
Windows 4-1

4Version 1.1

WINDOWS
Includes Demonstration Program WindowsPascal

Introduction

A window is a user interface element.  More specifically, it is an area on the screen in which the user
can enter or view information.  A Macintosh application uses windows for most communication with
the user, from discrete interactions such as presenting and acknowledging alert boxes to open-ended
interactions such as creating and editing documents.  Users generally enter data in windows and your
application typically lets the user save this data to a file.

The Window Manager, which defines and supports a set of standard windows and provides routines
for managing them, itself depends on QuickDraw.  QuickDraw supports drawing into graphics ports,
which are individual and complete drawing environments with independent coordinate systems.  Each
window represents a graphics port.

Your application typically creates document windows, which allow the user to enter and display text,
graphics, or other information.  A document window is a view into the document.  If the document is
larger than the window, the window is a view of a portion of the document.

Standard Window Elements

The Window Manager defines and supports a set of standard window elements through which the
user can manipulate windows:

• The title bar displays the name of the window and indicates whether it is active or inactive.  If
the system font is in the Roman script system, the title bar is 20 pixels high.  You usually display
a newly created window with the title "untitled".  When the user opens a saved document, you
assign the document's filename to the window in which it is displayed.  The user expects to be
able to move the window by dragging its title bar.

• The close box (or go-away box) offers the user a quick way to close a window.

• The zoom box  offers the user a quick way to choose between two different window sizes, one
established by the user and one by the application.

• The size box lets the user change the size of the window.

Other elements of a window are as follows:

• The content region is the part of the window in which your application displays the contents of
the document, the size box and the window's controls.

• The window frame is the part of the window drawn automatically by the Window Manager,
that is, the title bar (including the close box and zoom box) and the window's outline.



4-2 Windows

• The structure region  is the entire screen area occupied by a window, including the frame and
content region.

Scroll bars , which allow the user to view different parts of a document containing more information
than can be displayed on the screen at the one time, are not part of a window's structure and must be
separately created and managed.  By convention, scroll bars are placed on the right and lower edges of
those windows which require them.

Active and Inactive Windows

The window in which the user is currently working is called the active window, identified by the
"racing stripes" in its title bar.  The active window is the target of all keyboard activity and only the
active window interacts with the user.  Scroll bars and highlighting should be displayed only in the
active window.

When the user activates one of your application's windows, the Window Manager highlights the
window frame and title bar.  Your application must reinstate the appearance of the rest of the window
to its state prior to the deactivation, activating the controls, drawing the scroll box in the same position,
restoring the insertion point and highlighting the previous selection, etc.

When a window belonging to your application becomes inactive, the Window Manager redraws the
frame, removing the highlighting from the title bar and hiding the close and zoom boxes.  Your
application must hide the controls and the size box, remove highlighting from application-controlled
elements, and so on.

When the user clicks in an inactive document window, your application should make the window
active but should not make any selections in response to the click.  To make a selection, the user should
be required to click again.  This behaviour protects the user from unintentionally losing an existing
selection when activating the window.

Types of Windows

FIG 1 - TYPES OF WINDOWS

documentProc dBoxProc plainDBox

altDBoxProc noGrowDocProc movableDBoxProc

zoomDocProc zoomNoGrow rDocProc

MOVABLE, SIZABLE, NO ZOOM BOX ALERT BOX OR MODAL DIALOG

ROUNDED CORNER WINDOWZOOMABLE, NONRESIZABLESTANDARD DOCUMENT WINDOW

MOVABLE MODAL DIALOG BOXMOVABLE, NO SIZE BOX, NO ZOOM BOXPLAIN BOX WITH SHADOW

PLAIN BOX

Seldom used

Seldom used

For alert boxes and fixed-position  
modal dialog boxes

For alert boxes and fixed-position  
modal dialog boxes

For alert boxes and fixed-position  
modal dialog boxes

For movable modal dialog boxes

For document  windows Seldom used

For modeless dialog boxes

Note:  The Window Manager adds 
three white pixels inside window 
frame of dBoxProc windows.

Note:  The Window Manager adds 
three white pixels inside window 
frame of movableDBoxProc 
windows.

The Window Manager defines nine basic window types.  These nine basic types are often referred to by
the constant used in 'WIND' resources, and by certain Window Manager routines, to specify the type of



Windows 4-3

window required.  That constant determines both the visual appearance of the window and its
behaviour.

Fig 1 shows the nine available basic window types, the constants which represent those types, and the
general usage of each type.  Note that all of these windows are shown at the same size (120 pixels wide
by 50 pixels high).

Window Definition IDs

The nine constants shown at Fig 1 each represent a specific window definition ID.  A window
definition ID is a 16-bit value which contains the resource ID of the window's window definition
function in the upper 12 bits and a variation code in the lower 4 bits:

• Window Definition Function.  The system software and various Window Manager routines
call a window's window definition function when they need to perform certain window-related
actions, such as drawing or resizing a window's frame.  The definition function draws the
window's frame, draws the close box and window title (if any), determines which region the
cursor is in within the window, calculates the window's content and structure regions, draws the
window's zoom box (if any), draws the window's size box (if any) and performs any special
initialisation or disposal tasks.

• Variation Code.  A single window definition function can support up to 16 different window
types.  The window definition function defines a variation code, an integer from 0 to 15, for each
window type it supports.

Two window definition functions are associated with the nine basic window types shown at Fig 1.
These reside, in two resources of type 'WDEF', in the System file in the System Folder.  The resource IDs
are 0 and 1.  The window definition ID is derived by multiplying the 'WDEF' resource ID by 16 and
adding the variation code to the result, as is shown in the following:

'WDEF'
Resource ID

Variation
Code

Window Definition ID
(Decimal)

Window Definition ID
(Constant)

0 0 0 * 16 + 0 = 0 documentProc
0 1 0 * 16 + 1 = 1 dBoxProc
0 2 0 * 16 + 2 = 2 plainDBox
0 3 0 * 16 + 3 = 3 altDBoxProc
0 4 0 * 16 + 4 = 4 noGrowDocProc
0 5 0 * 16 + 5 = 5 movableDBoxProc
0 8 0 * 16 + 8 = 8 zoomDocProc
0 12 0 * 16 + 12 = 12 zoomNoGrow

1 0 1 * 16 + 0 = 16 rDocProc

Window Type Usage

Window Types For Documents.  A zoomDocProc window is normally used for document windows
because it supports all window manipulation elements, that is, title bar, close box, zoom box and size
box.  Note that, because you can optionally suppress the close box when you create the window, the
Window Manager does not necessarily draw that particular element.  Also note that the Window
Manager does not draw the grow icon in the size box.  (Your application must call DrawGrowIcon for
that purpose.)  And, of course, when the related document contains more data that will fit in the
window, you must add scroll bars.

Window Types For Alert Boxes and Fixed-Position Modal Dialog Boxes.  Alert boxes and
dialog boxes are merely special-purpose windows.  Since they require no window manipulation
elements and remain on the screen as the active window until the Dialog Manager or your application
removes them, alert boxes and fixed-position modal dialog boxes use the window types dBoxProc,
plainDBox and altDBoxProc, most typically dBoxProc.1

                                                
1You can handle all alert boxes and most modal dialog boxes through the Dialog Manager, which itself calls the Window Manager.  You
supply the Dialog Manager with a list of items in your alert boxes and dialog boxes, and the Dialog Manager displays the windows, tells you
which items the user is manipulating, and disposes of the windows when the user is done.



4-4 Windows

Window Types For Movable Modal Dialog Boxes.  Movable modal dialog boxes are used when
you want to allow the user to move a modal dialog box window in order, for example, to view text
obscured by that window.  Like the fixed-position modal dialog box, the movable modal dialog box
remains active until the user completes the dialog.  The movableDBoxProc type is used for movable
modal dialog boxes.2

Window Types For Modeless Dialog Boxes.  Modeless dialog boxes allow the user to perform
other tasks without first dismissing the dialog box.  Modeless dialogs should thus be used in favour of
modal dialogs wherever possible.  User interface guidelines require that the noGrowDocProc window
type, which can be moved or closed but not resized or zoomed, be used for modeless dialog boxes.3

The creation and handling of alert and dialog boxes is addressed in detail at Chapter 6— Dialogs and
Alerts.

Other Window Definitions

If you need a window with unusual characteristics, you can write your own window definition
function.  On the other hand, you may find that one or other of the additional window definitions
provided in the System file in the System Folder will suit your requirements.  For example, the rather
unusual windows which appear when you choose Macintosh Guide from the Help menu utilize the
'WDEF' resource with ID 124 in the System file.  Fig 2 shows the twelve window types available using
this particular window definition function.4

FIG 2 - OTHER WINDOW TYPES AVAILABLE USING 'WDEF' RESOURCE 
WITH ID 124 FROM THE SYSTEM FILE IN THE SYSTEM FOLDER

Window Definition ID 1999Window Definition ID 1997Window Definition ID 1996

Window Definition ID 1995Window Definition ID 1993Window Definition ID 1992

Window Definition ID 1991Window Definition ID 1989Window Definition ID 1988

Window Definition ID 1987Window Definition ID 1985Window Definition ID 1984
floatProc floatGrowProc

floatZoomProc floatZoomGrowProc

floatSideProc floatSideGrowProc

floatSideZoomProc floatSideZoomGrowProc

USED BY MACINTOSH GUIDE

USED BY MACINTOSH GUIDE

USED BY MACINTOSH GUIDE

USED BY MACINTOSH GUIDE

The following shows the window definition ID used to specify each of these window types, together
with its derivation.

'WDEF'
Resource ID

Variation
Code

Window Definition ID
(Decimal)

Window Definition ID
(Constant)

124 0 124 * 16 + 0 = 1984
124 1 124 * 16 + 1 = 1985 floatProc
124 3 124 * 16 + 3 = 1987 floatGrowProc

                                                
2Although the Dialog Manager will help handle events in movable modal dialog boxes, your application must handle the dragging of the
movable modal dialog box window.
3The Dialog Manager helps handle events in modeless dialog boxes,; however, your application must handle the window manipulation events
for modeless dialog boxes, just as it handles such events in document windows.
4Macintosh Guide and this particular 'WDEF' resource were introduced with System 7.5.



Windows 4-5

124 4 124 * 16 + 4 = 1988
124 5 124 * 16 + 5 = 1989 floatZoomProc
124 7 124 * 16 + 7 = 1991 floatZoomGrowProc
124 8 124 * 16 + 8 = 1992
124 9 124 * 16 + 9 = 1993 floatSideProc
124 11 124 * 16 + 11 = 1995 floatSideGrowProc
124 12 124 * 16 + 12 = 1996
124 13 124 * 16 + 13 = 1997 floatSideZoomProc
124 15 124 * 16 + 15 = 1999 floatSideZoomGrowProc

Window Regions

The Window Manager recognises the following special-purpose window regions, which are defined by
either the Window Manager or the window definition function:

• The drag region, close region, size region and zoom region.

• The structure region , which is the entire area occupied by the window, including the window
outline, title bar and content region.

• The content region, to which the drawing region of a graphics port is confined.

• The update region, a dynamic region which accumulates all areas of a window's content region
which need updating.

Controls and Control Lists

Windows may contain controls.  The most common control in a window is the scroll bar (see Fig 3),
which should be included in the window when there is more data than can be shown at one time in the
space available.  The Control Manager is used to create, display and manipulate scroll bars.

All controls included in a window "belong" to that individual window and are displayed within the
graphics port which represents that window.  For each window your application creates, the Window
Manager creates a control list, a series of entries pointing to the descriptions of controls associated with
a window.

FIG 3 - SCROLL BARS

SCROLL BOX

SCROLL BAR
GRAY AREA

SCROLL ARROW

Windows on the Desktop

The Window List

Multiple windows from different applications may appear simultaneously on the desktop.  The
Window Manager tracks all windows using its own private data structure called the window list.
Entries in the window list appear in their order on the desktop, beginning with the frontmost (active)
window.  When the user changes the ordering of the windows on the desktop, the Window Manager
generates events telling your application to activate, deactivate and update its windows as necessary.



4-6 Windows

The Gray Region

The entire area of the desktop, that is, the screen area that is not occupied by the menu bar, is known as
the gray region.  The Window Manager maintains a pointer to the gray region in a global variable
named GrayRgn.  You can retrieve a pointer to the gray region with the Window Manager function
GetGrayRgn.

Graphics Ports

Each window represents a QuickDraw graphics port, which is a drawing environment with its own
coordinate system.  The Window Manager creates a graphics port when it creates the window.

The location of a window on the screen is defined in global coordinates, that is, coordinates which
reflect the entire potential drawing space.  QuickDraw recognises a coordinate plane whose origin is
the upper left corner of the main screen, whose positive x-axis extends rightward and whose positive y-
axis extends downward.  In QuickDraw routines, the horizontal offset is ordinarily labelled h, and the
vertical offset v.  The coordinate plane is bounded by the limits of QuickDraw coordinates, which range
from -32768 to 32,767.  (See Fig 4.)

FIG 4 - A WINDOW'S LOCAL AND GLOBAL COORDINATE SYSTEMS

- h

+ v

v

(h=0,v=0) IN GLOBAL COORDINATES

(h=70,v60) IN GLOBAL COORDINATES
(h=0,v=0) IN LOCAL COORDINATES

(h=200,v=100) IN LOCAL COORDINATES
(h=270,v=160) IN GLOBAL COORDINATES

- v

+ h

h

When QuickDraw creates a new graphics port (usually, when you create a new window), it defines a
bounding rectangle  for the port in global coordinates.  Ordinarily, the bounding rectangle represents
the entire area of the screen on which the window appears.  The bounding rectangle is stored in the
graphics port data structure, in the bounds field of a structure called a bitmap in Basic QuickDraw and
a pixel map in Color QuickDraw.

The graphics port data structure also includes a field called portRect, which defines the rectangle to be
used for drawing.  In a graphics port representing a window, the portRect rectangle represents the
window's content region.  Within the port rectangle, the drawing area is described in local coordinates.
Fig 4 illustrates the local and global coordinate systems for a window which is 100 pixels high by 200
pixels wide, and which is placed with its content region 70 pixels down and 60 pixels to the right of the
upper left corner of the screen.

When the Window Manager creates a window, it places the origin of the local coordinate system at the
upper-left corner of the window's port rectangle.  Note, however, that the Event Manager describes
mouse events in global coordinates, and that you must do most of your window manipulation in global
coordinates.

Window Records

The Window Manager stores information about a window in a window record or a colour window
record.  A colour window record is defined by the data type CWindowRecord and a window record is



Windows 4-7

defined by the data type WindowRecord.  The only difference between a window record and a colour
window record is that the port field is a GrafPort rather than a CGrafPort:

TYPE
CWindowPeek = ^CWindowRecord;
CWindowRecord = RECORD

port: CGrafPort;
windowKind: integer;
visible: boolean;
hilited: boolean;
goAwayFlag: boolean;
spareFlag: boolean;
strucRgn: RgnHandle;
contRgn: RgnHandle;
updateRgn: RgnHandle;
windowDefProc: Handle;
dataHandle: Handle;
titleHandle: StringHandle;
titleWidth: integer;
controlList: ControlRef;
nextWindow: WindowPeek;
windowPic: PicHandle;
refCon: longint;
END;

CGrafPtr = ^CGrafPort;
CWindowPtr = CGrafPtr;

WindowPeek = ^WindowRecord;
WindowRecord = RECORD

port: GrafPort;
...
The remainder of a WindowRecord is identical to a CWindowRecord.
END;

GrafPtr = ^GrafPort;
WindowPtr = GrafPtr;

It is important to note that the graphics port is the first field of both records and that the data types
WindowPtr and CWindowPtr are defined as pointers to the graphics port, not to the window record.
Fields in the window record are accessed using WindowPeek and CWindowPeek, which are pointers to a
window record.  (WindowPeek and CWindowPeek are rarely used, however, since you usually do not need
to access or directly modify fields in a window record.  The Window Manager automatically updates
the window record when you make changes to a window, and supplies routines for changing and
reading some parts of the window record.)

Windows should be created with a window record only when Color QuickDraw5 is not available,
otherwise they should be created with a colour window record.

The close box, drag region, zoom box, and size box are not included in the window record.  The
window definition function determines the location of those particular regions.

Compatibility

For compatibility, the WindowPtr and WindowPeek data types can point to either a window record or a
colour window record.  In addition, all non-colour Window Manager routines work with the colour
window record by accepting a CWindowPtr as well as a WindowPtr as the graphics port pointer
parameter.

Colour Windows

The Window Manager has supported colour windows since the introduction of Color QuickDraw.
Colour windows are displayed in colour graphics ports.

                                                
5Color QuickDraw is not available on black-and-white Macintoshes, such as the Macintosh Classic.



4-8 Windows

Whether or not your application uses colour explicitly, and whether or not a colour monitor is installed,
your application should work successfully with colour windows whenever Color QuickDraw is
available.  On a monitor that is set to display 4-bit colour (16 colours) or greater, the Window Manager
automatically displays the window title and parts of the frame and controls in colour (or gray scale,
depending on the capabilities of the monitor).  On a monitor set to display 1-bit colour, the Window
Manager draws the window title, frame and controls in black and white.  Once you have created a
window, you can use the window record and window pointer for a colour window interchangeably
with the window record and window pointer for a black-and-white window.

Various elements of a window's colours are controlled by the window colour table, which contains a
series of part codes for different window elements and the RGB (red-green-blue) values associated with
each part.  Your application typically uses the default colour table, basically because users can change
the window display colours for the entire desktop at will using the Color control panel.  If your
application explicitly controls the colours used in a window, however, you can define your own
window colour tables in a 'wctb' resource with the same resource ID as the window's 'WIND'
resource.6  The Window Manager will then create a window colour table from the resource when it
creates the window record, maintaining its own linked list, using auxiliary window records, which
associate your application's windows with their corresponding window colour tables.

Events in Windows

As stated at Chapter 2 — Low-Level and Operating System Events, the Window Manager itself
generates two types of events central to window management, namely, activate events and update
events.

One of the more basic functions of the Window Manager is to report where the cursor is when the
application receives a mouse-down event.  As was also stated at Chapter 2, the Window Manager
function FindWindow tells your application whether the cursor is in a window and, if it is in a window,
in exactly which window and which part of that window.  FindWindow is thus used as a first filter for
mouse-down events, separating events which merely affect the window display from events which
manipulate data.

Creating Windows

You typically create windows from resources of type 'WIND'.  Alert box windows and dialog box
windows use 'ALRT', 'DLOG' and item list ('DITL') resources.  Most windows contain scroll bars, which
are defined in 'CNTL' resources.

Defining a 'WIND'  Resource

You typically define a 'WIND' resource for each type of window your application creates.  The following
is an example of a 'WIND' resource in Rez input format:

#define rDocWindow 128

resource 'WIND' (rDocWindow, preload, purgeable)
{

{64,60,314,460}, /* Initial window size and location. */
zoomDocProc, /* Window definition ID (definition function + variation code). */
invisible, /* Window is initially invisible. */
goAway, /* Window has a close box. */
$0, /* Reference constant. */
"untitled", /* Window title. */
staggerParentWindowScreen /* Optional positioning specification. */

};

Window Size and Location.  The four numbers in the first element specify the upper-left and lower-
right corners, in global coordinates, of a rectangle which defines the initial size and placement of the

                                                
6If you use ResEdit to create your 'WIND' resource, the 'wctb' resource will be created automatically if you specify custom colours within the
'WIND' resource editor.



Windows 4-9

window's content region.  Your application can change this rectangle before displaying the window,
either programmatically or through an optional positioning code (see below).

Window Definition ID.  The second element is the window definition ID, which establishes the type
of window.

Visible/Invisible.  The third element specifies whether the window is to be visible or invisible when
the Window Manager creates it.

Close Box/No Close Box.  If the fourth element specifies a close box, the field has no effect if the
second field specifies a type which does not support close boxes.

Reference Constant.  The fifth element is a reference constant in which your application can store
whatever data it needs.  When it builds a new window record, the Window Manager stores the value
specified here in the window record's refCon field.  (You can also put a placeholder here (such as $0 )
and then set the refCon field yourself by calling SetRefCon.)

Positioning.  The optional seventh element specifies a positioning rule, which overrides the first
element.  In the window resource for a document window, you typically specify the positioning
constant staggerMainScreen.  The full range of positioning constants is as follows:

Constant Value Meaning
noAutoCenter 0x0000 Use initial location.
centerMainScreen 0x280A Centre on main screen.
alertPositionMainScreen 0x300A Place in alert position on main screen.
staggerMainScreen 0x380A Stagger on main screen.
centerParentWindow 0xA80A Center on parent window.
alertPositionParentWindow 0xB00A Place in alert position on parent window
staggerParentWindow 0xB80A Stagger relative to parent window.
centerParentWindowScreen 0x680A Center on parent window screen.
alertPositionparentWindowScreen 0x700A Alert position on parent window screen.
staggerParentWindowScreen 0x780A Stagger on parent window screen.

The positioning constants represent a convenient method for ensuring correct window placement when
the user creates a new document window.

Creating the Window From the 'WIND'  Resource

GetNewCWindow and GetNewWindow are used to create a window from a 'WIND' resource.7   GetNewCWindow
should be used to create colour windows whenever Color QuickDraw is available, whether or not a
colour monitor is currently installed.

You can allow GetNewCWindow and GetNewWindow to themselves allocate memory for your window
record.  However, memory fragmentation effects will be minimised by allocating the memory yourself
from a block allocated for such purposes during your application's initialisation routine, and then
passing the pointer to GetNewCWindow.8

Adding Scroll Bars

If a window requires scroll bars, you typically create them from 'CNTL' resources at the time that you
create the document window, and then display them when you make the window visible.  (See
Chapter 5 — Controls).

                                                
7Two additional routines (NewWindow and NewCWindow) may be used to create windows without the use of a 'WIND' resource.  The parameters
for these routines allow you to specify the bounding rectangle, title, visibility, definition ID, etc.
8However, note that, at some point in the future development of the system software, data structures such as window records will no longer
be created in your application’s address space.  It will then be necessary to invariably allow the system to itself allocate the storage for the
window record (by passing NULL in the second parameter of the GetNewCWindow/GetNewWindow call).



4-10 Windows

Window Visibility

If the 'WIND' resource specifies that the new resource is visible, GetNewCWindow displays the window
immediately.  If you are creating a document window, however, it is best to create the window in an
invisible state and then make it visible when you are ready to display it.  The right time to display a
window depends on whether the window is associated with a new or saved document:

• If you are creating a window because the user is creating a new document, you can display the
window immediately by calling ShowWindow.  (This change in visibility adds to the update region
and triggers an update event.  Your application should then invoke its own procedure for
drawing the content region.)

• If you are creating a new window to display a saved document, you should retrieve the user's
data before displaying  the window.

Positioning a New Document Window on the DeskTop

New document windows should be placed just below and to the right of the last document window in
which the user was working.  On Macintoshes with a single screen, positioning windows is fairly
straightforward.  The first new document should be positioned on the upper-left corner of the desktop
and each additional new document window is opened with its upper-left corner below and to the right
of the upper-left corner of its predecessor.  If the user closes one or more documents, subsequently
opened windows should be located in the vacated positions.

The positioning constants previously described allow you to position new windows automatically.
When used, those positioning constants concerned with staggering new window placement will ensure
that the Window Manager will use any vacated position for the next new window.

Positioning a Saved Document Window on the DeskTop

When you open a saved document, you should replicate the size and location of the window as it was
when the document was last saved.  When the user saves a document, you must therefore save the user
state rectangle and the current zoom state  of the window (that is, whether the window is in the user
state or the standard state).

Some explanation of user state and standard state is necessary.  The user state is the last size and
location the user, through sizing and dragging actions, established for a window.  The standard state is
the size and location that your application determines is the most convenient size for the window.
Typically, this is the gray area of the screen minus three pixels all round.

The user and standard states are stored in the state data record, whose handle is assigned to the
dataHandle field of the window record:

type
WStateData = record

userState: Rect; {user state}
stdState: Rect; {standard state}
end;

WStateDataPtr = ^WStateData;
WStateDataHandle = ^WStateDataPtr;

Returning to the matter of saving the user state and the current state of the window, you typically store
this data as a custom resource in the resource fork of the document file.  The following is an
application-defined data type which will support this process by storing the user state rectangle and
current zoom state while the document remains open:

type
windowState = record

userStateRect: Rect; {User state rectangle.}
ZoomState: boolean; {Window state: true = standard state, false = user state.}
end;



Windows 4-11

windowStatePtr = ^windowState;
windowStateHdl = ^windowStatePtr;

This structure can be transformed into an application-defined resource which may then be stored in the
resource fork of the document when the user saves the document.9

Drawing a Window's Contents

Your application is responsible for drawing a window's contents.  It typically uses the Control Manager
to draw the window's controls, the Window Manager to draw the size box, and then draws the user
data itself.

As stated at Chapter 2 — Low-Level and Operating System Events, if the window contains a static
display such as a picture, you can let the Window Manager take care of drawing and updating of the
content region by assigning a handle to the picture in the windowPic field of the window record.

Providing Balloon Help

The system software provides help balloons for the window frame (the title bar, zoom box and close
box) of a window created with one of the standard definition functions.  You should provide help
balloons for your window content region, that is, the size box, controls and data area.

Managing Multiple Windows

Your application is likely to have multiple windows open on the desktop at once (perhaps one or more
document windows and one or more dialog boxes) and it will need to keep track of them all.

You can use different strategies for keeping track of windows, including different kinds of windows.
As previously stated, the refCon field in the window record is set aside specifically for use by
applications and can be used to store different kinds of data, such as a number representing a window
type or a handle to a record containing data relating to window management.

As an example, the refCon field could hold a number representing the type of dialog box (in the case of
modeless or movable modal dialog boxes) or a handle to an application-defined document record (in
the case of document windows).  The document record might typically hold a handle to the text being
edited, handles to the scroll bars, a file reference number and a file system specification for the
document's file, plus a flag indicating whether data has changed since the last save, as shown in this
example application-defined document record:

type
DocRecord = record

editRec: TEHandle;
vScrollBar: ControlHandle;
hScrollbar: Controlhandle;
fileRefNum: short;
fileFSSpec: FSSpec;
windowDirty: boolean;
end;

DocRecordPtr = ^DocRecord;
DocRecordHdl = ^DocRecordPtr;

For dialog boxes, a value of, say, 20 in the refCon field might specify a modeless dialog box which
accepts input for the Find command, while a value of, say, 21 might specify a modeless dialog box that
accepts input for a spelling checker.  These reference constants could then control branching to
application-defined window management functions specific to the particular dialog concerned.

                                                
9The demonstration program MoreResourcesPascal.p at Chapter 15  — More on Resources shows how to save the window state to the
resource fork of a document file.



4-12 Windows

Handling Events

Handling Mouse Events

When your application is active, it receives notice of all mouse-down events in the menu bar or in one
of its windows.  When it receives a mouse-down event, your application should call FindWindow to
ascertain which window the mouse-down occurred in and to map the cursor location to a window
region.  The application should then take the appropriate action based on which window, and in which
region of that window, the mouse-down occurred.

Mouse-Downs in Inactive Windows

When you receive a mouse-down event in an inactive window, your response depends on what type of
window is active:

• Movable Modal Dialog Box.  If the active window is a movable modal dialog box, you
should sound the system alert and take no other action.  (Note that this is not necessary if the
dialog box is being handled by the ModalDialog procedure, since in that case the Dialog Manager
does not pass the event to your application but sounds the system alert itself.  This is also the
case if the active window is an alert or modal dialog box.)

• Document Window or Modeless Dialog Box.   If the active window is a document window
or a modeless dialog box, you should call SelectWindow, passing it the window pointer.
SelectWindow re-layers the windows as necessary, removes highlighting from the previously
active window, brings the newly-activated window to the front, highlights it and generates the
activate and update events necessary to tell all affected applications which windows must be
redrawn.

Handling Keyboard Events

Whenever your application is the foreground process, it receives key-down events for all keyboard
activity (except, of course, for the standard and user-defined Command-Shift-number key sequences).

When you receive a key-down event, you should first check whether the user is holding down a
modifier key and another key at the same time.  Your application should respond to key-down events
by inserting data into the document, changing the display or taking other appropriate actions.
Typically, your application provides feedback for standard keystrokes by drawing the character on the
screen.

Handling Update Events

Preamble

The Window Manager maintains an update region, which represents the parts of your content region
which have been affected by changes to the desktop.  The Event Manager periodically scans the update
regions of all windows on the desktop.  If it finds one whose update region is not empty, it generates an
update event for that window.  Your application can receive update events when it is in either the
foreground or, provided the application's 'SIZE' resource so specifies, the background.

When your application receives an update event, it should redraw as much of the content area as is
necessary.

Updating Strategies.  As the user makes changes to a document, your application must update both
the document data and the document display.  You can use one of two strategies to update the display:

• If the application does not require rapid scrolling or rapid response, you add changed areas of
the content region to the window's update region.  The Event Manager then sends your
application an update event, and your application invokes its standard update procedure.

• For continuous scrolling and a faster response time, you can draw directly into the content area.



Windows 4-13

In either case, your application ultimately draws in the graphics port associated with the window.

Manipulating the Update Region.  Your application can force or suppress update events by
manipulating the update region.  It usually does this, for example, when the user resizes a window
containing scroll bars.  If the user enlarges the window, the Window Manager adds the newly exposed
areas to the update region but does not add the area formerly occupied by the scroll bars.  Therefore,
before calling SizeWindow to resize the window, your application must call InValRect to add the two
areas formerly occupied by the scroll bars to the update region.  You can also remove an area from the
update region when appropriate, since limiting the size of that region decreases the time spent
redrawing.  For example, an unaffected text area could be removed from the update region of a
window that is being resized.

The Update Process

When your application redraws the content region in response to an update event, the Window
Manager ensures that it does not accidentally draw into other windows by clipping all screen drawing
to the visible region  of the window's graphics port.  The visible region is that part of a graphics port
that is actually visible on screen, that is, the part that is not covered by other windows.  (The Window
Manager stores a handle to the visible region in the visRgn field of the graphics port data structure.)

FIG 5 - EFFECTS OF BeginUpdate AND EndUpdate  ON VISIBLE AND UPDATE REGIONS

BEFORE SCREEN CHANGE BEFORE AFTER AFTER EndUpdateBeginUpdate BeginUpdate

VISIBLE REGION LIMITED TO 
INTERSECTION OF UPDATE 

REGION AND VISIBLE REGION
VISIBLE REGION

UPDATE REGION

VISIBLE REGION RESTORED

In response to an update event, your application should call BeginUpdate, draw the window's contents
and then call EndUpdate.  As shown at Fig 5, BeginUpdate limits the visible region to the intersection of
the visible region and the update region.  Because QuickDraw limits drawing to this modified visible
region, only those parts of the window which actually need updating are drawn.  BeginUpdate also
clears the update region.

After your application has updated the window, EndUpdate should be called to restore the visible
region of the graphics port to the full visible region.10

                                                
10The reason for this update region/visible region swapping is that QuickDraw knows about visible regions but has no knowledge of the
existence of update regions.  QuickDraw needs something it can work with.



4-14 Windows

Type-Dependent Update Procedures

An application-defined update function should typically first determine whether the type of window
being updated is a document window or some other application-defined window.  If the window is a
document window,an application-defined document window updating function should be completed.
If the window is a dialog box, an application-defined dialog updating function should be called.

Handling Activate Events

Activate events are generated by the Window Manager to inform your application that a window is
becoming active or is about to be made inactive.  Each activate event specifies the window to be
changed and the direction of that change (that is, whether the window is to be activated or
deactivated).

Your application typically triggers activate events itself by calling SelectWindow following a mouse-
down event.  SelectWindow brings the selected window to the front, removes highlighting from the
previously selected window and adds highlighting to the selected window.  It then generates two
activate events, the first to tell your application to deactivate the previous active window and the
second to activate the newly activated window.

When your application receives the event for the window about to be made inactive, it should hide the
controls and size box and remove any highlighting of selections.  When your application receives the
event for the newly activated window, it should draw the controls and size box and restore the content
area as necessary, adding the insertion point in its former location or highlighting previously
highlighted sections as appropriate.

The application-defined function for handling activate events should typically first determine whether
the window being activated/deactivated is a document window or some other window.  It should then
perform the appropriate activation/deactivation actions.  The function does not need to check for alert
boxes and modal dialog boxes because the Dialog Manager's ModalDialog function automatically
handles activate events for those windows.

Manipulating Windows

Moving a Window

When a mouse-down event occurs in the title bar, your application should call DragWindow, which
tracks the user's actions until the mouse button is released.  DragWindow draws a dotted outline of the
window on the screen and moves the outline as the user moves the mouse.  When the user releases the
mouse, the application should call MoveWindow, which redraws the window in its new location.

Zooming a Window

The zoom box allows the user to alternate quickly between two window positions and sizes: the user
state and the standard state.  To amplify the previous description of user state and standard state:

• The user state is the window size and location established by the user.  If your application does
not supply an initial user state, the user state is simply the size and location of the window when
it was created, until the user resizes it.

• The standard state is the window size and location that your application considers most
convenient.  Typically, this might be the screen gray area minus three pixels all round.  In a
word-processing program, however, a standard state window might show a full page, if
possible, or a page of full width and as much length as will fit on the screen.  If the user changes
the page size using the print Style dialog box, the application might adjust the standard state to
reflect the new page size.



Windows 4-15

• If your application does not define a standard state, the Window Manager will automatically set
it to the entire gray region of the main screen minus a three-pixel border on all sides.  The user
cannot change a window's standard state.

• The user and standard states are stored in a record whose handle appears in the dataHandle field
of the window record.  The Window Manager sets the initial values of the userState and
stdState fields when it fills in the window record and it updates the userState whenever the
user resizes the window.

When the user presses the mouse button with the cursor in the zoom box, FindWindow "knows" whether
the window is in the user state (zoomed-in) or the standard state (zoomed-out).  When the window is
in the standard state, FindWindow returns inZoomIn, meaning that the window is to be zoomed "in" to
the user state  When the window is in the user state, inZoomOut is returned, meaning that the window is
to be zoomed "out" to the standard state.

When FindWindow returns either inZoomIn or inZoomOut, your application should call TrackBox to
handle highlighting of the zoom box and to determine whether the cursor is inside or outside the zoom
box when the button is released.  If TrackBox returns true, your application should call ZoomWindow to
resize the window, following which it should redraw the content region.

Resizing a Window

When the user presses the mouse button in the size box, your application should call GrowWindow.  This
function displays a grow  image, a gray outline of the window frame and scroll bar area which expands
and contracts as the user drags the size box.

To avoid unmanageably large or small windows, you supply upper and lower size limits when you call
GrowWindow.  The sizeRect parameter of GrowWindow specifies the upper and lower size limits in a single
structure of type Rect.  Note that the values in the structure represent window dimensions, not screen
coordinates:

• sizeRect.top represents the minimum vertical measurement.

• sizeRect.left represents the minimum horizontal measurement.

• sizeRect.bottom represents the maximum vertical measurement.

• sizeRect.right represents the maximum horizontal measurement.

Most applications specify a minimum size big enough to include all parts of the structure area and the
scroll bars.  Because the user cannot move the cursor beyond the edges of the screen, you can safely set
the maximum size to the largest possible rectangle.

When the user releases the mouse button, GrowWindow returns a long integer which describes the
window's new height (in the high-order word) and width (in the low-order word).  A value of zero
indicates that the window size did not change.  When GrowWindow returns a value other than zero, you
call SizeWindow to resize the window.

When the mouse-button is released and GrowWindow returns a non-zero value, the application-defined
function for resizing windows should first save the current view rectangle.  SizeWindow  should then be
called to draw the window in its new size.  The scroll bars and window contents should then be
adjusted to the new size and the content region of the window invalidated with a call to InvalRect.
The intersection of the old view rectangle and the new view rectangle should then be calculated, this
area being used to re-validate unchanged portions of the window, that is, to remove them from the
update region.  That way, only the changed parts of the content area will be redrawn when the
application receives its next update event.



4-16 Windows

Closing a Window

The user closes a window by either clicking in the close box or by choosing Close from the File menu.

When the user clicks in the close box, TrackGoAway should be called to track the mouse until the user
releases the mouse button.  If TrackGoAway returns true, meaning that the user did not release the
mouse button outside the close box, your application should invoke its function for closing down the
window.

The specific steps you take when closing a window depend on what kind of information the window
contains and whether the contents need to be saved.  The application-defined function should cater for
different types of windows, that is, modeless dialog boxes (which may be merely hidden with
HideWindow rather than closed completely) and standard document windows.  In the latter case, the
function should check whether any changes have been made to the document since it was opened and,
if so, provide the user with an opportunity to save the document to a file before closing the window.
(This whole process is explained in detail at Chapter 14 — Files.)

DisposeWindow and CloseWindow

DisposeWindow removes a window from the screen, removes it from the window list, and discards all of
its data storage, including the window record.  DisposeWindow should be used if you allowed the
system to allocate storage for the window record, that is, if you passed NULL as the wStorage parameter
in the NewWindow, GetNewWindow, NewCWindow, or GetNewCWindow call.

CloseWindow removes a window from the screen, removes it from the window list, and discards its data
storage except for the window record.  CloseWindow should be used when you have allocated storage
for the window record manually, that is, if you created a nonrelocatable block for the window record
and passed the pointer as the wStorage parameter in the NewWindow, GetNewWindow, NewCWindow, or
GetNewCWindow call.  In this case, the  nonrelocatable block containing the window record must be
disposed of separately.

Hiding and Showing a Window

Whenever the user clicks the close box, you ordinarily remove the window from the screen.
Sometimes, however, you might find it more convenient to merely hide the window instead of
removing its data structures.  If your application includes, for example, a Find  modeless dialog box
which searches for a string, you might want to keep its structures in memory as long as the user is
working.  In this case, a click on the close box should simply hide the window through a call to
HideWindow.  Then, when the user next chooses the Find command, the dialog box is already available,
in the same location and with the same text as when it was last used.

ShowWindow will make the window visible and SelectWindow will make it the active window.

Main Window Manager Constants, Data Types and Routines

Constants

Window Types

documentProc = 0
dBoxProc = 1
plainDBox = 2
altDBoxProc = 3
noGrowDocProc = 4
movableDBoxProc = 5
zoomDocProc = 8
zoomNoGrow = 12
rDocProc = 16
floatProc = 1985
floatGrowProc = 1987
floatZoomProc = 1989



Windows 4-17

floatZoomGrowProc = 1991
floatSideProc = 1993
floatSideGrowProc = 1995
floatSideZoomProc = 1997
floatSideZoomGrowProc = 1999

Window Kind

dialogKind = 2
userKind = 8

Part Codes Returned by FindWindow

inDesk = 0
inMenuBar = 1
inSysWindow = 2
inContent = 3
inDrag = 4
inGrow = 5
inGoAway = 6
inZoomIn = 7
inZoomOut = 8

Data Types

type
WindowRef = WindowPtr;

Colour Window Record

CWindowRecord = record
port: CGrafPort; {Window's graphics port.}
windowKind: integer; {Class of window.}
visible: boolean; {true if window is visible.}
hilited: boolean; {true if window is highlighted.}
goAwayFlag: boolean; {true if window has close box.}
spareFlag: boolean; {true if window has zoom box.}
strucRgn: RgnHandle; {Handle to structure region.}
contRgn: RgnHandle; {Handle to content region.}
updateRgn: RgnHandle; {Handle to update region.}
windowDefProc:Handle; {Handle to window definition function.}
dataHandle: Handle; {Handle to window state data record.}
titleHandle: StringHandle; {Handle to window's title.}
titleWidth: integer; {Title width in pixels.}
controlList: ControlRef; {Handle to window's control list.}
nextWindow: WindowPeek; {Pointer to next window record in window list.}
windowPic: PicHandle; {Handle to an optional picture.}
refCon: longint; {Reference constant.}
end;

CWindowPeek = ^CWindowRecord;

Window Record

WindowRecord = record
port: GrafPort;

...
The remainder of a WindowRecord is identical to a CWindowRecord.
end;

WindowPeek = ^WindowRecord;

State Data Record

WStateData = record
userState: Rect; {user state}
stdState: Rect; {standard state}
end;

WStateDataPtr = ^WStateData;
WStateDataHandle = ^WStateDataPtr;



4-18 Windows

Auxiliary Window Record

AuxWinRec = record
awNext: AuxWinHandle; {handle to next AuxWinRec}
awOwner: WindowRef; {ptr to window}
awCTable: CTabHandle; {color table for this window}
reserved: UInt32;
awFlags: longint; {reserved for expansion}
awReserved: CTabHandle; {reserved for expansion}
awRefCon: longint; {user constant}
end;

AuxWinPtr = ^AuxWinRec;
AuxWinHandle = ^AuxWinPtr;

Routines

Initializing the Window Manager

procedure InitWindows;

Creating Windows

function GetNewCWindow(windowID: integer; wStorage: UNIV Ptr;
behind: WindowRef): WindowRef;

function GetNewWindow(windowID: integer; wStorage: UNIV Ptr; behind: WindowRef): WindowRef;
function NewCWindow(wStorage: UNIV Ptr; var boundsRect: Rect; title: ConstStr255Param;

visible: boolean; procID: integer; behind: WindowRef; goAwayFlag: boolean;
refCon: longint): WindowRef;

function NewWindow(wStorage: UNIV Ptr; var boundsRect: Rect; title: ConstStr255Param; 
visible: boolean; theProc: integer; behind: WindowRef; goAwayFlag: boolean; 
refCon: longint): WindowRef;

Naming Windows

function GetWTitle(theWindow: WindowRef; var title: Str255);
function SetWTitle(theWindow: WindowRef; title: ConstStr255Param);

Displaying Windows

procedure DrawGrowIcon(theWindow: WindowRef);
procedure SelectWindow(theWindow: WindowRef);
procedure ShowWindow(theWindow: WindowRef);
procedure HideWindow(theWindow: WindowRef);
procedure ShowHide(theWindow: WindowRef; showFlag: boolean);
procedure HiliteWindow(theWindow: WindowRef; fHilite: boolean);
procedure BringToFront(theWindow: WindowRef);
procedure SendBehind(theWindow: WindowRef; behindWindow: WindowRef);

Retrieving Mouse Information

function FindWindow(thePoint: Point; var theWindow: WindowRef): integer;
function FrontWindow: WindowRef;

Moving Windows

procedure MoveWindow(theWindow: WindowRef; hGlobal: integer; vGlobal: integer;
front: boolean);

procedure DragWindow(theWindow: WindowRef; startPt: Point; {CONST}var boundsRect: Rect);
function DragGrayRgn(theRgn: RgnHandle; startPt: Point; var limitRect: Rect;

var slopRect: Rect; axis: integer; actionProc: DragGrayRgnUPP): longint;
function PinRect(var theRect: Rect; thePt: Point): longint;

Resizing Windows

procedure SizeWindow(theWindow: WindowRef; w: integer; h: integer; fUpdate: boolean);
function GrowWindow(theWindow: WindowRef; startPt: Point; var bBox: Rect): longint;

Zooming Windows

function TrackBox(theWindow: WindowRef; thePt: Point; partCode: integer): boolean;
procedure ZoomWindow(theWindow: WindowRef; partCode: integer; front: boolean);



Windows 4-19

Closing and Deallocating Windows

function TrackGoAway(theWindow: WindowRef; thePt: Point): boolean;
procedure CloseWindow(theWindow: WindowRef);
procedure DisposeWindow(theWindow: WindowRef);

Maintaining the Update Region

procedure BeginUpdate(theWindow: WindowRef);
procedure EndUpdate(theWindow: WindowRef);
procedure InvalRect(var badRect: Rect);
procedure InvalRgn(badRgn: RgnHandle);
procedure ValidRect(var goodRect: Rect);
procedure ValidRgn(goodRgn: RgnHandle);

Setting and Retrieving Other Window Characteristics

procedure SetWindowPic(theWindow: WindowRef; pic: PicHandle);
function GetWindowPic(theWindow: WindowRef): PicHandle;
function GetWRefCon(theWindow: WindowRef): longint;
procedure SetWRefCon(theWindow: WindowRef; data: longint);
function GetWVariant(theWindow: WindowRef): integer;

Manipulating the Desktop

procedure SetDeskCPat(deskPixPat: PixPatHandle);
procedure GetWMgrPort(var wPort: GrafPtr);
procedure GetCWMgrPort(var wMgrCPort: CGrafPtr);
function GetGrayRgn : RgnHandle;

Demonstration Program
{ ######################################################################################1

// WindowsPascal.p2

// ######################################################################################3

//4

// This program:5

//6

// • Allows the user to open any number of zoomDocProc windows, up to the maximum7

// specified in the global variable kMaxWindows, using the File menu Open Command or8

// its keyboard equivalent.9

//10

// • Allows the user to close opened windows using the close box, the File menu Close11

// command or the Close command's keyboard equivalent.12

//13

// • Adds menu items representing each window to a Windows menu as each window is14

// opened  (A keyboard equivalent is included in each menu item for windows 1 to 9.)15

//16

// • Deletes menu items from the Windows menu as each window is closed.17

//18

// • Fills each window with one of the system patterns as a means of proving, for19

// demonstration purposes, the window update process.20

//21

// • Facilitates activation of a window by mouse selection.22

//23

// • Facilitates activation of a window by Windows menu selection.24

//25

// • Correctly performs all dragging, zooming and sizing operations.26

//27

// The program utilises the following resources:28

//29

// • An 'MBAR' resource, and 'MENU' resources for Apple, File, Edit and Windows menus30

// (preload, non-purgeable).31

//32

// • A 'WIND' resource (purgeable) (initially not visible).33

//34

// • An 'ALRT' resource and 'DITL' resource for use by Stop Alerts (purgeable).35

//36

// • A 'STR#' resource containing strings for the Stop Alerts (purgeable).37

//38



4-20 Windows

// • A 'SIZE' resource with the acceptSuspendResumeEvents and doesActivateOnFGSwitch39

// and is32BitCompatible flags set.40

//41

// ##################################################################################### }42

43

program WindowsPascal(input, output);44

45

{ ………………………………………………………………………………………………………………… include the following Universal Interfaces }46

47

uses48

49

Windows, Fonts, Menus, TextEdit, Quickdraw, Dialogs, QuickdrawText, Processes, Types,50

Memory, Events, TextUtils, ToolUtils, OSUtils, Devices, Segload;51

52

{ ………………………………………………………………………………………………………………………………………………… define the following constants }53

54

const55

56

 mApple = 128;57

  iAbout = 1;58

 mFile = 129;59

 mEdit = 130;60

  iNew = 1;61

  iClose = 4;62

  iQuit = 11;63

 mWindows = 131;64

65

 rNewWindow = 128;66

 rMenubar = 128;67

 rAlertBox = 128;68

 rStringList = 128;69

  sUntitled = 1;70

  eMaxWindows = 2;71

  eFailWindow = 3;72

  eFailMenus = 4;73

  eFailMemory = 5;74

75

 kMaxWindows = 10;76

 kMaxLong = $7FFFFFFF;77

78

{ ……………………………………………………………………………………………………………………………………………………………………………………… global variables }79

80

var81

82

gDone : Boolean;83

gInBackground : Boolean;84

gPreAllocatedBlockPtr : Ptr;85

gUntitledWindowNumber : longint;86

gCurrentNumberOfWindows : longint;87

gWindowPtrArray : array [0..kMaxWindows + 2] of WindowPtr;88

89

menubarHdl : Handle;90

menuHdl : MenuHandle;91

a : integer;92

93

{ ####################################################################### DoInitManagers }94

95

procedure DoInitManagers;96

97

begin98

MaxApplZone;99

MoreMasters;100

MoreMasters;101

InitGraf(@qd.thePort);102

InitFonts;103

InitWindows;104

InitMenus;105

TEInit;106

InitDialogs(nil);107

108

InitCursor;109

FlushEvents(everyEvent, 0);110

end;111

{of procedure DoInitManagers}112

113

{ ############################################################################## DoError }114

115



Windows 4-21

procedure  DoError(errorType : integer);116

117

var118

errorMessage : string;119

ignored : integer;120

121

begin122

GetIndString(errorMessage, rStringList, errorType);123

ParamText(errorMessage, '', '', '');124

125

if (errorType = eMaxWindows)126

then ignored := CautionAlert(rAlertBox, nil)127

128

else begin129

ignored := StopAlert(rAlertBox, nil);130

ExitToShell;131

end;132

end;133

{of procedure DoError}134

135

{ ####################################################################### DoUpDateWindow }136

137

procedure DoUpdateWindow(eventRec : EventRecord);138

139

var140

myWindowPtr : WindowPtr;141

paintRect : Rect;142

windowRefCon : longint;143

fillPattern : Pattern;144

145

begin146

myWindowPtr := WindowPtr(eventRec.message);147

SetPort(myWindowPtr);148

149

paintRect := myWindowPtr^.portRect;150

paintRect.right := paintRect.right - 15;151

paintRect.bottom := paintRect.bottom - 15;152

153

windowRefCon := GetWRefCon(myWindowPtr);154

155

GetIndPattern(fillPattern, 0, windowRefCon + 9);156

157

FillRect(paintRect, fillPattern);158

end;159

{of procedure DoUpdateWindow}160

161

{ ############################################################################ DoUpdate }162

163

procedure DoUpdate(eventRec : EventRecord);164

165

var166

myWindowPtr : WindowPtr;167

168

begin169

myWindowPtr := WindowPtr(eventRec.message);170

171

BeginUpdate(myWindowPtr);172

173

if not (EmptyRgn(myWindowPtr^.visRgn)) then174

begin175

SetPort(myWindowPtr);176

EraseRgn(myWindowPtr^.visRgn);177

DoUpdateWindow(eventRec);178

DrawGrowIcon(myWindowPtr);179

end;180

181

EndUpdate(myWindowPtr);182

end;183

{of procedure DoUpdate}184

185

{ ##################################################################### DoActivateWindow }186

187

procedure DoActivateWindow(myWindowPtr : WindowPtr; becomingActive : Boolean);188

189

var190

windowsMenu : MenuHandle;191

menuItem, a : integer;192



4-22 Windows

193

begin194

a := 1;195

196

windowsMenu := GetMenuHandle(mWindows);197

198

while (gWindowPtrArray[a] <> myWindowPtr) do199

a := a + 1;200

menuItem := a;201

202

if (becomingActive)203

then CheckItem(windowsMenu, menuItem, true)204

else CheckItem(windowsMenu, menuItem, false);205

206

DrawGrowIcon(myWindowPtr);207

end;208

{of procedure DoActivateWindow}209

210

{ ########################################################################### DoActivate }211

212

procedure DoActivate(eventRec : EventRecord);213

214

var215

myWindowPtr : WindowPtr;216

becomingActive : Boolean;217

218

begin219

myWindowPtr := WindowPtr(eventRec.message);220

221

becomingActive := boolean(BAnd(eventRec.modifiers, activeFlag) <> 0);222

223

DoActivateWindow(myWindowPtr, becomingActive);224

end;225

{of procedure DoActivate}226

227

{ ############################################################################ DoOSEvent }228

229

procedure DoOSEvent(eventRec : EventRecord);230

231

begin232

case BAnd(BSR(eventRec.message, 24), $000000FF) of233

234

suspendResumeMessage:235

begin236

if (gCurrentNumberOfWindows > 0) then237

begin238

DrawGrowIcon(FrontWindow);239

gInBackground := boolean(BAnd(eventRec.message, resumeFlag));240

DoActivateWindow(FrontWindow, not(gInBackground));241

end;242

end;243

end;244

{of case statement}245

end;246

{of procedure DoOSEvent}247

248

{ ##################################################################### SetStandardState }249

250

procedure SetStandardState(myWindowPtr : WindowPtr);251

252

var253

windowRecPtr: WindowPeek;254

winStateDataPtr : WStateDataPtr;255

tempRect : Rect;256

257

begin258

tempRect := qd.screenBits.bounds;259

windowRecPtr := WindowPeek(myWindowPtr);260

winStateDataPtr := WStateDataPtr(Handle(windowRecPtr^.dataHandle^));261

262

SetRect(winStateDataPtr^.stdState, tempRect.left + 40, tempRect.top + 60,263

tempRect.right - 40, tempRect.bottom - 40);264

end;265

{of procedure SetStandardState}266

267

{ ########################################################################## DoNewWindow }268

269



Windows 4-23

procedure DoNewWindow;270

271

var272

myWindowPtr : WindowPtr;273

untitledString : string;274

numberAsString : string;275

titleString : string;276

windowsMenu : MenuHandle;277

278

begin279

280

if (gCurrentNumberOfWindows = kMaxWindows) then281

begin282

DoError(eMaxWindows);283

Exit(DoNewWindow);284

end;285

286

myWindowPtr := GetNewWindow(rNewWindow, gPreAllocatedBlockPtr, WindowPtr(-1));287

if (myWindowPtr = nil) then288

DoError(eFailWindow);289

290

gPreAllocatedBlockPtr := nil;291

292

GetIndString(untitledString, rStringList, sUntitled);293

gUntitledWindowNumber := gUntitledWindowNumber + 1;294

NumToString(gUntitledWindowNumber, numberAsString);295

titleString := Concat(untitledString, numberAsString);296

SetWTitle(myWindowPtr, titleString);297

298

SetStandardState(myWindowPtr);299

300

ShowWindow(myWindowPtr);301

302

if (gUntitledWindowNumber < 10) then303

begin304

untitledString := Concat(titleString, '/');305

NumToString(gUntitledWindowNumber, numberAsString);306

titleString := Concat(untitledString, numberAsString);307

end;308

309

windowsMenu := GetMenu(mWindows);310

InsertMenuItem(windowsMenu, titleString, CountMItems(windowsMenu));311

312

SetWRefCon(myWindowPtr, gCurrentNumberOfWindows);313

314

gCurrentNumberOfWindows := gCurrentNumberOfWindows + 1;315

gWindowPtrArray[gCurrentNumberOfWindows] := myWindowPtr;316

317

if (gCurrentNumberOfWindows = 1) then318

begin319

EnableItem(GetMenu(mFile), iClose);320

EnableItem(GetMenu(mWindows), 0);321

DrawMenuBar;322

end;323

end;324

{procedure DoNewWindow}325

326

{ ######################################################################## DoCloseWindow }327

328

procedure DoCloseWindow;329

330

var331

myWindowPtr : WindowPtr;332

windowsMenu : MenuHandle;333

a : integer;334

335

begin336

a := 1;337

338

myWindowPtr := FrontWindow;339

CloseWindow(myWindowPtr);340

DisposePtr(Ptr(WindowPeek(myWindowPtr)));341

gCurrentNumberOfWindows := gCurrentNumberOfWindows - 1;342

343

windowsMenu := GetMenu(mWindows);344

while (gWindowPtrArray[a] <> myWindowPtr) do345

a := a + 1;346



4-24 Windows

gWindowPtrArray[a] := nil;347

DeleteMenuItem(windowsMenu, a);348

349

for a := 1 to (kMaxWindows + 1) do350

if (gWindowPtrArray[a] = nil) then351

begin352

gWindowPtrArray[a] := gWindowPtrArray[a + 1];353

gWindowPtrArray[a + 1] := nil;354

end;355

356

if (gCurrentNumberOfWindows = 0) then357

begin358

DisableItem(GetMenu(mFile), iClose);359

DisableItem(GetMenu(mWindows), 0);360

DrawMenuBar;361

end;362

end;363

{of procedure DoCloseWindow}364

365

{ ############################################################## InvalidateScrollBarArea }366

367

procedure InvalidateScrollBarArea(myWindowPtr : WindowPtr);368

369

var370

tempRect : Rect;371

372

begin373

SetPort(myWindowPtr);374

375

tempRect := myWindowPtr^.portRect;376

tempRect.left := tempRect.right - 15;377

InvalRect(tempRect);378

379

tempRect := myWindowPtr^.portRect;380

tempRect.top := tempRect.bottom - 15;381

InvalRect(tempRect);382

end;383

{of procedure InvalidateScrollBarArea}384

385

{ ########################################################################### DoFileMenu }386

387

procedure DoFileMenu(menuItem : integer);388

389

begin390

case menuItem of391

392

iNew:393

begin394

DoNewWindow;395

end;396

397

iClose:398

begin399

DoCloseWindow;400

end;401

402

iQuit:403

begin404

gDone := true;405

end;406

407

end;408

{of case statement}409

end;410

{of procedure DoFileMenu}411

412

{ ######################################################################## DoWindowsMenu }413

414

procedure DoWindowsMenu(menuItem : integer);415

416

var417

myWindowPtr : WindowPtr;418

419

begin420

myWindowPtr := gWindowPtrArray[menuItem];421

SelectWindow(myWindowPtr);422

end;423



Windows 4-25

{of procedure DoWindowsMenu}424

425

{ ######################################################################### DoMenuChoice }426

427

procedure DoMenuChoice(menuChoice : longint);428

429

var430

menuID, menuItem : integer;431

itemName : string;432

daDriverRefNum : integer;433

434

begin435

menuID := HiWord(menuChoice);436

menuItem := LoWord(menuChoice);437

438

if (menuID = 0) then439

Exit(DoMenuChoice);440

441

case menuID of442

443

mApple:444

begin445

if (menuItem = iAbout)446

then SysBeep(10)447

448

else begin449

GetMenuItemText(GetMenuHandle(mApple), menuItem, itemName);450

daDriverRefNum := OpenDeskAcc(itemName);451

end;452

end;453

454

mFile:455

begin456

DoFileMenu(menuItem);457

end;458

459

mWindows:460

begin461

DoWindowsMenu(menuItem);462

end;463

464

end;465

{of case statement}466

467

HiliteMenu(0);468

end;469

{of procedure DoMenuChoice}470

471

{ ########################################################################## DoMouseDown }472

473

procedure DoMouseDown(eventRec : EventRecord);474

475

var476

myWindowPtr : WindowPtr;477

partCode : integer;478

growRect : Rect;479

newSize : longint;480

481

begin482

partCode := FindWindow(eventRec.where, myWindowPtr);483

484

case partCode of485

486

inMenuBar:487

begin488

DoMenuChoice(MenuSelect(eventRec.where));489

end;490

491

inSysWindow:492

begin493

SystemClick(eventRec, myWindowPtr);494

end;495

496

inContent:497

begin498

if (myWindowPtr <> FrontWindow) then499

SelectWindow(myWindowPtr);500



4-26 Windows

end;501

502

inDrag:503

begin504

DragWindow(WindowRef(myWindowPtr), eventRec.where, qd.screenBits.bounds);505

end;506

507

inGoAway:508

begin509

if TrackGoAway(myWindowPtr, eventRec.where) then510

DoCloseWindow;511

end;512

513

inGrow:514

begin515

growRect := qd.screenBits.bounds;516

growRect.top := 80;517

growRect.left := 160;518

newSize := GrowWindow(myWindowPtr, eventRec.where, growRect);519

if (newSize <> 0) then520

begin521

InvalidateScrollBarArea(myWindowPtr);522

SizeWindow(myWindowPtr, LoWord(newSize), HiWord(newSize), true);523

InvalidateScrollBarArea(myWindowPtr);524

end;525

end;526

527

inZoomIn, inZoomOut:528

begin529

if (TrackBox(myWindowPtr, eventRec.where, partCode)) then530

begin531

SetPort(myWindowPtr);532

EraseRect(myWindowPtr^.portRect);533

ZoomWindow(myWindowPtr, partCode, false);534

InvalRect(myWindowPtr^.portRect);535

end;536

end;537

538

end;539

{of case statement}540

end;541

{of procedure DoMouseDown}542

543

{ ############################################################################# DoEvents }544

545

procedure DoEvents(eventRec : EventRecord);546

547

var548

charCode : char;549

550

begin551

case (eventRec.what) of552

mouseDown:553

begin554

DoMouseDown(eventRec);555

end;556

557

keyDown, autoKey:558

begin559

charCode := chr(BAnd(eventRec.message, charCodeMask));560

if (BAnd(eventRec.modifiers, cmdKey) <> 0) then561

DoMenuChoice(MenuKey(charCode));562

end;563

564

updateEvt:565

begin566

DoUpdate(eventRec);567

end;568

569

activateEvt:570

begin571

DoActivate(eventRec);572

end;573

574

osEvt:575

begin576

DoOSEvent(eventRec);577



Windows 4-27

HiliteMenu(0);578

end;579

end;580

{of case statement}581

end;582

{of procedure DoEvents}583

{ ############################################################################ EventLoop }584

585

procedure EventLoop;586

587

var588

eventRec : EventRecord;589

590

begin591

gDone := false;592

593

while (not gDone) do594

begin595

if (WaitNextEvent(everyEvent, eventRec, kMaxLong, nil)) then596

DoEvents(eventRec);597

598

if (gPreAllocatedBlockPtr = nil) then599

begin600

gPreAllocatedBlockPtr := NewPtr(sizeof(WindowRecord));601

if (gPreAllocatedBlockPtr = nil) then602

DoError(eFailMemory);603

end;604

end;605

{of while loop}606

end;607

{of procedure EventLoop}608

609

{ ################################################################ start of main program }610

611

begin612

613

gUntitledWindowNumber := 0;614

gCurrentNumberOfWindows := 0;615

616

{ ……………………………………………………… get nonrelocatable block low in heap for first window record }617

618

gPreAllocatedBlockPtr := NewPtr(sizeof(WindowRecord));619

if (gPreAllocatedBlockPtr = nil) then620

DoError(eFailMemory);621

622

{ …………………………………………………………………………………………………………………………………………………………………… initialize managers }623

624

DoInitManagers;625

626

{ …………………………………………………………………………………………………………………………………………………… set up menu bar and menus }627

628

menubarHdl := GetNewMBar(rMenubar);629

if (menubarHdl = nil) then630

DoError(eFailMenus);631

SetMenuBar(menubarHdl);632

DrawMenuBar;633

634

menuHdl := GetMenuHandle(mApple);635

if (menuHdl = nil)636

then DoError(eFailMenus)637

else AppendResMenu(menuHdl, 'DRVR');638

639

{ …………………………………………………………………………………………………………………………………… initialize window pointer array }640

641

for a := 0 to (kMaxWindows + 2) do642

gWindowPtrArray[a] := nil;643

644

{ ……………………………………………………………………………………………………………………………………………………………………………… enter eventLoop }645

646

EventLoop;647

648

end.649

{of program WindowsPascal}650

651

{ ###################################################################################### }652



4-28 Windows

Demonstration Program Comments
When this program is run, the user should:

• Open and close windows using both the Open and Close commands from the File menu and
their keyboard equivalents, noting that, whenever a window is opened or closed, a  menu
item representing that window is added to, or deleted from, the Windows menu.

• Note that keyboard equivalents are added to the menu items in the Windows menu for the
first nine windows opened.

• Activate individual windows by both clicking the content region and pressing the
keyboard equivalent for the window.

• Send the application to the background and bring it to the foreground, noting window
activation/deactivation.

• Zoom, close, and resize windows using the zoom, close and size boxes, noting window
updating and activation.

The constant declaration block

Lines 57-74 establish constants relating to menu IDs and resources and to resources for
windows, the menu bar, an alert box, and strings to be displayed in the alert box.

kMaxWindows (Line 76) controls the maximum number of windows allowed to be open at one time.
Line 77 defines kMaxLong as the maximum possible long value.  This will be assigned to
WaitNextEvent's sleep parameter.

The variable declaration block

The global variable gDone, when set to true, causes the main event loop to be exited and the
program to terminate.  gInBackground relates to foreground/background switching.

gPreAllocatedBlockPtr will be assigned a pointer to a pre-allocated block of memory for a
window record. gUntitledMenuNumber keeps track of the window numbers to be inserted into the
window's title bar.  This number is incremented each time a new window is opened.
gCurrentNumberOfWindows keeps track of how many windows are open at any one time.

gWindowPtrArray[] is central to the matter of maintaining an association between item numbers
in the Windows menu and the windows to which they refer, regardless of how many windows are
opened and closed, and in what sequence.  When, for example, a Windows menu item is chosen,
the program must be able to locate the window record for the window represented by that menu
item number so as to activate the correct window.

The strategy adopted by this program is to assign the pointers for each opened window to the
elements of gWindowPtrArray[], starting with gWindowPtrArray[1] and leaving gWindowPtrArray[0]
unused.  If, for example, six windows are opened in sequence, gWindowPtrArray[1] to
gWindowPtrArray[6] are assigned the window pointers for each of those six windows.  (At the
same time, menu items representing each of those windows are progressively added to the
Windows menu.)

If, say, the third window opened is then closed, gWindowPtrArray[3] is set to NIL and the
window pointers in gWindowPtrArray[4] to gWindowPtrArray[6] are moved down in the array to
occupy gWindowPtrArray[3] to gWindowPtrArray[5]. Since the Windows menu item for the third
window is deleted from the menu when the window is closed, there remains five windows and
their associated menu items, the "compaction" of the array having maintained a direct
relationship between the number of the array element to which each window pointer is assigned
and the number of the menu item for that window.

The procedure DoError

DoError displays either a Caution Alert or a Stop Alert with a specified string extracted from
the 'STR#' resource identified by rStringList.

At line 123, this string is retrieved.  Line 124 assigns this string to the single text
replacement variable (^0) specified in the 'ALRT' resource.

If the error is simply that the maximum number of windows has been opened (Line 126), a
Caution Alert is displayed (Line 127) and the function returns when the user clicks alert's OK
box.  If the error was such that it is pointless continuing, a Stop Alert is displayed and the
program terminates when the user clicks alert's OK box (Lines 130-131).



Windows 4-29

The procedure DoUpdateWindow

DoUpdateWindow is concerned with redrawing the window's contents less the scroll bar areas.
The correct graphics port is set (Line 148) before a Rect is assigned the coordinates of the
graphics port portRect field as reduced to exclude the scroll bar areas Lines 150-152.  Lines
154-158 then fill this area with one of the system patterns.  (Of course, to speed things up,
Quickdraw actually only draws that part of the Rect which equates to the visible region
established by the BeginUpdate call in the DoUpdate function.)

At Line 154, the value in the window record's refCon field is retrieved.  As will be seen,
whenever a new window is opened, a value between 1 and kMaxWindows is assigned to this field.
In this function, this is just a convenient number for passing as the third parameter to the
GetIndPattern call at Line 156, ensuring that FillRect (Line 158) has something visible and
unique to draw in each window.

The procedure DoUpdate

DoUpdate attends to basic window updating.  The call to BeginUpdate (Line 172) clips the
visible region to the update region and then purges the update region.  The call to EmptyRgn
(Line 174) confirms that the visible region is not empty before the graphics port is set and
the visible region is erased.  The application-defined function DoUpdateWindow is then called
(Line 178) to redraw the content region less the scroll bar areas.  The DrawGrowIcon call
completes the process by redrawing the grow icon in the size box and the scroll box area
delimiting lines.

Note that the erasure of the visible region at Line 177 is necessary to account for the case
of the window being resized smaller.  In this case, the only area in the clipped visible
region will be the scroll bar areas, which must be erased.  (DrawGrowIcon draws the delimiting
lines, but does not draw the background, of the scroll bar areas.)

The EndUpdate call at Line 182 restores the window's true visible region.

The procedure DoActivateWindow

In this demonstration, the remaining actions carried out in response to an activateEvt are
limited to placing and removing checkmarks from items in the Windows menu and drawing the grow
icon.

The first step in the function DoActivateWindow is to associate the received WindowPtr with
its item number in the Windows menu.  At Lines 199-200, the array maintained for that purpose
is searched until a match is found.  The array element number at which the match is found
correlates directly with the menu item number; accordingly this is assigned to a variable
(Line 201) used in the CheckItem calls at Lines 203-205.  Whether the checkmark is added or
removed depends on whether the window in question is being activated or deactivated, a
condition passed to the call to DoActivateWindow as its second parameter.

DrawGrowIcon is then called (Line 207) to draw the grow icon box, including the lines which
delineate the scroll bar areas.  Note that, if the window involved in an activate event is
being deactivated, DrawGrowIcon draws the delimiting lines and an empty size box.  If the
window is being activated, DrawGrowIcon draws the delimiting lines and the grow icon in the
size box.

The procedure DoActivate

DoActivate attends to those aspects of window activation not handled by the Window Manager.

The modifiers field of the event record is tested (Line 222) to determine whether the window
in question is being activated or deactivated.  The result of this test is passed as a
parameter in the call to the application-defined function DoActivateWindow at Line 224.

The procedure DoOSEvent

DoOSEvent handles operating system events.  In this demonstration, action is taken only in the
case of suspend and resume events (Line 235) and then only if at least one window is open
(Line 237).  The call to DrawGrowIcon at Line 239 is required regardless of whether the event
is suspend or resume.  If the application is about to be sent to the background, the call will
draw the empty grow box in the front window.  If the application is being brought to the
foreground, the call will draw the grow box with the size icon in our frontmost window.

In the case of a suspend event, window deactivation tasks needs to be performed.  In the case
of a resume event, activation tasks need to be attended to.  Accordingly, doActivateWindow is
called at Line 241 with the second parameter set to true for a resume and to false for a
suspend.  This will cause either Line 204 or Line 205 in the DoActivateWindow function to be



4-30 Windows

executed as appropriate.  (In this demonstration, the only activation/deactivation activity is
menu enabling/disabling.)

The procedure SetStandardState

The SetStandardState procedure sets the window's standard state. First the coordinates of the
screen boundary are placed in a Rect (Line 259).  At Line 261, the handle in the window
record's dataHandle field is dereferenced to a pointer and cast to a WStateDataPtr, a pointer
to a WStateData record. At Line 263, this pointer is then used in the call to SetRect, which
sets the required top, left, bottom and right values in the stdState field of the window's
WStateData structure.

The procedure DoNewWindow

DoNewWindow opens a new window and attends to associated tasks.

Firstly, if the current number of open windows equals the maximum allowable specified by
kMaxWindows, a Caution Alert is called up via the application-defined DoError function (with
the string represented by eMaxWindows displayed) and an immediate return is executed when the
user clicks the Alert's OK button (Lines 281-285).

At Line 287, the new window is created.  The second parameter of the GetNewCWindow call is a
pointer to the pre-allocated block of memory allocated earlier in the program, and the third
parameter specifies that the window is to be opened in front of all other windows.  If the
call is not successful for any reason, a Stop Alert is called up via the DoError procedure
(with the string represented by eFailWindow displayed) and the program terminates when the
user clicks the Alert's OK button.

If the window was successfully opened, gPreAllocatedBlockPtr is set to NIL so that a new pre-
allocated block will be created at the bottom of the event loop in preparation for the next
window to be opened (Line 291).

Lines 293-297 insert the number of the window into the title bar (for example, "Untitled 1"
for the first window opened).  Line 293 retrieves the string "Untitled " from the 'STR#'
resource.  Lines 294-295 increments the global variable which keeps track of the numbers for
the title bar and converts that value to a string.  Line 296 concatenates this string to the
"Untitled " string.  Line 297 changes the window's title and redraws the title bar.

Line 299 calls the application-defined function SetStandardState.  (If the standard state is
not set programmatically like this, the system will automatically set it 3 pixels inside the
screen's gray region boundary.)

Line 301 makes the window visible.

Lines 303-311 add a Command key equivalent to the Windows menu item for this window.  (This
occurs only for the first nine opened windows.)

Line 313 assigns a value to the window record's reference constant (refCon) field.  As
previously stated, in this demonstration this is used to index the system's standard patterns
list for a unique pattern to draw in each window's content region.

At Lines 315-316, the variable which keeps track of the current number of opened windows is
incremented and the appropriate element of the window pointer array is assigned the window
pointer of the newly opened window.

Lines 318-323 enable the Windows menu and the Close item in the File menu when the first
window is opened.

The procedure DoCloseWindow

The function DoCloseWindow closes an open window and attends to associated tasks.

At Line 339, a pointer to the frontmost window is retrieved and that window is closed by a
call to CloseWindow at Line 340.  CloseWindow, rather than DisposeWindow, must be used where
storage for the window record was allocated manually, that is, where the second parameter in
the GetNewCWindow call was not NIL.  Because CloseWindow is used, the call to DisposePtr at
Line 341 is necessary to dispose of the non-relocatable block occupied by the window record.
With the window closed, the global variable which keeps track of the number of windows
currently open is decremented (Line 342).

Lines 344-348 delete the associated menu item from the windows menu.  At Lines 345-346, the
array element in which the WindowPtr in question is located is searched out, the element
number (which correlates directly with the menu item number) is noted and the element is set
to NIL.  At Line 348, the menu item is deleted.



Windows 4-31

Lines 350-355 "compact" the array, that is, move the contents of all elements above the NILed
element down by one, maintaining the correlation with the Windows menu.

Lines 357-362 disable the Windows menu and the Close item in the File menu if no windows
remain open as a result of this closure.

The procedure InvalidateScrollBarArea

InvalidateScrollBarArea invalidates that part of the window's content region which would be
occupied by scroll bars.  (Although this demonstration does not include scroll bars, this
function is necessary because the windows have size boxes and the associated calls to
DrawGrowIcon draw the lines which delineate the scroll bar areas in addition to the size box
itself.)  The function simply retrieves the coordinates of the content region into a Rect and
reduces this Rect to the relevant scroll bar area before invalidating that area, that is,
adding it to the window's update region.

The procedure DoFileMenu

DoFileMenu branches according to the File menu item choices of the user.

The procedure DoWindowsMenu

DoWindowsMenu takes the item number of the selected Windows menu item and, since this equates
to the number of the array element in which the associated window pointer is stored, extracts
the window pointer associated with the menu item.  This is used in the call to SelectWindow,
which generates the activateEvts required to activate and deactivate the appropriate windows.

The procedure DoMenuChoice

DoMenuChoice branches according to the menu choices of the user.

The procedure DoMouseDown

DoMouseDown continues the processing of mouseDown events, branching according to the part
code.

The inContent case (Line 497) results in a call to SelectWindow if the window in which the
mouse-down occurred is not the front window.  SelectWindow:

• Unhighlights the currently active window, brings the specified window to the front and
highlights it.

• Generates activate events for the two windows.

• Moves the previously active window to a position immediately behind the specified
window.

The inDrag case (Line 503) results in a call to DragWindow, which retains control until the
user releases the mouse button.  The third parameter in the DragWindow call establishes the
limits, in global screen coordinates, within which the user is allowed to drag the window.
screenBits is a QuickDraw global variable of type BitMap.  The bounds field of screenBits is a
Rect containing the coordinates of a rectangle which encloses the main screen.

The inGoAway case (Line 508) results in a call to TrackGoAway, which retains control until the
user releases the mouse button.  If the pointer was still within the go away box when the
button was released, the application-defined function doCloseWindow is called.

The inGrow case (Line 514) first sets up the Rect used in the third parameter of the
GrowWindow call which, in turn, will limit the maximum size to which the window can be
resized.  The top, left, bottom and right fields must contain, respectively, the minimum
vertical, the minimum horizontal, the maximum vertical, and the maximum horizontal
measurements.  At Line 516, this Rect is set to the boundaries of the screen, which is a
reasonable way to get reasonable values into the bottom and right fields.  The top and left
fields, however, need to be manually set to some reasonable values (Lines 517-518).

GrowWindow (Line 519) retains control until the user releases the mouse button, at which time
the Rect variable newSize will contain the new window size coordinates.  (Note that GrowWindow
does not redraw the window in this size.)  The application-defined function
InvalidateScrollBarArea is then called (Line 522) to create an update region comprising the
old scroll bar areas.

The SizeWindow call (Line 523) then redraws the window frame and title and, where window
height and/or width has been increased, adds the newly-exposed areas to the update region.



4-32 Windows

A further call to InvalidateScrollBarArea (Line 524) adds the new scroll bar areas to the
update region.  (Note that the first InvalidateScrollBarArea call is, strictly speaking, only
really required when window size has been increased, this to ensure that the "old" scroll bar
areas are included in the redrawing of the update region triggered by the updateEvt arising
from the size increase.  Similarly, the second InvalidateScrollBarArea call is, strictly
speaking, only really required when window size has been decreased.  In this case, no other
update region will be generated as a result of the resizing, so the InvalidateScrollBarArea
call forces an updateEvt which, in this program, results in erasure of the entire window
content area, redrawing of the "new" content area less the scroll bar areas, and redrawing of
the "new" scroll bar delimiting lines.)

The inZoomIn and inZoomOut cases (Line 528) result in a call to TrackBox, which takes control
until the user releases the mouse button.  If the mouse button is released while the pointer
is still within the zoom box, the current graphics port is set to that associated with the
active window and the entire content area is erased (Lines 532-533).  (This erasure is not
strictly necessary; it simply avoids screen flicker and some redrawing peculiarities
associated with the execution of the ZoomWindow call (Line 534).)

The call to ZoomWindow redraws the window frame and title in the new zoomed state, which will
be either the user state or the standard state.  (ZoomWindow knows which way to go because the
Window Manager keeps track of the current state, which is contained in the partCode variable
returned by FindWindow (Line 483) and passed to ZoomWindow as its second parameter.)  Finally,
the InvalRect call at Line 535 triggers an updateEvt and consequential redrawing of the entire
content region.

The procedure DoEvents

DoEvents branches according to the event type received.

mouseDown, upDate, activateEvt and osEvt events are of significance to the windows aspects of
this demonstration.  To that extent, keyDown events are significant only with regard to
Windows menu keyboard equivalents.

Note that the call to HiliteMenu at Line 578 is required to unhighlight the Apple menu title
when the application is brought to the foreground again following a period of dalliance with
an item in the Apple menu (other than the About… item).

The procedure EventLoop

EventLoop will exit when gDone is set to true, which occurs when the user selects Quit from
the File menu.  (As an aside, note that the sleep parameter in the WaitNextEvent call is set
to kMaxLong, which is defined in the constant declaration block as the maximum possible
longint value.)

At the bottom of the event loop (Lines 601-603), a new nonrelocatable block is allocated in
preparation for the next window to be opened if the global variable gPreAllocatedBlockPtr
contains NIL.

The main program block

Line 619 in the main function requires some explanation.  When a window is created, its window
record is contained in a nonrelocatable block of memory.  Any program that allows the user to
open many windows at any time during program execution must have a strategy for allocating all
window records as low in the heap as possible, since nonrelocatable blocks scattered within
the heap contribute to memory fragmentation and impede effective heap compaction by the Memory
Manager.

The best times to allocate nonrelocatable blocks so as to ensure that they are located as low
in the heap as possible are:

• At the beginning of the program (just before the system software managers are
initialised).

• At the bottom of the event loop just after all events have been handled to completion.
At this time, the heap is as empty as it will ever be.

This program adopts that strategy.  Line 619 pre-allocates a nonrelocatable block which will
later be used by the window record of the first window to be created.  The pointer returned by
the first call to GetNewWindow, which will be copied to gWindowPtrArray[1], will point to this
block.  gPreAllocatedBlockPtr will then be set to NIL.  At the bottom of the event loop,
gPreAllocatedBlockPtr will be checked.  If it contains NIL, the pre-allocated block must now
be occupied by a window record, in which circumstance a new block will be allocated in
preparation for the next window to be opened.



Windows 4-33

Note:   It is expected that, at some point in the development of the system
software, data structures such as window records will no longer be created in your
application’s address space.  In such circumstances, the pre-allocation technique
described above will be rendered improper and the correct technique will be to
allow the system to itself allocate the storage for the window record by passing
NULL in the second parameter of the GetNewWindow call.

If the call at Line 619 fails, Line 621 invokes an Alert box and the program terminates.

Line 625 initialises the system software managers.  Note that MoreMasters must be called twice
to provide sufficient master pointers for this program.

At Lines 629-638, the menus are set up.  Note that error handling involving the invocation of
alert boxes is introduced in this program.  If an error occurs (Lines 630 and 636) the
application-defined function doError will display an alert box advising of the nature of the
error before terminating the program.

gWindowPtrArray[] is initialised (Lines 642-643) before the main event loop is called at Line
647.

Creating 'WIND'  Resources Using ResEdit

When learning to create the major resource types in ResEdit, it is recommended that you open
Macintosh C to the page containing the relevant example resource definition in Rez input format and
relate what you are doing within ResEdit to that definition.  Accordingly, the methodology used in the
following is to "walk through" the 'WIND' resources for the Windows demonstration program, relating
what you see in ResEdit to the example definitions in this chapter.

Open the chap04pascal_demo demonstration program folder and double-click on the Windows.µ.rsrc
icon to start ResEdit and open Windows.µ.rsrc.  The Windows.µ.rsrc window opens.

Double-click the WIND icon.  The WINDs from Windows.µ.rsrc window opens.  One 'WIND' resource
(ID 128) appears in the list.  Double-click that list entry.  The WIND ID = 128 from Windows.u.rsrc
window opens.

The following relates the example 'WIND' resource in Rez input format in this chapter to the ResEdit
display and interface:

resource 'WIND' This was established when the resource was created by choosing
Resource/Create New Resource.  A small dialog opened, the item WIND was
clicked, and the dialog's OK button was clicked.

(rDocWindow, rDocWindow is the 'WIND' resource ID (128).  Choose Resource/Get Resource Info.
The Info for WIND 128 ...  window opens.  Note the editable text item titled ID:.
This is where you set the 'WIND' resource ID.  ResEdit automatically assigns 128
as the 'WIND' resource ID of the first 'WIND' resource you create.

preload,
purgeable)

While the Info for WIND 128 ...  window is open, compare the Attributes: check
boxes to the Resource Attributes table at Chapter 1.  Note that the Purgeable
checkbox is checked.  Close the Info for WIND 128 ... window.

{64,60,314,460} In the WIND ID = 128 ... window, note the Top, Left, Bottom, and Right items at
the bottom left.  (Note also that, in the WIND menu, you can change the last two
items to display Height and Width if you so desire.)

zoomDocProc Note that, in the row of window icons at the top of the window, the zoomDocProc
(8) window type is highlighted.  Note also that, when you choose WIND/Set
'WIND' Characteristics..., the ProcID: item in the opened dialog box shows 8.
(You can set the desired Window Definition ID either here or by clicking the
appropriate icon at the top of the window.)  Close the dialog.

invisible Back in the WIND ID = 128 ... window, note the  check box titled Initially Visible at
the right.



4-34 Windows

goAway Note the check box titled Close Box at the right.

0x0
"untitled"

Choose WIND/Set 'WIND' Characteristics again and note the items titled refCon:
and Window title:  Close the dialog.

staggerParent... Choose WIND/Auto Position... and note the items chosen in the two pop-up
menus.

You might also further explore the ResEdit display options by choosing WIND/Preview at Full Size,
and the various items in the MiniScreen menu.

Note that, when you click on the Color: Custom radio button at the right of the WIND ID = 128 ...
window, five items appear which enable you to specify colours for the various elements of the window.
If you were to save the resource with this radio button set, ResEdit would automatically create a 'wctb'
(window color table) resource with the same resource ID as the associated 'WIND' resource.

Close the WIND ID = 128 ... window.  Close the WINDs from Windows.µ.rsrc window.  Close the
Windows.µ.rsrc window.


	Introduction
	Standard Window Elements
	Active and Inactive Windows
	Types of Windows
	Window Definition IDs
	Window Type Usage
	Other Window Definitions

	Window Regions
	Controls and Control Lists
	Windows on the Desktop
	The Window List
	The Gray Region

	Graphics Ports
	Window Records
	Compatibility

	Colour Windows
	Events in Windows

	Creating Windows
	Defining a 'WIND' Resource
	Creating the Window From the 'WIND' Resource
	Adding Scroll Bars
	Window Visibility

	Positioning a New Document Window on the DeskTop
	Positioning a Saved Document Window on the DeskTop
	Drawing a Window's Contents
	Providing Balloon Help

	Managing Multiple Windows
	Handling Events
	Handling Mouse Events
	Mouse-Downs in Inactive Windows

	Handling Keyboard Events
	Handling Update Events
	Preamble
	The Update Process
	Type-Dependent Update Procedures

	Handling Activate Events

	Manipulating Windows
	Moving a Window
	Zooming a Window
	Resizing a Window
	Closing a Window
	DisposeWindow and CloseWindow

	Hiding and Showing a Window

	Main Window Manager Constants, Data Types and Routines
	Demonstration Program
	Demonstration Program Comments
	Creating 'WIND' Resources Using ResEdit

