the alternatives are interchangeable.

char: field expected: base: default type of argument:

d [-]dddd 10 pointer to int

o octal integer 8 pointer to unsigned int

x hexadecimal integer 16 pointer to unsigned int

p hexadecimal integer 16 pointer to void

u dddd 10 pointer to unsigned int

i ndddd (decimal)
or 0dddd (octal)
or 0Xdddd (hex)

0 pointer to int

f,e,g see strtod pointer to float

s character string ter-
minated by white-space
or null or [width] value

pointer to an array of char large enough
for the string with added terminating null

c 1 character or [width]
characters including
white-space, Use %1s for
the next non-white-space
character

pointer to char or array of char large
enough for the sequence (no
terminating null)

[character string pointer to an array of char large enough
for the selected    characters (see below)
with added terminating null

n none pointer to an int which is to hold the
number of characters read so far from
the input string

% %    (i.e.%% matches %) none

Here are some examples:

format input output
"number%d" "number 420" int k=420

"value=%i" "value=0x0010" int k=16

"%e" "3.45e-02" double x=0.0345

"%s" "my name is" char str[]="my"

"%50s" "my name is" char str[]="my name is"

"%6c" "my name is" char str[]="my nam"

"%1s" " my" char c=’m’

The %[specifier.
A specifier of the form %[scan_set] operates in a manner similar to %s but
scan_set provides a list of the characters that may legitimately be found in the
string.    The string is terminated as for %s (optionally with width modifier) or
when a character which is not in the list is encountered (see examples below).
A specifier of the form %[^scan_set] is similar, but here scan_set provides a list
of characters that may be used to terminate the string (in this case, if a space
character is a valid terminator, then it must appear explicitly in scan_set).

The character] can be included in scan_set provided it is the first character of
the list scan_set (the first after [or [^).    The character ^ can be included in
scan_set provided that it is not the first character for the form %[scan_set].   
The minus character (-) (sometimes used to signify a range of characters) and
the back slash (\) have no special significance in this context.

Here are some examples.

format input output
%[abc] ccbd ccb

%2[abc] ccbd cc

%[abc] cc d cc

%[[bc] cc[] cc[

%[][c] cc[] cc[]

%[ab^] ^bc ^b

%[^abc] defa def

%[^abc] defda defd

%[^abc] defda def

The skip modifier.
An asterisk (*) may be inserted to show that the corresponding field and
conversion is to be discarded and not assigned to the next object pointed to in
the list.

The width modifier.
A decimal digit string representing a positive integer, may be inserted to show
the maximum number of characters that are to be read from the next field.

Fewer than this number will be read if the end of the field is reached first.    If
the maximum number is read then a subsequent field may follow immediately.

The size modifier.
The type of the receiving object may be modified from the default given above
by using the size modifier h for the types d,i,o,x,X,u in order to obtain a pointer
to a corresponding (signed or unsigned) short.    l may similarly be used for a
pointer to a long (the default in this implementation).    l may also be used with
the types f,e,g,E,G in order to obtain a pointer to a double, whilst,
correspondingly, L indicates a pointer to a long double.

Return value sscanf returns the number of input items assigned.

Notes A return value that is less than the number of pointers given (after the
format pointer) indicates an error.

If an inspection of the values assigned does not reveal the error, then
%n may provide a useful diagnostic facility.

See also fscanf, scanf

tmpfile
Purpose To create a temporary binary file.

Syntax #include <stdio.h>
FILE *tmpfile(void);

Description The tmpfile function creates and opens a temporary file in the default
directory with the mode “wb+” (see fopen) and a unique name.    The
file will be automatically removed when it is closed or when the
program terminates normally.

Return value tmpfile returns a pointer to the stream of the file created.

See also tmpnam

Example

// tmpfile.cpp
#include <stdio.h> // for tmpfile,printf
int main()
{ FILE *tfile=tmpfile();
 printf("Name of file opened is %s\n",tfile->name);
 return 0;
}

tmpnam
Purpose To create a temporary file name.

Syntax #include <stdio.h>
char *tmpnam(char *s);

Description The tmpnam function creates a filename which is different from any
other filename in the default directory.    Such a filename can be safely
used to open a temporary file using the fopen function.    A file opened
in this way will not be erased when the file is closed or the program
terminates.    tmpnam (with fopen) is a permanent alternative to
tmpfile.

Return value If s is a NULL pointer then tmpnam returns a pointer to a static string.   
This string will be overwritten by later calls of tmpnam(NULL).    If s
points to an array, then tmpnam returns s.

Notes The array pointed to by s should contain at least L_tmpnam characters.
tmpnam should be called no more than TMP_MAX times.

Example

// tmpnam.cpp
#include <stdio.h> // for tmpnam,printf
int main()
{
 char tnam[L_tmpnam];
 FILE *tfile;
 printf("A name for a file is %s\n",tmpnam(tnam));
 tfile=fopen(tnam,"w+b");
 printf("A name for another file is %s\n",tmpnam(NULL));
 fclose(tfile);
 remove(tnam);
 return 0;
}

ungetc
Purpose To push a character back into an input stream.

Syntax #include <stdio.h>
int ungetc(int c, FILE *stream);

Description The ungetc function pushes the character c back into the input stream
pointed to by stream.    Pushed-back characters can be read by
subsequent calls to fgetc (say) or fread but note that the order will be
the reverse to that of pushing.    Any number of characters may be
pushed back, limited only by the memory available.    An intervening call
to rewind, fseek or fsetpos erases any pushed-back    characters.   
The corresponding external file is unchanged by a call to ungetc.    A
successful call to ungetc clears the end-of-file indicator for the stream.

The file position indicator is decremented for each call of the function
and the original value is reinstated after reading or discarding all pushed
back characters.

Return value ungetc returns the character pushed back, or EOF if the operation fails.

Notes If c is equal to EOF then the operation fails and the stream is
unchanged.

See also fputc

Example

// ungetc.cpp
// Press the space bar to read the file. F1,F2 & F3 will clear
// push-back characters. Any other input character is pushed
// back into the stream.
#include <stdio.h> // for ungetc, etc.
#include <dbos\conio.h> // for get_key
int main()
{
 FILE *infile;
 int c;
 short k;
 long pos;
 fpos_t place;
 infile=fopen("test.tmp","r"); // file created by fprintf.cpp
 do
 {
 get_key(k);
 switch(k)
 {
 case 0x0020: c=fgetc(infile); putchar(c); break;// <space>
 case 0x013b: pos=ftell(infile);
 fseek(infile,pos,SEEK_SET); break; // <F1>
 case 0x013c: fgetpos(infile,&place);
 fsetpos(infile,&place);break; // <F2>
 case 0x013d: rewind(infile); break; // <F3>
 default: ungetc(k,infile);
 }
 } while (k != 13); // <enter>
 fclose(infile);
 return 0;
}

unlink
Purpose To erase a file.

Syntax #include <stdio.h>
int unlink(const char *filename);

Description The unlink function is identical to remove.    See remove for further
details.

vfprintf
Purpose To write formatted output to a stream.

Syntax #include <stdio.h>
int vfprintf(FILE *stream,
 const char *format,va_list arg);

Description vfprintf is the same as vsprintf except that the output is directed to a
stream.    See vsprintf for further details.

Return value vfprintf returns the number of characters transmitted.

See also vprintf

vprintf
Purpose To write formatted output to stdout.

Syntax #include <stdio.h>
int vprintf(const char *format,va_list arg);

Description vprintf is the same as vsprintf except that the output is directed to
stdout.    See vsprintf for further details.

Return value vprintf returns the number of characters transmitted.

See also vfprintf

vsprintf
Purpose To write formatted output to a string.

Syntax #include <stdio.h>
int vsprintf(char *s,
 const char *format,va_list arg);

Description vsprintf is the same as sprintf except that the variable argument list is
replaced by a pointer arg to a list of arguments initialised by a call to the
macro va_start (with possible subsequent calls to va_arg, see
<stdarg.h> for further details).

From a different point of view, sprintf can be defined in terms of a call
to va_start followed by a call to vsprintf (see example).    See sprintf
for further details.

Return value vsprintf returns the number of characters transmitted excluding the
terminating null.

See also vfprintf, vprintf

Example

#include <stdarg.h> // for va_start
#include <stdio.h> // for vsprintf
int my_sprintf(char *s, const char *format,...)
{ int len;
 va_list args;
 va_start(args,format);
 len=vsprintf(s,format,args);
 return len;
}

Functions defined in stdlib.h

abort

abs

atexit

atof

atoi

atol

bsearch

calloc

div

exit

fault_malloc_failure

free

getenv

itoa

labs

ldiv

malloc

qsort

rand

realloc

srand

strtod

strtol

strtoul

system

utoa

About functions defined in stdlib.h

The <stdlib.h> header provides prototypes for functions of general utility.
It also includes the following definitions:

typedef unsigned int size_t;
typedef struct _div_t { int quot; int rem; } div_t;
typedef struct _ldivt { long quot; long rem; } ldiv_t;
#define NULL 0
#define EXIT_SUCCESS 0
#define EXIT_FAILURE 1
#define RAND_MAX 2147483647

abort
Purpose To force an abnormal termination of the program.

Syntax #include <stdlib.h>
void abort(void);

Description abort causes the program to terminate immediately without a call to
exit and its associated atexit instructions etc.

Return value abort does not return to its caller.

abs
Purpose To compute the absolute value of an integer.

Syntax #include <stdlib.h>
int abs(int j);

Return value abs returns the absolute value of the integer j.

See also labs, fabs.

atexit
Purpose To enter a function into a list of functions that are to be called on exiting

from a program.

Syntax #include <stdlib.h>
int atexit(void (*funct)(void));

Description The atexit function designates the function pointed to by funct as a
function to be called (without arguments) upon exiting from a program
(see exit).    A function designated twice will be called twice and so on.

Return value atexit returns zero for successful designation, non zero for failure.

See also abort

atof
Purpose To convert a string to a double.

Syntax #include <stdlib.h>
double atof(const char *nptr);

Description Converts the null terminated string pointed to by nptr into a double
value.

atof(nptr) is equivalent to strtod(nptr,NULL).    See strtod for further
details.

Return value atof returns the converted value.

Notes See notes for strtod.

See also atoi, atol, scanf.

atoi
Purpose To convert a string to an int.

Syntax #include <stdlib.h>
int atoi(const char *nptr);

Description Converts decimal value in the null terminated string pointed to by nptr
into an int value.

atoi(nptr) is equivalent to (int)strtol(nptr,NULL,10).    See strtol for
further details.

Return value atoi returns the converted value.

Notes See notes for strtol.

See also atof, atol, scanf, strtod.

atol
Purpose To convert a string to a long.

Syntax #include <stdlib.h>
long atol(const char *nptr);

Description Converts the decimal value in the null terminated string pointed to by
nptr into a long value.

atol(nptr) is exactly equivalent to strtol(nptr,NULL,10).    See strtol for
further details.

Return value atol returns the converted value.

Notes See notes for strtol.

See also atof, atoi, scanf, strtod, strtoul.

bsearch
Purpose To search an array for a given match.

Syntax #include <stdlib.h>
void *bsearch(const void *key,
 const void *base, size_t nmemb,
 size_t size,
 int (*compare)(const void *,const void *));

Description The bsearch function searches an ordered array of nmemb objects of
size size.    base points to the first element in the array and key provides
the object for which a match is required.    compare points to a
comparison function which is provided by the user and which takes two
arguments that point to the key object and an array element
respectively.    This function should be coded to return a negative integer
when the key object is less than the array element, zero when a match
occurs, and a positive integer when the key object is greater than the
array element.

Return value bsearch returns a pointer to a matching element, or a NULL pointer if
no match was found.    If there is more than one match then bsearch
may not necessarily point to the first occurrence.

See also lfind, lsearch, qsort.

Example

#include <stdio.h> // for printf,gets
#include <string.h> // for strcmpi
#include <stdlib.h> // for bsearch,atoi
#define PTR int(*)(const void*,const void*)
int num_order(const int *k, const int *e)
{ return (*k-*e); }
int lex_order(const char *k, const char **e)
{ return strcmpi(k,*e); }
int main()
{
 char str[10];
 int i,a[]={1,3,5,16,17,26,32,54,67,83,91,91};// ordered array
 int nmemb=sizeof(a)/sizeof(int);
 for(i=0; i<nmemb; i++) printf("%d ",a[i]);
 while(1)
 {
 printf("\nkey:"); gets(str); int key=atoi(str);
 if(key==0) break;
 int *ptr=(int*)bsearch(&key,a,nmemb,sizeof(int),
 (PTR)num_order);
 if (ptr) printf("%d\n",*ptr);
 else printf("Not found\n");
 };
 char *b[]={"Andrew","Elaine","Gillian","Helen","Jonathan",
 "Paul"};
 for(i=0; i<6; i++) printf("%s ",b[i]);
 while(1)
 {
 printf("\nkey:"); gets(str);
 if(str[0]=='\0') break;
 char **ptr=(char**)bsearch(str,b,6,sizeof(char *),
 (PTR)lex_order);
 if (ptr) printf("%s\n",*ptr);
 else printf("Not found\n");
 };
 return 0;
}

calloc
Purpose To allocate and clear a block of memory dynamically.

Syntax #include <stdlib.h>
void *calloc(size_t n, size_t s);

Description calloc allocates a block of memory of (n * s) bytes for n objects of size
 s.    Thus if the objects are of type t then s=sizeof(t).    Each byte is
cleared to 0.    If n=0 or s=0 then a unique pointer is returned.

Return value calloc returns a pointer to the new block.

Notes If there is insufficient memory available then calloc returns a NULL
pointer.

See also malloc, realloc, free, fault_malloc_failure.

Example

#include <stdio.h> // for printf,gets
#include <stdlib.h> // for calloc,free
#include <string.h> // for strlen,strcpy
int main()
{ char *s1,s2[80];
 do
 {
 printf("string:"); gets(s2);
 s1=(char *)calloc(strlen(s2)+1,sizeof(char));
 strcpy(s1,s2);
 printf("memory:%s\n",s1);
 free(s1);
 } while (s2[0]);
 return 0;
}

div
Purpose To compute the quotient and remainder after dividing two integers.

Syntax #include <stdlib.h>
div_t div(int numer, int denom);

Description The div function computes the quotient and remainder of the fraction
numer/denom.    If the result is returned to r (of type div_t) then r.quot is
the integer value obtained by division and truncation towards zero.   
r.rem is the integer    remainder defined as (numer - r.quot*denom).   
The result is identical to the coding:

r.quot = numer/denom;
r.rem = numer%denom;

which is simpler.

Return value div returns a structure of type div_t consisting of the
quotient and remainder.

Notes If denom is zero then r.quot is set to HUGE_VAL, r.rem is set to zero
and errno is set to ERANGE (see error.h).

See also ldiv.

Example

#include <stdio.h> // for printf,gets
#include <stdlib.h> // for div,atoi
int main()
{ char str[80];
 int numer,denom;
 div_t r;
 do
 {
 printf("numerator :"); gets(str); numer=atoi(str);
 printf("denominator:"); gets(str); denom=atoi(str);
 r=div(numer,denom);
 printf("quotient :%d\n",r.quot);
 printf("remainder :%d\n",r.rem);
 } while (str[0]) ;
 return 0;
}

exit
Purpose To cause a program to terminate normally.

Syntax #include <stdlib.h>
void exit(int status);

Description The exit function calls upon any functions that have been listed by the
atexit function in reverse order of their designation.    The exit function
then terminates the program by completing any tasks which are
normally unfinished such as the flushing of any unwritten buffers and
the closure of any open streams.    status=EXIT_SUCCESS is used to
represent successful termination, whilst status = EXIT_FAILURE
denotes unsuccessful termination.    A call of return n from the main
segment of a program has the effect of exit(n).

Return value exit does not return to its caller.

See also abort.

Example

#include <stdio.h> // for printf,gets
#include <stdlib.h> // for abort,exit,atexit
void atexit_do(void)
{printf("\natexit_do called on exit....\n");}
int main()
{ char str[10];
 do
 { printf("\nchar:"); gets(str);
 if (str[0]==’@’) atexit(atexit_do);
 else
 { printf("This was in the output buffer...");
 switch (str[0])
 { case ’a’: abort();
 case ’s’: exit(EXIT_SUCCESS);
 case ’f’: exit(EXIT_FAILURE);
 case ’0’: return 0;
 case ’1’: return 1;
 } //switch
 } //if
 } while (*str);
 return 0;
}

fault_malloc_failure
Purpose To provide a warning message when malloc fails.

Syntax #include <stdlib.h>
int fault_malloc_failure(int flag);

Description malloc, calloc and realloc each    return a NULL pointer when there is
insufficent memory available for the call.

If this failure is not trapped explicitly then fault_malloc_failure may be
used to force a run time error.    flag is set to a non-zero value to enable
this behaviour, or to zero to return to the default state.

Return value fault_malloc_failure returns zero when the trap is enabled, non-zero
when disabled.

See also free.

Example

#include <stdlib.h> // for fault_malloc_failure,free
int main()
{
 fault_malloc_failure(1);
 char *s=malloc(1000000000);
 fault_malloc_failure(0);
 free(s);
 return 0;
}

free
Purpose To free a block of memory that has been allocated by calloc, malloc, or

realloc.

Syntax #include <stdlib.h>
void free(void *ptr);

Description The free function makes previously allocated memory available for
reallocation.

ptr must be a value that has been returned by calloc, malloc or
realloc.    The system keeps a record of such pointers together with the
size of each associated block.

free(NULL) has no effect.

Return value None.

Notes If a record of a pointer is not found (because it has not been set by
malloc, calloc or realloc, or it has already been removed by free or
realloc) then the program terminates with a run time failure message.

getenv
Purpose To read an entry in the DOS “environment” list.

Syntax #include <stdlib.h>
char *getenv(const char *name);

Description getenv searches a list in the so-called DOS environment region of
memory for items such as “COMSPEC”, “PATH”, “PROMPT”, etc.,
which have default values or values assigned using the DOS SET
command.    name is a pointer to such a string which should not contain
any lower case letters or the equals sign (=).

Return value getenv returns a pointer to the value associated with name or a NULL
pointer if no such string is found.

See also system.

Example

#include <stdio.h> // for printf,gets
#include <stdlib.h> // for getenv
int main()
{ char *ptr,str[80];
 do
 {
 printf("name :"); gets(str);
 // enter "PATH","COMSPEC","PROMPT",etc from DOS SET command
 ptr=getenv(str);
 if (ptr) printf("environment:%s\n",ptr);
 else printf("ERROR :environment not found\n");
 } while (*str);
 return 0;
}

itoa
Purpose To convert an integer to a string.

Syntax #include <stdlib.h>
char *itoa(int val, char *str, int rad);

Description itoa converts val into a string using the radix rad (in the range 2..36)
and puts the result into the string pointed to by str.    If val is negative
then itoa sets the radix to 10 and the string begins with a minus sign.

Return value itoa returns a pointer to str.

Notes The string pointed to by str should be long enough to accommodate the
result which may be up to 40 bytes long.    A value of rad outside of the
stipulated range will cause a fatal error.

See also utoa, sprintf.

Example

#include <stdio.h> // for printf,gets
#include <stdlib.h> // for itoa,atoi
int main()
{ char str[40];
 int val,rad;
 while(1)
 { printf("value :"); gets(str); val=atoi(str);
 if(val==0) break;
 printf("radix :"); gets(str); rad=atoi(str);
 printf("return :%s\n",itoa(val,str,rad));
 }
 return 0;
}

labs
Purpose To compute the absolute value of an integer.

Syntax #include <stdlib.h>
long labs(long j);

Return value labs returns the absolute value of the integer j.

See also abs, fabs.

ldiv
Purpose To compute the quotient and remainder after dividing two integers.

Syntax #include <stdlib.h>
ldiv_t ldiv(long numer, long denom);

Description The ldiv function is equivalent to div.    See div for further details.

malloc
Purpose To allocate a block of memory dynamically.

Syntax #include <stdlib.h>
void *malloc(size_t s);

Description malloc allocates a block of memory of s bytes.
If s=0 then a unique pointer is returned.

Return value malloc returns a pointer to the new block.

Notes If there is insufficient memory available then malloc returns a NULL
pointer.

See also calloc, realloc, free, fault_malloc_failure.

Example

#include <stdio.h> // for printf,gets
#include <stdlib.h> // for malloc,free
#include <string.h> // for strlen,strcpy
int main()
{ char *s1,s2[80];
 do
 { printf("string:"); gets(s2);
 s1=(char *)malloc(sizeof(char)*(strlen(s2)+1));
 strcpy(s1,s2);
 printf("memory:%s\n",s1);
 free(s1);
 } while (s2[0]);
 return 0;
}

qsort
Purpose To sort an array into a given order.

Syntax #include <stdlib.h>
void qsort(const void *base,
 size_t nmemb, size_t size,
 int (*compare)(const void *, const void *));

Description qsort is similar to bsearch but qsort reorders the given array according
to the function pointed to by compare.    If two elements compare as
equal (i.e. *compare returns zero) then their order in the sorted array is
unspecified.    See bsearch for details of the properties required of the
function pointed to by compare.

Example

// qsort.cpp
#include <stdio.h> // for printf
#include <string.h> // for strcmpi
#include <stdlib.h> // for qsort
#define PTR int(*)(const void*,const void*)
int num_order(const int *e1, const int *e2)
{ return (*e1-*e2); }
int lex_order(const char **e1, const char **e2)
{ return strcmpi(*e1,*e2); }
int main()
{
 int i,a[]={56,63,13,1,92,76,0,34,23};
 char *b[]={"Jonathan","Gillian","Helen","Andrew","Elaine",
 "Paul"};
 int nmemb=sizeof(a)/sizeof(int);
 qsort(a,nmemb,sizeof(int),(PTR)num_order);
 for(i=0; i<nmemb; i++) printf("%d ",a[i]);
 printf("\n");
 nmemb=sizeof(b)/sizeof(char *);
 qsort(b,nmemb,sizeof(char *),(PTR)lex_order);
 for(i=0; i<nmemb; i++) printf("%s ",b[i]);
 return 0;
}

rand
Purpose To return a pseudo-random integer value.

Syntax #include <stdlib.h>
int rand(void);

Description Note that on re-running the program, the same sequence is generated
using successive calls of rand unless a varying “seed” is provided via
srand or date_time_seed .

rand() % n        gives a result in the range 0..(n-1).

Return value rand returns a pseudo-random integer value in the range
0..RAND_MAX.

realloc
Purpose To change the size of a block created by malloc, calloc or realloc.

Syntax #include <stdlib.h>
void *realloc(void *ptr,size_t s);

Description realloc changes the size of the block pointed to by ptr.    If ptr is not
NULL then it must point to a block which has been created by malloc,
calloc or realloc.    A list of such pointers and the size of the associated
blocks is kept by the system.    The contents of the new block will be the
same as the old up to the smaller of the old and the new sizes.    If the
size increases, the extra memory will not be cleared.    If the size is zero,
then realloc behaves exactly like the function free.    If ptr is NULL then
realloc behaves exactly like malloc.

Return value realloc returns a pointer to the new block or a NULL pointer if realloc is
set to behave like the function free.

Notes If there is insufficient memory available then realloc returns a NULL
pointer.

If a record of a pointer is not found (because it has not been set by
malloc,calloc or realloc, or it has already been removed by free or
realloc) then the program terminates with a run time failure message.

Example

#include <stdio.h> // for printf,gets
#include <stdlib.h> // for realloc
#include <string.h> // for strlen,strcpy
int main()
{
 char s2[80];
 char *s1=NULL;
 size_t len=1;
 do
 {
 printf("string:"); gets(s2);
 len+=strlen(s2);
 s1=realloc(s1,len);
 strcat(s1,s2);
 printf("memory:%s\n",s1);
 } while (s2[0]);
 realloc(s1,0);
 return 0;
}

srand
Purpose To enter a new “seed” for the pseudo-random integer generator rand.

Syntax #include <stdlib.h>
void srand(unsigned int seed);

Description The argument of srand provides a seed for the function rand.    That is,
it sets an initial value which is used to start a process for generating a
pseudo-random sequence.    The default value of this seed is 1.    Some
means should be used to vary the seed value otherwise re-running the
program will provide the same sequence of pseudo-random values.

See also date_time_seed

Example

#include <stdio.h> // for printf,gets
#include <stdlib.h> // for rand,srand
#include <time.h> // time
int main()
{
 char str[10];
 union { unsigned int i[2]; time_t d;} t;
 t.d=time(NULL);
 srand(t.i[0]);
 do
 { printf("rand :%d",rand() % 1000); gets(str); }
 while (!*str);
 return 0;
}

strtod
Purpose To convert a string to a double.

Syntax #include <stdlib.h>
double strtod(const char *nptr,
 char **endptr);

Description Converts the null terminated string pointed to by nptr into a double
value.

The string is assumed to contain in order:

· an optional initial part consisting of:

white-space characters c (isspace(c)>0)

· a mandatory part containing at least one digit and
containing in order:

an optional sign (+ or -)
optional digits d (isdigit(d) > 0)
an optional decimal point (.)
optional digits d (0..9 i.e. isdigit(d) > 0)

· an optional exponent part containing in order:

the letter e (e or E)
an optional sign (+ or -)
one or more digits d (isdigit(d) > 0)

· an optional final part consisting of delimiters c

(isdigit(c) = = 0).

Return value strtod returns the double value if conversion has proved successful or
a zero if not.

If endptr is not NULL then strtod sets *endptr to point to the final part of
the string.    This is useful for error detection.

Notes If the conversion leads to an overflow condition then strtod returns
either plus or minus HUGE_VAL (depending on the sign of the value)
and errno is set to ERANGE.

If the conversion leads to an underflow condition then strtod returns a
zero and errno is set to ERANGE (see <errno.h>).

See also atof, scanf.

Examples +2.456e-6 (OK)
-.12e4 (OK)
.4 (OK)
1.0 e4 (gives 1.0)

2e (gives 2.0)
e2 (gives 0)

Example

#include <stdio.h> // for printf,gets,perror
#include <stdlib.h> // for strtod
#include <errno.h> // for errno,EZERO
int main()
{
 char str[80],*endptr;
 do
 {
 printf("string :"); gets(str);
 printf("double :%g\n",strtod(str,&endptr));
 printf("endpart:%s\n",endptr);
 if(errno) { perror(NULL); errno=EZERO; }
 } while (*str);
 return 0;
}

strtol
Purpose To convert a string to a long.

Syntax #include <stdlib.h>
long strtol(const char *nptr, char **endptr,
 int radix);

Description Converts the null terminated string pointed to by nptr into a long value
using the given radix.

The string is assumed to contain in order:

· an optional initial part consisting of white-space
characters c (isspace(c) > 0)

· a mandatory part containing:

an optional sign (+ or -)
and one or more numeric characters.

· an optional final part consisting of non-numeric
characters.

For this purpose a numeric character is any character that is permitted
for the given radix.

 e.g. radix=10; 0..9
radix=8; 0..7
radix=16; 0..9, A..F, and a..f
radix=36; 0..9, A..Z, and a..z.

If radix=0 then strtol will assign the radix to one of 8, 10 and 16
depending on the initial characters of the mandatory part.    i.e. a leading
0x or 0X gives a radix of 16, otherwise a leading 0 gives a radix of 8,
otherwise the radix is 10.

Return value strtol returns the long value if conversion has proved successful or a
zero if not.

If endptr is not NULL then strtol sets *endptr to point to the final part of
the string.    This is useful for error detection.

Notes If the conversion leads to an overflow condition then strtol returns
either LONG_MAX or LONG_MIN (depending on the sign of the value)
and errno is set to ERANGE (see <errno.h>    and <limits.h>).

If radix>36 or radix<2 (radix0) then strtol returns zero.

See also atoi, atol, strtoul, scanf.

Example If radix = 0
238ag gives decimal 238

0238ag gives octal 23
0x238ag gives hexadecimal 238A

Example

#include <stdio.h> // for printf,gets,perror
#include <stdlib.h> // for strtol
#include <errno.h> // for errno,EZERO
int main()
{
 char str[80],*endptr;
 int radix;
 do
 {
 printf("radix :"); gets(str);
 radix=strtol(str,NULL,10);
 printf("string :"); gets(str);
 printf("long :%ld\n",strtol(str,&endptr,radix));
 //printf("ulong :%lu\n",strtoul(str,&endptr,radix));
 printf("endpart:%s\n",endptr);
 if(errno){ perror(NULL); errno=EZERO; }
 } while (*str);
 return 0;
}

strtoul
Purpose To convert a string to an unsigned long.

Syntax #include <stdlib.h>
unsigned long strtoul(const char *nptr,
 char **endptr, int radix);

Description Converts the null terminated string pointed to by nptr into an unsigned
long value using the given radix.

strtoul operates in the same manner as strtol except for the following
error condition and the fact that a leading minus sign is not permitted.

Return value strtoul returns the unsigned long value if conversion has proved
successful or a zero if not.

If endptr is not NULL then stroul sets *endptr to point to the “final” part
of the string.

Notes If the conversion leads to an overflow condition then strtoul returns
ULONG_MAX and errno is set to ERANGE (see <error.h>    and
<limits.h>).

See also atoi, atol, scanf.

system
Purpose To issue a DOS command.

Syntax #include <stdlib.h>
int system(const char *com);

Description The system function provides a means of executing a DOS command
from within a C program.    com points to a string containing the DOS
command.    The current DOS PATH environment entry is used to access
files which are not in the default directory.    If com is a NULL pointer then
the DOS EXIT command is executed.

Commands are issued using the MS-DOS command processor
COMMAND.COM with the amount of memory specified in the E/
parameter of this command.    The default value of 160 can be increased
by using the COMSPACE command which is to be found in the
DBOS.DIR directory.    The general form of this command is

COMSPACE D’<number>’

where <number> specifies the number of bytes (in decimal) to be
reserved (e.g. COMSPACE D’1024’ reserves 1K).    As a guideline, use
the size of the real mode .EXE or .COM file plus 10%.    It is not possible
to issue a command which uses DBOS (e.g. another Salford C++
program).

Return value system returns zero for success and a non-zero value for failure.

See also getenv.

Example

#include <stdio.h> // for printf,gets
#include <stdlib.h> // for system
int main()
{
 char str[80];
 system("ver");
 do
 {
 printf("\n\ncommand>"); gets(str);
 system(str);
 } while(*str);
 return 0;
}

utoa
Purpose To convert an unsigned integer to a string.

Syntax #include <stdlib.h>
char *utoa(unsigned int val, char *str,
 int rad);

Description utoa converts the unsigned int val into a string using the radix rad and
puts the result into the string pointed to by str.    It is identical to itoa
except that utoa does not include the option of a leading minus sign
(see itoa for further details).

Functions defined in string.h

index

memchr

memcmp

memcpy

memmove

memset

rindex

stpcpy

strcat

strchr

strcmp

strcmpi

strcmpl

strcoll

strcpy

strcspn

strdup

strend

strerror

stricmp

strlen

strlwr

strncat

strncmp

strncpy

strpbrk

strrchr

strspn

strstr

strtok

strupr

strxfrm

About functions defined in string.h

The <string.h> header gives prototypes for a number of functions which
are useful for processing arrays of characters or objects which are treated
as characters.    It includes the following definitions:

typedef unsigned int size_t;
#define NULL 0

index
Purpose To locate the position of the first occurrence of a given character in a

null terminated string.

Syntax #include <string.h>
char *index(const char *s, int c);

Description index is an alternative name for strchr.    See strchr for further details.

memchr
Purpose To locate the position of the first occurrence of a given character in an

array.

Syntax #include <string.h>
void *memchr(const void *s, int c, size_t n);

Return value memchr returns a pointer to the first occurrence of c in the array of size
n pointed to by s.

A NULL return means that the character has not been found.

Notes A NULL is returned when n=0.

It is important to ensure that n is not negative.

See also strchr, strrchr.

Example

#include <stdio.h> //for printf,gets
#include <string.h> //for memchr
#include <stdlib.h> //for atoi
int main()
{ size_t n;
 char *ptr,c,str[10];
 char s[]="abcdefghijklmnopqrstuvwxyz";
 do
 { printf("Source :%s\n",s);
 printf("n :"); gets(str); n=atoi(str);
 printf("c :"); gets(str); c=str[0];
 ptr=(char*)memchr(s,c,n);
 if (ptr) printf("points to:%c\n",*ptr);
 else printf("not found\n");
 } while (n);
 return 0;
}

memcmp
Purpose To compare two arrays of n characters.

Syntax #include <string.h>
int memcmp(const void *s1, const void *s2,
size_t n);

Description Compares up to n characters in corresponding positions in the arrays
pointed to by s1 and s2 until elements are found to differ.

Return value Either memcmp returns a positive or negative value depending on
whether s1[i]-s2[i] is positive or negative, for the index i where elements
first differ;

or memcmp returns zero if the first n elements of the two arrays are
identical.

memcmp returns a positive value when n=0.

Notes n should not be greater than the length of the shorter array.

See also strcmp, strncmp, strcmpl.

Example

#include <stdio.h> //for printf,gets
#include <string.h> //for memcmp
#include <stdlib.h> //for atoi
int main()
{ size_t n;
 char str[10];
 char s1[]="abcdef";
 char s2[]="abcdfe";
 do
 { printf("Source 1 :%s\n",s1);
 printf("Source 2 :%s\n",s2);
 printf("n :"); gets(str); n=atoi(str);
 printf("memcmp(s1,s2,n):%d\n",memcmp(s1,s2,n));
 printf("memcmp(s2,s1,n):%d\n",memcmp(s2,s1,n));
 } while (n);
 return 0;
}

memcpy
Purpose To copy an array of n characters.

Syntax #include <string.h>
void *memcpy (void *dest, const void *srce,
size_t n);

Description Copies n characters from the object pointed to by srce to the object
pointed to by dest.

Return value memcpy returns the value of dest.

Notes If the two arrays of characters overlap then the effect of memcpy
should be regarded as unpredictable and the alternative memmove
should be used.

If n is greater than the length of dest or srce then the effect of memcpy
should be regarded as unpredictable.    It is important to ensure that n is
not less than zero.

See also strcpy, strncpy, strdup.

Example

#include <stdio.h> //for printf,gets
#include <string.h> //for memcpy,memmove
#include <stdlib.h> //for atoi
int main()
{
 unsigned int n,s,d;
 do
 {
 char mem1[]="abcdefghijklmnopqrstuvwxyz";
 char mem2[]="abcdefghijklmnopqrstuvwxyz";
 char str[10];
 printf("Copy from letter :"); gets(str); s=str[0]-’a’;
 printf("Copy to letter :"); gets(str); d=str[0]-’a’;
 printf("Number of characters:"); gets(str); n=atoi(str);

 printf("%s\n",mem1);
 memcpy (&mem1[d],&mem1[s],n); printf("%s\n",mem1);
 memmove(&mem2[d],&mem2[s],n); printf("%s\n",mem2);
 } while (n);
 return 0;
}

memmove
Purpose To copy an array of n characters.

Syntax #include <string.h>
void *memmove(void *dest, const void *srce,
size_t n);

Description Copies n characters from the object pointed to by srce to the object
pointed to by dest.    memmove first copies the source into a temporary
array of n characters that does not overlap either of the objects
involved.

Return value memmove returns the value of dest.

Notes If n is greater than the length of dest or srce then the effect of
memmove should be regarded as unpredictable.    It is important to
ensure that n is not less than zero.

See also memcpy, strcpy, strdup.

memset
Purpose To set an array of n characters to a particular value.

Syntax #include <string.h>
void *memset (void *s, int c, size_t n);

Description Copies the (unsigned char) value of c into the n characters of the array
pointed to by s.

Return value memset returns the value of s.

Notes It is important to ensure that n is not negative.

See also memcpy.

Example

#include <stdio.h> // for printf,gets
#include <string.h> // for memset
#include <stdlib.h> // for atoi
int main()
{
 char s[40],str[10],c;
 size_t n;
 memset(s,’*’,40);
 printf("c :"); gets(str); c=str[0];
 printf("n :"); gets(str); n=atoi(str);
 printf("memset:%.40s\n",memset(s,c,n));
 return 0;
}

rindex
Purpose To locate the position of the last occurrence of a given character in a

null terminated string.

Syntax #include <string.h>
void *rindex(const char *s, int c);

Description rindex is an alternative name for strrchr.    See strrchr for further
details.

stpcpy
Purpose To copy one null terminated string into another.

Syntax #include <string.h>
char* stpcpy(char *dest, const char *src);

Description stpcpy is identical to strcpy except for the return value.    See strcpy
for further details.

Return value stpcpy returns a pointer to the null terminator of dest, i.e. dest +
strlen(src).

Example

#include <stdio.h> //for printf,gets
#include <string.h> //for stpcpy
int main()
{
 char srce[80],dest[80],*ptr;
 printf("source :"); gets(srce);
 ptr=stpcpy(dest,srce);
 printf("destination :%s\n",dest);
 printf("Pointer after:%c\n",*(ptr-1));
 return 0;
}

strcat
Purpose To append one null terminated string to the end of another.

Syntax #include <string.h>
char *strcat(char *dest, const char *srce);

Description Appends a copy of the string pointed to by srce (including its null
terminator) on to the end of the string pointed to by dest (the initial
character of srce replaces the original terminating null of dest).

A source string of zero length is quite acceptable.

Return value strcat returns the value of dest.

Notes If the two strings overlap then the effect of strcat should be regarded as
unpredictable.

If strlen(srce) + strlen(dest) + 1 is greater than the length of the array
dest then strcat may contaminate other areas of memory.

See also strncat

Example

#include <stdio.h> //for printf,gets
#include <string.h> //for strcat
int main()
{
 char srce[80],dest[80];
 dest[0]=’\0’;
 do
 {
 printf("source :"); gets(srce);
 printf("destination:%s\n",strcat(dest,srce));
 } while (srce[0]);
 return 0;
}

strchr
Purpose To locate the position of the first occurrence of a given character in a

null terminated string.

Syntax #include <string.h>
char *strchr(const char *s, int c);

Return value strchr returns a pointer to the first occurrence of c in the string pointed
to by s or a NULL pointer if the character has not been found.    If c=’\0’
then strchr returns a pointer to the null terminator at the end of the
string.

See also memchr, strrchr, strstr.

Example

#include <stdio.h> //for printf,gets
#include <string.h> //for strchr
int main()
{
 char *ptr,c,str[10];
 char s[]="aaabbcdddeefggghhijjjkkl";
 do
 { printf("Source :%s\n",s);
 printf("c :"); gets(str); c=str[0];
 ptr=strchr(s,c);
 if (ptr) printf("points to position:%d\n",ptr-s+1);
 else printf("not found\n");
 } while (ptr);
 return 0;
}

strcmp
Purpose To compare two null terminated strings.

Syntax #include <string.h>
int strcmp(const char *s1, const char *s2);

Description Compares characters in corresponding positions in the strings pointed
to by s1 and s2 until elements are found to differ or the end of one of
the strings is reached.

Return value Either strcmp returns a positive or negative value depending on
whether s1[i]-s2[i] is positive or negative for the index i where elements
first differ;    or zero if the two strings are identical.

(e.g. negative if s1 is lexicographically less than s2.)

See also strcmpl, strncmp, memcmp.

Example strcmp("dog","cat") is positive.
strcmp("dog","dogs") is negative.
strcmp("","a") is negative.
strcmp("","") is zero.

Example

#include <stdio.h> //for printf,gets
#include <string.h> //for strcmp
int main()
{ char s1[80],s2[80];
 do
 { printf("Source 1 :",s1); gets(s1);
 printf("Source 2 :",s2); gets(s2);
 printf("strcmp(s1,s2):%d\n",strcmp(s1,s2));
 printf("strcmp(s2,s1):%d\n",strcmp(s2,s1));
 } while (s1[0]);
 return 0;
}

strcmpi
Purpose To compare two null terminated strings without regard to the case of

alphabetic characters.

Syntax #include <string.h>
int strcmpi(const char *s1, const char *s2);

Description strcmpi is an alternative name for strcmpl.    See strcmpl for further
details.

strcmpl
Purpose To compare two null terminated strings without regard to the case of

alphabetic characters.

Syntax #include <string.h>
int strcmpl(const char *s1, const char *s2);

Description Compares characters in corresponding positions in the strings pointed
to by s1 and s2 until elements are found to differ or the end of one of
the strings is reached.

The comparison is insensitive to case, so that ’a’ matches ’A’ etc.

Return value Either strcmpl returns a positive or negative value depending on
whether s1[i]-s2[i] is positive or negative for the    index i where
elements first differ; or zero if the two strings are equivalent. (e.g.
negative if s1 is lexicographically before s2.)

See also strcmp, memcmp.

strcoll
Purpose To compare two null terminated strings in relation to the current locale.

Syntax #include <string.h>
int strcoll(const char *s1, const char *s2);

Description The current implementation supports only the “C” locale (see
<locale.h>) in which strcoll is identical to strcmp.

Return value See strcmp.

strcpy
Purpose To copy one null terminated string into another.

Syntax #include <string.h>
char *strcpy (char *dest, const char *srce);

Description Copies the string pointed to by srce into that pointed to by dest up to
and including the terminating null.

Return value strcpy returns the value of dest.

Notes If the two strings overlap then the effect of strcpy should be regarded
as unpredictable.

Care should be taken to ensure that the destination array is long
enough to accommodate the source string.

See also memcpy, stpcpy, strdup, strncpy.

Example

#include <stdio.h> //for printf,gets
#include <string.h> //for strcpy
int main()
{ char srce[80],dest[80];
 printf("source :"); gets(srce);
 printf("destination:%s\n",strcpy(dest,srce));
 return 0;
}

strcspn
Purpose To find the length of the initial part of a string which is made up entirely

from characters that do not appear in another string.

Syntax #include <string.h>
size_t strcspn(const char *s1,
 const char *s2);

Description strcspn returns the length of the initial segment of string s1 that
consists entirely of characters not from string s2.    That is, strcspn tests
if s1[n] does not appear in the string s2 for n=0,1,2.., until s1[n] is found
in s2 or the end of s1 is reached.

strcspn is equivalent to the code:

 size_t len=0;
 while (*sl && !strchr(s2,*s1)) {s1++;len++}
 return len;

Return value strcspn returns the length of the initial part of s1.

See also strpbrk, strspn.

Example

#include <stdio.h> //for printf,gets
#include <string.h> //for strcspn
int main()
{
 char s1[]="abcdefghijklmnopqrstuvwxyz";
 char s2[80];
 size_t n;
 do
 {
 printf("s1 :%s\n",s1);
 printf("s2 :"); gets(s2);
 n=strcspn(s1,s2);
 printf("strcspn :%d\n",n);
 } while (n);
 return 0;
}

strdup
Purpose To allocate memory and copy a string to it.

Syntax #include <string.h>
char* strdup(const char *str);

Description strdup duplicates a string by calling malloc and by copying the string
pointed to by str to the newly allocated memory.    The user is
responsible for freeing the memory when it is no longer needed.

Return value strdup returns a pointer to the duplicated string or a NULL pointer if
space could not be allocated.

See also strcpy, memcpy, stpcpy.

strend
Purpose To obtain a pointer to the null terminator of a string.

Syntax #include <string.h>
char *strend(char *s);

Return value strend returns a pointer to the null terminator.

See also strchr

Example

#include <stdio.h> //for printf,gets
#include <string.h> //for strend
int main()
{
 char *ptr,str[80];
 printf("source :"); gets(str);
 ptr=strend(str);
 printf("length :%d\n",ptr-str);
 printf("strend points after:%c\n",*(ptr-1));
 return 0;
}

strerror
Purpose To obtain a message corresponding to a given error number.

Syntax #include <string.h>
char *strerror (int errnum);

Return value strerror returns a pointer to a string which describes the
implementation dependent error condition that corresponds to errnum.   
The message is inserted into a static buffer which is overwritten on each
call of strerror.

If errnum is out of range then the message “unknown error” appears.

See also perror

Example

#include <stdio.h> // for printf
#include <string.h> // for strerror
int main()
{
 int i;
 for (i=-1;i<100;printf("%d %s\n",i++,strerror(i)));
 return 0;
}

stricmp
Purpose To compare two null terminated strings without regard to the case of

alphabetic characters.

Syntax #include <string.h>
int stricmp(const char *s1, const char *s2);

Description stricmp is an alternative name for strcmpl.    See strcmpl for further
details.

strlen
Purpose To obtain the length of a null terminated string.

Syntax #include <string.h>
size_t strlen(const char *s);

Return value strlen returns the number of characters that come before the
terminating null of the string pointed to by s.

Example

#include <stdio.h> //for printf,gets
#include <string.h> //for strlen
int main()
{
 char str[80];
 do
 {
 printf("string:"); gets(str);
 printf("length:%d\n",strlen(str));
 } while (str[0]);
 return 0;
}

strlwr
Purpose To change any upper case letters in a string to lower case.

Syntax #include <string.h>
char *strlwr(char *s);

Description strlwr changes any letters in the range A..Z to corresponding lower
case letters a..z leaving other characters unchanged.

Return value strlwr returns a pointer to s.

See also tolower

Example

#include <stdio.h> //for printf,gets
#include <string.h> //for strlwr
int main()
{
 char str[80];
 do
 {
 printf("string:"); gets(str);
 printf("strlwr:%s\n",strlwr(str));
 } while (str[0]);
 return 0;
}

strncat
Purpose To append up to max_len characters from one null terminated string to

the end of another.

Syntax #include <string.h>
char *strncat(char *dest, const char *srce,
size_t max_len);

Description Appends either strlen(srce) or max_len characters (which- ever is the
smaller) from the string pointed to by srce on to the end of the string
pointed to by dest (the initial character of srce replaces the original
terminating null of dest).    A terminating null is appended to the result.   
A source string of zero length is quite acceptable.

Return value strncat returns the value of dest.

Notes If the two strings overlap then the effect of strncat should be regarded
as unpredictable.

If strlen(srce) + strlen(dest) + 1 is greater than the length of the array
dest then strncat may contaminate other areas of memory.

See also strcat.

Example

#include <stdio.h> //for printf,gets
#include <string.h> //for strncat
#include <stdlib.h> //for atoi
int main()
{
 char srce[80],dest[80],str[10];
 size_t max_len;
 dest[0]=’\0’;
 do
 {
 printf("source :"); gets(srce);
 printf("max length :"); gets(str); max_len=atoi(str);
 printf("destination:%s\n",strncat(dest,srce,max_len));
 } while (srce[0]);
 return 0;
}

strncmp
Purpose To compare up to a maximum number of characters from two null

terminated strings.

Syntax #include <string.h>
int strncmp(const char *s1, const char *s2,
size_t max_len);

Description Compares characters in corresponding positions in the strings pointed
to by s1 and s2 until elements are found to differ or the end of one of
the strings is reached or max_len characters have been compared.

Return value Either strncmp returns a positive or negative value depending on
whether s1[i]-s2[i] is positive or negative for the index i where elements
first differ; or zero if the two strings are identical up to the index
max_len. (e.g. negative if s1 is lexicographically less than s2.)

See also strcmp, memcmp.

Example strncmp("dog","dogs",3) is positive.
strncmp("dog","dogs",5) is negative.
strncmp("dog","dog",5) is zero.
strncmp("dog","dog",0) is zero.

Example

#include <stdio.h> //for printf,gets
#include <string.h> //for strncmp
#include <stdlib.h> //for atoi
int main()
{
 size_t n;
 char str[10],s1[80],s2[80];
 do
 { printf("Source 1 :"); gets(s1);
 printf("Source 2 :"); gets(s2);
 printf("max_len :"); gets(str); n=atoi(str);
 printf("strncmp(s1,s2,n):%d\n",strncmp(s1,s2,n));
 printf("strncmp(s2,s1,n):%d\n",strncmp(s2,s1,n));
 } while (n);
 return 0;
}

strncpy
Purpose To copy up to a maximum number of characters from one string into

another.

Syntax #include <string.h>
char *strncpy (char *dest, const char *srce,
 size_t max_len);

Description Copies not more than max_len characters from the string pointed to by
srce into that pointed to by dest.

If max_len is greater than the length of srce then the remainder is
padded with null characters.

If max_len is less than or equal to the length of srce then the truncated
part is copied without a terminating null.

Return value strncpy returns the value of dest.

Notes If the two strings overlap then the effect of strncpy should be regarded
as unpredictable.

Care should be taken to ensure that the destination array is long
enough to accommodate max_len characters
(i.e. max_len £ strlen(dest) + 1).

It is important to ensure that max_len is not negative.

See also memcpy, strcpy, strdup, stpcpy.

Example

#include <stdio.h> //for printf
#include <string.h> //for strncpy
#include <stdlib.h> //for atoi
int main()
{
 char str[10];
 size_t max_len;
 char srce[]="1234567890"; // 10 chars
 do
 {
 char dest[]="********************"; // 20 chars
 printf("\n\nsrce :%s\n",srce);
 printf("dest :%s\n",dest);
 printf("max.number?:"); gets(str); max_len=atoi(str);
 printf("dest :%s\n",strncpy(dest,srce,max_len));
 if (max_len>21)
 printf("Error:potential corruption \n");
 if(srce[0]!=’1’)
 printf("Error:actual corruption to srce\n");
 } while (max_len);
 return 0;
}

strpbrk
Purpose To find the first occurrence in one string of any of the characters from

another string.

Syntax #include <string.h>
char *strpbrk(const char *s1,
 const char *s2);

Description strpbrk scans the string s1, for the first occurrence of any character
appearing in s2.    That is, strpbrk tests if s1[n] does not appear in the
string s2, for n=0,1,2... until s1[n] is found in s2 or the end of s1 is
reached.

strpbrk is equivalent to the code:

 while (*s1 && !strchr(s2,*s1)) s1++;
 return *s1? (char *)s1:NULL;

Return value strpbrk returns a pointer to the first occurrence in the string pointed to
by s1 of any of the characters from the string pointed to by s2.

If no character from s2 occurs in s1 then a NULL pointer is returned.

See also strcspn.

Example

#include <stdio.h> //for printf,gets
#include <string.h> //for strpbrk
int main()
{
 char s1[]="abcdefghijklmnopqrstuvwxyz";
 char s2[80];
 char *ptr;
 do
 {
 printf("s1 :%s\n",s1);
 printf("s2 :"); gets(s2);
 ptr=strpbrk(s1,s2);
 if (ptr) printf("Points to:%c\n",*ptr);
 else printf("None in s1\n");
 } while (ptr);
 return 0;
}

strrchr
Purpose To locate the position of the last occurrence of a given character in null

terminated string.

Syntax #include <string.h>
char *strrchr(const char *s, int c);

Return value strrchr returns a pointer to the last occurrence of c in the string pointed
to by s or a NULL pointer if the character has not been found.

If c=’\0’ then strrchr returns a pointer to the null terminator at the end of
the string.

See also memchr, strstr.

Example

#include <stdio.h> //for printf,gets
#include <string.h> //for strrchr
int main()
{
 char *ptr,c,str[10];
 char s[]="aaabbcdddeefggghhijjjkkl";
 do
 {
 printf("Source :%s\n",s);
 printf("c :"); gets(str); c=str[0];
 ptr=strrchr(s,c);
 if (ptr) printf("points to position:%d\n",ptr-s+1);
 else printf("not found\n");
 } while (ptr);
 return 0;
}

strspn
Purpose To find the length of the initial part of one string which is made up

entirely from characters that appear in another string.

Syntax #include <string.h>
size_t strspn(const char *s1,
 const char *s2);

Description strspn tests if s1[n] appears in the string s2, for n=0,1,2... until s1[n] is
not found in s2 or the end of s1 is reached.

strspn is equivalent to the code:

 size_t len=0;
 while (*s1 && strchr(s2,*s1)) {s1++;len++;}
 return len;

Return value strspn returns the length of the initial part of s1.

See also strcspn,strpbrk.

Example

#include <stdio.h> //for printf,gets
#include <string.h> //for strspn
int main()
{
 char s1[]="abcdefghijklmnopqrstuvwxyz";
 char s2[80];
 size_t n;
 do
 {
 printf("s1 :%s\n",s1);
 printf("s2 :"); gets(s2);
 n=strspn(s1,s2);
 printf("strspn :%d\n",n);
 } while (n);
 return 0;
}

strstr
Purpose To locate the position of the first occurrence of a given string in another

string.

Syntax #include <string.h>
char *strstr(const char *s1, const char *s2);

Return value strstr returns a pointer to the first occurrence of the string pointed to by
s2 (excluding the terminating null) in the string pointed to by s1.

A NULL pointer is returned if s2 has not been found.    s1 is returned if
s2[0]=’\0’.

Example

#include <stdio.h> //for printf,gets
#include <string.h> //for strstr
int main()
{
 char *ptr,s2[80];
 char s1[]="aaabbcdddeefggghhijjjkkl";
 do
 {
 printf("s1 :%s\n",s1);
 printf("s2 :"); gets(s2);
 ptr=strstr(s1,s2);
 if (ptr) printf("points to position:%d\n",ptr-s1+1);
 else printf("not found\n");
 } while (ptr);
 return 0;
}

strtok
Purpose To split a string into tokens which are separated by given delimiters.

Syntax #include <string.h>
char *strtok(char *str, const char *del);

Description A delimiter is defined here to be one of the ASCII characters listed in the
string pointed to by del.    A token character is defined to be any ASCII
character which is not a delimiter.    A token is defined to be a string of
token characters.

On the first call of strtok, str is set to point to the string which is to be
scanned.    Subsequently if str is set to NULL the initial string is scanned
for further tokens terminated by one of the delimiters listed in del (which
may be the same or different from before).

Initially strtok searches str for the first token character thus passing
over any leading delimiters.    If no token character is found then strtok
returns a NULL pointer.    If a token character is found then strtok
searches for the next delimiter which marks the end of that token.    This
delimiter is replaced by a null and a pointer to the next position is saved
for subsequent calls of strtok.    strtok then returns a pointer to the
given token.

Each subsequent call of strtok with str=NULL, continues the search in
like manner.

It can be assumed that the saved pointer value will not be changed by
any other library function.

Return value strtok returns a pointer to the next null terminated token in the initial str
or a NULL pointer if no further tokens can be found.

If there are no token characters in the string then strtok returns a NULL
pointer.

If there are no delimiters in the string then strtok returns str.

Example

#include <stdio.h> //for printf,gets
#include <string.h> //for strtok
int main()
{
 char s1[80],s2[80];
 printf("string :"); gets(s1);
 printf("delimiters:"); gets(s2);
 char *ptr=s1;
 int i=1;
 while (ptr=strtok(ptr,s2)) //assignment
 {
 printf("token %d :%s\n",i++,ptr);
 ptr=NULL;
 }
 return 0;
}

strupr
Purpose To change any lower case letters in a string to upper case.

Syntax #include <string.h>
char *strupr(char *s);

Description strupr changes any letters in the range a..z    in the string pointed to by
s, to corresponding upper case letters A..Z leaving other characters
unchanged.

Return value strupr returns a pointer to s.

See also toupper

Example

#include <stdio.h> //for printf,gets
#include <string.h> //for strupr
int main()
{
 char str[80];
 do
 {
 printf("string:"); gets(str);
 printf("strupr:%s\n",strupr(str));
 } while (str[0]);
 return 0;
}

strxfrm
Purpose To transform a string in relation to the current locale.

Syntax #include <string.h>
size_t strxfrm(char *dest, const char *src,
size_t n);

Description The current implementation supports only the “C” locale (see
<locale.h>) in which strxfrm is identical to strncpy except for the
return value.

Return value strxfrm returns the length of the transformed string (excluding the
terminating null).

Functions defined in time.h

asctime

clock

ctime

difftime

gmtime

localtime

mktime

strftime

time

About functions defined in time.h

The <time.h> header contains a number of functions for obtaining the
current date and time of day using the following definitions:

#define NULL 0
#define CLOCKS_PER_SEC 1
typedef double time_t;
typedef double clock_t;
typedef unsigned int size_t;

struct tm
{
 int tm_sec; /* Seconds after the minute [0..61] */
 int tm_min; /* Minutes after the hour [0..59] */
 int tm_hour /* Hours since midnight [0..23] */
 int tm_mday; /* Day of the month [1..31] */
 int tm_mon; /* Month of the year [0..11] */
 int tm_year; /* Year since 1900 */
 int tm_wday; /* Day of week [0..6] 0=Sunday */
 int tm_yday; /* Days since January 1st [0..365] */
 int tm_isdst; /* Daylight Saving Time flag */
};

The first six items of this structure are packed (in an unspecified manner)
into a double in order to provide an object of type time_t.    The first form
will be described as the unpacked time (also called the broken down time);
the second form as the packed time.    Either form can be used to store the
so-called calendar time which is a term used for the date (according to the
Gregorian calendar) and Greenwich Mean Time (with the seconds stored
as an integer).

The input and output for a number of the relevant functions is summarised
in the following table.

function input output

time none packed time

mktime unpacked time packed time

gmtime packed time unpacked time

localtime packed time unpacked time

asctime unpacked time string

ctime packed time string

strftime unpacked time string

asctime
Purpose To convert an unpacked calendar time into a string.

Syntax #include <time.h>
char *asctime(const struct tm *timeptr);

Description timeptr points to a tm structure containing the unpacked calendar time.

Return value asctime returns a pointer to a static string of the form:
 Thu Nov 14 14:10:40 1991\n\0

A subsequent call of asctime will overwrite the static string (asctime
and ctime use the same static string).

clock
Purpose To provide the processor time in seconds.

Syntax #include <time.h>
clock_t clock(void);

Description The clock function provides a measure of the elapsed time since the
program started.    Two calls of the function can be used to measure the
time which has elapsed between passing the associated points in the
program.

Return value clock returns a value which (when divided by CLOCKS_PER_SEC)
gives the elapsed time in seconds.

Example

#include <stdio.h> // for printf
#include <time.h> // for clock etc.
int main()
{ clock_t start=clock();
 printf("Wait....... and press return\n"); getchar();
 clock_t end=clock();
 printf("Elapsed time:%.2lf seconds\n",

 (end-start)/CLOCKS_PER_SEC);
 return 0;}

ctime
Purpose To unpack a calendar time and convert it to a string.

Syntax #include <time.h>
char *ctime(const time_t *timer);

Description ctime combines the operations of the functions localtime and asctime
and is equivalent to asctime(localtime(timer)).

Return value ctime returns a pointer to a static string of the form:
 Thu Nov 14 14:10:40 1991\n\0

A subsequent call of ctime will overwrite its own static string and the
static tm structure associated with localtime.    asctime and ctime use
the same static string.

localtime and ctime use the same static tm structure.

Example

#include <stdio.h> // for printf
#include <time.h> // for ctime,time,asctime etc.
int main()
{ time_t t=time(NULL);
 printf("%s",ctime(&t));
 printf("%s",asctime(localtime(&t)));
 return 0;
}

difftime
Purpose To compute the difference of two calendar times.

Syntax #include <time.h>
double difftime(time_t time1, time_t time0);

Return value difftime returns the difference as a whole number of seconds between
two values returned by the time or mktime functions.

Example

#include <stdio.h> // for printf
#include <time.h> // for difftime,time etc.
int main()
{
 char c;
 time_t start=time(NULL);
 printf("Wait....... and press return\n"); c=getchar();
 time_t end=time(NULL);
 printf("Elapsed time:%.0lf seconds\n",difftime(end,start));
 return 0;
}

gmtime
Purpose To unpack a calendar time.

Syntax #include <time.h>
struct tm *gmtime(const time_t *timer);

Description gmtime unpacks the contents of the object pointed to by timer into a
static tm structure.

Return value gmtime returns a pointer to its own static tm structure which is
overwritten on each call of gmtime.

Example

#include <stdio.h> // for printf
#include <time.h> // for gmtime,time,asctime etc.
int main()
{ struct tm *unpacked_time;
 time_t packed_time=time(NULL);
 unpacked_time=gmtime(&packed_time);
 printf("%s",asctime(unpacked_time));
 return 0;
}

localtime
Purpose To unpack a calendar time.

Syntax #include <time.h>
struct tm *localtime(const time_t *timer);

Description localtime unpacks the contents of the object pointed to by timer.    It is
identical to gmtime but has its own tm structure (there is no implicit link
provided between the two, nor is there any implicit adjustment for
daylight saving time).

Return value localtime returns a pointer to its own static tm structure which is
overwritten on each call of localtime.

mktime
Purpose To pack a calendar time.

Syntax #include <time.h>
time_t mktime(struct tm *timeptr);

Description The function mktime packs the calendar time stored in the structure
pointed to by timeptr into an object which can be supplied to other
functions of this group.

mktime also evaluates the day of the week and the number of days
since January 1st and stores these values in the tm structure.

Return value mktime returns the packed calendar time.

Example

#include <stdio.h> // for printf
#include <stdlib.h> // for atoi
#include <time.h> // for mktime etc.
int main()
{
 char *weekday[]={" Sun"," Mon"," Tues"," Wednes"," Thurs",

 " Fri"," Satur","n unknown "};
 char str[10];
 struct tm birth;
 printf("What is your date of birth?\n");
 printf("Year :"); gets(str); birth.tm_year=atoi(str)-1900;
 printf("Month:"); gets(str); birth.tm_mon =atoi(str)-1;
 printf("Date :"); gets(str); birth.tm_mday=atoi(str);
 if(mktime(&birth)==-1) birth.tm_wday=7;
 printf("You were born on a%sday\n",weekday[birth.tm_wday]);
 return 0;
}

strftime
Purpose To format an unpacked calendar time for output.

Syntax #include <time.h>
size_t strftime(char *s, size_t maxsize,
const char *format,
 const struct tm *timeptr);

Description strftime formats the unpacked time in the structure pointed to by
timeptr using the formatting sequence given in the string pointed to by
format.    No more than maxsize    characters (including the terminating
null) are placed into the string pointed to by s.

In a manner similar to printf, the formatting sequence consists of a
mixture of conversion specifiers made up of pairs of characters (the first
of which is a % character), and other characters which are copied
unchanged.    The details appear in the following table.

Return value strftime returns the number of characters placed into s excluding the
terminating null.

Notes If the total number of characters required (including the terminating null)
is greater than maxsize then strftime returns zero and the string
pointed to by s may not be terminated at the expected point.
s and format should point to distinct non-overlapping strings.

Specifier Meaning Range or Example

%a abbreviated weekday name Sun to Sat

%A full weekday name Sunday to Saturday

%b abbreviated month name Jan to Dec

%B full month name January to December

%c date and time e.g.Thur Nov 14 14:10:40
1991

%d day of the month 01 to 31

%H hour, 24 hour clock 00 to 23

%I hour, 12 hour clock 01 to 12

%j day of year 001 to 366

%m number of the month 01 to 12

%M minute 00 to 59

%p before or after noon “AM” or “PM”

%S second 00 to 61

%U week number in year where the first
Sunday is first day of week one

00 to 53

%w number of weekday where 0 is Sunday 0 to 6

%W week number in year where the first
Monday is first day of week one

00 to 53

%x date e.g. Thur Nov 14 1991

%X time e.g. 14:10:40

%y year number without the century 00 to 99

%Y year with century e.g. 1992

%Z Greenwich Mean Time “GMT”

%% “%”

Example

#include <stdio.h> // for printf
#include <time.h> // for strftime,time,gmtime etc.
#include <stdlib.h> // for atoi
int main()
{
 char format[80],str[80];
 size_t maxsize,nchars;
 struct tm *timeptr;
 time_t t;
 do
 {
 t=time(NULL);
 timeptr=gmtime(&t);
 printf("maxsize :"); gets(str); maxsize=atoi(str);
 printf("format string:"); gets(format);
 nchars=strftime(str,maxsize,format,timeptr);
 printf("strftime :%s\n",str);
 printf("nchars :%d\n\n",nchars);
 } while (maxsize);
 return 0;
}

time
Purpose To provide the current calendar time.

Syntax #include <time.h>
time_t time(time_t *timer);

Return value time returns the current calendar time in packed form.    This form can
be supplied to other time functions.    If timer is not NULL then it points
to an object which also contains the return value.

Functions defined in signal.h

signal

raise

About functions defined in signal.h

The <signal.h> header provides some definitions together with the prototypes for
two functions which can be used to handle the reporting of external conditions during
the execution of a program.    The definitions are listed here for reference.

typedef int sig_atomic_t;

#define SIG_DFL (void (*)(int))0
#define SIG_IGN (void (*)(int))-1
#define SIG_ERR (void (*)(int))-2
 // * signifies ANSI extension
#define SIGINT 100 // Control-break
#define SIGFPE 101 // Floating point fault
#define SIGKEY 102 // Key press or release*
#define SIGALRM 103 // Alarm clock interrupt*
#define SIGMOUSE 104 // Mouse event*
#define SIGRESERVE 105 // Down to pages reserve*
#define SIGSEGV 106 // Invalid access to storage
 // (G.P. exception)
#define SIGILL 107 // Illegal instruction
#define SIGABRT 200 // Abnormal termination
 // (e.g. call to abort)
#define SIGTERM 201 // Termination request sent
 // to program

#define SIGUSR1 202 // User-defined signal 1*
#define SIGUSR2 203 // User-defined signal 2*
#define SIGUSR3 204 // User-defined signal 3*
#define SIGUSR4 205 // User-defined signal 4*

signal
Purpose To select from possible responses to a signal number.

Syntax #include <signal.h>
void (*signal(int sig,
 void (*func)(int)))(int);

Description The value of func can be assigned in one of three ways corresponding
to the different ways in which the receipt of the signal number sig is to
be subsequently handled.    If the value of func is SIG_DFL, then default
handling for that signal will occur.    If its value is SIG_IGN, the signal will
be ignored.    Thirdly, if func points to a function then that function will be
called when the signal sig occurs.

Return value If the request can be honoured, signal returns the value of func for the
most recent call to signal and the specified value of sig.    Otherwise, a
value of SIG_ERR is returned and a positive value is stored in errno.

Example

#include <stdio.h> // for sprintf
#include <signal.h> // for signal
#include <dbos\mouse.h> // for hide_mouse_cursor etc.
#include <dbos\graphics.h> // for draw_text etc.

volatile terminate=0;

void handler(int dummy)
{ short ih,iv,istat;
 static count=0;
 char text[80];
 hide_mouse_cursor();
 sprintf(text,"In handler, count = %d ", ++count);
 clear_screen_area(10,80,300,150,0);
 draw_text(text,10,80,7);
 get_mouse_position(ih,iv,istat);
 sprintf(text,"ih = %d,iv = %d,istat = %d ",ih,iv,istat);
 draw_text(" ",10,120,7);
 draw_text(text,10,120,7);
 if (istat==1) terminate=1;
 signal(SIGMOUSE, handler);
 display_mouse_cursor();
 set_mouse_interrupt_mask((short)1);
}
main()
{ int i;
 char text[80];
 clear_screen();
 display_mouse_cursor();

 signal(SIGMOUSE, handler);
 set_mouse_interrupt_mask((short)1);
 vga();
 i=0;
 while(1)
 {
 sprintf(text,"i = %3d ",i);
 clear_screen_area(10,10,200,60,0);
 draw_text(text,10,10,2);
 i=(i+1)%10000;
 if (terminate)
 {
 hide_mouse_cursor();
 text_mode();
 set_mouse_interrupt_mask((short)0);
 exit(1);
 }
 }
}

raise
Purpose To send a signal to the executing program.

Syntax #include <signal.h>
int raise(int sig);

Description The raise function sends the signal sig to the executing program.

Return value The raise function returns zero if successful, non-zero if unsuccessful.

Functions defined in stdarg.h

va_start

va_arg

va_end

About functions defined in stdarg.h

The <stdarg.h> header provides prototypes for three macros which can be used
within a function call to advance through an argument list of variable length.    This
mechanism allows functions with varying numbers of arguments of differing types
(like printf) to be coded.

The function definition must include a list of fixed arguments (i.e. at least one).    In
what follows, the rightmost fixed argument is designated by parmN.    This list is
followed by ,... (a comma and three full-stops) representing the variable part of the
argument list.

As the list of variable length is processed by the function, the current argument ap of
type type is initialised by the va_start macro, advanced by va_arg macro, and
terminated by the va_end macro.

va_start
Purpose To initialise a list of arguments of variable length.

Syntax #include <stdarg.h>
void va_start(va_list ap,parmN);

Description The va_start macro initialises ap as the first argument in an argument
list of variable length.    parmN is the rightmost argument in a list of fixed
arguments which must come before the list of variable length.

Return value None.

va_arg
Purpose To advance through a list of arguments of variable length.

Syntax #include <stdarg.h>
type va_arg(va_list ap,type);

Description The va_arg macro expands to an expression which has the type and
value of the next argument in the call.    ap is initialised by va_start and
advanced by each call of va_arg in such a way that va_arg returns the
values of successive arguments in turn.

Return value Initially va_arg returns the first argument to the right of parmN (in
va_start).    Successive calls of va_arg return the values of the
following arguments in order.

va_end
Purpose To terminate a list of arguments of variable length.

Syntax #include <stdarg.h>
void va_end(va_list ap);

Description The va_end macro assigns a terminating value to ap after it has been
used as the current argument in a list of varying length.    A call to
va_arg prevents ap from being used again without an intervening call to
va_start.

Return value None.

Example

//Sums a list of numbers terminated by zero.
#include <stdio.h> // for printf
#include <stdarg.h> // for va_start,va_arg,va_end
int sum(int first,...)
{ int total=first,next=first;
 va_list ap; va_start(ap,first);
 while(next) { next=va_arg(ap,int); total+=next; }
 va_end(ap); return total;
}
int main()
{ printf("The sum is:%d\n",sum(1,2,3,4,5,0));
 return 0;
}

Functions defined in assert.h

assert

About functions defined in assert.h

The <assert.h> header defines the assert macro which may be used in a program
in order to force a program to abort under conditions supplied by the user.

assert
Purpose To put diagnostic information into a program.

Syntax #include <assert.h>
void assert(int expression);

Description When expression evaluates to zero, the assert macro sends diagnostic
information to the stderr stream and then calls the abort function.    This
information includes the expression, and the file name and line number
where the expression was found.    If expression evaluates to non-zero,
then assert has no tangible effect.

The <assert.h> header refers to the macro NDEBUG which may be
defined by the user in order to switch off the diagnostic facility.    For this
purpose simply insert:

#define NDEBUG

before the call to
#include <assert.h>

or use the /DEFINE option in the compiler command line.

Return value None.

Example

#include <stdio.h> // for printf,gets
#include <math.h> // for acos
#include <stdlib.h> // for strtod
#include <errno.h> // for errno
#include <assert.h> // for assert
int main()
{
 double x,y;
 char str[80];
 do
 {
 printf("Input x:"); gets(str); x=strtod(str,NULL);
 y=acos(x);
 assert(errno==0);
 printf("acos(x):%lf\n",y);
 } while(x);
 return 0;
}

Functions defined in locale.h

setlocale

localeconv

About functions defined in locale.h

The <locale.h> header provides prototypes for two functions which relate to the
current “locale”.    In the present context, a locale is a particular country or nation with
(for example) its own currency punctuation conventions.    One function (setlocale)
enables the user to select from the various locales provided by the system.    The
other (localeconv) provides access to the predefined conventions for that locale.

At the present stage of development, only the "C" locale is supported in which all of
the standard fields take their default state.

setlocale
Purpose To select one of the locales supported by the system.

Syntax #include <locale.h>
char *setlocale(int category,
 const char *locale);

Description Currently only the "C" locale is supported so for the time being this
function is redundant.    locale points to a string defining the locale whilst
category is one of the macros LC_ALL, LC_COLLATE, LC_CTYPE,
LC_MONETARY, LC_NUMERIC, and LC_TIME representing aspects of
the locale.

Return value If successful, setlocale returns a pointer to a string describing the
former locale, otherwise it returns a NULL pointer.

Example

#include <stdio.h> // for printf
#include <locale.h> // for setlocale
int main()
{
 char *old;
 old=setlocale(LC_ALL,"C");
 printf("The former locale was %s\n",old);
 return 0;
}

localeconv
Purpose To obtain details of the current locale.

Syntax #include <locale.h>
struct lconv *localeconv(void);

Return value The localeconv function returns a pointer to a lconv structure which
contains details the current locale conventions.    Currently only the "C"
locale is supported in which all of the standard fields take their default
state according to the C standard.

Functions defined in setjmp.h

setjmp

longjmp

About functions defined in setjmp.h

The <setjmp.h> header declares the jmp_buf type and gives prototypes for two
functions which are used to perform non-local goto commands.    These functions
were designed to deal with errors and exceptions encountered in user defined
functions written in assembler code.

setjmp
Purpose To prepare for a non-local jump.

Syntax #include <setjmp.h>
int setjmp(jmp_buf env);

Description The setjmp function saves its calling environment in env in preparation
for a later call to the longjmp function.    The call to longjmp returns
control to the position of the corresponding setjmp function.

Return value Initially setjmp returns 0.    Following a transfer of control by a call to
longjmp, setjmp returns val (a parameter in longjmp).

longjmp
Purpose To execute a non-local jump.

Syntax #include <setjmp.h>
void longjmp(jmp_buf env, int val);

Description The longjmp function is used to return control to the position of the
setjmp function which was used to assign values in the env jmp_buf
structure.    In effect, longjmp calls setjmp and returns control to the
calling point of setjmp.    val is given a value which is to be used as the
return for setjmp.    A zero value for val is not permitted and is
automatically changed to 1.

Return value The longjmp function does not return to it own calling point.

Example

#include <stdio.h> // for printf
#include <setjmp.h> // for setjmp,longjmp
int main()
{
 jmp_buf env;
 int val=setjmp(env);
 printf("val:%d\n",val);
 if(val) return 0;
 longjmp(env,1);
}

The error.h header

The <errno.h> header defines certain macros which relate to the reporting of error
conditions and declares an associated external variable errno of type int which is
supplied by the system.    This variable is initialised to EZERO (=0) at the beginning
of a program and is set to non-zero by certain functions in the system library when
certain non-fatal error conditions arise.    The value of errno is unique to a particular
type of error which can be identified by a call to strerror or perror.    After a call to
one of the associated library functions, the user should test the current value of
errno and (if appropriate) reset the value to EZERO before initiating a response to
the given error condition.

Example

#include <stdio.h> // for printf,gets,perror
#include <math.h> // for acos
#include <stdlib.h> // for strtod
#include <errno.h> // for errno
int main()
{
 double x,y;
 char str[80];
 do
 {
 printf("Input x:"); gets(str); x=strtod(str,NULL);
 y=acos(x);
 if(errno==EZERO) printf("acos(x):%lf\n",y);
 else {perror("ERROR in acos"); errno=EZERO;}
 } while(x);
 return 0;
}

The limits.h header

The standard numerical limits given in the <limits.h> header are:
#define CHAR_BIT 8
#define SCHAR_MIN -128
#define SCHAR_MAX 127
#define UCHAR_MAX 255U
#define CHAR_MIN SCHAR_MIN
#define CHAR_MAX SCHAR_MAX
#define MB_LEN_MAX 1
#define SHRT_MIN -32768
#define SHRT_MAX 32767
#define USHRT_MAX 65535U
#define INT_MIN -2147483648
#define INT_MAX 2147483647
#define UINT_MAX 4294967295U
#define LONG_MAX 2147483647
#define LONG_MIN -2147483648
#define ULONG_MAX 4294967295U

The float.h header

The limits given in <float.h> are
#define FLT_RADIX 2
#define FLT_ROUNDS 1

#define FLT_DIG 6
#define FLT_MANT_DIG 24
#define FLT_MAX_10_EXP +38
#define FLT_MAX_EXP +128
#define FLT_MIN_10_EXP -37
#define FLT_MIN_EXP -125
#define FLT_MAX 3.40e38
#define FLT_MIN 1.175e-38
#define FLT_EPSILON 1.19e-7

#define DBL_DIG 15
#define DBL_MANT_DIG 53
#define DBL_MAX_10_EXP +308
#define DBL_MAX_EXP +1024
#define DBL_MIN_10_EXP -307
#define DBL_MIN_EXP -1021
#define DBL_MAX 1.80e308
#define DBL_MIN 2.225e-308
#define DBL_EPSILON 2.22e-16

#define LDBL_DIG 19
#define LDBL_MANT_DIG 64
#define LDBL_MAX_10_EXP +4932
#define LDBL_MAX_EXP +16384
#define LDBL_MIN_10_EXP -4931
#define LDBL_MIN_EXP -16381
#define LDBL_MAX 1.21e4932
#define LDBL_MIN 3.32e-4931
#define LDBL_EPSILON 1e-17

The sizeof standard types

type sizeof
char 1
short int 2
int 4
long int 4
float 4
double 8
long double 10

The ANSI C standard defines sizeof(char)=1 byte.

Functions defined in clib.h

bdos, _bdos

bioscom, _bios_serialcom

biosequip, bios_equiplist

bioskey, _bios_keybrd

biosmemory, _bios_memsize

biosprint, _bios_printer

biostime, _bios_timeofday

cgets, _cgets

chmod, _chmod

cprintf, _cprintf

cscanf, _cscanf

_dos_getdate

_dos_gettime

_dos_setdate

_dos_settime

ecvt, _ecvt

_exit

fcvt, _fcvt

fileno

_fpreset

gcvt, _gcvt

_get_file_structure

getch, _getch

getche, _getche

getdate

gettime

inport,_inpw

inportb, inp

inport32

isascii, __isascii

kbhit, _kbhit

lfind, _lfind

_lrotl

_lrotr

lsearch, _lsearch

ltoa

memicmp, _memicmp

_OFFSET

outport, _outpw

outportb, _outp

outport32

putch, _putch

_rotl

_rotr

_SEGMENT

setdate

setdisk

setmode

settime

_strerror

strnicmp, _strnicmp

strrev, _strrev

swab, _swab

toascii, __toascii

_tolower

_toupper

ultoa, _ultoa

ungetch, _ungetch

About functions defined in clib.h

The <clib.h> header gives prototypes for a number of general functions.   
It includes the following definitions:

struct date
{
 int da_year; // current year
 char da_day; // day of month
 char da_mon; // month (1=Jan)
};

struct ftime
{
 unsigned ft_tsec; // Two seconds.
 unsigned ft_min; // Minutes.
 unsigned ft_hour; // Hours.
 unsigned ft_day; // Day.
 unsigned ft_month; // Month.
 unsigned ft_year; // Year - 1980.

};

struct __time
{
 unsigned char ti_min;
 unsigned char ti_hour;
 unsigned char ti_hund;
 unsigned char ti_sec;
};

struct _dostime_t
{
 unsigned char hour;
 unsigned char minute;
 unsigned char second;
 unsigned char hsecond;
};
struct _dosdate_t
{
 unsigned char day;
 unsigned char month;
 unsigned char dayofweek;
 unsigned int year;
};

bdos, _bdos
Purpose To make a DOS/BIOS call using only the DX and AL registers.

Syntax #include <clib.h>
int bdos(int dosfun, unsigned dosdx,
 unsigned dosal);

Description bdos performs the software interrupt given by dosfun with the values of
DX and AL given by dosdx and dosal respectively.

Return value bdos returns the value of AX after the interrupt.

Notes _bdos is a alternative name for bdos.

See also intdos, intdosx, int86, int86x.

bioscom, _bios_serialcom
Purpose To perform serial I/O via an RS-232 port.

Syntax #include <clib.h>
int bioscom(int cmd, char abyte, int port);

Description bioscom uses BIOS interrput 0x14 to perform serial I/O services.    The
value of cmd is one of:

0 Initialise Port Parameters
1 Send one character
2 Receive one character.
3 Get port status.

In all commands the value of port is the serial port number
to which the command should be issued.

cmd =0

abyte contains the intended serial port parameters, with bit
settings BBBPPSCC.

BBB Baud Rate

000 110 baud

001 150 baud

010 300 baud

011 600 baud

100 1200 baud

101 2400 baud

110 4800 baud

111 9600 baud

PP Parity Code

00 None

01 Odd

10 None

11 Even

S Number of stop bits

0 One stop bit

1 Two stop bits

CC Character size

10 7-bit character

11 8-bit character

cmd =1 abyte contains the character to be sent.

cmd =2 In this case, the value of abyte is unused.

cmd =3 In this case also, the value of abyte is unused.

Return value cmd=0, the return value is not meaningful.

cmd=1, bits 8 to 15 of the return value are as defined below in entries
0x8000 to 0x0100.

cmd=2, bits 8 to 15 of the return value are as defined below in entries
0x8000 to 0x0100, bits 0 to 7 contain the character received from the
port.

cmd=3, the lower 16 bits of the return value are given by:

0x8000 Time out

0x4000 Transfer shift register empty

0x2000 Transfer holding register empty

0x1000 Break detect

0x0800 Framing error

0x0400 Parity error

0x0200 Overrun error

0x0100 Data ready

0x0080 Received line signal detect

0x0040 Ring indicator

0x0020 Data set ready

0x0010 Clear to send

0x0008 Data receive line signal detect

0x0004 Trailing edge ring detector

0x0002 Delta data set ready

0x0001 Delta clear to send

Notes _bios_serialcom is alternative name for bioscom.

See also in , out , inport, inportb, inport32, outport, outportb, outport32.

biosequip, _bios_equiplist
Purpose To get the peripheral equipment list.

Syntax #include <clib.h>
int biosequip(void);

Description biosequip gets the value of the equipment list code word using BIOS
interrupt 0x11.

Return value biosequip returns the value of the equipment list code word which is in
the form PPMURRRUFFVVUUCI.

PP Number of printers installed

M 1 if internal modem installed

RRR Number of RS-232 ports installed

U Unused

FF Number of floppy disk drives minus 1 (0= one drive)

VV Internal video mode.

00 Reserved

01 40 -by- 25 colour

10 80 -by- 25 colour

11 80 -by- 25 monochrome

U Unused

C 1 if math coprocessor installed

I 1 if initial program load diskette installed

Notes _bios_equiplist is an alternative name for bioequip.

bioskey, _bios_keybrd
Purpose To interface the BIOS keyboard services directly.

Syntax #include <clib.h>
int bioskey(int cmd);

Description Performs BIOS keyboard services directly using interrupt 0x16.    The
parameter cmd can take the values:

0 Read next character.    This function will not return until a
character is read

1 Report if character ready.    This function will not remove the
character from the keyboard buffer.

2 Get shift status

Return value cmd=0:

If the character read is an ASCII character, bits 0 to 7 contain the ASCII
character code, and bits 8 to 15 contain the standard PC keyboard scan
code.

If the character read is an extended ASCII code, bits 0 to 7 contain the
extended ASCII code, and bits 8 to 15 are NULL.

cmd=1:

0 if there is no character waiting in the keyboard buffer. Otherwise, bits
0 to 15 of the returned value are as for cmd=0.

cmd=2:

Bits 0 to 7 contain the shift status given by:

0x01 Right shift active

0x02 Left shift active

0x04 Ctrl active

0x08 Alt active

0x10 Scroll lock active

0x20 Num lock active

0x40 Caps lock active

0x80 Insert state active

Notes Multiple states can be active simultaneously.

_bios_keybrd is an alternative name for bioskey

See also dos_key_waiting , key_waiting , get_key , get_dos_key

biosmemory, _bios_memsize
Purpose To return the size of the basic memory.

Syntax #include <clib.h>
int biosmemory(void);

Description biosmemory uses interrupt 0x12 to get the size of the basic memory.

Return value biosmemory returns the size of the basic memory in 1K blocks.    This
does not include display adapter memory, extended memory or
expanded memory.

Notes _bios_memsize is an alternative name for biosmemory.

biosprint, _bios_printer
Purpose Performs printer I/O using BIOS services directly.

Syntax #include<clib.h>
int biosprint(int cmd, int abyte, int port);

Description biosprint is used to perform various printer operations using BIOS
interrupt 0x17.

cmd defines which printer operation is to be executed.    It can be one of
the following:

0 Send byte to printer; sends the character in abyte to
printer number port.

1 Initialise printer; Initialises printer number port.

2 Get printer status.

Return value The return value for all values of cmd is the printer status defined by:

0x01 Time out

0x02 Unused

0x04 Unused

0x08 I/O error

0x10 Printer selected

0x20 Out of paper

0x40 Printer acknowledgement

0x80 Printer not busy

Notes Multiple states can be active simultaneously.

_bios_printer is an alternative name for biosprint.

biostime, _bios_timeofday
Purpose To get or set the current BIOS timer.

Syntax #include <clib.h>
long biostime(int cmd, long newtime)

Description biostime either gets or sets the BIOS timer using BIOS interrupt 0x1A.
This timer counts in ticks since midnight at a rate of around 18.2 ticks
per second.    A cmd value of 0 will get the current clock value.    A cmd
value of 1 will cause the timer to be set to the value of newtime.

Return value If cmd = 0, the return value is the value of the tick count.

Notes _bios_timeofday is an alternative name for biostime.

cgets, _cgets
Purpose To get a string from the console.

Syntax #include <clib.h>
char *cgets(char *str)

Description The cgets function reads characters from stdin until either a ‘\n’ is
encountered or until the maximum number of characters to be read has
been reached.    This maximum number is passed to the function in
str[0] and the actual number of characters read is returned in str[1].   
The characters read start at str[2] and end with a NULL terminator.

Notes The array pointed to by str must be at least str[0] + 2 bytes long.   
_cgets is an alternative name for cgets.

These functions are not fully compatible with similar Borland/Microsoft
functions which input directly from the the console.

chmod, _chmod
Purpose To change the access permissions pertaining to a file.

Syntax #include <clib.h>
#include <sys\stat.h>
int chmod(const char *path, int amode)

Description The function chmod is used to change the access mode of the file
specified by path.    The specified filename should not contain any wild
cards.

The permissible values for amode are:

S_IREAD Permission to read

S_IWRITE Permission to write

S_IREAD | S_IWRITE Permission to read and write

These constants are defined in sys\stat.h.

Since under DOS any existing files automatically have read permission,
chmod only affects the write permission on a file.

Return value On success chmod returns 0.    Otherwise chmod returns EOF and
sets errno to either ENOENT or EACCES.

Notes _chmod is an alternative name for chmod.

cprintf, _cprintf
Purpose To put text to stdout.

Syntax #include <clib.h>
int cprintf(const char *format,...);

Description The cprintf function performs the same operation as the printf function.
See printf for further details.

Notes _cprintf is an alternative name for cprintf.    These functions are not
fully compatible with similar Borland/Microsoft functions which output
directly to the screen.

cscanf, _cscanf
Purpose To get text from stdin.

Syntax #include <clib.h>
int cscanf(const char *format,...);

Description The cscanf function performs the same operation as the scanf
function.    See scanf for further details.

Notes _cscanf is an alternative name for cscanf.    These functions are not
fully compatible with similar Borland/Microsoft functions which input
directly from the console.

_dos_getdate
Purpose Gets the system date and stores it in a structure of type _dosdate_t.

Syntax #include <clib.h>
void getdate(struct _dosdate_t *date)

Description _dos_getdate gets the system date and stores it in the structure
pointed to by date

Return value None.

See also getdate

_dos_gettime
Purpose Gets the system time.

Syntax #include <clib.h>
void _dos_gettime(struct _dostime_t *time)

Description The _dos_gettime function fills in the _dostime_t structure pointed to
by time with the current system time.

Return value None.

See also gettime

_dos_setdate
Purpose Sets the system time and date.

Syntax #include <clib.h>
unsigned _dos_setdate
 (struct _dosdate_t *date);

Description _dos_setdate sets the system date to that contained in the _dosdate_t
structure pointed to by date.

Return value Returns 0 for success, non-zero for failure.    On failure errno is set to
EINVAL showing an invalid date was specified.

See also setdate

_dos_settime
Purpose To set the current system time.

Syntax #include <clib.h>
unsigned _dos_settime
 (struct _dostime_t *time);

Description _dos_settime sets the current system time according to the contents of
the structure pointed to by time.

Return value Returns 0 for success, non-zero for failure.    On failure errno is set to
EINVAL showing an invalid time was specified..

See also settime

ecvt, _ecvt
Purpose Converts a floating point number to a string.

Syntax #include <clib.h>
char *ecvt(double value, int ndig, int *dec,
int *sign)

Description ecvt converts the floating point value stored in value to a string of ndig
digits.    The last digit is rounded.    If value is negative, the integer
pointed to by sign is non-zero, otherwise it is zero.

dec stores the position of the decimal point relative to the beginning of
the string.    (If dec < 0 then the decimal point lies to the left of the
string).

Return value ecvt returns a pointer to a static buffer containing the string.    This
buffer is overwritten on each call to ecvt.

Notes The returned string does not contain a decimal point.

_ecvt is an alternative name for ecvt.

See also fcvt, gcvt

_exit
Purpose To terminate a program’s execution.

Syntax #include <clib.h>
void _exit(int status);

Description _exit terminates the program currently being executed and passes the
integer contained in status to the calling environment.    This function
does not flush any buffers, or call any exit functions.

fcvt, _fcvt
Purpose Converts a floating point number to a string.

Syntax #include <clib.h>
char *fcvt(double value, int ndig, int *dec,
int *sign);

Description fcvt converts the value held in value to a string of length ndig+1 digits,
which is accurate to ndig digits.    It is similar to ecvt, except that it
causes dec to be greater than 0.

Return value fcvt returns a pointer to a static buffer containing the string generated.   
This static buffer is overwritten on each call to fcvt.

Notes The returned string does not contain a decimal point.

_fcvt is an alternative name for fcvt.

fileno
Purpose To get the handle associated with a stream.

Syntax #include <clib.h>
int fileno(FILE *stream)

Description fileno is a macro which returns the handle corresponding to stream.

Return value fileno returns the integer file handle associated with stream.

_fpreset
Purpose To reset the state of the floating point system.

Syntax #include <clib.h>
void _fpreset(void);

Description _fpreset reinitialises the state of the floating point maths co-processor.

Return value None.

gcvt, _gcvt
Purpose To convert a floating point number into a string.

Syntax #include <clib.h>
 char *gcvt(double value,int prec, char *d);

Description The gcvt function converts the floating point number contained in value
to a string in standard form.    This string contains prec significant figures
and a decimal point.

If necessary, this string will also contain a ‘-’ sign, and an exponent of
the form ‘e[+-][0-9][0-9]’.    This string is stored in d.      For this reason,
the array d should be of length prec+4.

Notes _gcvt is an alternative name for gcvt.

_get_file_structure
Purpose To get a pointer to a file given the handle.

Syntax #include <clib.h>
FILE* _get_file_structure(int handle);

Description _get_file_structure gets a pointer to the file structure corresponding to
handle.

Return value The _get_file_structure function returns a pointer to the FILE structure
corresponding to handle or NULL if there is no such file.

getch, _getch
Purpose Gets a character from the keyboard without echoing to the screen.

Syntax #include <clib.h>
int getch(void)

Description getch gets a character directly from the keyboard without echoing to the
screen.    getch does not use stdin.

Return value getch returns the character read.

Notes _getch is an alternative name for getch.

getche, _getche
Purpose Gets a character from the keyboard and echos to the screen.

Syntax #include <clib.h>
int getche(void)

Description getche gets a character directly from the keyboard without using stdin.

Return value getche returns the character read.

Notes _getche is an alternative name for getche.

getdate
Purpose Gets the system date and stores it in a structure of type date.

Syntax #include <clib.h>
void getdate(struct date *datep)

Description getdate gets the system date and stores it in the structure pointed to by
datep

Return value None.

See also _dos_getdate

gettime
Purpose Gets the system time.

Syntax #include <clib.h>
void gettime(struct __time *timep)

Description The gettime function fills in the _ _time structure pointed to by timep
with the current system time.

Return value None.

See also _dos_gettime

inport, _inpw
Purpose Read two bytes from an I/O port.

Syntax #include <clib.h>
int inport(int portid);

Description The inport function reads two bytes of data from the I/O port specified
by portid.

Return value inport returns the two bytes read from the I/O port.

Notes This function assumes that the low-byte is transmitted first.

_inpw is an alternative name for inport.

inportb, inp
Purpose Reads one byte from an I/O port.

Syntax #include <clib.h>
unsigned char inportb(int portid);

Description The inportb function reads one byte of data from the I/O port specified
by portid.

Return value The inportb function returns the value read from the port.

Notes inp is an alternative name for inportb.

inport32
Purpose To read a 32-bit word from an I/O port.

Syntax #include <clib.h>
long inport32(int portid);

Description The inport32 function reads a 32-bit word from the I/O port specified in
portid.

Return value inport32 returns the word read from the I/O port specified in portid.

Notes This function assumes that the low-byte is transmitted first.

isascii, __isascii
Purpose To ascertain whether an integer is an ASCII character.

Syntax #include <clib.h>
int isascii(int c);

Description isascii is a macro which classifies integers as to whether they are
ASCII characters.

Return value isascii returns non-zero for true, and zero for false.

Notes __isascii is an alternative name for isascii.

kbhit, _kbhit
Purpose To check if there is a key waiting in the keyboard buffer.

Syntax #include <clib.h>
int kbhit(void);

Description kbhit performs the same function as key_waiting.    See key_waiting
for further details.

Notes _kbhit is a alternative name for kbhit.

lfind, _lfind
Purpose To perform a linear search.

Syntax #include <clib.h>
void *lfind(const void *key,const void *base,
 size_t *num, size_t width,
 int (*compare)(const void *,const void *));

#include <clib.h>
void *_lfind(const void *key,
 const void *base,
 size_t *num, size_t width,
 int (__cdecl*compare)
 (const void *, const void *));

Description The lfind function performs a linear search through the list pointed to by
base for the item pointed to by key.    Each item in the list should be of
size width and the number of items in the list should be stored in the
integer pointed to by num.    This function uses a user defined
comparison routine compare which should return 0 if *param1 = =
*param2.

Return value lfind returns a pointer to the first matching element in the list if one is
found.    Otherwise lfind returns NULL.

Notes Unlike bsearch, lfind does not require the list to be sorted.

_lfind is an alternative name for lfind.    __cdecl is provided for
compatibility on porting but otherwise has no effect.

See also bsearch, lsearch.

_lrotl
Purpose To rotate a long int left.

Syntax #include <clib.h>
unsigned long _lrotl(unsigned long val,
 int n);

Description _lrotl rotates the value held in value left by n bits.

Return value _lrotl returns the rotated long integer.

_lrotr
Purpose To rotate a long int right.

Syntax #include <clib.h>
unsigned long _lrotr(unsigned long val,
 int n);

Description _lrotr rotates the value held in value right by n bits.

Return value _lrotr returns the rotated long integer.

lsearch, _lsearch
Purpose To perform a linear search.

Syntax #include <clib.h>
void *lsearch(const void *key,
 const void *base,
 size_t *num, size_t width,
 int (*compare)(const void *,const void *))

#include <clib.h>
void *_lsearch(const void *key,
 const void *base,
 size_t *num, size_t width,
 int (__cdecl *compare)
 (const void *,const void*))

Description The lsearch function performs a linear search through the list pointed to
by base for the item pointed to by key.

Each item in the list should be of size width and the number of items in
the list should be stored in the integer pointed to by num.    This function
uses a user defined comparison routine compare which should return 0
if *param1 = = *param2.    If the item pointed to by key is not in the list, it
is added to the end of the list.    For this reason, it should be ensured
that the list has enough allocated memory to hold an extra element
before calling lsearch.

Return value lsearch returns a pointer to the first item in the list which matches key.
If key has been added to the list, then num is incremented.

Notes _lsearch is an alternative name for lsearch.    __cdecl is provided for
compatibility on porting but otherwise has no effect.

See also lfind, bsearch

ltoa
Purpose To convert a long to a string.

Syntax #include <clib.h>
char *ltoa(long value, char *string,
 int radix);

Description The ltoa function is identical to the itoa function.    For more details see
itoa.

memicmp, _memicmp
Purpose To compare two arrays of characters, without regard to case.

Syntax #include <clib.h>
int memicmp(const void *s1, const void *s2,
size_t n);

Description The memicmp function compares the first n characters of two arrays
without regard to character case.

Return value memicmp returns an integer which is

> 0 if s1 greater than s2

< 0 if s2 greater than s1

= 0 if s1 is the same as s2 except possibly for case differences.

Notes _memicmp is an alternative name for memicmp.

See also memcmp

_OFFSET
Purpose To obtain the byte offset into a segment.

Syntax #include <clib.h>
unsigned _OFFSET(void *address);

Return value Returns the byte offset into a segment for a given address.    This
function should only be used for the real mode address.

See also _SEGMENT, doscom

outport, _outpw
Purpose To send two bytes of data to an I/O port.

Syntax #include <clib.h>
void outport(int portid, int value);
unsigned _outpw(unsigned portid,
 unsigned value);

Description These functions send the two bytes of data stored in bits 0 to 15 of
value to the port specified by portid.

Return value _outpw returns the data output.

Notes outport sends the low-byte first.

outportb, _outp
Purpose To send a byte to an I/O port.

Syntax #include <clib.h>
void outportb(int portid,
 unsigned char value);
int _outp(unsigned portid, int value)

Description These functions send the byte contained in value to the port specified in
portid.

Return value _outp returns the data output.

outport32
Purpose To output 32 bits to an I/O port.

Syntax #include <clib.h>
void outport32(int portid, long value);

Description outport32 sends the word contained in value to the port specified in
portid.

Return value None.

Notes outport32 sends the low-byte first.

putch, _putch
Purpose To put a character to stdout.

Syntax #include <clib.h>
int putch(int c);

Description putch puts the character specified by c to stdout.

Return value putch returns non-zero on success and zero on failure.

Notes _putch is an alternative name for putch.    These functions are not fully
compatible with similar Borland/Microsoft functions which output directly
to the screen.

_rotl
Purpose To rotate an integer left.

Syntax #include <clib.h>
unsigned int _rotl(unsigned int val, int n);

Description _rotl rotates the value held in val left by n bits.

Return value The _rotl function returns the rotated integer.

_rotr
Purpose To rotate an integer right.

Syntax #include <clib.h>
unsigned int _rotr(unsigned int val, int n);

Description _rotr rotates the value held in val right by n bits.

Return value The _rotr function returns the rotated integer.

_SEGMENT
Purpose To obtain the segment number.

Syntax #include <clib.h>
unsigned _SEGMENT(void *address);

Return value Returns the segment number.    This function should only be used for
the real mode address.

Notes The functions _SEGMENT and _OFFSET can be used in conjunction
with doscom    to obtain the segment/offsets required by DOS for INT
21 functions.    They should not be used to pass segments and offsets
for extended memory addresses!

See also _OFFSET

setdate
Purpose Sets the system time and date.

Syntax #include <clib.h>
void setdate(struct date *datep);

Description setdate sets the system date to that contained in the date structure
pointed to by datep.

Return value None.

See also _dos_setdate

setdisk
Purpose To set the current disk drive.

Syntax #include <clib.h>
int setdisk(int drive);

Description Sets the current drive to that specified by drive.    0 corresponds to drive
A, 1 to B, etc.

Return value None.

setmode
Purpose To set the mode of an open file to ‘binary’ or ‘text’.

Syntax #include <clib.h>
int setmode(int handle,int amode)

Description setmode sets the mode of the open file corresponding to handle to the
mode specified in amode.    amode is one of O_BINARY or O_TEXT
according to whether the mode is to be binary or text.

Return value setmode returns 0 on success.    If an error occurs, setmode returns -1
and sets errno to EINVAL        - invalid argument.

settime
Purpose To set the current system time.

Syntax #include <clib.h>
void settime(struct time *timep);

Description settime sets the current system time according to the contents of the
structure pointed to by timep.

Return value None.

See also _dos_settime

_strerror
Purpose Constructs a user defined error message string.

Syntax #include <clib.h>
 char* _strerror(const char *s);

Description If s is NULL, the return value points to the most recently generated error
message.    If s is not NULL, the return value contains the string s, a
colon, a space, the most recently generated system error message, and
a new line.    s should be less than 95 characters long.

Return value The _strerror function returns a pointer to a static buffer which contains
the error message string.    This buffer is overwritten on each call to
_strerror.

strnicmp, _strnicmp
Purpose To compare up to a maximum number of characters from two NULL

terminated strings without regard for case.

Syntax #include <clib.h>
int strnicmp(const char *s1,const char *s2,
size_t max_len);

Description The strnicmp function compares characters in corresponding positions
in the strings pointed to by s1 and s2 without regard for character case
until elements are found to differ, or the end of one of the strings is
reached, or max_len characters have been compared.

Return value Either strnicmp returns a positive or negative value, depending on
whether s1[i]-s2[i] is positive or negative for the index i where elements
first differ in any respect but case;

or zero if the two strings are identical up to the index max_len. (e.g.
negative if s1 is lexicographically less than s2.)

Notes _strnicmp is an alternative name for strnicmp.

See also strncmp

strrev, _strrev
Purpose Reverse the contents of a string.

Syntax #include <clib.h>
char *strrev(char *s);

Description strrev reverses the contents of the string pointed to by s.

Return value strrev returns a pointer to the start of the reversed string.

Notes _strrev is an alternative name for strrev.

swab, _swab
Purpose To swap bytes.

Syntax #include <clib.h>
void swab(char *from, char *to, int nbytes);

Description swab copies nbytes bytes from the array pointed to by from to the string
pointed to by to.    The low-byte and high-byte of each 16-bit word are
swapped.

Return value None.

Notes _swab is an alternative name for swab.

toascii, __toascii
Purpose Converts characters to ASCII.

Syntax #include <clib.h>
int toascii(int c);

Description toascii is a macro which converts integers into ASCII characters by
masking off all but the seven least significant bits, giving a value in the
range [0,127].

Return value toascii returns a value in the range [0,127].

Notes __toascii is an alternative name for toascii.

_tolower
Purpose To convert an upper case character to lower case.

Syntax #include <clib.h>
int _tolower(int ch);

Description _tolower is a macro which takes ch, an upper case character, and
returns the corresponding lower case character.

Return value _tolower returns the ASCII code for a lower case letter.

Notes If ch is not an upper case character, its action is undefined

_toupper
Purpose Converts an upper case character to lower case.

Syntax #include <clib.h>
int _toupper(int ch);

Description _toupper is a macro which takes ch, an upper case ASCII character,
and converts it to the corresponding lower case character.

Return value _toupper returns the ASCII code for an upper case letter.

Notes If ch is not an lower case character, its action is undefined.

ultoa, _ultoa
Purpose Convert a unsigned long number to a string.

Syntax #include <clib.h>
char *ultoa(unsigned long value,
 char *string, int radix);

Description ultoa performs the same function as utoa.    For more details see the
entry for utoa.

Notes _ultoa is an alternative name for ultoa.

ungetch, _ungetch
Purpose To push a character back into the keyboard buffer.

Syntax #include <stdio.h>
int ungetch(int ch);

Description ungetch pushes the 16 bit scan code/ASCII pair ch back into the
keyboard buffer.    Up to 16 characters can be pushed back (512
characters if HOTKEY77 is installed).

Return value ungetch returns ch if successful, otherwise it returns EOF.

Notes _ungetch is an alternative name for ungetch.

See the manual for details of this DBOS function.

Example

// This program uses the functions bioskey and bioscom to
// implement a very simple algorithm which will allow
// communication with a modem.
//
#include <stdio.h>
#include <clib.h>

#define COM1 0
#define COM2 1
#define COM_INIT 0
#define COM_SEND 1
#define COM_RECIEVE 2
#define COM_STATUS 3
#define KEY_READ 0
#define KEY_READY 1

#define COM_PORT COM2

void main(void)
{
 int ch;
 unsigned int service, data, status;

 //
 // Initialise the modem.
 //
 data = 0x3 | 0 | 0x40;
 bioscom(COM_INIT, data, COM_PORT);
 printf("Connecting to COM%d\nQ will exit\n", COM_PORT + 1);

 while (1)
 {
 //
 // Is there a character waiting to be read from the
 // modem?
 status = 0x0100 & bioscom(COM_STATUS, 0, COM_PORT);
 if (status == 0x0100)
 {
 ch = 0xff & bioscom(COM_RECIEVE, 0, COM_PORT);
 putchar(ch);
 }
 //
 // Now check if the user has pressed a key.
 //
 if (bioskey(KEY_READY))
 {
 ch = bioskey(KEY_READ) & 0xff;
 if ((ch == 'Q') || (ch == 'q'))
 {
 printf("Goodbye\n");
 exit(0);
 }
 //
 // Now send the data to the modem.

 //
 status = 0;
 while (status != 0x2000)
 status = 0x2000 & bioscom(COM_STATUS,0,COM_PORT);
 status = bioscom(COM_SEND, ch, COM_PORT);
 if ((status & 0x8000) == 0x8000)
 printf("Error sending data %c to modem\n", ch);
 }
 }
}

Example

// Obtain the system information using biosequip function.
//
#include <stdio.h>
#include <clib.h>

void main(void)
{
 int result = biosequip();

 printf("System configuration = %4x:\n", result);
 if (result & 0x0020)
 printf("Coprocessor is installed\n");
 else
 printf("Coprocessor is not installed\n");
 printf("There are %d floppy disk drives\n",
 ((result & 0x00c0) >> 6) + 1);
 printf("There are %d RS-232 ports installed\n",
 ((result & 0x0e00) >> 9) + 1);
}

Example

//
// Use bioskey to examime the key board status.
//
#include <stdio.h>
#include <clib.h>

void main(void)
{
 int old_result, result;

 result = bioskey(2);
 old_result = result;

 while (1)
 {
 //
 // Decode the key - Remember, more than one state may
 // be active at any one time.
 //
 if (result & 0x01)
 printf("Right SHIFT key pressed\n");
 if (result & 0x02)
 printf("Left SHIFT key pressed\n");
 if (result & 0x04)
 printf("CTRL key pressed\n");
 if (result & 0x08)
 printf("ALT key pressed\n");
 if (result & 0x10)
 printf("Scroll Lock pressed\n");
 if (result & 0x20)
 printf("Num Lock pressed\n");
 if (result & 0x40)
 printf("CAPS LOCK pressed\n");
 if (result & 0x80)
 printf("Insert is active\n");

 while (result == old_result)
 result = bioskey(2);
 old_result = result;
 putchar('\n');
 }
}

Example

//
// Use biosprint to send data to a printer.
//
#include <stdio.h>
#include <clib.h>

void main(void)
{
 //
 // Get the printer status.
 //
 printf("Waiting for the printer to come online\n");
 while (!(biosprint(2, 0, 0) & 0x7f));
 printf("Printing\n");
 //
 // Now print the string one character at a time.
 //
 for(char *p = "This is a test printer string\r\n"; *p; p++)
 {
 biosprint(0, *p, 0);
 while (!(biosprint(2, 0, 0) & 0x7f));
 }
}

Example

//
// This program illustrates the use of the biostime function
// to implement a very simple profiling operation.
//
// Two methods are used, one calculates the time from a known
// value, the other resets the time.
//
#include <stdio.h>
#include <clib.h>

void main(void)
{
 long int ticks, new_ticks, i;

 ticks = biostime(0, 0);
 printf("Current time is %ld\n", ticks);
 //
 // Now for the code to time.
 //
 for (i = 0; i < 10; i++)
 printf("Hello, world\n");
 //
 // Calculate the elapsed time.
 //
 new_ticks = biostime(0, 0);
 printf("That for loop took %g seconds\n",
 (new_ticks - ticks) / 18.2);
 //
 // Reset the time.
 //
 biostime(1, 0);
 //
 // Now for the same loop.
 //
 for (i = 0; i < 10; i++)
 printf("Hello, world\n");
 //
 // Calculate the elapsed time.
 //
 ticks = biostime(0, 0);
 printf("This loop took %ld ticks\n", ticks);

Functions defined in dir.h

chdir

exists

findfirst

findnext

getcwd

getdisk

searchpath

About functions defined in dir.h

The <dir.h> header includes prototypes for functions which relate to disc
drive and directory information and includes the following structure
definition.

struct ffblk {
 char ff_reserved[21]; // reserved by DOS
 char ff_attrib; // DOS file attribute
 unsigned ff_ftime; // DOS access time
 unsigned ff_fdate; // DOS access date
 long ff_fsize; // file size
 char ff_name[13]; // file name
 char ff_path_name[129] // fully qualified
}; // path name

chdir
Purpose To change the current directory.

Syntax #include <dir.h>
int chdir(const char *path);

Description chdir changes the current working directory to that pointed to by path.   
This directory must already exist.    path may include the corresponding
drive but the active drive cannot be changed using this function.

Return value chdir returns zero for success and -1 for failure.    The global variable
errno is set when an error occurs.

See also attach

exists
Purpose To test if a file with a given name already exists.

Syntax #include <dir.h>
int exists(const char *pathname);

Description exists searches the current directory for a file with the given name or, if
a full path name is given, the given directory is searched.

Return value exists returns a non-zero value for success or zero if a file with the
given name cannot be found.

Example

// exists.cpp
#include <stdio.h> // for printf
#include <dir.h> // for exists
main()
{
 printf("COMMAND.COM");
 if (!exists("command.com"))

printf("not ");
 printf("found in this directory\n");
 printf("EXISTS.CPP ");
 if (!exists("EXISTS.CPP"))

printf("not ");
 printf("found in this directory\n");
}

findfirst
Purpose To search a directory for a file or type of file.

Syntax #include <dir.h>
int findfirst(const char *path,
 struct ffblk *f, int attrib);

Description findfirst uses the DOS function 0x4E    to search for the first matching
file or files given by the specification pointed to by path.    This contains
an optional drive specifier, the path, and the name of the file to be
found.    The file name may include wild card characters (? or *).

If a matching file is found, then the ffblk structure f is filled with the DOS
file-directory information (please refer to your DOS reference manual for
details).

attrib contains the DOS file attribute data which defines the type of file
that is acceptable in the search.    A zero value means that all files are
acceptable.    Otherwise the details are as follows.

bit value meaning

1 read-only attribute

2 hidden file

4 system file

8 volume label

16 directory

32 archive

Return value findfirst returns zero for success -1 for failure.    On failure, the global
variable errno is set with a value which indicates the cause of failure.

See also files

findnext
Purpose To continue a findfirst search.

Syntax #include <dir.h>
int findnext(struct ffblk *f);

Description findnext can be used to find more files that match the path of a
preceding call to findfirst.    f is filled with directory information as
before.    One file name is returned for each call of the function until
findnext returns -1.

Return value findnext returns zero on success and -1 on failure to find a matching
file.    On failure, the global variable errno    is set with a value which
indicates the cause of failure.

Example

// find.cpp
#include <stdlib.h> // for exit
#include <stdio.h> // for printf
#include <dir.h> // for findfirst, findnext
main()
{
 struct ffblk file_block;
 if (findfirst("*.cpp", &file_block, 0) 0)

{
 printf("cannot find file\n");
 exit(1);
}

 do
printf("File name : %s\n", file_block.ff_name);

 while (!findnext(&file_block));
}

getcwd
Purpose To get the current working directory.

Syntax #include <dir.h>
char *getcwd(char *path, int path_len);

Description getcwd gets the full path name, including the drive, of the current
working directory and returns it in the string of length path_len pointed
to by
path.    path_len should include the terminating null.

If path is NULL then the function uses malloc to allocate pathlen bytes
for the string.    A pointer to this string is returned via the function name
and thus the memory can be freed at a later point using free.

Return value If path is not NULL on input, getcwd returns path on success, NULL on
failure.    If path is NULL on input, getcwd returns a pointer to the
allocated memory.    When an error occurs, the global variable errno is
set to indicate the cause of failure.

Example

// getcwd.cpp
#include <stdio.h> // for printf
#include <dir.h> // for getcwd
main()
{
 char buffer[80];
 if (getcwd(buffer,80))

printf("Current working directory is %s\n", buffer);
 else

printf("Cannot obtain current working directory.\n");
}

getdisk
Purpose To get the current drive number.

Syntax #include <dir.h>
int getdisk();

Return value getdisk returns the current drive number with 0 corresponding to drive
A, 1 for B and so on.

Example

// getdisk.cpp
#include <stdio.h> // for printf
#include <dir.h> // for getdisk
main()
{
 printf("You are currently logged onto drive %c\n",
 ’A’ + getdisk());
}

searchpath
Purpose To search the DOS path for a file.

Syntax #include <dir.h>
char *searchpath(const char *file);

Description searchpath searches in the current directory and then along the DOS
path (PATH=... in the DOS environment) for the file pointed to by file.

Return value When successful, searchpath returns a pointer to a static buffer
containing the full path name which is overwritten on each call of the
function.    Otherwise searchpath returns a NULL pointer.

Example

// search.cpp
#include <stdio.h> // for printf etc.
#include <dir.h> // for searchpath
main()
{
 char file_name[80], *path;
 printf("\n\nEnter file name : ");
 gets(file_name);
 while (*file_name)
 {

if (path = searchpath(file_name))
 printf("File exists : %s\n", path);
else
 printf("Cannot find file on path.\n");
printf("\n\nEnter file name : ");
gets(file_name);

 }
}

Functions defined in dos.h

int86

int86x

intdos

intdosx

getdfree

About functions defined in dos.h

The <dos.h> header defines some structures and one union together with
associated functions which can be used to interface with BIOS and DOS
services.    The details are as follows:

struct WORDREGS {
 unsigned short int ax;
 unsigned short int bx;
 unsigned short int cx;
 unsigned short int dx;
 unsigned short int si;
 unsigned short int di;
 unsigned short int cflag;
 unsigned short int flags;
};

struct BYTEREGS {
 unsigned char al;
 unsigned char ah;
 unsigned char bl;
 unsigned char bh;
 unsigned char cl;
 unsigned char ch;
 unsigned char dl;
 unsigned char dh;
};
union REGS {
 struct WORDREGS x;
 struct BYTEREGS h;
};
struct SREGS {
 unsigned short es;
 unsigned short cs;
 unsigned short ss;
 unsigned short ds;
};
struct dfree { // free disk space information
 unsigned df_avail; // available clusters
 unsigned df_total; // total clusters
 unsigned df_bsec; // bytes per sector
 unsigned df_sclus; // sectors per cluster
};

int86
Purpose To make a DOS/BIOS call without segment registers.

Syntax #include <dos.h>
int int86(int intno,union REGS *inregs ,
 union REGS *outregs);

Description int86 performs the software interrupt given by intno.    Register values
are copied from inregs (excluding the flags) before the interrupt and
copied to outregs after the interrupt.    The returned flags are copied to
the x.flags field in outregs and the carry flag is also copied to x.cflag.

Return value int86 returns the value of AX after the interrupt.

int86x
Purpose To make a DOS/BIOS call with segment registers.

Syntax #include <dos.h>
int int86x(int intno,union REGS *inregs ,
 union REGS *outregs,
 struct SREGS *segregs);

Description int86x performs the software interrupt given by intno.    Register values
are copied from inregs    (excluding the flags)    and from segregs->ds
and segregs->es before the interrupt (cs and ss are ignored).    Then the
registers are copied to outregs    and to segregs->ds and
segregs->es after the interrupt.    The returned flags are copied to the
x.flags field in outregs    and the carry flag is also copied to x.cflag.

Return value int86x returns the value of AX after the interrupt.

intdos
Purpose To make a DOS call without segment registers.

Syntax #include <dos.h>
int intdos(union REGS *inregs ,
 union REGS *outregs);

Description intdos performs the software interrupt 0x21.    Register values are
copied from inregs (excluding the flags) before the interrupt and copied
to outregs after the interrupt.    The returned flags are copied to the
x.flags field in outregs    and the carry flag is also copied to x.cflag.

Return value intdos returns the value of AX after the interrupt.

intdosx
Purpose To make a DOS call with segment registers.

Syntax #include <dos.h>
int intdosx(union REGS *inregs ,
 union REGS *outregs,
 struct SREGS *segregs);

Description intdosx performs the software interrupt 0x21.    Register values are
copied from inregs    (excluding the flags) and from segregs->ds and
segregs->es before the interrupt (cs and ss are ignored).    Then the
registers are copied to outregs    and to segregs->ds and segregs->es
after the interrupt.    The returned flags are copied to the x.flags field in
outregs    and the carry flag is also copied to x.cflag.

Return value intdosx returns the value of AX after the interrupt.

Example See mouse_light_pen_emulation.

getdfree
Purpose To get disk free space information.

Syntax #include <dos.h>
void getdfree(unsigned char drive,
 struct dfree *dtable);

Description getdfree gets the disk information for the drive with number drive (0
denotes the default drive, 1 for A and so on).    The dfree structure is
filled with the relevant data.

Return value None.    In the event of an error, df_sclus in the dfree structure is set to
0xffff.

