
More On Resources 15-1

15Version 1.1

MORE ON RESOURCES
Includes Demonstration Program MoreResources

Introduction

Chapter 1 — System Software, Memory, and Resources covered the basics of creating standard
resources for an application's resource file and with reading in standard resources from application
files and the System file. In addition, the demonstration programs in preceding chapters have all
involved the reading in of standard resources from those files.

This chapter is concerned with aspects of resources not covered at Chapter 1, including search paths,
detaching and copying resources, creating, opening, and closing resource files, and reading from and
writing to resource files. In addition, the accompanying demonstration program demonstrates the
creation of custom resources, together with reading such resources from, and writing them to, the
resource forks of files other than application and System files.

Search Path for Resources

Preamble

When your application uses a Resource Manager routine to read, or perform an operation on, a
resource, the Resource Manager follows a defined search path to find the resource. The different files
whose resource forks may constitute the search path are therefore of some relevance. The following
summarises the typical locations of resources used by an application:

Resource Fork of: Typical Resources Therein Comments
System file Sounds, icons, cursors, and other

elements available for use by all
applications.
Code resources which manage user
interface elements such as menus,
controls and windows.

On startup, the system software calls
InitResources to initialise the Resource
Manager, which creates a special heap zone
within the system heap and builds a resource map
which points to ROM-resident resources. The
Resource Manager then opens the resource fork of
the System file and reads its resource map into
memory.

Application file Descriptions of menus, windows,
controls, icons, and other elements.
Static data such as text used in dialog
boxes or help balloons.

When a user opens an application, system
software automatically opens the application's
resource fork.

Application's
preferences file

Data which encodes the user's global
preferences for the application.

An application should typically open the
preferences file at application launch, and leave it
open.

Application's
document file

Data which defines characteristics
specific only to this document, such as
its window's last size and location.

When an application opens a document file, it
should typically opens the file's resource fork as
well as its data fork.

15-2 More On Resources

Current Resource File

The first file whose resource fork is searched is called the current resource file. Whenever your
application opens the resource fork of a file, that file becomes the current resource file.1 Thus the
current resource file usually corresponds to the file whose resource fork was opened most recently.

Most Resource Manager routines assume that the current resource file is the file on which they should
operate or, in the case of a search, the file in which to begin the search.

Default Search Order

During its search for a resource, if the Resource Manager cannot find the resource in the current
resource file, it continues searching until it either finds the resource or has searched all files in the
search path.

Specifically, when the Resource Manager searches for a resource, it normally looks first in the resource
map in memory of the last resource fork your application opened. If the Resource Manager does not
find the resource there, it continues to search the resource maps of each resource open to your
application in reverse order of opening. After looking in the resource maps of the resource files your
application has opened, the Resource Manager searches your application's resource map. If it does not
find the resource there, it searches the System file's resource map.

Implications of the Default Search Order

The implications of this search order are that it allows your application to:

• Access resources defined in the System file.

• Override resources defined in the System file.

• Override application-defined resources with document-specific resources.

• Share a single resource amongst several files by storing it in the application's resource fork.

Setting the Current Resource File To Dictate the Search Order

Although you can take advantage of the Resource Manager's search order to find a particular resource,
your application should generally set the current resource file to the file containing the desired resource
before reading and writing resource data. This ensures that that file will be searched first, thus possibly
obviating unnecessary searches of other files.

UseResFile is used to set the current resource file. Note that UseResFile takes as its single parameter a
file reference number, which is a unique number identifying an access path to the resource fork. The
Resource Manager assigns a resource file a file reference number when it opens that file. (Your
application should keep track of the file reference numbers of all resource files it opens.) CurResFile
may be used to get the file reference number of the current resource file.

Restricting the Search to the Current Resource File

The search path may be restricted to the current resource file by using Resource Manager routines
(such as Get1Resource) which look only in the current resource file's resource map when searching for a
specific resource.

1The resource fork of a file is also called the resource file because, in some respects, you can treat it as if it were a separate file.

More On Resources 15-3

Detaching and Copying Resources

When you have finished using a resource, you typically call ReleaseResource, which releases the
memory associated with that resource and sets the handle's master pointer to NULL, thus making your
application's handle to the resource invalid. If the application needs the resource later, it must get a
valid handle to the resource by reading the resource into memory again using a routine such as
GetResource.

Your application can use DetachResource to replace a resource's handle in the resource map with NULL
without releasing the associated memory. DetachResource may thus be used when you want your
application to access the resource's data directly, without the aid of the Resource Manager, or when
you need to pass the handle to a routine which does not accept a resource handle. For example, the
AddResource routine, which makes arbitrary data in memory into a resource, requires a handle to data,
not a handle to a resource.

DetachResource is useful when you want to copy a resource. The procedure is to read in the resource
using GetResource, detach the resource to disassociate it from its resource file, and then copy the
resource to a destination file using AddResource.

Creating, Opening and Closing Resource Forks

Opening an Application's Resource Fork

The system software automatically opens your application's resource fork at application launch. Your
application should simply call CurResFile early in its initialisation procedure to save the file reference
number for the application's resource fork.

Creating and Opening a Resource Fork

Creating a Resource Fork

To save resources to the resource fork of a file, you must first create the resource fork (if it does not
already exist) and obtain a file reference number for it. You use FSpCreateResFile to create a resource
fork. FSpCreateResFile requires four parameters: a file system specification record, the signature of the
application creating the file, the file type, and the script code for the file. The effect of
FSpCreateResFile varies as follows:

• If the file specified by the file system specification record does not already exist (that is, the file
has neither a data fork nor a resource fork), FSpCreateResFile:

• Creates a file with an empty resource fork and resource map.

• Sets the creator, type, and script code fields of the file's catalog information record to the
specified values.

• If the data fork of the file specified by the file system specification record already exists but the
file has a zero-length resource fork, FSpCreateResFile:

• Creates an empty resource fork and resource map.

• Changes the creator, type, and script code fields of the catalog information record of the
file to the specified values.

• If the file specified by the file system specification record already exists and includes a resource
fork with a resource map, FSpCreateResFile does nothing, and ResError returns an appropriate
result code.

15-4 More On Resources

Opening a Resource Fork

After creating a resource fork, and before attempting to write to it, you must open it using
FSpOpenResFile. FSpOpenResFile returns a file reference number2 which, as previously stated, may be
used to change or limit the Resource Manager's search order.

When you open a resource fork, the Resource Manager resets the search path so that the file whose
resource fork you just opened becomes the current resource file.

After opening a resource fork, you can use Resource Manager routines to write resources to it.3

Closing a Resource Fork

When you are finished using a resource fork that your application explicitly opened, you should close
it using CloseResFile. Note that the Resource Manager automatically closes any resource forks opened
by your application that are still open when your application calls ExitToShell.

Reading and Manipulating Resources

The Resource Manager provides a number of routines which read resources from a resource fork.
Depending on which routine is used, you specify the resource to be read by either its resource type and
resource ID or its resource type and resource name.

Reading From the Resource Map Without Loading the Resource

Those Resource Manager routines which return handles to resources normally read the resource data
into memory if it is not already there. Sometimes, however, you may want to read, say, resource types
and attributes from the resource map without reading the resource data into memory. Calling
SetResLoad with the load parameter set to false causes subsequent calls to those routines which return
handles to resources to not load the resource data to memory. (To read the resource data into memory
after a call to SetResLoad with the load parameter set to false, call LoadResource.)

If you call SetResLoad with the load parameter set to false, be sure to call it again with the parameter
set to true as soon as possible. Other parts of the system software that call the Resource Manager rely
on the default setting (that is, the load parameter set to true), and some routines will not work properly
if resources are not loaded automatically.

Indexing Through Resources

The Resource Manager provides routines which let you index through all resources of a given type (for
example, using CountResources and GetIndResource). This can be useful when you want to read all
resources of a given type.

Writing Resources

After opening a resource fork, you can write resources to it. You can write resources only to the current
resource file.

To specify the data for a new resource, you usually use AddResource, which creates a new entry for the
resource in the resource map in memory (but not on the disk) and sets the entry's location to refer to the
resource's data. UpdateResFile or WriteResFile may then be used to write the resource to disk. Note
that AddResource always adds the resource to the resource map in memory which corresponds to the

2Note that, although the file reference number for the data fork and the resource fork usually match, you should not assume that this is always
the case.
3It is possible to write to the resource fork using File Manager routines. However, in general, you should always use Resource Manager
routines.

More On Resources 15-5

current resource file. For this reason, you usually need to set the current resource file to the desired file
before calling AddResource.

If you change a resource that is referenced through the resource map in memory, you use
ChangedResource to set the resChanged attribute of that resource's resource map entry.
ChangedResource reserves enough disk space to contain the changed resource. Immediately after
calling ChangedResource, you should call UpdateResFile or WriteResFile to write the changed resource
data to disk.

The difference between UpdateResFile and WriteResFile is as follows:

• UpdateResFile writes those resources which have been added or changed to disk. It also writes
the entire resource map to disk, overwriting its previous contents.

• WriteResFile writes only the resource data of a single resource to disk and does not update the
resource's entry in the resource map on disk.

Care with Purgeable Resources

Most applications do not make resources purgeable. However, if you are changing purgeable
resources, you should use the Memory Manager routine HNoPurge to ensure that the Resource Manager
does not purge the resource while your application is in the process of changing it.

Partial Resources

Some resources, such as 'snd ' and 'sfnt' resources, can be too large to fit into available memory.
ReadPartialResource and WritePartialResource allow you to read a portion of the resource into
memory or to alter a section of the resource while it is still on disk.

Preferences Files

Many applications allow the user to alter various settings to control the operation or configuration of
the application. You can create a preferences file in which to record user preferences, and your
application can retrieve the information in that file when the application is launched. Preferences
information should be saved as a custom resource to the resource fork of the preferences file.

In deciding how to structure your preferences file, it is important to distinguish document-specific
settings from application-specific settings. Some user-specifiable settings affect only a particular
document and should, therefore, be saved to the document file's resource fork. Other settings are not
specific to a particular document. You could store such settings in the application's resource fork, but it
is generally better to store them in a separate preferences file, the main reason being to avoid problems
which can arise if the application is located on a server volume.

The Operating System provides a special folder in the System Folder, called Preferences, where you can
store the preferences file.

Main Resource Manager Constants, Data Types and Routines

Constants

Resource Attributes

resSysHeap = 64 System or application heap?
resPurgeable = 32 Purgeable resource?
resLocked = 16 Load it in locked?
resProtected = 8 Protected?
resPreload = 4 Load in on OpenResFile?

15-6 More On Resources

resChanged = 2 Resource changed?

Data Types

typedef unsigned long FourCharCode;
typedef FourCharCode ResType;

Routines

Initialising the Resource Manager

short InitResources(void);

Checking for Errors

short ResError(void);l

Creating an Empty Resource Fork

void FSpCreateResFile(const FSSpec *spec,OSType creator,OSType fileType,ScriptCode
scriptTag);

Opening Resource Forks

short FSpOpenResFile(const FSSpec *spec,SignedByte permission);

Getting and Setting the Current Resource File

void UseResFile(short refNum);
short CurResFile(void);
short HomeResFile(Handle theResource);

Reading Resources Into Memory

Handle GetResource(ResType theType,short theID);
Handle Get1Resource(ResType theType,short theID);
Handle GetNamedResource(ResType theType,ConstStr255Param name);
Handle Get1NamedResource(ResType theType,ConstStr255Param name);
void SetResLoad(Boolean load);
void LoadResource(Handle theResource);

Getting and Setting Resource Information

void GetResInfo(Handle theResource,short *theID,ResType *theType,Str255 name);
void SetResInfo(Handle theResource,short theID,ConstStr255Param name);
short GetResAttrs(Handle theResource);
void SetResAttrs(Handle theResource,short attrs);

Modifying Resources

void ChangedResource(Handle theResource);
void AddResource(Handle theResource,ResType theType,short theID,ConstStr255Param name);

Writing to Resource Forks

void UpdateResFile(short refNum);
void WriteResource(Handle theResource);

Getting a Unique Resource ID

short UniqueID(ResType theType);
short Unique1ID(ResType theType);

Counting and Listing Resource Types

short CountResources(ResType theType);
short Count1Resources(ResType theType);
Handle GetIndResource(ResType theType,short index);
Handle Get1IndResource(ResType theType,short index);
short CountTypes(void);
short Count1Types(void);

More On Resources 15-7

void GetIndType(ResType *theType,short index);
void Get1IndType(ResType *theType,short index);

Getting Resource Sizes

long GetResourceSizeOnDisk(Handle theResource);
long GetMaxResourceSize(Handle theResource);

Disposing of Resources and Closing Resource Forks

void ReleaseResource(Handle theResource);
void DetachResource(Handle theResource);
void RemoveResource(Handle theResource);
void CloseResFile(short refNum);

Getting and Setting Resource Fork Attributes

short GetResFileAttrs(short refNum);
void SetResFileAttrs(short refNum,short attrs);

Demonstration Program
// ##1

// MoreResources.c2

// ##3

//4

// This program uses custom resources to:5

//6

// • Store application preferences in the resource fork of a preferences file, and also7

// to assist in the initial creation of the preferences file.8

//9

// • Store,in the resource fork of a document file, the user state and current state of10

// the window associated with the document.11

//12

// • Store, in the resource fork of a document file, the width and height of the13

// printable area of the paper size chosen in the print Style dialog box.14

//15

// The program utilises the following standard resources:16

//17

// • An 'MBAR' resource, and 'MENU' resources for Apple, File, Edit and Demonstration18

// menus (preload, non-purgeable).19

//20

// • A 'WIND' resource (purgeable) (initially invisible).21

//22

// • An 'ALRT' resource (purgeable) and associated 'DITL' resource (purgeable)23

// associated with the display of error messages.24

//25

// • A 'DLOG' resource (purgeable) and associated 'DITL' resource (purgeable) associated26

// with the display of, and user modification of, current application preferences.27

//28

// • A 'STR#' resource (purgeable) containing the required name of the preferences file29

// created by the program.30

//31

// • A 'STR ' resource (purgeable) containing the application-missing string, which is32

// copied to the resource fork of the preferences file.33

//34

// • A 'SIZE' resource with the acceptSuspendResumeEvents and is 32BitCompatible flags35

// set36

//37

// The program utilises the following custom resources:38

//39

// • A 'PrFn' (preferences) resource comprising three boolean values, which is located40

// in the program's resource file, which contains default preference values, and which41

// is copied to the resource fork of a preferences file created when the program is42

// run for the first time. Thereafter, the 'PrFn' resource in the preferences file43

// is used for the storage and retrieval of application preferences set by the user.44

//45

// • A 'WiSt' (window state) resource, which is created in the resource fork of the46

// document file used by the program, and which is used to store the associated47

// window's user state rectangle (a Rect value) and zoom state (a Boolean value).48

//49

// • A 'PrAr' (printable area) resource, which is created in the resource fork of the50

// document file used by the program, and which is used to store the printable width51

15-8 More On Resources

// and height of the paper size chosen in the print Style dialog box.52

//53

// ##54

55

// ……… includes56

57

#include <Fonts.h>58

#include <Menus.h>59

#include <TextEdit.h>60

#include <Dialogs.h>61

#include <SegLoad.h>62

#include <ToolUtils.h>63

#include <Devices.h>64

#include <Resources.h>65

#include <StandardFile.h>66

#include <Printing.h>67

#include <Folders.h>68

69

// …… defines70

71

#define mApple 12872

#define mFile 12973

#define iOpen 274

#define iClose 475

#define iPageSetup 876

#define iQuit 1177

#define mDemonstration 13178

#define iPreferences 179

#define rNewWindow 12880

#define rMenubar 12881

#define rAlertBox 12882

#define rModalDialog 12983

#define iSoundOn 484

#define iFullScreenOn 585

#define iAutoScrollOn 686

#define rStringList 12887

#define iPrefsFileName 188

#define rTypePrintRect 'PrAr'89

#define kPrintRectID 12890

#define rTypeWinState 'WiSt'91

#define kWinStateID 12892

#define rTypePrefs 'PrFn'93

#define kPrefsID 12894

#define rTypeAppMiss 'STR '95

#define kAppMissID -1639796

#define MAXLONG 0x7FFFFFFF97

#define topLeft(r) (((Point *) &(r))[0])98

#define botRight(r) (((Point *) &(r))[1])99

100

// ……… typedefs101

102

typedef struct103

{104

FSSpec fileFSSpec;105

} docRecord, *docRecordPointer, **docRecordHandle;106

107

typedef struct108

{109

Boolean soundOn;110

Boolean fullScreenOn;111

Boolean autoScrollOn;112

} appPrefs, *appPrefsPointer, **appPrefsHandle;113

114

typedef struct115

{116

Rect userStateRect;117

Boolean zoomState;118

} winState, *winStatePtr,**winStateHandle;119

120

typedef RectPtr *rectHandle;121

122

// ……… global variables123

124

Boolean gDone;125

Boolean gInBackground;126

THPrint gTPrintHdl;127

WindowPtr gWindowPtr;128

More On Resources 15-9

Boolean gWindowOpen = false;129

Boolean gPrintStyleChanged = false;130

Rect gPrintRect;131

Boolean gSoundOn;132

Boolean gFullScreenOn;133

Boolean gAutoScrollOn;134

SInt16 gAppResFileRefNum;135

SInt16 gPrefsFileRefNum = 0;136

137

// …… function prototypes138

139

void main (void);140

void doInitManagers (void);141

void doEvents (EventRecord *);142

void doMouseDown (EventRecord *);143

void doUpdateWindow (WindowPtr);144

void doAdjustMenus (void);145

void doMenuChoice (SInt32);146

void doFileMenu (SInt16);147

void invalidateScrollBarArea (WindowPtr);148

void doError (SInt16);149

void doOpenCommand (void);150

void doCloseCommand (void);151

void doPreferencesDialog (void);152

void doPrintStyleDialog (void);153

void doGetPreferences (void);154

OSErr doCopyResource (ResType,SInt16,SInt16,SInt16);155

void doSavePreferences (void);156

void doGetandSetWindowPosition (WindowPtr);157

void doSaveWindowPosition (WindowPtr);158

void doSetWindowState (WindowPtr,Rect,Rect);159

void doGetPrintableSize (WindowPtr);160

void doSavePrintableSize (WindowPtr);161

162

// ### main163

164

void main(void)165

{166

Handle menubarHdl;167

MenuHandle menuHdl;168

EventRecord eventRec;169

170

// …… initialise managers171

172

doInitManagers();173

174

// …………………………………………………………………………… set current resource file to application resource fork175

176

gAppResFileRefNum = CurResFile();177

178

// …… set up menu bar and menus179

180

menubarHdl = GetNewMBar(rMenubar);181

if(menubarHdl == NULL)182

doError(MemError());183

SetMenuBar(menubarHdl);184

DrawMenuBar();185

186

menuHdl = GetMenuHandle(mApple);187

if(menuHdl == NULL)188

doError(MemError());189

else190

AppendResMenu(menuHdl,'DRVR');191

192

// …… create and initialise a TPrint record193

194

PrOpen();195

gTPrintHdl = (THPrint) NewHandleClear(sizeof(TPrint));196

PrintDefault(gTPrintHdl);197

PrClose();198

199

// …… read in application preferences200

201

doGetPreferences();202

203

// ……… enter event loop204

205

15-10 More On Resources

gDone = false;206

207

while(!gDone)208

{209

if(WaitNextEvent(everyEvent,&eventRec,MAXLONG,NULL))210

doEvents(&eventRec);211

}212

}213

214

// ### doInitManagers215

216

void doInitManagers(void)217

{218

MaxApplZone();219

MoreMasters();220

221

InitGraf(&qd.thePort);222

InitFonts();223

InitWindows();224

InitMenus();225

TEInit();226

InitDialogs(NULL);227

228

InitCursor();229

FlushEvents(everyEvent,0);230

}231

232

// ### doEvents233

234

void doEvents(EventRecord *eventRecPtr)235

{236

WindowPtr windowPtr;237

SInt8 charCode;238

239

windowPtr = (WindowPtr) eventRecPtr->message;240

241

switch(eventRecPtr->what)242

{243

case mouseDown:244

doMouseDown(eventRecPtr);245

break;246

247

case keyDown:248

case autoKey:249

charCode = eventRecPtr->message & charCodeMask;250

if((eventRecPtr->modifiers & cmdKey) != 0)251

{252

doAdjustMenus();253

doMenuChoice(MenuKey(charCode));254

}255

break;256

257

case updateEvt:258

BeginUpdate(windowPtr);259

EraseRgn(windowPtr->visRgn);260

doUpdateWindow(windowPtr);261

DrawGrowIcon(windowPtr);262

EndUpdate(windowPtr);263

break;264

265

case osEvt:266

switch((eventRecPtr->message >> 24) & 0x000000FF)267

{268

case suspendResumeMessage:269

gInBackground = (eventRecPtr->message & resumeFlag) == 0;270

break;271

}272

HiliteMenu(0);273

break;274

}275

}276

277

// ## doMouseDown278

279

void doMouseDown(EventRecord *eventRecPtr)280

{281

WindowPtr windowPtr;282

More On Resources 15-11

SInt16 partCode;283

Rect growRect;284

SInt32 newSize;285

286

partCode = FindWindow(eventRecPtr->where,&windowPtr);287

288

switch(partCode)289

{290

case inMenuBar:291

doAdjustMenus();292

doMenuChoice(MenuSelect(eventRecPtr->where));293

break;294

295

case inSysWindow:296

SystemClick(eventRecPtr,windowPtr);297

break;298

299

case inContent:300

if(windowPtr != FrontWindow())301

SelectWindow(windowPtr);302

break;303

304

case inDrag:305

DragWindow(windowPtr,eventRecPtr->where,&qd.screenBits.bounds);306

break;307

308

case inGoAway:309

if(TrackGoAway(windowPtr,eventRecPtr->where) == true)310

doCloseCommand();311

break;312

313

case inGrow:314

growRect = qd.screenBits.bounds;315

growRect.top = 145;316

growRect.left = 345;317

newSize = GrowWindow(windowPtr,eventRecPtr->where,&growRect);318

if(newSize != 0)319

{320

invalidateScrollBarArea(windowPtr);321

SizeWindow(windowPtr,LoWord(newSize),HiWord(newSize),true);322

invalidateScrollBarArea(windowPtr);323

}324

break;325

326

case inZoomIn:327

case inZoomOut:328

if(TrackBox(windowPtr,eventRecPtr->where,partCode))329

{330

SetPort(windowPtr);331

EraseRect(&windowPtr->portRect);332

ZoomWindow(windowPtr,partCode,false);333

InvalRect(&windowPtr->portRect);334

}335

break;336

}337

}338

339

// ### doUpdateWindow340

341

void doUpdateWindow(WindowPtr windowPtr)342

{343

Str255 string;344

345

SetPort(windowPtr);346

347

MoveTo(10,20);348

DrawString("\pCurrent Application Preferences:");349

MoveTo(10,35);350

DrawString("\pSound On: ");351

if(gSoundOn) DrawString("\pYES");352

else DrawString("\pNO");353

MoveTo(10,50);354

DrawString("\pFull Screen On: ");355

if(gFullScreenOn) DrawString("\pYES");356

else DrawString("\pNO");357

MoveTo(10,65);358

DrawString("\pAutoScroll On: ");359

15-12 More On Resources

if(gAutoScrollOn) DrawString("\pYES");360

else DrawString("\pNO");361

362

if(gPrintRect.bottom != 0)363

{364

MoveTo(10,85);365

DrawString("\pInformation from printable area ('PrAr') resource:");366

NumToString((SInt32) gPrintRect.bottom,string);367

MoveTo(10,100);368

DrawString("\pPage print area height in screen pixels: ");369

DrawString(string);370

NumToString((SInt32) gPrintRect.right,string);371

MoveTo(10,115);372

DrawString("\pPage print area width in screen pixels: ");373

DrawString(string);374

}375

else376

{377

MoveTo(10,85);378

DrawString("\pNo printable area ('PrAr') resource saved yet");379

}380

}381

382

// ## doAdjustMenus383

384

void doAdjustMenus(void)385

{386

MenuHandle menuHdl;387

388

if(gWindowOpen)389

{390

menuHdl = GetMenuHandle(mFile);391

DisableItem(menuHdl,iOpen);392

EnableItem(menuHdl,iClose);393

EnableItem(menuHdl,iPageSetup);394

}395

else396

{397

menuHdl = GetMenuHandle(mFile);398

EnableItem(menuHdl,iOpen);399

DisableItem(menuHdl,iClose);400

DisableItem(menuHdl,iPageSetup);401

}402

403

DrawMenuBar();404

}405

406

// ### doMenuChoice407

408

void doMenuChoice(SInt32 menuChoice)409

{410

SInt16 menuID, menuItem;411

Str255 itemName;412

SInt16 daDriverRefNum;413

414

menuID = HiWord(menuChoice);415

menuItem = LoWord(menuChoice);416

417

if(menuID == 0)418

return;419

420

switch(menuID)421

{422

case mApple:423

GetMenuItemText(GetMenuHandle(mApple),menuItem,itemName);424

daDriverRefNum = OpenDeskAcc(itemName);425

break;426

427

case mFile:428

doFileMenu(menuItem);429

break;430

431

case mDemonstration:432

if(menuItem == iPreferences)433

doPreferencesDialog();434

break;435

}436

More On Resources 15-13

437

HiliteMenu(0);438

}439

440

// ### doFileMenu441

442

void doFileMenu(SInt16 menuItem)443

{444

switch(menuItem)445

{446

case iClose:447

doCloseCommand();448

break;449

450

case iOpen:451

doOpenCommand();452

break;453

454

case iPageSetup:455

doPrintStyleDialog();456

break;457

458

case iQuit:459

while(FrontWindow())460

doCloseCommand();461

gDone = true;462

break;463

}464

}465

466

// ## invalidateScrollBarArea467

468

void invalidateScrollBarArea(WindowPtr windowPtr)469

{470

Rect tempRect;471

472

SetPort(windowPtr);473

474

tempRect = windowPtr->portRect;475

tempRect.left = tempRect.right - 15;476

InvalRect(&tempRect);477

478

tempRect = windowPtr->portRect;479

tempRect.top = tempRect.bottom - 15;480

InvalRect(&tempRect);481

}482

483

// ## doError484

485

void doError(SInt16 errorCode)486

{487

Str255 errorString;488

489

NumToString((SInt32) errorCode,errorString);490

ParamText(errorString,NULL,NULL,NULL);491

492

if(errorCode == memFullErr)493

{494

StopAlert(rAlertBox,NULL);495

ExitToShell();496

}497

else498

CautionAlert(rAlertBox,NULL);499

}500

501

// ## doOpenCommand502

503

void doOpenCommand(void)504

{505

SFTypeList fileTypes;506

StandardFileReply fileReply;507

docRecordHandle docRecHdl;508

OSErr osError = 0;509

510

fileTypes[0] = 'TEXT';511

512

StandardGetFile(NULL,1,fileTypes,&fileReply);513

15-14 More On Resources

if(!(fileReply.sfGood))514

return;515

516

if(!(gWindowPtr = GetNewWindow(rNewWindow,NULL,(WindowPtr)-1)))517

return;518

519

if(!(docRecHdl = (docRecordHandle) NewHandle(sizeof(docRecord))))520

{521

DisposeWindow(gWindowPtr);522

return;523

}524

525

gWindowOpen = true;526

SetPort(gWindowPtr);527

528

SetWRefCon(gWindowPtr,(SInt32) docRecHdl);529

(*docRecHdl)->fileFSSpec = fileReply.sfFile;530

SetWTitle(gWindowPtr,(*docRecHdl)->fileFSSpec.name);531

532

doGetandSetWindowPosition(gWindowPtr);533

doGetPrintableSize(gWindowPtr);534

535

ShowWindow(gWindowPtr);536

}537

538

// ### doCloseCommand539

540

void doCloseCommand(void)541

{542

WindowPtr windowPtr;543

docRecordHandle docRecHdl;544

OSErr osError = 0;545

546

windowPtr = FrontWindow();547

docRecHdl = (docRecordHandle) GetWRefCon(windowPtr);548

549

doSaveWindowPosition(windowPtr);550

551

if(gPrintStyleChanged)552

doSavePrintableSize(gWindowPtr);553

554

DisposeHandle((Handle) docRecHdl);555

DisposeWindow(windowPtr);556

gWindowOpen = false;557

}558

559

// ## doPreferencesDialog560

561

void doPreferencesDialog(void)562

{563

DialogPtr modalDlgPtr;564

GrafPtr oldPort;565

PenState oldPenState;566

SInt16 buttonOval, itemHit, itemType;567

Handle itemHdl;568

Rect itemRect;569

570

if(!(modalDlgPtr = GetNewDialog(rModalDialog,NULL,(WindowPtr) -1)))571

return;572

573

GetDialogItem(modalDlgPtr,iSoundOn,&itemType,&itemHdl,&itemRect);574

SetControlValue((ControlHandle) itemHdl,gSoundOn);575

GetDialogItem(modalDlgPtr,iFullScreenOn,&itemType,&itemHdl,&itemRect);576

SetControlValue((ControlHandle) itemHdl,gFullScreenOn);577

GetDialogItem(modalDlgPtr,iAutoScrollOn,&itemType,&itemHdl,&itemRect);578

SetControlValue((ControlHandle) itemHdl,gAutoScrollOn);579

580

ShowWindow(modalDlgPtr);581

582

GetPort(&oldPort);583

GetPenState(&oldPenState);584

GetDialogItem(modalDlgPtr,1,&itemType,&itemHdl,&itemRect);585

SetPort((*(ControlHandle) itemHdl)->contrlOwner);586

InsetRect(&itemRect,-4,-4);587

PenPat(&qd.black);588

PenSize(3,3);589

buttonOval = (itemRect.bottom - itemRect.top) / 2 + 2;590

More On Resources 15-15

FrameRoundRect(&itemRect,buttonOval,buttonOval);591

SetPenState(&oldPenState);592

SetPort(oldPort);593

594

do595

{596

ModalDialog(NULL,&itemHit);597

GetDialogItem(modalDlgPtr,itemHit,&itemType,&itemHdl,&itemRect);598

SetControlValue((ControlHandle) itemHdl,!GetControlValue((ControlHandle) itemHdl));599

} while((itemHit != 1) && (itemHit != 2));600

601

if(itemHit == 1)602

{603

GetDialogItem(modalDlgPtr,iSoundOn,&itemType,&itemHdl,&itemRect);604

gSoundOn = GetControlValue((ControlHandle) itemHdl);605

GetDialogItem(modalDlgPtr,iFullScreenOn,&itemType,&itemHdl,&itemRect);606

gFullScreenOn = GetControlValue((ControlHandle) itemHdl);607

GetDialogItem(modalDlgPtr,iAutoScrollOn,&itemType,&itemHdl,&itemRect);608

gAutoScrollOn = GetControlValue((ControlHandle) itemHdl);609

}610

611

DisposeDialog(modalDlgPtr);612

613

if(gWindowPtr)614

InvalRect(&gWindowPtr->portRect);615

616

doSavePreferences();617

}618

619

// ### doPrintStyleDialog620

621

void doPrintStyleDialog(void)622

{623

Boolean clickedOK;624

625

PrOpen();626

627

if(clickedOK = PrStlDialog(gTPrintHdl))628

{629

gPrintStyleChanged = true;630

gPrintRect = (*gTPrintHdl)->prInfo.rPage;631

InvalRect(&gWindowPtr->portRect);632

}633

634

PrClose();635

}636

637

// ### doGetPreferences638

639

void doGetPreferences(void)640

{641

Str255 prefsFileName;642

OSErr osError;643

SInt16 volRefNum;644

SInt32 directoryID;645

FSSpec fileSSpec;646

SInt16 fileRefNum;647

appPrefsHandle appPrefsHdl;648

649

GetIndString(prefsFileName,rStringList,iPrefsFileName);650

651

osError = FindFolder(kOnSystemDisk,kPreferencesFolderType,kDontCreateFolder,&volRefNum,652

 &directoryID);653

654

if(osError == noErr)655

osError = FSMakeFSSpec(volRefNum,directoryID,prefsFileName,&fileSSpec);656

if(osError == noErr || osError == fnfErr)657

fileRefNum = FSpOpenResFile(&fileSSpec,fsCurPerm);658

659

if(fileRefNum == -1)660

{661

FSpCreateResFile(&fileSSpec,'PpPp','pref',smSystemScript);662

osError = ResError();663

664

if(osError == noErr)665

{666

fileRefNum = FSpOpenResFile(&fileSSpec,fsCurPerm);667

15-16 More On Resources

if(fileRefNum != -1)668

{669

UseResFile(gAppResFileRefNum);670

671

osError = doCopyResource(rTypePrefs,kPrefsID,gAppResFileRefNum,fileRefNum);672

if(osError == noErr)673

osError = doCopyResource(rTypeAppMiss,kAppMissID,gAppResFileRefNum,fileRefNum);674

if(osError != noErr)675

{676

CloseResFile(fileRefNum);677

osError = FSpDelete(&fileSSpec);678

fileRefNum = -1;679

}680

}681

}682

}683

684

if(fileRefNum != -1)685

{686

UseResFile(fileRefNum);687

688

appPrefsHdl = (appPrefsHandle) Get1Resource(rTypePrefs,kPrefsID);689

if(appPrefsHdl == NULL)690

return;691

692

gSoundOn = (*appPrefsHdl)->soundOn;693

gFullScreenOn = (*appPrefsHdl)->fullScreenOn;694

gAutoScrollOn = (*appPrefsHdl)->autoScrollOn;695

696

gPrefsFileRefNum = fileRefNum;697

698

UseResFile(gAppResFileRefNum);699

}700

}701

702

// ### doCopyResource703

704

OSErr doCopyResource(ResType resType,SInt16 resID,SInt16 sourceFileRefNum,705

SInt16 destFileRefNum)706

{707

SInt16 oldResFileRefNum;708

Handle sourceResourceHdl;709

ResType ignoredType;710

SInt16 ignoredID;711

Str255 resourceName;712

SInt16 resAttributes;713

OSErr osError;714

715

oldResFileRefNum = CurResFile();716

UseResFile(sourceFileRefNum);717

718

sourceResourceHdl = Get1Resource(resType,resID);719

720

if(sourceResourceHdl != NULL)721

{722

GetResInfo(sourceResourceHdl,&ignoredID,&ignoredType,resourceName);723

resAttributes = GetResAttrs(sourceResourceHdl);724

DetachResource(sourceResourceHdl);725

UseResFile(destFileRefNum);726

if(ResError() == noErr)727

AddResource(sourceResourceHdl,resType,resID,resourceName);728

if(ResError() == noErr)729

SetResAttrs(sourceResourceHdl,resAttributes);730

if(ResError() == noErr)731

ChangedResource(sourceResourceHdl);732

if(ResError() == noErr)733

WriteResource(sourceResourceHdl);734

}735

736

osError = ResError();737

738

ReleaseResource(sourceResourceHdl);739

UseResFile(oldResFileRefNum);740

741

return(osError);742

}743

744

More On Resources 15-17

// ## doSavePreferences745

746

void doSavePreferences(void)747

{748

appPrefsHandle appPrefsHdl;749

Handle existingResHdl;750

Str255 resourceName = "\pPreferences";751

752

if(gPrefsFileRefNum == -1)753

return;754

755

appPrefsHdl = (appPrefsHandle) NewHandleClear(sizeof(appPrefs));756

757

HLock((Handle) appPrefsHdl);758

759

(*appPrefsHdl)->soundOn = gSoundOn;760

(*appPrefsHdl)->fullScreenOn = gFullScreenOn;761

(*appPrefsHdl)->autoScrollOn = gAutoScrollOn;762

763

UseResFile(gPrefsFileRefNum);764

765

existingResHdl = Get1Resource(rTypePrefs,kPrefsID);766

if(existingResHdl != NULL)767

{768

RemoveResource(existingResHdl);769

if(ResError() == noErr)770

AddResource((Handle) appPrefsHdl,rTypePrefs,kPrefsID,resourceName);771

if(ResError() == noErr)772

WriteResource((Handle) appPrefsHdl);773

}774

775

HUnlock((Handle) appPrefsHdl);776

777

ReleaseResource((Handle) appPrefsHdl);778

UseResFile(gAppResFileRefNum);779

}780

781

// ## doGetandSetWindowPosition782

783

void doGetandSetWindowPosition(WindowPtr windowPtr)784

{785

Rect userStateRect, stdStateRect, displayRect;786

docRecordHandle docRecHdl;787

SInt16 fileRefNum;788

winStateHandle winStateHdl;789

Boolean gotResource;790

OSErr osError;791

792

userStateRect = qd.screenBits.bounds;793

SetRect(&userStateRect,userStateRect.left + 3,userStateRect.top + 42,794

userStateRect.right - 40,userStateRect.bottom - 6);795

796

stdStateRect = qd.screenBits.bounds;797

SetRect(&stdStateRect,stdStateRect.left + 3,stdStateRect.top + 42,798

stdStateRect.right - 3,stdStateRect.bottom - 6);799

800

docRecHdl = (docRecordHandle) GetWRefCon(windowPtr);801

802

fileRefNum = FSpOpenResFile(&(*docRecHdl)->fileFSSpec,fsRdWrPerm);803

if(fileRefNum < 0)804

{805

osError = ResError();806

doError(osError);807

return;808

}809

810

winStateHdl = (winStateHandle) Get1Resource(rTypeWinState,kWinStateID);811

if(winStateHdl != NULL)812

{813

gotResource = true;814

userStateRect = (*winStateHdl)->userStateRect;815

}816

else817

gotResource = false;818

819

if(gotResource)820

{821

15-18 More On Resources

if((*winStateHdl)->zoomState)822

displayRect = stdStateRect;823

else824

displayRect = userStateRect;825

}826

else827

{828

displayRect = userStateRect;829

}830

831

MoveWindow(windowPtr,displayRect.left,displayRect.top,false);832

833

GlobalToLocal(&topLeft(displayRect));834

GlobalToLocal(&botRight(displayRect));835

SizeWindow(windowPtr,displayRect.right,displayRect.bottom,true);836

837

doSetWindowState(windowPtr,userStateRect,stdStateRect);838

839

ReleaseResource((Handle) winStateHdl);840

CloseResFile(fileRefNum);841

}842

843

// ### doSaveWindowPosition844

845

void doSaveWindowPosition(WindowPtr windowPtr)846

{847

docRecordHandle docRecHdl;848

SInt16 fileRefNum;849

WindowPeek windowRecPtr;850

WStateData *winStateDataPtr;851

Rect stdRect, userRect;852

RgnHandle contentRgnHdl;853

winState userRectAndZoomState;854

winStateHandle winStateHdl;855

OSErr osError;856

857

docRecHdl = (docRecordHandle) GetWRefCon(windowPtr);858

859

fileRefNum = FSpOpenResFile(&(*docRecHdl)->fileFSSpec,fsRdWrPerm);860

if(fileRefNum < 0)861

{862

osError = ResError();863

doError(osError);864

return;865

}866

867

windowRecPtr = (WindowPeek) windowPtr;868

winStateDataPtr = (WStateData *) *(windowRecPtr->dataHandle);869

stdRect = winStateDataPtr->stdState;870

userRect = winStateDataPtr->userState;871

872

contentRgnHdl = windowRecPtr->contRgn;873

userRectAndZoomState.userStateRect = (*contentRgnHdl)->rgnBBox;874

userRectAndZoomState.zoomState = EqualRect(&userRectAndZoomState.userStateRect,&stdRect);875

if(userRectAndZoomState.zoomState)876

userRectAndZoomState.userStateRect = userRect;877

878

winStateHdl = (winStateHandle) Get1Resource(rTypeWinState,kWinStateID);879

if(winStateHdl != NULL)880

{881

**winStateHdl = userRectAndZoomState;882

ChangedResource((Handle) winStateHdl);883

osError = ResError();884

if(osError != noErr)885

doError(osError);886

}887

else888

{889

winStateHdl = (winStateHandle) NewHandle(sizeof(winState));890

if(winStateHdl != NULL)891

{892

**winStateHdl = userRectAndZoomState;893

AddResource((Handle) winStateHdl,rTypeWinState,kWinStateID,"\pLast window state");894

}895

}896

897

if(winStateHdl != NULL)898

More On Resources 15-19

{899

UpdateResFile(fileRefNum);900

osError = ResError();901

if(osError != noErr)902

doError(osError);903

904

ReleaseResource((Handle) winStateHdl);905

}906

907

CloseResFile(fileRefNum);908

}909

910

// ### doSetWindowState911

912

void doSetWindowState(WindowPtr windowPtr,Rect userStateRect,Rect stdStateRect)913

{914

WindowPeek windowRecPtr;915

WStateData *winStateDataPtr;916

917

windowRecPtr = (WindowPeek) windowPtr;918

winStateDataPtr = (WStateData *) *(windowRecPtr->dataHandle);919

winStateDataPtr->userState = userStateRect;920

winStateDataPtr->stdState = stdStateRect;921

}922

923

// ### doGetPrintableSize924

925

void doGetPrintableSize(WindowPtr windowPtr)926

{927

docRecordHandle docRecHdl;928

SInt16 fileRefNum;929

OSErr osError;930

rectHandle printRectHdl;931

932

docRecHdl = (docRecordHandle) GetWRefCon(windowPtr);933

934

fileRefNum = FSpOpenResFile(&(*docRecHdl)->fileFSSpec,fsRdWrPerm);935

if(fileRefNum < 0)936

{937

osError = ResError();938

doError(osError);939

return;940

}941

942

printRectHdl = (rectHandle) Get1Resource(rTypePrintRect,kPrintRectID);943

if(printRectHdl != NULL)944

{945

gPrintRect = **printRectHdl;946

ReleaseResource((Handle) printRectHdl);947

}948

949

CloseResFile(fileRefNum);950

}951

952

// ## doSavePrintableSize953

954

void doSavePrintableSize(WindowPtr windowPtr)955

{956

docRecordHandle docRecHdl;957

SInt16 fileRefNum;958

rectHandle printRectHdl;959

OSErr osError;960

961

docRecHdl = (docRecordHandle) GetWRefCon(windowPtr);962

963

fileRefNum = FSpOpenResFile(&(*docRecHdl)->fileFSSpec,fsRdWrPerm);964

if(fileRefNum < 0)965

{966

osError = ResError();967

doError(osError);968

return;969

}970

971

printRectHdl = (rectHandle) Get1Resource(rTypePrintRect,kPrintRectID);972

if(printRectHdl != NULL)973

{974

**printRectHdl = (*gTPrintHdl)->prInfo.rPage;975

15-20 More On Resources

ChangedResource((Handle) printRectHdl);976

osError = ResError();977

if(osError != noErr)978

doError(osError);979

}980

else981

{982

printRectHdl = (rectHandle) NewHandle(sizeof(Rect));983

if(printRectHdl != NULL)984

{985

**printRectHdl = (*gTPrintHdl)->prInfo.rPage;986

AddResource((Handle) printRectHdl,rTypePrintRect,kPrintRectID,"\pPrint rectangle");987

}988

}989

990

if(printRectHdl != NULL)991

{992

UpdateResFile(fileRefNum);993

osError = ResError();994

if(osError != noErr)995

doError(osError);996

997

ReleaseResource((Handle) printRectHdl);998

}999

1000

gPrintStyleChanged = false;1001

1002

CloseResFile(fileRefNum);1003

}1004

1005

// ##1006

Demonstration Program Comments
When this program is run for the first time, a preferences file (titled "MoreResources
Preferences") is created in the Preferences folder in the System folder and two resources are
copied to the resource fork of that file from the program's resource file. These two
resources are a custom preferences ('PrFn') resource and a "application missing" 'STR '
resource. Thereafter, the preferences resource will be read in from the preferences file
every time the program is run and replaced whenever the user invokes the Preferences dialog
box to change the application preferences settings. In addition, if the user double clicks on
the preferences file's icon, an alert box is invoked displaying the text contained in the
"application missing" 'STR ' resource. (Note that this latter will not occur when the program
is run under system software version 7.5 or later and automatic document translation is
selected to on in the Macintosh Easy Open control panel.)

After the program is launched, the user should choose Open from the File menu to open the
included demonstration document file titled "Document"). The resource fork of this file
contains two custom resources, namely, a 'WiSt' resource containing the last saved window user
state and zoom state, and a 'PrAr' resource containing the last saved printable area rectangle
of the currently chosen paper size. These two resources are read in whenever the document
file is opened and written to whenever the file is closed. (Actually, the 'PrAr' resource is
written to only if the user invoked the print Style dialog box while the document was open.)

No data is read in from the document's data fork. Instead, the window is used to display the
current preferences settings and the current printable area (that is, page rectangle) values.

The user should choose different paper size, scaling and orientation settings in the print
style dialog box, resize or zoom the window, close the file, re-open the file, and note that,
firstly, the saved printable area values are correctly retrieved and, secondly, the window is
re-opened in the size and zoom state in which is was closed. The user should also change the
application preferences settings via the Preferences dialog box (which is invoked when the
single item in the Demonstration menu is chosen), quit the program, re-launch the program, and
note that the last saved preferences settings are retrieved at program launch.

The user may also care to remove the 'WiSt' and 'PrAr' resources from the document file, run
the program, force a 'PrAr' resource to be created and written to by invoking the print Style
dialog box while the document file is open, quit the program, and re-run the program, noting
that 'WiSt' and 'PrAr' resources are created in the document file's resource fork if they do
not already exist.

When done, the user should remove the preferences file from the Preferences folder in the
System folder.

More on Resources 15-21

#define

Lines 72-79 establish constants relating to menu IDs and menu item numbers. Lines 80-82
establish constants relating to window, menubar and alert resource IDs.

The constants at Lines 83-86 relate to the Preferences dialog box resource and associated
checkbox item numbers. Lines 87-88 represent the resource ID and index for the string
containing the name of the application's preferences file. Lines 89-96 represent resource
types and IDs for the custom printable area resource, the custom window state resource, the
custom preferences resource, and the application missing string resource.

Line 97 defines MAXLONG as the maximum possible long value. Lines 98-99 define two common
macros. The first converts the top and left fields of a Rect to a Point. The second converts
the bottom and right field of a Rect to a Point.

#typedef

The docRecord data type (Lines 103-106) is for the document record. In this demonstration,
the only field required is that for a file system specification.

The appPrefs data type (Lines 108-113) is for the application preferences settings. The three
Boolean values are set by checkboxes in the Preferences dialog box.

The winState data type (Lines 115-119) is for the window user state (a rectangle) and zoom
state (a Boolean value indicating whether the window is in the standard (zoomed out) or user
(zoomed in) state).

The rectHandle data type (Line 121) will be used in the functions related to the getting and
saving of the printable area width and height.

Global Variables

gDone controls exit from the main event loop and thus program termination. gInBackground
relates to foreground/background switching. gTPrintHdl will be assigned a handle to a TPrint
record, the latter being required because of the use by the program of the print style dialog.
gWindowPtr will be assigned the pointer to the window's graphics port. gWindowOpen is used to
control File menu item enabling/disabling according to whether the window is open or closed.

gPrintStyleChanged is set to true when the print style dialog is invoked, and determines
whether a new printable area resource will be written to the document file when the file is
closed. gPrintRect will be assigned the rectangle representing the printable area.

gSoundOn, gFullScreenOn, and gAutoScrollOn will hold the application preferences settings.

gAppResFileRefNum will be assigned the file reference number for the application file's
resource fork. gPrefsFileRefNum will be assigned the file reference number for the
preferences file's resource fork.

main

The main function initialises the system software managers (Line 173), sets the application's
resource fork as the current resource file (Line 177), sets up the menus (Lines 181-191), and
creates and initialises a TPrint record (195-198). Then, before the main loop (Lines 206-212)
is entered, main calls the application-defined function which reads in the application
preferences settings from the preferences file. (As will be seen, if the preferences file
does not exist, a preferences file will be created, default preferences settings will be
copied to it from the application file, and these default settings will then be read in from
the newly-created file.)

doEvents, doMouseDown,
doUpdateWindow

doEvents and doMouseDown perform such event processing as is necessary for the satisfactory
execution of the demonstration aspects of the program.

doUpdateWindow simply prints the current preferences and printable area information in the
window for the information of the user.

15-22 More on Resources

doAdjustMenus, doMenuChoice,
doFileMenu

doAdjustMenus controls File menu item enabling and disabling according to whether the document
window is opened or closed. doMenuChoice and doFileMenu handle menu choices from the Apple,
File and Demonstration menus.

InvalidateScrollBarArea, doError

InvalidateScrollBarArea invalidates the areas occupied by the scroll bars whenever the window
is resized.

doError presents an alert box displaying the error code passed to it. In the case of a
memFullErr code, a stop alert is presented and the program is terminated when the user clicks
the OK button. In all other cases, a caution alert is presented and the program continues
when the user clicks the OK button.

doOpenCommand

doOpenCommand is a much simplified version of the actions normally taken when a user chooses
the Open command from a File menu.

The standard Open dialog box is presented (Line 513) and, if the user clicks the Cancel
button, the function simply returns. If the user clicks the OK button, a window is opened
(Line 517), a document record is created (Line 520), a flag is set to indicate that the window
is open (Line 526), the window's graphics port is set as the current port for drawing (Line
527), the document record is connected to the window record (Line 529), the file system
specification for the chosen file is assigned to the document record's file system
specification field (Line 530), and the window's title is set (Line 531).

At that point, the application-defined function which reads in the window state resource from
the document's resource fork, and positions and sizes the window accordingly, is called (Line
533). In addition, the application-defined function which reads in the printable area
resource from the document's resource fork is called (Line 534).

With the window positioned and sized, ShowWindow is called (Line 536) to make the window
visible. (The window's 'WIND' resource specifies that the window is to be initially
invisible.)

doCloseCommand

doCloseCommand is a much simplified version of the actions normally taken when a user chooses
the Close command from a File menu.

At Lines 547-548, a pointer to the front window, and a handle to the associated document
record, are retrieved.

Line 550 calls the application-defined function which saves the window's user state and zoom
state to the window state resource in the document's resource fork. If the print Style dialog
was invoked while the window was open, and if the user dismissed the dialog by clicking the OK
button (Line 552), a call is made to the application-defined function which saves the
printable area rectangle to the printable area resource in the document file's resource fork
(Line 553).

Line 555 disposes of the document record, Line 556 disposes of the window record, and Line 557
sets the "window is open" flag to indicate that the window is not open.

doPreferencesDialog

doPreferencesDialog is called when the user chooses the Preferences item in the Demonstration
menu. The function presents the Preferences dialog box and sets the values in the global
variables which hold the current application preferences according to the settings of the
dialog's checkboxes.

Note that, at Line 617, a call is made to the application-defined function which saves the
dialog box's preference settings to the resource fork of the preferences file.

doPrintStyleDialog

doPrintStyleDialog is called when the user chooses the Page Setup… item in the File menu. It
presents the print style dialog box (Line 628).

More on Resources 15-23

If the user dismisses the dialog with a click on the OK button, the flag which indicates that
a print style change has been made is set to true (Line 630), and the global variable which
holds the printable rectangle is assigned the value in the rPage (printable page size) field
of the TPrInfo record, a handle to which is at the prInfo field of the TPrint record (Line
631). In addition, the window's port rectangle is invalidated (Line 632) to force an update
of the window, thus ensuring that the new printable area values are displayed immediately.

doGetPreferences

doGetPreferences, which is called from the main function immediately after program launch, is
the first of those application-defined functions which are central to the demonstration
aspects of the program. Its purpose is to create the preferences file if it does not already
exist, copying the default preferences resource and the missing application resource to that
file as part of the creation process, and to read in the preferences resource from the
previously existing or newly-created preferences file.

Line 650 retrieves from the application's resource file the resource containing the required
name of the preferences file ("MoreResources Preferences").

Line 652 finds the location of the Preferences folder, returning the volume reference number
and directory ID in the last two parameters. Line 656 makes a file system specification from
the preferences file name, volume reference number and directory ID. This file system
specification is used in the FSpOpenResFile call (Line 658) to open the resource fork of the
preferences file with exclusive read/write permission.

If the specified file does not exist, FSpOpenResFile returns -1. In this case, Line 662
creates the preferences file. The call to FSpCreateResFile creates the file of the specified
type on the specified volume in the specified directory and with the specified name and
creator. (Note that the creator is set to an arbitrary signature which no other application
known to the Finder is likely to have. This is so that a double click on the preferences file
icon will cause the Finder to immediately display the missing application alert box. Note
also that, if 'pref' is used as the fileType parameter, the icon used for the file will be the
system-supplied preferences document icon, which looks like this:

If the file is created successfully, the resource fork of the file is opened (Line 667) and
the master preferences ('PrFn') and application missing 'STR ' resources are copied to the
resource fork from the application's resource file (Lines 672 and 674). If the resources are
not successfully copied (Line 675), the resource fork of the new file is closed (Line 677),
the file is deleted (Line 678), and the fileRefNum variable is set to indicate that the file
does not exist (line 679).

If the preferences file exists (either previously or newly-created) (Line 685), the resource
fork of that file is set as the current resource file (Line 687), the preferences resource is
read in from the resource fork (Line 689) and, if the read was successful, the three Boolean
values are assigned to the global variables which store those values (Lines 693-695). (Note
that, in this program, the function Get1Resource is used to read in resources so as to
restrict the Resource Manager's search for the specified resource to the current resource
file.)

Line 697 assigns the file reference number for the open preferences file resource fork to a
global variable (the fork is left open), and Line 699 resets the application's resource fork
as the current resource file.

doCopyResource

doCopyResource is called by doGetPreferences to copy the default preferences and application
missing string to the newly-created preferences file from the application file.

Line 716 saves the current resource file's file reference number and Line 717 sets the
application's resource fork as the current resource file. This will be the "source" file.

The Get1Resource call at Line 719 reads the specified resource into memory. Line 723 gets the
resource's name and Line 724 gets the resource's attributes. The call to DetachResource at
Line 725 replaces the resource's handle in the resource map with NULL without releasing the
associated memory. The resource data is now simply arbitrary data in memory.

Line 726 sets the preferences file's resource fork as the current resource file. The
AddResource call (Line 728) makes the arbitrary data in memory into a resource, assigning it
the specified type, ID and name. Line 730 sets the resource attributes in the resource map.
The ChangedResource call (Line 732) tags the resource for update and pre-allocates the
required disk space. The WriteResource call (Line 734) then writes the resource to disk.

15-24 More on Resources

With the resource written to disk, Line 739 discards the resource in memory and Line 740
resets the resource file saved at Line 716 as the current resource file.

doSavePreferences

doSavePreferences is called when the user dismisses the preferences dialog box to save the new
preference settings to the preferences file. It assumes that the preferences file is already
open.

If doGetPreferences was not successful in opening the preferences file at program launch, the
function simply returns (Lines 753-754).

Lines 756-762 create a new preferences record and assign to its fields the values in the
global variables which store the current preference settings. Line 764 makes the preferences
file's resource fork the current resource file. The Get1Resource call at Line 766 gets a
handle to the existing preferences resource. Assuming the call is successful (that is, the
preferences resource exists), RemoveResource is called to remove the resource from the
resource map (Line 769), AddResource is called to make the preferences record in memory into a
resource (Line 771), and WriteResource is called to write the resource to disk (Line 773).

With the resource written to disk, Line 778 disposes of the preferences record in memory and
Line 779 resets the application's resource fork as the current resource file.

doGetandSetWindowPosition

doGetandSetWindowPosition gets the window state ('WiSt') resource from the resource fork of
the document file and moves and sizes the window according to retrieved user state and zoom
state data.

Lines 793-795 establish a default user state rectangle to cater for the possibility that the
document file may not yet have a 'WiSt' resource in its resource fork. Lines 797-799
establish the standard state rectangle as desired by the application.

Line 801 gets a handle to the window's document record so that the file system specification
can be retrieved and used in the FSpOpenResFile call (Line 803) to open the document file's
resource fork.

Line 811 attempts to read in the 'WiSt' resource. If the Get1Resource call is successful
(Line 812), a "success" flag is set and the user state rectangle is set to that retrieved from
the resource (Lines 814-815). If the call is not successful, the "success" flag is unset
(Lines 817-818) and the user state rectangle remains as the default rectangle defined at Lines
793-795.

If the Get1Resource call was successful, the zoom state is also retrieved from the resource
(Line 822). If the zoom state is "zoomed out" to the standard state, the rectangle to be used
to display the window is set to the standard state (Line 823). If the zoom state is "zoomed
in" to the user state, the rectangle to be used to display the window is set to the user state
(Line 825). If the Get1Resource call was not successful (Line 827) the display rectangle is
set to the user state rectangle, which will be the default defined at Lines 793-795.

Line 832 moves the window to the specified coordinates, keeping it inactive. Lines 834-836
size the window to the specified size, adding any area added to the content region to the
update region.

Line 838 calls an application-defined function which assigns the specified rectangles to the
userState and stdState fields of the WStateData record for the window. With this action
completed, Line 840 discards the 'WiSt' resource in memory. Line 841 then closes the document
file's resource fork.

doSaveWindowPosition

doSaveWindowPosition saves the current user state rectangle and zoom state to the document
file's resource fork. The function is called when the associated window is closed by the
user.

Line 858 gets a handle to the window's document record so that the document file's file system
specification can be retrieved and used in the FSpOpenResFile call at Line 860. If the
resource fork cannot be opened, an error alert is presented and the function simply returns
(Lines 861-866).

Line 868 gets a pointer to the window record, allowing Line 869 to get a pointer to the
WStateData record. Lines 870-871 retrieve the current standard state and user state
rectangles from the WStateData record.

More on Resources 15-25

The next step is to determine whether the window is currently in the "zoomed out" (standard)
state or the "zoomed in" (user) state. Lines 873-874 get a rectangle equal to the content
region of the window. Line 875 sets up a forthcoming test by assigning this rectangle to the
userStateRect field of a window state record. The test is at the next line: If the content
region rectangle equals the current standard state rectangle, the call to EqualRect at Line
875 will return true, in which case:

• The zoomstate field of the window state record is assigned a value indicating that the
window is in the standard state.

• The userStateRect field of the window state record is assigned the current user state
rectangle.

If, on the other hand, the content region rectangle does not equal the current standard state
rectangle, the call to EqualRect at Line 875 will return false, in which case:

• The zoomstate field of the window state record is assigned a value indicating that the
window is in the user state.

• The userStateRect field of the window state record retains the rectangle it was assigned
at Line 874 which, not being equal to the standard state rectangle (Line 875), must be
equal to the current user state rectangle.

Line 879 attempts to read the 'WiSt' resource from the document's resource fork into memory.
If the Get1Resource call is successful, the resource in memory is made equal to the previously
"filled-in" window state record (Line 882) and the resource is tagged as changed (Line 883).
If the Get1Resource call is not successful (that is, the document file's resource fork does
not yet contain a 'WiSt' resource), Line 890 creates a new window state record, Line 893 makes
this record equal to the previously "filled-in" window state record, and Line 894 makes this
data in memory into a 'WiSt' resource.

If an existing 'WiSt' resource was successfully read in, or if a new 'WiSt' resource was
successfully created in memory (Line 898), Line 900 writes the resource map and data to disk,
and Line 905 discards the resource in memory. The document file's resource fork is then
closed (Line 908).

doSetWindowState

doSetWindowState is called by doGetandSetWindowPosition to assign the user and standard state
rectangles defined by that function to the userState and stdState fields of the window's
WStateData record.

doGetPrintableSize

doGetPrintableSize gets the rectangle representing the printable area of the chosen page size
from the 'PrAr' resource in the document file's resource fork. The function is called when
the document is opened.

Line 933 gets a handle to the window's document record so that the document file's file system
specification can be retrieved and used in the call to FSpOpenResFile at Line 935. If the
call is not successful, an error alert box is presented and the function simply returns (Lines
936-941).

If the resource fork is successfully opened, the call to Get1Resource at Line 943 attempts to
read in the resource. If the call is successful (Line 944), Line 946 assigns the data in the
resource in memory to the global variable which stores the current printable area rectangle.
The resource in memory is then discarded (Line 947) and the document file's resource fork is
closed (Line 950).

doSavePrintableSize

doSavePrintableSize saves the printable area rectangle for the currently chosen paper size to
a 'PrAr' resource in the document file's resource fork. The function is called when the file
is closed if the user invoked the print Style dialog while the document was open and dismissed
the dialog by clicking the OK button.

Line 962 gets a handle to the window's document record so that the document file's file system
specification can be retrieved and used in the call to FSpOpenResFile at Line 964. If the
call is not successful, an error alert box is presented and the function simply returns (Lines
965-970).

Line 972 attempts to read the 'PrAr' resource from the document's resource fork into memory.
If the Get1Resource call is successful, the resource in memory is made equal to the rectangle
in the prPage field of the prInfo record, which is itself part of the TPrint record, and the
resource is tagged as changed (Lines 973-976). If the Get1Resource call is not successful

15-26 More on Resources

(that is, the document file's resource fork does not yet contain a 'PrAr' resource), Line 983
allocates a block of memory for a Rect, Line 986 copies the rectangle in the prPage field of
the prInfo record to this block, and Line 987 makes this data in memory into a 'PrAr'
resource.

If an existing 'PrAr' resource was successfully read in, or if a new 'PrAr' resource was
successfully created in memory (Line 991), Line 993 writes the resource map and data to disk,
and Line 998 discards the resource in memory. The document file's resource fork is then
closed (Line 1003).

	Introduction
	Search Path for Resources
	Preamble
	Current Resource File
	Default Search Order
	Implications of the Default Search Order

	Setting the Current Resource File To Dictate the Search Order
	Restricting the Search to the Current Resource File

	Detaching and Copying Resources
	Creating, Opening and Closing Resource Forks
	Opening an Application's Resource Fork
	Creating and Opening a Resource Fork
	Creating a Resource Fork
	Opening a Resource Fork
	Closing a Resource Fork

	Reading and Manipulating Resources
	Reading From the Resource Map Without Loading the Resource
	Indexing Through Resources
	Writing Resources
	Care with Purgeable Resources

	Partial Resources
	Preferences Files
	Main Resource Manager Constants, Data Types and Routines
	Demonstration Program
	Demonstration Program Comments

