
Contents
Built-in Predicates
Predicate Index
Predicate Categories

Additional Information
Command-Line Switches
Errors and Error Numbers
Window Style Names
Window Message Names
Window Message Integer Values
Technical Support

Predicate Categories
Arithmetic Functions
Program Control
File Handling
Data Handling
Input and Output
Dictionaries
DOS Handling
Error Handling
Debugging
Definite Clause Grammar
Optimising Programs
Garbage Collection and Memory
Configuring Prolog
Programmable Hooks and Handlers
Windows Handling

Predicate Index - Symbolic Predicates

,/2
!/0
->/2
;/2
</2
<~/2
=../2
=/2
=:=/2
=</2
==/2
=\=/2
>/2
>=/2
@</2
@=</2
@>/2
@>=/2
\+/1
\=/2
\==/2
^/2
~>/2

Predicate Index - A

abolish/1
abolish/2
abolish_files/1
'?ABORT?'/0
abort/0
abort_hook/0
absolute_file_name/2
absolute_file_name/3
abtbox/3
ansoem/2
append/3
arg/3
assert/1
assert/2
asserta/1
assertz/1
at_end_of_file/0
at_end_of_line/0
atom/1
atom_chars/2
atom_string/2
atomic/1
attrib/2

Predicate Index - B

bagof/3
beep/2
'?BREAK?'/1
break/0
break_hook/1

Predicate Index - C

'C'/3
call/1
call/2
call_dialog/2
callable/1
cat/3
catch/2
catch/3
'?CHANGE?'/3
change_hook/3
char/1
chars/1
chdir/1
chgbox/3
clause/2
clause/3
clauses/2
close/1
cmp/3
compare/3
compile/1
compound/1
consult/1
copy/2
copy_term/2
current_atom/1
current_op/3
current_predicate/1
current_predicate/2

Predicate Index - D

date/3
date/4
dde_advise_dict/1
dde_channel_dict/1
dde_close/1
dde_close_advise/2
dde_close_all/0
dde_close_all_topics/0
dde_close_topic/1
dde_dll_name/1
dde_dll_file_name/1
dde_enable_state/2
dde_execute/2
dde_fetch_data/1
dde_load/0
dde_open/3
dde_open_advise/4
dde_open_topic/2
dde_poke/3
dde_put_data/1
dde_request/3
dde_timeout/1
dde_topic_dict/1
dde_unload/0
'?DEBUG?'/1
debug/0
debug_hook/1
debugging/0
def/3
defs/2
del/1
dict/1
dir/3
dirbox/4
display/1
'?DLL?'/3
dll_hook/3
dos/0
dos/1
drive/1
dynamic/1
dynamic_call/1

Predicate Index - E

elex/1
ensure_loaded/1
env/2
eprint/1
eprint/2
eprint/3
eqv/2
erase_status_box/0
eread/1
eread/2
'?ERROR?'/2
error_hook/2
error_message/2
etoks/1
etoks/2
ewrite/1
ewrite/2
ewrite/3
exec/3
expand_dcg/2
expand_term/2

Predicate Index - F

fail/0
false/0
fclose/1
fcreate/3
fdict/1
file_search_path/2
fileerrors/0
find/1
'?FIND?'/3
find_hook/3
findall/3
float/1
fluff/3
flush/0
fname/4
fndbox/2
fonts/1
fopen/3
forall/2
force/1
fread/4
free/9
functor/3
fwrite/4

Predicate Index - G

garbage_collect/0
garbage_collect/1
gc/0
get/1
get0/1
getb/1
getx/2
grab/1
ground/1

Predicate Index - H

halt/0
halt/1
help/3

Predicate Index - I

index/2
initialization/1
inpos/1
input/1
integer/1
integer_bound/3
is/2

Predicate Index - J

No predicates start with the letter J

Predicate Index - K

key_hook/3
keys/1
keysort/2

Predicate Index - L

lcall/4
lclose/1
ldict/1
leash/2
leashed/2
len/2
length/2
library_directory/1
listing/0
listing/1
load_files/1
load_files/2
lopen/1
lwrupr/2

Predicate Index - M

mem/3
member/2
member/3
message_box/3
'?MESSAGE?'/4
message_hook/4
mkdir/1
ms/2
msgbox/4
multifile/1

Predicate Index - N

name/2
nl/0
no_style_check/0
no_style_check/1
nodebug/0
nofileerrors/0
nogc/0
nonvar/1
nospy/1
nospyall/0
not/1
notrace/0
number/1
number_atom/2
number_chars/2
number_string/2
numbervars/3

Predicate Index - O

occurs_chk/2
one/1
op/3
open/2
optimize/1
optimize_files/1
otherwise/0
outpos/1
output/1

Predicate Index - P

pdict/3
phrase/2
phrase/3
portray_clause/1
predicate_property/2
print/1
printq/1
profile/4
prolog_flag/2
prolog_flag/3
prolog_load_context/2
prompt/2
prompts/2
put/1
putb/1
putx/2

Predicate Index - Q

No predicates start with the letter Q

Predicate Index - R

read/1
reconsult/1
remove/3
removeall/3
ren/2
repeat/0
repeat/1
retract/1
retract/2
retractall/1
reverse/2
rmdir/1

Predicate Index - S

save_predicates/2
see/1
seed/1
seeing/1
seen/0
setof/3
show_dialog/1
simple/1
skip/1
skip_layout/0
skip_line/0
skip_term/0
solution/2
sort/2
sort/3
source_file/1
source_file/2
source_file/3
spy/1
stamp/2
statistics/0
statistics/2
stats/4
status_box/1
stream_position/2
stream_position/3
string/1
string_chars/2
sttbox/2
stuff/3
style_check/0
style_check/1
subsumes_chk/2
switch/2
sysops/0
system_menu/3

Predicate Index - T

tab/1
tell/1
telling/1
term_expansion/2
throw/2
ticks/1
time/4
timer/2
'?TIMER?'/3
timer_hook/3
told/0
total/9
trace/0
true/0
ttyflush/0
ttyget/1
ttyget0/1
ttynl/0
ttyput/1
ttyskip/1
ttytab/1
type/2

Predicate Index - U

unifiable/2
unknown_predicate_handler/2

Predicate Index - V

var/1
vars/2
ver/1
ver/4
volatile/1

Predicate Index - W

wait/1
warea/5
wbclose/1
wbdict/1
wbload/2
wbopen/2
wbtnsel/2
wbusy/1
wcclose/1
wccreate/8
wcdict/1
wclass/2
wclose/1
wcopen/2
wcount/4
wcreate/8
wdcreate/7
wdict/1
wedtclp/2
wedtfnd/6
wedtlin/4
wedtpxy/4
wedtsel/3
wedttxt/2
wenable/2
wfclose/1
wfcreate/4
wfdata/5
wfdict/1
wfind/3
wflag/1
wfocus/1
wfont/2
wfsize/4
wgfx/2
wgfx/6
wgfxadd/5
wgfxcur/2
wgfxget/5
wgfxmap/5
wgfxorg/3
wgfxpnt/1
wgfxsub/5
wgfxtst/5
wiclose/1
widict/1
wiload/3
winapi/5
window_handler/2
window_handler/4
wiopen/2
wlbxadd/3

wlbxdel/2
wlbxfnd/4
wlbxget/3
wlbxsel/3
wlink/3
wmclose/1
wmcreate/1
wmdict/1
wmnuadd/4
wmnudel/2
wmnuget/4
wmnunbl/3
wmnusel/3
wndhdl/2
wprnend/1
wprngfx/1
wprngfx/5
wprnini/4
wprnmap/4
wprnorg/2
wprnpag/1
wprnres/4
wprnstt/1
wrange/4
write/1
write_canonical/1
writeq/1
wshow/2
wsize/5
wstyle/2
wtcreate/6
wtext/2
wthumb/3
wucreate/6
wxclose/1
wxcreate/6
wxdict/1
wxload/2
wxsave/2

Predicate Index - X

No predicates start with the letter X

Predicate Index - Y

No predicates start with the letter Y

Predicate Index - Z

No predicates start with the letter Z

Arithmetic

</2 expression less than

=:=/2 expression equality

=</2 expression less than or equal

=\=/2 expression inequality

>/2 expression greater than

>=/2 expression greater than or equal

is/2 expression evaluator

seed/1 re-seed the random number generator

Program Control

Control
!/0 control backtracking

,/2 conjunction

->/2 if then

;/2 disjunction

\+/1 negation

abort/0 abort the current program

fail/0 force failure

false/0 force failure

halt/0 terminate the current Prolog session.

halt/1 terminate the current Prolog session and return an error
code.

not/1 logical negation.

otherwise/0 succeed.

repeat/0 succeed even on backtracking.

repeat/1 succeed even on backtracking for a given number of times

true/0 succeed

break/0 suspend the current execution

'?BREAK?'/1 user-defined Prolog program which intercepts break
messages

break_hook/1 built-in break hook

Looking at the Program State
current_atom/1 check or get a current atom

current_predicate/1 check or get a current predicate

current_predicate/2 check or get a current predicate

current_op/3 get the name, type and precedence of a currently defined

operator

def/3 test for a currently defined predicate and return its type

defs/2 return all arities for predicate

pdict/3 return a dictionary of predicates

predicate_property/2 find the association between predicates and properties

Meta-Programming
=../2 defines the relationship between a structure/atom and a list

arg/3 find the nth argument of a term

call/1 call a prolog goal.

call/2 call a Prolog goal and return the termination port

functor/3 the relationship between a term its functor name and its
arity

one/1 one solution meta-call.

Sets of Solutions
^/2 existential quantifier

bagof/3 find all the instances of a term for which a prolog goal is
true

findall/3 find all the instances of a term for which a prolog goal is
true

forall/2 generate then test solutions for a goal

setof/3 find the set of instances of a term for which a prolog goal is
true

solution/2 return the nth soution to a specified call

Program Timing
date/3 system date

date/4 date to day number conversion

ms/2 time a given Prolog goal

ticks/1 get a time reference

time/4 get the system time

File Handling

Files and Directories
absolute_file_name/2 converts from a relative to an absolute file specification

absolute_file_name/3 convert between a relative and an absolute file
specification using options

cat/3 atom and string concatenation

close/1 close the named file

fclose/1 close a file

fdict/1 return a dictionary of files

file_search_path/2 user-defined fact specifying a path name

fname/4 convert a file name into parts

fopen/3 open a file with the given access mode

library_directory/1 defines a library directory

mkdir/1 make a directory

open/2 open a file with the given access mode

attrib/2 set or get file attributes

chdir/1 choose or return a directory

del/1 delete a file

dir/3 get a file directory

drive/1 choose or return a drive

env/2 get an environment string

fcreate/3 create a file with the given attributes

ren/2 rename a file

rmdir/1 delete a directory

stamp/1 get or set a file date and time stamp

Loading and Saving
abolish_files/1 abolish all predicates associated with the given file

compile/1 compile the specified Prolog source file(s) into object code
format

consult/1 load a source code program into memory

ensure_loaded/1 load the specified Prolog source and/or object file(s) into
memory.

initialization/1 declare a goal to be run on loading a file

load_files/1 load the specified Prolog source and/or object files

load_files/2 load the specified Prolog source and/or object files using
certain options.

multifile/1 allow the specified predicates to be defined in more than
one file

prolog_load_context/2 find the context of the current load

reconsult/1 load a source code program into memory replacing the
previous version

save_predicates/2 save the specified predicates to a file in object code format.

source_file/1 check or get the files that are currently loaded

source_file/2 check or get the predicates associated with currently
loaded files

source_file/3 as source_file/2 but returns the numbers of the clauses
also

Data Handling

List Handling
append/3 join or split lists

length/2 get the length of a Prolog list

mem/3 return the given member of a term

member/2 get or check a member of a list

member/3 get or check a member of a list and its position in the list

remove/3 remove an element from a list

removeall/3 remove all occurrences of an item from a list

reverse/2 check or get the reverse of a list

String Handling
<~/2 re-direct input to a file or a string

~>/2 re-direct output to a file or a string

cat/3 atom and string concatenation

elex/1 set, reset or get the edinburgh    syntax flag

Term Comparison and Sorting
=/2 unification between two terms

==/2 check that two terms are identical

@</2 check that one term is less than another

@=</2 check that one term is equal to or less than another

@>/2 check that one term is greater than another

@>=/2 check that one term is greater than or equal to another

\=/2 tests for non-unification between two terms

\==/2 check that two terms are not identical

cmp/3 compare two terms

compare/3 find the relationship between one term and another

eqv/2 check two terms for equivalence

keysort/2 sort a list of key-value pairs into ascending order

len/2 return length of a term

sort/2 sort a list into ascending order and remove duplicates

sort/3 sort a list into ascending order using a key, do not remove

duplicates

occurs_chk/2 occurs check

subsumes_chk/2 check that one term subsumes another

Term Conversion
=../2 defines the relationship between a structure/atom and a list

atom_chars/2 converts between an atom and a list of characters

atom_string/2 convert from an atom to an LPA string

copy_term/2 copy a term with new variables

lwrupr/2 convert between lower and upper case

name/2 convert between an atom or number and a byte list

number_atom/2 convert between a number and an atom

number_chars/2 convert between a number and a list of characters

number_string/2 convert between a number and an LPA string

numbervars/3 instantiate the variables in a given term

string_chars/2 convert from a list of ASCII character codes to an LPA
string

Term Input and Output
current_op/3 get the name, type and precedence of a currently defined

operator

display/1 write a term to the standard output stream in standard
prefix notation

elex/1 set, reset or get the edinburgh flag

eprint/1 print a quoted edinburgh term to the current output stream

eprint/2 same as eprint/1 but with the ability to output variable
names

eprint/3 same as eprint/2 but with added priority

eread/1 read an edinburgh term from the current input stream

eread/2 same as eread/1 but with an added variable list

etoks/1 read an edinbugh token list from the current input stream

etoks/2 read an edinbugh token list from the current input stream
with variable names

ewrite/1 write an unquoted edinburgh term to the current output
stream

ewrite/2 same as ewrite/1 but with the ability to output variable
names

ewrite/3 same as ewrite/2 but with added priority

op/3 declare an operator with a given precedence and type

portray_clause/1 write a clause to the current output stream in listing format

print/1 print a term to the current output stream

printq/1 print a quoted term to the current output stream

read/1 read a term from the current input stream

sysops/0 re-install all of the system-declared operators

skip_term/0 skip the remaining input characters up to the end of a term

vars/2 return a named list of vars in a term

write/1 write a term to the current output stream

write_canonical/1 write a term to the current output stream in canonical form

writeq/1 write a quoted term to the current output stream

prompt/2 get or set the Prolog prompt

Term Type Checking
atom/1 test for an atom

atomic/1 test for an atom or a number

callable/1 check to see if a term is an atom or a compound.

char/1 check for an integer in the range 0 - 255

chars/1 check for a list of integers in the range 0 - 255

compound/1 test for a compound term

float/1 test for a floating point number

ground/1 check for completely bound terms

integer/1 test for an integer

integer_bound/3 generate or test a number between lower and upper
bounds

nonvar/1 test for a non-variable

number/1 test for a floating point number or integer

simple/1 check for an atom, number or variable

string/1 test for a string

type/2 return type of a term

unifiable/2 check that two terms are potentially unifiable

var/1 test for an uninstantiated variable

The Clause Database
abolish/1 delete all the predicates specified by the given argument

abolish/2 delete all clauses for the given predicate and arity

abolish_files/1 abolish all predicates associated with the given file

assert/1 add a clause at the end of the clauses associated with its
predicate name

assert/2 assert the clause at the given position

asserta/1 add a clause at the beginning of the clauses associated
with its predicate name

assertz/1 add a clause at the end of the clauses associated with its
predicate name

clause/2 get or check the body of a clause given its head

clause/3 find the position of a clause in a dynamic predicate

clauses/2 return a list of candidates for a dynamic predicate that
match a head

dynamic/1 define a predicate to be dynamic

dynamic_call/1 call a dynamic procedure safely

functor/3 the relationship between a term its functor name and its
arity

listing/0 list all the dynamic clauses in the workspace to the current
output stream

listing/1 list the specified dynamic predicates to the current output
stream

retract/1 delete a clause that matches the given clause

retract/2 retract a clause at a specified position

retractall/1 delete all clauses that match the given clause head

volatile/1 declare that the clauses for a predicate will not be saved in
object files

Data Compression and Decompression
stuff/3 compress the data in the current input stream to the

current output stream

fluff/3 decompress the data in the current input stream to the
current output stream

Input and Output

Predicates for Setting I/O Streams
input/1 set input from a file, device or string

output/1 set output to a file, device or string

see/1 set the current input stream

seeing/1 return the current input stream

seen/0 reset the current input stream to the standard input stream

tell/1 set the current output stream

telling/1 return the current output stream

told/0 reset the current output stream to the standard output

stream

Predicates for Temporarily Redirecting I/O
<~/2 re-direct input to a file or a string

~>/2 re-direct output to a file or a string

Predicates for Positioning File Pointers
at_end_of_file/0 checks to see if the input file pointer is at end of file

at_end_of_line/0 test whether end of line has been reached for the current
input stream.

find/1 find a string or atom in a file

inpos/1 set the input stream position

outpos/1 sets the output stream position

skip/1 skip to just after the specified ASCII value on the current
input stream

skip_layout/0 skip past the white space characters on the current input
stream

skip_line/0 skip the remaining input characters of the current line

skip_term/0 skip the remaining input characters up to the end of a term

stream_position/2 get the current position of the specified stream

stream_position/3 get the current position of the specified stream

flush/0 flush the current input stream

Formatted I/O Predicates
fread/4 formatted read of a term

fwrite/4 formatted write of a term

Character I/O Predicates
get/1 read a non-white-space character from the current input

stream

get0/1 read a character from the current input stream

getx/2 input a byte, word or dword

put/1 write an ASCII character to the current output stream

putx/2 output a byte, word or dword to the current output stream

getb/1 get a byte direct from keyboard

putb/1 byte output direct to screen

Predicates for Outputting Format Characters
nl/0 start a new line on the current output stream

tab/1 write the given number of spaces to the current output

stream

Predicate for Copying Data From File To File
copy/2 copy data from the current input stream to the current

output stream

Keyboard and Screen I/O
keys/1 get the system key status

grab/1 check for a byte direct from keyboard

ttyflush/0 flush the user output stream

ttyget/1 read a non-white-space character from the user input
stream

ttyget0/1 read a character from the user input stream

ttynl/0 start a new line on the user ouput stream

ttyput/1 write an ASCII character to the user output stream

ttyskip/1 skip to just after the specified ASCII value on the user input
stream

ttytab/1 write the given number of spaces to the user output stream

Sound Output Predicates
beep/2 sound a beep of the given duration and frequency

Dictionaries

dict/1 return the current atoms

fdict/1 return the open files

pdict/3 return the current predicates

wfdict/1 return the open fonts

ldict/1 return the open dynamic link libraries

wmdict/1 return the defined menus

wdict/1 return the currently open windows

wbdict/1 return the open bitmaps

wcdict/1 return the open cursors

widict/1 return the current icons

wxdict/1 return the current Windows meta files

DOS Handling

dos/0 initiate a DOS shell

dos/1 initiate a DOS shell and run the given command

exec/3 execute an external program

switch/2 set or get the value of a LPA command line switch

ver/4 return information on the current version of Prolog

Error Handling

abort/0 abort the current program

error_message/2 return an error message for an error number

unknown_predicate_handler/2 user-defined fact that defines the handling of unknown
predicates

catch/2 catch the error code generated by a given goal

catch/3 same as catch/2 but also return the predicate that
generated the error

throw/2 throw a numbered error

'?ERROR?'/2 user-defined error handler

error_hook/2 system defined behaviour for error handling

flush/0 flush the current input stream

Debugging

debug/0 set the debug mode to on

'?DEBUG?'/1 user-defined Prolog program which intercepts calls to the
debugger

debug_hook/1 system handler for the debug hook

debugging/0 write the current status of the debugger to the standard
output stream

force/1 call a Prolog goal and suspend the debugger for that call

leash/2 set the interaction with the debugger

leashed/2 test or get the leashes on the debugging ports

ms/2 time a given Prolog goal

no_style_check/0 turn off all compile-time style checking

no_style_check/1 turn off the specified style of compile-time style checking

nodebug/0 switch the debug mode to off

nospy/1 remove the spy points from the specified predicates

nospyall/0 remove all spy points

notrace/0 turn the debug mode to off

spy/1 set a spy point on the specified predicates

style_check/0 turn on all compile-time style checking.

style_check/1 turn on the specified type of compile-time style checking.

trace/0 switch the trace mode to on

Definite Clause Grammar

'C'/3 used in the expansion of grammar rules

expand_dcg/2 convert grammar rules to Prolog without calling
term_expansion/2

expand_term/2 convert between a grammar rule and its Prolog equivalent

phrase/2 checks if a sequence of symbols can be parsed as a given
type

phrase/3 checks if a sequence of symbols can be parsed as a given
type

term_expansion/2 user-defined hook for grammar rule translation

Optimising Programs

index/2 declare multiple argument indexes

optimize/1 optimize a static predicate

optimize_files/1 file to file optimization of code

Garbage Collection and Memory

free/9 return the free space available in Prolog's memory areas

total/9 return the total space allocated to Prologs memory areas

garbage_collect/0 invokes the garbage collector explicitly

garbage_collect/1 invoke the garbage collection of the given memory area

gc/0 enable the garbage collector

nogc/0 disable the garbage collector

statistics/0 display statistics about the current status of the system

statistics/2 get individual memory statistics

stats/4 get assorted runtime statistics

ver/4 return information on the current version of Prolog

ver/1 output the standard banner

Configuring Prolog

fileerrors/0 turn on the reporting of file error messages

no_style_check/0 turn off all the compile-time style checking

no_style_check/1 turn off the specified style of compile-time style checking

nofileerrors/0 turn off the reporting of file error messages

prolog_flag/2 get or check the values for global environment variables

prolog_flag/3 set and get values for global environment variables

style_check/0 turn on all the compile-time style checking

style_check/1 turn on the specified type of compile-time style checking

prompt/2 get or set the Prolog prompt

prompts/2 get or set the buffered console input prompts

switch/2 set or get the value of an LPA Prolog command line switch

Pre-defined Dialogs

message_box/3 create a message box and return a response

status_box/1 display a status message window

erase_status_box/0 destroy the status message window

Programmable Hooks and Handlers

Built-in Hooks
'?ABORT?'/0 user-defined Prolog program which intercepts program

aborts
abort_hook/0 system hook for handling program aborts
'?BREAK?'/1 user-defined Prolog program which intercepts break

messages
break_hook/1 system hook for handling program breaks
'?CHANGE?'/3 user-defined hook for handling change box messages
change_hook/3 system hook for handling change box messages
'?DEBUG?'/1 user-defined Prolog program which intercepts calls to the

debugger
debug_hook/1 system hook for the debugger
'?DLL?'/3 user-defined hook for handling DLL messages
dll_hook/3 system hook for handling DLL messages
'?ERROR?'/2 user-defined Prolog program which intercepts error

messages
error_hook/2 system hook for handling error messages
'?FIND?'/3 user-defined hook for handling find box messages
find_hook/3 system hook for handling find box messages
'?MESSAGE?'/4 user-defined Prolog program which intercepts messages
message_hook/4 system hook for handling window messages
'?TIMER?'/3 user-defined hook for the 64 built-in timers
timer_hook/3 system hook for handling timer interrupts

Windows Handling
Bitmap Handling
Built-In Dialogs
Built-in Hooks
Button Handling
Cursor Handling
DDE Support
Dialog Handling
DLL Handling
Edit Control Handling
Error Handling
Event Handling
Fonts and Character Sets
Graphics Handling
Icon Handling
Listbox Handling
Menu Handling
Printer Handling
Profile Handling
Prolog Environment Handling
Scrollbar Handling
Text Handling

Text Window Handling
User Window Handling
Window Handling
Windows API Functions
Windows Help Function
Windows Metafile Handling

Built-In Dialogs
abtbox/3 display the about box
chgbox/3 display the modeless change box
'?CHANGE?'/3 user-defined hook for handling change box messages
change_hook/3 system handler for the change dialog
dirbox/4 display the directory box
erase_status_box/0 destroy the status message window
'?FIND?'/3 user-defined hook for handling find box messages
find_hook/3 system hook for handling find box messages
fndbox/2 display the modeless find box
message_box/3 create a message box and retrun a response
msgbox/4 display the message box
status_box/1 display a status message window
sttbox/2 display or update a status box

DDE Support
dde_advise_dict/1 get or check the list of open advise loops
dde_channel_dict/1 get or check a list of open source channels
dde_close/1 close a source channel
dde_close_advise/2 close an advise loop for a given open channel
dde_close_all/0 close all source channels
dde_close_all_topics/0 close all registered topics
dde_close_topic/1 close a named topic
dde_dll_name/1 gets or checks the absolute file name of the DDE Dynamic

Link Library
dde_dll_file_name/1 user-defined fact for setting the absolute file name of the

DDE Dynamic Link Library
dde_enable_state/2 Get or set the enable state of a channel
dde_execute/2 start an execute transaction
dde_fetch_data/1 fetch data for a transaction
dde_load/0 load the DDE Dynamic Link Library
dde_open/3 open a DDE source channel
dde_open_advise/4 open an advise loop
dde_open_topic/2 open a topic
dde_poke/3 poke data to a channel
dde_put_data/1 put data to a channel
dde_request/3 a DDE request transaction.
dde_timeout/1 get or set the DDE time out value
dde_topic_dict/1 get or check a list of open topics
dde_unload/0 unload the DDE Dynamic Link Library

Fonts and Character Sets
ansoem/2 convert between ansi and oem strings
 fonts/1 return a list of available fonts
wfclose/1 close a font
wfcreate/4 create a font
wfdata/5 check or get the typeface, size, style and ascent of the

given logical font
wfdict/1 return a dictionary of fonts
wfont/2 get or set the font of a window
wfsize/4 check or get the height and width of the given string in the

given font

Built-in Hooks

abort_hook/0 system hook for handling program aborts
break_hook/1 system hook for handling program breaks
change_hook/3 system hook for handling change box messages
debug_hook/1 system hook for the debugger
dll_hook/3 system hook for handling DLL messages
error_hook/2 system hook for handling error messages
find_hook/3 system hook for handling find box messages
message_hook/4 system hook for handling window messages
timer_hook/3 system hook for handling timer interrupts

Dialog Handling
call_dialog/2 call a modal dialog and get or check the result
show_dialog/1 run a window as a modeless dialog
wccreate/8 create a control window
wdcreate/7 create a    dialog window
window_handler/2 get or set the current message handler for the given

window
window_handler/4 system defined handler for windows

DLL Handling
'?DLL?'/3 user-defined hook for handling DLL messages
dll_hook/3 system hook for handling DLL messages
lcall/4 call a dynamic link library function
lclose/1 close a dynamic link library
ldict/1 return a list of all currently open dynamic link libraries
lopen/1 open a dynamic link library
winapi/5 call a C function defined in the Windows API environment

or in a DLL

Menu Handling
wmclose/1 close a menu
wmcreate/1 create a menu
wmdict/1 return a dictionary of menus
wmnuadd/4 add an item to a menu
wmnudel/2 delete an item from a menu
wmnuget/4 get an item from a menu
wmnunbl/3 get or set enable status of an item on a menu
wmnusel/3 get or set selection state of an item on a menu

Profile Handling
profile/4 get or set a profile string

Event Handling
timer/2 get or set the status of the given timer interrupt
'?TIMER?'/3 user-defined hook for the 64 built-in timers
timer_hook/3 system hook for handling timer interrupts
wait/1 get or set the window message status
wbusy/1 get or set the busy cursor flag
wflag/1 get or set the Windows message interrupt flag

Window Handling
warea/5 get or check client area size and position
wclass/2 check or get the class of a given window
wclose/1 close a window
wccreate/8 create a control window

wcreate/8 create a window
wdcreate/7 create a    dialog window
wdict/1 get all currently open windows
wenable/2 get or set window enable status
wfind/3 find the handle for a named window
wfocus/1 get or set input focus to a window
wlink/3 find the handle for a linked window
wndhdl/2 convert between window and handle
wshow/2 get or set show or hide status
wsize/5 get or set window size and position
wstyle/2 get or set window style
wtext/2 get or set the window text
wtcreate/6 create a text window
wucreate/6 create a    user MDI window

Windows API Functions
winapi/5 call a Windows API environment C function

Bitmap Handling
wbclose/1 close a bitmap
wbdict/1 return a dictionary of bitmaps
wbload/2 load a bitmap from a disk file
wbopen/2 load a bitmap from local resources

Button Handling
wbtnsel/2 get or set selection state of a button

Cursor Handling
wcclose/1 close a cursor
wccreate/8 create a control window
wcdict/1 return a dictionary of cursors
wcopen/2 load a cursor from local resources

Text Handling
wcount/4 get char, word and line counts for the given window
wtext/2 get or set the window text

Edit Control Handling
wedtclp/2 perform a clipboard function

wedtfnd/6 find a text string in an "edit" or "editor" control window
wedtlin/4 get offsets a line in an "edit" or "editor" control window
wedtpxy/4 convert between linear offset and x, y coordinates in "edit"

or "editor" windows
wedtsel/3 get or set selection in an "edit" or "editor" control window
wedttxt/2 get or set the text of the given "edit" or "editor" window

Graphics Handling
wgfx/2 perform a windows graphics sequence
wgfx/6 perform a clipped windows graphics sequence
wgfxadd/5 add rectangle to graphics update region
wgfxcur/2 get or set the cursor for a grafix window
wgfxget/5 get the graphics update region
wgfxmap/5 get or set the graphics mapping
wgfxorg/3 get or set the graphics origin for a given window

wgfxpnt/1 force the painting of the graphics update region
wgfxsub/5 subtract a rectangle from a graphics update region
wgfxtst/5 perform a windows graphics hit test

Icon Handling
wiclose/1 close an icon
widict/1 return a dictionary of icons
wiload/3 load an icon from a disk file
wiopen/2 load an icon from local resources

Listbox Handling
wlbxadd/3 add an item to a list box
wlbxdel/2 delete an item from a list box
wlbxfnd/4 find a string in a list box
wlbxget/3 get an item from a list box
wlbxsel/3 get or set selection in a list box

Scrollbar Handling
wrange/4 get or set range of a scroll bar
wthumb/3 get or set position of a scroll bar

Windows Metafile Handling
wxclose/1 close a metafile
wxcreate/6 create a metafile
wxdict/1 return a dictionary of metafiles
wxload/2 load a metafile from disk
wxsave/2 save a metafile to disk

Text Window Handling
wtcreate/6 create a text window

User Window Handling
wucreate/6 create a    user MDI window

Printer Handling
wprnend/1 finish or abort the use of the printer
wprngfx/1 perform a printer graphics sequence
wprngfx/5 perform a clipped printer graphics sequence
wprnini/4 initialise the printer
wprnmap/4 get or set the printer graphics mapping
wprnorg/2 get or set the printer graphics origin
wprnpag/1 start a new printer page
wprnres/4 get or check the printer resolution
wprnstt/1 get or check the printer status

Prolog Environment Handling

system_menu/3 invoke a Prolog environment menu function

Windows Help Function

help/3 perform a Windows help function

Argument types
<arity>
<atom>
<char>
<char_list>
<clause>
<compound_term>
<conjunct_of Type>
<expr>
<file_name>
<file_spec>
<file_specs>
<float>
<functor>
<goal>
<integer>
<integer_expr>
<list>
<list_of Type>
<number>
<path_alias>
<pred_spec>
<pred_specs>
<string>
<term>
<variable>
<window_handle>

abtbox/3 styles
Value Style
0 fixed IBM PC font with large Prolog bitmap
1 proportional Windows font with large Prolog bitmap
2 fixed IBM PC font without bitmap
3 proportional Windows font without bitmap

Styles 4-7 have the same attributes as above except that the window displayed is wider. In this format a
smaller LPA bitmap is displayed on the left hand side of the window and the text is displayed on the right.

chgbox/3 flags
Value Action
-1 Destroy the change box
0 Hide the change box
1 Display and enable the change box (with 'Change' and 'Change+Find' buttons

disabled).
2 Display and enable the change box (with all buttons enabled).

chgbox/3 messages
Value Action
msg_cbclose User wants to close the box
msg_cbfind User wants to perform a find
msg_cbfndnxt User wants to perform a find next
msg_cbchange User wants to perform a change
msg_cbchgfnd User wants to perform a change+find
msg_cbchgall User wants to perform a change all

chgbox/3 radio button values
Value Meaning
1 Apply changes to selected area only
2 Apply changes to whole of current text window
3 Apply changes to all text windows

Term comparison relationships
Value Relationship
= Term1 == Term2.
< Term1 @< Term2.
> Term1 @> Term2.

def/3 predicate type values
Value Type
0 null predicates
1 incrementally compiled
2 optimized
3 assembler
4 external

dir/3 file type values
Value File Attributes
1 read/write or read only
2 hidden files
4 system files
8 volume label

16 directories
32 files with archive bit set.

Token values
Number Type
0 variable
1 integer
2 floating point number
3 unquoted atom
4 string
5 empty list
6 list
7 quoted atom
8 punctuation character

File attribute values
Value File Attributes
0 read/write
1 read-only
2 hidden read/write file
3 hidden read-only file

fndbox/2 flags
Value Action
-1 Destroy the find box
0 Hide the find box
1 Display and enable the find box

fndbox/2 messages
Value Action
msg_fbclose User wants to close (hide) the box
msg_fbfind User wants to perform a find operation
msg_fbfndnxt User wants to perform a find next operation

fndbox/2 radio button values
Value Meaning
1 Search for text in selected area only
2 Search for text in whole of current text window
3 Search for text in all text windows

File access modes
Value Access Mode
0 read only, the quickest access mode for reading as no attempt is made to

write to the file or device before reading in the next buffer full.
1 write only, the fastest access mode for writing to a file or an output device

(such as a printer) because no attempt is made to read from the file or
device after flushing the buffer.

2 read/write, this mode is slower than the other modes because, after
flushing the buffer on output, the next buffer full must be read in. This is
necessary to support the possibility of interleaved reads and writes.

formatted read and write format types
Format Type
a atom (uses modifier)
b byte list (uses modifier)
f fixed point number (uses modifier)
i integer
n unsigned integer
r arbitrary radix (uses modifier)
s string (uses modifier)

help/3 help function values
Value Function
1 Go to the topic specified by the context number
2 Quit from the help file
3 Enter the help file at the first page
4 Open the help on help file
5 Set the index
6 Put the topic specified by the context number into a popup window
7 Force the help application to the front

Special input streams
Value Input Stream
0 user console (buffered input)
1 buffered input (for compatibility)
2 raw terminal input (no buffering or echo)

is/2 arithmetic functions
Function Description
X + Y the sum of X and Y.
XY the difference of X and Y.
-X the negative of X.
X * Y the product of X and Y.
X / Y the quotient of X and Y.
X // Y the integer quotient of X and Y. The result is truncated to the nearest

integer between it and 0.
X mod Y the remainder after integer division of X by Y. The result is the same sign

as X.
X ^ Y X to the power of Y.
abs(X) the absolute value of X. e.g. abs(-3.5) returns 3.5 .
acos(X) the arccosine of X in degrees.
aln(X) e to the power    of X.
alog(X) 10 to the power    of X.
asin(X) the arcsine of X in degrees.
atan(X) the arctangent of X in degrees.
cos(X) the cosine of X degrees.
fp(X) the fractional part of X. e.g. fp(-3.5) returns -0.5 .
int(X) the first integer equal to or less than X. e.g. int(-3.5) returns -4 .
ip(X) the integer equal part of X. e.g. ip(-3.5) returns -3 .
ln(X) the natural logarithm of X.
log(X) the base 10 logarithm of X.
max(X,Y) the maximum value of X and Y. e.g. max(3.5,4). returns 4.
min(X,Y) the minimum value of X and Y. e.g. min(3.5,4). returns -3.5 .
rand(X) a random floating point number between zero and X.
sign(X) -1 if X is negative, 0 if X is 0, or 1 if X is positive. e.g. sign(-3.5) returns -1.
sin(X) the sine of X degrees
sqrt(X) the square root of X.
tan(X) the tangent of X degrees.

is/2 integer bitwise arithmetic functions
Function Description
X /\ Y the logical and of the integers X and Y.
X \/ Y the logical inclusive or of the integers X and Y.
X << Y the logical shift arithmetic left of the integer X by the number Y bits

(vacated bits are filled with zeros).
X >> Y the logical shift arithmetic right of the integer X by the number Y bits (the

most significant bit is propagated into the vacated bits).
\(X) the logical negation of the integer X.
a(X,Y) the logical and (AND) of the integers X and Y.
l(X,Y) the logical left rotation of the integer X by the number Y bits.
o(X,Y) the logical inclusive or (OR) of the integers X and Y.
r(X,Y) the logical right rotation of the integer X by the number Y bits.
x(X,Y) the logical exclusive or(XOR) of the integers X and Y.

keys/1 key values
Value Key

1 Right <Shift> key
2 Left <Shift>
4 <Ctrl> key
8 <Alt> key

16 <Scroll Lock> toggle value

32 <Num Lock> toggle value
64 <Caps Lock> toggle value

128 <Ins> toggle value
256 <Ctrl> held down
512 <Alt> held down

8192 <Num Lock> held down

load_files/2 options
Option Arg Function
if(Arg) Arg=true (default) always load.

Arg=changed load file if it is not already loaded or if it has been
changed since it was last loaded.

load_type(Arg) Arg=source reconsult Prolog source code.
Arg=compile compile Prolog source code into object code.
Arg=object load object code.
Arg=latest (default) load object files or source, whichever is

newer
all_dynamic(Arg) Arg=true load all predicates as dynamic.

Arg=false (default) load predicates as static unless they are
declared dynamic.

System timer resolutions
System Timer Resolution
WIN-PROLOG 1/182 (54.92 ms)
MacProlog32 1/60 (16.67 ms)

msgbox/4 styles
The available styles are divided into four groups: buttons, icons, default button and modality.
Valid styles may be made by using one member from each group and adding them together.

GROUP STYLE VALUE
Buttons Ok 16'00000000

Ok + Cancel 16'00000001
Abort + Retry + Ignore 16'00000002
Yes + No + Cancel 16'00000003
Yes + No 16'00000004
Retry + Cancel 16'00000005

Icons None 16'00000000
Stop Sign 16'00000010
Question Mark 16'00000020
Exclamation Mark 16'00000030
Information Sign 16'00000040

Default Button First 16'00000000
Second 16'00000100
Third 16'00000200

Modality Application 16'00000000
System 16'00001000
Task 16'00002000
No focus 16'00003000

32-bit stamp flag
High Word Low Word
bits 26-32 bits 22-25 bits 17-21 bits 12-16 bits 6-11 bits 1-5
Years (since 1980) Month Day Hours Minutes Seconds

special output streams
Value Special Stream
0 processed screen output (windows or DOS)
1 DOS processed output (insensitive to windows)
2 raw terminal output (no processing of chars)
3 mda screen output (subset of windows processing)

op/3 operator types and meanings
Operator Type Meaning
fx non-associative prefix operator
fy right associative prefix operator
xf non-associative postfix operator
yf left associative postfix operator
xfx non-associative infix operator
xfy right associative infix operator
yfx left associative infix operator

pdict/3 predicate type values
Value Type
-1 all predicates
0 null predicates
1 incrementally compiled
2 optimized
3 assembler
4 external

Predicate property types
compiled interpreted
built_in multifile
foreign volatile
spy dynamic
static index(Index)

prolog_flag/2 flag types and values
Flag Default Setting Flag Default Setting
save_on_exit off skip_exit on
context supervisor display_unify bindings
print_stream console gc on
print_message modify gc_collect heap
print_log_file off advice off
resave when_changed character_escapes off
recompile when_changed max_depth 0
fileerrors on supervisor_prompt '| ?- '
syntax_errors dec10 consult_prompt '| '
consult_errors retry user_prompt '|: '
consult_status off text_extension '.TXT'
check_single_var off source_extension '.PL'
check_contiguous off object_extension '.PC'
check_multiple off project_extension '.PJ'
unknown error foreign_extension '.O'
debugging debug flex_extension '.KSL'
debug_file srcbug ppp_extension '.PPP'
skip_spy off

prolog_load_context/2 key values
Key Value
module the module you are compiling into
file absolute filename of the file being compiled
stream the stream you are compiling from
directory directory of the file on which the stream is open

statistics/2 memory area keywords
runtime
backtrack_free backtrack_total
local_free local_total
reset_free reset_total
heap_free heap_total
text_free text_total
program_free program_total
stack_free stack_total
input_free input_total
output_free output_total

sttbox/2 special values
Value Style
-1 destroy status box
65535 show the banner box, using the OEM font

stuff/3 look ahead buffer size values
Value Compression Window Size Look ahead
0 9/7 bit 512 bytes 128 bytes
1 10/6 bit 1024 bytes 64 bytes
2 11/5 bit 2048 bytes 32 bytes
3 12/4 bit 4096 bytes 16 bytes
4 13/3 bit 8192 bytes 8 bytes

For most applications, a setting of 2 or 3 will produce the best compression.

system_menu/3 available functions
The File Menu options
New
Open...
Save
Save As...
Save All
Close...
Print...
Exit

The Edit Menu options
Undo
Cut
Copy
Paste
Clear
Select All

The Search Menu options
Find...
Change...
Goto Definition...
Goto Next Clause

The Run Menu options
Query...
Check Syntax
Compile
Compile All
Optimize
Optimize All
Application...

The Options Menu options
Trace
Debug
Spypoints...
Preferences...
Font...
Save Settings on Exit

The Help Menu options
Contents
How to Use Help
About WIN-PROLOG...

The File/New Option
Menu Parameter
file

Functions
new
Select the File/New option

The File/Open... Option
Menu Parameter
file

Functions
open
Select the File/Open option

open(LogFile)
Open the specified file

open(LogFile,X,Y,W,H)
Open the specified file and position its window at X,Y,W,H.

The File/Save Option
Menu Parameter
file

Functions
save
Select the File/Open option. Save the window specified in the first argument of system_menu/3. If the
window is the atom untitled the contents of the untitled window are saved and the process includes the
'File/Save As...' option.

The File/Save As... Option
Menu Parameter
file

Function
save_as
Select the File/Save As... option.

save_as(LogFile)
Save the window specified in the first argument of system_menu/3 with the given file name.

The File/Save All Option
Menu Parameter
file

Function
save_all
Select the File/Save All option.

The File/Close... Option
Menu Parameter
file

Function
close
Select the File/Close... option.

The File/Print... Option
Menu Parameter
file

Function
print
Select the File/Print... option.

The File/Exit Option
Menu Parameter
file

Function
exit
Select the File/Exit option.

The Edit/Undo Option
Menu Parameter
edit

Function
undo
Select the Edit/Undo option.

The Edit/Cut Option
Menu Parameter
edit

Function
cut
Select the Edit/Cut option.

The Edit/Copy Option
Menu Parameter
edit

Function
copy
Select the Edit/Copy option.

The Edit/Paste Option
Menu Parameter
edit

Function
paste
Select the Edit/Paste option.

The Edit/Clear Option
Menu Parameter
edit

Function
clear
Select the Edit/Clear option.

The Edit/Select All Option
Menu Parameter
edit

Function
all
Select the Edit/Select All option.

The Search/Find... Option
Menu Parameter
search

Function
find
Select the Search/Find... option.

The Search/Change... Option
Menu Parameter
search

Function
change
Select the Search/Change... option.

The Search/Goto Definition... Option
Menu Parameter
search

Function
goto_definition
Select the Search/Goto Definition... option.

The Search/Goto Next Clause Option
Menu Parameter
search

Function
goto_next_clause
Select the Search/Goto Next Clause option.

The Run/Query... Option
Menu Parameter
run

Function
query
Select the Run/Query... option.

The Run/Check Syntax Option
Menu Parameter
run

Function
check_syntax
Select the Run/Check Syntax option.

The Run/Compile Option
Menu Parameter
run

Function
compile
Select the Run/Compile option.

The Run/Compile All Option
Menu Parameter
run

Function
compile_all
Select the Run/Compile All option.

The Run/Optimize Option
Menu Parameter
run

Function
optimize
Select the Run/Optimize option.

The Run/Optimize All Option
Menu Parameter
run

Function
optimize_all
Select the Run/Optimize All option.

The Run/Application... Option
Menu Parameter
run

Function
application
Select the Run/Application... option.

application(test,Main,Abort,Break,Error,Timer,Message)
Run an application in test mode with the specified hooks.
(This option is only available in the developer edition of Prolog)

application(save(File),Main,Abort,Break,Error,Timer,Message)
Save an application to the given overlay name with the specified hooks.
(This option is only available in the developer edition of Prolog)

The Options/Trace Option
Menu Parameter
options

Function
trace
Select the Options/Trace option.

The Options/Debug Option
Menu Parameter
options

Function
debug
Select the Options/Debug option.

The Options/Spypoints... Option
Menu Parameter
options

Function
spypoints
Select the Options/Spypoints... option.

The Options/Preferences... Option
Menu Parameter
options

Function
preferences
Select the Options/Preferences... option.

preferences(PM,PS,PF,SB,CV,CC,CM,CE,CR,DF,RS)
Set the Prolog preferences

The Options/Font... Option
Menu Parameter
options

Function
font
Select the Options/Font... option.

font(NewFace,NewSize,NewStyle)
Set the Prolog environment font.

The Options/Save Settings on Exit Option
Menu Parameter
options

Function
save_settings_on_exit
Select the Options/Save Settings on Exit option.

The Help/Contents Option
Menu Parameter
help

Function
contents
Select the Help/Contents option.

The Help/How to Use Help Option
Menu Parameter
help

Function
how_to_use_help
Select the Help/How to Use Help option.

The Help/About WIN-PROLOG... Option
Menu Parameter
help

Function
about_win_prolog
Select the Help/About WIN-PROLOG... option.

Style checking values
Type Meaning
all All the following style checking.
single_var Checking for clauses containing a single instance of a named variable, where

variables that start with a '_' are not considered named.
discontiguous Checking for procedures whose clauses are not all adjacent to one another in the

file.
multiple Checking for multiple definitions of the same procedure in different files.

timer status values
Value Status
0 clear the timer
Number set the timer Number ticks ahead of the current time
(Number,Base) set the timer Number ticks ahead of the absolute base time Base

timer status return values
Value Status
0 the timer is clear
(Interval,End) the timer was set with Interval and was intended to expire (or will expire) at the

absolute time End

type/2 term type values
Value Type
0 variable
1 integer
2 floating point number
3 true atom
4 string
5 empty list
6 list
7 tuple
8 true conjunction
9 true disjunction

wait/1 flag values
Value Action
0 yield for one message cycle, return immediately
1 yield until at least one message is in queue

wbtnsel/2 status values
Value Status
0 radio button deselected or checkbox unchecked
1 radio button selected or checkbox checked

wbusy/1 flag values
Value Cursor Type
0 normal (idle) cursor
1 hourglass (busy) cursor
cursor_handle cursor set to the specified (busy) cursor

wedtclp/2 clipboard function values
Value Function
1 Cut
2 Copy
3 Paste
4 Clear
5 Undo
Negative values for these functions perform tests to see whether the functions would succeed.

Available control window classes
Name Type
button push buttons, radio buttons, checkboxes
combobox edit control with single choice list box
edit edit control (the edit space is allocated from the local heap and is therefore

limited)
editor special 30,000 byte edit control (30,000 bytes is allocated for each editor control

from the global heap)
listbox single or multiple choice list box
scrollbar scroll bar
static static text or icon window
grafix graphical control window

Window class names
Name Type
`Button` push buttons, radio buttons and checkboxes
`Edit` edit fields
`ListBox` single and multiple choice listboxes
`ComboBox` drop-down comboboxes and edimboboxes
`Static` static text fields or icon fields
`ScrollBar` stand-alone scrollbars
`P386Main` Prolog's main application window
`MDIClient` Prolog's MDI client area
`P386Term` Prolog's console window

Predefined Windows classes
Class Description
button push buttons, radio buttons, checkboxes
combobox edit control with single choice list box
edit all types of edit control
listbox single or multiple choice list box
scrollbar scroll bar
static static text or icon window

LPA defined window classes
Class Description
text mdi child with 30,000 byte text control
user mdi child window with no controls
dialog top level dialog with no controls
editor special 30,000 byte edit control
grafix special graphics input/output window class

wenable/2 window status values
Value Action
0 disable the window
1 enable the window

wfcreate/4 font style values
Value Style
0 normal
1 italic
2 bold
3 bold/italic

wflag/1 interrupt flag values
Value Meaning
0 Windows interrupts disabled
1 Windows interrupts enabled

Special numeric font names
Value Type
0 fixed IBM PC (OEM) font
1 proportional Windows (SYSTEM) font
2 fixed Windows (SYSTEM FIXED) font
3 proportional ANSI (ANSI VAR) font
4 fixed ANSI (ANSI FIXED) font
5 device default (DEVICE DEFAULT) font

wgfx/2 Windows graphics functions
Function Action
line(x1,y1,x2,y2,..xn,yn) draw a polyline
poly(x1,y1,x2,y2,..xn,yn) draw a polygon
rect(x1,y1,x2,y2) draw a rectangle
elip(x1,y1,x2,y2) draw an ellipse
box(x1,y1,x2,y2,xd,yd) draw a rounded rectangle
arc(x1,y1,x2,y2,xs,ys,xf,yf) draw an arc
seg(x1,y1,x2,y2,xs,ys,xf,yf) draw a segment
pie(x1,y1,x2,y2,xs,ys,xf,yf) draw a pie
text(x1,y1,string) draw a text string
fill(x1,y,red,grn,blu) perform a flood fill
brsh(red,grn,blu,type) create and select a brush
pen(red,grn,blu,type) create and select a pen
fore(red,grn,blu) set text foreground colour
back(red,grn,blu) set text background colour
mode(mode) set drawing mode
trns(mode) set text background mode
font(font) select a text font
org(x0,y0) set window origin
meta(x1,y1,x2,y2,meta) play a metafile
icon(x1,y1,icon) draw an icon
bits(x1,y1,x2,y2,x0,y0,bitmap) draw a bitmap

Predefined window cursors
Value Cursor Type
0 Default cursor
1 Busy cursor
2 Normal arrow
3 I-Beam
4 Hourglass
5 Crosshair
6 Vertical arrow
7 Size cursor
8 Icon cursor
9 Northwest/Southeast cursor
10 North/South cursor
11 West/East cursor
12 Northeast/Southwest cursor

Graphics instructions used to detect hits with wgfxtst/5
Graphics Instruction Function
poly/n draw a polygon
rect/4 draw a rectangle
elip/4 draw an ellipse
box/6 draw a rounded rectangle
text/3 draw a text string
icon/3 draw an icon
bits/7 draw a bitmap

Graphics instructions that affect wgfxtst/5
Graphics Instruction Function
font/1 select a text font
org/2 set window origin

winapi/5 function type casts
Name Description
byte function returns an 8-bit integer
word function returns a 16-bit integer
long function returns a 32-bit integer
text function returns a string pointer

winapi/5 parameter type casts
Name Description
byte an 8-bit integer is pushed onto the stack
word a 16-bit integer is pushed onto the stack
long a 32-bit integer is pushed onto the stack
text a string pointer is pushed onto the stack
[..] a structure address is pushed onto the stack

winapi/5 structure element type casts
Name Description
byte an 8-bit integer is stored in the structure
word a 16-bit integer is stored in the structure
long a 32-bit integer is stored in the structure
text a string pointer is stored in the structure

wlbxsel/3 listbox selection state values
Value Selection State
0 item is not selected
1 item is selected

wlink/3 relation values
Value Relation
-1 returns parent of window
0 returns first sibling of window
1 returns last sibling of window
2 returns next sibling of window
3 returns previous sibling of window
4 returns owner of window
5 returns first child of window

wmnunbl/3 enable status values
Value Status
0 disable the item
1 enable the item
2 disable the item without greying

wmnusel/3 menu selection values
Value Status
0 item is not ticked
1 item is ticked

wprnend/1 terminate code values
Value Action
0 Finish printing normally
1 Abort printing abruptly

wprnstt/1 printer status values
Value Status
0 Printer not initialised
1 Printer initialised, no page
2 Printer at start of fresh page
3 Printer at work on current page

wrange/4 scrollbar type values
Value Type
0 Window is a scroll bar, address directly
1 Address horizontal scroll bar of window
2 Address vertical scroll bar of window

wshow/2 window visibility status values
Value Status
0 hide the window
1 normalise the window
2 minimise the window
3 maximise the window

wthumb/3 scrollbar type values
Value Type
0 Window is a scroll bar, address directly
1 Address horizontal scroll bar of window
2 Address vertical scroll bar of window

The standard ordering of terms
Type Order
variables are less than:
integers and floats which are less than:
atoms which are less than:
strings which are less than:
lists which are less than:
compound terms which are less than:
true conjunctions which are less than:
true disjunctions

Type comparisons
Type Comparison
variables address
integers and floats numerical value
atoms ascii value
strings ascii value

Window Styles

Generic window styles
ws_popup ws_child ws_clipsiblings ws_clipchildren
ws_visible ws_disabled ws_minimize ws_maximize
ws_caption ws_border ws_vscroll ws_hscroll
ws_sysmenu ws_thickframe ws_minimizebox ws_maximizebox
ws_group ws_tabstop

Button window styles
bs_pushbutton bs_defpushbutton bs_checkbox bs_autocheckbox
bs_radiobutton bs_3state bs_auto3state bs_groupbox
bs_autoradiobutton bs_ownerdraw bs_lefttext

Edit window styles
es_left es_center es_right es_multiline
es_uppercase es_lowercase es_password es_autovscroll
es_autohscroll es_nohidesel es_oemconvert es_readonly
es_wantreturn

List box window styles
lbs_notify lbs_sort lbs_noredraw lbs_multiplesel
lbs_ownerdrawfixed lbs_ownerdrawvariabl

e
lbs_hasstrings lbs_usetabstops

lbs_nointegralheight lbs_multicolumn lbs_wantkeyboardinp
ut

lbs_extendedsel

lbs_disablenoscroll

Combo box window styles
cbs_simple cbs_dropdown cbs_dropdownlist cbs_ownerdrawfixed
cbs_ownerdrawvariab
le

cbs_autohscroll cbs_oemconvert cbs_sort

cbs_hasstrings cbs_nointegralheight cbs_disablenoscroll

Static window styles
ss_left ss_center ss_right ss_icon
ss_blackrect ss_grayrect ss_whiterect ss_blackframe
ss_grayframe ss_whiteframe ss_simple ss_leftnowordwrap
ss_noprefix

Scroll bar window styles
sbs_horz sbs_vert sbs_topalign sbs_leftalign
sbs_bottomalign sbs_rightalign

Dialog window styles
dlg_ownedbydesktop dlg_ownedbyprolog

Generic window styles
ws_popup ws_child ws_clipsiblings ws_clipchildren
ws_visible ws_disabled ws_minimize ws_maximize
ws_caption ws_border ws_vscroll ws_hscroll
ws_sysmenu ws_thickframe ws_minimizebox ws_maximizebox
ws_group ws_tabstop

ws_popup
Value Window Type Description
16'80000000 desktop window Must be applied to windows that do not have parents

ws_child

Value Window Type Description
16'40000000 child window Must be applied to windows that have parents.

ws_clipsiblings
Value Window Type Description
16'04000000 child window Prevent neighbouring sibling windows from being

drawn over during the handling of a paint message.

ws_clipchildren
Value Window Type Description
16'02000000 parent window Prevent child windows from being drawn over during

the handling of a paint message.

ws_visible
Value Window Type Description
16'10000000 any type Create the window visibly (with respect to the parent

window).

ws_disabled
Value Window Type Description
16'08000000 any type Create the window initially disabled.

ws_minimize
Value Window Type Description
16'20000000 any type Create the window minimized.

ws_maximize
Value Window Type Description
16'01000000 any type Create the window maximized.

ws_caption
Value Window Type Description
16'00C00000 any type Create the window with a title bar.

ws_border
Value Window Type Description
16'00800000 any type Create the window with a border.

ws_vscroll
Value Window Type Description
16'00200000 any type Create the window with a vertical scroll bar.

ws_hscroll
Value Window Type Description
16'00100000 any type Create the window with a horizontal scroll bar.

ws_sysmenu
Value Window Type Description
16'00080000 any type Create the window with a system menu.

ws_thickframe
Value Window Type Description
16'00040000 any type Create the window with a thick frame that can be used

to size the window

ws_minimizebox

Value Window Type Description
16'00020000 parent windows Create the window with a minimize button.

ws_maximizebox
Value Window Type Description
16'00010000 parent windows Create the window with a maximize button.

ws_group
Value Window Type Description
16'00020000 dialog control

windows
Specify the control as the first in a group. You can
move between controls in a group using the direction
keys. The next control defined with the ws_group style
ends this group and starts a new one.

ws_tabstop
Value Window Type Description
16'00010000 dialog control

windows
Allow the window to be selected using the tab key.

Button window styles
bs_pushbutton
bs_defpushbutton
bs_checkbox
bs_autocheckbox
bs_radiobutton
bs_3state
bs_auto3state
bs_groupbox
bs_autoradiobutton
bs_ownerdraw
bs_lefttext

bs_pushbutton
Value Window Type Description
16'00000000 button Specifies a push button that sends a msg_button

when clicked. This is the default style.

bs_defpushbutton
Value Window Type Description
16'00000001 button Gives the button a bold border. The button represents

the default response by the user.

bs_checkbox
Value Window Type Description
16'00000002 button Specifies a check box button. This style overrides the

bs_pushbutton style.

bs_autocheckbox
Value Window Type Description
16'00000003 button Same as the bs_checkbox style, except that the

button automatically toggles its state when clicked on
by the user.

bs_3state
Value Window Type Description
16'00000005 button Same as the bs_checkbox style, except that the

button    can be greyed as well as checked.

bs_auto3state
Value Window Type Description
16'00000006 button Same as the bs_3state style, except that the toggling

between the three states is handled automatically.

bs_groupbox
Value Window Type Description
16'00000007 button Specifies a box into which other buttons may be   

grouped. The text for the button appears in the top-left
corner.

bs_radiobutton
Value Window Type Description
16'00000004 button Specifies a radio button. This style overrides the   

bs_pushbutton style.

bs_autoradiobutton
Value Window Type Description
16'00000009 button Identical to bs_radiobutton, except that all other radio

buttons in the same group are deselected
automatically.

bs_ownerdraw
Value Window Type Description
16'0000000B button Specifies a button where the drawing of the button is   

down to the user.

bs_lefttext
Value Window Type Description

16'00000020 button Causes the text always appear on the left for a radio   
button or checkbox button. This is used with the   
bs_checkbox, bs_radiobutton or bs_3state styles.

Edit window styles
es_left
es_center
es_right
es_multiline
es_uppercase
es_lowercase
es_password
es_autovscroll
es_autohscroll
es_nohidesel
es_oemconvert
es_readonly
es_wantreturn

es_left
Value Window Type Description
16'00000000 edit Align text on the left hand side.

es_center
Value Window Type Description
16'00000001 edit Center text in an edit control that has the es_multiline

style.

es_right
Value Window Type Description
16'00000002 edit Align text on the right hand side in an edit control with

the es_multiline style.

es_multiline
Value Window Type Description
16'00000004 edit Specifies an edit control that can contain more than

one line of text.
Used with es_autohscroll and es_autovscroll.

es_autovscroll
Value Window Type Description
16'00000040 edit Automatically scrolls text up one page when the user

presses the <enter> key on the last line.
Used with es_wantreturn and es_multiline.
If es_autovscroll is not set and the edit control has the
es_multiline style then the edit control word shows as
many lines as it can and beeps when no more lines
can be displayed.

es_autohscroll
Value Window Type Description
16'00000080 edit Automatically scrolls to the right by 10 characters

when    the user types a character at the end of a line.
Used with es_wantreturn and es_multiline.
If es_autohscroll is not set and the edit control has the
es_multiline style then the edit control word wraps at   
the window boundary.

es_uppercase
Value Window Type Description
16'00000008 edit Converts all characters into uppercase as they are

typed    into the control.

es_lowercase
Value Window Type Description
16'00000010 edit Converts all characters into lowercase as they are

typed    into the control.

es_password
Value Window Type Description
16'00000020 edit Displays all characters as an asterisk as they are

typed    into the control.

es_nohidesel

Value Window Type Description
16'00000100 edit Normally, an edit control hides the current selection   

when the control loses focus. Adding this style stops
this    behaviour.

es_oemconvert
Value Window Type Description
16'00000400 edit Any text entered in the edit control is immediately   

converted from ANSI into OEM and then back to
ANSI. This ensures that a correct conversion will take
place if    ansoem/2 is used on the text in the edit
control.

es_readonly
Value Window Type Description
16'00000800 edit Sets the edit control as a read-only edit control.

es_wantreturn
Value Window Type Description
16'00001000 edit When the user hits the <return> key and an edit   

control with this style is in focus, the return goes into   
the edit control rather than being processed by the   
parent of the edit control.

Listbox window styles
lbs_notify
lbs_sort
lbs_noredraw
lbs_multiplesel
lbs_ownerdrawfixed
lbs_ownerdrawvariable
lbs_hasstrings
lbs_usetabstops
lbs_nointegralheight
lbs_multicolumn
lbs_wantkeyboardinput
lbs_extendedsel
lbs_disablenoscroll

lbs_notify
Value Window Type Description
16'00000001 listbox The parent window recieves a message whenever a   

selection is made in the list box. If the selection is
made    with the keyboard or a single mouse click then
the    msg_select message is sent. If the selection is
made with a double mouse click then the msg_double
message is    sent.

lbs_sort
Value Window Type Description
16'00000002 listbox The strings in the list box are sorted alphabetically.

lbs_noredraw
Value Window Type Description
16'00000004 listbox The list box display is not updated when changes are

made.

lbs_multiplesel
Value Window Type Description
16'00000008 listbox Multiple selections are allowed. Clicking on a string   

toggles its selection status.

lbs_ownerdrawfixed
Value Window Type Description
16'00000010 listbox The owner of the list box is responsible for drawing its

contents.

lbs_ownerdrawvariable
Value Window Type Description
16'00000020 listbox The owner of the list box is responsible for drawing its

contents. The items in the listbox may be variable in
height.

lbs_hasstrings
Value Window Type Description
16'00000040 listbox Sets an owner-draw list box which contains items

consisting of strings.

lbs_usetabstops
Value Window Type Description
16'00000080 listbox Turn on the expansion of tab characters in the list box

items.

lbs_nointegralheight
Value Window Type Description
16'00000100 listbox Normally Windows adjusts the vertical size of list

boxes so that only whole lines are displayed. Applying
this style to a list box ensures that it has the exact
height you    specify.

lbs_multicolumn
Value Window Type Description
16'00000200 listbox Sets a multi-column window that scrolls horizontally.

lbs_wantkeyboardinput

Value Window Type Description
16'00000400 listbox This style has no effect in LPA Prolog for Windows.

lbs_extendedsel
Value Window Type Description
16'00000800 listbox Allows the user to select multiple items in the list box

using the <shift> key and the mouse or other special
key combinations.

lbs_disablenoscroll
Value Window Type Description
16'00001000 listbox Specifies a list box that has a scroll bar regardless of

the number of elements it contains.

Combo box window styles
cbs_simple
cbs_dropdown
cbs_dropdownlist
cbs_ownerdrawfixed
cbs_ownerdrawvariable
cbs_autohscroll
cbs_oemconvert
cbs_sort
cbs_hasstrings
cbs_nointegralheight
cbs_disablenoscroll

cbs_simple
Value Window Type Description
16'00000001 combobox The list box component of the combo box is always   

shown and the current selection appears in the edit
box component

cbs_dropdown
Value Window Type Description
16'00000002 combobox Similar to the cbs_simple style except that the list box

component of the combo box is only displayed when
the user selects the icon next to the edit box
component.

cbs_dropdownlist
Value Window Type Description
16'00000003 combobox Similar to the cbs_dropdown style except that the   

selection field, which is normally an edit control, in this
case is a static text control.

cbs_ownerdrawfixed
Value Window Type Description
16'00000010 combobox The owner of the list box is responsible for drawing its

contents.

cbs_ownerdrawvariable
Value Window Type Description
16'00000020 combobox The owner of the list box is responsible for drawing its

contents. The items in the listbox may be variable in
height.

cbs_autohscroll
Value Window Type Description
16'00000040 combobox When this style is set, the text in the edit control   

component of the combo box is automatically scrolled
to the right when a character is typed in at the right
hand    edge of the control. If this style is not set only
text that    fits in the edit control is allowed.

cbs_oemconvert
Value Window Type Description
16'00000080 combobox Any text entered in the edit control is immediately   

converted from ANSI into OEM and then back to ANSI
This ensures that a correct conversion will take place
if    ansoem/2 is used on the text in the edit control.
This applies only to combo boxes that have the   
cbs_simple or cbs_dropdown styles.

cbs_sort
Value Window Type Description
16'00000100 combobox Strings entered into the list box component of the   

combo box are automatically sorted.

cbs_hasstrings
Value Window Type Description
16'00000200 combobox An owner-draw combo box which contains items

consisting of strings.

cbs_nointegralheight
Value Window Type Description
16'00000400 combobox Normally Windows adjusts the vertical size of combo

boxes so that only whole lines are displayed. Applying
this style to a combo box ensures that it has the exact
height you specify.

cbs_disablenoscroll
Value Window Type Description
16'00000800 combobox Specifies a combo box that has a scroll bar regardless

of    the number of elements it contains.

Static window styles
ss_left
ss_center
ss_right
ss_icon
ss_blackrect
ss_grayrect
ss_whiterect
ss_blackframe
ss_grayframe
ss_whiteframe
ss_simple
ss_leftnowordwrap
ss_noprefix

ss_left
Value Window Type Description
16'00000000 static Displays text flush-left in the static text control.

ss_center
Value Window Type Description
16'00000001 static Displays text centered in the static text control.

ss_right
Value Window Type Description
16'00000002 static Displays text flush-right in the static text control.

ss_icon
Value Window Type Description
16'00000003 static Sets the static control to contain an icon whose name

is    given as the text of the static control.

ss_blackrect
Value Window Type Description
16'00000004 static Specifies a rectangle filled with the colour used to

draw window frames.

ss_grayrect
Value Window Type Description
16'00000005 static Specifies a rectangle filled with the colour used to fill

the screen background.

ss_whiterect
Value Window Type Description
16'00000006 static Specifies a rectangle filled with the colour used to fill

window backgrounds.

ss_blackframe
Value Window Type Description
16'00000007 static Specifies a rectangle bordered with the colour used to

draw window frames.

ss_grayframe
Value Window Type Description
16'00000008 static Specifies a rectangle bordered with the colour used to

fill the screen background.

ss_whiteframe
Value Window Type Description
16'00000009 static Specifies a rectangle bordered with the colour used to

fill window backgrounds.

ss_simple
Value Window Type Description
16'0000000B static Specifies a static control that contains a single-line of

text that is displayed flush-left.

ss_leftnowordwrap
Value Window Type Description
16'0000000C static Specifies a static control that displays the given text   

flush-left and may contain multiple lines. Any text that
exceeds the width of the control will be clipped and
not word-wrapped.

ss_noprefix
Value Window Type Description
16'00000080 static Normally Windows interperets the "&" character in the

text of a static field as denoting that the character   
following the ampersand is an accelerator.
This style specifies an edit control that does not
interperet the "&" character.

Scroll bar window styles
sbs_horz
sbs_vert
sbs_topalign
sbs_leftalign
sbs_bottomalign
sbs_rightalign

sbs_horz
Value Window Type Description
16'00000000 scrollbar Specifies a horizontal scroll bar.

sbs_vert
Value Window Type Description
16'00000001 scrollbar Specifies a vertical scroll bar.

sbs_topalign
Value Window Type Description
16'00000002 scrollbar Used with the sbs_horz style. The top edge of the

scroll    bar is alligned with the top of the rectangle
specifying its    size. The scroll bar has the default
height for system    scrollbars.

sbs_leftalign
Value Window Type Description
16'00000002 scrollbar Used with the sbs_vert style. The left edge of the

scroll bar is alligned with the left of the rectangle
specifying its size. The scroll bar has the default width
for system    scrollbars.

sbs_bottomalign
Value Window Type Description
16'00000004 scrollbar Used with the sbs_horz style. The bottom edge of the

scroll bar is alligned with the bottom of the rectangle   
specifying its size. The scroll bar has the default
height for system scrollbars.

sbs_rightalign
Value Window Type Description
16'00000004 scrollbar Used with the sbs_vert style. The right edge of the

scroll bar is alligned with the right of the rectangle
specifying its    size. The scroll bar has the default
width for system    scrollbars.

Dialog window styles
dlg_ownedbydesktop
dlg_ownedbyprolog

dlg_ownedbydesktop
Value Window Type Description
16'00000000 dialog This default style for dialogs sets the desktop as the

owner of dialogs. This means that the dialog will
appear independently of Prolog and can be hidden
behind Prolog's main application window.

dlg_ownedbyprolog
Value Window Type Description
16'00000001 dialog Used to set Prolog as the owner of dialogs. This

means that the dialog will always appear on top of
Prolog's main application window.

General message names
msg_menu msg_sysmenu msg_close msg_focus
msg_fuzzy msg_change msg_button msg_select
msg_double msg_size msg_move msg_horz
msg_vert msg_paint msg_leftdown msg_leftdouble
msg_leftup msg_rightdown msg_rightdouble msg_rightup
msg_mousemove msg_char

msg_menu
Data Description
menu item ID A menu item has been selected.

The data parameter is an integer giving the ID of the menu item selected.

msg_sysmenu
Data Description
menu item ID A menu item has been selected from the system menu.

The data parameter is an integer giving the ID of the menu item selected.

msg_close
Data Description
no data Window has been requested to close

msg_focus
Data Description
no data Window has come into focus

msg_fuzzy
Data Description
no data Window has gone out of focus

msg_change
Data Description
edit operation flag Edit or editor window has been changed

The msg_change data parameter can have the following values:

Value Change Action
0 no operation. The change operation did not affect the text of the window
1 success. The text in the window was changed successfully
2 truncation. The text in the window was changed but output was truncated

Certain actions that cause change messages in a text window do not affect the text of the window. These
are: changing the selection range, positioning the cursor at the beginning or end of a text window using
the <ctrl>-home or <ctrl>-end keys and copying text.

msg_button
Data Description
no data Button has been pressed

msg_select
Data Description
no data List or Combo box selection made

msg_double
Data Description
no data List or Combo box double clicked

msg_size
Data Description
no data Window has been sized

msg_move
Data Description
no data Window has been moved

msg_horz
Data Description
new scroll position Horizontal scroll bar been moved.

The data parameter is an integer showing the new scroll position.

msg_vert
Data Description
new scroll position Vertical scroll bar been moved.

The data parameter is an integer showing the new scroll position.

msg_paint
Data Description
window type Window needs repainting.

The msg_paint data parameter can have the following values:

Value Window Type
grafix grafix window
button_up unpressed button
button_down pressed button

msg_leftdown
Data Description
mouse coordinates Left mouse button has been pressed in either the main window (while the

wbusy/1    flag is set greater than 0) or a "grafix" window.

The data is a coordinate pair of the form:

(X,Y)

showing the position of the mouse click.

msg_leftdouble
Data Description
mouse coordinates Left mouse button has been double-clicked in a "grafix" window.

The data is a coordinate pair of the form:

(X,Y)

showing the position of the mouse click.

msg_leftup
Data Description
mouse coordinates Left mouse button has been released in a "grafix" window.

The data is a coordinate pair of the form:

(X,Y)

showing the position of the mouse release.

msg_rightdown
Data Description
mouse coordinates Right mouse button has been pressed in either the main window (while the

wbusy/1 flag is set greater than 0) or a "grafix" window.

The data is a coordinate pair of the form:

(X,Y)

showing the position of the mouse click.

msg_rightdouble
Data Description
mouse coordinates Right mouse button has been double-clicked in a "grafix" window.

The data is a coordinate pair of the form:

(X,Y)

showing the position of the mouse click.

msg_rightup
Data Description
mouse coordinates Right mouse button has been released in a "grafix" window.

The data is a coordinate pair of the form:

(X,Y)

showing the position of the mouse release.

msg_mousemove
Data Description
mouse coordinates Mouse pointer has been moved in a "grafix" window.

The data is a coordinate pair of the form:

(X,Y)

showing the current position of the mouse.

msg_char
Data Description
key code Character returned from the keyboard in a "grafix" window.

The data is either the ASCII code of the key that was pressed, or one of the following atoms:

Key Atom Names
prior
next
end
home
left
up
right
down
select
print
execute
snapshot
insert
delete

Integer message and data values
msg_menu msg_sysmenu msg_close msg_focus
msg_fuzzy msg_change msg_button msg_select
msg_double msg_size msg_move msg_horz
msg_vert msg_paint msg_leftdown msg_leftdouble
msg_leftup msg_rightdown msg_rightdouble msg_rightup
msg_mousemove msg_char

msg_menu Integer Value 0
Data Description
menu item ID A menu item has been selected.

The data parameter is an integer giving the ID of the menu item selected.

msg_sysmenu Integer Value 1
Data Description
menu item ID A menu item has been selected from the system menu.

The data parameter is an integer giving the ID of the menu item selected.

msg_close Integer Value 2
Data Description
no data Window has been requested to close

msg_focus Integer Value 3
Data Description
no data Window has come into focus

msg_fuzzy Integer Value 4
Data Description
no data Window has gone out of focus

msg_change Integer Value 5
Data Description
no data Edit or editor window has been changed

msg_button Integer Value 6
Data Description
no data Button has been pressed

msg_select Integer Value 7
Data Description
no data List or Combo box selection made

msg_double Integer Value 8
Data Description
no data List or Combo box double clicked

msg_size Integer Value 9
Data Description
no data Window has been sized

msg_move Integer Value 10
Data Description
no data Window has been moved

msg_horz Integer Value 11
Data Description
new scroll position Horizontal scroll bar been moved.

The data parameter is an integer showing the new scroll position.

msg_vert Integer Value 12
Data Description
new scroll position Vertical scroll bar been moved.

The data parameter is an integer showing the new scroll position.

msg_paint Integer Value 13
Data Description
window type Window needs repainting.

The msg_paint data parameter can have the following values:

Value Window Type
0 grafix window
1 unpressed button
2 pressed button

msg_leftdown Integer Value 14
Data Description
mouse coordinates Left mouse button has been pressed in either the main window (while the

wbusy/1 flag is set greater than 0) or a "grafix" window.

The data parameter is a 32-bit integer that contains the X and Y coordinates of the mouse position,
relative to the window origin, in the low and high words respectively.

msg_leftdouble Integer Value 15
Data Description
mouse coordinates Left mouse button has been double-clicked in a "grafix" window.

The data parameter is a 32-bit integer that contains the X and Y coordinates of the mouse position,
relative to the window origin, in the low and high words respectively.

msg_leftup Integer Value 16
Data Description
mouse coordinates Left mouse button has been released in a "grafix" window.

The data parameter is a 32-bit integer that contains the X and Y coordinates of the mouse position,
relative to the window origin, in the low and high words respectively.

msg_rightdown Integer Value 17
Data Description
mouse coordinates Right mouse button has been pressed in either the main window (while the

wbusy/1 flag is set greater than 0) or a "grafix" window.

The data parameter is a 32-bit integer that contains the X and Y coordinates of the mouse position,
relative to the window origin, in the low and high words respectively.

msg_rightdouble Integer Value 18
Data Description
mouse coordinates Right mouse button has been double-clicked in a "grafix" window.

The data parameter is a 32-bit integer that contains the X and Y coordinates of the mouse position,
relative to the window origin, in the low and high words respectively.

msg_rightup Integer Value 19
Data Description
mouse coordinates Right mouse button has been released in a "grafix" window.

The data parameter is a 32-bit integer that contains the X and Y coordinates of the mouse position,
relative to the window origin, in the low and high words respectively.

msg_mousemove Integer Value 20
Data Description
mouse coordinates Mouse pointer has been moved in a "grafix" window.

The data parameter is a 32-bit integer that contains the X and Y coordinates of the mouse position,
relative to the window origin, in the low and high words respectively.

msg_char Integer Value 21
Data Description
key code Character returned from the keyboard in a "grafix" window.

The data is either the ASCII code of the key that was pressed, or one of the following codes:

Special Key Values
Code Key
1 "Prior"
2 "Next"
3 "End"
4 "Home"
5 "Left"
6 "Up"
7 "Right"
8 "Down"
9 "Select"

10 "Print"
11 "Execute"
12 "Snapshot"
13 "Insert"
14 "Delete"

Find box message names
Name Value Description
msg_fbclose 70 The Find Box close button
msg_fbfind 71 The Find Box Find button
msg_fbfndnxt 72 The Find Box Find next button

Change box message names
Name Value Description
msg_cbclose 80 The Change Box close button
msg_cbfind 81 The Change Box Find button
msg_cbfndnxt 82 The Change Box Find next button
msg_cbchange 83 The Change Box Change button
msg_cbchgfnd 84 The Change Box Change+find button
msg_cbchgall 85 The Change Box Change all button

Status box message names
Name Value Description
msg_sbcancel 90 The Status Box Cancel button

Prolog window handle types
Argument Type Meaning
Window <atom> a named top-level Window created by Prolog.
(Window,ID) (<atom>,<integer>) a control item with the given ID within the named top-

level Window.
Handle <integer> the Handle of any window (not just those created by

Prolog)
(Handle,ID) (<integer>,<integer>) a control item with the given ID that is a child of the

window with the given Handle

Prolog's special numeric window handles
Handle Window
0 the main (parent) Prolog window
1 the console (user input/output) window
2 the status box window

Prolog's special numeric window IDs
ID Window
0 the window itself
1 the edit control of an MDI child window.

Prolog's special numeric font numbers
Value Font
0 OEM font (IBM PC font, fixed pitch, OEM character set)
1 ANSI font (Windows font, variable pitch, ANSI character set)

Programmable hook names and their built-in equivalents
Default Hook Built-in Equivalent
'?ERROR?'/2 error_hook/2
'?BREAK?'/1 break_hook/1
'?DEBUG?'/1 debug_hook/1
'?ABORT?'/0 abort_hook/0
'?KEY?'/2 key_hook/2
'?KEY?'/3 key_hook/3
'?CHANGE?'/3 change_hook/3
'?FIND?'/3 find_hook/3
'?DLL?'/3 dll_hook/3
'?MESSAGE?'/4 message_hook/4

Dialog and menu handlers
Function Functor/Arity Built-in
modal dialogs <user defined>/4 modal_handler/4
modeless dialogs <user defined>/3 modeless_handler/3
menus <user defined>/2 menu_handler/2

Control keys with pre-defined functions
Control Key Function
<ctrl-A> Select All
<ctrl-C> Copy
<ctrl-H> Back Space
<ctrl-I> Tab
<ctrl-J> New Line
<ctrl-M> Carriage Return
<ctrl-V> Paste
<ctrl-X> Cut
<ctrl-Z> Undo
<ctrl-[> End Of File

The possible values of the "syntax_errors" prolog flag

Value Behaviour
quiet When a syntax error is detected, nothing is printed, and read/1 just quietly fails.
dec10 When a syntax error is detected, a syntax error message is printed, and the read is repeated.
fail When a syntax error is detected, a syntax error is printed and the read then fails.
error When a syntax error is detected, an error is thrown to the error handler.

Command-Line Switches
Prolog command line switches allow you to set aspects of Prolog's configuration at the command line.
The following command-line switches are available

Switch Meaning Default Value
/B backtrack stack (default 64)
/L local stack (default 64)
/R reset stack (default 64)
/H heap space (default 256)
/T text space (default 512)
/P program space (default 2048)
/S system stack (default 64)
/I string input space (default 64)
/O string output space (default 64)
/N initialisation file (default 0)
/V banner flag (default 0)
/Z 3d-look dialogs (default 0)

/B - The backtrack stack switch
The size of the backtrack stack governs the number of choice points allowed during an evaluation. To run
Prolog with your own setting for the backtrack stack you can set the /B backtrack stack switch at the
Prolog start-up command line. For example, you can set the backtrack stack of Prolog to have a size of
64k by entering the following at the DOS prompt:

C> WIN PRO386W /B64

You can also configure the backtrack stack by setting the /b command line switch on the command line
property of Prologs program item.

/I - The string input space switch
Two additional string input and output buffers have been added to Prolog. Normally these default to 64k
per buffer but you can set them to any value that is appropriate to the amount of memory available on
your machine. For example, you can set the string input buffer of Prolog to have a size of 1Mb by entering
the following at the DOS prompt:

C> WIN PRO386W /I1000

You can also configure the string input buffer by setting the /I command line switch on the command line
property of Prologs program item.

/H - The heap space switch
The size of the heap space governs the number or size of data structures allowed during an evaluation.
To run Prolog with your own setting for the heap space you can set the /H heap space switch at the
Prolog start-up command line. For example, you can set the heap space of Prolog to have a size of
1024k by entering the following at the DOS prompt:

C> WIN PRO386W /H1024

You can also configure the backtrack stack by setting the /H command line switch on the command line
property of Prologs program item.

/L - The local stack switch
The size of the backtrack stack governs the depth of non-tail recursive calls allowed during an evaluation.
To run Prolog with your own setting for the backtrack stack you can set the /L local stack switch at the
Prolog start-up command line. For example, you can set the local stack of Prolog to have a size of 64k by
entering the following at the DOS prompt:

C> WIN PRO386W /L64

You can also configure the local stack by setting the /L command line switch on the command line
property of Prologs program item.

/N - The initialisation file switch
This switch allows you to switch the location of the PRO386W.INI file between one of three possible
locations, or not to use this file at all, to overcome the problems some users have experienced on
networks. The /N switch has the following meanings:

Switch Location
/N0 Use Prolog directory (default)
/N1 Use Windows directory
/N2 Use Current directory
/N3 Do not save .INI file

For example, you can set Prolog to use the Windows directory as the location for the initialisation file by
entering the following at the DOS prompt:

C> WIN PRO386W /N1

You can also configure the initialisation file by setting the /N command line switch on the command line
property of Prologs program item.

/O - The string output space switch
Two additional string input and output buffers have been added to Prolog. Normally these default to 64k
per buffer but you can set them to any value that is appropriate to the amount of memory available on
your machine. For example, you can set the string output buffer of Prolog to have a size of 1Mb by
entering the following at the DOS prompt:

C> WIN PRO386W /O1000

You can also configure the string output buffer by setting the /O command line switch on the command
line property of Prologs program item.

/P - The program space switch
The size of the program space governs the size of program allowed in Prolog. To run Prolog with your
own setting for the program space you can set the /P program space switch at the Prolog startup
command line. For example, you can set the program space of Prolog to have a size of 4096k by entering
the following at the DOS prompt:

C> WIN PRO386W /P4096

You can also configure the program space by setting the /P command line switch on the command line
property of Prologs program item.

/R - The reset stack switch
The size of the reset stack governs the number of variables allowed that might need unbinding during an
evaluation. To run Prolog with your own setting for the reset stack you can set the /R reset stack switch at
the Prolog start-up command line. For example, you can set the reset stack of Prolog to have a size of
128k by entering the following at the DOS prompt:

C> WIN PRO386W /R128

You can also configure the reset stack by setting the /R command line switch on the command line
property of Prologs program item.

/S - The system stack switch
The size of the system stack governs the maximum depth of structures that can be held in memory. To
run Prolog with your own setting for the system stack you can set the /S system stack switch at the Prolog
start-up command line. For example, you can set the system stack of Prolog to have a size of 128k by
entering the following at the DOS prompt:

C> WIN PRO386W /S128

You can also configure the system stack by setting the /S command line switch on the command line
property of Prologs program item.

/T - The text space switch
The size of the text space governs the number atoms or strings created during an evaluation. To run
Prolog with your own setting for the text space you can set the /T text space switch at the Prolog start-up
command line. For example, you can set the text space of Prolog to have a size of 1024k by entering the
following at the DOS prompt:

C> WIN PRO386W /T1024

You can also configure the text space by setting the /T command line switch on the command line
property of Prologs program item.

/V - The banner flag switch
Another command line switch lets you can decide whether or not to suppress the welcome banner. The /V
switch can take either of the following values:

Switch Meaning
/V0 show the welcome banner
/V1 hide the welcome banner

For example, you can set Prolog to start up without displaying the welcome banner by entering the
following at the DOS prompt:

C> WIN PRO386W /V1

You can also configure the banner by setting the /V command line switch on the command line property of
Prologs program item.

/Z - The 3D-Look Dialog Switch
Another command line switch lets you can decide whether or not the environment uses 3d-look dialogs.
The 3d-look dialogs make use of the CTL3DV2.DLL file which should be located in your Windows
directory. If this file is not present all dialogs will appear as normal. The /Z switch can take either of the
following values:

Switch Meaning
/Z0 use 3d-look dialogs
/Z1 use normal dialogs

For example, you can set Prolog to start up without 3d-look dialogs by entering the following at the DOS
prompt:

C> WIN PRO386W /Z1

You can also configure the look of the system dialogs by setting the /Z command line switch on the
command line property of Prologs program item.

Errors and Error Numbers
The Prolog error numbers are organised in logical groups. The errors and their messages with their
logical groups are listed below:

Configurable Memory Errors

1 Backtrack Stack Full
2 Local Stack Full
3 Reset Stack Full
4 Heap Space Full
5 Text Space Full
6 Program Space Full
7 System Stack Full
8 Input Space Full
9 Output Space Full

Console I/O Errors

10 Window Handling Error
11 Keyboard Break
12 Mouse Handling Error
13 Graphics Handling Error
14 Console Buffer Full

Predicate and Control Errors

20 Predicate Not Defined
21 Control Error
22 Instantiation Error
23 Type Error
24 Domain Error
25 Too Many Arguments
26 Term Too Big

File Handling Errors

30 File Handling Error
31 File Not Found
32 Path Not Found
33 Too Many Files Open
34 File Access Denied
35 Disk Full
36 Memory Full

Term I/O Errors

40 Format Not Defined
41 Format Field Overflow
42 Syntax Error
43 End Of File
44 Binary Format Error
45 Checksum Error
46 String Too Long
47 Atom Too Long

Arithmetic Handling Errors

50 Function Not Defined
51 Arithmetic Underflow
52 Arithmetic Overflow
53 Arithmetic Error

Assembly and Compilation Errors

60 Instruction Not Defined
61 Bad Number Of Arguments
62 Bad Argument Type
63 Bad Register Number
64 Label Not Defined
65 Label Already Defined
66 Bad Assembler Module
67 Predicate Protected

DOS Errors

10xx Unknown Error

Memory Errors
Memory errors occur when the execution of a program causes one of Prolog's internal memory areas to
become full. The general solution to these errors, is to halt and then run Prolog with the appropriate
memory area increased. You can configure the memory areas by setting the command line switches on
the command line property of Prologs program item.

Error 1 Backtrack Stack Full
This error message is displayed when the internal backtrack stack is full. The program that was running,
when the error occurred, had too many choice points in the current evaluation. To solve this you should
halt from the current session and try running Prolog with a larger backtrack stack. For example, you can
set the backtrack stack of Prolog to have a size of 64k by entering the following at the DOS comand line:

C> WIN PRO386W /B64

You can also configure the backtrack stack by setting the /b command line switch on the command line
property of Prologs program item.

Error 2 Local Stack Full
This error message is displayed when the internal local stack is full. The program that was running, when
the error occurred, had too great a depth of non-tail recursive calls. To solve this you should halt from the
current session and try running Prolog with a larger local stack. For example, you can set the local stack
of Prolog to have a size of 64k by entering the following at the DOS comand line:

C> WIN PRO386W /L64

You can also configure the local stack by setting the /l command line switch on the command line property
of Prologs program item.

Error 3 Reset Stack Full
This error message is displayed when the internal reset stack is full. The evaluation that was current,
when the error occurred, contained too many variables that might need unbinding. To solve this you
should halt from the current session and try running Prolog with a larger reset stack. For example, you
can set the reset stack of Prolog to have a size of 64k by entering the following at the DOS comand line:

C> WIN PRO386W /R64

You can also configure the reset stack by setting the /r command line switch on the command line
property of Prologs program item.

Error 4 Heap Space Full
This error message is displayed when the internal heap space is full. The program that was running,
when the error occurred, had created too many structures or too large a structure. To solve this you
should halt from the current session and try running Prolog with a larger heap space. For example, you
can set the heap space of Prolog to have a size of 256k by entering the following at the DOS comand
line:

C> WIN PRO386W /H256

You can also configure the heap space by setting the /h command line switch on the command line
property of Prologs program item.

Error 5 Text Space Full
This error message is displayed when the internal text space is full. The program that was running, when
the error occurred, had created too many atoms or strings. To solve this you should halt from the current
session and try running Prolog with a larger text space. For example, you can set the text space of Prolog
to have a size of 512k by entering the following at the DOS comand line:

C> WIN PRO386W /T512

You can also configure the text space by setting the /t command line switch on the command line property
of Prologs program item.

Error 6 Program Space Full
This error message is displayed when the internal program space is full. This type of error, indicates that
there are too many programs currently in memory. It normally occurs during a consultation or assertion.
To solve this you should halt from the current session and try running Prolog with a larger program space.
For example, you can set the program space of Prolog to have a size of 4096k by entering the following
at the DOS comand line:

C> WIN PRO386W /P4096

You can also configure the program space by setting the /p command line switch on the command line
property of Prologs program item.

Error 7 System Stack Full
This error message is displayed when the system stack is full. The program that was running tried to
process a structure that was too deep. To solve this you should halt from the current session and try
running Prolog with a larger system stack. For example, you can set the system stack of Prolog to have a
size of 256k by entering the following at the DOS comand line:

C> WIN PRO386W /S256

You can also configure the system stack by setting the /S command line switch on the command line
property of Prologs program item.

Error 8 Input Space Full
This error message is displayed when the input string buffer is full. The program that was running tried to
set input to a string that was too big. To solve this you should halt from the current session and try running
Prolog with a larger string input buffer. For example, you can set the string input buffer of Prolog to have a
size of 1Mb by entering the following at the DOS prompt:

C> WIN PRO386W /I1024

You can also configure the string input buffer by setting the /I command line switch on the command line
property of Prologs program item.

Error 9 Output Space Full
This error message is displayed when the output string buffer is full. The program that was running tried
to output too many characters to a string. To solve this you should halt from the current session and try
running Prolog with a larger string output buffer. For example, you can set the string output buffer of
Prolog to have a size of 1Mb by entering the following at the DOS prompt:

C> WIN PRO386W /O1024

You can also configure the string output buffer by setting the /O command line switch on the command
line property of Prologs program item.

Console I/O Errors
The console I/O errors deal with the interface between user programs and the console. These errors
include: incorrect window handling, keyboard interruption of running programs and attempts at mouse
and graphics handling when the appropriate drivers have not been installed.

Error 10 Window Handling Error
This error occurs when an attempt at a window operation is made in the wrong mode or on a window that
doesn't exist.

Error 11 Keyboard Break
This error occurs when the ctrl-<Break> or ctrl-C keys are pressed. The keyboard break error can be
used to break into Prolog programs while they are running.

Error 12 Mouse Handling Error
This error occurs when an attempt to access the mouse is made and the mouse driver is not loaded. To
rectify this problem halt from Prolog and load the mouse driver.

Error 13 Graphics Handling Error
This error occurs when an attempt is made at a DOS graphics operation and the graphics driver
GRAFIX.EXE is not loaded. To rectify this problem halt from Prolog and load the graphics driver.

Error 14 Console Buffer Full
This error message is displayed when the console buffer becomes full. This type of error will occur if you
attempt to enter a single term at the user device that exceeds the console buffer space. This does not
affect terms read from any other file device or window.

Predicate and Control Errors
The predicate and control errors deal with the calling of undefined predicates or the calling of predicates
with incorrect arguments.

Error 20 Predicate Not Defined
This error occurs when you try and call a non-dynamic predicate that is not currently defined. This error
can be avoided if the predicate is declared dynamic, using dynamic/1, in which case the call to the
undefined predicate will simply fail.

Error 21 Control Error
This error occurs when there is an invalid call structure. It will occur when the call being executed is not of
the correct form (e.g. when a meta-variable is unbound or has been bound to a structure that is not an
atom).

Error 22 Instantiation Error
This error occurs when a built-in predicate expects a bound argument and receives a variable instead.

For example the following call generates an instantiation error:

?- fcreate(X,Y).

because fcreate/2 expects both of its arguments to be bound.

Error 23 Type Error
This error occurs when a built-in predicate expects a specific type of argument and receives the wrong
type.

For example the following call generates a type error:

?- beep(23,fred).

because beep/2 expects an integer as its second argument.

Error 24 Domain Error
This error occurs when a built-in predicate expects an argument to be in a specific range and receives
data that is outside that range.

Error 25 Too Many Arguments
This error occurs when you try and call a predicate with more than 128 arguments.

Error 26 Term Too Big
This error occurs when you try to create a term that exceeds the limits for term size.

File and Memory Handling Errors
The file and memory handling errors deal with the situations where file and disk and external memory
accessing is invalidated.

Error 30 File Handling Error
This error is the generic file handling error, it occurs when an attempt is made to access a file that is not
currently open to Prolog. This error can be avoided by opening the file using the fopen/2 predicate.

Error 31 File Not Found
This error occurs when an attempt is made to open, delete, rename or execute a file that is not on the
current disk (or on the path specified).

Error 32 Path Not Found
This error occurs when an attempt is made to open, delete, rename or execute a file and the path
element for that file does not exist.

Error 33 Too Many Files Open
Prolog only allows 8 files to be open at any one time. If you have exceeded his limit error 33 will be
generated. To alleviate this problem close one or more files using fclose/1 before opening the next.

Error 34 File Access Denied
This error occurs when you try to write to a file that has been opened in read only access mode or try to
read from a file that has been opened in write only access mode. To avoid this error open the file in
read/write mode using fopen/2.

Error 35 Disk Full
This error indicates that your hard disk is full and usually occurs when you are writing to the disk or when
you are copying files from within Prolog.

Error 36 Memory Full
This error is displayed when the external memory is full This may occur if there are a number if memory
resident programs installed or too many Prolog windows have been created. One way to alleviate this
problem is to halt from the current session and try quitting from some of the memory resident programs.
Alternatively you could set Prolog to use less external memory by configuring Prolog's memory areas to
use less memory.

Term I/O Errors

Error 40 Format Not Defined
This error occurs when you try to call either of the predicates fwrite/4 or fread/4 with an undefined format.

Error 41 Format Field Overflow
This error occurs when performing input or output using fwrite/4 or fread/4 if the term to be input or output
is larger than the specified fieldwidth. To solve this problem you can either use a free field width (a field
width of 0) or on output use truncated output.

Error 42 Syntax Error
This error occurs when a Prolog term read in with read/1 contains a syntax error. You can set four
different behaviours for the read/1 predicate when it encounters a syntax error. This can be done by
setting the "syntax_errors" prolog flag.

Error 43 End Of File
This error occurs when you read past the end of a file.

Error 44 Binary Format Error
This error occurs when a Prolog object code file is being loaded and has been corrupted in some manner.

Error 45 Checksum Error
This error occurs if there is corruption in a compressed data record. Such corruption is discovered on
completion of decompressing the record, when the record's checksum is tested.

Error 46 String Too Long
This error occurs when an attempt is made to create a string that exceeds the string buffer. To solve this
you should halt from the current session and try running Prolog with a larger string input or output buffer
size, depending whether the error occurred during string input or output. For example, you can set both
the string input and output buffer sizes of Prolog to have a size of 1Mb by entering the following at the
DOS comand line:

C> WIN PRO386W /I1000 /O1000

You can also configure the string input and output buffers by setting the /I and /O command line switches
on the command line property of Prologs program item.

Error 47 Atom Too Long
This error occurs when an attempt is made to create an atom that exceeds 1024 characters. This problem
can be avoided by splitting the atom into smaller parts.

Arithmetic Handling Errors
The errors associated with the following predicates:
is/2 </2 =:=/2 =</2
=\=/2 >/2 >=/2 seed/1

Error 50 Function Not Defined
This error occurs when the arithmetic predicate is/2 is used with an undefined function.

Error 51 Arithmetic Underflow
This error occurs when the value of a number is less than the smallest number that can be represented.
In LPA Prolog this occurs for numbers whose absolute value is less than 2.2e-308.

Error 52 Arithmetic Overflow
This error occurs when the value of a number is greater than the largest number that can be represented.
In LPA Prolog this occurs for numbers whose absolute value is greater than 1.7e308.

Error 53 Arithmetic Error
This error occurs when the expression handler tries to perform an invalid operation such as finding the
square root of a negative number.

Assembly and Compilation Errors
Some of the following errors should not occur during the normal running of Prolog. If the indicated errors
are reported please contact LPA directly.

Error 60 Instruction Not Defined
The optimising compiler has generated a Prolog machine instruction that is not part of the internal
language. This is a bug which should never occur in the release system.

Error 61 Bad Number Of Arguments
The optimising compiler has generated a Prolog machine instruction with the wrong number of
arguments. This is a bug which should never occur in the release system.

Error 62 Bad Argument Type
The optimising compiler has generated a Prolog machine instruction with an argument of the wrong type.
This is a bug which should never occur in the release system.

Error 63 Bad Register Number
The optimising compiler has generated a Prolog machine instruction with an invalid register number. This
is a bug which should never occur in the release system.

Error 64 Label Not Defined
The optimising compiler has generated a Prolog machine instruction which attemts to reference an
undefined code label. This is a bug which should never occur in the release system.

Error 65 Label Already Defined
The optimising compiler has generated a given code label more than once in a given relation. This is a
bug which should never occur in the release system.

Error 66 - Bad Assembler Module
A user-defined assembler code module has an invalid format.

Error 67 Predicate Protected
An attempt has been made to abolish or otherwise modify a locked relation, or to assert to or retract from
an optimised relation. Normally, you should not attempt to modify such relations.

DOS Errors
A range of errors reflecting directly the MS-DOS operating system errors.

Error 10xx Unknown Error
Errors that occur above 1000 are MS-DOS errors. The actual error can be found by subtracting 1000 from
the error number and referring to your MS-DOS documentation.

ASCII, ANSI and OEM Character Sets
One of the difficulties in maintaining compatibility between the Windows and DOS versions of Prolog is
that the character set used by Windows is different from that used by DOS. Fortunately, the lower 128
characters of both sets conform to the 7-bit ASCII standard, which contains all of the English upper and
lower case letters, numerals, punctuation symbols and brackets. Windows and DOS diverge, however, in
their treatments of the upper half of the table, namely characters 128-255.

All accented letters, as well as the majority of currency symbols and graphics characters, are stored in the
upper half of the character table. The problem is that the IBM PC set, as used by DOS, is organised
differently from the ANSI set used by Windows. For example, the UK "Pound" sign ("£") is IBM PC code
156, while under Windows it is 163.

Atom - Data Type
Atoms are text names that are used to identify data, programs, modules, files, windows, and so on.

The maximum length of an atom is 1024 characters. There are four types of atoms: alphanumeric,
symbolic, quoted and special atoms.

Alphanumeric Atoms
An alphanumeric atom is one that starts with a lower-case letter (a-z) and is only followed by: alphabetic
characters (A-Z,a-z), extended ASCII alphabetic characters (ASCII codes 128-154 and 160-167), digits
(0,9) and underscores.

The following are all alphanumeric atoms:

apple a1 apple_cart longTable

Symbolic Atoms
A symbolic atom is written as a sequence of symbolic characters, and characters in the upper half of the
8-bit ASCII table. The symbolic characters are:

$ & = - ^ ~ \ @

` : . / + * ? < >

The following are all symbolic atoms:

& &: ++ << >> <-- .. *-/*

Note that the /* appearing in the last example is not interpreted as the start of a comment.

Quoted Atoms
A quoted atom is any sequence of characters surrounded by single quotes. To insert a single quote
character in a quoted atom use two adjacent single quote characters:

''

The tilde character (~) is used within quoted atoms as an escape character. Tilde followed by a printable
character in the range '@' to '_' is used to represent a control character. For example:

'~I'

represents ctrl-I.

The tilde character can also be followed by a three digit number representing the ASCII code of a
character. This can be useful for inserting characters with an ASCII value greater than 127.

To insert a tilde in a quoted atom use ~~. The following are all quoted atoms:

'Apple' '123' 'hello world' '~Ibold~M~J' '~065' 'don''t care'

The last example represents the atom:

don't care

Special Atoms
The special atoms are as follows:

! ; [] {}

Backtracking
The process of re-evaluating a Prolog goal to try to find more solutions.

Byte List - Data Type
A byte list (also referred to as <char_list>) is a sequence of characters surrounded by the double quotes
character ("). It is simply an abbreviation for the list of decimal integer ASCII codes of the characters in
the sequence. For example, the byte list:

"A boy"

is simply a shorthand form of the list:

[65,32,98,111,121]

To insert a double quote character in a byte list use two adjacent double quote characters:

""

As with quoted atoms the tilde character is used an escape character, allowing you to enter control
characters in a byte list. For example:

"~G"

represents the list:

[7]

(To insert a tilde in a byte list use ~~.)

Character Set
LPA Prolog uses the full 8-bit ASCII character set, although all characters with special meaning are
confined to the first 128 characters (the 7-bit ASCII set). The upper half of the character table usually
contains international characters, accents, and graphics characters, and it tends to be machine specific.

Character Sets, Typefaces and Fonts
Windows has two character sets, OEM and ANSI: these differ only in the logical assignment of characters
to binary codes, and do not imply anything about the appearance of text.

Windows supports many typefaces, and most can be scaled and styled to produce a myriad of different
fonts. The font used to display text is of no concern to Prolog, just so long as its character set (logical
assignment) is compatible with Prolog syntax.

There is only one standard Windows typeface which supports the OEM character set, and because this is
non-scaleable and therefore of fixed size and style, it is also a font: for convenience, this is referred to as
the "OEM font". Windows uses another typeface, again non-scaleable, as its default for dialogs and
controls: we call this one the "ANSI font" (of course, nearly all typefaces and their derivative fonts use the
ANSI character set).

Because the OEM and ANSI fonts (sic) are so central to both Prolog and Windows, they are predeclared
and given special numeric font names:

Whenever the font of a window is set using wfont/2, and also in the cases of certain built-in dialog
predicates (such as abtbox/3 and sttbox/2, either of these two fonts can be used directly.

Clauses
Clauses are the building blocks of Prolog programs. There are two types of clause: facts and rules.

A fact is of the form:

head.

where head is the head of the clause. head may be an atom or a compound term whose functor is any
atom except :-. The fact is terminated by a '.' followed by a white space character (e.g. a space, or a
carriage return).

A rule is of the form:

head :- t1, t2, …, tk. (k ³ 1)

where head is the head of the clause and the terms to the right of :- are the body of the clause. Each tk is
known as a call term or goal. A call term must be an atom (a 0-argument call), a compound term, or a
variable name. The rule is terminated by a '.' followed by a white space character.

The functor of the head of a clause is the predicate that the clause describes. All the clauses describing a
given predicate comprise its definition. The arity of a clause is the number of arguments in its head.

foo. % a fact
foo(1) :- bar. % a rule

likes(Anyone, prolog) :- % a rule
logic_programmer(Anyone).

likes(Anyone, Anything). % a fact

my_append([], X, X). % a fact
my_append([A|B], C, [A|D]) :- % a rule

my_append(B, C, D).

is_not_true(X) :-
X,
!,
fail.

is_not_true(X).

These clauses define the relations foo/0, foo/1, likes/2, my_append/3 and is_not_true/1 respectively.

All clauses describing a predicate must be in a single source file unless the predicate is declared as
multifile (see multifile/1).

Comments
Comments have no effect on the behaviour of a program. In fact they are ignored when a Prolog term or
program is read in. There are two forms of comment:

1. A sequence of characters that begins with the symbol /* and ends with */ is treated as a
comment.

2. A sequence of characters that begins with the symbol % and ends with the end-of-line
character (carriage return) is treated as a comment.

The first type of comment allows a comment to extend over several lines. The second type of comment is
useful when commenting a single line. For example:

/*
** this is a comment
*/
% so is this

Compound Term - Data Type
A compound term is a structured data item that consists of a functor followed by a sequence of one or
more arguments which are enclosed in brackets and separated by commas. The general form of a
compound term is:

functor(t1, t2, …, tn) n ³ 1

functor is the functor. It can be an atom or a variable name. (For further details about the use of a variable
name as the functor please see the section below entitled "Meta-variables").

The term ti    represents the i'th argument of the compound term.

The arity of a compound term is the number of arguments it has (n in the example above). We refer to
functor with arity n using the notation:

functor/n

The following are examples of compound terms:

likes(paul,prolog) % functor is likes (arity is 2)
read(X) % functor is read (arity is 1)
>(3,2) % functor is > (arity is 2)

A compound term can be thought of as representing a record structure. The functor represents the name
of the record, while the arguments represent the record fields.

Note: There must be no space between the functor and the opening parenthesis of a compound term. For
example:

likes    (paul,prolog)

is not a legal compound term. Spaces between the arguments are allowed however.

Data Types
The following data types are used in LPA Prolog.

atoms

byte lists

compound terms

floating point numbers

integers

lists

strings

variables

Directives
A directive is a Prolog term of the form:

:- goal1, …, goalk. % k ³ 1

where goali is a call term (i.e. goal). A command is executed automatically when it is encountered during
a consult or reconsult (see also initialization/1).

:- write('hello world'),nl.

Floating Point Number - Data Type
A floating point number is written as an optional minus sign (-) followed by a sequence of one or more
digits followed by a decimal point (.) followed by one or more digits, optionally followed by an exponent.
An exponent is written as e (or E) followed by an optional minus sign followed by one to three digits. Note
that in LPA Prolog floating point numbers are 64-bit values in the range [2.2e-308..1.7e308].

As with integers, the plus sign (+) must not be used to denote a positive floating point number. For
example:

1.0 246.8091 -12.3 20.003e-10 -1.3E102

The following are not floating point numbers:

.9 % does not start with a digit

3e-22 % no decimal point

34.1 e3 % contains a space before the 'e'

-.7 % no digit after the minus sign

56.1e4.8 % exponent is not an integer

23. % no digit after the decimal point

Grammar Rules
A Prolog program may contain one or more grammar rules. These grammar rules may be used to define
the syntax of a language and to define a parser for that language.

A grammar rule takes the form:

grammar_head --> grammar_body.

Where grammar_head is a non-terminal symbol optionally followed by a terminal symbol. The body of the
grammar rule is a sequence of terminals, non-terminals or grammar conditions, each separated by
commas or semi-colons. A grammar condition is a sequence of Prolog call terms surrounded by curly
brackets ('{' and '}').

For a detailed description of the Prolog grammar rules please see the chapter on 'Grammar Rules'.

sentence --> noun_ph, verb_ph.
verb_ph --> verb, noun_ph.
verb --> [likes] ; [hates].
noun_ph --> determiner, noun.
determiner --> [the].
noun --> [boy] ; [dog].

IBM ASCII Character Set
An 8-bit character set, which using only the first seven bits (values 0-127 inclusive), sets a standard code
for the English upper and lower case letters, numerals, punctuation symbols and brackets.

The IBM extended ASCII character set is defined by the upper half of the 8-bit ASCII character set (values
128-255 inclusive) contains non-English alphabetic characters and punctuation, as well as some block
graphics characters.

Integer - Data Type
An integer is a number with no fractional part. It is written as a sequence of digits, optionally preceded by
a minus sign (-). Note that in LPA Prolog integers are 32-bit values which gives them a range of
[-2147483648..2147483647].

The plus sign (+) must not be used to denote a positive integer. All positive integers are written without a
leading sign character. For example:

0 1 9821 -10 -64000

List - Data Type
A list is a sequence of terms of the form:

[t1,t2,…,tn] n ³ 0

The term ti is the i'th element of the list. It can be any type of Prolog term. The simplest form of list is the
empty list (n = 0):

[]

The following example is a four element list:

[[a,list,of,lists],and,numbers,[1,2,3]]

Unknown elements of a list can be represented by variables. For example:

[X,Y,Z]

We also represent a list using the notation:

[t1, t2, …, ti | Variable] i ³ 1

This list pattern represents a list that begins with the terms t1,t2,…,ti with the remainder of the list (the tail)
denoted by Variable.

For example the list pattern:

[Head|Tail]

could be unified with the list:

[1,2,3,4]

to give the variable bindings:

Head = 1
Tail = [2,3,4]

Meta-variables
A meta-variable is a variable which appears in place of a callable Prolog structure. LPA provides full
support for the usual Edinburgh predicates =../2 and call/1, but the following methods for supporting meta-
calling are far more efficient.

Condition meta-variables can be bound to atoms and compound terms and called directly without using
call/1.

Predicate meta-variables can be used where the functor of a compound term is a variable that is bound at
the time of calling the term.

Condition Meta-variable
This is where a variable appears as a goal in the body of a rule. The head of a clause may not be
represented in this way. By the time the meta-variable is called it must have been instantiated to one of
the following.

An atom (represents a call to a 0-argument relation).

A compound term of the form:

relation(t1, t2, …, tk)

The effect of evaluating a condition meta-variable is the same as if the condition had appeared in the
source program instead of the meta-variable.

The following is the definition of the built-in predicate \+/1:

\+(X) :- X, !, fail.
\+(X).

You can query this predicate as follows:

\+(true).
no

\+(false)
yes

\+(compare(=, 2, 3)).
yes

Predicate Meta-variable
This is where a goal in the body of a rule is a compound term whose functor is a variable. By the time the
goal is evaluated, the meta-variable must have been bound to an atom.

map(Pred, [], []).
map(Pred, [X|Y], [X1|Y1]) :-

Pred(X, X1),
map(Pred, Y, Y1).

In this example, it is assumed that the meta-variable 'Pred' will be bound to the name of a binary relation.
Given the following binary relations:

double(X, Y) :-
Y is X + X.

square(X, Y) :-
Y is X * X.

You can query map/3 as follows:

map(double, [1,2,3,4], X).
X = [2,4,6,8]

map(square, [1,2,3,4], X).
X = [1,4,9,16]

Note: In standard Edinburgh syntax, the call to Pred(X,X1) in the second clause for map/3 would have to
be replaced with calls to =../2 and call/1 as follows:

map(Pred, [X|Y], [X1|Y1]) :-
Call =.. [Pred,X,X1],
call(Call)
map(Pred, Y, Y1).

Modifying Dynamic Code During Its Execution
There are two types of dynamic code 'normal' and 'logical' (see dynamic /1). It is potentially dangerous to
modify 'normal' dynamic code that is still being executed, and every care should be taken not to do so. If
you are running into this problem you can make all the dynamic code in the system safely 'logical' using
the /D command line switch when you boot up Prolog. Using 'logical' dynamic predicates is completely
safe in this respect although the code runs at a slightly slower speed.

Number Bases
You can enter numbers in a particular base using the    notation. As in the following examples:

?- X = 16'F. % a number in base 16
X = 15

?- ?- X = 2'10010101. % a number in base 2
X = 149

Incidentally you can also use this notation to give the ASCII code of the character following the quote
sign, as in the following:

?- X = 0'a.
X = 97

Operators
Operators allow you to use an alternative syntax for compound terms. There are three types of operator:
prefix, postfix and infix. Each particular operator type may have a different precedence and associativity.

Prefix Operators
The compound term:

functor(term)

can also be written as:

functor term

if functor has been declared a prefix operator, using op/3. For example, the built-in predicate spy/1 is a
prefix operator which means that the following compound term can be entered:

spy my_module

This is equivalent to:

spy(my_module)

Postfix Operators
The compound term:

functor(term)

can also be written as:

term functor

if functor has been declared a postfix operator, using op/3. For example, if is_male/1 has been declared a
postfix operator then you could enter the compound term:

paul is_male

This is equivalent to:

is_male(paul)

Infix Operators
The compound term:

functor(term1,term2)

can also be written as:

term1 functor term2

if functor has been declared an infix operator, using op/3. For example, the built-in arithmetic function '+'
is an infix operator which means you can enter the compound term:

5 + 10

This is equivalent to the predicate:

+(5,10)

Note: there is no definition for the +/2 predicate (+ is simply an argument given to the is/2 predicate). so
entering this at the command line will give:

| ?- 5 + 10 .
! --------------------
! Error 20: Predicate Not Defined
! Goal        : 5 + 10

Operator Precedence
The preference given to an operator in the reading of a term. The lower the precedence, the more
strongly an operator binds to its arguments.

For example, the expression:

2 + 5 * 8

represents the term:

+(2,*(5,8))

because * has a lower precedence than +.

Operator Associativity
The associativity of an operator clears any ambiguity in an expression that contains two operators of the
precedence.

Operator Types
The type of an operator defines its associativity. It is used to disambiguate an expression that contains
two operators of the same precedence. If an operator is non-associative then its arguments must be sub-
expressions of strictly lower precedence than the operator itself.

A left associative operator is one whose left hand argument may be a sub-expression of the same
precedence as the operator itself (it can also be lower). A right associative operator is one whose right
hand argument may of the same (or lower) precedence as the operator. For example, the built-in
operators '+' and '-' are both left associative infix operators with a precedence of 500. This means that the
expression:

10-5+2

represents the compound term:

+(-(10,5),2)

because the left hand argument of '+' can have the same precedence. The '-' operator cannot have a right
argument with the same precedence. This means that the following compound term is not a valid
interpretation of the above expression:

-(10,+(5,2))

because the right hand argument would have the same precedence as '-' itself (and '-' is not right
associative).

Note that these types indicate the associativity and position of an operator.

Declaring Operators
Operators are declared using the built-in predicate op/3. The form of this predicate is:

op(+Precedence, +Type, +Name)

where Precedence is the operator's precedence (an integer in the range 1 to 1200), Type defines the
operator type and associativity (e.g. fx), and Name is the name of the operator (or a list of operator
names). If Precedence is 0 then the operator declaration for Name is cancelled.

The following examples show how some of the built-in operators are defined.

op(200, xfy, ^).
op(500, fx, [+, -]).

It is possible to have more than one operator of the same name. For example, the built-in operator '+' is
declared as both a prefix and an infix operator. The built-in predicate current_op/3 can be used to find out
what operators are currently defined. The format of this predicate is:

current_op(?Precedence, ?Type, ?Name)

This succeeds if there is an operator called Name of type Type and with a precedence of Precedence. It
can be used to backtrack through the list of currently defined operators.

Predicate Definitions
When predicate definitions are given, the functor, arguments and positions of the arguments of the
predicate are shown as a template such as:

foo(+Arg1, ?Arg2, -Arg3)

This defines a predicate called foo that can take three arguments. The character that precedes each
argument name is a mode declaration.

Program Structure
A Prolog program is made up of a selection of the following program elements:

comments

clauses

grammar rules

directives

References
K.L.Clark and F.G.McCabe. micro-PROLOG: Programming in Logic. Prentice-Hall International, 1984.
(This book does not describe the Edinburgh syntax.)

W.F.Clocksin and C.S.Mellish. Programming in Prolog. Springer Verlag, 1987.

I.Bratko. Prolog Programming For Artificial Intelligence. Addison-Wesley Publishing Company, 1986.

R.A.Kowalski. Logic For Problem Solving. Artificial Intelligence series. North Holland Inc.

T.Dodd. Prolog: A Logical Approach. Oxford University Press

Logic Programming Associates Ltd do not endorse these books or recommend them over others on the
same subject.

Separators and Terminators
The normal term separator is the comma. This is used to separate terms in lists and argument lists. A
space must be used to separate an operator from an operand if they are both of the same token type
(e.g. they are both alphanumeric tokens).

The usual term terminator is the full stop followed by a space or carriage return. (A full stop not followed
by a space or carriage return is treated as a symbolic atom - see below.)

Note that a space between an atom and a left parenthesis, '(', is significant.

String - Data Type
A text data type specific to LPA Prolog. This data type is capable of storing any length of text. The limit on
the size of strings is set separately for input and output using the /I and /O command-line switches.

Use backwards quotes to define a string:

`This is a string`

To insert a backwards quote character in a string use two adjacent backwards quote characters:

`I don``t care`

Terms
Terms are the fundamental data types in Prolog. They are the building blocks from which Prolog clauses,
and commands are constructed.

The basic term types are: variables, integers, floating point numbers, atoms, strings (a unique LPA text
data type), lists, byte lists (normally called strings in 'Edinburgh' parlance) and compound terms.

Unification
The process of matching two terms during the running of a Prolog program. Terms are said to match
under the following conditions:

· Atomic terms match if they are identical.

· A variable will match with any atomic or compound term.
· Two unbound variables will match and become the same variable.
· Two compound terms will match if they have the same functor and each of the arguments in one
term can be matched with its corresponding argument in the other term.
The last type of unification takes place during the evaluation of a query, where an attempt is made to
match the goal with the head of a clause in the database.

Variable - Data Type
A variable name is an alphanumeric sequence of characters beginning with an upper case letter (A-Z) or
an underscore ('_'). The alphanumeric sequence can include '_' and characters from the upper half of the
ASCII table. For example, the following are variable names:

Anything _var _1 X Var1

Quoting with single quotes overrides the variable name convention. For example the following are both
quoted atoms:

'Anything' '_var'

An underscore on its own is an anonymous variable.

<number>
A number is either an integer or floating point number.

<char>
An integer in the range [0..255] that is a character code.

For example, the character code for the letter 'a' is 97.

<char_list>
A list of integers each of which is in the range [0..255].

For example the following list represents the characters 'a', 'b' and 'c'.

[97,98,99]

This list can also be written as:

"abc"

Lists of this kind are also known as byte lists.

<expr>
An arithmetic expression or number. For more information on arithmetic expressions and the functions
allowed see is/2.

<integer_expr>
An integer or an expression which evaluates to an integer.

For example, the following are all integer expressions:

1 1 + 2 10 // 1

<functor>
An atom that denotes the functor of a predicate. This atom cannot be the empty list [].

For example given the following predicate:

foo(a,b).

The functor of this predicate is foo. and the predicate specification is foo/2.

<arity>
An integer that denotes the number of arguments to a predicate. In the current system this integer is in
the range [0..64].

For example given the following predicate:

foo(a,b,c).

The arity of this predicate is 3. and the predicate specification is foo/3.

<pred_spec>
A predicate specification is of the form:

Functor/Arity

where Functor is an atom that is the functor of the predicate and Arity is an integer that specifies the arity,
or number of arguments of the predicate.

For example given the following predicate:

foo(X) :-
write(hello).

its predicate specification would be:

foo/1

denoting a predicate with one argument and whose functor is foo.

<pred_specs>
A list of predicate specifications of the form functor/arity.

For example:

[foo/1,foo/2,bar/4]

This denotes three distinct predicates.

<file_spec>
A file specification may be either an atom or a compound term.

If the specification is an atom it refers to the file name and may or may not include a path and extension.

If the specification is a compound term, then it should be of the form:

PathAlias(FileName).

Where PathAlias refers to a "logical" path alias set up using the file_search_path/2 database and
FileName is an atom that denotes a file that may or may not include a path and extension. The resultant
file is found by taking the FileName relative to the directory given by the PathAlias.

For example the following file specification refers to the file FOO.PL in the Prolog EXAMPLES directory:

examples('FOO.PL')

<file_name>
A file name is an atom that refers to a particular file by name and may or may not include a path and
extension.

For example, the following atom refers to the file FOO.PL located in the absolute directory C:\MYFOO:

'C:\MYFOO\FOO.PL'

The following atom refers to the file FOO.PL located in the current directory:

'FOO.PL'

The following atom may refer to the file FOO without an extension, but a default extension may be given
to the file by the predicate that is using the file specification:

'FOO'

<path_alias>
A path alias is an atom that refers to a "logical" path name set up using the file_search_path/2 database.
It is used as the functor of a file specification to specify the location of a file.

For example if the following file_search_path/2 clause has been asserted:

file_search_path(myfiles,'C:\MYFILES')

then the following file specification refers to the file FOO.PL in the C:\MYFILES directory:

myfiles('FOO.PL').

<file_specs>
A list of file specifications.

For example the following list of file specifications refers to three different files:

['C:\PROLOG\FOO.PL',bar,myfiles('FRED.PL')]

<list_of Type>
A list consisting of terms of the given type.

For example, the following list of atoms is of the type <list_of <atom> >:

[a,b,c,d,e]

<conjunct_of Type>
A conjunction of terms of the given type.

For example the following conjunction of strings is of the type <conjunct_of <string> >

(`a`,`b`)

<goal>
A goal is a compound term or an atom that represents a call to a Prolog program.

For example, a goal term is:

write(hello)

If a variable is instantiated to a goal and occurs as a call it is known as a meta-variable, as in the following
program:

foo(Goal) :-
Goal.

The following instantiates the Goal in the above example to the goal term write(hello), which is then
executed:

?- foo(write(hello)).
hello

<window_handle>
There are four types of window handle. These are:

An atom that refers to a named top-level window created by Prolog.

A conjunction of an atom, that refers to a named top-level window created by Prolog, and an integer that
refers to the ID of a control item within the window.

An integer that refers to the handle of any window (not just those created by Prolog). Handles are
assigned by Windows itself and may be found using wfind/3, wlink/3 and wndhdl/2.

A conjunction of an integer, that refers to the handle of any window, and another integer that refers to the
ID of a child of the window.

,/2
conjunction

Call1 , Call2

+Call1 <goal>

+Call2 <goal>

Succeeds if both Call1 and Call2 succeed.

A call meta-variable can be bound to a conjunction of goals.

See Also
;/2

!/0
control backtracking

The predicate !/0 always succeeds, but it has two side effects which are used to control backtracking.

See Also
one/1

->/2
if then control predicate

If >/2 Then

+If <goal>

+Then <goal>

The predicate >/2 acts as a local cut. It prevents backtracking into If. Note that commas bind more
strongly than the '>' operator because the operator precedence of comma is 1000 while the operator
precedence of > is 1050.

See Also
;/2

;/2
disjunction

Either ; Or

+Either <goal>

+Or <goal>

Succeeds if Either succeeds or Or succeeds. A call meta-variable can also be bound to a disjunction of
goals.

See Also
,/2
->/2

</2
check that one expression is less than another

E1 < E2

+E1 <expr>

+E2 <expr>

Succeeds if the result of the arithmetic expression E1 is less than the value of the arithmetic expression
E2.

See Also
=</2
>/2
>=/2
=\= /2
=:=
is/2

<~/2
re-direct input to a file or a string

Call <~ In

?In <file_spec> or <string>

+Call <goal>

If In is a file specification, all input performed by the Call is re-directed from that file. If the Call is re-
satisfiable, then on backtracking into the Call any further input is also re-directed from that file. Note: the
file is not closed automatically.

If In is a string, all input performed by the Call is re-directed from that string. Note: in this form <~/2 is not
re-satisfiable even if the Call is.

See Also
~>/2

=../2
defines the relationship between a structure/atom and a list

Term =.. List

?Term <term>

?List <list> or <variable>

List is a list whose first element is the principal functor of the Term, and whose tail is the list of arguments
of Term.

If Term is an uninstantiated variable, then List must be instantiated to a list of determinate length. A
compound term will be constructed from the list. The functor of the term will be the head of the list, while
the arguments of the term will be the tail of the list.

If Term is not a variable, then the corresponding list is constructed and unified with List.

See Also
functor/3
arg/3

=/2
unification between two terms

Term1 = Term2

?Term1 <term>

?Term2 <term>

Succeeds if terms Term1 and Term2 unify. It is defined by the clause:

X = X.

See Also
\=/2
\==/2

=:=/2
expression equality

E1 =:= E2

+E1 <expr>

+E2 <expr>

Succeeds if the arithmetic expressions E1 and E2 both evaluate to the same value. Note that because of
rounding errors, comparing two floating point numbers is not very reliable.

See Also
</2
=</2
>/2
>=/2
=\=/2
is/2

=</2
expression less than or equal

E1 =< E2

+E1 <expr>

+E2 <expr>

Succeeds if the value of the arithmetic expression E1 is less than or equal to the value of the arithmetic
expression E2.

See Also
</2
>/2
>=/2
=\=/2
=:=
is/2

==/2
check that two terms are identical

Term1 == Term2

?Term1 <term>

?Term2 <term>

Succeeds if term Term1 is identical to Term2. No variables in Term1 and Term2 are bound as a result of
the testing.

See Also
\==/2
@>/2
@>=/2
@</2
@=</2

=\=/2
expression inequality

E1 =\= E2

+E1 <expr>

+E2 <expr>

Succeeds if the arithmetic expressions E1 and E2 do not evaluate to the same value.

See Also
</2
=</2
>/2
>=/2
=:=
is/2

>/2
expression greater than

E1 > E2

+E1 <expr>

+E2 <expr>

Succeeds if the value of the arithmetic expression E1 is greater than the value of the arithmetic
expression E2.

See Also
</2
=</2
>=/2
=\=/2
=:=
is/2

>=/2
expression greater than or equal

E1 >= E2

+E1 <expr>

+E2 <expr>

Succeeds if the value of the arithmetic expression E1 is greater than or equal to the value of the
arithmetic expression E2.

See Also
</2
=</2
>/2
=\=/2
=:=
is/2

@</2
check that one term is less than another

Term1 @< Term2

?Term1 <term>

?Term2 <term>

Succeeds if Term1 is less than Term2 according to the standard ordering of terms. If the terms are of the
same type a type comparison is made.

See Also
==/2
\==/2
@>/2
@>=/2
@=</2

@=</2
check that one term is equal to or less than another

Term1 @=< Term2

?Term1 <term>

?Term2 <term>

Succeeds if Term1 is less than or identical to Term2 according to the standard ordering of terms. If the
terms are of the same type a type comparison is made.

See Also
==/2
\==/2
@>/2
@>=/2
@</2

@>/2
check that one term is greater than another

Term1 @> Term2

?Term1 <term>

?Term2 <term>

Succeeds if Term1 is greater than Term2 according to the standard ordering of terms. If the terms are of
the same type a type comparison is made.

See Also
==/2
\==/2
@>=/2
@</2
@=</2

@>=/2
check that one term is greater than or equal to another

Term1 @>= Term2

?Term1 <term>

?Term2 <term>

Succeeds if Term1 is greater than or identical to Term2 according to the standard ordering of terms. If the
terms are of the same type a type comparison is made.

See Also
==/2
\==/2
@>/2
@</2
@=</2

\+/1
negation

\+ Call

+Call <goal>

Negation as failure. This succeeds if Call fails. It is declared as a prefix operator.

Call can be a conjunction, or any other control term.

See Also
!/0
,/2
->/2
;/2
abort/0
break/0
break_hook/1
fail/0
false/0
halt/0
halt/1
not/1
otherwise/0
repeat/0
repeat/1
true/0

\=/2
check for non-unification between two terms

Term1 \= Term2

?Term1 <term>

?Term2 <term>

The term Term1 does not unify with the term Term2. It is defined as:

X \= Y :-
\+ X = Y.

See Also
=/2
==/2
\==/2
@>=/2
@>/2
@</2
@=</2

\==/2
check that two terms are not identical

Term1 \== Term2

?Term1 <term>

?Term2 <term>

Succeeds if Term1 is not identical to Term2.

See Also
==/2
\=/2
@>=/2
@>/2
@</2
@=</2

^/2
existential quantifier

X ^ P

?X <term>

+P <goal>

X ^ P can be read as "there exists an X such that P is true". The existential quantifier ^ is only of use
when calling goals within setof /3 and bagof /3 where it has the effect of reducing the partitioning of sets
due to free variables.

See Also
setof/3
bagof/3

~>/2
re-direct output to a file or a string

Call ~> Out

+Call <goal>

?Out <file_spec> or <variable>

If Out is a file specification, all output performed by the Call is re-directed to that file. If the Call is re-
satisfiable, then on backtracking into the Call any further output is also redirected to that file. Note: that
the file is not closed automatically.

If Out is a variable, all output performed by the Call is re-directed into a string, which is then unified with
the variable Out. Note: in this mode, ~>/2 is not re-satisfiable even if the Call is.

~>/2 is defined as a non-associative infix operator.

See Also
<~/2

abolish/1
delete all the predicates specified by the given argument

abolish(Rels)

+Rels <pred_specs>

Abolishes all of the predicates specified by Rels.

Rels must be one of the following:

A predicate specification of the form Name/Arity, where Name is the name of a dynamic predicate and
Arity is an integer. All clauses defining Name with Arity arguments will be deleted.

A list of predicate specifications, where each specification is in the form shown above. Each predicate on
this list will be abolished in turn.

Please note: Modifying dynamic code while it is running can lead to unpredictable behaviour.

See Also
abolish/2
abolish_files/1
assert/1
assert/2
asserta/1
assertz/1
clause/2
clauses/2
clause/3
dynamic/1
functor/3
listing/0
listing/1
retract/1
retractall/1
retract/2
volatile/1

abolish/2
delete all clauses for the given predicate and arity

abolish(Functor, Arity)

+Functor <functor>

+Arity <arity>

Deletes all clauses for a given predicate. The Functor argument must be an atom that is the functor of the
predicate to be deleted. The Arity argument must be a non-negative integer that is the number of
arguments of the predicate to be deleted.

Please note: Modifying dynamic code while it is running can lead to unpredictable behaviour.

See Also
abolish/1
abolish_files/1
assert/1
asserta/1
assert/2
assertz/1
clause/2
clauses/2
clause/3
dynamic/1
functor/3
listing/0
listing/1
retract/1
retractall/1
retract/2
volatile/1

abolish_files/1
abolish all predicates associated with the given file

abolish_files(FileSpec)

+FileSpec <file_specs>

This abolish_files/1 predicate will abolish all the predicates associated with the given file FileSpec.
FileSpec can be a file specification of the form: PathAlias(File) where PathAlias is an alias that refers to a
specified path and File is a file name relative to that path. FileSpec can also be an atom of the form:
Path/File where Path defines the path where the file File will be found.

See Also
compile/1
consult/1
ensure_loaded/1
initialization/1
load_files/1
load_files/2
multifile/1
prolog_load_context/2
reconsult/1
save_predicates/2
source_file/1
source_file/2
source_file/3

'?ABORT?'/0
user-defined Prolog program which is called following a program abort

User-defined program that is called after the Prolog system has aborted. The abort hook is called every
time a call to the predicate abort/0 is made. Note that abort/0 is called by the default error hook. To allow
the default post-processing of abort conditions you should call abort_hook/0.

See Also
abort_hook/0

abort/0
abort the current program

Abandons the program that is currently being executed and returns to the top level of Prolog. This
predicate is normally only used when an error condition has occurred and there is no way of recovering.

After the program abort the predicate abort/0 passes control to the user-defined '?ABORT?'/0 hook, if a
definition is present, otherwise control goes to the abort_hook/0 predicate.

See Also
!/0
,/2
->/2
;/2
\+/1
fail/0
false/0
halt/0
halt/1
not/1
otherwise/0
repeat/0
repeat/1
true/0
break/0
break_hook/1

abort_hook/0
built-in abort hook

Invoke the system defined abort hook. The predicate abort_hook/0 prints the 'Aborted' message to the
console and returns to the Prolog supervisor loop, this may be used in conjunction with user-defined '?
ABORT?'/0 programs.

See Also
!/0
,/2
->/2
;/2
\+/1
abort/0
fail/0
false/0
halt/0
halt/1
not/1
otherwise/0
repeat/0
repeat/1
true/0
break/0
break_hook/1

absolute_file_name/2
converts from a relative to an absolute file specification

absolute_file_name(RelFileSpec, AbsFileName)

+RelFileSpec <file_spec>

-AbsFileName <variable>

RelFileSpec is a given relative file path and file name. AbsFileName will be bound to the given file's
absolute file path and file name.

If an extension is given in RelFileSpec, absolute_file_name/2 returns the absolute file name of
RelFileSpec with that extension.

If no extension is given in RelFileSpec, absolute_file_name/2 finds AbsFileName by first making a search
for a file with a '.PL' extension, if that file exists then absolute_file_name/2 returns the absolute file name
of RelFileSpec with a '.PL' extension, otherwise the absolute file name of RelFileSpec without an
extension is returned.

See Also
absolute_file_name/3
cat/3
close/1
fclose/1
fdict/1
file_search_path/2
fname/4
fopen/3
library_directory/1
mkdir/1
open/2
attrib/2
chdir/1
del/1
dir/3
drive/1
env/2
fcreate/3
ren/2
rmdir/1
stamp/1

absolute_file_name/3
convert between a relative and an absolute file specification using options

absolute_file_name(RelFileSpec, Options, AbsFileName)

+RelFileSpec <file_spec>.

+Options <list_of <compound_term> >

-AbsFileName <variable>.

Find an absolute path name using the given relative file specification and options. The RelFileSpec
argument is a relative file path including a file name. The Options argument is a list of zero or more of the
following tuples: ignore_underscores(Bool) , extensions(Ext) , file_type(Type) , access(Mode) . The
AbsFileName argument will be bound to the absolute file path and file name of the given files.

The predicate absolute_file_name/3 works as a four phase process, in which each phase gets a possible
solution from the preceding phase, and constructs one or more alternate solutions to be tested by the
succeeding phases. The phases are:

1. Syntactic rewriting

2. Underscore deletion

3. Extension expansion

4. Access checking

Each of the first three phases modifies the possible solution passed to it and produces alternatives that
will be fed into the succeeding phases. The functionality of all phases but the 'Syntactic rewriting' phase
are decided with the option list. The 'Access checking' phase checks if the generated file exists, and if not
asks for a new alternative from the preceding phases. If the file exists, but doesn't obey the access mode
option, a permission exception is raised. If the file obeys the access mode option, then
absolute_file_name/3 commits to that solution, unifies AbsFileName with the file name, and succeeds
determinately.

Note that the relative file name argument RelFileSpec may also be of the form PathAlias(FileSpec), in
which case the absolute file name of the file FileSpec in one of the directories designated by PathAlias is
returned.

See Also
absolute_file_name/2
cat/3
close/1
fclose/1
fdict/1
file_search_path/2
fname/4
fopen/3
library_directory/1
mkdir/1
open/2
attrib/2
chdir/1
del/1
dir/3
drive/1
env/2
fcreate/3

ren/2
rmdir/1
stamp/1

absolute_file_name/3 - Syntactic Rewriting Phase
this phase translates the relative file specification given by RelFileSpec into the corresponding absolute
file name.

If RelFileSpec is a term with one argument, it is interpreted as: <path_alias>(<file_spec>) and outfile
becomes the file as given by file_search_path/2. If file_search_path/2 has more than one solution, outfile
is unified with the solutions in the order they are generated. If the succeeding phase fails, and there are
no more solutions, an existence exception is raised.

If RelFileSpec = '', outfile is unified with the current working directory. If absolute_file_name/3 is called
from a goal in a file being loaded, the directory containing that file is considered current working directory.
If the succeeding phase fails, an existence exception is raised.

If RelFileSpec is an atom, other than '', it's divided into components. A component is defined to be those
characters:

1. Between the beginning of the file name and the end of the file name if there are no '\'s in the file name.

2. Between the beginning of the file name and the first '\'.

3. Between any two successive '\'-groups (where a '\'-group is defined to be a sequence of one or more
'\'s with no non-'\' character interspersed.)

4. Between the last '\' and the end of the file name.

To give the absolute file name, the following rules are applied to each component of RelFileSpec:

1. RelFileSpec is prefixed with the current working directory. If absolute_file_name/3 is called from a goal
in a file being loaded, the directory containing that file is considered the current working directory.

2. The component '.' is deleted.

3. The component '..' is deleted together with the directory name syntactically preceding it. For example,
'a/b/../c' is rewritten as 'a/c'.

4. Two or more consecutive '/'s are replaced with one '/'.

When these rules have been applied, the absolute file name is unified with outfile. If the succeeding
phase fails, an existence exception is raised.

absolute_file_name/3 - Underscore deletion phase
If the option list includes the ignore_underscores(true) option this phase constructs two names: first the
file name that is derived directly from the output of the previous phase, and then the file name obtained by
first deleting all the underscores from the output of the previous phase.

absolute_file_name/3 - Extension expansion phase
This phase is dependent on whether the RelFileSpec contains an extension or not and the extensions
and file_type options.

absolute_file_name/3 - Access checking phase
This is dependent on the setting of the access option.

absolute_file_name/3 Option - ignore_underscores(Bool)
Where Bool is one of the following:

true When constructing an absolute file name that matches the given access modes, two
names are tried: First the absolute file name derived directly from RelFileSpec, and then
the file name obtained by first deleting all underscores from RelFileSpec.

false (default) Suppresses any deletion of underscores.

absolute_file_name/3 Option - extensions(Ext)
Has no effect if RelFileSpec contains a file extension. Ext is an atom or a list of atoms, each atom
representing an extension that should be tried when constructing the absolute file name. The extensions
are tried in the order they appear in the list. Default value is Ext = [''], i.e. only the given RelFileSpec is
tried, no extension is added. To specify extensions('') or extensions([]) is equivalent to not giving any
extensions option at all.

absolute_file_name/3 Option - file_type(Type)
Has no effect if RelFileSpec contains a file extension. Picks an appropriate extension for the operating
system currently running, which means that programs using this option instead of extensions(Ext) will be
more portable on most systems. Type must be one of the following atoms:

text implies extensions(['']). RelFileSpec is a file without any extension. (Default)

Prolog implies extensions(['','pl']). RelFileSpec is a Prolog source file, maybe with a .pl
extension.

qof implies extensions(['','pc']). RelFileSpec is a Prolog object code file, maybe with a .qof
extension.

absolute_file_name/3 Option - access(Mode)
Mode must be one of the following atoms:

read AbsFileName must have read access.

write If AbsFileName exists, it must have write access. If it doesn't exist, it must be possible
to create.

append If AbsFileName exists, it must have write access. If it doesn't exist, it must be possible
to create.

exist The file represented by AbsFileName must exist.

none (default) If an extensions option is specified, this is used in a search for an actual file. If
a file with extension exists, the absolute file name of that file (including extension) is
returned, otherwise the absolute file name of the RelFileSpec without any extension
(unless RelFileSpec itself has an extension specified), is returned. If no extensions
option is present, the file system is not accessed. The first absolute file name that is
derived from RelFileSpec is returned. Note that if this option is specified, no existence
exceptions can be raised.

abtbox/3
display the about box

abtbox(Title, Message, Font)

+Title <string>

+Message <atom> or <string>

+Font <atom> or <integer> in the domain {0,1}

Displays the "about" dialog box with the given title (window caption) and message, using the given font.

The predicate succeeds if the 'OK' button is clicked or the <return> key is pressed, or fails if the dialog is
closed with 'Close' system menu option or the <escape> key is pressed.

See Also
chgbox/3
change_hook/3
dirbox/4
erase_status_box/0
find_hook/3
fndbox/2
message_box/3
msgbox/4
status_box/1

sttbox/2

ansoem/2
convert between ansi and oem strings

ansoem(Ansi,Oem)

?Ansi <string>, <atom> or <variable>

?Oem <string>, <atom> or <variable>

Convert the Ansi string to Oem format, or vice versa. The input may be a string or atom; the type of the
output depends upon the type of the input. Note that because the ANSI and OEM character sets are not
congruent, the conversion is not necessarily reversible. For this reason, the case where both strings are
given is not supported.

Normally the only font in Windows which uses the OEM character set is the IBM PC font (font number 0 -
see wfont/2) other Windows fonts generally use the ANSI character set.

See Also
fonts/1
wfclose/1
wfcreate/4
wfdata/5
wfdict/1
wfont/2
wfsize/4

append/3
join or split lists

append(First, Second, Whole)

?First <list> or <variable>

?Second <list> or <variable>

?Whole <list> or <variable>

If First and Second are instantiated, the Second list is appended to the end of the First list to give the
Whole list

?- append([a,b,c,d], [1,2,3,4], Whole).
Whole = [a,b,c,d,1,2,3,4].

If Whole is instantiated, the Whole list is split at an arbitrary place to form two new sub-lists First and
Second. Alternative solutions will be provided on backtracking.

?- append(First, Second, [a,b,c,d,1,2,3,4]).
First = []
Second = [a,b,c,d,1,2,3,4];

First = [a]
Second = [b,c,d,1,2,3,4].

If First and Whole are instantiated and the Whole list starts with the First list, then the remainder of the
Whole list is returned as Second.

?- append([a,b,c,d], Second, [a,b,c,d,1,2,3,4]).
Second = [1,2,3,4].

If Second and Whole are instantiated and the Whole list ends with the Second list then the beginning of
the Whole list is returned as First.

?- append(First, [1,2,3,4], [a,b,c,d,1,2,3,4]).
First = [a,b,c,d].

If First, Second and Whole are instantiated, then test that the Whole list begins with the First list and that
the remainder of the Whole list is the Second list.

?- append([a,b,c,d], [1,2,3,4], [a,b,c,d,1,2,3,4]).
yes.

See Also
length/2
mem/3
member/2
member/3
remove/3
removeall/3
reverse/2

arg/3
find the nth argument of a term

arg(N, Term, Arg)

+N <integer>    0

+Term <term>

-Arg <variable>

Unifies Arg with the Nth argument of Term. N must be a positive integer, and Term must be a compound
term (or a list). The arguments are numbered 1 upwards. Lists are considered compound terms of arity 2.

See Also
=../2
call/1
call/2
functor/3
mem/3
one/1

assert/1
add a clause at the end of the clauses associated with its predicate name

assert(Clause)

+Clause <clause>

Adds Clause to the database at the end of the sequence of clauses defining its predicate name. Clause
must be a "fact" or a "rule". Facts should be given in the form:

atom
atom(arg1, _, argk) k > 1

where atom is a Prolog atom.

Rules should be given in the form:

(Head :- C1, C2, _, Cn) n > 1

where Head, C1,C2,, _, and Cn are atoms or compound structures.

Note: the rule must be enclosed in parentheses because the operator precedence of :-/2 is greater than
1000.

Any unbound variable found in Clause will be treated as a variable in the asserted clause. You cannot
assert a clause defining a predicate if that predicate is already defined to be static.

See Also
abolish/1
abolish/2
abolish_files/1
assert/2
asserta/1
assertz/1
clause/2
clauses/2
clause/3
dynamic/1
functor/3
listing/0
listing/1
retract/1
retractall/1
retract/2
volatile/1

assert/2
assert the clause at the given position

assert(Clause, Position)

+Clause <clause>

+Position <integer>    0

Asserts the Clause at the specific Position within the clauses for that predicate (given as the principal
functor in the Clause head). If the Position is 0 then it is added at the end (assertz/1). If the Position is 1
then it is added at the beginning (asserta/1). If the Position is greater than the current number of clauses
for that predicate then it is added at the end (assertz/1). Otherwise, the clause is inserted at the given
Position relative to the beginning.

See Also
abolish/1
abolish/2
abolish_files/1
assert/1
asserta/1
assertz/1
clause/2
clauses/2
clause/3
dynamic/1
functor/3
listing/0
listing/1
retract/1
retractall/1
retract/2
volatile/1

asserta/1
add a clause at the beginning of the clauses associated with its predicate name

asserta(Clause)

+Clause <clause>

As assert/1 except that Clause is added at the beginning of the sequence of clauses that define its
predicate name.

See Also
abolish/1
abolish/2
abolish_files/1
assert/2
assert/1
assertz/1
clause/2
clauses/2
clause/3
dynamic/1
functor/3
listing/0
listing/1
retract/1
retractall/1
retract/2
volatile/1

assertz/1
add a clause at the end of the clauses associated with its predicate name

assertz(Clause)

+Clause <clause>

Adds Clause to the database at the end of the sequence of clauses defining its predicate name. This
predicate is exactly the same as assert/1.

See Also
abolish/1
abolish/2
abolish_files/1
assert/2
assert/1
asserta/1
clause/2
clauses/2
clause/3
dynamic/1
functor/3
listing/0
listing/1
retract/1
retractall/1
retract/2
volatile/1

at_end_of_file/0
test to see if the input file pointer is at end of file

The predicate at_end_of_file/0 checks if end of file has been reached for the current input stream. An
input stream reaches end of file when all characters except the end of file marker have been read. It
remains at end of file after the end of file marker has been read.

See Also
at_end_of_line/0
find/1
inpos/1
outpos/1
skip/1
skip_layout/0
skip_line/0
skip_term/0
stream_position/2
stream_position/3
flush/0

at_end_of_line/0
test whether end of line has been reached for the current input stream.

at_end_of_line/0 succeeds when the end of line marker is reached for the current input stream. An input
stream reaches end of line when all the characters except the line border of the current line have been
read. at_end_of_line/0 is also true whenever at_end_of_file/0 is true.

Coding with at_end_of_line/0 to check for end of line is more portable among different operating systems
than checking end of line by the input character code.

See Also
at_end_of_file/0
find/1
inpos/1
outpos/1
skip/1
skip_layout/0
skip_line/0
skip_term/0
stream_position/2
stream_position/3
flush/0

atom/1
test for an atom

atom(Term)

?Term <term>

Succeeds if, and only if, Term is instantiated to a Prolog atom (including the special atom []).

See Also
atomic/1
callable/1
char/1
chars/1
compound/1
float/1
ground/1
integer/1
integer_bound/3
nonvar/1
number/1
simple/1
string/1
type/2
unifiable/2
var/1

atom_chars/2
converts between an atom and a list of characters

atom_chars(Atom, CharList)

?Atom <variable> or <atom>

?CharList <char_list> or <variable>

Initially either CharList must be instantiated to a list of ASCII character codes (containing no variables) or
Atom must be instantiated to an atom.

If Atom is initially instantiated to an atom, CharList will be unified with the list of ASCII character codes
that represent its printed representation. If CharList is initially instantiated to a list of ASCII character
codes then Atom will be unified with an atom containing those characters.

See Also
atom_string/2
string_chars/2
name/2
number_atom/2
number_chars/2
number_string/2

atom_string/2
convert between an atom and a string

atom_string(Atom, String)

?Atom <atom> or <variable>

?String <string> or <variable>

Convert between "atom" and "string" data-types. Initially either Atom must be instantiated to an atom or
String must be instantiated to a string. If Atom is initially instantiated, String will be unified with the string
type equivalent of that atom. If String is initially instantiated then Atom will be unified with an atomic
equivalent of that string.

See Also
atom_chars/2
string_chars/2
name/2
number_atom/2
number_chars/2
number_string/2

atomic/1
test for an atom, string or number

atomic(Term)

?Term <term>

Test for atomic data, in the sense that the data cannot be broken into sub-structures. Succeeds if the
Term argument is currently instantiated to an atom, string, or a number. Fails for any other type of term (a
compound term or a list).

See Also
atom/1
callable/1
char/1
chars/1
compound/1
float/1
ground/1
integer/1
integer_bound/3
nonvar/1
number/1
simple/1
string/1
type/2
unifiable/2
var/1

attrib/2
set or get file attributes

attrib(Filename, Attrib)

+Filename <atom>

?Attrib <integer> or <variable>

Set or get the read and hide attributes for the file specified by the Filename argument. If the Attrib
argument contains an attribute value then the file attributes will be set accordingly. If Attrib is a variable it
will be bound to the currently set file attribute values.

These attributes may be set or checked for ordinary files and directories, but not for system files or the
volume label. Setting any of these attributes clears the archive bit.

See Also
absolute_file_name/2
absolute_file_name/3
cat/3
close/1
fclose/1
fdict/1
file_search_path/2
fname/4
fopen/3
library_directory/1
mkdir/1
open/2
attrib/2
chdir/1
del/1
dir/3
drive/1
env/2
fcreate/3
ren/2
rmdir/1
stamp/1

bagof/3
find all the instances of a term for which a Prolog goal is true

bagof(Term, Call, List)

?Term <term>

+Call <goal>

?List <variable> or <list>

Succeeds if List is a non-empty list of instances of Term such that Call is provable. Term may be any type
of Prolog term, Call must be a call of the form:

V1^V2^…^Vn^Goal (n _ 0)

where V1,V2,…,Vn are variables in the call to solve Goal. They are the existentially quantified variables of
Goal.

The solution list with which List is unified will not be sorted and may contain duplicate entries. The
predicate bagof/3 is similar to setof/3 and differs only in that the solution list is not sorted and may contain
duplicate entries.

See Also
^/2
findall/3
forall/2
setof/3
solution/2

beep/2
sound a beep of the given duration and frequency

beep(Frequency, Duration)

+Frequency <integer> in the range [0,20..20000]

+Duration <integer>

Sounds a beep on the internal speaker of the computer with the given Frequency and Duration.

Frequency must be 0 or an integer in the range 20 to 20000. It specifies the frequency of the beep in
Hertz. A frequency of 0 gives a silent pause for the specified duration. A frequency of 261Hz corresponds
to middle C on a piano.

Duration must be 0 or an integer. If Duration is an integer it specifies the number of milliseconds the beep
will last. A duration of 0 sounds the beeper for an indefinite period until another call to beep is made with a
frequency of 0. Any beep can be interrupted by hitting any key.

'?BREAK?'/1
user-defined Prolog program which intercepts break messages

'?BREAK?'(Goal)

+Goal <goal>

User-defined program to intercept Prolog break messages. The Goal argument is the goal that was
broken into. The one error which is not handled by the error hook, is error 11, this is generated whenever
the <ctrl-break> key is hit. This key is used to break into a Prolog program. To allow the default
processing of break messages you should call break_hook/1.

See Also
break_hook/1

break/0
suspend the current execution

break/0 causes the current execution to be interrupted and displays the message

[Break level 1]
?-

The system is then ready to accept input as though it were at the top level. If another call to break/0 is
encountered it moves up to level 2, and so on. The break level is displayed on a separate line before
each top-level prompt.

[1]
?-

To close a break level and resume the execution which was suspended, type the end of file character
(<esc>). break/0 then succeeds, and execution of the interrupted program is resumed. Alternatively, the
suspended execution can be terminated by calling abort /0 .

See Also
!/0
,/2
->/2
;/2
\+/1
abort/0
fail/0
false/0
halt/0
halt/1
not/1
otherwise/0
repeat/0
repeat/1
true/0
break_hook/1

break_hook/1
built-in break hook

break_hook(Goal)

?Goal <term>

Invoke the system defined program break hook with the given Goal. The predicate break_hook/1 displays
a dialog showing that a program break has been requested and then asks if you want to continue with the
given Goal. If you choose to continue the Goal will be run. If you choose not to continue the Goal will not
be run and you will be returned to the Prolog supervisor. This predicate is mainly provided to allow
programmatic access to the default system break handler in user-defined '?BREAK?'/1 programs.

See Also
!/0
,/2
->/2
;/2
\+/1
abort/0
fail/0
false/0
halt/0
halt/1
not/1
otherwise/0
repeat/0
repeat/1
true/0
break/0

'C'/3
used in the expansion of grammar rules

'C'(S1, Terminal, S2)

?S1 <list> or <variable>

?Terminal <term>

?S2 <list> or <variable>

The 'C'/3 predicate is not of direct use to the user. It is used by Prolog when expanding grammar rules
that contain terminal symbols. For more details see the section on the Prolog representation of grammar
rules.

The definition of this predicate is:

'C'([Terminal|Rest], Terminal, Rest).

See Also
expand_term/2
phrase/2
phrase/3

call/1
call a Prolog goal.

call(Call)

+Call <goal>

Calls the goal Call. Succeeds if Call succeeds, and fails otherwise. If Call is bound to !, or a call that
contains a !, the cut will only cut out alternatives in Call. For example in the following program:

test :-
call(!).

test.

the call to ! will not cut out backtracking to the second clause for test: it will be local to the call itself.

Compare this behaviour with the following use of a call meta-variable:

test :-
X = !,
X.

test.

In this example, the meta call in the first clause will cut out the second clause for test.

See Also
=../2
arg/3
call/2
functor/3
one/1

call/2
call a Prolog goal and return the termination port

call(Call, Port)

+Call <goal>

-Port <variable>

call/2 always succeeds and returns the port at which the call terminates. Port will be bound to one of the
following:

exit A solution, with a possibility of more.

done A solution, with no more solutions.

fail No solutions.

See Also
=../2
arg/3
call/1
functor/3
one/1

call_dialog/2
call a modal dialog and get or check the result

call_dialog(Window, Result)

+Window <window_handle>

?Result <term>

Shows the given dialog Window, disables all windows created by Prolog (apart from the dialog Window
and its children) and runs the dialog. The predicate call_dialog/2 succeeds when the window's handler
returns a result that matches with the given Result or fails when the window's handler returns a result that
does not match with the given Result. Window should be the name of a previously created dialog window.

See Also
window_handler/2
window_handler/4
show_dialog/1
wdcreate/7

callable/1
test to see if a term is an atom or a compound.

callable(Term)

+Term <term>

callable/1 succeeds if Term is currently instantiated to a term that call/1 would take as an argument and
not give a type error (an atom or a compound term); otherwise it fails.

See Also
atom/1
atomic/1
char/1
chars/1
compound/1
float/1
ground/1
integer/1
integer_bound/3
nonvar/1
number/1
simple/1
string/1
type/2
unifiable/2
var/1

cat/3
atom and string concatenation

cat(Parts, Whole, Joins)

?Parts <list> or <variable>

?Whole <string> or <atom> or <variable>

?Joins <list> or <variable>

This predicate can be used to join an arbitrary number of strings or atoms together, or to split one into an
arbitrary number of parts.

To join strings or atoms: Parts must be bound to a list of atoms or a list of strings; Whole should be a
variable that will return the resulting string or atom, and Joins should be a variable that will contain a list
describing where the joins were made.

To split a string or atom: Whole should be bound to the string or atom to be split; Joins should be bound
to a list describing where the splits should be made, and Parts should be a variable that will become the
list of strings or atoms obtained by splitting the input at the specified points.

See Also
<~/2
~>/2
cat/3
elex/1

catch/2
catch the error code generated by the given goal

catch(Error, Goal)

-Error <variable>

+Goal <goal>

Catch the Error number generated by running the given Goal. If the Goal succeeds an Error number of 0
is returned. If the Goal fails an Error number of -1 is returned. If the Goal generates an error, Error is
bound to the number of the error. This predicate can work in conjunction with throw/2, which is used to
declare that a given goal has generated a given numbered error.

If an error is generated in a goal and there is no call to catch/2 remaining on the call stack, the goal that
generated the error and the error number is passed to the user-defined '?ERROR?'/2, if it exists, or
otherwise to the default sytem error_hook/2.

Warning: catch/2 always succeeds on first call, whether the given Goal succeeds, fails or generates an
error. Because of this, it has to introduce a choice point on the backtrack stack, even if Goal is
deterministic. Thus:

?- catch(Code,true).

will return Code = 0, but leave a choice point on the stack. If you request a reevaluation, it will return
Code = -1. Any subsequent reevaluation would cause catch/2 to fail. When inserting catch/2 into
programs, you should bear these additional choice points in mind. You can add a call to cut (!/0) to the
Goal you catch if you want the call to be deterministic, eg:

?- catch(Code,(true,!)).

will return Code = 0, but will not leave any choice points, and will not allow catch/2 to backtrack and
generate the -1 solution.

If the given Goal fails or generates an error, this removes any choice point introduced by catch/2 itself.
Thus, once a non-zero error code has been returned, it is safe to assume that there are no longer any
choice points remaining on the stack due to that particular call to catch/2.

See Also
abort/0
error_message/2
unknown_predicate_handler/2
catch/3
throw/2
error_hook/2
flush/0

catch/3
same as catch/2 but return the predicate that actually generated the error

catch(Error, Goal, ErrorPred)

-Error <variable>

+Goal <goal>

-ErrorPred <variable>

Catch the Error number generated during the running of the given Goal and return the functor and arity of
the goal that actually generated the error. If the Goal succeeds an Error number of 0 is returned and
ErrorPred remains unbound. If the Goal fails an Error number of -1 is returned and ErrorPred is bound to
the functor and arity of the last goal that failed during the evaluation of the Goal. If an error is generated
during the running of the Goal, Error is bound to the number of the error and ErrorPred is bound to the
functor and arity of the predicate that actually generated the error.

Warning: like catch/2, catch/3 always succeeds on first call, whether the given Goal succeeds, fails or
generates an error.

See Also
abort/0
error_message/2
unknown_predicate_handler/2
catch/2
throw/2
error_hook/2
flush/0

'?CHANGE?'/3
user-defined hook for handling change box messages

'?CHANGE?'(Focus, Message, Goal)

+Focus <window_handle>

+Message <integer>

+Goal <goal>

Where Focus is the window that is currently in focus, Message is the message that was generated and
Goal is the goal that was interrupted by the Message.

In response to one of the change box messages , you should make a call to chgbox/3 this time giving
three variables. The first two of these will return the text in the "from" and "to:" boxes as strings, and the
third will return an integer in the range 1 to 3 indicating the radio button choice:

Once this data has been obtained, the dialog should be reenabled by yet another call to chgbox/3, this
time with the strings/integer argument trio.

?- chgbox(`hello`,``,1).

This will display and enable the modeless find dialog box with the word 'hello' in the first "edit" field and
whatever is in its current second "edit" field, returning immediately.

You can invoke the default message handler directly by calling the predicate change_hook/3.

See Also
change_hook/3
chgbox/3

change_hook/3
system handler for the change dialog

change_hook(Win, Msg, Goal)

+Win <window_handle>

+Msg <integer>

+Goal <term>

Invoke the system behaviour for the change dialog in the given window (Win) for the given message
(Msg) then run the suspended Goal. change_hook/3 reacts to the messages sent by the change dialog
and carries out the requested behaviour.

See Also
abtbox/3
chgbox/3
dirbox/4
erase_status_box/0
find_hook/3
fndbox/2
message_box/3
msgbox/4
status_box/1
sttbox/2

char/1
test for an integer that represents a character

char(Term)

+Term <char>

Succeeds if Term is an ASCII character code (i.e. Term is an integer in the range 0 =< Term =< 255).

See Also
atom/1
atomic/1
callable/1
chars/1
compound/1
float/1
ground/1
integer/1
integer_bound/3
nonvar/1
number/1
simple/1
string/1
type/2
unifiable/2
var/1

chars/1
test for a list of integers that all correspond to characters

chars(Term)

+Term <char_list> in the range [0..255]

Succeeds if Term is a complete list of ASCII character codes (i.e. each member of the list is instantiated
to an integer, I, that is in the range 0 =< I =< 255).

See Also
atom/1
atomic/1
callable/1
char/1
compound/1
float/1
ground/1
integer/1
integer_bound/3
nonvar/1
number/1
simple/1
string/1
type/2
unifiable/2
var/1

chdir/1
choose or return a directory

chdir(Dir)

?Dir <atom> or <variable>

Finds or changes the current directory. The current directory is where Prolog (and DOS) searches for a
file when no directory is specified as part of the file name. There is a current directory associated with
each disk drive.

If Dir is an unbound variable, chdir/1 binds it to the path name of the current directory on the current drive.
If Dir is an atom, chdir/1 attempts to make Dir the current directory. If no drive is specified, the current
drive is assumed.

See Also
absolute_file_name/2
absolute_file_name/3
cat/3
close/1
fclose/1
fdict/1
file_search_path/2
fname/4
fopen/3
library_directory/1
mkdir/1
open/2
attrib/2
chdir/1
del/1
dir/3
drive/1
env/2
fcreate/3
ren/2
rmdir/1
stamp/1

chgbox/3
display the modeless change box

chgbox(From, To, Flag)

?From <string> or <variable>

?To <string> or <variable>

?Flag <integer> or <variable>

Displays or hides the modeless "change" dialog box with the given prefill from and to strings, or returns
data from the existing box. This dialog includes two "edit" fields, labeled "From:" and "To:", and three radio
buttons, with which the user can select the scope of the find or change.

The From argument is a string that denotes the contents of the From: edit field. If an empty string is
specified, the existing contents of the From: field are not altered. The To argument is a string that denotes
the contents of the To: edit field. Like the From argument, if an empty string is specified, the existing
contents of the To: field are not altered. The Flag argument is an action value that specifies an action to
be performed on the change box.

The predicate succeeds if the change box is created properly, and returns control immediately. When the
user later clicks one of the option buttons, the box is disabled and a message sent to Prolog giving details
of the user's action.

Normally when the user selects an action in the change box the default message handler will be called. If
you want to control the the behaviour of the change box yourself you will need to define a '?CHANGE?'/3
program.

See Also
abtbox/3
change_hook/3
chgbox/3
dirbox/4
erase_status_box/0
find_hook/3
fndbox/2
message_box/3
msgbox/4
status_box/1
sttbox/2
'?CHANGE?'/3

clause/2
get or check the body of a clause given its head

clause(Head, Body)

+Head <atom> or <compound_term>

?Body <conjunct_of <clause> > or <variable>

Succeeds if there is a clause in the database whose head matches Head and whose body matches Body.
The predicate of Head must be dynamic.

clause/2 searches through the database until it finds the first clause whose head matches Head. The
body of this clause will be unified with Body. If the matching clause is a fact, Body will be unified with the
single goal true.

The clause/2 predicate is non-deterministic. That is, it can be used to backtrack through all the clauses in
the database that match a given Head and Body. It will fail when there are no (more) matching clauses.

See Also
abolish/1
abolish/2
abolish_files/1
assert/2
assert/1
asserta/1
assertz/1
clauses/2
clause/3
dynamic/1
functor/3
listing/0
listing/1
retract/1
retractall/1
retract/2
volatile/1

clause/3
find the position of a clause in a dynamic predicate

clause(Head, Body, Posn)

+Head <compound_term> or <atom> representing clause head

-Body <variable>

?Posn <variable> or <integer>    0

Search the clauses of a dynamic predicate for one which unifies with Head returning the corresponding
clause Body. The search starts with the first clause and if successful returns the position of the matching
clause as Posn.

See Also
abolish/1
abolish/2
abolish_files/1
assert/1
asserta/1
assert/2
assertz/1
clause/2
clauses/2
dynamic/1
functor/3
listing/0
listing/1
retract/1
retractall/1
retract/2
volatile/1

clauses/2
return a list of candidates for a dynamic predicate that match a head

clauses(Head, Clauses)

+Head <compound_term> representing clause head

-Clauses <variable>

Returns the list of candidate Clauses for a dynamic predicate specified by Head. Candidate clauses are
those whose 1st argument could possibly unify with the 1st argument of Head.

See Also
abolish/1
abolish/2
abolish_files/1
assert/1
asserta/1
assert/2
assertz/1
clause/2
clause/3
dynamic/1
functor/3
listing/0
listing/1
retract/1
retractall/1
retract/2
volatile/1

close/1
close the named file

close(FileSpec)

+FileSpec <file_spec>

If FileSpec refers to the name of an open file, the file buffer is written to disk and the file closed.

FileSpec can be a file specification of the form: PathAlias(File) where PathAlias is an alias that refers to a
specified path and File is a file name relative to that path. FileSpec can also be an atom of the form:
Path/File where Path defines the path where the file File will be found.

The told /0 and seen /0 predicates will do an automatic close if the current output stream is a file.

See Also
absolute_file_name/2
absolute_file_name/3
cat/3
fclose/1
fdict/1
file_search_path/2
fname/4
fopen/3
library_directory/1
mkdir/1
open/2
attrib/2
chdir/1
del/1
dir/3
drive/1
env/2
fcreate/3
ren/2
rmdir/1
stamp/1

cmp/3
compare two terms

cmp(Order, First, Second)

?Order <integer> in the domain {-1,0,1} or
<variable>

+First <term>

+Second <term>

Get or check the Order of two terms First and Second. The values of Order that are returned or checked
are: -1 if First < Second, 0 if First = Second and 1 if First > Second, according to the standard ordering of
terms. When comparing the equality of the terms (i.e. Order is instantiated to 0) a check is made to see if
the variables in the terms are identical.

The order is found according to the standard ordering of terms. If the terms are of the same type a type
comparison is made.

See Also
=/2
==/2
@</2
@=</2
@>/2
@>=/2
\=/2
\==/2
compare/3
eqv/2
keysort/2
len/2
sort/2
sort/3
occurs_chk/2
subsumes_chk/2

compare/3
find the relationship between one term and another

compare(Rel, Term1, Term2)

?Rel <atom> in the domain {=,<,>} or <variable>

?Term1 <term>

?Term2 <term>

Succeeds if Rel is the relationship between Term1 and Term2.

The order is found according to the standard ordering of terms. If the terms are of the same type a type
comparison is made.

If Rel is an unbound variable, it will be bound to =, <, or > according to the relationship between Term1
and Term2.

If Rel is given, it must be one of =, <, >. compare/3 will succeed if Rel describes the relationship between
Term1 and Term2.

See Also
=/2
==/2
@</2
@=</2
@>/2
@>=/2
\=/2
\==/2
cmp/3
eqv/2
keysort/2
len/2
sort/2
sort/3
occurs_chk/2
subsumes_chk/2

compile/1
compile the specified Prolog source file(s) into object code format

compile(FileSpec)

+FileSpec <file_specs>

compile/1 loads the source file specified by FileSpec and compiles it into object code format using the
optimising compiler.

FileSpec can be a file specification of the form: PathAlias(File) where PathAlias is an alias that refers to a
specified path and File is a file name relative to that path. FileSpec can also be an atom of the form:
Path/File where Path defines the path where the file File will be found.

FileSpec may also be a list of file specifications.

If FileSpec does not specify a file extension then '.PL' is assumed.

Any commands in the source file referred to by FileSpec are executed as they are encountered. A
command is a term with functor ':-'.

See Also
abolish_files/1
consult/1
ensure_loaded/1
initialization/1
load_files/1
load_files/2
multifile/1
prolog_load_context/2
reconsult/1
save_predicates/2
source_file/1
source_file/2
source_file/3

compound/1
test for a compound term

compound(Term)

?Term <term>

Succeeds if Term is a compound term and fails otherwise.

See Also
atom/1
atomic/1
callable/1
char/1
chars/1
float/1
ground/1
integer/1
integer_bound/3
nonvar/1
number/1
simple/1
string/1
type/2
unifiable/2
var/1

consult/1
load a source code program into memory

consult(FileSpec)

+FileSpec <file_specs>

consult/1 loads the source file specified by FileSpec. FileSpec can be a file specification of the form:
PathAlias(File) where PathAlias is an alias that refers to a specified path and File is a file name relative to
that path. FileSpec can also be an atom of the form: Path/File where Path defines the path where the file
File will be found.

If FileSpec does not specify a file extension then '.PL' is assumed.

Any commands in FileSpec are executed as they are encountered. A command is a term with functor ':-'.

If FileSpec is the atom user, clauses and commands are entered from the terminal using the built-in
editor.

When using the Prolog interactive environment described in the user guide, consult(File) can also be
written as:

?- [File].

See Also
abolish_files/1
compile/1
ensure_loaded/1
initialization/1
load_files/1
load_files/2
multifile/1
prolog_load_context/2
reconsult/1
save_predicates/2
source_file/1
source_file/2
source_file/3

copy/2
copy data from the current input stream to the current output stream

copy(Wanted, Copied)

+Wanted <integer>

-Copied <variable>

Tries to copy the specified number of bytes, Wanted, from the current input stream to the current output
stream. When the process has finished the number of bytes actually copied is returned as Copied.

See Also
close/1
fclose/1
fdict/1
fname/4
fopen/3
open/2
fcreate/3

copy_term/2
copy a term with new variables

copy_term(Term, Copy)

+Term <term>

-Copy <variable>

Term is a given term and Copy is unified with a copy of Term in which all variables have been replaced
with new distinct variables.

See Also
=../2
atom_chars/2
atom_string/2
string_chars/2
name/2
number_atom/2
number_chars/2
number_string/2
numbervars/3

current_atom/1
check or get a current atom

current_atom(ToTest)

?ToTest <atom> or <variable>

current_atom/1 succeeds if and only if ToTest is an atom. If ToTest is uninstantiated, current_atom/1
backtracks through all known atoms. If the argument is not an atom or an unbound variable,
current_atom/1 fails.

See Also
current_predicate/1
current_predicate/2
current_op/3
def/3
defs/2
pdict/3
predicate_property/2

current_op/3
get the name, type and precedence of a currently defined operator

current_op(Precedence, Type, Name)

?Precedence <integer> or <variable>

?Type <atom> or <variable>

?Name <atom> or <variable>

Succeeds when the atom Name is an operator of type Type and precedence Precedence. Any of the
arguments may be uninstantiated variables. To declare operators use the op /3 predicate.

See Also
current_atom/1
current_predicate/1
current_predicate/2
def/3
defs/2
pdict/3
predicate_property/2

current_predicate/1
check or get a current predicate

current_predicate(Pred)

?Pred <pred_spec> or <variable>

Returns the name/arity of a currently defined user predicate and backtracks to find alternative solutions.

See Also
current_atom/1
current_predicate/2
current_op/3
def/3
defs/2
pdict/3
predicate_property/2

current_predicate/2
check or get a current predicate

current_predicate(Name, Term)

?Name <atom> or <variable>

?Term <term> or <variable>

Unifies Name with the name of a user defined predicate, and Term with the most general term
corresponding to that predicate.

See Also
current_atom/1
current_predicate/1
current_op/3
def/3
defs/2
pdict/3
predicate_property/2

date/3
system date

date(Day, Month, Year)

-Day <variable>

-Month <variable>

-Year <variable>

Return the system date in Day, Month and Year as integers.

See Also
date/4
ms/2
ticks/1
time/4

date/4
date to day number conversion

date(Day, Month, Year, Index)

?Day <variable> or <integer>

?Month <variable> or <integer>

?Year <variable> or <integer>

?Index <variable> or <integer>

If the Day, Month and Year are given as positive integers then Index returns the number of days since
January 1st 1600. If the Index is given as a positive integer representing the number of days since
January 1st 1600, then Day, Month and Year return the date specified.

Note: The algorithm takes into account all rules concerning leap years according to the Gregorian
calendar.

See Also
date/3
ms/2
ticks/1
time/4

dde_advise_dict/1
get or check the list of open advise loops

dde_advise_dict(Dict)

?Dict <list_of <term> > or <variable>

Returns or checks a given list of open advise loops. Dict is a list of terms of the form:

(ChannelName, AdviseLoopName)

Where ChannelName is the name of an open channel to source opened using
dde_open/3, and AdviseLoopName is the name of an advise loop associated with ChannelName opened
using dde_open_advise/4 .

See Also
dde_channel_dict/1
dde_close/1
dde_close_advise/2
dde_close_all/0
dde_close_all_topics/0
dde_close_topic/1
dde_dll_name/1
dde_enable_state/2
dde_execute/2
dde_fetch_data/1
dde_load/0
dde_open/3
dde_open_advise/4
dde_open_topic/2
dde_poke/3
dde_put_data/1
dde_request/3
dde_timeout/1
dde_topic_dict/1
dde_unload/0

dde_channel_dict/1
get or check a list of open source channels

dde_channel_dict(Dict)

?Dict <list_of <atom> > or <variable>

Each member of Dict is the logical name of an open source channel that was previously opened using
dde_open/3.

See Also
dde_advise_dict/1
dde_close/1
dde_close_advise/2
dde_close_all/0
dde_close_all_topics/0
dde_close_topic/1
dde_dll_name/1
dde_enable_state/2
dde_execute/2
dde_fetch_data/1
dde_load/0
dde_open/3
dde_open_advise/4
dde_open_topic/2
dde_poke/3
dde_put_data/1
dde_request/3
dde_timeout/1
dde_topic_dict/1
dde_unload/0

dde_close/1
close a source channel

dde_close(ChannelName)

+ChannelName <atom>

Closes an open source channel and any associated advise loops. ChannelName is the logical name
assigned by the user when the channel was opened using dde_open/3.

See Also
dde_advise_dict/1
dde_channel_dict/1
dde_close_advise/2
dde_close_all/0
dde_close_all_topics/0
dde_close_topic/1
dde_dll_name/1
dde_enable_state/2
dde_execute/2
dde_fetch_data/1
dde_load/0
dde_open/3
dde_open_advise/4
dde_open_topic/2
dde_poke/3
dde_put_data/1
dde_request/3
dde_timeout/1
dde_topic_dict/1
dde_unload/0

dde_close_advise/2
close an advise loop for a given open channel

dde_close_advise(Channel, AdviseName)

+Channel <atom>

+AdviseName <atom>

The advise loop AdviseName for the channel Channel is closed. Where Channel is the logical name
given by the user of the channel opened by dde_open/3 and AdviseName is the logical name given by
the user of an advise loop opened by dde_open_advise/4.

See Also
dde_advise_dict/1
dde_channel_dict/1
dde_close/1
dde_close_all/0
dde_close_all_topics/0
dde_close_topic/1
dde_dll_name/1
dde_enable_state/2
dde_execute/2
dde_fetch_data/1
dde_load/0
dde_open/3
dde_open_advise/4
dde_open_topic/2
dde_poke/3
dde_put_data/1
dde_request/3
dde_timeout/1
dde_topic_dict/1
dde_unload/0

dde_close_all/0
close all source channels

Closes all open source channels and associated advise loops. This does not affect any registered topics.

See Also
dde_advise_dict/1
dde_channel_dict/1
dde_close/1
dde_close_advise/2
dde_close_all_topics/0
dde_close_topic/1
dde_dll_name/1
dde_enable_state/2
dde_execute/2
dde_fetch_data/1
dde_load/0
dde_open/3
dde_open_advise/4
dde_open_topic/2
dde_poke/3
dde_put_data/1
dde_request/3
dde_timeout/1
dde_topic_dict/1
dde_unload/0

dde_close_all_topics/0
close all registered topics

Closes all registered topics. Topics are registered using the predicate dde_open_topic/2.

See Also
dde_advise_dict/1
dde_channel_dict/1
dde_close/1
dde_close_advise/2
dde_close_all/0
dde_close_topic/1
dde_dll_name/1
dde_enable_state/2
dde_execute/2
dde_fetch_data/1
dde_load/0
dde_open/3
dde_open_advise/4
dde_open_topic/2
dde_poke/3
dde_put_data/1
dde_request/3
dde_timeout/1
dde_topic_dict/1
dde_unload/0

dde_close_topic/1
close a named topic

dde_close_topic(Topic)

+Topic <atom>

Closes a registered topic. Topic is the logical name given to the topic by the user when it is registered
using dde_open_topic/2.

See Also
dde_advise_dict/1
dde_channel_dict/1
dde_close/1
dde_close_advise/2
dde_close_all/0
dde_close_all_topics/0
dde_dll_name/1
dde_enable_state/2
dde_execute/2
dde_fetch_data/1
dde_load/0
dde_open/3
dde_open_advise/4
dde_open_topic/2
dde_poke/3
dde_put_data/1
dde_request/3
dde_timeout/1
dde_topic_dict/1
dde_unload/0

dde_dll_name/1
gets or checks the absolute file name of the DDE Dynamic Link Library

dde_dll_name(File)

?File <atom>

This predicate returns the file name and location of the DDE.DLL file. Normally this is located in the
SYSTEM sub-directory of the Prolog home directory, though this location may be overrided using
dde_dll_file_name/1. The predicate dde_dll_name/1 is used by dde_load/0 to find the DDE DLL file.

See Also
dde_advise_dict/1
dde_channel_dict/1
dde_close/1
dde_close_advise/2
dde_close_all/0
dde_close_all_topics/0
dde_close_topic/1
dde_enable_state/2
dde_execute/2
dde_fetch_data/1
dde_load/0
dde_open/3
dde_open_advise/4
dde_open_topic/2
dde_poke/3
dde_put_data/1
dde_request/3
dde_timeout/1
dde_topic_dict/1
dde_unload/0

dde_dll_file_name/1
user-defined fact for setting the absolute file name of the DDE Dynamic Link Library

dde_dll_file_name(File)

?File <atom>

This hook is provided to allow the location of the DDE.DLL to be specified in stand-alone applications.
The File argument denotes the full path name of the DDE.DLL including the file name and extension. This
fact, if present, is used by dde_dll_name/1 to return the location of the DLL at runtime.

See Also
dde_advise_dict/1
dde_channel_dict/1
dde_close/1
dde_close_advise/2
dde_close_all/0
dde_close_all_topics/0
dde_close_topic/1
dde_enable_state/2
dde_execute/2
dde_fetch_data/1
dde_load/0
dde_open/3
dde_open_advise/4
dde_open_topic/2
dde_poke/3
dde_put_data/1
dde_request/3
dde_timeout/1
dde_topic_dict/1
dde_unload/0

dde_enable_state/2
Get or set the enable state of a channel

dde_enable_state(Channel, State)

+Channel <atom>

+Execute <atom> in the domain {on,off} or <variable>

If Execute is an atom in the range { on, off }, then, off will disable the channel and on, will enable it.
disabling a channel stops all transactions on that channel. It is the equivalent of an interrupt flag.

See Also
dde_advise_dict/1
dde_channel_dict/1
dde_close/1
dde_close_advise/2
dde_close_all/0
dde_close_all_topics/0
dde_close_topic/1
dde_dll_name/1
dde_execute/2
dde_fetch_data/1
dde_load/0
dde_open/3
dde_open_advise/4
dde_open_topic/2
dde_poke/3
dde_put_data/1
dde_request/3
dde_timeout/1
dde_topic_dict/1
dde_unload/0

dde_execute/2
start an execute transaction

dde_execute(Channel, Execute)

+Channel <atom>

+Execute <string> or <atom>

An execute transaction is requested for the channel Channel. The Execute variable should conform to the
source's expectations of an executable string. Channels can be opened using dde_open/3.

See Also
dde_advise_dict/1
dde_channel_dict/1
dde_close/1
dde_close_advise/2
dde_close_all/0
dde_close_all_topics/0
dde_close_topic/1
dde_dll_name/1
dde_enable_state/2
dde_fetch_data/1
dde_load/0
dde_open/3
dde_open_advise/4
dde_open_topic/2
dde_poke/3
dde_put_data/1
dde_request/3
dde_timeout/1
dde_topic_dict/1
dde_unload/0

dde_fetch_data/1
fetch data for a transaction

dde_fetch_data(Data)

-Data <variable>

The predicate dde_fetch_data/1 is used to fetch data from a channel after a DDE transaction in which
data was passed.

See Also
dde_advise_dict/1
dde_channel_dict/1
dde_close/1
dde_close_advise/2
dde_close_all/0
dde_close_all_topics/0
dde_close_topic/1
dde_dll_name/1
dde_enable_state/2
dde_execute/2
dde_load/0
dde_open/3
dde_open_advise/4
dde_open_topic/2
dde_poke/3
dde_put_data/1
dde_request/3
dde_timeout/1
dde_topic_dict/1
dde_unload/0

dde_load/0
load the DDE Dynamic Link Library

Loads the DDE Dynamic Link Library, this has to be performed before any other DDE functions can be
used correctly.

See Also
dde_advise_dict/1
dde_channel_dict/1
dde_close/1
dde_close_advise/2
dde_close_all/0
dde_close_all_topics/0
dde_close_topic/1
dde_dll_name/1
dde_enable_state/2
dde_execute/2
dde_fetch_data/1
dde_open/3
dde_open_advise/4
dde_open_topic/2
dde_poke/3
dde_put_data/1
dde_request/3
dde_timeout/1
dde_topic_dict/1
dde_unload/0

dde_open/3
open a DDE source channel

dde_open(ChannelName, Service, Topic)

+ChannelName <atom>

+Service <atom>

+Topic <atom>

Open a channel with the logical channel name (ChannelName) for the given application (or service)
Service on the Topic. If the channel is a previously opened channel, then that channel is closed before the
new channel is opened.

The service name Service is typically the name of the source application, minus the extension. Thus the
service name of FOO.EXE say could be 'FOO' or foo. If the named service is not currently running you
can run it by using exec/3.

See Also
dde_advise_dict/1
dde_channel_dict/1
dde_close/1
dde_close_advise/2
dde_close_all/0
dde_close_all_topics/0
dde_close_topic/1
dde_dll_name/1
dde_enable_state/2
dde_execute/2
dde_fetch_data/1
dde_load/0
dde_open_advise/4
dde_open_topic/2
dde_poke/3
dde_put_data/1
dde_request/3
dde_timeout/1
dde_topic_dict/1
dde_unload/0

dde_open_advise/4
open an advise loop

dde_open_advise(AdviseName, Channel, Item, Handler)

+AdviseName <atom>

+Channel <atom>

+Item <string> or <atom>

+Handler <atom>

Open an advise loop AdviseName on the open source Channel and the given Item and register the
Handler to it. An advise loop is a loop where the destination (Prolog) is notified of any changes to
specified data.by the source.

The handler is a user-defined Prolog program of the form:

Handler(Channel, Data) :- ...

where Handler is the functor of the program passed as the fourth argument of dde_open_advise/4,
Channel is the logical name of the source channel and Data will be bound to the changed data from that
advise loop on receipt of the message.

On receipt of an advise loop message the handler should first set the channel enable state to off, using
dde_enable_state/2, then process the changed data and finally reset the channel enable state back to on
again using dde_enable_state/2.

See Also
dde_advise_dict/1
dde_channel_dict/1
dde_close/1
dde_close_advise/2
dde_close_all/0
dde_close_all_topics/0
dde_close_topic/1
dde_dll_name/1
dde_enable_state/2
dde_execute/2
dde_fetch_data/1
dde_load/0
dde_open/3
dde_open_topic/2
dde_poke/3
dde_put_data/1
dde_request/3
dde_timeout/1
dde_topic_dict/1
dde_unload/0

dde_open_topic/2
open a topic

dde_open_topic(Topic, Handler)

+Topic <atom>

+Handler <atom>

Opens a DDE Topic with the specified Handler.

The handler is a Prolog program of the form:

Handler(Transaction, Item):- ...

where Handler is the functor of the program passed as the second argument of dde_open_topic/2,
Transaction is in the domain { request, poke, execute } and Item is the item for the topic on which this
transaction is requested.

See Also
dde_advise_dict/1
dde_channel_dict/1
dde_close/1
dde_close_advise/2
dde_close_all/0
dde_close_all_topics/0
dde_close_topic/1
dde_dll_name/1
dde_enable_state/2
dde_execute/2
dde_fetch_data/1
dde_load/0
dde_open/3
dde_open_advise/4
dde_poke/3
dde_put_data/1
dde_request/3
dde_timeout/1
dde_topic_dict/1
dde_unload/0

dde_poke/3
poke data to a channel

dde_poke(Channel, Item, Data)

+Channel <atom>

+Item <atom>

+Data <atom> or <string>

Poke data to a specified item within a given channel. The Channel argument is an atom that specifies a
previously opened channel. The Item argument is an atom that specifies a particular item within the
specified channel. The Data argument is an atom or a string that is passed to the channel.

See Also
dde_advise_dict/1
dde_channel_dict/1
dde_close/1
dde_close_advise/2
dde_close_all/0
dde_close_all_topics/0
dde_close_topic/1
dde_dll_name/1
dde_enable_state/2
dde_execute/2
dde_fetch_data/1
dde_load/0
dde_open/3
dde_open_advise/4
dde_open_topic/2
dde_put_data/1
dde_request/3
dde_timeout/1
dde_topic_dict/1
dde_unload/0

dde_put_data/1
put data to a channel

dde_put_data(Data)

+Data <term>

The predicate dde_put_data/1 is used to put data to a conversation in response to a request transaction.

See Also
dde_advise_dict/1
dde_channel_dict/1
dde_close/1
dde_close_advise/2
dde_close_all/0
dde_close_all_topics/0
dde_close_topic/1
dde_dll_name/1
dde_enable_state/2
dde_execute/2
dde_fetch_data/1
dde_load/0
dde_open/3
dde_open_advise/4
dde_open_topic/2
dde_poke/3
dde_request/3
dde_timeout/1
dde_topic_dict/1
dde_unload/0

dde_request/3
a DDE request transaction.

dde_request(Channel, Item, Value)

+Channel <atom>

+Item <atom>

-Value <variable>

Request a value from the given channel and item. The Value argument is returned as a string.

See Also
dde_advise_dict/1
dde_channel_dict/1
dde_close/1
dde_close_advise/2
dde_close_all/0
dde_close_all_topics/0
dde_close_topic/1
dde_dll_name/1
dde_enable_state/2
dde_execute/2
dde_fetch_data/1
dde_load/0
dde_open/3
dde_open_advise/4
dde_open_topic/2
dde_poke/3
dde_put_data/1
dde_timeout/1
dde_topic_dict/1
dde_unload/0

dde_timeout/1
get or set the DDE time out value

dde_timeout(Time)

?Time <integer> or <variable>

Gets or sets the DDE time out value, the value is in milliseconds. This is a global value affecting all
source channels, the default is 5000ms. A transaction will generate a timeout error if the source has not
responded within the given timeout period.

See Also
dde_advise_dict/1
dde_channel_dict/1
dde_close/1
dde_close_advise/2
dde_close_all/0
dde_close_all_topics/0
dde_close_topic/1
dde_dll_name/1
dde_enable_state/2
dde_execute/2
dde_fetch_data/1
dde_load/0
dde_open/3
dde_open_advise/4
dde_open_topic/2
dde_poke/3
dde_put_data/1
dde_request/3
dde_topic_dict/1
dde_unload/0

dde_topic_dict/1
get or check a list of open topics

dde_topic_dict(Dict)

?Dict <list_of <atom> >or <variable>

Get or check a list of registered topics. Topics can be registered using dde_open_topic/2.

See Also
dde_advise_dict/1
dde_channel_dict/1
dde_close/1
dde_close_advise/2
dde_close_all/0
dde_close_all_topics/0
dde_close_topic/1
dde_dll_name/1
dde_enable_state/2
dde_execute/2
dde_fetch_data/1
dde_load/0
dde_open/3
dde_open_advise/4
dde_open_topic/2
dde_poke/3
dde_put_data/1
dde_request/3
dde_timeout/1
dde_unload/0

dde_unload/0
unload the DDE Dynamic Link Library

Unloads the DDE Dynamic Link Library and closes all channels, associated advise loops and topics.

See Also
dde_advise_dict/1
dde_channel_dict/1
dde_close/1
dde_close_advise/2
dde_close_all/0
dde_close_all_topics/0
dde_close_topic/1
dde_dll_name/1
dde_enable_state/2
dde_execute/2
dde_fetch_data/1
dde_load/0
dde_open/3
dde_open_advise/4
dde_open_topic/2
dde_poke/3
dde_put_data/1
dde_request/3
dde_timeout/1
dde_topic_dict/1

'?DEBUG?'/1
user-defined Prolog program which intercepts calls to the debugger

'?DEBUG?'(Goal)

+Goal <goal>

User-defined program to intercept Prolog debugger calls. The Goal argument is the Prolog goal that was
about to be sent to the debugger. The debug hook is invoked whenever a spied predicate is called and
debugging mode is set to "debug". To allow the default processing of debugging calls you should call
debug_hook/1.

See Also
debug_hook/1

debug/0
set the debug mode to on

Sets the debug mode to be on. The debugger will be invoked at the next spied predicate that is called.

See Also
debug_hook/1
debugging/0
force/1
leash/2
leashed/2
ms/2
no_style_check/0
no_style_check/1
nodebug/0
nospy/1
nospyall/0
notrace/0
spy/1
style_check/0
style_check/1
trace/0

debug_hook/1
system handler for the debug hook

debug_hook(Goal)

+Goal <term>

Invoke the currently set system debugger with the given Goal. The predicate debug_hook/1 is mainly
provided to allow programmatic access to the system debugger in user-defined '?DEBUG?'/1 programs.

See Also
debug/0
debugging/0
force/1
leash/2
leashed/2
ms/2
no_style_check/0
no_style_check/1
nodebug/0
nospy/1
nospyall/0
notrace/0
spy/1
style_check/0
style_check/1
trace/0

debugging/0
write the current status of the debugger to the standard output stream

Writes the current status of the debugger to the standard output stream

It writes the following:

The debugging mode (debug, trace or off).

The leash ports.

All of the predicates that have spy points set.

See Also
debug/0
debug_hook/1
force/1
leash/2
leashed/2
ms/2
no_style_check/0
no_style_check/1
nodebug/0
nospy/1
nospyall/0
notrace/0
spy/1
style_check/0
style_check/1
trace/0

def/3
check for a currently defined predicate and return its type

def(Functor, Arity, Type)

+Functor <functor>

+Arity <arity>

?Type <variable> or <integer> in the domain [0,1,2,3,4]

Get or check the type of a predicate. The Functor argument is an atom that is the functor of the predicate
whose type is required. The Arity argument is an integer that is the number of arguments of the predicate
whose type is required. The Type argument is either a variable or a predicate type value. Predicates are
divided by def/3 into five main categories: null-predicates, dynamic predicates, static and optimised
predicates, internal assembler code predicates and external dynamically linked assembler code
predicates.

Programs that need to differentiate between predicate types can be written using def/3 combined with
efficient first argument indexing to switch to some appropriate code.

See Also
current_atom/1
current_predicate/1
current_predicate/2
current_op/3
defs/2
pdict/3
predicate_property/2

defs/2
return all arities for a given functor

defs(Functor, Arities)

+Functor <functor>

-Arities <variable>

Return a list of defined Arities for the given Functor.

See Also
current_atom/1
current_predicate/1
current_predicate/2
current_op/3
def/3
pdict/3
predicate_property/2

del/1
delete a file

del(File)

+File <atom>

Deletes the disk file whose name is File (File must be an atom). del/1 does not add a default file extension
to File.

It is possible to delete files that are currently open for reading and writing. However, this is not
recommended as it tends to result in the disk becoming clogged with file fragments. If you do delete an
open file, then use the DOS command:

chkdsk /f

to recover the files and disk space.

See Also
absolute_file_name/2
absolute_file_name/3
cat/3
close/1
fclose/1
fdict/1
file_search_path/2
fname/4
fopen/3
library_directory/1
mkdir/1
open/2
attrib/2
chdir/1
dir/3
drive/1
env/2
fcreate/3
ren/2
rmdir/1
stamp/1

dict/1
return a dictionary of atoms

dict(Atoms)

-Atoms <variable>

Return a dictionary of all the non-hidden atoms as a list.

See Also
current_atom/1
current_predicate/1
current_predicate/2
current_op/3
def/3
defs/2
pdict/3
predicate_property/2

dir/3
get a file directory

dir(Patt, Attrib, Files)

+Patt <atom>

+Attrib <integer>

-Files <variable>

The Patt argument specifies a file name pattern to be searched for. The Attrib argument is a file type
value that filters the files that match the pattern. The Files argument is the final list of filtered files.

These file type values are additive, so if you wanted to return all the read/write files and all the directories
you could enter the following query:

?- dir(*.*, 17, Filelist).

If the value for the attributes is a positive integer then the returned list consists of entries of the form:

[filename, [day,month,year,hours,mins,secs], size, attribute]

If the value for the attributes is a negative integer then the returned list consists of filenames only.

See Also
absolute_file_name/2
absolute_file_name/3
cat/3
close/1
fclose/1
fdict/1
file_search_path/2
fname/4
fopen/3
library_directory/1
mkdir/1
open/2
attrib/2
chdir/1
del/1
drive/1
env/2
fcreate/3
ren/2
rmdir/1
stamp/1

dirbox/4
display the directory box

dirbox(Title, Message, Pattern, Pathname)

+Title <string>

+Message <atom> or <string>

+Pattern <atom>

-Pathname <variable>

Displays the "directory" dialog box with the given title (window caption) and message. This dialog includes
two list boxes, one for filenames and one for pathnames, and an "edit" field for entering a file name. The
initial contents of the "edit" field and list boxes is computed from the given file pattern.

The predicate succeeds if the OK button is clicked or RETURN is pressed and a file name is selected, or
fails if the CANCEL button is clicked or ESCAPE is pressed. If OK or RETURN occur while a file pattern
(a name containing one or more wildcard characters) is selected, the list boxes are updated with file
matching the new pattern, and the dialog continues. Upon success, it returns the full path name of the
selected file.

See Also
abtbox/3
change_hook/3
chgbox/3
erase_status_box/0
find_hook/3
fndbox/2
message_box/3
msgbox/4
status_box/1
sttbox/2

display/1
write a term to the standard output stream in standard prefix notation

display(Term)

?Term <term>

The predicate display/1 writes all compound terms in the standard prefix notation (ignoring the current
operator declarations).

Like write/1, display/1 does not output a dot after the term. If the term is to be read back in, the
terminating dot and space character must be output explicitly. Unlike write/1, any control characters in
Term are output literally.

See Also
current_op/3
elex/1
eprint/1
eprint/2
eprint/3
eread/1
eread/2
etoks/1
etoks/2
ewrite/1
ewrite/2
ewrite/3
op/3
portray_clause/1
print/1
printq/1
read/1
sysops/0
skip_term/0
vars/2
write/1
write_canonical/1
writeq/1
prompt/2

'?DLL?'/3
user-defined hook for handling DLL messages

'?DLL?'(Message,Data,Goal)

+Message <integer>

+Data <integer>

+Goal <goal>

The '?DLL?'/3 program is used to handle an interrupt generated by a DLL message. The Message
argument will be matched with the message number that was sent. The Data argument will be matched
with any data associated with the message. The Goal argument is the Prolog goal that was interrupted by
the message. To call the default behaviour for handling DLLs you should call the predicate dll_hook/3.

See Also
dll_hook/3
lcall/4
lclose/1
ldict/1
lopen/1
'?DLL?'/3
winapi/5

dll_hook/3
system defined handling for the dll hook

dll_hook(Message, Data, Goal)

+Message <integer>

+Data <integer>

+Goal <term>

Invoke the system defined behaviour for the given DLL Message, Data and then run the interrupted Goal.
The predicate dll_hook/3 displays a response to show that the given DLL Message and Data were not
handled by the system.

The predicate dll_hook/3 is mainly provided to allow programmatic access to the system debugger in
user-defined '?DLL?'/3 programs.

See Also
lcall/4
lclose/1
ldict/1
lopen/1
'?DLL?'/3
winapi/5

dos/0
initiate a DOS shell

The predicate dos/0 initiates a DOS shell from within Prolog. Once inside the shell you can perform any
DOS command, when you need to return to Prolog type EXIT on the DOS command line to exit the shell.

See Also
dos/1
exec/3
switch/2
ver/4

dos/1
initiate a DOS shell and run the given command

dos(Program)

+Program <atom>

Initiate a DOS shell and then execute a program. The Program argument must be an atom that is the
name of the program to be executed.

See Also
dos/0
exec/3
switch/2
ver/4

drive/1
choose or return a drive

drive(Drive)

?Drive <atom> or <variable>

Finds or changes the current disk drive. The current drive is where Prolog searches for a file if a drive
name is not explicitly specified.

If Drive is a variable drive/1 will bind it to the name of the current drive. This drive name will be a single
upper case character.

If Drive is a single character atom which designates one of the disk drives, the named drive will become
the current drive. Drive can be an upper or lower case character. If Drive does not exist, the current drive
is left unaltered. drive/1 will fail if Drive is not a single character.

See Also
absolute_file_name/2
absolute_file_name/3
cat/3
close/1
fclose/1
fdict/1
file_search_path/2
fname/4
fopen/3
library_directory/1
mkdir/1
open/2
attrib/2
chdir/1
del/1
dir/3
env/2
fcreate/3
ren/2
rmdir/1
stamp/1

dynamic/1
define a predicate to be dynamic

dynamic Pred

+Pred <pred_specs>

A procedure is declared dynamic by preceding its definition with a declaration of the form:

:- dynamic Pred

where Pred must be a procedure specification of the form Name/Arity, or a sequence of such
specifications, separated by commas. Any existing clauses for the predicate will be removed.

There are two types of dynamic predicate.

The first is 'normal' dynamic: when a predicate is called its actual code is utilized, with the result that it is
not safe to make modifications to this code during its execution. It is, of course, perfectly safe to modify
any code which is not being executed at the time. This type of dynamic code is faster than 'logical'
dynamic code.

The second is 'logical' dynamic: when a predicate is called, a copy is made of all the clauses matching the
goal, and this is executed as a meta-call. The code itself is not executed, so changes can safely be made
at any time.

The type of dynamic predicates used is set globally and can be specified when you run Prolog by using
the /D switch. The following command will run Prolog using 'logical' dynamic predicates:

C> PRO386 /D1

The default for the /D switch is 0 and this corresponds to the use of 'normal' dynamic predicates.

See Also
abolish/1
abolish/2
abolish_files/1
assert/1
asserta/1
assert/2
assertz/1
clause/2
clauses/2
clause/3
functor/3
listing/0
listing/1
retract/1
retractall/1
retract/2
volatile/1

dynamic_call/1
call a dynamic procedure safely

dynamic_call(Goal)

+Goal <goal>

Ensures that the call to the dynamic Goal will not be affected by subsequent calls to assert and retract
predicates during its evaluation.

Asserts and retracts are always done immediately. This means that calls of the form:

?- foo(X), retract(foo(Y)).

will not behave logically, since the retraction will side-affect the database immediately and so be visible to
the initial call to foo/1. This can be averted by calling foo/1 in the following manner:

?- dynamic_call(foo(X)), retract(foo(Y)).

N.B. The safe logical treatment of dynamic predicates can be done automatically when Prolog is strarted
by including the switch: /D.

See Also
abolish/1
abolish/2
abolish_files/1
assert/1
asserta/1
assert/2
assertz/1
clause/2
clauses/2
clause/3
dynamic/1
functor/3
listing/0
listing/1
retract/1
retractall/1
retract/2
volatile/1

elex/1
set, reset or get the edinburgh flag

elex(Flag)

?Flag <variable> or <integer> in the domain {0,1}

Set or get the Edinburgh language extensions Flag. Prolog has certain built-in extensions to the standard
Edinburgh syntax, one of these being the use of the backwards quote symbol to denote Prolog string data
types. These extensions generally should not affect standard Edinburgh syntax programs: if, however,
problems are encountered due to these extensions, Prolog provides the option of turning them off, using
the elex/1 predicate. To turn the syntax extensions off enter the following goal:

?- elex(0).

To turn the syntax extensions on use the following goal:

?- elex(1).

Note: by default the syntax extensions are on.

See Also
<~/2
~>/2
cat/3

ensure_loaded/1
load the specified Prolog source and/or object file(s) into memory.

ensure_loaded(FileSpec)

+FileSpec <file_specs>

ensure_loaded/1 loads each of the specified files except for files which have previously been loaded and
which have not been changed since they were last loaded.

FileSpec can be a file specification of the form: PathAlias(File) where PathAlias is an alias that refers to a
specified path and File is a file name relative to that path. FileSpec can also be an atom of the form:
Path/File where Path defines the path where the file File will be found.

Note: a ".PL" or ".PC" extension may be omitted in a file specification.

See Also
abolish_files/1
compile/1
consult/1
initialization/1
load_files/1
load_files/2
multifile/1
prolog_load_context/2
reconsult/1
save_predicates/2
source_file/1
source_file/2
source_file/3

env/2
get an environment string

env(Name, List)

+Name <atom>

?List <variable>

Succeeds if List is the value of the DOS environment variable Name. Environment variables are initialised
from DOS using the SET command (see your DOS documentation for details). The use of environment
variables provides a simple method of communication between Prolog and other applications.

Name must be an atom that is the name of the DOS environment variable. It can be in upper or lower
case. env/2 will fail if it does not refer to the name of an environment variable.

Note: if Name is the empty atom (i.e. ''), then the name of the Prolog kernel together with its home
directory is returned in List.

List must be an unbound variable. It will be bound to the list of alternative values of Name. DOS uses the
semicolon character (';') to denote alternative values.

See Also
dos/0
dos/1
exec/3
switch/2
ver/4

eprint/1
print a quoted edinburgh term to the current output stream

eprint(Term)

+Term <term>

Write Term to the current output stream. Single quotes are put around any atoms in Term that would have
to be quoted on input. eprint/1 does not terminate the term with a full stop, so if you are writing to a file,
and want to read the term back again you must follow the eprint/1 with either of the following:

write(' . ').
write(' .'),nl.

See Also
current_op/3
display/1
elex/1
eprint/2
eprint/3
eread/1
eread/2
etoks/1
etoks/2
ewrite/1
ewrite/2
ewrite/3
op/3
portray_clause/1
print/1
printq/1
read/1
sysops/0
skip_term/0
vars/2
write/1
write_canonical/1
writeq/1
prompt/2

eprint/2
same as eprint/1 but with the ability to output variable names

eprint(Term, Vars)

+Term <term>

+Vars <list_of (<atom>,<variable>) >

Write a Term in quoted Edinburgh syntax to the current output stream using variable names instead of
variables, where Vars defines the association between the names and the variables in the Term. Vars
should be a list of (Name,Variable) comma pairs. Each comma pair specifies that any occurrence of the
Variable in the Term should be replaced with Name.

See Also
current_op/3
display/1
elex/1
eprint/1
eprint/3
eread/1
eread/2
etoks/1
etoks/2
ewrite/1
ewrite/2
ewrite/3
op/3
portray_clause/1
print/1
printq/1
read/1
sysops/0
skip_term/0
vars/2
write/1
write_canonical/1
writeq/1
prompt/2

eprint/3
same as eprint/2 but with added precedence

eprint(Term, Vars, Precedence)

+Term <term>

+Vars <list_of (<atom>,<variable>) >

+Precedence <integer> ³ -1

Write a Term in quoted Edinburgh syntax to the current output stream using variable names instead of
variables, where Vars defines the association between the names and the variables in the Term. Vars
should be a list of comma pairs of the form: (Name,Variable). Each comma pair specifies that any
occurrence of the Variable in the Term should be replaced with Name.

The Precedence specifies whether the output should be bracketed. If the precedence of any operators in
the term to be output is higher than the given Precedence then the term is output with brackets. This
method of printing terms can be useful when recursively stepping through and printing Prolog structures
that may contain operators.

If the Priority is a positive integer or zero then the output mode is infix. If instead the Priority is -1 then the
output mode is prefix.

See Also
current_op/3
display/1
elex/1
eprint/1
eprint/2
eread/1
eread/2
etoks/1
etoks/2
ewrite/1
ewrite/2
ewrite/3
op/3
portray_clause/1
print/1
printq/1
read/1
sysops/0
skip_term/0
vars/2
write/1
write_canonical/1
writeq/1
prompt/2

eqv/2
check two terms for equivalence

eqv(First, Second)

+First <term>

+Second <term>

Check the equivalence of two terms First and Second. When comparing the equality of the terms a check
is made to see if an uninstantiated variable in a particular argument position in either term corresponds to
an uninstantiated variable in the same position in the other term. Note: the variables do not need to be
identical.

See Also
=/2
==/2
@</2
@=</2
@>/2
@>=/2
\=/2
\==/2
cmp/3
compare/3
keysort/2
len/2
sort/2
sort/3
occurs_chk/2
subsumes_chk/2

erase_status_box/0
destroy the status message window

Closes the status box window explicitly. This predicate is recommended for its portability as it is available
on both the Windows and MS-DOS platforms it is equivalent to calling sttbox/2 with the second argument
set to -1.

See Also
status_box/1
message_box/3

eread/1
read an edinburgh term from the current input stream

eread(Term)

-Term <variable>

Read the next Term from the current input stream. In the input stream, the term must be followed by a dot
('.') and at least one white space character (i.e. a character whose ASCII code is less than or equal to 32).
The dot and white space character are read in but are not considered part of the term.

See Also
current_op/3
display/1
elex/1
eprint/1
eprint/2
eprint/3
eread/2
etoks/1
etoks/2
ewrite/1
ewrite/2
ewrite/3
op/3
portray_clause/1
print/1
printq/1
read/1
sysops/0
skip_term/0
vars/2
write/1
write_canonical/1
writeq/1
prompt/2

eread/2
same as eread/1 but with added var list

eread(Term, Vars)

-Term <variable>

-Vars <variable>

Read the next Term from the current input stream and return the associated variable names and variables
in the Term. Vars will be instantiated to a list of comma pairs of the form: (Name,Variable), where Variable
is a variable that occurs in the Term and Name is the name used to represent that variable.

The predicate eread/2 can be used in conjunction with eprint /2 and ewrite /2 to maintain meaningful
variable names.

See Also
current_op/3
display/1
elex/1
eprint/1
eprint/2
eprint/3
eread/1
etoks/1
etoks/2
ewrite/1
ewrite/2
ewrite/3
op/3
portray_clause/1
print/1
printq/1
read/1
sysops/0
skip_term/0
vars/2
write/1
write_canonical/1
writeq/1
prompt/2

'?ERROR?'/2
user-defined Prolog program which intercepts error messages

'?ERROR?'(Number, Goal)

+Number <integer>

+Goal <goal>

User-defined program to intercept Prolog error messages. The Goal argument is the goal that threw the
error. The error hook is called whenever an error is thrown to the system (for more information on the
reporting of errors see catch/2 and throw/2). There is an error which is not actually passed to the error
hook and this is error 11, keyboard break (triggered by pressing the <ctrl-break> key) which invokes the
break hook instead (see '?BREAK?'/1). The Number argument is the number of the error that was thrown.

To allow the default processing of error messages you should call error_hook/2.

Please note that error numbers 0, 1, 2, 3, 4, 7 and 8 are handled at a lower-level than most errors. This is
because if a Prolog program was allowed to handle them, as is the case for the other errors, this could
itself re-generate the original error giving rise to the situation where an infinite error loop occurs.

See Also
error_hook/2

error_hook/2
system defined behaviour for error handling

error_hook(Error, Goal)

+Error <integer>

+Goal <term>

Invoke the system defined error handler for the given numbered Error and the given Goal. The predicate
error_hook/2 displays an error message that gives the number of the error, the text of what the error
number represents and the goal that generated the error and then aborts the goal returning control to the
Prolog supervisor. The predicate error_hook/2 is mainly provided to allow programmatic access to the
default system error handler in user-defined '?ERROR?'/2 programs.

Please note that error numbers 0, 1, 2, 3, 4, 7 and 8 are handled at a lower-level than most errors. This is
because if a Prolog program was allowed to handle them, as is the case for the other errors, this could
itself re-generate the original error giving rise to the situation where an infinite error loop occurs.

See Also
abort/0
error_message/2
unknown_predicate_handler/2
catch/2
catch/3
throw/2
flush/0

error_message/2
return an error message for an error number

error_message(Number, Message)

+Number <integer>

-Message <variable>

The error_message/2 predicate can be used to find the error message associated with an error number.

See Also
abort/0
unknown_predicate_handler/2
catch/2
catch/3
throw/2
error_hook/2
flush/0

etoks/1
read an edinburgh token list from the current input stream

etoks(TokenList)

-TokenList <variable>

Read a list of tokens from the current input stream to be returned in the variable TokenList. Each element
of TokenList will be a conjunction of the form: (Type, Token) - where Token is one token from the input
stream and Type is a token value that shows the data type of the token.

See Also
current_op/3
display/1
elex/1
eprint/1
eprint/2
eprint/3
eread/1
eread/2
etoks/2
ewrite/1
ewrite/2
ewrite/3
op/3
portray_clause/1
print/1
printq/1
read/1
sysops/0
skip_term/0
vars/2
write/1
write_canonical/1
writeq/1
prompt/2

etoks/2
read an edinburgh token list from the current input stream with variable names

etoks(TokenList, VarNames)

-TokenList <variable>

-VarNames <variable>

Read a list of tokens from the current input stream and return the association between any variables and
their variable names. TokenList is the list of tokens returned. Each element of TokenList will be a
conjunction of the form: (Type,Token) - where Token is one token from the input stream and Type is a
number denoting the data type of the token according to table X. VarNames is a list of the associations
between any variables in TokenList and their variable names. Each element of VarNames will be a
conjunction of the form: (VarName,Var) - where VarName is the quoted name of the variable and Var is
the internal representation of the variable.

See Also
current_op/3
display/1
elex/1
eprint/1
eprint/2
eprint/3
eread/1
eread/2
etoks/1
ewrite/1
ewrite/2
ewrite/3
op/3
portray_clause/1
print/1
printq/1
read/1
sysops/0
skip_term/0
vars/2
write/1
write_canonical/1
writeq/1
prompt/2

ewrite/1
write an unquoted edinburgh term to the current output stream

ewrite(Term)

+Term <term>

Write Term to the current output stream. All quoted atoms in Term are output unquoted. ewrite/1 does not
terminate the term with a full stop, so if you are writing a term to a file, and want to read that term back
again you must follow the ewrite/1 with either of the following:

write(' . ').
write(' .'),nl.

See Also
current_op/3
display/1
elex/1
eprint/1
eprint/2
eprint/3
eread/1
eread/2
etoks/1
etoks/2
ewrite/2
ewrite/3
op/3
portray_clause/1
print/1
printq/1
read/1
sysops/0
skip_term/0
vars/2
write/1
write_canonical/1
writeq/1
prompt/2

ewrite/2
same as ewrite/1 but with the ability to output variable names

ewrite(Term, Vars)

+Term <term>

+Vars <list_of (<atom>,<variable>) >

Write a Term in unquoted Edinburgh syntax to the current output stream using variable names instead of
variables, where Vars defines the association between the names and the variables in the Term. Vars
should be a list of (Name,Variable) comma pairs. Each comma pair specifies that any occurrence of the
Variable in the Term should be replaced with Name.

See Also
current_op/3
display/1
elex/1
eprint/1
eprint/2
eprint/3
eread/1
eread/2
etoks/1
etoks/2
ewrite/1
ewrite/3
op/3
portray_clause/1
print/1
printq/1
read/1
sysops/0
skip_term/0
vars/2
write/1
write_canonical/1
writeq/1
prompt/2

ewrite/3
same as ewrite/2 but with added priority

ewrite(Term, Vars, Mode)

+Term <term>

+Vars <list_of (<atom>,<variable>) >

+Mode <integer>    -1

Write a Term in unquoted Edinburgh syntax to the current output stream using variable names instead of
variables, where Vars defines the association between the names and the variables in the Term. Vars
should be a list of comma pairs of the form: (Name,Variable). Each comma pair specifies that any
occurrence of the Variable in the Term should be replaced with Name.

The Mode specifies whether the output should be in infix or prefix mode. If the Mode is a positive integer
or zero then the output mode is infix. If instead the Mode is -1 then the output mode is prefix.

See Also
current_op/3
display/1
elex/1
eprint/1
eprint/2
eprint/3
eread/1
eread/2
etoks/1
etoks/2
ewrite/1
ewrite/2
op/3
portray_clause/1
print/1
printq/1
read/1
sysops/0
skip_term/0
vars/2
write/1
write_canonical/1
writeq/1
prompt/2

exec/3
execute an external program

exec(Program, Args, Status)

+Program <atom>

+Args <atom>

-Status <variable>

Execute an external program with the given arguments. The Program argument is the name of the
program to be executed given as a quoted atom. It must include the file extension ('.COM' or '.EXE'). The
Args argument should be a single quoted atom of all the arguments to be passed to the program. The
Status argument is a variable that is bound to the exit status code of the program.

To run the DOS command processor as a sub-process exec/3 can be used in the following way:

exec(command, '', S).

where command is the full path name of the command processor (COMMAND.COM). This name is given
by the environment variable COMSPEC. The following query will execute the command processor.

env(comspec, C), C = [Cmd], exec(Cmd, '', X).

To return to Prolog from the DOS command processor type the command:

A>exit

To run DOS commands exec/3 can be used in the following way:

exec(command, '/C action', S).

where command is the full name of the command processor (see above), and action is the DOS
command to be executed. This mechanism can be used for running both internal and external DOS
commands.

To run external DOS commands and user defined programs exec/3 can be used in the following way:

exec(program, args, S).

where program is the full name of the program to run (including file extension) and args is the list of
arguments.

The advantage of invoking a program directly is that it avoids the overhead of loading the command
processor (COMMAND.COM). The disadvantage is that you must specify the full path name of the
program - exec/3 does not perform a path search to find it.

See Also
dos/0
dos/1
env/2
switch/2
ver/4

expand_dcg/2
convert grammar rules to Prolog without calling term_expansion/2

expand_dcg(T1, T2)

+T1 <term>

-T2 <variable>

If T1 is a grammar rule then T2 is the corresponding Prolog representation of that rule. Otherwise T2 is
identical to T1.

The predicate expand_dcg/2 converts grammar rules to Prolog without attempting to call the user-defined
term_expansion/2. This predicate is provided so that users wanting to do their own term expansion can
additionally perform the default grammar rule expansion.

See Also
'C'/3
expand_term/2
phrase/2
phrase/3
term_expansion/2

expand_term/2
convert between a grammar rule and its Prolog equivalent

expand_term(T1, T2)

+T1 <term>

-T2 <variable>

If T1 is a grammar rule then T2 is the corresponding Prolog representation of that rule. Otherwise T2 is
identical to T1. This program also tries the user-defined term_expansion /2 . The predicate expand_term/2
is automatically called when compiling and consulting programs.

See Also
'C'/3
expand_dcg/2
phrase/2
phrase/3
term_expansion/2

fail/0
force failure

Always fails. Can be used to force backtracking in a query.

See Also
!/0
,/2
->/2
;/2
\+/1
abort/0
false/0
halt/0
halt/1
not/1
otherwise/0
repeat/0
repeat/1
true/0
break/0
break_hook/1

false/0
force failure

Always fails. Synonym for fail.

See Also
!/0
,/2
->/2
;/2
\+/1
abort/0
fail/0
halt/0
halt/1
not/1
otherwise/0
repeat/0
repeat/1
true/0
break/0
break_hook/1

fclose/1
close a file

fclose(File).

+File <atom>

The predicate fclose/1 closes the named file, the file buffer is written to disk and the file is closed. This
predicate can only close files if it uses the identical file name that is found on the file dictionary. The file
dictionary can be found using the predicate fdict /1 .

See Also
absolute_file_name/2
absolute_file_name/3
cat/3
close/1
fdict/1
file_search_path/2
fname/4
fopen/3
library_directory/1
mkdir/1
open/2
attrib/2
chdir/1
del/1
dir/3
drive/1
env/2
fcreate/3
ren/2
rmdir/1
stamp/1

fcreate/3
create a file with the given attributes

fcreate(Logicalname, Filename, Attrib).

+Logicalname <atom>

+Filename <atom>

+Attrib <integer> in the domain {0,1,2,3}

The predicate fcreate/3 creates a file with certain access attributes. The Logicalname argument gives the
name that Prolog will use to subsequently access the file. The Filename argument gives the name of the
file as it will appear on the disk. The Attrib argument is a file attribute value that gives the access
attributes for the file. Initially any file created using fcreate/3 is automatically opened with read/write
access. After closing the file it then gains the access attributes given in the call to fcreate/3.

Note: if the filename that is given to fcreate/3 already exists, no attempt will be made to create a back-up
file. This has been done to allow users to develop their own systems for backing up files.

See Also
absolute_file_name/2
absolute_file_name/3
cat/3
close/1
fclose/1
fdict/1
file_search_path/2
fname/4
fopen/3
library_directory/1
mkdir/1
open/2
attrib/2
chdir/1
del/1
dir/3
drive/1
env/2
ren/2
rmdir/1
stamp/1

fdict/1
return a dictionary of files

fdict(Dict)

-Dict <variable>

Return a list of all the currently open files. You can use this predicate to check the actual representation
used internally to reference currently open files.

See Also
absolute_file_name/2
absolute_file_name/3
cat/3
close/1
fclose/1
file_search_path/2
fname/4
fopen/3
library_directory/1
mkdir/1
open/2
attrib/2
chdir/1
del/1
dir/3
drive/1
env/2
fcreate/3
ren/2
rmdir/1
stamp/1

file_search_path/2
user defined fact specifying a path name

file_search_path(Dirspec, Directory)

+Dirspec <path_alias>

+Directory <file_spec>

Dirspec is a logical name that will be used for specifying a directory, and Directory is the path of the
directory to be aliased in this way.

See Also
absolute_file_name/2
absolute_file_name/3
cat/3
close/1
fclose/1
fdict/1
fname/4
fopen/3
library_directory/1
mkdir/1
open/2
attrib/2
chdir/1
del/1
dir/3
drive/1
env/2
fcreate/3
ren/2
rmdir/1
stamp/1

fileerrors/0
turn on the reporting of file error messages

Sets the 'fileerrors' flag to its default state in which an error message is reported by see /1 , tell /1 and
open /2 if the specified file cannot be opened. The error message is followed by an abort/0, execution is
abandoned and the system returns to top level.

The 'fileerrors' flag is only disabled by an explicit call to nofileerrors /0 , or via prolog_flag /3 which can also
be used to obtain the current value of the 'fileerrors' flag.

See Also
no_style_check/0
no_style_check/1
nofileerrors/0
prolog_flag/2
prolog_flag/3
style_check/0
style_check/1
prompt/2
prompts/2
switch/2

find/1
find a string or atom in a file

find(ToFind)

+ToFind <string> or <atom>

The predicate find/1 reads characters from current input stream until there is a match with ToFind. This
leaves the cursor at first character after the matching characters. If ToFind is the string: ``, or the atom: '',
then search the current input stream for the beginning of the next non-white space text.

See Also
at_end_of_file/0
at_end_of_line/0
inpos/1
outpos/1
skip/1
skip_layout/0
skip_line/0
skip_term/0
stream_position/2
stream_position/3
flush/0

'?FIND?'/3
user-defined hook for handling find box messages

''?FIND?'(Focus, Message, Goal)

+Focus <window_handle>

+Message <integer>

+Goal <goal>

Where Focus is the window that is currently in focus, Message is the message that was generated and
Goal is the goal that was interrupted by the Message.

In response to one of the find box messages, you should make a call to fndbox/2 this time giving two
variables. The first of these will return the text in the "find" box as a string, and the second will return the
radio button choice.

You can invoke the default message handler directly by calling the predicate find_hook/3.

See Also
find_hook/3
fndbox/2

find_hook/3
system defined handler for the find dialog

find_hook(Win, Msg, Goal)

+Win <window_handle>

+Msg <integer>

+Goal <term>

Invoke the default system behaviour for the find dialog in the given window (Win) for the given message
(Msg) and then run the given Goal.

See Also
abtbox/3
chgbox/3
change_hook/3
dirbox/4
erase_status_box/0
fndbox/2
message_box/3
msgbox/4
status_box/1
sttbox/2

findall/3
find all the instances of a term for which a Prolog goal is true

findall(Term, Call, List)

?Term <term>

+Call <goal>

?List <variable>

Succeeds if List is the list of all instances of Term for which Call holds. Term may be any type of Prolog
term. Call must be a goal to be called. List will be unified with a list of instantiated copies of Term.

Each element of List will be a copy of Term, and there will be one copy for each different solution to the
query. If there are no solutions to the query, List will be unified with the empty list.

If Term contains a variable that is bound in a solution then the value to which it has been bound will
appear in the instantiated copy of Term.

The solution list List is not sorted. Solutions appear in the list in the same order as they are found.

The solutions in List are not necessarily unique. If a different solution to Call results in the same value for
Term, then a duplicate entry will appear in the list.

At the end of an evaluation, any variables in Term and Call will still be unbound.

See Also
^/2
bagof/3
forall/2
setof/3
solution/2

float/1
test for a floating point number

float(Term)

?Term <term>

Succeeds if Term is instantiated to a floating point number. It fails for any other type of term.

See Also
atom/1
atomic/1
callable/1
char/1
chars/1
compound/1
float/1
ground/1
integer/1
integer_bound/3
nonvar/1
number/1
simple/1
string/1
type/2
unifiable/2
var/1

fluff/3
decompress the data in the current input stream to the current output stream

fluff(BufSize, RawCount, CompCount)

-BufSize <variable>

-RawCount <variable>

-CompCount <variable>

This predicate reads compressed data from the current input stream, decompressing them and outputting
the raw (uncompressed) equivalent to the current output stream. It terminates when the end of a
compressed stream is encountered on input: note, this will not necessarily be the end of file. The window
setting that was used for compression (see stuff/3) is determined from the input stream and returned in
BufSize, the total number of raw (uncompressed) bytes    processed is returned in RawCount and the total
number of compressed bytes processed is returned in CompCount.

See Also
stuff/3

flush/0
flush the current input stream

Flush the current input stream up to and including the end of the current line of text. flush/0 is used to
clear keyboard buffer either in error handling or whenever Prolog wants fresh input rather than data that
was typed ahead or left over from an earlier input.

See Also
at_end_of_file/0
at_end_of_line/0
find/1
inpos/1
outpos/1
skip/1
skip_layout/0
skip_line/0
skip_term/0
stream_position/2
stream_position/3

fname/4
convert a file name into parts

fname(FileName, Path, Name, Extension)

+FileName <atom>

-Path <variable>

-Name <variable>

-Extension <variable>

Split a given file name into its path, name and extension components. If a path is given, then Path will be
bound to an atom which always terminates with the '\' character; likewise, if an extension is given the
atom returned by Extension always begins with a '.' character.

See Also
absolute_file_name/2
absolute_file_name/3
attrib/2
cat/3
chdir/1
close/1
del/1
dir/3
drive/1
env/2
fclose/1
fcreate/3
fdict/1
file_search_path/2
fopen/3
library_directory/1
mkdir/1
open/2
ren/2
rmdir/1
stamp/1

fndbox/2
display the modeless find box

fndbox(Find, Flag)

?Find <string> or <variable>

?Flag <integer> or <variable>

Displays or hides the modeless "find" dialog box with the given prefill find string, or returns data from the
existing box. The find dialog includes an "edit" field, labeled "Find:", and three radio buttons, with which
the user can select the scope of the find.

The Find argument is a string that denotes the contents of the Find: edit field. If an empty string is
specified, the existing contents of the find box are not altered. The Flag argument is an action value that
specifies an action to be performed on the find box.

The predicate succeeds if the find box is created properly, and returns control immediately. When the user
later clicks one of the option buttons, the box is disabled and a message sent to Prolog giving details of
the user's action.

Normally when the user selects an action in the find box the default message handler will be called. If you
want to control the the behaviour of the change box yourself you will need to write a definition for '?
FIND?'/3.

See Also
abtbox/3
change_hook/3
chgbox/3
dirbox/4
erase_status_box/0
find_hook/3
message_box/3
msgbox/4
status_box/1
sttbox/2
'?FIND?'/3

fonts/1
return a list of available fonts

fonts(TypeFaces)

-TypeFaces <variable>

Return a list of all TypeFaces avaiable on the current window system. Note, the returned list contains
typefaces, not fonts: a font is defined as being a typeface, with a given size and style. The typeface is the
raw outline from which you can create fonts (see wfcreate/4).

See Also
ansoem/2
wfclose/1
wfcreate/4
wfdata/5
wfdict/1
wfont/2
wfsize/4

fopen/3
open a file with the given access mode

fopen(Logicalname, Filename, Mode).

+Logicalname <atom>

+Filename <atom>

+Mode <integer> in the domain {0,1,2}

The predicate fopen/3 opens a file with a certain access mode. The Logicalname argument gives the
name that Prolog will use to subsequently access the file. The Filename argument gives the name of the
file as it appears on disk. The Mode argument is a file access value that gives the access mode for the
file.

See Also
absolute_file_name/2
absolute_file_name/3
attrib/2
cat/3
chdir/1
close/1
del/1
dir/3
drive/1
env/2
fclose/1
fcreate/3
fdict/1
file_search_path/2
fname/4
library_directory/1
mkdir/1
open/2
ren/2
rmdir/1
stamp/1

forall/2
generate then test solutions for a goal

forall(Gen, Test)

+Gen <goal>

+Test <goal>

For all the solutions of the generator Gen, the Test is true. Gen and Test must be Prolog calls (which may
include conjunctions and disjunctions).

See Also
^/2
bagof/3
findall/3
setof/3
solution/2

force/1
call a Prolog goal and suspend the debugger for that call.

force(Goal)

+Goal <goal>

Calls the Goal and suspends interaction with the debugger. Succeeds if Goal succeeds, and fails
otherwise. Interaction with the debugger is suspended for that call only: spied sub-calls in the Goal will
still invoke the debugger. The predicate force/1 behaves the same as call/1, apart from the suspension of
the debugger.

Suppose you had the following definition for the program "foo/1":

foo(X) :-
Y is 6 * X,
write(Y),
nl,
bar(X,Y).

If there is a spypoint set on the program "foo/1" and "bar/2" and the debugger is set to debug mode, the
following goal will force the initial call to "foo/1" to be executed without debugging, but the debugger will
be invoked when the goal "bar/2" is called:

?- force(foo(3)).

This predicate is necessary when you are trying to define the '?DEBUG?'/1 debugging hook, to stop the
spied goal from re-invoking the debugger when it gets called.

See Also
debug/0
debug_hook/1
debugging/0
leash/2
leashed/2
ms/2
no_style_check/0
no_style_check/1
nodebug/0
nospy/1
nospyall/0
notrace/0
spy/1
style_check/0
style_check/1
trace/0

fread/4
formatted read of a term

fread(Format, FieldWidth, Modifier, Term)

+Format <atom> in the domain {a,b,f,i,n,r,s}.

+FieldWidth <integer> in the range [-255..255]

+Modifier <integer> in the range [-255..255]

-Term <variable>

Read a simple term Term    from the current input stream using the Format, FieldWidth and Modifier flag.
The allowed formats are:

a atom (uses modifier)

b byte list (uses modifier)

f floating point number (uses modifier)

i integer

n unsigned integer

r arbitrary radix (uses modifier)

s string (uses modifier)

A field width of zero gives free format input for byte lists, atoms and strings. This means input of a whole
line up to and including a carriage return character. A negative modifier flag performs tab expansion and
control character filtering in these cases.

See Also
fwrite/4

Formatted reading of atoms
fread(Format, FieldWidth, Modifier, Term)

fixed width

If the field width is a positive or negative integer, the number of characters read from the current input
stream is the absolute value of the field width.

free width

When the field width is zero, a whole line up to and including a carriage return character is input.

read input literally

When the modifier flag is set to 0 or a positive integer and the field width is 0, the input is read in literally.
Any carriage returns, line feeds, control characters and tabs present are included in the atom.

pre-process input

When the modifier is a negative integer and the field width is 0, the input is pre-processed. Carriage
returns and line feeds are ignored, control characters are replaced by spaces and any tabs present are
replaced with spaces up to the next eighth column.

Formatted reading of byte lists
fread(Format, FieldWidth, Modifier, Term)

fixed width

If the field width is a positive or negative integer, the number of characters read from the current input
stream is the absolute value of the field width.

free width

When the field width is zero, a whole line up to and including a carriage return character is input.

read input literally

When the modifier flag is set to 0 or a positive integer and the field width is 0, the input is read in literally.
Any carriage returns, line feeds, control characters and tabs present are included in the byte list.

pre-process input

When the modifier is a negative integer and the field width is 0, the input is pre-processed. Carriage
returns and line feeds are ignored, control characters are replaced by spaces and any tabs present are
replaced with spaces up to the next eighth column.

Formatted reading of floating point numbers
fread(Format, FieldWidth, Modifier, Term)

modifier

The Modifier, when applied to the f format, denotes the number of decimal places.

fixed field width

If the field width is a positive or negative integer, the number of characters read from the current input
stream is the absolute value of the field width. Numbers must terminate with the specified number of
decimal places within the given field width.

The modifier specifies the number of decimal places that should be found within the specified field width,
if more decimal places are given outside the field width they are truncated from the returned number.

free field width

If the field width is zero, a single white-space delimited token is then read from the input stream and
interpreted as a floating point number with the specified number of decimal places.

The modifier specifies the exact number of decimal places that the floating point number should have.

Formatted reading of integers
fread(Format, FieldWidth, Modifier, Term)

fixed width

If the field width is a positive or negative integer, the number of characters read from the current input
stream is the absolute value of the field width. The number to be read in must be within the range
2147483648 to 2147483647.

free width

If the field width is zero, a single white-space delimited token is then read from the input stream and
interpreted as an integer.

modifier

The modifier has no effect on the i format.

Formatted reading of unsigned integers
fread(Format, FieldWidth, Modifier, Term)

fixed width

If the field width is a positive or negative integer, the number of characters read from the current input
stream is the absolute value of the field width. The number read in must be within the range 0 to
4294967295.

free width

If the field width is zero, a single white-space delimited token is then read from the input stream and
interpreted as an unsigned integer.

modifier

The modifier has no effect on the n format.

Formatted reading of numbers in a given radix
fread(Format, FieldWidth, Modifier, Term)

modifier

The modifier, when applied to the r format, denotes the base of the number to be read in. The radix must
be in the range 2 to 36.

The following number is read in as a hexadecimal number and converted to a decimal number.

fixed width

If the field width is a positive or negative integer, the number of characters read from the current input
stream is the absolute value of the field width.

free width

If the field width is zero, a single white-space delimited token is then read from the input stream and
interpreted as a number in the given radix.

Formatted reading of strings
fread(Format, FieldWidth, Modifier, Term)

fixed width

If the field width is a positive or negative integer, the number of characters read from the current input
stream is the absolute value of the field width.

free width

When the field width is zero, a whole line up to and including a carriage return character is input.

read input literally

When the modifier flag is set to 0 or a positive integer and the field width is 0, the input is read in literally.
Any carriage returns, line feeds, control characters and tabs present are included in the atom.

pre-process input

When the modifier is a negative integer and the field width is 0, the input is pre-processed. Carriage
returns and line feeds are ignored, control characters are replaced by spaces and any tabs present are
replaced with spaces up to the next eighth column.

free/9
return the free space available in Prolog's memory areas

free(Backtrack, Local, Reset, Heap, Text, Program, System, Input, Output)

-Backtrack <variable>

-Local <variable>

-Reset <variable>

-Heap <variable>

-Text <variable>

-Program <variable>

-System <variable>

-Input <variable>

-Output <variable>

Return the number of bytes of free space available in Backtrack, Local, Reset, Heap, Text, Program and
System spaces, and the Input and Output string buffers. The values returned are the amounts of memory
free at the moment free/9 is called, without calling the garbage collector. There may well be more heap
space potentially free, than is actually shown. If you want to know exactly how much heap space is
available, you should make a call to the garbage collector, just prior to calling free/9.

See Also
garbage_collect/0
garbage_collect/1
gc/0
nogc/0
statistics/0
statistics/2
stats/4
total/9
ver/1
ver/4

functor/3
the relationship between a term its functor name and its arity

functor(Term, Functor, Arity)

?Term <term> or <variable>

?Functor <atom> or <variable>

?Arity <integer> or <variable>

Succeeds if Term is a term with the specified Functor and Arity.

If Term is an uninstantiated variable, then Functor must be an atom and Arity must be an integer greater
than or equal to 0. If Arity is 0, Term will be bound to the term Functor. If Arity is greater than 0, then Term
will be bound to a compound term whose functor is the term Functor, and with arity Arity. Each argument
of this compound term will be a distinct unbound variable.

See Also
=../2
arg/3
call/1
call/2
mem/3
one/1

fwrite/4
formatted write of a term

fwrite(Format, FieldWidth, Modifier, Term)

+Format <atom> in the domain {a,b,f,i,n,r,s}.

+FieldWidth <integer> in the range [-255..255]

+Modifier <integer> in the range [-255..255]

+Term <term>

Writes a simple term Term    to the current output stream using the Format, FieldWidth and Modifier flag.
The allowed formats are:

a atom

b byte list

f floating point number (uses modifier)

i integer

n unsigned integer

r arbitrary radix (uses modifier)

s string

A field width of zero gives free format output for byte lists, atoms and strings. This means output is not
limited to a specific field width. A negative modifier flag performs tab expansion and control character
filtering.

See Also
fread/4

Formatted writing of atoms
fwrite(Format, FieldWidth, Modifier, Term)

fixed width

If the field width is a positive or negative integer, the absolute value of this integer indicates the number of
characters to be written to the current output stream. If the length of the term to be written is less than this
value, the output is 'padded out' with spaces up to the specified field width.

left justified

If the field width is a negative integer, the term is output left justified.

right justified

If the field width is a positive integer, the term is output right justified.

free width

When the field width is 0, there is no restriction of the output to a given field width, and there is no
'padding out' with spaces.

truncated output

When the modifier flag is set to 0 or a positive integer and the field width is fixed, if the term to be output
is larger than this field width an error will be generated. Any carriage returns, line feeds, control
characters and tabs present are also output.

However when the modifier is a negative integer and the field width is fixed, if the output is larger than the
field, instead of generating an error, the output is truncated.

Formatted writing of byte lists
fwrite(Format, FieldWidth, Modifier, Term)

fixed width

If the field width is a positive or negative integer, the number of characters written to the current output
stream is the absolute value of the integer. If the length of the term to be written is less than the absolute
value of the field width, the output is 'padded out' with spaces up to the specified field width.

left justified

If the field width is a negative integer, the term is output left justified.

right justified

If the field width is a positive integer, the term is output right justified.

free width

When the field width is 0, there is no restriction of the output to a given field width, and there is no
'padding out' with spaces.

truncated output

When the modifier flag is set to 0 or a positive integer and the field width is fixed, if the term to be output
is larger than this field width an error will be generated. Any carriage returns, line feeds, control
characters and tabs present are also output.

However when the modifier is a negative integer and the field width is fixed, if the output is larger than the
field, instead of generating an error, the output is truncated.

Formatted writing of floating point numbers
fwrite(Format, FieldWidth, Modifier, Term)

modifier

The modifier, when applied to the f format, denotes the number of decimal places.

fixed field width

The field width is a positive or negative integer. The numbers that are output contain the specified number
of decimal places.

left justified

If the field width is a negative integer, the term is output left justified.

right justified

If the field width is a positive integer, the term is output right justified.

truncated output

When the field width is fixed and the modifier is a negative integer then the ouput is truncated to fit within
the specified field width.

free field width

When the field width is 0, there is no restriction of the output to a given field width, and there is no
'padding out' with spaces.

Formatted writing of integers
fwrite(Format, FieldWidth, Modifier, Term)

fixed width

If the field width is a positive or negative integer, the number of characters output to the current output
stream is the absolute value of the field width. The number to be output must be within the range
2147483648 to 2147483647.

left justified

If the field width is a negative integer, the term is output left justified.

right justified

If the field width is a positive integer, the term is output right justified.

free width

When the field width is 0, there is no restriction of the output to a given field width, and there is no
'padding out' with spaces.

truncated output

If the field width is fixed and the integer to be output is too large to fit within this field width, the integer
may be truncated using a negative modifier. Otherwise an error will be generated.

Formatted writing of unsigned integers
fwrite(Format, FieldWidth, Modifier, Term)

fixed width

If the field width is a positive or negative integer. The number of characters written to the current output
stream is the absolute value of the field width. The number ouput must be within the range 0 to
4294967295.

left justified

If the field width is a negative integer, the term is output left justified.

right justified

If the field width is a positive integer, the term is output right justified.

free width

When the field width is 0, there is no restriction of the output to a given field width, and there is no
'padding out' with spaces.

truncated output

If the field width is fixed and the integer to be output is too large to fit within this field width, the integer
may be truncated using a negative modifier. Otherwise an error will be generated.

Formatted writing of numbers with a given radix
fwrite(Format, FieldWidth, Modifier, Term)

modifier

The modifier, when applied to the r format, denotes the base of the number to be output. The radix must
be in the range 2 to 36.

The following number is converted from a decimal number and output as a hexadecimal number.

fixed width

If the field width is a positive or negative integer, the number of characters written to the current output
stream is the absolute value of the field width. The number is output with leading zeroes up to the field
width.

free width

When the field width is 0, there is no restriction of the output to a given field width, and there is no
'padding out' with spaces.

truncated output

If the field width is fixed and the number to be output is too large to fit within this field width, the number
may be truncated using a negative modifier. Otherwise an error will be generated.

Formatted writing of strings
fwrite(Format, FieldWidth, Modifier, Term)

fixed width

If the field width is a positive or negative integer, the number of characters written to the current output
stream is the absolute value of the field width. If the length of the term to be written is less than the
absolute value of the field width, the output is 'padded out' with spaces up to the specified field width.

left justified

If the field width is a negative integer, the term is output left justified.

right justified

If the field width is a positive integer, the term is output right justified.

free width

When the field width is 0, there is no restriction of the output to a given field width, and there is no
'padding out' with spaces.

truncated output

When the modifier flag is set to 0 or a positive integer and the field width is fixed, if the term to be output
is larger than this field width an error will be generated. Any carriage returns line feeds, control characters
and tabs present are also output.

However when the modifier is a negative integer and the field width is fixed, if the output is larger than the
field, instead of generating an error, the output is truncated.

garbage_collect/0
invokes the garbage collector explicitly

The predicate garbage_collect/0 invokes the immediate garbage collection of the memory area specified
in the prolog flag gc_collect. This may be set to either heap or text. The garbage collection is done only if
garbage collection is enabled (see gc /0 and nogc /0).

Note: when a program is running automatic garbage collection will always function regardless of the
status of the gc /0 and nogc /0 flags.

See Also
free/9
garbage_collect/1
gc/0
nogc/0
statistics/0
statistics/2
stats/4
total/9
ver/1
ver/4

garbage_collect/1
invoke the garbage collection of the given memory area

garbage_collect(Type)

+Type <atom>

If Type is the atom heap then the Prolog heap will be garbage collected. If Type is the atom text then the
text space will be garbage collected. Note that garbage collection must be enabled (see gc /0 and nogc /0).

Note: when a program is running automatic garbage collection will always function regardless of the
status of the gc /0 and nogc /0 flags.

See Also
free/9
garbage_collect/0
gc/0
nogc/0
statistics/0
statistics/2
stats/4
total/9
ver/1
ver/4

gc/0
enable the garbage collector

The predicate gc/0 enables explicit calls to the garbage collector.

Note: when a program is running automatic garbage collection will always function regardless of the
status of the gc/0 and nogc /0 flags.

See Also
free/9
garbage_collect/0
garbage_collect/1
nogc/0
statistics/0
statistics/2
stats/4
total/9
ver/1
ver/4

get/1
read a non-white-space character from the current input stream

get(N)

?N <variable> or <char>

Reads the next non-white space character from the current input stream, and unifies N with the ASCII
value of this character. A white space character is defined to be one whose ASCII value is less than or
equal to 32.

See Also
get0/1
getb/1
getx/2
put/1
putb/1
putx/2

get0/1
read a character from the current input stream

get0(N)

?N <variable> or <char>

Reads a character from the current input stream, and unifies N with the ASCII value of this character.
When the input file pointer is at the end of a file this get0/1 returns the value 1.

See Also
get/1
getb/1
getx/2
put/1
putb/1
putx/2

getb/1
get a byte direct from keyboard

getb(Byte)

-Byte <variable>

Input a byte from the keyboard or mouse. IBM PC function keys are returned as negative integers, and
mouse keys return -1, -2 and -3 for the pressing of the left, right and both buttons respectively.

When an IBM PC function key or cursor key is pressed, it generates a pair of bytes, the first of which is
always the null byte (0), and the second an integer that refers to the actual key pressed. The predicates
getb/1 and grab /1 return these pairs as the negated value of the second byte. For example: the IBM PC
function key F1 generates the pair of numbers 0 and 59; the predicate getb/1 would return this value as
-59.

When getb/1 is used Prolog waits for a key or mouse click.

See Also
get/1
get0/1
getx/2
put/1
putb/1
putx/2

getx/2
input a byte, word or dword

getx(Size, Value).

+Size <integer> in the domain {0,1,2,4}

-Value <variable>

Get Value, a binary integer with the given Size, from the current input stream. Size represents the number
of bytes input. If Size is 1 then a single byte is read. If Size is 2 then a word (2 byte integer) is read. If
Size is 4 then a dword (4 byte integer) is read. If Size is 0 then a single byte is read from the input stream
without being consumed. Value    is read in from the file in intel format (i.e, the least significant byte goes
before the most significant byte)

This predicate is useful when getting input from files that come from other applications which use
standard encoding of two and four byte integers.

See Also
get/1
get0/1
getb/1
put/1
putb/1
putx/2

grab/1
check for a byte direct from keyboard

grab(Byte)

-Byte <variable>

Input a byte from the keyboard or mouse. IBM function keys are returned as negative integers, and
mouse keys return -1, -2 and -3 for the pressing of the left, right and both buttons respectively.

When an IBM PC function key or cursor key is pressed, it generates a pair of bytes, the first of which is
always the null byte (0), and the second an integer that refers to the actual key pressed. The predicates
getb /1 and grab/1 return these pairs as the negated value of the second byte. For example: the IBM PC
function key F1 generates the pair of numbers 0 and 59; the predicate grab/1 would return this value as
-59.

When grab/1 is used Prolog does not wait for a key or mouse click. If no key or mouse button is being
pressed at the time of the call then grab/1 simply fails.

See Also
keys/1
ttyflush/0
ttyget/1
ttyget0/1
ttynl/0
ttyput/1
ttyskip/1
ttytab/1

ground/1
test for completely bound terms

ground(Term)

+Term <term>

The predicate ground/1 succeeds if Term is currently instantiated to a term that is completely bound (has
no uninstantiated variables in it); otherwise it fails.

See Also
atom/1
atomic/1
callable/1
char/1
chars/1
compound/1
float/1
integer/1
integer_bound/3
nonvar/1
number/1
simple/1
string/1
type/2
unifiable/2
var/1

halt/0
terminate the current Prolog session

Terminates the current Prolog session with an exit code of 0 and returns to the operating system (or the
calling program).

The predicate halt/0 is equivalent to the following program:

halt :-
halt(0).

See Also
!/0
,/2
->/2
;/2
\+/1
abort/0
break/0
break_hook/1
fail/0
false/0
halt/1
not/1
otherwise/0
repeat/0
repeat/1
true/0

halt/1
terminate the current Prolog session with a return code

halt(Status)

+Status <integer> in the range [0..255]

Terminates the current Prolog session and returns control to the operating system (or the calling
program). All files and windows are closed, and the screen is reset.

Status is the return code passed to the parent process. It can be tested from a DOS batch file using IF
ERRORLEVEL command. Status must be an integer in the range 0 to 255 (inclusive). An exit code of 255
will also close down the current Windows session. This can be useful where an application is being built
automatically from a DOS batch file.

If there are files open when halt/0 is called, any buffered file output will be written to disk and the files
closed. If a file buffer cannot be output (e.g. the disk is full), an error will be generated and the attempt to
halt will fail. The file is still closed however (without the updates), which means that a subsequent call to
halt/0 will succeed.

During a halt the Prolog system shuts down all its currently open DLLs, fonts, menus, icons, bitmaps and
Windows metafiles.

See Also
!/0
,/2
->/2
;/2
\+/1
abort/0
break/0
break_hook/1
fail/0
false/0
halt/0
not/1
otherwise/0
repeat/0
repeat/1
true/0

help/3
perform a windows help function

help(HelpFile, Function, Context)

+HelpFile <atom>

+Function <integer> in the range [1..7]

+Context <integer>

Access the Windows help file using the specified function and context number. The HelpFile argument is
an atom specifying the help file name and extension. The Function argument is a help function value. The
Context argument is either an integer that is a context number for a particular topic in the help file or 0.

index/2
declare multiple argument indexes

index(Pred, Indexes)

+Pred <pred_spec>

+Indexes <list_of <integer> >

This predicate is only available in the Developer and Programmer editions of Prolog.

The predicate index/2 is a declaration recognised by the optimizing compiler to create multiple argument
indexes in the optimized code. It specifies the arguments to be indexed (Indexes) in the given predicate
(Pred). This declaration is used in conjunction with the predicates optimize /1 and optimize_files /1 .

See Also
optimize/1
optimize_files/1

initialization/1
declare a goal to be run on loading a file

initialization(Goal)

+Goal <goal>

The predicate initialization/1 is defined as built-in prefix operator. It declares a Goal that is to be run when
the file in which the declaration appears is loaded. It can be used as either a directive, or as part of a goal
called at compile-time.

The initialization goal will be run after the loading of the file is completed and all other directives
appearing in the file have been run.

See Also
abolish_files/1
compile/1
consult/1
ensure_loaded/1
load_files/1
load_files/2
multifile/1
prolog_load_context/2
reconsult/1
save_predicates/2
source_file/1
source_file/2
source_file/3

inpos/1
set the input stream position

inpos(Position)

?Position <integer> or <variable>

The inpos/1 predicate allows you to reposition the file pointer associated with the current input stream. It
can also be used to find the current position within the current input stream.

If Position is a non-negative integer, inpos/1 will move the file pointer associated with the current input file
to be Position bytes from the beginning of the file.

If Position is a variable, it will be bound to an integer that is the current value of the file pointer associated
with the current input file. This value represents the byte offset of the file pointer relative to the beginning
of the file (offset 0).

Note: inpos/1 can also reposition the read pointer in input strings.

See Also
at_end_of_file/0
at_end_of_line/0
find/1
flush/0
outpos/1
skip/1
skip_layout/0
skip_line/0
skip_term/0
stream_position/2
stream_position/3

input/1
set input from a file, device or string

input(Stream)

?Stream <atom> or
<integer> in the domain {0,1,2} or
(<string>,<integer>) or
<variable>

The predicate input/1 allows you to directly set or get the current input Stream. If the Stream argument is
an atom it should name a currently open file (to check the names of currently open files see fdict /1). If the
Stream argument is an integer in the domain {0,1,2} it names one of the special input streams. If the
Stream argument is a conjunction of a string and an offset, the string is used for direct input starting at the
character following the specified offset. If the Stream argument is a variable it will be bound to the
currently set input stream. If the current input stream is a string the Stream argument will be bound to a
conjunction of the entire input string and the current offset within the string.

See Also
output/1
see/1
seeing/1
seen/0
tell/1
telling/1
told/0

integer/1
test for an integer

integer(Term)

?Term <term>

Succeeds if Term is instantiated to an integer. It fails if Term is any other type of term.

See Also
atom/1
atomic/1
callable/1
char/1
chars/1
compound/1
float/1
ground/1
integer_bound/3
nonvar/1
number/1
simple/1
string/1
type/2
unifiable/2
var/1

integer_bound/3
generate or test a number between lower and upper bounds

integer_bound(Lower, Number, Upper)

+Lower <integer>

?Number <integer> or <variable>

+Upper <integer>

The predicate integer_bound/3 Succeeds if Number is an integer between Lower and Upper inclusively. If
Number is unbound integer_bound/3 will generate successive values for Number that lie between Lower
and Upper.

See Also
atom/1
atomic/1
callable/1
char/1
chars/1
compound/1
float/1
ground/1
integer/1
nonvar/1
number/1
simple/1
string/1
type/2
unifiable/2
var/1

is/2
expression evaluator

X is Expression

?X <number>

+Expression <expr>

Evaluates Expression and unifies the result with X. There are two types of function supported in LPA
Prolog: the generic arithmetic functions that will work with both floating point and integer values (making
conversions where necessary) and the bitwise operators which only work on integer values and will
generate an error if any other type of input is given (including floating point numbers).

See Also
</2
=:=/2
=</2
=\=/2
>/2
>=/2
seed/1

key_hook/3
system defined handler for handling control keys

key_hook(Win, Key, Goal)

+Win <window_handle>

+Key <integer>

+Goal <term>

Invoke the system defined behaviour for handling the given Key in the window Win and then run the given
Goal.

See Also
break_hook/1
change_hook/3
dll_hook/3
error_hook/2

keys/1
return the status of the system keys

keys(Keys)

-Keys <variable>

Return the current status of the keyboard system keys. The Keys argument is a 16-bit key value
representing the state of the system shift, ctrl and alt keys as well as the lock modes.

See Also
grab/1
ttyflush/0
ttyget/1
ttyget0/1
ttynl/0
ttyput/1
ttyskip/1
ttytab/1

keysort/2
sort a list of key-value pairs into ascending order

keysort(List1, List2)

+List1 <list>

-List2 <variable>

Sorts the list List1 into ascending order according to the standard order of terms. The sorted list is bound
to the variable List2.

Each element of List1 must be a term of the form:

Key-Value

The list will be sorted on the value of Key.

See Also
=/2
==/2
@</2
@=</2
@>/2
@>=/2
\=/2
\==/2
cmp/3
compare/3
eqv/2
len/2
occurs_chk/2
sort/2
sort/3
subsumes_chk/2

lcall/4
call a dynamic link library function

lcall(Library, Function, Input, Output)

+Library <atom>

+Function <atom> or <string>

+Input <atom> or <string>

-Output <variable>

Calls the named dynamic link library with the given function and input text, returning the output text if the
function succeeds. The input text may be a string or an atom; the type of the output string depends upon
the type of the input string.

This call must only be made with dynamic link libraries prepared especially for LPA Prolog, since it makes
specific assumptions about the number, type, and passing convention of argument parameters. The
creation of suitable dynamic link libraries is discussed in more detail in the Prolog for Windows
Programming Guide.

See Also
dll_hook/3
lclose/1
ldict/1
lopen/1
'?DLL?'/3
winapi/5

lclose/1
close a dynamic link library

lclose(Library)

+Library <atom>

Closes the named dynamic link library, freeing up the memory resources it occupies. Up to eight dynamic
link libraries may be open at any one time, so it may be necessary to close one in order to open another.

See Also
dll_hook/3
lcall/4
ldict/1
lopen/1
'?DLL?'/3
winapi/5

ldict/1
return a list of all currently open dynamic link libraries

ldict(Libraries)

-Libraries <variable>

Returns the dictionary of currently open dynamic link libraries. When a dynamic link library is opened, its
name is added automatically to the library dictionary. The name is removed when the library is closed.

See Also
dll_hook/3
lcall/4
lclose/1
lopen/1
'?DLL?'/3
winapi/5

leash/2
set the interaction with the debugger

leash(Point, Ports)

+Point <atom> in the domain {head, body}

+Ports <atom> or <list_of <atom> > where each <atom> in the domain
{call,exit,redo,fail}

Sets the leashing mode for the given Point to the given Ports. The purpose of leash/2 is to allow you to
speed up single-stepping (creeping) through a program by telling the debugger that it does not always
need to wait for user input after printing a trace message.

Point is either of the atoms 'head' or 'body'. Ports is a list of the ports in the given Point to be leashed.
Valid port names are: 'call', 'exit', 'redo' and 'fail'.

By default, all four ports are leashed in both the head and body. On arrival at a leashed port the debugger
will stop to allow you to look at the execution state and decide what to do next. At unleashed ports the
goal is displayed but program execution does not stop to allow user interaction.

See Also
debug/0
debug_hook/1
debugging/0
force/1
leashed/2
ms/2
no_style_check/0
no_style_check/1
nodebug/0
nospy/1
nospyall/0
notrace/0
spy/1
style_check/0
style_check/1
trace/0

leashed/2
test or get when interaction with the debugger will occur

leashed(Point, Port)

?Point <atom> or <variable>

?Port <atom> or <variable>

If Point and Port are given, leashed/2 says whether there is a leash on that Port for that Point. If either
Point or Port are variables leashed/2 will backtrack through the various leashed ports.

See Also
debug/0
debug_hook/1
debugging/0
force/1
leash/2
ms/2
no_style_check/0
no_style_check/1
nodebug/0
nospy/1
nospyall/0
notrace/0
spy/1
style_check/0
style_check/1
trace/0

len/2
return length of a term

len(Term, Length)

?Term <term> or <variable>

?Length <integer> or <variable>

Get or check the Length of the given Term or if Term is a variable build a list of variables from the given
Length. If Term is a list, Length will be unified with the number of items on the list. If Term is a tuple,
Length will be unified with the number of arguments in the tuple plus 1 for the functor. If Term is an atom
or string, Length will be unified with the number of characters in the atom or string. If Term is a number,
Length will be bound to the number of characters contained in its printed form. If Term is a variable, it will
be instantiated to a list of variables of the given Length.

See Also
=/2
==/2
@</2
@=</2
@>/2
@>=/2
\=/2
\==/2
cmp/3
compare/3
eqv/2
keysort/2
length/2
occurs_chk/2
sort/2
sort/3
subsumes_chk/2

length/2
get the length of a Prolog list

length(Term, Length)

?Term <list>

?Length <variable>

If Term is a list, Length will be unified with the number of items in the list. If Length is an integer and Term
is unbound, Term will be unified with a list of variables of the specified Length.

See Also
append/3
len/2
mem/3
member/2
member/3
remove/3
removeall/3
reverse/2

library_directory/1
defines a library directory

library_directory(DirSpec)

?DirSpec <file_spec>

DirSpec is either an atom giving the path to a file, or PathAlias(DirSpec), where PathAlias is defined by a
file_search_path /2 fact.

The dynamic, multifile library_directory/1 facts define directories to search when a file specification
library(File) is expanded to the full path.

There are a set of predefined library_directory/1 facts, but users may also define their own libraries simply
by asserting the appropriate library_directory/1. To locate a library file, the library_directory/1 facts are
tried one by one in the same sequence they appear in the Prolog database.

The file_search_path mechanism is an extension of the library_directory scheme. See file_search_path /2 .

See Also
absolute_file_name/2
absolute_file_name/3
attrib/2
cat/3
chdir/1
close/1
del/1
dir/3
drive/1
env/2
fclose/1
fcreate/3
fdict/1
file_search_path/2
fname/4
fopen/3
mkdir/1
open/2
ren/2
rmdir/1
stamp/1

listing/0
list all the dynamic clauses in the workspace to the current output stream

Lists all dynamic clauses in the workspace to the current output stream.

See Also
abolish/1
abolish/2
abolish_files/1
assert/1
asserta/1
assert/2
assertz/1
clause/2
clauses/2
clause/3
dynamic/1
dynamic_call/1
functor/3
listing/1
retract/1
retractall/1
retract/2
volatile/1

listing/1
list the specified dynamic predicates to the current output stream

listing(Tolist)

+Tolist <pred_specs>

Lists all of the dynamic clauses specified by Tolist to the current output stream. listing/1 always succeeds.
If Tolist is a predicate specification of the form Predicate/N (where Predicate is the name of a dynamic
relation and N is an integer), then all clauses for Predicate with arity N are listed. If Tolist is a list of
predicate names, then all of the specified predicates are listed.

See Also
abolish/1
abolish/2
abolish_files/1
assert/1
asserta/1
assert/2
assertz/1
clause/2
clauses/2
clause/3
dynamic/1
dynamic_call/1
functor/3
listing/0
retract/1
retractall/1
retract/2
volatile/1

load_files/1
load the specified Prolog source and/or object files.

load_files(FileSpecs)

+FileSpecs <file_specs>

The load_files/1 predicate reads Prolog clauses, in source or in compiled form, and adds them to the
Prolog database, after first deleting any previous versions of the predicates they define. Clauses for a
single predicate must all be in the same file unless that predicate is declared to be multifile.

FileSpecs can be a file specification of the form: PathAlias(File) where PathAlias is an alias that refers to
a specified path and File is a file name relative to that path. FileSpecs can also be an atom of the form:
Path/File where Path defines the path where the file File will be found. FileSpecs may also be a list
containing combinations of the above.

Note:    a ".PL" or ".PC" extension may be omitted in a file specification.

If the file contains directives, that is, terms with principal functor ':-'/1 or '?-'/1, then these are executed as
they are encountered.

See Also
abolish_files/1
compile/1
consult/1
ensure_loaded/1
initialization/1
load_files/2
multifile/1
prolog_load_context/2
reconsult/1
save_predicates/2
source_file/1
source_file/2
source_file/3

load_files/2
load the specified Prolog source and/or object files using certain options.

load_files(FileSpec, Options)

+FileSpecs <file_specs>

+Options <list_of <compound_term> >

The predicate load_files/2 loads the clauses in a Prolog file into the Prolog database according to some
specified options. The FileSpecs argument can be a file specification of the form: PathAlias(File) where
PathAlias is an alias that refers to a specified path and File is a file name relative to that path. FileSpecs
can also be an atom of the form: Path/File where Path defines the path where the file File will be found.
FileSpecs may also be a list containing combinations of the above.

The Options argument is a list of load file options that affect the way the file is loaded.

If any Prolog source file being loaded contains directives, that is, terms with principal functor ':-'/1 or '?-'/1,
then these are executed as they are encountered.

Directives that are to be saved in object code files must be declared initialisation directives using the
predicate initialization/1. Initialisation directives are executed after the load.

See Also
abolish_files/1
compile/1
consult/1
ensure_loaded/1
initialization/1
load_files/1
multifile/1
prolog_load_context/2
reconsult/1
save_predicates/2
source_file/1
source_file/2
source_file/3

lopen/1
open a dynamic link library

lopen(Library)

+Library <atom>

Opens the named dynamic link library. Up to eight dynamic link libraries may be open at any one time, so
it may be necessary to close one in order to open another.

See Also
dll_hook/3
lcall/4
lclose/1
ldict/1
'?DLL?'/3
winapi/5

lwrupr/2
convert between lower and upper case

lwrupr(Lower,Upper)

?Lower <atom>, <string> or <variable>

?Upper <atom>, <string> or <variable>

Take an atom or string and return its upper case equivalent, or take an atom or string and return its lower
case equivalent. The type of the output depends upon the type of the input. Note that because mixed and
fixed case character sets are not congruent, the conversion is not necessarily reversible. For this reason,
the case where both arguments are given is not supported.

See Also
ansoem/2
lcall/4
lclose/1
ldict/1
'?DLL?'/3
winapi/5

mem/3
return the specified member of a term

mem(Record, Path, Field)

+Record <compound_term>

+Path <list_of <integer> >

-Field <variable>

The mem/3 predicate is used to access arbitrary members of lists and compound terms. It binds Field to
the sub-field of Record that is identified by Path.

The Record argument must be a compound term (i.e. a list or a tuple). Individual fields can themselves be
lists or compound terms (sub-records), or they can be atomic data items. Path must be a list of integers
which index into Record. The simplest path is the empty list [] which will return the entire record. A single
entry path, of the form [N], where N is a positive integer, returns the Nth element of the record. A single
entry path, of the form [N], where N is a negative integer, returns a list of all the elements following the
Nth element of the record. If the record is a tuple, the first element of the record is the functor, and the
2nd element is the first argument of the compound term. If it is a list, the first element is the head of the
list, the second is the head of the tail, and so on. Field must be an uninstantiated variable.

See Also
append/3
arg/3
functor/3
length/2
member/2
member/3
remove/3
removeall/3
reverse/2

member/2
get or check a member of a list

member(Element, List)

?Element <term>

?List <list> or <variable>

The term Element is a member of the list List.

If Element is instantiated, member/2 will check that it is a member of the list (if List is a variable, it will be
bound to a list that contains Element).

If Element is a variable, it will be bound to the first element of List. On backtracking, it will be bound to
successive elements of List.

See Also
append/3
length/2
mem/3
member/3
remove/3
removeall/3
reverse/2

member/3
get or check a member of a list and its position in the list

member(Element, List, Position)

?Element <term>

?List <list> or <variable>

?Position <integer> or <variable>

If Element is instantiated a check is made to see if it is on List and its position on List is either checked or
returned.

If Element and Position are both uninstantiated solutions for each are generated on backtracking.

Note: the numbering of elements on the list begins at 1.

See Also
append/3
length/2
mem/3
member/2
remove/3
removeall/3
reverse/2

message_box/3
create a message box and return a response

message_box(Buttons,Message,Response).

+Buttons <atom> in the domain
{ok, okcancel, yesno, yesnocancel}

+Message <string>

+Response <variable>

Display a Message in a window with the specified Buttons and return the selected button in Response.
The returned selected button may be one of the following: ok, cancel, yes or no.

See Also
erase_status_box/0
status_box/1

'?MESSAGE?'/4
user-defined Prolog program which intercepts messages

'?MESSAGE?'(Window, Message, Data, Goal)

+Window <window_handle>

+Message <integer>

+Data <integer>

+Goal <goal>

The user defined message hook, if it is defined, is called whenever a message interrupts the system. The
Window argument is the window that generated the message. The Message argument is the integer
message value of the message that was generated. The Data argument is an integer value that is the
data associated with the message and the Goal argument is the Prolog goal that was interrupted by the
message.

To allow the default processing of messages you should call message_hook/4.

When defining a message hook that writes to the console, you should bear in mind that the act of writing
to the console itself generates a message. Any message hook that writes to the console should filter out
the message 5 (msg_change) for the console window (1,1) and pass these values straight on to the
message_hook/4 predicate.

See Also
message_hook/4

message_hook/4
system defined behaviour for handling messages

message_hook(Win, Msg, Data, Goal)

+Win <window_handle>

+Msg <integer>

+Data <integer>

+Goal <goal>

Invoke the system defined message hook for the given window, message, data and interrupted goal. The
Win argument is the name of the window that generated the message. The Msg argument is the integer
number of the message that was generated. The Data argument is an integer that gives any data
associated with the message and the Goal argument is the Prolog goal that was interrupted by the
message.

The predicate message_hook/4 handles all the messages that occur normally in the Prolog environment.
This predicate provided to allow programmatic access to the default system error handler in user-defined
'?MESSAGE?'/4 programs.

See Also
'?MESSAGE?'/4

mkdir/1
make a directory

mkdir(Dir)

+Dir <atom>

Makes a new directory called Dir (It is the same as the MKDIR command under DOS.). Dir must be an
atom that names the directory. If Dir does not specify a drive name, the directory is created on the current
drive. If Dir does not specify a path name, the directory is created in the current directory.

See Also
absolute_file_name/2
absolute_file_name/3
attrib/2
cat/3
chdir/1
close/1
del/1
dir/3
drive/1
env/2
fclose/1
fcreate/3
fdict/1
file_search_path/2
fname/4
fopen/3
library_directory/1
open/2
ren/2
rmdir/1
stamp/1

ms/2
time a given Prolog goal

ms(Call, Time)

+Call <goal>

-Time <variable>

Runs the given Call and returns the Time in milliseconds (10 ^ -3 seconds) it took the goal to run.

Note: the functionality of this predicate is somewhat hardware dependent, and as a result may not work
consistently on all models of computer.

See Also
date/3
date/4
ticks/1
time/4

msgbox/4
display the message box

msgbox(Title, Message, Style, Button)

+Title <string>

+Message <atom> or <string>

+Style <integer>

-Button <variable>

Display a standard Windows message box with a given title, message and style returning the users
response to the dialog. The Title argument is a string that sets the message boxs window caption. The
Message argument is either an atom or string that is the message to be shown to the user. The Style
argument is a message box style value that dictates which combination of predefined buttons, icons and
modality is used in the message box. The Button argument is a variable that gets bound to an integer
indicating which button was used to terminate the dialog.

The predicate succeeds whichever button is clicked, or when RETURN is pressed.

See Also
abtbox/3
change_hook/3
chgbox/3
dirbox/4
erase_status_box/0
find_hook/3
fndbox/2
message_box/3
status_box/1
sttbox/2

multifile/1
allow the specified predicates to be defined in more than one file

:- multifile Predicates

+Predicates <pred_specs>

The predicate multifile/1 is a built-in prefix operator. Predicates is a single predicate specification of the
form Name/Arity, or a sequence of predicate specifications separated by commas. Name must be an
atom and Arity an integer in the range 0 to 64.

By default, all clauses for a predicate are expected to come from just one file. This assists with reloading
and debugging of code. Declaring a predicate multifile means that its clauses can be spread across
several different files.

The multifile declaration should precede all the clauses for the specified predicate P in each file that
contains clauses for P.

See Also
abolish_files/1
compile/1
consult/1
ensure_loaded/1
initialization/1
load_files/1
load_files/2
prolog_load_context/2
reconsult/1
save_predicates/2
source_file/1
source_file/2
source_file/3

name/2
convert between an atom or number and a byte list

name(Atomic, List)

?Atomic <atom> or <number>

?List <char_list> or <variable>

List is the list of ASCII character codes that represents the atomic term Atomic. Atomic must be a
variable, number or atom, while List must be a variable or a list of character codes. One of either Atomic
or List must be a non-variable.

If Atomic is an atom or number, List will be unified with the list of character codes that make up its print
name.

If Atomic is an unbound variable, List must be a list of character codes. If the characters in List represent
a number (either integer or floating point), Atomic will be unified with that number. Otherwise, Atomic will
be bound to an atom that contains those characters exactly.

See Also
=../2
atom_chars/2
atom_string/2
copy_term/2
number_atom/2
number_chars/2
number_string/2
numbervars/3
string_chars/2

nl/0
start a new line on the current output stream

Start a new line on the current output stream. Writes a carriage return followed by line feed to the current
stream.

See Also
tab/1

no_style_check/0
turn off all compile-time style checking

When all the style checking is turned off, files will be loaded without checking for: clauses containing a
single instance of a named variable, procedures whose clauses are not all adjacent to one another in the
file and multiple definitions of the same procedure in different files.

See Also
debug/0
debug_hook/1
debugging/0
force/1
leash/2
leashed/2
ms/2
no_style_check/1
nodebug/0
nospy/1
nospyall/0
notrace/0
spy/1
style_check/0
style_check/1
trace/0

no_style_check/1
turn off the specified style of compile-time style checking

no_style_check(Type)

+Type <atom>

Turn off the specified Type of style checking. The Type argument is a style checking value.

See Also
debug/0
debug_hook/1
debugging/0
force/1
leash/2
leashed/2
ms/2
no_style_check/0
nodebug/0
nospy/1
nospyall/0
notrace/0
spy/1
style_check/0
style_check/1
trace/0

nodebug/0
switch the debug mode to off

Switches the debug mode to be off. Spy points are not removed, but they will have no effect during an
evaluation. (This predicate is a synonym for notrace /0)

To remove spy points use nospy /1 or nospyall /0 .

See Also
debug/0
debug_hook/1
debugging/0
force/1
leash/2
leashed/2
ms/2
no_style_check/0
no_style_check/1
nospy/1
nospyall/0
notrace/0
spy/1
style_check/0
style_check/1
trace/0

nofileerrors/0
turn off the reporting of file error messages

Sets the 'fileerrors' flag to off in which error messages are not reported by see /1 , tell /1 and open /2 if the
specified file cannot be opened.

The 'fileerrors' flag is only enabled by an explicit call to fileerrors /0 , or via prolog_flag /3 which can also be
used to obtain the current value of the 'fileerrors' flag.

See Also
fileerrors/0
no_style_check/0
no_style_check/1
prolog_flag/2
prolog_flag/3
prompt/2
prompts/2
style_check/0
style_check/1
switch/2

nogc/0
disable the garbage collector

nogc/0 disables explicit calls to garbage collector.

Note: when a program is running automatic garbage collection will always function regardless of the
status of the gc /0 and nogc/0 flags.

See Also
free/9
garbage_collect/0
garbage_collect/1
gc/0
statistics/0
statistics/2
stats/4
total/9
ver/1
ver/4

nonvar/1
test for a non-variable

nonvar(Term)

?Term <term>

Succeeds if, and only if, Term is instantiated. It is the opposite of var /1 .

See Also
atom/1
atomic/1
callable/1
char/1
chars/1
compound/1
float/1
ground/1
integer/1
integer_bound/3
number/1
simple/1
string/1
type/2
unifiable/2
var/1

nospy/1
remove the spy points from the specified predicates

nospy(Spied)

+Spied <pred_specs>

Removes the spy points from all of the predicates specified by Spied.

If Spied is a list of predicate specifications nospy/1 will remove the spy points from all predicates named
on that list. The predicate nospy/1 just succeeds if there are no clauses defined for Spied, or if the
clauses do not have a spy point set. The predicate nospy is defined as a prefix operator, so you do not
need to surround its argument with brackets.

See Also
debug/0
debug_hook/1
debugging/0
force/1
leash/2
leashed/2
ms/2
no_style_check/0
no_style_check/1
nodebug/0
nospyall/0
notrace/0
spy/1
style_check/0
style_check/1
trace/0

nospyall/0
remove all spy points

Removes all spy points currently set on predicates.

See Also
debug/0
debug_hook/1
debugging/0
force/1
leash/2
leashed/2
ms/2
no_style_check/0
no_style_check/1
nodebug/0
nospy/1
notrace/0
spy/1
style_check/0
style_check/1
trace/0

not/1
logical negation

not Call

+Call <goal>

Logical negation. This succeeds if Call fails. No variables in Call are bound as the result of its negation. It
is declared as a prefix operator.

See Also
!/0
,/2
->/2
;/2
\+/1
abort/0
break/0
break_hook/1
fail/0
false/0
halt/0
halt/1
otherwise/0
repeat/0
repeat/1
true/0

notrace/0
turn the trace mode to off

Switches the trace mode to be off. Spy points are not removed, but they will have no effect during an
evaluation (This predicate is a synonym for nodebug/0).

To remove spy points use nospy /1 or nospyall /0 .

See Also
debug/0
debug_hook/1
debugging/0
force/1
leash/2
leashed/2
ms/2
no_style_check/0
no_style_check/1
nodebug/0
nospy/1
nospyall/0
spy/1
style_check/0
style_check/1
trace/0

number/1
test for a floating point number or integer

number(Term)

?Term <term>

Succeeds if Term is currently instantiated to a number (i.e. an integer or float). Fails for any other type of
term.

See Also
atom/1
atomic/1
callable/1
char/1
chars/1
compound/1
float/1
ground/1
integer/1
integer_bound/3
nonvar/1
simple/1
string/1
type/2
unifiable/2
var/1

number_atom/2
convert between a number and an atom

number_atom(Number, Atom)

?Number <number> or <variable>

?Atom <atom> or <variable>

Initially either Atom must be instantiated to an atom or Number must be instantiated to a number.

If Number is initially instantiated to a number, Atom will be unified with the atomic equivalent of its printed
representation. If Atom is initially instantiated to an atom that corresponds to the correct syntax of a
number, then Number will be bound to that number.

See Also
=../2
atom_chars/2
atom_string/2
copy_term/2
name/2
number_chars/2
number_string/2
numbervars/3
string_chars/2

number_chars/2
convert between numbers and a list of characters

number_chars(Number, CharList)

?Number <number> or <variable>

?CharList <char_list> or <variable>

Initially either CharList must be instantiated to a list of ASCII character codes (containing no variables) or
Number must be instantiated to a number.

If Number is initially instantiated to a number, CharList will be unified with the list of ASCII character codes
that form its printed representation. If CharList is initially instantiated to a list of ASCII character codes that
correspond to the correct syntax of a number, then Number will be bound to that number.

See Also
=../2
atom_chars/2
atom_string/2
copy_term/2
name/2
number_atom/2
number_string/2
numbervars/3
string_chars/2

number_string/2
convert between a number and a string

number_chars(Number, String)

?Number <number> or <variable>

?String <string> or <variable>

Initially either String must be instantiated to a string or Number must be instantiated to a number.

If Number is initially instantiated to a number, String will be unified with the string equivalent of its printed
representation. If String is initially instantiated to a string that corresponds to the correct syntax of a
number, then Number will be bound to that number.

See Also
=../2
atom_chars/2
atom_string/2
copy_term/2
name/2
number_atom/2
number_chars/2
numbervars/3
string_chars/2

numbervars/3
instantiate the variables in a given term

numbervars(Term, FirstVar, LastVar)

+Term <term>

+FirstVar <integer>

?LastVar <integer> or <variable>

numbervars/3 instantiates each of the variables in Term to a term of the form '$VAR'(N).

FirstVar must be an integer. That integer is used as the value of N for the first variable in Term (starting
from the left). The second distinct variable in Term is given a value of N satisfying "N is FirstVar+1"; the
third distinct variable gets the value FirstVar+2, and so on. The last variable in Term has the value
LastVar-1.

See Also
=../2
atom_chars/2
atom_string/2
copy_term/2
name/2
number_atom/2
number_chars/2
number_string/2
string_chars/2

occurs_chk/2
occurs check

occurs_chk(Term, Var)

+Term <term>

+Var <variable>

The occurs check. Succeeds if Var occurs in the given Term.

See Also
=/2
==/2
@</2
@=</2
@>/2
@>=/2
\=/2
\==/2
cmp/3
compare/3
eqv/2
keysort/2
len/2
sort/2
sort/3
subsumes_chk/2

one/1
one solution meta-call.

one(Call)

+Call <goal>

Succeeds if Call is true, but has the side effect of restricting the evaluation of Call to just one solution. On
backtracking, no further solutions to Call are sought.

Call may be bound to a conjunction or disjunction of goals.

The one predicate acts as a "snip" operation (i.e. a restricted form of cut). It cuts out alternative solutions
to a single call, without cutting out backtracking in any other part of the current query. The one predicate
provides useful control information when you know that there will be only one way of solving a call. It cuts
out redundant search on backtracking.

See Also
=../2
arg/3
call/1
call/2
functor/3

op/3
declare an operator with a given precedence and type

op(Precedence, Type, Name)

+Precedence <integer>

+Type <atom>

+Name <atom>

Declares an operator with a given type and precedence. The Name argument is an atom that is the name
of the operator. The Precedence is an integer between 0 and 1199, and whose type is Type. Name may
also be a list of atoms, in which case all of the atoms are declared to be operators of the specified
precedence and type.

To find the operators currently in force, use current_op /3 .

See Also
current_op/3

open/2
open a file with the given access mode

open(FileSpec, Mode).

+FileSpec <file_spec>

+Mode <atom> in the domain {read,write,append}

open/2 opens the file specified by FileSpec with the given access mode Mode. FileSpec can be a file
specification of the form: PathAlias(File) where PathAlias is an alias that refers to a specified path and
File is a file name relative to that path. FileSpec can also be an atom of the form: Path/File where Path
defines the path where the file File will be found.

Mode should be one of the atoms: 'read', 'write' or 'append'. If Mode is 'read' the file specified by FileSpec
is opened and the file pointer is set to the beginning of the file. If Mode is 'write' the file specified by
FileSpec is created and the file pointer starts at the beginning of the file. Note: in 'write' mode any file
already in existence that corresponds to the file specified by FileSpec will be overwritten by this call to
open/2. If Mode is 'append', and the file specified by FileSpec exists, it is opened and the file pointer is set
to the end of the file, if the file specified by FileSpec    does not exist then 'append' mode acts like 'write'
mode.

See Also
absolute_file_name/2
absolute_file_name/3
attrib/2
cat/3
chdir/1
close/1
del/1
dir/3
drive/1
env/2
fclose/1
fcreate/3
fdict/1
file_search_path/2
fname/4
fopen/3
library_directory/1
mkdir/1
ren/2
rmdir/1
stamp/1

optimize/1
optimize a static predicate

optimize(Pred)

+Pred <pred_spec>

This predicate is only available in the Developer and Programmer editions of Prolog.

Optimize the clauses for a static predicate specified by Pred. This predicate can be used in conjunction
with the declaration index/2 to generate multiple argument indexing for the specified relation.

See Also
index/2
optimize_files/1

optimize_files/1
file to file optimization of code

optimize_files(Files)

+Files <file_spec> - <file_spec> or a list of such pairs

This predicate is only available in the Developer and Programmer editions of Prolog.

Optimize Prolog source code files into object code files. optimize_files/1 invokes the built-in, file-to-file
optimizing compiler. Files is a list of pairs of the form: Source - Object, where Source represents the input
source file and Object represents the destination object file. This predicate can be used in conjunction
with the declaration index/2 to generate multiple argument indexing for each specified relation.

See Also
index/2
optimize/1

otherwise/0
succeed

Same as true. Always succeeds. (It is useful for laying out nested conditionals.).

See Also
!/0
,/2
->/2
;/2
\+/1
abort/0
break/0
break_hook/1
fail/0
false/0
halt/0
halt/1
not/1
repeat/0
repeat/1
true/0

outpos/1
sets the output stream position

outpos(Position)

?Position <integer> or <variable>

The outpos/1 predicate allows you to reposition the file pointer associated with the current output file
stream. It can also be used to find the current position within the current output file stream.

If Position is a non-negative integer, outpos/1 will move the file pointer associated with current output file
to be Position bytes from the beginning of the file.

If Position is a variable, it will be bound to an integer that is the current value of the file pointer associated
with current output file. This value represents the byte offset of the file pointer relative to the beginning of
the file (offset 0).

See Also
at_end_of_file/0
at_end_of_line/0
find/1
flush/0
inpos/1
skip/1
skip_layout/0
skip_line/0
skip_term/0
stream_position/2
stream_position/3

output/1
set output to the screen, a file or a string

output(Stream)

?Stream <atom> or
<integer> in the domain {0,1,2,3} or
(<string>,<integer>) or
<variable>

The predicate output/1 allows you to directly set or get the current output stream Stream. If the Stream
argument is an atom it should name a currently open file. This file should have been opened using
fopen/3 in either read/write or write only access. If the Stream argument is an integer in the domain
{0,1,2,3} it names one of the special output streams. If the Stream argument is a conjunction of a string
plus an offset, the string is used for direct output with the output position set to the character following the
offset. If the Stream argument is a variable it will be bound to the currently set output stream. If the current
output stream is a string the Stream argument will be bound to a conjunction of the entire string plus the
current offset within that string.

See Also
input/1
see/1
seeing/1
seen/0
tell/1
telling/1
told/0

pdict/3
return a dictionary of predicates

pdict(Type, Flags, Dictionary)

+Type <integer> in the domain [-1,0,1,2,3,4]

+Flags <integer>

-Dictionary <variable>

Return a dictionary of predicates that match the given type and have the    specified flag pattern.    The
Type argument is a predicate type value. The Flags argument is a flag pattern that is used internally. A
value of -1 returns all predicates of the specified type. The Dictionary argument is a variable that is bound
to a list of predicates that match the given type. Each predicate on the list is represented as a comma pair
of the form: (Predicate,Arguments), where Predicate and Arguments are respectively the functor and arity
of the predicate.

See Also
current_atom/1
current_op/3
current_predicate/1
current_predicate/2
def/3
defs/2
predicate_property/2

phrase/2
check if a sequence of symbols can be parsed as a given type

phrase(Phrase, List)

+Phrase <atom> or <compound_term>

?List <list> or <variable>

The predicate phrase/2 invokes the grammar rules in order to parse a sequence of symbols. It succeeds
if List is a phrase of type Phrase (according to the current grammar rules).

The Phrase argument must be the name of a non-terminal symbol, or a grammar rule body. phrase/2 will
succeed if List represents a phrase of type Phrase. If List is a variable, phrase/2 will attempt to generate a
phrase of type Phrase and bind it to List.

See Also
'C'/3
expand_term/2
phrase/3

phrase/3
check if a sequence of symbols can be parsed as a given type

phrase(Phrase, List, Rest)

+Phrase <atom> or <compound_term>

?List <list> or <variable>

?Rest <list> or <variable>

The phrase/3 predicate succeeds when the list List starts with a phrase of type Phrase, according to the
currently defined grammar rules. Rest is that part of List that is left over after you have found the phrase.

See Also
'C'/3
expand_term/2
phrase/2

portray_clause/1
write a clause to the current output stream in listing format

portray_clause(Clause)

+Clause <clause>

Writes the clause Clause to the current output stream in the same format as the listing predicate. The
clause will be terminated with a full stop and white space character.

See Also
current_op/3
display/1
elex/1
eprint/1
eprint/2
eprint/3
eread/1
eread/2
etoks/1
etoks/2
ewrite/1
ewrite/2
ewrite/3
op/3
print/1
printq/1
prompt/2
read/1
skip_term/0
sysops/0
vars/2
write/1
write_canonical/1
writeq/1

predicate_property/2
find the association between predicates and properties

predicate_property(Predicate, Property)

?Predicate <atom> or <compound_term> or <variable>

?Property <atom> or <variable>

Get or test the relationship between predicates and their properties. If the Predicate argument is a
variable then it will be bound to a predicate that has the given property. If the Property argument is a
variable it will be bound to a predicate property for the given predicate. If both the Predicate and Property
arguments are bound then a check is made to see if the specified predicate has the specified property. If
both arguments are variables the program will backtrack through the various alternatives for the current
Prolog database.

See Also
current_atom/1
current_op/3
current_predicate/1
current_predicate/2
def/3
defs/2
pdict/3

print/1
print a term to the current output stream

print(Term)

?Term <term>

The predicate print/1 writes Term to the current output stream. By default, the effect of this predicate is
the same as that of write /1 , but you can change its effect by providing clauses for the user-defined
predicate portray/1.

If Term is a variable, then it is printed using write(Term). Otherwise the user-definable procedure
portray(Term) is called. If this succeeds, then it is assumed that Term has been printed and print/1 exits
(succeeds).

If the call to portray/1 fails, and if Term is a compound term, then write /1 is used to write the principal
functor of Term and print/1 is called recursively on its arguments. If Term is atomic, it is written using
write /1 .

See Also
current_op/3
display/1
elex/1
eprint/1
eprint/2
eprint/3
eread/1
eread/2
etoks/1
etoks/2
ewrite/1
ewrite/2
ewrite/3
op/3
portray_clause/1
printq/1
prompt/2
read/1
skip_term/0
sysops/0
vars/2
write/1
write_canonical/1
writeq/1

printq/1
print a quoted term to the current output stream

printq(Term)

?Term <term>

The predicate printq/1 writes the given term to the current output stream. By default, the effect of this
predicate is the same as that of writeq /1 , but you can change its effect by providing clauses for the
predicate portray/1.

If Term is a variable, then it is printed using writeq(Term). Otherwise the user-definable procedure
portray(Term) is called. If this succeeds, then it is assumed that Term has been printed and printq/1 exits
(succeeds).

If the call to portray/1 fails, and if Term is a compound term, then writeq /1 is used to write the principal
functor of Term and printq/1 is called recursively on its arguments. If Term is atomic, it is written using
writeq /1 .

See Also
current_op/3
display/1
elex/1
eprint/1
eprint/2
eprint/3
eread/1
eread/2
etoks/1
etoks/2
ewrite/1
ewrite/2
ewrite/3
op/3
portray_clause/1
print/1
prompt/2
read/1
skip_term/0
sysops/0
vars/2
write/1
write_canonical/1
writeq/1

profile/4
get or set a profile string

profile(IniFile, Section, Entry, String)

+IniFile <atom> or <string>

+Section <atom> or <string>

+Entry <atom> or <string>

?String <variable>

Read or write a String into the named initialisation file IniFile, using the given Section and Entry. If the
given file, section or label does not exist, it is created automatically. If the given Entry is the empty string,
the Section is deleted; if the given String is empty, the Entry is deleted. Note: the IniFile is not opened as
a Prolog file or stream, but is maintained entirely by Windows.

prolog_flag/2
get or check the values for global environment variables

prolog_flag(Flagname, Value)

?Flagname <atom>

?Value <atom> or <variable>

The prolog_flag/2 predicate allows you to test or retrieve the values of the global environment flags.

See Also
fileerrors/0
no_style_check/0
no_style_check/1
nofileerrors/0
prolog_flag/3
prompt/2
prompts/2
style_check/0
style_check/1
switch/2

prolog_flag/3
set and get values for global environment variables

prolog_flag(Flagname, Old_value, New_value)

+Flagname <atom>

?Old_value <atom> or <variable>

+New_value <atom>

The prolog_flag/3 predicate allows you to set the values of the global environment flags.

See Also
fileerrors/0
no_style_check/0
no_style_check/1
nofileerrors/0
prolog_flag/2
prompt/2
prompts/2
style_check/0
style_check/1
switch/2

prolog_load_context/2
find the context of the current load

prolog_load_context(Key, Value)

?Key <atom> in the domain {module,file,stream,directory} or
<variable>

?Value <atom> or <variable>

Get or check the context of the current load, where Key and its related Value is a particular attribute of the
load context. You can call prolog_load_context/2 from an embedded command in a file to find out the
context of the current load. If called outside the context of a load, it simply fails. If Key and Value are
variables prolog_load_context/2 will backtrack to find alternate solutions.

See Also
abolish_files/1
compile/1
consult/1
ensure_loaded/1
initialization/1
load_files/1
load_files/2
multifile/1
reconsult/1
save_predicates/2
source_file/1
source_file/2
source_file/3

prompt/2
get or set the Prolog prompt

prompt(Old, New)

-Old <variable>

+New <atom>

This predicate may be used to query or change the sequence of characters that indicate that the system
is waiting for user input. The atom representing the old prompt is unified with Old. New must be an atom,
and specifies the new prompt to be used.

See Also
current_op/3
display/1
elex/1
eprint/1
eprint/2
eprint/3
eread/1
eread/2
etoks/1
etoks/2
ewrite/1
ewrite/2
ewrite/3
op/3
portray_clause/1
print/1
printq/1
prompts/2
read/1
skip_term/0
sysops/0
vars/2
write/1
write_canonical/1
writeq/1

prompts/2
get or set the buffered console input prompts

prompts(Initial, Continuation)

?Initial <variable>    or <atom>

?Continuation <variable>    or <atom>

Get the Initial and Continuation atoms representing the prompts used by the buffered console input
routines, or set new prompts from the given atoms.

See Also
fileerrors/0
no_style_check/0
no_style_check/1
nofileerrors/0
prolog_flag/2
prolog_flag/3
prompt/2
style_check/0
style_check/1
switch/2

put/1
write an ASCII character to the current output stream

put(N)

+N <char>

Writes the character whose ASCII code is N to the current output stream. N can be an integer in the ASCII
range (0 to 255), or an expression that evaluates to an integer in the ASCII range.

If N does not evaluate to an integer in the ASCII range, put will generate an error.

If the current output stream is a window, and N is the ASCII code of a control character, the character will
not be output literally. Instead the control character will be interpreted by the window management
system.

These control characters only affect the screen if the current output stream is a window, or it is the
standard output stream. If the current stream is a file, the characters are output literally.

See Also
get/1
get0/1
getb/1
getx/2
putb/1
putx/2

putb/1
byte output direct to screen

putb(Byte)

+Byte <char>

Output to the screen the ASCII character related to the ASCII value Byte . If Byte is a negative integer
then two characters are output to the screen: the first is the null character (0), followed by the character
related to the absolute value of Byte. This facility is provided primarily for symmetry with the predicate
getb/1.

See Also
get/1
get0/1
getb/1
getx/2
put/1
putx/2

putx/2
output a byte, word or dword to the current output stream

putx(Size, Value)

+Size <integer> in the domain {1,2,4}

+Value <integer>

Output Value, a binary integer, to the current output stream with the given Size. Size represents the
number of bytes output. If Size is 1 then Value can be in the range [0..255], which corresponds to a byte.
If Size is 2 then Value can be in the range [0..65535], which corresponds to a word (2 byte integer). If
Size is 4 then Value can be in the range [2147483648..2147483647], which corresponds to a dword (4
byte integer). The binary integer represented by Value is output in intel format (i.e, the least significant
byte goes before the most significant byte)

This predicate is useful when outputting to files from other applications which use standard encoding of
two and four byte integers. For example, a dBASE III header contains a pointer to the end of file which is
represented as a dword. To output a dword in the correct format you would use the following call to
putx/2:

?- putx(4, Val).

where Val should be instantiated to an integer.

See Also
get/1
get0/1
getb/1
getx/2
put/1
putb/1

read/1
read a term from the current input stream

read(Term)

?Term <variable> or <atom>

Reads the next term from the current input stream and unifies with Term. In the input stream, the term
must be followed by a dot ('.') and at least one white space character (i.e. a character whose ASCII code
is less than or equal to 32). The dot and white space character are read in but are not considered part of
the term.

If end of file is encountered at the beginning of the read, Term will be unified with the atom end_of_file.

Note: user input is prompted by the currently defined prompt (see prompt /2), the default prompt is a
vertical bar character followed by a colon.

If the Term read by read/1 is not a valid term normally an error is generated. This behaviour can be
modified, however, using the Prolog flag syntax_errors.

See Also
current_op/3
display/1
elex/1
eprint/1
eprint/2
eprint/3
eread/1
eread/2
etoks/1
etoks/2
ewrite/1
ewrite/2
ewrite/3
op/3
portray_clause/1
print/1
printq/1
prompt/2
skip_term/0
sysops/0
vars/2
write/1
write_canonical/1
writeq/1

reconsult/1
load a source code program into memory replacing the previous version

reconsult(FileSpec)

+FileSpec <file_specs>

A synonym for consult/1.

Loads the source program in the file FileSpec. FileSpec can be a list of files to consult.

FileSpec can be a file specification of the form: PathAlias(File) where PathAlias is an alias that refers to a
specified path and File is a file name relative to that path. FileSpec can also be an atom of the form:
Path/File where Path defines the path where the file File will be found.

If FileSpec does not specify a file extension then '.PL' is assumed.

Any commands in FileSpec are executed as they are encountered. A command is a term with functor ':-'.

If FileSpec is the atom user, clauses and commands are entered from the terminal using the built-in
editor.

See Also
abolish_files/1
compile/1
consult/1
ensure_loaded/1
initialization/1
load_files/1
load_files/2
multifile/1
prolog_load_context/2
save_predicates/2
source_file/1
source_file/2
source_file/3

remove/3
remove an element from a list

remove(Element, List, Remainder)

?Element <term>

?List <list> or <variable>

?Remainder <list> or <variable>

If Element and List are instantiated then the Element is removed from the List to give Remainder.

If Remainder and List are instantiated then an attempt is made to instantiate Element to a single element
of List which when removed gives the list Remainder. If this cannot be done remove/3 fails.

See Also
append/3
length/2
mem/3
member/2
member/3
removeall/3
reverse/2

removeall/3
remove all occurrences of an item from a list

removeall(Item, List, Remainder)

?Item <term> or <variable>

+List <list>

?Remainder <list> or <variable>

Remove all occurrences of Item from the List to leave Remainder.

See Also
append/3
length/2
mem/3
member/2
member/3
remove/3
reverse/2

ren/2
rename a file

ren(Old, New)

+Old <atom>

+New <atom>

Renames the disk file Old to have the name New. Both Old and New must be atoms. Old must be the
name of an existing file. New must be the name of a file that does not yet exist. If Old and New specify a
disk drive then they must both be the same. ren/2 can be used to move a file from one directory to
another (provided both directories are on the same disk).

See Also
absolute_file_name/2
absolute_file_name/3
attrib/2
cat/3
chdir/1
close/1
del/1
dir/3
drive/1
env/2
fclose/1
fcreate/3
fdict/1
file_search_path/2
fname/4
fopen/3
library_directory/1
mkdir/1
open/2
rmdir/1
stamp/1

repeat/0
succeed even on backtracking.

Succeeds when called and on backtracking. Any calls which textually precede the repeat in the body of a
clause will never be reached on backtracking.

repeat is defined as:

repeat.
repeat :- repeat.

See Also
!/0
,/2
->/2
;/2
\+/1
abort/0
break/0
break_hook/1
fail/0
false/0
halt/0
halt/1
not/1
otherwise/0
repeat/1
true/0

repeat/1
succeed even on backtracking for a given number of times

repeat(Number)

+Number <integer>

Succeeds when initially called, and succeeds for the given Number of times on backtracking. Any calls
which textually precede the repeat in the body of a clause will not be reached until the repeat/1 predicate
has been backtracked into the given Number of times.

See Also
!/0
,/2
->/2
;/2
\+/1
abort/0
break/0
break_hook/1
fail/0
false/0
halt/0
halt/1
not/1
otherwise/0
repeat/0
true/0

retract/1
delete a clause that matches the given clause

retract(Clause)

+Clause <clause>

Searches for the first clause in the database that matches Clause. If such a clause is found, it is deleted.
Any variables in Clause are bound as a result of the unification. This predicate is non-deterministic. On
backtracking there is an attempt to find and delete another matching clause. This search always starts at
the beginning of the list of clauses for the relation name of Clause. So all clauses asserted between the
retract and the redo of the call (even if added using asserta/1) are candidates for deletion on the redo.
The call to retract/1 fails when there are no (more) clauses that match Clause.

Please note: Modifying dynamic code while it is running can lead to unpredictable behaviour.

See Also
abolish/1
abolish/2
abolish_files/1
assert/1
asserta/1
assert/2
assertz/1
clause/2
clauses/2
clause/3
dynamic/1
dynamic_call/1
functor/3
listing/0
listing/1
retractall/1
retract/2
volatile/1

retract/2
retract a clause at a specified position

retract(Pred, Pos)

+Pred <pred_spec>

+Pos <integer> > 0

Retract clause at Pos for the dynamic predicate specified by Pred. If Pred is not a dynamic predicate, or if
Pos is greater than the number of clauses defining Pred retract/2 fails.

Please note: Modifying dynamic code while it is running can lead to unpredictable behaviour.

See Also
abolish/1
abolish/2
abolish_files/1
assert/1
asserta/1
assert/2
assertz/1
clause/2
clauses/2
clause/3
dynamic/1
dynamic_call/1
functor/3
listing/0
listing/1
retract/1
retractall/1
volatile/1

retractall/1
delete all clauses that match the given clause head

retractall(Head)

+Head <compound_term>

Deletes every clause in the database whose head matches Head. Variables in Head are left
uninstantiated by the call. On backtracking there is no attempt to redo the call, even though matching
clauses may have been asserted.

Head must represent a call to a dynamic predicate.

Please note: Modifying dynamic code while it is running can lead to unpredictable behaviour.

See Also
abolish/1
abolish/2
abolish_files/1
assert/1
asserta/1
assert/2
assertz/1
clause/2
clauses/2
clause/3
dynamic/1
dynamic_call/1
functor/3
listing/0
listing/1
retract/1
retract/2
volatile/1

reverse/2
check or get the reverse of a list

reverse(List, Revlist)

?List <list> or <variable>

?Revlist <list> or <variable>

If List and Revlist are instantiated, a check is made to see if one is a reverse of the other.

If either of List or Revlist is a variable, it is bound to a reverse of the other.

See Also
append/3
length/2
mem/3
member/2
member/3
remove/3
removeall/3

rmdir/1
delete a directory

rmdir(Dir)

+Dir <atom>

Deletes the directory called Dir (provided it is empty). (It is the same as the RMDIR command under
DOS.)

Dir must be an atom that names the directory. If Dir does not specify a drive name, the directory is
assumed to be on the current drive. If Dir does not specify a path name, it is assumed to be in the current
directory.

You cannot delete the root directory (\), the current directory, nor any non-empty directory.

See Also
absolute_file_name/2
absolute_file_name/3
attrib/2
cat/3
chdir/1
close/1
del/1
dir/3
drive/1
env/2
fclose/1
fcreate/3
fdict/1
file_search_path/2
fname/4
fopen/3
library_directory/1
mkdir/1
open/2
ren/2
stamp/1

save_predicates/2
save the specified predicates to a file in object code format.

save_predicates(ListOfPredSpecs, FileSpec)

+ListOfPredSpecs <pred_specs>

+FileSpec <file_spec>

This predicate is only available in the Developer and Programmer editions of Prolog.

The save_predicates/2 program saves the current definitions of all the predicates specified by
ListOfPredSpecs into a file in object code format.

ListOfPredSpecs is a list of the predicates to be saved. The predicate specifications are of the form
predicate/arity. FileSpec is the name of the target file in which the object code will be saved.

FileSpec can be a file specification of the form: PathAlias(File) where PathAlias is an alias that refers to a
specified path and File is a file name relative to that path. FileSpec can also be an atom of the form:
Path/File where Path defines the path where the file File will be found. The extension '.PC' is assumed if
none is given.

See Also
abolish_files/1
compile/1
consult/1
ensure_loaded/1
initialization/1
load_files/1
load_files/2
multifile/1
prolog_load_context/2
reconsult/1
source_file/1
source_file/2
source_file/3

see/1
set the current input stream

see(Stream)

+Stream <file_spec>

Causes Stream to become the current input stream. If Stream is the name of an open input stream, it is
made the current input stream. Otherwise the specified file is opened (for read access only) and made the
current input stream. If it is not possible to open a file called Stream, an error will be generated. see/1
does not attempt to create a new file.

To make the user's terminal the current input stream, Stream should be the reserved stream name user.
The user stream always uses the built-in editor for user input, and it echoes this input in the current
window.

Streams are not automatically closed. You should close them with seen /0 or close /1 .

See Also
input/1
output/1
seeing/1
seen/0
tell/1
telling/1
told/0

seed/1
re-seed the internal random number generator

seed(Number)

+Number <number>

Resets the seed for the random number generator to be Seed.

This predicate is useful when developing simulations that require the same sequence of random numbers
to be generated on different occasions.

See Also
</2
=:=/2
=</2
=\=/2
>/2
>=/2
is/2

seeing/1
return the current input stream

seeing(Stream)

-Stream <variable>

Stream is unified with the name of the current input stream.

See Also
input/1
output/1
see/1
seen/0
tell/1
telling/1
told/0

seen/0
reset the current input stream to the standard input stream

The current input stream is reset to user immediately. If the original input stream was a disk file, then it is
closed.

See Also
input/1
output/1
see/1
seeing/1
tell/1
telling/1
told/0

setof/3
find the set of instances of a term for which a Prolog goal is true

setof(Term, Call, List)

?Term <term>

+Call <goal>

?List <variable>

Succeeds if List is a non-empty list of instances of Term such that Call is provable. Term may be any type
of Prolog term, Call must be a goal of the form:

V1^V2^ …^Vn^Goal (n ³ 0)

where V1,V2,…,Vn are variables in the call to solve Goal. They are the existentially quantified variables of
Goal.

The solution set, List, will be sorted according to the standard ordering used by the compare /3 predicate.
List will not contain any duplicate entries.

If Call contains any free variables, then setof/3 will generate alternative sets for distinct instantiations of
the free variables. A free variable is one which appears in Call but does not appear in Term and is not
existentially quantified. For example in the call:

setof(A, B^C^ f(A,B,C,D,E), S)

D and E are free variables.

If there are no free variables, then setof/3 will have at most one solution. Otherwise a separate set will be
generated for different instantiations of the free variables. These alternative sets are returned on
backtracking until no further sets can be found.

See Also
^/2
bagof/3
findall/3
forall/2
solution/2

show_dialog/1

See Also
call_dialog/2
window_handler/2
window_handler/4
wdcreate/7

simple/1
test for an atom, number or variable

simple(Term)

+Term <term>

simple/1 succeeds if Term is currently instantiated to either an atom, a number or a variable; otherwise it
fails.

See Also
atom/1
atomic/1
callable/1
char/1
chars/1
compound/1
float/1
ground/1
integer/1
integer_bound/3
nonvar/1
number/1
string/1
type/2
unifiable/2
var/1

skip/1
skip to just after the specified ASCII value on the current input stream

skip(N)

+N <integer_expr> in the range [0..255]

Reads (from the current input stream) all characters up to and including the character whose ASCII value
is N.

N can be an integer in the ASCII range (0 - 255). It can also be an arithmetic expression that evaluates to
an integer in the ASCII range. This means that it can be a string of the form "c" which evaluates to the
ASCII code of the character c.

See Also
at_end_of_file/0
at_end_of_line/0
find/1
flush/0
inpos/1
outpos/1
skip_layout/0
skip_line/0
skip_term/0
stream_position/2
stream_position/3

skip_layout/0
skip past the white space characters on the current input stream

Skip past all of the ASCII layout (white space) characters (in the range [0..32]) on the current input
stream.

See Also
at_end_of_file/0
at_end_of_line/0
find/1
flush/0
inpos/1
outpos/1
skip/1
skip_line/0
skip_term/0
stream_position/2
stream_position/3

skip_line/0
skip the remaining input characters of the current line

Comments Skip the remaining input characters of the current line on the current input stream.
Coding with skip_line/0 and at_end_of_line /0 to handle line input is more portable among different
operating systems than checking end of line by the input character code.

See Also
at_end_of_file/0
at_end_of_line/0
find/1
flush/0
inpos/1
outpos/1
skip/1
skip_layout/0
skip_term/0
stream_position/2
stream_position/3

skip_term/0
skip the remaining input characters up to the end of a term

Comments Skip to the end of a term on the current input stream.

See Also
at_end_of_file/0
at_end_of_line/0
find/1
flush/0
inpos/1
outpos/1
skip/1
skip_layout/0
skip_line/0
stream_position/2
stream_position/3

solution/2
return the nth soution to a specified call

solution(Call, Nth)

+Call <goal>

?Nth <integer> or <variable>

If Nth is an integer then the Call is executed and re-satisfied until the Nth solution has been found. If the
number of solutions to the Call is less than the value of Nth then solution/2 will fail. If Nth is a variable
then the Call is executed and, upon its initial success, Nth is instantiated to 1. Upon backtracking, Nth is
successively instantiated to the next solution number.

See Also
^/2
bagof/3
findall/3
forall/2
setof/3

sort/2
sort a list into ascending order and remove duplicates

sort(List1, List2)

+List1 <list>

-List2 <variable>

Each member of the list List1 is compared and sorted into ascending order according to the standard
ordering of terms, and duplicate elements are removed. The sorted copy of List1 is bound to the variable
List2.

See Also
=/2
==/2
@</2
@=</2
@>/2
@>=/2
\=/2
\==/2
cmp/3
compare/3
eqv/2
keysort/2
len/2
occurs_chk/2
sort/3
subsumes_chk/2

sort/3
sort a list into ascending order using a key, do not remove duplicates

sort(List1, List2, Path)

+List1 <list>

-List2 <variable>

+Path <list_of <integer>    >

Sorts the list List1 into ascending order using the sort key described by Path. The sorted copy of List1 is
bound to List2. This predicate is useful for sorting lists of records. It allows the records to be sorted on a
particular field.

List1 should be a list of records to sort. A record is either a compound term or a list. Path must be a list of
integers. It is used to identify a specific field of a record (i.e. a complete list or compound term). The
empty list [] identifies a complete record. A single element list, of the form [Element], where Element is a
positive integer identifies a particular field within a record. A single element list, of the form [Element],
where Element is a negative integer, identifies the elements following that particular field of the record.
For example, the list [1] refers to the functor of a compound term, or the first element of a list. The list [2]
refers to the first argument of a compound term, or the second element of a list, and so on. A two element
list identifies a field within a field. For example, given the record:

record([fred,bloggs], [birth, friday, 30, october])

The path [2,1] refers to the atom fred. The path [3,4] refers to october. Note the way in which the functor
of a compound term is considered the first field of a record.

The sort/3 predicate will order the list of records in List1 on the field identified by Path. The records will be
sorted into ascending order according to the standard ordering of terms.

Note: duplicate elements will not be removed.

See Also
=/2
==/2
@</2
@=</2
@>/2
@>=/2
\=/2
\==/2
cmp/3
compare/3
eqv/2
keysort/2
len/2
occurs_chk/2
sort/2
subsumes_chk/2

source_file/1
check or get the files that are currently loaded

source_file(FileSpec)

?FileSpec <file_spec> or <variable>

The predicate source_file/1 is true if FileSpec refers to a currently loaded file.

FileSpec can be a file specification of the form: PathAlias(File) where PathAlias is an alias that refers to a
specified path and File is a file name relative to that path. FileSpec can also be an atom of the form:
Path/File where Path defines the path where the file File will be found.

If FileSpec is unbound, it is successively unified with the absolute file names of all currently loaded files.

If FileSpec is not the name of a loaded file or there are no source files currently open then source_file/1
simply fails.

See Also
abolish_files/1
compile/1
consult/1
ensure_loaded/1
initialization/1
load_files/1
load_files/2
multifile/1
prolog_load_context/2
reconsult/1
save_predicates/2
source_file/2
source_file/3

source_file/2
check or get the predicates associated with currently loaded files

source_file(PredSpec, FileSpec)

?PredSpec <pred_spec> or <variable>

?FileSpec <file_spec> or <variable>

The predicate source_file/2 is true if PredSpec refers to a currently loaded predicate and FileSpec refers
to the source file with which the predicate is associated. PredSpec may be the general term related to a
predicate or a variable.

FileSpec can be a file specification of the form: PathAlias(File) where PathAlias is an alias that refers to a
specified path and File is a file name relative to that path. FileSpec can also be an atom of the form:
Path/File where Path defines the path where the file File will be found.

If PredSpec is instantiated to a general term related to a loaded predicate and FileSpec    is a variable,
then FileSpec will be successively unified with the absolute file names of the files in which the PredSpec
is defined. If PredSpec    is a variable and FileSpec refers to a loaded file then PredSpec will be
successively unified with each of the predicates defined in that file.

See Also
abolish_files/1
compile/1
consult/1
ensure_loaded/1
initialization/1
load_files/1
load_files/2
multifile/1
prolog_load_context/2
reconsult/1
save_predicates/2
source_file/1
source_file/3

source_file/3
the same as source_file/2 but also returns the numbers of the clauses

source_file(PredSpec, ClauseNumber, FileSpec)

?PredSpec <pred_specs> or <variable>

?ClauseNumber <integer> or <variable>

?FileSpec <file_spec> or <variable>

The predicate source_file/3 is true if clause number ClauseNumber of predicate PredSpec comes from
the currently loaded file FileSpec. PredSpec may be a general term related to a predicate or a variable.

FileSpec can be a file specification of the form: PathAlias(File) where PathAlias is an alias that refers to a
specified path and File is a file name relative to that path. FileSpec can also be an atom of the form:
Path/File where Path defines the path where the file File will be found. Any combination of bound and
unbound arguments is possible, and source_file/3 will generate the others.

See Also
abolish_files/1
compile/1
consult/1
ensure_loaded/1
initialization/1
load_files/1
load_files/2
multifile/1
prolog_load_context/2
reconsult/1
save_predicates/2
source_file/1
source_file/2

spy/1
set a spy point on the specified predicates

spy(Tospy)

+Tospy <pred_specs>

Sets a spy point on all of the predicates specified by Tospy.

Tospy must be either a single predicate specification of the form Predicate/Arity or a list of predicate
specifications.

If there are no clauses defined for Tospy, spy/1 just succeeds. It does not report an error.

spy is a built-in prefix operator, so you do not need to surround its argument with brackets.

See Also
debug/0
debug_hook/1
debugging/0
force/1
leash/2
leashed/2
ms/2
no_style_check/0
no_style_check/1
nodebug/0
nospy/1
nospyall/0
notrace/0
style_check/0
style_check/1
trace/0

stamp/2
set or get a file date and time stamp

stamp(File, Stamp)

+File <file_name>

?Stamp <variable> or <integer>

Sets or gets the time and date.of the given File according to the Stamp argument. The Stamp argument is
a 32-bit integer time value.

See Also
absolute_file_name/2
absolute_file_name/3
attrib/2
cat/3
chdir/1
close/1
del/1
dir/3
drive/1
env/2
fclose/1
fcreate/3
fdict/1
file_search_path/2
fname/4
fopen/3
library_directory/1
mkdir/1
open/2
ren/2
rmdir/1

statistics/0
display statistics about the current status of the system

Displays statistics relating to memory usage, showing the Backtrack, Local, Reset, Heap, Text, Program
and System spaces, and the Input and Output string buffers. Also shown are statistics relating to time, the
amount of elapsed time, the amount of time spent during active processing, the amount of time spent
waiting for keyboard input and the amount of time spent garbage collecting. Note that statistics/0
performs a garbage collection prior to calculating the information.

See Also
free/9
garbage_collect/0
garbage_collect/1
gc/0
nogc/0
statistics/2
stats/4
total/9
ver/1
ver/4

statistics/2
get individual memory statistics

statistics(Keyword, Statistic)

+Keyword <atom>

-Statistic <variable>

The statistics/2 predicate is used to obtain individual statistics on Prologs memory areas. The Keyword
argument is a memory area keyword. The Statistic argument is a variable which becomes bound to the
amount of free space available in the specified memory area. Note that statistics/2 performs a garbage
collection prior to calculating the information.

See Also
free/9
garbage_collect/0
garbage_collect/1
gc/0
nogc/0
statistics/0
stats/4
total/9
ver/1
ver/4

stats/4
return assorted runtime statistics

stats(Elapsed, Idle, GCTime, GCCount)

-Elapsed <variable>

-Idle <variable>

-GCTime <variable>

-GCCount <variable>

Return the total elapsed time, idle time, garbage collection time and garbage collection count for the
current state of the Prolog system. The Elapsed argument is a variable that will be bound to the number
of ticks (See ticks/1) since the start of the current Prolog session. The Idle argument is a variable that will
be bound to the number of ticks spent waiting for user input. The GCTime argument is a variable that will
be bound to the number of ticks spent garbage collecting the system. The GCCount argument is a
variable that will be bound to the number of times the garbage collector has been called during the
current session. Note that stats/4 does not explicitly call the garbage collector.

See Also
free/9
garbage_collect/0
garbage_collect/1
gc/0
nogc/0
statistics/0
statistics/2
total/9
ver/1
ver/4

status_box/1
display a status message window

status_box(Message)

+Message <atom> or <string>

Display a status message in a window. This predicate is reccomended for its portability as it is available
on both DOS and Windows platforms it is equivalent to calling sttbox/2 with the second argument set to 0.

One useful feature of the status box is that only the input lines containing one or more characters replace
the characters already in the status box. This means that, using multiple line input, you can refresh part of
the status box without having to re-draw the whole window.

See Also
erase_status_box/0
message_box/3
sttbox/2

stream_position/2
get the current position of the specified stream

stream_position(Stream, Pos)

+Stream <file_name>

-Pos <variable>

stream_position/2 is true when Stream is an atom representing an open stream, Pos is bound to an
integer that indicates the current position of the Stream pointer.

See Also
at_end_of_file/0
at_end_of_line/0
find/1
flush/0
inpos/1
outpos/1
skip/1
skip_layout/0
skip_line/0
skip_term/0
stream_position/3

stream_position/3
get the current position of the specified stream

stream_position(Stream, Old, New)

+Stream <file_name>

-Old <variable>

+New <integer>

stream_position/3 unifies the current position of the read/write pointer for Stream with Old, then sets the
position to New. Old and New are both integers.

Note that this operation only makes sense on streams that are connected to disk files. If Stream is any
other type of stream, or is not a valid stream, stream_position/3 will generate an error.

See Also
at_end_of_file/0
at_end_of_line/0
find/1
flush/0
inpos/1
outpos/1
skip/1
skip_layout/0
skip_line/0
skip_term/0
stream_position/2

string/1
test for a string

string(Term)

?Term <term>

Succeeds if Term is a Prolog string. Note: the Prolog string is a compact text data type which differs from
the atom and byte-list types. See programming guide for a full description of the string data type.

See Also
atom/1
atomic/1
callable/1
char/1
chars/1
compound/1
float/1
ground/1
integer/1
integer_bound/3
nonvar/1
number/1
simple/1
type/2
unifiable/2
var/1

string_chars/2
convert between strings and character lists

string_chars(String, CharList)

?String <string> or <variable>

?CharList <char_list> or <variable>

Initially either CharList must be instantiated to a list of ASCII character codes (containing no variables) or
String must be instantiated to a string.

If String is initially instantiated to a string, CharList will be unified with the list of ASCII character codes
that represent its printed representation. If CharList is initially instantiated to a list of ASCII character
codes then String will be unified with a string containing those characters.

See Also
=../2
atom_chars/2
atom_string/2
copy_term/2
name/2
number_atom/2
number_chars/2
number_string/2
numbervars/3

sttbox/2
display or update a status box

sttbox(Text, FontAction)

+Text <atom> or <string>

+FontAction <atom> or <integer> in the domain {-1,0,1,65535}

Display a standard modeless status box or update its contents with the given text. The Text argument
may be a string or atom. The FontAction argument is either the name of a font (including the special
numeric font names) to be used in the dialog, -1 in which case the status box goes away or 65535 in
which case the Prolog bitmap is displayed as a background to the status box.

The status box has a special window handle of 2, which can be used in conjunction with the predicate
wenable/2 to enable or disable the status box window.

One useful feature of the status box is that only the input lines containing one or more characters replace
the characters already in the status box. This means that, using multiple line input, you can refresh part of
the status box without having to re-draw the whole window.

See Also
abtbox/3
change_hook/3
chgbox/3
dirbox/4
erase_status_box/0
find_hook/3
fndbox/2
message_box/3
msgbox/4
status_box/1

stuff/3
compress the data in the current input stream to the current output stream

stuff(BufSize, RawCount, CompCount).

+BufSize <integer> in the range [0..4]

-RawCount <variable>

-CompCount <variable>

This predicate reads data from the current input stream, compressing them and outputting the
compressed equivalent to the current output stream. It terminates when end of file is encountered on
input. The BufSize argument is a buffer size value that specifies the size of the sliding window and the
lookahead buffer. The RawCount argument is a variable that is bound to the total number of raw
(uncompressed) bytes processed. The CompCount argument is a variable that is bound to the total
number of compressed bytes processed.

In the LZSS algorithm, used by this compression predicate, what is known as a sliding window is
maintained over recently output data, while a lookahead buffer peeks into the stream of data yet to be
compressed. The contents of the look-ahead are compared with all locations in the sliding window, and if
a match of two or more characters is found, the address and length of the match within the window, rather
than the characters themselves, is output.

By experimenting with the sliding window size and comparing the last two values, it should be easy to
determine the optimimum setting for whichever type of data you want to compress.

See Also
fluff/3

style_check/0
turn on all compile-time style checking.

The predicate style_check/0 turns on all the compile-time style checking of source files. This is equivalent
to the call:

?- style_check(all).

A complete style check involves: checking for clauses containing a single instance of a named variable,
checking for procedures whose clauses are not all adjacent to one another in the file and checking for
multiple definitions of the same procedure in different files. See no_style_check /1 .

See Also
debug/0
debug_hook/1
debugging/0
force/1
leash/2
leashed/2
ms/2
no_style_check/0
no_style_check/1
nodebug/0
nospy/1
nospyall/0
notrace/0
spy/1
style_check/1
trace/0

style_check/1
turn on the specified type of compile-time style checking.

style_check(Type)

+Type <atom>

Turn on the specified type of style checking. The Type argument is a style check value.

Since all style checking is on by default, this predicate is only used to put back style checking after it has
been turned off by no_style_check /1 .

See Also
debug/0
debug_hook/1
debugging/0
force/1
leash/2
leashed/2
ms/2
no_style_check/0
no_style_check/1
nodebug/0
nospy/1
nospyall/0
notrace/0
spy/1
style_check/0
trace/0

subsumes_chk/2
check that one term subsumes another

subsumes_chk(General, Specific)

+General <term>

+Specific <term>

Succeeds if Specific is a specific instance of the term General.

See Also
=/2
==/2
@</2
@=</2
@>/2
@>=/2
\=/2
\==/2
cmp/3
compare/3
eqv/2
keysort/2
len/2
occurs_chk/2
sort/2
sort/3

switch/2
set or get the value of Prolog command line switch

switch(Switch, Value)

+Switch <atom>

?Value <term> or <variable>

Set or get the Value of the Switch. Switches are denoted as a single char atom in the range 'a' to 'z'. Note:
once Prolog is running switch values have no effect on the system itself. All the switches are therefore
available to the user as a convenient store for up to 26 named integer values.

See Also
dos/0
dos/1
env/2
exec/3
ver/4

sysops/0
re-install all of the system-declared operators

The predicate sysops/0 re-installs all of the system-declared operators. Because operators can be re-
defined it is useful to be able to re-install the default set of operators, so that standard Edinburgh syntax
files may be loaded. Any user-defined operators will not be affected by a call to sysops/0.

See Also
current_op/3
display/1
elex/1
eprint/1
eprint/2
eprint/3
eread/1
eread/2
etoks/1
etoks/2
ewrite/1
ewrite/2
ewrite/3
op/3
portray_clause/1
print/1
printq/1
prompt/2
read/1
skip_term/0
vars/2
write/1
write_canonical/1
writeq/1

system_menu/3
invoke a development environment menu function

system_menu(Window, Menu, Function)

+Window <window_handle>

+Menu <atom>

+Function <atom> or <compound_term>

Comments The predicate system_menu/3 runs the function from the menu using the specified window as the current
focus. The Window argument should be the name of a window created by Prolog. The Menu argument
should be an atom that is the name of one of the development environment menus. The Function
argument is either an atom or a tuple that represents a valid environment function. All functions allow you
to enter in as if the menu item had been just selected from the menu. Certain functions allow you to
"answer" the dialog that would normally have been displayed by the menu item.

tab/1
write the given number of spaces to the current output stream

tab(N)

+N <integer_expr> in the range [0..255]

Writes N spaces (ASCII code 32) to the current output stream. N may be an integer expression.

See Also
nl/0
write/1

tell/1
set the current output stream

tell(Stream)

+Stream <file_spec>

Causes Stream to become the current output stream. Stream must be an atom. If Stream is the name of
an open stream (i.e. a reserved stream, or a window, or an open file), then it is made the current output
stream. Otherwise a file called Stream is created (using create/1) and made the current output stream.

Streams are not automatically closed. You should close them with told /0 or close /1 .

See Also
input/1
output/1
see/1
seeing/1
seen/0
telling/1
told/0

telling/1
return the current output stream

telling(Stream)

+Stream <variable>

Stream is unified with the name of the current output stream. Note: the output stream is set up with the
tell/1 predicate and closed with the told/1 predicate.

See Also
input/1
output/1
see/1
seeing/1
seen/0
tell/1
told/0

term_expansion/2
user-defined hook for grammar rule translation

term_expansion(Input, Output)

+Input <term>

+Output <variable>

This user-defined predicate is used to change the way that Prolog translates grammar rules. The
predicate expand_term/2 calls term_expansion/2 if it exists. If the call to term_expansion/2 succeeds no
further expansion is tried. If the call to term_expansion/2 fails the normal grammar rule translation is then
tried.

If after your own term expansion you want to additionally perform the default grammar rule expansion,
you should use the predicate expand_dcg/2. This predicate converts grammar rules to Prolog without re-
invoking term_expansion/2.

throw/2
throw the given error for the given goal

throw(Error, Goal)

+Error <integer>

+Goal <goal>

The predicate throw/2 generates an actual Error for the specified Goal. If there is no call to catch/2
remaining on the call stack, the Goal and the Error number is passed to the user-defined '?ERROR?'/2, if
it exists, or otherwise to the default sytem error_hook/2.

See Also
abort/0
catch/2
catch/3
error_hook/2
error_message/2
flush/0
unknown_predicate_handler/2

ticks/1
get a time reference

ticks(Time)

-Time <variable>

Return the Time of the system ticker and hardware timer as a 32 bit integer to give a 1193181/256 Hz
(approximately 1/4660 seconds) time reference. The count re-cycles roughly once per 10.5 days.

Because all 32 bits of the integer word are used in the value returned by ticks/1 this value will be negative
during the second half of the 10.5 day cycle. The absolute positive values can be computed as the
relative value modulo 2^32.

Note: the functionality of this predicate is somewhat hardware dependant, and as a result may not work
properly on all models of computer.

See Also
date/3
date/4
ms/2
time/4

time/4
get the system time

time(Hours, Minutes, Seconds, Hundredths)

-Hours <variable>

-Minutes <variable>

-Seconds <variable>

-Hundredths <variable>

Return the system time in Hours, Minutes, Seconds and Hundredths. Note: the PC clock only has a
resolution of around 55 ms, so the Hundredths variable will return values that are rounded to 1/18.2
seconds.

See Also
date/3
date/4
ms/2
ticks/1

timer/2
get or set the status of the given timer interrupt

timer(Timer, Status)

+Timer <integer> in the range [0..63]

?Status <variable>, <integer> or
(<integer>, <integer>)

Get or set the status of the given timer. Timers are Prolog interrupts that can be set to go off after a given
interval. There are 64 available timers which can be used by creating a definition for the '?TIMER?'/3
hook. The Timer argument is an integer between 0 and 63 that specifies the timer. If the Status argument
is bound it should be a timer status value. If the Status argument is a variable it will be bound to a timer
status return value.

To set the status of a timer you must specify an interval in system ticks (see ticks/1 for a more detailed
description of the ticks unit) and an optional absolute base time. Setting an interval of 0 turns the timer off.
The absolute base time for a timer should be specified as the number of ticks since the current Prolog
session started. If you do not specify a base time the current elapsed time since the start of the session is
used. A timer will go off when the absolute base time plus the interval has been reached or surpassed.

If you are setting timer goals to go off at regular intervals you can set the same interval for the next timer
goal and set its absolute base time to be the absolute end time of the previous timer goal.

The interesting thing to note here is that timer/2 returns the absolute time at which the given timer goal
should have gone off and not the time it actually went off. So if, for some reason, a given timer goal gets
delayed the next timer goal will go off as near to its intended time as it can. This means that in a
sequence of regular timer goals any delay will be isolated to the particular timer goals that were delayed
and will not be reflected onto the sequence as a whole.

See Also
timer_hook/3
'?TIMER?'/3
wait/1
wbusy/1
wflag/1

'?TIMER?'/3
user-defined hook for the 64 built-in timers

'?TIMER?'(Timer,Interval,Goal)

+Timer <integer> in the range [0..63]

+Interval <integer>

+Goal <goal>

The '?TIMER?'/3 program is used to handle an interrupt generated by one of the 64 built-in timers. The
Timer argument will be matched with the timer that generated an interrupt. The Interval argument will be
matched with the timer's (Interval,BaseTime) pair. A timer will go off when the absolute base time plus the
interval has been reached or surpassed. The Goal argument is the Prolog goal that was interrupted by the
timer. This hook should be used in conjunction with the predicate timer/2. To call the default behaviour for
handling timers you should call the predicate timer_hook/3.

See Also
timer/2
timer_hook/3
wait/1
wbusy/1
wflag/1

timer_hook/3
built-in timer hook

break_hook(Timer,Interval,Goal)

+Timer <integer> in the range [0..63]

+Interval <integer>

+Goal <goal>

Invoke the system defined timer hook with the given Timer, Interval and Goal. The default behaviour is to
not reset the timer and simply run the Goal. This predicate is mainly provided to allow programmatic
access to the default system timer handler in user-defined '?TIMER?'/3 programs.

See Also
timer/2
'?TIMER?'/3
wait/1
wbusy/1
wflag/1

told/0
reset the current output stream to the standard output stream

This predicate resets the current output stream to the standard output stream (user). If the original input
stream was a disk file, then the file is closed.

See Also
input/1
output/1
see/1
seeing/1
seen/0
tell/1
telling/1

total/9
return the total space allocated to Prolog's memory areas

total(Backtrack, Local, Reset, Heap, Text, Program, System, Input, Output)

-Backtrack <variable>

-Local <variable>

-Reset <variable>

-Heap <variable>

-Text <variable>

-Program <variable>

-System <variable>

-Input <variable>

-Output <variable>

Return the number of bytes of total space allocated to the Backtrack, Local, Reset, Heap, Text, Program
and System spaces, and the Input and Output string buffers. See the predicates free/9, statistics/0 and
statistics/2 to find out how much of this memory is actually used.

See Also
free/9
garbage_collect/0
garbage_collect/1
gc/0
nogc/0
statistics/0
statistics/2
stats/4
ver/1
ver/4

trace/0
switch the trace mode to on

Switches the trace mode to on. In this mode the debugger stops at every dynamic predicate that is called,
allowing you to single-step through the execution of an interpreted Prolog program.

The debugger will not be invoked if the top level query is preceded with ':-'. Nor will it be invoked when
executing queries in files that are being consulted.

See Also
debug/0
debug_hook/1
debugging/0
force/1
leash/2
leashed/2
ms/2
no_style_check/0
no_style_check/1
nodebug/0
nospy/1
nospyall/0
notrace/0
spy/1
style_check/0
style_check/1

true/0
succeed

The predicate true/0 is a useful "no operation" in a program it always succeeds.

See Also
!/0
,/2
->/2
;/2
\+/1
abort/0
break/0
break_hook/1
fail/0
false/0
halt/0
halt/1
not/1
otherwise/0
repeat/0
repeat/1

ttyflush/0
flush the user output stream

Flush the current output buffer to the output stream. This predicate is particularly useful to force the
immediate display of the characters in the output buffer, where otherwise output to the screen will only be
performed when the output buffer is full.

See Also
grab/1
keys/1
ttyget/1
ttyget0/1
ttynl/0
ttyput/1
ttyskip/1
ttytab/1

ttyget/1
read a non-white-space character from the user input stream

ttyget(N)

?N <variable> or <char>

Reads the next non-white space character from the user input stream, and unifies N with the ASCII value
of this character. A white space character is defined to be one whose ASCII value is less than or equal to
32.

See Also
grab/1
keys/1
ttyflush/0
ttyget0/1
ttynl/0
ttyput/1
ttyskip/1
ttytab/1

ttyget0/1
read a character from the user input stream

ttyget0(N)

?N <variable> or <char>

Reads a character from the user input stream, and unifies N with the ASCII value of this character. When
the input file pointer is at the end of a file this ttyget0/1 returns the value 1.

See Also
grab/1
keys/1
ttyflush/0
ttyget/1
ttynl/0
ttyput/1
ttyskip/1
ttytab/1

ttynl/0
start a new line on the user output stream

Start a new line on the user output stream. This predicate works by writing a carriage return followed by
line feed to the user output stream.

See Also
grab/1
keys/1
ttyflush/0
ttyget/1
ttyget0/1
ttyput/1
ttyskip/1
ttytab/1

ttyput/1
write an ASCII character to the user output stream

ttyput(N)

+N <char>

Writes the character whose ASCII code is N to the user output stream. N can be an integer in the ASCII
range (0 to 255), or an expression that evaluates to an integer in the ASCII range.

If N does not evaluate to an integer in the ASCII range, ttyput/1 will generate an error.

If N is the ASCII code of a control character, the character will not be output literally. Instead the control
character will be interpreted by the window management system.

See Also
grab/1
keys/1
ttyflush/0
ttyget/1
ttyget0/1
ttynl/0
ttyskip/1
ttytab/1

ttyskip/1
skip to just after the specified ASCII value on the user input stream

ttyskip(N)

+N <integer_expr> in the range [0..255]

Reads (from the user input stream) all characters up to and including the character whose ASCII value is
N.

N can be an integer in the ASCII range (0 - 255). It can also be an arithmetic expression that evaluates to
an integer in the ASCII range. This means that it can be a string of the form "c" which evaluates to the
ASCII code of the character c.

See Also
grab/1
keys/1
ttyflush/0
ttyget/1
ttyget0/1
ttynl/0
ttyput/1
ttytab/1

ttytab/1
write the given number of spaces to the user output stream

ttytab(N)

+N <integer_expr> in the range [0..255]

Writes N spaces (ASCII code 32) to the user output stream. N may be an integer expression.

See Also
grab/1
keys/1
ttyflush/0
ttyget/1
ttyget0/1
ttynl/0
ttyput/1
ttyskip/1
ttytab/1

type/2
return type of a term

type(Term, Type)

+Term <term>

-Type <variable>

Return the type of a given term. The Type argument is a term type value. The Term argument is any
Prolog term.

The predicate type/2 can be used to increase the efficiency of programs that need to perform different
tasks depending on the types of its input arguments. Instead of having a program that tests for each type
in a separate clause, a program can be written that uses type/2 to determine the type of an argument,
and then makes use of first argument indexing to switch to the appropriate code.

See Also
atom/1
atomic/1
callable/1
char/1
chars/1
compound/1
float/1
ground/1
integer/1
integer_bound/3
nonvar/1
number/1
simple/1
string/1
unifiable/2
var/1

unifiable/2
check that two terms are potentially unifiable

unifiable(Term1, Term2)

+Term1 <term>

+Term2 <term>

This predicate may be used to check that two terms are potentially unifiable without binding any of their
arguments in the process.

See Also
atom/1
atomic/1
callable/1
char/1
chars/1
compound/1
float/1
ground/1
integer/1
integer_bound/3
nonvar/1
number/1
simple/1
string/1
type/2
var/1

unknown_predicate_handler/2
user defined fact that specifies the handling of unknown predicates

unknown_predicate_handler(Unknown, Action)

?Unknown <goal> or <variable>

+Action <goal>

If the unknown_predicate_handler/2 predicate is defined, when the goal specified in Unknown is called
and there is no definition for that goal then the Action goal will be called.

If Unknown is a variable then every time a goal is called that has no definition then the Action goal will be
called.

See Also
abort/0
catch/2
catch/3
error_hook/2
error_message/2
flush/0
throw/2

var/1
test for an uninstantiated variable

var(Term)

?Term <term>

Succeeds if, and only if, Term is an uninstantiated variable. An uninstantiated variable is one which has
not been bound to another term (other than another uninstantiated variable).

See Also
atom/1
atomic/1
callable/1
char/1
chars/1
compound/1
float/1
ground/1
integer/1
integer_bound/3
nonvar/1
number/1
simple/1
string/1
type/2
unifiable/2

vars/2
return a named list of vars in a term

vars(Term, Vars)

+Term <term>

-Vars <variable>

Returns Vars, a list of (Name, Variable) pairs for each af the variables occurring in the given Term. For
any variable occuring only once in the Term, Name will be the single underscore character, '_'. Variables
occuring more than once in the Term will be assigned names of the form 'A', 'B', 'C', etc. This predicate
can be used in conjunction with the predicates ewrite/2, ewrite/3, eprint /2 and eprint /3 to output
meaningful variable names, rather than the internal representation of the variables.

See Also
current_op/3
display/1
elex/1
eprint/1
eprint/2
eprint/3
eread/1
eread/2
etoks/1
etoks/2
ewrite/1
ewrite/2
ewrite/3
op/3
portray_clause/1
print/1
printq/1
prompt/2
read/1
skip_term/0
sysops/0
write/1
write_canonical/1
writeq/1

ver/1
output the standard banner

ver(Mode)

+Mode <integer>

Print the version banner in the given Mode to the current output stream. A full heap and text space
garbage collection is performed, and the banner is displayed with the amounts of space remaining in the
nine internal data areas. Mode may be 0 (no tramlines) or 1 (tramlines printed).

See Also
free/9
garbage_collect/0
garbage_collect/1
gc/0
nogc/0
statistics/0
statistics/2
stats/4
total/9
ver/4

ver/4
return information on the current version of Prolog

ver(System, Version, Date, Serial_number)

-System <variable>

-Version <variable>

-Date <variable>

-Serial_number <variable>

Return the system name, the current version, the date of creation and the serial number of your Prolog
system.

See Also
free/9
garbage_collect/0
garbage_collect/1
gc/0
nogc/0
statistics/0
statistics/2
stats/4
total/9
ver/1

volatile/1
declare that the clauses for a predicate will not be saved in object files

:- volatile PredSpec

+PredSpec <pred_specs>

The predicate volatile/1 is a built-in prefix operator. When a predicate is defined as being volatile its
clauses will not be saved in object code format files by Prolog 'save' predicates.

You can use volatile/1 at compile-time and at run-time. In both cases the predicate specified will be
declared as volatile. When used as a compile-time directive, the volatile declaration of a predicate must
appear before all clauses of that predicate.

You can check to see if a predicate is volatile by using predicate_property /2 . The properties, as well as
the predicate, can be deleted with abolish /1 .

See Also
abolish/1
abolish/2
abolish_files/1
assert/1
asserta/1
assert/2
assertz/1
clause/2
clauses/2
clause/3
dynamic/1
dynamic_call/1
functor/3
listing/0
listing/1
retract/1
retractall/1
retract/2

wait/1
get or set the window message status

wait(Flag)

+Flag <variable> or <integer> in the domain {0,1}

Yield to Windows for the given type of wait time. The Flag argument can be a wait type value or a
variable. If Flag is a variable this predicate returns the number of messages pending in the message
queue.

Normally LPA Prolog will yield control to Windows for one message cycle every 256th predicate call.
Screen and keyboard I/O also yields to Windows for the duration of the I/O, as does the beep/2 predicate.
In optimized code where, due to the optimization, fewer predicate calls are made LPA Prolog yields to
Windows less often. In the case of repeat - fail loops, because neither repeat/0 or fail/0 make any
predicate calls, the onus of yielding to Windows is on the code inside the loop. If this code is also
optimized there may be no yielding to windows while the loop is in operation, effectively 'locking out' the
Windows environment until the loop has finished. To modify this behaviour wait/1 can be used in
conjunction with tight repeat - fail loops where it is desired that the rest of Windows can still operate in the
background.

See Also
timer/2
wbusy/1
wflag/1

warea/5
get or check client area size and position

warea(Window, Left, Top, Width, Height)

+Window <window_handle>

?Left <integer> or <variable>

?Top <integer> or <variable>

?Width <integer> or <variable>

?Height <integer> or <variable>

Get or set the Left, Top corner coordinates, and the Width and Height dimensions, of the given Window's
client area. All numerical values are in pixel units, where (0,0) is the left top of the screen.

This predicate cannot be used to resize or reposition a window (see wsize/5), but can be used to help
align other GUI items within the client area of the given window.

See Also
wclass/2
wclose/1
wccreate/8
wcreate/8
wdcreate/7
wdict/1
wenable/2
wfind/3
wfocus/1
wlink/3
wndhdl/2
wshow/2
wsize/5
wstyle/2
wtcreate/6
wtext/2
wucreate/6

wbclose/1
close a bitmap

wbclose(Bitmap)

+Bitmap <atom>

Close the named Bitmap, returning its resources to Windows.

See Also
wbdict/1
wbload/2
wbopen/2

wbdict/1
return a dictionary of bitmaps

wbdict(Bitmaps)

+Bitmaps <variable>

Return a list of all the currently defined bitmaps (Bitmaps).

See Also
wbclose/1
wbload/2
wbopen/2

wbload/2
load a bitmap from a disk file

wbload(Bitmap, File)

+Bitmap <atom>

+File <atom>

Open the named Bitmap from the specified disk File.

See Also
wbclose/1
wbdict/1
wbopen/2

wbopen/2
load a bitmap from local resources

wbopen(Bitmap, Name)

+Bitmap <atom>

+Name <atom>

Open the named resource (Name) from the LPA Prolog resource file using the logical name (Bitmap).

See Also
wbclose/1
wbdict/1
wbload/2

wbtnsel/2
get or set selection state of a button

wbtnsel(Window, Status)

+Window <window_handle>

?Status <integer> or <variable>

Get or set the selection status of the given radio or checkbox button. The Window argument is the handle
of the button. The Status argument is a button status value.

See Also
wccreate/8
wcreate/8
wdcreate/7

wbusy/1
get or set the busy cursor flag

wbusy(CursorFlag)

?CursorFlag <integer> in the range {0..12}, <atom> or <variable>

Set or test the Windows busy cursor status. The CursorFlag argument may be a flag value or a variable. If
the value of the CursorFlag argument is 1 or greater then the busy cursor flag is set.

Note that when the busy cursor is set, the mouse cannot be used for any purpose, and menus and
dialogs are effectively disabled. This flag also prevents switching to other applications, so care must be
taken in its use.

There are a number of predefined window cursors available for use with the wbusy/1 predicate. The
predicate wcopen/2 can be used to load additional cursors from local resources.

See Also
timer/2
wait/1
wflag/1

wcclose/1
close a cursor

wcclose(Cursor)

+Cursor <atom>

Close the named Cursor, returning its resources to Windows.

See Also
wcdict/1
wcopen/2

wccreate/8
create a control window

wccreate(Window, Class, Title, Left, Top, Width, Height, Style)

+Window <window_handle>

+Class <atom>

+Title <string>

+Left <integer>

+Top <integer>

+Width <integer>

+Height <integer>

+Style <list>

Create a control Window with the given Class, Title, Left - Top corner coordinates, Width - Height
dimensions, and Style. The Window argument is of the form (Parent,ID), where Parent is the handle of a
top-level window and ID is the handle of the control window. The Class argument is one of the predefined
control window classes. The Style argument is a list of logical window styles which are combined to
create the 32-bit integer which is passed directly to Windows. This predicate can combine any of the
generic window styles with the styles for the given class. Note: you should always include the ws_child
style in the Style list.

See Also
warea/5
wclass/2
wclose/1
wcreate/8
wdcreate/7
wdict/1
wenable/2
wfind/3
wfocus/1
wlink/3
wndhdl/2
wshow/2
wsize/5
wstyle/2
wtcreate/6
wtext/2
wucreate/6

wcdict/1
return a dictionary of cursors

wcdict(Cursors)

+Cursors <variable>

Return a list, Cursors, of all the currently defined cursors.

See Also
wcclose/1
wccreate/8
wcopen/2

wclass/2
check or get the class of a given window

wclass(Window, Class)

+Window <window_handle>

?Class <variable> or <atom>

Checks or returns the Class of the given Window. When looking at windows created by LPA Prolog for
Windows, the Class argument may be an atom or a variable in which case it will be bound to a window
class name. When looking at windows created elsewhere any class may be returned.

Note: dialog windows are assigned a class by Windows itself and this class is returned to LPA Prolog
undefined.

See Also
warea/5
wclass/2
wclose/1
wccreate/8
wcreate/8
wdcreate/7
wdict/1
wenable/2
wfind/3
wfocus/1
wlink/3
wndhdl/2
wshow/2
wsize/5
wstyle/2
wtcreate/6
wtext/2
wucreate/6

wclose/1
close a window

wclose(Window)

+Window <window_handle>

Closes the named window, freeing up the memory resources it occupies. Note that when a window is
closed all its children are closed automatically. Up to 256 top-level windows may be open at any one time,
but this depends upon the availability of sufficient system memory resources, so it may be necessary to
close one in order to open another.

The contents of a window are lost when it is closed, so you should save any such contents should you
wish to use these data at a later time. See wedtsel/3 and wedttxt/2 for more information about retrieving
text from "edit" or "editor" control windows.

See Also
warea/5
wclass/2
wccreate/8
wcreate/8
wdcreate/7
wdict/1
wenable/2
wfind/3
wfocus/1
wlink/3
wndhdl/2
wshow/2
wsize/5
wstyle/2
wtcreate/6
wtext/2
wucreate/6

wcopen/2
load a cursor from local resources

wcopen(Cursor, ResourceName)

+Cursor <atom>

+ResourceName <atom>

Open the named Cursor with the given ResourceName from the LPA Prolog resource file. The Cursor
name can then be used whenever the cursor is needed.

See Also
wcclose/1
wccreate/8
wcdict/1

wcount/4
get char, word and line counts for the given window

wcount(Window, Characters, Words, Rows)

+Window <window_handle>

-Characters <variable>

-Words <variable>

-Rows <variable>

Returns the number of Characters, Words and Rows in the given Window. No side effects are caused by
this predicate, which is used for the gathering of information only.

See Also
wtext/2

wcreate/8
create a window

wcreate(Window, Class, Title, Left, Top, Width, Height, Style)

+Window <window_handle>

+Class <atom>

+Title <string>

+Left <integer>

+Top <integer>

+Width <integer>

+Height <integer>

+Style <integer>

The predicate wcreate/8 creates a window with the given Window name, Class, Title, Left - Top corner
coordinates, Width - Height dimensions and Style. The window will be created in one of several styles,
depending upon the given handle and style: if the handle is an atom, a top level window is created; if the
handle is a conjunction of the form (window,id), then a control window with the given ID is created within
the given window. The Class argument defines the type of window to be created; it may be either a
predefined Windows class or an LPA defined window class.

The Style argument is a 32-bit integer that specifies an available window style which is passed directly to
Windows. For top level windows (or MDI children), the text argument forms the window title (style
permitting) of the window; for control windows, the text is the label of the control (where appropriate).

See Also
warea/5
wclass/2
wclose/1
wccreate/8
wdcreate/7
wdict/1
wenable/2
wfind/3
wfocus/1
wlink/3
wndhdl/2
wshow/2
wsize/5
wstyle/2
wtcreate/6
wtext/2
wucreate/6

wdcreate/7
create a    dialog window

wdcreate(Window, Title, Left, Top, Width, Height, Style)

+Window <window_handle>

+Title <string>

+Left <integer>

+Top <integer>

+Width <integer>

+Height <integer>

+Style <list>

Create a dialog window with the given Window, Title, Left - Top corner, Width - Height dimensions, and
Style. The Window argument must be an atom. Style is a list of logical window styles which are combined
to create the 32-bit integer which is passed directly to Windows. This predicate can only use the generic
window styles. Note: at present all dialogs must include the style 'ws_popup' to allow the dialog to
function correctly stand-alone.

See Also
warea/5
wclass/2
wclose/1
wccreate/8
wcreate/8
wdict/1
wenable/2
wfind/3
wfocus/1
wlink/3
wndhdl/2
wshow/2
wsize/5
wstyle/2
wtcreate/6
wtext/2
wucreate/6

wdict/1
get all currently open windows

wdict(Wdict)

-Wdict <variable>

Returns the window dictionary. If Windows is a variable it becomes instantiated to the list of user-defined
windows. When a window is created, its name is added automatically to the window dictionary. It is
removed when the window is closed.

Returns the dictionary of all currently defined "text", "user" and "dialog" type windows as a list Wdict.

See Also
warea/5
wclass/2
wclose/1
wccreate/8
wcreate/8
wdcreate/7
wenable/2
wfind/3
wfocus/1
wlink/3
wndhdl/2
wshow/2
wsize/5
wstyle/2
wtcreate/6
wtext/2
wucreate/6

wedtclp/2
perform a clipboard function

wedtclp(Window, Function)

+Window <window_handle>

+Function <integer> in the domain {-5,-4,-3,2,1,1,2,3,4,5}

Perform the specified clipboard function on the given edit window. The Window argument is a window
handle. The Function argument is a clipboard function value.

See Also
wedtfnd/6
wedtlin/4
wedtpxy/4
wedtsel/3
wedttxt/2

wedtfnd/6
find a text string in an "edit" or "editor" control window

wedtfnd(Window, Start, End, String, StartMatch, EndMatch)

+Window <window_handle>

+Start <integer> in the range [0..32767]

+End <integer> in the range [0..32767]

+String <string>

-StartMatch <variable>

-EndMatch <variable>

Search the given "edit" or "editor" control Window for the given text String within the given Start and End
points. The start and finish of the first matching string is returned as a pair of integers, StartMatch and
EndMatch. As a special case, the search text may be specified as an empty string. In this case, the start
and finish of the next space-delimited token is returned. No side effects are caused by this predicate,
which is used for the gathering of information only. The returned parameters may be passed directly into
wedtsel/3 if it is desired to move the selection to the found string.

See Also
wedtclp/2
wedtlin/4
wedtpxy/4
wedtsel/3
wedttxt/2

wedtlin/4
get offsets a line in an "edit" or "editor" control window

wedtlin(Window, Offset, Start, Finish)

+Window <window_handle>

+Offset <integer> in the range [0..32767]

?Start <variable> or <integer>

?Finish <variable> or <integer>

Returns the Start and Finish of the line of text containing the given character offset in the given "edit" or
"editor" control Window, or tests the given values for correctness. The offsets returned include everything
on the given line, but not the carriage return/line feed. No side effects are caused by this predicate, which
is used for the gathering of information only.

See Also
wedtclp/2
wedtfnd/6
wedtpxy/4
wedtsel/3
wedttxt/2

wedtpxy/4
convert between linear offset and x, y coordinates in "edit" or "editor" windows

wedtpxy(Window, Offset, X, Y)

+Window <window_handle>

?Offset <variable> or <integer>

?X <variable> or <integer>

?Y <variable> or <integer>

Returns the X and Y coordinates that are the equivalent of a given character Offset, or returns the
character Offset of the given X and Y values, or tests the given values for correctness. The values are
computed for the given "edit" or "editor" Window. No side effects are caused by this predicate, which is
used for the gathering of information only.

See Also
wedtclp/2
wedtfnd/6
wedtlin/4
wedtsel/3
wedttxt/2

wedtsel/3
get or set selection in an "edit" or "editor" control window

wedtsel(Window, First, Second)

?Window <window_handle>

?First <variable> or <integer>

?Second <variable> or <integer>

Sets the text selection area in the given "edit" or "editor" control Window to start and finish at the given
First and Second values, or returns the existing values. This predicate causes a direct side effect on the
window, whose cursor moves to the position specified.

Note that the start and finish positions can be given in either order: the flashing caret is positioned at the
end specified by the First value. Windows does not provide the caret position when retrieving the
selection: the smallest value is always returned in the First parameter.

See Also
wedtclp/2
wedtfnd/6
wedtlin/4
wedtpxy/4
wedttxt/2

wedttxt/2
get or set the text of the given "edit" or "editor" window

wedttxt(Window, Text)

+Window <window_handle>

?Text <string> or <variable>

Gets or sets the Text in the selected area of the given "edit" or "editor" control Window. This predicate
causes a direct side effect on the window, whose text contents and selection area may be changed as
specified.

Although it is not documented in the Windows SDK, it would appear that MDI "text" windows and "editor"
control windows used by LPA Prolog have a maximum size of exactly 30000 characters. See wcount/4
and wedtsel/3 for information about how to check, prior to inserting text into an "editor" window, whether
the insertion is likely to prove successful.

See Also
wedtclp/2
wedtfnd/6
wedtlin/4
wedtpxy/4
wedtsel/3
wedttxt/2

wenable/2
get or set window enable status

wenable(Window, Status)

+Window <window_handle>

?Status <variable> or <integer> in the domain {0,1}

Get or set the enable status of the given window. The Window argument is a window handle. The Status
argument is a window status value.

When you set the Status of a button to 0 the button is made grey and cannot be selected; setting the
Status to 1 gives the button its default appearance and the button may now be selected. For other
windows the effect of setting the Status is not visible; the window can simply no longer be selected.

When you set the status of LPA Prolog's main window, this may also affect the change, find and status
boxes. If you disable the main window, any of the boxes which are enabled become temporarily disabled.
If you then reenable the main window the temporarily disabled windows are also reenabled. Any boxes
that are already disabled remain unaffected by disabling and subsequently reenabling the main window.

See Also
warea/5
wclass/2
wclose/1
wccreate/8
wcreate/8
wdcreate/7
wdict/1
wfind/3
wfocus/1
wlink/3
wndhdl/2
wshow/2
wsize/5
wstyle/2
wtcreate/6
wtext/2
wucreate/6

wfclose/1
close a font

wfclose(Font)

+Font <atom>

Close the named Font, returning its resources to Windows. You should not close a font which is still in use
in one or more windows. Fonts are global Windows resources and are not automatically freed when their
creating application terminates. It is important to close fonts explicitly, where possible, before terminating
a LPA Prolog session. See wfcreate/4, wfdict/1 and fonts/1 for more details on creating and maintaining
fonts.

See Also
ansoem/2
fonts/1
wfcreate/4
wfdata/5
wfdict/1
wfont/2
wfsize/4

wfcreate/4
create a font

wfcreate(Font, Typeface, Size, Style)

+Font <atom>

+Typeface <atom>

+Size <integer>

+Style <integer>

Create the named font, using the given typeface, size and style. The Font argument is an atom that you
can use in your programs to refer to the font. After the font has been created this is the name that
appears on the font dictionary (see wfdict/1). The Typeface argument is an atom which is the name of a
currently available typeface, these can be found using the predicate fonts/1. The Size argument is given
in units of 1 pt (approx 1/72 inch). The Style argument is a font style value.

Note that any existing font with the same name will be closed automatically before the new one is
created: you should not close a font which is still in use in one or more windows.

See Also
ansoem/2
fonts/1
wfclose/1
wfdata/5
wfdict/1
wfont/2
wfsize/4

wfdata/5
check or get the typeface, size, style and ascent of the given logical font

wfdata(Font, TypeFace, Size, Style, Ascent)

+Font <atom> or <integer> in the domain {0,1}

?TypeFace <atom> or <variable>

?Size <integer> or <variable>

?Style <integer> in the domain {0,1,2,3} or <variable>

?Ascent <integer> or <variable>

Check or get the TypeFace, Size and Style and Ascent of the given logical Font. Font should be the atom
name of a currently defined logical font, created using wfcreate/4. TypeFace should be the atom name of
a currently defined Windows system typeface or a variable. Size should be the size of the font given in
logical units or a variable. Style should be a font style value or a variable. Ascent should be an integer or
a variable and corresponds to the distance in logical units between the base line of the character and the
top of the character cell.

Note that 1 logical unit is usually equivalent to 1 point given the default mapping mode of 1:1.

Sometimes when you create a font, the specified typeface may not actually be a currently defined
Windows system typeface, and in this case Windows assigns a substitute. The wfdata/5 predicate can
also be used to check whether a call to wfcreate/4 has defined a font with the specified typeface.

See Also
ansoem/2
fonts/1
wfclose/1
wfcreate/4
wfdict/1
wfont/2
wfsize/4

wfdict/1
return a dictionary of fonts

wfdict(Wfdict)

-Wfdict <variable>

Return the dictionary of all currently defined fonts as a list, Wfdict. See wfcreate/4, wfclose/1 and fonts/1
for more details on creating and maintaining fonts.

See Also
ansoem/2
fonts/1
wfclose/1
wfcreate/4
wfdata/5
wfont/2
wfsize/4

wfind/3
find the handle for a named window

wfind(Class, Title, Handle)

+Class <atom>

+Title <string>

-Handle <variable>

Find the Handle of the first top level window whose Class and Title are given. If the class is given as an
empty atom, all classes are searched; similarly, if the title is given as an empty string, all windows within
the given class are searched. Title should have the same type as Class.

See Also
warea/5
wclass/2
wclose/1
wccreate/8
wcreate/8
wdcreate/7
wdict/1
wenable/2
wfocus/1
wlink/3
wndhdl/2
wshow/2
wsize/5
wstyle/2
wtcreate/6
wtext/2
wucreate/6

wflag/1
get or set the Windows message interrupt flag

wflag(Flag)

?Flag <variable> or <integer> in the domain {0,1}

Get or set the state of the Windows message interrupt flag. When clear, this flag suppresses the reporting
of messages to Prolog programs, disabling all user-defined message, menu, DLL or dialog handlers;
when set, such messages cause the temporary interruption of Prolog's execution, passing control to any
user-defined handlers. The Flag argument is an interrupt state value.

Note that the interrupt flag is a one-shot flag, which needs explicit reenabling after a message has been
handled. Up to 256 messages may be queued at any one time, but each time the flag is set, at most one
message will be signalled to the message handler.

It is essential that the Windows message interrupt flag be set at all times other than when processing an
interrupt to ensure the correct operation of LPA Prolog's menus.

See Also
timer/2
wait/1
wbusy/1

wfocus/1
get or set input focus to a window

wfocus(Window)

?Window <window_handle>

Sets input focus to the named window, activating it and bringing it to the top of the display stack. If the
argument is given as a variable, the name of the window currently in focus is returned if possible.

Note: any window can be given focus, not just named windows. When setting focus to a dialog or MDI
child window, it is best to explicitly identify the control which is to receive focus, and not the top level
window itself.

See Also
warea/5
wclass/2
wclose/1
wccreate/8
wcreate/8
wdcreate/7
wdict/1
wenable/2
wfind/3
wlink/3
wndhdl/2
wshow/2
wsize/5
wstyle/2
wtcreate/6
wtext/2
wucreate/6

wfont/2
get or set the font of a window

wfont(Window, Font)

+Window <window_handle>

+Font <atom> or <integer> in the domain {0,1}

Set the font for the given window. The Font argument is either a variable, a named font (see wfcreate/4)
or a special numeric font. If the Font argument is a variable it is bound to the current font of the window if
one has been set previously.

See Also
ansoem/2
fonts/1
wfclose/1
wfcreate/4
wfdata/5
wfdict/1
wfsize/4

wfsize/4
check or get the height and width of the given string in the given font

wfsize(Font, String, Width, Height)

+Font <atom> or <integer> in the domain {0,1}

+String <string>

?Width <variable> or <integer>

?Height <variable> or <integer>

Check or return the Width and Height of the given String using the given logical Font. Height is the height
of the character cells in pixels, which is constant for any character font. Width is the distance, in pixels,
from the start of the first character cell to the end of the last character cell in the String. Note that this
distance may not neccessarily be the sum of all the character cells in the string, as the character cells in
some fonts overlap.

See Also
ansoem/2
fonts/1
wfclose/1
wfcreate/4
wfdata/5
wfdict/1
wfont/2

wgfx/2
perform a windows graphics sequence

wgfx(Win, Glist)

+Win <window_handle>

+Glist <list_of <compound_term> >

Perform a sequence of graphics instructions in the given window. The Glist argument must be a list of
valid graphics functions.

See Also
wgfx/6
wgfxadd/5
wgfxcur/2
wgfxget/5
wgfxmap/5
wgfxorg/3
wgfxpnt/1
wgfxsub/5
wgfxtst/5

wgfx/6
perform a clipped windows graphics sequence

wgfx(Win, Glist, X, Y, X1, Y1)

+Win <window_handle>

+Glist <list_of <compound_term> >

+X <integer>

+Y <integer>

+X1 <integer>

+Y1 <integer>

Perform a list of graphics instructions in the given window using the given clip region. The Win argument
is the handle of a window created by Prolog. The GList argument is a list of valid graphics instructions.
The arguments X, Y, X1 and Y1 are all integers that specify the device coordinates for the clipping region.

See Also
wgfx/2
wgfxadd/5
wgfxcur/2
wgfxget/5
wgfxmap/5
wgfxorg/3
wgfxpnt/1
wgfxsub/5
wgfxtst/5

wgfxadd/5
add rectangle to graphics update region

wgfxadd(Win, Left, Top, Right, Bottom)

+Win <window_handle>

+Left <integer>

+Top <integer>

+Right <integer>

+Bottom <integer>

Add the rectangle specified by Left, Top, Right and Bottom parameters to the update rectangle for the
given "grafix" window (Win). The resultant graphics update region will be a rectangle that bounds both the
previous update region and the rectangle to be added.

See Also
wgfx/2
wgfx/6
wgfxcur/2
wgfxget/5
wgfxmap/5
wgfxorg/3
wgfxpnt/1
wgfxsub/5
wgfxtst/5

wgfxcur/2
get or set the cursor for a grafix window

wgfxcur(Win, Cursor)

+Win <window_handle>

+Cursor <atom>

Get or set the type of cursor for the given "grafix" window. The Cursor argument may either be an atom or
a predefined cursor value.    If the Cursor argument is an atom it should refer to a cursor previously
opened using wcopen/2.

See Also
wgfx/2
wgfx/6
wgfxadd/5
wgfxget/5
wgfxmap/5
wgfxorg/3
wgfxpnt/1
wgfxsub/5
wgfxtst/5

wgfxget/5
get the graphics update region

wgfxget(Win, Left, Top, Right, Bottom)

+Win <window_handle>

?Left <variable> or <integer>

?Top <variable> or <integer>

?Right <variable> or <integer>

?Bottom <variable> or <integer>

Get the update rectangle for the given "grafix" window (Win).

See Also
wgfx/2
wgfx/6
wgfxadd/5
wgfxcur/2
wgfxmap/5
wgfxorg/3
wgfxpnt/1
wgfxsub/5
wgfxtst/5

wgfxmap/5
get or set the graphics mapping

wgfxmap(Win, XLogical, YLogical, XPhysical, YPhysical)

+Win <window_handle>

?XLogical <variable> or <integer>

?YLogical <variable> or <integer>

?XPhysical <variable> or <integer>

?YPhysical <variable> or <integer>

Get or set the ratio between the logical coordinates (XLogical and YLogical) and the physical coordinates
(XPhysical and YPhysical) for the given "grafix" window (Win), invalidating the window if necessary.

Warning: The Windows GDI module contains some bugs in its internal parameter validation routines, and
these can manifest themselves as General Protection Faults (GPFs) when certain graphics operations
are carried out. In particular, the plotting of ellipses is known to cause problems when their target window
has a very high (magnified) scaling factor. There is, unfortunately, no way in which to prejudge which calls
are going to cause problems, so to avoid them, please observe the following precautions:

Resist using wgfxmap/5 to enlarge the scaling of a graphics window by more than a ratio of about 8:1,

or:

Avoid plotting ellipses, polygons or rounded rectangles on windows whose scaling factor exceeds this
value.

See Also
wgfx/2
wgfx/6
wgfxadd/5
wgfxcur/2
wgfxget/5
wgfxorg/3
wgfxpnt/1
wgfxsub/5
wgfxtst/5

wgfxorg/3
get or set the graphics origin for a given window

wgfxorg(Win, XView, YView)

+Win <window_handle>

?XView <variable> or <integer>

?YView <variable> or <integer>

Get or set the XView and YView viewport origins for the given "grafix" window (Win). Scroll the window if
necessary.

See Also
wgfx/2
wgfx/6
wgfxadd/5
wgfxcur/2
wgfxget/5
wgfxmap/5
wgfxpnt/1
wgfxsub/5
wgfxtst/5

wgfxpnt/1
force the painting of the graphics update region

wgfxpnt(Win)

+Win <window_handle>

Clear the current graphics update region for the given "grafix" window (Win) and send the msg_paint
message to LPA Prolog.

See Also
wgfx/2
wgfx/6
wgfxadd/5
wgfxcur/2
wgfxget/5
wgfxmap/5
wgfxorg/3
wgfxsub/5
wgfxtst/5

wgfxsub/5
subtract a rectangle from a graphics update region

wgfxsub(Win, Left, Top, Right, Bottom)

+Win <window_handle>

+Left <integer>

+Top <integer>

+Right <integer>

+Bottom <integer>

Subtract the rectangle specified by the Left, Top, Right and Bottom parameters from the update rectangle
for the given "grafix" window (Win).

See Also
wgfx/2
wgfx/6
wgfxadd/5
wgfxcur/2
wgfxget/5
wgfxmap/5
wgfxorg/3
wgfxpnt/1
wgfxtst/5

wgfxtst/5
perform a windows graphics hit test

wgfxtst(Win, GList, X, Y, Hits)

+Win <window_handle>

+GList <list_of <compound_term> >

+X <integer>

+Y <integer>

?Hits <variable> or <integer>

Perform a list of virtual graphics instructions in the given window and check or get the number of solid
objects that coincide with the device x and y coordinates. The Glist argument is a list that may contain any
of the wgfx/2 graphics instructions, but there are two sub-groups which have some effect. These sub-
groups are: graphics instructions used to detect hits with wgfxtst/5 and graphics instructions that affect the
way in which hits are reported by wgfxtst/5 . The remaining wgfx/2 functions are ignored during testing.

See Also
wgfx/2
wgfx/6
wgfxadd/5
wgfxcur/2
wgfxget/5
wgfxmap/5
wgfxorg/3
wgfxpnt/1
wgfxsub/5

wiclose/1
close an icon

wiclose(Icon)

+Icon <atom>

Close the named Icon, returning its resources to Windows, where Icon was previously opened using
wiopen/2 or wiload/3.

See Also
widict/1
wiload/3
wiopen/2

widict/1
return a dictionary of icons

widict(IDict)

-IDict <variable>

Return the dictionary, IDict, of all currently defined icons as a list.

See Also
wiclose/1
wiload/3
wiopen/2

wiload/3
load an icon from a disk file

wiload(Icon, File, Index)

+Icon <atom>

+File <atom>

+Index <integer>

Open the named Icon from the specified disk File and icon Index.

See Also
wiclose/1
widict/1
wiopen/2

winapi/5
call a C function defined in the Windows API environment or in a DLL

winapi(Module,Function,Inputs,Result,Outputs)

+Module <atom>

+Function (<atom>,<atom>)

+Inputs <list>

-Result <variable>

-Outputs <variable>

Call a C function in the given module with the specified input arguments and return the result and output
arguments. The Module argument is an atom that is the name of a module. The Function argument is a
conjunction of two atoms: the first atom is a function type cast and the second is the name of the function
to be called.

The Inputs argument is a list containing typed input parameters to the given function. Each element of the
Inputs list is a parameter type cast. A parameter type cast may be a simple conjunction of a data type and
its associated data or a list (in which case it indicates a structure).

The members of a structure list are structure element type casts. Structure element type casts may only
be simple conjunctions of data types and their associated data. Structures cannot be nested.

The Result argument is a variable that becomes bound to the result of the given function. If a text function
returns a non-text result (such as "TRUE", "FALSE" or "NULL") the Result argument is bound to the
appropriate integer instead of a string.

The Outputs argument is a variable that becomes bound to the output parameters of the given function,
these will match exactly the types specified in the Inputs argument. If a text parameter or structure
element specified in the Inputs list comes back as a non-text result (such as "TRUE", "FALSE" or "NULL")
the corresponding element in the Outputs argument is bound to the appropriate integer instead of a
string.

Note: Microsoft Windows itself does not provide a safe means of argument type checking in API or DLL
function calls, so incorrect use of the winapi/5 predicate can cause application errors and general
protection faults: care must therefore be taken to ensure the argument type definitions provided in the call
match those demanded by the Windows API or DLL function. It is also important to call only functions
defined as "FAR PASCAL".

See Also
dll_hook/3
lcall/4
lclose/1
ldict/1
lopen/1
'?DLL?'/3

window_handler/2
get or set the current message handler for the given window

window_handler(Window, Handler)

+Window <window_handle>

?Handler <atom> or <variable>

Attach the given message handler to the given window. The Window argument should be the handle of a
Prolog generated window. If the Handler argument is an atom this should be the functor of a message
handler, with four arguments, that will handle messages from the Window (or its child windows). The
handler for a dialog should be a Prolog program of the form:

Handler(MessageWindow, Message, Data, HandleResult) :-
Body

MessageWindow is of type <window_handle> and is the window that generated the message. Message is
the text equivalent of the message number that was generated. Data is any data associated with the
message (such as the (X,Y) mouse coordinates for the msg_mousemove message in graphics windows).
If the HandleResult argument is bound then MessageWindow (or its parent in the case of child windows)
will be hidden. If the window is being called by call_dialog/2 then the bound HandleResult will be returned
as the second argument of this call.

If the Handler argument is a variable the handler currently set for the window is returned. By default all
windows that are created are handled by the built-in window_handler/4. It is possible to use this default
message handler by making a call to it in your own handler programs. To effectively remove a handler
from a window simply set the handler for the window to be "window_handler", as in the following call:

?- window_handler(my_window,window_handler).

See Also
call_dialog/2
window_handler/4
show_dialog/1
wdcreate/7

window_handler/4
system defined handler for windows

window_handler(Win, Msg, Data, Result)

+Win <window_handle>

+Msg <atom>

+Data <integer>

+Result <variable>

Invoke the default behaviour for handling the given window. The Win argument is a Prolog window
handle. The Msg argument is an atom that should be a message name. The Data argument should be
any valid data associated with the message. The Result argument should be a variable, which may get
bound as a result of handling the message.

If the message is one of type msg_button the Result argument will be bound to the text of the button that
sent the message. If the message is one of type msg_close the Result argument will be bound to the
atom close.

See Also
call_dialog/2
window_handler/2
show_dialog/1
wdcreate/7

wiopen/2
load an icon from local resources

wiopen(Icon, IconRes)

+Icon <atom>

+IconRes <atom>

Open the named icon resource (IconRes) from the LPA Prolog resource file using the logical name (Icon).

See Also
wiclose/1
widict/1
wiload/3

wlbxadd/3
add an item to a list box

wlbxadd(Window, Position, String)

+Window <window_handle>

+Position <integer>

+String <string>

Add a String to the "listbox" control Window at the given Position. If the position is given as -1, the item is
inserted or appended to the list box depending upon the list box style. Entries in a listbox are numbered
from 0.

See Also
wlbxdel/2
wlbxfnd/4
wlbxget/3
wlbxsel/3

wlbxdel/2
delete an item from a list box

wlbxdel(Window, Position)

+Window <window_handle>

+Position <integer>

Delete the item at the given Position in the given "listbox" control Window. Entries in a listbox are
numbered from 0.

See Also
wlbxadd/3
wlbxfnd/4
wlbxget/3
wlbxsel/3

wlbxfnd/4
find a string in a list box

wlbxfnd(Window, Start, String, Position)

+Window <window_handle>

+Start <integer>

+String <string>

-Position <variable>

Return the Position of a partial match String in the given "listbox" control Window, starting search one
place after the given Start. Entries in a listbox are numbered from 0. If String is the empty string `` then
wlbxfnd/4 will return the Position of the entry following the Start.

See Also
wlbxadd/3
wlbxdel/2
wlbxget/3
wlbxsel/3

wlbxget/3
get an item from a list box

wlbxget(Window, Position, String)

+Window <window_handle>

+Position <integer>

-String <variable>

Get the String at the given Position in the given "listbox" control Window. Entries in a listbox are
numbered from 0. This predicate will fail if the listbox has a number of entries that is less than or equal to
the given position.

See Also
wlbxadd/3
wlbxdel/2
wlbxfnd/4
wlbxsel/3

wlbxsel/3
get or set selection in a list box

wlbxsel(Window, Position, State)

+Window <window_handle>

+Position <integer>

?State <integer> or <variable>

Set or get the selection State of the item at the given Position in the given "listbox" control Window. If the
Position is given as -1, and the listbox is a multi-choice list box, the selection state is applied to all items.
Entries in a listbox are numbered from 0. The State argument is a variable or a listbox selection state
value.

See Also
wlbxadd/3
wlbxdel/2
wlbxfnd/4
wlbxget/3

wlink/3
find the handle for a linked window

wlink(Window, Relation, Handle)

+Window <window_handle>

+Relation <integer>

-Handle <variable>

Find the Handle of a window related by a given Relation to the given Window. The Relation argument is
window relation value.

Windows are defined in a hierarchical fashion using the notions of parents, children, siblings and owners.
For example given a dialog that has a number of control fields, in Windows those control fields are said to
be children of the main dialog window, the main dialog window is their parent and the children are all
siblings whose order is dependent on the order in which they are defined.

There are subtle differences between 'parent' windows and 'owner' windows, which are beyond the scope
of this manual. For more details please consult your Windows SDK documentation.

See Also
warea/5
wclass/2
wclose/1
wccreate/8
wcreate/8
wdcreate/7
wdict/1
wenable/2
wfind/3
wfocus/1
wndhdl/2
wshow/2
wsize/5
wstyle/2
wtcreate/6
wtext/2
wucreate/6

wmclose/1
close a menu

wmclose(Menu)

+Menu <atom>

Close the named Menu, returning its resources to Windows. Note that you should not close a menu which
is still in use in one or more windows. Menus are global Windows resources and are not automatically
freed when their creating application terminates. It is important to close menus explicitly, where possible,
before    terminating a LPA Prolog session.

See Also
wmcreate/1
wmdict/1
wmnuadd/4
wmnudel/2
wmnuget/4
wmnunbl/3
wmnusel/3

wmcreate/1
create a menu

wmcreate(Menu)

+Menu <atom>

Create the named logical Menu. Menu should be an atom which will be used from then on whenever you
want to perform an action on the Menu. These actions include: closing the menu, getting items from the
menu, adding and deleting items, setting the selection state of items (ticked or not ticked) and setting the
enable state of items. Note that any existing menu with the same name will be closed automatically
before the new one is created: you should not close a menu which is still in use in one or more windows.
Menus are global Windows resources and are not automatically freed when their creating application
terminates. It is important to close menus explicitly, where possible, before terminating an LPA Prolog
session.

See Also
wmclose/1
wmdict/1
wmnuadd/4
wmnudel/2
wmnuget/4
wmnunbl/3
wmnusel/3

wmdict/1
return a dictionary of menus

wmdict(Menus)

-Menus <variable>

Return a list of the currently defined Menus. Each menu name is the atom that was used when the menu
was created using wmcreate /1 .

See Also
wmclose/1
wmcreate/1
wmnuadd/4
wmnudel/2
wmnuget/4
wmnunbl/3
wmnusel/3

wmnuadd/4
add an item to a menu

wmnuadd(Menu, Position, String, Item)

+Menu <atom> or 0

+Position <integer>

+String <string>

+Item <integer> or <atom>

Add an Item and associated String to the given Menu at Position. If the Position is given as -1, the Item is
appended to the Menu. Menu should be the name of a menu, or 0 (the Prolog menu bar). The Item may
be an integer or an atom. If it is an integer, then it may either be 0, which specifies a separator entry (the
String is ignored in this case), or a positive integer which will be generated as a message whenever the
item is selected. If the Item is an atom, this is taken to be the handle of a sub-menu to be attached to
Menu. Note that Prolog reserves the message values under 1,000 for internal use, and Windows itself
reserves message values which are greater than around 64,000. Any menu items that you define should
use messages between 1000 and 64000.

To add your own menu to the Prolog menu bar Menu should be 0. The message msg_menu is sent,
whenever an item is selected from a menu, to the window currently in focus. A data parameter is also sent
with this message and this is the ID for the menu item selected. To handle these messages you should
attach a handler to each window that needs to be aware of your menus and IDs.

Hot keys (keys that can be used to select a menu item directly) can be added to menu items using an
ampersand "&" (this should appear in the String that defines the text of the menu item before the letter
you want to use as a hot key). Separators (lines that cannot be selected, for separating items on a menu)
can be added by giving the integer 0 as the Item value.

WARNING: Windows cannot handle circular menu definitions, and will crash if you use such structures.
Be very careful not to define menus that either call themselves or call other menus which in turn call
themselves, and so on.

See Also
wmclose/1
wmcreate/1
wmdict/1
wmnudel/2
wmnuget/4
wmnunbl/3
wmnusel/3

wmnudel/2
delete an item from a menu

wmnudel(Menu, Position)

+Menu <atom> or 0

+Position <integer>

Delete the item at the given Position in the given Menu. Menu should be the name of a logical menu, or 0
(the menu bar). Note that if the item being deleted is a sub-menu, neither that menu nor its contents are
destroyed: it is simply removed from the parent menu.

See Also
wmclose/1
wmcreate/1
wmdict/1
wmnuadd/4
wmnuget/4
wmnunbl/3
wmnusel/3

wmnuget/4
get an item from a menu

wmnuget(Menu, Position, String, Item)

+Menu <atom> or 0

+Position <integer>

-String <variable>

-Item <variable>

Get the Item and associated String at the given Position in the given Menu. Menu should be the name of
a logical menu, or 0 (the menu bar). The Item returned may be an integer or an atom. If it is an integer,
then it may either be 0, which specifies a separator entry, or a positive value greater than 1000. This
value will be generated as a message whenever the item is selected. If the Item is an atom then it is the
handle of a sub-menu.

See Also
wmclose/1
wmcreate/1
wmdict/1
wmnuadd/4
wmnudel/2
wmnunbl/3
wmnusel/3

wmnunbl/3
get or set enable status of an item on a menu

wmnunbl(Menu, Position, Status)

+Menu <atom> or 0

+Position <integer>

?Status <integer> or <variable>

Get or set the enable Status of the item at the given Position in the given Menu. The Status argument is
either a variable or a menu enable status value.

Menu should be the name of a logical menu created with wmcreate/1, or 0 (the menu bar).

See Also
wmclose/1
wmcreate/1
wmdict/1
wmnuadd/4
wmnudel/2
wmnuget/4
wmnusel/3

wmnusel/3
get or set selection state of an item on a menu

wmnusel(Menu, Position, State)

+Menu <atom> or 0

+Position <integer>

?Status <integer> or <variable>

Set or get the selection status of the item at the given position in the given menu. The Status argument is
either a variable or a menu selection status value. The Menu argument should be the name of a logical
menu created with wmcreate/1, or 0 (the menu bar).

See Also
wmclose/1
wmcreate/1
wmdict/1
wmnuadd/4
wmnudel/2
wmnuget/4
wmnunbl/3

wndhdl/2
convert between window and handle

wndhdl(Window, RawHandle)

?Window <window_handle> or <variable>

?RawHandle <integer> or <variable>

Convert between an LPA Prolog Window handle and raw window handle, RawHandle. Raw handles are
16-bit, unsigned integers, as used internally by Windows. LPA Prolog handles may also be in this form,
but wherever possible, are given as symbolic names or (window,id) conjunctions. This predicate can be
used to find the 16-bit handle of an LPA window so that it may be manipulated by an external process
such as a DLL.

This predicate can also be used to test if a given integer is the handle of a LPA Prolog window. The
wndhdl/2 predicate succeeds if the integer is the handle of a currently open window and fails if it is not.
This can be useful when handling msg_fuzzy messages, which may come sometimes after the window
that generated the message has already been closed. In this case the window is indicated using its raw
handle. A call to wndhdl/2 could be made using that raw handle to determine if it refers to a currently open
window.

See Also
warea/5
wclass/2
wclose/1
wccreate/8
wcreate/8
wdcreate/7
wdict/1
wenable/2
wfind/3
wfocus/1
wlink/3
wshow/2
wsize/5
wstyle/2
wtcreate/6
wtext/2
wucreate/6

wprnend/1
finish or abort the use of the printer

wprnend(Action)

+Action <integer> in the domain {0,1}

Finish or abort the current use of the printer. The Action argument is a terminate code value. If during
printing, the user clicks on a "Cancel" button, this predicate fails and the print job is aborted.

See Also
wprngfx/1
wprngfx/5
wprnini/4
wprnmap/4
wprnorg/2
wprnpag/1
wprnres/4
wprnstt/1

wprngfx/1
perform a printer graphics sequence

wprngfx(GList)

+GList <list_of <compound_term> >

Perform a list of graphics commands on the printer. The GList argument is a list of valid graphics
instructions.

See Also
wprnend/1
wprngfx/5
wprnini/4
wprnmap/4
wprnorg/2
wprnpag/1
wprnres/4
wprnstt/1

wprngfx/5
perform a clipped printer graphics sequence

wprngfx(GList, X, Y, X1, Y1)

+GList <list_of <compound_term> >

+X <integer>

+Y <integer>

+X1 <integer>

+Y1 <integer>

Perform a list of graphics commands on the printer within the given clipping region. The GList argument is
a list of valid graphics instructions. The arguments X, Y, X1 and Y1 are all integers that specify the device
coordinates for the clipping region. The commands are sent to the printer but no actual printing occurs
until a call is made to wprnend/1.

See Also
wprnend/1
wprngfx/1
wprnini/4
wprnmap/4
wprnorg/2
wprnpag/1
wprnres/4
wprnstt/1

wprnini/4
initialise the printer

wprnini(Document,Printer,Driver,Port)

+Document <atom>

+Printer <atom> or <variable>

+Driver <atom> or <variable>

+Port <atom> or <variable>

Initialise the named document for the given printer, device driver and output device. The Document
argument is an atom that specifies a logical document for the printer. If the Printer Driver and Port
arguments are all atoms then they are set as the    printer, driver and port for the given document.

See Also
wprnend/1
wprngfx/1
wprngfx/5
wprnmap/4
wprnorg/2
wprnpag/1
wprnres/4
wprnstt/1

wprnmap/4
get or set the printer graphics mapping

wprnmap(XLogical,YLogical,XPhysical,YPhysical)

?XLogical <variable> or <integer>

?YLogical <variable> or <integer>

?XPhysical <variable> or <integer>

?YPhysical <variable> or <integer>

Get or set the ratio between the logical coordinates (XLogical and YLogical) and the physical coordinates
(XPhysical and YPhysical) for the currently selected printer.

See Also
wprnend/1
wprngfx/1
wprngfx/5
wprnini/4
wprnorg/2
wprnpag/1
wprnres/4
wprnstt/1

wprnorg/2
get or set the printer graphics origin

wprnorg(XView, YView)

?XView <variable> or <integer>

?YView <variable> or <integer>

Get or set the XView and YView viewport origins for the currently selected printer.

See Also
wprnend/1
wprngfx/1
wprngfx/5
wprnini/4
wprnmap/4
wprnpag/1
wprnres/4
wprnstt/1

wprnpag/1
start a new printer page

wprnpag(Page)

-Page <variable>

Start printing on a new page, returning its page number. The commands to do this are sent to the printer
but no actual printing occurs until a call is made to wprnend/1. If during printing, the user clicks on a
"Cancel" button, this predicate fails and the print job is aborted.

See Also
wprnend/1
wprngfx/1
wprngfx/5
wprnini/4
wprnmap/4
wprnorg/2
wprnres/4
wprnstt/1

wprnres/4
get or check the printer resolution

wprnres(HPagePix,VPagePix,HInchPix,VInchPix)

?HPagePix <integer> or <variable>

?VPagePix <integer> or <variable>

?HInchPix <integer> or <variable>

?VInchPix <integer> or <variable>

Get or check the number of pixels per horizontal and vertical page, and per horizontal and vertical inch for
the currently selected printer.

See Also
wprnend/1
wprngfx/1
wprngfx/5
wprnini/4
wprnmap/4
wprnorg/2
wprnpag/1
wprnstt/1

wprnstt/1
get or check the printer status

wprnstt(Status)

?Status <integer> in the range [0..3] or <variable>

Get or check the current status of the printer. The Status argument returns or checks a printer status
value.

See Also
wprnend/1
wprngfx/1
wprngfx/5
wprnini/4
wprnmap/4
wprnorg/2
wprnpag/1
wprnres/4

wrange/4
get or set range of a scroll bar

wrange(Window, Type, Lower, Upper)

+Window <window_handle>

+Type <integer> in the domain {0,1,2}

+Lower <integer>

+Upper <integer>

Set the lower and upper limits of the given scroll bar type within the given window. Both the Lower and
Upper arguments are signed 16-bit integers. The Type argument is a scrollbar type value. Scroll bars may
be either connected to a window (i.e. given as part of the style definition of that window) or stand-alone (a
separate control item of type "scrollbar"). Windows addresses these two types of scrollbar differently, so
wrange/4 needs to be provided with the appropriate type flag.

See Also
wthumb/3
wccreate/8
wcreate/8
wdcreate/7

write/1
write a term to the current output stream

write(Term)

?Term <term>

Writes the term Term to the current output stream. Term is output using the current operator declarations.

write does not output a dot ('.') after the term. If the term is to be read back in again, you must explicitly
output the dot and following space after writing the term. To output this terminator use either of the
following:

write('. ').
write('.'),nl.

Atoms that must be quoted on input (e.g. 'Paul', 'hello world') are not quoted when output using write. (If
you want to guarantee being able to read an atom back again, you should output it with the writeq
predicate.)

See Also
current_op/3
display/1
elex/1
eprint/1
eprint/2
eprint/3
eread/1
eread/2
etoks/1
etoks/2
ewrite/1
ewrite/2
ewrite/3
op/3
portray_clause/1
print/1
printq/1
prompt/2
read/1
skip_term/0
sysops/0
vars/2
write_canonical/1
writeq/1

write_canonical/1
write a term to the current output stream in canonical form

write_canonical(Term)

+Term <term>

Writes Term to the current output stream and quotes atoms and functors to make them acceptable as
input to read /1 .

See Also
current_op/3
display/1
elex/1
eprint/1
eprint/2
eprint/3
eread/1
eread/2
etoks/1
etoks/2
ewrite/1
ewrite/2
ewrite/3
op/3
portray_clause/1
print/1
printq/1
prompt/2
read/1
skip_term/0
sysops/0
vars/2
write/1
writeq/1

writeq/1
write a quoted term to the current output stream

writeq(Term)

+Term <atom> or <compound_term> or <list>

Writes Term to the current output stream. This predicate is the same as write /1 , except that single quotes
are put around any atoms in Term that would have to be quoted on input.

writeq/1 does not terminate the term with a full stop, so if you are writing to a file, and want to read the
term back again you must follow the writeq/1 with either of the following:

write('. ').
write('.'),nl.

See Also
current_op/3
display/1
elex/1
eprint/1
eprint/2
eprint/3
eread/1
eread/2
etoks/1
etoks/2
ewrite/1
ewrite/2
ewrite/3
op/3
portray_clause/1
print/1
printq/1
prompt/2
read/1
skip_term/0
sysops/0
vars/2
write/1
write_canonical/1

wshow/2
get or set show or hide status

wshow(Window, Status)

+Window <window_handle>

+Status <integer> in the domain {0,1,2,3}

Get or set the status of the given window, enabling it to be hidden, minimised (iconised), normalised or
maximised. The Status argument is a window visibility status value. This predicate causes a direct side
effect on the window, whose status may be changed as specified.

If a window is initially hidden and then shown using wshow/2, it will gain focus unless it is disabled.

See Also
warea/5
wclass/2
wclose/1
wccreate/8
wcreate/8
wdcreate/7
wdict/1
wenable/2
wfind/3
wfocus/1
wlink/3
wndhdl/2
wsize/5
wstyle/2
wtcreate/6
wtext/2
wucreate/6

wsize/5
get or set window size and position

wsize(Window, Left, Top, Width, Height)

+Window <window_handle>

?Left variable or <integer>

?Top variable or <integer>

?Width variable or <integer>

?Height variable or <integer>

Get or set the Left and Top positions, and Width and Height dimensions, of the given Window. The
numerical values in the Windows system are in pixel units and the DOS system in character units, where
(0,0) is the left top of the screen. In general windows can be resized at any time, but in the Windows
system it is recommended only to do this when they are in the normalised state (see wshow/2), because
doing so when a window is maximised or minimised can confuse Windows' display driver.

Note: the position and size parameters are given in the standard Windows ordering, ie (Left, Top, Width,
Height) and not in the older (Row, Column, Depth, Width) format used in other Prolog systems.

See Also
warea/5
wclass/2
wclose/1
wccreate/8
wcreate/8
wdcreate/7
wdict/1
wenable/2
wfind/3
wfocus/1
wlink/3
wndhdl/2
wshow/2
wstyle/2
wtcreate/6
wtext/2
wucreate/6

wstyle/2
get or set window style

wstyle(Window, Style)

+Window <window_handle>

+Style <integer>

Get or set the Style of the given Window. Window styles should be changed with extreme caution, and
should not be used to force alien styles onto windows. For example, changing the appearance of buttons
is fine, but giving a button scroll bars is not.

One use of wstyle/2 can be to create a window based on a given window's style. You should ensure that
the windows are of the same class.

See Also
warea/5
wclass/2
wclose/1
wccreate/8
wcreate/8
wdcreate/7
wdict/1
wenable/2
wfind/3
wfocus/1
wlink/3
wndhdl/2
wshow/2
wsize/5
wtcreate/6
wtext/2
wucreate/6

wtcreate/6
create a text window

wtcreate(Name, Title, Left, Top, Width, Height)

+Name <window_handle>

+Title <string>

+Left <integer>

+Top <integer>

+Width <integer>

+Height <integer>

Create a "text" window with the given Name, Title, Left - Top corner coordinates, Width and Height
dimensions. Name should be an atom which is used from then on to refer to the window. Text windows
contain an "editor" field that is automatically resized according to the resizing of the window.

See Also
warea/5
wclass/2
wclose/1
wccreate/8
wcreate/8
wdcreate/7
wdict/1
wenable/2
wfind/3
wfocus/1
wlink/3
wndhdl/2
wshow/2
wsize/5
wstyle/2
wtext/2
wucreate/6

wtext/2
get or set the window text

wtext(Window, Text)

+Window <window_handle>

+Text <string>

Replace the text of the given Window to the given Text, or get the current Text. For top level and MDI
child windows, the text is the window title (style permitting); for "button" and "static" control windows it is
the window label, and for "edit" or "editor" control windows and the "edit" control components of
"combobox" windows, it is the entire window contents. Note that, unlike wedttxt/2, this predicate works
with all types of window, but instead of replacing the current selection it replaces the entire text.

See Also
warea/5
wclass/2
wclose/1
wccreate/8
wcreate/8
wdcreate/7
wdict/1
wenable/2
wfind/3
wfocus/1
wlink/3
wndhdl/2
wshow/2
wsize/5
wstyle/2
wtcreate/6
wucreate/6

wthumb/3
get or set position of a scroll bar

wthumb(Window, Type, Position)

+Window <window_handle>

+Type <string>

?Position <integer> or <variable>

Get or set the selection position of the elevator thumb in the given type of scroll bar in the given window.
The Position argument is a signed 16-bit integer, limited by the scroll bar's range (see wrange/4). The
Type argument is a scrollbar type value that shows whether a scroll bar is connected to a window (i.e.
given as part of the style definition of that window) or stand-alone (a separate control item of type
"scrollbar"). Windows addresses these two types of scrollbar differently, so wthumb/3 needs to be
provided with the appropriate type value.

See Also
wccreate/8
wcreate/8
wdcreate/7
wrange/4

wucreate/6
create a    user MDI window

wucreate(Name, Title, Left, Top, Width, Height)

+Name <window_handle>

+Title <string>

+Left <integer>

+Top <integer>

+Width <integer>

+Height <integer>

Create a "user" MDI window with the given Name, Title, Left - Top corner coordinates, Width and Height
dimensions. Name should be an atom which is used from then on to refer to the window. User windows
are created with a system menu, a hide button, a maximize button and are re-sizeable. They do not
contain any other controls. Note: if you put any control items in a user MDI window you must write your
own code to handle the re-sizing of the window.

See Also
warea/5
wclass/2
wclose/1
wccreate/8
wcreate/8
wdcreate/7
wdict/1
wenable/2
wfind/3
wfocus/1
wlink/3
wndhdl/2
wshow/2
wsize/5
wstyle/2
wtcreate/6
wtext/2

wxclose/1
close a metafile

wxclose(Metafile)

+Metafile <atom>

Close the named memory metafile (Metafile), returning its resources to Windows, where Metafile was
previously opened using wxcreate/6 or wxload/2.

See Also
wxcreate/6
wxdict/1
wxload/2
wxsave/2

wxcreate/6
create a metafile

wxcreate(Metafile, Glist, Left, Top, Right, Bottom)

+Metafile <atom>

+Glist <list_of <compound_term> >

+Left <integer>

+Top <integer>

+Right <integer>

+Bottom <integer>

Create the named memory metafile (Metafile), using the given list of graphics commands (Glist), and Left,
Top, Right and Bottom maximum extents. See wgfx/2 for the list of supported functions.

See Also
wxclose/1
wxdict/1
wxload/2
wxsave/2

wxdict/1
return a dictionary of metafiles

wxdict(XDict)

-XDict <variable>

Return the dictionary of all currently defined memory metafiles as a list (XDict).

See Also
wxclose/1
wxcreate/6
wxload/2
wxsave/2

wxload/2
load a metafile from disk

wxload(Metafile, DiskMetafile)

+Metafile <atom>

+DiskMetafile <atom>

Load the named memory metafile (Metafile) from the specified disk metafile (DiskMetafile).

See Also
wxclose/1
wxcreate/6
wxdict/1
wxsave/2

wxsave/2
save a metafile to disk

wxsave(Metafile, DiskMetafile)

+Metafile <atom>

+DiskMetafile <atom>

Save the named memory metafile (Metafile) to the specified disk metafile (DiskMetafile).

See Also
wxclose/1
wxcreate/6
wxdict/1
wxload/2

Technical Support
The LPA Technical Support team is normally available during office hours (9am-5pm UK time), for phone,
fax and email support.

When phoning, ask for LPA Prolog for Windows Technical Support. If no-one is available at that time,
please leave your name and number and someone from Technical Support will get back to you. By far the
best way to contact Technical Support is via email as this enables us to receive examples for testing and
to send possible fixes.

If you need to contact the LPA Technical Support Team you can do so using the following numbers and
addresses:

UK Phone and Fax

Phone: 0181 871 2016
Fax: 0181 874 0449

International Phone and Fax

Phone: +44 181 871 2016
Fax: +44 181 874 0449

email: lpa@cix.compulink.co.uk

World Wide Web Site

You are always welcome to visit our world wide web site at:

http://www.lpa.co.uk

Reporting Bugs and Problems

The following information will enable you to get the fastest and most efficient service from the LPA
Technical Support team. There is a check list for the information that we normally require when dealing
with problems and an example of a clearly presented report.

Screen dumps can provide useful information, as can DRWATSON log files, after serious Windows errors.
Where possible, details of the host computer hardware and software can also help in bug analysis: the
output of the MSD program (supplied as part of Windows) is very valuable in this respect. Ideally, a simple
operating procedure, program or query should be presented which reliably reproduces the problem.

Please try to provide the following information:

1) The exact product name (eg, LPA-PROLOG for Windows)
2) The serial number (eg, 0001234567)
3) The full version number (eg, 3.000)
4) The system compilation date (eg, 12 May 1995)
5) Settings of memory areas (eg, Bk=64, Lc=64, etc.)
6) The exact error message if one was given (eg, Error 30 File Handling Error)
7) If a GPF occurs please note down the exact address reported by Windows

(eg. module <unknown> @ AB27E:3247)

The first five pieces of information can be given by copying the Prolog banner, displayed in the console at
startup, into the bug report. This banner can also be generated using the predicate ver/1.
Additionally, if a GPF has occurred please restart Windows, after noting down the exact address of the

GPF, and run the LPA Prolog for Windows application again. This time include the following command-line
switch:

/V2

If the GPF re-occurs setting this switch provides some additional debugging information about the status
of LPA Prolog for Windows. Note down the information that gets produced and send this to us along with
some details regarding the circumstances of the GPF. Such as what type of process was happening when
the GPF occurred, what other applications were running and any other information that you feel might be
relevant.

Bug Reports

Bug reports should be clear, concise, and unambiguous, so as to maximise the chance of the problem
being reproducible on LPA's computers. The following is an example of a good report.

=== START OF GOOD REPORT ===

Prolog Banner

LPA WIN-PROLOG 3.200 - S/N 0008429273 - 05 Jan 1996
Copyright (c) 1996 Logic Programming Associates Ltd
Licensed To: LPA Development and Documentation Team
B=64 L=64 R=64 H=255 T=418 P=1502 S=63 I=64 O=64 Kb

Computer: See attached MSD report

Description of problem

I try to run Prolog from the DOS command line, with the command:

C> WIN PRO386W

Windows starts up as normal, followed by the LPA welcome banner, but then nothing further happens. If I
press a key, the system just bleeps.

If I try to run Prolog from the Program Manager, by clicking on the LPA icon, everything works perfectly.

=== END OF GOOD REPORT ===

