
Color QuickDraw 11-1

11Version 1.1

COLOR QUICKDRAW
Includes Demonstration Program ColorQuickDraw

Introduction

Color QuickDraw is a collection of system software routines your application can use to display
hundreds, thousands and even millions of colours on screens with those capabilities. Only those older
Macintoshes based on the Motorola 68000 processor provide no support for Color QuickDraw.

You can draw into a colour graphics port using the eight predefined colours provided by basic
QuickDraw. Color QuickDraw, however, provides for a greatly increased number of colours, the
actual number available to your application depending on the user's computer system. In addition,
Color QuickDraw allows you to define your own colours, and it provides a consistent way for your
application to deal with colour regardless of the user's screen and software configuration.

RGB Colours

When using Color QuickDraw, you specify colours as RGB colours. An RGB (red-green-blue) colour is
defined by its red, green and blue components. For example, when each of the red, green and blue
components of a colour are at their maximum intensity (0xFFFF), the result is the colour white. When
each of the components has zero intensity (0x0000), the result is the colour black.

You specify a colour to Color QuickDraw by creating an RGBColor record in which you use three 16-bit
unsigned integers to assign intensity values for the three additive primary colours. The RGBColor data
type is defined as follows:

struct RGBColor
{

unsigned short red; // Magnitude of red component.
unsigned short green; // Magnitude of green component.
unsigned short blue; // Magnitude of blue component.

};

typedef struct RGBColor RGBColor;

The Colour Drawing Environment - Colour Graphics Ports

A colour graphics port is automatically created when you use the Window Manager functions
GetNewCWindow and NewCWindow. Colour graphics ports are also automatically created when your
application provides the colour-awareness resources 'dctb' and 'actb' and then uses the Dialog
Manager routines GetNewDialog and Alert.

A colour graphics port is defined in a CGrafPort record:

11-2 Color QuickDraw

struct CGrafPort
{

short device; // Device-specific information.
PixMapHandle portPixMap; // Handle to pixel map.
short portVersion; // Flags.
Handle grafVars; // Handle to additional colour fields.
short chExtra; // Extra width added to non-space characters.
short pnLocHFrac; // Fractional horizontal pen position.
Rect portRect; // Port rectangle.
RgnHandle visRgn; // Visible region.
RgnHandle clipRgn; // Clipping region.
PixPatHandle bkPixPat; // background pattern
RGBColor rgbFgColor; // RGB components of fg
RGBColor rgbBkColor; // RGB components of bk
Point pnLoc; // Pen location.
Point pnSize; // Pen size.
short pnMode; // Pattern mode.
PixPatHandle pnPixPat; // Pen pattern.
PixPatHandle fillPixPat; // Fill pattern.
short pnVis; // Pen visibility.
short txFont; // Font number for text.
Style txFace; // Text font style.
SInt8 filler;
short txMode; // Text source mode.
short txSize; // Font size for text.
Fixed spExtra; // Extra width added to space charcaters.
long fgColor; // Actual foreground colour.
long bkColor; // Actual background colour.
short colrBit; // Colour bit (reserved).
short patStretch; // (Used internally.)
Handle picSave; // Picture being saved. (Used internally.)
Handle rgnSave; // Region being saved. (Used internally.)
Handle polySave; // Polygon being saved. (Used internally.)
CQDProcsPtr grafProcs; // Pointer to low-level drawing routines.

};

typedef struct CGrafPort CGrafPort,*CGrafPtr;
typedef CGrafPtr CWindowPtr;

Differences Between a CGrafPort Record and a GrafPort Record

A CGrafPort record is the same size as a GrafPort record. The important differences between these
two data types are as follows:

• In a GrafPort record, the portBits field contains a complete 14-byte bitMap record. In a
CGrafPort record, this field is partly replaced by the four-byte portPixMap field, which contains a
handle to a PixMap record (see Fig 1).

FIG 1 - FIRST 27 BYTES OF GrafPort AND CGrafPort RECORDS

baseAddr

bounds

portRect

visRgn

portPixMap

grafVars

chExtra
pnLocHFrac

portRect

visRgn

device device

GrafPort CGrafPort

portBits
portVersionrowBytes

• In what would be the rowBytes field of the BitMap record in the portBits field of the GrafPort
record, a CGrafPort record has a two-byte portVersion field (see Fig 1) in which the two high
bits are always set. QuickDraw uses these two bits to distinguish CGrafPort records from
GrafPort records. (In GrafPort records, the two high bits of the rowBytes field are always clear.)

Color QuickDraw 11-3

• Following the portVersion field in the CGrafPort record is the grafVars field, which contains a
handle to a GrafVars record (see Fig 1). The GrafVars records contains colour information used
by Color QuickDraw and the Palette Manager.

• Following the grafVars field are the chExtra field, which holds the width of non-space
characters in a font, and the pnLocHFrac field, which holds the fractional horizontal pen position
used when drawing text.

• In a GrafPort record, the bkPat, fillPat, and pnPat fields hold eight-byte bit patterns. In a
CGrafPort record, these fields are partly replaced by three four-byte handles to pixel patterns.
The resulting 12 bytes of additional space are taken up by the rgbFgColor and rgbBkColor fields,
which contain six-byte RGBColor records specifying the optimal foreground and background
colours for the colour graphics port. (See Fig 2.) Note that the closest matching available
colours, which Color QuickDraw actually uses for the foreground and background, are stored in
the fgColor and bkColor fields of the CGrafPort record.

FIG 2 - BYTES 27 - 62 OF GrafPort AND CGrafPort RECORDS

pnSize

rgbBkColor

pnLoc

pnMode

pnPixPat

fillPixPat

fillPat

pnLoc

pnSize

pnPat

bkPixPat

rgbFgColor

bkPat

GrafPort CGrafPort

Working with a CGrafPort record is much like working with a GrafPort record. The routines SetPort,
GetPort, PortSize, SetOrigin, SetPortBits and MovePortTo operate on either port type, and the
global variable thePort points to the current graphics port no matter what type it is.

If you find it necessary, you can use type coercion to convert between GrafPtr and CGrafPtr records,
for example:

CGrafPtr myPort;
SetPort((GrafPtr) myPort);

You can use all QuickDraw drawing commands to draw into a graphics port created with a CGrafPort
record, and you can use all Color QuickDraw drawing commands (such as FillCRect) when drawing
into a graphics port created with a GrafPort record. However, Color QuickDraw drawing commands
used with a GrafPort record do not take advantage of Color QuickDraw's colour features.

Pixel Maps

Just as basic QuickDraw does all of its drawing into a bitmap, Color QuickDraw draws in a pixel map.
The portPixMap field of the CGrafPort record contains a handle to a pixel map, a data structure of type
PixMap.

The representation of a colour image in memory is a pixel image, analogous to the bit image used by
basic QuickDraw. A PixMap record contains a pointer to a pixel image, its dimensions, storage format,
depth, resolution, and colour usage.

11-4 Color QuickDraw

The PixMap record is as follows:

struct PixMap
{

Ptr baseAddr; // Pointer to image data.
short rowBytes; // Flags, and bytes in a row.
Rect bounds; // Boundary rectangle.
short pmVersion; // Pixel Map version number.
short packType; // Packing format.
long packSize; // Size of data in packed state.
Fixed hRes; // Horizontal resolution in dots per inch.
Fixed vRes; // Vertical resolution in dots per inch.
short pixelType; // Format of pixel image.
short pixelSize; // Physical bits per pixel.
short cmpCount; // Number of components in each pixel.
short cmpSize; // Number of bits in each component.
long planeBytes; // Offset to next plane.
CTabHandle pmTable; // Handle to a colour table for this image.
long pmReserved; // (Reserved.)

};

typedef struct PixMap PixMap,*PixMapPtr,**PixMapHandle;

Field Descriptions

baseAddr Contains a pointer to the beginning of the onscreen pixel image for a pixel map. The pixel
image that appears on the screen is normally stored on a graphics card rather than in
main memory. (Note that there can be several pixel maps pointing to the same pixel
image, each imposing its own coordinate system on it.)

rowBytes The offset in bytes from one row of the image to the next. The value must be even and
less than 0x4000. For best performance it should be a multiple of 4.

The high two bits are used as flags. If bit 15 = 1, the data structure pointed to is a PixMap
record, otherwise it is a BitMap record.

bounds As with a bitmap, the pixel map's boundary rectangle is initially set to the size of the main
screen.

pmVersion The version number of Color QuickDraw that created this PixMap record. The value is
normally 0. If it is 4, Color QuickDraw treats the baseAddr field as 32-bit clean. Most
applications never need to set this field.

packType The packing algorithm used to compress image data. Color QuickDraw currently
supports a packType of 0 (no packing) and values of 1 to 4 for packing direct pixels.

packSize The size of the packed image in bytes. (When packType is 0, this field is set to 0.)

hRes The horizontal resolution of the image in pixels per inch, abbreviated as dpi (dots per
inch). The value of this field is of type Fixed. By default, the dpi is 72, but Color
QuickDraw supports PixMap records of other resolutions. For example, PixMap records for
scanners can have dpi resolutions of 150, 200, 300, or greater.

vRes Describes the vertical resolution. (See hRes).

pixelType Specifies the format (indexed or direct) used to hold the pixels in the image. For indexed
devices, the value is 0. For direct devices, the value is 16, which can be represented by the
constant RGBDirect.

pixelSize Specifies the pixel depth, that is, the number of bits per pixel in the pixel image. Indexed
devices can be 1, 2, 4, or 8 bits deep. (A pixel image that is 1 bit deep is equivalent to a bit

Color QuickDraw 11-5

image.) Direct devices can be 16 or 32 bits deep. (Even if your application creates a basic
graphics port on a direct device, pixels are never less than one of these two depths.)1

cmpCount Together with cmpSize, describes how the pixel values are organised. For pixels on
indexed devices, the colour component count is 1 (for the index into the graphic's device's
CLUT, where the colours are stored). For pixels in direct devices, the colour component
count is 3 (for the red, green and blue components of each pixel).

cmpSize Specifies how large each colour component is. For indexed devices, it is the same value as
that in the pixelSize field, that is, 1, 2, 4, or 8 bits. For direct devices, each of the three
colour components can be either 5 bits for a 16-bit pixel (one of these 16 bits is unused), or
8 bits for a 32 bit pixel (8 of these 32 bits are unused).

planeBytes Specifies an offset in bytes from one plane to another. Since Color QuickDraw does not
support multiple-plane images, the value of this field is always 0.

pmTable Contains a handle to the ColorTable record. ColorTable records define the colours
available for pixel images on indexed devices. (The Color Manager stores a colour table
for the currently available colours in the graphic's device's CLUT. You use the Palette
Manager to assign different colour tables to your different windows.)

You can create colour tables using either ColorTable records or 'clut' resources. Pixel
images on direct devices do not need a colour table because the colours are stored right in
the pixel values. In such cases, pmTable points to a dummy colour table.

Translation of RGB Colours to Pixel Values

The baseAddr field of the CGrafPort record contains a pointer to the beginning of the onscreen pixel
image. When your application specifies an RGB colour for a pixel in the pixel image, Color QuickDraw
translates that colour into a value appropriate for display on the user's screen. Color QuickDraw stores
this value in the pixel. The pixel value is a number used by system software and a graphics device to
represent a colour. The translation from the colour you specify in an RGBColor record to a pixel value is
performed at the time you draw the colour. The process differs for direct and indexed devices as
follows:

• When drawing on indexed devices, Color QuickDraw calls the Color Manager to supply the
index to the colour that most closely matches the requested colour in the current device's CLUT.
This index becomes the pixel value for that colour.

• When drawing on direct devices, Color QuickDraw truncates the least significant bits from the
red, green and blue fields of the RGBColor record. The result becomes the pixel value that Color
QuickDraw sends to the graphics device.

Your application never needs to handle pixel values. However, to clarify the relationship between
RGBColor records and the pixels that are actually displayed, the following presents some examples of
the derivation of pixel values from RGBColor records.

1Note that, when a user uses the Monitors control panel to set a 16-bit or 32-bit device to use 2, 4, 16 or 256 colours as a grayscale or colour
device, the direct device creates a CLUT and operates like an indexed device.

11-6 Color QuickDraw

Derivation of Pixel Values on Indexed Devices

Fig 3 shows the translation of an RGBColor record to an 8-bit pixel value on an indexed device.

RGBColor RECORD
INDEX NUMBERS

CLUT
0

161

R G B

0x3206 0x9038 0x013D

PIXEL VALUE (161) 255

CLOSEST
COLOUR MATCH
IS AT TABLE
ENTRY 161

0x3333 0x9999 0x0000

FIG 3 - TRANSLATING AN RGBColor RECORD TO AN 8-BIT PIXEL VALUE ON AN INDEXED DEVICE

1

160

162

The application might later use GetCPixel to determine the colour of a particular pixel. As shown at
Fig 4, the Color Manager uses the index number stored as the pixel value to find the RGBColor record
stored in the CLUT for that pixel's colour. Also as shown at Fig 4, this is not necessarily the exact
colour first specified.

RGBColor RECORD
INDEX NUMBERS

CLUT
0

161

R G B

0x3333 0x9999 0x0000

PIXEL VALUE (161) 255

0x3333 0x9999 0x0000

FIG 4 - TRANSLATING AN 8-BIT PIXEL VALUE ON AN IDEXED DEVICE TO AN RGBColor RECORD

1

160

162

Derivation of Pixel Values on Direct Devices

Fig 5 shows how Color QuickDraw converts an RBGColor record into a 16-bit pixel value on a direct
device by storing the most significant 5 bits of each 16-bit field of the 48-bit RGBColor record in the
lower 15 bits of the pixel value, leaving an unused high bit. Fig 5 also shows how Color QuickDraw
expands a 16-bit pixel value to a 48-bit RGBColor record by dropping the unused high bit of the pixel
value and inserting three copies of each 5-bit component and a copy of the most significant bit into each
16-bit field of the RGBColor record. Note that the result differs, in the least significant 11 bits, from the
original 48-bit value.

FIG 5 - TRANSLATING AN RGBColor RECORD TO A 16 BIT PIXEL VALUE,
AND FROM A 16-BIT PIXEL VALUE TO AN RGBRecord, ON A DIRECT DEVICE

16-BIT RED COMPONENT
0x3206

16-BIT GREEN COMPONENT
0x9038

16-BIT BLUE COMPONENT
0x013D

(UNUSED)

0x318C 0x9495 0x0000

R 0x06 G 0x12 B 0x00

Fig 6 shows how Color QuickDraw converts an RBGColor record into a 32-bit pixel value on a direct
device by storing the most significant 8 bits of each 16-bit field of the record into the lower 3 bytes of
the pixel value, leaving 8 unused bits in the high byte of the pixel value. Fig 6 also shows how Color
QuickDraw expands a 32-bit pixel value to an RBGColor record by dropping the unused high byte of the
pixel value and doubling each of its 8-bit components. Note that the resulting 48-bit value differs in the
least significant 8 bits of each component from the original RBGColor record.

Color QuickDraw 11-7

FIG 6 - TRANSLATING AN RGBColor RECORD TO A 32 BIT PIXEL VALUE,
AND FROM A 32-BIT PIXEL VALUE TO AN RGBRecord, ON A DIRECT DEVICE

16-BIT RED COMPONENT
0x3206

16-BIT GREEN COMPONENT
0x9038

16-BIT BLUE COMPONENT
0x013D

B 0x01(UNUSED)

0x3232 0x9090 0x0101

R 0x32 G 0x90

Colours on Grayscale Screens

When Color QuickDraw displays a colour on a grayscale screen, it computes the luminance, or
intensity of light, of the desired colour and uses that value to determine the appropriate gray value to
draw.

A grayscale device can be a colour graphics device that the user sets to grayscale by using the Monitors
control panel. For such a graphics device, Colour QuickDraw places an evenly spaced set of grays in
the graphics device's CLUT.

By using the GetCTable function, your application can obtain the default colour tables for various
graphics devices, including grayscale devices.

Pixel Patterns

Color QuickDraw supplements the black-and-white bit patterns of basic QuickDraw with pixel
patterns. Pixel patterns, which define a repeating design, can use colours at any pixel depth, and can
be of any width and height that is a power of 2. You can create your own pixel patterns in your
program code, but it is usually simpler and more convenient to store them in resources of type 'ppat'.

Pen Pixel Pattern

As with bit patterns, your application can use pixel patterns to draw lines and shapes on the screen. In
a colour graphics port, the graphics pen has a pixel pattern specified in the pnPixPat field of the
CGrafPort record. The pixels in the pattern interact with the pixels in the pixel map according to the
pattern mode of the graphics pen.

Initially, every graphics pen is assigned an all black pattern, but you can use PenPixPat to assign a
different pixel pattern to the graphics pen.

FrameRect, FrameRoundRect, FrameArc, FramePoly, FrameRgn, PaintRect, PaintRoundRect, PaintArc,
PaintPoly, and PaintRgn are used to draw with the pattern specified in the pnPixPat field.

Fill Pixel Pattern

FillCRect, FillCRoundRect, FillCArc, FillCPoly, and FillCRgn are used to draw shapes with the
pixel pattern specified as the parameter in the call to these routines. The pixel pattern specified in the
call is stored in the fillPixPat field of the CGrafPort record.

Background Pixel Pattern

The colour graphics port also has a background pattern which is used when an area is erased (for
example, by EraseRect, EraseRoundRect, EraseArc, ErasePoly, and EraseRgn) and when pixels are
scrolled out of an area by ScrollRect. The background pattern is stored in the bkPixPat field of the
CGrafPort record. It can be changed using BackPixPat.

11-8 Color QuickDraw

Creating Pseudo Colours With Pixel Patterns

Pixel patterns can be used to create colours otherwise unavailable on indexed devices. For example, if
your application draws to an indexed device that supports 4 bits per pixel, your application has a
maximum of 16 colours available. However, if your application uses MakeRGBPat to create patterns that
use these 16 colours in different combinations, and then draws using that pattern, your application can
have as many as 109 additional (pseudo) colours at its disposal.

Testing For the Existence of Color QuickDraw

Before using Color QuickDraw routines, your application should check for the existence of Color
QuickDraw by using the Gestalt function. The Gestalt function is used to acquire information about
the operating environment2. It has two parameters: a selector and a response.

When testing for the existence of Color QuickDraw, Gestalt should be called with the
gestaltQuickDrawVersion selector. The low-order word in the four-byte value returned in the response
parameter contains QuickDraw version data. In that low-order word, the high byte gives the major
revision number and the low byte gives the minor revision number. If the value returned in the
response parameter is equal to the constant gestalt32BitQD13, then the system supports the System 7
version of Color QuickDraw.

The following are the constants, and the values they represent, which indicate the various versions of
Color QuickDraw:

Constant Value Version
gestalt8BitQD 0x100 8-bit Color QuickDraw
gestalt32BitQD 0x200 32-bit Color QuickDraw
gestalt32BitQD11 0x210 32-bit Color QuickDraw v1.1
gestalt32BitQD12 0x220 32-bit Color QuickDraw v1.2
gestalt32BitQD13 0x230 System 7: 32-bit Color QuickDraw v1.3

Your application can also use the Gestalt function with the selector gestaltQuickDrawFeatures to
determine whether the user's system supports various QuickDraw features. If the bits indicated in the
following constants are set in the response parameter, the associated features are available:

Constant Value Feature
gestaltHasColor 0 Color QuickDraw is present.
gestaltHasDeepGWorlds 1 GWorlds deeper than one bit.
gestaltHasDirectPixMaps 2 PixMaps can be direct - 16-bit or 32-bit
gestaltHasGrayishTextOr 3 Supports text mode grayishTextOr

Working with Color QuickDraw

All of the basic QuickDraw routines work with Color QuickDraw.

Creating Colour Graphics Ports

Your application creates a colour graphics port using either the GetNewCWindow, the NewCWindow
function, or the NewGWorld function. These function automatically call OpenCPort (which opens the
port) and InitCPort (which and initialises the port).

You can use GetNewCWindow or NewCWindow to create colour graphics ports whether or not a colour
monitor is currently installed. So that most of your window-handling code can handle colour windows
and black-and-white windows identically, GetNewCWindow returns a pointer of type WindowPtr, not of

2The Gestalt function is explained in detail at Chapter 22 — Miscellany.

Color QuickDraw 11-9

type CWindowPtr. A pointer of type WindowPtr points to a GrafPort record. Thus, if you want to check
the fields of the colour graphics port associated with a window, you must coerce the pointer to the
GrafPort record into a pointer to a CGrafPort record.

Drawing with Different Foreground Colours

If your application uses the Palette Manager, it should set the foreground and background colours with
the Palette Manager routines PmForeColor and PmBackColor. Otherwise, you application should use
Color QuickDraw's RGBForeColor and RGBBackColor routines.

To specify a foreground colour, create an RGBColor record and use that record as the RGBForeColor
parameter in the call, for example:

RGBColor darkBlue;
...
darkBlue.red = 0x0000;
darkBlue.green = 0x0000;
darkBlue.blue = 0x9999;

RGBForeColor(&darkBlue);

RGBForeColor supplies the rgbFgColor field of the CGrafPort record with this record, and it places the
closest available match in the fgColor field. The colour in the fgColor field is the colour actually used
as the foreground colour.

RGBForeColor and RGBBackColor also work in basic graphics ports created in System 7.

Drawing and Filling with Pixel Patterns

If you wish to draw with a colour other than the foreground colour, you can give the graphics pen a
pixel pattern using PenPixPat. To fill shapes with pixel patterns, you can use FillCRect,
FillCRoundRect, FillCOval, FillCArc, FillCPoly, and FillCRgn.3

You define a pixel pattern in a 'ppat' resource. To retrieve the pixel pattern stored in the 'ppat'
resource, you use the GetPixPat function. The handle to a pixPat data structure returned by GetPixPat
may then be used in a call to PenPixPat to assign the pattern to the pen.

The following is an example of the use of pixel patterns for painting and filling:

Rect theRect;
PixPatHandle penPattern,fillPattern;
...
penPattern = GetPixPat(128);
PenPixPat(penPattern);
SetRect(&theRect,20,20,70,70);
PaintRect(&theRect);
DisposePixPat(penPattern);

fillPattern = GetPixPat(129);
SetRect(&theRect,90,20,140,70);
FillCRect(&theRect,fillPattern);
DisposePixPat(fillPattern);

Using Bit Patterns in Colour Graphics Ports

When you use basic QuickDraw's PenPat and BackPat routines in a colour graphics port, Color
QuickDraw constructs a pixel pattern equivalent to the bit pattern you specify to PenPat and BackPat.
The resulting pen pattern and background pattern use the graphics port's current foreground and
background colours.

3Note that, because a pixel pattern already contains colour, Color QuickDraw ignores the foreground and background colours when your
application draws with a pixel pattern.

11-10 Color QuickDraw

Boolean Pattern Modes with Colour Pixels

Pattern modes apply to the drawing of lines and shapes. When you use pattern modes in pixel maps
with depths greater than 1 bit, Color QuickDraw uses the foreground and background colour when
transferring bit patterns. For example, the patCopy mode applies the foreground colour to every
destination pixel that corresponds to a black pixel in a bit pattern, and it applies the background colour
to every destination pixel that corresponds to a white pixel in a bit pattern.

When your application draws with a pixel pattern, Color QuickDraw ignores the pattern mode and
simply transfers the pattern to the pixel map without regard to the foreground and background
colours.

Copying Pixels Between Colour Graphics Ports

Color QuickDraw provides extra capabilities for the CopyBits, CopyMask, and CopyDeepMask image-
processing routines described at Chapter 10 — Basic QuickDraw. In basic QuickDraw, CopyBits,
CopyMask, and CopyDeepMask are used to copy bit images between two basic graphics ports. In Color
QuickDraw, you can also use these routines to copy pixel images between two colour graphics ports.
In addition, the masks used by CopyMask and CopyDeepMask may be another pixel map whose pixels
indicate proportionate weights of the colours for the source and destination pixels.

Distinguishing Between Bit Maps and Pixel Maps

CopyBits, CopyMask, and CopyDeepMask expect a pointer to a bitmap in their source and destination
parameters. Accordingly, when you use these routines to copy pixel images between colour graphics
ports, you must coerce each port's CGrafPtr data type to a GrafPtr data type, dereference the portBits
fields of each and then pass these "bitmaps" in the srcBits and dstBits parameters. For example, if
your application copies a pixel image from a colour graphics port called, say, myColourPort, you could
specify (GrafPtr) (myColourPort)->portBits in the srcBits parameter.

All this works because:

• In a CGrafPort record, the two high bits of the portVersion field are always set.

• These bits in a GrafPort record are the two high bits in portBits.rowBytes field, which are
always clear.

• By looking at these bits, CopyBits, CopyMask, and CopyDeepMask can establish that you have
passed the routines a handle to a pixel map rather than the base address of a bitmap.

CopyMask

With CopyMask, you supply a pixel map to act as the copying mask. The values of pixels in the mask act
as weights that proportionally select between source and destination pixel values.

On indexed devices, pixel images are always copied using the colour table of the source PixMap record
for source colour information, and using the colour table of the current GDevice record for destination
colour information. The colour table attached to the destination PixMap is ignored.

When the PixMap record for the mask is 1 bit deep, it has the same effect as a bitmap mask, that is, a
black bit in the mask means that the destination pixel will take the colour of the source pixel and a
white bit in the mask means that the destination pixel is to retain its current colour. When masks have
PixMap records with pixel depths greater than 1, Colour QuickDraw takes a weighted average between
the colours in the source and destination PixMap records. Within each pixel, the calculation is done in
RGB colour, on a colour component basis. As an example, a red mask (that is, one with high values for
the red components of all pixels) filters out red values coming from the source pixel image.

Color QuickDraw 11-11

Boolean Source Modes with Colour Pixels

When you use CopyBits, CopyMask, and CopyDeepMask to transfer images between pixel maps with
depths greater than 1 bit, Color QuickDraw performs the Boolean transfer operations as follows:

Source Mode Action On Destination Pixel
If source pixel is black If source pixel is white If source pixel is any other colour

srcCopy Apply foreground colour Apply background colour Apply weighted portions of
foreground and background colours

notSrcCopy Apply background colour Apply foreground colour Apply weighted portions of
foreground and background colours

srcOr Apply foreground colour Leave alone Apply weighted portions of
foreground colour

notSrcOr Leave alone Apply foreground colour Apply weighted portions of
foreground colour

srcXor Invert (undefined for
coloured destination pixel)

Leave alone Leave alone

notSrcXor Leave alone Invert (undefined for
coloured destination pixel)

Leave alone

srcBic Apply background colour Leave alone Apply weighted portion background
colour

notSrcBic Leave alone Apply background colour Apply weighted portion background
colour

In general, with pixel images, you will probably want to use srcCopy mode or one of the arithmetic
transfer modes (see below).

Because Color QuickDraw uses the foreground and background colours, instead of black and white,
when performing its Boolean source operations, the following effects are produced:

• The notSrcCopy mode reverses the foreground and background colours.

• Drawing into a white background with a black foreground always reproduces the source image,
regardless of the pixel depth.

• Drawing is faster if the foreground colour is black when you use srcOr and notSrcOr modes.

• If the background colour is white when you use the srcBic mode, the black portions of the
source are erased, resulting in white in the destination pixel map.

Applying a foreground colour other than black or a background colour other than white to the pixel
can produce an unexpected result. For consistent results, set the foreground colour to black and the
background colour to white before using CopyBits, CopyMask, or CopyDeepMask. (That said, using
RGBForeColor and RGBBackColor to set foreground and background colours to something other than
black or white can achieve some interesting colouration effects.)

Dithering

You can use dithering with CopyBits and CopyDeepMask. Dithering is a technique used by these
routines to mix existing colours together to create the illusion of a third colour that may be unavailable
on an indexed device, and to improve images that you shrink when copying them from a direct device
to an indexed device.

You can add dithering to any source mode by adding the following constant, or the value it represents,
to the source mode:

ditherCopy = 64 // Add to source mode for dithering.

If you specify a destination rectangle that is smaller than the source rectangle when using CopyBits,
CopyMask, CopyDeepMask on an direct device, Color QuickDraw automatically uses an averaging
technique to produce the destination pixels, maintaining high-quality images when shrinking them.

11-12 Color QuickDraw

On indexed devices, Color QuickDraw averages these pixels only when you explicitly specify
dithering.

Dithering has drawbacks. Firstly, it slows the drawing operation. Secondly, a clipped dithering
operation does not provide pixel-for-pixel equivalence to the same unclipped dithering operation.

Arithmetic Transfer Modes

In addition to the Boolean transfer modes, Color QuickDraw offers a set of transfer modes that perform
arithmetic operations on the values of the red, green and blue components of the source and
destination pixels. Although rarely used by applications, these arithmetic transfer modes produce
predictable results on indexed devices because they work with RGB colours rather than with colour
table indexes. The arithmetic transfer modes are as follows:

Constant Value Description
blend 32 Replace destination pixel with a blend of the source and destination pixel colours. If the

destination is a bitmap or 1-bit pixel image, revert to srcCopy mode.

addPin 33 Replace destination pixel with the sum of the source and destination pixel colours up to a
maximum allowable value. If the destination is a bitmap or 1-bit pixel image, revert to srcBic
mode.

addOver 34 Replace destination pixel with the sum of the source and destination pixel colours, but if the
value of the red, green or blue component exceeds 65,536, then subtract 65,536 from that value.
If the destination is a bitmap or 1-bit pixel image, revert to srcXor mode.

subPin 35 Replace destination pixel with the difference of the source and destination pixel colours, but
not less than a minimum allowable value. If the destination is a bitmap or 1-bit pixel image,
revert to srcOr mode.

transparent 36 Replace the source and destination pixel with the source pixel if the source pixel is not equal to
the background colour.

addMax 37 Compare the source and destination pixels, and replace the destination pixel with the colour
containing the greater saturation of each of the RGB components. If the destination is a bitmap
or 1-bit pixel image, revert to srcBic mode.

subOver 38 Replace destination pixel with the difference of the source and destination pixel colours, but if
the value of the red, green or blue is less than 0, add the negative result to 65,536. If the
destination is a bitmap or 1-bit pixel image, revert to srcXor mode.

adMin 39 Compare the source and destination pixels, and replace the destination pixel with the colour
containing the lesser saturation of each of the RGB components. If the destination is a bitmap
or 1-bit pixel image, revert to srcOr mode

You can use the arithmetic modes for both drawing and image transfer operations, that is, your
application can pass them in parameters to PenMode and TextMode as well as CopyBits and
CopyDeepMask.

Highlighting

When using basic QuickDraw, you can use InvertRect, or any other image-copying routine that uses
the srcXor source mode, to invert objects on the screen. Inverting simply reverses the colours of all
pixels within the specified rectangle. Although this procedure can also be used on colour pixels in
colour graphics ports, the results are predictable only with direct pixels or 1-bit pixel maps.
Accordingly, with Color QuickDraw, you should use highlighting, rather than inverting, when
selecting and deselecting objects such as text or graphics.

TextEdit, for example, uses highlighting to indicate selected text. If the highlight colour is blue,
TextEdit draws the selected text, then uses InvertRgn to produce a blue background for the text.

The system highlight colour, which can be changed by the user using the Colour control panel, is
stored in a low memory global represented by the symbolic name HiliteRGB. It can be retrieved using
LMGetHiliteRGB. Basic graphics ports use this colour as the highlight colour. In the case of a colour
graphics port, you can override the default colour using HiliteColor. (Note that the current colour is
copied to the rgbHiliteColor field of the GrafVars record, a handle to which is stored in the grafVars
field of the CGrafPort record.)

Color QuickDraw 11-13

Color QuickDraw implements highlighting by replacing the background colour with the highlight
colour. Another low memory global, represented by the symbolic name HiliteMode, contains a byte
which represents the current highlight mode. One bit in that byte, represented by the constant
pHiliteBit, is used to toggle the background and highlight colours.

Color QuickDraw resets the highlight bit after performing each drawing operation, so your application
should always clear the highlight bit immediately before calling InvertRgn (or any of the other drawing
or image-copying routine that uses the patXor or srcXor transfer mode.) The highlight mode can be
retrieved and set using LMGetHiliteMode and LMSetHiliteMode, and BitClr may be used to clear the
highlight bit:

UInt8 hiliteMode;
...
hiliteMode = LMGetHiliteMode();
BitClr(&hiliteMode,pHiliteBit);
LMSetHiliteMode(hiliteMode);

Another way to use highlighting is to add this constant or its value to the mode you specify to the
PenMode, CopyBits, CopyDeepMask and TextMode routines:

hilite = 50 // Add to source or pattern mode for highlighting.

Color QuickDraw and Text

When drawing text using Color QuickDraw, the following information, in addition to that in Chapter
10 — Basc QuickDraw, is relevant:

• As previously stated, there is an additional text-related field in the colour graphics port record
(the chExtra field. The value in this field may be changed using CharExtra.

• The arithmetic transfer modes apply to the drawing of text as well as other forms of graphics.

• When the default transfer mode (srcOr) is used, the colour of the glyph is determined by the
foreground colour.

• The non-standard text drawing transfer mode grayishTextOr (which is useful for displaying
disabled user interface items) produces a blend of the foreground and background colours on a
colour destination device.

Main Color QuickDraw Constants, Data Types and Routines

Constants

Checking for Color QuickDraw and its Features

gestalt8BitQD = 0x100 8-bit Color QuickDraw.
gestalt32BitQD = 0x200 32-bit Color QuickDraw.
gestalt32BitQD11 = 0x210 32-bit Color QuickDraw v1.1.
gestalt32BitQD12 = 0x220 32-bit Color QuickDraw v1.2.
gestalt32BitQD13 = 0x230 System 7: 32-bit Color QuickDraw v1.3.
gestaltQuickDrawFeatures = 'qdrw' Gestalt selector for Color QuickDraw features.
gestaltHasColor = 0 Color QuickDraw is present
gestaltHasDeepGWorlds = 1 GWorlds deeper than 1 bit.
gestaltHasDirectPixMaps = 2 PixMaps can be direct - 16 or 32 bits.
gestaltHasGrayishTextOr = 3 Supports text mode grayishTextOr.

Arithmetic Transfer Modes

blend = 32
addPin = 33
addOver = 34
subPin = 35
transparent = 36

11-14 Color QuickDraw

addMax = 37
subOver = 38
adMin = 39
ditherCopy = 64

Highlighting

hilite = 50
hiliteBit = 7
pHiliteBit = 0

Resource ID of 'clut' Resource for Default QuickDraw Colours

defQDColors = 127

Pixel Type

RGBDirect = 16 16 and 32 bits-per-pixel pixelType value.

Data Types

typedef unsigned char PixelType;

CGrafPort

struct CGrafPort
{

short device; // Device-specific information.
PixMapHandle portPixMap; // Handle to pixel map.
short portVersion; // Flags.
Handle grafVars; // Handle to additional colour fields.
short chExtra; // Extra widthe added to non-space characters.
short pnLocHFrac; // Fractional horizontal pen position.
Rect portRect; // Port rectangle.
RgnHandle visRgn; // Visible region.
RgnHandle clipRgn; // Clipping region.
PixPatHandle bkPixPat; // background pattern
RGBColor rgbFgColor; // RGB components of fg
RGBColor rgbBkColor; // RGB components of bk
Point pnLoc; // Pen location.
Point pnSize; // Pen size.
short pnMode; // Pattern mode.
PixPatHandle pnPixPat; // Pen pattern.
PixPatHandle fillPixPat; // Fill pattern.
short pnVis; // Pen visibility.
short txFont; // Font number for text.
Style txFace; // Text font style.
SInt8 filler;
short txMode; // Text source mode.
short txSize; // Font size for text.
Fixed spExtra; // Extra width added to space charcaters.
long fgColor; // Actual foreground colour.
long bkColor; // Actual background colour.
short colrBit; // Colour bit (reserved).
short patStretch; // (Used internally.)
Handle picSave; // Picture being saved. (Used internally.)
Handle rgnSave; // Region being saved. (Used internally.)
Handle polySave; // Polygon being saved. (Used internally.)
CQDProcsPtr grafProcs; // Pointer to low-level drawing routines.

};

typedef struct CGrafPort CGrafPort,*CGrafPtr;
typedef CGrafPtr CWindowPtr;

PixMap

struct PixMap
{

Ptr baseAddr; // Pointer to image data.
short rowBytes; // Flags, and bytes in a row.
Rect bounds; // Boundary rectangle.
short pmVersion; // Pixel Map version number.
short packType; // Packing format.
long packSize; // Size of data in packed state.

Color QuickDraw 11-15

Fixed hRes; // Horizontal resolution in dots per inch.
Fixed vRes; // Vertical resolution in dots per inch.
short pixelType; // Format of pixel image.
short pixelSize; // Physical bits per pixel.
short cmpCount; // Number of components in each pixel.
short cmpSize; // Number of bits in each component.
long planeBytes; // Offset to next plane.
CTabHandle pmTable; // Handle to a colour table for this image.
long pmReserved; // (Reserved.)

};

typedef struct PixMap PixMap,*PixMapPtr,**PixMapHandle;

GrafVars

struct GrafVars
{

RGBColor rgbOpColor; // Color for addPin, subPin and average.
RGBColor rgbHiliteColor; // Color for highlighting.
Handle pmFgColor; // Palette handle for foreground color.
short pmFgIndex; // Index value for foreground.
Handle pmBkColor; // Palette handle for background color.
short pmBkIndex; // Index value for background.
short pmFlags; // Flags for Palette Manager.

};

typedef struct GrafVars GrafVars,*GVarPtr,**GVarHandle;

ColorSpec

struct ColorSpec
{

short value; // Index or other value.
RGBColor rgb; // True color.

};

typedef struct ColorSpec ColorSpec;
typedef ColorSpec *ColorSpecPtr;
typedef ColorSpec CSpecArray[1];

ColorTable

struct ColorTable
{

long ctSeed; // Unique identifier for table.
short ctFlags; // High bit: 0 = PixMap; 1 = device.
short ctSize; // Number of entries in CTTable.
CSpecArray ctTable; // Array of ColorSpec.

};

typedef struct ColorTable ColorTable,*CTabPtr,**CTabHandle

PixPat

struct PixPat
{

short patType; // Type of pattern.
PixMapHandle patMap; // Pattern's pixMap.
Handle patData; // Pixmap's data.
Handle patXData; // Expanded Pattern data.
short patXValid; // Flags whether expanded Pattern valid.
Handle patXMap; // Handle to expanded Pattern data.
Pattern pat1Data; // Old-Style pattern/RGB color.

};

typedef struct PixPat PixPat,*PixPatPtr,**PixPatHandle;

RGBColor

struct RGBColor
{

unsigned short red; // Magnitude of red component.
unsigned short green; // Magnitude of green component.
unsigned short blue; // Magnitude of blue component.

};

11-16 Color QuickDraw

typedef struct RGBColor RGBColor,*RGBColorPtr,**RGBColorHdl;

Routines

Opening and Closing Colour Graphics Ports

void OpenCPort(CGrafPtr port);
void InitCPort(CGrafPtr port);
void CloseCPort(CGrafPtr port);

Managing a Colour Graphics Pen

void PenPixPat(PixPatHandle pp);

Changing the Background Pixel pattern

void BackPixPat(PixPatHandle pp);

Drawing with Color QuickDraw Colours

void RGBForeColor(const RGBColor *color);
void RGBBackColor(const RGBColor *color);
void SetCPixel(short h,short v,const RGBColor *cPix);
void FillCRect(const Rect *r,PixPatHandle pp);
void FillCOval(const Rect *r,PixPatHandle pp);
void FillCRoundRect(const Rect *r,short ovalWidth,short ovalHeight,PixPatHandle pp);
void FillCArc(const Rect *r,short startAngle,short arcAngle,PixPatHandle pp);
void FillCRgn(RgnHandle rgn,PixPatHandle pp);
void FillCPoly(PolyHandle poly,PixPatHandle pp);
void OpColor(const RGBColor *color);
void HiliteColor(const RGBColor *color);

Determining Current Colours and Best Intermediate Colours

void GetForeColor(RGBColor *color);
void GetBackColor(RGBColor *color);
void GetCPixel(short h,short v,RGBColor *cPix);
Boolean GetGray(GDHandle device,const RGBColor *backGround,RGBColor *foreGround);

Creating, Setting and Disposing of Pixel Maps

PixMapHandle NewPixMap(void);
void CopyPixMap(PixMapHandle srcPM,PixMapHandle dstPM);
void SetPortPix(PixMapHandle pm);
void DisposePixMap(PixMapHandle pm);

Creating and Disposing of Pixel Patterns

PixPatHandle GetPixPat(short patID);
PixPatHandle NewPixPat(void);
void CopyPixPat(PixPatHandle srcPP,PixPatHandle dstPP);
void MakeRGBPat(PixPatHandle pp,const RGBColor *myColor);
void DisposePixPat(PixPatHandle pp);

Creating and Disposing of Colour Tables

CTabHandle GetCTable(short ctID);
void DisposeCTable(CTabHandle cTable);

Retrieving Color QuickDraw Result Codes

short QDError(void);

Getting and Setting the Highlight Colour and HighLight Mode (Defined in LowMem.h)

void LMGetHiliteRGB(RGBColor *hiliteRGBValue);
void LMSetHiliteRGB(const RGBColor *hiliteRGBValue);
UInt8 LMGetHiliteMode(void);
void LMSetHiliteMode(UInt8 value);

Color QuickDraw 11-17

Demonstration Program
// ##1

// ColorQuickDraw.c2

// ##3

//4

// This program:5

//6

// • Opens a window in which the results of various basic Color QuickDraw drawing7

// operations are displayed.8

//9

// Individual drawing operations are selected from a pull-down menu titled10

// "Demonstration".)11

//12

// • Quits when the user selects Quit from the File menu or clicks the window's close13

// box.14

//15

// The program utilises the following resources:16

//17

// • An 'MBAR' resource and associated 'MENU' resources (preload, non-purgeable).18

//19

// • 'WIND' resources (purgeable) (initially visible) for the main window, and for small20

// windows used for the CopyDeepMask and Transfer Modes demonstrations.21

//22

// • An 'ALRT' resource and associated 'DITL' resource (purgeable).23

//24

// • Three 'PICT' resources (purgeable).25

//26

// • Two 'pltt' resources (purgeable).27

//28

// • Two 'ppat' resources (purgeable).29

//30

// • A 'STR#' resource (purgeable).31

//32

// ##33

34

// ……… includes35

36

#include <Fonts.h>37

#include <Menus.h>38

#include <TextEdit.h>39

#include <Dialogs.h>40

#include <SegLoad.h>41

#include <ToolUtils.h>42

#include <Devices.h>43

#include <Palettes.h>44

#include <QDOffscreen.h>45

#include <LowMem.h>46

#include <Gestalt.h>47

#include <Resources.h>48

49

// …… defines50

51

#define mApple 12852

#define mFile 12953

#define iQuit 1154

#define mDemonstration 13155

#define iBitPattern 156

#define iPixelPattern 257

#define iCopyDeepMask 358

#define iTransferModes 459

#define iHighlighting 560

#define iColorTable 661

#define rWindow 12862

#define rImageWindow 12963

#define rMenubar 12864

#define rAlert 12865

#define rIndexedStrings 12866

#define rPaletteBaseID 12867

#define rPixelPattern1 12868

#define rPixelPattern2 12969

#define rPicture 12870

#define sColorQuickdraw 171

#define sSettingMonitor 272

#define sNeedMonitor 373

#define sRestoringMonitor 474

11-18 Color QuickDraw

75

#define MAXLONG 0x7FFFFFFF76

77

// ……… global variables78

79

Boolean gDone;80

WindowPtr gWindowPtr;81

RGBColor gWhiteColour;82

RGBColor gBlackColour;83

RGBColor gOchreColour;84

RGBColor gGreenColour;85

86

// …… function prototypes87

88

void main (void);89

void doInitManagers (void);90

void doEvents (EventRecord *);91

void doMouseDown (EventRecord *);92

void doMenuChoice (SInt32);93

void doDemonstrationMenu (SInt16);94

void doRGBColours (void);95

void doBitPattern (void);96

void doPixelPattern (void);97

void doCopyDeepMask (void);98

void doTransferModes (void);99

void doHighlighting (void);100

void doColourTable (void);101

SInt16 doCheckMonitor (void);102

void doRestoreMonitor (SInt16);103

104

// ### main105

106

void main(void)107

{108

OSErr osErr;109

SInt32 response;110

Str255 alertString;111

Handle menubarHdl;112

MenuHandle menuHdl;113

EventRecord eventRec;114

Boolean gotEvent;115

116

// …… initialise managers117

118

doInitManagers();119

120

// …… check for Color QuickDraw121

122

osErr = Gestalt(gestaltQuickdrawVersion,&response);123

if(response < gestalt8BitQD)124

{125

GetIndString(alertString,rIndexedStrings,sColorQuickdraw);126

ParamText(alertString,NULL,NULL,NULL);127

StopAlert(rAlert,NULL);128

ExitToShell();129

}130

131

// …… set up menu bar and menus132

133

if(!(menubarHdl = GetNewMBar(rMenubar)))134

ExitToShell();135

SetMenuBar(menubarHdl);136

DrawMenuBar();137

138

if(!(menuHdl = GetMenuHandle(mApple)))139

ExitToShell();140

else141

AppendResMenu(menuHdl,'DRVR');142

143

// …… open window144

145

if(!(gWindowPtr = GetNewCWindow(rWindow,NULL,(WindowPtr)-1)))146

ExitToShell();147

148

SetPort(gWindowPtr);149

150

TextSize(10);151

Color QuickDraw 11-19

152

// …… create some RGB colours153

154

doRGBColours();155

156

// …… eventLoop157

158

gDone = false;159

160

while(!gDone)161

{162

gotEvent = WaitNextEvent(everyEvent,&eventRec,MAXLONG,NULL);163

if(gotEvent)164

doEvents(&eventRec);165

}166

}167

168

// ### doInitManagers169

170

void doInitManagers(void)171

{172

MaxApplZone();173

MoreMasters();174

175

InitGraf(&qd.thePort);176

InitFonts();177

InitWindows();178

InitMenus();179

TEInit();180

InitDialogs(NULL);181

182

InitCursor();183

FlushEvents(everyEvent,0);184

}185

186

// ### doEvents187

188

void doEvents(EventRecord *eventRecPtr)189

{190

WindowPtr windowPtr;191

SInt8 charCode;192

193

windowPtr = (WindowPtr) eventRecPtr->message;194

195

switch(eventRecPtr->what)196

{197

case mouseDown:198

doMouseDown(eventRecPtr);199

break;200

201

case keyDown:202

case autoKey:203

charCode = eventRecPtr->message & charCodeMask;204

if((eventRecPtr->modifiers & cmdKey) != 0)205

doMenuChoice(MenuKey(charCode));206

break;207

208

case updateEvt:209

BeginUpdate(windowPtr);210

EndUpdate(windowPtr);211

break;212

}213

}214

215

// ## doMouseDown216

217

void doMouseDown(EventRecord *eventRecPtr)218

{219

WindowPtr windowPtr;220

SInt16 partCode;221

222

partCode = FindWindow(eventRecPtr->where,&windowPtr);223

224

switch(partCode)225

{226

case inMenuBar:227

doMenuChoice(MenuSelect(eventRecPtr->where));228

11-20 Color QuickDraw

break;229

230

case inSysWindow:231

SystemClick(eventRecPtr,windowPtr);232

break;233

234

case inContent:235

if(windowPtr != FrontWindow())236

SelectWindow(windowPtr);237

break;238

239

case inDrag:240

DragWindow(windowPtr,eventRecPtr->where,&qd.screenBits.bounds);241

break;242

243

case inGoAway:244

if(TrackGoAway(windowPtr,eventRecPtr->where) == true)245

gDone = true;246

break;247

}248

}249

250

// ### doMenuChoice251

252

void doMenuChoice(SInt32 menuChoice)253

{254

SInt16 menuID, menuItem;255

Str255 itemName;256

SInt16 daDriverRefNum;257

258

menuID = HiWord(menuChoice);259

menuItem = LoWord(menuChoice);260

261

if(menuID == 0)262

return;263

264

switch(menuID)265

{266

case mApple:267

GetMenuItemText(GetMenuHandle(mApple),menuItem,itemName);268

daDriverRefNum = OpenDeskAcc(itemName);269

break;270

271

case mFile:272

if(menuItem == iQuit)273

gDone = true;274

break;275

276

case mDemonstration:277

doDemonstrationMenu(menuItem);278

break;279

}280

281

HiliteMenu(0);282

}283

284

// ## doDemonstrationMenu285

286

void doDemonstrationMenu(SInt16 menuItem)287

{288

switch(menuItem)289

{290

case iBitPattern:291

doBitPattern();292

break;293

294

case iPixelPattern:295

doPixelPattern();296

break;297

298

case iCopyDeepMask:299

doCopyDeepMask();300

break;301

302

case iTransferModes:303

doTransferModes();304

break;305

Color QuickDraw 11-21

306

case iHighlighting:307

doHighlighting();308

break;309

310

case iColorTable:311

doColourTable();312

break;313

}314

}315

316

// ### doRGBColours317

318

void doRGBColours(void)319

{320

gWhiteColour.red = 0xFFFF;321

gWhiteColour.green = 0xFFFF;322

gWhiteColour.blue = 0xFFFF;323

324

gBlackColour.red = 0x0000;325

gBlackColour.green = 0x0000;326

gBlackColour.blue = 0x0000;327

328

gOchreColour.red = 0xCCCC;329

gOchreColour.green = 0x71FC;330

gOchreColour.blue = 0x6A28;331

332

gGreenColour.red = 0x460D;333

gGreenColour.green = 0xCCCC;334

gGreenColour.blue = 0x6BE2;335

}336

337

// ### doBitPattern338

339

void doBitPattern(void)340

{341

SInt16 a;342

PaletteHandle paletteHdl;343

Rect theRect;344

Pattern sysPattern;345

Str255 string;346

347

for(a=0;a<2;a++)348

{349

paletteHdl = GetNewPalette(rPaletteBaseID + a);350

SetPalette(gWindowPtr,paletteHdl,true);351

352

PmBackColor(2);353

FillRect(&(gWindowPtr->portRect),&qd.white);354

355

SetRect(&theRect,10,30,245,150);356

PenSize(10,20);357

GetIndPattern(&sysPattern,sysPatListID,16);358

PenPat(&sysPattern);359

PmForeColor(35);360

PmBackColor(229);361

FrameRect(&theRect);362

363

OffsetRect(&theRect,245,0);364

GetIndPattern(&sysPattern,sysPatListID,37);365

PenPat(&sysPattern);366

PmForeColor(229);367

PmBackColor(210);368

PaintRect(&theRect);369

370

OffsetRect(&theRect,-245,130);371

GetIndPattern(&sysPattern,sysPatListID,18);372

PmForeColor(210);373

PmBackColor(11);374

FillRoundRect(&theRect,50,50,&sysPattern);375

376

OffsetRect(&theRect,245,0);377

GetIndPattern(&sysPattern,sysPatListID,19);378

PmForeColor(1);379

PmBackColor(0);380

FillOval(&theRect,&sysPattern);381

382

11-22 Color QuickDraw

MoveTo(10,20);383

PmForeColor(1);384

DrawString("\pForeground & background colours set with PmForeColor & PmBackColor");385

NumToString((SInt32) a+1,string);386

DrawString("\p Palette No ");387

DrawString(string);388

389

if(a == 0)390

{391

SetWTitle(gWindowPtr,"\pClick mouse for another palette");392

while(!Button()) ;393

DisposePalette(paletteHdl);394

}395

}396

397

SetWTitle(gWindowPtr,"\pColor QuickDraw");398

DisposePalette(paletteHdl);399

PenPat(&qd.black);400

}401

402

// ### doPixelPattern403

404

void doPixelPattern(void)405

{406

PixPatHandle pixpat1Hdl, pixpat2Hdl;407

Rect theRect;408

RgnHandle oldClipHdl, regionAHdl, regionBHdl, regionCHdl, scrollRegionHdl;409

SInt16 a;410

411

RGBBackColor(&gWhiteColour);412

FillRect(&(gWindowPtr->portRect),&qd.white);413

414

if(!(pixpat1Hdl = GetPixPat(rPixelPattern1)))415

ExitToShell();416

PenPixPat(pixpat1Hdl);417

PenSize(50,0);418

SetRect(&theRect,15,15,240,280);419

FrameRect(&theRect);420

SetRect(&theRect,260,15,485,280);421

FillCRect(&theRect,pixpat1Hdl);422

423

if(!(pixpat2Hdl = GetPixPat(rPixelPattern2)))424

ExitToShell();425

BackPixPat(pixpat2Hdl);426

427

regionAHdl = NewRgn();428

regionBHdl = NewRgn();429

regionCHdl = NewRgn();430

SetRect(&theRect,65,15,190,280);431

RectRgn(regionAHdl,&theRect);432

SetRect(&theRect,260,15,485,280);433

RectRgn(regionBHdl,&theRect);434

UnionRgn(regionAHdl,regionBHdl,regionCHdl);435

436

oldClipHdl = NewRgn();437

GetClip(oldClipHdl);438

SetClip(regionCHdl);439

440

SetRect(&theRect,65,15,485,280);441

442

scrollRegionHdl = NewRgn();443

444

for(a=0;a<280;a++)445

{446

ScrollRect(&theRect,0,1,scrollRegionHdl);447

theRect.top ++;448

}449

450

SetRect(&theRect,65,15,485,280);451

BackPixPat(pixpat1Hdl);452

453

for(a=0;a<280;a++)454

{455

ScrollRect(&theRect,0,-1,scrollRegionHdl);456

theRect.bottom --;457

}458

459

Color QuickDraw 11-23

SetClip(oldClipHdl);460

461

DisposePixPat(pixpat1Hdl);462

DisposePixPat(pixpat2Hdl);463

DisposeRgn(oldClipHdl);464

DisposeRgn(regionBHdl);465

DisposeRgn(regionCHdl);466

DisposeRgn(regionCHdl);467

DisposeRgn(scrollRegionHdl);468

469

PenPat(&qd.black);470

}471

472

// ### doCopyDeepMask473

474

void doCopyDeepMask(void)475

{476

WindowPtr sourceWindowPtr;477

PicHandle picture1Hdl,picture2Hdl;478

Rect sourceRect, maskRect, destRect, maskDisplayRect;479

CGrafPtr windowPortPtr;480

GDHandle deviceHdl;481

GWorldPtr gworldPortPtr;482

PixMapHandle gworldPixMapHdl;483

RgnHandle regionHdl;484

SInt32 finalTicks;485

486

RGBForeColor(&gBlackColour);487

RGBBackColor(&gWhiteColour);488

FillRect(&(gWindowPtr->portRect),&qd.white);489

490

if(!(sourceWindowPtr = GetNewCWindow(rImageWindow,NULL,(WindowPtr)-1)))491

ExitToShell();492

SetPort(sourceWindowPtr);493

494

if(!(picture1Hdl = GetPicture(rPicture)))495

ExitToShell();496

HNoPurge((Handle) picture1Hdl);497

SetRect(&sourceRect,10,10,167,122);498

DrawPicture(picture1Hdl,&sourceRect);499

HPurge((Handle) picture1Hdl);500

501

SetRect(&maskRect,0,0,157,112);502

GetGWorld(&windowPortPtr,&deviceHdl);503

NewGWorld(&gworldPortPtr,0,&maskRect,NULL,NULL,0);504

SetGWorld(gworldPortPtr,NULL);505

gworldPixMapHdl = GetGWorldPixMap(gworldPortPtr);506

LockPixels(gworldPixMapHdl);507

EraseRect(&(gworldPortPtr->portRect));508

if(!(picture2Hdl = GetPicture(rPicture+1)))509

ExitToShell();510

HNoPurge((Handle) picture2Hdl);511

DrawPicture(picture2Hdl,&maskRect);512

SetGWorld(windowPortPtr,deviceHdl);513

514

SetPort(gWindowPtr);515

SetRect(&maskDisplayRect,19,165,176,277);516

DrawPicture(picture2Hdl,&maskDisplayRect);517

HPurge((Handle) picture2Hdl);518

MoveTo(43,160);519

DrawString("\pCopy of offscreen mask");520

521

SetRect(&destRect,220,20,470,275);522

regionHdl = NewRgn();523

OpenRgn();524

FrameOval(&destRect);525

CloseRgn(regionHdl);526

527

PenSize(1,1);528

PenPat(&qd.ltGray);529

FrameRgn(regionHdl);530

MoveTo(315,150);531

DrawString("\pThe region");532

533

SetWTitle(sourceWindowPtr,"\pClick Mouse to Copy");534

while(!Button()) ;535

FillRect(&destRect,&qd.white);536

11-24 Color QuickDraw

537

CopyDeepMask(&((GrafPtr) sourceWindowPtr)->portBits,538

 &((GrafPtr) gworldPortPtr)->portBits,539

 &((GrafPtr) gWindowPtr)->portBits,540

 &sourceRect,&maskRect,&destRect,srcCopy+ditherCopy,regionHdl);541

542

SetWTitle(sourceWindowPtr,"\pClick Mouse to Close");543

Delay(60,&finalTicks);544

545

while(!Button()) ;546

FillRect(&(gWindowPtr->portRect),&qd.white);547

548

UnlockPixels(gworldPixMapHdl);549

DisposeGWorld(gworldPortPtr);550

551

ReleaseResource((Handle) picture1Hdl);552

ReleaseResource((Handle) picture2Hdl);553

DisposeRgn(regionHdl);554

DisposeWindow(sourceWindowPtr);555

556

PenPat(&qd.black);557

}558

559

// ## doTransferModes560

561

void doTransferModes(void)562

{563

SInt16 monitorCheckResult, transferMode, stringIndex;564

WindowPtr sourceWindowPtr;565

PicHandle sourceHdl, destinationHdl;566

Rect sourceRect, destRect, blankRect;567

Str255 modeString;568

SInt32 finalTicks;569

570

if(!(monitorCheckResult = doCheckMonitor()))571

return;572

573

RGBForeColor(&gBlackColour);574

RGBBackColor(&gWhiteColour);575

FillRect(&(gWindowPtr->portRect),&qd.white);576

577

if(!(sourceWindowPtr = GetNewCWindow(rImageWindow,NULL,(WindowPtr)-1)))578

ExitToShell();579

SetWTitle(sourceWindowPtr,"\pSource Image");580

581

SetPort(sourceWindowPtr);582

if(!(sourceHdl = GetPicture(rPicture)))583

ExitToShell();584

HNoPurge((Handle) sourceHdl);585

SetRect(&sourceRect,10,10,167,122);586

DrawPicture(sourceHdl,&sourceRect);587

HPurge((Handle) sourceHdl);588

589

SetPort(gWindowPtr);590

if(!(destinationHdl = GetPicture(rPicture+2)))591

ExitToShell();592

HNoPurge((Handle) destinationHdl);593

SetRect(&destRect,19,165,176,277);594

DrawPicture(destinationHdl,&destRect);595

MoveTo(55,160);596

DrawString("\pDestination Image");597

598

SetRect(&destRect,270,95,427,207);599

DrawPicture(destinationHdl,&destRect);600

SetRect(&blankRect,270,50,427,207);601

602

for(transferMode=0,stringIndex=5;transferMode<40;transferMode++,stringIndex++)603

{604

if(transferMode == 8)605

transferMode = 32;606

607

GetIndString(modeString,rIndexedStrings,stringIndex);608

MoveTo(270,70);609

DrawString("\pClick Mouse for ");610

DrawString(modeString);611

612

while(!Button()) ;613

Color QuickDraw 11-25

614

FillRect(&blankRect,&qd.white);615

DrawPicture(destinationHdl,&destRect);616

Delay(30,&finalTicks);617

618

CopyBits(&((GrafPtr) sourceWindowPtr)->portBits,619

 &((GrafPtr) gWindowPtr)->portBits,620

 &sourceRect,&destRect,transferMode + ditherCopy,NULL);621

622

MoveTo(270,92);623

if(transferMode < 8)624

DrawString("\pBoolean mode: ");625

else626

DrawString("\pArithmetic mode: ");627

DrawString(modeString);628

Delay(60,&finalTicks);629

}630

631

MoveTo(270,70);632

DrawString("\pClick Mouse to exit");633

while(!Button()) ;634

635

FillRect(&(gWindowPtr->portRect),&qd.white);636

637

ReleaseResource((Handle) sourceHdl);638

ReleaseResource((Handle) destinationHdl);639

DisposeWindow(sourceWindowPtr);640

641

if(monitorCheckResult != 2)642

doRestoreMonitor(monitorCheckResult);643

}644

645

// ### doHighlighting646

647

void doHighlighting(void)648

{649

RGBColor oldHighlightColour;650

SInt16 a;651

Rect theRect;652

UInt8 hiliteVal;653

SInt32 finalTicks;654

655

RGBBackColor(&gWhiteColour);656

657

FillRect(&(gWindowPtr->portRect),&qd.white);658

659

LMGetHiliteRGB(&oldHighlightColour);660

661

for(a=0;a<3;a++)662

{663

MoveTo(20,a*80+40);664

DrawString("\pClearing the highlight bit and calling InvertRect.");665

Delay(60,&finalTicks);666

SetRect(&theRect,10,a * 80 + 20,490,a * 80 + 80);667

668

hiliteVal = LMGetHiliteMode();669

BitClr(&hiliteVal,pHiliteBit);670

LMSetHiliteMode(hiliteVal);671

672

if(a == 1)673

HiliteColor(&gOchreColour);674

else if(a == 2)675

HiliteColor(&gGreenColour);676

InvertRect(&theRect);677

678

MoveTo(20,a*80+55);679

Delay(60,&finalTicks);680

DrawString("\pClick mouse to unhighlight. ");681

DrawString("\p(Note: The call to InvertRect reset the highlight bit ...");682

683

while(!Button()) ;684

685

MoveTo(20,a*80+70);686

DrawString("\p... so we clear the highlight bit again before calling InvertRect.)");687

Delay(60,&finalTicks);688

689

LMSetHiliteMode(hiliteVal);690

11-26 Color QuickDraw

InvertRect(&theRect);691

}692

693

HiliteColor(&oldHighlightColour);694

Delay(60,&finalTicks);695

MoveTo(20,260);696

DrawString("\pOriginal highlight colour has been reset.");697

}698

699

// ## doColourTable700

701

void doColourTable(void)702

{703

PixMapHandle pixMapHdl;704

CTabHandle colorTableHdl;705

SInt16 entries, a, b, c = 0;706

Rect theRect;707

RGBColor theColour;708

709

RGBForeColor(&gBlackColour);710

FillRect(&(gWindowPtr->portRect),&qd.black);711

712

pixMapHdl = ((CGrafPtr) gWindowPtr)->portPixMap;713

colorTableHdl = (*pixMapHdl)->pmTable;714

entries = (*colorTableHdl)->ctSize;715

716

if(entries == 0)717

{718

RGBForeColor(&gWhiteColour);719

MoveTo(90,135);720

DrawString("\pYou need to set the monitor to 256 colours or less to get some");721

MoveTo(90,150);722

DrawString("\pentries in the colour table. At present, we have zero entries.");723

}724

725

for(a=12;a<463;a+=30)726

for(b=5;b<276;b+=18)727

{728

if(c > entries)729

break;730

SetRect(&theRect,a,b,a+28,b+17);731

theColour = (*colorTableHdl)->ctTable[c++].rgb;732

RGBForeColor(&theColour);733

PaintRect(&theRect);734

}735

}736

737

// ### doCheckMonitor738

739

SInt16 doCheckMonitor(void)740

{741

GDHandle mainDeviceHdl;742

Boolean result;743

Str255 alertString;744

PixMapHandle pixMapHdl;745

SInt16 pixelDepth;746

747

mainDeviceHdl = LMGetMainDevice();748

result = HasDepth(mainDeviceHdl,16,0,0);749

750

if(result == 0)751

{752

GetIndString(alertString,rIndexedStrings,sNeedMonitor);753

ParamText(alertString,NULL,NULL,NULL);754

NoteAlert(rAlert,NULL);755

return(0);756

}757

else758

{759

pixMapHdl = (**mainDeviceHdl).gdPMap;760

pixelDepth = (**pixMapHdl).pixelSize;761

if(pixelDepth < 16)762

{763

GetIndString(alertString,rIndexedStrings,sSettingMonitor);764

ParamText(alertString,NULL,NULL,NULL);765

NoteAlert(rAlert,NULL);766

SetDepth(mainDeviceHdl,16,0,0);767

Color QuickDraw 11-27

return(pixelDepth);768

}769

return(2);770

}771

}772

773

// ### doRestoreMonitor774

775

void doRestoreMonitor(SInt16 monitorCheckResult)776

{777

Str255 alertString;778

GDHandle mainDeviceHdl;779

780

GetIndString(alertString,rIndexedStrings,sRestoringMonitor);781

ParamText(alertString,NULL,NULL,NULL);782

NoteAlert(rAlert,NULL);783

784

mainDeviceHdl = LMGetMainDevice();785

SetDepth(mainDeviceHdl,monitorCheckResult,0,0);786

}787

788

// ##789

Demonstration Program Comments
When this program is run, the user should invoke demonstrations of various Color QuickDraw
drawing operations by choosing items from the Demonstration menu. One demonstration (Transfer
Modes) will not be invoked unless the user's machine is capable of displaying at least 16-bit
colour.

#define

Lines 52-61 establish constants related to menu IDs and item numbers. Lines 62-70 establish
constants related to resource IDs. The constants at Lines 71-74 are used to index the 'STR#'
resource. Line 76 defines MAXLONG as the maximum possible long value. This value will be
assigned to WaitNextEvent's sleep parameter.

Global Variables

gDone controls program termination. gWindowPtr will be assigned a pointer to the main window.
The remaining globals will be assigned RGB colour values for black, white, ochre and green.

main

The main function initialises the system software managers (Line 119) and then checks whether
the Color QuickDraw is available (Lines 123-124). If it is not, Lines 126-129 invoke a Stop
alert advising the user that the program requires Color QuickDraw. When the user clicks the
OK button, the program terminates.

Lines 134-142 set up the menus.

Line 147 opens the main window. Since GetNewCWindow is used, the window will be created with a
colour graphics port.

Line 149 sets this window's colour graphics port as the current port for drawing and Line 151
sets the text size to 10 points.

Line 155 calls the application-defined routine doRGBColours to assign colour values to the
global variables declared at Lines 82-85.

The main event loop is entered at Line 161. It terminates when gDone is set to true.

Note that here, as in other areas of the program, error handling is somewhat rudimentary: the
program simply terminates.

doEvents and doMouseDown

doEvents and doMouseDown perform minimal event handling consistent with the satisfactory
operation of the drawing aspects of the demonstration.

11-28 Color QuickDraw

doMenuChoice and doDemonstrationMenu

doMenuChoice and doDemonstrationMenu handle menu choices from the Apple, File and
Demonstration menus.

doRGBColours

doRGBColours assigns colours to the global variables declared at Lines 82-85.

doBitPattern

doBitPattern is the first demonstration. It demonstrates the use of bit patterns in Color
QuickDraw. It also demonstrates the use of palettes and Palette Manager routines to specify
colours.

Note that, as is the case with all drawing demonstration functions in this program, some of
the code is related to program execution (for example, delays, setting the window title,
waiting for mouse clicks before proceeding, etc.) and not to drawing operations per se. Those
parts of the code will generally be disregarded in the following comments.

Line 348 initiates a loop which will cycle twice. The first time through, some shapes will be
drawn using one palette's colours. The second time through, the same shapes will be drawn
using the same colour index numbers, but with another palette.

Line 350 retrieves a palette from a 'pltt' resource, allocating and initialising a new Palette
data structure. Line 351 applies that palette's values to the specified window.

Line 353 uses the Palette Manager routine PmBackColor to set the background colour, and Line
354 fills the port rectangle with that colour.

Lines 358-362 retrieve one of the system patterns, set the pen pattern to that pattern, set
the foreground and background colours to particular values, and draw a framed rectangle.
Lines 365-381 change the pen pattern and colours between painting a rectangle, filling a round
rectangle and filling an oval.

At Line 394, and during the first passage through the loop only, the memory occupied by the
Palette data structure is deallocated. When the loop repeats, a second palette's values will
be applied to the window (Lines 350-351). The memory occupied by the second Palette data
structure is deallocated at Line 399.

doPixelPattern

doPixelPattern demonstrates pixel patterns. A framed and a filled rectangle are drawn. The
ScrollRect routine is then used to scroll the foreground out of the rectangles, replacing the
scrolled areas with a background pixel pattern, the drawing associated with the scrolling
being restricted by a clipping region comprising two separate rectangles.

Lines 412-413 set all pixels in the port rectangle to white.

At Line 415-417, a pixel pattern is retrieved from a 'ppat' resource and assigned to the pen.
A framed rectangle is then drawn (Line 420). Note that the pen height is set to zero (Line
418), meaning that the two sides of the rectangle will be drawn but not the top and bottom.

Lines 421-422 draw a filled rectangle using the retrieved pixel pattern. Note that, under
Color QuickDraw, the FillCRect, not the FillRect routine is used.

At Line 424, a new pixel pattern is retrieved from another 'ppat' resource. At Line 426, this
new pixel pattern becomes the background pattern.

Lines 428-435 create a region comprising two separate rectangles (one coincident with the
"inside" of the framed rectangle and the other coincident with the whole of the filled
rectangle). The current clipping region is then saved and the newly created region is
established as the clipping region (Lines 437-439).

Line 441 establishes a rectangle for the ScrollRect routine. Laterally, this extends from the
left inside of the framed rectangle to the right hand side of the filled rectangle. Line 443
creates the empty region required by the ScrollRect call.

Lines 445-449 scroll the rectangle downwards, the top of the rectangle being incremented
downwards between calls to ScrollRect. ScrollRect fills the "vacated" areas within the
clipping region with the background pattern .

Lines 451-452 reset the rectangle and change the background pattern to the first pattern. The
scrolling operation is then repeated, this time in an upwards direction (Lines 454-458).

Color QuickDraw 11-29

Line 460 resets the clipping region to the region saved at Line 438. Lines 462-468 deallocate
the memory associated with the pixel patterns and regions.

doCopyDeepMask

doCopyDeepMask demonstrates the CopyDeepMask routine. A 16-bit source picture in one pixel
map is copied through a 16-bit mask in another (offscreen) pixel map to a destination. The
resulting image is scaled up and clipped to an oval-shaped region.

Firstly, at Lines 487-488, the foreground and background colours are set to black and white
respectively. (This should always be done before a call to CopyBits, CopyMask or
CopyDeepMask.) The window's port is then cleared to white.

Line 491 opens a small window, which will be used for the source image. Lines 493-500 set the
current port to this window's port, retrieve the source picture from a 'PICT' resource and
draw the picture in the window. (Since the 'PICT' resource has the purgeable bit set, it is
made non-purgeable immediately after it is retrieved, used immediately, and made purgeable
immediately after it is used.)

The mask pixel map cannot come from the screen. Accordingly, Lines 502-512 create an
offscreen graphics world, retrieve from a resource the picture to be used as the mask, and
draw the picture in the offscreen graphics port. (Note: Offscreen graphics world are
addressed at Chapter 12 - Offscreen Graphics Worlds, Pictures, Cursors and Icons. The code
here is "bare bones" and does not check for errors.)

Lines 515-518 set the drawing graphics port to the main window, draws the mask image in the
main window (simply so that the user can see what it looks like) and makes the associated
'PICT' resource purgeable now that it has been used for the last time.

Lines 522-526 create an oval-shaped region. So that the user can see this otherwise invisible
region, its outline is drawn in the main window at Lines 528-532.

When the user clicks the mouse button (Line 535), CopyDeepMask is called (Line 538). Note the
coercion to a GrafPtr in the first three parameters, the source mode specified (srcCopy +
ditherCopy) and the region specified in the last parameter.

When the user again clicks the mouse button (Line 546), the window is cleared to white, the
offscreen graphics world is disposed of (Lines 547-550), memory associated with the pictures
and the region is deallocated (Lines 552-554), and the small source window is disposed of
(Line 555).

doTransferModes

doTransferModes demonstrates the Boolean and arithmetic transfer modes. At each click of the
user's mouse, a 16-bit source image is copied from one graphics port to another, overwriting
an image in the destination port. Each time the image is copied (using CopyBits), the
transfer mode is changed.

Firstly, at Line 571, a check is made of the user's display device. If the device is not
capable of displaying at least 16-bit colour, the function is exited (Line 572) following
doCheckMonitor's advice to the user via an Alert box. If the device is capable of displaying
at least 16-bit colour, but is currently set to 256 colours or less, doCheckMonitor will reset
the device's pixel depth to 16, advising the user of this action via an Alert box.

Since CopyBits will be called, Lines 574-575 set the foreground and background colours to
black and white respectively. Line 576 clears the window to white.

Line 578 opens a small window for the source image. Lines 583-588 retrieve a picture from a
'PICT' resource and draw the picture in the small window. (Since the 'PICT' resource is
purgeable, it is made non-purgeable immediately it is retrieved, used immediately, and
immediately made purgeable again.) Lines 591-595 retrieve another picture from a 'PICT'
resource and draw it into the bottom left of the main window. Lines 599-600 draw the same
picture in the right-middle of the main window. (The first draw is simply to continually
display to the user the appearance of the "destination" image. The second draw is the actual
destination to which the source pixel image will be copied.)

Lines 603-630 establish a loop which will be traversed once for each of the Boolean and
arithmetic transfer modes, with each traverse being initiated by the user clicking the mouse
button. The name of the transfer mode invoked during each traverse is printed in the window.

When the user clicks the mouse button (Line 613), the destination image is re-drawn in the
right-middle of the display window (Line 616). CopyBits is then called at Line 619 to copy
the source pixel image to the destination. Note that the transfer mode specified in this call
is changed every time around the loop.

11-30 Color QuickDraw

When the loop exits and the user responds to a request for a terminating click of the mouse
button (Lines 633-634), the port rectangle is filled with the background colour (Line 636),
memory associated with the pictures is deallocated (Lines 638-639), and the small window is
disposed of (Line 640).

If Line 571 resulted in the program resetting the device's pixel depth, Lines 642-643 reset
the device to the old pixel depth saved at Line 571.

doHighlighting

doHighlighting demonstrates highlighting, first with the colour set by the user in the Colour
control panel, and then with two colours set by the program.

Firstly, at Line 660, the current higlight colour is retrieved.

Line 662 then initiates a loop which will be traversed three times. On the second and third
traverses, the highlight colour will be changed.

Within the loop, at Lines 669-671, a copy of the value at the low memory global HiliteMode is
acquired, BitClr is called to clear the highlight bit, and HiliteMode is set to this new
value. At Lines 673-676, the highlight colour is changed if this is the second or third time
around the loop. With the highlight bit cleared, InvertRect is called at Line 677 to invert a
specified rectangle.

Note that the call to InvertRect (Line 677) resets the highlight bit. Accordingly, when the
user clicks the mouse button (Line 684), the highlight bit is cleared once again (Lines 690-
691) before InvertRect is called once again. This second call restores the colour in the
specified rectangle to the background colour.

Before the doHighLighting function returns, it sets the highlight colour (Line 694) to the
original highlight colour saved at Line 660.

doColourTable

doColourTable draws small rectangles in the window, one for each of the entries in the current
colour table. The trail to those entries, which are stored in an array, is from the CGrafPort
record to the PixMap record to the ColorTable record, and thence to each of the ColorSpec
records in the ctTable field (an array of type CSpecArray) of that ColorTable record.

Note that there will be no entries in the colour table unless the device has been set to 256
colours or less at some time during the current session.

Line 713 retrieves the handle to the PixMap record from the colour graphics port record. Line
714 gets the handle to the ColorTable record. Line 715 retrieves the number of entries in the
colour table.

If the colour table contains no entries (Line 717), a message is drawn in the window advising
the user that the monitor needs to be set to 256 colours in order to view a colour table
(Lines 718-724).

The loop entered at Line 726 draws a rectangle for each array element in the ctTable field of
the ColorTable record. The variable c, which is incremented each time around the loop until
it is greater than the number of colour table entries, controls the exit from loop (Lines 729-
730). The variable c also controls which RGBColor entry in the colour table is assigned as
the foreground colour each time through the loop (Lines 732-733).

doCheckMonitor

doCheckMonitor checks if the user's main display device can display at least 16-bit direct
colour. If it cannot, the function informs the user via a dialog box and returns. If it can,
but if the pixel depth is currently set to a value lower than 16, the pixel depth is set to 16
after the user is informed of this imminent action via an Alert box. If the pixel depth is
currently at least 16, the function simply returns.

Line 748 gets a handle to the startup device. Line 749 checks whether the device supports a
pixel depth of 16. Lines 751-757 deal with the case of a device which does not support direct
colour.

The next step, if we are dealing with a direct device (Line 758), is to check the current
pixel depth setting. The method used here is to extract this value from the pixelSize field
of the PixMap record (Lines 760-761). If the value is less than 16 (Line 762), an advisory
Alert box is called up (Lines 764-766), SetDepth is called at Line 767 to set the device to a
pixel depth of 16, and the old pixel depth is returned to the calling function (Line 768).

Color QuickDraw 11-31

If the pixel depth is already at least 16, Line 770 simply returns a positive value to the
calling function, no action having been taken by doCheckMonitor.

doCheckMonitor

If doCheckMonitor changed the pixel depth of the user's display device, doRestoreMonitor is
called to return that device to the pixel depth setting prior to doCheckMonitor being called.
This value is passed to doRestoreMonitor as a formal parameter, having been passed to the
calling function at Line 768 of the doCheckMonitor function.

Lines 781-783 first notify the user of the intended action via an Alert box. Lines 785-786
effect the change.

Creating 'pltt' and 'ppat' Resources Using ResEdit

Creating 'pltt' Resources

The procedure for creating the two 'pltt' resources is as follows:

• Open BasicQuickDraw.µ.rsrc in ResEdit. Choose Resource/Create New Resource. A small
dialog opens. Click the pltt item in the scrolling list, and then click the dialog's OK button. The
pltts from ColorQuickDraw.µ.rsrc window opens, followed by the pltt ID = 128 from
ColorQuickDraw.µ.rsrc window. (ResEdit automatically assigns 128 as the resource ID of the
first 'pltt' resource you create.) Note that the palette is currently empty.

• Choose pltt/Load Colors…. A dialog opens. Click on the pltt radio button. Click on the items
in the list to explore the palettes. Click on the item ResEdit Standard Colors and click the OK
button. The dialog closes and the palette appears in the pltt ID = 128 from
ColorQuickDraw.µ.rsrc window. Before clicking the go-away box to close that window, note the
following:

• When you click a single colour patch, you can change its value by typing new numbers
into the Red, Green, and Blue editable text items, or by clicking the up and down arrows.

• You can create a colour ramp by Shift-clicking two colour patches to create a selection and
then choosing pltt/Blend.

• Other pltt menu items enable you to complement a colour and change the colour model
from Red/Green/Blue to Cyan/Magenta/Yellow, Hue/Saturation/Brightness, or
Hue/Lightness/Saturation.4

• Resource menu items are available for inserting a new colour and opening the colour
picker. Background menu items enable you to change the background to black, white, or
gray.

• Click the go-away box to close the pltt ID = 128 from ColorQuickDraw.µ.rsrc window. Choose
Resource/Create New Resource. The pltt ID = 129 from ColorQuickDraw.µ.rsrc window
opens. (ResEdit automatically increments the resource ID.)

• Choose pltt/Load Colors… . A dialog opens. This time, click on the clut radio button.5 Click on
the items in the list to explore the cluts. Click on the first item Unnamed and click the OK button.
A dialog appears advising you that 'pltt' resources must always have white and black as the
first two entries. Click the OK button. The dialog closes and the palette appears in the pltt ID =
129 from ColorQuickDraw.µ.rsrc window.

4Colour models are explained at Chapter 22 — Miscellany.
5'clut' and 'pltt' resources are largely interchangeable, but the 'pltt' resource also contains usage information. Palettes are associated
with windows.

11-32 Color QuickDraw

• Close the the pltt ID = 129 from ColorQuickDraw.µ.rsrc window. Close the pltts from
ColorQuickDraw.µ.rsrc window. A pltt icon representing the resources just created appears in
the ColorQuickDraw.µ.rsrc window.

Creating 'ppat' Resources

The procedure for creating the two 'ppat' resources is as follows:

• Choose Resource/Create New Resource. A small dialog opens. Click the ppat item in the
scrolling list, and then click the dialog's OK button. The ppats from ColorQuickDraw.µ.rsrc
window opened, followed by the ppat ID = 128 from ColorQuickDraw.µ.rsrc window. (ResEdit
automatically assigns 128 as the resource ID of the first 'ppat' resource you create.)

• Choose ppat/Pattern Size… . In the resulting dialog, click on the box representing the desired
pixel pattern size, then click the Resize button.

• Back in the ppat ID = 128 from ColorQuickDraw.µ.rsrc window, use the drawing tools provided
to draw the pixel pattern in the centre box. Then close the ppat ID = 128 from
ColorQuickDraw.µ.rsrc window.

• Choose Resource/Create New Resource. The ppat ID = 129 from ColorQuickDraw.µ.rsrc
window opens. (ResEdit automatically increments the resource ID.) Repeat the previous two
steps to create the pixel pattern, then close the ppat ID = 129 from ColorQuickDraw.µ.rsrc
window.

Close the ppats from ColorQuickDraw.µ.rsrc window. A pltt icon representing the resources just
created appears in the ColorQuickDraw.µ.rsrc window. Close the ColorQuickDraw.µ.rsrc window,
saving ColorQuickDraw.µ.rsrc.

	Introduction
	RGB Colours
	The Colour Drawing Environment - Colour Graphics Ports
	Differences Between a CGrafPort Record and a GrafPort Record
	Pixel Maps
	Field Descriptions

	Translation of RGB Colours to Pixel Values
	Derivation of Pixel Values on Indexed Devices
	Derivation of Pixel Values on Direct Devices
	Colours on Grayscale Screens

	Pixel Patterns
	Pen Pixel Pattern
	Fill Pixel Pattern
	Background Pixel Pattern
	Creating Pseudo Colours With Pixel Patterns

	Testing For the Existence of Color QuickDraw
	Working with Color QuickDraw
	Creating Colour Graphics Ports
	Drawing with Different Foreground Colours
	Drawing and Filling with Pixel Patterns
	Using Bit Patterns in Colour Graphics Ports
	Boolean Pattern Modes with Colour Pixels

	Copying Pixels Between Colour Graphics Ports
	Distinguishing Between Bit Maps and Pixel Maps
	CopyMask
	Boolean Source Modes with Colour Pixels
	Dithering

	Arithmetic Transfer Modes

	Highlighting
	Color QuickDraw and Text
	Main Color QuickDraw Constants, Data Types and Routines
	Demonstration Program
	Demonstration Program Comments
	Creating 'pltt' and 'ppat' Resources Using ResEdit
	Creating 'pltt' Resources
	Creating 'ppat' Resources

