2 O Version 1.1

FLOATING WINDOWS AND CUSTOM
WINDOW DEFINITION FUNCTIONS

Includes Demonstration Program Floaters

Floating Windows

Floating windows, which are often referred to in the jargon as windoids, are windows which stay in
front of all of an application's document windows. They are typically used to display tool, pattern,

colour, and other choices to be made available to the user. Examples of floating windows are shown at
Fig 1.

:ﬂi\ 7 Document Window |
ey EPE—— Document Window =—————-|
| @
=
il
2|
B
ISR

FIG 1 - FLOATING WINDOWS - EXAMPLES

Front-To-Back Ordering of On-Screen Objects

The fact that floating windows always remain in front of an application's document windows leads
naturally to a consideration of the correct front-to-back ordering of on-screen interface objects. Within
an application, this front-to-back ordering should be as follows:

- Help balloons.

- Menus.

- System windows.1

- Modal dialogs and alerts.
- Floating windows.
- Document windows and modeless dialogs.

Note that floating windows should remain behind modal dialogs and alerts, reflecting the fact that,
whatever choices the user can make from a floating window, those choices relate only to operations
within the application's document windows and not to operations within modal dialogs and alert
boxes.

Appearance of Floating Windows

The appearance of a floating window is defined by a special window definition function. Window
definition functions are stored in resources of type “wber-.

The only published appearance specification applicable to floating windows is that for utility windows
in the document Apple Grayscale Appearance for System 7.5 published by Apple Computer, Inc (see
Fig 2). As shown at Fig 2, a floating window can have a close box, a zoom box?2, a size box, and a title.
The title (if any) should be in the application font, specifically, 10 point Geneva bold. The user should
be able to drag the window using any part of the window frame.

ACTIVE UTILITY WINDOW WITH INACTIVE UTILITY WINDOW WITH =
ZOOM BOX AND SIZE BOX ZOOM BOX AND SIZE BOX 0::Tools:

TITLE BAR WITH TEXT IS

O Tools:::H Tools 16 PIXELS HIGH

0 GHE
TITLE BAR WITHOUT TEXT IS
14 PIXELS HIGH

[E CLOSE BOX NORMAL STATE
CLOSE BOX PRESSED STATE
ZOOM BOX NORMAL STATE

ZOOM BOX PRESSED STATE

7

FIG 2 - APPEARANCE OF UTILITY WINDOWS AS DEFINED BY APPLE GRAYSCALE
APPEARANCE FOR SYSTEM 7.5

In terms of front-to-back ordering, floating windows, unlike document windows, are all basically
equal. Unless they actually overlap each other, there is no visual cue of any front-to-back ordering as
there is with normal windows. Because of this equality, windows should almost always appear in the
active state. The exception is when a modal dialog or alert box is presented to the user. When this
occurs, the appaearance of all floating windows should be changed to reflect the inactive state. As a
further refinement, the content of the window may be dimmed to further suggest to the user that the
floating windows are irrelevant to operations within the dialog box or alert box.

Implementing Floating Windows — Considerations

Activate Events

The most significant aspect of implementing floating windows has to do with activate events.

The Single Active Window Problem. The Window Manager was written on the assumption that
there is only ever one active window. However, this will not be the case in an application which
implements floating windows. (See Fig 1, in which two floating windows and one document window
are active at the same time.) Accordingly, you will need to work around how the Window Manager
generates activate events and how the Toolbox Event Manager reports them to an application.

1System windows are windows which can appear in an application’s window list but which are not directly created by the application. These
windows appear in front of all windows created by the application. An example of a system window is a notification alert box.

2700m boxes are sometimes used in floating windows to simply collapse the window to its drag bar and open it out to a fixed size.

The Single Deactivate Event Problem. Because the Window Manager works on the principle that
only one window is ever active, only one deactivate event is generated for every activate event. This
behaviour will not suffice for an application with floating windows when a modal dialog receives the
activate event. In that case, a deactivate event is required not only for the frontmost document window
but for all of the visible floating windows as well.

These two problems mean that you must not use those Window Manager routines, such as
SelectWindow, Showwindow, and Hidewindow, which implicitly generate activate and deactivate events.
Instead, you must use lower-level routines like BringToFront, ShowHide, and Hilitewindow to simulate
the higher-level calls.

Activate Events and Document Windows. Other cases that the Window Manager does not
handle well occur when the frontmost document window is closed or when a new document window
is created in front of other document windows. If floating windows are present, these document
windows do not receive the needed activate and deactivate events, since the application is essentially
removing or creating windows in the middle of the window list. Accordingly, your application must
itself manage the activation and deactivation of the relevant windows.

Activate Events and Modal Windows. When a modal window is to appear, your application will
need to deactivate all visible floating windows and the active document window. When the user
dismisses the modal window, your application must re-activate each of those windows.

Conceptually, these considerations require you to subvert the system software's normal window
activation/deactivation activities and to divide the window list into two sections, specifically, the
section occupied by the floating windows (which must always be at the beginning of the overall list)
and the section occupied by the document windows.

Opening, Closing, Showing and Hiding

Floating windows should be opened at application launch and should remain open until the
application is closed. Since Open... and Close items in the File menu should apply only to document
windows, items in some other appropriate menu should be provided to allow the user to toggle each
floating window between the hidden and showing state.

A floating window's close box should simply hide the window, not close it. For that reason, the close
box in floating windows should be conceived of as a "hide" box rather than as a go-away box.

Application in the Background. Floating windows should be hidden by the owner application
when that application receives a suspend event. This is to avoid user confusion arising from one
application's floating windows being visible when another application is in the foreground. The
floating windows should be shown again only when the application receives a subsequent resume
event.

Implementing Floating Windows — Substitute and Supporting Routines

Implementing floating windows in an application basically involves providing a number of
application-defined substitute and supporting routines, many of which perform the necessary
subversion of the system software's normal window activation/deactivation activities and treat the
window list as comprising separate document windows and floating windows sections.

Substitute Routines

The substitute routines are routines which should be called in lieu of those Macintosh ToolBox routines
that would normally be called in a non-floating windows environment. These substitute routines3, the
requirements of those routines, and the Toolbox calls they replace, are as follows:

3The names of the replacement and supplementary routines shown in the following are, of course, purely arbitrary. You may use whatever
names you like. The names shown are those used in the demonstration program.

Replacement Replaces Requirements

newGetNewWindow GetNewWindow Create floating and document windows based on a resource template.
GetNewCWindow When a new floating window is opened, bring that window to the very
front of any existing windows.
When a new document window is opened, move that window to
immediately behind the last floating window, and in front of any
document windows which may already be open.

newDisposeWindo DisposeWindow Dispose of document windows.
w Activate the next document window in the window list, remove the

specified document window from the screen and the window list using
CloseWindow and dispose of the window's window record.

newSelectWindow SelectWindow Bring the window (floating or document) in which the mouse-down
occurred as far forward in the window list as it should come. Ifitis a
floating window, makes it the absolute frontmost window. If it is a
document window, make it the frontmost window behind the floating
windows.

newHideWindow HideWindow Hide the specified window.
As with HideWindow, if the frontmost (floating or document) window is
to be hidden, place it behind the window immediately behind it in its
section of the window list so that, when it is shown again, it will no
longer be frontmost window in its section.

newShowWindow ShowWindow Show the specified window.
As with showwindow, show the window without changing its position in
the window list. If the window being shown is the frontmost document
window, deactivate the window behind it, and activate the window
being shown.
If the specified window is a floating window, and if a modal dialog is
present, show the window in the inactive state.

newDragWindow DragWindow Drag the specified window around, ensuring that, if it is a document
window, it remains behind the floating windows.
As with DragWindow, do not bring the window forward if the Command
key is held down during the drag.

Supporting Routines

The main supporting routines, and the requirements of those routines, are described in the following:

Routine Requirements

handleSuspendEvent Hide any floating windows, and unhighlight and deactivate the
frontmost document window.
(Call this routine when the application receives a suspend event.)

handleResumeEvent Show all floating windows which were visible when the application was
sent to the background, and highlight and activate the front document
window.
(Call this routine when the application receives a suspend event.)

deactivateFloatsAndFirstDocWin Unhighlight and deactivate any visible floating windows and the
frontmost document window.
(Call this routine immediately before a modal dialog or alert box is
invoked.)

activateFloatsAndFirstDocWin Highlight and activate those windows which were visible, highlighted
and activated before deactivateFloatersAndFirstDocWin was called.
However, if the application is in the background when this function is
called (such as when a movable modal progress dialog was up and then
disappears), do not perform those actions. Instead, simply call
handleSuspendEvent to hide any visible floating windows.
(Call this routine immediately after an alert or modal dialog box is
dismissed.)

Custom Window Definition Functions

If your application defines its own window types, you must supply your own window definition
function (WDEF). To create a custom window type, you must write your own WDEF, compile it as a

resource of type -wper-, and store it in the resource fork of the application that uses it. Custom -wper-
resources must have an ID of 128 to 4096. (-wperF- resource IDs from 0 to 127 are reserved by Apple.)

When your application creates a window, the WDEF is read into memory and a handle to it is placed in
the window record's windowbefProc field. Then, when the Window Manager needs to perform a
window type-dependent action on the window, it calls the WDEF to perform that action.

WDEFs are required to:

- Draw the window frame.

- Report the region in which mouse-down events occur.

- Calculate the window's content and structure regions.

- If the window type supports resizing, draw the size box and resize the window frame when the

user drags the size box.
- Perform any customised initialisation or disposal tasks.
You must declare your WDEF like this:
pascal SInt32 windowDef(short varCode,WindowPtr theWindow,short message,SInt32 param);

varCode The variation code for the window.

A WDEF can support up to 16 variation codes, identified by integers 0 to 15. To
invoke the desired window type, you specify the window's definition ID. To derive
the window definition ID for the window, add the variation code value to the result of
16 multiplied by the resource ID of the “wper* resource.

thewindow A pointer to the window's window record.

message A value which specifies which operation the WDEF must perform. Possible values are
as follows:

Constant Value Operation
wDraw 0 Draw the window frame.

wHit 1 Determine where a mouse-down event occurred.
wCalcRgns 2 Calculate the content and structure regions.
wNew 3 Perform any required additional initialisation.
wDispose 4 Perform any additional disposal actions.
wGrow 5 Draw the grow image during resizing.
wDrawGlcon 6 Draw the size box and scroll bar outlines.
param A value whose meaning depends on the operation specified in the message parameter.

When your WDEF performs the action specified in the message parameter, it must return a function
result or, if the action requires no result code, it must return o.

Responding to message Parameter Values

The following describes how your WDEF should respond to values passed by the Window Manager in
the message parameter.

wDraw

Action Required by Window Manager: Draw the window frame in the current graphics port
(which, when the WDEF is called, is set by the Window Manager to the Window Manager port).

Value in param : The low-order word#4 contains either o (meaning draw the entire window frame) or
winGoAway (4) (meaning add highlighting to, or remove it from, the window's close box).

When the value in param is 0, and before drawing the window frame, you must make certain checks as

follows:
- If the value in the window record's visible field is false, do nothing.
- If the value in the window record's hilited field is true:
- Draw the window frame in such a way as to indicate that the window is active.
- If the goAwayFIag field in the window record is true, draw a close box in the window frame.
- If the value in the window record's hilited field is false, draw the window frame in such a way

as to indicate that the window is inactive.
The window frame typically, but not necessarily, includes the window title. In non-utility windows,
the title should be displayed in the system font and system font size. (The Window Manager port is
already set to use the system font and system font size.) In utility windows, the title should be drawn
in the application font, 10 point, bold.

Value to Return: Always returno.

wHiIt

Action Required by Window Manager: Determine where the cursor was when the mouse button
was pressed.

Value in param: Mouse location in global coordinates. The vertical coordinate is in the high-order
word and the horizontal coordinate is in the low-order word.

Value to Return: One of the following constants:

Constant Value Meaning
wNoHit 0 None of the following.

winZoomln In the zoom box for zooming in (active window only).

In the zoom box for zooming out (active window only).

winContent 1 In the content region (except the grow region if the window is active.)
winDrag 2 In the drag region.
winGrow 3 In the grow region (window active only).
winGoAway 4 In the go-away region (window active only).
5
6

winZoomOut
The return value wnoHit might mean (but not necessarily) that the point is not in the window. The

standard window definition functions, for example, return wnoHit if the point is in the window frame
but not in the title bar.

wCalcRgns

Action Required by Window Manager: Calculate the window's content and structure regions
based on its port rectangle.

Value in param : (Not applicable. Ignore.)

The handles to the content and structure regions are in, respectively, the contrRgn and strucrgn fields of
the window record. The regions are in global coordinates.

4Note that, in the case of the wdraw message, the high-order word may contain undefined data; therefore, evaluate only the low word.

Note that the Window Manager requests this operation only if the window is visible.

Value to Return: Always returno.

wNew

Action Required by Window Manager: Perform any window type-specific initialisation.

Value in param : (Not applicable. Ignore.)

As an example of type-specific initialisation, the initialisation routine for a standard document window
creates the wstatebata record for storing zooming data.

Value to Return: Always returno.

wDispose

Action Required by Window Manager: Perform any additional tasks associated with disposing of
awindow.

Value in param : (Not applicable. Ignore.)

As an example of an additional disposal task, the disposal routine for a standard document window
disposes of the wstatebata record associated with the window.

Value to Return: Always return o.

wGrow

Action Required by Window Manager: Draw a grow image of the window.

Value in param : Pointer to a rectangle, in global coordinates, whose upper-left corner is aligned with
the port rectangle of the window's graphics port.

Your grow image must fit inside the rectangle passed in the param parameter.

As the user drags the mouse, the Window Manager repeatedly sends wcrow messages, so that you can
change your grow image to match the changing mouse location. Draw the grow image in the current
graphics port (which is the Window Manager port) in the current pen pattern and mode. (In the
Window Manager port, the pen pattern and mode will be set up as gray and notPatxor to conform to
user interface guidelines.)

Note that the grow routine for a standard document window draws a dotted (gray) outline of the
window and also the lines delimiting the title bar, size box, and scroll bar areas.

Value to Return: Always returno.

wDrawGlcon

Action Required by Window Manager: Draw the size box in the content region if the window is
active. If the window is inactive, draw whatever is appropriate to show that the window cannot
currently be resized.

Value in param : (Not applicable. Ignore.)

If the size box is located in the window frame instead of the content region, do nothing. Instead, draw
the size box in response to the wbraw message.

Note that the draw grow icon routine for an active standard document window draws the size box plus
the delimiting lines for the scroll bar areas. For an inactive window, it erases the size box and draws
the delimiting lines.

Value to Return: Always returno.

Problems With Purgeable Custom WDEF Resources

Like other definition functions, WDEFs contain executable code that needs to be locked down in
memory whenever it is executed.

If your application is using a custom WDEF marked as purgeable, the Memory Manager may purge the
WDEF resource in order to allocate additional memory in your application heap. The Window
Manager will, of course, need to call the WDEF to redraw your windows whenever they are erased. If
this requirement arises, the Window Manager will simply reload the WDEF before calling it. Even if
your application is not the frontmost application, the Window Manager will be able to reload the
WDEF provided your application is the application that is executing at the time, that is, it is the
"current" application. In this circumstance, there is no problem.

A problem can arise, however, when your application is not the frontmost application and is not the
"current” application. In this circumstance, your application's context has not been restored and your
resource chain is not the current resource chain. As a consequence, the Window Manager attempts to
load the WDEF from the wrong resource chain. Since it cannot find the WDEF, the result is System
Error 87.

This problem was first documented by Apple in late 1996. There are two reasons why the problem has
only recently been detected:

- Most applications use custom WDEFs for floating windows, and applications should hide
floating windows before being suspended. The Window Manager will therefore never need to
call the WDEF to redraw floating windows when the owner application is in the background.

- Applications in the background do not normally allocate large amounts of memory. In addition,
most applications are allocated generous memory partitions. Accordingly, the Memory
Manager may never need to purge the WDEF in order to satisfy a memory request.

The simple solution to the problem is to invariably mark all custom WDEFs as non-purgeable.

Note that WDEFs in the System file can safely be purged because they are always in the resource chain.

Note also that this problem does not apply to other custom definition functions (CDEFs, MDEFs, etc.),
the reason being that they are never called when the application’s process globals are not current.

Relevant Window Manager Constants and Routines

Constants

Window Definition Function Task Codes

wDraw
wHit
wCalcRgns
wNew
wDispose
wGrow
wDrawGlcon

L L I | B T I VR 1
oA WNEO

Window Definition Functions wHit Return Codes

wNoHiIt =0
winContent =1
wlnDrag =2

© 00N Uhs WN R

OO S B BSDSDDDAEDAEDDWWWWWWWWWWNNRNNNNNNNDERRRRRPR PR
NP O OWOoWwW~NOOOOAaORsWNREOOOWOMNOOOUAWUBRARWNRERPROOONOORWNRE O OOWLWNODORAWDNRO

wlnGrow
wlnGoAway
wlnZoomln
wlnZoomOut

o mnn
(o2& ISV]

Routines

void GetWMgrPort(GrafPtr *wPort);

void GetCWMgrPort(CGrafPtr *wMgrCPort);

void ShowHide(WindowRef theWindow,Boolean showFlag);

void HiliteWindow(WindowRef theWindow,Boolean fHilite);

void BringToFront(WindowRef theWindow);

void SendBehind(WindowRef theWindow,WindowPtr behindWindow);

void MoveWindow(WindowRef theWindow,short hGlobal,short vGlobal,Boolean front);
void CloseWindow(WindowRef theWindow);

void ClipAbove(WindowRef window);

long DragGrayRgn(RgnHandle theRgn,Point startPt,const Rect *limitRect,

const Rect *slopRect,short axis,DragGrayRgnUPP actionProc);

Demonstration Program

This program opens two floating windows and allows the user to open up to three
document windows. The floating windows and the document windows may be closed and
opened via their close boxes, by choosing the relevant items in the File and Floaters
menus, and by pressing the relevant Command key equivalents.

The program is supported by specialised floating windows routines in FloatRoutines.c
and by a custom window definition function which defines the appearance and behaviour
of the floating windows.

The program utilises the following resources:

e An "MBAR" resource, and "MENU" resources for Apple, File, Edit and Floaters menus
(preload, non-purgeable).

e T"WIND" resources (purgeable) (initially visible) for the document and floating
windows.

e An "ALRT" resource (purgeable), and associated "DITL" resource (purgeable), for
an alert invoked by the user choosing the About.. item in the Apple menu.

e A "DLOG" resource (purgeable), and associated "DITL" resource (purgeable), for a
dialog box invoked when the user chooses the Find item in the File menu.

e T"PICT" resources (non-purgeable, colour versions preload) containing pictures to
be drawn in the floating windows.

e A "snd " resource (purgeable) containing a sound invoked when the user clicks
in the content region of the document and floating windows.

e A "STR# " resource (purgeable) containing text to be drawn in the document windows.

e A custom "WDEF®" resource (non-purgeable) containing the window definition function
utilised by the floating windows.

e A "SIZE" resource with the acceptSuspendResumeEvents and doesActivateOnFGSwitch
flags set.

includes

#include <Fonts.h>
#include <Menus.h>
#include <TextEdit.h>
#include <Dialogs.h>
#include <SeglLoad.h>
#include <ToolUtils.h>
#include <Devices.h>

53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
7
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105

107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129

#include <Resources.h>
#include <Sound.h>
#include <Gestalt._h>
#include <Processes.h>
#include <LowMem.h>

7 o e s s e 8 8 1 1 1 1 B 1 81 1 1 s s i

#define mApple 128
#define iAbout 1
#define mFile 129
#define iNew 1
#define iClose 4
#define iFind 11
#define 1Quit 13
#define mEdit 130
#define mFloaters 131
#define iTools 1
#define iColours 2
#define rMenubar 128
#define rDocWindow 128
#define rToolsWindow 129
#define rColoursWindow 130
#define rAboutAlert 128
#define rFindDialog 129
#define rToolsPict 128
#define rColoursPict 129
#define rToolsPictDim 130
#define rColoursPictDim 131
#define rSound 8192
#define kDocumentKind 1
#define kFloatingKind 2

#define MAXLONG

7 o e e 88 8 1 1 1 1 3 8 8 8 s s

Ox7FFFFFFF

defines

typedefs

typedef pascal void (*ActivateProcPtr) (WindowPtr theWindow,Boolean activate);

typedef struct

{
SIntl6 windowType;
ActivateProcPtr activateHandler;
Boolean wasVisible;

} docRecord, **docRecordHandle;

7 o e i e 8 8 1 1 1 1 1 1 s e

// FloaterDemo.c

void main

void dolnitManagers

void doOpenFloatingWindows
void eventLoop

void doEvents

void doMouseDown

void doUpdate

void doActivate

void doOSEvent

void doAdjustMenus

void doMenuChoice

void doFileMenu

void doFloatersMenu

void doOpenDocWindow

void doCloseDocWindow

void doDrawDocWindowContent
void doProvingBeeps

void doOpenFindDialog

void doDisposeFindDialog

docActivateHandler
pascal void toolsActivateHandler
pascal void coloursActivateHandler
void invalidateScrollBarArea

pascal void

// FloatRoutines.c

WindowPtr newGetNewWindow

void newDisposeWindow

function prototypes

(void);

(void);

(void);

(void);

(EventRecord *);
(EventRecord *);
(EventRecord *);
(EventRecord *);
(EventRecord *);
(void);

(SInt32);

(SIntl6);

(SIntl6);

(void);

(void);

(void);

(WindowPtr);

(void);

(void);
(WindowPtr,Boolean);
(WindowPtr,Boolean);
(WindowPtr,Boolean);
(WindowPtr);

(SIntl6,WindowPtr,ActivateProcPtr,SIntl6);
(WindowPtr);

130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155

157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206

void newSelectWindow

void newHideWindow

void newShowWindow

void newDragWindow

void handleSuspendEvent

void handleResumeEvent

void deactivateFloatsAndFirstDocWin
void activateFloatsAndFirstDocWin
void deactivateWindow

void activateWindow

void highlightAndActivateWindow
WindowPtr findFrontNonFloatingWindow
WindowPtr findLastFloatingWindow
Boolean isWindowModal

WindowPtr getWindowList

void setWindowList

WindowPtr getNextWindow

void setNextWindow

Boolean getWasVisible

void setWasVisible

SIntl6 getWindowKind

void setWindowKind

Boolean getWindowVisible

RgnHandle getStructureRegion
RgnHandle getContentRegion

void setWindowHilite
ActivateProcPtr getActivateHandler

void setActivateHandler

(WindowPtr);
(WindowPtr);
(WindowPtr);
(WindowPtr,Point,const Rect *);
(void);

(void);

(void);

(void);

(WindowPtr);
(WindowPtr);
(WindowPtr,Boolean);
(void);

(void);

(WindowPtr);

(void);

(WindowPtr);
(WindowPtr);
(WindowPtr,WindowPtr);
(WindowPtr);
(WindowPtr,Boolean);
(WindowPtr);
(WindowPtr,SIntl6);
(WindowPtr);
(WindowPtr);
(WindowPtr);
(WindowPtr,Boolean);
(WindowPtr);
(WindowPtr,ActivateProcPtr);

// #EHBHHHBH AR R R R R R R R R R R R R R R R R R R R

/[BHABHABBHARHHBH AR HBHHBR AR HBH AR AR A VR A AR R B BB AR AU HURH BB BB HBH AR AU A BB BB HBHH

// FloaterDemo.c

/1 BHHBHH B R R R R R R R

o s 1 0 8 8 8 1 1 1 1 5 8 8 1 s

#include "Floaters.h"

7 e e e o e 3 1 1 1 B 8 8 1 s s

Boolean gColorQuickDrawPresent = false;
Boolean gColourDisplay = false;
Boolean gDone;

Boolean glnBackground;

SIntl6 gNumberDocWindowsOpen;

WindowPtr gToolsWindowPtr;
WindowPtr gColoursWindowPtr;

includes

global variables

void main(void)

{
OSErr OoSErr;
SInt32 response;
GDHandle mainDeviceHdl;
SIntl6 bitsPerPixel;
Handle menubarHdl ;

MenuHandle menuHdl;
// ..

dolnitManagers();

7 o e 1 B 8 8 1 s

initialise managers

check for Color QuickDraw

osErr = Gestalt(gestaltQuickdrawVersion,&response);

if(response >= gestalt8BitQD)
{

gColorQuickDrawPresent = true;

mainDeviceHdl = LMGetMainDevice();

bitsPerPixel = (*(*mainDeviceHdl)->gdPMap)->pixelSize;

if(bitsPerPixel > 1)
gColourDisplay = true;

208
209
210
211
212
213
214
215

217
218
219
220
221
222
223
224

226
227
228
229
230
231
232
233

235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251

253
254
255
256
257
258
259
260

262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283

I/ o e e e e e e e e e e s e SETE UP MeNU bar and menus

menubarHdl = GetNewMBar(rMenubar);

if(menubarHdl == NULL)
ExitToShell();

SetMenuBar (menubarHdl) ;

DrawMenuBar () ;

menuHdl = GetMenuHandle(mApple);

if(menuHdl == NULL)
ExitToShell();
else

AppendResMenu(menuHdl, "DRVR");
J7 o e s e s s s s s s s OPEN FlOAtiNg windows
doOpenFloatingWindows();

Checkltem(GetMenuHandle(mFloaters),iTools, true);
Checkltem(GetMenuHandle(mFloaters),iColours, true);

// . enter eventLoop

eventLoop();
}

// #EHBRHHBH B R R R R R R R R R R R R R R R R #H## dolnitManagers

void dolnitManagers(void)
{
MaxApplZone();
MoreMasters();

InitGraf(&qd.-thePort);
InitFonts();
InitWindows();
InitMenus();

TEINitQ);
InitbDialogs(NULL);

InitCursor();
FlushEvents(everyEvent,0);
}

// #EH#RHHBH AR R R R R R R R R R R R R R R R R #H# doOpenFloatingWindows

void doOpenFloatingWindows(void)

{
SIntl6 resourceOffset = 0;
PicHandle pictureHdl;
ActivateProcPtr procPtr;

if(gColorQuickDrawPresent == false || gColourDisplay == false)
resourceOffset = 4;

procPtr = (ActivateProcPtr) &toolsActivateHandler;
gToolsWindowPtr = newGetNewWindow(rToolsWindow, (WindowPtr) -1,procPtr,kFloatingKind);
if(gToolsWindowPtr == NULL)
{
SysBeep(10);
ExitToShell();
}

pictureHdl = GetPicture(rToolsPict + resourceOffset);
SetWindowPic(gToolsWindowPtr,pictureHdl);

procPtr = (ActivateProcPtr) &coloursActivateHandler;

gColoursWindowPtr = newGetNewWindow(rColoursWindow, (WindowPtr) -1,procPtr,kFloatingKind);

if(gColoursWindowPtr == NULL)
{

SysBeep(10);

ExitToShell();
}

pictureHdl = GetPicture(rColoursPict + resourceOffset);
SetWindowPic(gColoursWindowPtr,pictureHdl);

284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300

302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336

338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355

357
358
359
360

HiliteWindow(gToolsWindowPtr,true);

}

// HHHBHHH R eventLoop

void eventLoop(void)

{
EventRecord eventRec;
DialogPtr theDialogPtr;
SIntl6 itemHit;
gbone = false;
while(!lgDone)

if(WaitNextEvent(everyEvent,&eventRec,MAXLONG,NULL))

{
if('IsDialogEvent(&eventRec))
doEvents(&eventRec);
else
DialogSelect(&eventRec,&theDialogPtr,&itemHit);
if((itemHit == ok) || (itemHit == cancel))
doDisposeFindDialog();
}
}

}
}

[/ HHHHHH BRI R R R R R R R R R R R R R R R ## doEvents
void doEvents(EventRecord *eventRecPtr)
SInt8 charCode;

switch(eventRecPtr->what)
{
case mouseDown:
doMouseDown(eventRecPtr);
break;

case keyDown:

case autoKey:
charCode = eventRecPtr->message & charCodeMask;
if((eventRecPtr->modifiers & cmdKey) != 0)

doAdjustMenus();
doMenuChoice(MenuKey(charCode));
}

break;

case updateEvt:
doUpdate(eventRecPtr);
break;

case OsEvt:
doOSEvent(eventRecPtr);
HiliteMenu(0);
break;
¥
}

// #EH#RHHBH AR R R R R R R R R R R R R R R R R R #H## doMouseDown

void doMouseDown(EventRecord *eventRecPtr)

{
SIntl6 partCode;
WindowPtr windowPtr;
WindowPtr frontWindowPtr;
docRecordHandle docRecordHdl;
SIntl6 windowType;
ulnt32 newSize;
Rect growRect;

partCode = FindWindow(eventRecPtr->where,&windowPtr);

switch(partCode)

362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386

388
389
390
391
392
393
394
395
396

398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
21
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437

{

case inMenuBar:
doAdjustMenus();
doMenuChoice(MenuSelect(eventRecPtr->where));
break;

case inSysWindow:
SystemClick(eventRecPtr,windowPtr);
break;

case inContent:
frontWindowPtr = FrontWindow();
if(((WindowPeek) frontWindowPtr)->windowKind != dialogKind)
doProvingBeeps(windowPtr);
if((isWindowModal (frontWindowPtr)) && (windowPtr != frontWindowPtr))

SysBeep(10);
else
if(windowPtr != frontWindowPtr)
newSelectWindow(windowPtr);
break;

case inDrag:
frontWindowPtr = FrontWindow();
if((isWindowModal (frontWindowPtr)) && (windowPtr != frontWindowPtr))
SysBeep(10);
else
newDragWindow(windowPtr,eventRecPtr->where,&qd.screenBits.bounds);
break;

case inGoAway:
if(TrackGoAway(windowPtr,eventRecPtr->where))
{
docRecordHdl = (docRecordHandle) GetWRefCon(windowPtr);
windowType = (*docRecordHdl)->windowType;
if(windowType == kFloatingKind)

newHideWindow(windowPtr);
doAdjustMenus();

else if(windowType == kDocumentKind)
doCloseDocWindow();
¥

break;

case inGrow:

growRect = gd.screenBits.bounds;

growRect.top = 145;

growRect.left = 335;

newSize = GrowWindow(windowPtr,eventRecPtr->where,&growRect);

if(newSize = 0)

{
invalidateScrollBarArea(windowPtr);
SizeWindow(windowPtr,LoWord(newSize),HiWord(newSize),true);
invalidateScrollBarArea(windowPtr);

}

break;

case inzZoomln:
case inZoomOut:
if(TrackBox(windowPtr,eventRecPtr->where,partCode))

SetPort(windowPtr);
EraseRect(&windowPtr->portRect);
ZoomWindow(windowPtr,partCode, false);
InvalRect(&windowPtr->portRect);

¥

break;

/1 BHUBHUHBRBH BB H R H B H B HH RS R SR H R H R R SR R R R R R S s a R4 doUpdate
void doUpdate(EventRecord *eventRecPtr)

WindowPtr windowPtr;

windowPtr = (WindowPtr)eventRecPtr->message;

438 SetPort(windowPtr);

439

440 BeginUpdate(windowPtr);

441 EraseRect(&windowPtr->portRect);

442 doDrawDocWindowContent();

443 DrawGrowlcon(windowPtr);

444 EndUpdate(windowPtr);

445 %}

446

447 LS HEH G R A S R S L S I I I S R doOSEvent
448

449 void doOSEvent(EventRecord *eventRecPtr)
450 {

451 switch((eventRecPtr->message >>24) & 0x000000FF)
452 {

453 case suspendResumeMessage:

454 if(eventRecPtr->message & resumeFlag)
455

456 glnBackground = false;

457 handleResumeEvent();

458 SetCursor(&qd.arrow);

459 }

460 else

461

462 glnBackground = true;

463 handleSuspendEvent();

464 }

465 break;

466

467 case mouseMovedMessage:

468 break;

469 }

470 ¥

471

472 /1 HBHBHBHBHBH AR R R R R R R R R R R AR H# doAdJustMenus
473

474 void doAdjustMenus(void)

a5 {

476 MenuHandle appleMenuHdl, fileMenuHdl, floatMenuHdl;
477

478 appleMenuHdl = GetMenuHandle(mApple);

479 fileMenuHdl = GetMenuHandle(mFile);

480 floatMenuHdl = GetMenuHandle(mFloaters);
481

482 if(isWindowModal (FrontWindow()))

483

484 Disableltem(appleMenuHdl,1);

485 Disableltem(fileMenuHdl,0);

486 Disableltem(floatMenuHdl,0);

487 ¥

488 else

489 {

490 Enableltem(appleMenuHdl,1);

491 Enableltem(fileMenuHdl,0);

492 Enableltem(floatMenuHdl,0);

493

494 if(gNumberDocWindowsOpen)

495 Enableltem(fileMenuHdl,iClose);

496 else

497 Disableltem(fileMenuHdl,iClose);

498 }

499

500 if(getWindowVisible(gToolsWindowPtr))
501 Checkltem(floatMenuHdl,iTools, true);
502 else

503 Checkltem(floatMenuHdl,iTools, false);
504

505 if(getWindowVisible(gColoursWindowPtr))
506 Checkltem(floatMenuHdl,iColours, true);
507 else

508 Checkltem(floatMenuHdl,iColours, false);
509

510 DrawMenuBar () ;

511}

512

513 LS G A A L I T T I R R A A G SR S L0 21 T I I I I 0 A A T doMenuChoice

514

515 void doMenuChoice(SInt32 menuChoice)

516 {

517 SIntl6 menulD, menultem;

518 Str255 itemName;

519 SIntl6 daDriverRefNum;

520

521 menulD = HiWord(menuChoice);

522 menultem = LoWord(menuChoice);

523

524 if(menulD == 0)

525 return;

526

527 switch(menulD)

528 {

529 case mApple:

530 if(menultem == iAbout)

531 {

532 deactivateFloatsAndFirstDocWin();
533 NoteAlert(rAboutAlert,NULL);
534 activateFloatsAndFirstDocWin();
535 }

536 else

537

538 GetMenultemText(GetMenuHandle(mApple) ,menultem, itemName);
539 daDriverRefNum = OpenDeskAcc(itemName);
540 }

541 break;

542

543 case mFile:

544 doFileMenu(menultem);

545 break;

546

547 case mFloaters:

548 doFloatersMenu(menultem);

549 break;

550 }

551

552 HiliteMenu(0);

553 }

554

555 /1 HBHBHBHBH BB R R R R R R R R R R R A4 doFi leMenu
556

557 void doFileMenu(SIntl6 menultem)

558 {

559 switch(menultem)

560 {

561 case iNew:

562 doOpenDocWindow() ;

563 break;

564

565 case iClose:

566 doCloseDocWindow();

567 break;

568

569 case iFind:

570 doOpenFindDialog();

571 break;

572

573 case iQuit:

574 gbone = true;

575 break;

576 ¥

577 }

578

579 + doFloatersMenu
580

581 void doFloatersMenu(SIntl6 menultem)
582 {

583 Boolean floaterVisible;

584 WindowPtr floaterPicked;

585

586 if(menultem == iTools)

587 floaterPicked = gToolsWindowPtr;
588 else if(menultem == iColours)

589 floaterPicked = gColoursWindowPtr;
590

591 floaterVisible = getWindowVisible(floaterPicked);

592
593
594
595
596
597
598
599
600

602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636

638
639
640
641
642
643
644
645

647
648
649
650
651
652
653

655
656
657
658
659
660
661
662
663

665
666
667
668

if(floaterVisible == false)
newShowWindow(floaterPicked);

else
newHideWindow(floaterPicked);

doAdjustMenus();

// HHHBHHH RS R doOpenDocWindow

void doOpenDocWindow(void)
{
ActivateProcPtr procPtr;
WindowPtr windowPtr;

if(gNumberDocWindowsOpen > 3)
SysBeep(10);
else
{
procPtr = (ActivateProcPtr) &docActivateHandler;
windowPtr = newGetNewWindow(rDocWindow, (WindowPtr) -1,procPtr,kDocumentKind);
newShowWindow(windowPtr);
gNumberDocWindowsOpen ++;

// HHHBHH SR doCloseDocWindow

void doCloseDocWindow(void)

{

WindowPtr windowPtr;
windowPtr = findFrontNonFloatingWindow();

if(windowPtr != NULL)
newDisposeWindow(windowPtr);

gNumberDocWindowsOpen --;

}

// #EHBRHHBH AR R R R R R R R R R R R R R R AR ##H doDrawDocWindowContent

void doDrawbDocWindowContent(void)
{

Str255 theString;

SIntl6 a;

for(a=1;a<4;a++)

GetIndString(theString,128,a);
MoveTo(20,a*30);
DrawString(theString);
¥
}

// #EHBRHHBH AR R R R R R R R R R R R R R R R R R R #H## doProvingBeeps

void doProvingBeeps(WindowPtr windowPtr)
{

Handle soundHdl;

SIntl6 repeat, a;

soundHdl = GetResource("snd ",rSound);
if(windowPtr == gToolsWindowPtr)
repeat = 2;
else if(windowPtr == gColoursWindowPtr)
repeat = 3;
else

repeat = 1;

for(a=0;a<repeat;a++)
SndPlay(NULL, (SndListHandle) soundHdl, false);

ReleaseResource(soundHdl);

669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686

688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745

/1 HBHBHBHBH AR R R R R R R R R R R R R ### doOpenFindDialog
void doOpenFindDialog(void)
{

DialogPtr findDialogPtr;

deactivateFloatsAndFirstDocWin();
findDialogPtr = GetNewDialog(rFindDialog,NULL, (WindowPtr) - 1);

doAdjustMenus();

[/ HBHBHBHRAR AR AR AR AR AR AR R AR AR AR AR AR AR ABHBABH AR AR AR AR AR R R R doDisposeFindDialog
void doDisposeFindDialog(void)
{

DialogPtr findDialogPtr;

findDialogPtr = FrontWindow();
DisposeDialog(findDialogPtr);

activateFloatsAndFirstDocWin();

doAdjustMenus();

// HHHBHHH R docActivateHandler

pascal void docActivateHandler(WindowPtr windowPtr,Boolean activate)
{

GrafPtr oldPort;

SInt32 finalTicks;

Rect theRect;

GetPort(&oldPort);
SetPort(windowPtr);

DrawGrowlcon(windowPtr);

MoveTo(20,120);

if(activate)
DrawString(""\pActivating");

else
DrawString('"\pDeactivating");

Delay(30,&FfinalTicks);

SetRect(&theRect,20,105,100,125);
EraseRect(&theRect);

SetPort(oldPort);

// HHHBHHH R toolsActivateHandler

pascal void toolsActivateHandler(WindowPtr windowPtr,Boolean activate)

{
GrafPtr oldPort;
SIntl6 resourceOffset = 0;
PicHandle pictureHdl;
SIntl6 whichPicture;
Rect theRect;

GetPort(&oldPort);
SetPort(windowPtr);

if(activate == true)
whichPicture = rToolsPict;
else

whichPicture = rToolsPictDim;

if(gColorQuickDrawPresent == false || gColourDisplay == false)
resourceOffset = 4;

pictureHdl = GetPicture(whichPicture + resourceOffset);
theRect = (*pictureHdl)->picFrame;

746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
77
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822

OffsetRect(&theRect,- theRect.left, - theRect.top);
if(gColorQuickDrawPresent == false || gColourDisplay == false)
EraseRect(&windowPtr->portRect);
DrawPicture(pictureHdl,&theRect);
SetWindowPic(windowPtr,pictureHdl);

SetPort(oldPort);
}

// HHHBHH SR R R R R R R R R R R R R R R ##H coloursActivateHandler

pascal void coloursActivateHandler(WindowPtr windowPtr,Boolean activate)
{

GrafPtr oldPort;

SIntl6 resourceOffset = 0;

PicHandle pictureHdl;

SIntl6 whichPicture;

Rect theRect;

GetPort(&oldPort);
SetPort(windowPtr);

if(activate == true)

whichPicture = rColoursPict;
else

whichPicture = rColoursPictDim;

if(gColorQuickDrawPresent == false || gColourDisplay == false)
resourceOffset = 4;

pictureHdl = GetPicture(whichPicture + resourceOffset);

theRect = (*pictureHdl)->picFrame;

OffsetRect(&theRect,- theRect.left, - theRect.top);

if(gColorQuickDrawPresent == false || gColourDisplay == false)
EraseRect(&windowPtr->portRect);

DrawPicture(pictureHdl,&theRect);

SetWindowPic(windowPtr,pictureHdl);

SetPort(oldPort);
}

// #EH#RHHBH AR R R R R R R R R R R R R R AR ## InvalidateScrol IBarArea

void invalidateScrollBarArea(WindowPtr windowPtr)

{

Rect tempRect;
SetPort(windowPtr);
tempRect = windowPtr->portRect;

tempRect.left = tempRect.right - 15;
InvalRect(&tempRect);

tempRect = windowPtr->portRect;
tempRect.top = tempRect.bottom - 15;
InvalRect(&tempRect);

// FloatRoutines.c Routines to support floating window
[/ HHHHH R BB R R R R R R

L/ e e e e e e 1 1 1 8 8 1 8 e e e e e EDCTUDES
#include "Floaters.h"
// HHHH#H#HB BB BB R R SRR R R R R R R R R R R R R R SRR R R # Y newGetNewWindow

WindowPtr newGetNewWindow(SIntl6 windResourcelD,WindowPtr behind,
ActivateProcPtr activateHandler,SIntl6é windowType)

{
docRecordHandle docRecordHdl;
OSErr OSErr;
SInt32 response;
WindowPtr newWindowPtr;

823 WindowPtr lastFloatingWindowPtr;

824

825 docRecordHdl = (docRecordHandle) NewHandle(sizeof(docRecord));
826

827 osErr = Gestalt(gestaltQuickdrawVersion,&response);

828 if(response < gestalt32BitQD)

829 newWindowPtr = GetNewWindow(windResourcelD,NULL, (WindowPtr) behind);
830 else

831 newWindowPtr = GetNewCWindow(windResourcelD,NULL, (WindowPtr) behind);
832

833 if(newWindowPtr I= NULL)

834 {

835 SetWRefCon(newWindowPtr, (SInt32) docRecordHdl);

836 setActivateHandler(newWindowPtr,activateHandler);

837

838 if(windowType == kFloatingKind)

839 {

840 setWindowKind(newWindowPtr,kFloatingKind);

841 HiliteWindow(newWindowPtr, true);

842 }

843 else

844 {

845 setWindowKind(newWindowPtr,kDocumentKind);

846 if(behind == (WindowPtr) -1)

847 {

848 lastFloatingWindowPtr = findLastFloatingWindow();
849

850 if(lastFloatingWindowPtr != NULL)

851 SendBehind(newWindowPtr, lastFloatingWindowPtr);
852 else

853 BringToFront(newWindowPtr);

854 }

855 }

856 ¥

857 else

858 DisposeHandle((Handle) docRecordHdl);

859

860 return newWindowPtr;

861 }

862

863 /1 HBHBHBHBHBH B R R R R R R R R R R R R #H newDisposeWindow
864

865 void newDisposeWindow(WindowPtr windowPtr)

866 {

867 if(getWindowVisible(windowPtr))

868 newHideWindow(windowPtr);

869 CloseWindow(windowPtr);

870 DisposeHandle((Handle) GetWRefCon(windowPtr));

871 DisposePtr((Ptr) windowPtr);

872 }

873

874 [/ HEH G LR R R I A G S L L S S I I newSelectWindow
875

876 void newSelectWindow(WindowPtr windowToSelectPtr)

877 {

878 Boolean isFloatingWindow;

879 WindowPtr currentFrontWindowPtr;

880 WindowPtr lastFloatingWindowPtr;

881

882 if(getWindowKind(windowToSelectPtr) == kFloatingKind)
883 {

884 isFloatingWindow = true;

885 currentFrontWindowPtr = FrontWindow();

886 }

887 else

888 {

889 isFloatingWindow = false;

890 currentFrontWindowPtr = findFrontNonFloatingWindow();
891 lastFloatingWindowPtr = findLastFloatingWindow();

892 }

893

894 if(currentFrontWindowPtr !'= windowToSelectPtr)

895 {

896 if(isFloatingWindow)

897 BringToFront(windowToSelectPtr);

898 else

899 {

944

Vo

{

if(lastFloatingWindowPtr == NULL)
SelectWindow(windowToSelectPtr);

else

{
deactivateWindow(currentFrontWindowPtr);
SendBehind(windowToSelectPtr, lastFloatingWindowPtr);
activateWindow(windowToSelectPtr);

}

... newHideWindow

id newHideWindow(WindowPtr windowToHidePtr)

WindowPtr frontFloaterPtr;
WindowPtr frontNonFloaterPtr;
WindowPtr windowBehindPtr;
WindowPtr lastFloaterPtr;

if(getWindowVisible(windowToHidePtr) == false)
return;

frontFloaterPtr = FrontWindow();

if(getWindowKind(frontFloaterPtr) != kFloatingKind)
frontFloaterPtr = NULL;

frontNonFloaterPtr = findFrontNonFloatingWindow();

ShowHide(windowToHidePtr,false);

if(windowToHidePtr == frontFloaterPtr)

{
windowBehindPtr = getNextWindow(windowToHidePtr);
if((windowBehindPtr != NULL) && (getWindowKind(windowBehindPtr) == kFloatingKind))
{

setNextWindow(windowToHidePtr,getNextWindow(windowBehindPtr));
setNextWindow(windowBehindPtr,windowToHidePtr);
setWindowList(windowBehindPtr);
}
}

else

if(windowToHidePtr == frontNonFloaterPtr)

{
windowBehindPtr = getNextWindow(windowToHidePtr);

if(windowBehindPtr 1= NULL)

{
setNextWindow(windowToHidePtr,getNextWindow(windowBehindPtr));
setNextWindow(windowBehindPtr,windowToHidePtr);

lastFloaterPtr = findLastFloatingWindow();
if(lastFloaterPtr != NULL)
setNextWindow(lastFloaterPtr,windowBehindPtr);
else
setWindowList(windowBehindPtr);

activateWindow(windowBehindPtr);

... newShowWindow

id newShowWindow(WindowPtr windowToShowPtr)

SIntl6 windowType;

WindowPtr windowBehindPtr;

WindowPtr frontNonFloatingWindowPtr;
Boolean windowlsInFront = false;
ActivateProcPtr activateHandler;

if(getWindowVisible(windowToShowPtr) I= false)

977 return;
979 windowType = getWindowKind(windowToShowPtr);

981 if(windowType != kFloatingKind)

982 {

983 windowBehindPtr = getNextWindow(windowToShowPtr);
984 if(windowBehindPtr == findFrontNonFloatingWindow())

986 if(windowBehindPtr '= NULL)
987 deactivateWindow(windowBehindPtr);

989 setWindowHilite(windowToShowPtr, true);

990 windowlsInFront = true;

991 }

992 ¥

993 else

994 {

995 frontNonFloatingWindowPtr = findFrontNonFloatingWindow();

997 if((frontNonFloatingWindowPtr != NULL) &&

998 (frontNonFloatingWindowPtr == FrontWindow()) &&

999 (isWindowModal (frontNonFloatingWindowPtr)))

1000 {

1001 setWindowHilite(windowToShowPtr, false);

1002 }

1003 else

1004

1005 setWindowHilite(windowToShowPtr, true);

1006 windowlsInFront = true;

1007 ¥

1008 }

1009

1010 ShowHide(windowToShowPtr,true);

1011

1012 if(windowlslInFront)

1013 {

1014 activateHandler = getActivateHandler(windowToShowPtr);
1015 (*activateHandler) (windowToShowPtr,true);

1016 }

1017}

1018

1019 // HHHBHHH R newDragWindow
1020

1021 void newDragWindow(WindowPtr windowPtr,Point startPoint,const Rect *dragBounds)
1022 {

1023 SIintl6 topLimit;

1024 Rect slopRect;

1025 GrafPtr oldPort;

1026 GrafPtr windowManagerPort;

1027 KeyMap keyMap;

1028 Boolean commandKeyDown = false;
1029 RgnHandle dragRegion;

1030 SInt32 dragResult;

1031 SIntl6 horizOffset;

1032 SIntl6 vertOffset;

1033 RgnHandle windowContentRegion;
1034 SIntl6 newHorizWindowPosition;
1035 SIintl6 newVertWindowPosition;
1036

1037 if(WaitMouseUp())

1038 {

1039 topLimit = GetMBarHeight() + 4;
1040 slopRect = *dragBounds;

1041

1042 if(slopRect.top < topLimit)

1043 slopRect.top = topLimit;

1044

1045 GetPort(&oldPort);

1046 GetWMgrPort(&windowManagerPort);
1047 SetPort(windowManagerPort);

1048

1049 SetClip(GetGrayRgn());

1050

1051 GetKeys(keyMap);

1052 if(keyMap[1] & 0x8000)

1053 commandKeyDown = true;

1054

1055 if((commandKeyDown == true) || (getWindowKind(windowPtr) != kFloatingKind))
1056 {

1057 if (commandKeyDown == false)

1058 ClipAbove((WindowRef) ((WindowPeek) findFrontNonFloatingWindow()));
1059 else

1060 ClipAbove((WindowRef) ((WindowPeek) windowPtr));

1061 }

1062

1063 dragRegion = NewRgn();

1064 CopyRgn(getStructureRegion(windowPtr), dragRegion);

1065

1066 dragResult = DragGrayRgn(dragRegion,startPoint,&slopRect,&slopRect,noConstraint,nil);
1067

1068 SetPort(oldPort);

1069

1070 if(dragResult = 0)

1071 {

1072 horizOffset = dragResult & OxFFFF;

1073 vertOffset = dragResult >> 16;

1074

1075 if(vertOffset 1= -32768)

1076 {

1077 windowContentRegion = getContentRegion(windowPtr);

1078

1079 newHorizWindowPosition = (**windowContentRegion).rgnBBox.left + horizOffset;
1080 newVertWindowPosition = (**windowContentRegion).rgnBBox.top + vertOffset;
1081

1082 MoveWindow(windowPtr,newHorizWindowPosition,newVertWindowPosition, false);
1083 ¥

1084 ¥

1085

1086 if(commandKeybDown == false)

1087 newSelectWindow(windowPtr);

1088

1089 DisposeRgn(dragRegion);

1090 ¥

1091}

1092

1093 // HHUHBHHH RS R handleSuspendEvent
1094

1095 void handleSuspendEvent(void)

1096 {

1097 WindowPtr currentWindowPtr;

1098 Boolean windowlsVisible;

1099

1100 currentWindowPtr = getWindowList();

1101

1102 if(getWindowKind(currentWindowPtr) != kFloatingKind)

1103 return;

1104

1105 do

1106 {

1107 windowlsVisible = getWindowVisible(currentWindowPtr);

1108 setWasVisible(currentWindowPtr,windowlsVisible);

1109 if(windowlsVisible)

1110 ShowHide(currentWindowPtr, false);

1111 currentWindowPtr = getNextWindow(currentWindowPtr);

1112 } while((currentWindowPtr I= NULL) &&

1113 (getWindowKind(currentWindowPtr) == kFloatingKind));

1114

1115 currentWindowPtr = findFrontNonFloatingWindow();

1116 if(currentWindowPtr != NULL)

1117 {

1118 DrawGrowlcon(currentWindowPtr);

1119 deactivateWindow(currentWindowPtr);

1120 }

121}

1122

1123 LS G A L L I T T I 0 R AR HAE A0 AR S S 200 200 B I I I 10 20 handleResumeEvent
1124

1125 void handleResumeEvent(void)

126 {

1127 WindowPtr currentWindowPtr;

1128 Boolean windowWasVisible;

1129

1130 currentWindowPtr = getWindowList();

1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207

if(getWindowKind(currentWindowPtr) != kFloatingKind)
return;

do

{
windowWasVisible = getWasVisible(currentWindowPtr);
if(windowWasVisible)

ShowHide(currentWindowPtr, true);
activateWindow(currentWindowPtr);
}
currentWindowPtr = getNextWindow(currentWindowPtr);
} while((currentWindowPtr I= NULL) &&
(getWindowKind(currentWindowPtr) == kFloatingKind));

currentWindowPtr = findFrontNonFloatingWindow();
if(currentWindowPtr != NULL)
{
DrawGrowlcon(currentWindowPtr);
activateWindow(currentWindowPtr);
}
}

// HHHSHHH BT R R R R R R R R R R R R # deactivateFloatsAndFirstDocWin

void deactivateFloatsAndFirstDocWin(void)
{
WindowPtr firstWindowPtr;
WindowPtr secondDocumentWindowPtr;
WindowPtr currentWindowPtr;

firstWindowPtr = FrontWindow();
secondDocumentWindowPtr = findFrontNonFloatingWindow();
if(secondDocumentWindowPtr != NULL)

secondDocumentWindowPtr = getNextWindow(secondDocumentWindowPtr);

currentWindowPtr = firstWindowPtr;
while(currentWindowPtr != secondDocumentWindowPtr)
{
if(getWindowVisible(currentWindowPtr))
deactivateWindow(currentWindowPtr);
currentWindowPtr = getNextWindow(currentWindowPtr);
}
¥

/7 HHHBHH B R R R R R R R R R R R R R #H activateFloatsAndFirstDocWin

void activateFloatsAndFirstDocWin(void)

{
OSErr getFrontProcessResult;
OSErr getCurrentProcessResult;
ProcessSerialNumber frontPSN;
ProcessSerialNumber currentPSN;

OSErr sameProcessResult;
Boolean isSameProcess;

WindowPtr firstWindowPtr;
WindowPtr secondDocumentWindowPtr;
WindowPtr currentWindowPtr;

getFrontProcessResult = GetFrontProcess(&frontPSN);
getCurrentProcessResult = GetCurrentProcess(¤tPSN);

if((getFrontProcessResult == noErr) && (getCurrentProcessResult == noErr))
sameProcessResult = SameProcess(&frontPSN,¤tPSN,&isSameProcess);

if((sameProcessResult == noErr) && (isSameProcess == false))
handleSuspendEvent();

else

{
firstWindowPtr = FrontWindow();
secondDocumentWindowPtr = findFrontNonFloatingWindow();
if(secondDocumentWindowPtr '= NULL)

secondDocumentWindowPtr = getNextWindow(secondDocumentWindowPtr);

currentWindowPtr = firstWindowPtr;

while(currentWindowPtr != secondDocumentWindowPtr)

1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284

if(getWindowVisible(currentWindowPtr))
activateWindow(currentWindowPtr);
currentWindowPtr = getNextWindow(currentWindowPtr);
}
¥
}

[/ HHHHHH B RHH R R R ## deactivateWindow
void deactivateWindow(WindowPtr windowPtr)

highlightAndActivateWindow(windowPtr,false);
}

// HHHBHHH R activateWindow

void activateWindow(WindowPtr windowPtr)

highlightAndActivateWindow(windowPtr,true);

/7 HHHBRH SRS R R R R R R R R R R R R highlightAndActivateWindow

void highlightAndActivateWindow(WindowPtr windowPtr,Boolean activate)
ActivateProcPtr activateHandler;
HiliteWindow(windowPtr,activate);
activateHandler = getActivateHandler(windowPtr);

(*activateHandler) (windowPtr,activate);

}

// HHHHHHH RS R R R R R R R R R R R R s ## FindFrontNonFloatingWindow

WindowPtr findFrontNonFloatingWindow(void)
{

WindowPtr frontWindowPtr;
frontWindowPtr = FrontWindow();
while((frontWindowPtr != NULL) && (getWindowKind(frontWindowPtr) == kFloatingKind))
{
do
frontWindowPtr = getNextWindow(frontWindowPtr);
} while((frontWindowPtr != NULL) && (getWindowVisible(frontWindowPtr) == false));

return(frontWindowPtr);

/7 BHHBRH B R R R R ### findLastFloatingWindow

WindowPtr findLastFloatingWindow(void)
{

WindowPtr windowPtr;
WindowPtr lastFloatingWindowPtr;

windowPtr = getWindowList();
lastFloatingWindowPtr = NULL;

while(windowPtr != NULL)
if(getWindowKind(windowPtr) == kFloatingKind)
lastFloatingWindowPtr = windowPtr;

windowPtr = getNextWindow(windowPtr);

}

return lastFloatingWindowPtr;

// HHUHSHH ST R isWindowModal

Boolean isWindowModal(WindowPtr windowPtr)

{

SIntl6é variant;

1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361

variant = GetWVariant(windowPtr);

if((((WindowPeek) windowPtr)->windowKind == dialogKind) &&
((variant == dBoxProc) || (variant == movableDBoxProc)))
return true;

else
return false;

* getWindowList

WindowPtr getWindowList(void)

{
return(LMGetWindowList());

}

[/ HHHHH R BB R R R R R R R ### setWindowList
void setWindowList(WindowPtr windowPtr)

LMSetWindowList(windowPtr);
}

[/ HHHHBRHHHH TR R R E% getNextWindow

WindowPtr getNextWindow(WindowPtr windowPtr)

return((WindowPtr) ((WindowPeek) windowPtr)->nextWindow);
¥

/1 BHHBHHBHHHRH AR B H R R R R R R R RH setNextWindow

void setNextWindow(WindowPtr windowPtr,WindowPtr nextWindowPtr)

((WindowPeek) windowPtr)->nextWindow = (WindowPeek) nextWindowPtr;

// #EHBHHBBH B R R R R R R R R R R R R R R R # R #Y getWasVisible

Boolean getWasVisible(WindowPtr windowPtr)

{

docRecordHandle docRecordHdl;

docRecordHdl = (docRecordHandle) GetWRefCon(windowPtr);
return((*docRecordHdl)->wasVisible);

}

/1 BHHBHH BB R R R R R R R R ## setWasVisible

void setWasVisible(WindowPtr windowPtr,Boolean wasVisible)

{

docRecordHandle docRecordHdl;

docRecordHdl = (docRecordHandle) GetWRefCon(windowPtr);
(*docRecordHdl)->wasVisible = wasVisible;

¥

/1 BHHBHHBHHHRHHBHH BB R R R R R R R E# getWindowKind

SIntl6 getWindowKind(WindowPtr windowPtr)
{

docRecordHandle docRecordHdl;
if(((WindowPeek) windowPtr)->windowKind != dialogKind)

docRecordHdl = (docRecordHandle) GetWRefCon(windowPtr);
return((*docRecordHdl)->windowType);
¥

else
return(0);

/1 BHHBHHBHHHRHHBHHBHH BB R R B H B R R R R R R R R R R R A# setWindowKind

1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438

docRecordHandle docRecordHdl;

docRecordHdl = (docRecordHandle) GetWRefCon(windowPtr);
(*docRecordHdl)->windowType = windowKind;

}

/1 BHHBHH BB H R R R R R R R R R getWindowVisible

Boolean getWindowVisible(WindowPtr windowPtr)

return(((WindowPeek) windowPtr)->visible);

/1 BHUBHHBRHH BB H R H TR R R H R R R R R R R R getStructureRegion
RgnHandle getStructureRegion(WindowPtr windowPtr)

return(((WindowPeek) windowPtr)->strucRgn);

// #EHBHHRBH AR R R R R R R R R R R R # R #H##H getContentRegion
RgnHandle getContentRegion(WindowPtr windowPtr)

return(((WindowPeek) windowPtr)->contRgn);

/1 BHHBHH BB R R R R R R R R R R setWindowHilite

void setWindowHilite(WindowPtr windowPtr,Boolean windowHilite)

((WindowPeek) windowPtr)->hilited = windowHilite;
¥

1/ HHHBHH BB R R R R R R R R R R R R R #H## getActivateHandler

ActivateProcPtr getActivateHandler(WindowPtr windowPtr)

{

docRecordHandle docRecordHdl;

docRecordHdl = (docRecordHandle) GetWRefCon(windowPtr);
return((*docRecordHdl)->activateHandler);

}

// #EHBRHBBH AR R R R R R R R R R R R R # R #H## SetActivateHandler

void setActivateHandler(WindowPtr windowPtr,ActivateProcPtr activateHandler)

{

docRecordHandle docRecordHdl;

docRecordHdl = (docRecordHandle) GetWRefCon(windowPtr);
(*docRecordHdl)->activateHandler = activateHandler;

}

[/ HHHHH R B R R RRHH
// WDEF.c Custom Window Definition Function for Floating Windows

// This WDEF creates a utility window whose appearance conforms to that specified in the
// document titled Apple Grayscale Appearance for System 7.5 and published by Apple

// Computer, Inc. On black-and-white displays, the WDEF is drawn in black-and-white with
// an appearance similar to the black-and-white floating windows found in many commercial
// applications. The WDEF supports only one variation code. 1t provides for a close box
// but not for a zoom box or window title.

// The WDEF utilises three "cicn” resources (unpurgeable), one for the close box in the
// normal state, one for the close box in the pressed state, and one to paint the

// checkered pattern in the title bar.

// #EHBRHHBH AR R

L/ o e e e e 1 1 e 1 1 8 1 8 1 8 e e e e e EDCTUDES

#include <A4Stuff.h>
#include <Gestalt._h>

1439 #include <ToolUtils.h>

1440 #include <LowMem.h>

1441

1442 J /e et e e 1 1 1 1 5 1 8 18 18 18 18 18 18 18 8 58 0 1 1 1 8 8 1 1 1 1 1 1 1 1 1B 1 8 1 1 1
1443

1444 #define rCloseEnabledlcon 128

1445 #define rClosePressedlcon 129

1446 #define rCheckPatternlcon 130

1447

1448 // ..
1449

1450 Boolean
1451 Boolean
1452 Pattern

defines

global variables

gColorQuickDrawPresent =
gColourDisplay = false;
gBlackPattern;

1453 ClconHandle gCloseEnabledHdl;

1454 ClconHandle gClosePressedHdl;

1455 ClconHandle gCheckPatternHdl;

false;

1456 RGBColor gWhite = { OxXFFFF,OxFFFF,OXFFFF };
1457 RGBColor gGrayl = { OxEEEE,OxEEEE,OxEEEE };
1458 RGBColor gGray2 = { O0xDDDD,OxDDDD,0OxDDDD };
1459 RGBColor gGray3 = { OxCCCC,0xCCCC,0xCCCC };
1460 RGBColor gGray4 = { OxBBBB,0xBBBB,0xBBBB };
1461 RGBColor gGray6 = { 0x9999,0x9999,0x9999 };
1462 RGBColor gGray7 = { 0x8888,0x8888,0x8888 };
1463 RGBColor gGray8 = { Ox7777,0x7777,0x7777 }%};
1464 RGBColor gGrayl0 = { 0x5555,0x5555,0x5555 };
1465 RGBColor gBlack = { 0x0000,0x0000,0x0000 };
1466 Boolean gToggle;

1467

1468 L7 o B B B 2 2 s e T UNCTETON prototypes
1469

1470 void dolnitMessage (void);

1471 void doDrawMessage (WindowPeek,SInt32);
1472 SInt32 doHitMessage (WindowPeek,SInt32);
1473 void doCalcRgnsMessage (WindowPeek) ;

drawWindowColour
drawWindowMono

1474 void
1475 void

(WindowPeek) ;
(WindowPeek) ;

1476 void toggleGoAway (WindowPeek) ;

1477 void drawGoAwayBox (WindowPeek) ;

1478 void drawGoAwayBoxPressed (WindowPeek);

1479 void getGoAwayRect (WindowPeek,Rect *);
1480 void getContentRect (WindowPeek,Rect *);
1481 void getStructRect (WindowPeek,Rect *);
1482 void syncPorts (void);

1483

1484 /1 HEHBHBH BB R R R R R R R R R R R R R R R R AR main
1485

1486 pascal SInt32 main(SIntl6 varCode,WindowPeek windowPeek,SIntl6 message,SInt32 param)
1487 {

1488 SInt32 result;

1489 GrafPtr oldPort;

1490 PenState oldPenState;

1491

1492 EnterCodeResource();

1493

1494 GetPenState(&oldPenState);

1495 GetPort(&oldPort);

1496

1497 if(gColorQuickDrawPresent)

1498 syncPorts();

1499

1500 result = 0;

1501

1502 switch(message)

1503 {

1504 case wNew:

1505 dolnitMessage();

1506 break;

1507

1508 case wDraw:

1509 if(windowPeek->visible)

1510 doDrawMessage(windowPeek,param) ;

1511 break;

1512

1513 case wHit:

1514 result = doHitMessage(windowPeek,param);

1515 break;

1516

1517 case wCalcRgns:

1518 doCalcRgnsMessage(windowPeek) ;
1519 break;

1520 }

1521

1522 SetPenState(&oldPenState);
1523 SetPort(oldPort);

1524

1525 ExitCodeResource();

1526

1527 return(result);

1528}

1529

1530 // #EHBRHHBH R R R R R AR ##H dolnitMessage
1531
1532 void dolnitMessage(void)

1533 {

1534 OSErr oSErr;

1535 SInt32 response;

1536 GDHandle mainDeviceHdl;

1537 SIintl6 bitsPerPixel, a;

1538

1539 osErr = Gestalt(gestaltQuickdrawVersion,&response);
1540 if(response >= gestalt8BitQD)

1541 {

1542 gColorQuickDrawPresent = true;

1543

1544 mainDeviceHdl = LMGetMainDevice();

1545 bitsPerPixel = (*(*mainDeviceHdl)->gdPMap)->pixelSize;
1546 if(bitsPerPixel > 1)

1547 gColourDisplay = true;

1548 }

1549

1550 for(a=0;a<8;a++)

1551 gBlackPattern._.pat[a] = OxFF;

1552

1553 gCloseEnabledHdl = GetClcon(rCloseEnabledlcon);

1554 gClosePressedHdl = GetClcon(rClosePressedlcon);

1555 gCheckPatternHdl = GetClcon(rCheckPatternlcon);
1556

1557 gToggle = false;

1558 }

1559

1560 // #EHBRHHBH AR R R R R R R R R R R R R R R R R R R # A ##H doDrawMessage
1561
1562 void doDrawMessage(WindowPeek windowPeek,SInt32 param)

1563 {

1564 param &= OxXOO0O0O0OFFFF;

1565

1566 switch(param)

1567 {

1568 case wNoHit:

1569 if(gColorQuickDrawPresent && gColourDisplay)
1570 drawWindowColour(windowPeek) ;
1571 else

1572 drawWindowMono(windowPeek) ;
1573 break;

1574

1575 case wlnGoAway:

1576 toggleGoAway(windowPeek) ;

1577 break;

1578

1579 default:

1580 return;

1581 T

1582 }

1583

1584 // #EHBRHHBH BB R R R R R R R R R R R R R R R #H# doHT tMessage
1585
1586 SInt32 doHitMessage(WindowPeek windowPeek,SInt32 param)

1587 {

1588 Point where;

1589 Rect goAwayRect;

1590

1591 where.v = HiWord(param);

1592 where_.h = LoWord(param);

1593

1594 if(PtInRgn(where,windowPeek->contRgn))

1595 return(winContent);

1596 else if(PtInRgn(where,windowPeek->strucRgn))
1597 {

1598 if(windowPeek->goAwayFlag)

1599 {

1600 getGoAwayRect(windowPeek, &goAwayRect);
1601 if(PtInRect(where, &goAwayRect))

1602 return(wlnGoAway) ;

1603 }

1604

1605 return(winDrag);

1606 }

1607

1608 return(wNoHit);

1609 }

1610

1611 // HHUHBHHH R doCalcRgnsMessage
1612

1613 void doCalcRgnsMessage(WindowPeek windowPeek)
1614 {

1615 RgnHandle tempRgn;

1616 Rect theRect;

1617

1618 tempRgn = NewRgn(Q);

1619

1620 getContentRect(windowPeek,&theRect);

1621 RectRgn(windowPeek->contRgn,&theRect);

1622

1623 getStructRect(windowPeek, &theRect);

1624 RectRgn(windowPeek->strucRgn,&theRect);

1625 OffsetRect(&theRect,1,1);

1626 theRect.left += 1;

1627 theRect.top += 1;

1628 RectRgn(tempRgn,&theRect);

1629 UnionRgn(tempRgn,windowPeek->strucRgn,windowPeek->strucRgn);
1630

1631 DisposeRgn(tempRgn);

1632 }

1633

1634 [/ HHHHHH B HH R R R R RR RR#HH# drawWindowColour
1635
1636 void drawWindowColour(WindowPeek windowPeek)

1637 {

1638 RGBColor oldForeColour;

1639 RGBColor oldBackColour;

1640 Rect contentRect, structRect, theRect;
1641 SIntl6 a, b;

1642

1643 GetForeColor(&oldForeColour);

1644 GetBackColor(&oldBackColour);

1645 PenSize(1,1);

1646 PenPat(&gBlackPattern);

1647 PenMode (patCopy);

1648

1649 if(windowPeek->hilited)

1650 {

1651 getContentRect(windowPeek,&contentRect);
1652

1653 RGBForeColor(&gBlack);

1654 InsetRect(&contentRect,-1,-1);

1655 FrameRect(&contentRect);

1656

1657 getStructRect(windowPeek, &structRect);
1658

1659 RGBForeColor(&gGray3);

1660 SetRect(&theRect,structRect.left + 2,structRect.top + 2,structRect.right - 2,
1661 structRect.top + 12);

1662 PaintRect(&theRect);

1663

1664 SetRect(&theRect,structRect.left + 14,structRect.top + 3,structRect.left + 22,
1665 structRect.top + 11);

1666 b = (((structRect.right - 4) - (structRect.left + 14)) /7 9) + 1;
1667 for(a=0;a<b+1l;a++)

1668 {

1669 PlotClcon(&theRect,gCheckPatternHdl);

1670 OffsetRect(&theRect,9,0);

1671 }

1672

1673 if(windowPeek->goAwayFlag)

1674 drawGoAwayBox(windowPeek) ;

1675

1676 RGBForeColor(&gBlack);

1677 FrameRect(&structRect);

1678 MoveTo(structRect.left + 2,structRect.bottom);

1679 LineTo(structRect.right,structRect.bottom);

1680 LineTo(structRect.right,structRect.top + 2);

1681

1682 RGBForeColor(&gWhite);

1683 MoveTo(structRect.left + 1,structRect.bottom - 3);
1684 LineTo(structRect.left + 1,structRect.top + 1);
1685 LineTo(structRect.right - 3,structRect.top + 1);
1686 MoveTo(structRect.left + 3,structRect.top + 11);
1687 LineTo(structRect.left + 11,structRect.top + 11);
1688 LineTo(structRect.left + 11,structRect.top + 3);
1689

1690 RGBForeColor(&gGrayl);

1691 MoveTo(structRect.left + 2,structRect.bottom - 3);
1692 LineTo(structRect.right - 3,structRect.bottom - 3);
1693 LineTo(structRect.right - 3,structRect.top + 13);
1694

1695 RGBForeColor(&gGray3);

1696 MoveTo(structRect.right - 2,structRect.top + 1);
1697 LineTo(structRect.right - 2,structRect.top + 1);
1698 RGBForeColor(&gGray4);

1699 MoveTo(structRect.left + 1,structRect.bottom - 2);
1700 LineTo(structRect.left + 1,structRect.bottom - 2);
1701

1702 RGBForeColor(&gGray6) ;

1703 MoveTo(structRect.left + 2,structRect.bottom - 2);
1704 LineTo(structRect.right - 2,structRect.bottom - 2);
1705 LineTo(structRect.right - 2,structRect.top + 2);
1706 MoveTo(structRect.right - 3,structRect.top + 12);
1707 LineTo(structRect.left + 2,structRect.top + 12);
1708 LineTo(structRect.left + 2,structRect.bottom - 4);
1709

1710 RGBForeColor(&gGray7);

1711 MoveTo(structRect.left + 2,structRect.top + 10);
1712 LineTo(structRect.left + 2,structRect.top + 2);
1713 LineTo(structRect.left + 10,structRect.top + 2);
1714 }

1715 else

1716 {

1717 RGBForeColor(&gGray10);

1718 getContentRect(windowPeek,&contentRect);

1719 InsetRect(&contentRect,-1,-1);

1720 FrameRect(&contentRect);

1721

1722 getStructRect(windowPeek, &structRect);

1723 FrameRect(&structRect);

1724 MoveTo(structRect.left + 2,structRect.bottom);

1725 LineTo(structRect.right,structRect.bottom);

1726 LineTo(structRect.right,structRect.top + 2);

1727

1728 RGBForeColor(&gGray2);

1729 InsetRect(&structRect,1,1);

1730 PenSize(2,2);

1731 FrameRect(&structRect);

1732 structRect.bottom = structRect.top + 12;

1733 PaintRect(&structRect);

1734 ¥

1735

1736 RGBForeColor(&oldForeColour);

1737 RGBBackColor(&oldBackColour);

1738}

1739

1740 /1 BHUBHHBRBHRGH R H R H BT TR R H R R SR R R R R R R 7 drawWindowMono
1741

1742 void drawWindowMono(WindowPeek windowPeek)

1743 {

1744 Rect contentRect, structRect, theRect;

1745 SIntlé a, b;

1746 uint8 pattern;

1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823

Pattern checkPattern;
PenSize(1,1);
PenPat(&gBlackPattern);
PenMode (patCopy);

if(windowPeek->goAwayFlag && windowPeek->hilited)

{
ForeColor(blackColor);
BackColor(whiteColor);
getContentRect(windowPeek,&contentRect);
InsetRect(&contentRect,-1,-1);
FrameRect(&contentRect);
getStructRect(windowPeek, &structRect);
FrameRect(&structRect);
MoveTo(structRect.left + 2,structRect.bottom);
LineTo(structRect.right,structRect._bottom);
LineTo(structRect.right,structRect.top + 2);
SetRect(&theRect,structRect.left + 1,structRect.top + 1, structRect.right - 1,
structRect.top + 10);
EraseRect(&theRect);
for(a=0;a<8;a++)
checkPattern.pat[a] = 0x00;
if(structRect.left & 1)
pattern = OxAA;
else
pattern = 0x55;
if(structRect.top & 1)
b =1;
else
b = 0;
for(a=b;a<8;a+=2)
checkPattern.pat[a] = pattern;
PenPat(&checkPattern);
SetRect(&theRect,structRect.left + 11,structRect.top + 2, structRect.right - 2,
structRect.top + 9);
PaintRect(&theRect);
PenPat(&gBlackPattern);
if(windowPeek->goAwayFlag)
drawGoAwayBox(windowPeek) ;
}
else
SetRect(&theRect,structRect.left + 1,structRect.top + 1, structRect.right - 1,
structRect.top + 13);
EraseRect(&theRect);
}
¥
/1 HBHBHBHBH BB R R R A R R R R R R R toggleGoAway

void toggleGoAway(WindowPeek windowPeek)

{
gToggle = !gToggle;

if(gToggle)
drawGoAwayBoxPressed(windowPeek) ;
else
drawGoAwayBox(windowPeek) ;

[/ BHHBHHBRH BB R R R R R R R R R R R R R R R R #H drawGoAwayBox

{

1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900

Rect theRect;
getGoAwayRect(windowPeek, &theRect);

if(gColorQuickDrawPresent && gColourDisplay)
PlotClcon(&theRect,gCloseEnabledHdl);

else

{
EraseRect(&theRect);
PenSize(1,1);
FrameRect(&theRect);

¥

}

// #EH#HHHBH AR R R R R R R R R R R R R R R #H## drawGoAwayBoxPressed

void drawGoAwayBoxPressed(WindowPeek windowPeek)

{

Rect theRect;
getGoAwayRect(windowPeek, &theRect);

if(gColorQuickDrawPresent && gColourDisplay)
PlotClcon(&theRect,gClosePressedHdl);

else

{
PenSize(2,2);
FrameRect(&theRect);

}

¥

[/ BHHBHH B RS R R R R R R R #HR###H getGoAwayRect

void getGoAwayRect(WindowPeek windowPeek,Rect *theRect)

{
getStructRect(windowPeek, theRect);

if(gColorQuickDrawPresent && gColourDisplay)

theRect->top += 3;
theRect->left += 3;
theRect->bottom = theRect->top
theRect->right = theRect->left + 8;

+
[e0)
i

3
else
{
theRect->top += 2;
theRect->left += 2;
theRect->bottom = theRect->top + 7;
theRect->right = theRect->left + 7;
}

}

// #EHBHHHBH AR R R R R R R R R R R R R R R R #H## getContentRect
void getContentRect(WindowPeek windowPeek,Rect *theRect)
{

GrafPtr oldPort;

*theRect = windowPeek->port.portRect;

GetPort(&oldPort);
SetPort((GrafPtr) windowPeek);

LocalToGlobal ((Point *) &(theRect->top));
LocalToGlobal ((Point *) &(theRect->bottom));

SetPort(oldPort);

[/ BHHBHHBRH BB R R R R R R R R R R R R R R R R #H##H getStructRect

void getStructRect(WindowPeek windowPeek,Rect *theRect)

{
getContentRect(windowPeek, theRect);

if(gColorQuickDrawPresent && gColourDisplay)

1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930

{
InsetRect(theRect,-4,-4);

theRect->top -= 10;

}

else

{
theRect->top -= 10;
InsetRect(theRect,-1,-1);

3

}

// #EH#HHHBH AR R R R R R R R R R R R R R R # R #H# SsyncPorts

void syncPorts(void)

{
GrafPtr bwPort;

CGrafPtr colorPort;
GetWMgrPort(&bwPort);
GetCWMgrPort(&colorPort);
SetPort((GrafPtr) colorPort);

BlockMoveData(&bwPort->pnLoc,&colorPort->pnLoc,10);
BlockMoveData(&bwPort->pnVis,&colorPort->pnVis,14);

PenPat(&bwPort->pnPat);

BackPat(&bwPort->bkPat) ;
}

// #EH#HHHBH AR R

Demonstration Program Comments

When this program is run, the user should firstly open two or three document windows. The
user may then observe the following behaviour:

- When a document window, the Tools floating window, or the Colours floating window is
clicked, one, two, or three beeps are played as proof that the program "knows"™ which
window the mouse-down occurred in.

- When a non-active document window is clicked, advisory text is drawn at the bottom of
the windows being deactivated and activated as proof that the program "knows™ which
windows to activate and deactivate.

- Document window behaviour, in terms of activation and deactivation, is identical to that
observed in a normal window environment, including when:

- The program is sent to the background and brought to the foreground.
- A document window is closed or a new document window is opened.
- The About.. alert box or the Find.. dialog box is invoked.
- An inactive document window is dragged with the Command key held down.
- Floating window behaviour is as follows:
- The floating window frames are drawn in the inactive state, and their content is

dimmed, when the About.. alert box or the Find.. dialog box is invoked.

- The floating windows are hidden when the program is sent to the background and
shown again when the program is brought to the foreground.

- The floating windows may be toggled between the hidden and shown state by choosing

the relevant item in the Floaters menu. In addition, they may be hidden by
clicking their close boxes.

Floaters.h

This is the first demonstration program with an application header file. Because the source
code is divided into two files (FloaterDemo.c and FloatRoutines.c), all #includes, #defines,
#typedefs, and function prototypes have been placed in Floaters.h, which is included by both
FloaterDemo.c and FloatRoutines.c.

#define

Lines 62-72 establish constants relating to menu IDs and menu item numbers. Lines 74-84
establish constants relating to menu bar, window, alert, dialog, picture, and sound resources.
Lines 86-87 establish constants which will be used to identify a particular window as being of
the document type or the floating type. Line 89 defines MAXLONG as the maximum possible long
value.

#typedef

As will be seen, a document record will be created for all windows, including the two floating
windows, and a pointer to the appropriate application-defined window activation routine will
be assigned to the second field of each document record. Line 93 defines ActivateProcPtr as a
pointer to a Pascal function that takes a WindowPtr and a Boolean as parameters and returns
nothing.

Lines 95-100 define a data type for a document record. A document record, although somewhat
of a misnomer in the case of the floating windows, will be created for both floating and
document windows. The Ffirst field will be assigned a value represented by the constant
kDocumentKind (document windows) or kFloatingKind (floating windows). The second field will
be assigned a pointer to the window activation routine to be called in respect of each of
these windows/window types. The third field, which will keep track of floating window
visibility prior to a switch to the background, will be set and read by the application-
defined functions which handle suspend and resume events.

FloaterDemo.c

Global Variables

gColorQuickDraw will be set to true if Color QuickDraw is present. gColourDisplay will be set
to true if the pixel depth of the main device is greater than 1. gDone controls program
termination. glnBackground relates to foreground/background switching. gNumberDocWindowsOpen
will keep track of the number of document windows open at any one time. The remaining two
global variables will be assigned pointers to the two floating windows.

main

The main function firstly initialises the system software managers (Line 192). At Lines 196-
205, the global variable gColorQuickDrawPresent is set to true if Color QuickDraw is present
and, if Color QuickDraw is present, gColourDisplay is set to true if the pixel depth of the
main device is greater than 1. Lines 209-219 set up the menus and Lines 223-226 opens the two
floating windows and sets a checkmark in their respective Floaters menu items. The main event
loop is entered at Line 230.

doOpenFloatingWindows

doOpenFloatingWindows opens the two floating windows.

Lines 259-260 set a variable which will control which "PICT" resources (colour or black-and-
white) will be loaded depending on whether Color QuickDraw is present or not.

Line 262 gets the address of the application-defined routine for activating/deactivating the
Tools floating window. Line 263 opens the Tools floating window by calling the special
application-defined function for opening windows in a floating windows environment. At Line
270, the appropriate "PICT" resource for the Tools window is loaded. The call to SetWindowPic
at Line 271 stores the handle to the picture record in the windowPic field of the window
record, meaning that the Window Manager will draw the picture in the window instead of
generating update events for it.

Lines 273-282 repeat this process for the Colours window. Line 275 re-highlights the Tools
window. Both windows are now highlighted and active.

eventLoop

eventLoop is the main event loop.

When a non-null event is returned, and if the event does not belong to a dialog window (Line
301), the program"s event handler is called (Line 302). |If the event belongs to a dialog
window (Line 303), DialogSelect is called at Line 305 to process the event. When DialogSelect
returns, Lines 306-307 dispose of the dialog-

doEvents

doEvents performs initial event handling.

Note that activate events are ignored in the main event loop area because, in a floating
windows environment, the normal windows activation/deactivation mechanism must be over-ruled.

doMouseDown

doMouseDown further processes mouse-down events.

If the mouse-down was in the content region of a window (Line 371), the following occurs. |ITF
the front window is not a dialog window (Line 373), an application-defined function is called
at Line 374 to play one, two, or three beeps depending on whether the window clicked was a
document window, the Tools window, or the Colours window. If the front window is a modal
dialog and the window clicked is not the modal dialog window (Line 375), the system alert
sound is played (Line 376); otherwise, if the window clicked is not the front window, the
special application-defined function which replaces SelectWindow in a floating window
environment is called (Lines 377-379).

If the mouse-down was in the title bar of a window (Line 382), the following occurs. 1If the
front window is a modal dialog and the mouse-down was not within the dialog"s window, the
system alert sound is played (Lines 383-385); otherwise, the special application-defined
function which replaces DragWindow in a floating window environment is called (Lines 386-387).

If the mouse-down was in the close box (Line 390), and if TrackGoAway returns true (Line 391),
the following occurs. A value representing the window type (floating or document) is
retrieved from the window"s document record (Lines 393-394). If the window is a floating
window (Line 395), the special application-defined function which replaces HideWindow in a
floating window environment is called (Line 397) and the menus are adjusted to remove the
checkmark from the relevant Floaters menu item (Line 398). |If the window is a document
window, the application-defined function which closes document windows is called (Lines 400-
401) .

The handling of mouse-downs in the grow box and the zoom box (Lines 406-428) is as for

handling in a non-floating windows environment. Note that the third parameter in the call to
ZoomWindow at Line 424 must be false so that the window is not brought to the front.

doUpdate

doUpdate further processes update events. Recall that, because of the SetWindowPic calls at
Lines 271 and 282, the floating windows will not receive update events. Accordingly, the only
windows redrawn by this function are document windows (Line 442).

doOSEvent

doOSEvent further processes Operating System events.

In the case of a resume event, the special application-defined function which handles resume
events in a floating windows environment is called (Line 457). In the case of a suspend
event, the special application-defined function which handles suspend events in a floating
windows environment is called (Line 463). As usual, the global variable glnBackground is set
appropriately although, in this particular demonstration program, it actually has no part to
play.

doAdjustMenus

doAdjustMenus adjusts the menus, ensuring that the appropriate disabling is effected when the
front window is a modal dialog, that the Close item in the File menu is enabled only if at
least one document window is open, and that the items in the Floaters menu are only
checkmarked when the relevant floating window is showing.

doMenuChoice

doMenuChoice performs initial menu choice handling.

IT the About.. item in the Apple menu is chosen, the special application-defined function which
performs floating window and document window deactivation in a floating windows environment is
called before the alert box is invoked (Lines 529-532). When the alert box is dismissed, the
special application-defined function which performs floating window and document window
activation is called (Line 534).

doFileMenu

doFileMenu further processes File menu choices.

doFloatersMenu

doFloatersMenu further processes Floater menu choices.

Lines 586-589 assign the pointer to the floating window associated with the chosen item to a
variable. Line 591 determines whether that floating window is currently visible. If it is
not visible, the special application-defined function which replaces ShowWindow in a floating
windows environment is called (Lines 593-594); otherwise, the special application-defined
function which replaces HideWindow in a floating windows environment is called (Lines 595-
596).

Line 598 adjusts the menus to include/remove the checkmark in/from the relevant Floaters menu
item, as appropriate.

doOpenDocWindow

doOpenDocWindow is called in response to a choice of the Open item in the File menu.

If the number of document windows currently open is three, the system alert sound is played
and the function returns (Lines 608-609); otherwise, Line 603 gets a pointer to the
application-defined function for activating/deactivating document windows, the special
application-defined functions which open windows and replace ShowWindow in a floating windows
environment are called (Lines 613-614) and the global variable which keeps track of the number
of open windows is incremented (Line 615).

doCloseDocWindow

doCloseDocWindow is called in response to a choice of the Close item in the File menu and to a
click in a document window"s close box.

Line 625 attempts to get a pointer to the front document window. I1f NULL is returned by
findFrontNonFloatingWindow, no document windows are open. If a non-NULL value is returned,
the special application-defined function which closes windows in a floating windows
environment is called (Lines 627-628). Line 630 decrements the global variable which keeps
track of the number of open windows.

doDrawDocWindowContent

doDrawDocWindowContent is called when an update event is received. It simply retrieves three
strings containing advisory text and draws them in the window receiving the update message.

doProvingBeeps

doProvingBeeps is called in the event of a mouse-down in the content region of a non-dialog
window. It plays a sound one, two, or three times depending on whether the mouse-down was in
a document window, the Tools floating window, or the Colours floating window. (A special
sound is used so that these particular "beeps"™ may distinguished from the normal system alert
sound.)

doOpenFindDialog

doOpenFindDialog responds to the choice of the Find.. item in the File menu. Before opening
the dialog (Line 677), a call is made to the special application-defined function which
handles window deactivation in a floating windows environment. The menus are then adjusted as
appropriate in the presence of an open modal dialog.

doDisposeFindDialog

doDisposeFindDialog is called when the user dismisses the Find dialog. After closing the
dialog (Lines 688-689), a call is made to the special application-defined function which
handles window activation in a floating windows environment (Line 691). The menus are then
re-adjusted (Line 693).

docActivateHandler

docActivateHandler is the first of three window activation routines.

In a real application docActivateHandler would complete the window activation/deactivation
process for document windows. [In this demonstration, all that is done is to briefly display
the text "Activating” or "Deactivating” in the bottom of the window according to the value in
the becomingActive parameter.

toolsActivateHandler

toolsActivateHandler is the activate routine for the Tools floating window. It completes the
window activation/deactivation process for this window.

Line 734 sets Tools floating window"s graphics port as the current graphics port.

Lines 736-742 determine which "PICT" resource will be loaded by the GetPicture call at Line

744 . If the window is being deactivated (which only happens when an alert or modal dialog is
invoked), a dimmed version of the picture is loaded, otherwise the normal (bright) version is
loaded. In addition, if Color QuickDraw is present, a colour version is loaded, otherwise a

black-and-white version is loaded.

After the appropriate "PICT" resource is loaded (Line 744), a copy is made of the rectangle in
the picture record"s picFrame field (Line 745) and that rectangle is offset so that the left
and top fields are both 0. Lines 747-748 erase the port rectangle if Color QuickDraw is not
present. Line 749 draws the picture and Line 750 stores the handle to the picture record in
the windowPic field of the window record, meaning that the Window Manager will draw the
picture in the window instead of generating update events for it.

coloursActivateHandler

coloursActivateHandler is the activate routine for the Colours floating window. It completes
the window activation/deactivation process for this window. It is identical to
toolsActivateHandler except in respect of the "PICT" resources loaded.

invalidateScrollBarArea

invalidateScrollBarArea invalidates those parts of the window"s content region which are
occupied by the scroll bars.

FloatRoutines.c

FloatWindows.c contains the special application-defined routines required in a floating
windows environment, including routines which are called in lieu of the usual calls to
GetNewWindow, DisposeWindow, SelectWindow, HideWindow, ShowWindow, and DragWindow.

newGetNewWindow

newGetNewWindow is called in lieu of the normal call to GetNewWindow/GetNewCWindow. When it
opens a floating window it brings it to the very front of any existing windows. When it opens
a document window specified to be opened in front of existing document windows, and if any
floating windows are already open, it will move the new document window immediately behind the
last floating window in the list.

Line 825 assigns memory for the window"s document record. Lines 827-831 attempt to open a
colour or a black-and-white window depending on whether Color QuickDraw is present.

If the window is opened successfully (Line 833), the handle to the document record is assigned
to the window record"s refCon field (Line 835) and the pointer to the window"s activation
function is assigned to the activateHandler field of the window"s document record (Line 836).
If the window is a floating window (Line 838), the windowType field of the window"s document
record is assigned a value representing that window kind and the window is highlighted (Lines
840-841). If the window is not of the floating kind (Line 843), the windowType field of the
window"s document record is assigned a value representing the document window kind and, if the
window is required to be opened in front of other document windows, the following occurs: Line
848 attempts to get a pointer to the last floating window in the window list; if any floating
windows are currently open, the document window is moved behind the last floating window
(Lines 850-851), otherwise the window is brought to the front of all windows (Lines 852-853).

If the window was not successfully opened, the document record is disposed of (Lines 857-858).
Line 860 returns the result of the call to GetNewWindow/GetNewCWindow.

newDisposeWindow

newDisposeWindow is called in lieu of the normal calls to DisposeWindow. It ensures that,
when a document window is closed, the next document window in the list (if any) is activated.

If the specified window (which will invariably be a document window) is visible (Line 867), a
call is made to the function which replaces HideWindow so that the next document window in the
list (if any) is activated (Line 868). Line 969 then removes the window from the screen and
the window list, Line 870 disposes of the window"s document record, and Line 871 disposes of
the window"s window record.

newSelectWindow

newSelectWindow is called in lieu of the normal call to SelectWindow. It brings a window
(floating or document) as far forward in the window list as it should come when the user
clicks it. Selecting a floating window makes it the absolute frontmost window on the screen,
whereas selecting a document window makes it the frontmost window behind the floating windows
(or, if no floating windows are open, the absolute frontmost window) .

If the window clicked is of the floating kind (Line 882), Line 884 records that fact and Line
885 gets the pointer to the current front window, which will be a floating window. If the
window clicked was a document window (Line 887), Line 889 records that fact, Line 890 gets a
pointer to the first document window in the list, and Line 891 gets a pointer to the last
floating window in the window list.

If the window clicked is not the current front window in either the floating or document
window sections of the window list (Line 894), and if the window clicked is a floating window
(Line 896), that window is brought to the very front of the list (Line 897). If the window
clicked is a document window (Line 898), and if their are no floating windows (Line 900),
SelectWindow is called as in a non-floating-windows environment, and with the same window
activation/deactivation effects. I1f, however, one or more floating windows have been opened
(Line 902), an application-defined function is called to effect deactivation of the front
document window, SendBehind is called to move the clicked window to immediately behind the
last floating window, and an application-defined function is called to effect activation of
the clicked document window.

newHideWindow

newHideWindow is called in lieu of the normal call to HideWindow. It hides the specified
window. As with HideWindow, if the frontmost window is to be hidden, it is placed behind the
window immediately behind it so that, when it is shown again, it will no longer be frontmost.
This is also true of document windows even if floating windows are currently visible.

IT the specified window is not visible, the function returns without doing anything (Lines
921-922).

Line 924 gets a pointer to the frontmost window. [If this window is not a floating window, a
variable is set to record that fact (Lines 925-926).

Line 928 gets a pointer to the first document window.

Line 930 hides the specified window without affecting the front-to-back ordering of the
windows.

If the newly hidden window is the front floating window (Line 932), and if the next window in
the list (if any) is a floating window (Lines 934-936) the hidden window is moved behind that
window (Lines 938-940). (This latter is achieved by setting the nextWindow fields in the two
floating window records appropriately and then assigning the pointer to the new front floating
window"s window record to the low-memory global WindowList, which contains a pointer to the
first window record in the window list.)

IT the newly hidden window is not the front floating window (Line 943), if it is the front
document window (Line 945), and if there is another document window behind it (Lines 947-949),
the following occurs. Lines 951-952 set the nextWindow fields of the two window records
appropriately so as to swap their positions in the list. |If one or more floating windows are
open (Line 954-955), Line 956 sets the nextWindow field of the last floating window"s window
record to the new front document window; otherwise, the low memory global WindowList is
assigned the pointer to the new front document window"s window record (Lines 957-958). The
new front document window is then activated (Line 960).

newShowWindow

newShowWindow is called in lieu of the normal call to ShowWindow. |If the specified (hidden)
window s the frontmost document window, the activation routine for the window (if any) behind
it is called, and the specified window is shown, highlighted, and its activation routine
called. |If the specified (hidden) window is a floating window, the window is shown and,
unless a modal dialog is present, highlighted, and its activation routine called.

If the specified window is currently visible, the function returns without doing anything
(Lines 976-977).

Line 979 gets the type of the specified window. |If the (currently hidden) window is a
document window (Line 981), and if that window is the front document window (Lines 983-984),
the following occurs. |If there is a document window behind the specified window (Line 986),
that window is deactivated (Line 987). The hilited field of the specified window"s window
record is then set to true and the variable windowlsInFront is set to true. This latter will
eventually (Lines 1012-1016) cause the window"s activation function to be called.

IT the specified (currently hidden) window is a floating window, Line 995 gets a pointer to
the front non-floating window. |If at least one non-floating window is open, if that window is
the absolute frontmost window, and if it is a modal dialog, the specified (floating) window"s
hilited field is set to false; otherwise, the specified (floating) window"s hilited field is
set to true and the variable windowlsInFront is set to true. This latter will eventually
(Lines 1012-1016) cause the window"s activation function to be called.

Regardless of what has gone on to this point, Line 1010 shows the specified window without
affecting the front-to-back ordering of the windows.

If the variable windowlslInFront has been set to true by the foregoing, the pointer to the
application-defined window activation/deactivation function for the specified window is
retrieved from the window"s window record and that function is called to complete the
activation process, the true parameter advising that function that activation-related actions,
as opposed to deactivation-related actions, are to be performed (Lines 1012-1016).

newDragWindow

newDragWindow is called in lieu of the normal call to DragWindow. It drags the specified
window around, ensuring that document windows remain behind floating windows. Like
DragWindow, newDragWindow does not bring the window forward if the Command key is held down
during the drag.

WaitMouseUp (Line 1037) tests whether the mouse button has remained down since the last
mouseDown event. |If it has, the following occurs.

Lines 1039-1043 adjust the top of the dragging rectangle so that it is below the menu bar.
Lines 1045-1047 save the current graphics port, and set the window manager port as the current
graphics port. Line 1049 sets the clipping region to the region below the menu bar.

Lines 1051-1053 check whether the Command key is down and, if so, set a variable accordingly.
If the window is a document window and the Command key is not down, the ClipAbove call at Line
1049 sets the clipping region to the gray region minus the structure regions of all windows in
front of the front non-floating window. (In this instance, the front document window is being
dragged, so the windows in front are the floating windows.) |If the window is a document
window and the Command key is down, the ClipAbove call at Line 1060 sets the clipping region
to the gray region minus the structure regions of all windows in front of the window being
dragged. (In this instance, there could be one or more document windows, as well as floating
windows, above the document window being dragged.)

Lines 1063-1064 create a region to drag, specifically, the structure region of the specified
window. This is passed as a parameter to the call to DragGrayRgn at Line 1066, which moves a
dotted outline of the region, following the mouse as it moves and retaining control until the
mouse button is released.

When the mouse button is released, Line 1068 sets the port saved at Line 1045 as the current
graphics port.

DragGrayRgn returns a long. |If the mouse was outside the slop rectangle when the button was
released, -32768 is returned in both words, otherwise the high word contains the vertical
distance moved and the low word contains the horizontal distance moved. |If the value returned
is not zero (Line 1070), the value in both words is retrieved at Lines 1072-1073. |If the
mouse was not outside the slop rectangle (Line 1075), the new horizontal and vertical global
coordinates are calculated (Lines 1079-1080) and passed as a parameter to the MoveWindow call
at Line 1082, which moves the window to the new location without bringing it to the front.

If the Command key was not down during the drag (Line 1086), the call to newSelectWindow at

Line 1087 brings the window to the absolute front of the window list (floating window) or to
the front of the document windows section of the list (document window).

handleSuspendEvent

handleSuspendEvent hides any floating windows and deactivates the frontmost document window.
It is called when the application receives a suspend event.

Line 1100 gets the pointer to the front window"s window record from the low-memory global
WindowList. If this is not a pointer to a floating window (Line 1102), the function simply
returns.

The first time through the do-while loop entered at Line 1105, the current visibility status
of the first window in the list (which must be a floating window) is saved to the wasVisible
field of its window record (Lines 1107-1108). |If the window is visible, it is hidden without
affecting the front-to-back ordering of the open windows (Lines 1109-1110). Line 1111
attempts to get a pointer to the next window in the list. |If there is another window in the
list, and if it is a floating window, the same process is repeated. The loop exits only when
the visibility status of all floating windows has been saved and those windows have been
hidden.

If there are any document windows, the frontmost document window is then deactivated and a
call is made to DrawGrowlcon (Lines 1115-1120).

Note that the call to DrawGrowlcon at Line 1118 should be removed if your do not require
your document windows to be resizeable.

handleResumeEvent

handleResumeEvent shows all floating windows which were visible when the application was sent
to the background, and activates the front document window. It is called when the application
receives a resume event.

Line 1130 gets the pointer to the front window"s window record from the low-memory global
WindowList. If this is not a pointer to a floating window (Line 1132), the function simply
returns.

The first time through the do-while loop entered at Line 1135, the visibility status of the
first window in the list, which was saved when the application was sent to the background, is
retrieved from the wasVisible field of its window record (Line 1137). |If the window was
visible, it is shown without affecting the front-to-back ordering of the open windows and then
activated (Lines 1138-1142). Line 1143 attempts to get a pointer to the next window in the
list. |If there is another window in the list, and if it is a floating window, the same
process is repeated. The loop exits only when all of the floating windows which were visible
when the application was sent to the background have been shown and activated.

If there are any document windows, the frontmost document window is then activated and a call
is made to DrawGrowlcon (Lines 1147-1152).

Note that the call to DrawGrowlcon at Line 1150 should be removed if your do not require
your document windows to be resizeable.

deactivateFloatsAndFirstDocWin

deactivateFloatsAndFirstDocWin unhighlights any visible floating windows and the frontmost
document window, and then calls the activation function for each window to complete the
deactivation process. It is called immediately before a modal dialog or alert box is invoked.

Line 1154 gets a pointer to the frontmost window. Line 1164 attempts to get a pointer to the
first document window. |If at least one document window exists (Line 1165), Line 1166 attempts
to get a pointer to the second document. The variable secondDocumentWindowPtr now contains
either a pointer or NULL. The while loop entered at Line 1169 walks the window list up to and
including the first document window, deactivating all visible windows.

activateFloatsAndFirstDocWin

activateFloatsAndFirstDocWin highlights and activates those windows which were visible,
highlighted and activated before deactivateFloatersAndFirstDocWin was called. It is thus
called immediately after an alert or modal dialog box is dismissed. However, if the
application is in the background when this function is called (such as when a movable modal
progress dialog was up and then disappears), this function does not perform those actions.
Instead, it calls handleSuspendEvent to hide any visible floating windows.

Lines 1191-1195 determine whether this program is in the background. |If it is, any visible
floating windows are hidden (Lines 1197-1198).

If the program is not in the background (Line 1199), Lines 1201-1211 activate all floating
windows and the first document window, using the same list-walking methodology as
deactivateFloatersAndFirstDocWin.

deactivateWindow, activateWindow, and
highlightAndActivateWindow

deactivateWindow and/or activateWindow are called from newSelectWindow, newHideWindow,
newShowWindow, handleSuspendEvent, handleResumeEvent, deactivateFloatsAndFirstDocWin, and
activateFloatsAndFirstDocWin. They simply set a Boolean variable to indicate whether the
specified window is to be highlighted and activated or unhighlighted and deactivated, and then
pass further processing to highlightAndActivateWindow.

highlightAndActivateWindow highlights or unhighlights the specified window (Line 1236),

retrieves the pointer to the window"s activation routine from the window"s document record
(Line 1237), and calls that routine (Line 1238).

findFrontNonFloatingWindow, Etc

findFrontNonFloatingWindow is the first of those functions which support the main
FloatRoutines.c functions already described. It returns a pointer to the first visible window
in the window list that is not a floating window.

findLastFloatingWindow returns a pointer to last floating window in the window list.

isWindowModal determines whether a window is modal.

getWindowList returns the WindowPeek of the first window in the window list, which is stored
in the low memory global WindowList.

setWindowList sets the value in the low-memory global WindowList.
getNextWindow returns the value in the nextWindow field of the specified window.
setNextWindow sets the value in the nextWindow field of the specified window.

getWasVisible returns the value in the wasVisible field of the specified window"s document
record.

setWasVisible sets the value in the wasVisible field of the specified window"s document
record.

getWindowKind returns the value in the windowType field of the specified window"s document
record, or O if the window is a dialog.

setWindowKind sets the value in the windowType field of the specified window"s document
record.

getWindowVisible returns the value in the visible field of the specified window"s window
record.

getStructureRegion returns the RgnHandle in the strucRgn field of the specified window"s
window record.

getContentRegion returns the RgnHandle in the contRgn field of the specified window"s window
record.

setWindowHilite sets the hilited field of the specified window to the value received in the
second parameter.

getActivateHandler returns the value in the activateHandler field of the specified window"s
window record.

setActivateHandler sets the value in the activateHandler field of the specified window"s
window record.

WDEF.c

WDEF.c defines the window definition function used by the Tools and Colours floating windows.
In the demonstration program, the "WIND" resources for the floating windows specify a window
definition ID of 2048, meaning that the "WDEF®" resource with an ID of 128 is to be used.

#define

Lines 1444-1446 establish constants representing the resource lds for three colour icons, one
for the close box in its normal state, one for the close box in its pressed state, and one
which will be used to draw the checkered pattern in the window"s title bar.

Global Variables

gColourQuickDrawPresent will be set to true if Color QuickDraw is present. gColourDisplay
will be set to true if the pixel depth of the main device is greater than 1. The elements of
gBlackPattern will be assigned values representing a black pattern. The three global
variables at Lines 1453-1455 will be assigned handles to the three colour icons. The global
variables at Lines 1456-1465 are assigned colours according with the various shades of gray
specified in the document Apple Grayscale Appearance for System 7.5 published by Apple
Computer, Inc. gToggle will be used to specify whether the close box is to be drawn in the
normal state or the pressed state.

main

The main function receives the four parameters passed to it by the Window Manager and switches
according to the content of the message parameter. The WDEF responds to the following
messages: wDraw, wHit, wCalcRgns, and wNew,

Line 1492 has to do with accessing the WDEF"s global variables. (See Setting up globals in 68K
code resources in the Writing Code Resources section of Chapter 4 (Creating Code Resource
Projects) in the CodeWarrior manual Targeting Mac 0S.)

Line 1494 saves the current pen location, size, mode and pattern. Line 1495 saves the current
graphics port. If Color QuickDraw is present, the WDEF-defined function syncPorts is called
(Lines 1497-1498). (As will be seen, the global variable gColorQuickDrawPresent is set in the
WDEF"s response to the wNew message.)

Line 1500 initialises the variable which contains the value to be returned by the WDEF.
Lines 1502-1520 switch according to the value received in the message parameter. Note that,
at Lines 1508-1511, action is taken in response to the wDraw message only if the specified

window is currently visible.

Lines 1522-1523 restore the saved pen state and graphics port. Line 1525 restores the A4
register®s value saved at Line 1492.

Line 1527 returns the value in the variable result, which will be 0 except when the wHit

message is responded to, in which case it will be either winContent, wlnGoAway, wlnDrag, or
wNoHIt.

dolnitMessage

dolnitMessage is called when the wNew message is received.

At Lines 1539-1548, the global variable gColorQuickDrawPresent is set to true if Color
QuickDraw is present and, if Color QuickDraw is present, gColourDisplay is set to true if the
pixel depth of the main device is greater than 1.

Lines 1550-1551 initialise the global variable gBlackPattern.

Lines 1553-1555 load the three colour icons.

Line 1557 initialises the gToggle global variable, which will be used in toggling the close
box between the normal and highlighted states.

doDrawMessage

doDrawMessage is called when the wDraw message is received.

Line 1564 clears the high word of the param parameter because, in the case of the wDraw
message, the high word may contain undefined data.

Lines 1566-1582 switch according to the value in the low word of the param parameter. This
value will call for either the entire window frame to be drawn (Lines 1603-1568) or the close
box to be toggled to its opposite state (Lines 1575-1577). Note that, if Color QuickDraw is
present and the pixel depth of the main device is greater than 1, a colour drawing function is
called, otherwise a black-and-white drawing function is called.

doHitMessage

doHitMessage is called when the wHit message is received. |Its purpose is to determine if and
where a mouse-down occurred within the floating window.

Lines 1591-1592 extract the location of the mouse-down from the param parameter, which is in
global coordinates.

If the mouse-down was in the content region, wiInContent is returned (Lines 1594-1595) and the

function exits. |If not, Line 1596 checks whether the mouse-down was in the structure region.
If it was, and if the window has a close box (Line 1598), the close box rectangle is retrieved
(Line 1600). 1If the mouse-down was in the close box, wInGoAway is returned and the function

exits (Lines 1601-1602), otherwise wlnDrag is returned and the function exits (Line 1605).
If none of these checks prove positive, wNoHit is returned (Line 1608).
Note that there is no necessity to check that the window is active at the beginning of this

function (by checking the window record®"s hilited field) because all visible floating windows
are always active.

doCalcRgnsMessage

doCalcRgnsMessage is called when the wCalcRgns message is received. It calculates the
window"s content and structure regions and assigns the result in the window record®"s contRgn
and strucRgn fields.

Line 1620 calls a WDEF-defined function to get a rectangle equivalent to the window"s port
rectangle converted to global coordinates. Line 1621 sets the window"s content region to
equate to this rectangle.

Line 1623 calls a WDEF-defined function to get a rectangle which is equivalent to the content
rectangle expanded by a certain number of pixels. This rectangle, which is in global
coordinates, defines the structure region less the window"s drop shadow. As a Ffirst step,
Line 1624 sets the window"s structure region to equate to this rectangle. The rectangle is
then offset 1 pixel down and to the right (Line 1625) and the top and left values are further
increased (by one pixel) at Lines 1626-1627. Line 1628 then turns this rectangle into a
region and Line 1629 combines this region with the region in the window record"s strucRgn
field so that this field now contains a region which includes the window"s drop shadow.

drawWindowColour

drawWindowColour draws the window frame in accordance with the Apple Grayscale Appearance
specification for utility windows. This function is called only if Color QuickDraw is present
and the main device pixel depth is greater than 1.

Lines 1643-1644 save the current foreground and background colours. Lines 1645-1647 set the
pen size, pattern, and transfer mode.

Lines 1650-1713 execute only if the window is currently active (Line 1649). These lines draw
a black frame one pixel outside the content rectangle (Lines 1651-1655) and then base all
drawing on the structure rectangle (Line 1657). Lines 1659-1662 paint the title bar to the
right of the close box rectangle. Lines 1664-1671 use the checkered colour icon to draw the
checkered pattern in the title bar. Lines 1673-1674 use the colour icon for the close box in
the normal state to draw the close box. Lines 1676-1713 then draw the remainder of the window
frame.

Lines 1717-1733 execute only if the window is currently inactive (Line 1715), and draw the
window frame in the inactive state.

Lines 1736-1737 restore the foreground and background colours saved at Lines 1643-1644.

drawWindowMono

drawWindowMono draws the window in black-and-white in accordance with the de facto standard
appearance for black-and-white floating windows as seen in many commercial applications. This
function is called only if Color QuickDraw is not present or, if Color QuickDraw is present,
the main device pixel depth is 1.

Lines 1745-1751 set the pen size, pattern, and transfer mode.

Lines 1754-1798 execute only if the window is currently active. These lines draw a black frame
one pixel outside the content rectangle (Lines 1758-1761) and then base all drawing on the
structure rectangle (Line 1763). Lines 1765-1768 frame the structure rectangle and add the
drop shadows. Lines 1770-1772 erase the title bar area. Lines 1774-1793 set the pen pattern
to a checkered pattern before drawing the title bar. Line 1795 restores the pen pattern to a
black pattern and Lines 1797-1798 draw the close box.

Some further explanation of Lines 1774-1788 is necessary. The drawing is taking place in the

Window Manager port, which is in global coordinates. This means that any patterns drawn will

be aligned to the global origin. Thus, if the pen pattern is simply set to the system pattern
number 24, the following will be the result:

1—TITLE BAR DRAWN WHEN LOCATED AT "EVEN" 2 — TITLE BAR THEN DRAWN WHEN LOCATED 1
WINDOW MANAGER PORT COORDINATES PIXEL FURTHER DOWN AND TO THE RIGHT

The solution to this problem is to change the pattern depending on whether the window is
currently located at an even window manager port coordinate or an odd window manager port
coordinate. Lines 1777-1785 are central in this respect.

If the window is currently inactive (Line 1670), the title bar is simply erased (Lines 1802-
1804).

toggleGoAway

toggleGoAway is called when the wDraw message is received with winGoAway in the param field.
It first reverses the value in the Boolean global gToggle (Line 1812) and then calls the
appropriate WDEF-defined function to draw the close box in the normal state or the highlighted
state, depending on the value in the gToggle variable (Lines 1814-1817).

drawGoAwayBox

drawGoAwayBox draws the close box in its normal state, either in colour (Lines 1828-1829) or
black-and-white if it is not (Lines 1830-1835).

drawGoAwayBoxPressed

drawGoAwayBoxPressed draws the close box in its highlighted state, either in colour or black-
and-white.

getGoAwayRect

getGoAwayRect sets the fields of the specified rectangle so as to correctly describe the close
box rectangle depending on whether the close box is to be drawn in colour or black-and-white.

getContentRect

getContentRect sets the fields of the specified rectangle to equate to the window"s port
rectangle expressed in global coordinates.

getStructRect

getStructRect sets the fields of the specified rectangle to equate to the window"s port
rectangle (expressed in global coordinates) expanded by a number of pixels according to
whether the window frame is to be drawn in colour or black-and-white..

syncPorts

syncPorts is called only if Color QuickDraw is present.

When the WDEF is called, the current graphics port is set by the Window Manager to the Window
Manager port. This port is a basic graphics port, so it does not permit colour drawing. To
draw in colour, it is necessary to switch to another port called the Window Manager color
port.

In addition to switching to the Window Manager Color Port, and because the Window Manager does
not normally keep all of the fields of both ports synchronised with each other, it is
necessary to manually synchronise the ports by copying the contents of some of the fields of
the basic Window Manager port to the equivalent fields in the Window Manager color port.

Line 1919 gets a pointer to the Window Manager port. Line 1920 gets a pointer to the Window
Manager color port and Line 1921 sets that port as the current port.

Line 1923 copies the contents of the Window Manager port®"s pnLoc, pnSize, and pnMode fields to
the same fields in the Window Manager color port. Line 1924 copies the contents of the Window
Manager port®"s pnVis, txFont, txFace, txMode, txSize, and spExtra fields to the same fields in
the Window Manager color port. Lines 1926-1927 set the pen pattern and background pattern to

the same values they were in the Window Manager port.

Creating the WDEF Resource

To create an WDEF resource from code such as that at Lines 1418-1930, follow the same general
procedure as is described for LDEFs in the Demonstration Program Comments at Chapter 18 — Lists
and Custom List Definition Functions.

	Floating Windows
	Front-To-Back Ordering of On-Screen Objects
	Appearance of Floating Windows
	Implementing Floating Windows — Considerations
	Activate Events
	Opening, Closing, Showing and Hiding

	Implementing Floating Windows — Substitute and Supporting Routines
	Substitute Routines
	Supporting Routines

	Custom Window Definition Functions
	Responding to message Parameter Values
	wDraw
	wHit
	wCalcRgns
	wNew
	wDispose
	wGrow
	wDrawGIcon

	Problems With Purgeable Custom WDEF Resources

	Relevant Window Manager Constants and Routines
	Demonstration Program
	Demonstration Program Comments
	Creating the WDEF Resource

