
VERSION

1.1MACINTOSH PASCAL
A Hobbyist's Guide
to Programming the
Mac OS in Pascal

by
Koryn Grant
and
K. J. Bricknell

For CodeWarrior

Adapted by Koryn Grant
from the book MACINTOSH
C: A Hobbyist's Guide to
Programming The Mac OS
in C by K. J. Bricknell

MACINTOSH PASCAL:
A Hobbyist's Guide to Programming the Mac OS in Pascal
Version 1.1

©1997, K. J. Bricknell

Macintosh Pascal was adapted from the book Macintosh C: A Hobbyist's
Guide to Programming the Mac OS in C. Portions of Macintosh C were
adapted from the Inside Macintosh series of books and develop magazine, ©
Apple Computer, Inc. All rights reserved. Used with the permission of Apple
Computer, Inc.

Apple, the Apple logo, LaserWriter, and Macintosh are trademarks of Apple
Computer Inc., registered in the United States and other countries.

Classic is a registered trademark licensed to Apple Computer Inc.

Finder and QuickDraw are trademarks of Apple Computer Inc.

Metrowerks is a registered trademark of Metrowerks Inc. CodeWarrior is a
trademark of Metrowerks, Inc.
PostScript is a trademark of Adobe Systems incorporated, which may be
registered in certain jurisdictions.

No warranty or representation is made, either express or implied, with respect
to this manual, its quality, accuracy, or fitness for a particular purpose. As a
result, this manual is distributed "as is", and you, the distributee, are assuming
the entire risk as to its quality and accuracy. In no event will the author be
liable for direct, indirect, special, incidental, or consequential damages resulting
from any defect or inaccuracy in this manual.

CONTENTS

1 System Software, Memory, and Resources
System software overview: the Toolbox; the Operating System; location of system software
routines. Memory: the system partition; the application partition; nonrelocatable and
relocatable blocks; heap fragmentation, compaction and purging; master pointer tag byte;
temporary memory; virtual memory; addressing modes, Memory Manager errors. Resources:
resources and files; resources and the application; resource types and IDs; creating resources;
resource attributes; template resources and definition resources; reading in resources;
purgeable resources; releasing resources; Resource Manager errors. System Software
Development Implications - Memory.

2 Low-Level and Operating System Events
The main event loop. Processes and events. Categories of events. Low-level events and
Operating System events. Obtaining information about events. Handling events: mouse
events; keyboard events; update events; activate events; disk-inserted events; null events;
suspend and resume events; mouse-moved events. Handling events in alert boxes and dialog
boxes. The 'SIZE' resource.

3 Menus
Types of menus. Pull-down menus: menu definition procedures and menu bar definition
functions; the menu bar, menus and menu items; the Apple menu; the File menu; the Edit
menu; the Help menu; the Application menu; Font menus. Pop-up menus: pop-up control
definition function; use of Control Manager routines; type-in pop-up menus. Hierarchical
menus. Menu records, menu IDs, item numbers and menu lists. Creating menus. Changing
the appearance of items in a menu. Adding items. Handling menu choices. Accessing menus
from alert and dialog boxes.

4 Windows
Standard window elements. Active and inactive windows. Types of windows. Window
definition IDs. Window type usage. Window regions. The window list. Graphics ports.
Window records. Creating windows. Positioning windows. Managing multiple windows.
Handling events in windows. Moving, zooming, resizing and closing windows. Hiding and
showing windows.

5 Controls
Standard controls: buttons; checkboxes; radio buttons; pop-up menus; scroll bars. Custom
controls. Visual feedback. Active and inactive controls. Hiding and showing controls. The
control definition function. Creating and displaying controls. Handling mouse events in
controls. Determining and changing control settings. Moving and resizing scroll bars.
Scrolling operations with scroll bars.

6 Dialogs and Alerts
Types of alert: alert sound; note alert, caution alert, and stop alert boxes. Types of dialog
boxes: modal dialog box; movable modal dialog box; modeless dialog box. Items in alert and
dialog boxes. Creating alerts: resources. Creating dialog boxes: the dialog record; resources.
Default buttons. Enabling and disabling items. Editable text items. Manipulating items.
Adding items. Drawing the default button bold outline. Displaying alert and dialog boxes.
Adjusting menus. Handling events. Event filter functions. Closing dialog boxes.

7 Finder Interface
The Finder. Resources, the catalog file and the desktop database. Application signature,
creator, and file types. Creating icon resources for the Finder. The file reference resource. The
bundle resource. How and when the Finder launches an application. Missing application
name string and application missing string resources. Version resources. Using Finder
information in the catalog file: Finder flags. Supporting stationery pads. Providing balloon
help. Using aliases. Using the System folder and its related directories.

8 Required Apple Events
Apple events: attributes and parameters; interpreting attributes and parameters. Data
structures within Apple events. Handling Apple events: extracting and checking data;
performing the requested action and returning a result. Required Apple events: contents and
required action.

9 QuickDraw Preliminaries
QuickDraw and imaging. Versions of QuickDraw. Graphics ports: bitmaps and pixel maps;
printing graphics ports; offscreen graphics worlds. Basic QuickDraw's eight-colour system.
Color QuickDraw routines available to Basic QuickDraw. Colours in Color QuickDraw:
device-independent colour; influence of the video device; indexed colour and direct colour.
Graphics devices and GDevice records. Other graphics managers.

10 Basic QuickDraw
Mathematical foundations of QuickDraw: the coordinate plane; points; rectangles; regions.
The basic graphics port. Drawing in basic graphics ports: the graphics pen; bit pattern; boolean
transfer modes; lines; rectangles, ovals, arcs, and wedges; polygons, regions, and pictures.
Drawing text. manipulating rectangles and regions. Copying bits between graphics ports.

11 Color QuickDraw
RGB colours. Colour graphics ports. Differences between basic and colour graphics ports.
Pixel maps. Translation of RGB colours to pixel values: indexed devices; direct devices.
Colours on grayscale screens. Pixel patterns: pen pixel pattern; fill pixel patter; background
pixel pattern. Testing for the existence of Color QuickDraw. Working with Color QuickDraw:
creating colour graphics ports; drawing with different foreground colours; drawing and filling
with pixel patterns. Copying pixels between colour graphics ports: distinguishing between
bitmaps and pixel maps; boolean source modes with colour pixels; arithmetic transfer modes.
Highlighting. Color QuickDraw and Text.

12 Offscreen Graphics Worlds, Pictures, Cursors, and Icons
Offscreen graphics worlds: creating an offscreen graphics world; setting the graphics port;
preparing to draw; copying an offscreen image to a window; updating and disposing of
offscreen graphics worlds. Pictures: picture formats; the Picture record; opcodes; colour
pictures in basic graphics ports; 'PICT' files, resources and scrap format; the Picture Utilities;
creating pictures; opening and drawing pictures; saving pictures; gathering picture
information. Cursors: cursor movement, hotspot, visibility and shape; creating custom non-
animated cursor resources; changing cursor shape and hiding cursors; creating an animated
cursor. Icons: icons and the Finder; other icons (icons, colour icons and small icons); icons in
windows, menus, and dialog boxes; drawing and manipulating icons; icon families, suites and
caches.

13 Printing
The Printing Manager. Printer drivers: types and characteristics; QuickDraw printer drivers;
PostScript printer drivers; background printing, deferred printing, and spool files; printer
drivers and Picture comments. Printer resolution. Page and paper rectangles. Job dialog box.
Style dialog box. The TPrint record. The printing graphics port. Print status dialog boxes and
idle procedures. The printing loop. Getting and setting printer information. Text on the
screen and the printed page. Altering the style or job dialog box. Printing from the Finder.

14 Files
Macintosh files. Characteristics of files: file forks; file size; file access. The hierarchical file
system: directories and directory ID; root directory; mounted volumes; parent directory and
parent directory ID; aliases. Identifying files and directories. General File menu and required
Apple events handling strategy. Creating a document record and a new document window.
Opening a file and reading in data. Saving a file. Reverting to a saved file. Closing a file.
Customized open and save dialog boxes.

15 More on Resources
Search path for resources: current resource file; default search order; setting the current
resource file; restricting the search to the current resource file. Detaching and copying
resources. Creating, opening and closing resource forks. Reading and manipulating resources.
Writing resources. Partial resources. Preferences files.

16 Scrap
The Scrap Manager and the desk scrap: scrap data formats; location of the desk scrap; getting
information about the desk scrap; using the desk scrap; the Clipboard; transferring the desk
scrap to disk. Private scrap. Copying data between private scrap and the desk scrap.
TextEdit, dialog boxes and the scrap.

17 Text and TextEdit
More on text: characters; character sets and codes; glyphs; typefaces; styles; fonts; font families;
system font and application font; the Font Manager and QuickDraw. Aspects of text editing:
caret position; text offsets; selection range; insertion point; highlighting. Keyboards and text.
Introduction to TextEdit: editing tasks performed by TextEdit; TextEdit options; caret position
and movement in TextEdit; automatic scrolling; TextEdit private, null, and style scraps; text
alignment; customising TextEdit; primary TextEdit data structures. Monostyled TextEdit:
initialising TextEdit; creating and disposing of a monostyled edit record; setting the text of an
edit record; responding to events; cutting, copying, pasting, inserting, and deleting text; setting
the selection range or insertion point; enabling, disabling, and customising automatic scrolling;
saving and opening TextEdit documents. Multistyled TextEdit: style runs, text segments, font
runs, and character attributes; additional data structures; creating a multistyled edit record;
setting the text; cutting, copying, pasting, inserting, and deleting text; scrolling text; setting and
checking text attributes; saving and opening multistyled TextEdit documents. Formatting and
displaying dates, times, and numbers: the Text Utilities and international resources; date and
time value representations; obtaining date-time values and records; converting date-time
values into strings; converting date-time strings into internal numeric representation; numbers
and number format specification strings; integers; converting between floating point numbers
and numeric strings.

18 Lists and Custom List Definition Functions
Appearance and features of lists: cells; cell font; cell highlighting. Scroll bars and size boxes.
Selection of cells using the mouse: multiple cell selection using the default cell-selection
algorithm; customising the cell-selection algorithm. Selection of cells using the keyboard:
moving the selection using arrow keys; extending the selection using arrow keys; type
selection. Creating lists: the list record and other data types; drawing borders; adding rows
and columns; disabling and enabling automatic drawing mode. Responding to events.
Getting and setting list selections. Scrolling a list. Storing, adding to, and clearing cell data.
Searching a list. Changing the current list. Customising the cell-selection algorithm. Custom
list definition procedures.

19 Custom Control Definition Functions and VBL Tasks
Control definition functions: declaration; default dragging and custom dragging; responding to
message parameter values. Vertical blanking (VBL) tasks: VBL tasks and the Vertical Retrace
Manager; Types of VBL tasks; VBL task rules; VBL tasks and foreground/background
switching; installing and removing a VBL task.

20 Floating Windows and Custom Window Definition Functions
Floating windows: front-to-back ordering of screen objects; appearance of floating windows;
implementation considerations; substitute and supporting routines. Custom window
definition functions: resource IDs; general requirements; responding to messages.

21 Sound
Introduction to sound: audio hardware; sound-related system software; sound input and
output capabilities; basic and enhanced sound capabilities; sound data; sampled sound; sound
components; sound resources and sound files. Sound production: sound channels; sound
commands; synchronous and asynchronous sound; playing sound resources and files. Sound
recording: recording sound resources and sound files; recording quality; checking for sound
recording capability. Speech: generating speech from a string; checking for speech capabilities.

22 Miscellany
Code segmentation and heap space optimisation. Status bars and scanning for a Command-
period event. Notifications from applications in the background: the need for the Notification
Manager; examples of notifications; elements of a notification; suggested notification strategy;
creating a notification request; installing and removing a notification request. Soliciting a
colour choice: colour models; the Color Picker; invoking the Color Picker. Ensuring
compatibility with the operating environment: getting operating environment information
using the Gestalt function; determining whether a trap is available. Coping with multiple
monitors: image optimisation; window zooming.

23 Porting to the Power Macintosh
The 68LC040 emulator. The Mixed Mode Manager: mode switches; intervention in mode
switching; creating a routine descriptor; effect of the routine descriptor; routines requiring
routine descriptors. The PowerPC native environment: fragments; categories of fragments;
fragment storage and loading; code fragment resource; fat applications; accelerated resources;
fat resources; calling conventions; organisation of memory; demise of the A5 world; accessing
global variables from detached code; data alignment. Source code changes — Chapters 1-22
demonstration programs.

Preface I

PREFACE Version 1.1
MACINTOSH PASCAL: A Hobbyists Guide to Programming the Mac OS in Pascal

This book was adapted from the book Macintosh C: A Hobbyist's Guide to Programming the Mac OS in
C. Macintosh C relies very heavily on information contained in the principal ten volumes of the Addison-
Wesley publication Inside Macintosh. Some demonstration programs in Macintosh C include the
author's translations of Pascal code examples in that publication. In addition, parts of Chapters 20 and 21
rely on information contained in Issues No 11 and 15 of develop (The Apple Technical Journal). Apple
Computer, Inc, which holds the copyright to those publications, kindly consented to the author
distributing Macintosh C on the Internet, on-line services, and bulletin boards as a free publication. That
consent has been extended to include this, the Pascal variant of Macintosh C.

From the Author of Macintosh C - Origins
and Purpose of Macintosh C

Some time ago, I decided to teach myself to program my recently acquired Macintosh in the C
language. Given that my previous foray into the world of hobbyist programming occurred in the early
eighties, it was not long before I became acutely aware that times had changed — and with a
vengeance! First came the development system purchase, then three introductory books on
programming the Macintosh in C, then a book documenting a thing called a resource editor, then an
on-line guide to the system software, then a book on user interface guidelines, and then an interactive
tutorial. After wading through all that, it became increasingly obvious that I would never get myself to
where I had to be unless I purchased no less than ten volumes of the Inside Macintosh series, the
monumental Addison-Wesley publication that documents the Macintosh system software. Then,
because all of the code examples in those ten volumes of Inside Macintosh are in Pascal rather than C, I
had to buy a book on Pascal and learn enough about that language to be able to work out exactly what
those code examples were telling me. By this time, my wife was looking somewhat askance at what I
continued to insist was nothing more than a simple hobby aimed at the constructive utilisation of odd
moments of my spare time.

Discussion with other hobbyists suggested that, while many beginners are quite willing to do what it
takes to learn to program their machines in this era of increasingly sophisticated system software, the
cost and volume of all that material, coupled with the Pascal-to-C translation task, was a major turn-off
for the struggling amateur. Professionals, I concluded, need Inside Macintosh, but the beginning
hobbyist needs a gentler (and, above all, cheaper) introduction to all this complexity.

Having arrived at that conclusion, I decided to turn my notes into a full-blown manual in the belief that
I just might be able to save other amateurs from what many would regard as cruel, unusual, and
pocketbook-depleting punishment. Macintosh C, then, represents my attempt to provide an easier and
more economical entry point to Macintosh programming for the beginning hobbyist.

About four months after Macintosh C was published on the Internet, Koryn Grant approached me with
the idea of adapting the book and demonstration program package to the Pascal language. I readily
agreed to this excellent idea, especially since Koryn volunteered to do all the work! Koryn's work

II Preface

proceeded in parallel with my work on a major revision of Version 1.0 of Macintosh C, the result being
that the first version of Macintosh Pascal is the equivalent of Version 1.1 of Macintosh C.

K. J. Bricknell
Canberra
Australia
January 1997

From the Co-Author of Macintosh Pascal

Part of K.J.’s opening paragraphs in Macintosh C, reproduced above, hint at my motivation for
translating his book into Pascal:

“Discussion with other hobbyists suggested that …the cost and volume of all that material,
coupled with the Pascal-to-C translation task, was a major turn-off for the struggling amateur.”

My reasoning was that, instead of performing the Pascal-to-C translation task, why not simply learn to
program the Macintosh in Pascal in the first place? After all, in an ideal world we would all be
programming in Pascal! However reasonable this may sound, there are some practical difficulties.
Much of the Pascal code in Inside Macintosh is now out-of-date and does not work with the latest
Universal Interface files as it is written; C seems to be established as some sort of de-facto standard in
the programming world; and the majority of "introduction to Macintosh programming" books
(certainly all the ones I have) are in C.

On the other hand, there are advantages in having an introductory Mac OS programming book written
in Pascal. Pascal code is usually more readable and understandable than C code, a definite advantage
when you are trying to get to grips with the Macintosh Toolbox. The Toolbox itself was originally
written in Pascal (although new Apple technologies are now being written in C), putting Pascal on a
somewhat distinguished footing among programming languages when it comes to learning the current
Mac OS. Finally, and this was probably the most important consideration to me, it seems that there are
a large number of hobbyist programmers who have learnt to program in Pascal but not in C. It makes
sense that they should be able to learn to program the Mac in a language they already know.

In summary, this translation of Macintosh C is aimed fairly and squarely at those hobbyist
programmers who are comfortable with Pascal and want to learn how to program the Macintosh
without the added complication of learning a new language. And since Metrowerks CodeWarrior
provides what is arguably the best Pascal development environment, the demonstration programs that
accompany Macintosh Pascal are CodeWarrior projects.

The remainder of Macintosh Pascal, including the following sections in this preface, is adapted directly
from Macintosh C. It is to K.J.'s credit that he was able to write a book on programming the Macintosh
in C that kept the Macintosh aspect sufficiently disjoint from the C implementation that the text from
Macintosh C was able to be reproduced almost verbatim in Macintosh Pascal. It is also very much to
his credit that he has been more than willing to allow his book to be adapted for the benefit of, firstly,
the Pascal programming community and, ultimately, I hope, the Macintosh community at large, and
for this I thank him.

Koryn Grant
Canterbury
England
January 1997

OverView of Macintosh Pascal

Essentially, Macintosh Pascal covers all of the territory which, in the judgement of the authors, needs to
be covered before you write your first serious application. This includes, for example, how to create
and manage all elements of the user interface (menus, windows, controls, dialogs, alerts, lists, etc.),
how to ensure that your application observes the house rules of the Macintosh graphical user interface

Preface III

and cooperative multitasking environment, how to perform file input/output, how to print files, how
to draw text and graphics, and so on.

Considerable thought has been given to the sequence in which each topic is introduced, the content of
most chapters relying to some extent on a full understanding of what has gone before. Accordingly,
you should note that Macintosh C is not intended to be a randomly-accessed reference work; rather, is
should be regarded as more in the nature of a tutorial in which each chapter should be worked through
in sequence.

The general structure of all but two chapters of Macintosh Pascal is the same: first comes the
information, then a list of constants, data types and routines relevant to the subject of that chapter, then
the source code listing of a demonstration program related to the subject of that chapter, and, finally,
line-by-line comments which explain the workings of the source code.1 Some chapters also include
instructions on how to create the associated demonstration program’s resources.

The book itself is supported by the CodeWarrior project files, source code files, and resource files for all
demonstration programs.

What You Will Need

Development System

Apart from Macintosh C you will, of course, require a development system. This edition of Macintosh
C assumes that that system will be Metrowerks CodeWarrior.

The Metrowerks product Discover Programming For Macintosh includes full-featured Pascal tools for
680x0-based Macintoshes. The included 680x0 compiler, which produces code which will run on
680x0-based Macintoshes (and in emulation on PowerPC-based Macintoshes), will be sufficient for
Chapters 1 to 22. The significantly more expensive CodeWarrior Gold, which, amongst other things,
adds a compiler capable of producing code which will run native on PowerPC-based Macintoshes,
could be useful when you get to Chapter 23 — Porting to the Power Macintosh; however, it is by no
means essential.2

On-Line Reference

An on-line reference enables you to quickly and easily access information relating to the system
software, and is thus quite indispensable. You can choose between THINK Reference3 (which is to
some extent out-of-date but still very useful) and Apple's CD-ROM-based Macintosh Programming
Toolbox Assistant.

Resource Editor

A resource editor allows you to create resources for programs and files. A copy of the resource editor
ResEdit, including the manual, is included with the CodeWarrior package.

Other Tools

Another useful tool is ZoneRanger, a dynamic memory inspection tool that allows you to investigate
how effectively and efficiently your application uses memory. ZoneRanger is included with the
CodeWarrior package. You will also find a programmer’s calculator very useful for converting
between decimal, hexadecimal and binary values, the nicely-presented shareware program CalcWorks
being ideal for that purpose.

1Note that the marginal line numbers are included in the source code listings only to facilitate referencing from the comments section. This is
not some strange line-numbered version of Pascal
2Specially-priced academic versions of CodeWarrior Gold are available for students. Information on Metrowerks CodeWarrior products,
including system requirements, is available at http://www.metrowerks.com/
3THINK Reference was originally marketed by Symantec but is now available on a CD-ROM produced by MacTech magazine. See the
MacTech CD-ROM section at http://web.xplain.com/mactech.com/ .

IV Preface

Demonstration Programs

All of the demonstration programs may be run from within CodeWarrior with the exception of the
program that accompanies Chapter 8 — Required Apple Events. By its nature, this program should be
run as a built (that is, double-clickable) application. The demonstration program at Chapter 14 — Files
may be run within CodeWarrior, although certain aspects of the program can only be explored by
running it as a built application. Only two programs (one at Chapter 9 — QuickDraw Preliminaries
and one at Chapter 11 — Color QuickDraw) will not run on black-and-white Macintoshes such as the
Classic.

As far as is possible, each demonstration program avoids making calls to system software routines that
are only explained in a later chapter. However, achieving that ideal has not been possible in the
demonstration programs associated with the earlier chapters. For example, the demonstration program
associated with Chapter 1 must, of necessity, make calls to system software routines relating to
windows (the subject of Chapter 4) and drawing in a graphics port (the subject of Chapter 10). Where
this occurs, you should simply accept, on faith, that the associated source code does as is stated in the
demonstration program comments section. The important thing is to concentrate on that part of the
source code pertaining to the subject of the chapter with which the program is associated.

System Software Assumptions

One of the banes of the programmer's existence is the necessity to ensure that a program will run
successfully under various versions of the system software. Macintosh Pascal addresses the matter of
compatibility; however, in order to avoid endless digressions to account for what must surely be a
very, very small percentage of the overall Macintosh population, Macintosh Pascal contains no material
explaining or demonstrating the measures required to accommodate versions of the system software
earlier than System 7.0.

Coping With Change

The hobbyist programmer lives in difficult times. Until comparatively recently, learning to cope with
the complexities of the Macintosh system software was challenge enough. Then along came the Power
Macintosh, with its PowerPC microprocessor, to add to that challenge. . And now, looming on the near
horizon at the time of writing (January 1977), is the reality of significant new developments in the
Macintosh system software arena.

Coping With the Power Macintosh

So far as coping with the Power Macintosh is concerned, the approach taken by Macintosh C is to stay
firmly and exclusively lodged in the world of the 680x0 microprocessor (whether it be implemented in
hardware (680x0 Macintoshes) or in software (the emulator in PowerPC-based Macintoshes)) for the
first 22 Chapters. Then, at Chapter 23, the consequences of the PowerPC microprocessor are addressed,
including an explanation of the modifications which must be made to the source code of previous
demonstration programs if that code is to be compiled as native PowerPC code. (The folder
chap23cw_demo contains the revised versions of those source code files requiring such modification.)

However, even if you had no intention of writing or modifying source code for compilation as
PowerPC code, or if Macintosh C did not contain Chapter 23, the reality is that you could not escape
the influence of the Power Macintosh. The culprits in this regard are the so-called Universal Headers
files, which were introduced at the same time as the Power Macintosh and which, amongst other
things, enable you to write source code capable of being compiled as either 680x0 code or PowerPC
code — hence the term "Universal".4

Influence of the Universal Interfaces

You will see things in the Universal Interfaces which appear to be inconsistent with information in such
references as THINK Reference and Inside Macintosh, and with various source code examples you may
have seen or will see. Do not despair; the reasons for these apparent inconsistencies will be explained

4The Universal Headers are included in the CodeWarrior package.

Preface V

as you go along. Your first major encounter in this regard will be in a dissertation on the well-known
system software routine TrackControl in the demonstration program comments section at Chapter 5 —
Controls.

At the time of their introduction, the Universal Interfaces not only accommodated the reality of the
Power Macintosh and its PowerPC processor but also looked ahead to intended developments in the
system software. Once again, the result was apparent inconsistencies. For example, you will see the
relatively new data type WindowRef in Macintosh Pascal in contexts where THINK Reference, Inside
Macintosh, and older source code examples would lead you to expect the WindowPtr data type. All this
results from the intended introduction of opaque data structures with Mac OS 8, an avenue in the
development of the system software which has now been abandoned.

Because Mac OS 8 was abandoned, opaque data structures did not become a reality. This means that
the WindowRef data type is now little more than the legacy of a failed endeavour. In these
circumstances, all that is required is to remember that, whenever your compiler sees WindowRef, it
thinks it is seeing WindowPtr. The same applies to, for example, MenuRef and MenuHandle, ControlRef
and ControlHandle, DialogRef and DialogPtr, and ListRef and ListHandle.

Future System Software

Until comparatively recently, Mac OS 8 was the future of the system software. Then, in late 1996/early
1997, Apple abandoned Mac OS 8, acquired NeXT Software, Inc, and announced a bold new direction
in system software development, the essence of which is that, for the next several years, Apple will
develop and support two operating systems (OSs):

• Mac OS. The first system will be the Mac OS, which will continue to be upgraded and
improved.

• Rhapsody. The second system will be a new OS based on NeXT Software's operating system
technologies. This new OS is currently code-named Rhapsody.

Apple will continue to advance the Mac OS until its customers transition to Rhapsody. Apple expects
that transition to take several years.

Mac OS Compatibility Environment. In addition to leveraging the NeXT technologies, Rhapsody
is designed to run Mac OS applications through a Mac OS compatibility environment. This
environment will be a complete implementation of the current Mac OS hosted on the modern operating
system infrastructure provided by Rhapsody. The basic architecture is shown at Fig 1.

ADVANCED MACINTOSH LOOK AND FEEL

CORE OS: MICROKERNEL, I/O
ARCHITECTURE, FILE SYSTEM, ETC

MAC OS 7.X
COMPATIBILITY
ENVIRONMENT

MODIFIED
VERSION OF

NeXTSTEP

FIG 1 - BASIC RHAPSODY ARCHITECTURE

The foundation of Rhapsody will be a modern microkernel designed to provide pre-emptive
multitasking, protected memory, and other modern operating system capabilities.

Apple will support the ability to boot either Mac OS or Rhapsody on a single Mac OS-compatible
computer. Rhapsody's user interface will combine elements from both the Mac OS and NeXTSTEP, but
will be closer in look and feel to the Mac OS Finder.

The intended Rhapsody/Mac OS development path at the time of writing is as shown at Fig 2.

VI Preface

7.6 TEMPO ALLEGRO SONATA

RHAPSODY
DEVELOPER

RELEASE

RHAPSODY
PREMIER
RELEASE

RHAPSODY
UNIFIED
RELEASE

1997 1998

FIG 2 - PROJECTED OPERATING SYSTEM RELEASES

Although this book is concerned with programming the Mac OS, not Rhapsody, it is nonetheless of
significance to the hobbyist programmer that Apple intends to allow developers to use the
programming languages of their choice for new application development in Rhapsody. Objective C is
the native language and will offer some advantages over other languages; however, in conjunction with
partners such as Metrowerks, Apple expects to offer Java, C, C++, and Pascal as viable languages.

The upshot of all this for the Pascal hobbyist is as follows:

• Learning to program the Mac OS at this stage in the history of the Macintosh will not constitute
wasted effort. Clearly, the Mac OS will be running on hundreds of thousands of Macintosh
computers for many years to come. It will be the only OS capable of running on the huge
installed base of 680x0-based machines. Furthermore, the knowledge and experience acquired
in learning to program the Mac OS, more particularly the graphical user interface (GUI) aspects,
should be of at least some assistance when the time comes to learn to program Rhapsody.

• Pascal will be a viable programming language for Rhapsody, as it continues to be for the Mac
OS.

The upshot of all this for the author is that someday there will have to be two versions of this book —
one targeted at the Mac OS (as now) and one targeted at Rhapsody!

Terminology and Other Sorrows

There are a few terms (or, rather, words) in this book which, depending on your country of residence,
may seem only vaguely familiar. Bear in mind that Macintosh C was originally compiled in Australia,
a civilised land where spelling conventions equate with those of the country that invented the
language, and adapted to Pascal by a New Zealander in the United Kingdom. Hence the word colour is
generally spelled with a u. That said, the u has been removed where appropriate — for example, when
reference is made to a component of the system software known, officially, as Color QuickDraw. In
this way, and at the risk of being accused of inconsistency, the co-authors seek to offend nobody.

Towards Version 1.2

The authors welcome comments and suggestions on Macintosh Pascal Version 1.1. Pascal-specific
comments should be addressed to <kdg2@ukc.ac.uk> (before September 1998) or
koryn@stephens.manawatu.gen.nz (after September 1998). Comments of a more general nature should
be addressed to <brick@spirit.com.au>, <kdg2@ukc.ac.uk> (before September 1998), or
koryn@stephens.manawatu.gen.nz (after September 1998).

Koryn Grant K. J. Bricknell
Canterbury Canberra
England Australia
January 1997 January 1997

	CONTENTS
	PREFACE
	From the Author of Macintosh C
	From the Co-Author of Macintosh Pascal
	OverView of Macintosh Pascal
	What You Will Need
	Development System
	On-Line Reference
	Resource Editor
	Other Tools

	Demonstration Programs
	System Software Assumptions
	Coping With Change
	Coping With the Power Macintosh
	Influence of the Universal Interfaces
	Future System Software

	Terminology and Other Sorrows

