
Required Apple Events 8-1

8Version 1.1

REQUIRED APPLE EVENTS
Includes Demonstration Program AppleEvents

Introduction

System 7 introduced a new type of event, called the high-level event, along with a number of new
Event Manager routines which allow applications to communicate with each other by exchanging high-
level events.

Using high-level events, an application can instruct another application to perform a specific action,
such as adding a row to a spreadsheet or changing the font size of a paragraph. An application can
also request information from another application; for example, it might request a dictionary
application to return the definition of a particular word.

Fig 1 shows the general event-handling mechanism which has existed since the introduction of System
7. In Fig 1, three different applications are communicating with each other by sending and receiving
high-level events. Note that high-level events are placed in a separate queue maintained by the
operating system and that a high-level event queue is maintained for each application that has
announced itself as capable of receiving high-level events.

KEYBOARD, MOUSE
BUTTON, FLOPPY DRIVEWINDOW MANAGER

OPERATING SYSTEM
EVENT MANAGER

TOOLBOX EVENT MANAGER

activate
update

key up
key down

autokey
mouse up

mouse down
disk insert

OPERATING SYSTEM
EVENT QUEUE

PROCESS MANAGER

suspend
resume

mouse- moved

EVENT STREAMEVENT STREAM EVENT STREAM

FIG 1 - EVENTS IN SYTEM 7

APPLICATION APPLICATION APPLICATION

PROGRAM-TO-PROGRAM
COMMUNICATION TOOLBOX

HIGH-LEVEL
EVENT QUEUE

8-2 Required Apple Events

For effective communication between applications, an application must define the set of high-level
events it responds to and let other applications know the events it accepts. For a high-level event sent
by one application to be understood by another application, the sender and receiver must agree on a
protocol, that is, on the way the event is to be interpreted.

Apple Events

Apple events are high-level events whose structure and interpretation are determined by the Apple
Event InterProcess Messaging Protocol (AEIMP). Applications typically use Apple events to request
services and information from other applications and to provide services and information in response
to such requests.

Communication between two applications which support Apple events is initiated by a client
application, which sends an Apple event to request a service or information. The application
providing the service or information is called a server application.1 Fig 2 shows a common Apple
event, called the Open Documents event. The Finder (which is, itself, an application) is the client; it
requests that the application My Application open the documents named Document A and Document
B. My Application responds by opening windows for the specified documents.

FIG 2 - CLIENT AND SERVER

MY
APPLICATION

Document B

Document AAPPLE EVENT

OPEN DOCUMENTS

DOCUMENT A
DOCUMENT B

CLIENT
APPLICATION

SERVER
APPLICATION

FINDER

To identify Apple events and respond appropriately, every application can rely on a vocabulary of
standard Apple events which developers and Apple have established for all applications to use. These
events are defined in the Apple Event Registry: Standard Suites. The standard suites (groups of Apple
events that are usually implemented together) include:

• The required suite, which consists of four Apple events that the Finder sends to applications.
The required Apple events are:

• Open Application.

• Open Documents.

• Print Documents.

• Quit Application.

• The core suite, which consists of the basic Apple events, including Get Data, Set Data, Move,
Delete and Save, that nearly all applications use to communicate.

• The functional-area suite, which consists of a group of Apple events which support a related
functional area, and which include the Text suite and the Database suite.

Required Apple Events

In System 7 and later versions of the system software, the Finder uses the required Apple events as part
of the mechanism for launching and terminating applications. To be System 7-friendly, therefore, your
application must support the required Apple events.

1An application can also send Apple events to itself, thus acting as both client and server.

Required Apple Events 8-3

This chapter is concerned with the required Apple events only, exploring the subject of Apple events
only to the extent necessary to gain an understanding of the measures involved in supporting the
required suite.

Apple Event Attributes and Parameters

When an application creates and sends an Apple event, the Apple Event Manager uses arguments
passed to Apple Event Manager routines to construct the data structures that make up the Apple event.
An Apple event comprises attributes (which identify the Apple event and denote its task) and, often,
parameters (which contain information to be used by the target application).

Apple Event Attributes

An Apple event attribute is a record which identifies the event class, event ID, target application, and
other characteristics of an Apple event. Taken together, the attributes denote the task to be performed
on any data specified in the event's parameters. After receiving an Apple event, a server application
can use Apple Event Manager routines to extract and examine its attributes. Apple events are
identified by their event class and event ID attributes.

Event Class

The event class is the attribute that identifies a group of related Apple events. It appears in the message
field of the event record for an Apple event (see Fig 3). For example, the required Apple events have
the value 'aevt' in the message field of their event records. 'aevt' is represented by the constant
kCoreEventClass.

what
message

when
where

modifiers Undefined

FIG 3 - CONTENTS OF AN EVENT RECORD - HIGH LEVEL (APPLE) EVENT

23 = kHighLevelEvent
Event Class

Event ID
Time event was posted

Event ID

The event ID is the attribute which identifies the particular event within the event class. In conjunction
with the event class, the event ID uniquely identifies the Apple event and communicates what action
the Apple event should perform. It appears in the where field of the event record for an Apple event
(see Fig 3). For example, the event ID of an Open Documents event has the value 'odoc', which is
represented by the constant kAEOpenDocuments. The kCoreEventClass constant in combination with the
kAEOpenDocuments constant identifies the Open Documents event to the Apple Event Manager.

The following are the event IDs for the four required Apple events:

Event ID Value Description
kAEOpenApplication 'oapp' Perform tasks required when a user opens your application.
kAEOpenDocuments 'odoc' Open documents
kAEPrintDocuemnts 'pdoc' Print Documents
kAEQuitApplication 'quit' Quit your application.

Target Application

In addition to the event class and event ID, every Apple event must include an attribute which specifies
the target application's address.

8-4 Required Apple Events

Apple Event Parameters

An Apple event parameter is a record containing data that the target application uses. Apple events
can use standard data types, such as strings of text, long integers, boolean values, and alias records, for
the data in their parameters. As with attributes, a client application can use Apple Event Manager
routines to extract and examine the parameters of an Apple event it has received.

There are various kinds of Apple event parameters, including direct parameters and additional
parameters.

Direct Parameters

A direct parameter usually specifies the data to be acted upon by the target application. For example, a
list of documents is contained in the direct parameter of the Print Documents event.

Additional Parameters

Some Apple events also take additional parameters, which the target application uses in addition to the
data specified in the direct parameter. For example, an Apple event for arithmetic operations may
include additional parameters which specify operands in an equation.

Required and Optional Parameters

All parameters are either required parameters or optional parameters. A required parameter is one
which must be present for the target application to carry out the task denoted by the Apple event. An
optional parameter is a supplemental Apple event parameter that can also be used to specify data to a
target application. Direct parameters are usually defined as required parameters in the Apple Event
Registry - Standard Suites.

Interpreting Apple Event Attributes and Parameters

Fig 4 shows the major Apple event attributes and direct parameter for the Open Documents event.

To process this event, your application would use the AEProcessAppleEvent function, which uses the
event class and event ID attributes to dispatch the event to My Application's Open Documents handler.
In response, the Open Documents handler opens the documents specified in the direct parameter.

FIG 4 - MAJOR ATTRIBUTES AND DIRECT PARAMETERS IN AN OPEN DOCUMENTS EVENT

MY
APPLICATION

FINDER
DIRECT PARAMETER:

List of files (Document A,
Document B)

CLIENT
APPLICATION

SERVER
APPLICATION

OPEN DOCUMENT EVENT

EVENT CLASS ATTRIBUTE:
kCoreEventClass

EVENT ID ATTRIBUTE:
kAEOpenDocument

TARGET ADDRESS ATTRIBUTE:
Application with signature 'MYAP'

APPLE EVENT

Document B

Document A

Data Structures Within Apple Events

The Apple Event Manager constructs its own internal data structures to contain the information in an
Apple event.

Descriptor Records

Descriptor records are the building blocks used by the Apple Event Manager to construct Apple event
attributes and parameters. A descriptor record is a data structure of type AEDesc. It consists of a
handle to data and a descriptor type which identifies the type of data to which the handle refers:

Required Apple Events 8-5

struct AEDesc
{

DescType descriptorType; // Type of data.
Handle dataHandle; // Handle to data.

};
typedef struct AEDesc AEDesc;

The descriptor type is a structure of type DescType which, in turn, is of data type ResType, that is, a
four-character code. Constants are used in place of these codes when referring to descriptor types. The
following are some of the major descriptor type constants, their values, and the kind of data they
identify:

Descriptor Type Value Description of Data
typeChar 'TEXT' Unterminated string.
typeType 'type' Four-character code.
typeBoolean 'bool' One-byte Boolean value.
typeLongInteger 'long' 32-bit integer.
typeAEList 'list' List of descriptor records.
typeAERecord 'reco' List of keyword-specified descriptor records.
typeAppleEvent 'aevt' Apple event record.
typeFSS 'fss ' File system specification.
typeKeyword 'keyw' Apple event keyword.
typeNull 'null' Nonexistent data (handle whose value is NULL).

The following illustrates the logical arrangement of a descriptor record with a descriptor of type
typeChar, which specifies that the data handle refers to an unterminated string:

Data Type AEDesc
Descriptor type: typeChar

Data: "Summary of Sales"

The following illustrates the logical arrangement of a descriptor record with a descriptor type of
typeType, which specifies that the data handle refers to a four-character code (in this case the constant
kCoreEventClass, whose value is 'aevt'):

Data Type AEDesc
Descriptor type: typeType

Data: (kCoreEventClass)

Address Descriptor Record

Every Apple event includes an attribute specifying the address of the target application. A descriptor
record which contains an application's address is called an address descriptor record:

typedef AEDesc AEAddressDesc; // An AEDesc which contains addressing data.

The address in an address descriptor record can be specified as one of the four basic types (or as any
other descriptor types you define that can be coerced to one of these types):

Descriptor Type Value Description
typeApplSignature 'sign' Application signature.
typeSessionID 'ssid' Session reference number.
typeTargetID 'targ' Target ID record.
typeProcessSerialNumber 'psn ' Process serial number.

Like several other data structures defined by the Apple Event Manager for use in Apple event
attributes and Apple event parameters, an address descriptor record is identical to a descriptor record
of data type AEDesc; the only difference is that the data for an address descriptor record must always
consist of an application's address.

8-6 Required Apple Events

Keyword-Specified Descriptor Records

After the Apple Event Manager has assembled the necessary descriptor records as the attributes and
parameters of an Apple event, your application must use Event Manager routines to request each
attribute and parameter by keyword. Keywords are arbitrary names used by the Apple Event Manager
to keep track of various descriptor records. The AEKeyword data type is defined as a four-character
code:

typedef unsigned long AEKeyword;

Constants are typically used to represent keywords.

Keywords for Attributes. Here is a partial list of keyword constants for Apple event attributes:

Attribute Keyword Value Description
keyEventClassAttr 'evcl' Event class of Apple event.
keyMissedKeywordAttr 'miss' Keyword for first required parameter

remaining in an Apple event.
keyAddressAttr 'addr' Address of target or client application.
keyEventIDAttr 'evid' Event ID of Apple event.
keyEventSourceAttr 'esrc' Nature of the source application.
keyReturnIDAttr 'rtid' Return ID for reply Apple event.

Keywords for Parameters. Here is a list of keyword constants for commonly used Apple event
parameters:

Parameter Keyword Value Description
keyDirectObject '----' Direct parameter.
keyErrorNumber 'errn' Error number parameter.
keyErrorString 'errs' Error string parameter.

The Apple Event Manager associates keywords with specific descriptor records by means of a
keyword-specified descriptor record, a data structure of type AEKeyDesc that consists of a keyword and
a descriptor record:

struct AEKeyDesc
{

AEKeyword descKey; // Keyword.
AEDesc descContent; // Descriptor record.

};
typedef struct AEKeyDesc AEKeyDesc;

The following illustrates a keyword-specified descriptor record with the keyword keyEventClassAttr,
the keyword that identifies an event class attribute. It shows the logical arrangement of the event class
attribute for the Open Documents event shown at Fig 4.

Data Type AEKeyDesc
Keyword: keyEventClassAttr

Descriptor Record: Descriptor Type: typeType
Data: Event Class

(coreEventClass)

Descriptor Lists, AE Records, and AppleEvent Records

Descriptor Lists

When extracting data from an Apple event, you use Apple Event Manager functions to copy data to a
buffer specified by a pointer, or to return a descriptor record whose data handle refers to a copy of the
data, or to return lists of descriptor records (called descriptor lists).

Required Apple Events 8-7

A descriptor list is a data structure of type AEDescList defined by the data type AEDesc. That is, a
descriptor list is a descriptor record whose handle refers to a list of other descriptor records (unless it is
an empty list):

typedef AEDesc AEDescList; // List of descriptor records.

The following illustrates the logical arrangement of the descriptor list that specifies the direct
parameter of the Open Documents event shown at Fig 4. This descriptor list consists of a list of
descriptor records which contain alias records to filenames.

Data Type AEDescList
Descriptor type: typeAEList

Data: List of descriptor records:

Descriptor type: typeAlias

Data: Alias record for filename (Document A)

Descriptor type: typeAlias

Data: Alias record for filename (Document B)

This descriptor list provides the data for a keyword-specified descriptor record.

AE Record

 Keyword-specified descriptor records for Apple event parameters can in turn be combined into an AE
record, which is a descriptor list of type AERecord:

typedef AEDescList AERecord; // List of keyword-specified descriptor records.

The handle for a descriptor list of data type AERecord refers to a list of keyword-specified descriptor
records that can be used to construct Apple event parameters. An AE record has the descriptor type
typeAERecord and can be coerced to several other descriptor types.

Apple Event Record

An Apple event record, which is different from an AE record, is another special descriptor list of data
type AppleEvent and descriptor type typeAppleEvent:

typedef AERecord AppleEvent; // List of attributes and parameters for Apple event.

An Apple event record describes a full-fledged Apple event. Like the data for an AE record, the data
for an Apple event record consists of a list of keyword-specified descriptor records. Unlike an AE
record, the data for an Apple event record is divided into two parts, one for attributes and one for
parameters. This division allows the Apple event to distinguish between an Apple event's attributes
and its parameters.

Passing Descriptor Lists, AE Records and
Apple Event Records to Apple Event
Manager Functions

Descriptor lists, AE records and Apple event records are all descriptor records whose handles refer to a
nested list of other descriptor records. The data associated with each data type may be organised
differently and used by the Apple Event Manager for different purposes. In each case, however, the
data is identified by a handle in a descriptor record. This means that you can pass an Apple event
record to any Apple Event Manager function that expects an AE record. Similarly, you can pass Apple
event records and AE records, as well as descriptor lists and descriptor records, to any Apple Event
Manager functions that expect records of data type AEDesc.

8-8 Required Apple Events

Example Complete Apple Event

Fig 5 shows an example of a complete Apple event — a data structure of type AppleEvent containing a
list of keyword-specified descriptor records that name the attributes and parameters of an Open
Documents event.

FIG 5 - DATA STRUCTURES WITHIN AN OPEN DOCUMENTS EVENT

Descriptor type:

Data:

typeAlias

Alias record for filename
(Document B)

Descriptor type:

Data:

typeAlias

Alias record for filename
(Document A)

Descriptor type:

Data: List of attributes and parameters

typeAppleEvent

Descriptor type:

Data:

typeAEList

List of descriptor records

Event ID

Descriptor type:

Data:

Event ID Attribute
Keyword: keyEventIDAttr

typeType

(kAEOpenDocuments)

Direct Parameter
Keyword: keyDirectObject

Descriptor type:

Data:

Target Application Attribute
Keyword: keyAddressAttr

typeApplSignature

('MYAP')
Target application's address

Descriptor type:

Data:

Event Class Attribute
Keyword: keyEventClassAttr

typeType

(kCoreEventClass)
Event Class

Handling Apple Events

A client application uses the Apple Event Manager to create and send an Apple event requesting a
service or information. A server application responds by using the Apple Event Manager to process
the Apple event, extract data from the attributes and parameters of the Apple event and, if necessary,
add requested data to the reply event returned by the Apple Event Manager to the client application.

As a first step in supporting Apple events, and as previously stated, your application should support
the required Apple events sent by the Finder. To support the required Apple events, you must:

Required Apple Events 8-9

• Set the isHighLevelEventAware flag in the 'SIZE' resource of your application.

• Test for high-level events in your application's event loop. An Apple event (like all high-level
events) is identified by a message class of kHighLevelEvent in the what field of the event record.
Your application should therefore test the what field of the event record to determine whether it
contains the value represented by kHighLevelEvent.

• Use AEProcessAppleEvent to process the Apple events. AEProcessAppleEvent first identifies the
Apple event by examining the data in the event class and event ID attributes. It then uses that
data to call the appropriate Apple event handler provided by your application.

• Provide handlers for the required Apple events in your application. Your Apple event handlers
must extract the pertinent data from the Apple event, perform the requested action, and return a
result.

• Use AEInstallEventHandler to install your Apple event handlers. This function installs handlers
in an Apple event dispatch table for your application. The Apple Event Manager uses this table
to map Apple events to handlers in your application When your application calls
AEProcessAppleEvent, the Apple Event Manager checks the dispatch table and, if your
application has installed a handler for the event, calls the handler. Each entry in the Apple event
dispatch table should specify:

• The event class.

• The event ID.

• The address of the Apple event handler.

• A reference constant.2

Accordingly, the parameters for the call to AEInstallEventHandler are the event class, the event
ID, a pointer to the event handler, a reference constant, and false.3

Apple Event Handlers

Each Apple event handler must be a function which uses this syntax:

OSErr theEventHandler(AppleEvent *appleEvent,AppleEvent *reply,long handlerRefcon);

appleEvent The Apple event to handle. Your handler uses Apple Event Manager functions to extract
any parameters and attributes from the Apple event and then perform the necessary
processing.

reply The default reply provided by the Apple Event Manager.

handlerRefcon Reference constant stored in the Apple event dispatch table entry for the Apple event.
Your handler can ignore this parameter if your application does not use the reference
constant.

Apple event handlers must generally perform the following tasks:

• Extract the parameters and attributes from the Apple event.

• Check that all required parameters have been extracted.

2The reference constant is passed to your handler by the Apple Event Manager each time your handler is called. Your application can use this
reference constant for any purpose. If your application does not use the reference constant, specify 0.
3false causes the handler to be installed in the application's Apple event dispatch table. true causes the handler to be installed in the
system's Apple event dispatch table. The system Apple event dispatch table is a table in the system heap containing handlers that are
available to all applications and processes running on the same computer. The handlers in your application's Apple events dispatch table are
available only to your application. If AEProcessAppleEvent cannot find a handler for the Apple event in your application's Apple event
dispatch table, it looks in the system Apple event dispatch table for a handler. If it does not find a handler in the system table, it returns the
errAEEventNotHandled result code.

8-10 Required Apple Events

• Perform the action requested by the Apple event.

• Dispose of any copies of the descriptor records that have been created.

• Add information to the reply Apple event if requested.

Extracting and Checking Data

You must use Apple Event Manager functions to extract the data from Apple events. The following are
the main functions involved:

Function Description
AEGetAttributePtr Uses a buffer to return a copy of the data contained in an Apple event attribute. Used

to extract data of fixed length or known maximum length.
AEGetParamDesc Returns a copy of the descriptor record or descriptor list for an Apple event parameter.

Usually used to extract data of variable length, for example, to extract the descriptor list
for a list of alias records specified in the direct parameter of an Open Documents event.

AECountItems Returns the number of descriptor records in a descriptor list. Used, for example, to
determine the number of alias records for documents specified in the direct parameter
of an Open Documents event.

AEGetNthPtr Uses a buffer to return a copy of the data for a descriptor record contained in a
descriptor list. Used to extract data of fixed length or known maximum length, for
example, to extract the name and location of a document from the descriptor list
specified in the direct parameter of the Open Documents event.

Data Type Coercion. You can specify the descriptor type in the resulting data from these functions.
If this type is different from the descriptor type of the attribute or parameter, the Apple Event Manager
attempts to coerce it to the specified type. In the direct parameter of the Open Documents event, for
example, each descriptor record in the descriptor list is an alias record and each alias record specifies a
document to be opened. All your application usually needs to open a document is a file system
specification record (FSSpec) of the document. When you extract the descriptor record from the
descriptor list, you can request that the Apple Event Manager return the data to your application as a
file system specification record instead of an alias record.

Checking That All Required Parameters Have Been Retrieved. After extracting all known
Apple event parameters, your handler should check that it has retrieved all the parameters that the
source application considered to be required. To do this, determine whether the keyMissedKeywordAttr
attribute exists. If this attribute does exist, your handler has not retrieved all the required parameters,
and it should return an error.

Interacting With the User

In some cases, the server application may need to interact with the user when it handles an Apple
event. For example, your handler for the Print Documents event may need to display a print options
dialog box and get settings from the user before printing .

The Apple Event Manager does not allow the server application to interact with the user in response to
a client application's Apple event unless at least two conditions are met:

• First, the client application must set flags in the sendMode parameter of the AESend function to
indicate that user interaction is allowed.

• Second, the server application must either:

• Set flags to the AESetInterActionAllowed function indicating that user interaction is
allowed. (These flags relate to permitting interaction where the client and server are the
same application, the client application is on the same computer as the server, or the
client is on any computer.)

• Set no user interaction preferences (that is, make no call to AESetInterActionAllowed), in
which case AEInteractWithUser (the function used to initiate interaction with the user

Required Apple Events 8-11

when your application is a server responding to an Apple event) assumes that only
interaction with a client on the local computer is allowed.

If these two conditions are met, and if AEInteractWithUser determines that both the client and server
applications allow user interaction under the current circumstances, AEInteractWithUser brings your
application to the foreground if it is not already in the foreground. Your application can then display
its dialog box or alert box or otherwise interact with the user.

Performing the Requested Action and
Returning a Result

When your application responds to an Apple event, it should perform the standard action requested by
the event.

Your Apple event handler should always set its function result to either noErr, if it successfully handles
the Apple event, or to a non-zero result code if an error occurs. If your handler returns a non-zero
result code, the Apple Event Manager adds a keyErrorNumber parameter to the reply Apple event. This
parameter contains the result code that your handler returns.

Disposing of Copies of Descriptor Records

When your handler is finished with a copy of a descriptor record created by AEGetParamDesc and
related functions, it should dispose of it by calling AEDisposeDesc.

Required Apple Events - Contents and Required Action

Your application receives the four required Apple events from the Finder in these circumstances:

• If your application is not open and the user elects to open your application from the Finder
without opening or printing any documents, the Finder launches your application (using the
Process Manager) and sends it an Open Application event.

• If your application is not open and the user elects to open one of your application's documents
from the Finder, the Finder launches your application (using the Process Manager) and sends it
an Open Documents event.

• If your application is not open and the user elects to print one of your application's documents
from the Finder, the Finder launches your application (using the Process Manager) and sends it
the Print Documents event. Your application should print the selected documents and remain
open until it receives a Quit Application event from the Finder.

• If your application is open and the user elects to open or print any of your application's
documents from the Finder, the Finder sends your application the Open Documents or Print
Documents event.

• If your application is open and the user chooses Restart or Shut Down from the Finder's Special
menu, the Finder sends your application the Quit Application event.

The following is a summary of the contents of the required Apple events sent by the Finder and the
actions they request applications to perform:

Open Application event
Attributes

Event Class: kCoreEventClass

Event ID: kAEOpenApplication

Parameters: None.
Requested Action: Perform tasks your application normally performs when a user opens your application

without opening or printing any documents, such as opening an untitled document
window.

8-12 Required Apple Events

Open Documents event
Attributes

Event Class: kCoreEventClass

Event ID: kAEOpenDocuments

Required parameters
Keyword: keyDirectObject

Descriptor type: typeAEList

Data: A list of alias records for the documents to be opened.
Requested Action: Open the documents specified in the keyDirectObject parameter.

Print Documents event
Attributes

Event Class: kCoreEventClass

Event ID: kAEPrintDocuments

Required parameters
Keyword: keyDirectObject

Descriptor type: typeAEList

Data: A list of alias records for the documents to be printed.
Requested action: Print the documents specified in the keyDirectObject parameter, opening windows

for the documents only if your application can interact with the user.

Quit Application event
Attributes

Event Class: kCoreEventClass

Event ID: kAEQuitApplication

Parameters: None
Requested Action: Perform any tasks that your application would normally perform when the user

chooses Quit from the application's File menu. (Such tasks typically include releasing
memory and requesting the user to save documents which have been changed.)

Your application needs to recognise two descriptor types to handle the required Apple events:
descriptor lists and alias records.

As previously stated, in the event of an Open Documents or Print Documents event, you can retrieve
the data which specifies the document as an alias record, or you can request that the Apple Event
Manager coerce the alias record to a file system specification record. The file system specification
provides a standard method of identifying files in System 7 and later versions.

Main Apple Event Manager Constants, Data Types, and Routines
Relevant to Required Apple Events

Constants

High Level Event

kHighLevelEvent = 23

Event Class for Required Apple Event

kCoreEventClass = 'aevt' Event class for required Apple events.

Event IDs for Required Apple Events

kAEOpenApplication = 'oapp' Event ID for Open Application event.
kAEOpenDocuments = 'odoc' Event ID for Open Documents event.
kAEPrintDocuments = 'pdoc' Event ID for Print Documents event.
kAEQuitApplication = 'quit' Event ID for Quit Application event.

Keywords for Apple Event Attributes

keyMissedKeywordAttr = 'miss' First required parameter remaining in an Apple event.

Required Apple Events 8-13

Keywords for Apple Event Parameters

keyDirectObject = '----' Direct parameter

Apple Event Descriptor Types

typeAEList = 'list' List of descriptor records.
typeWildCard = '****' Matches any type.
typeFSS = 'fss ' File system specification.

Result Codes

errAEDescNotFound = -1701 Descriptor record was not found.
errAEParamMissed = -1715 Handler cannot understand a parameter the client considers

is required.

Data Types

typedef FourCharCode AEEventClass; // Event class for a high level event.
typedef FourCharCode AEEventID; // Event ID for a high level event.
typedef FourCharCode AEKeyword; // Keyword for a descriptor record.
typedef ResType DescType; // Descriptor type.

typedef AEDesc AEDescList; // List of descriptor records.
typedef AEDescList AERecord; // List af keyword-specified descriptor records.
typedef AERecord AppleEvent // List of attributes and parameters for Apple event.

typedef AEEventHandlerProcPtr AEEventHandlerUPP; // UPP to an Apple event handler.

Descriptor Record

struct AEDesc
{
 DescType descriptorType; // Type of data being passed.
 Handle dataHandle; // Handle to data being passed.
};

typedef struct AEDesc AEDesc;

Keyword-Specified Descriptor Record

struct AEKeyDesc
{
 AEKeyword deskKey; // Keyword.
 AEDesc descContent; // Descriptor record.
};

typedef struct AEKeyDesc AEKeyDesc;

Routines

Creating and Managing Apple Event Dispatch tables

OSErr AEInstallEventHandler(AEEventClass theAEEventClass,AEEventID theAEEventID,
AEEventHandlerUPP handler,long handlerRefcon,Boolean isSysHandler);

Dispatching Apple Events

OSErr AEProcessAppleEvent(const EventRecord *theEventRecord);

Getting Data or Descriptor Records Out of Apple Event Parameters and Attributes

OSErr AEGetParamDesc(const AppleEvent *theAppleEvent,AEKeyword theAEKeyword,
DescType desiredType,AEDesc *result);

OSErr AEGetAttributePtr(const AppleEvent *theAppleEvent,AEKeyword theAEKeyword,
DescType desiredType,DescType *typeCode,Ptr dataPtr,Size maximumSize,
Size *actualSize);

Counting the Items in Descriptor Lists

OSErr AECountItems(const AEDescList *theAEDescList,long *theCount);

8-14 Required Apple Events

Getting Items From Descriptor Lists

OSErr AEGetNthPtr(const AEDescList *theAEDescList,long index,DescType desiredType,AEKeyword
*theAEKeyword,DescType *typeCode,Ptr dataPtr,Size maximumSize,Size *actualSize);

Deallocating Memory for Descriptor Records

OSErr AEDisposeDesc(AEDesc *theAEDesc);

Demonstration Program
// ##1

// AppleEvents.c2

// ##3

//4

// This program:5

//6

// • Installs handlers for the required Apple events.7

//8

// • Responds to the receipt of required Apple events by displaying descriptive text in9

// a window opened for that purpose, and by opening simulated document windows as10

// appropriate. These responses result from the user:11

//12

// • Double clicking on the application's icon, or selecting the icon and choosing13

// Open from the Finder's File menu, thus causing the receipt of an Open14

// Application event.15

//16

// • Double clicking on one of the document icons, selecting one or both of the17

// document icons and choosing Open from the Finder's File menu, or dragging one18

// or both of the document icons onto the application's icon, thus causing the19

// receipt of an Open Documents event.20

//21

// • Selecting one or both of the document icons and choosing Print from the22

// Finder's file menu, thus causing the receipt of a Print Documents event and,23

// if the application was not already running, a subsequent Quit Application event.24

//25

// • While the application is running, choosing Shut Down or Restart from the26

// Finder's Special menu, thus causing the receipt of a Quit Application event.27

//28

// The program, which is intended to be run as a built application and not from within29

// CodeWarrior, utilises the following resources:30

//31

// • 'WIND' resources (purgeable) (initially visible) for the descriptive text display32

// window and simulated document windows.33

//34

// • 'MBAR' and 'MENU' resources (preload, non-purgeable).35

//36

// • An 'ALRT' resource, and associated 'DITL' and 'STR#' resources, for displaying37

// error messages (purgeable).38

//39

// • 'ICN#', 'ics#', 'ics4', 'ics8', 'icl4', and 'icl8' resources (that is, an icon40

// family) for the application and for the application's documents. (Purgeable.)41

//42

// • 'FREF' resources for the application and the application's 'TEXT' documents, which43

// link the icons with the file types they represent, and which allow users to launch44

// the application by dragging the document icons to the application icon. (Non-45

// purgeable.)46

//47

// • The application's signature resource (non-purgeable), which enables the Finder to48

// identify and start up the application when the user double clicks the application's49

// document icons.50

//51

// • A 'BNDL' resource (non-purgeable), which groups together the application's52

// signature, icon and 'FREF' resources.53

//54

// • An 'hfdr' resource (purgeable), which provides the customised help balloon for the55

// application icon.56

//57

// • A 'vers' resource (purgeable), which allows users to ascertain the version number58

// of the application.59

//60

// • A 'SIZE' resource with the isHighLevelEventAware, acceptSuspendResumeEvents, and61

// and is32BitCompatible flags set.62

//63

Required Apple Events 8-15

// ##64

65

// ……… includes66

67

#include <Fonts.h>68

#include <Menus.h>69

#include <TextEdit.h>70

#include <Dialogs.h>71

#include <SegLoad.h>72

#include <ToolUtils.h>73

#include <Devices.h>74

#include <AppleEvents.h>75

76

// …… defines77

78

#define mApple 12879

#define mFile 12980

#define iQuit 1181

#define rMenubar 12882

#define rDisplayWindow 12883

#define rDocWindow 12984

#define rErrorAlert 12885

#define rErrorStrings 12886

#define eInstallHandler 187

#define eGetRequiredParam 288

#define eGetDescriptorRecord 389

#define eMissedRequiredParam 490

#define eCannotOpenFile 591

#define eCannotPrintFile 692

#define eCannotOpenWindow 793

#define eMenus 894

// ……… global variables95

96

Boolean gDone;97

WindowPtr gWindowPtr;98

WindowPtr gWindowPtrs[10];99

SInt16 gNumberOfWindows = 0;100

Boolean gApplicationWasOpen = false;101

102

// …… function prototypes103

104

void main (void);105

void doInitManagers (void);106

void doInstallAEHandlers (void);107

void doEvents (EventRecord *);108

void doMouseDown (EventRecord *);109

pascal OSErr doOpenAppEvent (AppleEvent *,AppleEvent *,SInt32);110

pascal OSErr doOpenDocsEvent (AppleEvent *,AppleEvent *,SInt32);111

pascal OSErr doPrintDocsEvent (AppleEvent *,AppleEvent *,SInt32);112

pascal OSErr doQuitAppEvent (AppleEvent *,AppleEvent *,SInt32);113

OSErr hasGotRequiredParams (AppleEvent *);114

Boolean doOpenFile (FSSpec *,SInt32,SInt32);115

Boolean doPrintFile (FSSpec *,SInt32,SInt32);116

void doPrepareToTerminate (void);117

WindowPtr doNewWindow (void);118

void doMenuChoice (SInt32);119

void doAppleMenu (SInt16);120

void doFileMenu (SInt16);121

void doError (SInt16);122

void drawTextString (Str255);123

124

// ### main125

126

void main(void)127

{128

EventRecord eventRec;129

Handle menubarHdl;130

MenuHandle menuHdl;131

132

// …… initialise managers133

134

doInitManagers();135

136

// …… open a window137

138

if(!(gWindowPtr = GetNewWindow(rDisplayWindow,NULL,(WindowPtr) -1)))139

{140

8-16 Required Apple Events

doError(eCannotOpenWindow);141

ExitToShell();142

}143

144

SetPort(gWindowPtr);145

146

TextSize(10);147

148

// …… set up menu bar and menus149

150

if(!(menubarHdl = GetNewMBar(rMenubar)))151

doError(eMenus);152

SetMenuBar(menubarHdl);153

DrawMenuBar();154

155

if(!(menuHdl = GetMenuHandle(mApple)))156

doError(eMenus);157

else158

AppendResMenu(menuHdl,'DRVR');159

160

// ……… install Apple event handlers161

162

doInstallAEHandlers();163

164

// ……… event loop165

166

gDone = false;167

168

while(!gDone)169

{170

if(WaitNextEvent(everyEvent,&eventRec,180,NULL))171

doEvents(&eventRec);172

}173

}174

175

// ### doInitManagers176

177

void doInitManagers(void)178

{179

MaxApplZone();180

MoreMasters();181

182

InitGraf(&qd.thePort);183

InitFonts();184

InitWindows();185

InitMenus();186

TEInit();187

InitDialogs(NULL);188

189

InitCursor();190

FlushEvents(everyEvent,0);191

}192

193

// ## doInstallAEHandlers194

195

void doInstallAEHandlers(void)196

{197

OSErr err;198

199

err=AEInstallEventHandler(kCoreEventClass,kAEOpenApplication,200

(AEEventHandlerUPP) &doOpenAppEvent,0L,false);201

if(err != noErr) doError(eInstallHandler);202

203

err=AEInstallEventHandler(kCoreEventClass,kAEOpenDocuments,204

(AEEventHandlerUPP) &doOpenDocsEvent,0L,false);205

if(err != noErr) doError(eInstallHandler);206

207

err=AEInstallEventHandler(kCoreEventClass,kAEPrintDocuments,208

(AEEventHandlerUPP) &doPrintDocsEvent,0L,false);209

if(err != noErr) doError(eInstallHandler);210

211

err=AEInstallEventHandler(kCoreEventClass,kAEQuitApplication,212

(AEEventHandlerUPP) &doQuitAppEvent,0L,false);213

if(err != noErr) doError(eInstallHandler);214

}215

216

// ### doEvents217

Required Apple Events 8-17

218

void doEvents(EventRecord *eventRecPtr)219

{220

SInt8 charCode;221

222

switch(eventRecPtr->what)223

{224

case kHighLevelEvent:225

AEProcessAppleEvent(eventRecPtr);226

break;227

228

case mouseDown:229

doMouseDown(eventRecPtr);230

break;231

232

case keyDown:233

case autoKey:234

charCode = eventRecPtr->message & charCodeMask;235

if((eventRecPtr->modifiers & cmdKey) != 0)236

{237

doMenuChoice(MenuKey(charCode));238

}239

break;240

241

case updateEvt:242

BeginUpdate((WindowPtr)eventRecPtr->message);243

EndUpdate((WindowPtr)eventRecPtr->message);244

break;245

246

case osEvt:247

HiliteMenu(0);248

break;249

}250

}251

252

// ## doMouseDown253

254

void doMouseDown(EventRecord *eventRecPtr)255

{256

WindowPtr windowPtr;257

SInt16 partCode;258

SInt32 menuChoice;259

260

partCode = FindWindow(eventRecPtr->where,&windowPtr);261

262

switch(partCode)263

{264

case inMenuBar:265

menuChoice = MenuSelect(eventRecPtr->where);266

doMenuChoice(menuChoice);267

break;268

269

case inSysWindow:270

SystemClick(eventRecPtr,windowPtr);271

break;272

273

case inDrag:274

DragWindow(windowPtr,eventRecPtr->where,&qd.screenBits.bounds);275

break;276

}277

}278

279

// ### doOpenAppEvent280

281

pascal OSErr doOpenAppEvent(AppleEvent *appEvent,AppleEvent *reply,SInt32 handlerRefCon)282

{283

OSErr osErr;284

WindowPtr windowPtr;285

SInt32 finalTicks;286

287

gApplicationWasOpen = true;288

289

osErr = hasGotRequiredParams(appEvent);290

291

if(osErr == noErr)292

{293

drawTextString("\pReceived an Apple event: OPEN APPLICATION.");294

8-18 Required Apple Events

drawTextString("\p • Opening an untitled window in reponse.");295

Delay(100,&finalTicks);296

297

windowPtr = doNewWindow();298

SetWTitle(windowPtr,"\pUntitled 1");299

300

return(noErr);301

}302

else303

return(osErr);304

}305

306

// ## doOpenDocsEvent307

308

pascal OSErr doOpenDocsEvent(AppleEvent *appEvent,AppleEvent *reply,SInt32 handlerRefcon)309

{310

FSSpec fileSpec;311

AEDescList docList;312

OSErr osErr, ignoreErr;313

SInt32 index, numberOfItems;314

Size actualSize;315

AEKeyword keyWord;316

DescType returnedType;317

Boolean result;318

319

osErr = AEGetParamDesc(appEvent,keyDirectObject,typeAEList,&docList);320

321

if(osErr == noErr)322

{323

osErr = hasGotRequiredParams(appEvent);324

if(osErr == noErr)325

{326

AECountItems(&docList,&numberOfItems);327

if(osErr == noErr)328

{329

for(index=1;index<=numberOfItems;index++)330

{331

osErr = AEGetNthPtr(&docList,index,typeFSS,&keyWord,&returnedType,332

(Ptr) &fileSpec,sizeof(fileSpec),&actualSize);333

if(osErr == noErr)334

{335

if(!(result = doOpenFile(&fileSpec,index,numberOfItems)))336

doError(eCannotOpenFile);337

}338

else339

doError(eGetDescriptorRecord);340

}341

}342

}343

else344

doError(eMissedRequiredParam);345

346

ignoreErr = AEDisposeDesc(&docList);347

}348

else349

doError(eGetRequiredParam);350

351

return(osErr);352

}353

354

// ### doPrintDocsEvent355

356

pascal OSErr doPrintDocsEvent(AppleEvent *appEvent,AppleEvent *reply,SInt32 handlerRefcon)357

{358

FSSpec fileSpec;359

AEDescList docList;360

OSErr osErr, ignoreErr;361

SInt32 index, numberOfItems;362

Size actualSize;363

AEKeyword keyWord;364

DescType returnedType;365

Boolean result;366

367

osErr = AEGetParamDesc(appEvent,keyDirectObject,typeAEList,&docList);368

369

if(osErr == noErr)370

{371

Required Apple Events 8-19

osErr = hasGotRequiredParams(appEvent);372

if(osErr == noErr)373

{374

AECountItems(&docList,&numberOfItems);375

if(osErr == noErr)376

{377

for(index=1;index<=numberOfItems;index++)378

{379

osErr = AEGetNthPtr(&docList,index,typeFSS,&keyWord,&returnedType,380

(Ptr) &fileSpec,sizeof(fileSpec),&actualSize);381

if(osErr == noErr)382

{383

if(!(result = doPrintFile(&fileSpec,index,numberOfItems)))384

doError(eCannotPrintFile);385

}386

else387

doError(eGetDescriptorRecord);388

}389

}390

}391

else392

doError(eMissedRequiredParam);393

394

ignoreErr = AEDisposeDesc(&docList);395

}396

else397

doError(eGetRequiredParam);398

399

return(osErr);400

}401

402

// ### doQuitAppEvent403

404

pascal OSErr doQuitAppEvent(AppleEvent *appEvent,AppleEvent *reply,SInt32 handlerRefcon)405

{406

OSErr osErr;407

408

osErr = hasGotRequiredParams(appEvent);409

410

if(osErr == noErr)411

{412

doPrepareToTerminate();413

return(noErr);414

}415

else416

return(osErr);417

}418

419

// ### hasGotRequiredParams420

421

OSErr hasGotRequiredParams(AppleEvent *appEvent)422

{423

DescType returnedType;424

Size actualSize;425

OSErr osErr;426

427

osErr = AEGetAttributePtr(appEvent,keyMissedKeywordAttr,typeWildCard,&returnedType,428

NULL,0,&actualSize);429

430

if(osErr == errAEDescNotFound)431

return(noErr);432

else if(osErr == noErr)433

return(errAEParamMissed);434

}435

436

// ### doOpenFile437

438

Boolean doOpenFile(FSSpec *fileSpecPtr,SInt32 index,SInt32 numberOfItems)439

{440

WindowPtr windowPtr;441

SInt32 finalTicks;442

443

gApplicationWasOpen = true;444

445

if(index == 1)446

drawTextString("\pReceived an Apple event: OPEN DOCUMENTS.");447

448

8-20 Required Apple Events

if(numberOfItems == 1)449

{450

drawTextString("\p • The file to open is: ");451

DrawString(fileSpecPtr->name);452

drawTextString("\p • Opening titled window in reponse.");453

Delay(100,&finalTicks);454

}455

else456

{457

if(index == 1)458

{459

drawTextString("\p • The files to open are: ");460

DrawString(fileSpecPtr->name);461

}462

else463

{464

DrawString("\p and ");465

DrawString(fileSpecPtr->name);466

drawTextString("\p • Opening titled windows in reponse.");467

Delay(100,&finalTicks);468

}469

}470

471

if(windowPtr = doNewWindow())472

{473

SetWTitle(windowPtr,fileSpecPtr->name);474

return(true);475

}476

else477

return(false);478

}479

480

// ## doPrintFile481

482

Boolean doPrintFile(FSSpec *fileSpecPtr,SInt32 index,SInt32 numberOfItems)483

{484

WindowPtr windowPtr;485

SInt32 finalTicks;486

487

if(index == 1)488

drawTextString("\pReceived an Apple event: PRINT DOCUMENTS");489

490

if(numberOfItems == 1)491

{492

drawTextString("\p • The file to print is: ");493

DrawString(fileSpecPtr->name);494

windowPtr = doNewWindow();495

SetWTitle(windowPtr,fileSpecPtr->name);496

drawTextString("\p • I would present the Print dialog box first and then print");497

drawTextString("\p the document when the user has made his settings.");498

Delay(100,&finalTicks);499

drawTextString("\p • Assume that I am now printing the document.");500

}501

else502

{503

if(index == 1)504

{505

drawTextString("\p • The first file to print is: ");506

DrawString(fileSpecPtr->name);507

drawTextString("\p I would present the Print dialog box for the first file");508

drawTextString("\p only and use the user's settings to print both files.");509

}510

else511

{512

Delay(200,&finalTicks);513

drawTextString("\p • The second file to print is: ");514

DrawString(fileSpecPtr->name);515

drawTextString("\p I am using the Print dialog box settings used for the");516

drawTextString("\p first file.");517

}518

519

windowPtr = doNewWindow();520

SetWTitle(windowPtr,fileSpecPtr->name);521

Delay(200,&finalTicks);522

drawTextString("\p • Assume that I am now printing the document.");523

Delay(200,&finalTicks);524

}525

Required Apple Events 8-21

526

if(numberOfItems == index)527

{528

if(!gApplicationWasOpen)529

{530

drawTextString("\p Since the application was not already open, I expect to");531

drawTextString("\p receive a QUIT APPLICATION event when I have finished.");532

}533

else534

{535

drawTextString("\p Since the application was already open, I do NOT expect");536

drawTextString("\p to receive a QUIT APPLICATION event when I have finished.");537

}538

539

Delay(500,&finalTicks);540

drawTextString("\p • Finished print job.");541

}542

543

DisposeWindow(windowPtr);544

return(true);545

}546

547

// ### doPrepareToTerminate548

549

void doPrepareToTerminate(void)550

{551

SInt32 finalTicks;552

553

drawTextString("\pReceived an Apple event: QUIT APPLICATION");554

555

if(gApplicationWasOpen)556

{557

drawTextString("\p • I would now ask the user to save any unsaved files before");558

drawTextString("\p terminating myself in reponse to the event.");559

drawTextString("\p • Click the mouse when ready to terminate.");560

while(!Button()) ;561

}562

else563

{564

drawTextString("\p • Terminating myself in response");565

Delay(300,&finalTicks);566

}567

568

// If the user did not click the Cancel button in a Save dialog box:569

570

gDone = true;571

}572

573

// ## doNewWindow574

575

WindowPtr doNewWindow(void)576

{577

if(!(gWindowPtrs[gNumberOfWindows] = GetNewWindow(rDocWindow,NULL,(WindowPtr) -1)))578

doError(eCannotOpenWindow);579

580

gNumberOfWindows++;581

582

return(gWindowPtrs[gNumberOfWindows -1]);583

}584

585

// ### doMenuChoice586

587

void doMenuChoice(SInt32 menuChoice)588

{589

SInt16 menuID, menuItem;590

591

menuID =HiWord(menuChoice);592

menuItem=LoWord(menuChoice);593

594

if(menuID == 0)595

return;596

597

switch(menuID)598

{599

case mApple:600

doAppleMenu(menuItem);601

break;602

8-22 Required Apple Events

603

case mFile:604

doFileMenu(menuItem);605

break;606

}607

608

HiliteMenu(0);609

}610

611

// ## doAppleMenu612

613

void doAppleMenu(SInt16 menuItem)614

{615

Str255 itemName;616

SInt16 daDriverRefNum;617

618

GetMenuItemText(GetMenuHandle(mApple),menuItem,itemName);619

daDriverRefNum = OpenDeskAcc(itemName);620

}621

622

// ### doFileMenu623

624

void doFileMenu(SInt16 menuItem)625

{626

if(menuItem == iQuit)627

gDone = true;628

}629

630

// ## doError631

632

void doError(SInt16 errorType)633

{634

Str255 errorString;635

636

SetCursor(&qd.arrow);637

638

GetIndString(errorString,rErrorStrings,errorType);639

ParamText(errorString,NULL,NULL,NULL);640

if(errorType < 7)641

CautionAlert(rErrorAlert,NULL);642

else643

{644

StopAlert(rErrorAlert,NULL);645

ExitToShell();646

}647

}648

649

// ### drawTextString650

651

void drawTextString(Str255 eventString)652

{653

RgnHandle tempRegion;654

655

tempRegion = NewRgn();656

657

ScrollRect(&gWindowPtr->portRect,0,-15,tempRegion);658

DisposeRgn(tempRegion);659

660

MoveTo(8,176);661

DrawString(eventString);662

}663

664

// ##665

Demonstration Program Comments
This demonstration is not intended to be run from within CodeWarrior. Accordingly, a built
application titled AppleEvents is provided. The built application, together with two
simulated 'TEXT' documents (Document A and Document B) which have the AppleEvents application
as their creator, are located in the chap08cw_demo folder.

Required Apple Events 8-23

The demonstration requires that the user open the window containing the AppleEvents
application in order to access the Apple Events application icon and two document icons.

Using all of the methods available in the Finder (that is, double clicking the icons, dragging
document icons to the application icon, selecting the icons and choosing Open and Print from
the Finder's File menu) the user should launch the application, open the simulated documents
and print the documents, noting the descriptive text printed in the non-document window in
response to the receipt of the resulting Apple events. The user should also choose Restart or
Shut Down from the Finder's Special menu while the application is running, also noting the
displayed text resulting from receipt of the Quit Application event. Opening and printing
should be attempted when the application is already running and when the application is not
running.

Although not related to the required Apple events aspects of the program, the following
aspects of the demonstration may also be investigated:

• The help balloon for the application icon. (The 'hfdr' resource refers.)

• The version information for the application in the Finder's Get Info… window. (The
'vers' resource refers.)

#define

Lines 79-94 establish constants relating to menu, alert box, error message string, and window
resources, menus IDs and menu item numbers.

Global Variables

gDone controls program termination. gWindowPtr will be assigned the pointer to the text
display window. gWindowPtrs[] will be assigned pointers to the document windows.
gNumberOfWindows is used to increment the gWindowPtrs[] array element after each document
window is created.

gApplicationWasOpen is used to control the manner of program termination when a Quit
Application event is received, depending on whether the event followed a Print Documents event
or resulted from the user choosing Restart of Shut Down from the Finder's Special menu.

main

The main function initialises the system software managers (Line 135), opens the text display
window (Line 139), makes that window the current graphics port (Line 145), sets the text size
(Line 147) and sets up the menus (Lines 151-159). Note that here, and in other areas of the
program, an error will cause the application-defined error-handling function doError to be
called.

At Line 163, the required Apple event handlers are installed before the main event loop is
entered (Lines 167-173).

doInstallAEHandlers

doInstallAEHandlers installs the handlers for the four required Apple events in the
application's Apple event dispatch table.

doEvents

doEvents switches according to the event type received.

At Line 225, the constant kHighLevelEvent (defined in EPPC.h) accommodates the receipt of a
high-level event, in which case AEProcessAppleEvent is called. (AEProcessAppleEvent looks in
the application's Apple event dispatch table for a match to the event class and event ID
contained in, respectively, the event record's message and where fields, and calls the
appropriate handler.)

doMouseDown

doMouseDown performs such mouse-down processing as is necessary to support the demonstration
aspects of the program.

doOpenAppEvent

doOpenAppEvent is the handler for the Open Application event.

8-24 Required Apple Events

At line 288, the global variable gApplicationWasOpen, which controls the manner of program
termination when a Quit Application event is received, is set to true. (This line is required
for demonstration program purposes only.)

Line 290 calls the application-defined function hasGotRequiredParams to check whether the
Apple event contains any required parameters. If so, the handler returns an error because, by
definition, the Open Application event should not contain any required parameters.

If noErr is returned by hasGotRequiredParams, the handler does what the user expects the
application to do when it is opened, that is, it opens an untitled document window (Lines 298-
299). The handler then returns noErr (Line 301).

If errAEParamMissed is returned by hasGotRequiredParams, this is returned by the handler
(Lines 303-304)

Lines 294-295 simply print some text in the text window for demonstration program purposes.

doOpenDocsEvent

doOpenDocsEvent is the handler for the Open Documents event.

At line 320, AEGetParamDesc is called to get the direct parameter (specified in the
keyDirectObject keyword) out of the Apple event. The constant typeAEList specifies the
descriptor type as a list of descriptor records. The descriptor list is received by the
docList variable.

Before proceeding further, the handler checks that it has received all the required parameters
by calling the application-defined function hasGotRequiredParams (Line 324).

Having retrieved the descriptor list from the Apple event, the handler calls AECountItems to
count the number of descriptors in the list (Line 327).

Using the returned number as an index, AEGetNthPtr is called (Line 332) to get the data of
each descriptor record in the list. In the AEGetNthPtr call, the parameter typeFSS specifies
the desired type of the resulting data, causing the Apple Event Manager to coerce the data in
the descriptor record to a file system specification record. Note also that keyWord receives
the keyword of the specified descriptor record, returnedType receives the descriptor type,
fileSpec receives a pointer to the file system specification record, sizeof(fileSpec)
establishes the length, in bytes, of the data returned, and actualSize receives the actual
length, in bytes, of the data for the descriptor record.

After extracting the file system specification record describing the document to open, the
handler calls the application-defined function for opening files (Line 336). (In a real
application, that function would typically be the same as that invoked when the user chooses
Open from the application's File menu.)

If the call to AEGetNthPtr does not return noErr, Line 340 calls the application's error
handler. (AEGetNthPtr will return an error code if there was insufficient room in the heap,
the data could not be coerced, the descriptor record was not found, the descriptor was of the
wrong type or the descriptor record was not a valid descriptor record.)

If the call to hasGotRequiredParams does not return noErr, Line 345 calls the application's
error handler. (hasGotRequiredParams returns noErr only if you got all the required
parameters.)

At Line 347, and since the handler has no further requirement for the data in the descriptor
list, AEDisposeDesc is called to dispose of the descriptor list.

If the call to AEGetParamDesc does not return noErr, Line 350 calls the application's error
handler. (AEGetParamDesc will return an error code for much the same reasons as will
AEGetNthPtr.)

doPrintDocsEvent

doPrintDocsEvent is the handler for the Print Documents event.

The code is identical to that for the Open Documents event handler doOpenDocs except that, at
Line 384, the application-defined function for printing files is called rather than the
function for simply opening files.

doQuitAppEvent

doQuitAppEvent is the handler for the Quit Application event.

Required Apple Events 8-25

After checking that it has received all the required parameters by calling the application-
defined function hasGotRequiredParams (Line 409), the handler calls the application-defined
function doPrepareToTerminate (Line 413).

hasGotRequiredParams

hasGotRequiredParams is the application-defined function called by doOpenAppEvent to confirm
that the event passed to it contains no required parameters, and by the other handlers to
check that they have received all the required parameters.

The first parameter in the call to AEGetAttributePtr (Line 428) is a pointer to the Apple
event in question. The second parameter is the Apple event keyword; in this case the constant
keyMissedKeywordAttr is specified, meaning the first required parameter remaining in the
event. The third parameter specifies the descriptor type; in this case the constant
typeWildCard is specified, meaning any descriptor type. The fourth parameter receives the
descriptor type of the returned data. The fifth parameter is a pointer to the data buffer
which stores the returned data. The sixth parameter is the maximum length of the data buffer
to be returned. Since we do not need the data itself, these parameters are set to NULL and 0
respectively. The last parameter receives the actual length, in bytes, of the data buffer for
the attribute.

AEGetAttributePtr returns the result code errAEDescNotFound if the specified descriptor type
(typeWildCard, that is, any descriptor type) is not found, meaning that the handler extracted
all the required parameters. In this event, hasGotRequiredParams returns noErr (Lines 431-
432).

If AEGetAttributePtr returns noErr (Line 433), the handler has not extracted all of the
required parameters, in which case, the handler should return errAEParamMissed and not handle
the event. Accordingly, errAEParamMissed is returned to the handler (and, in turn, by the
handler) if noErr is returned by AEGetAttributePtr .

doOpenFile

doOpenFile takes the file system specification record and opens a window with the filename
contained in that record repeated in the window's title bar (Lines 472-478). (The rest of the
doOpenFile code is related to drawing explanatory text in the text window.)

In a real application, this is the function that should open files as a result of, firstly,
the receipt of the Open Documents event and, secondly, the user choosing Open from the
application's File menu and then choosing a file or files from the resulting Open dialog box.

doPrintFile

doPrintFile is the function which, in a real application, would take the file system
specification record passed to it from the Print Documents event handler, extract the filename
and control the printing of that file. (In this demonstration, most of the doPrintFile code
is related to drawing explanatory text in the text window.)

If your application can interact with the user, it should open windows for the documents,
display a print Job dialog for the first document, and use the settings entered by the user
for the first document to print all documents.

Note that, if your application was not running when the user selected a document icon and
chose Print from the Finder's File menu, the Finder will send a Quit Application event
following the print operation.

doPrepareToTerminate

doPrepareToTerminate is the function called by the Quit Application event handler. In this
demonstration, gDone will be set to true (Line 571), and the program will thus terminate
immediately, if the Quit Application event resulted from the user initiating a print operation
from the Finder when the application was not running.

If the application was running (Line 556) and the Quit Application event thus arose from the
user selecting Restart or Shut Down from the Finder's File menu, the demonstration waits for a
button click (Line 561) before setting gDone to true. (In a real application, and where
appropriate, this area of the code would invoke dialog boxes to ascertain whether the user
wished to save any changed documents before closing down.)

Note that, when your application is ready to quit, it must call ExitToShell from the main
event loop, not from the handlers for the Quit Application event. Your application should
quit only after the handler returns noErr as its function result.

8-26 Required Apple Events

doNewWindow

doNewWindow opens document windows in response to calls from the Open Application and Open
Documents event handlers.

doMenuChoice, doAppleMenu, doFileMenu,
doError, and drawTextString

doMenuChoice, doAppleMenu, and doFileMenu handle menu selections. gDone is set to true when
the user selects Quit from the application's File menu (Line 628).

doError handles errors, displaying an alert box with descriptive text and, where necessary
terminating the program.

drawTextString draws scrolling explanatory text in the text window as each event is received.

Creating Finder Interface Resources Using ResEdit

The following describes the creation of the icon family, the 'BNDL' resource, the 'FREF' resources, the
signature resource, the 'vers' resource, and the 'hfdr' resource for the AppleEvents demonstration
program using ResEdit. (As stated at Chapter 2 — LowLevel and Operating System Events, 'SIZE'
resources are created automatically by CodeWarrior. As stated at Chapter 7 — Finder Interface,
missing application name string resources and application missing message string resources are
adressed at, respectively, Chapter — 14 Files and Chapter 15 — More on Resources.)

Preliminaries - Setting the Creator and Type
in CodeWarrior

With the AppleEvents.µ project open in CodeWarrior, choose Edit/Project Settings/Project/68K Project,
enter KJBB at the Creator item and APPL at the Type item.

Creating the Icon Family

To create the icon family resources for AppleEvents, proceed as follows.

Double-click the AppleEvents.µ.rsrc icon to start ResEdit and open the existing AppleEvents.µ.rsrc file.
Choose Resource/Create New Resource. In the resulting dialog, select ICN# and click the OK button.
The ICN#s from AppleEvents.µ.rsrc window opens, followed by the Icon Family ID = 128 ... window.

Click the icl8 box at the right and use the icon editor at left to draw a large 8-bit colour icon for the
application. Then drag the thumbnail in the icl8 box at right to the other seven boxes to automatically
create the remaining icons in the family, together with the masks. Choose Resource/GetResource Info
and click the Purgeable checkbox in the Info for icl8 128 ... window. Then click the close box of this
window, followed by the Yes button in the resulting dialog, to make all of the icon resources in the
family purgeable. Finally, close the Icon Family ID = 128 ... window.

Choose Resource/Create New Resource again. The Icon Family ID = 129 ... window opens. Repeat
the above process to create an icon family for a text document. Close the Icon Family ID = 129 ...
window, followed by the ICN#s from AppleEvents.µ.rsrc window.

The AppleEvents.µ.rsrc window now contains icons representing the icon family resources just
created.

Creating the 'BNDL' , 'FREF' , and Signature Resources

To create the 'BNDL', 'FREF', and signature resources for AppleEvents, proceed as follows.

Choose Resource/Create New Resource. In the resulting dialog, select BNDL and click OK. The BNDLs
from AppleEvents.µ.rsrc window opens, followed by the BNDL ID = 128 ... window.

Required Apple Events 8-27

Choose BNDL/Extended View. Enter the application's signature (KJBB) in the Signature: item at top.
Enter 1995, K. J. Bricknell at the ©String: item. (Relate these last two entries to the example signature
resource in Rez input format at Chapter 7.)

Choose Resource/Create New File Type. A row is added to the FREF/Finder Icons list. Enter APPL in
the Type column. Click in the icon family column and then choose BNDL/Choose Icon. In the resulting
dialog, click on icon 128, then click OK. The icon family appears in the icon family column and the
family resource ID appears in the resID column.

Choose Resource/Create New File Type. A second row is added to the FREF/Finder Icons list. Repeat
the previous process, except enter TEXT in the Type column and assign the icon family with ID 129.
(Before closing the BNDL ID = 128 ... window, relate the rows and columns in the BNDL ID = 128 ...
window to the example 'FREF' and 'BNDL' resources in Rez input format, and to Fig 2, at Chapter 7.)

Close the BNDL ID = 128 ... window. Close the BNDLs from AppleEvents.µ.rsrc window. Note the
BNDL, FREF and KJBB icons (the latter represents the signature resource) in the AppleEvents.µ.rsrc
window. Close the AppleEvents.µ.rsrc window, saving the file.

In CodeWarrior, compile/link/run AppleEvents.µ. The custom application icon will appear in the
AppleEvents folder window. Open the application AppleEvents in ResEdit and choose File/Get Info
for AppleEvents. The Info for AppleEvents window opens. Note that the Has BNDL checkbox is
checked and that the Inited checkbox is not checked. Close the Info for AppleEvents window, restart
the computer, and repeat the previous procedure. The Inited checkbox is now checked.

Sometimes, it may be necessary to rebuild the desktop database (by holding down the Option and
Command keys during startup) to cause the custom application icon to appear.

As an aside, the two document files used by the AppleEvents demonstration program were created
using SimpleText. Both files were opened in ResEdit, File/Get Info for ... was chosen, and the file's
creator was changed to KJBB.

The 'vers' Resource

Double-click the AppleEvents.µ.rsrc icon to start ResEdit and open the existing AppleEvents.µ.rsrc file.
The AppleEvents.µ.rsrc window opens.

Double-click the vers icon. The verss from AppleEvents.µ.rsrc window opens. A 'vers' resources
with ID 1 appears in the list. Double-click that list entry. The vers ID = 1 from AppleEvents.µ.rsrc
window opens.

The following relates the first example 'vers' resource in Rez input format in Chapter 7 — Finder
Interface to the ResEdit display and interface:

resource 'vers' This was established when the resource was created by choosing Resource/Create
New Resource. A small dialog opened, the item vers was clicked, and the dialog's
OK button was clicked.

1, 1 is the 'vers' resource ID. Choose Resource/Get Resource Info. The Info for
vers 1 ... window opens. Note the editable text item titled ID:. This is where you
set the 'vers' resource ID.

purgeable) While the Info for vers 1 ... window is open, note that the Purgeable checkbox is
checked. Close the Info for vers 1 ... window.

 0x01, Minor revision level. Note the first editable text item against Version number:.

 0x00, Minor revision level. Note the second and third editable text items against Version
number:.

 release, Development stage. Note the pop-up menu Release:.

 0x00, Prerelease revision level. Note the editable text item Non-release:.

 verUS, Region Code. Note the pop-up menu Country Code:.

8-28 Required Apple Events

 "1.0", Version number. Note the editable text item Short version string:.

 "1.1 (US) ... Version message. Note the editable text item Long version string (visible in Get
Info):.

Close the vers ID = 1 from ... window. Close the verss from AppleEvents.µ.rsrc window.

Creating the 'hfdr' Resource

ResEdit does not support the creation of 'hfdr' resources; however, a work-around is available. To
create the 'hfdr' resource for the AppleEvents demonstration, proceed as follows.

Firstly, copy a 'hfdr' resource from another application into the AppleEvents.µ.rsrc window and
double-click the resulting hfdr icon. The hfdrs from AppleEvents.µ.rsrc window opens. One 'hfdr'
resource appears in the list. Note that the resource ID is -5696. Click the list entry and choose
Resource/Open Using Hex Editor. The hfdr ID = -5696 from ... window opens. The first three rows in
the window will be similar to the following:

000000 0002 0000 0000 0000 ########
000008 0000 0001 0096 0001 ########
000010 7E55 7365 2074 6865 éUse the

In the hexadecimal display (the four columns in the centre), highlight and cut everything after 7E ,
leaving the following:

000000 0002 0000 0000 0000 ########
000008 0000 0001 0096 0001 ########
000010 7E é

In the ASCII display (the column at the right), type in the following after the é:

The AppleEvents application demonstrates the required Apple events (Open
Application, Open Documents, Print Documents and Quit Application).

There are 141 characters in this text (8D in hexadecimal). Accordingly, in the hexadecimal display,
change 7E to 8D . The first three rows in the window should appear as follows:

000000 0002 0000 0000 0000 ########
000008 0000 0001 0096 0001 ########
000010 8D54 6865 2041 7070 éThe App

Close the hfdr ID = -5696 from ... window. Close the hfdrs from AppleEvents.µ.rsrc window. Close
the AppleEvents.µ.rsrc window, saving the file.

	Introduction
	Apple Events
	Required Apple Events

	Apple Event Attributes and Parameters
	Apple Event Attributes
	Event Class
	Event ID
	Target Application

	Apple Event Parameters
	Direct Parameters
	Additional Parameters
	Required and Optional Parameters

	Interpreting Apple Event Attributes and Parameters

	Data Structures Within Apple Events
	Descriptor Records
	Address Descriptor Record

	Keyword-Specified Descriptor Records
	Descriptor Lists, AE Records, and AppleEvent Records
	Descriptor Lists
	AE Record
	Apple Event Record
	Passing Descriptor Lists, AE Records and Apple Event Records to Apple Event Manager Functions

	Example Complete Apple Event

	Handling Apple Events
	Apple Event Handlers
	Extracting and Checking Data
	Interacting With the User
	Performing the Requested Action and Returning a Result
	Disposing of Copies of Descriptor Records

	Required Apple Events - Contents and Required Action
	Main Apple Event Manager Constants, Data Types, and Routines
Relevant to Required Apple Events
	Demonstration Program
	Demonstration Program Comments
	Creating Finder Interface Resources Using ResEdit
	Preliminaries - Setting the Creator and Type in CodeWarrior
	Creating the Icon Family
	Creating the 'BNDL' , 'FREF' , and Signature Resources
	The 'vers' Resource
	Creating the 'hfdr' Resource

