
Scrap 16-1

16Version 1.1

SCRAP
Includes Demonstration Program ScrapPascal

The Scrap Manager and the Desk Scrap

Introduction

For each open application, the Scrap Manager maintains a storage area to hold the last data cut or
copied by the user. This area is called the scrap or, sometimes, the desk scrap. The desk scrap can
reside in memory or on disk. All applications which support cut, copy, and paste operations write data
to, and read data from, the desk scrap. Typically, that data relates to text, graphics, sounds, or movies.

Your application specifies the format, or formats, in which data is written to, and read from, the desk
scrap. Your application should write that data using the so-called standard formats (in addition to any
other format it might specify), since this ensures that a user can copy and paste data between
documents created by your application and other applications as well as within and between
documents created by your application. The ultimate aim is to allow the user to:

• Copy and paste data within a document created by your application.

• Copy and paste data between different documents created by your application.

• Copy and paste data between documents created by your application and documents created by
other applications.

Scrap Data Formats

Standard Formats

Your application must be capable of writing at least one of the following standard formats to the scrap
and should be capable of reading both:

• 'TEXT', that is, a series of ASCII characters.

• 'PICT', that is, a QuickDraw picture.

Optional Formats

Your application may also choose to support the following optional scrap format types:

• 'snd ', that is, a series of bytes which define a sound, and which have the same format as a 'snd
' resource.

• 'movv', that is, a series of bytes which define a movie, and which have the same format as a
'movv' resource.

16-2 Scrap

• 'styl', that is, a series of bytes which have the same format as a TextEdit 'styl' resource, and
which describe styled text data.

Private Formats

It is also possible for your application to use its own private format, or formats, but this should be in
addition to one of the standard formats.

Location of the Desk Scrap and Getting Information About the Scrap

Location of the Desk Scrap

System software allocates space in each application's heap for the desk scrap and allocates a handle to
reference the scrap. The system global variable Scraphandle contains a handle to the desk scrap of the
current process.

When system software launches an application, it copies the data from the scrap of the previously
active application into the application heap of the newly active application. If the scrap is too large to
fit in the application's application heap, system software copies the scrap to disk and sets the value of
the handle to the scrap in the application's heap to NULL to indicate that the scrap is on disk.

Getting Information About the Desk Scrap

To get information about the scrap, you can use InfoScrap, which returns a pointer to a scrap
information record, which is defined by the data type ScrapStuff. The information in the scrap
information record includes:

• The size, in bytes, of the scrap.

• A handle to the scrap (if it is in memory).

• The location of the scrap (memory or disk).

• The filename of the scrap when it is on disk.

Using the Desk Scrap - Implementing Edit Menu Commands

You use the Edit menu Cut, Copy, and Paste commands to implement cutting, copying, and pasting of
data within or between documents. The following are the actions your application should perform to
support these three commands:

Edit Command Actions Performed by Your Application
Cut If there is a current selection range, copy the data in the selection range to the desk scrap

and remove the data from the document.

Copy If there is a current selection range, copy the data in the selection range to the desk scrap.

Paste Read the desk scrap and insert the data (if any) at the insertion point, replacing any current
selection.1

Note that, if your application implements a Clear command, it should remove the data in the current
selection range but should not save the data to the desk scrap.

Cut and Copy — Putting Data in the Scrap

A typical approach to implementing the Cut and Copy commands is as follows:

• Determine whether the frontmost window is a document window or a dialog box.

1The insertion point in a text document is represented by the blinking vertical bar known as the caret. There is a close relationship between the
selection range and the insertion point in that the insertion point is, in effect, an empty selection range.

Scrap 16-3

• If the frontmost window is a document window:

• Call an application-defined function which determines whether the current selection
contains text or whether it contains graphics.

• Get a pointer to the selection range data and get the selection length.

• Call ZeroScrap to purge the current contents of the desk scrap.

• Call PutScrap to write the data to the scrap, specifying 'TEXT' or 'PICT', as appropriate,
as the format type.

• If the command was the Cut command, delete the selection from the current document.

• If the frontmost window is a dialog box, use the Dialog Manager routines DialogCut or
DialogCopy, as appropriate, to write the selected data to the scrap.

Paste - Getting Data From the Scrap

When the user chooses the Paste command, your application should paste the data last cut or copied
by the user. Your application gets the data to paste by reading the data from the desk scrap.

When you read the data from the scrap, your application should request the data in the application's
preferred format type. If your application determines that that format does not exist in the scrap, it
should then request the data in another format. If your application does not have a preferred format
type, it should read each format type that your application supports.

If you request a scrap format that is not in the scrap, the Scrap Manager uses the Translation Manager
to convert any one of the scrap format types currently in the scrap into the scrap format requested by
your application. The Translation Manager looks in the Extensions folder for a translator that can
perform one of these translations. If such a translator is available, the Translation Manager uses the
translator to translate the data in the scrap into the requested format type.

A typical approach, for an application that prefers a data format other than 'TEXT' or 'PICT' as its first
preference, is as follows:

• Determine whether the frontmost window is a document window or a dialog box.

• If the frontmost window is a document window:

• Call GetScrap to search the scrap for the preferred format type. (If you specify a NULL
handle as the location to which to return the data, GetScrap does not return the data but
does return as its function result the number of bytes (if any) of data in the specified
format that exists in the scrap. Thus, if GetScrap returns a non-positive value, data of that
format type does not exist.)

• If data of the specified format does exist, allocate a handle to hold the data from the scrap
and call GetScrap again to read in the data in that format. (GetScrap automatically resizes
the handle passed to it to the required size.)

• If the scrap does not contain data of the preferred format type, repeat the above process
specifying 'TEXT' as the format type in the calls to GetScrap. If this is not successful,
repeat the process again specifying 'PICT' as the format type.

• Paste the data to the current document.

• If the frontmost window is a dialog box, use the Dialog Manager routine DialogPaste to paste
the text from the scrap in the dialog.

16-4 Scrap

Example

Fig 1 illustrates two cases, both of which deal with a user copying a picture consisting of text from a
source document created by one application to a destination document created by another application.

In the first case, the source application has chosen to write only the 'PICT' format to the desk scrap,
and the destination application has pasted the data to its document in that format.

In the second case, the source application has chosen to write both the 'PICT' and the 'TEXT' formats to
the desk scrap, and the destination application has chosen the 'TEXT' format as the preferred format for
the paste. The data is thus inserted into the document as editable text.

FIG 1 - SPECIFYING FORMATS TO WRITE TO AND READ FROM THE DESK SCRAP

CASE 1 - SOURCE APPLICATION WRITES 'PICT' FORMAT ONLY

Costly thy habit as thy purse can buy,
But not express'd in fancy; rich not gaudy;
For the apparel oft proclaims the man,
And they in France of the bext rank and station
Are of the most select and generous chief in that.

Neither a borrower nor a lender be

For loan oft loses both itself and friend,
And borrowing dulls the edge of husbandry.
This above all: to thine own self be true,
And it must follow, as the night the day,
Thou canst not then be false to any man.

Costly thy habit as thy purse can buy,
But not express'd in fancy; rich not gaudy;
For the apparel oft proclaims the man,
And they in France of the bext rank and station
Are of the most select and generous chief in that.

CASE 2 : SOURCE APPLICATION WRITES 'TEXT' AND 'PICT' FORMATS, DESTINATION APPLICATION SPECIFIES 'TEXT' AS PREFERRED FORMAT FOR READ

Document created by source application Desk scrap Document created by destination application

Document created by source application Desk scrap Document created by destination application

The Clipboard

The Clipboard refers to what the user views as residing in the scrap. Your application can provide a
Show Clipboard command which, when chosen, should show a window which displays the current
contents of the desk scrap. Such a window is known as a Clipboard window. The Show Clipboard
command should be toggled with a Hide Clipboard command to allow the user to hide the Clipboard
window when required.

Although multiple scrap format types can reside in the desk scrap, applications which support a
Clipboard window typically display the data in one format only.

Transferring the Desk Scrap to Disk

Although the scrap is usually located in memory, your application can write the contents of the scrap in
memory to a scrap file using UnloadScrap. You should do this only if memory is not large enough to
hold the data you need to write to the scrap. After writing the contents of the scrap to disk,
UnloadScrap releases the memory previously occupied by the scrap. Thereafter, any operations your
application performs on data in the scrap affect the scrap as stored in the scrap file on disk. You can
use LoadScrap to read the contents of the scrap file back into memory.

Scrap 16-5

Private Scrap

As an alternative to writing to and reading from the desk scrap whenever the user cuts, copies and
pastes data, your application can choose to use its own private scrap. An application which uses a
private scrap copies data to its private scrap when the user chooses the Cut or Copy command and
pastes data from the private scrap when the user chooses the Paste command.

In addition, an application which uses a private scrap must take the following actions on receipt of
suspend and resume events:

• Suspend Event. On receipt of a suspend event, the data from the private scrap must be
copied to the desk scrap. If your application supports the Show Clipboard command, the
Clipboard window must be hidden if it is currently showing (because the contents of the scrap
may change while the application yields time to another application).

• Resume Event. On receipt of a resume event, your application must determine if the data in
the desk scrap has changed since the previous suspend event and, if so, copy the data from the
desk scrap to its private scrap either immediately or when the user next chooses the Paste
command. In addition, if your application supports the Show Clipboard command, and if the
data in the desk scrap has changed, your application must update the contents of the Clipboard
window.

Note that, when the contents of the desk scrap have changed since the last suspend event, system
software sets the convertClipboardFlag bit in the message field of the resume event record.

The process of copying data between an application's document, an application's private scrap, and the
desk scrap in response to suspend and resume events is shown diagrammatically at Fig 2.

FIG 2 - USING A PRIVATE SCRAP

APPLICATION USES
PRIVATE SCRAP

APPLICATION DOCUMENT APPLICATION PRIVATE SCRAP DESK SCRAP

ON SUSPEND EVENT,
APPLICATION COPIES
PRIVATE SCRAP TO
DESK SCRAP

ON RESUME EVENT, IF
CONTENTS OF DESK
SCRAP HAVE CHANGED,
APPLICATION COPIES
DESK SCRAP TO
PRIVATE SCRAP

APPLICATION USES
UPDATED SCRAP

WRITE

READ

WRITE

WRITE

READ

READ

16-6 Scrap

Copying Data Between Private Scrap and
the Desk Scrap

A typical approach to copying data between the private scrap and the desk scrap is as follows:

• Resume Event. When a resume event is received, and a check indicates that the contents of
the desk scrap have changed since the last suspend event:

• Call GetScrap, with nil passed as the destHandle parameter, to determine if the scrap
contains data in the 'PICT' format type. If data of that format type exists:

• Allocate a handle to hold the data from the scrap and call GetScrap again to read in
the data.

• Call an application-defined function to copy the data to the private scrap.

• Dispose of the handle.

• If data of the 'PICT' format type does not exist in the scrap, repeat this process specifying
'TEXT' as the data format type.

• Suspend Event. When a suspend event is received:

• Call an application-defined function which determines if there is any data in the private
scrap. If there is data in the private scrap, call ZeroScrap to empty the desk scrap.

• Create a non-relocatable block to receive the private scrap data.

• For each appropriate data format type:

• Determine if data in that format exists in the private scrap.

• If data in that format type exists in the private scrap, call an application-defined
function which gets the data from the private scrap into the nonrelocatable block.
Then call PutScrap to copy the data from the nonrelocatable block to the scrap.

• Dispose of the nonrelocatable block.

TextEdit, Dialog Boxes, and Scrap

TextEdit and Scrap

TextEdit is a collection of routines and data structures which you can use to provide your application
with basic text editing capabilities.

If your application uses TextEdit in its windows, be aware that TextEdit maintains its own private
scrap. Accordingly:

• PutScrap is not used and the special TextEdit routines TECut, TECopy, and TEToScrap are used in
the processes of cutting text from the document and copying text to the TextEdit private scrap
and to the desk scrap.

• GetScrap is not used and the special TextEdit routines TEPaste, TEStylePaste, and TEFromScrap
are used in the processes of pasting text from the TextEdit private scrap and copying text from
the desk scrap to the TextEdit private scrap.

Chapter 17 — Text and TextEdit describes TextEdit, including the TextEdit private scrap and the
TextEdit scrap-related routines.

Scrap 16-7

Dialog Boxes and Scrap

Dialog boxes may contain editable text items, and the Dialog Manager uses TextEdit to perform the
editing operations within those editable text items.

You can use the Dialog Manager to handle most editing operations within dialog boxes. The Dialog
Manager routines DialogCut, DialogCopy, and DialogPaste may be used to implement Cut, Copy, and
Paste commands within editable text items in dialog boxes. (See the demonstration program at
Chapter 6 — Dialogs and Alerts.)

TextEdit's private scrap facilitates the copying and pasting of data between dialog boxes. However,
your application must ensure that the user can copy and paste data between your application's dialog
boxes and its document windows. If your application uses TextEdit for all editing operations within its
document windows, this is easily achieved because TextEdit's TECut, TECopy, TEPaste, and
TEStylePaste routines and the Dialog Manager's DialogCut, DialogCopy, and DialogPaste routines all
use TextEdit's private scrap.

If your application does not use TextEdit for text handling within its document windows, and if it uses
a private scrap, then, when the user activates a dialog box, you should copy any data in your private
scrap to TextEdit's private scrap. Also, when a document window becomes active, and there is data in
TextEdit's private scrap, that data should be copied to your application's private scrap (or to the desk
scrap if your application does not use a private scrap).

Similarly, before displaying the Standard File Package's save dialog box, your application should copy
any text data in its private scrap to the desk scrap. The Standard File Package reads the data from the
desk scrap whenever the user chooses an editing operation and a standard file dialog box is active.
Accordingly, your application needs to put the text data (if any) from the last cut or copy in the desk
scrap before calling StandardPutFile.

Main Scrap Manager Data Types and Routines

Data Types

Scrap Information Record

type
ScrapStuff = record

scrapSize: longint;
scrapHandle: Handle;
scrapCount: integer;
scrapState: integer;
scrapName: StringPtr;

end;

PScrapStuff = ^ScrapStuff;
ScrapStuffPtr = PScrapStuff;

Routines

Getting Information About the Scrap

function InfoScrap: ScrapStuffPtr;

Writing Information to the Scrap

function ZeroScrap: longint;
function PutScrap(length: longint; theType: ResType; source: UNIV Ptr): longint;

Reading Information From the Scrap

function GetScrap(hDest: Handle; theType: ResType; var offset: longint): longint;

16-8 Scrap

Transferring the Scrap Between Memory and Disk

function UnloadScrap: longint;
function LoadScrap: longint;

Demonstration Program
{ ###1

// ScrapPascal.p2

// ##3

//4

// This program utilises the desk scrap and Scrap Manager routines to allow the user to:5

//6

// • Cut, copy and clear pictures from, and paste pictures to, two windows opened by the7

// program.8

//9

// • Paste pictures cut or copied from another application to the two windows opened10

// by the program.11

//12

// • Open and close a Clipboard window, in which the current contents of the desk scrap13

// are displayed.14

//15

// In addition to the pictures cut and copied from either the program's windows or from16

// another application's windows, the Clipboard window will display text copied to the17

// desk scrap as a result of text cut and copy operations in another application. The18

// program, however, does not support the pasting of this text to documents displayed in19

// the program's windows. (The demonstration program at Chapter 17 — Text and TextEdit20

// shows how to cut, copy and paste text from and to a TextEdit edit record using the21

// desk scrap.)22

//23

// The program utilises the following resources:24

//25

// • An 'MBAR' resource, and 'MENU' resources for Apple, File, and Edit menus (preload,26

// non-purgeable).27

//28

// • Three 'WIND' resources (purgeable) (initially visible), two for the program's main29

// windows and one for the Clipboard window.30

//31

// • A 'PICT' resource (non-purgeable) containing a picture which may be cut, copied,32

// and pasted between the windows.33

//34

// • An 'ALRT' resource (purgeable) and associated 'DITL' resource (purgeable) for use35

// by an error Alert.36

//37

// • A 'STR#' resource (purgeable) containing strings to be displayed in the error38

// Alert.39

//40

// • A 'SIZE' resource with the acceptSuspendResumeEvents, doesActivateOnFGcase, and41

// is32BitCompatible flags set.42

//43

// ### }44

45

program ScrapPascal(input, output);46

47

{ ……… include the following Universal Interfaces }48

49

uses50

51

Windows, Fonts, Menus, TextEdit, Quickdraw, Dialogs, QuickdrawText, Processes, Types,52

Memory, Events, TextUtils, ToolUtils, OSUtils, Devices, Scrap, SegLoad;53

54

{ ……… define the following constants }55

56

const57

58

mApple = 128;59

iAbout = 1;60

mFile = 129;61

iClose = 4;62

iQuit = 11;63

mEdit = 130;64

iCut = 3;65

iCopy = 4;66

iPaste = 5;67

Scrap 16-9

iClear = 6;68

iClipboard = 9;69

70

rMenubar = 128;71

rWindow = 128;72

rClipboardWindow = 130;73

rPicture = 128;74

rAlertBox = 128;75

rErrorStrings = 128;76

eFailMenu = 1;77

eFailWindow = 2;78

eFailDocRec = 3;79

eZeroScrap = 4;80

ePutScrap = 5;81

eNoPictInScrap = 6;82

83

kDocumentType = 1;84

kClipboardType = 2;85

86

{ ……… user defined types }87

88

type89

90

DocRec = record91

pictureHdl : PicHandle;92

selectFlag : boolean;93

windowType : integer;94

end;95

96

DocRecPtr = ^DocRec;97

DocRecHandle = ^DocRecPtr;98

99

{ ……… global variables }100

101

var102

103

gDone : boolean;104

gInBackground : boolean;105

gWindowPtrs : array[0..1] of WindowPtr;106

gClipboardWindowPtr : WindowPtr;107

gClipboardShowing : boolean;108

gMarqueePattern : Pattern;109

menubarHdl : Handle;110

menuHdl : MenuHandle;111

gotEvent : boolean ;112

theEvent : EventRecord;113

114

{ ### DoInitManagers }115

116

procedure DoInitManagers;117

118

begin119

MaxApplZone;120

MoreMasters;121

122

InitGraf(@qd.thePort);123

InitFonts;124

InitWindows;125

InitMenus;126

TEInit;127

InitDialogs(nil);128

129

InitCursor;130

FlushEvents(everyEvent, 0);131

end;132

{of procedure DoInitManagers}133

134

{ ### DoErrorAlert }135

136

procedure DoErrorAlert(errorCode : integer);137

138

var139

errorString : string;140

ignored : OSErr;141

142

begin143

GetIndString(errorString, rErrorStrings, errorCode);144

16-10 Scrap

ParamText(errorString, '', '', '');145

146

if (errorCode < ePutScrap) then147

begin148

ignored := StopAlert(rAlertBox, nil);149

ExitToShell;150

end151

else152

ignored := CautionAlert(rAlertBox, nil);153

end;154

{of procedure DoErrorAlert}155

156

{ ## DoOpenWindows }157

158

procedure DoOpenWindows;159

160

var161

a : integer;162

myWindowPtr : WindowPtr;163

docRecHdl : DocRecHandle;164

165

begin166

for a := 0 to 1 do167

begin168

myWindowPtr := GetNewWindow(rWindow + a, nil, WindowPtr(-1));169

if (myWindowPtr = nil) then170

DoErrorAlert(eFailWindow);171

gWindowPtrs[a] := myWindowPtr;172

173

docRecHdl := DocRecHandle(NewHandle(sizeof(DocRec)));174

if (docRecHdl = nil) then175

DoErrorAlert(eFailDocRec);176

SetWRefCon(myWindowPtr, longint(docRecHdl));177

178

docRecHdl^^.pictureHdl := nil;179

docRecHdl^^.windowType := kDocumentType;180

docRecHdl^^.selectFlag := false;181

end;182

183

SetPort(myWindowPtr);184

185

docRecHdl^^.pictureHdl := GetPicture(rPicture);186

end;187

{of procedure DoOpenWindows}188

189

{ ## DoSetDestRect }190

191

function DoSetDestRect(var picFrame : Rect; myWindowPtr : WindowPtr) : Rect;192

193

var194

destRect : Rect;195

diffX, diffY : integer;196

197

begin198

destRect := picFrame;199

200

OffsetRect(destRect, -(picFrame.left), -(picFrame.top));201

202

diffX := (myWindowPtr^.portRect.right - myWindowPtr^.portRect.left) -203

(picFrame.right - picFrame.left);204

diffY := (myWindowPtr^.portRect.bottom - myWindowPtr^.portRect.top) -205

(picFrame.bottom - picFrame.top);206

207

OffsetRect(destRect, diffX div 2, diffY div 2);208

209

DoSetDestRect := destRect;210

end;211

{of procedure DoSetDestRect}212

213

{ ## DoDrawPictureWindow }214

215

procedure DoDrawPictureWindow(myWindowPtr : WindowPtr);216

217

var218

oldPort : GrafPtr;219

destRect : Rect;220

docRecHdl : DocRecHandle;221

Scrap 16-11

222

begin223

GetPort(oldPort);224

SetPort(myWindowPtr);225

226

docRecHdl := DocRecHandle(GetWRefCon(myWindowPtr));227

destRect := DoSetDestRect(docRecHdl^^.pictureHdl^^.picFrame, myWindowPtr);228

229

DrawPicture(docRecHdl^^.pictureHdl, destRect);230

231

if (docRecHdl^^.selectFlag) then232

begin233

InsetRect(destRect, -2, -2);234

PenPat(gMarqueePattern);235

FrameRect(destRect);236

end;237

238

SetPort(oldPort);239

end;240

{of procedure DoDrawPictureWindow}241

242

{ ## DoDrawClipboardWindow }243

244

procedure DoDrawClipboardWindow;245

246

var247

oldPort : GrafPtr;248

sizeOfPictData, sizeOfTextData, scrapOffset : longint;249

tempHdl : Handle;250

destRect : Rect;251

252

begin253

GetPort(oldPort);254

SetPort(gClipboardWindowPtr);255

256

EraseRect(gClipboardWindowPtr^.portRect);257

258

MoveTo(0, 18);259

LineTo(505, 18);260

MoveTo(0, 20);261

LineTo(505, 20);262

263

TextFont(applFont);264

TextSize(9);265

MoveTo(4, 13);266

DrawString('Clipboard contents:');267

268

sizeOfPictData := GetScrap(nil, 'PICT', scrapOffset);269

if (sizeOfPictData > 0) then270

begin271

MoveTo(95, 13);272

DrawString('picture');273

274

tempHdl := NewHandle(Size(sizeOfPictData));275

HLock(tempHdl);276

277

sizeOfPictData := GetScrap(tempHdl, 'PICT', scrapOffset);278

279

destRect := PicHandle(tempHdl)^^.picFrame;280

OffsetRect(destRect, -(PicHandle(tempHdl)^^.picFrame.left - 2),281

-(PicHandle(tempHdl)^^.picFrame.top - 22));282

DrawPicture(PicHandle(tempHdl), destRect);283

284

HUnlock(tempHdl);285

DisposeHandle(tempHdl);286

end;287

288

sizeOfTextData := GetScrap(nil, 'TEXT', scrapOffset);289

if (sizeOfTextData > 0) then290

begin291

MoveTo(95, 13);292

DrawString('text');293

294

tempHdl := NewHandle(Size(sizeOfTextData));295

HLock(tempHdl);296

297

sizeOfTextData := GetScrap(tempHdl, 'TEXT', scrapOffset);298

16-12 Scrap

299

destRect := gClipboardWindowPtr^.portRect;300

destRect.top := destRect.top + 20;301

InsetRect(destRect, 2, 2);302

303

TETextBox(tempHdl^, sizeOfTextData, destRect, 0);304

305

HUnlock(tempHdl);306

DisposeHandle(tempHdl);307

end;308

309

SetPort(oldPort);310

end;311

{of procedure DoIdle}312

313

{ ### DoClipboardCommand }314

315

procedure DoClipboardCommand;316

317

var318

editMenuHdl : MenuHandle;319

docRecHdl : DocRecHandle;320

321

begin322

editMenuHdl := GetMenu(mEdit);323

324

if (gClipboardWindowPtr = nil) then325

begin326

gClipboardWindowPtr := GetNewWindow(rClipboardWindow, nil, WindowPtr(-1));327

if (gClipboardWindowPtr = nil) then328

DoErrorAlert(eFailWindow);329

330

docRecHdl := DocRecHandle(NewHandle(sizeof(DocRec)));331

if (docRecHdl = nil) then332

DoErrorAlert(eFailDocRec);333

SetWRefCon(gClipboardWindowPtr, longint(docRecHdl));334

docRecHdl^^.windowType := kClipboardType;335

336

gClipboardShowing := true;337

338

SetMenuItemText(editMenuHdl, iClipboard, 'Hide Clipboard');339

end340

341

else begin342

if (gClipboardShowing) then343

begin344

HideWindow(gClipboardWindowPtr);345

gClipboardShowing := false;346

SetMenuItemText(editMenuHdl, iClipboard, 'Show Clipboard');347

end348

else349

begin350

ShowWindow(gClipboardWindowPtr);351

gClipboardShowing := true;352

SetMenuItemText(editMenuHdl, iClipboard, 'Hide Clipboard');353

end;354

end;355

end;356

{of procedure DoClipboardCommand}357

358

{ ### DoClearCommand }359

360

procedure DoClearCommand;361

362

var363

myWindowPtr : WindowPtr;364

docRecHdl : DocRecHandle;365

oldPort : GrafPtr;366

367

begin368

myWindowPtr := FrontWindow;369

docRecHdl := DocRecHandle(GetWRefCon(myWindowPtr));370

371

GetPort(oldPort);372

SetPort(myWindowPtr);373

374

DisposeHandle(Handle(docRecHdl^^.pictureHdl));375

Scrap 16-13

docRecHdl^^.pictureHdl := nil;376

docRecHdl^^.selectFlag := false;377

EraseRect(myWindowPtr^.portRect);378

379

SetPort(oldPort);380

end;381

{of procedure DoClearCommand}382

383

{ ### DoPasteCommand }384

385

procedure DoPasteCommand;386

387

var388

myWindowPtr : WindowPtr;389

docRecHdl : DocRecHandle;390

oldPort : GrafPtr;391

sizeOfPictData, scrapOffset : longint;392

tempHdl : Handle;393

destRect : Rect;394

395

begin396

myWindowPtr := FrontWindow;397

docRecHdl := DocRecHandle(GetWRefCon(myWindowPtr));398

399

GetPort(oldPort);400

SetPort(myWindowPtr);401

402

sizeOfPictData := GetScrap(nil, 'PICT', scrapOffset);403

if (sizeOfPictData > 0) then404

begin405

tempHdl := NewHandle(Size(sizeOfPictData));406

HLock(tempHdl);407

408

sizeOfPictData := GetScrap(tempHdl, 'PICT', scrapOffset);409

410

EraseRect(myWindowPtr^.portRect);411

docRecHdl^^.selectFlag := false;412

destRect := DoSetDestRect(PicHandle(tempHdl)^^.picFrame, myWindowPtr);413

414

DrawPicture(PicHandle(tempHdl), destRect);415

416

if (docRecHdl^^.pictureHdl <> nil) then417

DisposeHandle(Handle(docRecHdl^^.pictureHdl));418

419

docRecHdl^^.pictureHdl := PicHandle(NewHandle(Size(sizeOfPictData)));420

BlockMoveData(tempHdl^, docRecHdl^^.pictureHdl^, Size(sizeOfPictData));421

422

HUnlock(tempHdl);423

DisposeHandle(tempHdl);424

end;425

426

SetPort(oldPort);427

end;428

{of procedure DoPasteCommand}429

430

{ ### DoCutCopyCommand }431

432

procedure DoCutCopyCommand(cutFlag : boolean);433

434

var435

myWindowPtr : WindowPtr;436

docRecHdl : DocRecHandle;437

dataLength : Size;438

errorCode : longint;439

oldPort : GrafPtr;440

441

begin442

myWindowPtr := FrontWindow;443

docRecHdl := DocRecHandle(GetWRefCon(myWindowPtr));444

445

if (docRecHdl^^.selectFlag = false) then446

Exit(DoCutCopyCommand);447

448

if (ZeroScrap = noErr) then449

begin450

dataLength := GetHandleSize(Handle(docRecHdl^^.pictureHdl));451

HLock(Handle(docRecHdl^^.pictureHdl));452

16-14 Scrap

453

errorCode := PutScrap(longint(dataLength), 'PICT', Handle(docRecHdl^^.pictureHdl)^);454

if (errorCode <> noErr) then455

DoErrorAlert(ePutScrap);456

457

HUnlock(Handle(docRecHdl^^.pictureHdl));458

end459

else460

DoErrorAlert(eZeroScrap);461

462

if (cutFlag) then463

begin464

GetPort(oldPort);465

SetPort(myWindowPtr);466

467

DisposeHandle(Handle(docRecHdl^^.pictureHdl));468

docRecHdl^^.pictureHdl := nil;469

docRecHdl^^.selectFlag := false;470

EraseRect(myWindowPtr^.portRect);471

472

SetPort(oldPort);473

end;474

475

if (gClipboardWindowPtr <> nil) then476

DoDrawClipboardWindow;477

end;478

{of procedure DoIdle}479

480

{ ## DoInContent }481

482

procedure DoInContent(mouseXY : Point);483

484

var485

myWindowPtr : WindowPtr;486

docRecHdl : DocRecHandle;487

oldPort : GrafPtr;488

pictRect : Rect;489

490

begin491

myWindowPtr := FrontWindow;492

docRecHdl := DocRecHandle(GetWRefCon(myWindowPtr));493

494

if (docRecHdl^^.windowType = kClipboardType) then495

Exit(DoInContent);496

497

GetPort(oldPort);498

SetPort(myWindowPtr);499

500

if (docRecHdl^^.pictureHdl <> nil) then501

begin502

pictRect := DoSetDestRect(docRecHdl^^.pictureHdl^^.picFrame, myWindowPtr);503

InsetRect(pictRect, -2, -2);504

505

GlobalToLocal(mouseXY);506

507

if (PtInRect(mouseXY, pictRect)) then508

docRecHdl^^.selectFlag := true509

else510

begin511

docRecHdl^^.selectFlag := false;512

513

PenPat(qd.black);514

ForeColor(whiteColor);515

FrameRect(pictRect);516

ForeColor(blackColor);517

end;518

end;519

520

SetPort(oldPort);521

end;522

{of procedure DoInContent}523

524

{ ## DoCloseWindow }525

526

procedure DoCloseWindow;527

528

var529

Scrap 16-15

myWindowPtr : WindowPtr;530

docRecHdl : DocRecHandle;531

editMenuHdl : MenuHandle;532

533

begin534

myWindowPtr := FrontWindow;535

docRecHdl := DocRecHandle(GetWRefCon(myWindowPtr));536

537

if (docRecHdl^^.windowType = kClipboardType) then538

begin539

DisposeWindow(myWindowPtr);540

gClipboardWindowPtr := nil;541

gClipboardShowing := false;542

editMenuHdl := GetMenu(mEdit);543

SetMenuItemText(editMenuHdl, iClipboard, 'Show Clipboard');544

end;545

end;546

{of procedure DoCloseWindow}547

548

{ ### DoEditMenu }549

550

procedure DoEditMenu(menuItem : integer);551

552

begin553

case (menuItem) of554

555

iCut:556

begin557

DoCutCopyCommand(true);558

end;559

560

iCopy:561

begin562

DoCutCopyCommand(false);563

end;564

565

iPaste:566

begin567

DoPasteCommand;568

end;569

570

iClear:571

begin572

DoClearCommand;573

end;574

575

iClipboard:576

begin577

DoClipboardCommand;578

end;579

end;580

{of case statement}581

end;582

{of procedure DoEditMenu}583

584

{ ### DoMenuChoice }585

586

procedure DoMenuChoice(menuChoice : longint);587

588

var589

menuID, menuItem : integer;590

itemName : string;591

daDriverRefNum : integer;592

593

begin594

menuID := HiWord(menuChoice);595

menuItem := LoWord(menuChoice);596

597

if (menuID = 0) then598

Exit(DoMenuChoice);599

600

case (menuID) of601

602

mApple:603

begin604

if (menuItem = iAbout) then605

SysBeep(10)606

16-16 Scrap

else begin607

GetMenuItemText(GetMenuHandle(mApple), menuItem, itemName);608

daDriverRefNum := OpenDeskAcc(itemName);609

end;610

end;611

612

mFile:613

begin614

if (menuItem = iClose) then615

DoCloseWindow616

else if (menuItem = iQuit) then617

gDone := true;618

end;619

620

mEdit:621

begin622

DoEditMenu(menuItem);623

end;624

end;625

{of case statement}626

627

HiliteMenu(0);628

end;629

{of procedure DoMenuChoice}630

631

{ ## DoAdjustMenus }632

633

procedure DoAdjustMenus;634

635

var636

fileMenuHdl, editMenuHdl : MenuHandle;637

docRecHdl : DocRecHandle;638

scrapOffset : longint;639

640

begin641

fileMenuHdl := GetMenuHandle(mFile);642

editMenuHdl := GetMenuHandle(mEdit);643

644

docRecHdl := DocRecHandle(GetWRefCon(FrontWindow));645

646

if (docRecHdl^^.windowType = kClipboardType) then647

EnableItem(fileMenuHdl, iClose)648

else649

DisableItem(fileMenuHdl, iClose);650

651

if ((docRecHdl^^.pictureHdl <> nil) & (docRecHdl^^.selectFlag)) then652

begin653

EnableItem(editMenuHdl, iCut);654

EnableItem(editMenuHdl, iCopy);655

EnableItem(editMenuHdl, iClear);656

end657

else658

begin659

DisableItem(editMenuHdl, iCut);660

DisableItem(editMenuHdl, iCopy);661

DisableItem(editMenuHdl, iClear);662

end;663

664

if ((GetScrap(nil, 'PICT', scrapOffset) <> 0) & (docRecHdl^^.windowType <> kClipboardType))665

then EnableItem(editMenuHdl, iPaste)666

else DisableItem(editMenuHdl, iPaste);667

668

DrawMenuBar;669

end;670

{of procedure DoAdjustMenus}671

672

{ ## DoOSEvent }673

674

procedure DoOSEvent(var theEvent : EventRecord);675

676

var677

myWindowPtr : WindowPtr;678

679

begin680

myWindowPtr := FrontWindow;681

682

case BAnd(BSR(theEvent.message, 24), $000000FF) of683

Scrap 16-17

684

suspendResumeMessage:685

begin686

gInBackground := (BAnd(theEvent.message, resumeFlag) = 0);687

if ((gClipboardWindowPtr <> nil) & gClipboardShowing) then688

begin689

if (gInBackground) then690

HideWindow(gClipboardWindowPtr)691

else692

ShowWindow(gClipboardWindowPtr);693

end;694

end;695

696

mouseMovedMessage:697

begin698

end;699

end;700

{of case statement}701

end;702

{of procedure DoOSEvent}703

704

{ ### DoUpdate }705

706

procedure DoUpdate(var theEvent : EventRecord);707

708

var709

myWindowPtr : WindowPtr;710

docRecHdl : DocRecHandle;711

windowType : longint;712

713

begin714

myWindowPtr := WindowPtr(theEvent.message);715

docRecHdl := DocRecHandle(GetWRefCon(myWindowPtr));716

windowType := docRecHdl^^.windowType;717

718

BeginUpdate(myWindowPtr);719

720

if (windowType = kDocumentType) then721

begin722

if (docRecHdl^^.pictureHdl <> nil) then723

DoDrawPictureWindow(myWindowPtr);724

end725

726

else if (windowType = kClipboardType) then727

DoDrawClipboardWindow;728

729

EndUpdate(myWindowPtr);730

end;731

{of procedure DoUpdate}732

733

{ ## DoMouseDown }734

735

procedure DoMouseDown(var theEvent : EventRecord);736

737

var738

partCode : integer;739

myWindowPtr : WindowPtr;740

741

begin742

partCode := FindWindow(theEvent.where, myWindowPtr);743

744

case (partCode) of745

746

inMenuBar:747

begin748

DoAdjustMenus;749

DoMenuChoice(MenuSelect(theEvent.where));750

end;751

752

inSysWindow:753

begin754

SystemClick(theEvent, myWindowPtr);755

end;756

757

inContent:758

begin759

if (myWindowPtr <> FrontWindow)760

16-18 Scrap

then SelectWindow(myWindowPtr)761

else DoInContent(theEvent.where);762

end;763

764

inDrag:765

begin766

DragWindow(myWindowPtr, theEvent.where, qd.screenBits.bounds);767

end;768

769

inGoAway:770

begin771

if (TrackGoAway(myWindowPtr, theEvent.where) = true) then772

DoCloseWindow;773

end;774

end;775

{of case statement}776

end;777

{of procedure DoMouseDown}778

779

{ ### DoEvents }780

781

procedure DoEvents(var theEvent : EventRecord);782

783

var784

charCode : char;785

786

begin787

case (theEvent.what) of788

789

mouseDown:790

begin791

DoMouseDown(theEvent);792

end;793

794

keyDown, autoKey:795

begin796

charCode := chr(BAnd(theEvent.message, charCodeMask));797

if (BAnd(theEvent.modifiers, cmdKey) <> 0) then798

begin799

DoAdjustMenus;800

DoMenuChoice(MenuKey(charCode));801

end;802

end;803

804

updateEvt:805

begin806

DoUpdate(theEvent);807

end;808

809

osEvt:810

begin811

DoOSEvent(theEvent);812

HiliteMenu(0);813

end;814

end;815

{of case statement}816

end;817

{of procedure DoEvents}818

819

{ ### DoIdle }820

821

procedure DoIdle;822

var823

myWindowPtr : WindowPtr;824

docRecHdl : DocRecHandle;825

oldPort : GrafPtr;826

marqueeRect : Rect;827

lastByte : SInt8;828

a : integer;829

830

begin831

myWindowPtr := FrontWindow;832

docRecHdl := DocRecHandle(GetWRefCon(myWindowPtr));833

834

if ((docRecHdl^^.windowType = kClipboardType) or (docRecHdl^^.selectFlag = false)) then835

begin836

Exit(DoIdle);837

Scrap 16-19

end838

839

else begin840

GetPort(oldPort);841

SetPort(myWindowPtr);842

843

marqueeRect := DoSetDestRect(docRecHdl^^.pictureHdl^^.picFrame, myWindowPtr);844

InsetRect(marqueeRect, -2, -2);845

846

lastByte := gMarqueePattern.pat[7];847

for a := 7 downto 1 do848

gMarqueePattern.pat[a] := gMarqueePattern.pat[a - 1];849

gMarqueePattern.pat[0] := lastByte;850

851

PenPat(gMarqueePattern);852

FrameRect(marqueeRect);853

854

SetPort(oldPort);855

end;856

end;857

{of procedure DoIdle}858

859

{ ## start of main program }860

861

begin862

gClipboardWindowPtr := nil;863

gClipboardShowing := false;864

{$R-}865

gMarqueePattern.pat[0] := SInt8($1F);866

gMarqueePattern.pat[1] := SInt8($3E);867

gMarqueePattern.pat[2] := SInt8($7C);868

gMarqueePattern.pat[3] := SInt8($F8);869

gMarqueePattern.pat[4] := SInt8($F1);870

gMarqueePattern.pat[5] := SInt8($E3);871

gMarqueePattern.pat[6] := SInt8($C7);872

gMarqueePattern.pat[7] := SInt8($8F);873

{$R+}874

{ …… initialize managers }875

876

DoInitManagers;877

878

{ …… set up menu bar and menus }879

880

menubarHdl := GetNewMBar(rMenubar);881

if (menubarHdl = nil) then882

DoErrorAlert(eFailMenu);883

SetMenuBar(menubarHdl);884

DrawMenuBar;885

886

menuHdl := GetMenuHandle(mApple);887

if (menuHdl = nil) then888

DoErrorAlert(eFailMenu)889

else890

AppendResMenu(menuHdl, 'DRVR');891

892

{ ……… open windows }893

894

DoOpenWindows;895

896

{ …… enter eventLoop }897

898

gDone := false;899

900

while not (gDone) do901

begin902

gotEvent := WaitNextEvent(everyEvent, theEvent, 2, nil);903

904

if (gotEvent)905

then DoEvents(theEvent)906

else DoIdle;907

end;908

909

end.910

{of main program block}911

912

{ ## }913

16-20 Scrap

Demonstration Program Comments
When this program is run, the user should choose the Edit menu's Show Clipboard command to open
the Clipboard window. The user should then cut, copy, clear and paste the supplied picture
from/to the two windows opened by the program, noting the effect on the desk scrap as
displayed in the Clipboard window. The user should also copy some text from another
application's window and observe the changes to the contents of the Clipboard window.

The user should note that, when the Clipboard window is open and showing, it will be hidden
when the program is sent to the background and shown again when the program is brought to the
foreground.

The user may also copy pictures from another application's window and paste them in the
demonstration program's windows.

The constant declaration block

Lines 59-69 establish constants relating to Menu IDs and menu item numbers. Lines 71-82
establish constants relating to various resources. Lines 77-82 are constants which index
strings in a 'STR#' resource. Lines 84-85 establish constants which will enable the program
to distinguish between the two "document" windows opened by the program and the Clipboard
window.

The type declaration block

Document records will be attached to each of the two document windows. This is the associated
data type.

The variable declaration block

gDone controls program termination. gInBackground relates to foreground/background switching.
The WindowPtrs for the two document windows will be copied into the elements of gWindowPtrs.
gClipBoardWindowPtr will be assigned the WindowPtr for the Clipboard window when it is opened
by the user. gClipBoardShowing will keep track of whether the Clipboard window is currently
hidden or showing. gMarqueePattern will be used to create an animated marquee-style rectangle
around selected objects in the document windows.

The procedure DoErrorAlert

DoErrorAlert invokes an appropriate alert box in which an error string is displayed. It then
either terminates the program or returns to the calling routine depending on the severity of
the error.

The procedure DoOpenWindows

DoOpenWindows opens the two document windows, creates document records for each window,
attaches the document records to the windows and initialises the fields of the document
records (Lines 167-182). The graphics port of the second window created is then set as the
current port (Line 184) and a picture is read in from a resource, its handle being assigned to
the pictureHdl field of the second window's document record (Line 186).

The procedure DoSetDestRect

DoSetDestRect takes the rectangle contained in the picFrame field of a picture record and
returns a rectangle of the same dimensions but centred in the window's port rectangle.

Line 199 makes a local Rect variable equal to the rectangle in the picFrame field. Line 201
then offsets this rectangle to the left and top of the port rectangle. Lines 203-206
calculate the differences between the widths and heights of the rectangle and the window's
port rectangle. This is used at Line 208 to further offset the rectangle to the middle of the
port rectangle. The rectangle is then returned to the calling function (Line 210).

The procedure DoDrawPictureWindow

DoDrawPictureWindow draws the picture belonging to a document window in that window.

Lines 224-225 save the current graphics port and make the graphics port associated with the
front window the current graphics port.

Scrap 16-21

Line 227 gets the handle to the window's document record. Line 228 calls an application-
defined function which takes the rectangle contained in the picFrame field of the picture
record (the handle to which is contained in the pictureHdl field of the document record), and
creates a new rectangle of the same dimensions but centred in the window. Line 230 draws the
picture specified in the window's document record in this rectangle.

If the selectionFlag field of the document record indicates that the picture is currently
selected (Line 232), Lines 234-236 draw a dotted rectangle two pixels outside the picture.

Line 239 resets the current graphics port to the port saved at function entry.

The procedure DoDrawClipboardWindow

DoDrawClipboardWindow draws the contents of the desk scrap in the Clipboard window. It
supports the drawing of both 'PICT' and 'TEXT' data.

Lines 254-255 save the current graphics port and make the graphics port associated with the
front window the current graphics port.

Line 257 erases the window's port rectangle. Lines 259-267 draw a panel at the top of the
window in which the type of data in the desk scrap will be displayed.

Line 269, in which nil is passed as the destHandle parameter of the GetScrap call, checks
whether data of type 'PICT' exists in the desk scrap. If so (Line 270), the following occurs.
The word "picture" is drawn in the panel at the top of the window (Lines 272-273). A
relocatable block the size of the 'PICT' data is created and locked (Lines 275-276) and
GetScrap is called once again to copy the 'PICT' data from the scrap into the newly-created
block (Line 278). A destination rectangle, based on the rectangle in the picFrame field of
the picture record, is created with its left and top fields set to two pixels right of, and 22
pixels below, the left and top sides of the window (Lines 280-282). The picture is then drawn
in this destination rectangle (Line 283), following which the relocatable block created at
Line 275 is unlocked and disposed of (Lines 285-286).

Lines 289 checks whether data of type 'TEXT' exists in the desk scrap. If so (Line 290), much
the same procedure is followed, the differences being that the word "text" is drawn in the
panel at the top of the window (Line 293), the destination rectangle is set to two pixels
inside the port rectangle less the panel (Lines 300-302), and the text is drawn in this
rectangle using TETextBox (Line 304). (TETextBox is a TextEdit routine, and is described at
Chapter 17 — Text and TextEdit.)

Line 310 resets the current graphics port to the port saved at function entry.

The procedure DoClipboardCommand

DoClipboardCommand handles the user's choice of the Show/Hide Clipboard command in the Edit menu.

Line 323 gets the handle to the Edit menu. This will be required in order to toggle the
Show/Hide Clipboard item's text between Show Clipboard and Hide Clipboard.

Line 325 checks whether the Clipboard window has been opened. If not, the Clipboard window is
opened (Line 327), a document record is created and attached to the window (Lines 331-334),
the windowType field of the document record is set to indicate that the window is of the
Clipboard type (Line 335), a global variable which keeps track of whether the Clipboard window
is currently showing or hidden is set to true (Line 337), and the text of the menu item is set
to Hide Clipboard (Line 339).

If the Clipboard window has previously been opened (Line 342), and if the window is currently
showing (Line 343), the window is hidden, the Clipboard-showing flag is set to false, and the
item's text is set to Show Clipboard (Lines 345-347). If the window is not currently showing
(Line 349), the window is made visible, the Clipboard-showing flag is set to true, and the
item's text is set to Hide Clipboard (Lines 351-353)

The procedure DoClearCommand

DoClearCommand handles the user's choice of the Clear item in the Edit menu.

Note that, as is the case in the DoCutCopyCommand function, no check is made as to whether the
front window is the Clipboard window because the menu adjustment function disables the Clear
item when the Clipboard window is the front window.

Lines 369-370 get a pointer to the front window and the handle to that window's document
record. Lines 372-373 save the current graphics port and make the graphics port associated
with the front window the current graphics port.

16-22 Scrap

Lines 375-378 dispose of the picture record, set the pictureHdl field of the document record
to nil, set the selectionFlag field of the document record to false, and erase the window's
port rectangle.

Line 380 resets the current graphics port to the port saved at function entry.

The procedure DoPasteCommand

DoPasteCommand handles the user's choice of the Paste item from the Edit menu. Note that no
check is made as to whether the front window is the Clipboard window because the menu
adjustment function disables the Paste item when the Clipboard window is the front window,
meaning that this function can never be called when the Clipboard window is in front.

Lines 397-398 get a pointer to the front window and the handle to that window's document
record. Lines 400-401 save the current graphics port and make the graphics port associated
with the front window the current graphics port.

In order to determine whether the desk scrap contains data of type 'PICT', Line 403 calls
GetScrap with the destHandle parameter set to nil. The following occurs if data of type
'PICT' is present in the desk scrap (Line 404).

Lines 406-407 create and lock a relocatable block of a size equivalent to the 'PICT' data in
the scrap. GetScrap is called again (Line 409) to copy the 'PICT' data in the scrap to the
newly-created relocatable block. Line 411 erases the front window and Line 412 sets the
selectionFlag field of the document record associated with the front window to false. Line
413 then calls an application-defined function which takes the picFrame field from the picture
record and creates a destination rectangle of the same dimensions as the picFrame rectangle
but centred in the front window. Line 415 draws the picture in this rectangle.

If the document record currently contains a picture, the picture record is disposed of (Lines
417-418). Line 420 creates a new relocatable block the size of the 'PICT' data and assigns
its handle to the pictureHdl field of the document record. Line 421 then copies the bytes in
the relocatable block created at Line 406 to this new relocatable block. Lines 423-424 unlock
and dispose of the block created at Line 406.

Line 427 resets the current graphics port to the port saved at function entry.

The procedure DoCutCopyCommand

DoCutCopyCommand handles the user's choice of the Cut and Copy items in the Edit menu.

Lines 443-444 get a pointer to the front window and the handle to that window's document
record.

If the selectionFlag field of the document record contains false, the function returns
immediately (Lines 446-447). (Note that no check is made as to whether the front window is
the Clipboard window because the menu adjustment function disables the Cut and Copy items when
the Clipboard window is the front window, meaning that this function can never be called when
the Clipboard window is in front.)

Line 449 purges the desk scrap. If the call is successful, Line 451 gets the size of the
picture record, Line 452 locks the picture record, Line 454 copies the picture to the desk
scrap, and Line 458 unlocks the picture record. If the calls to ZeroScrap and PutScrap are
not successful, a caution alert is displayed to advise the user of the error (Lines 455-456
and Line 461).

If the menu choice was the Cut item (Line 463), additional action is taken. Preparatory to a
call to EraseRect, the current graphics port is saved and the front window's port is made the
current port (Lines 465-466). Lines 468-470 then dispose of the picture record and set the
document record's pictureHdl and selectionFlag fields to NIL and false respectively. Line 471
erases the picture from the window and Line 473 resets the saved graphics port.

Finally, and importantly, if the Clipboard window has previously been opened by the user (Line
476), an application defined function is called to draw the current contents of the desk scrap
in the Clipboard window (Line 477).

The procedure DoInContent

DoInContent handles mouse-down events in the content region of a document window. If the
window contains a picture, and if the mouse-down was inside the picture, the picture is
selected. If the window contains a picture, and if the mouse-down was outside the picture,
the picture is deselected.

Lines 492-493 get a pointer the front window and the handle to its document record. If the
front window is the Clipboard window, the function returns immediately (Lines 495-496). Lines

Scrap 16-23

498-499 save the current graphics port and make the graphics port associated with the front
window the current graphics port.

If the front window contains a picture (Line 501) the following occurs. Line 503 calls an
application-defined function which returns a rectangle of the same dimensions as that
contained in the picture record's picFrame field, but centred laterally and vertically in the
window. Line 504 expands this rectangle by two pixels all around. Line 506 converts the
mouse-down coordinates to local coordinates. If the mouse-down occurred within the rectangle
(Line 508), the document record's selectionFlag field is set to true. If the mouse-down
occurred outside that rectangle (Line 510), the document record's selectionFlag field is set
to false, and the rectangle is erased (Lines 512-517).

Line 521 resets the current graphics port to that saved at function entry.

The procedure DoCloseWindow

DoCloseWindow closes the Clipboard window (the only window that can be closed from within the
program).

Lines 535-536 get a pointer to the front window and the handle to its document record. If the
window is the Clipboard window (Line 538), The window is disposed of, the global variable
which contains its pointer is set to NIL, the global variable which keeps track of whether the
window is showing or hidden is set to false, and the text of the Show/Hide Clipboard menu item
is set to Show Clipboard.

The procedures DoEditMenu, and
DoMenuChoice

DoMenuChoice and DoEditMenu handle menu choices.

The procedure DoAdjustMenus

DoAdjustMenus adjusts the menus.

Lines 642-643 get handles to the File and Edit menus. Line 645 gets the handle to the document
record for the front window.

If the front window is the Clipboard window (Line 647), the Close item is enabled, otherwise it
is disabled.

If the document contains a picture and that picture is currently selected (Line 652), the Cut,
Copy, and Clear items are enabled, otherwise they are disabled (Lines 653-663).

If the desk scrap contains data of type 'PICT' and the front window is not the Clipboard
window, the Paste item is enabled, otherwise it is disabled (Lines 665-667).

Line 669 redraws the menu bar.

The procedure DoOSEvent

DoOSEvent handles suspend/resume events. Line 687 sets gInBackground according to whether the
event is a suspend or resume event.

Line 688 tests whether the Clipboard window has been opened by the user and whether the
Clipboard should be showing when the demonstration program is in the foreground. If the
window has previously been opened and gClipboardShowing contains true, and if the event is a
suspend event (Line 690), the window is hidden (Line 691). If the event is a resume event,
the window is shown (Line 693).

The procedure DoUpdate

DoUpdate handles update events.

Lines 715-717 retrieve the window type of the window in question. The main action occurs
between the usual calls to BeginUpdate and EndUpdate. If the window is of the document type
(as opposed to the Clipboard type), and if the window's document record currently contains a
picture (Lines 721-723), an application-defined function is called to draw that picture (Line
724). If the window is the Clipboard window, an application-defined function is called to
draw the Clipboard window (Lines 727-728).

16-24 Scrap

The procedure DoMouseDown

DoMouseDown handles mouse-down events. Note that, in the case of a mouse-down in the content
region of the active window, the application-defined procedure DoInContent is called (Line
762).

The procedure DoEvents

DoEvents performs initial handling of events.

The procedure DoIdle

DoIdle is called when a null event is received (every 2 ticks). If the front window is not
the Clipboard window, and if it contains a selected object, DoIdle draws a rectangle around
that object using the pattern contained in gMarqueePattern. DoIdle also manipulates
gMarqueePattern so that, with repeated calls to DoIdle, the rectangle appears as an animated
marquee-style rectangle.

Lines 832-833 get a handle to the front window's document record.

If Line 835 determines that the window is the Clipboard window or the window does not contain
a selected object, the function returns immediately (Line 837); otherwise, the following
occurs.

Lines 841-842 save the current graphics port and set the front window's port as the current
port. Line 844 retrieves the picFrame rectangle for the picture in the front window and calls
an application-defined function which centres that rectangle in the window' port rectangle.
Line 845 expands that rectangle by 2 pixels all around.

Line 847 saves the byte in the last element of gMarqueePattern. Lines 848-849 move each byte
down one element in the array. Line 850 assigns the saved byte to the first element. Line
852 assigns gMarqueePattern to the pen, whose size remains at the default one pixel throughout
the program, and Line 853 draws the rectangle in the specified pattern.

Line 855 restores the save graphics port.

The main program block

The main function initialises the system software managers (Line 877), sets up the menus
(Lines 881-891), opens the two document windows (Line 895), and enters the main event loop
(Lines 899-908). Note that the sleep parameter in the WaitNextEvent call (Line 903) is set to
2 and that a null event will result in the application-defined function DoIdle being called
(Line 907).

	The Scrap Manager and the Desk Scrap
	Introduction
	Scrap Data Formats
	Standard Formats
	Optional Formats
	Private Formats

	Location of the Desk Scrap and Getting Information About the Scrap
	Location of the Desk Scrap
	Getting Information About the Desk Scrap

	Using the Desk Scrap - Implementing Edit Menu Commands
	Cut and Copy — Putting Data in the Scrap
	Paste - Getting Data From the Scrap
	Example

	The Clipboard
	Transferring the Desk Scrap to Disk

	Private Scrap
	Copying Data Between Private Scrap and the Desk Scrap

	TextEdit, Dialog Boxes, and Scrap
	TextEdit and Scrap
	Dialog Boxes and Scrap

	Main Scrap Manager Data Types and Routines
	Demonstration Program
	Demonstration Program Comments

