
Contents - SftColor Version 1.0

 © Copyright 1996 Softel vdm

Introduction
What is SftColor
Using SftColor
Ordering SftColor

Using Resource Editors
Resource Workshop
Borland C++
AppStudio, Visual C++
Dialog Editor (Windows SDK)

Programming
Using C
Using C++    and the Microsoft Foundation Class library
Using C++ and the ObjectWindows Library
Rebuilding the DLLs

Reference
Definitions and Structures
Messages and Functions
Color Control Styles
Notifications

MFC
CSftColor Class
Notifications

OWL
TSftColor Class
Notifications

Support
Contacting Softel vdm

This is an incorrectly licensed version of SftColor.    Please contact
Softel vdm for a replacement.
The product you have received has been created incorrectly.    The licensing information is missing.   
Please contact Softel vdm for a replacement.

SftColor Overview
SftColor is a custom control for the Windows operating system, offering an easy method for a user to
make a color selection based on a predefined color-set or to define a custom color.

Color Control
SftColor offers easy to use color selection.

· Displays predefined sets of colors
· Quick, intuitive interface for color selection
· Optional edit button for custom colors
· Built-in default color list
· User-definable color list
· Support for default entry
· Easy to use API, superset of combo box
· Acts like a combo box
· Great for color selection on tool bars
· Several styles
· Built-in ChooseColor dialog access
· Support for SDK dialog editors, Visual C++, Resource Workshop, Borland C++
· Supports C, C++ with MFC and C++ with OWL

Source Code
The source code for the MFC and OWL C++ classes for color control access is included.    The DLL
source code (written in C) is available.    Any application that you develop can use SftColor royalty-free as
long as none of our source code is shipped with your application.

Languages Supported
SftColor supports C, C++ and other languages when using the standard SendMessage Windows API.   
The SftColor DLL can be called using the definitions provided in the supplied header file.    For languages
other than C or C++, the user can translate these definitions.    In addition, SftColor is shipped with class
definitions which support the Microsoft Foundation Class Library (MFC) and the Borland ObjectWindows
Library (OWL).

Environments Supported
SftColor supports Windows 3.1 (including Win32s),    Windows NT and Windows 95 using the same easy
to use API.

Licensing
SftColor is shipped under a single developer license, which allows one single developer to install the
product and use all files included.    The SftColor DLLs can be redistributed with an application royalty-
free.    If more than one developer needs access to the SftColor DLLs and/or any of the development files,
such as header files (*.h), source files (*.c and *.cpp), etc., additional licenses have to be purchased.   
SftColor is also offered under a site license agreement.    If you have any questions regarding licensing of
our products, please contact Softel vdm.

Using SftColor
Depending on the programming language used, the steps necessary to add a color    control to an
application differ somewhat, but the following steps outline the basic method:

First, a color control is added to a dialog using a resource editor.    The topics Resource Workshop,
AppStudio, Visual C++, Dialog Editor (Windows SDK) and Borland C++ outline the process for each of
the supported resource editors.    When the dialog is later used in an application, the color control is
automatically created and can be accessed using the supplied API.    A color control can also be created
outside of a dialog.    This is documented in the language specific programming topics Using C, Using C+
+    and the Microsoft Foundation Class library and Using C++ and the ObjectWindows Library.

Once the color control has been created, the API functions documented in the topics Definitions and
Structures and Messages and Functions can be used to add colors, define attributes, respond to events,
etc.

Color Control Styles
The SftColor color control builds on the Windows combo box.    The color control is always shown as a
drop-down list style combo box.    This means that the user cannot type the color name, a selection has to
be made from the colors offered.    Most styles offer support for an optional edit button.    This edit button
can be enabled under program control or can automatically invoke the ChooseColor Common Dialog.

The color control has support for a special color name (Custom), which allows the user to invoke the
ChooseColor Common Dialog to define a custom color.

Keyboard Interface
The color control implements the same interface as a standard combo box.    If the color combo box has
the input focus, the right arrow key will cause the input focus to shift to the edit button (if present).    If the
edit button has the input focus the left arrow key will cause the input focus to shift to the color combo box.

Order Form

When ordering by mail or fax, please use this order form.    Print this help topic using the File, Print Topic
menu command.

Call:
or
FAX:

(201) 366-9618

(201) 366-3984

Mail to: Softel vdm
11 Michigan Ave
Wharton, NJ 07885

Name ...

Company ...

Street ...

City, State, ZIP ...

Country ...

Payment Method [     ] Visa          [     ] Mastercard          [     ] American Express
[     ] Check enclosed

Card Number ...

Expiration Date ...

Signature ...

Phone Number ...
FAX Number ...
Please include your phone number so we can contact you if there is a problem filling your order.

Site licensing available - please call for more information.

Prices as of November 3, 1995. Subject to change.

....... SftColor for Windows, Windows NT and Windows 95
Single developer license, without DLL source code
$59 each copy

$

....... SftColor for Windows, Windows NT and Windows 95
Single developer license, including DLL source code
$99 each copy

$

....... Upgrade, SftColor DLL Source Code Only
Single developer license
$40 each copy              Enter License # _________________

$

6% Sales Tax (NJ residents only) $

Shipping and Handling
($5.00 per copy, $7.00 Canada, $12.00 international) $

  Total $

Product Support
If you experience difficulties using SftColor, there are several methods to contact us, so we can help you
resolve the problem.    If you have reviewed the on-line help and your manual, please contact Softel vdm
product support using any of the following methods:

Telephone (201) 366-9618
Fax (201) 366-3984
WWW http://www.softelvdm.com

Download up-to-date bug descriptions, solutions, samples
Internet support@softelvdm.com
CompuServe CIS 72724,2321
Mail Softel vdm

11 Michigan Ave
Wharton, NJ 07885-2540

Please include your license number in all cases.    Without your license number, we will not be able to
help you.    Your license number is printed on the installation diskette label.

Rebuilding the DLLs
For information on how to link your application to the SftColor DLL, please see the programming sections.

Note:    If you need to modify the SftColor DLL source code, please make sure to test the resulting DLL
with the sample applications.

If you wish to rebuild the SftColor DLL, please follow these steps.    Use your development environment to
create a new project and set desired project options.    Make sure the target is a DLL (as opposed to an
EXE).    The source files for the SftColor DLL can be found in the directory C:\SFTCOLOR\SOURCE
(unless changed during the installation).

Please note that you can only rebuild the DLLs if you have purchased the SftColor source code.

The following files have to be added to your project:

 DLL for Windows
3.1

DLL for Windows
NT (with UNICODE
support)

DLL for Windows 95,
Win32s , Windows NT
(incl. Windows NT
without UNICODE
support)

Target SFTCLR.DLL SFTCL32U.DLL SFTCL32.DLL
BCT1CLR.C
HELPER.C HELPER.C HELPER.C

Required MCT1CLR.C
Source MCT2CLR.C MCT2CLR.C
Files SFTCLR.C SFTCLR.C SFTCLR.C

CLRINIT.C CLRINIT.C CLRINIT.C
SFTCLR.RC SFTCLR.RC SFTCLR.RC
SFTCLR.DEF SFTCL32U.DEF SFTCL32.DEF

Note: If you do not include a DEF file above, your DLL may be built correctly, but applications will fail to
load or execute properly.

Special Considerations
By defining the _DEBUG preprocessor symbol, tracing options are enabled for the SftColor DLL.    For
certain error conditions, the SftColor DLL will send messages to a debugging terminal or the debugger
using the OutputDebugString Windows API function.    For more information, see the Windows
OutputDebugString documentation.    The DLLs shipped with SftColor do not have this tracing facility
enabled.

Special Considerations for Windows 3.1
When rebuilding the Windows 3.1 version, choose the LARGE memory model.

The project has to linked with COMMDLG.LIB and the COMMDLG.DLL has to be available at run-time.

When creating a debugging version for Windows 3.1, the project has to linked with TOOLHELP.LIB and
the TOOLHELP.DLL has to be available at run-time.

Special Considerations for Windows NT
To rebuild the UNICODE version of SftColor (for Windows NT only), make sure to define the following
preprocessor symbols:

                      UNICODE
                      _UNICODE

If these symbols are not defined, the resulting DLL will not support UNICODE.    The DLL supporting
UNICODE is named SFTCL32U.DLL, the non-UNICODE DLL is named SFTCL32.DLL.

Special Considerations using Borland C++ 32-bit compiler

When creating a DLL, a LIB file is automatically created or can be created using the IMPLIB utility.    The
LIB files created by the Borland 32-bit compiler are incompatible with the LIB files created by the
Microsoft compiler.    For this reason, the LIB file created when using Borland C++ should be renamed
according to the following table.    The DLLs created with Borland C++ and Microsoft Visual C++ are
interchangeable, however, the LIB files are not.

Target DLL for Windows
3.1

DLL for Windows
NT (with UNICODE
support)

DLL for    WIN32/s/c
(incl. Windows NT
without UNICODE
support)

LIB file SFTCLR.LIB SFTCL32V.LIB SFTCL32B.LIB

C Programming
This section describes how to use SftColor with an application written using the C programming
language.

Building an Application
Every source program making use of a SftColor control must include the required header file
SFTCOLOR.H by using the #include directive.

 #include "sftclr.h" /* SftColor required header file */

This include statement should appear after the #include <windows.h> statement.    The file is located in
the directory C:\SFTCOLOR\INCLUDE (unless changed during the installation).

In order to use SftColor controls, an application must call the SftColor_RegisterApp function.    The call to
this function is required so that SftColor window classes can be registered.    This call has to be made
before any SftColor controls are created.    Add the following statement to your source code where your
application registers its window classes (normally during application initialization):

 SftColor_RegisterApp(hInstance); /* Use SftColor with this application */

Once SftColor controls are no longer needed, an application must call the SftColor_UnregisterApp
function.    The call to this function is required so that SftColor window classes can be unregistered and
cleanup processing can take place.    This call has to be made after all SftColor controls have been
destroyed (normally during application termination).

 SftColor_UnregisterApp(hInstance); /* No longer use SftColor */

The application's executable (EXE or DLL) must be linked with the correct LIB file, depending on the
target environment and the compiler used.    The SftColor DLL must be available and accessible at run-
time for proper execution.    The DLL used at run-time depends on the LIB file used at link time.

Target Environment LIB File for
Applications
developed using
MS C or Visual
C++

LIB File for
Applications
developed using
Borland C++

DLL File
Required at
Run-Time

Windows 3.1 SFTCLR.LIB SFTCLR.LIB SFTCLR.DLL
WIN32/s/c, all 32-bit
environments incl.
Windows NT (DLL w/o
UNICODE support)

SFTCL32.LIB SFTCL32B.LIB SFTCL32.DLL

Windows NT (DLL with
UNICODE support)

SFTCL32U.LIB SFTCL32V.LIB SFTCL32U.DLL

All required files can be found in the directory C:\SFTCOLOR\LIB and C:\SFTCOLOR\BIN (unless
changed during the installation).

Adding a Color Control
There are two methods to add a color control to an application:

· using dialog resources
· using CreateWindow(Ex)

Adding a color control using dialog resources is accomplished by using a resource editor to design a
dialog.    Once a color control is created, its window handle can be obtained by using the Windows
GetDlgItem function.

Another method to create a color control is by using the CreateWindow(Ex) Windows calls.

hwndColor = CreateWindow(SFTCOLOR_CLASS, "", // Window class and caption
 style, x, y, cx, cy, // location
 hwndParent, // parent window

 IDC_COLOR, // color control ID
 hInst, // application instance
 NULL);

For more information on the various parameters used, see the Windows API documentation.    The color
control class is defined by the SFTCOLOR_CLASS constant (SFTCLR.H).    The window class is
SoftelColor (Windows 3.1) or SoftelColor32 (for Windows NT, 95, Win32s).

Handling Notifications
As with standard Windows controls, applications must respond to events and messages to cause controls
to respond to user requests.    For additional information see Notifications.

Handling Combo Box Notifications
The color control generates the same notifications as a drop-down list style combo box.    The following
sample code illustrates how a selection change notification (CBN_SELCHANGE) could be handled:

WIN16 (Windows 3.1, WFW, etc.):

 switch (msg) {
 case WM_COMMAND: {
 HWND hwndCtl = (HWND) LOWORD(lParam);
 int id = (int) wParam;
 int code = HIWORD(lParam);
 if (hwndCtl) {
 switch (id) {
 case IDC_COLOR:
 switch (code) {
 case CBN_SELCHANGE: // just like a real combo box
 // implement your handler here
 break;
 }
 break;
 }
 }
 break;
 }

Win32 (Windows 95, Windows NT, Win32s):

 switch (msg) {
 case WM_COMMAND: {
 HWND hwndCtl = (HWND) lParam;
 int id = LOWORD(wParam);
 int code = HIWORD(wParam);
 if (hwndCtl) {
 switch (id) {
 case IDC_COLOR:
 switch (code) {
 case CBN_SELCHANGE: // just like a real combo box
 // implement your handler here
 break;
 }
 break;
 }
 }
 break;
 }

Handling the Edit Button
If a color control is defined with the SFTCOLORSTYLE_CUSTOMEDIT style, it will generate
WM_COMMAND, SFTCOLORN_EDIT notification messages when the user clicks the edit button.    The
following sample code illustrates how the notification could be handled:

WIN16 (Windows 3.1, WFW, etc.):

 switch (msg) {
 case WM_COMMAND: {
 HWND hwndCtl = (HWND) LOWORD(lParam);
 int id = (int) wParam;
 int code = HIWORD(lParam);
 if (hwndCtl) {
 switch (id) {
 case IDC_COLOR:
 switch (code) {
 case SFTCOLORN_EDIT: // The user clicked the edit button
 // you could bring up your own ChooseColor dialog
 break;
 }
 break;
 }
 }
 break;
 }

Win32 (Windows 95, Windows NT, Win32s):

 switch (msg) {
 case WM_COMMAND: {
 HWND hwndCtl = (HWND) lParam;
 int id = LOWORD(wParam);
 int code = HIWORD(wParam);
 if (hwndCtl) {
 switch (id) {
 case IDC_COLOR:
 switch (code) {
 case SFTCOLORN_EDIT: // The user clicked the edit button
 // you could bring up your own ChooseColor dialog
 break;
 }
 break;
 }
 }
 break;
 }

C++/MFC Programming
This section describes how to use SftColor with an application written using C++ and the Microsoft
Foundation Class library (MFC).

Building an Application
Every source program making use of a SftColor control must include the required header file SFTCLR.H
by using the #include directive.

 #include "sftclr.h" /* SftColor required header file */

This include statement should appear after the #include <windows.h> statement.    The file is located in
the directory C:\SFTCOLOR\INCLUDE (unless changed during the installation).

One source program must include the CSftColor class implementation, using the #include directive.

 #include "sftclrm.cpp" /* SftColor implementation */

This include statement should appear after the #include "sftclr.h" statement.    This is the preferred method
to include the implementation of the CSftColor class.    Adding the file SFTCLRM.CPP to your project is
not recommended because it will complicate the use of pre-compiled header files.    The file is located in
the directory C:\SFTCOLOR\INCLUDE (unless changed during the installation).

In order to use SftColor controls, an application must call the CSftColor::RegisterApp function.    The call
to this function is required so that SftColor window classes can be registered.    This call has to be made
before any SftColor controls are created.    Add the following statement to your source code.    The
preferred location is the InitInstance member function of your CWinApp based application object:

 CSftColor::RegisterApp(); /* Use SftColor with this application */

Once SftColor controls are no longer needed, an application must call the CSftColor::UnregisterApp
function.    The call to this function is required so that SftColor window classes can be unregistered and
cleanup processing can take place.    This call has to be made after all SftColor controls have been
destroyed.    The preferred location is the ExitInstance member function of your CWinApp based
application object:

 CSftColor::UnregisterApp(); /* No longer use SftColor */

The application's executable (EXE or DLL) must be linked with the correct LIB file, depending on the
target environment.    The SftColor DLL must be available and accessible at run-time for proper execution.
The DLL used at run-time depends on the LIB file used at link time.

Target Environment LIB File
Required when
Linking

DLL File
Required at
Run-Time

Windows 3.1 SFTCLR.LIB SFTCLR.DLL
WIN32/s/c, all 32-bit
environments incl.
Windows NT (DLL w/o
UNICODE support)

SFTCL32.LIB SFTCL32.DLL

Windows NT (DLL with
UNICODE support)

SFTCL32U.LIB SFTCL32U.DLL

All required files can be found in the directory C:\SFTCOLOR\LIB and C:\SFTCOLOR\BIN (unless
changed during the installation).

Adding a Color Control
ClassWizard does not support new classes such as CSftColor, so any color control instance variables,
notification handlers, message map entries, etc., have to be added manually.    To simplify this process,
you can copy these items that are generated by ClassWizard for other "standard" Windows controls.

There are two methods to add a color control to an application:

· using dialog resources
· using CSftColor::Create

Adding a color control using dialog resources is accomplished by using a resource editor to design a
dialog.    For more information on the different resource editors supported by SftColor, see Resource
Workshop, AppStudio, Visual C++, Dialog Editor (Windows SDK) and Borland C++.    Once a color control
is created, its CSftColor based object can be obtained by using the Windows GetDlgItem function or
attached to a CSftColor object using SubclassWindow.

CSftColor * pClrControl;
pClrControl = (CSftColor *) GetDlgItem(IDC_COLOR);

CSftColor m_Clr;
m_Clr.SubclassWindow(::GetDlgItem(m_hWnd, IDC_COLOR));
CSftColor m_Color;
m_Color.SubclassDlgItem(IDC_COLOR, this);

Another method to create a color control is by using the CSftColor::Create member function.

 CSftColor m_Color;
 m_Color.Create(WS_CHILD|WS_VISIBLE|
 SFTCOLORSTYLE_STYLE1 | SFTCOLORSTYLE_VSCROLL |
 SFTCOLORSTYLE_SELTEXTONLY | SFTCOLORSTYLE_CUSTOMEDIT |
 SFTCOLORSTYLE_CUSTOMEDITAUTO,
 CRect(250, 200, 500, 240),
 pParentWnd,
 IDC_COLOR);

Handling Notifications
As with standard Windows controls, applications must respond to events and messages to cause controls
to respond to user requests.    For additional information see Notifications.

ClassWizard does not support new classes such as CSftColor, so any color control instance variables,
notification handlers, message map entries, etc., have to be added manually.    To simplify this process,
you can copy these items that are generated by ClassWizard for other "standard" Windows controls.

Handling Combo Box Notifications
The color control generates the same notifications as a drop-down list style combo box.    The following
sample code illustrates how a selection change notification (CBN_SELCHANGE) could be handled:

 // Event handler prototype added to dialog class
 afx_msg void OnSelChange();

 // Event handler(s) added to message map
 BEGIN_MESSAGE_MAP(CYourDialog, CDialog)
 ON_CBN_SELCHANGE(IDC_COLOR, OnSelChange)
 END_MESSAGE_MAP()

 // event handler implementation
 void CYourDialog::OnSelChange()
 {
 // your event handler
 }

Handling the Edit Button
If a color control is defined with the SFTCOLORSTYLE_CUSTOMEDIT style, it will generate
WM_COMMAND, SFTCOLORN_EDIT Notifications messages when the user clicks the edit button.    The
following sample code illustrates how the notification could be handled:

 // Event handler prototype added to dialog class
 afx_msg void OnEditButtonClick();

 // Event handler(s) added to message map
 BEGIN_MESSAGE_MAP(CYourDialog, CDialog)

 ON_SFTCOLORN_EDIT(IDC_COLOR, OnEditButtonClick)
 END_MESSAGE_MAP()

 // event handler implementation
 void CYourDialog::OnEditButtonClick()
 {
 // you could implement your own ChooseColor dialog
 }

C++/OWL Programming
This section describes how to use SftColor with an application written using C++ and the Borland
ObjectWindows Library (OWL).

Building an Application
Every source program making use of a SftColor control must include the required header file SFTCLR.H
by using the #include directive.

 #include "sftclr.h" /* SftColor required header file */

This include statement should appear after any OWL- and Windows-related #include statements.    The
file is located in the directory C:\SFTCOLOR\INCLUDE (unless changed during the installation).

One source program must include the TSftColor class implementation, using the #include directive.

 #include "sftclrb.cpp" /* SftColor implementation */

This include statement should appear after the #include "sftclr.h" statement.    This is the preferred method
to include the implementation of the TSftColor class.    Adding the file SFTCLRB.CPP to your project is not
recommended because it will complicate the use of pre-compiled header files.    The file is located in the
directory C:\SFTCOLOR\INCLUDE (unless changed during the installation).

In order to use SftColor controls, an application must call the TSftColor::RegisterApp function.    The call
to this function is required so that SftColor window classes can be registered.    This call has to be made
before any SftColor controls are created.    Add the following statement to your source code.    The
preferred location is the InitInstance member function of your TApplication based application object:

 TSftColor::RegisterApp(); /* Use SftColor with this application */

Once SftColor controls are no longer needed, an application must call the TSftColor::UnregisterApp
function.    The call to this function is required so that SftColor window classes can be unregistered and
cleanup processing can take place.    This call has to be made after all SftColor controls have been
destroyed.    The preferred location is the TermInstance member function of your TApplication based
application object:

 TSftColor::UnregisterApp(); /* No longer use SftColor */

The application's executable (EXE or DLL) must be linked with the correct LIB file, depending on the
target environment.    The SftColor DLL must be available and accessible at run-time for proper execution.
The DLL used at run-time depends on the LIB file used at link time.

Target Environment LIB File
Required when
Linking

DLL File
Required at
Run-Time

Windows 3.1 SFTCLR.LIB SFTCLR.DLL
WIN32/s/c, all 32-bit
environments incl.
Windows NT (DLL w/o
UNICODE support)

SFTCL32B.LIB SFTCL32.DLL

Windows NT (DLL with
UNICODE support)

SFTCL32V.LIB SFTCL32U.DLL

All required files can be found in the directories C:\SFTCOLOR\LIB and C:\SFTCOLOR\BIN (unless
changed during the installation).

Adding a Color Control
ClassExpert does not support new classes such as TSftColor, so any color control instance variables,
notification handlers, message map entries, etc., have to be added manually.    To simplify this process,
you can copy these items that are generated by ClassExpert for other "standard" Windows controls (such
as a list box).

There are two methods to add a color control to an application:

· using dialog resources
· using the TWindow::Create function

Adding a color control using dialog resources is accomplished by using a resource editor to design a
dialog.    For more information on the different resource editors supported by SftColor, see Resource
Workshop, AppStudio, Visual C++, Dialog Editor (Windows SDK) and Borland C++.    Once a color control
is created by creating the dialog, the TSftColor based object can be constructed by using the TSftColor
constructor.

 pColor = new TSftColor(this, IDC_COLOR);

Another method to create a color control is by using the TSftColor constructor and the TWindow::Create
function:

 pColor = new TSftColor(parentWindow, IDC_COLOR, 250,200,500,240);
 pColor->Attr.Style |= WS_CHILD|WS_VISIBLE|
 SFTCOLORSTYLE_STYLE1 | SFTCOLORSTYLE_VSCROLL |
 SFTCOLORSTYLE_SELTEXTONLY | SFTCOLORSTYLE_CUSTOMEDIT |
 SFTCOLORSTYLE_CUSTOMEDITAUTO;
 pColor->Create();

The constructor creates the color control object.    The arguments define the position of the color control
window once it is created using the Create function.    For more information on the various parameters
used, see section topics Definitions and Structures and Messages and Functions.

Handling Notifications
As with standard Windows controls, applications must respond to events and messages to cause controls
to respond to user requests.    For additional information see Notifications.

ClassExpert does not support new classes such as TSftColor, so any color control instance variables,
notification handlers, message map entries, etc., have to be added manually.    To simplify this process,
you can copy these items that are generated by ClassExpert for other "standard" Windows controls.

Handling Combo Box Notifications
The color control generates the same notifications as a drop-down list style combo box.    The following
sample code illustrates how a selection change notification (CBN_SELCHANGE) could be handled:

 // Event handler prototype added to dialog/window class
 void EvSelChange();

 // Response table
 DEFINE_RESPONSE_TABLE1(TMainDlg, TDialog)
 EV_CBN_SELCHANGE(IDC_COLOR, EvSelChange),
 END_RESPONSE_TABLE;

 // Event handler implementation
 void TMainDlg::EvSelChange()
 {
 // your event handler
 }

Handling the Edit Button
If a color control is defined with the SFTCOLORSTYLE_CUSTOMEDIT style, it will generate
WM_COMMAND, SFTCOLORN_EDIT notification messages when the user clicks the edit button.    The
following sample code illustrates how the notification could be handled:

 // Event handler prototype added to dialog/window class
 void EvEditButtonClick();

 // Response table
 DEFINE_RESPONSE_TABLE1(TMainDlg, TDialog)
 EV_SFTCOLORN_EDIT(IDC_COLOR, EvEditButtonClick),
 END_RESPONSE_TABLE;

 // Event handler implementation
 void TMainDlg::EvEditButtonClick()
 {
 // you could implement your own ChooseColor dialog
 }

Resource Workshop

First Time
In order to make SftColor available to Resource Workshop, use its File, Install control library... menu
command to define SftColor to Resource Workshop.    This has to be done only once.    Locate the
SftColor DLL using the dialog shown.    The files SFTCLR.DLL and SFTCL32.DLL can be found in the
directory C:\SFTCOLOR\BIN (unless changed during the installation).    The 16-bit version of Borland C++
Resource Workshop can use the 16-bit SFTCLR.DLL, later 32-bit versions of Borland's IDE may also
support the 32-bit DLL SFTCL32.DLL.    The resource script generated can be compiled using 32-bit (or
16-bit) tools and linked with the appropriate 32-bit or 16-bit version of SftColor.

New Project
Whenever you create a project which is to include a SftColor control, make sure to add the C and C++
header file SFTCLR.H to your project.    This file can be found in the directory C:\SFTCOLOR\INCLUDE
(unless changed during the installation).    Use the File, Add to project... menu command to display the
Add file to project dialog.    Adding the SftColor header file insures that your resource definitions for the
SftColor control can be compiled correctly.    The SFTCLR.H header file has to be accessible to Resource
Workshop and the resource compiler.    If the header file is not added to your project you will get the error
message "Resource Workshop 197: Compile Error, Expecting control window style" when editing a dialog
containing a SftColor control.

Adding a Color Control to a Dialog
To add a SftColor control to a dialog, use the SftColor toolbar button.    Click on the button and then on the
dialog being designed to add a control.    The height of the color control is dynamically determined at run-
time, based on the font used.    The height of the control as defined in the dialog resource is ignored.   
Once a SftColor control has been added to a dialog, you can edit the window styles by double-clicking
anywhere within the control, or by using the Control, Style... menu command.

SftColor Control Styles Dialog
The SftColor Styles dialog allows you to manipulate the following color control attributes:

Item Description
Control ID Enter the control's identifier in the Control ID input box. Control IDs can be a

short integer such as 201, or an integer expression, such as IDC_COLOR=201.
In both cases the value 201 is assigned to the control as control ID, the second
example also defines IDC_COLOR as an alphanumeric identifier.    If you enter
an alphanumeric identifier, Resource Workshop checks to see if a #define or a
constant declaration has already been created for that identifier. If not, Resource
Workshop will create the identifier.

Vertical scroll bar The Vertical scroll bar check box determines whether the control displays a
vertical scroll bar, if scrolling is possible.    Equivalent to the
SFTCOLORSTYLE_VSCROLL style.

Disable no-scroll The Disable no-scroll check box determines whether the vertical scroll bar is
disabled or hidden if scrolling is not possible.    If the option is not selected, the
vertical scroll bar will be hidden when scrolling is not possible.    Equivalent to the
SFTCOLORSTYLE_DISABLENOSCROLL style.

Highlight text only The Highlight text only check box determines whether an item's text portion only
will be highlighted when the item is the selected item.    Otherwise the entire item
(including color sample) will be highlighted.    Under Windows 3.1 and Windows
NT, this option is ignored, items will always be highlighted in their entirety
(including color sample).    This option applies to Windows 95 only.    Equivalent to
the SFTCOLORSTYLE_SELTEXTONLY style.

Sort items by color name The Sort items by color name check box determines whether items are
sorted.    If this option is selected, items added to the color combo box are
automatically sorted by name, otherwise their order is not changed.    Equivalent

to the SFTCOLORSTYLE_SORT style.
Solid colors only The Solid colors only check box determines whether solid colors only are

displayed.    If this option is selected, the color samples will always be displayed
using the (closest) solid color (not dithered colors) and the ChooseColor dialog
invoked using the edit button will not allow custom colors.    Equivalent to the
SFTCOLORSTYLE_SOLID style.

Edit button The Edit button check box determines whether the color edit button is available.
If this option is selected, the edit button is displayed.    The edit button is only
enabled once the user selects (Custom) as the current color, unless Always
enabled is selected also (see below).    Equivalent to the
SFTCOLORSTYLE_CUSTOMEDIT style.

Use built-in ChooseColor dialog The Use built-in ChooseColor dialog check box determines
whether the color edit button automatically invokes the ChooseColor dialog when
clicked.    If this option is selected, the ChooseColor dialog is automatically
displayed when the user clicks the color edit button.    Once the user makes a
selection in the dialog, a SFTCOLORN_EDIT WM_COMMAND notification is
sent to the color control's parent window.    If this option is not selected, a
SFTCOLORN_EDIT WM_COMMAND notification is sent to the color control's
parent window when the edit button is clicked.    Equivalent to the
SFTCOLORSTYLE_CUSTOMEDITAUTO style.

Always enabled The Always enabled check box determines whether the color edit button is
always enabled.    If this option is selected, the edit button is always enabled and
can be disabled by the application.    Otherwise the edit button is only enabled if
the (Custom) color is selected.    Equivalent to the
SFTCOLORSTYLE_EDITALWAYS style.

Visible The Visible check box determines whether the control is visible when the dialog
box is first displayed.    If the option is not checked, the control does not appear.
The application can call the ShowWindow function at run-time to make the
control appear.    Equivalent to the WS_VISIBLE style.

Disabled The Disabled check box disables the control by graying it.    This prevents the
control from responding to user input.    Equivalent to the WS_DISABLED style.

Group Turn the Group check box on to indicate the first control within a group of
controls.    The user can then press the arrow keys to access all controls in the
group.    Equivalent to the WS_GROUP style.

Tab Stop Turn the Tab Stop check box on if you want the user to be able to press the tab
key to access this control.    Equivalent to the WS_TABSTOP style.

OK Click the OK button to accept all style settings and end the SftColor Styles dialog.
Cancel Click the Cancel button to abandon all (modified) style settings and end the

SftColor Styles dialog.
Help Click the Help button for on-line help information on the SftColor Styles dialog.

Test Mode
In the dialog test mode offered by Resource Workshop, a SftColor control will be displayed in the location
specified with the attributes defined using the SftColor Styles dialog.

Borland C++
Borland C++ does not support custom control DLLs (Resource Workshop, shipped with Borland C++ 4.x
fully supports custom controls).    It is still possible to use SftColor with Borland C++, but the easy design-
time interface that is provided by other resource editors is not available.

New Project
Whenever you create a resource script (*.RC) with dialogs which are to include a SftColor control, make
sure to include the C and C++ header file SFTCLR.H.    This insures that your resource definitions for the
SftColor control can be compiled correctly.    Add the following statement to your resource script:

#include sftclr.h // SftColor header file (for style bits)

The SFTCLR.H header file has to be accessible to the resource compiler.    This file can be found in the
directory C:\SFTCOLOR\INCLUDE (unless changed during the installation).

Adding a Color Control to a Dialog
To add a SftColor control to a dialog, use the Dialog, Insert New Control menu command.    Enter the
class SoftelColor (Windows 3.1) or SoftelColor32 (for Windows NT, 95, Win32s) in the New Control
dialog shown.

Once a custom control has been added to a dialog, you can edit the control properties by double-clicking
anywhere within the control.    A window caption is not necessary, so the edit field marked Caption can be
left blank.

SftColor Control Styles
To enter a SftColor window style in the Control Properties dialog, use the following list to add the desired
style values and enter the resulting hexadecimal value in the field marked Style.

Style
Value Description

SFTCOLORSTYLE_CUSTOMEDIT
0x00001000 Add a color edit button to the color control.    The edit button is only enabled

once the user selects (Custom) as the current color, unless
SFTCOLORSTYLE_EDITALWAYS is also used (see below).

SFTCOLORSTYLE_CUSTOMEDITAUTO
0x00002000 The color edit button automatically invokes the ChooseColor dialog when

clicked.    Once the user makes a selection in the dialog, a
SFTCOLORN_EDIT WM_COMMAND notification is sent to the color
controls parent window.    If this style is not given, a SFTCOLORN_EDIT
WM_COMMAND notification is sent to the color controls parent window
when the edit button is clicked.    This style is ignored if
SFTCOLORSTYLE_CUSTOMEDIT is not specified.

SFTCOLORSTYLE_DISABLENOSCROLL
0x00008000 Disable the scroll bar if scrolling is not possible.    If this style is used,

SFTCOLORSTYLE_VSCROLL must also be used.
SFTCOLORSTYLE_EDITALWAYS

0x00004000 The edit button is always enabled and can be disabled by the application.   
This style is ignored if SFTCOLORSTYLE_CUSTOMEDIT is not specified.

SFTCOLORSTYLE_SELTEXTONLY
0x00000100 Highlight only the text portion (not the color sample) of a selected item.   

This style is ignored under Window 3.1 and Windows NT and only applies to
Windows 95.

SFTCOLORSTYLE_SOLID
0x00000400 Display the color samples using the (closest) solid color (not dithered colors)

and do not allow custom colors to be defined using the ChooseColor dialog
invoked using the edit button.

SFTCOLORSTYLE_SORT
0x00000200 Sort items by color name.

SFTCOLORSTYLE_STYLE1

0x00000000 A color control with a color sample and color name.    Cannot be used in
conjunction with any other SFTCOLORSTYLE_STYLE... value.

SFTCOLORSTYLE_STYLE2
0x00000001 A color control with a wide color sample and color name.    Cannot be used

in conjunction with any other SFTCOLORSTYLE_STYLE... value.
SFTCOLORSTYLE_STYLE3

0x00000002 A color control with a color sample only.    Cannot be used in conjunction
with any other SFTCOLORSTYLE_STYLE... value.

SFTCOLORSTYLE_STYLE4
0x00000003 A color control with color name only.    Cannot be used in conjunction with

any other SFTCOLORSTYLE_STYLE... value.
SFTCOLORSTYLE_VSCROLL

0x00000080 Add a vertical scroll bar to the color control.
WS_BORDER

0x00800000 Draw a border around the control. The border is a dark line.
WS_CHILD

0x40000000 Create a child window.
WS_DISABLED

0x08000000 Create a color control that is initially disabled. A disabled color control
cannot receive input from the user.

WS_GROUP
0x00020000 Specifies the first control of a group of controls.    All controls defined with

the WS_GROUP style after the first control belong to the same group.    The
next control with the WS_GROUP style ends the group and starts the next
group.

WS_TABSTOP
0x00010000 Specifies a control that can receive the keyboard focus when the user

presses the TAB key.    Pressing the TAB key changes the keyboard focus to
the next control with the WS_TABSTOP style.

WS_VISIBLE
0x10000000 Create a color control that is initially visible.

WS_VSCROLL
0x00200000 Add a vertical scroll bar to the color control.

ExStyle
Value Description

WS_EX_CLIENTEDGE
0x00000200 Specifies that a window has a border with a sunken edge (Windows 95, NT

only).

Test Mode
The dialog test mode offered by Borland C++ does not support custom controls.

AppStudio, Visual C++
AppStudio and Visual C++ do not support custom control DLLs.    It is still possible to use SftColor with
AppStudio or Visual C++, but the easy interface that is provided by other resource editors is not available.

New Project
Whenever you create a resource script (*.RC) with dialogs which are to include a SftColor control, make
sure to include the C and C++ header file SFTCLR.H.    This insures that your resource definitions for the
SftColor control can be compiled correctly.    Add the following statement to your resource script:

#include "sftclr.h" // SftColor header file (for style bits)

The SFTCLR.H header file has to be accessible to the resource compiler.    This file can be found in the
directory C:\SFTCOLOR\INCLUDE (unless changed during the installation).

Adding a Color control to a Dialog
To add a SftColor control to a dialog, use the custom control toolbar button.    Click on the button and then
the dialog being designed to add a control.    The height of the color control is dynamically determined at
run-time, based on the font used.    The height of the control as defined in the dialog resource is ignored.

Once a custom control has been added to a dialog, you can edit the control properties by double-clicking
anywhere within the control, or by using the Resource, Properties... menu command.    To define a
SftColor control, enter the class SoftelColor (Windows 3.1) or SoftelColor32 (for Windows NT, 95,
Win32s) in the edit field labeled Class.    A window caption is not necessary, so the edit field marked
Caption can be left blank.

SftColor Control Styles
To enter a SftColor window style in the User Control Properties dialog, use the following list to add the
desired style values and enter the resulting hexadecimal value in the field marked Style.    For detailed
information, see Color control Styles.

Note:    After entering the style value, make sure to select the desired Visible, Group, Disabled and
Tabstop options again.    These are also controlled by the style value entered, but are not listed here,
because it is easier to maintain these options using the check boxes.

Style/Value Description
WS_BORDER / 0x00800000

Draw a border around the control. The border is a dark line.
SFTCOLORSTYLE_CUSTOMEDITAUTO / 0x00002000

The color edit button automatically invokes the ChooseColor dialog when clicked.    Once
the user makes a selection in the dialog, a SFTCOLORN_EDIT WM_COMMAND
notification is sent to the color control's parent window.    If this style is not given, a
SFTCOLORN_EDIT WM_COMMAND notification is sent to the color control's parent
window when the edit button is clicked.    This style is ignored if
SFTCOLORSTYLE_CUSTOMEDIT is not specified.

SFTCOLORSTYLE_DISABLENOSCROLL / 0x00008000
Disable the scroll bar if scrolling is not possible.    If this style is used,
SFTCOLORSTYLE_VSCROLL must also be used.

SFTCOLORSTYLE_EDITALWAYS / 0x00004000
The edit button is always enabled and can be disabled by the application.    This style is
ignored if SFTCOLORSTYLE_CUSTOMEDIT is not specified.

SFTCOLORSTYLE_CUSTOMEDIT / 0x00001000
Add a color edit button to the color control.    The edit button is only enabled once the user
selects (Custom) as the current color, unless SFTCOLORSTYLE_EDITALWAYS is also
used (see below).

SFTCOLORSTYLE_SELTEXTONLY / 0x00000100
Highlight only the text portion (not the color sample) of a selected item.    This style is
ignored under Window 3.1 and Windows NT and only applies to Windows 95.

SFTCOLORSTYLE_SOLID / 0x00000400
Display the color samples using the (closest) solid color (not dithered colors) and do not

allow custom colors to be defined using the ChooseColor dialog invoked using the edit
button.

SFTCOLORSTYLE_SORT / 0x00000200
Sort items by color name.

SFTCOLORSTYLE_STYLE1 / 0x00000000
A color control with a color sample and color name.    Cannot be used in conjunction with
any other SFTCOLORSTYLE_STYLE... value.

SFTCOLORSTYLE_STYLE2 / 0x00000001
A color control with a wide color sample and color name.    Cannot be used in conjunction
with any other SFTCOLORSTYLE_STYLE... value.

SFTCOLORSTYLE_STYLE3 / 0x00000002
A color control with a color sample only.    Cannot be used in conjunction with any other
SFTCOLORSTYLE_STYLE... value.

SFTCOLORSTYLE_STYLE4 / 0x00000003
A color control with color name only.    Cannot be used in conjunction with any other
SFTCOLORSTYLE_STYLE... value.

SFTCOLORSTYLE_VSCROLL / 0x00000080 Add a vertical scroll bar to the color control.

Test Mode
In the dialog test mode offered by Visual C++, the SftColor control will not be displayed.    Instead, a gray
box will show the location of the control.    When using the tab key to test the tab stops, the simulated
SftColor control will not receive the input focus and appear not to have a tab stop defined.

SDK Dialog Editor
This section applies to the Windows SDK dialog editor for Windows 3.1, Windows 95 and the Windows
SDK dialog editor for Windows NT.

First Time
In order to make SftColor available to the dialog editor, use its File, Open Custom... menu command to
define SftColor to the dialog editor.    This has to be done only once.

Locate the SftColor DLL using the dialog shown.    The DLL can be found in the directory C:
\SFTCOLOR\BIN (unless changed during the installation).    Use the following table to select the correct
DLL.

Dialog Editor Environment DLL Required
Windows 3.1, Windows 95 SFTCLR.DLL
Windows NT (DLL w/o UNICODE support) SFTCL32.DLL
Windows NT (DLL with UNICODE support) SFTCL32U.DLL
Note:    Do not install the 32-bit version in a 16-bit dialog editor or vice versa.

New Project
Whenever you create a resource script (*.RC) with dialogs which are to include a SftColor control, make
sure to include the C and C++ header file SFTCLR.H.    This insures that your resource definitions for the
SftColor control can be compiled correctly.    Add the following statement to your resource script:

#include "sftclr.h" // SftColor header file (for style bits)

The SFTCLR.H header file has to be accessible to the resource compiler.    This file can be found in the
directory C:\SFTCOLOR\INCLUDE (unless changed during the installation).

Adding a Color control to a Dialog
To add a SftColor control to a dialog, use the custom control toolbar button.    Click on the button and then
on the dialog being designed to add a control.    Once a SftColor control has been added to a dialog, you
can edit the window styles by double-clicking anywhere within the control, or by using the Edit, Styles...
menu command. This dialog can only be used to manipulate a few very basic styles.    More styles are
available through the C and C++ API.

When designing a dialog using a 16-bit dialog editor, the generated resource script will always use the
color control class SoftelColor.    If your application is a 32-bit application for Windows NT or Window 95,
make sure to change the color control class to SoftelColor32.    This has to be done manually by editing
the resource script with a text editor.    If the class is not changed, the dialog cannot be created by
Windows at run-time.

SftColor Control Styles
The SftColor Styles dialog allows you to manipulate the following color control attributes.

Item Description
Vertical scroll bar The Vertical scroll bar check box determines whether the control

displays a vertical scroll bar, if scrolling is possible.    Equivalent to the
SFTCOLORSTYLE_VSCROLL style.

Disable no-scroll The Disable no-scroll check box determines whether the vertical scroll
bar is disabled or hidden if scrolling is not possible.    If the option is not
selected, the vertical scroll bar will be hidden when scrolling is not
possible.    Equivalent to the SFTCOLORSTYLE_DISABLENOSCROLL
style.

Highlight text only The Highlight text only check box determines whether an item's text
portion only will be highlighted when the item is the selected item.   
Otherwise the entire item (including color sample) will be highlighted.   
Under Windows 3.1 and Windows NT, this option is ignored, items will
always be highlighted in their entirety (including color sample).    This
option applies to Windows 95 only.    Equivalent to the

SFTCOLORSTYLE_SELTEXTONLY style.
Sort items by color name The Sort items by color name check box determines whether items are

sorted.    If this option is selected, items added to the color combo box
are automatically sorted by name, otherwise their order is not changed.
Equivalent to the SFTCOLORSTYLE_SORT style.

Solid colors only The Solid colors only check box determines whether solid colors only
are displayed.    If this option is selected, the color samples will always
be displayed using the (closest) solid color (not dithered colors) and
the ChooseColor dialog invoked using the edit button will not allow
custom colors.    Equivalent to the SFTCOLORSTYLE_SOLID style.

Edit button The Edit button check box determines whether the color edit button is
available.    If this option is selected, the edit button is displayed.    The
edit button is only enabled once the user selects (Custom) as the
current color, unless Always enabled is selected also (see below).   
Equivalent to the SFTCOLORSTYLE_CUSTOMEDIT style.

Use built-in ChooseColor dialog The Use built-in ChooseColor dialog check box determines whether
the color edit button automatically invokes the ChooseColor dialog
when clicked.    If this option is selected, the ChooseColor dialog is
automatically displayed when the user clicks the color edit button.   
Once the user makes a selection in the dialog, a SFTCOLORN_EDIT
WM_COMMAND notification is sent to the color control's parent
window.    If this option is not selected, a SFTCOLORN_EDIT
WM_COMMAND notification is sent to the color control's parent
window when the user clicks the edit button.    Equivalent to the
SFTCOLORSTYLE_CUSTOMEDITAUTO style.

Always enabled The Always enabled check box determines whether the color edit
button is always enabled.    If this option is selected, the edit button is
always enabled and can be disabled by the application.    Otherwise the
edit button is only enabled if the (Custom) color is selected.   
Equivalent to the SFTCOLORSTYLE_EDITALWAYS style.

Visible The Visible check box determines whether the control is visible when
the dialog box is first displayed.    If the option is not checked, the
control does not appear. The application can call the ShowWindow
function at run-time to make the control appear.    Equivalent to the
WS_VISIBLE style.

Disabled The Disabled check box disables the control by graying it.    This
prevents the control from responding to user input.    Equivalent to the
WS_DISABLED style.

Group Turn the Group check box on to indicate the first control within a group
of controls.    The user can then press the arrow keys to access all
controls in the group.    Equivalent to the WS_GROUP style.

Tab Stop Turn the Tab Stop check box on if you want the user to be able to
press Tab to access this control.    Equivalent to the WS_TABSTOP
style.

OK Click the OK button to accept all style settings and end the SftColor
Styles dialog.

Cancel Click the Cancel button to abandon all (modified) style settings and end
the SftColor Styles dialog.

Help Click the Help button for on-line help information on the SftColor Styles
dialog.

Test Mode
In the dialog test mode offered by the dialog editor, a SftColor control will be displayed in the location
specified with the attributes defined using the SftColor Styles dialog.

Color Control Styles
The following color control window styles are available in addition to the standard window styles (such as
WS_BORDER, WS_TABSTOP, etc.).

SFTCOLORSTYLE_STYLE1    (0x0000L)

SFTCOLORSTYLE_STYLE2    (0x0001L)

SFTCOLORSTYLE_STYLE3    (0x0002L)

SFTCOLORSTYLE_STYLE4    (0x0003L)
The color control takes on a different appearance based on which style value is used.    STYLE1 displays
a color sample and text, STYLE2 displays a wide color sample and text, STYLE3 displays a color sample
only and STYLE4 displays text only.    Only one style value can be used.    These values cannot be
combined.

SFTCOLORSTYLE_VSCROLL (0x0080L)
When this style is selected, a vertical scroll bar is added to the color control.

SFTCOLORSTYLE_SELTEXTONLY (0x0100L)
When this style is selected, only the text portion (not the color sample) of a selected item is highlighted.   
This style is ignored under Window 3.1 and Windows NT and only applies to Windows 95.

SFTCOLORSTYLE_SORT (0x0200L)
When this style is selected, items are automatically sorted by color name as they are added to the color
control.

SFTCOLORSTYLE_SOLID (0x0400L)
When this style is selected, the color samples are displayed using the (closest) solid color (not dithered
colors) and the ChooseColor dialog invoked using the edit button does not allow custom colors to be
defined.

SFTCOLORSTYLE_CUSTOMEDIT (0x1000L)
When this style is selected, an edit button is added to the color control.    The edit button is only enabled
once the user selects (Custom) as the current color, unless SFTCOLORSTYLE_EDITALWAYS is also
used.

SFTCOLORSTYLE_CUSTOMEDITAUTO (0x2000L)
When this style is selected, the edit button automatically invokes the ChooseColor dialog when clicked.   
Once the user makes a selection in the dialog, a SFTCOLORN_EDIT WM_COMMAND notification is sent
to the color control's parent window.    If this style is not given, a SFTCOLORN_EDIT WM_COMMAND
notification is sent to the color control's parent window when the edit button is clicked.    This style is
ignored if SFTCOLORSTYLE_CUSTOMEDIT is not specified.

SFTCOLORSTYLE_EDITALWAYS (0x4000L)
When this style is selected, the edit button is always enabled and can be disabled by the application.   
This style is ignored if SFTCOLORSTYLE_CUSTOMEDIT is not specified.

SFTCOLORSTYLE_DISABLENOSCROLL (0x8000L)
When this style is selected, the scroll bar is disabled instead of hidden, if scrolling is not possible.    This
style is ignored if SFTCOLORSTYLE_VSCROLL is not specified.

Notifications
The parent window of a color control can receive the following event notifications using the
WM_COMMAND message.

Note:    The WM_COMMAND message parameter packing is environment specific.

WIN16:

          NotifyCode = HIWORD(lParam);
          idItem = wParam;
          hwndCtl = (HWND) LOWORD(lParam);

WIN32:

          NotifyCode = HIWORD(wParam);
          idItem = LOWORD(wParam);
          hwndCtl = (HWND) lParam;

NotifyCode Description
SFTCOLORN_EDIT The user has clicked the color edit button.    If the color control has the

SFTCOLORSTYLE_CUSTOMEDITAUTO style, this notification is
sent after the user chooses a color using the ChooseColor dialog.   
Otherwise the notification is sent when the user clicks the edit button
and the application can respond to the event.

SFTCOLORN_KILLFOCUS The color control lost the input focus.
SFTCOLORN_SETFOCUS The color control received the input focus.

The SftColor control also generates the following events.    These are equivalent to the notifications sent
by a regular combo box.    Please see the Windows API, MFC or OWL help files for more information.

NotifyCode Description
CBN_CLOSEUP The drop-down list of the combo box has been closed.
CBN_DROPDOWN The drop-down list of the combo box dropped down.
CBN_ERRSPACE The color control is out of memory.
CBN_SELCHANGE The user's selection is changing.
CBN_SELENDCANCEL The user's selection is canceled.
CBN_SELENDOK The user's selection is valid.

MFC and Notifications
If you want to handle Windows notification messages sent by a color control to its parent (usually a class
derived from CDialog), add a message-map entry and a message-handler member function to the parent
class for each notification.

Message-map entries take the following form:

ON_Notification(id, memberFxn)

The parent's function prototype is as follows:

afx_msg void memberFxn();

Notification specifies one of the available notification codes.    id specifies the child window ID of the
control sending the notification and memberFxn is the name of the parent member function in your
application which handles the notification.

Example:

 // Event handler prototype added to dialog/window class
 afx_msg void OnSelChange();

 // Event handler(s) added to message map
 BEGIN_MESSAGE_MAP(CSampleView, CView)
 ON_CBN_SELCHANGE(IDC_COLOR, OnSelChange)
 END_MESSAGE_MAP()

 // Event handler implementation
 void CSampleView::OnSelChange()
 {
 // The selection is changing
 }

OWL and Notifications
If you want to handle Windows notification messages sent by a color control to its parent (usually a class
derived from TDialog), add a response table entry and a response function to the parent class for each
notification.

Response table entries take the following form:

EV_Notification(id, memberFxn),

The parent's response function (event handler) prototype is as follows:

void memberFxn();

Notification specifies one of the available notification codes.    id specifies the child window ID of the
control sending the notification and memberFxn is the name of the parent response function in your
application which handles the notification.

Example:

 // Event handler prototype added to dialog/window class
 void EvSelChange();

 // Response table
 DEFINE_RESPONSE_TABLE1(TMainDlg, TDialog)
 EV_CBN_SELCHANGE(IDC_COLOR, EvSelChange),
 END_RESPONSE_TABLE;

 // Event handler implementation
 void TMainDlg::EvSelChange()
 {
 // The selection is changing
 }

MFC/C++ SftColor Classes

CSftColor Class, Member Functions
CSftColor is derived from CWnd.

~CSftColor Destructor.
Create Creates a color control.
CSftColor Constructor.
FillColorList Adds a list of colors to the color control.
FindColor Locates a color in the color control.
GetButton Returns the edit button window handle.
GetComboBox Returns the combo box window handle.
GetCtlColor Returns the current control colors (text, background) used.
GetCustomColor Returns the current custom entry's color value.
GetDefaultColor Returns the current default entry's color value.
RegisterApp Registers an application with SftColor.
SetCtlColor Sets the current control colors (text, background) used.
SetCustomColor Sets the custom entry's current color value.
SetDefaultColor Sets the default entry's current color value.
UnregisterApp Unregisters an application from SftColor.

The color control also implements the following functions which are identical to the functions in the
CComboBox class.    Some functions are not available in Windows 3.1 and Window NT.    Please see the
MFC reference material and help files for more information.

AddString Adds an item.    The string used should be a color name.    The RGB value of
the color has to be added using SetItemData.    Use FillColorList to add many
items using a list

DeleteString Deletes an item.
FindString Returns the index of the first item that begins with the specified color name (to

find a color by RGB value use FillColorList).
FindStringExact Returns the index of the first item exactly matching the specified color name (to

find a color by RGB value use FillColorList).
GetCount Returns the number of items.
GetCurSel Returns the index of the currently selected item.
GetDroppedControlRect Fills the specified rectangle structure with the screen coordinates of the drop-

down list.
GetDroppedState Returns TRUE if the drop-down list is open, otherwise FALSE is returned.
GetExtendedUI Returns TRUE if the extended user-interface is used, otherwise FALSE is

returned.
GetItemData Returns the RGB value associated with the specified item.
GetItemHeight Returns the height (pixels) of the specified owner-drawn item.
GetLBText Copies the specified item's color name to the specified buffer.
GetLBTextLen Returns the length in characters of the specified item's color name.
GetLocale Returns the current locale for the list.
InsertString Inserts a list item at the specified position.    The string used should be a color

name.    The RGB value of the color has to be added using SetItemData.    Use
FillColorList to add many items using a list.

ResetContent Removes the contents of a color control.
SelectString Selects the first item that begins with the characters in the specified text.
SetCurSel Sets the current selection.
SetExtendedUI Sets or clears the extended user-interface flag.    Changes the keys that open

and close the list in the color control.
SetItemData Sets the RGB value associated with the specified item.
SetItemHeight Sets the height of the specified owner-drawn list item.
SetLocale Sets the current locale for the list.
ShowDropDown Shows or hides the drop-down list.

OWL/C++ SftColor Classes

TSftColor Class, Member Functions
TSftColor is derived from TControl.

~TSftColor Destructor.
FillColorList Adds a list of colors to the color control.
FindColor Locates a color in the color control.
GetButton Returns the edit button window handle.
GetComboBox Returns the combo box window handle.
GetCtlColor Returns the current control colors (text, background) used.
GetCustomColor Returns the current custom entry's color value.
GetDefaultColor Returns the current default entry's color value.
RegisterApp Registers an application with SftColor.
SetCtlColor Sets the current control colors (text, background) used.
SetCustomColor Sets the custom entry's current color value.
SetDefaultColor Sets the default entry's current color value.
TSftColor Constructor.
UnregisterApp Unregisters an application from SftColor.

The color control also implements the following functions which are identical to the functions in the
TComboBox class.    Some functions are not available in Windows 3.1 and Window NT.    Please see the
OWL reference material and help files for more information.

AddString Adds an item.    The string used should be a color name.    The RGB value of
the color has to be added using SetItemData.    Use FillColorList to add many
items using a list

ClearList Removes the contents of a color control.
DeleteString Deletes an item.
FindString Returns the index of the first item that begins with the specified color name (to

find a color by RGB value use FillColorList).
GetCount Returns the number of items.
GetDroppedControlRect Fills the specified rectangle structure with the screen coordinates of the drop-

down list.
GetDroppedState Returns TRUE if the drop-down list is open, otherwise FALSE is returned.
GetExtendedUI Returns TRUE if the extended user-interface is used, otherwise FALSE is

returned.
GetItemData Returns the RGB value associated with the specified item.
GetItemHeight Returns the height (pixels) of the specified owner-drawn item.
GetSelIndex Returns the index of the currently selected item.
GetString Copies the specified item's color name to the specified buffer.
GetStringLen Returns the length in characters of the specified item's color name.
HideList Hides the drop-down list.
InsertString Inserts a list item at the specified position.    The string used should be a color

name.    The RGB value of the color has to be added using SetItemData.    Use
FillColorList to add many items using a list.

SetExtendedUI Sets or clears the extended user-interface flag.    Changes the keys that open
and close the list in the color control.

SetItemData Sets the RGB value associated with the specified item.
SetItemHeight Sets the height of the specified owner-drawn list item.
SetSelIndex Sets the current selection.
SetSelString Selects the first item that begins with the characters in the specified text.
ShowList Shows or hides the drop-down list.

C, C++ API
An application communicates with the SftColor color control by sending messages using the Windows
SendMessage function.    To simplify the process, SftColor offers not only the direct SendMessage
interface, but for C programmers also a predefined "message-cracker" macro for each message. With C+
+, class member functions are offered for each message.    This eliminates the casting of parameters
when using SendMessage, but is just as efficient as a SendMessage call, because the macros and
member functions expand into a SendMessage call.    All samples shown in the reference section use
these macros and member functions.    The wParam and lParam message parameters are also
documented, mainly for use with other programming languages, which cannot use the message-cracker
macros.

Definitions and Structures
SFTCOLOR_CLASS Color control window class name.
SFTCOLOR_LIST Structure used to describe a list of colors and color names.
SFTCOLOR_PARM Structure used to describe the color control's text and

background color attributes.

Messages and Functions
The SendMessage Windows API function can be used to send messages to a color control.

SftColor_FillColorList Adds a list of colors to the color control.
SftColor_FindColor Locates a color in the color control.
SftColor_GetButton Returns the edit button window handle.
SftColor_GetComboBox Returns the combo box window handle.
SftColor_GetCtlColor Returns the current control colors (text, background) used.
SftColor_GetCustomColor Returns the current custom entry's color value.
SftColor_GetDefaultColor Returns the current default entry's color value.
SftColor_RegisterApp Registers an application with SftColor.
SftColor_SetCtlColor Sets the current control colors (text, background) used.
SftColor_SetCustomColor Sets the custom entry's current color value.
SftColor_SetDefaultColor Sets the default entry's current color value.
SftColor_UnregisterApp Unregisters an application from SftColor.

The color control also respond to the following combo box messages.    Some messages are not available
in Windows 3.1 and Window NT.    Please see the Windows API reference and help files for more
information.

CB_ADDSTRING Adds an item.    The string used should be a color name.    The
RGB value of the color has to be added using
CB_SETITEMDATA.    Use SftColor_FillColorList to add many
items using a list.

CB_DELETESTRING Deletes an item.
CB_FINDSTRING Returns the index of the first item that begins with the specified

color name (to find a color by RGB value use
SftColor_FindColor).

CB_FINDSTRINGEXACT Returns the index of the first item exactly matching the specified
color name (to find a color by RGB value use
SftColor_FindColor).

CB_GETCOUNT Returns the number of items.
CB_GETCURSEL Returns the index of the currently selected item.
CB_GETDROPPEDCONTROLRECT Fills the specified rectangle structure with the screen coordinates

of the drop-down list.
CB_GETDROPPEDSTATE Returns TRUE if the drop-down list is open, otherwise FALSE is

returned.
CB_GETDROPPEDWIDTH Returns the minimum allowable width (pixels) of the drop down

list.
CB_GETEXTENDEDUI Returns TRUE if the extended user-interface is used, otherwise

FALSE is returned.
CB_GETITEMDATA Returns the RGB value associated with the specified item.

CB_GETITEMHEIGHT Returns the height (pixels) of the specified owner-drawn item.
CB_GETLBTEXT Copies the specified item's color name to the specified buffer.
CB_GETLBTEXTLEN Returns the length in characters of the specified item's color

name.
CB_GETLOCALE Returns the current locale for the list.
CB_GETTOPINDEX Returns the index of the first visible item in the drop down list.
CB_INSERTSTRING Inserts a list item at the specified position.    The string used

should be a color name.    The RGB value of the color has to be
added using CB_SETITEMDATA.    Use SftColor_FillColorList to
add many items using a list.

CB_RESETCONTENT Removes the contents of a color control.
CB_SELECTSTRING Selects the first item that begins with the characters in the

specified text.
CB_SETCURSEL Sets the current selection.
CB_SETDROPPEDWIDTH Sets the minimum allowable width (pixels) of the drop down list.
CB_SETEXTENDEDUI Sets or clears the extended user-interface flag.    Changes the

keys that open and close the list in the color control.
CB_SETITEMDATA Sets the RGB value associated with the specified item.
CB_SETITEMHEIGHT Sets the height of the specified owner-drawn list item.
CB_SETLOCALE Sets the current locale for the list.
CB_SETTOPINDEX Scrolls the drop down list so the specified item is at the top of the

visible range.
CB_SHOWDROPDOWN Shows or hides the drop-down list.

SFTCOLOR_CLASS
WIN16
#define SFTCOLOR_CLASS "SoftelColor"
WIN32
#define SFTCOLOR_CLASS "SoftelColor32"

The SFTCOLOR_CLASS constant can be used when the SftColor control class name is required.

SFTCOLOR_LIST
typedef struct tagColorList {
 HINSTANCE hInst; /* instance handle of application */
#if defined(UNICODE) || defined(_UNICODE)
 LPCTSTR lpszNames; /* String with comma delimited color names */
#else
 LPCSTR lpszNames; /* String with comma delimited color names */
#endif
 COLORREF FAR* lpColors; /* Array of color values */
} FAR* LPSFTCOLOR_LIST, SFTCOLOR_LIST;

typedef const SFTCOLOR_LIST FAR* LPCSFTCOLOR_LIST;

The SFTCOLOR_LIST structure is used to describe the color entries to be added to the color control.

Members
hInst

The instance handle of the application.    This instance handle is only used if lpszNames is a string
resource identifier.    The instance handle is used to load the string containing the color names.

lpszNames
A string identifier or a string pointer.    The string described by lpszNames should contain comma-
delimited color names.    These color names will be used as the text portion of the color control.    The
number of comma-delimited names must match the number of color entries described by lpColors
exactly.    When using a string identifier, MAKEINTRESOURCE must be used.

lpColors
A pointer to one or more COLORREF fields, each containing a color to be added to the color control.
The number of color entries must match the number of comma-delimited names described by
lpszNames exactly.    In addition to the RGB values, two special colors have been predefined using
the following values:

SFTCOLOR_CUSTOM A customizable color entry.    A color combo box entry added using
this color value (and a suitable string) can be used to represent a
user customizable color.    If the style
SFTCOLORSTYLE_CUSTOMEDIT is given, this custom color entry
is automatically added to the color control when it is created.    The
edit button is enabled when the user selects the custom color entry.
The actual RGB value of the custom color entry can be set using
SftColor_SetCustomColor, CSftColor::SetCustomColor and
TSftColor::SetCustomColor.

SFTCOLOR_DEFAULT The default color.    A color combo box entry added using this color
value (and a suitable string) can be used to represent an
application's predefined color value.    The actual RGB value of the
default color entry can be set using SftColor_SetDefaultColor,
CSftColor::SetDefaultColor and TSftColor::SetDefaultColor.

Comments
SftColor_FillColorList, CSftColor::FillColorList or TSftColor::FillColorList are used to add color entries to a
color control.

Example
This example fills a color control with four colors and a (Default) color entry:

C:
 SFTCOLOR_LIST List;
 COLORREF aColors[] = {
 /*Default*/ SFTCOLOR_DEFAULT,
 /*Red*/ RGB(255, 0, 0),
 /*White*/ RGB(255,255,255),
 /*Blue*/ RGB(0, 0,255),
 /*Yellow*/ RGB(255,255, 0),

 };
 HWND hwndCtl = GetDlgItem(hwndDlg, IDC_COLOR2);

 List.hInst = hInst;
 List.lpszNames = "(Default),Red,White,Blue,Yellow";
 List.lpColors = aColors;
 SftColor_FillColorList(hwndCtl, &List, TRUE);
C++/MFC:
 SFTCOLOR_LIST List;
 COLORREF aColors[] = {
 /*Default*/ SFTCOLOR_DEFAULT,
 /*Red*/ RGB(255, 0, 0),
 /*White*/ RGB(255,255,255),
 /*Blue*/ RGB(0, 0,255),
 /*Yellow*/ RGB(255,255, 0),
 };

 List.hInst = AfxGetResourceHandle(); // where strings are
 List.lpszNames = "(Default),Red,White,Blue,Yellow";
 List.lpColors = aColors;
 m_Color.FillColorList(&List, TRUE);
C++/OWL:
 SFTCOLOR_LIST List;
 COLORREF aColors[] = {
 /*Default*/ SFTCOLOR_DEFAULT,
 /*Red*/ RGB(255, 0, 0),
 /*White*/ RGB(255,255,255),
 /*Blue*/ RGB(0, 0,255),
 /*Yellow*/ RGB(255,255, 0),
 };

 List.hInst = *GetApplication(); // where strings are
 List.lpszNames = "(Default),Red,White,Blue,Yellow";
 List.lpColors = aColors;
 m_pColor2->FillColorList(&List, TRUE);
 m_pColor2->SetSelIndex(0);

SFTCOLOR_PARM
typedef struct tagColorParm {
 COLORREF textColor; /* Text color */
 COLORREF backColor; /* Background color */
 HBRUSH hbr; /* Background brush */
} FAR* LPSFTCOLOR_PARM, SFTCOLOR_PARM;

typedef const SFTCOLOR_PARM FAR* LPCSFTCOLOR_PARM;

The SFTCOLOR_PARM structure is used to describe the color control's color attributes, used to paint the
color control.

Members
textColor

The color used to paint the color control's text.
backColor

The color used to paint the color control's background.
hbr

A brush handle used to paint the color control's background.    This should be a solid brush based on
the same color as backColor.

Comments
The color control does not send WM_CTLCOLOR messages to the parent window.    An application can
set the color control's attributes using SftColor_SetCtlColor, CSftColorSetCtlColor and
TSftColor::SetCtlColor instead.

Due to a combo box limitation under Windows 3.1 and Windows NT, the drop-down list will use the
standard window background color (COLOR_WINDOW) if the list is not completely filled with entries.

The brush hbr has to remain valid until the color control no longer uses the supplied brush.

Example
This example sets the color control's colors to red text and light gray background:

C:
 SFTCOLOR_PARM Parm;
 Parm.textColor = RGB(255, 0, 0); // red
 Parm.backColor = RGB(192, 192, 192); // lt gray
 Parm.hbr = GetStockObject(LTGRAY_BRUSH);
 SftColor_SetCtlColor(hwndCtl, &Parm);
C++/MFC:
 SFTCOLOR_PARM Parm;
 Parm.textColor = RGB(255, 0, 0); // red
 Parm.backColor = RGB(192, 192, 192); // lt gray
 Parm.hbr = (HBRUSH) GetStockObject(LTGRAY_BRUSH);
 m_Color1.SetCtlColor(&Parm);
C++/OWL:
 SFTCOLOR_PARM Parm;
 Parm.textColor = RGB(255, 0, 0); // red
 Parm.backColor = RGB(192, 192, 192); // lt gray
 Parm.hbr = (HBRUSH) GetStockObject(LTGRAY_BRUSH);
 m_pColor1->SetCtlColor(&Parm);

Topic not available
This help topic is not available with the demo version of SftColor.    You will receive a 65+ page manual
and complete on-line help when purchasing SftColor.

SftColor supports C, C++ and other DLL-call capable languages.    C++ class implementations for MFC
and OWL are included.    The source code for the SftColor DLL is also available.

