
Sound 21-1

21Version 1.1

SOUND
 Includes Demonstration Program Sound

Introduction to Sound

On the Macintosh, the hardware and software aspects of producing and recording sounds are very
tightly integrated.

Audio Hardware

The audio hardware includes an internal speaker, a microphone, and one or more integrated circuits
that convert digital data to analog signals and analog signals to digital data. The actual integrated
circuits that perform these conversions vary between different models of Macintosh computers.

Sound-Related System Software

The sound-related system software managers are as follows:

• The Sound Manager. The Sound Manager provides the ability to:

• Play sounds through the speaker.

• Manipulate sounds, that is, vary such characteristics as loudness, pitch, timbre, and
duration.

• Compress sounds so that they occupy less disk space.

The Sound Manager can work with sounds stored in resources or in a file’s data fork. It can also
play sounds that are generated dynamically, and not necessarily stored on disk.

• The Sound Input Manager. The Sound Input Manager provides the ability to record sounds
through a microphone or other sound input device.

• The Speech Manager. The Speech Manager provides the ability to convert written text into
spoken words.

Sound Input and Output Capabilities

The basic audio hardware, together with the sound-related system software, provides for the following
sound input and output capabilities:

• Playback of digitally recorded (that is, sampled) sounds.

• Playback of simple sequences of notes or of complex waveforms.

21-2 Sound

• Recording of sampled sounds.

• Conversion of text to spoken words.

• Mixing and synchronisation of multiple channels of sampled sounds.

• Compression and decompression of sound data to minimise storage space.

The basic audio hardware and system software also provide the ability to integrate and synchronise
sound production with the display of other types of information, such as video and still images. For
example, QuickTime uses the Sound Manager to handle all the sound data in a QuickTime movie.

Sound Control Panel. For playback, the user can select a sound output device, and set certain
characteristics of the selected device, using the Sound control panel. The Sound control panel also
allows the user to select the input device for recording sounds.

Basic and Enhanced Sound Capabilities

It’s very easy for users to enhance the quality of the sounds they play back or record by substituting
different speakers and microphones for the ones built into a Macintosh computer. Audio capabilities
may be further enhanced by adding an expansion card containing very high quality digital signal
processing (DSP) circuitry, together with sound input or output hardware. Another enhancement
option is to add a MIDI interface to one of the serial ports. Fig 1 illustrates the basic sound capabilities
of the Macintosh and how those capabilities may be further enhanced and extended.

FIG 1 - SOUND CAPABILITIES OF MACINTOSH COMPUTERS

BUILT-IN
MICROPHONE

SOUND MANAGERSOUND INPUT MANAGER

SPEECH MANAGER INTERNAL
SPEAKER

EXTERNAL SPEAKERS

DIGITAL SOUND
COMPACT DISK

digital audio
data

SCSI PORT
MIDI MANAGER

DIGITAL SOUND
CARD

audio
SERIAL
PORT

MIDI CONVERTER

MIDI-CONTROLLED
INSTRUMENT

EXTERNAL
MICROPHONE

ENHANCED SOUND CAPABILITY

BASIC SOUND CAPABILITY

HIGH QUALITY SOUND CAPABILITY

DEVICE DRIVER

MIDI CONVERTER

MIDI (the Musical Instrument Digital Interface) is a standard protocol for sending audio data and
commands to digital devices. A user can connect any MIDI devices (such as synthesizers, drum

machines, or lighting controllers) to a Macintosh computer through a MIDI interface.

STEREO OUTPUT JACK

Sound 21-3

Sound Data

The Sound Manager can play sounds defined using one of three kinds of sound data:

• Square Wave Data. Square wave data is the simplest kind sound data Your application can
use square-wave data to play a simple sequence of sounds in which each sound is described
completely by three factors: frequency (or pitch); amplitude (or volume); duration.

• Wave-Table Data. To produce more complex sounds than are possible using square-wave
data, your application can use wave-table data. Wave-table data is based on a description of a
single wave cycle. The wave cycle is represented as an array of 512 bytes that describe the
timbre (or tone) of a sound at any point in the cycle.

• Sampled-Sound Data. You can use sampled-sound data to play back sounds that have been
digitally recorded (that is, sampled sounds). Sampled sounds are a continuous list of relative
voltages over time that allow the Sound Manager to reconstruct an arbitrary analog wave form.
They are typically used to play back prerecorded sounds such as speech or special sound effects.

This chapter is oriented primarily towards the recording and playback of sampled sounds.

About Sampled Sound

Two basic characteristics affect the quality of sampled sound. Those characteristics are sample rate and
sample size.

Sample Rate

Sample rate, or the rate at which voltage samples are taken, determines the highest possible frequency
that can be recorded. Specifically, for a given sample rate, sounds can be sampled up to half that
frequency. For example, if the sample rate is 22,254 samples per second (that is, 22,254 hertz, or Hz),
the highest frequency that can be recorded is about 11,000 Hz. A commercial compact disc is sampled
at 44,100 Hz, providing a frequency response of up to about 20,000 Hz, which is the limit of human
hearing.

Sample Size

Sample size, or quantisation, determines the dynamic range of the recording (the difference between
the quietest and the loudest sound). If the sample size is eight bits, 256 discrete voltage levels can be
recorded. This provides approximately 48 decibels (dB) of dynamic range. A compact disc’s sample
size is 16 bits, which provides about 96 dB of dynamic range. (Humans with good hearing are sensitive
to ranges greater than 100 dB.)

Sound Manager Capabilities

The current Sound Manager supports 16-bit stereo audio samples with sample rates up to 64kHz,
which allows your application to produce CD-quality sound. On Macintosh models which do not have
the hardware to output 16-bit sound, the Sound Manager automatically converts 16-bit samples to 8-bit
samples.

Storing Sampled Sounds

Sampled-sound data is made up of a series of sample frames, which are stored contiguously in order of
increasing time. You can use the Sound Manager to store sampled sounds in one of two ways, either in
sound resources or in sound files.

Sound Components

The Sound Manager supports arbitrary modifications of sound data using stand-alone code resources
known as sound components. A sound component can perform one or more signal-processing
operations on sound data. For example, the Sound Manager includes sound components for

21-4 Sound

compressing and decompressing sound data and for converting sample rates. Sound components may
be hooked together in series to perform complex tasks, as shown in the example at Fig 2.

FIG 2 - A TYPICAL SOUND COMPONENT CHAIN

APPLICATION

OUTPUT DEVICE
COMPONENT (APPLE
SOUND CHIP DRIVER)

AUDIO
HARDWARE

11kHz compressed sound
'snd ' resource

Decompressed
audio samples

22 kHz audio
samples

22 kHz decompressed
sound

APPLE MIXER
RATE

CONVERSION
COMPONENT

SOUND
MANAGER

SOURCE

Expand compressed
data into audio

samples

Convert the
samples from 11

kHz to 22kHz

Mix the samples with
any other sounds that

are playing

Send the mixed samples
to the available audio

hardware

EXPANSION
COMPONENT

Compression/Decompression Components. Components which compress and decompress
sound are called codecs (compression/decompression components). Apple Computer supplies codecs
that can handle 3:1 and 6:1 compression and expansion, which are suitable for most audio
requirements. The Sound Manager can use any available codec to handle compression and expansion
of audio data.1

In general, your application is unaware of the sound component chain required to produce a sound on
the current sound output device. The Sound Manager keeps track of which sound output device the
user has selected and constructs a component chain suitable for producing the desired quality of sound
on that device. Accordingly, even though the capabilities of the available sound output hardware can
vary greatly from one Macintosh to another, the Sound Manager ensures that a given chunk of audio
data always sounds as good as possible on the available sound hardware. This means that you can use
the same code to play sounds regardless of the actual sound-producing hardware available on a
particular machine.

Sound Resources and Sound Files

Sound Resources

A sound resource is a resource of type 'snd ' that contains sound commands (see below) and possibly
also sound data. Sound resources are widely used by Macintosh applications that produce sound and
provide a simple and portable way for you to incorporate sounds into your application.

Sound Files

Although most sampled sounds that you want your application to produce can be stored as sound
resources, there are times when it is preferable to store sounds in sound files. Some reasons for using
sound files rather than sound resources are as follows:

• You want your application to play a sampled sound created by another application, or you want
other applications to be able to play a sampled sound created by your application. (It is usually
easier for different applications to share files than it is to share resources.)

• If you have a very large sampled sound, it might not be possible to create a resource large
enough to hold all the audio data.2 If the sound occupies more than about a half megabyte of
space, you should probably store it as a file.

Sound File Formats. Apple and several third-party developers have defined two sampled-sound
file formats, known as the Audio Interchange File Format (AIFF) and the Audio Interchange File
Format Extension for Compression (AIFF-C). The main difference between the AIFF and AIFF-C

1A term closely associated with the subject of codecs is MACE (Macintosh Audio Compression and Expansion). MACE is a collection of
Sound Manager routines which provide audio data compression and expansion capabilities in ratios of either 3:1 or 6:1. The Sound Manager
uses codecs to handle the MACE capabilities.
2Resources are limited in size by the structure of resource files and, in particular, because offsets to resource data are stored as 24-bit
quantities.

Sound 21-5

formats is that AIFF-C allows you to store either compressed or noncompressed audio data, whereas
AIFF allows you to store noncompressed audio data only.3

The Sound Manager includes play-from-disk routines that allow you to play AIFF and AIFF-C files
continuously from disk even while other tasks are executing.

Sound Production

Sound Channels

A Macintosh produces sound when the Sound Manager sends some data through a sound channel to
the available audio hardware. A sound channel is a queue of sound commands (see below), together
with other information about the sounds to be played in that channel. The commands placed into the
channel might originate from an application or from the Sound Manager itself.

The Sound Manager uses the SndChannel data type to define a sound channel:

SndChannel = packed record
nextChan: ^SndChannel; { Pointer to next channel. }
firstMod: Ptr; { (Used internally.) }
callBack: SndCallBackUPP; { Pointer to callback procedure. }
userInfo: longint; { Free for application's use. }
wait: longint; { (Used internally.) }
cmdInProgress: SndCommand; { (Used internally.) }
flags: integer; { (Used internally.) }
qLength: integer; { (Used internally.) }
qHead: integer; { (Used internally.) }
qTail: integer; { (Used internally.) }
queue: array [0..stdQLength-1] of SndCommand; { (Used internally.) }
end;

SndChannelPtr = ^SndChannel;

Multiple Sound Channels

Except on basic Macintosh models such as the Classic, it is possible to have several channels of sound
open at one time. The Sound Manager (using the Apple Mixer sound component) mixes together the
data coming from all open sound channels and sends a single stream of sound data to the current
sound output device. This allows a single application to play two or more sounds at once. It also
allows multiple applications to play sounds at the same time.

Sound Commands

When you call the appropriate Sound Manager function to play a sound, the Sound Manager issues one
or more sound commands to the audio hardware. A sound command is an instruction to produce
sound, modify sound, or otherwise assist in the overall process of sound production. The structure of a
sound command is defined by the SndCommand data type:

SndCommand = packed RECORD
cmd: INTEGER; { Command number. }
param1: INTEGER; { First parameter. }
param2: LONGINT; { Second parameter. }
END;

The Sound Manager provides a rich set of sound commands, which are defined by constants. Some
examples are as follows:

quietCmd = 3 Stop the sound currently playing.
flushCmd = 4 Remove all commands currently queued in specified sound channel.

3Do not confuse AIFF and AIFF-C files (referred to in this chapter as sound files) with Finder sound files. A Finder sound file contains a
sound resource that plays when the user double clicks on the file in the Finder. You can create a Finder sound file by creating a file of type
'sfil' with a creator of 'movr' and placing in the file a single sound resource. You can play such a file by using Resource Manager routines
to open the Finder sound file and then by using the SndPlay function to play the single sound resource contained in it.

21-6 Sound

syncCmd = 14 Synchronise multiple channels of sound.
freqCmd = 42 Change the frequency of the sound. If the sound is not currently

playing, begin playing at the frequency specified in param2.
ampCmd = 43 Change the amplitude of the sound.
soundCmd = 80 Install a sampled sound as a voice in a channel.
bufferCmd = 81 Play a buffer of sampled-sound data.
rateCmd = 82; Set the pitch of a sampled sound.

Sound Commands In 'snd ' Resources

A simple way to issue sound commands is to call the function SndPlay, specifying a sound resource of
type 'snd ' that contains the sound commands you want to issue. A sound resource can contain any
number of sound commands. As a result, you might be able to satisfy your sound-related requirements
simply by creating sound resources and calling SndPlay.

Often, a 'snd ' resource consists only of a single sound command (usually the bufferCmd command)
together with data that describes a sampled sound to be played. The following is an example of such a
'snd ' resource:

data 'snd ' (19068,"Looped sound",purgeable)
{

/* Sound resource header */
$"0001" /* Format type. */
$"0001" /* Number of data types. */
$"0005" /* Sampled-sound data. */
$"00000080" /* Initialisation option: initMono. */

/* Sound commands */
$"0001" /* Number of sound commands that follow (1). */
$"8051" /* Command 1 (bufferCmd). */
$"0000" /* param1 = 0. */
$"00000014" /* param2 = offset to sound header (20 bytes). */

/* Sampled sound header (Standard sound header)*/
$"00000000" /* samplePtr Pointer to data (it follows immediately). */
$"00000BB8" /* length Number of bytes in sample (3000 bytes). */
$"56EE8BA3" /* sampleRate Sampling rate of this sound (22 kHz). */
$"000007D0" /* loopStart Starting of the sample's loop point. */
$"00000898" /* loopEnd Ending of the sample's loop point. */
$"00" /* encode Standard sample encoding. */
$"3C" /* baseFrequency BaseFrequency at which sample was taken. */

/* sampleArea[] Sampled sound data */
$"80 80 81 81 81 81 81 81 80 80 80 80 80 81 82 82"
$"82 83 82 82 81 80 80 7F 7F 7F 7E 7D 7D 7D 7C 7C"
(Rest of sampled sound data.)

};

This resource indicates that the sound is defined using sampled-sound data and includes a call to a
single sound command (the bufferCmd command). The offset bit of the command number is set to
indicate that the sound data is contained within the resource itself. (Data can can also be stored in a
buffer separate from a sound resource.) The second parameter to the bufferCmd command indicates the
offset from the beginning of the resource to the sampled sound header4, which immediately follows
the command and its two parameters. Note that the first part of the sampled sound header contains
important information about the sample and that the sampled sound data is itself part of the sampled
sound header. Note also the loopStart and loopEnd fields of the sampled sound header, which are
central to the matter of looping a sound indefinitely.

Sending Sound Commands Directly From
the Application

You can also send sound commands one at a time into a sound channel by repeatedly calling the
SndDoCommand routine. The commands are held in a queue and processed in a first-in, first-out order.
Alternatively, you can bypass a sound queue altogether by calling the SndDoImmediate routine

4The sampled sound header shown is a standard sound header , which can reference only buffers of monophonic 8-bit sound. The extended
sound header is used for 8-bit or 16-bit stereo sound data as well as monophonic sound data. The compressed sound header is used to
describe compressed sound data, whether monophonic or stereo.

Sound 21-7

Synchronous and Asynchronous Sound

You can play sounds either synchronously or asynchronously.

Synchronous Sound

When you play a sound synchronously, the Sound Manager alone has control over the CPU while it
executes commands in a sound channel. Your application does not continue executing until the sound
has finished playing.

Asynchronous Sound

When you play a sound asynchronously, your application can continue other processing while the
sound is playing. From a programming standpoint, asynchronous sound production is considerably
more complex than synchronous sound production.

Playing a Sound

Playing a Sound Resource

You can load a sound resource into memory and then play it using the SndPlay routine. As previously
stated, a 'snd ' resource contains sound commands that play the desired sound and might also contain
sound data. If it does contain sound data, that data might be either compressed or noncompressed.
SndPlay decompresses the data, if necessary, to play the sound.

Channel Allocation. When you pass SndPlay a NULL sound channel pointer in its first parameter, the
Sound Manager automatically allocates a sound channel for the sound and then disposes of the channel
when the sound has completed playing. The sound channel is allocated in the application's heap.

Playing a Sound File

You can play a sampled sound stored in a file of type AIFF or AIFF-C by opening the file and passing
its file reference number to the SndStartFilePlay routine.

The SndStartFilePlay function works like the SndPlay function but does not require the entire sound
to be in RAM at one time. Instead, the Sound Manager uses two buffers, each of which is smaller than
the sound itself. The Sound Manager plays one buffer of sound while filling the other with data from
disk. After it finishes playing the first buffer, the Sound Manager switches buffers, and plays data in
the second while refilling the first. This double-buffering technique minimises RAM usage (at the
expense of additional disk overhead). SndStartFilePlay is thus ideal for playing very large sounds.

Channel Allocation. When you pass SndStartFilePlay a NULL sound channel pointer in the first
parameter, the Sound Manager automatically allocates a sound channel for the sound.

Checking For Play-From-Disk Capability. The Sound Manager supports play-from-disk only on
certain Macintosh computers. Accordingly, you should use the Gestalt function (see Chapter 22 —
Miscellany) to check for this capability before calling SndStartFilePlay.

Playing Sounds Asynchronously

The Sound Manager allows you to play sounds asynchronously only if you allocate sound channels
yourself. If you use such a technique, your application will need to dispose of a sound channel
whenever the application finishes playing a sound. In addition, your application might need to release
a sound resource that you played on a sound channel.

The Sound Manager provides certain mechanisms that allow your application to ascertain when a
sound finishes playing, so that it can arrange to dispose of, firstly, a sound channel no longer being
used and, secondly, other data (such as a sound resource) that you no longer need after disposing of
the channel. Despite the existence of these mechanisms, the programming aspects of asynchronous
sound remain rather complex. For that reason, the demonstration program files associated with this

21-8 Sound

chapter include a library, titled AsynchSoundLib, which support asynchronous sound playback and
which eliminates the necessity for your application to itself include source code relating to the more
complex aspects of asynchronous sound management.

AsynchSoundLib, which may be used by any application that requires a a straightforward and
uncomplicated interface for asynchronous sound playback, is documented following the Constants,
Data Types, and Routines section of this chapter.

Sound Recording

The Sound Input Manager provides the ability to record and digitally store sounds in a device-
independent manner, and provides two high-level routines that allow your application to record
sounds from the user and store them in memory or in a file. When you call these routines, the Sound
Input Manager presents the sound recording dialog box shown at Fig 3.

FIG 3 - SOUND RECORDING DIALOG

Recording a Sound Resource

You can record sounds from the current input device using the SndRecord function. When calling
SndRecord, you can pass a handle to a block of memory as the fourth parameter. The incoming data
will then be stored in that block, the size of which determines the recording time available. If you pass
NULL as the fourth parameter, the Sound Input Manager allocates the largest possible block in the
application heap. Either way, the Sound Input Manager resizes the block when the user clicks the Save
button.

When you have recorded a sound, you can play it back by calling SndPlay and passing it the handle to
the block of memory in which the sound data is stored. That block has the structure of a 'snd '

resource, but its handle is not a handle to an existing resource. To save the recorded data as a resource,
you can use the appropriate Resource Manager routines in the usual way.

Recording a Sound File

To record a sound directly into a file, you can call the SndRecordToFile function, which works exactly
like SndRecord except that you pass it the file reference number of an open file instead of a handle to a
block of memory. When SndRecordToFile exits successfully, that file contains the recorded audio data
in AIFF or AIFF-C format. You can then play the recorded sound by passing that file reference number
to the SndStartFilePlay function.

Recording Quality

One of the following constants should be passed in the third parameter of both the SndRecord and the
SndRecordToFile call so as to specify the recording quality required:

Sound 21-9

Constant Value Meaning
siCDQuality 'cd ' 44.1kHz, stereo, 16 bit.

siBestQuality 'best' 22kHz, mono, 8 bit.

siBetterQuality 'betr' 22kHz, mono, 3:1 compression.

siGoodQuality 'good' Lowest quality, least storage space.

The highest quality sound naturally requires the greatest storage space. Accordingly, be aware that, for
most voice recording, you should specify siGoodQuality.

As an example of the storage space required for sounds, one minute of monophonic sound recorded
with the fidelity you would expect from a commercial compact disc occupies about 5.3 MB of disk
space. Even one minute of telephone-quality speech takes up more than half a megabyte.

Checking For Sound Recording Equipment

Not all Macintosh models support sound recording. Accordingly, before calling SndRecord or
SndRecordToFile, you must use the Gestalt function to determine whether sound-recording hardware
and software are installed.

Speech

The Speech Manager converts text into sound data, which it passes to the Sound Manager to play
through the current sound output device. The Speech Manager’s interaction with the Sound Manager
is transparent to your application, so you do not need to be familiar with the Sound Manager to take
advantage of the Speech Manager’s capabilities.

Your application can initiate speech generation by passing a string or a buffer of text to the Speech
Manager. The Speech Manager is responsible for sending the text to a speech synthesiser, a
component that contains executable code that manages all communication between the Speech
Manager and the Sound Manager. A synthesiser is usually contained in a resource in a file within the
System folder. A speech synthesiser can include one or more voices, each of which may have different
tonal qualities.

Generating Speech From a String

The SpeakString function is used to convert a text string into speech. SpeakString automatically
allocates a speech channel, uses that channel to produce speech, and then disposes of the speech
channel.

Asynchronous Speech

Speech generation is asynchronous, that is, control returns to your application before SpeakString
finishes speaking the string. However, because SpeakString copies the string you pass it into an
internal buffer, you are free to release the memory you allocated for the string as soon as SpeakString
returns.

Asynchronous Speech

If you wish to generate speech synchronously, you can use SpeakString in conjunction with the
SpeechBusy function, which returns the number of active speech channels, including the speech channel
created by the SpeakString function.

Checking For Speech Capabilities

Because the Speech Manager is not available in all system software versions, your application should
always check for speech capabilities, using the Gestalt function, before calling SpeakString or
SpeechBusy.

21-10 Sound

Relevant Constants, Data Types, and Routines

Constants

Gestalt Sound Attributes Selector and Response Bits

gestaltSoundAttr 'snd ' { Sound attributes. }
gestaltStereoCapability = 0 { Sound hardware has stereo capability. }
gestaltStereoMixing = 1 { Stereo mixing on external speaker. }
gestaltSoundIOMgrPresent = 3 { Sound I/O Manager is present. }
gestaltBuiltInSoundInput = 4 { Built-in Sound Input hardware is present. }
gestaltHasSoundInputDevice = 5 { Sound Input device available. }
gestaltPlayAndRecord = 6 { Built-in hardware can play & record simultaneously. }
gestalt16BitSoundIO = 7 { Sound hardware can play and record 16-bit samples. }
gestaltStereoInput = 8 { Sound hardware can record stereo. }
gestaltLineLevelInput = 9 { Sound input port requires line level. }
gestaltSndPlayDoubleBuffer = 10 { SndPlayDoubleBuffer available. }
gestaltMultiChannels = 11 { Multiple channel support. }
gestalt16BitAudioSupport = 12 { 16 bit audio data supported. }

gestaltSpeechAttr 'ttsc' { Speech Manager attributes. }
gestaltSpeechMgrPresent = 0 { Speech Manager exists. }
gestaltSpeechHasPPCGlue = 1 { Native PPC glue for Speech Manager API exists. }

Recording Qualities

siCDQuality = 'cd ' { 44.1kHz, stereo, 16 bit. }
siBestQuality = 'best' { 22kHz, mono, 8 bit. }
siBetterQuality = 'betr' { 22kHz, mono, MACE 3:1. }
siGoodQuality = 'good'

Typical Sound Commands

quietCmd = 3 Stop the sound currently playing.
flushCmd = 4 Remove all commands currently queued in the specified sound channel.
syncCmd = 14 Synchronise multiple channels of sound.
freqCmd = 42 Change the frequency of the sound. If the sound is not currently playing,

begin playing indefinitely at the frequency specified in param2.
ampCmd = 43 Change the amplitude of the sound.
soundCmd = 80 Install a sampled sound as a voice in a channel.
bufferCmd = 81 Play a buffer of sampled-sound data.
rateCmd = 82 Set the pitch of a sampled sound.

Data Types

Sound Channel Record

SndChannel = packed record
nextChan: ^SndChannel; { Pointer to next channel. }
firstMod: Ptr; { (Used internally.) }
callBack: SndCallBackUPP; { Pointer to callback procedure. }
userInfo: longint; { Free for application's use. }
wait: longint; { The following is for internal Sound Manager use only.}
cmdInProgress: SndCommand; { (Used internally.) }
flags: integer; { (Used internally.) }
qLength: integer; { (Used internally.) }
qHead: integer; { (Used internally.) }
qTail: integer; { (Used internally.) }
queue: array [0..stdQLength - 1] of SndCommand; { (Used internally.) }
end;

SndChannelPtr = ^SndChannel;

Sound Command Record

SndCommand = packed record
cmd: integer; { Command number. }
param1: integer; { First parameter. }
param2: longint; { Second parameter. }
end;

Sound 21-11

Routines

Playing Sound Resources

procedure SysBeep(duration: integer);
function SndPlay(chan: SndChannelPtr; sndHdl: SndListHandle; async: boolean): OSErr;

Playing From Disk

function SndStartFilePlay(chan: SndChannelPtr; fRefNum: integer; resNum: integer;
bufferSize: longint; theBuffer: UNIV Ptr; theSelection: AudioSelectionPtr;
theCompletion: FilePlayCompletionUPP; async: boolean): OSErr;

function SndPauseFilePlay(chan: SndChannelPtr): OSErr;
function SndStopFilePlay(chan: SndChannelPtr; quietNow: boolean): OSErr;

Allocating and Releasing Sound Channels

function SndNewChannel(var chan: SndChannelPtr; synth: integer; init: longint;
userRoutine: SndCallBackUPP): OSErr;

function SndDisposeChannel(chan: SndChannelPtr; quietNow: boolean): OSErr;

Sending Commands to a Sound Channel

function SndDoCommand(chan: SndChannelPtr; var cmd: SndCommand; noWait: boolean): OSErr;
function SndDoImmediate(chan: SndChannelPtr; var cmd: SndCommand): OSErr;

Recording Sounds

function SndRecord(filterProc: ModalFilterUPP; corner: Point; quality: OSType;
var sndHandle: SndListHandle): OSErr;

function SndRecordToFile(filterProc: ModalFilterUPP; corner: Point; quality: OSType;
fRefNum: integer): OSErr;

Generating Speech

function SpeakString(s: StringPtr): OSErr;
function SpeechBusy: integer;

The AsynchSoundLib Library

The AsynchSoundLib library is intended to provide a straightforward and uncomplicated interface for
asynchronous sound playback.

AsynchSoundLib requires that you include a global "attention" flag in your application. At startup,
your application must call AsynchSoundLib's initialisation function and provide the address of this
attention flag. Thereafter, the application must continually check the attention flag within its main
event loop.

AsynchSoundLib's main function is to spawn asynchronous sound tasks, and communication between
your application and AsynchSoundLib is carried out on an as-required basis. The basic phases of
communication for a typical sound playback sequence are as follows.

• Your application tells AsynchSoundLib to play some sound.

• AsynchSoundLib uses the Sound Manager to allocate a sound channel and begins asynchronous
playback of your sound.

• The application continues executing, with the sound playing asynchronously in the background.

• The sound completes playback. AsynchSoundLib has set up a sound command that causes it
(AsynchSoundLib) to be informed immediately upon completion of playback. When playback
ceases, AsynchSoundLib sets the application’s global attention flag.

21-12 Sound

• The next time through your application’s event loop, the application notices that the attention
flag is set and calls AsynchSoundLib to free up the sound channel.

When your application terminates, it must call AsynchSoundLib to stop any asynchronous playback in
progress at the time.

AsynchSoundLib's method of communication with the application minimises processing overhead. By
using the attention flag scheme, your application calls AsynchSoundLib's cleanup function only when
it is really necessary.

AsynchSoundLib Functions

The following documents those AsynchSoundLib routines that may be called from an application.

To facilitate an understanding of the following, it is necessary to be aware that AsynchSoundLib
associates a data structure, referred to in the following as an ASLRecord, with each channel. Each
ASLRecord includes the following fields:

channel : SndChannel; { The sound channel. }
refNum : longint; { Reference number. }
sound : Handle; { The sound. }
handleState : char; { State to which to restore the sound handle. }
inUse : Boolean; { Is this ASLRecord currently in use? }

function ASLinitialise (attnFlag,numChannels) : OSErr;

var attnFlag : Boolean; The application's "attention" flag global variable.
numChannels : integer; Number of channels required to be open simultaneously. If 0 is

specified, numChannels defaults to 4.

Returns: 0 No errors.
Non-zero results of MemError call.

This function stores the address of the application's "attention" flag global variable and then allocates memory
for a number of ASLRecords equal to the requested number of sound channels.

function ASLplayID (resID,refNum) : OSErr;

resID : integer Resource ID of the 'snd ' resource.
refNum : UNIV Ptr A pointer to a reference number storage variable. Optional.

Returns: 0 No errors.
1 No channels available.
Non-zero results of ResError call.
Non-zero results of SndNewChannel call.
Non-zero results of SndPlay call.

This function initiates asynchronous playback of the 'snd ' resource with ID resID.

Note: If you pass a pointer to a variable in their refNum parameters, ASLplayID and its sister
routine ASLplayHandle (see below) return a reference number in that parameter. As will be seen,
this reference number may be used to gain more control over the playback process. However, if
you simply want to trigger a sound and let it to run to completion, with no further control over the
playback process, you can pass nil in the refNum parameter. In this case, a reference number will
not be returned.

First, ASLplayID attempts to load the specified 'snd ' resource. If successful, the handle state is saved for later
restoration, and the handle is made unpurgeable. The function then gets a reference number and a pointer to the
next free ASLRecord. A sound channel is then allocated via a call to SndNewChannel and the associated
ASLRecord is initialised. HLockHi is then called to move the sound handle high in the heap and lock it.
SndPlay is then called to start the sound playing, playing, the channel.userInfo field is set to indicate that the
sound is playing, and a callback function is queued so that AsynchSoundLib will know when the sound has
stopped playing. If all this is successful, ASLPlayID returns the reference number associated with the channel (if
the caller wants it).

function ASLplayHandle (sound,refNum) : OSErr;

Sound 21-13

sound : Handle A handle to the sound to be played.
refNum : UNIV Ptr A pointer to a reference number storage variable. Optional.

Returns: 0 If no errors.
1 No channels available.
Non-zero results of SndNewChannel call.
Non-zero results of SndPlay call.

This function initiates asynchronous playback of the sound referred to by sound.

Note: The ASLplayHandle routine is similar to ASLplayID, except that it supports a special case:
You can pass ASLplayHandle a nil handle. This causes ASLplayHandle to open a sound channel
but not call SndPlay. Normally, you do this when you want to get a sound channel and then send
sound commands directly to that channel yourself. (See ASLgetChannel, below.)

If a handle is provided, its current state is saved for later restoration before it is made unpurgeable.
ASLplayHandle then gets a reference number and a pointer to a free ASLRecord. A sound channel is then
allocated via a call to SndNewChannel and the associated ASLRecord is initialised. Then, if a handle was
provided, HLockHi is called to move the sound handle high in the heap and lock it, following which SndPlay is
called to start the sound playing, the channel.userInfo field is set to indicate that the sound is playing, and a
callback function is queued so that AsynchSoundLib will know when the sound has stopped playing. Finally,
the reference number associated with the channel is returned (if the caller wants it).

function ASLgetChannel (refNum,channel) : OSErr;

refNum : longint Reference number.
var channel : SndChannelPtr A pointer to a SoundChannelPtr.

Returns: 0 No errors.
2 If refNum does not refer to any current ASLRecord.

This function searches for the ASLRecord associated with refNum. If one is found, a pointer to the associated
sound channel is retuned in the channel parameter.

ASLgetChannel is provided so as to allow an application to gain access to the sound channel associated with a
specified reference number and thus gain the potential for more control over the playback process. It allows an
application to use AsynchSoundLib to handle sound channel management while at the same time retaining the
ability to send sound commands to the channel. This is most commonly done to play looped continuous music,
for which you will need to provide a sound resource with a loop and a sound command to install the music as a
voice. First, you open a channel by calling ASLplayHandle, specifying nil in the first parameter. (This causes
SHPlayByHandle to open a sound channel but not call SndPlay.) Armed with the returned reference number
associated with that channel, you then call ASLgetChannel to get the SndChannelPtr, which you then pass as
the first parameter in a call to SndPlay. Finally, you send a freqCmd command to the channel to start the music
playing. The playback will keep looping until you send a quietCmd command to the channel.

procedure ASLcloseChannel ;

This procedure is called from the application's event loop if the application's "attention" flag is set. It clears the
"attention" flag and then performs playback cleanup by iterating through the ASLRecords looking for records
which are both in use (that is, the inUse field contains true) and complete (that is, the channel.userInfo field
has been set by AsyncSoundLib's callback function to indicate that the sound has stopped playing). It frees up
such records for later use and closes the associated sound channel.

procedure ASLcloseDown ;

ASLcloseDown checks that AsynchSoundLib was previously initialised, stops all current playback, calls
ASLcloseChannel to close open sound channels, and disposes of the associated ASLRecords.

21-14 Sound

Demonstration Program
{ ##1

// SoundPascal.p2

// ###3

//4

// This program opens a modal dialog containing eight button controls arranged in two5

// groups, namely, a synchronous sound group and an asynchronous sound group. Clicking6

// on the buttons causes sound to be played back or recorded as follows:7

//8

// • Synchronous group:9

//10

// • Play sound resource.11

//12

// • Play sound file.13

//14

// • Record sound resource. 15

//16

// • Record sound file.17

//18

// • Speak text string.19

//20

// • Asynchronous group:21

//22

// • Start and stop looped sound playback.23

//24

// • Play unlooped sound.25

//26

// • Speak text string.27

//28

// At startup, the program checks for play-from-disk, sound recording capability, speech29

// capability, and multi-channel capability. If these are not available, the relevant30

// buttons are disabled.31

//32

// The asynchronous sound sections of the program utilise a special library called33

// AsyncSoundLib, which must be included in the CodeWarrior project.34

//35

// The program utilises the following resources:36

//37

// • A 'DLOG' resource and associated 'DITL' and 'dctb' resources (all purgeable).38

//39

// • Three 'snd ' resources, one for synchronous playback (purgeable), one for looped40

// asynchronous playback (unpurgeable), and one for unlooped asynchronous playback41

// (purgeable).42

//43

// • Two 'cicn' resources (purgeable) used to provide an animated display which halts44

// during synchronous playback and continues during asynchronous playback.45

//46

// • Three 'STR#' resources containing error message strings and "speak text" strings47

// (all purgeable).48

//49

// • Two 'ALRT' resources (purgeable) for displaying error messages.50

//51

// In addition, the function doPlayFile utilises the file "soundfile.aiff".52

//53

// Each time is is invoked, the function doRecordResource creates a new 'snd' resource54

// with a unique ID in the application's resource fork.55

//56

// When first invoked, the function doRecordFile creates the file "test.aiff" in the57

// chap21cw_demo folder. All subsequent record-to-file is to this file.58

//59

// ## }60

61

program SoundPascal(input, output);62

63

{ …… include the following Universal Interfaces }64

65

uses66

67

Windows, Fonts, Menus, TextEdit, Quickdraw, Dialogs, QuickdrawText, Processes, Types,68

Memory, Events, TextUtils, ToolUtils, OSUtils, Devices, SegLoad, Resources,69

Sound, SoundInput, Speech, GestaltEqu, Icons;;70

71

{ …… define the following constants }72

73

const74

Sound 21-15

75

rDialog = 128;76

 iQuit = 1;77

 iPlayResource = 2;78

 iPlayFile = 3;79

 iRecordResource = 4;80

 iRecordFile = 5;81

 iSpeakTextSync = 6;82

 iLoopedSound = 7;83

 iUnloopedSound = 8;84

 iSpeakTextAsync = 9;85

 iSynchSoundRect = 10;86

 iAsynchSoundRect = 11;87

rPlaySoundResource = 8192;88

rLoopedSound = 8193;89

rUnloopedSound = 8194;90

rSpeechStrings = 130;91

rErrorAlert = 129;92

rErrorStrings = 128;93

 eOpenDialogFail = 1;94

 eLoopedSoundSetUp = 2;95

 eCannotInitialise = 3;96

 eGetResource = 4;97

 eNoChannelsAvailable = 5;98

 ePlaySound = 6;99

 eMemory = 7;100

rErrorAlertWithCode = 130;101

rErrorStringsWithCode = 129;102

 eSndPlay = 1;103

 ePlayFile = 2;104

 eSndRecord = 3;105

 eWriteResource = 4;106

 eRecordFile = 5;107

 eSpeakString = 6;108

 eSndDoImmediate = 7;109

rColourIcon1 = 128;110

rColourIcon2 = 129;111

kMaxChannels = 8;112

kOutOfChannels = 1;113

114

{ …… global variables }115

116

var117

118

gDone : boolean;119

gDialogPtr : DialogPtr;120

gAppResFileRefNum : integer;121

gColorQuickDrawPresent : boolean;122

gHasSoundPlayDoubBuff : boolean;123

gHasSoundInputDevice : boolean;124

gHasSpeechmanager : boolean;125

gHasMultiChannel : boolean;126

gLoopedSoundOn : boolean;127

gLoopedSoundRefNum : longint;128

gLoopedSoundChannel : SndChannelPtr;129

gColourIconHdl1 : CIconHandle;130

gColourIconHdl2 : CIconHandle;131

132

theErr : OSErr;133

response : longint;134

135

{ …… AsyncSoundLib attention flag }136

137

gCallASLcloseChannel : boolean;138

139

{ ……… procedure and function interfaces }140

141

procedure DoInitManagers; forward;142

procedure DoCheckSoundEnv; forward;143

procedure DoInitialiseASL; forward;144

function DoLoopedSoundSetUp : boolean; forward;145

procedure EventLoop; forward;146

procedure DoDialogHit(item : integer); forward;147

procedure DoPlayResource; forward;148

procedure DoPlayFile; forward;149

procedure DoRecordResource; forward;150

procedure DoRecordFile; forward;151

21-16 Sound

procedure DoSpeakStringSync; forward;152

procedure DoLoopedSoundAsync; forward;153

procedure DoUnloopedSoundAsync; forward;154

procedure DoSpeakStringAsync; forward;155

procedure DoSetUpDialog; forward;156

procedure DrawDialog(theDialogPtr : DialogPtr; theItem : integer); forward;157

procedure DoAdjustItems; forward;158

procedure DoErrorAlert(stringIndex : integer); forward;159

procedure DoErrorAlertWithCode(stringIndex, resultCode : integer); forward;160

161

{ …… AsyncSoundLib procedure interfaces }162

163

function ASLinitialise(var attnFlag : boolean; numChannels : integer) : OSErr; C; external;164

function ASLgetChannel(refNum : longint; var channel : SndChannelPtr) : OSErr; C; external;165

function ASLplayID(resID: integer; refNum : UNIV Ptr) : OSErr; C; external;166

function ASLplayHandle(sound : Handle; refNum : UNIV Ptr) : OSErr; C; external;167

procedure ASLcloseChannel; C; external;168

procedure ASLcloseDown; C; external;169

170

{ ## DoInitManagers }171

172

procedure DoInitManagers;173

174

begin175

MaxApplZone;176

MoreMasters;177

178

InitGraf(@qd.thePort);179

InitFonts;180

InitWindows;181

InitMenus;182

TEInit;183

InitDialogs(nil);184

185

InitCursor;186

FlushEvents(everyEvent, 0);187

end;188

{of procedure DoInitManagers}189

190

{ ## DoCheckSoundEnv }191

192

procedure DoCheckSoundEnv;193

194

var195

theErr : OSErr;196

response : longint;197

198

begin199

theErr := Gestalt(gestaltSoundAttr,response);200

201

if (theErr = noErr) then202

gHasSoundPlayDoubBuff := BitTst(@response,31 - gestaltSndPlayDoubleBuffer)203

else204

gHasSoundPlayDoubBuff := false;205

206

if (theErr = noErr) then207

gHasSoundInputDevice := BitTst(@response,31 - gestaltHasSoundInputDevice)208

else209

gHasSoundInputDevice := false;210

211

if (theErr = noErr) then212

gHasSpeechmanager := BitTst(@response,31 - gestaltSpeechMgrPresent)213

else214

gHasSpeechmanager := false;215

216

if (theErr = noErr) then217

gHasMultiChannel := BitTst(@response,31 - gestaltMultiChannels)218

else219

gHasMultiChannel := false;220

end;221

{of procedure DoCheckSoundEnv}222

223

{ ## DoInitialiseASL }224

225

procedure DoInitialiseASL;226

227

begin228

Sound 21-17

if (ASLinitialise(gCallASLcloseChannel, kMaxChannels) <> noErr) then229

begin230

DoErrorAlert(eCannotInitialise);231

ExitToShell;232

end;233

end;234

{of procedure DoInitialiseASL}235

236

{ ### DoLoopedSoundSetUp }237

238

function DoLoopedSoundSetUp : boolean;239

240

var241

error : integer;242

theErr : OSErr;243

soundHdl : Handle;244

245

begin246

error := ASLplayHandle(nil, @gLoopedSoundRefNum);247

if (error <> 0) then248

begin249

DoLoopedSoundSetUp := false;250

Exit(DoLoopedSoundSetUp);251

end252

else begin253

error := ASLgetChannel(gLoopedSoundRefNum, gLoopedSoundChannel);254

if (error <> 0) then255

begin256

DoLoopedSoundSetUp := false;257

Exit(DoLoopedSoundSetUp);258

end;259

260

soundHdl := GetResource('snd ', rLoopedSound);261

if (soundHdl <> nil) then262

begin263

HLockHi(soundHdl);264

theErr := SndPlay(gLoopedSoundChannel, SndListHandle(soundHdl), true);265

if (theErr <> noErr) then266

begin267

DoLoopedSoundSetUp := false;268

Exit(DoLoopedSoundSetUp);269

end;270

end271

else begin272

DoLoopedSoundSetUp := false;273

Exit(DoLoopedSoundSetUp);274

end;275

end;276

277

DoLoopedSoundSetUp := true;278

end;279

{of procedure DoLoopedSoundSetUp}280

281

{ ## EventLoop }282

283

procedure EventLoop;284

285

var286

theRect, eraseRect : Rect;287

gotEvent : boolean;288

eventRec : EventRecord;289

theDialogPtr : DialogPtr;290

itemHit : integer;291

finalTicks : longint;292

293

begin294

gDone := false;295

296

SetRect(theRect, 10, 273, 35, 299);297

SetRect(eraseRect, 45, 273, 125, 299);298

299

while not (gDone) do300

begin301

if (gCallASLcloseChannel) then302

begin303

ASLcloseChannel;304

305

21-18 Sound

TextFont(geneva);306

TextSize(9);307

MoveTo(45, 285);308

DrawString('ASLcloseChannel');309

MoveTo(45, 295);310

DrawString('called');311

end;312

313

gotEvent := WaitNextEvent(everyEvent, eventRec, 10, nil);314

315

if (gotEvent) then316

begin317

if (IsDialogEvent(eventRec)) then318

if (DialogSelect(eventRec, theDialogPtr, itemHit)) then319

DoDialogHit(itemHit);320

end321

else begin322

if (gColorQuickDrawPresent) then323

begin324

PlotCIcon(theRect, gColourIconHdl1);325

Delay(15, finalTicks);326

PlotCIcon(theRect, gColourIconHdl2);327

Delay(15, finalTicks);328

EraseRect(eraseRect);329

end;330

end;331

end;332

333

DisposeDialog(gDialogPtr);334

335

ASLcloseDown;336

end;337

{of procedure EventLoop}338

339

{ ## DoDialogHit }340

341

procedure DoDialogHit(item : integer);342

343

begin344

case (item) of345

346

iQuit: begin347

gDone := true;348

end;349

350

iPlayResource: begin351

DoPlayResource;352

end;353

354

iPlayFile: begin355

DoPlayFile;356

end;357

358

iRecordResource: begin359

DoRecordResource;360

end;361

362

iRecordFile: begin363

DoRecordFile;364

end;365

366

iSpeakTextSync: begin367

DoSpeakStringSync;368

end;369

370

iLoopedSound: begin371

DoLoopedSoundAsync;372

end;373

374

iUnloopedSound: begin375

DoUnloopedSoundAsync;376

end;377

378

iSpeakTextAsync: begin379

DoSpeakStringAsync;380

end;381

end;382

Sound 21-19

{of case statement}383

end;384

{of procedure DoDialogHit}385

386

{ ### DoPlayResource }387

388

procedure DoPlayResource;389

390

var391

sndListHdl : SndListHandle;392

resErr : integer;393

theErr : OSErr;394

395

begin396

sndListHdl := SndListHandle(GetResource('snd ', rPlaySoundResource));397

resErr := ResError;398

if (resErr <> noErr) then399

DoErrorAlert(eGetResource);400

401

if (sndListHdl <> nil) then402

begin403

HLock(Handle(sndListHdl));404

theErr := SndPlay(nil, sndListHdl, false);405

if (theErr <> noErr) then406

DoErrorAlertWithCode(eSndPlay, theErr);407

HUnlock(Handle(sndListHdl));408

ReleaseResource(Handle(sndListHdl));409

end;410

end;411

{of procedure DoPlayResource}412

413

{ ### DoPlayFile }414

415

procedure DoPlayFile;416

417

var418

theErr : OSErr;419

fileSysSpec : FSSpec;420

fileRefNum : integer;421

ignoredErr : OSErr;422

423

begin424

theErr := FSMakeFSSpec(0, 0, ':soundfile.aiff', fileSysSpec);425

426

if (theErr = noErr) then427

theErr := FSpOpenDF(fileSysSpec, fsRdPerm, fileRefNum);428

429

if (theErr = noErr) then430

ignoredErr := SetFPos(fileRefNum, fsFromStart, 0);431

432

if (theErr = noErr) then433

theErr := SndStartFilePlay(nil, fileRefNum, 0, 20480, nil, nil, nil, false);434

435

if (theErr <> noErr) then436

DoErrorAlertWithCode(ePlayFile, theErr);437

438

ignoredErr := FSClose(fileRefNum);439

end;440

{of procedure DoPlayFile}441

442

{ ### DoRecordResource }443

444

procedure DoRecordResource;445

446

var447

oldResFileRefNum : integer;448

topLeft : Point;449

soundHdl : Handle;450

theErr, memErr : OSErr;451

theResourceID, resErr : integer;452

453

begin454

oldResFileRefNum := CurResFile;455

UseResFile(gAppResFileRefNum);456

457

topLeft.v := 40;458

topLeft.h := 250;459

21-20 Sound

460

soundHdl := NewHandle(25000);461

memErr := MemError;462

if (memErr <> noErr) then463

begin464

DoErrorAlert(eMemory);465

Exit(DoRecordResource);466

end;467

468

theErr := SndRecord(nil, topLeft, siBetterQuality, SndListHandle(soundHdl));469

if ((theErr <> noErr) and (theErr <> userCanceledErr)) then470

DoErrorAlertWithCode(eSndRecord, theErr)471

else begin472

repeat473

theResourceID := UniqueID('snd ');474

until (theResourceID >= 8191);475

476

AddResource(Handle(soundHdl), 'snd ', theResourceID, 'Test');477

resErr := ResError;478

if (resErr = noErr) then479

UpdateResFile(gAppResFileRefNum);480

481

resErr := ResError;482

if (resErr <> noErr) then483

DoErrorAlertWithCode(eWriteResource, resErr);484

end;485

486

UseResFile(oldResFileRefNum);487

end;488

{of procedure DoRecordResource}489

490

{ ### DoRecordFile }491

492

procedure DoRecordFile;493

494

var495

topLeft : Point;496

theErr : OSErr;497

fileSysSpec : FSSpec;498

fileRefNum : integer;499

ignoredErr : OSErr;500

501

begin502

topLeft.v := 40;503

topLeft.h := 250;504

505

theErr := FSMakeFSSpec(0, 0, ':test.aiff', fileSysSpec);506

if (theErr = fnfErr) then507

theErr := FSpCreate(fileSysSpec, '????', 'AIFF', smSystemScript);508

509

if (theErr = noErr) then510

theErr := FSpOpenDF(fileSysSpec, fsWrPerm, fileRefNum);511

512

if (theErr = noErr) then513

ignoredErr := SetFPos(fileRefNum, fsFromStart, 0);514

515

if (theErr = noErr) then516

theErr := SndRecordToFile(nil, topLeft, siBetterQuality, fileRefNum);517

518

if ((theErr <> noErr) and (theErr <> userCanceledErr)) then519

DoErrorAlertWithCode(eRecordFile, theErr);520

521

ignoredErr := FSClose(fileRefNum);522

end;523

{of procedure DoRecordFile}524

525

{ ## DoSpeakStringSync }526

527

procedure DoSpeakStringSync;528

529

var530

activeChannels : integer;531

theString : string;532

resErr, theErr : OSErr;533

534

begin535

activeChannels := SpeechBusy;536

Sound 21-21

537

GetIndString(theString, rSpeechStrings, 1);538

resErr := ResError;539

if (resErr <> noErr) then540

begin541

DoErrorAlert(eGetResource);542

Exit(DoSpeakStringSync);543

end;544

545

theErr := SpeakString(@theString);546

if (theErr <> noErr) then547

DoErrorAlertWithCode(eSpeakString, theErr);548

549

while (SpeechBusy <> activeChannels) do ;550

end;551

{of procedure DoSpeakStringSync}552

553

{ ### DoLoopedSoundAsync }554

555

procedure DoLoopedSoundAsync;556

557

var558

soundCommand : SndCommand;559

theErr : OSErr;560

561

begin562

gLoopedSoundOn := not (gLoopedSoundOn);563

564

DoAdjustItems;565

566

soundCommand.param1 := 0;567

568

if (gLoopedSoundOn) then569

begin570

soundCommand.cmd := freqCmd;571

soundCommand.param2 := $3C;572

end573

else begin574

soundCommand.cmd := quietCmd;575

soundCommand.param2 := 0;576

end;577

578

theErr := SndDoImmediate(gLoopedSoundChannel, soundCommand);579

if (theErr <> noErr) then580

DoErrorAlertWithCode(eSndDoImmediate, theErr);581

end;582

{of procedure DoLoopedSoundAsync}583

584

{ ### DoUnloopedSoundAsync }585

586

procedure DoUnloopedSoundAsync;587

588

var589

error : integer;590

591

begin592

error := ASLplayID(rUnloopedSound, nil);593

if (error = kOutOfChannels) then594

DoErrorAlert(eNoChannelsAvailable)595

else if (error <> noErr) then596

DoErrorAlert(ePlaySound);597

end;598

{of procedure DoUnloopedSoundAsync}599

600

{ ### DoSpeakStringAsync }601

602

procedure DoSpeakStringAsync;603

604

var605

theString : string;606

resErr, theErr : OSErr;607

608

begin609

GetIndString(theString, rSpeechStrings, 2);610

resErr := ResError;611

if (resErr <> noErr) then612

begin613

21-22 Sound

DoErrorAlert(eGetResource);614

Exit(DoSpeakStringAsync);615

end;616

617

theErr := SpeakString(@theString);618

if (theErr <> noErr) then619

DoErrorAlertWithCode(eSpeakString, theErr);620

end;621

{of procedure DoSpeakStringAsync}622

623

{ ## DoSetUpDialog }624

625

procedure DoSetUpDialog;626

627

var628

itemType : integer;629

itemHdl : Handle;630

itemRect : Rect;631

632

begin633

GetDialogItem(gDialogPtr, iSynchSoundRect, itemType, itemHdl, itemRect);634

SetDialogItem(gDialogPtr, iSynchSoundRect, itemType, Handle(@DrawDialog), itemRect);635

636

if not (gHasSoundPlayDoubBuff) then637

begin638

GetDialogItem(gDialogPtr, iPlayFile, itemType, itemHdl, itemRect);639

HiliteControl(ControlHandle(itemHdl), 255);640

end;641

642

if not (gHasSoundInputDevice) then643

begin644

GetDialogItem(gDialogPtr, iRecordResource, itemType, itemHdl, itemRect);645

HiliteControl(ControlHandle(itemHdl), 255);646

GetDialogItem(gDialogPtr, iRecordFile, itemType, itemHdl, itemRect);647

HiliteControl(ControlHandle(itemHdl), 255);648

end;649

650

if not (gHasSpeechmanager) then651

begin652

GetDialogItem(gDialogPtr, iSpeakTextSync, itemType, itemHdl, itemRect);653

HiliteControl(ControlHandle(itemHdl), 255);654

GetDialogItem(gDialogPtr, iSpeakTextAsync, itemType, itemHdl, itemRect);655

HiliteControl(ControlHandle(itemHdl), 255);656

end;657

658

if not (gHasMultiChannel) then659

begin660

GetDialogItem(gDialogPtr, iLoopedSound, itemType, itemHdl, itemRect);661

HiliteControl(ControlHandle(itemHdl), 255);662

end;663

end;664

{of procedure DoSetUpDialog}665

666

{ ### DrawDialog }667

668

procedure DrawDialog(theDialogPtr : DialogPtr; theItem : integer);669

670

var671

itemType : integer;672

itemHdl : Handle;673

itemRect : Rect;674

buttonOval : integer;675

676

begin677

GetDialogItem(theDialogPtr, iSynchSoundRect, itemType, itemHdl, itemRect);678

FrameRect(itemRect);679

GetDialogItem(theDialogPtr, iAsynchSoundRect, itemType, itemHdl, itemRect);680

FrameRect(itemRect);681

GetDialogItem(theDialogPtr, iQuit, itemType, itemHdl, itemRect);682

InsetRect(itemRect, -4, -4);683

PenSize(3, 3);684

buttonOval := (itemRect.bottom - itemRect.top) div 2 + 2;685

FrameRoundRect(itemRect, buttonOval, buttonOval);686

end;687

{of procedure DrawDialog}688

689

{ ## DoAdjustItems }690

Sound 21-23

691

procedure DoAdjustItems;692

693

var694

itemType, a : integer;695

itemHdl : Handle;696

itemRect : Rect;697

698

begin699

GetDialogItem(gDialogPtr, iLoopedSound, itemType, itemHdl, itemRect);700

if (gLoopedSoundOn) then701

SetControlTitle(ControlHandle(itemHdl), 'Switch Looped Sound Off')702

else703

SetControlTitle(ControlHandle(itemHdl), 'Switch Looped Sound On');704

705

for a := iRecordResource to iRecordFile do706

begin707

GetDialogItem(gDialogPtr, a, itemType, itemHdl, itemRect);708

if (gLoopedSoundOn) then709

HiliteControl(ControlHandle(itemHdl), 255)710

else711

HiliteControl(ControlHandle(itemHdl), 0);712

end;713

end;714

{of procedure DoAdjustItems}715

{ ### DoErrorAlert }716

717

procedure DoErrorAlert(stringIndex : integer);718

719

var720

errorString : string;721

ignoredErr : OSErr;722

723

begin724

GetIndString(errorString, rErrorStrings, stringIndex);725

ParamText(errorString, '', '', '');726

ignoredErr := StopAlert(rErrorAlert, nil);727

end;728

{of procedure DoErrorAlert}729

730

{ ### DoErrorAlertWithCode }731

732

procedure DoErrorAlertWithCode(stringIndex, resultCode : integer);733

734

var735

errorString, resultCodeString : string;736

ignoredErr : OSErr;737

738

begin739

GetIndString(errorString, rErrorStringsWithCode, stringIndex);740

NumToString(longint(resultCode), resultCodeString);741

742

ParamText(errorString, resultCodeString, '', '');743

ignoredErr := StopAlert(rErrorAlertWithCode, nil);744

end;745

{of procedure DoErrorAlertWithCode}746

747

{ ### start of main program }748

749

begin750

751

gColorQuickDrawPresent := false;752

gLoopedSoundOn := false;753

gCallASLcloseChannel := false;754

755

{ ……… check for Color QuickDraw }756

757

theErr := Gestalt(gestaltQuickdrawVersion, response);758

if (response >= gestalt8BitQD) then759

gColorQuickDrawPresent := true;760

761

{ ……… initialise managers }762

763

DoInitManagers;764

765

{ ……………………………………………………………………………… save reference number of application's resource file }766

767

21-24 Sound

gAppResFileRefNum := CurResFile;768

769

{ …………………………………………………………… check for sound recording equipment and speech capabilities }770

771

DoCheckSoundEnv;772

773

{ ……………………………………………………………………………………………… open and set up modal dialog, get colour icons }774

775

gDialogPtr := GetNewDialog(rDialog, nil, WindowPtr(-1));776

if (gDialogPtr = nil) then777

begin778

DoErrorAlert(eOpenDialogFail);779

ExitToShell;780

end;781

782

SetPort(gDialogPtr);783

784

DoSetUpDialog;785

786

if (gColorQuickDrawPresent) then787

begin788

gColourIconHdl1 := GetCIcon(rColourIcon1);789

gColourIconHdl2 := GetCIcon(rColourIcon2);790

end;791

792

{ …… initialize AsychSoundLib }793

794

DoInitialiseASL;795

796

{ ……… set up looped sound }797

798

if (gHasMultiChannel) then799

if not (DoLoopedSoundSetUp) then800

begin801

DoErrorAlert(eLoopedSoundSetUp);802

ASLcloseDown;803

ExitToShell;804

end;805

806

{ …… enter event loop }807

808

EventLoop;809

810

end.811

{ ### }812

Demonstration Program Comments
When this program is run, the user should click on the various buttons to record and play back
sound resources and sound files and to play back the provided "speak text" strings. On
machines with Color QuickDraw, the user should observe the effects of asynchronous and
synchronous playback on the "working man" icon at the lower left of the dialog. The user
should also observe that the text "ASLcloseChannel called" appears briefly at the bottom of
the dialog when AsynchSoundLib sets the application's "attention" flag to true, thus causing
the application to call the AsynchSoundLib function ASLcloseChannel.

Note that the doRecordResource function saves recorded sounds as 'snd ' recources with unique
IDs in the resource fork of the application (Sound). In addition, the doRecordFile function
creates a file called "test.aiff" in the directory containing this application. When you have
finished exploring the recording aspects of this demonstration, the you may wish to remove the
file "test.aiff" and the 'snd ' resources you have created.

The constant declaration block

Lines 76-87 establish constants relating to the dialog's resource ID and items. Lines 88-91
establish constants relating to sound resource IDs and the ID of the 'STR#' resource
containing the "speak text" strings. Lines 92-109 establish constants relating to error alert
'ALRT' resource IDs and associated error strings. Lines 110-111 establish constants relating
to colour icon resource IDs.

kMaxChannels will be used to specify the maximum number of sound channels that AsynchSoundLib
is to open. kOutOfChannels will be used to determine whether the AsynchSoundLib routine
ASLplayID returns a "no channels available" error.

Sound 21-25

Global Variables

gDone controls program termination. gDialogPtr will be assigned the address of the dialog's
dialog record. The application's resource file reference number will be saved to
gAppResFileRefNum at startup. gColorQuickDrawPresent will be set to true if Color QuickDraw
is present.

gHasSoundPlayDoubBuff, gHasSoundInputDevice, gHasSpeechmanager, and gHasMultiChannel will be
set to true if the associated sound capabilities are available, otherwise they will be set to
false.

gLoopedSoundOn will be toggled between true and false by successive presses of the Switch
Looped Sound On/Off button. gLoopedSoundRefNum will be assigned the reference number returned
by a call to the AsynchSoundLib routine ASLplayHandle. gLoopedSoundChannel will be assigned
the pointer to the sound channel record returned by a call to the AsynchSoundLib routine
ASLgetChannel.

gColourIconHdl1 and gColourIconHdl2 will be assigned handles to the two colour icon resources.

gCallASLcloseChannel is the application's "attention" flag. This will be set to true by
AsynchSoundLib when a sound played asynchrously has stopped playing.

The procedure DoCheckSoundEnv

DoCheckSoundEnv checks for play-from-disk capability (Line 203), recording capability (Line
208), speech capability (Line 213), and multi-channel playback capability (Line 218), and sets
the associated global variables accordingly.

Note: DoCheckSoundEnv uses the function BitTst to determine whether the
appropriate bit in Gestalt's response is set to 1. Bit numbering with BitTst is
the opposite of the usual MC680x0 numbering scheme used by Gestalt. Thus the bit
to be tested must be subtracted from 31. This is illustrated in the following:

Bit numbering as used in BitTst
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31
Bit as numbered in MC69000 CPU operations, and used by Gestalt
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

gestaltHasSoundInputDevice = 5
31 - 5 = 26

The procedure DoInitialiseASL

DoInitialiseASL initialises the AsynchSoundLib. More specifically, it calls the
AsynchSoundLib routine ASLinitialise (Line 229) and passes to AsynchSoundLib the address of
the application's "attention" flag (gASLcloseChannel), together with the requested number of
channels.

If ASLinitialise returns a non-zero value, an error alert is displayed and the program
terminates (Lines 231-232).

The function DoLoopedSoundSetUp

DoLoopedSoundSetUp gets a channel for the looped sound, loads the 'snd' resource containing
the looped sound, and calls SndPlay.

First, at Line 247, the AsynchSoundLib routine ASLplayHandle is called with nil passed as the
first parameter. (This causes ASLplayHandle to open a sound channel but not call SndPlay.)
The second parameter is the address of a global variable which will receive the reference
number associated with the channel opened by this call to ASLplayHandle.

If the call to ASLplayHandle is successful, Line 250 calls the AsynchSoundLib routine
ASLgetChannel, passing the reference number returned by ASLplayHandle in the first parameter
and receiving a pointer to the sound channel in the second parameter.

If the call to ASLgetChannel is successful, Line 261 attempts to load the specified 'snd '
resource. If the resource is loaded successfully, it is first moved as high in the
application heap as possible and locked there (Line 264).

SndPlay is then called with true passed as the third parameter, indicating that asynchronous
playback is required of the sound passed in the second parameter on the channel passed in the
first parameter.

21-26 Sound

Note: The 'snd ' resource being used contains one command only (soundCmd). In
the standard sound header, the loopStart field contains 0 and the loopEnd field
contains 24199. (The sound length is 24200 frames.) Since the soundCmd command
may only be used with non-compressed sampled-sound data, the sampled sound data in
the resource is not compressed.

SndPlay causes all commands and data contained in the sound handle to be sent to the channel.
Since the single command in the 'snd ' resource being used is soundCmd (install a sampled
sound as a voice in a channel) and not bufferCmd (play a sampled sound), nothing is heard at
this point. (If the command in the resource was bufferCmd, the sound would play once at this
point.)

If all four calls in DoLoopedSoundSetUp are successful, true is returned. Otherwise, false is
returned and the program terminates.

The procedure EventLoop

EventLoop contains the main event loop.

Line 295 sets the global variable gDone to false. When this variable is set to true, the
program will terminate. Lines 297-298 define two rectangles which will be used in the drawing
of the colour icons and in erasing some text at the bottom of the dialog.

The event loop is entered at Line 300.

Within the loop, the "attention" flag required by AsynchSoundLib is checked. If
AsynchSoundLib has set it to true (Line 302), the AsynchSoundLib function ASLcloseChannel is
called (Line 304) to free up the relevant ASLRecord, close the relevant sound channel, and
clear the "attention" flag. In addition, some text is drawn at the bottom of the dialog to
indicate to the user that ASLcloseChannel has just been called (Lines 306-311).

If WaitNextEvent retrieves an event other than a NULL event (Line 316), IsDialogEvent is
called to determine whether the event was within a dialog. If so, DialogSelect is called to
determine whether one of the dialog's buttons was clicked (Line 319). If so, the application-
defined procedure DoDialogHit is called to further process the item hit event.

If a null event was returned by WaitNextEvent (Line 322), and if Color QuickDraw is present
(Line 323), Lines 325-329 use the two colour icons to draw the two frames of "working man"
animation and erase the area in which the "ASLcloseChannel called" may have been drawn.

When gDone is set to true, the event loop exits, the dialog is disposed of (Line 334), and the
AsynchSoundLib function ASLcloseDown is called to stop all current playback, close open sound
channels, and dispose of the associated ASLRecords (Line 336).

The procedure DoDialogHit

DoDialogHit switches according to the received item number and calls the appropriate
application-defined function to further process the item hit event.

The procedure DoPlayResource

DoPlayResource is the first of the synchronous playback functions. It uses SndPlay to play a
specified 'snd ' resource.

Line 397 attempts to load the resource. If the subsequent call to ResError indicates an
error, an error alert is presented (Lines 398-400).

If the load was successful (Line 402), the sound handle is locked prior to a call to SndPlay
(Lines 404-405). Since nil is passed in the first parameter of the SndPlay call, SndPlay
automatically allocates a sound channel to play the sound and deallocates the channel when the
playback is complete. false passed as the third parameter specifies that the playback is to
be synchronous.

Note: The 2174-byte 'snd ' resource being used contains one command only
(bufferCmd). The compressed sound header indicates MACE 3:1 compression. The
loopStart field of the compressed sound header contains 6270 and the loopEnd field
contains 6271. (The sound length is 6270 frames.) The 8-bit mono sound was
sampled at 22kHz

SndPlay causes all commands and data contained in the sound handle to be sent to the channel.
Since there is a bufferCmd command in the 'snd ' resource, the sound is played.

Sound 21-27

If SndPlay returns an error, an error alert is presented (Lines 406-407).

When SndPlay returns, Lines 408-409 unlock the sound handle and release the resource.

The procedure DoPlayFile

DoPlayFile uses SndStartFilePlay to play a specified sound file.

Line 425 converts the directory specification shown into an FSSpec record. The pointer to the
FSSpec record returned by FSMakeFSSpec is passed in the first parameter of a call to FSpOpenDF
at Line 428. FSpOpenDF opens the file's data fork and receives the file reference number in
its third parameter. SetFPos (Line 431) positions the file mark to the beginning of the file.

The file reference number is passed as the second parameter in the call to SndStartFilePlay at
Line 434. The parameters passed to SndStartFilePlay are as follows:

• nil in the chan parameter causes SndStartPlay to allocate a sound channel itself.

• fileRefNum in the fRefNum parameter specifies the file reference number of the file to
be played.

• resNum is 0 because a file is being played, not a 'snd ' resource.

• 20480 in the bufferSize parameter means the number of bytes to be allocated for input
buffering.

• nil in the theBuffer parameter causes the Sound Manager to internally allocate two
relocatable blocks, each of which is half the size of bufferSize.

• nil in the theSelection parameter means the entire sound will be played.

• nil in the theCompletion parameter means that there is no completion routine to be
called when the file has finished playing.

• false in the async parameter means that playback is to be synchronous.

If an error is detected along the way, Line 459 presents an error alert.

Line 439 closes the file.

Note: The MACE 6:1 AIFF-C file being used was sampled at 22kHz as 8-bit mono
sound. Because of the high compression, the sound quality is poor.

The procedure DoRecordResource

DoRecordResource uses SndRecord to record a sound synchronously and then saves the sound in a
'snd ' resource.

Lines 455-456 save the current resource file reference number and set the application's
resource fork as the current resource file. (The 'snd ' resource will be saved to the
resource fork of the application file (Sound).)

Lines 458-459 establish the location for the top left corner of the sound recording dialog.

Line 461 creates a relocatable block. The address of the handle will be passed as the fourth
parameter of the SndRecord call. The size of this block determines the recording time
available. (If nil is passed as the fourth parameter of a SndRecord call, the Sound Manager
allocates the largest block possible in the application's heap.) If NewHandle cannot allocate
the block, an error alert is presented and the function returns (Lines 462-467);

SndRecord (Line 469) opens the sound recording dialog and handles all user interaction until
the user clicks the Cancel or Save button. Note that the second parameter of the SndRecord
call establishes the location for the top left corner of the sound recording dialog and that
the third parameter specifies 22kHz, mono, 3:1 compression.

When the user clicks the Save button, the handle is resized automatically. If the user clicks
the Cancel button, SndRecord returns userCanceledErr. If SndRecord returns an error other
than userCanceledErr, an error alert is presented and the function returns.

The relocatable block allocated at Line 461, and resized as appropriate by SndPlay, has the
structure of a 'snd ' resource, but its handle is not a handle to an existing resource. To
save the recorded sound as a 'snd ' resource in the application's resource fork, Lines 474-475
first find an acceptable unique resource ID for the resource. (For the System file, resource
IDs for 'snd ' resources in the range 0 to 8191 are reserved for use by Apple Computer, Inc.

21-28 Sound

Avoiding those IDs in this demonstration is not strictly necessary, since there is no
intention to move those resources to the System file.). The call to AddResource at Line 477
causes the Resource Manager to regard the relocatable block containing the sound as a 'snd '
resource. If the call is successful, Line 480 writes the changed resource map and the 'snd '
resource to disk. If an error occurs, an error alert is presented (Lines 482-484)

Line 487 restores the resource file saved at Line 455 as the current resource file.

Note that, ordinarily, you should not record to your application's resource fork because
applications which record to their own resource fork cannot be used over networks.

The procedure DoRecordFile

DoRecordFile uses SndRecordToFile to record a sound synchronously to a file.

Lines 503-504 establish the location for the top left corner of the sound recording dialog.

At Line 506, FSMakeFSSpec converts the directory specification passed in its third parameter
into an FSSpec record. If FSMakeFSSpec returns fnfErr (file not found), Line 508 creates a
new file of type 'AIFF'. Line 511 opens the file's data fork and Line 514 positions the file
mark to the beginning of the file.

SndRecordToFile (Line 517) opens the sound recording dialog and handles all user interaction
until the user clicks the Cancel or Save button. Note that the second parameter of the
SndRecord call establishes the location for the top left corner of the sound recording dialog,
that the third parameter specifies 22kHz, mono, 3:1 compression, and that the fourth parameter
specifies the file reference number of the file to record to.

When SndRecordToFile returns, the file will contain the recorded audio data. Since
compression was specified, the file will be in AIFF-C format.

If the user clicks the Cancel button, SndRecordToFile returns userCanceledErr. If an error
occurs along the way and it is not userCanceledErr, an error alert is presented (Lines 519-
520).

Line 522 closes the file.

The procedure DoSpeakStringSync

DoSpeakStringSync uses SpeakString to speak a specified string resource and takes measures to
cause the speech to be generated in a psuedo-synchronous manner.

The speech that SpeakString generates is asynchronous, that is, control returns to the
application before SpeakString finishes speaking the string. In this function, SpeechBusy is
used to cause the speech activity to be synchronous so far as the function as a whole is
concerned. That is, DoSpeakStringSync will not return until the speech activity is complete.

As a first step, Line 536 saves the number of speech channels that are active immediately
before the call to SpeakString.

Line 538 loads the first string from the specified 'STR#' resource. If an error occurs, a
dialog is presented and the function returns (Lines 539-544).

At Line 546, SpeakString, which automatically allocates a speech channel, is called to speak
the string. If SpeakString returns an error, an error alert is presented (Lines 547-548).

Although SpeakString returns control to the application immediately it starts generating the
speech, the speech channel it opens remains open until the speech concludes. While the speech
continues, the number of speech channels open will be one more that the number saved at Line
536. Accordingly, the while loop entered at Line 550 continues until the number of open
speech channels is equal to the number saved at Line 536. Then, and only then, does
DoSpeakStringSync exit.

The procedure DoLoopedSoundAsync

DoLoopedSoundAsync is the first of the asynchronous playback routines. It sends sound
commands to the sound channel opened by the application-defined procedure DoLoopedSoundSetUp,
and on which doLoopedSoundSetUp has already installed a voice.

Line 563 toggles the Boolean global variable gLoopedSoundOn to the opposite state.

Line 565 calls an application-defined function which, depending on the the value in
gLoopedSoundOn, toggles the button title between "Switch Looped Sound On" and "Switch Looped
Sound Off" and toggles the "Record Sound Resource" and "Record Sound File" buttons between the
disabled and enabled states.

Sound 21-29

Depending on the value in gLoopedSoundOn, Lines 570-577 will be sending either the freqCmd
command or the quietCmd command to the channel on which the looped sound is installed. In
both of these commands, param1 should be set to 0 (Line 567).

If the value in gLoopedSoundOn is true (Line 569), the cmd field of a sound command record is
assigned freqCmd and the param2 field is assigned a value (60 decimal) which equates to middle
C (Lines 571-572). (The freqCmd command changes the frequency (or pitch) of a sound. Also,
if no sound is currently playing, freqCmd causes the Sound Manager to begin playing at the
specified frequency. If, however, no voice is installed in the channel, no sound is produced.
A voice was installed in the channel to which the command will be sent by the application-
defined procedure DoLoopedSoundSetUp.)

If the value in gLoopedSoundOn is false (Line 574), the cmd field of a sound command record is
assigned quietCmd and the param2 field is assigned 0. (The quietCmd command stops the sound
that is currently playing, and should be sent using using SndDoImmediate.)

Line 579 calls SndDoImmediate to send the command specified in the second parameter to the
sound channel specified in the first parameter. If SndDoImmediate returns an error, an error
alert is presented (Lines 580-581).

The procedure DoUnloopedSoundAsync

DoUnloopedSoundAsync uses the AsynchSoundLib routine ASLplayID to play a 'snd ' resource
asynchronously.

At Line 593, ASLplayID is called to play the 'snd ' resource specified in the first parameter.
Since no further control over the playback is required, nil is passed in the second parameter.
(Recall that, if you pass a pointer to a variable in the second parameter, ASLplayID returns a
reference number in that parameter. That reference number may be used to gain more control
over the playback process. If you simply want to trigger a sound and let it to run to
completion, you pass nil in the second parameter, in which case a reference number is not
returned by ASLplayID.)

If ASLplayID returns the "no channels currently available" error, an error alert is presented
advising of that specific condition (Lines 594-595). If any other error is returned, a more
generalised error alert is presented (Lines 596-597).

When the sound has finished playing, ASynchSoundLib advises the application by setting the
application's "attention" flag to true. Recall from Lines 302-312 that this will cause the
AsynchSoundLib procedure ASLcloseChannel to be called to free up the relevant ASLRecord, close
the relevant sound channel, clear the "attention" flag, and draw some text at the bottom of
the dialog to indicate to the user that ASLcloseChannel has just been called (Lines 306-311).

Note: The 701-byte 'snd ' resource being used contains one command only
(bufferCmd). The compressed sound header indicates MACE 6:1 compression. The
loopStart field of the compressed sound header contains 3704 and the loopEnd field
contains 3705. The 8-bit mono sound was sampled at 22kHz

The procedure DoSpeakStringAsync

DoSpeakStringAsync is identical to the function DoSpeakStringSync except that, in this
function, SpeechBusy is not used to delay the procedure returning until the speech activity
spawned by SpeakString has run its course.

The procedures DoSetUpDialog and
DrawDialog

DoSetUpDialog first installs an application-defined draw function (DrawDialog) in one of the
dialog's user items. It then disables any buttons relating to sound features not available on
the machine on which the program is running. DrawDialog is called whenever the dialog gets an
update event. It draws the two group rectangles and the bold outline around the "Done"
button.

The procedure DoAdjustItems

DoAdjustItems toggles the "Switch looped Sound" button between on and off, and the "Record
Sound Resource" and "Record Sound File" buttons between enabled and disabled, according to the
value in gLoopedSoundOn.

21-30 Sound

The procedures DoErrorAlert and
DoErrorAlertWithCode

DoErrorAlert and DoErrorAlertWithCode retrieve the strings associated with the various error
conditions and present an alert displaying the string. DoErrorAlertWithCode also displays the
error code number itself.

The main program block

The main function checks for Color QuickDraw (Lines 758-760), initialises the system software
managers (Line 764), saves the reference number of the application's resource file (Line 768),
checks the sound environment and sets the associated global variables accordingly (Line 772),
opens and sets up the dialog (Lines 776-785), and gets two colour icons if Color QuickDraw is
present (Lines 787-791).

AsynchSoundLib is then initialised (Line 795). If multi-channel playback is available (Line
799), an application-defined function is called to set up the looped sound playback (Line
800). If this call is not successful, an error alert is displayed, the AsynchSoundLib routine
ASLcloseDown is called and the program terminates (Lines 802-804).

Note: Line 799 means that, on machines without multi-channel playback
capability, the program has opted to defeat the continuous looped sound playback
and make the single channel available for the other playback options represented
by the buttons in the dialog. The program could be readily modified to reverse
this situation and allow the user to make the single channel available to the
continuous looped sound only.

At Line 809, the main event loop is entered.

	Introduction to Sound
	Audio Hardware

	Sound-Related System Software
	Sound Input and Output Capabilities
	Basic and Enhanced Sound Capabilities
	Sound Data
	About Sampled Sound
	Sample Rate
	Sample Size
	Sound Manager Capabilities
	Storing Sampled Sounds

	Sound Components
	Sound Resources and Sound Files
	Sound Resources
	Sound Files

	Sound Production
	Sound Channels
	Multiple Sound Channels

	Sound Commands
	Sound Commands In 'snd ' Resources
	Sending Sound Commands Directly From the Application

	Synchronous and Asynchronous Sound
	Synchronous Sound
	Asynchronous Sound

	Playing a Sound
	Playing a Sound Resource
	Playing a Sound File
	Playing Sounds Asynchronously

	Sound Recording
	Recording a Sound Resource
	Recording a Sound File
	Recording Quality
	Checking For Sound Recording Equipment

	Speech
	Generating Speech From a String
	Asynchronous Speech
	Asynchronous Speech

	Checking For Speech Capabilities

	Relevant Constants, Data Types, and Routines
	The AsynchSoundLib Library
	AsynchSoundLib Functions

	Demonstration Program
	Demonstration Program Comments

