
Files 14-1

14Version 1.1

FILES
Includes Demonstration Program Files

Macintosh Files

A file is a named, ordered sequence of bytes stored on a Macintosh volume. The files associated with
an application are typically:

• The application file itself, which comprises the application's executable code and any
application-specific resources and data.

• Document files created by the user using the application, which the user can edit.

• A preferences file created by the application to store user-specified preference settings for the
application.

The Macintosh Operating System also uses files for certain purposes. For example:

• The File Manager uses a special file located in a volume to maintain the hierarchical organisation
of files and folders in that volume. This special file is called the volume's catalog file.

• If virtual memory is in operation, the Operating System stores unused pages of text in a disk file
called the backing store file.

Characteristics of Files

File Forks

All Macintosh files comprise two forks, known as the data fork and the resource fork . The resource
fork contains the file's resources. The data fork contains the file's data. Unlike the bytes stored in the
resource fork, the bytes in the data fork do not have to exhibit any particular internal structure. Your
application is therefore responsible for interpreting the bytes in the data fork in whatever manner is
appropriate.

Although all Macintosh files contain both a data fork and a resource fork, one or both of these forks
may be empty. Fig 1 shows the typical contents of the data and resource forks of an application file and
a document file.

Whether you store specific data in the data fork or the resource fork of a file depends largely on
whether that data can usefully be structured as a resource. For example, if you want to store a small
number of names and telephone numbers, you can easily define a resource type that pairs each name
with its telephone number. You can then read names and corresponding numbers from the resource
file by using Resource Manager routines. This approach is convenient because, to retrieve data stored

14-2 Files

in a resource, you simply specify the resource type and ID. You do not need to know, for example,
how may bytes of data are stored in the resource.

FIG 1 - TYPICAL CONTENTS OF DATA FORKS AND RESOURCE FORKS IN APPLICATION AND DOCUMENT FILES

EMPTY USER'S DATA LAST LOCATION AND
SIZE OF WINDOW.

MISSING
APPLICATION NAME.

PRINTABLE AREA OF
PAPER SIZE CHOSEN
IN STYLE DIALOG.

RESOURCE FORKDATA FORK

DESCRIPTIONS OF
MENUS, DIALOG
BOXES, ICONS, ETC.

TEXT STRINGS FOR
HELP BALLOONS
AND DIALOG BOXES.

APPLICATION CODE.

RESOURCE FORKDATA FORK

APPLICATION FILE DOCUMENT FILE

In some cases, however, it is neither possible nor advisable to store your data in resources. For
example, it is easiest to store a document's text, which is usually of variable length, in a file's data fork.
You can then use File Manager routines to access any byte or group of bytes individually.

In general, you should store data created by the user in the data fork unless the data will occupy only a
small number of resources. Always bear in mind that the Resource Manager was not designed as a
general purpose data storage and retrieval system.

File Size

Volumes

The size of a file is usually limited only by the size of its volume. A volume is a portion of a storage
device that is formatted to contain files. A volume can be an entire disk or only part of a disk. A 3.5
inch floppy disk, for example, is always formatted as one volume. Other memory devices, such as hard
disks and file servers, can contain multiple volumes.

Logical Blocks and Allocation Blocks

The size of a volume varies from one type of device to another. Volumes are formatted into chunks
known as logical blocks , each of which can contain up to 512 bytes. The actual size of a logical block
on a volume is generally only of interest to the disk device driver. This is because the File Manager
allocates space to a file in units called allocation blocks. An allocation block is a group of consecutive
logical blocks.

The File Manager can access a maximum of 65,535 allocation blocks on any volume. For small
volumes, such as volumes on floppy disks, the File Manager uses an allocation block size of one logical
block. To support volumes larger than about 32 MB, the File Manager needs to use an allocation block
size which is at least two logical blocks. To support volumes larger than about 64 MB, the File Manager
needs to use an allocation block size which is at least three logical blocks.

A non-empty file fork always occupies at least one allocation block. On a 40 MB volume, for example, a
file's data fork occupies at least 1024 bytes (two logical blocks) even if it contains only, say, 11 bytes of
actual data.

Physical and Logical End-Of-File

To distinguish between the amount of space allocated to a file and the number of bytes of actual data in
the file, two numbers are used to describe the size of the file:

• Physical End-Of-File. The physical end-of-file is the number of bytes currently allocated to
the file. Since the file's first byte is byte number 0, the physical end-of-file is 1 greater than the

Files 14-3

number of the last byte in its last allocation block. As a result, the physical end-of-file is always
an exact multiple of the allocation block size.

• Logical End-Of-File. The logical end-of-file is the number of those allocated bytes that
currently contain data. It is one greater than the number of the last byte containing data.

Fig 2 illustrates logical end-of-file and physical end-of-file.

FIG 2 - LOGICAL END-OF-FILE AND PHYSICAL END-OF-FILE

LOGICAL BLOCK 5 LOGICAL BLOCK 6

ALLOCATION BLOCK 3

BYTE 0 511 512 1023

LOGICAL END-OF-FILE (BYTE 509) PHYSICAL END-OF-FILE (BYTE 1024)

You can move the logical end-of-file to adjust the size of the file. When you move the logical end-of-file
to a position more than one allocation block short of the current physical end-of-file, the File Manager
automatically deletes the unneeded allocation block from the file. Similarly, if you increase the size of
the file by moving the logical end-of-file past the physical end-of-file, the File Manager automatically
adds one or more allocation blocks to the file.

Clumps

The number of allocation blocks added to the file is determined by the volume's clump size. A clump
is a group of contiguous allocation blocks. The purpose of enlarging files by adding clumps is to
reduce file fragmentation on a volume, thus improving the efficiency of read and write operations.

Combating File Fragmentation

If you plan to keep extending a file with multiple write operations, and you know in advance
approximately how large the file is likely to become, you should first call SetEOF to set the file to that
size. This reduces file fragmentation and improves I/O performance.

File Access

A file can be open or closed. Your application can perform certain operations, such as reading and
writing data, only on open files. It can perform other operations, such as deleting, only on closed files.

Access Path and File Reference Number

When you open a file, the File Manager reads the information about the file from its volume and stores
it in a file control block (FCB). The File Manager also creates an access path to the file. The access
path specifies the volume on which the file is located and the location of the file on the volume. Each
access path is assigned a unique file reference number (a number greater than 0) by which your
application refers to that path. Multiple access paths may be opened to the same file.

File Mark

For each open access path, the File Manager maintains a current position marker, called the file mark,
to keep track of where it is in the file during a read or write operation. The mark is the number of the
next byte to be read or written. Each time a byte is read or written, the mark is moved. You can specify
where each read or write operation should begin by setting the mark or specifying an offset.

Data Buffer

Each time you want to read or write a file's data, you need to pass the address of a data buffer in RAM.
The File Manager uses the buffer when it transfers data to or from your application. You can use a
single buffer for each read or write operation, or change the address and size of the buffer as necessary.

14-4 Files

Disk Cache

When your application writes data to a file, the File Manager transfers the data from your application's
data buffer to the disk cache, which is also a part of RAM (usually in the System heap). The File
Manager uses the disk cache as an intermediate buffer when reading data from, or writing data to, the
file system. When your application requests that data be read from a file, the File Manager looks for
data in the disk cache and, if data is found in the cache, transfers that data to your application's data
buffer. Otherwise, the File Manager reads the requested bytes from the disk and puts them in your
data buffer.

The Hierarchical File System

Directories and Directory ID

The Macintosh Operating System uses a method of organising files called the hierarchical file system
(HFS). In HFS, files are grouped into directories (also called folders), which themselves may be
grouped into other directories (see Fig 3). As shown at Fig 3, each directory has a number associated
with it called the directory ID.

FIG 3 - MACINTOSH HIERARCHICAL FILE SYSTEM

2

11 21

27 35 43

VOLUME

Root Directory

The Finder works with the File Manager to maintain the organisation of files and folders on a volume.
The hierarchical relationship of folders within folders on the desktop corresponds directly to the
hierarchical directory structure maintained on the volume. The volume is known as the root directory,
and the folders are known as subdirectories, or simply as directories.

Mounted Volumes

A volume appears on the desktop only after it has been mounted. When a volume is mounted, the File
Manager places information about the volume in a nonrelocatable block of memory called a volume
control block (VCB).

When a volume is mounted, the File Manager assigns a volume reference number by which you can
refer to the volume for as long as it remains mounted. You can also identify a volume by its volume
name, a sequence of 1 to 27 printing characters (excluding colons)1. The volume reference number
should be used in preference to the volume name so as to avoid confusion between volumes with the
same name.

When an application ejects a 3.5 inch disk from a drive, the File Manager places the volume offline.
When a volume is offline, the volume control block is kept in memory and the volume reference
number is still valid. If you make a File Manager call that references that volume, the File Manager
presents the disk switch dialog box.

1The File Manager ignores case when comparing names but does recognize diacritical marks.

Files 14-5

When a user drags a volume icon to the trash, the volume is unmounted. The volume control block is
released and the volume is no longer known to the File Manager.

Parent Directory and Parent Directory ID

Each subdirectory is located within a directory called its parent directory. Typically, the parent
directory is specified by a parent directory ID, which is simply the directory ID of the parent directory.
The File Manager assigns a special parent directory ID to a volume's root directory. This is primarily to
facilitate a consistent method of identifying files and directories using the volume reference number,
the parent directory ID, and the file or directory name.

For the most part, your application does not need to be concerned about, or keep track of, the location
of files in the file system hierarchy. Most of the files your application opens and saves are specified by
the user via a dialog box, and their location is provided to your application by either the Finder or the
Standard File Package. (One notable exception concerns preferences files, which are typically stored in
the Preferences folder in the System folder.)

Aliases

In addition to files, folders and volumes, a fourth type of object, namely an alias, might appear on the
Finder desktop. An alias is a special kind of file which represents another file, folder, or volume. The
Finder and the Standard File Package automatically resolve aliases.

Identifying Files and Directories

Conventions for identifying files, directories and volumes have evolved as the File Manager has
matured. System software Version 7.0 introduced a simple, standard form for identifying a file or
directory called the file system specification.

A file system specification is contained in a record of type FSSpec:

struct FSSpec
{

short vRefNum; // Volume reference number.
long parID; // Directory ID of parent directory.
Str63 name; // Filename or directory name.

};

typedef struct FSSpec FSSpec;
typedef FSSpec *FSSpecPtr, **FSSpecHandle;

In addition to the FSSPec record, System 7 introduced a new set of high-level routines which accept
FSSPec records as input.

This chapter is concerned only with the routines, and the method of identifying files and directories,
introduced with System 7. Older methods of identifying files and directories (file ID references,
working directory reference numbers, full or partial pathnames, etc.) are not addressed in the
following.

Creating, Opening, Reading From, Writing To, and Closing Files

Your application typically creates, opens, reads from, writes to, and closes files in response to the user
choosing commands from the File menu. In addition, your application opens, reads from, writes to,
and closes files in response to the required Apple events (see Chapter 8 — Required Apple Events).

The following shows how to perform typical file operations within the context of a user choosing
commands from an imaginary application's File menu. For the purposes of illustration, the assumption
is made that the files involved store text documents and that, when retrieved from file, the documents
are displayed in a window with scroll bars.

14-6 Files

General File Menu and Required Apple Events Handling Strategy

A suggested general strategy for handling user choices from the New…, Open…, Close, Save, Save
As…, and (optional) Revert to Saved items in the File menu, and for responding to the required
Apple events, is illustrated at Fig 4.

FIG 4 - GENERAL FILE MENU AND REQUIRED APPLE EVENTS HANDLING STRATEGY

Call doNewDocWindow

Set source resource file,
get resource, detach
resource, set destination
resource file and write
resource to destination.

Get front window. Get front window.

Present Save dialog box.

Get front window.

Copy file reference
number to document
record and set window's
title.

Call doCopyResource,
specifying the
application's missing
application name 'STR'
resource as the resource
to copy.

doCopyResource

doCopyAppName
Resource

Call doOpenFile

Set file mark at start.

Get data address and
size.

Adjust file size.

Find volume file is on
and flush the volume.

Write data to file.

Change document
record to flag the
window as "not dirty".

Create a temporary
filename.

Find the temporary
folder on file's volume,
or create it if necessary.

Set window title.

Call doNewDocWindow to
open new window.

Open file's data fork
for read and write.

Call doReadFile to read
in file data.

Get file reference
number.

Set file mark at start.

Get file length and
allocate buffer.

Read in the data.

Display the data as
appropriate.

Make a file system
specification record for
the temporary file.

Open the temporary
file.

Call doWriteData to
write data to data fork
of temporary file.

Swap the data in the
actual file and the
temporary file.

Delete the temporary
file and re-open the
existing file.

Close the temporary
file and the exiting file.

Open New Window.

Allocate space for, and
initialize, document
record.

If YES or NO, and if the
document has a file,
close the file, flush the
volume, and release
memory associared with
the file's data.

If window is "dirty",
present caution alert
asking whether
document is to be saved.

If CANCEL, return.

If YES, first call
doSaveCmd to save file.

Get file name from front
window's title.

Present dialog asking
whether to revert to last
saved version of file.

If OK, call doReadFile
to read in the file.

If CANCEL, return.

Present Open dialog box,
specifying file types to
display.

If front window is a
document window, call
doCloseFile.

Close window.

If window has a file,
call doWriteFile.

Else call doSaveAsCmd.

If window already has
a file, close it.

If user is not replacing
an existing file, create a
new file, specifying
creator and type.

Close the resource fork.

Open the new file's
data fork.

Create and open file's
resource fork.

Call doWriteFile

doOpenCommand doSaveCommand

doNewDocWindow doOpenFile doCloseFile doWriteFile

doRevertCommand

doReadFile

doWriteData

If new file, call
doCopyAppNameResource
to copy missing applicat-
ion name string resource
to resource fork.

Change document
record to flag the
window as "not dirty".

doSaveAsCommanddoCloseCommand

REQUIRED APPLE EVENTS

OPEN DOCUMENTS

OPEN APPLICATION

PRINT DOCUMENTS

QUIT APPLICATION

doNewCommand

Preliminaries - Creating a Document Record

When a user creates a new document or opens an existing document, your application displays the
contents of the document in a window, which provides a standard interface for the user to view, and
possibly edit, the document data. It is usual for your application to define a document record, an

Files 14-7

application-specific data structure which contains information about both the window and the file
whose contents are to be displayed in the window.

The following is an example application-defined document record for an application that handles text
files:

typedef struct
{

TEHandle editRec; // Handle to TextEdit record.
ControlHandle vScrollBar; // Handle to vertical scroll bar.
ControlHandle hScrollBar; // Handle to horizontal scroll bar.
SInt16 fileRefNum; // File reference number for window's file.
FSSpec fileFSSpec; // File's file system specification record.
Boolean windowDirty; // Has window's data changed?

} documentRecord;

typedef documentRecord *documentRecordPtr;
typedef documentRecord **documentRecordHdl;

Note the fileRefNum and fileFSSPec fields. Note also that the last field (windowDirty) is used to
indicate whether the contents of the document in memory differ from those in the associated file.
When your application first reads in the file, it should set this field to false. Then, when any
subsequent operations alter the contents of the document in memory, you should set the windowDirty
field to true. If the user attempts to close a document window when the value of the windowDirty flag
is true, your application should ask the user, via a dialog box, whether to save the changed version of
the document to file.

To associate a particular document record with a particular window, you simply assign the handle to
that record to the reference constant (refCon) field of the window record using SetWRefCon.

Creating a New Document Window

The user expects to be able to create a new document using the New… command in the File menu. In
addition, it is usual for an application to open a new untitled document window when it receives an
Open Application event from the Finder. Typically, the application-defined function which handles
the New… command (doNewCommand at Fig 4) would call another application-defined function
(doNewDocWindow at Fig 4), which could be defined along the lines of the following example:

OSErr doNewDocWindow(void)
{

documentRecordHdl docRecHdl;

// Open a new window.

gWindowPtrs[++gNumberOfWindows] = GetNewWindow(rDocWindow,NULL,(WindowPtr) -1);
if(gWindowPtrs[gNumberOfWindows] == NULL)

return(MemError());

// Allocate a relocatable block for a new document record.

docRecHdl = myDocRecHnd(NewHandle(sizeof(MyDocRec)));
if(docRecHdl == NULL)
{

DisposeWindow(gWindowPtr[gNumberOfWindows--]);
return(MemError());

}

// Create new text edit record. Create scroll bars. Initialise document record.

MoveHHi((Handle) docRecHdl);
HLock((Handle) docRecHdl);
(*docRecHdl)->editRec = TENew(gDestRect,gViewRect);
(*docRecHdl)->vScroll = GetNewControl(rVScroll,windowPtr);
(*docRecHdl)->hScroll = GetNewControl(rHScroll,windowPtr);
(*docRecHdl)->fileRefNum = 0;
(*docRecHdl)->windowDirty = false;

if((editRec == NULL) || (vScroll == NULL) || (hScroll == NULL))
{

DisposeWindow(gWindowPtr[gNumberOfWindows--]);

14-8 Files

DisposeControl(vScroll);
DisposeControl(hScroll);
TEDispose(editRec);
DisposeHandle((Handle) docRecHdl);
return(memFullErr);

}

// Make window visible.

ShowWindow(gWindowPtr[gNumberOfWindows]);

// Connect document record to window.

SetWRefCon(gWindowPtr[gNumberOfWindows],(SInt32) docRecHdl);

HUnlock((Handle) docRecHdl);
return(noErr);

};

Note that this function does not actually create a new file, because it is usually better to wait until the
user decides to save the new document before creating a file. Accordingly, doNewDocWindow sets the
fileRefNum field of the document record to 0 to indicate that no file is currently associated with this
window.

Opening a File and Reading in Data

Your application will need to open a file when the user chooses the Open… command from the File
menu (see doOpenCommand at Fig 4) and when it receives Open Documents and Print Documents events
from the Finder. Your application's initial response to the user choosing the Open… command from the
File menu should be to elicit a file selection from the user by presenting the standard Open dialog box
(see Fig 5).

FIG 5 - THE STANDARD OPEN DIALOG BOX

Presenting the Open Dialog Box

StandardGetFile is used to present the standard Open dialog box:

void StandardGetFile (fileFilter,numTypes,typeList,reply);
FileFilterUPP fileFilter; Pointer to optional file filter function.
short numTypes; Number of file types to be displayed. -1 = all types.
ConstSFTypeListPtr typelist; List of file types to be displayed.
StandardFileReply *reply; File reply record (filled in by StandardGetFile).

Standard File Reply Record. The Open dialog box allows the user to navigate the file system
hierarchy and select the required file. While the box is displayed, StandardGetFile handles all events
until the user completes the interaction by clicking either the Open button or the Cancel button. When
the user clicks one of those buttons, StandardGetFile returns the user's input in the reply parameter,
that is, in a Standard File reply record:

struct StandardFileReply
{

Files 14-9

Boolean sfGood; // true if user clicked Open button.
Boolean sfReplacing; // true if file to be saved replaces file with same name.
OSType sfType; // File type of the selected file.
FSSpec sfFile; // File system specification for selected item.
ScriptCode sfScript; // Script in which selected item's name is to be displayed.
short sfFlags; // Finder flags of selected item (stationery, etc.).
Boolean sfIsFolder; // true if selected item is a folder.
Boolean sfIsVolume; // true if selected item is a volume.
long sfReserved1; // (Reserved)
short sfReserved2; // (Reserved)

};

typedef struct StandardFileReply StandardFileReply;

Creating the Window and Opening the File

If the user clicked the Open dialog box's Open button, the next step is to call the application-defined
function (doNewDocWindow at Fig 4) which creates a window and associated document record and then
open the file's data fork (doOpenFile at Fig 4).

The file's data fork is opened using FSpOpenDF:

OSErr FSpOpenDF (spec,permission,refNum);
FSSpec *spec; File system specification record.
SInt8 permission; Access mode.
short *refNum; Returned file reference number.

FSpOpenDF takes the FSSpec returned by StandardGetFile as its first parameter. The permission field
specifies the access mode for opening the file. The access mode may be specified using one of the
following constants:

Constant Value Description
fsCurPerm 0 Whatever permission is allowed.
fsRdPerm 1 Read permission.
fsWrPerm 2 Write permission.
fsRdWrPerm 3 Exclusive read/write permission.
fsRdWrShPerm 4 Shared read/write permission.

FSpOpenDF returns, in its third parameter, a file reference number. This reference number should be
saved to the window's document record so that it can be readily retrieved for use as a parameter in
calls to routines which read from and write to the file.

Reading File Data

Once you have opened a file, you can read data from it. Generally, you need to read data from a file
when the user first opens it or when the user reverts to the last saved version of a document by
choosing the Revert to Saved item in the File menu (see doReadFile at Fig 4). Typically, an application-
defined function for reading file data:

• Retrieves the file reference number from the document record.

• Calls SetFPos to set the file mark to the beginning of the file:

OSErr SetFPos (refNum,posMode,posOff);
short refNum; File reference number.
short posMode; Positioning mode.
long posOff; Positioning offset.

14-10 Files

The posMode parameter must contain one of the following constants:

Constant Value Description
fsAtMark 0 Remain at current mark.
fsFromStart 1 Set mark relative to beginning of file.
fsFromLEOF 2 Set mark relative to logical end of file.
fsFromMark 3 Set mark relative to current mark.
rdVerify 64 Add to above for read-verify.

• Determine the number of bytes in the file by calling GetEOF :

OSErr GetEOF (refNum,logEOF);
short refNum; File reference number.
long *logEOF; Receives length of file, in bytes.

• Call FSRead to read the specified number of bytes from the file into the specified buffer:

OSErr FSRead (refNum,count,buffPtr);
short refNum; File reference number.
long *count; On input: bytes to read. On output: actual bytes read.
void *buffPtr; Address of buffer into which bytes are to be read.

Note that FSRead returns, in the count parameter, the actual number of bytes read.

Saving a File

There are several ways for the user to indicate that the current contents of a document should be saved.
The user can choose the File menu commands Save or Save As… or the user can click the Save button
in a dialog box that you display when the user attempts to close a "dirty" document (that is, a document
whose contents have changed since the last time it was saved) (see doCloseCommand at Fig 4). The
dialog box used in this latter case would also be presented on receipt of a Quit Application event from
the Finder when a "dirty" document remains open.

Handling the Save Command

To handle the Save command (see doSaveCommand at Fig 4), your application should:

• Check the file reference number field of the window's document record to determine if the
window already has a file.

• If the window already has a file, call the application-defined function for writing files to disk
(see doWriteFile at Fig 4). If the window does not have a file, call the application-defined
function for handling the Save As… command.

Handling the Save As… Command

To handle the Save As… command (see doSaveAsCommand at Fig 4), your application should:

• Call StandardPutFile to display the standard Save dialog box (see Fig 6):

void StandardPutFile (prompt,defaultName,reply);
ConstStr255Param prompt; Prompt message.
ConstStr255Param defaultName; Initial name of file.
StandardFileReply *reply File reply record.

StandardPutFile handles all user interaction until the user clicks the Save or Cancel button.
When the user clicks the Open or Cancel button, StandardPutFile returns the user's input in the
reply parameter (that is, in a Standard File reply record).

If the user clicks on the Save button, perform the remaining steps, otherwise return to the calling
function.

Files 14-11

FIG 6 - THE STANDARD SAVE DIALOG BOX

• If the sfReplacing field of the Standard File reply record does not contain true, call FSpCreate to
create a new file and set the file type and creator:

OSErr FSpCreate (spec,creator,fileType,sciptTag);
FSSpec *spec; File system specification record.
OSType creator; File creator.
OSType fileType; File type.
ScriptCode scriptTag; Code of script system in which filename is displayed.

• Copy the sfFile field of the Standard File reply record to the file system specification record
field of the document record.

• If the window already has a file (that is, if the file reference number field of the document record
does not contain 0), close that file with a call to FSClose:

OSErr FSClose (refNum);
short refNum; File reference number.

• Call FSpOpenDF to open the data fork.

• Assign the file reference number returned by FSpOpenDF to the file reference number field of the
document record.

• Call SetWTitle to set the window's title, using the string extracted from the name field of the
sfFile field of the Standard File reply record.

• Call the application-defined function for writing files to disk (see doWriteFile at Fig 4).

Writing File Data

The application-defined function for writing data (see doWriteFile at Fig 4) should write to a
temporary file, not to the document file itself. If you write directly to the document's file, you risk
corrupting that file if the write operation does not complete successfully. The broad approach for
saving data safely to disk is therefore to write the data to a temporary file and then, assuming the
temporary file has been written successfully, swap the contents of the temporary file and the
document's file.

The procedure for updating a file safely is as follows:

• Get the file system specification from the document record.

• Create a temporary filename for the temporary file.

14-12 Files

• Call FindFolder to find the temporary folder on the file's volume, or create it if necessary:

OSErr FindFolder (vRefNum,folderType,createFolder,foundVRefNum,foundDirID);
short vRefNum; Volume reference number.
OSType folderType; Folder type for volume.
Boolean createFolder; kCreateFolder or kDontCreateFolder.
short *foundVRefNum; Volume reference number for folder found.
long *foundDirID; Directory ID of folder found.

• Call FSMakeFSSpec to make a file system specification record for the temporary file:

OSErr FSMakeFSSpec (vRefNum,dirID,fileName,spec);
short vRefNum; Volume reference number.
long dirID; Parent directory ID.
ConstStr255Param fileName; Full or partial pathname.
FSSpec spec; Pointer to FSSpec record.

• Call FSpCreate to create the temporary file, and FSpOpenDF to open the temporary file's data fork.

• Call the application-defined function for writing data to a file (see doWriteData at Fig 4). This
function should:

• Retrieve the address and length of the buffer (for example, from a TextEdit record).

• Call SetFPos to set the file mark to the beginning of the file.

• Call FSWrite to write the buffer to the file:

OSErr FSWrite (refNum,count,buffPtr);
short refNum; File reference number.
long *count; On input: bytes to write. On output: bytes written.
const void *buffPtr; Address of buffer containing data to write.

• Call SetEOF to resize the file to the number of bytes actually written:

OSErr SetEOF (refNum,logEOF);
short refNum; File reference number.
long logEOF; Logical end-of-file.

• Call GetVRefNum to determine the volume containing the file:

OSErr GetVRefNum (refNum,vRefNum);
short refNum; File reference number.
short *vRefNum; Receives volume reference number.

• Call FlushVol to flush the volume:

OSErr FlushVol (volName,vRefNum);
ConstStr63Param volName; Pointer to name of mounted volume
short vRefNum; Volume reference number.

Flushing the volume ensures that both the file's data and the file's catalog entry2 are updated.

• Call FSClose to close the temporary file.

• Call FSClose to close the existing file.

• Call FSpExchangeFiles to swap3 the contents of the temporary file and the existing file:

OSErr FSpExchangeFiles (source,dest);
const FSSpec *source; Source file.
const FSSPec *dest; Destination file.

2The catalog entry for a file contains fields that describe the physical data (such as the first allocation block and the physical and logical ends
of both the resource and data forks) and fields that describe the file within the file system, such as file ID and parent directory ID.
3FSpExchangeFiles does not actually move the data on the volume. It merely changes the information in the volume's catalog file and, if the
files are open, their file control blocks (FCBs).

Files 14-13

• Call FSpDelete to delete the temporary file:

OSErr FSpDelete (spec);
const FSSpec *spec; File system specification.

• Call FSpOpenDF to re-open the data fork of the existing file.

As a final step, and if the existing file is a newly created file which has been written to for the first time,
the function for updating a file should also call an application-defined function which copies the
missing application name string resource4 from the resource fork of the application file to the resource
fork of the newly created file. This function (doCopyAppNameResource at Fig 4) should:

• Call FSpCreateResFile to create the new file's resource fork:

void FSpCreateResFile (spec,creator,fileType,sciptTag);
const FSSpec *spec; File system specification record.
OSType creator; File creator.
OSType fileType; File type.
ScriptCode scriptTag; Code of script system.

• Call FSpOpenResFile to open the resource fork:

short FSpOpenResFile (spec,permission);
const FSSpec *spec; File system specification record.
SignedByte permission; Permission code.

The constants used to specify the access mode in the FSpOpenDF call (see above) are also used to
specify the permission code in the FSpOpenResFile call.

• Call an application-defined function (doCopyResource at Fig 4) which copies specified resources
from one resource file to another to copy the missing-application name 'STR ' resource (ID -
16396) from your application's resource fork to the resource fork of the newly-created file.

• Call FSClose to close the resource fork.

Reverting to a Saved File

Many applications that manipulate files provide a Revert to Saved command in the File menu which
allows the user to revert to the last saved version of a document. The procedure for handling this
command (see doRevertCommand at Fig 4) is relatively simple. You firstly display an alert box asking
whether to revert to the last saved version of the file (see Fig 7). If the user clicks the Cancel button,
nothing should happen to the current document. If, however, the user clicks on the OK box, you
simply call your application-defined function for reading file data (doReadFile at Fig 4) to read the disk
version of a file back into the window.

FIG 7 - A REVERT-TO-SAVED DIALOG BOX

Closing a File

Your application must close a file when the user clicks in the close box of the associated window or
chooses the Close command from the File menu. You may also need to close files when the user
chooses Quit from the File menu or a Quit Application event is received from the Finder.

4See Chapter 7 — Finder Interface.

14-14 Files

After determining that the subject window is a document window and not a modeless dialog box (see
doCloseCommand at Fig 4), your application should call the application-defined function for closing files
(see doCloseFile at Fig 4). This function should:

• Check whether the window is "dirty" (that is, whether the contents of the window have been
changed since the last time it was saved) by checking the windowDirty field of the document
record.

If the document has been changed, present the user with a dialog box containing Yes, No and
Cancel buttons and asking whether the document should be saved before it is closed. If the user
clicks on the Cancel button, simply return. If the user clicks the Yes button, call the application-
defined function for saving files and then proceed to the next step. If the user clicks the No
button, simply proceed to the next step.

• If the document record indicates that a file has previously been opened for the document (that is,
the file reference number field of the document record contains a non-zero value), call FSClose to
close the file, call FlushVol to ensure that both the file's data and the file's catalog entry are
updated, and set the file reference number field in the document record to 0.

• Release memory associated with the storage of the file's data. Then dispose of the document
record and, finally, the window.

Customised Open and Save Dialog Boxes

The standard user interfaces provided by StandardGetFile and StandardPutFile may not be adequate
for the needs of some applications. To accommodate such cases, the Standard File Package supports
customised dialog boxes and, through callback routines, the handling of user actions within customised
dialogs.

Typical Reasons for Customising the Standard Dialog Boxes

Specifying File Formats and File Types

A typical reason for customising the Save dialog box would be to allow the user to save a document in
one of two file formats. In this case, you might simply add two radio buttons to the standard dialog
box, as shown at Fig 8. If the application supported a number of different file formats, the radio
buttons at Fig 8 could be replaced by a pop-up menu.

FIG 8 - A CUSTOMIZED SAVE DIALOG BOX

Files 14-15

A typical reason for customising the Open dialog box is to avoid clutter in the list of files and folders by
filtering out all but one of those types. In this case, radio buttons or a pop-up menu might be added to
the dialog box to enable the user to select which types of files to view in the list.

Selecting Volumes and Directories

In some circumstances, you need to allow the user to select a volume or directory. For example, the
user might want to select a directory as a first step to searching all files in that directory for some
specified information. Similarly, the user might want to select a volume before backing up all files on
that volume. The standard Open dialog box is, however, designed for selecting files, not volumes or
directories. It provides no obvious mechanism for choosing a selected directory instead of simply
opening that directory.

To allow a user to select a directory — including the volume's root directory (the volume itself) — you
can add an additional Select button to the standard Open dialog box together with a Select a Folder:
prompt at the top of the dialog box. By clicking this button, the user would be able to select a
highlighted directory rather than open it.

Customising the Standard Dialog Boxes

To customise a dialog box, you should:

• Design your dialog box and create the resources which describe it.

• Write callback routines, if necessary, to process user actions in the dialog box.

• Call the Standard File Package, using CustomGetFile and CustomPutFile, passing the resource
IDs of the customised dialog boxes and pointers to the callback routines:

void CustomGetFile (fileFilter,numTypes,typeList,reply,dlgID,where,dlgHook,
filterProc,activeList,activateProc,yourDataPtr);

FileFilterYDUPP fileFilter; Optional file filter function.
short numTypes; Number of file types to be displayed.
ConstSFTypeListPtr typeList; List of file types to be displayed.
StandardFileReply *reply; Standard File reply record.
short dlgID; Dialog resource ID.
Point where; Upper left corner of dialog box (global).
DlgHookYDUPP dlgHook; Pointer to dialog hook function.
ModalFilterYDUPP filterProc; Pointer to modal-dialog filter function.
ActivationOrderListPtr *activeList; Pointer to list of active dialog items.
ActivateYDUPP activateProc; Pointer to activation procedure.
void *yourDataPtr; Pointer to optional data.

void CustomPutFile (prompt,defaultName,reply,dlgID,where,dlgHook,
filterProc,activeList,activateProc,yourDataPtr);

ConstStr255Param prompt; Message to be displayed over text field.
ConstStr255Param defaultName; Initial name of file.
StandardFileReply *reply; Standard File reply record.
short dlgID; Dialog resource ID.
Point where; Upper left corner of dialog box (global).
DlgHookYDUPP dlgHook; Pointer to dialog hook function.
ModalFilterYDUPP filterProc; Pointer to modal-dialog filter function.
ActivationOrderListPtr *activeList; Pointer to list of active dialog items.
ActivateYDUPP activateProc; Pointer to activation procedure.
void *yourDataPtr; Pointer to optional data.

Depending on the level of customising you require in your dialog box, you may need to write as many
as four callback routines:

• A file filter function for determining which files the user can open.

• A dialog hook function for handling user actions in the dialog boxes.

• A modal dialog filter function for handling user events received from the Event Manager.

14-16 Files

• An activation procedure for highlighting the display when keyboard input is directed at a
customised field defined by your application.

Main Standard File Package Data Types and Routines

Data Types

typedef const OSType *ConstSFTypeListPtr; // Pointer to an array of OSTypes.

Standard File Reply Record

struct StandardFileReply
{

Boolean sfGood; // true if user clicked Open button.
Boolean sfReplacing; // true if file to be saved replaces file with same name.
OSType sfType; // File type of the selected file.
FSSpec sfFile; // File system specification for selected item.
ScriptCode sfScript; // Script in which selected item's name is to be displayed.
short sfFlags; // Finder flags of selected item (stationery, etc).
Boolean sfIsFolder; // true if selected item is a folder.
Boolean sfIsVolume; // true if selected item is a volume.
long sfReserved1; // (Reserved)
short sfReserved2; // (Reserved)

};

typedef struct StandardFileReply StandardFileReply;

Routines

Saving Files

void StandardPutFile(ConstStr255Param prompt,ConstStr255Param defaultName,
StandardFileReply *reply);

void CustomPutFile(ConstStr255Param prompt,ConstStr255Param defaultName,StandardFileReply
*reply,short dlgID,Point where,DlgHookYDUPP dlgHook,ModalFilterYDUPP filterProc,
ActivationOrderListPtr activeList,ActivateYDUPP activate,void *yourDataPtr);

Opening Files

void StandardGetFile(FileFilterUPP fileFilter,short numTypes,ConstSFTypeListPtr typeList,
StandardFileReply *reply);

void CustomGetFile(FileFilterYDUPP fileFilter,short numTypes,ConstSFTypeListPtr typeList,
StandardFileReply *reply,short dlgID, Point where,DlgHookYDUPP dlgHook,
ModalFilterYDUPP filterProc,ActivationOrderListPtr activeList,ActivateYDUPP activate,
void *yourDataPtr)

Main File Manager Constants, Data Types and Routines

Constants

Read/Write Permission

fsCurPerm = 0
fsRdPerm = 1
fsWrPerm = 2
fsRdWrPerm = 3
fsRdWrShPerm = 4

File Mark Positioning Modes

fsAtMark = 0
fsFromStart = 1
fsFromLEOF = 2
fsFromMark = 3
rdVerify = 64

Files 14-17

Data Types

File System Specification Record

struct FSSpec
{

short vRefNum; // Volume reference number.
long parID; // Directory ID of parent directory.
Str63 name; // Filename or directory name.

};

typedef struct FSSpec FSSpec;
typedef FSSpec *FSSpecPtr, **FSSpecHandle;

File Information Record

struct FInfo
{

OSType fdType; // File type.
OSType fdCreator; // File's creator.
unsigned short fdFlags; // Finder flags (fHasBundle, fInvisible, etc).
Point fdLocation; // Position of top-left corner of file's icon.
short fdFldr; // Folder containing file.

};

typedef struct FInfo FInfo;

Routines

Reading, Writing and Closing Files

OSErr FSClose(short refNum);
OSErr FSRead(short refNum,long *count,void *buffPtr);
OSErr FSWrite(short refNum,long *count,const void *buffPtr);

Manipulating the File Mark

OSErr GetFPos(short refNum,long *filePos);
OSErr SetFPos(short refNum,short posMode,long posOff);

Manipulating the End-Of-File

OSErr GetEOF(short refNum,long *logEOF);
OSErr SetEOF(short refNum,long logEOF);

Opening, Creating and Deleting Files

OSErr FSpOpenDF(const FSSpec *spec,SInt8 permission,short *refNum);
OSErr FSpOpenRF(const FSSpec *spec,SInt8 permission,short *refNum);
OSErr FSpCreate(const FSSpec *spec,OSType creator,OSType fileType,ScriptCode scriptTag);
OSErr FSpDelete(const FSSpec *spec);

Exchanging Data in Two Files

OSErr FSpExchangeFiles(const FSSpec *source,const FSSpec *dest);

Creating File System Specifications

OSErr FSMakeFSSpec(short vRefNum,long dirID,ConstStr255Param fileName,FSSpec *spec);

Updating Volumes

#define PBFlushVol(pb, async) ((async) ? PBFlushVolAsync(pb) : PBFlushVolSync(pb))

Obtaining Volume Information

OSErr GetVInfo(short drvNum,StringPtr volName,short *vRefNum,long *freeBytes);
OSErr GetVRefNum(short fileRefNum,short *vRefNum);

14-18 Files

Relevant Resource Manager Routines

Creating and Opening Resource Files

void FSpCreateResFile(const FSSpec *spec,OSType creator,OSType fileType,
ScriptCode scriptTag);

short FSpOpenResFile(const FSSpec *spec,SignedByte permission);

Relevant Finder Interface Routines

Find a Specified Folder

OSErr FindFolder(short vRefNum,OSType folderType,Boolean createFolder,
short *foundVRefNum,long *foundDirID)

Demonstration Program
// ##1

// Files.c2

// ##3

//4

// This program demonstrates application-defined file handling functions associated with:5

//6

// • The user invoking the File menu Open..., Close, Save..., Save As…, Revert to Saved,7

// and Quit commands of a typical application.8

//9

// • Receipt of the required Apple events Open Application, Open Documents and Quit10

// Application.11

//12

// The uncompiled program may be run from within CodeWarrior to demonstrate responses to13

// the File menu commands. The built application, together with supplied TEXT and a PICT14

// files, may be used to demonstrate the additional aspect of integrating the receipt15

// of required Apple events with the overall file handling mechanism.16

//17

// To keep the code not specifically related to files and file-handling to a minimim, a18

// Demonstration menu is included to allow the user to simulate making a window19

// "dirty", that is, modifying the contents of the associated document. Choosing the20

// single menu item in this menu sets the window-dirty flag in the window's document21

// record to true and draws a diagonal line across the window, this latter so that the22

// user can keep track of which windows are "dirty".23

//24

// The program utilises the following resources:25

//26

// • An 'MBAR' resource, and 'MENU' resources for Apple, File, Edit and Demonstration27

// menus (preload, non-purgeable).28

//29

// • A 'WIND' resource (purgeable) (initially not visible).30

//31

// • Three 'ALRT' resources (purgeable) and associated 'DITL' resources (purgeable).32

// The first alert is used to display error messages. The second is used to support33

// the Revert to Saved menu item. The third is used when an attempt is made to close34

// a modified document before that document has been saved.35

//36

// • A 'STR ' resource (purgeable) containing the "missing application name" string37

// resource, which is copied to all document files created by the program.38

//39

// • A 'SIZE' resource with the acceptSuspendResumeEvents, isHighLevelEventAware, and40

// is32BitCompatible flags set (non-purgeable).41

//42

// • The 'BNDL' resource (non-purgeable), 'FREF' resources (non-purgeable), signature43

// resource (non-purgeable), and icon family resources (purgeable), required to44

// support the built application.45

//46

// ##47

48

// ……… includes49

50

#include <Fonts.h>51

#include <Menus.h>52

#include <TextEdit.h>53

Files 14-19

#include <Dialogs.h>54

#include <SegLoad.h>55

#include <ToolUtils.h>56

#include <Devices.h>57

#include <AppleEvents.h>58

#include <StandardFile.h>59

#include <Folders.h>60

#include <Resources.h>61

#include <Script.h>62

63

// ……… typedefs64

65

typedef struct66

{67

TEHandle editRec;68

PicHandle pictureHdl;69

SInt16 fileRefNum;70

FSSpec fileFSSpec;71

Boolean windowDirty;72

} docRecord, *docRecordPointer, **docRecordHandle;73

74

// …… defines75

76

#define mApple 12877

#define iAbout 178

#define mFile 12979

#define iNew 180

#define iOpen 281

#define iClose 482

#define iSave 583

#define iSaveAs 684

#define iRevert 785

#define iQuit 1286

#define mDemonstration 13187

#define iDirty 188

#define rNewWindow 12889

#define rMenubar 12890

#define rErrorAlert 12891

#define eInstallHandler 100092

#define eMaxWindows 100193

#define eFileIsOpen -4994

#define rRevertAlert 12995

#define rCloseFileAlert 13096

#define kMaxWindows 1097

#define kUserCancelled 100298

#define MAXLONG 0x7FFFFFFF99

100

// ……… global variables101

102

Boolean gDone;103

Boolean gInBackground;104

WindowPtr gWindowPtr;105

SInt16 gCurrentNumberOfWindows = 0;106

Rect gDestRect,gViewRect;107

SInt16 gAppResFileRefNum;108

109

// …… function prototypes110

111

void main (void);112

void eventLoop (void);113

void doInitManagers (void);114

void doInstallAEHandlers (void);115

void doEvents (EventRecord *);116

void doMouseDown (EventRecord *);117

void doUpdate (EventRecord *);118

void doMenuChoice (SInt32);119

void doFileMenu (SInt16);120

void doAdjustMenus (void);121

void doError (SInt16);122

void doMakeWindowDirty (void);123

124

pascal OSErr doOpenAppEvent (AppleEvent *,AppleEvent *,SInt32);125

pascal OSErr doOpenDocsEvent (AppleEvent *,AppleEvent *,SInt32);126

pascal OSErr doQuitAppEvent (AppleEvent *,AppleEvent *,SInt32);127

OSErr hasGotRequiredParams (AppleEvent *);128

129

OSErr doNewCommand (void);130

14-20 Files

OSErr doOpenCommand (void);131

OSErr doCloseCommand (void);132

OSErr doSaveCommand (void);133

OSErr doSaveAsCommand (void);134

OSErr doRevertCommand (void);135

OSErr doQuitCommand (void);136

OSErr doNewDocWindow (Boolean,OSType);137

OSErr doOpenFile (FSSpec,OSType);138

OSErr doReadTextFile (WindowPtr);139

OSErr doReadPictFile (WindowPtr);140

OSErr doCloseFile (WindowPtr,docRecordHandle);141

OSErr doWriteFile (WindowPtr,Boolean);142

OSErr doWriteTextData (WindowPtr,SInt16);143

OSErr doWritePictData (WindowPtr,SInt16);144

OSErr doCopyAppNameResource (WindowPtr);145

OSErr doCopyResource (ResType,SInt16,SInt16,SInt16);146

147

// ### main148

149

void main(void)150

{151

Handle menubarHdl;152

MenuHandle menuHdl;153

154

// ………initialise managers155

156

doInitManagers();157

158

// ……………………………………………………………………… set application's resource fork as current resource file159

160

gAppResFileRefNum = CurResFile();161

162

// …… set up menu bar and menus163

164

menubarHdl = GetNewMBar(rMenubar);165

if(menubarHdl == NULL)166

doError(MemError());167

SetMenuBar(menubarHdl);168

DrawMenuBar();169

170

menuHdl = GetMenuHandle(mApple);171

if(menuHdl == NULL)172

doError(MemError());173

else174

AppendResMenu(menuHdl,'DRVR');175

176

// …… install required Apple event handlers177

178

doInstallAEHandlers();179

180

// ……… enter event loop181

182

eventLoop();183

}184

185

// ## eventLoop186

187

void eventLoop(void)188

{189

EventRecord eventRec;190

191

gDone = false;192

193

while(!gDone)194

{195

if(WaitNextEvent(everyEvent,&eventRec,MAXLONG,NULL))196

doEvents(&eventRec);197

}198

}199

200

// ### doInitManagers201

202

void doInitManagers(void)203

{204

MaxApplZone();205

MoreMasters();206

207

Files 14-21

InitGraf(&qd.thePort);208

InitFonts();209

InitWindows();210

InitMenus();211

TEInit();212

InitDialogs(NULL);213

214

InitCursor();215

FlushEvents(everyEvent,0);216

}217

218

// ## doInstallAEHandlers219

220

void doInstallAEHandlers(void)221

{222

OSErr err;223

224

err=AEInstallEventHandler(kCoreEventClass,kAEOpenApplication,225

(AEEventHandlerUPP) &doOpenAppEvent,0L,false);226

if(err != noErr) doError(eInstallHandler);227

228

err=AEInstallEventHandler(kCoreEventClass,kAEOpenDocuments,229

(AEEventHandlerUPP) &doOpenDocsEvent,0L,false);230

if(err != noErr) doError(eInstallHandler);231

232

err=AEInstallEventHandler(kCoreEventClass,kAEQuitApplication,233

(AEEventHandlerUPP) &doQuitAppEvent,0L,false);234

if(err != noErr) doError(eInstallHandler);235

}236

237

// ### doEvents238

239

void doEvents(EventRecord *eventRecPtr)240

{241

UInt8 charCode;242

243

switch(eventRecPtr->what)244

{245

case kHighLevelEvent:246

AEProcessAppleEvent(eventRecPtr);247

break;248

249

case mouseDown:250

doMouseDown(eventRecPtr);251

break;252

253

case keyDown:254

case autoKey:255

charCode = eventRecPtr->message & charCodeMask;256

if((eventRecPtr->modifiers & cmdKey) != 0)257

{258

doAdjustMenus();259

doMenuChoice(MenuKey(charCode));260

}261

break;262

263

case updateEvt:264

doUpdate(eventRecPtr);265

break;266

267

case osEvt:268

switch((eventRecPtr->message >> 24) & 0x000000FF)269

{270

case suspendResumeMessage:271

gInBackground = (eventRecPtr->message & resumeFlag) == 0;272

break;273

}274

HiliteMenu(0);275

break;276

}277

}278

279

// ## doMouseDown280

281

void doMouseDown(EventRecord *eventRecPtr)282

{283

WindowPtr windowPtr;284

Files 14-25

windowPtr = FrontWindow();516

docRecHdl = (docRecordHandle) GetWRefCon(windowPtr);517

518

SetPort(windowPtr);519

MoveTo(windowPtr->portRect.left,windowPtr->portRect.top);520

LineTo(windowPtr->portRect.right,windowPtr->portRect.bottom);521

522

(*docRecHdl)->windowDirty = true;523

}524

525

// ### doOpenAppEvent526

527

pascal OSErr doOpenAppEvent(AppleEvent *appEvent,AppleEvent *reply,SInt32 handlerRefCon)528

{529

OSErr osError;530

531

osError = hasGotRequiredParams(appEvent);532

if(osError == noErr)533

osError = doNewCommand();534

535

return(osError);536

}537

538

// ## doOpenDocsEvent539

540

pascal OSErr doOpenDocsEvent(AppleEvent *appEvent,AppleEvent *reply,SInt32 handlerRefcon)541

{542

FSSpec fileSpec;543

AEDescList docList;544

OSErr osError, ignoreErr;545

SInt32 index, numberOfItems;546

Size actualSize;547

AEKeyword keyWord;548

DescType returnedType;549

FInfo fileInfo;550

551

osError = AEGetParamDesc(appEvent,keyDirectObject,typeAEList,&docList);552

553

if(osError == noErr)554

{555

osError = hasGotRequiredParams(appEvent);556

if(osError == noErr)557

{558

AECountItems(&docList,&numberOfItems);559

if(osError == noErr)560

{561

for(index=1;index<=numberOfItems;index++)562

{563

osError = AEGetNthPtr(&docList,index,typeFSS,&keyWord,&returnedType,564

(Ptr) &fileSpec,sizeof(fileSpec),&actualSize);565

if(osError == noErr)566

{567

osError = FSpGetFInfo(&fileSpec,&fileInfo);568

if(osError == noErr)569

{570

if(osError = doOpenFile(fileSpec,fileInfo.fdType))571

doError(osError);572

}573

}574

else575

doError(osError);576

}577

}578

}579

else580

doError(osError);581

582

ignoreErr = AEDisposeDesc(&docList);583

}584

else585

doError(osError);586

587

return(osError);588

}589

590

// ### doQuitAppEvent591

592

14-26 Files

pascal OSErr doQuitAppEvent(AppleEvent *appEvent,AppleEvent *reply,SInt32 handlerRefcon)593

{594

OSErr osError;595

596

osError = hasGotRequiredParams(appEvent);597

if(osError == noErr)598

{599

while(FrontWindow())600

{601

osError = doCloseCommand();602

if(osError != noErr && osError != kUserCancelled)603

doError(osError);604

if(osError == kUserCancelled)605

eventLoop();606

}607

}608

609

gDone = true;610

611

return(osError);612

}613

614

// ### hasGotRequiredParams615

616

OSErr hasGotRequiredParams(AppleEvent *appEvent)617

{618

DescType returnedType;619

Size actualSize;620

OSErr osError;621

622

osError = AEGetAttributePtr(appEvent,keyMissedKeywordAttr,typeWildCard,&returnedType,623

NULL,0,&actualSize);624

if(osError == errAEDescNotFound)625

return(noErr);626

else if(osError == noErr)627

return(errAEParamMissed);628

}629

630

// ### doNewCommand631

632

OSErr doNewCommand(void)633

{634

OSErr osError;635

OSType documentType = 'TEXT';636

637

osError = doNewDocWindow(true,documentType);638

return(osError);639

}640

641

// ## doOpenCommand642

643

OSErr doOpenCommand(void)644

{645

SFTypeList fileTypes;646

StandardFileReply fileReply;647

OSType documentType;648

OSErr osError = 0;649

650

fileTypes[0] = 'TEXT';651

fileTypes[1] = 'PICT';652

653

StandardGetFile(NULL,2,fileTypes,&fileReply);654

655

documentType = fileReply.sfType;656

657

if(fileReply.sfGood)658

osError = doOpenFile(fileReply.sfFile,documentType);659

660

return(osError);661

}662

663

// ### doCloseCommand664

665

OSErr doCloseCommand(void)666

{667

WindowPtr windowPtr;668

SInt16 windowKind;669

Files 14-27

docRecordHandle docRecHdl;670

OSErr osError = 0;671

672

windowPtr = FrontWindow();673

windowKind = ((WindowPeek) windowPtr)->windowKind;674

675

switch(windowKind)676

{677

case userKind:678

docRecHdl = (docRecordHandle) GetWRefCon(windowPtr);679

osError = doCloseFile(windowPtr,docRecHdl);680

if(osError == kUserCancelled)681

return(kUserCancelled);682

else if(osError == noErr)683

{684

DisposeWindow(windowPtr);685

gCurrentNumberOfWindows --;686

}687

break;688

689

case dialogKind:690

// Hide or close modeless dialog, as required.691

break;692

}693

694

return(osError);695

}696

697

// ## doSaveCommand698

699

OSErr doSaveCommand(void)700

{701

WindowPtr windowPtr;702

docRecordHandle docRecHdl;703

OSErr osError = 0;704

705

windowPtr = FrontWindow();706

docRecHdl = (docRecordHandle) GetWRefCon(windowPtr);707

708

if((*docRecHdl)->fileRefNum)709

osError = doWriteFile(windowPtr,false);710

else711

osError = doSaveAsCommand();712

713

return(osError);714

}715

716

// ## doSaveAsCommand717

718

OSErr doSaveAsCommand(void)719

{720

WindowPtr windowPtr;721

docRecordHandle docRecHdl;722

StandardFileReply fileReply;723

OSType fileType;724

SInt16 fileRefNum;725

OSErr osError = 0;726

727

windowPtr = FrontWindow();728

docRecHdl = (docRecordHandle) GetWRefCon(windowPtr);729

730

StandardPutFile("\pSave as:","\pUntitled",&fileReply);731

732

if(fileReply.sfGood)733

{734

if(!(fileReply.sfReplacing))735

{736

if((*docRecHdl)->editRec)737

fileType = 'TEXT';738

else if((*docRecHdl)->pictureHdl)739

fileType = 'PICT';740

osError = FSpCreate(&fileReply.sfFile,'KKJB',fileType,smSystemScript);741

if(osError != noErr)742

return(osError);743

}744

745

(*docRecHdl)->fileFSSpec = fileReply.sfFile;746

14-28 Files

747

if((*docRecHdl)->fileRefNum != 0)748

{749

osError = FSClose((*docRecHdl)->fileRefNum);750

(*docRecHdl)->fileRefNum = 0;751

}752

753

if(osError == noErr)754

osError = FSpOpenDF(&(*docRecHdl)->fileFSSpec,fsRdWrPerm,&fileRefNum);755

756

if(osError == noErr)757

{758

(*docRecHdl)->fileRefNum = fileRefNum;759

SetWTitle(windowPtr,fileReply.sfFile.name);760

osError = doWriteFile(windowPtr,true);761

}762

}763

764

return(osError);765

}766

767

// ## doRevertCommand768

769

OSErr doRevertCommand(void)770

{771

WindowPtr windowPtr;772

docRecordHandle docRecHdl;773

SInt16 fileRefNum;774

Str255 fileName;775

SInt16 itemHit;776

OSErr osError = 0;777

778

windowPtr = FrontWindow();779

docRecHdl = (docRecordHandle) GetWRefCon(windowPtr);780

fileRefNum = (*docRecHdl)->fileRefNum;781

782

SetPort(windowPtr);783

784

GetWTitle(windowPtr,fileName);785

ParamText(fileName,NULL,NULL,NULL);786

787

SetPort(windowPtr);788

789

itemHit = CautionAlert(rRevertAlert,NULL);790

791

if(itemHit == 1)792

{793

EraseRect(&windowPtr->portRect);794

if((*docRecHdl)->editRec)795

osError = doReadTextFile(windowPtr);796

else if((*docRecHdl)->pictureHdl)797

{798

KillPicture((*docRecHdl)->pictureHdl);799

(*docRecHdl)->pictureHdl = NULL;800

osError = doReadPictFile(windowPtr);801

}802

803

(*docRecHdl)->windowDirty = false;804

805

InvalRect(&windowPtr->portRect);806

}807

808

return(osError);809

}810

811

// ## doQuitCommand812

813

OSErr doQuitCommand(void)814

{815

OSErr osError = 0;816

817

while(FrontWindow())818

{819

osError = doCloseCommand();820

if(osError != noErr)821

return(osError);822

}823

Files 14-29

824

return(osError);825

}826

827

// ### doNewDocWindow828

829

OSErr doNewDocWindow(Boolean showWindow,OSType documentType)830

{831

docRecordHandle docRecHdl;832

833

if(gCurrentNumberOfWindows == kMaxWindows)834

return(eMaxWindows);835

836

if(!(gWindowPtr = GetNewWindow(rNewWindow,NULL,(WindowPtr)-1)))837

return(MemError());838

839

SetPort(gWindowPtr);840

841

if(!(docRecHdl = (docRecordHandle) NewHandle(sizeof(docRecord))))842

{843

DisposeWindow(gWindowPtr);844

gCurrentNumberOfWindows --;845

return(MemError());846

}847

848

SetWRefCon(gWindowPtr,(SInt32) docRecHdl);849

850

(*docRecHdl)->editRec = NULL;851

(*docRecHdl)->pictureHdl = NULL;852

(*docRecHdl)->fileRefNum = 0;853

(*docRecHdl)->windowDirty = false;854

855

if(documentType == 'TEXT')856

{857

gDestRect = gWindowPtr->portRect;858

InsetRect(&gDestRect,6,6);859

gViewRect = gDestRect;860

861

MoveHHi((Handle) docRecHdl);862

HLock((Handle) docRecHdl);863

864

if(!((*docRecHdl)->editRec = TENew(&gDestRect,&gViewRect)))865

{866

DisposeWindow(gWindowPtr);867

gCurrentNumberOfWindows --;868

DisposeHandle((Handle) docRecHdl);869

return(MemError());870

}871

872

HUnlock((Handle) docRecHdl);873

}874

875

if(showWindow)876

ShowWindow(gWindowPtr);877

878

gCurrentNumberOfWindows ++;879

880

return(noErr);881

}882

883

// ### doOpenFile884

885

OSErr doOpenFile(FSSpec fileSpec,OSType documentType)886

{887

OSErr osError;888

SInt16 fileRefNum;889

docRecordHandle docRecHdl;890

891

if(osError = doNewDocWindow(false,documentType))892

return(osError);893

894

SetWTitle(gWindowPtr,fileSpec.name);895

896

if(osError = FSpOpenDF(&fileSpec,fsRdWrPerm,&fileRefNum))897

{898

DisposeWindow(gWindowPtr);899

gCurrentNumberOfWindows --;900

14-30 Files

return(osError);901

}902

903

docRecHdl = (docRecordHandle) GetWRefCon(gWindowPtr);904

(*docRecHdl)->fileRefNum = fileRefNum;905

(*docRecHdl)->fileFSSpec = fileSpec;906

907

if(documentType == 'TEXT')908

{909

if(osError = doReadTextFile(gWindowPtr))910

return(osError);911

}912

else if(documentType == 'PICT')913

{914

if(osError = doReadPictFile(gWindowPtr))915

return(osError);916

}917

918

ShowWindow(gWindowPtr);919

920

return(noErr);921

}922

923

// ## doCloseFile924

925

OSErr doCloseFile(WindowPtr windowPtr,docRecordHandle docRecHdl)926

{927

Str255 fileName;928

SInt16 itemHit;929

OSErr osError;930

931

if((*docRecHdl)->windowDirty)932

{933

GetWTitle(windowPtr,fileName);934

ParamText(fileName,NULL,NULL,NULL);935

936

itemHit = CautionAlert(rCloseFileAlert,NULL);937

if(itemHit == 2)938

return(kUserCancelled);939

else if(itemHit == 1)940

{941

if(osError = doSaveCommand())942

return(osError);943

}944

}945

946

if((*docRecHdl)->fileRefNum != 0)947

{948

if(!(osError = FSClose((*docRecHdl)->fileRefNum)))949

{950

osError = FlushVol(NULL,(*docRecHdl)->fileFSSpec.vRefNum);951

(*docRecHdl)->fileRefNum = 0;952

}953

}954

955

if((*docRecHdl)->editRec)956

TEDispose((*docRecHdl)->editRec);957

if((*docRecHdl)->pictureHdl)958

KillPicture((*docRecHdl)->pictureHdl);959

960

DisposeHandle((Handle) docRecHdl);961

962

return(osError);963

}964

965

// ## doWriteFile966

967

OSErr doWriteFile(WindowPtr windowPtr,Boolean newFile)968

{969

docRecordHandle docRecHdl;970

FSSpec fileSpecActual, fileSpecTemp;971

UInt32 currentTime;972

Str255 tempFileName;973

SInt16 tempFileVolNum, tempFileRefNum;974

SInt32 tempFileDirID;975

OSErr osError;976

977

Files 14-31

docRecHdl = (docRecordHandle) GetWRefCon(windowPtr);978

fileSpecActual = (*docRecHdl)->fileFSSpec;979

980

GetDateTime(¤tTime);981

NumToString((SInt32) currentTime,tempFileName);982

983

osError = FindFolder(fileSpecActual.vRefNum,kTemporaryFolderType,kCreateFolder,984

&tempFileVolNum,&tempFileDirID);985

if(osError == noErr)986

osError = FSMakeFSSpec(tempFileVolNum,tempFileDirID,tempFileName,&fileSpecTemp);987

if(osError == noErr || osError == fnfErr)988

osError = FSpCreate(&fileSpecTemp,'trsh','trsh',smSystemScript);989

if(osError == noErr)990

osError = FSpOpenDF(&fileSpecTemp,fsRdWrPerm,&tempFileRefNum);991

if(osError == noErr)992

{993

if((*docRecHdl)->editRec)994

osError = doWriteTextData(windowPtr,tempFileRefNum);995

else if((*docRecHdl)->pictureHdl)996

osError = doWritePictData(windowPtr,tempFileRefNum);997

}998

if(osError == noErr)999

osError = FSClose(tempFileRefNum);1000

if(osError == noErr)1001

osError = FSClose((*docRecHdl)->fileRefNum);1002

if(osError == noErr)1003

osError = FSpExchangeFiles(&fileSpecTemp,&fileSpecActual);1004

if(osError == noErr)1005

osError = FSpDelete(&fileSpecTemp);1006

if(osError == noErr)1007

osError = FSpOpenDF(&fileSpecActual,fsRdWrPerm,&(*docRecHdl)->fileRefNum);1008

1009

if(osError == noErr)1010

{1011

if(newFile)1012

osError = doCopyAppNameResource(windowPtr);1013

}1014

1015

return(osError);1016

}1017

1018

// ### doReadTextFile1019

1020

OSErr doReadTextFile(WindowPtr windowPtr)1021

{1022

docRecordHandle docRecHdl;1023

SInt16 fileRefNum;1024

TEHandle textEditHdl;1025

SInt32 numberOfBytes;1026

Handle textBuffer;1027

OSErr osError;1028

1029

docRecHdl = (docRecordHandle) GetWRefCon(windowPtr);1030

fileRefNum = (*docRecHdl)->fileRefNum;1031

1032

textEditHdl = (*docRecHdl)->editRec;1033

(*textEditHdl)->txSize = 10;1034

(*textEditHdl)->lineHeight = 15;1035

1036

SetFPos(fileRefNum,fsFromStart,0);1037

GetEOF(fileRefNum,&numberOfBytes);1038

1039

if(numberOfBytes > 32767)1040

numberOfBytes = 32767;1041

1042

if(!(textBuffer = NewHandle((Size) numberOfBytes)))1043

return(MemError());1044

1045

osError = FSRead(fileRefNum,&numberOfBytes,*textBuffer);1046

if(osError == noErr || osError == eofErr)1047

{1048

MoveHHi(textBuffer);1049

HLockHi(textBuffer);1050

TESetText(*textBuffer,numberOfBytes,(*docRecHdl)->editRec);1051

HUnlock(textBuffer);1052

DisposeHandle(textBuffer);1053

}1054

14-32 Files

else1055

return(osError);1056

1057

return(noErr);1058

}1059

1060

// ### doReadPictFile1061

1062

OSErr doReadPictFile(WindowPtr windowPtr)1063

{1064

docRecordHandle docRecHdl;1065

SInt16 fileRefNum;1066

SInt32 numberOfBytes;1067

OSErr osError;1068

1069

docRecHdl = (docRecordHandle) GetWRefCon(windowPtr);1070

fileRefNum = (*docRecHdl)->fileRefNum;1071

1072

GetEOF(fileRefNum,&numberOfBytes);1073

SetFPos(fileRefNum,fsFromStart,512);1074

numberOfBytes -= 512;1075

1076

if(!((*docRecHdl)->pictureHdl = (PicHandle) NewHandle(numberOfBytes)))1077

return(MemError());1078

1079

osError = FSRead(fileRefNum,&numberOfBytes,*(*docRecHdl)->pictureHdl);1080

if(osError == noErr || osError == eofErr)1081

return(noErr);1082

else1083

return(osError);1084

}1085

1086

// ## doWriteTextData1087

1088

OSErr doWriteTextData(WindowPtr windowPtr,SInt16 tempFileRefNum)1089

{1090

docRecordHandle docRecHdl;1091

TEHandle textEditHdl;1092

Handle editText;1093

SInt32 numberOfBytes;1094

SInt16 volRefNum;1095

OSErr osError;1096

1097

docRecHdl = (docRecordHandle) GetWRefCon(windowPtr);1098

textEditHdl = (*docRecHdl)->editRec;1099

editText = (*textEditHdl)->hText;1100

numberOfBytes = (*textEditHdl)->teLength;1101

1102

osError = SetFPos(tempFileRefNum,fsFromStart,0);1103

if(osError == noErr)1104

osError = FSWrite(tempFileRefNum,&numberOfBytes,*editText);1105

if(osError == noErr)1106

osError = SetEOF(tempFileRefNum,numberOfBytes);1107

if(osError == noErr)1108

osError = GetVRefNum(tempFileRefNum,&volRefNum);1109

if(osError == noErr)1110

osError = FlushVol(NULL,volRefNum);1111

1112

if(osError == noErr)1113

(*docRecHdl)->windowDirty = false;1114

1115

return(osError);1116

}1117

1118

// ## doWritePictData1119

1120

OSErr doWritePictData(WindowPtr windowPtr,SInt16 tempFileRefNum)1121

{1122

docRecordHandle docRecHdl;1123

PicHandle pictureHdl;1124

SInt32 numberOfBytes, dummyData;1125

SInt16 volRefNum;1126

OSErr osError;1127

1128

docRecHdl = (docRecordHandle) GetWRefCon(windowPtr);1129

pictureHdl = (*docRecHdl)->pictureHdl;1130

1131

Files 14-33

numberOfBytes = 512;1132

dummyData = 0;1133

1134

osError = SetFPos(tempFileRefNum,fsFromStart,0);1135

1136

if(osError == noErr)1137

osError = FSWrite(tempFileRefNum,&numberOfBytes,&dummyData);1138

1139

numberOfBytes = GetHandleSize((Handle) (*docRecHdl)->pictureHdl);1140

1141

if(osError == noErr)1142

{1143

HLock((Handle) (*docRecHdl)->pictureHdl);1144

osError = FSWrite(tempFileRefNum,&numberOfBytes,*(*docRecHdl)->pictureHdl);1145

HUnlock((Handle) (*docRecHdl)->pictureHdl);1146

}1147

1148

if(osError == noErr)1149

osError = SetEOF(tempFileRefNum,512 + numberOfBytes);1150

if(osError == noErr)1151

osError = GetVRefNum(tempFileRefNum,&volRefNum);1152

if(osError == noErr)1153

osError = FlushVol(NULL,volRefNum);1154

1155

if(osError == noErr)1156

(*docRecHdl)->windowDirty = false;1157

1158

return(osError);1159

}1160

1161

// ## doCopyAppNameResource1162

1163

OSErr doCopyAppNameResource(WindowPtr windowPtr)1164

{1165

docRecordHandle docRecHdl;1166

OSType fileType;1167

OSErr osError;1168

SInt16 fileRefNum;1169

1170

docRecHdl = (docRecordHandle) GetWRefCon(windowPtr);1171

1172

if((*docRecHdl)->editRec)1173

fileType = 'TEXT';1174

else if((*docRecHdl)->pictureHdl)1175

fileType = 'PICT';1176

1177

FSpCreateResFile(&(*docRecHdl)->fileFSSpec,'KKJB',fileType,smSystemScript);1178

1179

osError = ResError();1180

if(osError == noErr)1181

fileRefNum = FSpOpenResFile(&(*docRecHdl)->fileFSSpec,fsRdWrPerm);1182

1183

if(fileRefNum > 0)1184

osError = doCopyResource('STR ',-16396,gAppResFileRefNum,fileRefNum);1185

else1186

osError = ResError();1187

1188

if(osError == noErr)1189

CloseResFile(fileRefNum);1190

1191

osError = ResError();1192

return(osError);1193

}1194

1195

// ### doCopyResource1196

1197

OSErr doCopyResource(ResType resourceType,SInt16 resourceID,SInt16 sourceFileRefNum,1198

SInt16 destFileRefNum)1199

{1200

Handle sourceResourceHdl;1201

Str255 sourceResourceName;1202

ResType ignoredType;1203

SInt16 ignoredID;1204

1205

UseResFile(sourceFileRefNum);1206

1207

sourceResourceHdl = GetResource(resourceType,resourceID);1208

14-34 Files

1209

if(sourceResourceHdl != NULL)1210

{1211

GetResInfo(sourceResourceHdl,&ignoredID,&ignoredType,sourceResourceName);1212

DetachResource(sourceResourceHdl);1213

UseResFile(destFileRefNum);1214

AddResource(sourceResourceHdl,resourceType,resourceID,sourceResourceName);1215

if(ResError() == noErr)1216

UpdateResFile(destFileRefNum);1217

}1218

1219

ReleaseResource(sourceResourceHdl);1220

1221

return(ResError());1222

}1223

1224

// ##1225

Demonstration Program Comments
When the program is run, the user should exercise the File menu by opening the supplied TEXT
and PICT files, saving those files, saving those files under new names, closing files, opening
the new files, attempting to open files which are already open, attempting to save files to
new files with existing names, making open windows "dirty" by choosing the Demonstration menu
item, reverting to the saved versions of files associated with "dirty" windows, choosing Quit
when "dirty" and non-"dirty" windows are open, and so on.

To prove the correct handling of the required Apple events, the user should:

• Open the application by double-clicking the application icon, noting that a new document
window is opened after the application is launched and the Open Application event is
received.

• Double click on a document icon, or select one or more document icons and either drag
those icons to the application icon or choose Open from the Finder's File menu, noting
that the application is launched and the selected files are opened when the Open
Documents event is received.

• With several documents open, some with "dirty" windows, choose Restart or Shut Down from
the Finder's Special menu (thus invoking a Quit Application event), noting that, for
"dirty" windows, an alert box is presented asking the user whether the file should be
saved before the shutdown process proceeds.

To prove that the missing application name string resource is correctly copied to all new
files created by the application, SimpleText, TeachText and the Files application should be
removed from the hard disk and any mounted floppy disk. Double clicking a document icon
should then invoke a "missing application" alert box with the application's name inserted in
the advisory text.

#typedef

Each window created by the program will have an associated document record, accessed via the
window record's refCon field. The docRecord structure will be used for document records.

The editRec field will be assigned a handle to a TextEdit edit record ('TEXT' files). The
pictureHdl field will be assigned a handle to a Picture record ('PICT' files). The fileRefNum
and fileFSSpec fields will be assigned the file reference number and the file system
specification record of the file associated with the window. The windowDirty field will be
set to true when a window has been made "dirty", that is, when the associated document in
memory has been modified by the user.

#define

Lines 77-88 establish constants relating to menu IDs and menu item numbers. Lines 89-91 and
Lines 95-96 establish constants relating to window, menu bar and alert resources. Lines 92-94
are constants for some specific error conditions. The constant at Line 97 is used to limit
the number of windows the user can open. The constant at Line 98 is used when the user clicks
the Cancel button of a particular alert box. Line 99 defines MAXLONG as the maximum possible
long value.

Files 14-35

Global Variables

gDone controls termination of the main loop and thus of the program. gInBackground relates to
foreground/background switching. gWindowPtr is assigned the pointer to the graphics port of
each new window as it is opened. gCurrentNumberofWindows keeps a count of the number of
windows opened. gDestRect and gViewRect are used to set the destination and view rectangles
for the edit records associated with 'TEXT' files. gAppResFileRefNum will be assigned the
file reference number of the application's resource fork.

Main

The main function initialises the system software managers (Line 157), assigns the file
reference number of the application's resource fork (which is opened automatically at
application launch) to a global variable (Line 161), sets up the menus (Lines 165-175),
installs the required Apple event handlers (Line 179), and enters the main event loop (Line
183).

doInstallAEHandlers

doInstallAEHandlers installs handlers for the Open Application, Open Documents, and Quit
Application events. (Note that, so as to avoid the necessity to include application-defined
printing functions in this program, a handler for the Print Documents event is not included in
this demonstration.)

doEvents, doMouseDown and doUpdate

doEvents, doMouseDown and doUpdate perform such low-level and Operating System event
processing as is necessary for the satisfactory execution of the demonstration aspects of the
program.

doMenuChoice performs the initial handling of menu choices.

doFileMenu

doFileMenu handles File menu choices. In each case, the relevant application-defined function
is called and, if that function returns an error, the application-defined function doError is
called. Note that, in the case of the Quit command (Line 429), gDone is set to true after
doQuitCommand returns, thus causing the program to terminate.

doAdjustMenus

doAdjustMenus is invoked when the user clicks on the menu bar or presses a Command-key
equivalent. Basically, the File menu items Close, Save..., Save As..., and Revert to Saved
are disabled whenever no windows are open. In addition:

• The Revert to Saved item is disabled whenever there is no document associated with the
front window. (As shown, one way to test whether the window has a document is to check
both the pictureHdl field of the document record and the teLength field of the text edit
record (Line 459).)

• The Demonstration menu item is disabled when the windowDirty field of the document
record associated with the front window indicates that the window is "dirty" (Lines 462-
466).

doError

doError handles errors, invoking an appropriate alert box (caution or stop) advising of the
nature of the problem by error code number or straight text. The program will only be
terminated in the case of the memFullErr error (no more space in the application heap).

doMakeWindowDirty

doMakeWindowDirty is called when the user chooses the Make Window "Dirty" item in the
Demonstration menu. Changing the content of the in-memory version of a file is only simulated
in this program. A diagonal line is drawn in the window (Lines 520-521) and the windowDirty
field of the document record is set to true (Line 523).

doOpenAppEvent, doOpenDocsEvent, and
doQuitAppEvent

The handlers for the required Apple events are essentially identical to those in the
demonstration program at Chapter 8 - Required Apple Events.

14-36 Files

Most programs should simply open a new untitled window on receipt of an Open Application
event. Accordingly, doOpenAppEvent (Lines 528-537) simply calls the same function
(doNewCommand) as is called when the user chooses New from the File menu.

The demonstration program supports both 'TEXT' and 'PICT' files. On receipt of an Open
Application event, it is thus necessary to determine the type of each file specified in the
event. Accordingly, within doOpenDocsEvent, Line 568 calls FSpGetFInfo to return the Finder
information from the volume catalog entry for the file relating to the specified FSSpec
record. The fdType field of the FInfo record "filled-in" by FSpGetFInfo contains the file
type. This, together with the FSSpec record, is then passed in the call to doOpenFile at Line
571. (doOpenFile is also called when the user chooses Open from the File menu.)

Quit Application events are handled at Lines 593-613. The while loop entered at Line 600
repeats for each open window. Line 602 calls doCloseCommand which, in turn, calls
doCloseFile. doCloseFile presents a Yes/No/Cancel caution alert. If an error is returned by
this sequence, and if the user did not click the Cancel button in the alert, the error handler
is called (Lines 603-604). If the user clicked the Cancel button, it is necessary to
interrupt the sequence of closing all open windows and re-enter the main event loop (Lines
605-606). When the while loop eventually exits, gDone is set to true (Line 610), causing the
program to terminate.

doNewCommand

doNewCommand is the first of the file-handling functions. It is called when the user chooses
New from the File menu and when an Open Application event is received.

Since this demonstration does not support the actual entry of text or the drawing of graphics,
the document type passed to doNewDocWindow at Line 638 is immaterial. The document type
'TEXT' is passed in this instance simply to keep doNewDocWindow happy.

doOpenCommand

doOpenCommand is called when the user chooses Open from the File menu.

Line 654 presents the Open dialog box, which will display the file types established at Lines
651-662. The sfType field of the StandardFileReply record "filled-in" by StandardGetFile
contains the file type of the file selected by the user (656) and the sfFile field contains
the file system specification. If the user clicks the OK button (Line 658), these are passed
to the application-defined function doOpenFile (Line 659).

doCloseCommand

doCloseCommand is called when the user chooses Close from the File menu or clicks in the
window's go-away box. It is also called successively for each open window when a Quit
Application event is received.

Line 673 gets the WindowPtr for the front window and Line 674 establishes whether the front
window is a document window or a modeless dialog box.

If the front window is a document window (Line 678), the handle to the window's document
record is retrieved from the window record's refCon field (Line 679). The WindowPtr and this
handle are then passed to the application-defined function doCloseFile at Line 680. If the
window is "dirty", doCloseFile presents an alert box asking the user whether the document
should be saved before it is closed. If the user clicks the Cancel button of that alert box,
doCloseFile returns kUserCancelled, in which case doCloseCommand returns kUserCancelled (Lines
681-682). If the user clicks either the YES or NO buttons of the alert box, and if
doCloseFile returns no error, the window is closed as the final act in closing the file (Line
685), and the global variable which keeps track of the number of open windows is decremented
(Line 686).

No modeless dialog boxes are used by this program. However, if the front window was a
modeless dialog box, the appropriate action would be taken at Line 691.

doSaveCommand

doSaveCommand is called when the user chooses Save from the File menu. It may also be called
by doCloseFile if the user is attempting to close a "dirty" window.

Line 706 gets the WindowPtr for the front window and Line 707 retrieves the handle to that
window's document record. If a file currently exists for the document in this window (Line
709), the application-defined function doWriteFile is called (Line 710), otherwise the
application-defined function doSaveAsCommand is called (Line 712).

Files 14-37

doSaveAsCommand

doSaveAsCommand is called when the user chooses Save As… from the File menu. It is also
called by doSaveCommand if the user chooses Save when the front window contains a document for
which no file currently exists.

Line 728 gets the WindowPtr for the front window and Line 729 retrieves the handle to that
window's document record.

Line 731 presents the Save dialog box. The remaining code executes only if the user clicks on
the Save button.

If the sfReplacing field of the StandardFileReply record "filled-in" by StandardPutFile
indicates that an existing file is not being replaced, Lines 737-743 retrieve the file type
from the document record for the front window and create a new file of that type, specifying
the application's signature as the creator.

Line 746 assigns the file system specification record returned in the sfFile field of the
StandardFileReply record to the fileFSSpec field of the document record.

If a file currently exists for the document (Line 748), that file is closed (Lines 750-751).

The data fork of the newly created file is then opened by a call to FSpOpenDF (Line 755), the
fileRefNum field of the document record is assigned the file reference number returned by
FSpOpenDF (Line 759), the window's title is set to the new file's name (Line 760), and the
application-defined function doWriteFile is called to write the document to the new file (Line
761).

doRevertCommand

doRevertCommand is called when the user chooses Revert to Saved from the File menu.

Line 779 gets the WindowPtr for the front window and Line 780 retrieves the handle to that
window's document record. Line 781 retrieves the file reference number from the document
record.

Line 785 retrieves the window's title (that is, the filename) for insertion by Line 786 into
the text of the alert box invoked at Line 790. (The alert box asks the user to confirm, or
otherwise, the reversion to the last saved version.)

If the user clicks the OK button (Line 792), the window is erased (Line 794) and the
appropriate application-defined function (doReadTextFile or doReadPictFile) is called
depending on whether the file type is 'TEXT' or 'PICT' (Lines 795-801). In addition the
window's "dirty" field in the document record is set to false (Line 804) and InvalRect is
called to force a redraw of the window's content region (Line 806).

doQuitCommand

doQuitCommand is called when the user chooses Quit from the File menu and when a Quit
Application event is received.

The while loop initiated at Line 818 continues to execute until no more windows remain open.
On each pass through the loop, doCloseCommand is called to manage the process of closing (and,
where necessary, saving) all documents and disposing of the associated windows.

doNewDocWindow

doNewDocWindow is called by doNewCommand, doOpenFile and the Open Application event handler.
It creates a new window and associated document record.

If the current number of open windows is the maximum allowable by this program, the function
immediately exits, passing an error code which will cause an advisory error alert box to be
displayed (Lines 834-835).

Line 837 opens a new window and Line 840 sets the window's graphics port as the current port
for drawing.

Line 842 allocates memory for the window's document record. If this call is not successful,
the window is disposed of (Line 844) and the function returns with the error code returned by
MemError (Line 846).

Line 849 assigns the handle to the document record to the window record's refCon field. Lines
851-854 initialise fields of the document record.

14-38 Files

If the document type is 'TEXT' (Line 856), Lines 857-871 create a TextEdit edit record and
assign a handle to that record to the editRec field of the document record. (Note that the
processes here are not explained in detail because TextEdit and edit records are not central
to the demonstration. For the purposes of the demonstration, it is sufficient to understand
that the text data retrieved from, and saved to, disk is stored in a TextEdit edit record.
TextEdit is addressed in detail at Chapter 17 — Text and TextEdit.)

If the Boolean value passed to doNewDocWindow was set to true (Line 876), Line 877 makes the
window visible, otherwise the window is left invisible. Line 879 increments the global
variable which keeps track of the number of open windows.

doOpenFile

doOpenFile is called by doOpenCommand and the Open Documents event handler, which pass to it
the file system specification record and document type. doOpenFile opens a new document
window and calls the application-defined functions which read in the file.

Line 892 calls doNewDocWindow to open a new window and create an associated document record.
Line 895 sets the window's title. Line 897 opens the file's data fork. If this call is not
successful, the window is disposed of and the function returns. Lines 905-906 assign the file
reference number and file system specification record to the relevant fields of the document
record.

Lines 908-917 call the appropriate function for reading in the file, depending on whether the
file type is of type 'TEXT' or 'PICT'. If the file is read in successfully, Line 919 makes
the window visible.

doCloseFile

doCloseFile is called by doCloseCommand. doCloseFile does not allow a "dirty" window to be
closed without offering the user the option of first saving the associated document to file.

If the window is dirty (Line 932), a caution alert is presented (Line 937) asking the user
whether the document should be saved. (Lines 934-935 insert the window title into the text in
the alert box.) The alert box contains YES, NO and CANCEL buttons. If the user clicks
CANCEL, the function returns kUserCancelled (Lines 938-939). If the user clicks YES, the
application-defined function doSaveCommand() is called to save the file (Lines 940-944).

If the user clicks YES or NO:

• If the document has a file (Line 947), Line 949 closes the file, and Line 951 stores to
disk all unwritten data currently in the volume buffer.

• If the document is a text document, the text edit record is disposed of (Lines 956-957).
If it is a picture document, the Picture record is disposed of (Lines 958-959).
Finally, the document record is disposed of (Line 961).

doWriteFile

doWriteFile is called by doSaveCommand and doSaveAsCommand. In conjunction with two
supporting application-defined functions, it writes the document to disk using the "safe-save"
procedure.

Line 978 retrieves the handle to the document record and Line 979 retrieves the file system
specification from the document record. Lines 981-982 create a temporary file name which is
bound to be unique. Line 984 finds the temporary folder on the file's volume, or creates a
temporary folder if necessary. Line 987 makes a file system specification record for the
temporary file, using the volume reference number and parent directory ID returned by the
FindFolder call at Line 984. Line 989 creates the temporary file in that directory on that
volume, and Line 991 opens the file's data fork.

Lines 994-997 call the appropriate application-defined function to write the document's data
to the temporary file.

Lines 1000 and 1002 close both the temporary and existing files prior to the call to
FSpExchangeFiles (Line 1004), which swaps the files' data by changing the information in the
volume's catalog. The temporary file is then deleted (Line 1006) and the data fork of the
existing file is re-opened (Line 1008).

If the file is a newly created file (Line 1012), an application-defined function is called
(Line 1013) to copy the missing application name string resource from the resource fork of the
application file to the resource fork of the new document file.

Files 14-39

doReadTextFile

doReadTextFile is called by doOpenFile and doRevertCommand to read in data from an open file
of type 'TEXT'.

Lines 1030-1031 retrieve the file reference number from the document record. Line 1033
retrieves the handle to the TextEdit edit record from the document record and Lines 1034-1035
modify the text size and line height fields of the edit record.

Line 1037 sets the file mark to the beginning of the file. Line 1038 gets the number of bytes
in the file. If the number of bytes exceeds that which can be stored in a TextEdit edit
record (32,767), Lines 1040-1041 restrict the number of bytes which will be read from the file
to 32,767.

Line 1043 allocates a buffer equal to the size of the file (or 32,767 bytes if Line 1041
executed). Line 1046 reads the data from the file into the buffer. Lines 1049-1050 move the
buffer high in the heap and lock it preparatory to the call to TESetText at Line 1051.
TESetText copies the text in the buffer into the existing hText handle of the TextEdit edit
record. The buffer is then unlocked and disposed of (Lines 1052-1053).

(Note: TextEdit is addressed in detail at Chapter 17 - Text and TextEdit.)

doReadPictFile

doReadPictFile is called by doOpenFile and doRevertCommand to read in data from an open file
of type 'PICT'.

Lines 1070-1071 retrieve the file reference number from the document record. Line 1073 gets
the number of bytes in the file. Line 1074 sets the file mark 512 bytes (the size of a 'PICT'
file's header) past the beginning of the file and Line 1055 subtracts the header size from the
total size of the file. Line 1077 allocates memory for the Picture record and Line 1080 reads
in the file's data.

doWriteTextData

doWriteTextData is called by doWriteFile to write text data to the specified file.

Lines 1098-1099 retrieve the handle to the TextEdit edit record from the document record. The
number of bytes of text is then retrieved from the teLength field of the text edit record
(Line 1101).

Line 1103 sets the file mark to the beginning of the file. Line 1105 writes the specified
number of bytes to the file. Line 1107 adjusts the file's size. Lines 1109 and 1111 store to
disk all unwritten data currently in the volume buffer.

Line 1114 sets the windowDirty field of the document record to indicate that the document data
on disk equates to the document data in memory.

doWritePictData

doWritePictData is called by doWriteFile to write picture data to the specified file.

Lines 1129-1130 retrieve the handle to the relevant Picture record from the document record.
Line 1135 sets the file mark to the start of the file. Line 1138 writes zeros in the first
512 bytes (the size of a 'PICT' file's header). Line 1140 gets the size of the Picture record
and Line 1145 writes the bytes in the Picture record to the file. Line 1150 adjusts the
file's size and Lines 1152 and 1154 store to disk all unwritten data currently in the volume
buffer.

Line 1157 sets the windowDirty field of the document record to indicate that the document data
on disk equates to the document data in memory.

doCopyAppNameResource

doCopyAppNameResource is called by doWriteFile when a newly created file has been written to
for the first time. It copies the missing application name string resource from the resource
fork of the application file to the resource fork of the new file.

Line 1171 retrieves the handle to the file's document record. Lines 1173-1176 establish the
file type involved. Line 1178 creates the resource fork in the new file and Line 1182 opens
the resource fork. Line 1185 then calls the application-defined function for copying
specified resources between specified files. In this case, the specified resource is the
missing application name string resource, the source resource file is the resource fork of the
application file, and the destination resource file is the resource fork of the new file.

14-40 Files

Line 1190 closes the resource fork of the new file.

doCopyResource

doCopyResource copies specified resources between specified files. In this program, it is
called only by doCopyAppNameResource.

Line 1206 sets the application's resource fork as the current resource file. Line 1208 reads
the specified resource into memory.

Line 1212, given a handle, gets the resource type, ID and name. (Note that this line is
included only because of the generic nature of doCopyResource. The calling function has
passed doCopyResource the type and ID in this instance.)

Line 1213 removes the resource's handle from the resource map without removing the resource
from memory, and converts the resource handle into a generic handle. Line 1214 makes the new
file's resource fork the current resource file. Line 1215 makes the now arbitrary data in
memory into a resource, assigns a resource ID, type and name to that resource, and inserts an
entry in the resource map for the current resource file. Line 1217 then writes the resource
map and data to disk.

	Macintosh Files
	Characteristics of Files
	File Forks
	File Size
	Volumes
	Logical Blocks and Allocation Blocks
	Physical and Logical End-Of-File
	Clumps
	Combating File Fragmentation

	File Access
	Access Path and File Reference Number
	File Mark
	Data Buffer
	Disk Cache

	The Hierarchical File System
	Directories and Directory ID
	Root Directory
	Mounted Volumes
	Parent Directory and Parent Directory ID
	Aliases

	Identifying Files and Directories

	Creating, Opening, Reading From, Writing To, and Closing Files
	General File Menu and Required Apple Events Handling Strategy
	Preliminaries - Creating a Document Record
	Creating a New Document Window
	Opening a File and Reading in Data
	Presenting the Open Dialog Box
	Creating the Window and Opening the File
	Reading File Data

	Saving a File
	Handling the Save Command
	Handling the Save As… Command
	Writing File Data

	Reverting to a Saved File
	Closing a File

	Customised Open and Save Dialog Boxes
	Typical Reasons for Customising the Standard Dialog Boxes
	Specifying File Formats and File Types
	Selecting Volumes and Directories

	Customising the Standard Dialog Boxes

	Main Standard File Package Data Types and Routines
	Main File Manager Constants, Data Types and Routines
	Relevant Resource Manager Routines
	Relevant Finder Interface Routines
	Demonstration Program
	Demonstration Program Comments

