Version 1.1

CUSTOM CONTROL DEFINITION
FUNCTIONS AND VBL TASKS

Includes Demonstration Program CDEFandVBL

Introduction

As stated at Chapter 5 — Controls, the standard controls (buttons, checkboxes, radio buttons, pop-up
menus, and scroll bars) may be supplemented with custom controls. Generally, the only type of
custom control you application might need is some form of slider control (see Fig 1). Slider controls
graphically represent a range of values that can be set by the user. The current setting is represented by
the indicator, which is the part of the control that can be moved with the mouse.

- 1500 <]
- 1000
- 500
-0
o

%

T]
Green: | [N | D] [47

FIG 1 - TYPICAL SLIDER CONTROLS

If your application requires a slider control (or, indeed, any other custom control), you are faced with
the task of writing your own control definition function.

When the indicator of a slider control is moved with the mouse, an animation process is involved. This
animation is achieved by repeatedly erasing the indicator at its current location and then re-drawing it
at a new location. One consideration applying to such animation is that, if the erasing and re-drawing
of the moved image is performed in the window's graphics port itself, the image will appear to flicker.
For that reason, it is essential that the moved image and its background be assembled offscreen and
then copied to the window's graphics port. Another key consideration is that the copying of the
assembled image to the window's graphics port should not be performed while the video circuitry is
somewhere in the middle of its left-to-right/top-to-bottom refreshment of the monitor's screen. Unless
the copying action is performed during the vertical blanking period (that is, the brief period during
which the monitor's electron beam is switched off and returned from the lower right corner to the
upper left corner of the monitor's screen), the image can appear to distort while it is moving, more
particularly when it is moving fairly rapidly.

The necessary synchronisation of the redrawing of a moving image, such a slider control's indicator,
with the monitor's refresh cycle can be achieved using a vertical blanking (VBL) task. As will be seen,
the achievement of smooth animation is but one of the uses of VBL tasks.

Control Definition Functions (CDEFSs)

Declaration

To create a custom control, you must write your own control definition function (CDEF), compile it as a
resource type of type -cpoer-, and store it in the resource fork of the application that uses it. You must
declare your CDEF like this:

pascal SInt32 controlDef(SIntl6 varCode,ControlHandle theControl,SIntl6é message,
SInt32 param);

varCode The variation code for this control. To derive the control definition ID for the control,
add this value to the result of 16 multiplied by the resource ID of the -cper- resource
containing this function.

Note: Whenever you create a control, you specify a control definition ID, which the
Control Manager uses to determine the CDEF to be used. The control definition ID is
an integer which contains the CDEF's resource ID in the upper 12 bits and a variation
code in the lower four bits. Thus, for a given resource ID and variation code:

control definition ID = 16 x resource ID + variation code

You can define your own variation codes, which various Control Manager routines
pass to your CDEF. This allows you to use one -cper- resource to handle several
variations of the same control.

theControl A handle to the control that the operation will affect.

message A value which specifies which operation your function must undertake. Possible
values are as follows:

Constant Value Operation
drawCntl Draw the control or its part.

o

testCntl 1 Determine if the mouse-down occurred in a control.
calcCRgns 2 Calculate region for control or indicator (24-bit addressing).
initCntl 3 Perform any required additional control initialisation.
dispCntl 4 Perform any additional control disposal actions.
posCntl 5 Move indicator and update control record's contrivalue field.
thumbCntl 6 Calculate constraints for dragging the indicator.
dragCntl 7 Perform custom dragging of the control or its indicator.
autoTrack 8 Execute the action procedure specified by your function.
calcCntlIRgn 10 Calculate region for control (32-bit addressing).
calcThumbRgn 11 Calculate region for indicator (32-bit addressing).

param A value whose meaning depends on the operation specified in the message parameter.

This function is called by the Control Manager in lieu of the standard control definition function when
the contripefproc field of the control's control record points to it.

Default Dragging and Custom Dragging

One of the key decisions you must take before writing a CDEF for a control which is to be draggable, or
which contains a part (such as an indicator) which is to be draggable, is whether to use default
dragging or custom draggingl.

When you specify default dragging, the Control Manager, using certain information provided by your
CDEF, handles the dragging operation itself, following the mouse movement with a dotted outline of
the control or part. The Control Manager calls your CDEF to redraw the control or part only once, that
is, when the mouse button is released. On the other hand, when you specify custom dragging, your
CDEF itself must perform the entire dragging operation. For example, if your CDEF supports a fully
animated slider control, and the indicator of that control is being dragged, your CDEF must follow the
mouse while the mouse button remains down, continually erasing and redrawing the indicator's image
and updating the control's value.

An important aspect of your default dragging/custom dragging decision is that, when you elect to use
custom dragging, some of the values listed above will never be passed to your CDEF by the Control
Manager and others, though passed by the Control Manager, may be ignored. This means, of course,
that there is no need for your CDEF to include routines which respond to those particular messages.

Responding to message Parameter Values

The Control Manager calls your CDEF under various circumstances, using the message parameter to
specify the action required to be performed. The action that your CDEF should take, the data passed to
it by the Control Manager in the param parameter, and the function result that your CDEF should
return all depend on the value passed in the message parameter.

The following describes how your CDEF should respond to values passed by the Control Manager in
the message parameter.

initCntl

Action Required by Control Manager: Perform any additional control initialisation as required.

Value in param : (Not applicable. Ignore)

When creating a new custom control, the Control Manager initialises fields of the control's control
record and then passes initcntl to your CDEF to give it the opportunity to perform any additional
initialisation. For example, you might want to create a control-specific data record and assign a handle
to it to the contripata field of the control's control record.

Value to Return: Always return o.

drawCntl

Action Required by Control Manager: Draw the control or part specified in the param parameter.

Value in param : The low-order word? contains either o (meaning the entire control), 129 (meaning
the indicator), or some other value, (indicating a part code3).

This message is sent by the Control Manager when your application calls updateControls oOr
DrawControls in its update event handling routine. In addition, setControlvalue, SetControlMinimum,
and setcontrolMaximum may call your CDEF to redraw the indicator.

IThe ability to drag (that is, reposition) a control as a whole is something that few applications require. Ordinarily, therefore, a CDEF's
dragging operations relate only to parts of a control, such as the indicator of a slider control.

2Note that, in the case of the drawCntl message, the high-order word may contain undefined data; therefore, evaluate only the low word.
3Do notuse a part code 128 (reserved) or 129 (which, as stated, the Control Manager uses to signify an indicator which must be moved).

If the specified control is invisible (that is, if the contrivis field of the control's control record is set to
0), your CDEF should do nothing.

If the control is visible (contrivis field set to 255), your CDEF should draw the control or the part, as
specified in the param parameter, within the control's rectangle (stored in the contrirect field of the
control record). When drawing the control or its part, take into account the current value in the
contriHilite4field of the control's control record.

Part codes received in param reflect the part codes you assign to a part in your response to the testcntl
message (see below). Note, however, that, since setControlvalue, SetControlMinimum, and

setControlMaximum have no way of knowing what part code you chose for your indicator, they all pass
129 in param.

Value to Return: Always return o.

testCntl

Action Required by Control Manager: Determine whether the point passed in the param
parameter is inside a control part and, if so, in which part.

Value in param : Specifies a point in local coordinates. The high-order word contains the point's
vertical coordinate and the low-order word contains the horizontal coordinate.

This message is sent by Findcontrol, which returns whatever is returned by your CDEF to the
application.

Value to Return: Your part code for the part that contains the specified point, or o if the point is
outside the control or the control is inactive.

dragCntl

Action Required by Control Manager: Advise the Control Manager whether default dragging or
custom dragging is being used. Also, if custom dragging is being used, perform the dragging
operation.

Value in param : Specifies whether the user is dragging the indicator or the whole control. o means
the user is dragging the entire control. Any non-zero value means that the user is dragging the
indicator.

By passing dragcntl, the Control Manager is providing your CDEF with the opportunity to advise the
Control Manager whether it will be using its own method for dragging a control or its indicator
(custom dragging) or whether it wants to use the Control Manager's method (default dragging). The
following explains the requirements of the two methods:

- Default Dragging. If you use default dragging, you should call bragcontrol to reposition the
entire control in the window (something that the vast majority of applications never do) or the
Window Manager function pragGrayRregion to drag the control's indicator only. As the mouse
moves, DragControl moves a dotted outline of the control and bragGrayRegion, using
information already in the control record, moves a dotted outline of the specified (indicator)
region. Accordingly, default dragging is not suitable if you require fully animated indicator
movement.

- Custom Dragging. If you use custom dragging, your CDEF must itself drag the specified
control or indicator, following the cursor until the user releases the mouse button, as follows:

4Recall from Chapter 5 — Controls that the contriHilite field specifies whether and how the control is to be displayed, indicating whether it
is active or inactive The value o signifies an active control. The value 255 signifies that the control is to be made inactive and drawn
accordingly.

- If the user drags the entire control, your CDEF should use movecontrol to reposition the
control to its new location after the user releases the mouse button.

- If the user drags the indicator, your CDEF must follow the mouse while the mouse button
remains down, continually redrawing the control in its new location and updating the
contrlvalue field in the control's control record.

Note that, when custom dragging is specified, Trackcontrol always returns o regardless of whether or
not the cursor is still within the control when the button is released.

If you specify custom dragging, your CDEF can ignore poscntl and thumbcntl messages. In addition,
note that the calcCRgns, calcCntlRgn, and calcThumbRgn messages will never be sent to your CDEF
when custom dragging is specified.

Value to Return: To advise the Control Manager that default dragging is being used, return 0. To
advise the Control Manager that custom dragging is being used, return a non-zero result.

dispCntl

Action Required by Control Manager: Perform any additional disposal actions, as required.

Value in param : (Not applicable. Ignore)

DisposeControl passes dispcntl to your CDEF to give it the opportunity to perform any additional
actions when disposing of a control, such as freeing up any memory allocated by your CDEF. For
example, the standard CDEF for scroll bars releases the memory occupied by the scroll box region,
whose handle is kept in the contripata field of the control's control record.

Value to Return: Always return o.

posCntl

Action Required by Control Manager: Erase the indicator, redraw it in the new position specified
in param, and update the contrivalue field of the control's control record.

Value in param : A point (in local coordinates) specifying the vertical and horizontal offset, in pixels,
by which your CDEF should move the indicator from its current position. The vertical offset is in the
high-order word and horizontal offset is in the low-order word.

This message is received whether you specify default dragging or custom dragging. However, your
CDEF can ignore it if you have specified custom dragging; accordingly, the following is relevant only
to default dragging.

TrackControl passes posCntl When a mouse-up event occurs in the indicator of your control.
Typically, the value in param is the offset between the points where the user pressed and released the
mouse button while dragging the indicator.

Your CDEF should calculate the control's new setting based on the given offset and then, to reflect the
new setting, redraw the control and update the contrivaltue field of the control's control record.

Note that setcControlvalue, SetControlMinimum, and setControlmMaximum do not call your CDEF with
the poscntl message. Instead, they pass the drawcntl message.

Value to Return: Always return 0.

thumbCntl

Action Required by Control Manager: Calculate constraints for dragging the indicator.

Value in param : A pointer to this data structure:

struct

{
Rect limitRect;
Rect slopRect;
short axis;

} thumbCntlParms;

This message is received whether you specify default dragging or custom dragging. If you have
specified custom dragging, however, your CDEF should ignore thumbcntl and implement its own
dragging constraints within its response to the dragcnt1 message; accordingly, the following is relevant
only to default dragging.

On entry, the field 1imitRect.topLeft contains the point where the mouse-down event first occurred.
Your CDEF should calculate values (analogous to the rimitRect, slopRect, and axis parameters of
DragControl) which constrain indicator dragging. Your CDEF should store the appropriate values into
the fields of the record pointed to by param. (Those fields are, incidentally, analogous to the similarly-
named parameters to the Window Manager function bragGrayrgn.)

Value to Return: Always return 0.

calcCRgns, CalcCntlRgn, and
CalcThumbRgn

Action Required by Control Manager: Calculate the control or indicator region, as specified.

Value in param : A QuickDraw region handle. It is the QuickDraw region that you calculate. (Note
that the low three bytes of param contain the handle in 24-bit addressing mode. All four bytes are used
in 32-bit addressing mode.)

These messages will never be sent by the Control Manager if you use custom dragging.

If your CDEF specifies default dragging, the Control Manager passes calcCRgns when the 24-bit
Memory Manager is in operation. When the 32-bit Memory Manager is in operation, the Control
Manager passes either calccntlRgn Or calcThumbRgn. Your CDEF should respond to all three constants.
When calcCrgns is passed, if the high-order bit of param is set, the region requested is that of the
control's indicator; otherwise the region requested is that of the entire control. Your CDEF should clear
the high bit of the region handle before calculating the region.

When calccntiRgn is passed, your CDEF should calculate the region occupied by the control. When
calcThumbRgn is passed, your CDEF should calculate the region occupied by the indicator. Your CDEF
should express the region in local coordinates.

Value to Return: Always return o.

autoTrack

Action Required by Control Manager: Execute an action procedure specified by your CDEF.

Value in param: In the low-order word>, the part code of the part where the mouse-down event
occurred.

The autoTrack message allows you to locate any custom action procedure used by your control in your
CDEF rather than in your application. You will need an action procedure if, for example, your control
has arrow boxes and a repetitive action needs to be performed while the mouse button remains down
in one of those boxes.

SThe high-order word may contain undefined data; therefore, evaluate only the low word.

Your CDEF will be sent the autoTrack message when your application passes (ProcPtr)-1 in the
actionProc parameter of the Trackcontrol function and the contriaction field of the control's control
record also contains (ProcPtr)-1.

Action procedures were first introduced at Chapter 5 — Controls, and the demonstration program

Controls2 defines an action procedure which is called repeatedly when the mouse button is held down
while the cursor is in the scroll arrows or gray areas of a vertical scroll bar.

Vertical Blanking (VBL) Tasks

VBL Tasks and the Vertical Retrace Manager

The video circuitry in a Macintosh refreshes the screen at regular intervals, the exact interval
depending on the video hardware. For built-in monitors, the refresh rate is 60.15 times a second. To
refresh the screen, the monitor's electron beam draws in horizontal lines, starting at the upper left
corner, finishing at the lower right corner, and then jumping back to the upper left corner. When the
electron beam returns from the lower right corner to the upper left corner, the video circuitry generates
a vertical retrace interrupt or vertical blanking (VBL) interrupt.

The Vertical Retrace Manager schedules tasks, known as VBL tasks, for execution during the vertical
retrace interrupt. The Operating System itself uses the Vertical Retrace Manager to perform certain
housekeeping operations, such as updating the global variable Ticks and the position of the cursor
(every interrupt) and checking whether a disk has been inserted (every 30 interrupts).

You can also use the Vertical Retrace Manager to install your own recurrent tasks which, for some
reason, you do not want to execute in your main event loop. Be aware, however, that:

- The Vertical Retrace Manager is useful only for small, repetitive tasks which do not allocate or
release memory.

- The Vertical Retrace Manager is not an absolute timing device. Its operations are always relative
to the VBL interrupt, which is sometimes disabled — for example, during disk access. (This
latter explains the jerky cursor movement experienced during disk operations.)

VBL tasks installed by the Operating System, incidentally, are not maintained in the same queue as that
used by application-defined VBL tasks.

Types of VBL Tasks

There are two general types of VBL tasks:

- Slot-Based VBL Tasks. Slot-based VBL tasks are linked to an external video monitor.
Because different monitors have different refresh rates, and hence execute VBL tasks at different
intervals, a separate task queue is maintained for each attached video device. When a VBL
interrupt occurs for one of these devices, the tasks in the queue relating to the slot holding that
device's video card are executed. A slot-based VBL task is installed using stotvinstall.

- System-Based VBL Tasks. System-based VBL tasks apply to Macintoshes which have only a
built-in monitor (such as the Macintosh Classic). On such machines, there is no need to isolate
VBL tasks into separate queues. System-based VBL tasks are installed using vinstall.

To maintain compatibility on modular Macintoshes for software which uses vinstall, the Operating
System generates a special interrupt at a frequency identical to the retrace rate on compact
Macintoshes. This ensures that application tasks installed using the vinstal1 function, as well as the
periodic system tasks previously described, are performed as usual.

VBL Task Rules

A VBL task which violates any of the following rules may cause a system crash:

- A VBL task must not allocate, move, or purge memory, or call any Toolbox routines which may
do so.
- A VBL task cannot call a routine from any other code segment unless it sets up the application's

A5 world properly. In addition, that segment must already be loaded in memory.

- A VBL task cannot access your application's global variables unless it sets up the application's
A5 world properly.

- A VBL task's code, and any data accessed during the execution of the task, must be locked into
physical memory if virtual memory is in operation.

VBL Tasks and Foreground/Background Switching

Some VBL tasks may be intended to perform services which are useful only to the application, and
which should therefore cease execution if the application is switched to the background. Others may
be intended to continue to execute even when the application is no longer in the foreground.

System-Based VBL Tasks

If the address of a system-based VBL task (not the same thing as the address of the VBL task record) is
anywhere in the partition of the application that installed it, the Process Manager automatically
disables that task when it is sent to the background. Then, when the application regains control of the
processor (through either a minor or major switch), the task is re-enabled. This does not apply if the
address of a system-based VBL task is in the system partition®.

Note that, in the case of the address of the system-based task being in the application's partition, the
task is re-enabled when the application receives processing time, which can occur without the
application necessarily returning to foreground. For that reason, you may want to disable a system-
based VBL task manually. This can be done using the same procedure as that applying to the disabling
of a slot-based VBL task (see below).

Slot-Based VBL Tasks

By contrast, the Process Manager never disables a slot-based VBL task, no matter where the task is
located. Accordingly, if you want a slot-based VBL task to be disabled when your application is in the
background, you must do it yourself, either by removing the task record from the VBL queue or by
setting the vbicount field of the task record (see below) to 0. You can do this in response to a suspend
event. Then, when your application receives a resume event, you can re-enable the task by re-installing
the task record or by re-setting the vbicount field of the VBL task record (see below) to the appropriate
value.

Installing and Removing a VBL Task

You use the Vertical Retrace Manager to install and remove VBL task records in and from system-
based or slot-based vertical retrace queues. Before you call vinstall or slotvinstall to install a task
record, you must first fill in the last four of the VBL task record's fields.

6you load a system-based task's task record into the system partition when you want the task to be a persistent VBL task, that is, a task that
continues to be executed even when the application which installed it is no longer in control of the CPU. (Note that slot-based VBLs are
always persistent no matter where you put the task record.)

The VBL Task Record

The VBL task record is defined by the vBLTask data type:

struct VBLTask

{
QElemPtr gLink;
short qType;
VBLUPP vblAddr;
short vblIlCount;
short vblPhase;
}:
typedef struct VBLTask VBLTask,*VBLTaskPtr;

Field Descriptions

qLink

atype
vblAddr

vbiICount

vblPhase

Pointer to the next entry in the queue. (This field is not set by the application. It is set by
the Vertical Retrace Manager.)

The queue type. This must be set to vType.

Pointer to the procedure that the Vertical Retrace Manager is to execute.

The number of interrupts before the routine first executes.

The Vertical Retrace Manager lowers this number by 1 during each interrupt. If the value
in vbicount is o, the task will not execute. If, when vbilcount contains o, ou want the
procedure to be executed again, you must reset the vbicount field to the required value.
Setting this field to o is one way of disabling a task. A more common approach is to
remove the task record from its queue by calling vRemove Or silotvRemove, although this
should not be done by the task itself.

The phase count of the VBL task.

In most cases, you can set this field to o . However, if you install multiple tasks with the
same vbicount at the same time, you can assign them different vbirhase values so that the

tasks are not executed during the same interrupt. The value in the vbirhase field must be
less than the value in the vbicount field.

Installing a VBL Task

For any particular VBL task, you must first decide whether to install it as a system-based VBL task or as
a slot-based VBL task. The following considerations apply:

- Slot-Based VBL Tasks. You need to install a task as a slot-based VBL task only if the
execution of the task needs to be synchronised with the retrace rate of a particular external
monitor. This will be the case, for example, if you want the repetitive re-drawing of a moving
image, such as a slider control's indicator, to occur only during that particular monitor's vertical
blanking period.

- System-Based VBL Tasks. If the task performs no processing likely to affect the appearance
of the screen, and no processing that depends on the state of an external monitor, you can install
it as a system-based VBL task.

The next steps are to define the VBL task itself (so as be able to assign its address to the vbiaddr field of
the VBL task record) and, in the case of slot-based VBL tasks, call LmGetMainDevice and GetdCtlEntry to
find the slot number of the video device to whose retrace the VBL task is to be synchronised. The final
step is to fill in a VBL task record and install it into the appropriate queue.

Accessing a Task Record

Recall that, if a VBL task is to be executed recurrently, it must reset the vbicount field of the task record
each time it is executed. A repetitive VBL task must therefore be able to access its task record so that it
can reset the vbicount field.

When the Vertical Retrace Manager executes the VBL task, it places the address of the VBL task into the
A0 register. The following defines an in-line function which moves that value onto the stack:

pascal SInt32 GetVBLRec(void) = O0x2E88;

This in-line function, which returns a long integer specifying the address of the task record, should be
called only from a VBL task. It will not work if called from the main program. In addition, the call
should be the first line of your VBL task, because other processing could change the value in AQ.

Accessing Application Global Variables

Recall from Chapter 1 that the boundary between the current application's global variables and its
application parameters are stored in the microprocessor's A5 register. Since all applications share this
register, the Process Manager keeps track of the address of your application's A5 world when a major
or minor switch yields control of the microprocessor to another application. Then, when your
application regains access to the CPU, the Process Manager restores that address to the A5 register.

Because VBL tasks are interrupt routines, they could well execute when the value in the A5 register
does not point to your application's A5 world. As a result, if you need to access your application's
global variables in a VBL task, you need to set the A5 register to its correct value when your VBL task
begins executing and restore the previous value upon exit.

To achieve this, your application should save its A5 using setcurrentAs. Then, at interrupt time, the
VBL task can begin by calling setas to, firstly, set the A5 register to this saved value and, secondly,
save the value that was in the A5 register immediately prior to the call. The VBL task should end with
another call to setas, this time to restore the initial value.

The only memory location that a VBL task has access to is the address of the task record. Accordingly,
if your application stores its A5 directly following the task record, it can locate this value by first
locating the task record. To store the A5 value directly following the task record, define a new data
type whose first field contains the VBL task record and whose second field will hold the value in the A5
register retrieved by a call to setcurrentas:

typedef struct
VBLTask vblTaskRec; // The VBL task record.

long vblAS5 // Saved value of A5.
} VBLRec, *VBLRecPtr;

Relevant Control Manager Constants

Constants for message Parameter in Control Definition Function

drawCntl =0 Draw the control or its part.

testCntl =1 Determine if the mouse-down occurred in a control.

calcCRgns =2 Calculate region for control or indicator (24-bit addressing).
initCntl =3 Perform any required additional control initialisation.
dispCntl = 4 Perform any additional control disposal actions.

posCntl =5 Move indicator and update control record®"s contrlValue field.
thumbCntl =6 Calculate constraints for dragging the indicator.

dragCntl =7 Perform custom dragging of the control or its indicator.
autoTrack =8 Execute the action procedure specified by your function.
calcCntlRgn = 10 Calculate region for control (32-bit addressing).
calcThumbRgn =11 Calculate region for indicator (32-bit addressing).
drawThumbOutline = 12 Draw indicator outline.

© 0o ~NoOOhs WM

WWWWRNNRNRNNNMNNRNRNRDE R R R B B e e
DN POODX®VIOARDNP, O ®©®®O~NOOON®WNERO

Vertical Retrace Manager Data Types and Routines

Data Types

VBL Task Record

struct VBLTask

{
QElemPtr gLink;
short qType;
VBLUPP vblAddr;
short vblCount;
short vblPhase;
}:

typedef struct VBLTask VBLTask,*VBLTaskPtr;

Routines

Slot-Based Installation and Removal Routines

OSErr SlotVinstall (QElemPtr vblIBlockPtr,short theSlot);
OSErr SlotVRemove(QElemPtr vblBlockPtr,short theSlot);

System-Based Installation and Removal Routines

OSErr Vinstall (QElemPtr vblTaskPtr);
OSErr VRemove (QElemPtr vblTaskPtr);

Utility Routines
OSErr AttachVBL(short theSlot);

OSErr DoVBLTask(short theSlot);
QHdrPtr GetVBLQHdr(void);

Demonstration Program

// HH#H#HHB BB BB R R SRR R R R R R R SRR R R R R R R R R R R R R R R R R R R R
// CDEFandVBL.c

// This program opens a window containing a slider control panel. The slider control
// panel contains two radio button controls and a slider control. The radio buttons
// activate and deactivate the slider control.

// The slider control uses a custom control definition function (CDEF). The CDEF
// utilises a VBL task to delay the drawing of a moved indicator in the graphics port

// until the vertical blank period is entered. The radio buttons also use a custom CDEF.

// On colour or grayscale displays, the appearance of the controls conforms to that

// specified in the document Apple Grayscale Appearance for System 7.5 published by Apple

// Computer, Inc.

// This program also includes a demonstration of an animated cursor which utilises a
// system-based VBL task to increment the frames of the animation. This demonstration
// is invoked by choosing the VBL Task Animated Cursor item in the Demonstration menu
// and may be cancelled by pressing any key.

//

// The program utilises the following resources:

//

// = An "MBAR® resource, and "MENU" resources for Apple, File, Edit and Demonstration

// menus (preload, non-purgeable).

//

// = A “WIND" resource (purgeable) (initially visible) and a "wctb" resource (purgeable)
// for the window containing the slider control panel.

//

// = "CNTL" resources (purgeable) for the radio button and slider controls.

// = The "CDEF" code resources (non-purgeable).

// = An Tacur” resource (purgeable) and "CURS" resources (purgeable) for the animated

34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
7
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110

// cursor.

//

// = A "SIZE" resource with the acceptSuspendResumeEvents, doesActivateOnFGSwitch, and
// is32BitCompatible flags set.

//

// HH#H#HBH BB B R RS R R R R R R R SRR R R R R R R R SRR R R R R R R R R R R R
L/ o e e e e e 1 1 8 1 8 1 8 1 8 1 e 1 e e e e e ERICTUDES

#include <Fonts.h>
#include <Menus.h>
#include <TextEdit.h>
#include <Dialogs.h>
#include <SeglLoad.h>
#include <ToolUtils.h>
#include <Devices.h>
#include <Gestalt._h>
#include <Resources.h>
#include <Retrace.h>
#include <Palettes.h>
#include <LowMem.h>

L/ o e e e e e 1 1 8 1 8 1 8 1 8 1 8 1 e 1 e e e e D€ TFENES
#define mApple 128

#define iAbout 1

#define mFile 129

#define iQuit 11

#define mDemonstration 131

#define 1VBLAnimCursor 1

#define rMenubar 128

#define rWindow 128

#define rFingersCursor 128

#define rStartRadioButton 128
#define rStopRadioButton 129

#define rSliderControl 130
#define MAXLONG Ox7FFFFFFF
17 . typedefs

typedef struct

SIntl6 numberOfFrames;
SIintl6 whichFrame;
CursHandle frame[];
} animCurs, *animCursPtr, **animCursHandle;

typedef struct
{

VBLTask vblTaskRec;

SInt32 thisApplicationsA5;
} VBLRec, *VBLRecPtr;

F7 o e e s s s s s e G lODAT Variables
Boolean gColorQuickDrawPresent = false;

Boolean gColourDisplay = false;

Boolean gDone;

SInt32 gSleepTime;

Boolean glnBackground;

WindowPtr gWindowPtr;

animCursHandle gAnimCursHdl;

VBLRec gVBLRec;

SIntlé6 gVBLCount;

Boolean gAnimatedCursorActive = false;

RGBColor gWindowColour = { OxDDDD, OxDDDD, OxDDDD };

ControlHandle gSliderControlHdl;
ControlHandle gStartControlHdl;
ControlHandle gStopControlHdl;

L/ o e e e e e e 8 e e e e e e TUNCTETON prototypes
void main (void);

void dolnitManagers (void);

void doEvents (EventRecord *);

void doMouseDown (EventRecord *);

void doUpdate (EventRecord *);

111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187

Vo
Vo
Vo
Vo
Vo
Vo
Vo
Vo
Bo
Vo
Vo
Vo

id doActivate (EventRecord *);
id doActivateWindow (Boolean);
id doOSEvent (EventRecord *);
id doInContent (EventRecord *,WindowPtr);
id doMenuChoice (SInt32 menuChoice);
id doGetSliderControlSuite (void);
id doDrawControlsPanel (void);
id doStartAnimCursor (void);
olean doGetAnimCursor (SIntl6);
id dolnstallSystemVBLTask (void);
id animCursVBLTask (void);
id doStopAnimCursor (void);
7 o et e e e 1 1 1 1 1 1 1 1 e 1 e

pa

scal SInt32 GetVBLRec (void) = Ox2E88;

in-line glue for GetVBLRec

// #EHBHHBBH AR R R R R R R R R R R R R R R R # R #E main

Vo

{

id main(void)

OSErr oSErr;

SInt32 response;

GDHandle mainDeviceHdl;

SIintl6 bitsPerPixel;

Handle menubarHdl ;

MenuHandle menuHdl ;

EventRecord eventRec;

L/ e e e e e e e 1 e 8 1 8 1 8 1 8 1 8 1 8 1 8 1 e 1 e e

dolnitManagers();
// .

osErr = Gestalt(gestaltQuickdrawVersion,&response);
if(response >= gestalt8BitQD)
{

gColorQuickDrawPresent = true;

mainDeviceHdl = LMGetMainDevice();
bitsPerPixel = (*(*mainDeviceHdl)->gdPMap)->pixelSize;
if(bitsPerPixel > 1)

gColourDisplay = true;

¥

7 o e 1 B 8 8 1 s

menubarHdl = GetNewMBar (rMenubar);

if(menubarHdl == NULL)
ExitToShell();

SetMenuBar (menubarHdl) ;

DrawMenuBar();

menuHdl = GetMenuHandle(mApple);

if(menuHdl == NULL)
ExitToShell();
else

AppendResMenu(menuHdl, "DRVR");
// .

if(gColorQuickDrawPresent)

initialise managers

check for Color QuickDraw

set up menu bar and menus

. open window

if('(gWindowPtr = GetNewCWindow(rWindow,NULL, (WindowPtr)-1)))

ExitToShell();
}

else

{

if('(gWindowPtr = GetNewWindow(rWindow,NULL, (WindowPtr)-1)))

ExitToShell();
b

SetPort(gWindowPtr);

7 o e 1 88 1 1 s s e

get slider control suite

188 doGetSliderControlSuite();

189

190 J 7 o e B B B B 1 1 0 0 s s €NTEE T @VENTELOOP
191

192 gbone = false;

193 gSleepTime = MAXLONG;

194

195 while(!lgDone)

196

197 if(WaitNextEvent(everyEvent,&eventRec,gSleepTime,NULL))

198 doEvents(&eventRec);

199 ¥

200 }

201

202 // #EHBHHHBH B R R R R R R R R R R R R R R R R R #H## dolnitManagers
203

204 void dolnitManagers(void)

205 {

206 MaxApplZone();

207 MoreMasters();

208

209 InitGraf(&qd.thePort);
210 InitFonts();

211 InitWindows();

212 InitMenus();

213 TEInitQ);

214 InitbDialogs(NULL);

215

216 InitCursor();

217 FlushEvents(everyEvent,0);
218}

219

220 [/ HHHHHH BB R R R R R R R R R R R R R ## doEvents
221
222 void doEvents(EventRecord *eventRecPtr)

223

224 switch(eventRecPtr->what)

225 {

226 case mouseDown:

227 doMouseDown(eventRecPtr);
228 break;

229

230 case keyDown:

231 case autoKey:

232 if(gAnimatedCursorActive)
233 doStopAnimCursor();

234 break;

235

236 case updateEvt:

237 doUpdate(eventRecPtr);
238 break;

239

240 case activateEvt:

241 doActivate(eventRecPtr);
242 break;

243

244 case osEvt:

245 doOSEvent(eventRecPtr);
246 HiliteMenu(0);

247 break;

248 }

249}

250

251 /1 HEHBHBH BB R R R R R R R R R R R R R R R R R R R H# doMouseDown
252

253 void doMouseDown(EventRecord *eventRecPtr)
254 {

255 SIintl6 partCode;

256 WindowPtr windowPtr;

257 MenuHandle menuHdl;

258

259 partCode = FindWindow(eventRecPtr->where,&windowPtr);
260 menuHdl = GetMenuHandle(mDemonstration);
261

262 switch(partCode)

263 {

264 case inMenuBar:

266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300

302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336

338
339
340
341

if(gAnimatedCursorActive)
Disableltem(menuHdl, iVBLAnimCursor);
else
Enableltem(menuHdl, iVBLAnimCursor);
doMenuChoice(MenuSelect(eventRecPtr->where));
break;

case inSysWindow:
SystemClick(eventRecPtr,windowPtr);
break;

case inContent:
if(windowPtr !'= FrontWindow())
SelectWindow(windowPtr);
else
dolInContent(eventRecPtr,windowPtr);
break;

case inDrag:
DragWindow(windowPtr,eventRecPtr->where,&qd.screenBits.bounds);
break;

// HHHBHHH RS R doUpdate

void doUpdate(EventRecord *eventRecPtr)
{

WindowPtr windowPtr;

windowPtr = (WindowPtr) eventRecPtr->message;
BeginUpdate(windowPtr);

SetPort(windowPtr);
UpdateControls(windowPtr,windowPtr->visRgn);
doDrawControlsPanel();

EndUpdate(windowPtr);

/1 BHHBHHBHHHRHHBHH BB R R R R R R R ## doActivate

void doActivate(EventRecord *eventRecPtr)
{

WindowPtr windowPtr;

Boolean becomingActive;

windowPtr = (WindowPtr) eventRecPtr->message;

becomingActive = ((eventRecPtr->modifiers & activeFlag) == activeFlag);
doActivateWindow(becomingActive);

}

// #EH#RHHBH AR R R R R R R R R R R R R R R R #E##H doActivateWindow

void doActivateWindow(Boolean becomingActive)

{

SIntl6 controlVval;

if(becomingActive)
{
controlVal = GetControlValue(gStartControlHdl);
if(controlval == 1)
HiliteControl (gSliderControlHdl,0);
teControl(gStartControlHdl,0);
HiliteControl (gStopControlHdl,0);

}

else

HiliteControl (gSliderControlHdl,255);
teControl(gStartControlHdl,b255);
HiliteControl (gStopControlHdl,255);

}

doDrawControlsPanel();

342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418

Vo

Vo

{

Vo

{

.. doOSEvent

id doOSEvent(EventRecord *eventRecPtr)

switch((eventRecPtr->message >>24) & 0x000000FF)
{
case suspendResumeMessage:
glnBackground = (eventRecPtr->message & resumeFlag) == O0;
doActivateWindow(!glnBackground);
break;

case mouseMovedMessage:
break;

iR H R H BT SR H R H TR SR H R R R R R R ### doInContent
id dolnContent(EventRecord *eventRecPtr,WindowPtr windowPtr)

ControlHandle controlHdl;

SIintl6 partCode;
Rect theRect;
Str255 theString;

GlobalToLocal (&eventRecPtr->where);
partCode = FindControl (eventRecPtr->where,windowPtr,&controlHdl);

if(controlHdl == gSliderControlHdl)
{
if(partCode == kControllIndicatorPart)
TrackControl (controlHdl,eventRecPtr->where,NULL);

RGBBackColor(&gWindowColour);
SetRect(&theRect,253,107,390,119);
FillRect(&theRect,&qd.white);

MoveTo(255,117);

DrawString('"\pSlider Control Value: ");

NumToString((long) GetControlValue(controlHdl), theString);
DrawString(theString);

else if(controlHdl == gStartControlHdl |] controlHdl == gStopControlHdl)
{
if(TrackControl (controlHdl,eventRecPtr->where,NULL))

{
if(controlHdl == gStartControlHdl)

HiliteControl (gSliderControlHdl,0);
SetControlValue(gStartControlHdl,1) ;
SetControlValue(gStopControlHdl,0);

else if(controlHdl == gStopControlHdl)

{
SetControlValue(gSliderControlHdl,0);
HiliteControl (gSliderControlHdl,b255);
SetControlValue(gStartControlHdl,0);
SetControlValue(gStopControlHdl,1);

RGBBackColor(&gWindowColour) ;
SetRect(&theRect,253,107,390,119);
FillRect(&theRect,&qd.white);

HH R #H##H doMenuChoice

id doMenuChoice(SInt32 menuChoice)

SIntlé menulD, menultem;
Str255 itemName;
SIntlé daDriverRefNum;

menulD = HiWord(menuChoice);
menultem = LoWord(menuChoice);

419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435

437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
401
492
493
494
495

if(menulD == 0)
return;

switch(menulD)

{
case mApple:
if(menultem == iAbout)
SysBeep(10);
else
{
GetMenultemText(GetMenuHandle(mApple) ,menultem, itemName);
daDriverRefNum = OpenDeskAcc(itemName);
}
break;
case mFile:
if(menultem == iQuit)
{
DisposeWindow(gWindowPtr);
gbone = true;
}
break;
case mDemonstration:
if(menultem == iVBLAnimCursor)
doStartAnimCursor();
break;
}
HiliteMenu(0);
}
[/ HEH R R R S Y L A S I doGetSliderControlSuite

void doGetSliderControlSuite(void)

{
gSliderControlHdl = GetNewControl(rSliderControl,gWindowPtr);
HiliteControl (gSliderControlHdl,b255);

gStartControlHdl = GetNewControl(rStartRadioButton,gWindowPtr);
gStopControlHdl = GetNewControl(rStopRadioButton,gWindowPtr);

doDrawControlsPanel();

// BHHBHH BB R R R R R R R R R R R R #### doDrawControlsPanel

void doDrawControlsPanel(void)

{
GDHandle mainDeviceHdl;
SIntl6 bitsPerPixel;
SIintl6 fontNum, a;

RGBColor gray8 = { Ox7777,0x7777,0x7777 };

GetFNum('"\pChicago",&fontNum);
TextFont(fontNum);
TextSize(12);

mainDeviceHdl = LMGetMainDevice();
bitsPerPixel = (*(*mainDeviceHdl)->gdPMap)->pixelSize;

if(bitsPerPixel > 1)
gColourDisplay = true;
else
gColourDisplay = false;

for(a=0;a<2;a++)
{
if(a == 0)
ForeColor(whiteColor);
else

if(lgInBackground)

if(gColorQuickDrawPresent && gColourDisplay)
ForeColor(blackColor);

496 else

497

498 ForeColor(blackColor);
499 PenPat(&qd.-black);

500 TextMode(srcOr);

501 ¥

502 }

503 else

504 {

505 if(gColorQuickDrawPresent && gColourDisplay)
506 RGBForeColor(&gray8);
507 else

508 {

509 ForeColor(blackColor);
510 PenPat(&qd.gray);

511 TextMode(grayishTextOr);
512 }

513 }

514 }

515

516 if(a == 0 && !gColourDisplay)
517 continue;

518 else

519 {

520 MoveTo(156-a,22-a);

521 LineTo(152-a,22-a);

522 LineTo(152-a,230-a);

523 LineTo(246-a,230-a);

524 LineTo(246-a,22-a);

525 LineTo(242-a,22-a);

526

527 MoveTo(163-a,26-a);

528 DrawString(""\pEngine RPM"™);
529 ¥

530 }

531

532 ForeColor(blackColor);

533

534 GetFNum(**\pGeneva", &fontNum) ;
535 TextFont(fontNum);

536 TextSize(10);

537 PenPat(&qd.black);

538 TextMode(srcOr);

539}

540

541 // HHUHBHHHHH ST R doStartAnimCursor
542

543 void doStartAnimCursor(void)

544 {

545 gVBLCount = 30;

546 gSleepTime = 0;

547

548 if(doGetAnimCursor(rFingersCursor) == false)
549 ExitToShell();

550

551 dolnstallSystemVBLTask();

552

553 gAnimatedCursorActive = true;
554

555 MoveTo(40,110);

556 DrawString(""\pPress any key to");
557 MoveTo(30,125);

558 DrawString('"\pstop animated cursor™);
559 }

560

561 [/ HHHHHH BB R R R R R R R R R R R R ## doGetAnimCursor
562
563 Boolean doGetAnimCursor(SIntl6 resourcelD)

564 {

565 SIntl6é cursorilD, a = 0;

566 Boolean noError = false;

567

568 if((gAnimCursHdl = (animCursHandle) GetResource("acur”,resourcelD)))
569

570 noError = true;

571 while((a < (*gAnimCursHdl)->numberOfFrames) && noError)

572

581

cursorlID = (SIntl6) HiWord((SInt32) (*gAnimCursHdl)->frame[a]);

(*gAnimCursHdl)->frame[a] = GetCursor(cursorlD);
if((*gAnimCursHdl)->frame[a])
a++;
else
noError = false;
}
¥

if(noError)
(*gAnimCursHdl)->whichFrame = 0;

return(noError);

}
[/ HBHBHARARAR AR AR A AR AR AR AR AR AR AR ABHBABH B AR AR AR AR RS AR R ### dolnstallSystemVBLTask
void dolnstallSystemVBLTask(void)
¢ gVBLRec.vblTaskRec.qType = vType;
gVBLRec.vblTaskRec.vblAddr = (VBLUPP) animCursVBLTask;

gVBLRec.vblTaskRec.vbICount = gVBLCount;
gVBLRec.vblTaskRec.vblPhase 0;

gVBLRec.thisApplicationsA5 = SetCurrentA5Q);

Vinstall ((QElemPtr) &gVBLRec.vblTaskRec);

void animCursVBLTask(void)
{
VBLRecPtr vblRecPtr;
SInt32 currentA5;

vblRecPtr (VBLRecPtr) GetVBLRec();
currentA5 = SetA5(vblRecPtr->thisApplicationsA5);

SetCursor(*((*gAnimCursHdl)->frame[(*gAnimCursHdl)->whichFrame++]));

iT((*gAnimCursHdl)->whichFrame == (*gAnimCursHdl)->numberOfFrames)
(*gAnimCursHdl)->whichFrame = 0;

vblRecPtr->vblTaskRec.vblCount = gVBLCount;

currentA5 = SetA5(currentA5);

void doStopAnimCursor(void)
{

SIntl6 a;

Rect theRect;

VRemove ((QElemPtr) &gVBLRec.vblTaskRec);

for(a=0;a<(*gAnimCursHdl)->numberOfFrames;a++)
ReleaseResource((Handle) (*gAnimCursHdl)->frame[a]);

ReleaseResource((Handle) gAnimCursHdl);

gAnimatedCursorActive = false;
gSleepTime = MAXLONG;

SetCursor(&qd.arrow);

SetRect(&theRect,30,100,150,130);
RGBBackColor(&gWindowColour);
FillRect(&theRect,&qd.white);

animCursVBLTask

doStopAnimCursor

713

726

// This CDEF displays:

// = 3D coloured radio buttons on colour displays set to pixel depths greater than 2.
// = Black-and-white buttons on colour displays set to pixel depths less than 4.

// = Black-and-white radio buttons if Color QuickDraw is not present.

// This CDEF utilises six "cicn” resources (purgeable). The bitmap component, as opposed
// to the pixel map component, of each of these resources is automatically utilised if

// the icon is being displayed on a colour device for which the pixel depth has been set
// to 1 or 2. The appearance of the coloured radio buttons conforms to the specification
// for radio button controls contained in the document Apple Greyscale Appearance for

// System 7.5 published by Apple Computer Inc.

VA = R R R R e e e e
L/ o e e e e e 1 1 1 8 1 8 1 8 1 e e e e e e EDICTUDES

#include <Gestalt.h>
#include <ToolUtils.h>
#include <A4Stuff.h>
#include <Fonts.h>
#include <Palettes.h>
#include <LowMem.h>

L/ o e e e e e 1 8 1 8 1 81 8 1 8 1 1 1 e 1 e e e e D€ TFENES

#define rActiveDeselect 128
#define rActiveSelect 129
#define rinActiveDeselect 130
#define rlnactiveSelect 131
#define rFeedbackDeselect 132
#define rFeedbackSelect 133

#define partCode 1

// .. global variables
QDGlobals *gQDGlobalsPtr;

Boolean gColorQuickDrawPresent = false;

Boolean gColourDisplay = false;

ClconHandle gActiveDeselectHdl = NULL;

ClconHandle gActiveSelectHdl = NULL;

ClconHandle glnactiveDeselectHdl = NULL;

ClconHandle glnactiveSelectHdl = NULL;

ClconHandle gFeedbackDeselectHdl = NULL;

ClconHandle gFeedbackSelectHdl = NULL;

J7 o B B B 0 e 2 s s s T UNCTETON prototypes

pascal SInt32 main (short varCode,ControlHandle controlHdl,short message,SInt32 param);

void dolnitMessage (void);

void doDrawMessage (ControlHandle);

void drawColour (ControlHandle,SIntl6,Rect);
void drawMono (ControlHandle,SIntl6,Rect);

SInt32 doTestMessage (ControlHandle,SInt32);

pascal SInt32 main(short varCode,ControlHandle controlHdl,short message,SInt32 param)

{

SInt32 returnValue;
EnterCodeResource();

switch(message)
{
case initCntl:
dolnitMessage();
break;

case drawCntl:
if((*controlHdl)->contrlVis)

727 doDrawMessage(controlHdl);

728 }

729 returnValue = 0;
730 break;

731

732 case testCntl:

733 returnValue = doTestMessage(controlHdl,param);
734 break;

735

736 default:

737 returnValue = 0;
738 ¥

739

740 ExitCodeResource();
741 return returnValue;
742 }

743

744 // #EHBRHHBH BB R R R R R R R R R R R R H R R R #H##H dolnitMessage
745
746 void dolnitMessage(void)

747 {

748 OSErr oSErr;

749 SInt32 response;

750

751 gQDGlobalsPtr = (QDGlobals*) (*((SInt32*) SetCurrentA5()) - (sizeof(QDGlobals) -
752 sizeof(GrafPtr)));
753 osErr = Gestalt(gestaltQuickdrawVersion,&response);

754 if(response >= gestalt8BitQD)

755 gColorQuickDrawPresent = true;

756}

757

758 /1 HBHBHBHBHBH AR R R R R R R R R R R R R ### doDrawMessage
759

760 void doDrawMessage(ControlHandle controlHdl)

761 {

762 WindowPtr windowPtr;

763 GrafPtr oldPort;

764 SIintl6 oldFont, oldSize, oldTextMode, controlValue, fontNum;
765 PenState oldPenState;

766 Rect controlRect;

767 GDHandle mainDeviceHdl;

768 SIntl6 bitsPerPixel;

769

770 windowPtr = (WindowPtr) (*controlHdl)->contrlOwner;

771

772 GetPort(&oldPort);

773 oldFont = windowPtr->txFont;

774 oldSize = windowPtr->txSize;

775 oldTextMode = windowPtr->txMode;

776 GetPenState(&oldPenState);

777

778 SetPort(windowPtr);

779

780 controlValue = GetControlValue(controlHdl);

781

782 controlRect = (*controlHdl)->contrlRect;

783 controlRect.right = controlRect._left + 12;

784 controlRect.bottom = controlRect.top + 12;

785

786 GetFNum(**\pChicago",&FontNum) ;

787 TextFont(fontNum);

788 TextSize(12);

789

790 if(gColorQuickDrawPresent)

791

792 if(gActiveDeselectHdl == NULL)

793 gActiveDeselectHdl = GetClcon(rActiveDeselect);

794 if(gActiveSelectHdl == NULL)

795 gActiveSelectHdl = GetClcon(rActiveSelect);

796 if(glnactiveDeselectHdl == NULL)

797 glnactiveDeselectHdl = GetClcon(riInActiveDeselect);
798 if(glnactiveSelectHdl == NULL)

799 glnactiveSelectHdl = GetClcon(rlnactiveSelect);

800 if(gFeedbackDeselectHdl == NULL)

801 gFeedbackDeselectHdl = GetClcon(rFeedbackDeselect);
802 if(gFeedbackSelectHdl == NULL)

803 gFeedbackSelectHdl = GetClcon(rFeedbackSelect);

804 }

805

806 mainDeviceHdl = LMGetMainDevice();

807 bitsPerPixel = (*(*mainDeviceHdl)->gdPMap)->pixelSize;
808 if(bitsPerPixel > 1)

809 gColourDisplay = true;

810 else

811 gColourDisplay = false;

812

813 if(gColorQuickDrawPresent && gColourDisplay)

814 drawColour(controlHdl,controlValue,controlRect);
815 else

816 drawMono(controlHdl,controlValue,controlRect);

817

818 SetPenState(&oldPenState);

819 TextMode(oldTextMode) ;

820 TextFont(oldFont);

821 TextSize(oldSize);

822 SetPort(oldPort);

823 }

824

825 [/ HEH G R I R S Y L S I A S A drawColour
826

827 void drawColour(ControlHandle controlHdl,SIntl6 controlValue, Rect controlRect)
828 {

829 RGBColor oldForeColour;

830 RGBColor blackColour = { 0x0000, O0x0000, 0x0000 };
831 RGBColor gray8 = { Ox7777, Ox7777, OX7777 };
832

833 GetForeColor(&oldForeColour);

834

835 if((*controlHdl)->contrlHilite == 255)

836 {

837 if(gColourDisplay)

838 RGBForeColor(&gray8);

839 else

840 TextMode(grayishTextOr);

841

842 if(controlValue == 1)

843 PlotClcon(&controlRect,glnactiveSelectHdl);

844 else

845 PlotClcon(&controlRect,glnactiveDeselectHdl);
846

847 else if((*controlHdl)->contrlHilite == 0)

848 {

849 RGBForeColor(&blackColour);

850 TextMode(srcOr);

851

852 if(controlValue == 1)

853 PlotClcon(&controlRect,gActiveSelectHdl);

854 else

855 PlotClcon(&controlRect,gActiveDeselectHdl);

856

857 else if((*controlHdl)->contrlHilite == partCode)
858

859 if(controlValue == 1)

860 PlotClcon(&controlRect,gFeedbackSelectHdl);

861 else

862 PlotClcon(&controlRect,gFeedbackDeselectHdl);
863 ¥

864

865 MoveTo(controlRect.left + 17,controlRect.top + 10);
866 DrawString((*controlHdl)->contriTitle);

867

868 RGBForeColor(&oldForeColour);

869 }

870

871 /1 HBHBHBHBH BB R R R R R R R R R R R R AR A4 drawMono
872

873 void drawMono(ControlHandle controlHdl,SIntl6 controlValue, Rect controlRect)
874 {

875 ForeColor(blackColor);

876 BackColor(whiteColor);

877

878 PenNormal () ;

879

880 if((*controlHdl)->contrlHilite == 255 || (*controlHdl)->contrlHilite == 0)

882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908

s1
{

if((*controlHdl)->contrlHilite == 255)

{
PenPat(&gQDGlobalsPtr->gray);
TextMode(grayishTextOr);

¥

else

{
PenPat(&gQDGlobalsPtr->black);
TextMode(srcOr);

}

FrameOval (&controlRect);
InsetRect(&controlRect,1,1);

FillOval (&controlRect,b&gQDGlobalsPtr->white);
InsetRect(&controlRect,-1,-1);

if(controlValue == 1)
{
InsetRect(&controlRect,3,3);
if((*controlHdl)->contrlHilite == 255)
FillOval (&controlRect,&gQDGlobalsPtr->gray);
else

FillOval (&controlRect,b&gQDGlobalsPtr->black);
InsetRect(&controlRect,-3,-3);
¥

else if((*controlHdl)->contrlHilite == partCode)
{
InsetRect(&controlRect,1,1);
FrameOval (&controlRect);
InsetRect(&controlRect,-1,-1);
}

MoveTo(controlRect.left + 17,controlRect._top + 10);
DrawString((*controlHdl)->contriTitle);

... doTestMessage

nt32 doTestMessage(ControlHandle controlHdl,SInt32 param)

Rect controlRect;
Point mouseXY;

controlRect = (*controlHdl)->contrlRect;

mouseXY.v = HiWord(param);
mouseXY.h = LoWord(param);

if(PtInRect(mouseXY,&controlRect))
return partCode;

else
return (SInt32) 0;

HH{HHBHHHBHHHBHHHRBH BB H BB HHRBH BB AR BB HHRBH BB AR R R R R R R R AR R R AR R R R
CDEF2.c Custom control definition function for slider control

This CDEF displays:
e A 3D coloured slider control on colour displays set to pixel depths greater than 1.

A black-and-white slider control on colour displays set to pixel depths less than
2.

e A black-and-white slider control if Color QuickDraw is not present.

The CDEF utilises two "PICT" resources (purgeable). One resource contains the colour
version of the slider control components. The other comprises the black and white
version. The appearance of the coloured slider conforms to the specification for
slider controls contained in the document Apple Greyscale Appearance for System 7.5
published by Apple Computer Inc.

1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034

7 o e s s e 8 88 11 11 1 5 B 8 8 1 8 s s

#include <ToolUtils.h>
#include <QDOffscreen.h>
#include <Resources.h>
#include <Gestalt._h>
#include <Fonts.h>
#include <Retrace.h>
#include <Traps.h>
#include <Devices.h>
#include <A4Stuff._h>
#include <LowMem.h>

/7 ..

255
#define klIndicatorHeight 16

#define klnactive

7 o e e 88 8 1 1 1 1 3 8 8 8 s s

#define rTrackPict 128
typedef struct
{
VBLTask vblTaskRec;
Boolean invVBlankPeriod;
SInt32 thisApplicationsA5;
} VBLRec, *VBLRecPtr;

typedef struct

{
GWorldPtr offScreenPort;

Rect offScreenPortRect;
Rect trackActiveRect;

Rect tracklnactiveRect;
Rect indicatorActiveRect;
Rect indicatorPressedRect;
Rect indicatorlnactiveRect;
Rect compositeRect;

GWorldPtr currentPort;
GDHandle currentDevice;
} SliderDataRec, *SliderDataPtr,

L/ o e e e e e e e e e e e s e e @ TODAT Variables
Boolean gColorQuickDrawPresent = true;

SIntl6 gMainSlotNumber;

Boolean gSlotVinstallPresent;

Boolean gDragMessageFlag = false;

Boolean gVBLInstallFail = true;

VBLRec gVBLRec;

L/ e e e e e e e e 1 8 1 e 1 e e e e s . TUNCTETON prototypes
pascal SInt32 main(SIntl6 varCode,ControlHandle theControl,SIntl6 message,SInt32 param);
void dolnitMessage (ControlHandle);

void doDrawMessage (ControlHandle);

SInt32 doTestMessage (ControlHandle,SInt32);

SInt32 doDragMessage (ControlHandle);

void doDisposeMessage (ControlHandle);

void createOffScreenGWorld (ControlHandle);

void pixelDepthCheck (ControlHandle);

void drawControlActive (ControlHandle);

void drawControllnactive (ControlHandle);

Rect calclndicatorRect (ControlHandle);

OSErr installVBLTask (void);

void removeVBLTask (void);

void theVBLTask (void);

Boolean checkSlotVinstallAvailable (void);

Boolean checkTrapAvailable (SIntl6);

L/ o e e e e e e e e e e e e BN 1ENE glue For GetVBLRec

SInt32

pascal

includes

. defines

typedefs

**SliderDataHdl;

GetVBLRec (void) = 0Ox2E88;

1035

1036 // BHHBHHBRH B R R R R R R R R R R R R R R R R #E main
1037

1038 pascal SInt32 main(SIntl6 varCode,ControlHandle theControl,SIntl6 message,SInt32 param)
1039 {

1040 PenState oldPenState;

1041 SInt32 returnValue;

1042

1043 EnterCodeResource();

1044

1045 GetPenState(&oldPenState);

1046

1047 switch(message)

1048 {

1049 case initCntl:

1050 dolnitMessage(theControl);

1051 returnValue = 0;

1052 break;

1053

1054 case drawCntl:

1055 if((*theControl)->contrlVis)

1056 doDrawMessage(theControl);

1057 returnValue = 0;

1058 break;

1059

1060 case testCntl:

1061 returnValue = doTestMessage(theControl,param);
1062 break;

1063

1064 case dragCntl:

1065 returnValue = doDragMessage(theControl);

1066 break;

1067

1068 case dispCntl:

1069 doDisposeMessage(theControl);

1070 returnValue = 0;

1071 break;

1072

1073 default:

1074 returnValue = 0;

1075 ¥

1076

1077 SetPenState(&oldPenState);

1078

1079 ExitCodeResource();

1080

1081 return returnValue;

1082 }

1083

1084 /1 HBHBHBHBHBH R R R R R R R R R R R R R #H# doInitMessage
1085

1086 void dolnitMessage(ControlHandle theControl)

1087 {

1088 OSErr OsErr;

1089 SInt32 response;

1090 GDHandle mainDeviceHdl;

1091 SIntl6 mainDeviceRefNum;

1092 DCtlHandle deviceCtlEntryHdl;

1093

1094 osErr = Gestalt(gestaltQuickdrawVersion,&response);
1095 if(response < gestalt8BitQD)

1096 gColorQuickDrawPresent = false;

1097

1098 HLock((Handle) theControl);

1099

1100 (*theControl)->contriData = NewHandle(sizeof(SliderDataRec));
1101 if((*theControl)->contrilData != NULL)

1102 createOffScreenGWorld(theControl);

1103

1104 HUnlock((Handle) theControl);

1105

1106 gSlotVinstallPresent = checkSlotVinstallAvailable();
1107 if(gSlotVinstallPresent)

1108 {

1109 mainDeviceHdl = LMGetMainDevice();

1110 mainDeviceRefNum = (*mainDeviceHdl)->gdRefNum;

1111 deviceCtlEntryHdl = GetDCtlEntry(mainDeviceRefNum);

1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188

gMainSlotNumber = (SInt1l6) (*((AuxDCEHandle) deviceCtlEntryHdl))->dCtlSlot;
}
¥

[/ BHHBHH B R HHHH HHRHRH H RH RHR RH H R RH RR R RH R RH R#R# R #H doDrawMessage

void doDrawMessage(ControlHandle theControl)

{
if(gColorQuickDrawPresent)
pixelDepthCheck(theControl);

if((*theControl)->contrlHilite == klnactive)
drawControllnactive(theControl);
else
drawControlActive(theControl);
}

// #EHBRHRBH B R R R R R R R R R R R R R # R # R #H doTestMessage

SInt32 doTestMessage(ControlHandle theControl,SInt32 param)
{

Rect indicatorRect;
Point mouseXY;

indicatorRect = calclndicatorRect(theControl);

mouseXY.v = HiWord(param);
mouseXY.h LoWord(param) ;

if(PtInRect(mouseXY,&indicatorRect))

{
gDragMessageFlag = true;
drawControlActive(theControl);
gDragMessageFlag = false;
return kControllndicatorPart;
¥
else
return O;
¥
[/ BHHBHH B R R R R R R R R R R R R R R R R ###H doDragMessage
SInt32 doDragMessage(ControlHandle theControl)
{
Rect indicatorRect, slopRect, trackRect;
SIntl6 indicatorHeight, indicatorHalfHeight, indicatorCentre, trackHeight;
Point startMouseXY, currentMouseXY;
SIntl6 controlValueRange, differenceMouseY;
float ratio;
WindowPtr windowPtr;
OSErr OSErr;

gDragMessageFlag = true;
HLock((Handle) theControl);

indicatorHeight = kiIndicatorHeight;
indicatorHalfHeight = indicatorHeight / 2;

trackRect = (*theControl)->contrlRect;
InsetRect(&trackRect,0, indicatorHalfHeight + 4);
trackRect.bottom += 1;

trackHeight = trackRect.bottom - trackRect.top;

controlValueRange = (*theControl)->contriMax - (*theControl)->contriIMin;
ratio = (float) ((float) controlValueRange) / ((float) trackHeight);

windowPtr = (*theControl)->contrlOwner;
slopRect = windowPtr->portRect;

osErr = installVBLTask();

if(osErr == noErr)
gVBLInstallFail = false;
else

gVBLInstallFail = true;

indicatorRect = calclIndicatorRect(theControl);

1189
1190
1101
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265

GetMouse(&startMouseXY);

while(StillDown())

{
GetMouse(¤tMouseXY);
differenceMouseY = startMouseXY.v - currentMouseXY.v;
if(differenceMouseY I= 0 && PtInRect(currentMouseXY,&slopRect))
{
indicatorRect.top -= differenceMouseY;
indicatorRect._bottom -= differenceMouseY;
indicatorCentre = indicatorRect.top + indicatorHalfHeight;
(*theControl)->contrlValue = (trackRect.bottom - indicatorCentre) * ratio;
if((*theControl)->contrilValue > (*theControl)->contriMax)
(*theControl)->contrlValue = (*theControl)->contriMax;
if((*theControl)->contrlValue < (*theControl)->contriIMin)
(*theControl)->contrilValue = (*theControl)->contriIMin;
drawControlActive(theControl);
startMouseXY = currentMouseXY;
}
¥
if(lgvBLInstallFail)
removeVBLTask();

gDragMessageFlag = false;
drawControlActive(theControl);

HUnlock((Handle) theControl);

return 1;

// HHHBHHH RS R doDisposeMessage

void doDisposeMessage(ControlHandle theControl)

{
Rect theRect;

theRect = (*theControl)->contrlRect;
theRect.right = theRect.right + (theRect.right - theRect.left);
EraseRect(&theRect);

if((**((SliderDataHdl) (*theControl)->contrilData)).offScreenPort != NULL)
DisposeGWorld((**((SliderDataHdl) (*theControl)->contrlData)).offScreenPort);

if((*theControl)->contrilData != NULL)

DisposeHandle((*theControl)->contrilData);
}

// #EH#RHHBH AR R R R R R R R R R R R R R #H# createOFfScreenGWorld

void createOffScreenGWorld(ControlHandle theControl)

{
SliderDataHdl sliderDataHdl;
SIintl6 resourceOffset = 0;
PixMapHandle pixMapHdl;
PicHandle pictureHdl;
SIintl6 currentPortDepth = 1;

sliderDataHdl = (SliderDataHdl) (*theControl)->contrlData;

(*sliderDataHdl)->compositeRect = (*theControl)->contrlRect;
OffsetRect(&(*sliderDataHdl)->compositeRect,-(*sliderDataHdl)->compositeRect.left,
-(*sliderDataHdl)->compositeRect.top);
SetRect(&(*sliderDataHdl)->trackActiveRect,50,0,100,139);
SetRect(&(*sliderDataHdl)->tracklnactiveRect,100,0,150,139);
SetRect(&(*sliderDataHdl)->indicatorActiveRect,0,139,16,154);
SetRect(&(*sliderDataHdl)->indicatorPressedRect,16,139,32,154);
SetRect(&(*sliderDataHdl)->indicatorlnactiveRect,32,139,48,154);
SetRect(&(*sliderDataHdl)->offScreenPortRect,0,0,150,154);

1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342

GetGWorld(&(*sliderDataHdl)->currentPort,&(*sliderDataHdl)->currentDevice);

NewGWorld(&(*sliderDataHdl)->o0ffScreenPort,0,&(*sliderDataHdl)->offScreenPortRect,
NULL,NULL,0);

HLock((Handle) sliderDataHdl);

pixMapHdl = GetGWorldPixMap((*sliderDataHdl)->offScreenPort);
LockPixels(pixMapHdl);

SetGWorld((*sliderDataHdl)->offScreenPort,nil);
EraseRect(&(*sliderDataHdl)->offScreenPortRect);
if(gColorQuickDrawPresent)

pixMapHdl = GetGWorldPixMap((*sliderDataHdl)->currentPort);
currentPortDepth = (*pixMapHdl)->pixelSize;

}

if('gColorQuickDrawPresent || currentPortDepth < 2)
resourceOffset = 1;

if(pictureHdl = GetPicture(rTrackPict + resourceOffset))

{
HNoPurge((Handle) pictureHdl);
DrawPicture(pictureHdl ,&(*sliderDataHdl)->offScreenPortRect);
HPurge((Handle) pictureHdl);

SetGWorld((*sliderDataHdl)->currentPort, (*sliderDataHdl)->currentDevice);
UnlockPixels(pixMapHdl);
HUnlock((Handle) sliderDataHdl);

// HHUHBHHH RS R pixelDepthCheck

void pixelDepthCheck(ControlHandle theControl)
{
SliderDataHdl sliderDataHdl;
PixMapHandle pixMapHdl;
SIntl6 currentPortDepth, gworldPortDepth;

sliderDataHdl = (SliderDataHdl) (*theControl)->contrlData;

pixMapHdl = GetGWorldPixMap((*sliderDataHdl)->currentPort);
currentPortDepth = (*pixMapHdl)->pixelSize;

pixMapHdl = GetGWorldPixMap((*sliderDataHdl)->o0ffScreenPort);
gworldPortDepth = (*pixMapHdl)->pixelSize;

if(currentPortDepth != gworldPortDepth)

{
DisposeGWorld((*sliderDataHdl)->o0ffScreenPort);
createOffScreenGWorld(theControl);

/7 BHHBHH B RS RH R drawControlActive

void drawControlActive(ControlHandle theControl)

{
RGBColor oldForeColour, oldBackColour;
SliderDataHdl sliderDataHdl;
WindowPtr windowPtr;
PixMapHandle pixMapHdl;
Rect indicatorRect;

GetForeColor(&oldForeColour);
GetBackColor(&oldBackColour);

HLock((Handle) theControl);

sliderDataHdl = (SliderDataHdl) (*theControl)->contrlData;
HLock((Handle) sliderDataHdl);

windowPtr = (WindowPtr) (*theControl)->contrlOwner;

1343 SetPort(windowPtr);

1344

1345 pixMapHdl = GetGWorldPixMap((*sliderDataHdl)->o0ffScreenPort);

1346 LockPixels(pixMapHdl);

1347

1348 ForeColor(blackColor);

1349 BackColor(whiteColor);

1350

1351 CopyBits(&((GrafPtr) ((*sliderDataHdl)->offScreenPort))->portBits,

1352 &((GrafPtr) ((*sliderDataHdl)->offScreenPort))->portBits,

1353 &(*sliderDataHdl)->trackActiveRect,&(*sliderDataHdl)->compositeRect,
1354 srcCopy,NULL);

1355

1356 indicatorRect = calclIndicatorRect(theControl);

1357 OffsetRect(&indicatorRect,-(*theControl)->contrlRect.left,

1358 -(*theControl)->contrlRect.top);

1359

1360 if(gDragMessageFlag)

1361

1362 CopyBits(&((GrafPtr) ((*sliderDataHdl)->offScreenPort))->portBits,
1363 &((GrafPtr) ((*sliderDataHdl)->offScreenPort))->portBits,
1364 &(*sliderDataHdl)->indicatorPressedRect,&indicatorRect,srcCopy,NULL);
1365 }

1366 else

1367 {

1368 CopyBits(&((GrafPtr) ((*sliderDataHdl)->offScreenPort))->portBits,
1369 &((GrafPtr) ((*sliderDataHdl)->offScreenPort))->portBits,
1370 &(*sliderDataHdl)->indicatorActiveRect,&indicatorRect,srcCopy,NULL);
1371 }

1372

1373 if(gbragMessageFlag && !gVBLInstallFail)

1374

1375 if(gVBLRec.inVBlankPeriod)

1376

1377 gVBLRec.inVBlankPeriod = false;

1378

1379 CopyBits(&((GrafPtr) ((*sliderDataHdl)->offScreenPort))->portBits,
1380 &((GrafPtr) windowPtr)->portBits,&(*sliderDataHdl)->compositeRect,
1381 &(*theControl)->contrlRect,srcCopy,NULL);

1382 }

1383 ¥

1384 else

1385 {

1386 CopyBits(&((GrafPtr) ((*sliderDataHdl)->offScreenPort))->portBits,
1387 &((GrafPtr) windowPtr)->portBits,&(*sliderDataHdl)->compositeRect,
1388 &(*theControl)->contrlRect,srcCopy,NULL);

1389 ¥

1390

1391 UnlockPixels(pixMapHdl);

1392 HUnlock((Handle) sliderDataHdl);

1393 HUnlock((Handle) theControl);

1394

1395 RGBForeColor(&oldForeColour);

1396 RGBBackColor(&oldBackColour);

1397 }

1398

1399 [/ HHHHHH B R R R R R R R R R R R R R R ##H drawControl Inactive
1400
1401 void drawControllnactive(ControlHandle theControl)

1402 {

1403 RGBColor oldForeColour, oldBackColour;

1404 SliderDataHdl sliderDataHdl;

1405 WindowPtr windowPtr;

1406 PixMapHandle pixMapHdl;

1407 Rect indicatorRect;

1408

1409 GetForeColor(&oldForeColour);

1410 GetBackColor(&oldBackColour);

1411

1412 HLock((Handle) theControl);

1413

1414 sliderDataHdl = (SliderDataHdl) (*theControl)->contrlData;
1415 HLock((Handle) sliderDataHdl);

1416

1417 windowPtr = (WindowPtr) (*theControl)->contrlOwner;
1418 SetPort(windowPtr);

1419

1420 pixMapHdl = GetGWorldPixMap((*sliderDataHdl)->offScreenPort);

1421 LockPixels(pixMapHdl);

1422

1423 ForeColor(blackColor);

1424 BackColor(whiteColor);

1425

1426 CopyBits(&((GrafPtr) ((*sliderDataHdl)->offScreenPort))->portBits,

1427 &((GrafPtr) ((*sliderDataHdl)->offScreenPort))->portBits,

1428 &(*sliderDataHdl)->tracklnactiveRect,&(*sliderDataHdl)->compositeRect,
1429 srcCopy,nil);

1430

1431 indicatorRect = calclndicatorRect(theControl);

1432 OffsetRect(&indicatorRect,-(*theControl)->contrlRect. left,

1433 -(*theControl)->contrlRect.top);

1434

1435 CopyBits(&((GrafPtr) ((*sliderDataHdl)->offScreenPort))->portBits,

1436 &((GrafPtr) ((*sliderDataHdl)->offScreenPort))->portBits,

1437 &(*sliderDataHdl)->indicatorlnactiveRect,&indicatorRect,srcCopy,nil);
1438

1439 CopyBits(&((GrafPtr) ((*sliderDataHdl)->offScreenPort))->portBits,

1440 &((GrafPtr) windowPtr)->portBits,&(*sliderDataHdl)->compositeRect,
1441 &(*theControl)->contrlRect,srcCopy,nil);

1442

1443 UnlockPixels(pixMapHdl);

1444 HUnlock((Handle) sliderDataHdl);

1445 HUnlock((Handle) theControl);

1446

1447 RGBForeColor(&oldForeColour);

1448 RGBBackColor(&oldBackColour);

1449 ¥

1450

1451 [/ HBHBHBHARAR AR AR AR AR AR R AR AR AR AR AR AR ABHBA B AR AR AR AR RE AR AR R calclndicatorRect
1452

1453 Rect calclndicatorRect(ControlHandle theControl)

1454 {

1455 SIntl6 indicatorHeight, indicatorHalfHeight;

1456 Rect trackRect, indicatorRect;

1457 SIntl6 trackHeight, controlValue, controlMax, controlMin, indicatorCentre;
1458 float ratio;

1459

1460 indicatorHeight = kIndicatorHeight;

1461 indicatorHalfHeight = indicatorHeight / 2;

1462

1463 trackRect = (*theControl)->contrlRect;

1464 InsetRect(&trackRect,0, indicatorHalfHeight + 4);

1465 trackRect.bottom += 1;

1466 trackHeight = trackRect.bottom - trackRect.top;

1467

1468 controlValue = (*theControl)->contrlValue;

1469 controlMax = (*theControl)->contriMax;

1470 controlMin = (*theControl)->contriIMin;

1471

1472 ratio = ((float) controlValue) / ((float) (controlMax - controlMin));
1473 indicatorCentre = trackRect._bottom - (SIntl6) (ratio * trackHeight) ;
1474

1475 SetRect(&indicatorRect, trackRect.left,indicatorCentre - indicatorHalfHeight,
1476 trackRect.left + 16,indicatorCentre + indicatorHalfHeight - 1);
1477

1478 return indicatorRect;

1479 ¥

1480

1481 /1 HBHBHBHBH BB R R R A R R R R R R #H Tnstal 1VBLTask
1482

1483 OSErr installVBLTask(void)

1484 {

1485 OSErr osErr;

1486

1487 gVBLRec.inVBlankPeriod = false;

1488

1489 gVBLRec.vblTaskRec.qType = vType;

1490 gVBLRec.vblTaskRec.vblAddr = (VBLUPP) theVBLTask;

1491 gVBLRec.vblTaskRec.vblCount = 1;

1492 gVBLRec.vblTaskRec.vblPhase = 0;

1493

1494 gVBLRec.thisApplicationsA5 = SetCurrentA5();

1495

1496 if(gSlotVinstallPresent)

1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564

osErr = SlotVinstall ((QElemPtr) &gVBLRec.vblTaskRec,gMainSlotNumber);
else
oskErr = Vinstall((QElemPtr) &gVBLRec.vblTaskRec);

return osErr;

¥

[/ BHHBHH SRR R R R R R R R R R R R R R R # R #H removeVBLTask

void removeVBLTask(void)

{
if(gSlotVinstallPresent)

SlotVRemove ((QElemPtr) &gVBLRec.vblTaskRec,gMainSlotNumber);
else
VRemove ((QElemPtr) &gVBLRec.vblTaskRec);
}

// #EHBHHHBH AR R R R R R R R R R R R R R R H R #H##H theVBLTask

void theVBLTask(void)

{
VBLRecPtr vblRecPtr;

SInt32 currentA5;

vblRecPtr = (VBLRecPtr) GetVBLRec();
currentA5 = SetA5(vblRecPtr->thisApplicationsA5);

vblRecPtr->inVBlankPeriod = true;
vblRecPtr->vblTaskRec.vblCount = 1;

(void) SetA5(currentA5);
}

// HHHBHHH R R R R R R R R R R R R R R ## checkSlotVinstallAvailable

Boolean checkSlotVinstallAvailable(void)

{
return checkTrapAvailable(_SlotVinstall);

¥

[/ BHHBHH SRR R R R R R R R R R R R R R R R R R R #H# checkTrapAvailable

Boolean checkTrapAvailable(SIntl6 theTrap)
{

TrapType trapType;

SIntl6 trapMask = 0x0800;

SIintl6 numToolboxTraps;

if((theTrap & trapMask) > 0)
trapType = ToolTrap;

else
trapType = OSTrap;

if(trapType == ToolTrap)
theTrap = theTrap & Ox07FF;

iT(NGetTrapAddress(_InitGraf,ToolTrap) == NGetTrapAddress(OxAA6E,ToolTrap))
numToolboxTraps = 0x0200;
else

numToolboxTraps = 0x0400;

if(theTrap >= numToolboxTraps)
theTrap = _Unimplemented;

return(NGetTrapAddress(theTrap, trapType) != NGetTrapAddress(_Unimplemented,ToolTrap));

Demonstration Program Comments

When this program is run, the user should:

- Click the Start radio button in the slider control panel and operate the slider control
by dragging the indicator.

- On colour displays, observe the appearance of the controls when the pixel depth of the
device is set (using the Monitors Control Panel) to pixel depths of 1 (black and white),
2 (four colours), and 4 and greater (16 colours and greater).

- Observe the appearance of the controls when the program is sent to the background.

The user should also choose VBL Task Animated Cursor from the Demonstration menu to view the
animated cursor. Note that, in this demonstration program, the slider control can be operated
while the animated cursor is active, something that would be illogical in a real application.
This is allowed in this demonstration only to invoke the concurrent operation of two VBL tasks
(incrementing the cursor®s frames and synchronising the drawing of the moving indicator with
the screen refresh cycle).

Note that the simple indicator image used by the slider control animates quite smoothly
without the assistance of the VBL task. That part of the CDEF source code may thus be
regarded as being for VBL task illustrative purposes only.

Also note that animating a cursor using a VBL task, as opposed to the method described at
Chapter 12 — Offscreen Graphics Worlds, Pictures, Cursors, and lcons, is not recommended. 1f
the application "locks up" after the animation is initiated, the Chapter 12 method will
probably result in the cessation of the animation, whereas the VBL task method will almost
certainly leave the cursor "spinning”. This latter will mislead the user into believing that
the application®s time-consuming task is still in progress.

CDEFandVBL.c

#define

Lines 58-63 establish constants relating to menu IDs and menu item numbers. Lines 64-69
establish constants for various resource IDs. Line 70 defines MAXLONG as the maximum possible
long value. This value will be assigned to WaitNextEvent®s sleep parameter.

#typedef

Lines 74-79 define a data type which will be used by the animated cursor functions. Lines 81-
85 define a data type which will be used by the animated cursor VBL task functions.

Global Variables

gColorQuickDraw will be set to true if Color QuickDraw is present. gColourDisplay will be set
to true if the pixel depth of the main device is greater than 1. gDone controls program
termination. gSleepTime controls the value passed in the sleep parameter of the WaitNextEvent
call. glInBackground relates to foreground/background switching. gWindowPtr will be assigned
the pointer to single window opened by the program.

Lines 95-96 declare variables of the two types defined at Lines 74-85. gVBLCount controls the
value assigned to the vblCount field of the VBL task record. gAnimatedCursorActive is a flag
which indicates whether or not the animated cursor is currently active. The colour assigned
to gWindowColour will be used to erase certain areas of the window.

The three global variables at Lines 100-102 will be assigned handles to the custom slider and
radio button controls.

main

The main function firstly initialises the system software managers (Line 142). At Lines 146-
155, the global variable gColorQuickDrawPresent is set to true if Color QuickDraw is present
and, if Color QuickDraw is present, gColourDisplay is set to true if the pixel depth of the
main device is greater than 1. The menus are set up at Lines 159-169), a window is opened
(Lines 173-184), and an application-defined function is called to get the three controls (Line
188. The main event loop is then entered with gSleepTime set to MAXLONG (Lines 192-199).

doEvents, doMouseDown, doUpdate,
doActivate, doActivateWindow, and
doOSEvent

doEvents, doMouseDown, doUpdate, doActivate, doActivateWindow, and doOSEvent perform minimal
event handling consistent with the requirements of the demonstration.

Note the calls to doDrawControlPanel at Lines 300 and 339. Note also, at Lines 327-328, that

the slider control is only highlighted when the window is becoming active if the Start radio
button®s control value is 1.

doIlnContent

dolInContent further handles mouse-down events which occur within the content region of the
window.

Line 367 converts the mouse-down location to local coordinates. The call to FindControl at
Line 369 determines whether the mouse-down was within a control and, if so, which particular
control and, where relevant, which part of that control.

If the mouse-down was within the slider control (Line 371), and if the part code was the
indicator (Line 373), TrackControl is called (Line 374) to take control while the mouse button
remains down. As will be seen, the custom CDEF for this custom control uses custom dragging
for the indicator; accordingly, TrackControl will invariably return O when the mouse button is
released. When the mouse button is released, Lines 376-382 erase a small rectangle to the
right of the slider control and draw the slider control®s value at that location.

If the mouse-down was within either of the radio buttons (Line 384), TrackControl is called at
Line 386 to take control until the mouse button is released. |If TrackControl returns a non-
zero value, and if the control was the Start radio button (Line 388), Line 390 makes the
slider control active, and Lines 391-392 toggle the Start and Stop radio button control
values. |If the mouse-down was within the Stop radio button (Line 394), Line 396 sets the
slider control®s value to 0, Line 397 makes the slider control inactive, and Lines 398-399
toggle the Start and Stop radio button control values.

Note that, when Line 374 first detects a movement of the mouse, a dragCntl message will be
sent to the CDEF. The CDEF will respond by telling the Control Manager that custom dragging
is being used, meaning that the CDEF will be following the mouse and updating the indicator
position and control value until the button is released.

doMenuChoice

doMenuChoice handles menu choices.
Note that DisposeWindow (Line 438) automatically calls KillControls. A call to KillControls

will cause CDEFs to be sent a dispCntl message, providing them with the opportunity to perform
any necessary disposal actions.

doGetSliderControlSuite

doGetSliderControlSuite gets the three controls which comprise the slider control panel.

Line 456 gets the custom slider control. Line 457 sets the initial state of the control to
inactive. (Note: If autoTrack messages were required by the CDEF, it would also be necessary
to set the contrlAction field of this control®s control record to (ControlActionUPP) -1 as one
of the two actions necessary to cause autoTrack messages to be sent to the CDEF, for example:
SetControlAction(gSliderControlHdl, (ControlActionUPP) -1);.)

Lines 459-460 get the radio button controls and call an application-defined function which
draws a titled box around the three controls in the suite.

doDrawControlsPanel

doDrawControlsPanel draws a titled box around the three controls in the suite, thereby
visually defining the slider control panel. Colours/patterns for the line and text drawing
are determined according to whether Color QuickDraw is present, the pixel depth of the main
device if Color QuickDraw is present, and whether the program is in the foreground or the
background at the time of the draw. The re-check of the main device"s pixel depth at Lines
478-484 is simply to accommodate the possibility that the user may change the pixel depth
while the program is running.

doStartAnimCursor

doStartAnimCursor is called when the user chooses VBL Task Animated Cursor from the
Demonstration menu.

Line 545 sets the variable which will be used to assign a value to the vblCount field of the
VBL task record. The value of 30 ensures that the VBL task will execute every 30 VBL
interrupts, that is, about every half a second.

Line 546 sets the variable which is used as the sleep parameter in the WaitNextEvent call to a
value less than that assigned to gVBLCount.

Line 548 calls an application-defined routine which loads the “acur® resource, together with
the "CURS" resources specified in the "acur® resource.

Line 551 calls an application-defined function which installs a system-based VBL task.

Line 553 sets a flag which indicates whether the animated cursor is currently active and Lines
555-558 draw some advisory text in the window.

doGetAnimCursor

doGetAnimCursor is identical to the function of the same name in the demonstration program at
Chapter 12 — Offscreen Graphics Worlds, Pictures, Cursors, and lcons. When it exits, the
fields of a variable of type animCurs contain the number of frames (that is, the number of 68-
byte Cursor structures) and the handles to those Cursor structures.

dolnstallSystemVBLTask

dolnstallSystemVBLTask installs the system-based VBL task.

Lines 593-596 fill in the relevant fields of the VBL task record. Note that the vblAddr field
points to the application-defined function animCursVBLTask, and that the vblCount field is set
to 30.

Line 598 gets the pointer to the application®s A5 world and saves it to the appropriate field
of a global variable.

Line 600 installs the specified VBL task into the system-based queue.

animCursVBLTask

animCursVBLTask is the VBL task, which will be executed every 30 VBL interrupts. |Its purpose
is the same as that of the similar function doSpinAnimCursor at Chapter 12 — Offscreen
Graphics Worlds, Pictures, Cursors, and lcons.

Line 610 gets a pointer to the variable which contains the field holding the pointer to the
application®s A5 world. Line 611 saves the current A5 and, at the same time, sets the
application®s A5 world as that to be used for the duration of the VBL task®s execution. The
task can now access the application®s global variables.

Lines 613-615 increment the animated cursor frame number.

When the task executes, the value in the vblCount field of the VBL task record will be set to
0. Line 617 resets this field to a value higher that 0 (in this case, 30), otherwise the task
will never execute again.

Line 619 restores the save A5 world pointer.

doStopAnimCursor

doStopAnimCursor is called when the user presses any key.

Line 629 removes the VBL task from the queue. Lines 631-634 free up the memory occupied by
the cursors. Line 636 resets the animated-cursor-active flag. Line 637 resets
WaitNextEvent™s sleep parameter. Line 639 sets the standard arrow cursor and Lines 641-643
erase the advisory text from the window.

CDEFl.c

CDEF1.c is the source code for the custom radio button control definition function (CDEF).
The CDEF responds only to the initCntl, drawCntl, and testCntl messages.

#define

Lines 680-685 establish constants representing the resource IDs for six "cicn® (colour icon)
resources. Line 686 establishes a constant representing the part code returned in the
doTestMessage function.

Global Variables

gQDGlobalsPtr will be assigned the address of the host application®s QuickDraw globals.
gColorQuickDrawPresent will be set to false if Color QuickDraw is not present. gColourDisplay
will be set to true if the pixel depth of the main device is greater than 1. The global
variables at Lines 693-698 will be assigned handles to the Clcon records for the six colour
icons.

main

The main function receives the incoming message and switches accordingly, returning the
appropriate value to the Control Manager.

Lines 716 and 740 have to do with accessing the CDEF"s global variables. (See Setting up
globals in 68K code resources in the Code Resource Projects/Writing Code Resources section of
Chapter 2 (Creating Mac 0S Projects) in the CodeWarrior manual Targeting Mac 0S.)

Note that, in the case of a drawCntl message (Lines 724), no action is taken if the contrlVis
field of the control®s control record specifies that the control is currently invisible.

dolnitMessage

dolnitMessage handles initCntl messages to completion.

The function drawMono uses the QuickDraw globals gray, black, and white. This raises the
question of how a code resource (such as this CDEF) can access the host application”s
QuickDraw globals. SetCurrentA5 is used to return the address of the current A5 world, and
the globals are accessed as an offset from that (Lines 751-752).

Lines 753-755 check whether Color QuickDraw is present and set the global variable
gColorQuickDrawPresent accordingly.

doDrawMessage

doDrawMessage performs the initial handling of drawCntl messages.

Line 770 gets a pointer to the graphics port of the window in which the control resides.
Lines 772-776 save the current drawing environment.

Line 778 sets the graphics port and Line 780 obtains the current value of the control. Lines
782-784 establish a rectangle the required size of the radio button image and positioned at
the top left of the control®s rectangle. Lines 786-788 set the font to Chicago 12 point.

If Color QuickDraw is present (Line 790), Lines 792-803 load the colour icons if they are not
currently in memory.

Lines 806-811 set the global variable gColourDisplay to true if the pixel depth of the main
device is greater than 1. |If Color QuickDraw is present and the pixel depth is greater than
1, the CDEF-defined function drawColour is then called, otherwise the CDEF-defined function
drawMono is called (Lines 813-816).

Lines 818-822 restore the previously save drawing environment.

drawColour

drawColour draws the radio button and its title in a Color QuickDraw environment.
Line 833 saves the current foreground colour

If the control is inactive (Line 835), the following occurs. |If the pixel depth of the main
device is greater than 1, the foreground colour is set to medium grey colour, otherwise the
text mode is set to grayishTextOr (Lines 837-840) Depending on the current control value, the
appropriate inactive state colour icon is then drawn (Lines 842-845).

If the control is active (Line 847), the following occurs. The foreground colour is set to
black and the text drawing mode is set to the default (Lines 849-850). Depending on the
current control value, the appropriate active state colour icon is then drawn (Lines 852-855).

If the contrlHilite element of the control record contains partCode (see the function
doTestMessage) (Line 857), the appropriate "mouse is currently down within the control
rectangle”™ icon is drawn (Lines 859-862).

Lines 865-866 then draw the control®s title at the appropriate location, following which the
foreground colour saved at Line 833 is restored (Line 868).

drawMono

drawMono draws the radio button and its title in a non-Color QuickDraw environment.

Lines 875-876 set the foreground and background colours. Line 878 sets the pen size to 1,1,
the pen mode to patCopy, and the pen pattern to black.

If the control is inactive or active and the contrlHilite field of the control record does not
contain partCode (Line 880), the following occurs. |If the control is inactive, the pen
pattern and the text drawing pattern are both set to gray (Lines 882-886), otherwise they are
set to black and the default respectively (Lines 887-891). A framed circle is then drawn
(Line 893), and the interior of this circle is drawn in white (Lines 895-897). Then, if the
control®s value is 1, a smaller filled circle is drawn inside the first in either the gray
pattern or black depending on whether the control is currently active or inactive (Lines 899-
907).

If the the contrlHilite field of the control record contains partCode (Line 909), another
circle is drawn 1 pixel inside the main circle.

Lines 916-917 then draw the control®s title.
Note that this function draws a radio button with an appearance identical to that created by
the standard radio button CDEF except that the control itself, as well as the title, is drawn

dimmed when the control is inactive. Also, the interior of the button will always appear in
white and not in the background colour of the window.

doTestMessage

doTestMessage handles testCntl messages to completion.
Lines 929-930 extract the mouse-down (local) coordinates from the param parameter. Lines 932-

935 test whether the mouse-down was within the control®s rectangle, returning partCode if it
was or O otherwise.

CDEF2.c

CDEF2.c is the source code for the custom slider control definition function (CDEF). The CDEF
uses custom dragging; accordingly, it responds only to initCntl, drawCntl, testCntl, dragCntl,
and dispCntl messages.

#define

klnactive represents the value used to make a control inactive. klIndicatorHeight is the
nominal height of the slider control®s indicator in pixels. Line 978 is the resource ID for a
"PICT" resource containing images of the slider®s track in the active state, the slider”"s
track in the inactive state, the indicator in the active state, the indicator in the inactive
state, and the indicator in the pressed state.

#typedef

The VBLRec data type is used by the functions relating to a VBL task. (That task delays the
drawing of a dragged indicator until the vertical blank period occurs.)

The SliderDataRec data type will contain data relevant to the control. A handle to a
SliderDataRec record will be assigned to contrlData field of the control®s control record.

Global Variables

gColorQuickDrawPresent will be set to true if Color QuickDraw is present.

If the trap SlotVinstall is available (it will not be available on non-modular Macintoshes
such as the Classic), gMainSlotNumber will be assigned the slot number of the main video
device and a slot-based VBL task will to be synchronised with that video device"s retrace.

gDragMessageFlag will be set to true if a mousedown occurs within the indicator rectangle and
while a cntlDrag message is being handled.

gVBLInstallFail is a flag which will indicate whether or not the installation of a VBL task is
successful.

gVBLRec is used by the VBL task functions.

main

The main function receives the incoming message and switches accordingly, returning the
appropriate value to the Control Manager.

Lines 1043 and 1079 have to do with accessing the CDEF"s global variables. (See Setting up
globals in 68K code resources in the Code Resource Projects/Writing Code Resources section of
Chapter 2 (Creating Mac 0S Projects) in the CodeWarrior manual Targeting Mac 0S.)

Lines 1045 and 1077 save and restore the pen state.

Note that, in the case of a drawCntl message (Line 1054), no action is taken if the contrlVis
field of the control®s control record specifies that the control is currently invisible.

dolnitMessage

dolnitMessage performs the initial handling of initCntl messages.

Lines 1094-1096 check whether Color QuickDraw is present and set the global variable
gColorQuickDrawPresent accordingly.

Line 1098 locks the control®s handle. Line 1100 allocates a relocatable block for a slider
control data structure, the handle to which is assigned to the control record"s contrlData
field. Line 1102 calls a CDEF-defined function which creates an offscreen graphics world in
which the images of the slider track and indicator will be stored. That completed, Line 1104
unlocks the control®s handle.

Line 1106 checks for the availability of the trap SlotVinstall. |If that trap is available,
Line 1109-1112 get the slot number of the main graphics device. (This process involves
getting a handle to the startup gDevice record, extracting from that record the device
driver®s reference number, getting a handle to the DCtlEntry structure, and then getting the
slot number.)

doDrawMessage

doDrawMessage performs the initial handling of drawCntl messages.

It is always possible that the user will change the pixel depth of the display device, using
the Monitors control panel, while the program is running. |If Color QuickDraw is present (Line
1120), a CDEF-defined function is called to check whether the pixel depth of the display
device equates to that of the offscreen graphics world (see below). If the two are not the
same, and as will be seen, the CDEF-defined function destroys the offscreen graphics world and
then recreates it with the appropriate pixel depth.

If the slider control is currently inactive (Line 1123), a CDEF-defined function is called to

draw the control in its inactive state (Line 1124), otherwise a CDEF-defined function is
called to draw the control in the active state (Lines 1125-1126).

doTestMessage

doTestMessage handles testCntl messages to completion.

Line 1136 calls a CDEF-defined function which returns a rectangle whose size is the same as
the indicator and whose vertical location is determined by the current value in the control
record"s contrlValue field

Lines 1138-1139 extract the mouse-down (local) coordinates from the param parameter. |If the
mouse-down was within the indicator rectangle (Line 1141), the global variable
gDragMessageFlag is set to true, the control is drawn, the global variable gDragMessageFlag is
set to false again, and kControllndicatorPart is returned. As will be seen, the effect of
this is to cause the control to be drawn with the indicator appearing in the pressed state,
thus providing the appropriate feedback to the user.

If the mousedown was not within the indicator rectangle (Line 1148), O is returned.

doDragMessage

doDragMessage handles dragCntl messages to completion, calling other CDEF-defined functions to
draw the control and to install/remove a VBL task. It returns a non-zero value to advise the
Control Manager that custom dragging is being performed.

Line 1164 sets gDragMessageFlag to true to record that a dragCntl message is currently being
processed. Line 1166 locks the control®s handle.

Lines 1168-1173 calculate the height of the complete slider control, less half the indicator”s
height, less the unused sections at the top and bottom. This establishes, in the trackHeight
variable, the range of pixels over which the indicator is permitted to move (Line 1174). Line
1176 determines the range of control values, that is, the difference between the control”s
maximum and minimum values. Line 1177 then calculates a value which will allow the control”s
new value to be readily derived from the new indicator position when the indicator is moved.

Lines 1179-1180 set the slop rectangle to equal the window"s port rectangle. This represents
the outer limit beyond which vertical mouse movement will not result in indicator movement and
control value change.

Line 1182 calls a CDEF-defined function which installs a VBL task. Lines 1183-1186 set a
global variable to record whether or not the installation was successful.

Line 1188 calls the CDEF-defined function which returns a rectangle whose size is the same as
the indicator and whose vertical location is determined by the current value in the control
record"s contrlValue field. Line 1190 gets the coordinates of the mouse position at the time
that the mouse button was pressed.

Line 1192 initiates the custom dragging loop, which will continue until the mouse button is
released. Within the loop:

- Line 1194 gets the current mouse coordinates and Line 1195 establishes whether the mouse
cursor has moved vertically since the last time Line 1194 executed.

- If the cursor has moved vertically and if the cursor is still within the slop rectangle
(Line 1197):

- Lines 1199-1200 adjust the top and bottom of the indicator rectangle to reflect
the change in mouse cursor position, and Line 1202 gets the new indicator centre.

- Line 1204 calculates the required new control value to reflect the new indicator
centre location, and assigns it to the contrlValue field of the control record.

- Lines 1206-1209 ensure that the control®s value can never be set outside the
control®s maximum and minimum values. In effect, this also limits the top and
bottom track locations to which the indicator can be dragged.

- Line 1211 then calls a CDEF-defined function to redraw the slider control with the
indicator in its new location. That done, the variable containing the starting
mouse location is reset to the current mouse location (Line 1213), and the loop
continues.

When the mouse button is released, the loop exits and Lines 1217-1218 remove the VBL task if
the previous installation was successful. Line 1220 sets gDragMessageFlag to record that the
custom dragging loop is no longer being executed. The final call to the drawing function at
Line 1221 ensures that the indicator will return to the non-pressed appearance as soon as the
mouse button is released. Line 1223 unlocks the control®s handle

Line 1225 returns a non-zero value to advise the Control Manager that custom dragging is being
employed.

doDisposeMessage

doDisposeMessage handles dispCntl messages. Lines 1234-1236 erase the slider control. Lines
1238-1239 dispose of the offscreen graphics world and Lines 1241-1242 release the memory
occupied by the control®s custom data.

createOffScreenGWorld

compositeRect createOffScreenGWorld is called, when the initCntl message is
IMAGE FOR ACTUAL DISPLAY received, to set up an offscreen graphics world in which the
ASSEMBLED HERE individual graphics components of the slider control are
stored and in which the image for actual display will be
assembled The diagram illustrates the result of this
function.

trackActiveRect
|tracklnactiveRect
l

T 02
= 2000 [| — 2000 R -
Line 1255 gets a handle to the control®s custom data. Lines

1257-1265 establish a number of rectangles, which are stored
= 150C — 1500 in the fields of the control®s custom data record.

Line 1267 saves the current graphics world. Line 1269 creates

=100c)| — 1000 the offscreen graphics world, Line 1272 locks the control"s
custom data record handle, and Lines 1274-1275 lock the
— 500 — 500 offscreen buffer in memory preparatory to a drawing operation.

Line 1277 sets the offscreen graphics world as the current

=0 -0 graphics world and Line 1279 cleans the slate.
P Lines 1281-1288 have to do with determining which *PICT"
indicatorlInactiveRect resource (colour or black and white) gets loaded at Line 1290.

Firstly, if Color QuickDraw is present (Line 1281), the pixel
depth of the current port is obtained (Lines 1283-1284).

Then, if Color QuickDraw is not present, or if the pixel depth
is 1, a variable is set to ensure that the "PICT" resource
with the black and white image is loaded (Lines 1287-1288).

indicatorPressedRect

indicatorActiveRect
offscreenPortRect

Lines 1290-1295 read in the appropriate "PICT" resource and draw the picture in the offscreen
graphics port as shown in the diagram.

Line 1297 sets the graphics world saved at Line 1267 as the current graphics world. Line 1298
unlocks the offscreen buffer and Line 1299 unlocks the handle to the control®s data record.

pixelDepthCheck

pixelDepthCheck checks whether there is any difference between the current pixel depth of the
display device and the offscreen graphics world and, if so, destroys and recreates the
offscreen graphics world so that the two pixel depths are made identical.

Line 1310 gets a handle to the control®s custom data. Lines 1312-1315 get the two pixel
depths. If they are not the same (Line 1317), Lines 1319-1320 destroy and recreate the
offscreen graphics world. (Because the pixelDepth parameter in the NewGWorld call at Line
1269 is 0, the offscreen graphics world will be created with the the greatest pixel depth from
among all screens whose boundary rectangles intersect the rectangle specified in the
boundsRect parameter.)

drawControlActive

drawControlActive assembles the image for display in the offscreen graphics world and then
copies that image from the offscreen graphics port to the window"s graphics port. The latter
action is delayed, in certain circumstances, until the vertical blanking period.

Lines 1334-1335 save the current foreground and background colours. Line 1337 locks the
control record and Lines 1339-1340 lock the control®s custom data. Lines 1342-1343 set the
window which owns the control as the current graphics port.

Lines 1345-1346 locks the offscreen buffer and Lines 1348-1349 set the foreground colour to
black and the background colour to white preparatory to upcoming calls to CopyBits (Recall
that this measure prevents the possibility of unwanted colours being applied to the image.)

Lines 1351-1354 copy the active track image to the composite area of the offscreen graphics
world. Lines 1356-1358 determine exactly where the indicator image needs to be drawn in the
composite area. Then, if the mouse is down in the indicator rectangle or the indicator is
being dragged, the pressed indicator image is copied to this rectangle, otherwise the active
indicator image is copied (Lines 1360-1371). The image in the composite area of the offscreen
graphics world is now ready for display.

If, in this instance, drawSliderControl has been called by doDragMessage and a VBL task has
been installed (Line 1373), and if the VBL task has just executed (Line 1375), the composite
image is copied from the offscreen graphics port to the window"s graphics port. Note that the
flag which is set by the VBL task every time it executes is reset to false as part of this
sequence (Line 1377). The object of all this is to delay the drawing of the updated slider
control, when it is being dragged, until the vertical blank period.

Going back to Line 1375, if that line indicates that the VBL task has not executed since the
last time the execution flag was set to false, the function returns to doDragMessage without
any CopyBits call being executed that time around. This fruitless cycle will continue until
Line 1375 indicates that the VBL task has just executed.

Going back to Line 1373, if, for some reason, the VBL task was not installed successfully
within doDragMessage, then drawSliderControl just goes straight ahead and copies the image to
the window"s graphics port regardless of the current stage of the screen refresh cycle. That
is, Lines 1384-1389 execute in that circumstance.

Lines 1384-1389 are also executed, and Lines 1375-1382 are bypassed, when drawControlActive is
called directly from doDrawMessage on receipt of a drawCntl message - for example, as a
consequence of an UpdateControls call in the main program.

Line 1391 unlocks the offscreen buffer, Line 1392 unlocks the control®s data record and Line

1393 unlocks the control record. Lines 1395-1396 restore the foreground and background
colours saved at Lines 1334-1335.

drawControllnactive

drawControllnactive is called by doDrawMessage if the contrlHilite field of the control record
indicates that the control is currently inactive. This function is similar to
drawControlActive except that it does not need to accommodate the possibility that the slider
indicator is being moved. Also, the track and indicator images assembled in the offscreen
graphics world are the inactive versions.

calcIindicatorRect

calclndicatorRect calculates the indicator®s rectangle based on the control®s current value.

Lines 1460-1461 gets the half-height of the indicator. Lines 1463-1466 calculate the
effective track height, that is, the number of pixels over which the indicator is permitted to
move.

Lines 1468-1470 extract the control®s current value, and its maximum and minimum values, from
the control record.

Lines 1472-1473 set the centre of the indicator®s rectangle to reflect the control®s current

value and Lines 1475-1476 finish the job of setting the new coordinates of the indicator"s
rectangle. Line 1478 returns that rectangle to the calling function.

installVBLTask

installVBLTask is called by doDragMessage to install the VBL task.

Line 1487 sets to false the flag which is set to true when the VBL task executes. Lines 1489-
1492 fill in the appropriate fields of the VBL task record. (Note that the vblCount field is
set to 1 so that the VBL task will execute at the first interrupt.) Line 1494 saves the
pointer to the A5 world.

If the trap SlotVinstall is available, the VBL task installed in the slot-based queue (Lines
1496-1497), otherwise it is inserted into the system-based queue (Lines 1498-1499). The
success, or otherwise, of the attempted installation is returned to the calling function (Line
1501).

removeVBLTask

removeVBLTask simply removes the VBL task from the relevant queue.

theVBLTask

theVBLTask is the VBL task itself.

Line 1521 gets a pointer to the variable which contains the field holding the pointer to the
application®s A5 world. Line 1522 saves the current A5 and, at the same time, sets the
application®s A5 world as that to be used for the duration of the VBL task"s execution. The
task can now access the global variables.

Lines 1524 sets to true the flag which indicates that the VBL task has executed. When the
task executes, the value in the vblCount field of the VBL task record will be 0. So that the
task will execute again at the next interrupt, Line 1525 sets the vblCount field of the VBL
task record back to 1. Line 1527 sets the current A5 world back to that saved at Line 1634.

checkSlotVinstallAvailable and
checkTrapAvailable

checkSlotVinstallAvailable is called from Line 1106. checkTrapAvailable is called to check
for the availability of the trap SlotVinstall. This code is repeated and explained at Chapter
21 — Miscellany.

Creating the CDEF Resource

To create CDEF resources from code such as that at Lines 648-1564, follow the same general procedure
as is described for LDEFs in Demonstration Program Comments at Chapter 18 — Lists and Custom List
Definition Functions.

	Introduction
	Control Definition Functions (CDEFs)
	Declaration
	Default Dragging and Custom Dragging
	Responding to message Parameter Values
	initCntl
	drawCntl
	testCntl
	dragCntl
	dispCntl
	posCntl
	thumbCntl
	calcCRgns, CalcCntlRgn, and CalcThumbRgn
	autoTrack

	Vertical Blanking (VBL) Tasks
	VBL Tasks and the Vertical Retrace Manager
	Types of VBL Tasks
	VBL Task Rules
	VBL Tasks and Foreground/Background Switching
	System-Based VBL Tasks
	Slot-Based VBL Tasks

	Installing and Removing a VBL Task
	The VBL Task Record
	Installing a VBL Task
	Accessing a Task Record
	Accessing Application Global Variables

	Relevant Control Manager Constants
	Vertical Retrace Manager Data Types and Routines
	Demonstration Program
	Demonstration Program Comments
	Creating the CDEF Resource

