
Offscreen Graphics Worlds, Pictures , Cursors, and Icons 12-1

12Version 1.1

OFFSCREEN GRAPHICS WORLDS,
PICTURES, CURSORS, AND ICONS
Includes Demonstration Program GWorldPicCursIcon

Offscreen Graphics Worlds

Introduction

An offscreen graphics world may be regarded as a virtual screen on which your application can draw
a complex image without the user seeing the various steps your application takes before completing the
image. The image in an offscreen graphics world is drawn into a part of memory not used by the video
device. It therefore remains hidden from the user.

One of the key advantages of using an offscreen graphics ports is that it allows you to improve on-
screen drawing speed and visual smoothness. For example, suppose your application draws multiple
graphics objects in a window and then needs to update part of that window. If your image is very
complex, your application can copy it from an offscreen graphics world to the screen faster than it can
repeat all of the steps necessary to draw the image on-screen. At the same time, the inelegant visual
effects associated with the time-consuming drawing a large number of separate objects are avoided.

Another typical use for an offscreen graphics port is demonstrated at Chapter 19 — Custom Control
Definition Functions and VBL Tasks. In the demonstration program at that chapter, the images of two
parts of a slider control (the track and the "thumb") are assembled into a composite image in an
offscreen graphics port before being copied to the front window's graphics port. This happens
repeatedly while the slider is being moved. The continual erasing and redrawing of this composite
animated image is thus not visible to the user, who sees only the smooth, flicker-free final result.

Creating an Offscreen Graphics World

You create an offscreen graphics world with the NewGWorld function. NewGWorld creates a new offscreen
graphics port, a new offscreen pixel map, and (on computers which support Color QuickDraw) either a
new GDevice record or a link to an existing one. NewGWorld returns a pointer of type GWorldPtr which
points to a colour graphics port:

typedef CGrafPtr GWorldPtr;

When you use NewGWorld, you can specify a pixel depth, a boundary rectangle (which also becomes the
port rectangle), a colour table, a GDevice record, and option flags for memory allocation. Passing 0 as
the pixel depth, the window's port rectangle as the offscreen world's boundary rectangle, NULL for both
the colour table and the GDevice record and 0 as the options flags:

• Provides your application with the default behaviour of NewGWorld.

• Supports computers running only basic QuickDraw.

12-2 Offscreen Graphics Worlds, Pictures , Cursors, and Icons

• Allows QuickDraw to optimise the CopyBits, CopyMask, and CopyDeepMask routines used to copy
the image into the window's port rectangle.

Setting the Graphics Port for an Offscreen Graphics World

Before drawing into the offscreen graphics port, you should save the graphics port for the front
window by calling GetGWorld, which saves the current graphics port and its GDevice record. The
offscreen graphics world should then be made the current port by a call to SetGWorld. After drawing
into the offscreen graphics world, you use SetGWorld to restore the active window as the current
graphics port.

Note that SetGWorld sets the port specified in its port parameter as the current port and the device
specified in its gdh parameter as the current device.

GetGWorld and SetGWorld save and restore both basic and colour graphics ports.

Preparing to Draw Into an Offscreen Graphics World

After setting the offscreen graphics world as the current port, you should use the GetGWorldPixMap
function to get a handle to the offscreen pixel map. This is required as the parameter in a call to the
LockPixels function, which you must call before drawing to, or copying from, an offscreen graphics
world.

LockPixels prevents the base address of an offscreen pixel image from being moved while you draw
into it or copy from it. If the base address for an offscreen pixel image has not been purged by the
Memory Manager, or if its base address is not purgeable, LockPixels returns true. If LockPixels
returns false, your application should either call the UpdateGWorld function to reallocate the offscreen
pixel image and then reconstruct it, or draw directly into an onscreen graphics port.

GetGWorldPixMap and Basic QuickDraw

Note that on a system running only basic QuickDraw, GetGWorldPixMap returns the handle to a 1-bit
pixel map that your application can supply as a parameter to the other routines related to offscreen
graphics worlds described in this section. On a basic QuickDraw system, however, your application
should not supply this handle to Color QuickDraw routines.

Copying an Offscreen Image into a Window

After drawing the image in the offscreen graphics world, your application should call SetGWorld to
restore the active window as the current graphics port.

The image is copied from the offscreen graphics world into the window using CopyBits (or, if masking
is required, CopyMask or CopyDeepMask). Specify the offscreen graphics world as the source image for
CopyBits and specify the window as its destination. Note that CopyBits expects its source and
destination parameters to be pointers to bitmaps. Accordingly, you must coerce the offscreen graphic's
world's GWorldPtr data type to a data structure of type GrafPtr. Similarly, whenever a colour graphics
port is your destination, you must coerce the window's CGrafPtr data type to data type GrafPtr.1

As long as you are drawing into an offscreen graphics world or copying an image from it, you must
leave its pixel image locked. When you are finished drawing into, and copying from, an offscreen
graphics world, call UnlockPixels. (Calling UnlockPixels will assist in preventing heap
fragmentation.)

1As a related matter, note that the baseAddr field of the PixMap record for an offscreen graphics world contains a handle, whereas the
baseAddr field for an onscreen pixel map contains a pointer. You must use the GetPixBaseAddr function to obtain a pointer to the PixMap
record for an offscreen graphics world.

Offscreen Graphics Worlds, Pictures , Cursors, and Icons 12-3

Updating an Offscreen Graphics World

If, for example, you are using an offscreen graphics world to support the window updating process,
you can use UpdateGWorld to carry certain changes affecting the window (for example, resizing,
changes to the pixel depth of the screen, or modifications to the colour table) through to the offscreen
graphics world. UpdateGWorld allows you to change the pixel depth, boundary rectangle, or colour
table for an existing offscreen graphics world without recreating it and redrawing its contents.

Disposing of an Offscreen Graphics World

Call DisposeGWorld when your application no longer needs the offscreen graphics world.

Pictures

Introduction

QuickDraw provides a simple set of routines for recording a collection of its drawing commands and
then playing the recording back later. Such a collection of drawing commands, as well as the resulting
image, is called a picture. Pictures provide a common medium for the sharing of image data. They
make it easier for your application to draw complex images defined in other applications, and vice
versa.

Pictures can be created in colour or black-and-white. Macintoshes using only basic QuickDraw use
black-and-white to display pictures created in colour.

When you use OpenCPicture or OpenPicture2 to begin defining a picture, QuickDraw collects your
subsequent drawing commands in a data structure of type Picture. By using DrawPicture, you can
draw onscreen the picture defined by the instructions stored in the Picture record.

Picture Formats

During QuickDraw's evolution, three different formats have evolved for the data contained in a
Picture record:

• The original format, the version 1 format, which is created by the OpenPicture function on
machines without Color QuickDraw or whenever the current graphics port is a basic graphics
port. Pictures created in this format support only black-and-white drawing operations at 72 dpi
(dots per inch).

• The version 2 format, which is created by the OpenPicture function on machines with Color
QuickDraw when the current graphics port is a colour graphics port. Pictures created in this
format support colour drawing operations at 72 dpi.

• The extended version 2 format, which is created by the OpenCPicture function on all Macintosh
computers running System 7, including those supporting only basic QuickDraw. This format
permits your application to specify resolutions for pictures in colour or black-and-white.

Generally, your application should create pictures in the extended version 2 format.

2The OpenPicture function, which is similar to the OpenCPicture function, was created for earlier versions of the system software. Because of
its support for higher resolutions, you should use OpenCPicture rather than OpenPicture to create a picture.

12-4 Offscreen Graphics Worlds, Pictures , Cursors, and Icons

The Picture Record

The Picture record is as follows:

struct Picture
{

short picSize; // For a version 1 picture: its size.
Rect picFrame; // Bounding rectangle for the picture.
… // Picture definition (variable length).

};

typedef struct Picture Picture;
typedef Picture *PicPtr, **PicHandle;

Field Descriptions

picSize The information in this field is useful only for version 1 pictures, which cannot exceed 32
KB in size. Version 2 and extended version 2 pictures can be larger than 32 KB. To
maintain compatibility with the version 1 picture format, the picSize field was not
changed for version 2 or extended version 2 picture formats.

(You should use the Memory Manager function GetHandleSize to determine the size of a
picture in memory, the File Manager function PBGetFInfo to determine the size of a
picture in a file of type 'PICT', and the Resource Manager function MaxSizeResource to
determine the size of a picture in a resource of type 'PICT'.)

picFrame Contains the bounding rectangle for the picture. DrawPicture uses this rectangle to scale
the picture when you draw into a differently sized rectangle.

... Compact drawing commands and picture comments constitute the rest of the record,
which is of variable length.

Opcodes: Drawing Commands and Picture Comments

The variable length field in a Picture record contains data in the form of opcodes, which are values
that DrawPicture uses to determine what objects to draw or what mode to change for subsequent
drawing.

In addition to compact drawing commands, opcodes can also specify picture comments, which are
created using PicComment. A picture comment contains data or commands for special processing by
output devices, such as PostScript printers. If your application requires capability beyond that
provided by QuickDraw drawing routines, PicComment allows your application to pass data or
commands direct to the output device.

You typically use QuickDraw commands when drawing to the screen and picture comments to include
special drawing commands for printers only.

Colour Pictures in Basic Graphics Ports

You can use Color QuickDraw drawing commands to create a colour picture on a computer supporting
Color QuickDraw. If the user were to cut the picture and paste it into an application that draws into a
basic graphics port, the picture would lose some detail, but should be sufficient for most purposes.

'PICT' Files, 'PICT' Resources, and 'PICT' Scrap Format

QuickDraw provides routines for creating and drawing pictures. File Manager and Resource Manager
routines are used to read pictures from, and write pictures to, a disk. Scrap Manager routines are used
to read pictures from, and write pictures to, the scrap3.

3See Chapter 16 — Scrap.

Offscreen Graphics Worlds, Pictures , Cursors, and Icons 12-5

A picture can be stored in the data fork of a file of type 'PICT'. A picture can also be stored as a 'PICT'
resource in the resource fork of any file type. Note that the data fork of a 'PICT' file contains a 512-
byte header that applications can use for their own purposes.

For each application, the Scrap Manager maintains a storage area to hold the last data cut or copied by
the user. The area that is available to your application for this purpose is called the scrap. All
applications that support copy-and-paste operations read data from, and write data to, the scrap. The
'PICT' scrap format is one of two standard scrap formats. (The other is 'TEXT'.)

The Picture Utilities

In addition to the QuickDraw routines for creating and drawing pictures, system software provides a
group of routines called the Picture Utilities for examining the content of pictures. You typically use
the Picture Utilities before displaying a picture.

The Picture utilities allow you to gather colour, comment, font, resolution, and other information about
pictures. You might use the Picture Utilities, for example, to determine the 256 most-used colours in a
picture, and then use the Palette Manager to make those colours available for the window in which the
application needs to draw the picture.

The Picture Utilities also collect information from black-and-white pictures and bitmaps. They are
supported in System 7 even by computers running only basic QuickDraw. However, when collecting
colour information on a computer running only basic QuickDraw, the Picture Utilities return NULL
instead of handles to Palette and ColorTable records.

Creating Pictures

Use the OpenCPicture function to begin defining a picture. OpenCPicture collects your subsequent
drawing commands in a new Picture record. To complete the collection of drawing (and picture
comment) commands which define your picture, call ClosePicture.

You pass information to OpenCPicture in the form of an OpenCPicParams record:

struct OpenCPicParams
{

Rect srcRect; // Optimal bounding rectangle.
Fixed hRes; // Best horizontal resolution.
Fixed vRes; // Best vertical resolution.
short version; // Set to -2.
short reserved1; // (Reserved. Set to 0.)
long reserved2; // (Reserved. Set to 0.)

};

typedef struct OpenCPicParams OpenCPicParams;

This record provides a simple mechanism for specifying resolutions when creating images. For
example, applications that create pictures from scanned images can specify resolutions higher than 72
dpi.

Clipping Region. You should always use ClipRect to specify a clipping region appropriate to your
picture before calling OpenCPicture. If you do not specify a clipping region, OpenCPicture uses the
clipping region specified in the current graphics port. If this region is very large (as it is when the
graphics port is initialised, being set to the size of the coordinate plane by that initialisation) and you
scale the picture when drawing it, the clipping region can become invalid when DrawPicture scales the
clipping region, in which case your picture will not be drawn. On the other hand, if the graphics port
specifies a small clipping region, part of your drawing may be clipped when you draw it. Setting the
clipping region equal to the port rectangle of the current graphics port always sets a valid clipping
region.

When the picture has been drawn with QuickDraw drawing commands, a call to ClosePicture
concludes the picture definition.

12-6 Offscreen Graphics Worlds, Pictures , Cursors, and Icons

Opening and Drawing Pictures

Using File Manager routines, your application can retrieve pictures saved in 'PICT' files.4 Using the
GetPicture function, your application can retrieve pictures saved in the resource forks of other file
types. Using the Scrap Manager function GetScrap, your application can retrieve pictures stored in the
scrap.

When the picture is retrieved, DrawPicture is called to draw the picture. The second parameter taken
by DrawPicture is the destination rectangle. This rectangle should be specified in coordinates local to
the current graphics port. DrawPicture shrinks or stretches the picture as necessary to make it fit into
this rectangle.

When you are finished using a picture stored as a 'PICT' resource, you should use the resource
Manager routine ReleaseResource to release its memory.

Saving Pictures

After creating or changing pictures, your application should allow the user to save them. To save a
picture in a 'PICT' file, you should use the appropriate File Manager routines.4 (Remember that the
first 512 bytes of a 'PICT' file are reserved for your application's own purposes.) To save pictures in a
'PICT' resource, you should use the appropriate Resource Manager routines. To place a picture in the
Scrap (for example, to respond to the user choosing the Copy command to copy a picture to the
clipboard), you should use the Scrap Manager function PutScrap.

Gathering Picture Information

GetPictInfo may be used to gather information about a single picture, and GetPixMapInfo may be used
to gather colour information about a single pixel map or bitmap. Each of these functions returns colour
and resolution information in a PictInfo record. A PictInfo record can also contain information about
the drawing objects, fonts, and comments in a picture.

Cursors

Introduction

A cursor is a 256-pixel, black-and-white image in a 16-by-16 pixel square usually defined by an
application in a cursor ('CURS') or colour cursor ('crsr') resource.

Cursor Movement, Hot Spot, Visibility, Colour and Shape

Cursor Movement

Whenever the user moves the mouse, the low-level interrupt-driven mouse routines move the cursor to
a new location on the screen. Your application does not need to do anything to move the cursor.

Cursor Hot Spot

One point in the cursor's image is designated as the hot spot, which in turn points to a location on the
screen. The hot spot is the part of the pointer that must be positioned over a screen object before mouse
clicks can have an effect on that object. Fig 1 illustrates two cursors and their hot spot points. Note that
the hot spot is a point, not a bit.

4The demonstration program at Chapter 14 — Files shows how to read pictures from, and save pictures to, files of type 'PICT'.

Offscreen Graphics Worlds, Pictures , Cursors, and Icons 12-7

1

1

7

7

FIG 1 - HOT SPOTS IN CURSORS

Cursor Visibility

In general, you should always make the cursor visible to your application, although there are a few
cases where the cursor should not be visible. For example, in a text-editing application, the cursor
should be made invisible, and the insertion point made to blink, when the user begins entering text. In
such cases, the cursor should be made visible again only when the user moves the mouse.

Cursor Colour

When the cursor is used for choosing or selecting, it should remain black. You may want to display a
colour cursor when the user is drawing or typing in colour. To ensure visibility over any background,
colour cursors should generally be outlined in black.

Cursor Shape

Your application should change the shape of the cursor in the following circumstances:

• To indicate that the user is over a certain area of the screen. For example, when the cursor is in
the menu bar, it should usually have an arrow shape. When the user moves the cursor over a
text document, your application should change the cursor to the I-beam shape.

• To provide feedback about the status of the computer system. For example, if an operation will
take a second or two, you should provide feedback to the user by changing the cursor to the
wristwatch cursor (see Fig 2). If the operation takes several seconds and the user can do nothing
in your application but stop the operation, wait until it is completed, or switch to another
application, you should display an animated cursor.5

The System file in the System Folder contains 'CURS' resources for the common cursors shown at Fig 2.

FIG 2 - THE I-BEAM, CROSSHAIRS, PLUS SIGN, AND WRISTWATCH CURSORS

The following constants represent the 'CURS' resource IDs for the cursors shown at Fig 2:

iBeamCursor = 1 Used in text editing.
crossCursor = 2 Often used for manipulating graphics.
plusCursor = 3 Often used for selecting fields in an array.
watchCursor = 4 Used when a short operation is in progress.

5If the operation takes longer than several seconds, you should display a status indicator to show the user the total and elapsed time for the
operation. (See Chapter 21 — Miscellany.)

12-8 Offscreen Graphics Worlds, Pictures , Cursors, and Icons

Creating Custom Non-Animated Cursors Resources

To create custom non-animated cursors, you need to:

• Define black-and-white cursors as 'CURS' resources in the resource file of your application. (You
use 'CURS' resources to create black-and-white cursors for display on black-and-white or colour
screens).

• If you want to display colour cursors, define colour cursors in 'crsr' resources in the resource
file of your application. (You use 'crsr' resources to create colour cursors to display on systems
supporting Color QuickDraw. Each 'crsr' resource also contains a black and white image that
Color QuickDraw displays on black and white screens.)6

Changing Cursor Shape and Hiding Cursors

Changing Cursor Shape

To change cursor shape, your application must get a handle to the relevant cursor (either a custom
cursor or one of the system cursors shown at Fig 2) by specifying its resource ID in a call to GetCursor
or GetCCursor. GetCursor returns a handle to a Cursor record. GetCCursor returns a handle to a CCrsr
record. The address of the Cursor or CCrsr record is then used in a call to SetCursor or SetCCursor to
change the cursor shape.

Your application is responsible for setting the initial appearance of the cursor and for changing the
appearance of the cursor as appropriate for your application.

In Response to Mouse-Moved Events. For example, most applications set the cursor to the I-
beam shape when the cursor is inside a text-editing area of a document, and they change the cursor to
an arrow when the cursor is inside the scroll bars. Your application can achieve this effect by
requesting that the Event Manager report mouse-moved events if the user moves the cursor out of a
region you specify in the mouseRgn parameter to the WaitNextEvent function. Then, when a mouse-
moved event is detected in your main event loop, you can use SetCursor or SetCCursor to change the
cursor to the appropriate shape.7

In Response to Resume Events. Your application also needs to adjust the cursor in response to
resume events.

Hiding Cursors

You can remove the cursor image from the screen using HideCursor. You can hide the cursor
temporarily using ObscureCursor or you can hide the cursor in a given rectangle by using
ShieldCursor. To display a hidden cursor, use ShowCursor. Note, however, that you do not need to
explicitly show the cursor after your application uses ObscureCursor because the cursor automatically
reappears when the user moves the mouse again.

Creating an Animated Cursor

To create an animated cursor, you should:

• Create a series of 'CURS' resources that make up the "frames" of the animation. (Typically, an
animated cursor uses four to seven frames.)

6Before using the routines which handle colour cursors (that is, GetCCursor, SetCCursor, and DisposeCCursor) you should test for the
existence of Color QuickDraw using the Gestalt function. Both basic and Color QuickDraw support all other routines described in this
chapter.
7Note that your application may also have to accommodate the cursor shape changing requirements of, say, dialog boxes with editable text
items.as well as its main windows.

Offscreen Graphics Worlds, Pictures , Cursors, and Icons 12-9

• Create an 'acur' resource. (The 'acur' resource collects and orders your 'CURS' frames into a
single animation. It specifies the IDs of the resources and the sequence for displaying them in
your animation.)

• Load the 'acur' resource into an application-defined structure which replicates the structure of
an 'acur' resource, for example:

typedef struct
{

short numberOfFrames;
short whichFrame;
CursHandle frame[];

} animCurs, *animCursPtr, **animCursHandle;

• Load the 'CURS' resources using GetCursor and assign handles to the resulting Cursor structures
to the elements of the frame field.

• Call SetCursor to display each cursor, that is, each "frame", in rapid succession, returning to the
first frame after the last frame has been displayed. This can be achieved by incrementing the
frame at each null event (which means, of course, that the sleep parameter in the WaitNextEvent
call must be set to the required interval between frame updates)8.

Icons

Icons and the Finder

As stated at Chapter 7 — Finder Interface, the Finder uses icons to graphically represents objects, such
as files and directories, on the desktop. Chapter 7 also introduced the subject of icon families, and
stated that your application should provide the Finder with a family of specially designed icons for the
application file itself and for each of the document types created by the application.

The provision of a family of icon types for each desktop object, rather than just one icon type, enables
the Finder to automatically select the appropriate family member to display depending on the icon size
specified by the user and the bit depth of the display device. Chapter 7 described the components of an
icon family used by the Finder as follows:

Icon Size (Pixels) Resource in Which Defined
Large black-and-white, and mask 32 by 32 Icon list ('ICN#').
Small black and white, and mask 16 by 16 Small icon list ('ics#')
Large colour icon with 4 bits of colour data per pixel 32 by 32 Large 4-bit colour icon ('icl4')
Small colour icon with 4 bits of colour data per pixel 16 by 16 Small 4-bit colour icon ('ics4')
Large colour icon with 8 bits of colour data per pixel 32 by 32 Large 8-bit colour icon ('icl8')
Small colour icon with 8 bits of colour data per pixel 16 by 16 Small 8-bit colour icon ('ics8')

Other Icons — Icons, Colour Icons and Small Icons

Icon ('ICON'). The icon is defined in an 'ICON' resource, which contains a bitmap for a 32-by-32
pixel black-and-white icon. Because it is always displayed on a white background, it does not need a
mask.

Colour Icon ('cicn'). The colour icon is defined in a 'cicn' resource, which has a special format
which includes a pixel map, a bitmap, and a mask. You can use a 'cicn' resource to define a colour
icon with a width and height between 8 and 64 pixels. You can also define the bit depth for a colour
icon resource.

8An alternative method for incrementing the frame, using vertical blanking tasks, is demonstrated at Chapter 19 — Custom Control Definition
Functions and VBL Tasks. But note that the vertical blanking task method is not recommended.

12-10 Offscreen Graphics Worlds, Pictures , Cursors, and Icons

Small Icon ('SICN'). The small icon is defined in a 'SICN' resource. Small icons are 12 by 16 pixels
even though they are stored in a resource as 16-by-16 pixel bitmaps. A 'SICN' resource consists of a list
of 16-by-16 pixel bitmaps for black-and-white icons.9

Note that the Finder does not use or display these types of icon.

Icons in Windows, Menus, and Alert and Dialog Boxes

The icons provided by your application for the Finder (or the default system-suppled icons used by the
Finder if your application does not provide its own icons) are displayed on the desktop. Your
application can also display icons in its menus, dialog boxes and windows.

Icons in Windows

You can display icons of any kind in your windows using the appropriate Icon Utilities routines.

Icons in Menus

The Menu Manager allows you to display icons of resource types 'ICON' (icon) 'cicn' (colour icon),
and 'SICN' (small icon) in menu items. The procedure is as follows:

• Create the icon resource with a resource ID between 257 and 511. Subtract 256 from the resource
ID to get a value called the icon number . Specify the icon number in the Icon field of the menu
item definition.

• For an icon ('ICON'), specify 0x1D in the keyboard equivalent field of the menu item definition to
indicate to the Menu Manager that the icon should be reduced to fit into a 16-by-16 pixel
rectangle. Otherwise, specify a value of 0x00, or a value greater than 0x20, in the keyboard
equivalent field to cause the Menu Manager to expand the item's rectangle so as to display the
icon at its normal 32-by-32 pixel size. (A value greater than 0x20 in the keyboard equivalent
field specifies the item's keyboard equivalent.)

• For a colour icon ('cicn'), specify 0x00 or a value greater than 0x20 in the keyboard equivalent
field. The Menu Manager automatically enlarges the enclosing rectangle of the menu item
according to the rectangle specified in the 'cicn' resource. (Colour icons, unlike icons, can be
any height or width between 8 and 64 pixels.)

• For a small icon ('SICN'), specify 0x1E in the keyboard equivalent field. This indicates that the
item has an icon defined by a 'SICN' resource. The Menu Manager plots the icon in a 16-by-16
pixel rectangle.

The Menu Manager will then automatically display the icon whenever you display the menu using the
MenuSelect function. The Menu Manager first looks for a 'cicn' resource with the resource ID
calculated from the icon number and displays that icon if it is found.10 If a 'cicn' resource is not found
(or if the computer does not have Color QuickDraw) and the keyboard equivalent field specifies 0x1E,
the Menu Manager looks for a 'SICN' resource with the calculated resource ID. Otherwise, the Menu
Manager searches for an 'ICON' resource and plots it in either a 32-by-32 pixel rectangle or a 16-by-16
bit rectangle, depending on the value in the menu item's keyboard equivalent field.11

Displaying Other Icon Types. To display an icon of a resource type other than 'ICON', 'cicn', and
'SICN' in your menu items, you must write your own menu definition procedure.

9Typically, only the Finder and the Standard File Package use small icons.
10A colour icon ('cicn') resource contains a bitmap as well as a pixel map, which accounts for black-and-white displays.
11Note that, for the Apple and Application menus, the Menu Manager either automatically reduces the icon to fit within the enclosing
rectangle of the menu item or uses the appropriate icon from the application's icon family, such as the 'icl8' resource, if one is available.

Offscreen Graphics Worlds, Pictures , Cursors, and Icons 12-11

Icons in Alert and Dialog Boxes

The Dialog Manager allows you to display icons of resource types 'ICON' (icon) and 'cicn' (colour
icon) in alert and dialog boxes. The procedure is to define an item of type Icon and provide the
resource ID of the icon in the item list ('DITL') resource for the dialog. This will cause the Dialog
Manager to automatically display the icon whenever you display the alert or dialog box using Dialog
Manager routines.

If you provide a colour icon ('cicn') resource with the same resource ID as an icon ('ICON') resource,
the Dialog Manager displays the colour icon instead of the black-and-white icon.

Ordinarily, you would use the Alert function, which does not automatically draw a system-supplied
alert icon in the alert box, when you wish to display an alert containing your own icon (for example, in
your application's About… alert box). If you invoke an alert box with the NoteAlert, CautionAlert or
StopAlert functions, rather than the Alert function, the Dialog Manager draws the system-supplied
black-and-white icon as well as your icon. Since your icon is drawn last, you can obscure the system-
suppled icon by positioning your icon at the same coordinates.

Displaying Other Icon Types. To display an icon of a resource type other than 'ICON' and 'cicn'
in a dialog box, you must define an item of type userItem and use the appropriate Icon Utilities routine
to draw the icons.

Drawing and Manipulating Icons

The Icon Utilities allow your application (and the system software) to draw and manipulate icons of
any standard resource type in windows and, subject to the limitations and requirements previously
described, in menus and dialog boxes.

You need to use Icon Utilities routines only if:

• You wish to draw icons in your application's windows.

• You wish to draw icons which are not recognised by the Menu Manager and the Dialog
Manager in, respectively, menu items and dialog boxes.

Preamble - Icon Families, Suites, and
Caches

Icon Families. You can define individual icons of resource types 'ICON', 'cicn', and 'SICN' that are
not part of an icon family and use Icon Utilities routines to draw them as required. However, to
display an icon effectively at a variety of sizes and bit depths, you should provide an icon family12 in
the same way that you provide icon families for the Finder. The advantage of providing an icon family
is that you can then leave it to routines such as PlotIconID, which are used to draw icons, to
automatically determine which icon in the icon family is best suited to the specified destination
rectangle and current display bit depth.

Icon Suites. Some Icon Utilities routines take as a parameter a handle to an icon suite. An icon suite
typically consists of one or more handles to icon resources from a single icon family which have been
read into memory. The GetIconSuite function may be used to get a handle to an icon suite, which can
then be passed to routines such as PlotIconSuite to draw that icon in the icon suite best suited to the
destination rectangle and current display bit depth. An icon suite can contain handles to each of the six
icon resources that an icon family can contain, or it can contain handles to only a subset of the icon
resources in an icon family. For best results, an icon suite should always include a resource of type
'ICN#' in addition to any other large icons you provide and a resource of type 'ics#' in addition to
any other small icons you provide.13

12Each icon in an icon family shares the same resource ID as other icons in the family but has its own resource type identifying the icon data it
contains.
13When you create an icon suite from icon family resources, the associated resource file should remain open while you use Icon Utilities
routines.

12-12 Offscreen Graphics Worlds, Pictures , Cursors, and Icons

Icon Cache. An icon cache is like an icon suite except that it also contains a pointer to an application-
defined icon getter function and a pointer to data that is associated with the icon suite. You can pass a
handle to an icon cache to any of the Icon Utilities routines which accept a handle to an icon suite. An
icon cache typically does not contain handles to the icon resources for all icon family members.
Instead, if the icon cache does not contain an entry for a specific type of icon in an icon family, the Icon
Utilities routines call your application's icon getter function to retrieve the data for that icon type.

Drawing an Icon Directly From a Resource

To draw an icon from an icon family without first creating an icon suite, use the PlotIconID function.
PlotIconID determines, from the size of the specified destination rectangle and the current bit depth of
the display device, which icon to draw. The icon drawn is as follows;

Destination Rectangle Size Icon Drawn
Width or height greater than or equal to 32. The 32-by-32 pixel icon with the appropriate bit depth.
Less than 32 by 32 pixels and greater than 16 pixels
wide or 12 pixels high.

The 16-by-16 pixel icon with the appropriate bit depth.

Height less than or equal to 12 pixels or width less
than or equal to 16 pixels.

The 12-by-16 pixel icon with the appropriate bit depth.

Icon Stretching and Shrinking. Depending on the size of the rectangle, PlotIconID may stretch or
shrink the icon to fit. To draw icons without stretching them, PlotIconID requires that the destination
rectangle have the same dimensions as one of the standard icons.

Icon Alignment and Transform. In addition to destination rectangle and resource ID parameters,
PlotIconID takes alignment and transform parameters. Icon Utilities routines can automatically align
an icon within its destination rectangle. (For example, an icon which is taller than it is wide can be
aligned to either the right or left of its destination rectangle.) These routines can also transform the
appearance of the icon in standard ways analogous to Finder states for icons.

Variables of type IconAlignmentType and IconTransformType should be declared and assigned values
representing alignment and transform requirements. Constants, such as atAbsoluteCenter and ttNone,
are available to specify alignment and transform requirements.

Getting an Icon Suite and Drawing One of
Its Icons

The GetIconSuite function, with the constant svAllAvailableData specified in the third parameter, is
used to get all icons from an icon family with a specified resource ID and to collect the handles to the
data for each icon into an icon suite. An icon from this suite may then be drawn using PlotIconSuite
which, like PlotIconID, takes destination rectangle, alignment and transform parameters and stretches
or shrinks the icon if necessary.

Drawing Specific Icons From an Icon
Family

If you need to plot a specific icon from an icon family rather than use the Icon Utilities to automatically
select a family member, you must first create an icon suite which contains only the icon of the desired
resource type together with its corresponding mask. Constants such as svLarge4Bit (an icon selector
mask for an 'icl4' icon) are used as the third parameter of the GetIconSuite call to retrieve the
required family member. You can then use PlotIconSuite to plot the icon.

Drawing Icons That Are Not Part of an Icon
Family

To draw icons of resource type 'ICON' and 'cicn' in menu items and dialog boxes, and icons of
resource type 'SICN' in menu items, you use Menu Manager and Dialog Manager routines such as
SetItemIcon and SetDialogItem.

To draw resources of resource type 'ICON', 'cicn', and 'SICN' in your application's windows, you use
the following routines:

Offscreen Graphics Worlds, Pictures , Cursors, and Icons 12-13

Resource Type Routine to Get Icon Routines to Draw Icon
'ICON' GetIcon PlotIconHandle

PlotIcon
'cicn' GetCIcon PlotCIconHandle

PlotCIcon
'SICN' GetResource PlotSICNHandle

The routines in this list ending in Handle allow you to specify alignment and transforms for the icon.

Manipulating Icons

The GetIconFromSuite function may be used to get a handle to the pixel data for a specific icon from an
icon suite. You can then use this handle to manipulate the icon data, for example, to alter its colour or
add three-dimensional shading.

The Icon Utilities also include routines which allow you to perform an action on one or more icons in
an icon suite and to perform hit testing on icons.

Main Constants, Data Types and Routines — Offscreen Graphics
Worlds

Constants

Flags for GWorldFlags Parameter

pixPurgeBit = 0 Set to make base address for offscreen pixel image purgeable.
noNewDeviceBit = 1 Set to not create a new GDevice record for offscreen world.
pixelsPurgeableBit = 6 Set to make base address for pixel image purgeable.
pixelsLockedBit = 7 Set to lock base address for offscreen pixel image.

Data Types

typedef CGrafPtr GWorldPtr;
typedef unsigned long GWorldFlags;

Routines

Creating, Altering, and Disposing of Offscreen Graphics Worlds

QDErr NewGWorld(GWorldPtr *offscreenGWorld,short PixelDepth,const Rect
*boundsRect,CTabHandle cTable,GDHandle aGDevice,GWorldFlags flags);

GWorldFlags UpdateGWorld(GWorldPtr *offscreenGWorld,short pixelDepth,const Rect
*boundsRect,CTabHandle cTable,GDHandle aGDevice,GWorldFlags flags);

void DisposeGWorld(GWorldPtr offscreenGWorld);

Saving and Restoring Graphics Ports and Offscreen Graphics Worlds

void GetGWorld(CGrafPtr *port,GDHandle *gdh);
void SetGWorld(CGrafPtr port,GDHandle gdh);

Managing an Offscreen Graphics World's Pixel Image

PixMapHandle GetGWorldPixMap(GWorldPtr offscreenGWorld);
Boolean LockPixels(PixMapHandle pm);
void UnlockPixels(PixMapHandle pm);
void AllowPurgePixels(PixMapHandle pm);
void NoPurgePixels(PixMapHandle pm);
GWorldFlags GetPixelsState(PixMapHandle pm);
void SetPixelsState(PixMapHandle pm,GWorldFlags state);
Ptr GetPixBaseAddr(PixMapHandle pm);
Boolean PixMap32Bit(PixMapHandle pmHandle);

12-14 Offscreen Graphics Worlds, Pictures , Cursors, and Icons

Main Constants, Data Types and Routines — Pictures

Constants

Verbs for the GetPictInfo , GetPixMapInfo , and NewPictInfo calls

returnColorTable = 0x0001 Return a ColorTable record.
returnPalette = 0x0002 Return a Palette record.
recordComments = 0x0004 Return comment information.
recordFontInfo = 0x0008 Return font information.
suppressBlackAndWhite = 0x0010 Do not include black and white.

Data Types

Picture

struct Picture
{

short picSize; // For a version 1 picture: its size.
Rect picFrame; // Bounding rectangle for the picture
… // Picture definition (variable length).

};

typedef struct Picture Picture;
typedef Picture *PicPtr, **PicHandle;

OpenCPicParams

struct OpenCPicParams
{

Rect srcRect; // Optimal bounding rectangle.
Fixed hRes; // Best horizontal resolution.
Fixed vRes; // Best vertical resolution.
short version; // Set to -2
short reserved1; // (Reserved. Set to 0.)
long reserved2; // (Reserved. Set to 0.)

};

typedef struct OpenCPicParams OpenCPicParams;

PictInfo

struct PictInfo
{

short version; // This is always zero, for now.
long uniqueColors; // Number of actual colors in the picture(s)/pixmap(s).
PaletteHandle thePalette; // Handle to the palette information.
CTabHandle theColorTable; // Handle to the color table.
Fixed hRes; // Maximum horizontal resolution for all the pixmaps.
Fixed vRes; // Maximum vertical resolution for all the pixmaps.
short depth; // Maximum depth for all the pixmaps (in the picture).
Rect sourceRect; // Picture frame rectangle (contains the entire picture).
long textCount; // Total number of text strings in the picture.
long lineCount; // Total number of lines in the picture.
long rectCount; // Total number of rectangles in the picture.
long rRectCount; // Total number of round rectangles in the picture.
long ovalCount; // Total number of ovals in the picture.
long arcCount; // Total number of arcs in the picture.
long polyCount; // Total number of polygons in the picture.
long regionCount; // Total number of regions in the picture.
long bitMapCount; // Total number of bitmaps in the picture.
long pixMapCount; // Total number of pixmaps in the picture.
long commentCount; // Total number of comments in the picture.
long uniqueComments; // The number of unique comments in the picture.
CommentSpecHandle commentHandle; // Handle to all the comment information.
long uniqueFonts; // The number of unique fonts in the picture.
FontSpecHandle fontHandle; // Handle to the FontSpec information.
Handle fontNamesHandle; // Handle to the font names.
long reserved1;
long reserved2;

};

Offscreen Graphics Worlds, Pictures , Cursors, and Icons 12-15

typedef struct PictInfo PictInfo;
typedef PictInfo *PictInfoPtr,**PictInfoHandle;

CommentSpec

struct CommentSpec
{

short count; // Number of occurrences of this comment ID.
short ID; // ID for the comment in the picture.

};

typedef struct CommentSpec CommentSpec;
typedef CommentSpec *CommentSpecPtr, **CommentSpecHandle;

FontSpec

struct FontSpec
{

short pictFontID; // ID of the font in the picture.
short sysFontID; // ID of the same font in the current system file.
long size[4]; // Bit array of all the sizes found (1..127) (bit 0 means > 127).
short style; // Combined style of all occurrances of the font.
long nameOffset; // Offset into the fontNamesHdl handle for the font’s name.

};

typedef struct FontSpec FontSpec,*FontSpecPtr,**FontSpecHandle;

Routines

Creating and Disposing of Pictures

PicHandle OpenCPicture(const OpenCPicParams *newHeader);
PicHandle OpenPicture(const Rect *picFrame);
void PicComment(short kind,short dataSize,Handle dataHandle);
void ClosePicture(void);
void KillPicture(PicHandle myPicture);

Drawing Pictures

void DrawPicture(PicHandle myPicture,const Rect *dstRect)
PicHandle GetPicture(Integer picID);

Collecting Picture Information

OSErr GetPictInfo(PicHandle thePictHandle,PictInfo *thePictInfo,short verb,short
colorsRequested,short colorPickMethod,short version);

OSErr GetPixMapInfo(PixMapHandle thePixMapHandle,PictInfo *thePictInfo,short verb,short
colorsRequested,short colorPickMethod,short version);

OSErr NewPictInfo(PictInfoID *thePictInfoID,short verb,short colorsRequested,short
colorPickMethod,short version);

OSErr RecordPictInfo(PictInfoID thePictInfoID,PicHandle thePictHandle);
OSErr RecordPixMapInfo(PictInfoID thePictInfoID,PixMapHandle thePixMapHandle);
OSErr RetrievePictInfo(PictInfoID thePictInfoID,PictInfo *thePictInfo,short

colorsRequested);
OSErr DisposPictInfo(PictInfoIthePictInfoID);

Main Constants, Data Types and Routines — Cursors

Constants

iBeamCursor = 1
crossCursor = 2
plusCursor = 3
watchCursor = 4

12-16 Offscreen Graphics Worlds, Pictures , Cursors, and Icons

Data Types

Cursor

struct Cursor
{

Bits16 data;
Bits16 mask;
Point hotSpot;

};

typedef struct Cursor Cursor;
typedef Cursor *CursPtr, **CursHandle;

CCrsr

struct CCrsr
{

short crsrType; // Type of cursor.
PixMapHandle crsrMap; // The cursor's pixmap.
Handle crsrData; // Cursor's data.
Handle crsrXData; // Expanded cursor data.
short crsrXValid; // Depth of expanded data (0 if none).
Handle crsrXHandle; // Future use.
Bits16 crsr1Data; // One-bit cursor.
Bits16 crsrMask; // Cursor's mask.
Point crsrHotSpot; // Cursor's hotspot.
long crsrXTable; // Private.
long crsrID; // Private.

};

typedef struct CCrsr CCrsr,*CCrsrPtr,**CCrsrHandle;

Routines

Initialising Cursors

void InitCursor(void);
void InitCursorCtl(acurHandle newCursors);

Changing Black-and-White Cursors

CursHandle GetCursor(short cursorID);
void SetCursor(const Cursor *crsr);

Changing Colour Cursors

CCrsrHandle GetCCursor(short crsrID);
void SetCCursor(CCrsrHandle cCrsr);
void AllocCursor(void)
void DisposCCursor(CCrsrHandle cCrsr);
void DisposeCCursor(CCrsrHandle cCrsr);

Hiding and Showing Cursors

void HideCursor(void);
void ShowCursor(void);
void ObscureCursor(void);
void ShieldCursor(const Rect *shieldRect,Point offsetPt);

Main Constants, Data Types and Routines — Icons

Constants

Types for Icon Families

large1BitMask = 'ICN#'
large4BitData = 'icl4'
large8BitData = 'icl8'

Offscreen Graphics Worlds, Pictures , Cursors, and Icons 12-17

small1BitMask = 'ics#'
small4BitData = 'ics4'
small8BitData = 'ics8'
mini1BitMask = 'icm#'
mini4BitData = 'icm4'
mini8BitData = 'icm8'

IconAlignmentType Values

atNone = 0x0
atVerticalCenter = 0x1
atTop = 0x2
atBottom = 0x3
atHorizontalCenter = 0x4
atAbsoluteCenter = (atVerticalCenter | atHorizontalCenter)
atCenterTop = (atTop | atHorizontalCenter)
atCenterBottom = (atBottom | atHorizontalCenter)
atLeft = 0x8
atCenterLeft = (atVerticalCenter | atLeft)
atTopLeft = (atTop | atleft)
atBottomLeft = (atBottom | atleft)
atRight = 0xC
atCenterRight = (atVerticalCenter | atRight)
atTopRight = (atTop | atRight)
atBottomRight = (atBottom | atRight)

IconTransformType Values

ttNone = 0x0
ttDisabled = 0x1
ttOffLine = 0x2
ttOpen = 0x3
ttLabel1 = 0x0100
ttLabel2 = 0x0200
ttLabel3 = 0x0300
ttLabel4 = 0x0400
ttLabel5 = 0x0500
ttLabel6 = 0x0600
ttLabel7 = 0x0700
ttSelected = 0x4000
ttSelectedDisabled = (ttSelected | ttDisabled)
ttSelectedOffLine = (ttSelected | ttOffLine)
ttSelectedOpen = (ttSelected | ttOpen)

IconSelectorValue Masks

svLarge1Bit = 0x00000001 'ICN#' resource.
svLarge4Bit = 0x00000002 'icl4' resource.
svLarge8Bit = 0x00000004 'icl8' resource.
svSmall1Bit = 0x00000100 'ics#' resource.
svSmall4Bit = 0x00000200 'ics4' resource.
svSmall8Bit = 0x00000400 'ics8' resource.
svMini1Bit = 0x00010000 'ism#' resource.
svMini4Bit = 0x00020000 'icm4' resource.
svMini8Bit = 0x00040000 'icm8' resource.
svAllLargeData = 0x000000FF 'ICN#', 'icl4', and 'icl8' resources.
svAllSmallData = 0x0OOOFF00 'ics#', 'ics4', and 'ics8' resources.
svAllMiniData = 0x0OFF0000 'icm#', 'icm4', and 'icm8' resources.
svAll1BitData = (svLarge1Bit | svSmall1Bit | svMini1Bit)
svAll4BitData = (svLarge4Bit | svSmall4Bit | svMini4Bit)
svAll8BitData = (svLarge8Bit | svSmall8Bit | svMini8Bit)
svAllAvailableData = (long) 0xFFFFFFFF All resources of given ID.

Data Types

typedef short IconAlignmentType;
typedef short IconTransformType;

CIcon

struct CIcon
{

PixMap iconPMap; // Icon's pixMap.
BitMap iconMask; // Icon's mask.

12-18 Offscreen Graphics Worlds, Pictures , Cursors, and Icons

BitMap iconBMap; // Icon's bitMap.
Handle iconData; // Icon's data.
short iconMaskData[1]; // Icon's mask and BitMap data.

};

typedef struct CIcon CIcon, *CIconPtr, **CIconHandle;

Routines

Drawing Icons From Resources

OSErr PlotIconID(constRect *theRect,IconAlignmentType align,IconTransformType transform,
short theResID);

void PlotIcon(const Rect *theRect,Handle theIcon);
OSErr PlotIconHandle(const Rect *theRect,IconAlignmentType align,

IconTransformType transform,Handle theIcon);
void PlotCIcon(const Rect *theRect,CIconHandle theIcon);
OSErr PlotCIconHandle(const Rect *theRect,IconAlignmentType align,

IconTransformType transform,CIconHandle theIcon);
OSErr PlotSICNHandle(const Rect *theRect,IconAlignmentType align,

IconTransformType transform,Handle theSICN);

Getting Icons From Resources Which do Not Belong to an Icon Family

Handle GetIcon(short iconID);
CIconHandle GetCIcon(short iconID);

Disposing of Icons

OSErr DisposeCIcon(CIconHandle theIcon);

Creating an Icon Suite

OSErr GetIconSuite(Handle *theIconSuite,short theResID,IconSelectorValue selector);;
OSErr NewIconSuite(Handle *theIconSuite);
OSErr AddIconToSuite(Handle theIconData,Handle theSuite,ResType theType);

Getting Icons From an Icon Suite

OSErr GetIconFromSuite(Handle *theIconData,Handle theSuite,ResType theType);

Drawing Icons From an Icon Suite

OSErr PlotIconSuite(const Rect *theRect,IconAlignmentType align,
IconTransformType transform,Handle theIconSuite);

Performing Operations on Icons in an Icon Suite

OSErr ForEachIconDo(handle theSuite,IconSelectorValue selector,IconActionProcPtr action,
void *yourDataPtr);

Disposing of Icon Suites

OSErr DisposeIconSuite(Handle theIconSuite,Boolean disposeData);

Converting an Icon Mask to a Region

OSErr IconSuiteToRgn(RgnHandle theRgn,const Rect *iconRect,
IconAlignmentType align,Handle theIconSuite);

OSErr IconIDToRegion(RgnHandle theRgn,const Rect *iconRect,
IconAlignmentType align,short iconID);

Determining Whether a Point or Rectangle is Within an Icon

Boolean PtInIconSuite(Point testPt,const Rect *iconRect,IconAlignmentType align,
Handle theIconSuite);

Boolean PtInIconID(Point testPt,const Rect *iconRect,IconAlignmentType align,
short iconID);

Boolean RectInIconSuite(const Rect *testRect,const Rect *iconRect,IconAlignmentType align,
Handle theIconSuite);

Boolean RectInIconID(const Rect *testRect,const Rect *iconRect,IconAlignmentType align,
short iconID);

Offscreen Graphics Worlds, Pictures , Cursors, and Icons 12-19

Working With Icon Caches

OSErr MakeIconCache(Handle *theHandle,IconGetterProcPtr makeIcon,void *yourDataPtr);
OSErr LoadIconCache(const Rect *theRect,IconAlignmentType align,

IconTransformType transform,Handle theIconCache);

Demonstration Program
// ##1

// GWorldPicCursIcon.c2

// ##3

//4

// This program:5

//6

// • Opens a window in which the results of various drawing operations are displayed,7

// and in which regions are established for a cursor shape change demonstration.8

//9

// • Demonstrates offscreen graphics world, picture, cursor, animated cursor, and icon10

// operations as a result of the user choosing items from a Demonstration menu.11

//12

// • Quits when the user chooses Quit or clicks the window's close box.13

//14

// The program utilises the following resources:15

//16

// • 'MBAR' resource and associated 'MENU' resources (preload, non-purgeable).17

//18

// • A 'WIND' resource (purgeable) (initially visible).19

//20

// • An 'acur' resource (purgeable).21

//22

// • 'CURS' resources associated with the 'acur' resource (purgeable).23

//24

// • An 'ALRT' resource (purgeable) and associated 'DITL' resource (purgeable) for an25

// About GWorldPicCursIcon… alert box, which is used to demonstrate the display of26

// icons in alert boxes.27

//28

// • 'ICON', 'cicn', and 'SICN' resources (purgeable) for the display of icons in menu29

// items and the About GWorldPicCursIcon… alert box.30

//31

// • A 'SIZE' resource with the acceptSuspendResumeEvents and is32BitCompatible flags32

// set.33

//34

// ##35

36

// ……… includes37

38

#include <Fonts.h>39

#include <Menus.h>40

#include <TextEdit.h>41

#include <Dialogs.h>42

#include <SegLoad.h>43

#include <ToolUtils.h>44

#include <Devices.h>45

#include <QDOffscreen.h>46

#include <Resources.h>47

#include <PictUtils.h>48

#include <Gestalt.h>49

50

// …… defines51

52

#define mApple 12853

#define iAbout 154

#define mFile 12955

#define iQuit 1156

#define mDemonstration 13157

#define iWithoutOffScreenGWorld 158

#define iWithOffScreenGWorld 259

#define iPicture 360

#define iCursor 461

#define iAnimatedCursor 562

#define iIcon 663

#define rAlert 12864

#define rMenubar 12865

#define rWindow 12866

12-20 Offscreen Graphics Worlds, Pictures , Cursors, and Icons

#define rBeachBallCursor 12867

#define rIcon 25768

#define kBeachBallTickInterval 569

#define MAXLONG 0x7FFFFFFF70

71

#define topLeft(r) (((Point *) &(r))[0])72

#define botRight(r) (((Point *) &(r))[1])73

74

// ……… typedefs75

76

typedef struct77

{78

SInt16 numberOfFrames;79

SInt16 whichFrame;80

CursHandle frame[];81

} animCurs, *animCursPtr, **animCursHandle;82

83

// ……… global variables84

85

Boolean gDone;86

WindowPtr gWindowPtr;87

SInt32 gSleepTime;88

RgnHandle gCursorRegion;89

Boolean gInBackground;90

Boolean gCursorRegionsActive = false;91

animCursHandle gAnimCursHdl;92

Boolean gAnimCursActive = false;93

SInt16 gAnimCursTickInterval;94

SInt32 gAnimCursLastTick;95

96

// …… function prototypes97

98

void main (void);99

void doInitManagers (void);100

void eventLoop (void);101

void doEvents (EventRecord *);102

void doMouseDown (EventRecord *);103

void doOSEvent (EventRecord *);104

void doMenuChoice (SInt32);105

void doDemonstrationMenu (SInt16);106

void doIdle (void);107

void doWithoutOffScreenGWorld (void);108

void doWithOffScreenGWorld (void);109

void doGWorldDrawing (void);110

void doPicture (void);111

void doCursor (void);112

void changeCursor (WindowPtr,RgnHandle);113

void doAnimCursor (void);114

Boolean getAnimCursor (SInt16,SInt16);115

void spinAnimCursor (void);116

void releaseAnimCursor (void);117

void doIcon (void);118

119

// ### main120

121

void main(void)122

{123

Handle menubarHdl;124

MenuHandle menuHdl;125

126

// …… initialise managers127

128

doInitManagers();129

130

// …… set up menu bar and menus131

132

if(!(menubarHdl = GetNewMBar(rMenubar)))133

ExitToShell();134

SetMenuBar(menubarHdl);135

DrawMenuBar();136

if(!(menuHdl = GetMenuHandle(mApple)))137

ExitToShell();138

else139

AppendResMenu(menuHdl,'DRVR');140

141

// …… open window142

143

Offscreen Graphics Worlds, Pictures , Cursors, and Icons 12-21

if(!(gWindowPtr = GetNewWindow(rWindow,NULL,(WindowPtr)-1)))144

ExitToShell();145

146

SetPort(gWindowPtr);147

148

TextSize(10);149

150

// ……… enter event loop151

152

eventLoop();153

}154

155

// ### doInitManagers156

157

void doInitManagers(void)158

{159

MaxApplZone();160

MoreMasters();161

162

InitGraf(&qd.thePort);163

InitFonts();164

InitWindows();165

InitMenus();166

TEInit();167

InitDialogs(NULL);168

169

InitCursor();170

FlushEvents(everyEvent,0);171

}172

173

// ## eventLoop174

175

void eventLoop(void)176

{177

EventRecord eventRec;178

Boolean gotEvent;179

180

gDone = false;181

gSleepTime = MAXLONG;182

gCursorRegion = NULL;183

184

while(!gDone)185

{186

gotEvent = WaitNextEvent(everyEvent,&eventRec,gSleepTime,gCursorRegion);187

if(gotEvent)188

doEvents(&eventRec);189

else190

doIdle();191

}192

}193

194

// ### doEvents195

196

void doEvents(EventRecord *eventRecPtr)197

{198

WindowPtr windowPtr;199

SInt8 charCode;200

201

windowPtr = (WindowPtr) eventRecPtr->message;202

203

switch(eventRecPtr->what)204

{205

case mouseDown:206

doMouseDown(eventRecPtr);207

break;208

209

case keyDown:210

case autoKey:211

charCode = eventRecPtr->message & charCodeMask;212

if((eventRecPtr->modifiers & cmdKey) != 0)213

doMenuChoice(MenuKey(charCode));214

break;215

216

case updateEvt:217

BeginUpdate(windowPtr);218

EndUpdate(windowPtr);219

break;220

12-22 Offscreen Graphics Worlds, Pictures , Cursors, and Icons

221

case osEvt:222

doOSEvent(eventRecPtr);223

break;224

}225

}226

227

// ## doMouseDown228

229

void doMouseDown(EventRecord *eventRecPtr)230

{231

WindowPtr windowPtr;232

SInt16 partCode;233

234

partCode = FindWindow(eventRecPtr->where,&windowPtr);235

236

switch(partCode)237

{238

case inMenuBar:239

doMenuChoice(MenuSelect(eventRecPtr->where));240

break;241

242

case inSysWindow:243

SystemClick(eventRecPtr,windowPtr);244

break;245

246

case inContent:247

if(windowPtr != FrontWindow())248

SelectWindow(windowPtr);249

break;250

251

case inDrag:252

DragWindow(windowPtr,eventRecPtr->where,&qd.screenBits.bounds);253

break;254

255

case inGoAway:256

if(TrackGoAway(windowPtr,eventRecPtr->where) == true)257

gDone = true;258

break;259

}260

}261

262

// ## doOSEvent263

264

void doOSEvent(EventRecord *eventRecPtr)265

{266

switch((eventRecPtr->message >> 24) & 0x000000FF)267

{268

case suspendResumeMessage:269

if((eventRecPtr->message & resumeFlag) == 1)270

gInBackground = false;271

else272

gInBackground = true;273

break;274

275

case mouseMovedMessage:276

if(gCursorRegionsActive)277

changeCursor(gWindowPtr,gCursorRegion);278

break;279

}280

}281

282

// ### doMenuChoice283

284

void doMenuChoice(SInt32 menuChoice)285

{286

SInt16 menuID, menuItem;287

Str255 itemName;288

SInt16 daDriverRefNum;289

290

menuID = HiWord(menuChoice);291

menuItem = LoWord(menuChoice);292

293

if(menuID == 0)294

return;295

296

if(gAnimCursActive == true)297

Offscreen Graphics Worlds, Pictures , Cursors, and Icons 12-23

{298

gAnimCursActive = false;299

SetCursor(&qd.arrow);300

releaseAnimCursor();301

gSleepTime = MAXLONG;302

}303

if(gCursorRegionsActive == true)304

{305

gCursorRegionsActive = false;306

DisposeRgn(gCursorRegion);307

gCursorRegion = NULL;308

}309

310

switch(menuID)311

{312

case mApple:313

if(menuItem == iAbout)314

Alert(rAlert,NULL);315

else316

{317

GetMenuItemText(GetMenuHandle(mApple),menuItem,itemName);318

daDriverRefNum = OpenDeskAcc(itemName);319

}320

break;321

322

case mFile:323

if(menuItem == iQuit)324

gDone = true;325

break;326

327

case mDemonstration:328

doDemonstrationMenu(menuItem);329

break;330

}331

332

HiliteMenu(0);333

}334

335

// ## doDemonstrationMenu336

337

void doDemonstrationMenu(SInt16 menuItem)338

{339

switch(menuItem)340

{341

case iWithoutOffScreenGWorld:342

doWithoutOffScreenGWorld();343

break;344

345

case iWithOffScreenGWorld:346

doWithOffScreenGWorld();347

break;348

349

case iPicture:350

doPicture();351

break;352

353

case iCursor:354

doCursor();355

break;356

357

case iAnimatedCursor:358

doAnimCursor();359

break;360

361

case iIcon:362

doIcon();363

break;364

}365

}366

367

// ### doIdle368

369

void doIdle(void)370

{371

if(gAnimCursActive == true)372

spinAnimCursor();373

}374

12-24 Offscreen Graphics Worlds, Pictures , Cursors, and Icons

375

// ### doWithoutOffScreenGWorld376

377

void doWithoutOffScreenGWorld(void)378

{379

BackColor(whiteColor);380

FillRect(&(gWindowPtr->portRect),&qd.white);381

382

doGWorldDrawing();383

}384

385

// ## doWithOffScreenGWorld386

387

void doWithOffScreenGWorld(void)388

{389

CGrafPtr windowPortPtr;390

GDHandle deviceHdl;391

QDErr qdErr;392

GWorldPtr gworldPortPtr;393

PixMapHandle gworldPixMapHdl;394

Boolean lockPixResult;395

Rect sourceRect, destRect;396

397

BackColor(whiteColor);398

FillRect(&(gWindowPtr->portRect),&qd.white);399

400

ForeColor(blackColor);401

MoveTo(130,140);402

DrawString("\pPlease Wait. Drawing in offscreen graphics port.");403

404

SetCursor(*(GetCursor(watchCursor)));405

406

GetGWorld(&windowPortPtr,&deviceHdl);407

408

qdErr = NewGWorld(&gworldPortPtr,0,&gWindowPtr->portRect,NULL,NULL,0);409

if(gworldPortPtr == NULL || qdErr != noErr)410

{411

SysBeep(10);412

return;413

}414

415

SetGWorld(gworldPortPtr,NULL);416

417

gworldPixMapHdl = GetGWorldPixMap(gworldPortPtr);418

if(!(lockPixResult = LockPixels(gworldPixMapHdl)))419

{420

SysBeep(10);421

return;422

}423

424

EraseRect(&(gworldPortPtr->portRect));425

426

doGWorldDrawing();427

428

SetGWorld(windowPortPtr,deviceHdl);429

430

sourceRect = gworldPortPtr->portRect;431

destRect = windowPortPtr->portRect;432

433

CopyBits(&((GrafPtr) gworldPortPtr)->portBits,&((GrafPtr) windowPortPtr)->portBits,434

 &sourceRect,&destRect,srcCopy,NULL);435

436

if(QDError() != noErr)437

SysBeep(10);438

439

UnlockPixels(gworldPixMapHdl);440

DisposeGWorld(gworldPortPtr);441

442

SetCursor(&qd.arrow);443

}444

445

// ## doGWorldDrawing446

447

void doGWorldDrawing(void)448

{449

SInt16 a, b, c;450

Rect theRect;451

Offscreen Graphics Worlds, Pictures , Cursors, and Icons 12-25

452

PenPat(&qd.black);453

PenSize(1,1);454

455

for(a=0;a<8;a++)456

for(b=12;b<463;b+=30)457

for(c=5;c<276;c+=18)458

{459

SetRect(&theRect,b+a,c+a,b+28-a,c+16-a);460

if(a < 3) ForeColor(redColor);461

else if(a > 2 && a < 6) ForeColor(greenColor);462

else if(a > 5) ForeColor(blueColor);463

FrameRect(&theRect);464

}465

}466

467

// ## doPicture468

469

void doPicture(void)470

{471

Rect pictureRect;472

OpenCPicParams picParams;473

PicHandle pictureHdl;474

PolyHandle trianglePoly;475

PictInfo pictInfo;476

Str255 pictInfoString;477

478

BackColor(whiteColor);479

FillRect(&(gWindowPtr->portRect),&qd.white);480

481

pictureRect = gWindowPtr->portRect;482

InsetRect(&pictureRect,50,50);483

484

picParams.srcRect = pictureRect;485

picParams.hRes = 0x00480000;486

picParams.vRes = 0x00480000;487

picParams.version = -2;488

489

pictureHdl = OpenCPicture(&picParams);490

491

ClipRect(&gWindowPtr->portRect);492

493

ForeColor(blueColor);494

FillRect(&pictureRect,&qd.dkGray);495

ForeColor(yellowColor);496

FillOval(&pictureRect,&qd.gray);497

498

trianglePoly = OpenPoly();499

MoveTo(pictureRect.left,pictureRect.bottom);500

LineTo(pictureRect.left + ((pictureRect.right - pictureRect.left) / 2),pictureRect.top);501

LineTo(pictureRect.right,pictureRect.bottom);502

ClosePoly();503

504

PenPat(&qd.black);505

ForeColor(redColor);506

PaintPoly(trianglePoly);507

KillPoly(trianglePoly);508

509

ForeColor(blackColor);510

TextSize(30);511

TextFont(systemFont);512

MoveTo(115,230);513

DrawString("\pRecorded Picture");514

ForeColor(whiteColor);515

MoveTo(112,227);516

DrawString("\pRecorded Picture");517

518

ClosePicture();519

520

DrawPicture(pictureHdl,&pictureRect);521

522

SetWTitle(gWindowPtr,"\pClick Mouse for Picture Information");523

524

while(!Button()) ;525

526

FillRect(&(gWindowPtr->portRect),&qd.white);527

SetWTitle(gWindowPtr,"\pOffscreen Graphics Worlds, Pictures and Cursors");528

12-26 Offscreen Graphics Worlds, Pictures , Cursors, and Icons

529

TextFont(1);530

TextSize(10);531

532

GetPictInfo(pictureHdl,&pictInfo,returnPalette,8,systemMethod,0);533

ForeColor(blackColor);534

MoveTo(180,50);535

DrawString("\pSome Picture Information:");536

537

MoveTo(180,80);538

DrawString("\pTextStrings: ");539

NumToString(pictInfo.textCount,pictInfoString);540

DrawString(pictInfoString);541

542

MoveTo(180,95);543

DrawString("\pRectangles: ");544

NumToString(pictInfo.rectCount,pictInfoString);545

DrawString(pictInfoString);546

547

MoveTo(180,110);548

DrawString("\pRound Rectangles: ");549

NumToString(pictInfo.rRectCount,pictInfoString);550

DrawString(pictInfoString);551

552

MoveTo(180,125);553

DrawString("\pOvals: ");554

NumToString(pictInfo.ovalCount,pictInfoString);555

DrawString(pictInfoString);556

557

MoveTo(180,140);558

DrawString("\pArcs: ");559

NumToString(pictInfo.arcCount,pictInfoString);560

DrawString(pictInfoString);561

562

MoveTo(180,155);563

DrawString("\pPolygons: ");564

NumToString(pictInfo.polyCount,pictInfoString);565

DrawString(pictInfoString);566

567

MoveTo(180,170);568

DrawString("\pUnique Fonts: ");569

NumToString(pictInfo.uniqueFonts,pictInfoString);570

DrawString(pictInfoString);571

572

KillPicture(pictureHdl);573

574

TextFont(1);575

TextSize(10);576

}577

578

// ### doCursor579

580

void doCursor(void)581

{582

Rect cursorRect;583

SInt16 a;584

585

BackColor(whiteColor);586

FillRect(&(gWindowPtr->portRect),&qd.white);587

588

cursorRect = gWindowPtr->portRect;589

PenPat(&qd.gray);590

PenSize(1,1);591

ForeColor(redColor);592

593

for(a=0;a<3;a++)594

{595

InsetRect(&cursorRect,40,40);596

FrameRect(&cursorRect);597

}598

599

MoveTo(10,20);600

DrawString("\pArrow cursor region");601

MoveTo(50,60);602

DrawString("\pIBeam cursor region");603

MoveTo(90,100);604

DrawString("\pCross cursor region");605

Offscreen Graphics Worlds, Pictures , Cursors, and Icons 12-27

MoveTo(130,140);606

DrawString("\pPlus cursor region");607

608

gCursorRegionsActive = true;609

gCursorRegion = NewRgn();610

}611

612

// ### changeCursor613

614

void changeCursor(WindowPtr gWindowPtr,RgnHandle cursorRegion)615

{616

Rect cursorRect;617

RgnHandle arrowCursorRgn;618

RgnHandle ibeamCursorRgn;619

RgnHandle crossCursorRgn;620

RgnHandle plusCursorRgn;621

Point mousePosition;622

623

arrowCursorRgn = NewRgn();624

ibeamCursorRgn = NewRgn();625

crossCursorRgn = NewRgn();626

plusCursorRgn = NewRgn();627

628

SetRectRgn(arrowCursorRgn,-32768,-32768,32766,32766);629

630

cursorRect = gWindowPtr->portRect;631

LocalToGlobal(&topLeft(cursorRect));632

LocalToGlobal(&botRight(cursorRect));633

634

InsetRect(&cursorRect,40,40);635

RectRgn(ibeamCursorRgn,&cursorRect);636

DiffRgn(arrowCursorRgn,ibeamCursorRgn,arrowCursorRgn);637

638

InsetRect(&cursorRect,40,40);639

RectRgn(crossCursorRgn,&cursorRect);640

DiffRgn(ibeamCursorRgn,crossCursorRgn,ibeamCursorRgn);641

642

InsetRect(&cursorRect,40,40);643

RectRgn(plusCursorRgn,&cursorRect);644

DiffRgn(crossCursorRgn,plusCursorRgn,crossCursorRgn);645

646

GetMouse(&mousePosition);647

LocalToGlobal(&mousePosition);648

649

if(PtInRgn(mousePosition,ibeamCursorRgn))650

{651

SetCursor(*(GetCursor(iBeamCursor)));652

CopyRgn(ibeamCursorRgn,cursorRegion);653

}654

else if(PtInRgn(mousePosition,crossCursorRgn))655

{656

SetCursor(*(GetCursor(crossCursor)));657

CopyRgn(crossCursorRgn,cursorRegion);658

}659

else if(PtInRgn(mousePosition,plusCursorRgn))660

{661

SetCursor(*(GetCursor(plusCursor)));662

CopyRgn(plusCursorRgn,cursorRegion);663

}664

else665

{666

SetCursor(&qd.arrow);667

CopyRgn(arrowCursorRgn,cursorRegion);668

}669

670

DisposeRgn(arrowCursorRgn);671

DisposeRgn(ibeamCursorRgn);672

DisposeRgn(crossCursorRgn);673

DisposeRgn(plusCursorRgn);674

}675

676

// ### doAnimCursor677

678

void doAnimCursor(void)679

{680

SInt16 animCursResourceID, animCursTickInterval;681

682

12-28 Offscreen Graphics Worlds, Pictures , Cursors, and Icons

BackColor(whiteColor);683

FillRect(&(gWindowPtr->portRect),&qd.white);684

685

animCursResourceID = rBeachBallCursor;686

animCursTickInterval = kBeachBallTickInterval;687

688

if(getAnimCursor(animCursResourceID,animCursTickInterval))689

{690

gAnimCursActive = true;691

gSleepTime = animCursTickInterval;692

}693

else694

SysBeep(10);695

}696

697

// ## getAnimCursor698

699

Boolean getAnimCursor(SInt16 resourceID,SInt16 tickInterval)700

{701

SInt16 cursorID, a = 0;702

Boolean noError = false;703

704

if((gAnimCursHdl = (animCursHandle) GetResource('acur',resourceID)))705

{706

noError = true;707

while((a < (*gAnimCursHdl)->numberOfFrames) && noError)708

{709

cursorID = (SInt16) HiWord((SInt32) (*gAnimCursHdl)->frame[a]);710

(*gAnimCursHdl)->frame[a] = GetCursor(cursorID);711

if((*gAnimCursHdl)->frame[a])712

a++;713

else714

noError = false;715

}716

}717

718

if(noError)719

{720

gAnimCursTickInterval = tickInterval;721

gAnimCursLastTick = TickCount();722

(*gAnimCursHdl)->whichFrame = 0;723

}724

725

return(noError);726

}727

728

// ### spinAnimCursor729

730

void spinAnimCursor(void)731

{732

register SInt32 newTick;733

734

newTick = TickCount();735

if(newTick < (gAnimCursLastTick + gAnimCursTickInterval))736

return;737

738

SetCursor(*((*gAnimCursHdl)->frame[(*gAnimCursHdl)->whichFrame++]));739

if((*gAnimCursHdl)->whichFrame == (*gAnimCursHdl)->numberOfFrames)740

(*gAnimCursHdl)->whichFrame = 0;741

742

gAnimCursLastTick = newTick;743

}744

745

// ## releaseAnimCursor746

747

void releaseAnimCursor(void)748

{749

SInt16 a;750

751

for(a=0;a<(*gAnimCursHdl)->numberOfFrames;a++)752

ReleaseResource((Handle) (*gAnimCursHdl)->frame[a]);753

754

ReleaseResource((Handle) gAnimCursHdl);755

}756

757

// ### doIcon758

759

Offscreen Graphics Worlds, Pictures , Cursors, and Icons 12-29

void doIcon(void)760

{761

OSErr osErr;762

SInt32 response, finalTicks;763

SInt16 a;764

Rect theRect;765

Handle iconHdl;766

CIconHandle cIconHdl;767

768

BackColor(whiteColor);769

FillRect(&(gWindowPtr->portRect),&qd.white);770

771

SetRect(&theRect,2,130,34,162);772

773

osErr = Gestalt(gestaltQuickdrawVersion,&response);774

if(response < gestalt8BitQD)775

{776

iconHdl = GetIcon(rIcon);777

for(a=1;a<20;a++)778

{779

PlotIcon(&theRect,iconHdl);780

InsetRect(&theRect,a*-1,a*-2);781

OffsetRect(&theRect,a*4,0);782

Delay(20,&finalTicks);783

}784

}785

else786

{787

cIconHdl = GetCIcon(rIcon);788

789

for(a=1;a<20;a++)790

{791

PlotCIcon(&theRect,cIconHdl);792

InsetRect(&theRect,a*-1,a*-2);793

OffsetRect(&theRect,a*4,0);794

Delay(20,&finalTicks);795

}796

797

DisposeCIcon(cIconHdl);798

}799

}800

801

// ##802

Demonstration Program Comments
When this program is run, the user should:

• Invoke the demonstrations by choosing items from the Demonstration menu and the About
GWorldPictCursIcon…item in the Apple menu.

• Note that both the About GWorldPicCursIcon… item in the Apple menu and the Icons item in
the Demonstration menu contain icons.

The resource ID for the 'SICN', 'ICON', and 'cicn' resources associated with these menu
items is 257.

0x1E is specified in the keyboard equivalent field of the menu item definition for the
About GWorldPicCursIcon… item. This means that the 'SICN' resource with ID 257 will be
displayed on black-and-white Macintoshes, and the 'cicn' resource with the same ID,
scaled down to 16-by-16 pixels, will be displayed on Macintoshes with Color QuickDraw.

0x36 (the ASCII character code for 6) is specified in the keyboard equivalent field of
the menu item definition for the Icon item. This means that the Menu Manager will
automatically enlarge the the menu item's enclosing rectangle to accommodate the 32-by-
32 pixel colour icon, that the 'ICON' resource with ID 257 will be displayed on black-
and-white Macintoshes, and that the 'cicn' resource with the same ID will be displayed
on Macintoshes with Color QuickDraw. It also means that the Command-key equivalent will
appear in the menu item along with the icon.

If the display device in a Color Quickdraw environment is set to pixel depths of 1 or 2,
the bitmap (black-and-white) component of the colour icon resource will be displayed.

12-30 Offscreen Graphics Worlds, Pictures , Cursors, and Icons

• Click outside and inside the window when the cursor and animated cursor demonstrations
have been invoked.

#define

Lines 53-63 establish constants related to menu IDs and menu item numbers. Lines 64-68
establish constants related to alert, menu bar, window, cursor, and icon resources. Line 69
establishes a constant for the interval between frame changes for an animated cursor. Line 70
MAXLONG as the maximum possible long value. This value will be assigned to WaitNextEvent's
sleep parameter. Lines 72-73 define two common macros. The first converts the top and left
fields of a Rect to a Point. The second converts the bottom and right field of a Rect to a
Point.

#typedef

Lines 77-82 define a data type which is identical to the structure of an 'acur' resource.

Global Variables

gDone controls exit from the main event loop and thus program termination. gWindowPtr will be
assigned the pointer to the window utilised by the demonstration.

In this program, the sleep and cursor region parameters in the WaitNextEvent call will be
changed during program execution. Hence the global variables gSleepTime and gCursorRegion.

gInBackground relates to foreground/background switching.

gCursorRegionActive and gAnimCursActive will be set to true during, respectively, the cursor
and animated cursor demonstrations. gAnimCursHdl will be assigned a handle to the animCurs
structure used during the animated cursor demonstration. gAnimCursTickInterval and
gAnimCursLastTick also relate to the animated cursor demonstration.

main

The main function initialises the system software managers (Line 129), sets up the menus
(Lines 133-140), opens a window (Line 144), sets the window's graphics port as the current
port for drawing (Line 147) and sets the text size to 10 points (Line 149). The main event
loop is then entered (Line 153).

Note that error handling here and in other areas of the program is somewhat rudimentary: the
program simply terminates.

eventLoop

eventLoop contains the main event loop. The event loop terminates when gDone is set to true.

Before the loop is entered, gSleepTime is set to MAXLONG and gCursorRegion is set to NULL
(Lines 182-183). Initially, therefore:

• The sleep parameter in the WaitNextEvent call at Line 187 will be set to the maximum
possible value, meaning that null events will virtually never occur.

• The mouseRegion parameter in the WaitNextEvent call will cause mouse-moved events not to
occur.

Note that, if a null event is received (Line 190), the application-defined function doIdle is
called (Line 191). (As will be seen, null events will occur every five ticks during the
animated cursor demonstration, when WaitNextEvent's sleep parameter will be assigned the
constant defined at Line 70.)

doEvents and doMouseDown

doEvents and doMouseDown perform minimal initial event handling consistent with the
satisfactory execution of the demonstration aspects of the program.

doOSEvents

doOSEvents handles Operating System events.

In the event of a mouse-moved event (Line 276), and if the current demonstration is the
standard cursors demonstration (Line 277), the application-defined function changeCursor is
called (Line 278). The function is passed the pointer to the window and a pointer to the
region used as the last parameter in the WaitNextEvent call.

Offscreen Graphics Worlds, Pictures , Cursors, and Icons 12-31

(As an aside, note that this cursor shape adjustment strategy differs from that used in the
demonstration program at Chapter 2 - Low Level and Operating System events, where the cursor
adjustment function was called immediately before the WaitNextEvent call in the main event
loop (provided a mouse-moved event had occurred). If the strategy shown in this program is
used (that is, call the cursor adjustment function when a mouse-moved event is received), you
must also call the cursor adjustment function when a new window is opened and whenever a
window activation event is received.)

doMenuChoice

doMenuChoice processes Apple and File menu choices to completion and calls a subsidiary
function to handle Demonstration menu choices.

Lines 297-309 are invoked if the user chooses a menu item while either the animated cursor
demonstration or the normal cursor demonstration is the active demonstration. In this cases:

• If the animated cursor demonstration is currently the active demonstration (Line 297),
the flag which indicates this condition is set to false (Line 299), the cursor is set to
the standard arrow cursor (Line 300), memory associated with the animated cursor is
deallocated (Line 301) and WaitNextEvent's sleep parameter is set to the maximum
possible value (Line 302).

• If the normal cursor demonstration is currently the active demonstration (Line 304), the
flag which indicates this condition is set to false (Line 306), the cursor region
associated with the last parameter of the WaitNextEvent call is disposed of (Line 307)
and that parameter is set to NULL (Line 308) to defeat mouse-moved event reporting.

If the user chooses the About… item in the Apple menu, an alert box is invoked (Lines 313-
315). (Note that the Icon item in the alert box's 'DITL' resource specifies the icon
resource with ID 257.)

doDemonstrationMenu

doDemonstrationMenu handles choices from the Demonstration menu.

doIdle

doIdle is called from the main event loop when a null event is received. If the active
demonstration is the animated cursor demonstration (Line 372), the application defined
function spinAnimCursor is called (Line 373).

doWithoutOffScreenGWorld

doWithoutOffScreenGWorld is the first demonstration. It is included only as a contrast to the
offscreen graphics world demonstration doWithOffScreenWorld. It simply fills the window's
port rectangle with white pixels and then calls doGWorldDrawing to execute some drawing
designed to take a short but nonetheless perceptible period of time.

doWithOffScreenGWorld

doWithOffScreenGWorld demonstrates the use of an offscreen graphics world to execute the same
drawing operation as does doWithoutOffScreenWorld.

At Lines 398-403, the window's port rectangle is cleared to white and some advisory text is
drawn in the window indicating that drawing is taking place in an offscreen graphics world.
To further indicate to the user that the application has not just drifted away, Line 405 sets
the cursor to the system's familiar watch cursor.

Line 407 saves the current graphics world, that is, the current graphics port and the current
device.

Line 409 creates an offscreen graphics world. The gworldPortPtr parameter receives a pointer
to the offscreen graphics world's graphics port. 0 in the second parameter means that the
offscreen world's pixel depth will be set to the deepest device intersecting the rectangle
passed as the third parameter. The third parameter becomes the offscreen port's portRect, the
offscreen pixel map's bounds and the offscreen device's gdRect value. NULL in the fourth
parameter causes the default colour table for the pixel depth to be used. The fifth parameter
is set to NULL because the noNewDevice flag is not set. 0 in the sixth parameter means that,
in fact, no flags are set.

Line 416 sets the graphics port pointed to by gworldPortPtr as the current graphics port.
(When the first parameter is a GWorldPtr, the current device is set to the device attached to
the offscreen world and the second paramter is ignored.)

12-32 Offscreen Graphics Worlds, Pictures , Cursors, and Icons

Lines 418-419 reflect the requirement to call LockPixels to prevent the base address of an
offscreen pixel image from being moved when it is drawn into or copied from. Line 418 gets a
handle to the offscreen world's pixel map and Line 419 locks that buffer in memory.

Line 425 clears the offscreen graphics port before Line 427 calls the application-defined
function doGWorldDrawing to draw some graphics in the offscreen port.

Line 429 sets the window's graphics port as the current port and sets the current device to
that saved at Line 407.

Lines 431-432 establish the source and destination rectangles (required by the CopyBits call
at Line 434) as equivalent to the offscreen graphics world and window port rectangles
respectively.

The CopyBits call at Line 434 copies the image from the offscreen world to the window. (Note
that, because a basic, rather than a colour, graphics port is being drawn to, there is no need
to set the foreground colour to black and the background colour to white before the CopyBits
call.) Line 437 checks for any error resulting from the last QuickDraw call (in this case,
CopyBits).

Line 440 unlocks the offscreen pixel image buffer and Line 441 deallocates all of the memory
previously allocated for the offscreen graphics world.

Finally, Line 443 sets the cursor back to the standard arrow cursor.

doGWorldDrawing

doGWorldDrawing is called by both doWithoutOffScreenWorld and doWithOffScreenWorld to draw
some graphics.

doPicture

doPicture demonstrates recording and playing back a picture.

Lines 479-483 clear the window to white and establish a rectangle 50 pixels inside the port
rectangle. Lines 485-488 assign values to the fields of an OpenCPicParams record. These
specify the rectangle established at Line 483, 72 pixels per inch resolution horizontally, and
72 pixels per inch resolution vertically. The version field should always be set to -2.
Using this record as its parameter, OpenCPicture initiates the recording of the picture
definition (Line 490).

Line 492 establishes the clipping region as equivalent to the port rectangle. (Before this
call, the clipping region is very large. In fact, it is as large as the coordinate plane. If
the clipping region is very large and you scale the picture while drawing it, the clipping
region can become invalid when DrawPicture scales the clipping region - in which case the
picture will not be drawn.)

Lines 494-517 "draw" a simple picture comprising a rectangle, an oval, a triangle and some
text. (Because of the previous call to OpenCPicture, these drawing instructions are simply
"recorded" in the Picture record. Nothing appears in the window.)

Line 519 terminates picture recording and Line 521 draws the picture by "playing back" the
"recording" stored in the specified Picture structure.

When the user responds to the invitation to click the mouse (Lines 523-525), Line 533 returns
information about the picture in a picture information record. Lines 534-571 extract some of
the information from this record and print it in the window.

Line 573 deallocates the memory associated with the picture record.

doCursor

doCursor is called when the user selects Cursors from the Demonstration menu. Its chief
purpose is to assign true to the global variable gCursorRegionActive, which will cause a
mouse-moved message to result in a call to changeCursor (see Lines 276-278). In addition, it
draws some rectangles in the window which visually represent to the user some cursor regions
which will later be established by the changeCursor function.

Lines 586-587 clear the port rectangle to white. Lines 589-607 draw the rectangles and
descriptive text in the window.

Line 609 sets the gCursorRegionsActive flag to true and Line 610 creates an empty region for
the last parameter of the WaitNextEvent call.

Offscreen Graphics Worlds, Pictures , Cursors, and Icons 12-33

changeCursor

changeCursor is called whenever a mouse-moved message is reported (see Lines 276-278). Recall
that mouse-moved messages are generated only when the mouse is not within the region specified
in the last parameter to the WaitNextEvent call.

Lines 624-627 create new empty regions to serve as the regions within which the cursor shape
will be changed to, respectively, the system arrow, the system I-beam, the system cross, and
the system plus.

Line 629 sets the arrow cursor region to, initially, the boundaries of the coordinate plane.
Lines 631-633 establish a rectangle equivalent to the window's port rectangle and change this
rectangle's coordinates from local to global coordinates. Line 635 insets this rectangle by
40 pixels all round and Line 636 establishes this as the I-beam region. Line 637, in effect,
cuts the rectangle represented by the I-beam region from the arrow region, leaving a hollow
arrow region.

Lines 639-645 use the same procedure to establish a rectangular hollow region for the cross
cursor and an interior rectangular region for the plus cursor. The result of all this is a
rectangular plus cursor region in the centre of the window, surrounded by (but not overlapped
by) a hollow rectangular cross cursor region, this surrounded by (but not overlapped by) a
hollow rectangular I-beam cursor region, this surrounded by (but not overlapped by) a hollow
rectangular arrow cursor region the outside of which equates to the boundaries of the
coordinate plane.

Line 647 gets the point representing the mouse's current position. Since GetMouse returns
this point in local coordinates, Line 648 converts it to global coordinates.

The next task is to determine the region in which the cursor is currently located (its
movement to that region having generated by the mouse-moved event which resulted in the call
to this function in the first place). The calls to PtInRgn at Lines 650, 655 and 660 are made
for that purpose. Depending on which region is established as the region in which the cursor
in currently located, the cursor is set to the appropriate shape and that region is assigned
to WaitNextEvent's mouseRgn parameter. This latter means that, since the cursor is now within
the region assigned to the mouseRgn parameter, mouse-moved events will cease to be generated
until the mouse is moved out of that region.

That accomplished, Lines 671-674 deallocate the memory associated with the regions created
earlier in the function.

doAnimCursor

doAnimCursor responds to the user's selection of the Animated Cursor item from the
Demonstration menu.

In this demonstration, application-defined functions are utilised to retrieve 'acur' and
'CURS' resources, spin the cursor, and deallocate the memory associated with the animated
cursor when the cursor is no longer required. These functions are generic in that they may be
used to initialise, spin and release any animated cursor passed to the getAnimCursor function
as a formal parameter. A "beach-ball" cursor is utilised in this demonstration.
doAnimCursor's major role is simply to call getAnimCursor with the beach-ball 'acur' resource
as a parameter.

Lines 683-684 clear the window to white. Line 686 assigns the resource ID of the beach-ball
'acur' resource to the variable used as the first parameter in the getAnimatedCursor call at
Line 689. Line 687 assigns a value represented by a constant to the second parameter in the
getAnimatedCursor call. This value controls the frame rate of the cursor, that is, the number
of ticks which must elapse before the next frame (cursor) is displayed. (The best frame rate
depends on the type of animated cursor used.)

Line 689 calls the getAnimatedCursor function. If the call is successful, the flag
gAnimCursActive is set to true (Line 691) and, importantly, the sleep parameter in the
WaitNextEvent call is set to the same ticks value as that used to control the cursor's frame
rate (Line 692). This latter will cause null events to be generated at that tick interval
(assuming, of course, that no other events intervene). Recall that the doIdle function is
called whenever a null event is received and that, if the flag gAnimCursActive is set to true,
doIdle calls the spinCursor function.

If the call to getAnimatedCursor fails, doAnimCursor simply plays the system alert sound and
returns (Lines 694-695).

getAnimatedCursor

getAnimatedCursor retrieves the data in the specified 'acur' resource and stores it in an
animCurs structure, retrieves the 'CURS' resources specified in the 'acur' resource and

12-34 Offscreen Graphics Worlds, Pictures , Cursors, and Icons

assigns the handles to the resulting Cursor structures to elements in an array in the animCurs
structure, establishes the frame rate for the cursor, and sets the starting frame number.

Line 705 calls GetResource to read the 'acur' resource into memory and return a handle to the
resource. The handle is cast to type animCursHandle and assigned to the global variable
gAnimCursHdl (a handle to a structure of type animCurs, which is identical to the structure of
an 'acur' resource). If this call is not successful (that is, GetResource returns NULL), the
function will simply exit, returning false to doAnimCursor. If the call is successful,
noError is set to true (Line 707) before Line 708 sets up a loop which will cycle once for
each of the 'CURS' resources specified in the 'acur' resource - assuming that noError is not
set to false at some time during this process.

The ID of each cursor is stored in the high word of the specified element of the frame[] field
of the animCurs structure, and this is retrieved at Line 710. The cursor ID is then used in
the call to GetCursor at Line 711 to read in the resource from disk (if necessary) and assign
the handle to the resulting 68-byte Cursor structure to the specified element of the frame[]
field of the animCurs structure. If this pass through the loop was successful, the array
index is incremented (Lines 712-713); otherwise, noError is set to false (Lines 714-715),
causing the loop and the function to exit, returning false to doAnimCursor.

Line 721 assigns the ticks value passed to getAnimCursor to a global variable which will be
utilised in the function spinCursor. Line 722 assigns the number of ticks since system
startup to another variable which will also be utilised in the function spinCursor. Line 723
sets the starting frame number.

At this stage, the animated cursor has been initialised and doIdle will call spinAnimCursor
whenever null events are received.

spinAnimCursor

spinAnimCursor is called whenever null events are received (that is, in this demonstration,
every 5 ticks assuming no other events intervene).

Line 735 assigns the number of ticks since system startup to newTick. Line 736 checks whether
5 ticks have elapsed since Line 722 was executed (first call to spinAnimCursor) or since
spinAnimCursor last exited (subsequent calls to spinAnimCursor - see Line 743). If 5 ticks
have not elapsed, the function simply returns (Line 737). Otherwise, Line 741 sets the cursor
shape to that represented by the handle stored in the specified element of the frame[] field
of the animCurs structure. Line 739 also increments the frame counter field (whichFrame) of
the animCurs structure. If Line 739 set the cursor to the last cursor in the series (Line
740), Line 741 resets the frame counter to 0. Line 743 retrieves and stores the tick count at
exit for use at Line 746 next time the function is called.

releaseAnimCursor

releaseAnimCursor deallocates the memory occupied by the Cursor structures (Lines 752-753) and
the 'acur' resource (Line 755).

Recall that releaseAnimCursor is called when the user clicks in the menu bar and that, at the
same time, the gAnimCursActive flag is set to false, the cursor is reset to the standard arrow
shape, and WaitNextEvent's sleep parameter is reset to the maximum possible value.

COLOUR ANIMATED CURSOR

For a colour animated cursor:

• Replace the 'CURS' resource with a 'crsr' resource.

• Replace Line 81 with:

CCrsrHandle frame[];

• Replace Line 711 with:

(*gAnimCursHdl)->frame[a] = GetCCursor(cursorID);

• Replace Line 739 with:

SetCCursor(((*gAnimCursHdl)->frame[(*gAnimCursHdl)->whichFrame++]));

• Replace Line 753 with:

Offscreen Graphics Worlds, Pictures , Cursors, and Icons 12-35

DisposeCIcon((*gAnimCursHdl)->frame[a]);

doIcon

doIcon draws an icon in the window at a size and location determined by a bounding rectangle.

Lines 769-770 clear the port rectangle to white. Line 772 sets the initial coordinates of the
top, left, bottom and right of the bounding rectangle.

Line 774 tests for the presence of Color QuickDraw. If Color QuickDraw is not present, Lines
776-785 execute. The call to GetIcon reads the specified 'ICON' resource from disk and
returns a handle to a 128-byte bit image of the icon. Lines 778-784 use PlotIcon to plot the
icon a number of times, with the location, size and shape of the icon being changed each time
through the loop.

If Color QuickDraw is present, Lines 787-797 execute. The call to GetCIcon at Line 788
obtains a CIcon data structure and initialises it with data from the specified 'cicn'
resource. Lines 790-796 use PlotCIcon to plot the icon a number of times, with the location,
size and shape of the icon being changed each time through the loop.

Line 798 removes all data structures created by the call to GetCIcon. This is important
because GetCIcon creates a new CIcon data structure each time it is called, which can result
in a memory leak if GetCIcon is called to load the same colour icon more than once during a
program's execution.

Creating Cursor and Icon Resources, and Assigning Icons to
Menu Items, Using ResEdit

Creating Cursor and Icon Resources

Creating the 'acur' Resource

The procedure for creating the 'acur' resource is as follows:

• Open GWorldPicCursIcon.µ.rsrc in ResEdit. Choose Resource/Create New Resource. A small
dialog opens. Click the acur item in the scrolling list, and then click the dialog's OK button. The
acurs from GWorldPicCursIcon.µ.rsrc window opens, followed by the acur ID = 128 from
GWorldPicCursIcon.µ.rsrc window. (ResEdit automatically assigns 128 as the resource ID of the
first 'acur' resource you create.)

• Choose Resource/GetResource Info. In the Info for acur = 128 from GWorldPicCursIcon.u.rsrc
window, check the Purgeable checkbox. Close the window.

• Enter 8 in the Number of "frames" (cursors) item.

• Enter the 'CURS' resource IDs by successively clicking on the next) ***** item, choosing
Resource/Insert New Field(s) , and entering the appropriate 'CURS' resource ID in the resulting
'CURS' Resource Id item.

• Close the acur ID = 128 from GWorldPicCursIcon.u.rsrc window. Close the acurs from
GWorldPicCursIcon.u.rsrc window. An acur icon representing the resource just created appears
in the GWorldPicCursIcon.µ.rsrc window.

12-36 Offscreen Graphics Worlds, Pictures , Cursors, and Icons

Creating the 'CURS' Resources

The procedure for creating the 'CURS' resources is as follows:

• Choose Resource/Create New Resource, select CURS in the resulting dialog, and click the OK
button. The CURSs from GWorldPicCursIcon.u.rsrc window opens, followed by the CURS ID =
128 from GWorldPicCursIcon.u.rsrc window.

• Choose Resource/GetResource Info. In the Info for CURS = 128 from GWorldPicCursIcon.u.rsrc
window, check the Purgeable checkbox. Close the window.

• Using the tools in the panel at the left of the CURS ID = 128 from GWorldPicCursIcon.u.rsrc
window, draw the cursor image in the large centre panel. Then drag the thumbnail of this
image in the small box titled Pointer into the small box titled Mask to automatically create the
mask. Close the CURS ID = 128 from GWorldPicCursIcon.u.rsrc window. A thumbnail image of
the cursor, labelled with the resource ID, appears in the CURSs from GWorldPicCursIcon.u.rsrc
window.

• Choose Resource/Create New Resource again. The CURS ID = 129 from GWorldPicCursIcon.u.
rsrc window opens. Repeat the previous process to create the second 'CURS' resource.

• Create the remaining six 'CURS' resources in the same way. Then close the CURSs from
GWorldPicCursIcon.u.rsrc window. A CURS icon representing the resources just created
appears in the GWorldPicCursIcon.µ.rsrc window.

Creating the 'cicn' Resource

The procedure for creating the 'cicn' resource is much the same as for the 'CURS' resources except
that:

• cicn should be selected in the Resource/Create New Resource dialog.

• When the cicn ID = 128 from GWorldPicCursIcon.u.rsrc window opens, choose cicn/Icon Size…
and enter the required width and height of the colour icon in the resulting dialog.

• While the Info for CURS = 128 from GWorldPicCursIcon.u.rsrc window is open, change the
resource's ID to 257 as well as checking the Purgeable checkbox. (When the window is closed,
the cicn ID = 128 from GWorldPicCursIcon.u.rsrc window becomes the cicn ID = 257 from
GWorldPicCursIcon.u.rsrc window.)

• After drawing the image, drag the thumbnail of the completed image in the small box titled
Color to both the B & W and Mask boxes to automatically create the bitmap version and the
mask.

Creating the 'ICON' Resource

The procedure for creating the 'ICON' resource is much the same as for the 'cicn' resource except that
ICON is selected in the Resource/Create New Resource dialog and no mask creation is required.

Creating the 'SICN' Resource

The procedure for creating the 'SICN' resource is much the same as for the 'ICON' resource except that
SICN is selected in the Resource/Create New Resource dialog.

Assigning Icons to Menu Items

About GWorldPicCursIcon… Menu Item

The procedure for assigning the small icon ('SICN') to the About GWorldPicCursIcon… menu item in
the Apple menu is as follows:

Offscreen Graphics Worlds, Pictures , Cursors, and Icons 12-37

• In the GWorldPicCursIcon.µ.rsrc window, double-click the MENU icon. The MENUs From
GWorldPicCursIcon.µ.rsrc window opens. With the thumbnail of the Apple menu (ID 128)
selected, choose Resource/Open Using Hex Editor. The MENU = 128 From
GWorldPicCursIcon.µ.rsrc window opens. The bottom three lines of the display are as follows:

000018 576F 726C 6450 6963 WorldPic
000020 4375 7273 4963 6F6C CursIcon
000028 C900 0000 0000 …¤¤¤¤¤

Note that the second and third words in the bottom row are both 00 . The second word is for the
icon resource ID (if any). The third word is for the keyboard equivalent (if any). Close the
window.

• In the MENUs From GWorldPicCursIcon.µ.rsrc window, double-click the Apple menu thumbnail.
The MENU = 128 From GWorldPicCursIcon.µ.rsrc window opens. Click the About
GWorldPicCursIcon… item to highlight it and choose MENU/Choose Icon…. Click the Small
Icons (SICN) radio button. The 'SICN' resource with ID 257 appears in the list box. Click that
item to highlight it, then click the OK button. Back in the MENU = 128 From
GWorldPicCursIcon.µ.rsrc window, note that the Cmd-Key: item is now dimmed. (A menu item
that has a small icon cannot have a keyboard equivalent.)

• Close the MENU = 128 From GWorldPicCursIcon.µ.rsrc window. Notice in the MENUs From
GWorldPicCursIcon.µ.rsrc window that either the small icon (Color QuickDraw not present) or a
scaled down version of the colour icon (Color QuickDraw present) appears in the About
GWorldPicCursIcon… item in the Apple menu thumbnail.

• With the Apple menu thumbnail selected, choose Resource/Open Using Hex Editor. The MENU =
128 From GWorldPicCursIcon.µ.rsrc window opens. The bottom three lines of the display are as
now as follows:

000018 576F 726C 6450 6963 WorldPic
000020 4375 7273 4963 6F6C CursIcon
000028 C901 1E00 0000 …¤¤¤¤¤

Notice that the keyboard equivalent word is now 1E , which indicates that the item has an icon
defined in a 'SICN' resource. Note also that the icon resource ID word contains 01 (257-256).14

Close the MENU = 128 From GWorldPicCursIcon.µ.rsrc window.

Icon Menu Item

The procedure for assigning the colour icon ('cicn') to the Icon menu item in the Demonstration menu
is as follows:

• In the MENUs From GWorldPicCursIcon.µ.rsrc window, double-click the Demonstration menu
thumbnail. The MENU = 131 From GWorldPicCursIcon.µ.rsrc window opens. Note that the
Cmd-Key: item contains 6 (the keyboard equivalent).

• Click the Icon menu item to highlight it, and then choose MENU/Choose Icon…. In the resulting
dialog, click the Normal Icons (ICON) radio button. The 'ICON' resource with ID 257 appears in
the list box. Click the icon and then click the OK button. Back in the MENU = 131 From
GWorldPicCursIcon.µ.rsrc window, note that the Cmd-Key: item is not dimmed. (A menu item
that has a normal icon can also have a have a keyboard equivalent.)

• Close the MENU = 131 From GWorldPicCursIcon.µ.rsrc window. Notice in the MENUs From
GWorldPicCursIcon.µ.rsrc window that either the icon (Color QuickDraw not present) or the
colour icon (Color QuickDraw present) appears in the Icon item in the Demonstration menu
thumbnail. Note also that the item's enclosing rectangle has been expanded to accommodate the
32-by-32 pixel icon/colour icon, and that the item has a keyboard equivalent.

14Recall from Footnote 8 at Chapter 3 — Menus that the Menu Manager adds 256 to the resource ID specified and uses the result as the icon's
rersource ID.

12-38 Offscreen Graphics Worlds, Pictures , Cursors, and Icons

• With the Demonstration menu thumbnail selected, choose Resource/Open Using Template. In
the resulting dialog, select MENU and click the OK button. The MENU 131= From
GWorldPicCursIcon.µ.rsrc window opens. Scroll down to the last menu item and note the Key
equiv item. This item will only accept and display a single character, which is why the Hex
Editor was used to display the 0x1E keyboard equivalent in the About GWorldPicCursIcon…
item. (The Hex Editor can also be used to enter non-single character keyboard equivalents.)
Note also the Icon # item, which contains the icon's resource ID (257-256).

• Close the MENU 131= From GWorldPicCursIcon.µ.rsrc window. Close the MENUs From
GWorldPicCursIcon.µ.rsrc window. Close the GWorldPicCursIcon.µ.rsrc window, saving the
file.

	Offscreen Graphics Worlds
	Introduction
	Creating an Offscreen Graphics World
	Setting the Graphics Port for an Offscreen Graphics World
	Preparing to Draw Into an Offscreen Graphics World
	GetGWorldPixMap and Basic QuickDraw
	Copying an Offscreen Image into a Window
	Updating an Offscreen Graphics World
	Disposing of an Offscreen Graphics World

	Pictures
	Introduction
	Picture Formats
	The Picture Record
	Field Descriptions

	Opcodes: Drawing Commands and Picture Comments
	Colour Pictures in Basic Graphics
	'PICT' Files, 'PICT' Resources, and 'PICT' Scrap Format
	The Picture Utilities
	Creating Pictures
	Opening and Drawing Pictures
	Saving Pictures
	Gathering Picture Information

	Cursors
	Introduction
	Cursor Movement, Hot Spot, Visibility, Colour and Shape
	Cursor Movement
	Cursor Hot Spot
	Cursor Visibility
	Cursor Colour
	Cursor Shape

	Creating Custom Non-Animated Cursors Resources
	Changing Cursor Shape and Hiding Cursors
	Changing Cursor Shape
	Hiding Cursors

	Creating an Animated Cursor

	Icons
	Icons and the Finder
	Other Icons — Icons, Colour Icons and Small Icons
	Icons in Windows, Menus, and Alert and Dialog Boxes
	Icons in Windows
	Icons in Menus
	Icons in Alert and Dialog Boxes

	Drawing and Manipulating Icons
	Preamble - Icon Families, Suites, and Caches
	Drawing an Icon Directly From a Resource
	Getting an Icon Suite and Drawing One of Its Icons
	Drawing Specific Icons From an Icon Family
	Drawing Icons That Are Not Part of an Icon Family
	Manipulating Icons

	Main Constants, Data Types and Routines — Offscreen Graphics Worlds
	Main Constants, Data Types and Routines — Pictures
	Main Constants, Data Types and Routines — Cursors
	Main Constants, Data Types and Routines — Icons
	Demonstration Program
	Demonstration Program Comments
	Creating Cursor and Icon Resources, and Assigning Icons to Menu Items, Using ResEdit
	Creating Cursor and Icon Resources
	Creating the 'acur' Resource
	Creating the 'CURS' Resources
	Creating the 'cicn' Resource
	Creating the 'ICON' Resource
	Creating the 'SICN' Resource

	Assigning Icons to Menu Items
	About GWorldPicCursIcon… Menu Item
	Icon Menu Item

