
Basic QuickDraw 10-1

10Version 1.1

BASIC QUICKDRAW
Includes Demonstration Program BasicQuickDraw

Mathematical Foundations of QuickDraw

QuickDraw defines the following mathematical constructs which are widely used in its routines and
data types:

• The coordinate plane.

• The point.

• The rectangle.

• The region.

The Coordinate Plane

QuickDraw maintains a global coordinate system for the entire potential drawing space. The screen
on which QuickDraw displays your images represents a small part of a large global coordinate plane.
The global coordinate plane is bounded by the limits of QuickDraw coordinates, which range from -
32768 to 32767. The (0,0) origin point of the global coordinate plane is assigned to the upper-left corner
of the screen. From there, coordinate values decrease to the left and up and increase to the right and
down. Any pixel on the screen can be specified by a vertical coordinate (ordinarily labelled v) and a
horizontal coordinate (ordinarily labelled h).

FIG 1 - LOCAL AND GLOBAL COORDINATE SYSTEMS

- h

+ v

v

(h=0,v=0) IN GLOBAL COORDINATES

(h=70,v=60) IN GLOBAL COORDINATES
(h=0,v=0) IN LOCAL COORDINATES

- v

+ h

h

GLOBAL ORIGIN

WINDOW ORIGIN

10-2 Basic QuickDraw

In addition to the global coordinate system, QuickDraw maintains a local coordinate system for every
window. The relationship between global and local coordinates is shown at Fig 1.

Points

The intersection of (imaginary) horizontal and vertical grid lines on the coordinate plane marks a point.
There is a distinction between points on the coordinate grid and pixels (the dots which make up the
visible image on the screen). Points themselves are dimensionless whereas a pixel is not. As shown at
Fig 2, a pixel "hangs" down and to the right of the point by which it is addressed. A pixel thus lies
between the infinitely thin lines of the coordinate grid.

POINT

PIXEL

GRID LINES

FIG 2 - POINTS AND PIXELS

The data type for points is Point:

struct Point
{

short v; // Vertical coordinate.
short h; // Horizontal coordinate.

};

typedef struct Point Point;
typedef Point *PointPtr;

Rectangles

Rectangles are used to define active areas on the screen, to assign coordinate systems to graphics
entities, and to specify the sizes and locations for various graphics operations. Rectangles, like points,
are mathematical entities which have no direct representation on the screen. Just as points are
infinitely small, the borders of the rectangle are infinitely thin.

The data type for rectangles is Rect:

struct Rect
{

short top;
short left;
short bottom;
short right;

};

typedef struct Rect Rect;
typedef Rect *RectPtr;

If the bottom coordinate of a rectangle is equal to or less than the top, or the right coordinate is less than
the left, the rectangle is an empty rectangle, that is, one that contains no data.

Regions

One of QuickDraw's most powerful features is to work with regions of arbitrary size, shape and
complexity. A region is an arbitrary area, or set of areas, the outline of which is one or more closed
loops. A region can be concave or convex, can consist of one connected area or many separate ones,

Basic QuickDraw 10-3

and can even have holes in the middle. In the examples at Fig 3, the region on the left has a hole and
the one on the right consists of two unconnected areas.

FIG 3 - TWO REGIONS

The data type for regions is Region:

struct Region
{

short rgnSize; // Size in bytes.
Rect rgnBBox; // Enclosing rectangle.
… // More data if region is not rectangular.

};

typedef struct Region Region;
typedef Region *RgnPtr, **RgnHandle;

The regionSize field contains the size, in bytes, of the region. The maximum size is 32 KB when using
Basic QuickDraw (64 KB when using Color QuickDraw). The rgnBBox field is a rectangle which
completely encloses the region. The simplest region is a rectangle. In this case, the rgnBBox field
defines the entire region, and there is no optional region data. For rectangular regions (or empty
regions), the rgnSize field contains 10. The data for more complex regions is stored in a proprietary
format.

Black and White Drawing: The Basic Graphics Port

The GrafPort Structure

Basic QuickDraw performs its operations in a graphics port based on a data structure of type GrafPort:

struct GrafPort
{

short device; // Device-specific information. (0 = screen.)
BitMap portBits; // BitMap.
Rect portRect; // Port Rectangle.
RgnHandle visRgn; // Visible region.
RgnHandle clipRgn; // Clipping region.
Pattern bkPat; // Background pattern.
Pattern fillPat; // Fill pattern.
Point pnLoc; // Pen location.
Point pnSize; // Pen size.
short pnMode; // Pen mode.
Pattern pnPat; // Pen pattern.
short pnVis; // Pen visibility.
short txFont; // Font number for text.
Style txFace; // Text's font style.
SInt8 filler;
short txMode; // Transfer mode for text.
short txSize; // Font size for text.
Fixed spExtra; // Spacing for full justification..
long fgColor; // Foreground colour.
long bkColor; // Background colour.
short colrBit; // Color bit.
short patStretch; // (Used internally.)
Handle picSave; // Picture being saved. (Used internally.)
Handle rgnSave; // Region being saved. (Used internally.)
Handle polySave; // Polygon being saved. (Used internally.)
QDProcsPtr grafProcs; // Low-level drawing routines.

};

10-4 Basic QuickDraw

typedef struct GrafPort GrafPort;
typedef GrafPort *GrafPtr;
typedef GrafPtr WindowPtr

Field Descriptions

portBits The portBits field of a black-and-white graphics port contains the bitmap, a data
structure of type bitMap which defines a black-and-white physical image in terms of the
QuickDraw coordinate plane. The bitMap data type is as follows:

struct BitMap
{

Ptr baseAddr; // Pointer to bit image.
short rowBytes; // Row width.
Rect bounds; // Boundary rectangle.

};

typedef struct BitMap BitMap;
typedef BitMap *BitMapPtr, **BitMapHandle;

The baseAddr field contains a pointer to the beginning of the bit image .1 A bit image is a
collection of bits in memory that form a grid. Fig 4 illustrates a bit image, which can be
visualised as a matrix of rows and columns of bits with each row containing the same
number of bytes. A bit image can be any length that is a multiple of the row's width in
bytes.

FIG 4 - A BIT IMAGE

8 BITS

FIRST BYTE

LAST BYTE

ROWS TERMINATE ON A WORD BOUNDARY

The screen itself is one large visible bit image. On a Macintosh Classic, for example, the
screen is a 342-by-512 bit image, with a row width of 64 bytes. These 21,888 bytes of
memory are displayed as a matrix of 175,104 pixels on the screen. Each bit corresponds to
one screen pixel. If a bit's value is 0, its screen pixel is white; if the bit's value is 1, the
screen pixel is black.

The rowBytes field contains the width of a row in bytes. A bitmap must always begin on
a word boundary and contain an integral number of words in each row.

The bounds field is the bitmap's boundary rectangle. The boundary rectangle serves two
purposes. Its first purpose is to link the local coordinates system of a graphics port to
QuickDraw's global coordinate system (see Fig 5).

The boundary rectangle's second purpose is to define the area of an image into which
QuickDraw can draw.

1There can be several bitMaps pointing to the same bit image, each imposing its own coordinate system on it.

Basic QuickDraw 10-5

FIG 5 - LOCAL AND GLOBAL COORDINATE SYSTEMS AND THE BOUNDARY RECTANGLE

- h

+ v

v

(h=0,v=0) IN GLOBAL COORDINATES

(h=70,v=60) IN GLOBAL COORDINATES
(h=0,v=0) IN LOCAL COORDINATES

- v

+ h

h
UPPER LEFT CORNER OF
BOUNDARY RECTANGLE:
h = - 70,v = - 60 IN LOCAL
COORDINATES

GLOBAL ORIGIN

WINDOW ORIGIN

portRect The portRect field denotes the port rectangle that defines a subset of the bitmap to be
used for drawing. All drawing done by your application occurs inside the port rectangle.
As previously explained, the boundary rectangle defines the local coordinate system used
by the port rectangle. The port rectangle usually falls within the boundary rectangle, but
it is not required to do so.

visRgn The visRgn field designates the visible region of the graphics port. The visible region is
the region of the graphics port that is actually visible on screen, and is manipulated by the
Window Manager. For example, if the user moves one window in front of another, the
Window Manager logically removes the area of overlap from the visible region of the
window at the back. When you draw into the back window, whatever is being drawn is
clipped to the visible region so that it does not run over into the front window.

clipRgn The clipRgn field specifies the graphics port's clipping region, which you can use to limit
drawing to any region within the port rectangle. The initial clipping region is an
arbitrarily large rectangle covering the entire coordinate plane. You can set the clipping
region to any arbitrary region.

bkPat
fillPat

The bkPat and fillPat fields of a GrafPort record contain patterns used by certain
QuickDraw routines. The bkPat field contains the background pattern used when an area
is erased or when bits are scrolled out of it. When asked to fill an area with a specified
pattern, QuickDraw stores the given pattern in the fillPat field and then calls a low-level
drawing routine which uses the pattern stored in that field.

PnLoc
pnSize
pnMode
pnPat
pnVis

The PnLoc, pnSize, pnMode, pnPat, and pnVis fields of a graphics port relate to the graphics
pen. Each graphics port has one, and only one, such pen, which is used for drawing lines,
shapes and text. The pen has four characteristics: a location, a size (height and width), a
drawing mode, and a drawing pattern.

txFont
txFace
txMode
txSize
spExtra

The txFont, txFace, txMode, txSize, and spExtra fields of a graphics port determine how
text is drawn, that is, the typeface, font style, font size and how they are placed in a bit
image. QuickDraw can draw characters as quickly and easily as it draws lines and
shapes. Text is drawn with the baseline positioned at the pen location.

fgColor
bkColor
colorBit

The fgColor, bkColor, and colorBit fields contain values for drawing in the eight-colour
system available with basic QuickDraw. (On a colour screen, you can draw with these
eight colours even when you are using a basic graphics port.)

The fgColor field contains the graphics port foreground colour (the default is black) and
bkColor contains its background colour (the default is white). You can use ForeColor and
BackColor to change these fields. The colorBit field tells the colour imaging software
which plane of the colour picture to draw into.

10-6 Basic QuickDraw

Note that these colours are recorded when drawing into a QuickDraw picture2 (so that
the picture can be reconstructed using the specified colours) but they cannot be stored in
a bitmap.

More on The Boundary Rectangle, Port Rectangle, Visible Region and
Clipping Region

All drawing in a graphics port occurs in the intersection of the boundary rectangle and the port
rectangle and, within that intersection, all drawing is cropped to the graphics port's visible region and
its clipping region. Fig 6 illustrates the relationship between these rectangles and regions.

As shown at Fig 6, QuickDraw assigns the entire screen as the boundary rectangle of window A. The
boundary rectangle shares the same local coordinate system as the port rectangle of window A. The
upper-left corner (that is, the window origin) of this port rectangle has a horizontal coordinate of 0 and
a vertical coordinate of 0, whereas the upper-left corner for window A's boundary rectangle has a
horizontal coordinate of -60 and a vertical coordinate of -40. The clipping region shown has been set by
the program, using SetClip, to exclude the scroll bar areas of Window B. This ensures that any
drawing in Window B will not over-write the scroll bars.

WINDOW A

WINDOW B

TWO GRAPHICS PORTS

BOUNDARY RECTANGLE OF WINDOW A PORT RECTANGLE OF WINDOW A

VISIBLE REGION OF WINDOW A CLIPPING REGION OF WINDOW B

FIG 6 - BOUNDARY RECTANGLE, PORT RECTANGLE, VISIBLE REGION AND CLIPPING REGION

Drawing in Basic Graphics Ports

The QuickDraw routines described in the following operate in both a basic graphics port and a colour
graphics port. Many of these routines have additional capabilities when performed in the more
sophisticated colour environment provided by Color QuickDraw. However, if your application does
not use colour, or uses only a few colours, you may find it unnecessary to create the Color QuickDraw
environment.

The Graphics Pen

The metaphorical graphics pen used for drawing in the graphics port is rectangular in shape and its
size (that is, its height and width) is measured in pixels. The pen's default size is one-by-one pixel;
however, PenSize can be used to change the size and shape up to a 32,767-by-32767 pixel square. Note
that, if either the width or height is set to 0, the pen does not draw.

2See Chapter 12 — Offscreen Graphics Worlds, Pictures, Cursors, and Icons.

Basic QuickDraw 10-7

Graphics Pen Characteristics

Whenever you draw into a graphics port, the characteristics of the graphics pen determine how the
drawing looks. Those characteristics are:

• Pen location, specified in local coordinates stored in the pnLoc field of the graphics port.

• Pen size, specified by the width and height (in pixels) stored in the pnSize field of the graphics
port.

• Pen pattern , which defines, in effect, the "ink" that the pen draws with, and which is stored in
the pnPat field of the graphics port. The pen pattern, which can range from solid black to
intricate patterns, is defined in a bit pattern.

• Pattern mode (also called transfer mode), which specifies how the pen pattern interacts with
white or any existing drawing that the pattern overlays, and which is stored in the pnMode field
of the graphics port.

• Pen visibility, specified by an integer stored in the pnVis field of the graphics port, indicating
whether drawing operations will actually appear. For example, for 0 or negative values, the pen
draws with "invisible ink".

The following QuickDraw routines relate to the graphics pen:

Routine Description
MoveTo
Move

Change the pen's location. The graphics pen can be located anywhere on the local coordinate
plane of the graphics port.

GetPen Determine the pen's current location.

PenPat Change the pen's bit pattern (see below).

PenMode Change the pen's pattern mode. (A pattern mode determines how the pen's bit pattern interacts
with the existing bit image according to one of eight Boolean operations.)

GetPenState Determine the size, location, pattern and pattern mode of the graphics pen. Returns a PenState
record.

SetPenState Restore the size, location, pattern and pattern mode retrieved by GetPenState after temporarily
changing those characteristics.

Bit Patterns

As previously stated, one characteristic of the graphics pen is the pen pattern, which is defined in a bit-
pattern. A bit-pattern is a 64-pixel image, organised as an 8-by-8 pixel square, which defines a
repeating design. The patterns defined in a bit pattern are usually black and white, although any two
of basic QuickDraw's eight colours can be used on a colour screen. Bit patterns are defined in data
structures of type Pattern.

Note: Patterns were originally defined as:

typedef unsigned char Pattern[8];

With the introduction of the Universal Headers, the definition was changed to:

struct Pattern
{

UInt8 pat[8];
}
typedef struct Pattern Pattern;

The old array definition of Pattern would cause 68000-based CPUs to crash in certain
circumstances. The new structure definition may require changes in older source code in
order to compile.

You can use bit patterns to draw lines and shapes. So that adjacent areas of the same pattern form a
continuous coordinated pattern, all patterns are drawn relative to the origin of the graphics port.

10-8 Basic QuickDraw

Five bit patterns are predefined as QuickDraw global variables (see Fig 7). The pattern white is the
default pattern for graphics ports.

white black dkGray gray ltGray

FIG 7 - RECTANGLES DRAWN USING THE FIVE BIT PATTERNS PREDEFINED AS GLOBAL VARIABLES

Other Bit Patterns

You can create your own bit patterns in your program code, but it is usually simpler and more
convenient to store them in resources of type 'PAT ' or 'PAT#'. You can use GetPattern and
GetIndPattern to access bit patterns stored as system resources.

The five predefined patterns are available not only through the global variables provided by
QuickDraw but also as system resources stored in the system resource file. A total of 38 bit patterns,
including the five basic patterns, are stored in the system resource file. Some are shown at Fig 8

FIG 8 - RECTANGLES DRAWN USING OTHER BIT PATTERNS IN THE SYSTEM RESOURCE FILE

Boolean Transfer Modes With 1-Bit Pixels

Another characteristic of the graphics pen is the transfer mode. Boolean transfer modes, which apply
to the one-bit pixels in the black-and-white drawing environment, describe an interaction between the
pixels that your application draws and the pixels that are already in the destination bitmap.

Note that these modes apply to the process of copying bits from one graphics port to another as well as
drawing with the graphics pen. Black-and-white drawing thus uses two types of Boolean transfer
modes:

• Pattern Modes. Pattern modes apply to drawing with the graphics pen. The penMode field of a
graphics port stores the pattern mode for the graphics pen.

• Source Modes. You use the source modes when using CopyBits (see below) to copy a bit
image from one graphics port to another, and also when drawing text. (The source mode for
text is stored in the textMode field of graphics port.

For both pattern and source modes, there are four Boolean operations: COPY, OR, XOR, and BIC (for
bit clear). Each of these operations has an inverse variant in which the pattern or source is inverted
before the transfer, so in fact there are eight operations in all. These eight operations have names
defined as constants. Those constants, and the effects of the transfer modes they represent on one-bit
destination pixels, are as follows:

Pattern Mode Source Mode Action On Destination Pixel
If pattern or source
pixel is black

If pattern or source
pixel is white

patCopy srcCopy Force black Force white
notPatCopy notSrcCopy Force white Force black
patOr srcOr Force black Leave alone
notPatOr notSrcOr Leave alone Force black
patXor srcXor Invert Leave alone
notPatXor notSrcXor Leave alone Invert
patBic srcBic Force white Leave alone
notPatBic notSrcBic Leave alone Force white

Basic QuickDraw 10-9

Adding Dithering to Source Modes

You can add dithering to any source mode by adding the following constant, or the value it represents,
to the source mode:

ditherCopy = 64

Dithering primarily applies to colour environments, where it may be used to create additional (pseudo)
colours on indexed devices. Dithering also improves images that you shrink while copying them from
one graphics port to another, or that you copy from a direct pixel device to an indexed device. In the
black-and-white environment, using dithering when shrinking 1-bit images between basic graphics
ports can produce much better representations of the original images.

Drawing Lines, Rectangles, Ovals, Arcs and Wedges

By starting at a particular position and moving the graphics pen, you can use QuickDraw routines to
define and directly draw a number of graphics shapes using the size and pattern of the graphics pen.
The following describes how various graphics shapes are drawn with the graphics pen.

Lines

Using QuickDraw routines, you can draw lines onscreen using the size, pattern and pattern mode of
the graphics pen for the current graphics port. A line is defined by two points: the current location of
the graphics pen and its destination. The pen "hangs" below and to the right of the defining points, as
shown at Fig 9.

FIG 9 - A LINE DRAWN WITH A BIT PATTERN

POINT

POINT

PEN SIZE 20
BY 40 PIXELS

Rectangles

To give a rectangle a shape that can be drawn on the screen, you must use QuickDraw rectangle
drawing routines, all of which take a Rect as a parameter. All drawing by these routines is contained
within the rectangle defined by the Rect parameter. Fig 10 shows a rectangle drawn with the
QuickDraw routine FrameRect using the same graphics pen used at Fig 9. (Note that the black line
representing the rectangle defined in the Rect parameter used by FrameRect is shown for illustrative
purposes only.)

RECTANGLE
AS DEFINED
BY Rect

RECTANGLE AS DRAWN
BY FrameRect WITH 20
BY 40 GRAPHICS PEN

FIG 10 - A RECTANGLE DRAWN BY THE FrameRect PROCEDURE

Bounding Rectangles

You use rectangles known as bounding rectangles to define the outermost limits of other shapes, such
as rounded rectangles, ovals, arcs, and wedges. Bounding rectangles completely enclose the shapes
they bound, that is, no pixels extend outside the infinitely thin lines of the bounding rectangle.

10-10 Basic QuickDraw

Rounded Rectangles

A rounded rectangle is a rectangle with rounded corners. The figure is defined by a bounding
rectangle, along with the width and height of the ovals forming the corners (called the diameters of
curvature).

DIAMETER OF
CURVATURE

BOUNDING
RECTANGLE

ROUNDED
RECTANGLE

FIG 11 - A ROUNDED RECTANGLE

The corner width and corner height are limited to the width and height of the rectangle itself. If they
are longer, the rounded rectangle becomes an oval. Fig 11 shows a rounded rectangle drawn with the
QuickDraw routine FrameRoundRect.

Ovals, Arcs and Wedges

Ovals. An oval is a circular or elliptical shape defined by the bounding rectangle that encloses it.

Arcs and Wedges. An arc is a portion of the circumference of an oval bounded by a pair or radii
joining at the oval's centre. An arc does not include the bounding radii or any part of the oval's
interior. A wedge is a pie-shaped segment of an oval bounded by a pair of radii joining at the oval's
centre. A wedge includes part of the oval's interior. Arcs and wedges are defined by the bounding
rectangle that encloses the oval, along with a pair of angles marking the positions of the bounding
radii. Fig 12 shows an arc (drawn using the QuickDraw routine FrameArc) and a wedge (drawn using
the QuickDraw routine PaintArc).

FIG 12 - AN ARC AND A WEDGE

ARC

WEDGE

BOUNDING RADIUS

BOUNDING RECTANGLE

BOUNDING
RADIUS

BOUNDING
RADIUS

BOUNDING RECTANGLE

BOUNDING RADIUS

Drawing Polygons, Regions and Pictures

Three types of graphics objects — polygons, regions and pictures — require you to call several routines
to create and draw them. You begin by calling a routine that collects drawing commands into a
definition for the object. You then use a series of drawing routines to define the object before calling a
routine which signals the end of the object definition. Finally, you use a routine which draws your
newly-defined object.

Polygons

You use lines to define a polygon. First, however, you must call OpenPoly and then call LineTo a
number of times to create lines from the first vertex to the second, from the second vertex to the third,
and so on. You then call ClosePoly, which completes the definition process. After defining a polygon
in this way, you can draw the polygon using one of the framing, painting, filling, erasing or inverting
routines for polygons (see below).

Basic QuickDraw 10-11

FIG 13 - DRAWING A POLYGON

Fig 13 shows the same polygon drawn with FramePoly (on the left) and FillPoly (on the right). In this
particular polygon, the final defining line from the last vertex back to the first vertex was not drawn. In
this situation, FillPoly, in effect, completes the polygon, whereas FramePoly does not. Note also that,
as in line drawing, FramePoly hangs the pen down and to the right of the infinitely thin lines that define
the polygon.

Regions

To define a region, you can use any set of lines or shapes, including other regions, so long as the
region's outline consists of one or more closed loops. First, however, you must call NewRgn and OpenRgn.
You then use line, shape, or region drawing commands to define the region. When you have finished
collecting commands to define the outline of the region, you call CloseRgn. You can then draw the
region using one of the framing, painting, filling, erasing or inverting routines for regions (see below).

Fig 14 shows a region comprising two rectangles and an overlapping oval, drawn using PaintRgn.
Note that, where two figures overlap, the additional area is added to the region and the overlap is
removed from the region.

FIG 14 - DRAWING A REGION

Pictures

Your application can record a sequence of QuickDraw drawing operations in a picture and play its
image back later. Pictures provide a form of graphic data exchange: one program can draw something
that was defined in another program, with great flexibility and without having to know any details
about what is being drawn. Fig 15 shows an example of a simple picture containing a rectangle, an
oval, and some text.

FIG 15 - A SIMPLE QUICKDRAW PICTURE

The subject of pictures is addressed in more detail at Chapter 12 — Offscreen Graphics Worlds,
Pictures, Cursors, and Icons.

10-12 Basic QuickDraw

Routines for Drawing Lines

You specify where to begin drawing a line by using MoveTo or Move to place the graphics pen at some
point in the window's local coordinate system. You then call LineTo or Line to draw the line from there
to another point. MoveTo and LineTo require you to specify a point in the local coordinate system of the
current graphics port. Move and Line require relative horizontal and vertical distances.

Routines for Drawing Shapes — Framing, Painting, Filling, Erasing, and
Inverting

QuickDraw routines for drawing shapes may be divided into five groups as follows:

• Framing. Framing a shape draws its outline only, using the current pen size, pen pattern, and
pattern mode. The interior of the shape in unaffected.

• Painting and Filling. Painting a shape fills both its outline and its interior with the current
pen pattern. Filling a shape fills both its outline and its interior with the pattern specified in the
fillPat field of the basic graphics port.

• Erasing. Erasing a shape fills both its outline and its interior with the current background
pattern, that is, the pattern specified in the bkPat field of the basic graphics port

• Inverting. Inverting a shape reverses the colours of all pixels within its boundary. On a black-
and-white monitor, all the black pixels become white and vice versa.

The following lists the available framing, painting, filling and erasing routines:

Frame Paint & Fill Erase Invert Shape Drawn/Erased/Inverted
FrameRect PaintRect

FillRect
EraseRect InvertRect A rectangle. Position and size are

defined by a Rect structure.

FrameOval PaintOval
FillOval

EraseOval InvertOval An oval. Position and size are
determined by a bounding
rectangle specified by a Rect
structure.

FrameRoundRect PaintRoundRect
FillRoundRect

EraseRoundRect InvertRoundRect A rounded rectangle. Position and
size are determined by a bounding
rectangle specified by a Rect
structure. Curvature of the corners
is defined by ovalWidth and
ovalHeight parameters.

FrameArc PaintArc
FillArc

EraseArc InvertArc An arc. Position and size are
determined by a bounding
rectangle specified by a Rect
structure. Starting point and arc
extent are determined by
startAngle and arcAngle
parameters.

FramePoly PaintPoly
FillPoly

ErasePoly InvertPoly A polygon. Draws the polygon by
"playing back" all the line drawing
calls that define it.

FrameRgn PaintRgn
FillRgn

EraseRgn InvertRgn As defined by the specified region.

Drawing Text

On the Macintosh, text is just another form of graphics, as is evidenced by the basic graphics port text-
related fields txFont, txFace, TxSize, txMode, and spExtra. QuickDraw routines are available for
changing the values in these fields.

Basic QuickDraw 10-13

Setting the Font

The font used to draw text in a graphics port may be set using TextFont. TextFont takes a single
parameter, of type short, which may be either a predefined constant or a font family ID number. The
predefined constants3 are as follows:

systemFont = 0 // System font (Chicago). Used to draw text in menus, dialog boxes,
// etc. The Chicago font family ID is 0.

applFont = 1 // Default application font (Geneva). Suggested default font for use by
// applications which do not support user selection of fonts.

newYork = 2
geneva = 3
monaco = 4
venice = 5
london = 6
athens = 7
sanFran = 8
toronto = 9
cairo = 11
losAngeles = 12
times = 20
helvetica = 21
courier = 22
symbol = 23
mobile = 24

For fonts not represented by these predefined constants, if you know the font name, you can get the
font family ID4 using GetFNum.5 For example, the following sets the current font to Palatino:

short fontNum;

GetFNum("\pPalatino",&fontNum);
TextFont(fontNum);

Note that the system font and the application font have special font designators. The system font's
special font designator is 0 and the application font's special font designator is 1. These special
designators are not actual font family (resource) ID numbers and cannot be used as such in Resource
Manager calls; however, they can be used in place of the font family ID in the txFont field of the
graphics port and in text-related calls that take a font family ID. The system maps the special
designators to the actual font family IDs.

Do not use the font family ID of 0 to specify the Chicago font because the ID can vary on localised
systems. To specify the Chicago font, follow the same procedure as in the example for Palatino, above.

Setting and Modifying the Text Style

You use TextFace to change the text style, using any combination of the constants bold, italic,
underline, outline, shadow, condense, and extend. Some examples of usage are as follows:

TextFace(bold); // Set to bold.
TextFace(bold | italic); // Set to bold and italic.)
TextFace(thePort->txFace | bold); // Add bold to existing.
TextFace(thePort->txFace &~ bold); // Remove bold.
TextFace(normal); // Set to plain.

Setting the Font Size

You use TextSize to change the font size in typographical points. A point is approximately 1/72 inch,
which is very close to the size of a screen pixel.

3The predefined constants should be used with caution, since most of the fonts they represent have become obsolete.
4Fonts are resources, and the font family ID is a resource ID.
5If you know the font family ID, you can get its name by calling the Font Manager's GetFontName procedure. If you do not know either the
font family ID or the font name, you can use the Resource Manager's GetIndResource function followed by the GetResInfo function to
determine the names and IDs of all available fonts.

10-14 Basic QuickDraw

Changing the Width of Characters

Widening and narrowing space and non-space characters lets you meet special formatting
requirements. You use SpaceExtra to specify the extra pixels to be added to or subtracted from the
standard width of the space character. SpaceExtra is ordinarily used in application-defined text-
justification routines.

Specifying the Transfer Mode

The transfer mode may be set using TextMode. By default, the transfer mode is set to srcOr, which
causes drawn text to overlay the existing graphics. This mode produces the best results for drawing
text because it writes only those bits which make up the actual glyph.6

While all of the transfer modes apply to the drawing of text, you should generally use either srcOr or
srcBic when drawing text, because all other transfer modes can result in the clipping of glyphs by
adjacent glyphs.

The grayishTextOr Text Transfer Mode. The non-standard text drawing transfer mode
grayishTextOr is useful for displaying disabled user interface items.7 This mode produces a dithered
black and white glyph on a black and white destination device.

Drawing Other Graphics Entities

In addition to drawing lines, rectangles, rounded rectangles, ovals, arcs, wedges, polygons and regions,
and text, you can also use QuickDraw to draw the following:

• Cursors, which are 16-by-16 pixel images which map the user's movements of the mouse to
relative locations on the screen.

• Icons, which are images (usually 32-by-32 or 16-by-16 pixels) which represents an object,
concept, or message. Icons are stored as resources.

Cursors and Icons are addressed at Chapter 12 — Offscreen Graphics Worlds, Pictures, Cursors, and
Icons.)

Manipulating Rectangles and Regions

QuickDraw provides many routines for manipulating rectangles and regions. You can use the routines
which manipulate rectangles to manipulate any shape based on a rectangle, that is, rounded rectangles,
ovals , arcs, and wedges.

For example, you could define a rectangle to bound an oval and then frame the oval. You could then
use OffsetRect to move the oval's bounding rectangle downwards. Using the offset bounding
rectangle, you could frame a second, connected oval to form a figure eight with the first oval. You
could then use that shape to help define a region. You could create a second region, and then use
UnionRgn to create a region from the union of the two.

Manipulating Rectangles

The following summarises the routines for manipulating, and performing calculations on, rectangles:

Routine Description
EmptyRect Determine whether a rectangle is an empty rectangle.
EqualRect Determine whether two rectangles are equal.
InsetRect Shrinks or expands a rectangle.
OffsetRect Moves a rectangle.

6A glyph is the visual representation of a character.
7The grayishTextOr mode is considered non-standard because it is not stored in pictures and printing with it is undefined.

Basic QuickDraw 10-15

PtInRect Determines whether a pixel is enclosed in a rectangle.
PtToAngle Calculates the angle from the middle of a rectangle to a point.
Pt2Rect Determines the smallest rectangle that encloses two points.
SectRect Determines whether two rectangles intersect.
UnionRect Calculates the smallest rectangle that encloses two rectangles.

Manipulating Regions

The following summarises the routines for manipulating, and performing calculations on, regions:

Routine Description
CopyRgn Makes a copy of a region.
DiffRgn Subtracts one region from another.
EmptyRgn Determines whether a region is empty.
EqualRgn Determines whether two regions have identical sizes, shapes, and locations.
InsetRgn Shrinks or expands a region.
OffsetRgn Moves a region.
PtInRgn Determines whether a pixel is within a region.
RectInRgn Determines whether a rectangle intersects a region.
RectRgn Changes the structure of an existing region to that of a rectangle (using a Rect).
SectRgn Calculates the intersection of two regions.
SetEmptyRgn Sets a region to empty.
SetRectRgn Changes the structure of an existing region to that of a rectangle (using coordinates).
UnionRgn Calculates the union of two regions.
XorRgn Calculates the difference between the union and the intersection of two regions.

Manipulating Polygons

Note that, while you can use OffSetPoly to move a polygon, QuickDraw provides no other routines for
calculating or manipulating polygons.

Scaling Shapes and Regions Within the Same Graphics Port

To scale shapes and regions within the same graphics port, you can use the routines ScalePt, MapPt,
MapRect, MapRgn, and MapPoly.

Copying Bits Between Graphics Ports

QuickDraw provides the following three primary image-processing routines:

• CopyBits, which copies a bitmap image to another graphics port, with facilities for:

• Resizing the image.

• Modifying the image with transfer modes.

• Clipping the image to a region.

• CopyMask, which copies a bitmap image to another graphics port, with facilities for:

• Resizing the image.

• Modifying the image by passing it through a mask.

• CopyDeepMask, which combines the effects of CopyBits and CopyMask, allowing you to:

• Resize the image.

• Clip the image to a region.

10-16 Basic QuickDraw

• Specify a transfer mode.

• Modify the image by passing it through a mask.

When copying images between basic graphics ports using CopyBits, you specify a source bitmap and a
destination bitmap. If you specify different sized source and destination rectangles, CopyBits scales the
source image to fit the destination. The manner by which CopyBits transfers the bits between bitmaps
depends on the source mode that you specify in the CopyBits call.

To copy only certain bits from a bitmap, you can use CopyMask, which is a specialised variant of
CopyBits. CopyMask transfers bits only where the corresponding bits of another bit image, which serves
as a mask, are set to 1 (that is, black). Note that CopyMask, unlike CopyDeepMask, does not allow scaling
or resizing.

Use of Offscreen Graphics Worlds

To gracefully display complex images, your application should construct the image in an offscreen
graphics world and then use CopyBits to transfer the image to the onscreen graphics port. (Offscreen
graphics worlds are addressed at Chapter 12 — Offscreen Graphics Worlds, Pictures, Cursors, and
Icons.)

Scrolling Pixels in the Port Rectangle

You can use ScrollRect to scroll the pixels in the port rectangle. ScrollRect takes four parameters: the
rectangle to scroll, a horizontal distance to scroll, a vertical distance to scroll, and a region handle.

Main Basic QuickDraw Constants, Data Types and Routines

Constants

Basic QuickDraw Colours

whiteColor = 30
blackColor = 33
yellowColor = 69
magentaColor = 137
redColor = 205
cyanColor = 273
greenColor = 341
blueColor = 409

Pattern Modes

patCopy = 8
patOr = 9
patXor = 10
patBic = 11
notPatCopy = 12
notPatOr = 13
notPatXor = 14
notPatBic = 15

Source Modes

srcCopy = 0
srcOr = 1
srcXor = 2
srcBic = 3
notSrcCopy = 4
notSrcOr = 5
notSrcXor = 6
notSrcBic = 7
ditherCopy = 64

Basic QuickDraw 10-17

Special Text Transfer Mode

grayishTextOr = 49

Pattern List Resource ID for Patterns in the System File

sysPatListID = 0

Data Types

Pattern

struct Pattern
{

UInt8 pat[8];
};

typedef struct Pattern Pattern;
typedef Pattern *PatPtr;
typedef PatPtr *PatHandle;

Note: Patterns were originally defined as:

typedef unsigned char Pattern[8];

The new struct definition was introduced with the Universal Headers. The old array definition of Pattern
would cause 68000-based CPUs to crash in certain circumstances. The new definition may require changes in
older source code in order to compile.

Point

struct Point
{

short v;
short h;

};

typedef struct Point Point;
typedef Point *PointPtr;

Rect

struct Rect
{

short top;
short left;
short bottom;
short right;

};

typedef struct Rect Rect;
typedef Rect *RectPtr;

Region

struct Region
{

short rgnSize;
Rect rgnBBox;

};

typedef struct Region Region;
typedef Region *RgnPtr, **RgnHandle;

GrafPort

struct GrafPort
{

short device; // Device-specific information. (0 = screen.)
BitMap portBits; // BitMap.
Rect portRect; // Port Rectangle.

10-18 Basic QuickDraw

RgnHandle visRgn; // Visible region.
RgnHandle clipRgn; // Clipping region.
Pattern bkPat; // Background pattern.
Pattern fillPat; // Fill pattern.
Point pnLoc; // Pen location.
Point pnSize; // Pen size.
short pnMode; // Pen mode.
Pattern pnPat; // Pen pattern.
short pnVis; // Pen visibility.
short txFont; // Font number for text.
Style txFace; // Text's font style.
SInt8 filler;
short txMode; // Transfer mode for text.
short txSize; // Font size for text.
Fixed spExtra; // Spacing for full justification..
long fgColor; // Foreground colour.
long bkColor; // Background colour.
short colrBit; // Color bit.
short patStretch; // (Used internally.)
Handle picSave; // Picture being saved. (Used internally.)
Handle rgnSave; // Region being saved. (Used internally.)
Handle polySave; // Polygon being saved. (Used internally.)
QDProcsPtr grafProcs; // Low-level drawing routines.

};

typedef struct GrafPort GrafPort;
typedef GrafPort *GrafPtr;
typedef GrafPtr WindowPtr

BitMap

struct BitMap
{

Ptr baseAddr; // Pointer to bit image.
short rowBytes; // Row width.
Rect bounds; // Boundary rectangle.

};

typedef struct BitMap BitMap;
typedef BitMap *BitMapPtr, **BitMapHandle;

Polygon

struct Polygon
{

short polySize;
Rect polyBBox;
Point polyPoints[1];

};

typedef struct Polygon Polygon;
typedef Polygon *PolyPtr, **PolyHandle;

PenState

struct PenState
{

Point pnLoc;
Point pnSize;
short pnMode;
Pattern pnPat;

};

typedef struct PenState PenState;

Routines

Initialising QuickDraw

void InitGraf(void *globalPtr);

Basic QuickDraw 10-19

Opening and Closing Basic Graphics Ports

void OpenPort(GrafPtr port);
void InitPort(GrafPtr port);
void ClosePort(GrafPtr port);

Saving and Restoring Graphics Ports

void GetPort(GrafPtr *port);
void SetPort(GrafPtr port);

Managing BitMaps, Port Rectangles and Clipping Regions

void ScrollRect(const Rect *r,short dh,short dv,RgnHandle updateRgn);
void SetOrigin(short h,short v);
void PortSize(short width,short height);
void MovePortTo(short leftGlobal,short topGlobal);
void GetClip(RgnHandle rgn);
void SetClip(RgnHandle rgn);
void ClipRect(const Rect *r);
OSErr BitMapToRegionGlue(RgnHandle region,const BitMap *bMap);
void SetPortBits(const BitMap *bm);

Manipulating Points in Graphics Ports

void GlobalToLocal(Point *pt);
void LocalToGlobal(Point *pt);
void AddPt(Point src,Point *dst);
void SubPt(Point *src,Point *dst);
void SetPt(Point *pt,short h,short v);
Boolean EqualPt(Point pt1,Point pt2);
Boolean GetPixel(short h,short v);

Managing the Graphics Pen

void HidePen(void);
void ShowPen(void);
void GetPen(Point *pt);
void GetPenState(PenState *pnState);
void SetPenState(const PenState *pnState);
void PenSize(short width,short height);
void PenMode(short mode);
void PenPat(const Pattern *pat);
void PenNormal(void);

Changing the BackGround Bit Pattern

void BackPat(const Pattern *pat);

Drawing Lines

void MoveTo(short h,short v);
void Move(short dh,short dv);
void LineTo(short h,short v);
void Line(short dh,short dv);

Creating and Managing Rectangles

void SetRect(Rect *r,short left,short top,short right,short bottom);
void OffsetRect(Rect *r,short dh,short dv);
void InsetRect(Rect *r,short dh,short dv);
Boolean SectRect(const Rect *src1,const Rect *src2,Rect *dstRect);
void UnionRect(const Rect *src1,const Rect *src2,Rect *dstRect);
Boolean PtInRect(Point pt,const Rect *r);
void Pt2Rect(Point pt1,Point pt2,Rect *dstRect);
void PtToAngle(const Rect *r,Point pt,short *angle);
Boolean EqualRect(const Rect *rect1,const Rect *rect2);
Boolean EmptyRect(const Rect *r);

Drawing Rectangles

void FrameRect(const Rect *r);
void PaintRect(const Rect *r);

10-20 Basic QuickDraw

void FillRect(const Rect *r,ConstPatternParam pat);
void InvertRect(const Rect *r);
void EraseRect(const Rect *r);

Drawing Rounded Rectangles

void FrameRoundRect(const Rect *r,short ovalWidth,short ovalHeight);
void PaintRoundRect(const Rect *r,short ovalWidth,short ovalHeight);
void FillRoundRect(const Rect *r,short ovalWidth,short ovalHeight,const Pattern *pat;
void InvertRoundRect(const Rect *r,short ovalWidth,short ovalHeight);
void EraseRoundRect(const Rect *r,short ovalWidth,short ovalHeight);

Drawing Ovals

void FrameOval(const Rect *r);
void PaintOval(const Rect *r);
void FillOval(const Rect *r,const Pattern *pat);
void InvertOval(const Rect *r);
void EraseOval(const Rect *r);

Drawing Arcs and Wedges

void FrameArc(const Rect *r,short startAngle,short arcAngle);
void PaintArc(const Rect *r,short startAngle,short arcAngle);
void FillArc(const Rect *r,short startAngle,short arcAngle,const Pattern *pat);
void InvertArc(const Rect *r,short startAngle,short arcAngle);
void EraseArc(const Rect *r,short startAngle,short arcAngle);

Creating and Managing Polygons

PolyHandle OpenPoly(void);
void ClosePoly(void);
void KillPoly(PolyHandle poly);
void OffsetPoly(PolyHandle poly,short dh,short dv);

Drawing and Painting Polygons

void FramePoly(PolyHandle poly);
void PaintPoly(PolyHandle poly);
void FillPoly(PolyHandle poly,const Pattern *pat);
void InvertPoly(PolyHandle poly);
void ErasePoly(PolyHandle poly);

Creating and Managing Regions

RgnHandle NewRgn(void);
void OpenRgn(void);
void CloseRgn(RgnHandle dstRgn);
void DisposeRgn(RgnHandle rgn);
void CopyRgn(RgnHandle srcRgn,RgnHandle dstRgn);
void SetEmptyRgn(RgnHandle rgn);
void SetRectRgn(RgnHandle rgn,short left,short top,short right,short bottom);
void RectRgn(RgnHandle rgn,const Rect *r);
void OffsetRgn(RgnHandle rgn,short dh,short dv);
void InsetRgn(RgnHandle rgn,short dh,short dv);
void SectRgn(RgnHandle srcRgnA,RgnHandle srcRgnB,RgnHandle dstRgn);
void UnionRgn(RgnHandle srcRgnA,RgnHandle srcRgnB,RgnHandle dstRgn);
void DiffRgn(RgnHandle srcRgnA,RgnHandle srcRgnB,RgnHandle dstRgn);
void XorRgn(RgnHandle srcRgnA,RgnHandle srcRgnB,RgnHandle dstRgn);
Boolean PtInRgn(Point pt,RgnHandle rgn);
Boolean RectInRgn(const Rect *r,RgnHandle rgn);
Boolean EqualRgn(RgnHandle rgnA,RgnHandle rgnB);
Boolean EmptyRgn(RgnHandle rgn);
OSErr BitMapToRegion(RgnHandle region,const BitMap *bMap);

Drawing Regions

void FrameRgn(RgnHandle rgn);
void PaintRgn(RgnHandle rgn);
void EraseRgn(RgnHandle rgn);
void InvertRgn(RgnHandle rgn);
void FillRgn(RgnHandle rgn, const Pattern *pat);

Basic QuickDraw 10-21

Setting Text Characteristics

void TextFont(short font);
void TextFace(short face);
void TextMode(short mode);
void TextSize(short size);
void SpaceExtra(Fixed extra);
void GetFontInfo(FontInfo *info);

Drawing Text

void DrawChar(short ch);
void DrawString(ConstStr255Param s);
void DrawText(const void *textBuf,short firstByte,short byteCount);

Measuring Text

short CharWidth(short ch);
short StringWidth(ConstStr255Param s);

Scaling and Mapping Points, Rectangles, Polygons, and Regions

void ScalePt(Point *pt,const Rect *srcRect,const Rect *dstRect);
void MapPt(Point *pt,const Rect *srcRect,const Rect *dstRect);
void MapRect(Rect *r,const Rect *srcRect,const Rect *dstRect);
void MapRgn(RgnHandle rgn,const Rect *srcRect,const Rect *dstRect);
void MapPoly(PolyHandle poly,const Rect *srcRect,const Rect *dstRect);

Copying Images

void CopyBits(const BitMap *srcBits,const BitMap *dstBits,const Rect *srcRect,
const Rect *dstRect,short mode,RgnHandle maskRgn);

void CopyMask(const BitMap *srcBits,const BitMap *maskBits,const BitMap *dstBits,
const Rect *srcRect,const Rect *maskRect,const Rect *dstRect);

void CopyDeepMask(const BitMap *srcBits,const BitMap *maskBits,const BitMap *dstBits,
const Rect *srcRect,const Rect *maskRect,const Rect *dstRect,short mode,
RgnHandle maskRgn)

Drawing With the Eight-Color System

void ForeColor(long color);
void BackColor(long color);
void ColorBit(short whichBit);

Determining Whether QuickDraw has Finished Drawing

Boolean QDDone(GrafPtr port);

Getting Pattern Resources

PatHandle GetPattern(short patternID);
void GetIndPattern(Pattern *thePat,short patternListID,short index);

Demonstration Program
// ##1

// BasicQuickDraw.c2

// ##3

//4

// This program:5

//6

// • Opens a window in which the results of various basic QuickDraw drawing operations7

// are displayed.8

//9

// Individual drawing operations (eg, draw lines, draw rectangles, draw polygons, etc)10

// are selected from a pull-down menu titled "Demonstration".11

//12

// • Quits when the user selects Quit from the File menu or clicks the window's close13

// box.14

//15

// The program utilises the following resources:16

10-22 Basic QuickDraw

//17

// • 'WIND' resources for the main window, and a small window used for the CopyBits18

// demonstration (purgeable) (initially visible).19

//20

// • An 'MBAR' resource and associated 'MENU' resources (preload, non-purgeable).21

//22

// • Two 'ICON' resources (purgeable) used for the transfer modes demonstration.23

//24

// • A 'PICT' resource (purgeable) used for the CopyBits demonstration.25

//26

// • 'STR#' resources (purgeable) containing strings used by the CopyBits and text27

// demonstrations.28

//29

// ##30

31

// ……… includes32

33

#include <Fonts.h>34

#include <Menus.h>35

#include <TextEdit.h>36

#include <Dialogs.h>37

#include <SegLoad.h>38

#include <ToolUtils.h>39

#include <Devices.h>40

41

// …… defines42

43

#define mApple 12844

#define mFile 12945

#define iQuit 1146

#define mDemonstration 13147

#define iLine 148

#define iRectAndOval 249

#define iArcAndWedge 350

#define iPolygon 451

#define iRegion 552

#define iTransferMode 653

#define iCopyBits 754

#define iText 855

#define iBasicColour 956

#define iDrawWithMouse 1057

#define rMenubar 12858

#define rWindow 12859

#define rSmallWindow 12960

#define rCrossIcon 12861

#define rSquareIcon 12962

#define rModeStringList 12863

#define rTextStringList 12964

#define rPicture 12865

66

#define MAXLONG 0x7FFFFFFF67

68

// ……… global variables69

70

Boolean gDone;71

WindowPtr gWindowPtr;72

Boolean gDrawWithMouseActivated;73

74

// …… function prototypes75

76

void main (void);77

void doInitManagers (void);78

void doMouseDown (EventRecord *);79

void doEvents (EventRecord *);80

void doMenuChoice (SInt32);81

void doDemonstrationMenu (SInt16);82

void doLines (void);83

SInt16 doRandomNumber (SInt16);84

void doRectOval (void);85

void doArcWedge (void);86

void doPolygon (void);87

void doRegion (void);88

void doTransferMode (void);89

void doCopyBits (void);90

void doText (void);91

void doBasicColours (void);92

Basic QuickDraw 10-23

void doDrawWithMouse (void);93

94

// ### main95

96

void main(void)97

{98

Handle menubarHdl;99

MenuHandle menuHdl;100

EventRecord eventRec;101

Boolean gotEvent;102

103

// …… initialise managers104

105

doInitManagers();106

107

// …… see random number generator108

109

GetDateTime((UInt32 *) (&qd.randSeed));110

111

// …… set up menu bar and menus112

113

if(!(menubarHdl = GetNewMBar(rMenubar)))114

ExitToShell();115

SetMenuBar(menubarHdl);116

DrawMenuBar();117

118

if(!(menuHdl = GetMenuHandle(mApple)))119

ExitToShell();120

else121

AppendResMenu(menuHdl,'DRVR');122

123

// …… open window124

125

if(!(gWindowPtr = GetNewWindow(rWindow,NULL,(WindowPtr)-1)))126

ExitToShell();127

128

SetPort(gWindowPtr);129

130

TextSize(10);131

132

// …… eventLoop133

134

gDone = false;135

136

while(!gDone)137

{138

gotEvent = WaitNextEvent(everyEvent,&eventRec,MAXLONG,NULL);139

if(gotEvent)140

doEvents(&eventRec);141

}142

}143

144

// ### doInitManagers145

146

void doInitManagers(void)147

{148

MaxApplZone();149

MoreMasters();150

151

InitGraf(&qd.thePort);152

InitFonts();153

InitWindows();154

InitMenus();155

TEInit();156

InitDialogs(NULL);157

158

InitCursor();159

FlushEvents(everyEvent,0);160

}161

162

// ### doEvents163

164

void doEvents(EventRecord *eventRecPtr)165

{166

WindowPtr windowPtr;167

SInt8 charCode;168

10-24 Basic QuickDraw

169

windowPtr = (WindowPtr) eventRecPtr->message;170

171

switch(eventRecPtr->what)172

{173

case mouseDown:174

doMouseDown(eventRecPtr);175

break;176

177

case keyDown:178

case autoKey:179

charCode = eventRecPtr->message & charCodeMask;180

if((eventRecPtr->modifiers & cmdKey) != 0)181

doMenuChoice(MenuKey(charCode));182

break;183

184

case updateEvt:185

BeginUpdate(windowPtr);186

EndUpdate(windowPtr);187

break;188

}189

}190

191

// ## doMouseDown192

193

void doMouseDown(EventRecord *eventRecPtr)194

{195

WindowPtr windowPtr;196

SInt16 partCode;197

198

partCode = FindWindow(eventRecPtr->where,&windowPtr);199

200

switch(partCode)201

{202

case inMenuBar:203

doMenuChoice(MenuSelect(eventRecPtr->where));204

break;205

206

case inSysWindow:207

SystemClick(eventRecPtr,windowPtr);208

break;209

210

case inContent:211

if(windowPtr != FrontWindow())212

SelectWindow(windowPtr);213

else214

if(gDrawWithMouseActivated)215

doDrawWithMouse();216

break;217

218

case inDrag:219

DragWindow(windowPtr,eventRecPtr->where,&qd.screenBits.bounds);220

break;221

222

case inGoAway:223

if(TrackGoAway(windowPtr,eventRecPtr->where) == true)224

gDone = true;225

break;226

}227

}228

229

// ### doMenuChoice230

231

void doMenuChoice(SInt32 menuChoice)232

{233

SInt16 menuID, menuItem;234

Str255 itemName;235

SInt16 daDriverRefNum;236

237

menuID = HiWord(menuChoice);238

menuItem = LoWord(menuChoice);239

240

if(menuID == 0)241

return;242

243

switch(menuID)244

Basic QuickDraw 10-25

{245

case mApple:246

GetMenuItemText(GetMenuHandle(mApple),menuItem,itemName);247

daDriverRefNum = OpenDeskAcc(itemName);248

break;249

250

case mFile:251

if(menuItem == iQuit)252

gDone = true;253

break;254

255

case mDemonstration:256

doDemonstrationMenu(menuItem);257

break;258

}259

260

HiliteMenu(0);261

}262

263

// ## doDemonstrationMenu264

265

void doDemonstrationMenu(SInt16 menuItem)266

{267

gDrawWithMouseActivated = false;268

269

switch(menuItem)270

{271

case iLine:272

doLines();273

break;274

275

case iRectAndOval:276

doRectOval();277

break;278

279

case iArcAndWedge:280

doArcWedge();281

break;282

283

case iPolygon:284

doPolygon();285

break;286

287

case iRegion:288

doRegion();289

break;290

291

case iTransferMode:292

doTransferMode();293

break;294

295

case iCopyBits:296

doCopyBits();297

break;298

299

case iText:300

doText();301

break;302

303

case iBasicColour:304

doBasicColours();305

break;306

307

case iDrawWithMouse:308

FillRect(&(gWindowPtr->portRect),&qd.white);309

MoveTo(10,25);310

DrawString("\pClick in the window and drag the mouse to the right and down");311

gDrawWithMouseActivated = true;312

break;313

}314

}315

316

// ## doLines317

318

void doLines(void)319

{320

10-26 Basic QuickDraw

SInt16 top, left, bottom, right, a, b, c;321

RgnHandle oldClipRgn;322

Rect newClipRect;323

Pattern systemPattern;324

SInt32 finalTicks;325

326

FillRect(&(gWindowPtr->portRect),&qd.white);327

328

PenMode(patCopy);329

330

left = gWindowPtr->portRect.left + 10;331

top = gWindowPtr->portRect.top + 10;332

right = gWindowPtr->portRect.right - 10;333

bottom = gWindowPtr->portRect.bottom - 10;334

335

oldClipRgn = NewRgn();336

GetClip(oldClipRgn);337

SetRect(&newClipRect,left,top,right,bottom);338

ClipRect(&newClipRect);339

340

for(a=1;a<39;a++)341

{342

b = doRandomNumber(gWindowPtr->portRect.right - gWindowPtr->portRect.left);343

c = doRandomNumber(gWindowPtr->portRect.right - gWindowPtr->portRect.left);344

345

GetIndPattern(&systemPattern,sysPatListID,a);346

PenPat(&systemPattern);347

PenSize(a * 2,1);348

349

MoveTo(b,gWindowPtr->portRect.top);350

LineTo(c,gWindowPtr->portRect.bottom);351

352

Delay(15,&finalTicks);353

}354

355

SetClip(oldClipRgn);356

DisposeRgn(oldClipRgn);357

358

SetWTitle(gWindowPtr,"\pClick Mouse for More Lines");359

while(!Button()) ;360

SetWTitle(gWindowPtr,"\pBasic QuickDraw");361

362

FillRect(&(gWindowPtr->portRect),&qd.white);363

PenSize(1,1);364

PenPat(&qd.black);365

PenMode(patXor);366

367

for(a=left,b=right;a<right+1;a++,b--)368

{369

MoveTo(a,top);370

LineTo(b,bottom);371

}372

373

for(a=bottom,b=top;b<bottom+1;a--,b++)374

{375

MoveTo(left,a);376

LineTo(right,b);377

}378

}379

380

// ### doRandomNumber381

382

SInt16 doRandomNumber(SInt16 range)383

{384

SInt32 randomNumber;385

386

randomNumber = Random();387

if(randomNumber < 0)388

randomNumber *= -1;389

390

return((randomNumber * range) / 32767);391

}392

393

// ### doRectOval394

395

void doRectOval(void)396

Basic QuickDraw 10-27

{397

Rect theRect;398

SInt32 finalTicks;399

Pattern systemPattern;400

401

FillRect(&(gWindowPtr->portRect),&qd.white);402

403

PenPat(&qd.black);404

PenSize(10,20);405

PenMode(patCopy);406

407

SetRect(&theRect,10,20,245,130);408

409

MoveTo(10,15);410

DrawString("\pFrameRect");411

FrameRect(&theRect);412

Delay(30,&finalTicks);413

414

MoveTo(255,15);415

DrawString("\pPaintRect");416

OffsetRect(&theRect,245,0);417

PenPat(&qd.ltGray);418

PaintRect(&theRect);419

Delay(30,&finalTicks);420

421

MoveTo(10,154);422

DrawString("\pFillRoundRect");423

OffsetRect(&theRect,-245,140);424

GetIndPattern(&systemPattern,sysPatListID,12);425

FillRoundRect(&theRect,120,60,&systemPattern);426

Delay(30,&finalTicks);427

428

MoveTo(255,154);429

DrawString("\pFrameOval");430

OffsetRect(&theRect,245,0);431

PenSize(40,20);432

PenPat(&qd.dkGray);433

FrameOval(&theRect);434

435

SetWTitle(gWindowPtr,"\pClick Mouse For Invert and Erase");436

while(!Button()) ;437

SetWTitle(gWindowPtr,"\pBasic QuickDraw");438

SetRect(&theRect,10,145,490,154);439

EraseRect(&theRect);440

SetRect(&theRect,255,160,490,270);441

Delay(30,&finalTicks);442

443

MoveTo(10,154);444

DrawString("\pInvertRoundRect");445

OffsetRect(&theRect,-245,0);446

InvertRoundRect(&theRect,120,60);447

Delay(30,&finalTicks);448

449

MoveTo(255,154);450

DrawString("\pEraseOval");451

OffsetRect(&theRect,245,0);452

EraseOval(&theRect);453

Delay(30,&finalTicks);454

}455

456

// ### doArcWedge457

458

void doArcWedge(void)459

{460

Rect theRect;461

SInt16 a;462

SInt32 finalTicks;463

Pattern systemPattern;464

465

FillRect(&(gWindowPtr->portRect),&qd.white);466

467

PenSize(60,10);468

PenPat(&qd.dkGray);469

PenMode(patCopy);470

471

SetRect(&theRect,10,20,245,278);472

10-28 Basic QuickDraw

473

MoveTo(10,15);474

DrawString("\pFrameArc");475

for(a=0;a<270;a++)476

FrameArc(&theRect,135,a);477

Delay(30,&finalTicks);478

479

MoveTo(255,15);480

DrawString("\pFillArc");481

OffsetRect(&theRect,245,0);482

GetIndPattern(&systemPattern,sysPatListID,16);483

FillArc(&theRect,315,270,&systemPattern);484

Delay(30,&finalTicks);485

OffsetRect(&theRect,-30,0);486

FillArc(&theRect,225,90,&systemPattern);487

}488

489

// ## doPolygon490

491

void doPolygon(void)492

{493

PolyHandle polygonHdl;494

SInt32 finalTicks;495

Pattern systemPattern;496

497

FillRect(&(gWindowPtr->portRect),&qd.white);498

499

PenSize(10,30);500

PenPat(&qd.gray);501

PenMode(patCopy);502

503

polygonHdl = OpenPoly();504

MoveTo(10,20);505

LineTo(225,40);506

LineTo(100,120);507

LineTo(215,248);508

LineTo(10,248);509

LineTo(50,200);510

ClosePoly();511

512

MoveTo(10,15);513

DrawString("\pFramePoly");514

FramePoly(polygonHdl);515

Delay(30,&finalTicks);516

517

MoveTo(265,15);518

DrawString("\pFillPoly");519

OffsetPoly(polygonHdl,255,0);520

GetIndPattern(&systemPattern,sysPatListID,9);521

FillPoly(polygonHdl,&systemPattern);522

523

KillPoly(polygonHdl);524

}525

526

// ### doRegion527

528

void doRegion(void)529

{530

RgnHandle regionHdl;531

Rect theRect;532

SInt32 finalTicks;533

534

FillRect(&(gWindowPtr->portRect),&qd.white);535

PenPat(&qd.gray);536

PenMode(patCopy);537

538

regionHdl = NewRgn();539

540

OpenRgn();541

SetRect(&theRect,10,20,100,130);542

FrameRect(&theRect);543

SetRect(&theRect,155,20,245,130);544

FrameRect(&theRect);545

SetRect(&theRect,55,30,200,120);546

FrameOval(&theRect);547

CloseRgn(regionHdl);548

Basic QuickDraw 10-29

549

MoveTo(10,15);550

DrawString("\pFrameRgn");551

PenPat(&qd.black);552

PenSize(10,20);553

FrameRgn(regionHdl);554

Delay(30,&finalTicks);555

556

MoveTo(255,15);557

DrawString("\p1. FillRgn");558

OffsetRgn(regionHdl,245,0);559

FillRgn(regionHdl,&qd.dkGray);560

Delay(30,&finalTicks);561

562

MoveTo(10,154);563

DrawString("\p2. InsetRgn (10 horizontal, 10 vertical)");564

OffsetRgn(regionHdl,-245,140);565

InsetRgn(regionHdl,10,10);566

PenPat(&qd.dkGray);567

PaintRgn(regionHdl);568

Delay(30,&finalTicks);569

570

MoveTo(255,154);571

DrawString("\p3. InsetRgn (-10 horizontal, -10 vertical)");572

OffsetRgn(regionHdl,245,0);573

InsetRgn(regionHdl,-10,-10);574

PenPat(&qd.dkGray);575

PaintRgn(regionHdl);576

577

DisposeRgn(regionHdl);578

}579

580

// ### doTransferMode581

582

void doTransferMode(void)583

{584

Handle crossIconHdl, squareIconHdl;585

Rect destRect;586

SInt16 a, b;587

BitMap squareIconMap;588

SInt32 finalTicks;589

SInt16 sourceMode = 0;590

Str255 sourceString;591

592

FillRect(&(gWindowPtr->portRect),&qd.white);593

594

PenSize(1,1);595

PenPat(&qd.gray);596

PenMode(patOr);597

598

if(!(crossIconHdl = GetIcon(rCrossIcon)))599

{600

SysBeep(10);601

return;602

}603

604

if(!(squareIconHdl = GetIcon(rSquareIcon)))605

{606

SysBeep(10);607

return;608

}609

610

SetRect(&destRect,120,8,190,78);611

PlotIcon(&destRect,crossIconHdl);612

FrameRect(&destRect);613

MoveTo(200,48);614

DrawString("\pDestination");615

616

SetRect(&destRect,270,8,340,78);617

PlotIcon(&destRect,squareIconHdl);618

FrameRect(&destRect);619

MoveTo(350,48);620

DrawString("\pSource");621

622

for(a=91;a<192;a+=100)623

for(b=30;b<391;b+=120)624

10-30 Basic QuickDraw

{625

SetRect(&destRect,b,a,b+70,a+70);626

PlotIcon(&destRect,crossIconHdl);627

}628

629

HLock(squareIconHdl);630

631

squareIconMap.baseAddr = *squareIconHdl;632

squareIconMap.rowBytes = 4;633

SetRect(&squareIconMap.bounds,0,0,31,31);634

635

for(a=91;a<192;a+=100)636

for(b=30;b<391;b+=120)637

{638

Delay(30,&finalTicks);639

SetRect(&destRect,b,a,b+70,a+70);640

CopyBits(&squareIconMap,&qd.thePort->portBits,&squareIconMap.bounds,&destRect,641

 sourceMode++,NULL);642

GetIndString(sourceString,rModeStringList,sourceMode);643

MoveTo(b,a+82);644

DrawString(sourceString);645

}646

647

HUnlock(squareIconHdl);648

}649

650

// ### doCopyBits651

652

void doCopyBits(void)653

{654

WindowPtr windowPtr;655

GrafPtr oldPort;656

PicHandle pictureHdl;657

Rect sourceRect, destRect;658

SInt32 finalTicks;659

660

FillRect(&(gWindowPtr->portRect),&qd.white);661

662

if(!(windowPtr = GetNewWindow(rSmallWindow,NULL,(WindowPtr)-1)))663

ExitToShell();664

665

GetPort(&oldPort);666

SetPort(windowPtr);667

668

if(!(pictureHdl = GetPicture(rPicture)))669

{670

DisposeWindow(windowPtr);671

SysBeep(10);672

return;673

}674

675

HNoPurge((Handle) pictureHdl);676

SetRect(&sourceRect,65,40,165,182);677

DrawPicture(pictureHdl,&sourceRect);678

HPurge((Handle) pictureHdl);679

680

SetWTitle(windowPtr,"\pClick Mouse for CopyBits");681

while(!Button()) ;682

683

SetRect(&destRect,20,21,210,272);684

685

CopyBits(&windowPtr->portBits,&oldPort->portBits,&sourceRect,&destRect,686

 srcCopy,NULL);687

688

SetWTitle(windowPtr,"\pClick Mouse to Close");689

Delay(60,&finalTicks);690

while(!Button()) ;691

692

DisposeWindow(windowPtr);693

SetPort(oldPort);694

}695

696

// ### doText697

698

void doText(void)699

{700

Basic QuickDraw 10-31

SInt16 windowCentre, a, fontNum, stringWidth;701

Str255 textString;702

703

FillRect(&(gWindowPtr->portRect),&qd.white);704

705

windowCentre = ((FrontWindow())->portRect.right - (FrontWindow())->portRect.left) / 2;706

707

for(a=1;a<9;a++)708

{709

if(a == 1)710

{711

GetFNum("\pGeneva",&fontNum);712

TextFont(fontNum);713

TextFace(normal);714

}715

else if(a == 2)716

TextFace(bold);717

else if(a == 3)718

{719

GetFNum("\pTimes",&fontNum);720

TextFont(fontNum);721

TextFace(italic);722

}723

else if(a == 4)724

TextFace(underline);725

else if(a == 5)726

{727

GetFNum("\pHelvetica",&fontNum);728

TextFont(fontNum);729

TextFace(outline);730

}731

else if(a == 6)732

TextFace(shadow);733

else if(a == 7)734

{735

GetFNum("\pChicago",&fontNum);736

TextFont(fontNum);737

TextFace(condense);738

}739

else if(a == 8)740

{741

TextFace(extend);742

TextMode(grayishTextOr);743

}744

745

if(a < 7)746

TextSize(a * 2 + 10);747

else748

TextSize(12);749

750

GetIndString(textString,rTextStringList, a);751

stringWidth = StringWidth(textString);752

MoveTo(windowCentre - (stringWidth / 2), a * 35 - 10);753

DrawString(textString);754

}755

756

GetFNum("\pGeneva",&fontNum);757

TextFont(fontNum);758

TextSize(10);759

TextMode(srcOr);760

TextFace(normal);761

}762

763

// ### doBasicColours764

765

void doBasicColours(void)766

{767

SInt16 a;768

Rect theRect;769

SInt32 finalTicks;770

771

FillRect(&(gWindowPtr->portRect),&qd.dkGray);772

PenPat(&qd.black);773

PenMode(patCopy);774

775

for(a=1;a<9;a++)776

10-32 Basic QuickDraw

{777

Delay(30,&finalTicks);778

if(a == 1) ForeColor(blackColor);779

if(a == 2) ForeColor(whiteColor);780

if(a == 3) ForeColor(redColor);781

if(a == 4) ForeColor(greenColor);782

if(a == 5) ForeColor(blueColor);783

if(a == 6) ForeColor(cyanColor);784

if(a == 7) ForeColor(magentaColor);785

if(a == 8) ForeColor(yellowColor);786

787

SetRect(&theRect,35,a*28,465,a*28+23);788

PaintRect(&theRect);789

}790

791

ForeColor(blackColor);792

}793

794

// ## doDrawWithMouse795

796

void doDrawWithMouse(void)797

{798

Point mouseDownMouse, previousMouse, currentMouse;799

Rect drawRect;800

Pattern thePattern;801

802

PenSize(1,1);803

PenPat(&qd.gray);804

PenMode(patXor);805

806

GetMouse(&mouseDownMouse);807

drawRect.left = drawRect.right = mouseDownMouse.h;808

drawRect.top = drawRect.bottom = mouseDownMouse.v;809

810

GetMouse(&previousMouse);811

812

while(StillDown())813

{814

GetMouse(¤tMouse);815

816

if(currentMouse.v != previousMouse.v || currentMouse.h != previousMouse.h)817

{818

FrameRect(&drawRect);819

820

drawRect.right = currentMouse.h;821

drawRect.bottom = currentMouse.v;822

823

FrameRect(&drawRect);824

}825

826

previousMouse.v = currentMouse.v;827

previousMouse.h = currentMouse.h;828

}829

830

FrameRect(&drawRect);831

832

PenMode(patCopy);833

834

PenSize(2,2);835

PenPat(&qd.black);836

ForeColor(redColor);837

FrameRect(&drawRect);838

839

InsetRect(&drawRect,10,10);840

PenSize(8,8);841

GetIndPattern(&thePattern,0,5);842

PenPat(&thePattern);843

ForeColor(blueColor);844

FrameRoundRect(&drawRect,40,40);845

846

InsetRect(&drawRect,16,16);847

PenSize(14,14);848

GetIndPattern(&thePattern,0,6);849

PenPat(&thePattern);850

ForeColor(greenColor);851

PaintOval(&drawRect);852

Basic QuickDraw 10-33

853

PenMode(patCopy);854

ForeColor(blackColor);855

}856

857

// ##858

Demonstration Program Comments
When this program is run, the user should invoke demonstrations of various basic QuickDraw
drawing operations by choosing items from the Demonstration menu.

#define

Lines 44-66 establish constants related to menu, window, icon, string list, and picture
resources, menu IDs, and menu item numbers. Line 67 defines MAXLONG as the maximum possible
long value. This value will be assigned to WaitNextEvent's sleep parameter.

Global Variables

gDone will be set to true when the user selects Quit from the File menu or clicks the window's
close box, thus causing program termination. gWindowPtr will be assigned the pointer to the
main window's graphics port. gDrawWithMouseActivated will be set to true when the Draw With
Mouse item is chosen from the Demonstration menu, and to false when other items are chosen.

main

The main function initialises the system software managers (Line 106), seeds the random number
generator (Line 110), sets up the menus (Lines 114-122), opens the main window and sets its
graphics port as the current port for drawing operations (Lines 126-129), sets the text size
(Line 131), and enters the main event loop (Lines 135-142).

Random numbers are used in the application-defined function doLines. randSeed (Line 110) is a
QuickDraw global variable which holds the seed value for the random number generator. Unless
randSeed is modified, the same sequence of numbers will be generated each time the program is
run. Line 111 shows one way to seed the generator. The parameter to the GetDateTime call
receives the number of seconds since midnight, January 1, 1904, a value which is bound to be
different each time the program is run.

Note that error handling here, as in other areas of the program, is somewhat rudimentary: the
program simply terminates.

doEvents and doMouseDown

doEvents and doMouseDown perform minimal event handling consistent with the satisfactory
operation of the drawing demonstration aspects of the program. Note that, at Lines 214-216,
the application-defined function doDrawWithMouse is called if the global variable
gDrawWithMouseActivated contains true.

doMenuChoice and doDemonstrationMenu

doMenuChoice and doDemonstrationMenu handle menu choices from the Apple, File and
Demonstration menus. Note that, at Lines 309-312, the global variable gDrawWithMouseActivated
is set to true when the Draw With Mouse menu item is chosen.

doLines

doLines demonstrates line drawing with various pen patterns. doLines also demonstrates
clipping. (Note that, as is the case with all drawing demonstration functions in this
program, some of the code is related to program execution (for example, delays, setting the
window title, waiting for mouse clicks before proceeding, etc) and not to drawing operations
per se. Those parts of the code will generally be disregarded in the following comments.)

At Line 327, FillRect is called to fill the entire port rectangle with the pattern white. At
Line 329, the pen mode is set to patCopy for the lines demonstration.

Lines 331-339 set the window's clipping region to a rectangle 10 pixels inside the port
rectangle. Lines 331-334 assign appropriate values to four variables which will be used to
define the Rect representing the new clipping region, Lines 336-337 save the old clipping
region, and Line 338 defines the Rect which is used in the call to ClipRect at Line 339 to
establish the new clipping region.

10-34 Basic QuickDraw

Lines 341-354 draw 38 lines using the 38 patterns in the 'PAT#' resource of the System file.
Each time around the loop, the variables b and c are assigned separate random numbers between
0 and the width of the port rectangle (Lines 343-344), the next system pattern is retrieved
(Line 346), the pen pattern is set to this pattern (Line 347), the width of the pen is
increased (Line 348), and a line is drawn from somewhere at the top of the port rectangle to
somewhere at the bottom of the port rectangle (Lines 350-351). The line drawing is, of
course, clipped to the clipping region established at Line 339, which is 10 pixels inside the
port rectangle.

Preparatory to the second part of the line drawing demonstration, the old clipping region is
restored and the memory in which it was saved is deallocated (Lines 356-357).

Lines 364-378 illustrate a well-known but nonetheless exotic capability of the humble line
when it operates in the pattern mode patXor. Lines 363-366 set all the port's pixels to
white, the pen size to 1 pixel by 1 pixel, the pen pattern to black and the pattern mode to
patXor. Proceeding clockwise, Lines 368-378 draw lines from points 10 pixels inside the
periphery of the port rectangle through the centre of the rectangle to points on the opposite
side of the rectangle. The effect of patXor on any destination pixel is to invert it if the
source pixel is black. Thus, any white pixel in the path of the drawn lines will be turned
black and any black pixel will be turned white. This produces a pattern known as a moire
(watered silk) pattern.

doRandomNumber

doRandomNumber generates and returns a random number between 0 and the value passed to it. At
Line 387, the function Random returns a random number between -32,767 to 32,767. If the
number is negative, it is made positive at Lines 388-389. Line 391 changes the random number
from one between 0 and 32,767 to one between 0 and the value received by doRandomNumber, and
returns that value.

doRectOval

doRectOval draws a framed rectangle, a painted rectangle, a filled round rectangle, and a
framed oval. It then inverts the round rectangle and erases the oval.

Lines 402-406 fill the port rectangle with the pattern white, set the pen pattern to black,
set the pen size to 10 pixels wide by 20 pixels high, and set the pen mode to patCopy. Line
408 defines the Rect required as a parameter by the drawing routines.

Line 412 draws a framed rectangle.

Lines 417-419 offset the rectangle to the right, set the pen pattern to ltGray and paint a
rectangle.

Lines 424-426 offset the rectangle to the left and down, retrieve one of the system patterns,
and fill a rounded rectangle with that pattern. The rounded rectangle is drawn with corner
curvatures of 120 wide and 60 high.

Lines 431-434 offset the rectangle to the right, set the pen size to 40 pixels wide by 20
pixels high, set the pen pattern to dkGray and frame an oval.

After waiting for the user to click the mouse button, and after some text is erased (Lines
437-440), Lines 446-447 offset the rectangle so that it is back over the rounded rectangle and
invert the rounded rectangle with a call to InvertRoundRect.

Lines 452-453 offset the rectangle so that it is back over the oval and erase the oval with a
call to EraseOval.

doArcWedge

doArcWedge draws an arc and a two wedges. The drawing of the arc is animated.

Lines 466-470 fill the port rectangle with the pattern white, and set the pen size, pattern,
and mode. Line 472 defines the bounding rectangle for the arc and wedges.

Lines 476-477 draw an arc with the routine FrameArc 274 times. The starting angle remains
fixed at 135 and the extent of the arc is incremented by one each time around the loop. The
effect is to animate the drawing of an arc in the shape of a large C.

Lines 482-487 offset the rectangle to the right, retrieve one of the system patterns, use that
pattern in a call to FillArc to draw a 270° wedge from the 10.30 o'clock position, offset the
rectangle to the left, and call FillArc to draw a 90° wedge from the 7.30 o'clock position
with the same pattern.

Basic QuickDraw 10-35

doPolygon

doPolygon draws a framed and filled polygon.

Lines 498-502 fill the port rectangle with the pattern white, and set the pen size, pattern,
and mode.

Lines 504-511 initiate the recording of the polygon definition (Line 504), define the polygon
(Lines 505-510), and stop the recording (Line 511). Note that, in this demonstration, the
last vertex is not joined to the first vertex.

Line 515 draws the polygon with the FramePoly routine. (Because the last vertex was not
joined to the first during definition, FramePoly does not draw that part of the polygon. Note
also that the pen hangs to the right and down of the (infinitely thin) lines which define the
polygon.)

Lines 520-522 offset the polygon to the right, retrieve one of the system patterns and draw a
filled polygon with that pattern. (Note that FillPoly, in effect, joins the last vertex to
the first when it draws the shape.)

Line 524 deallocates the memory used to store the polygon.

doRegion

doRegion draws a framed region and a filled region. doRegion then demonstrates the effects of
the InsetRgn routine to shrink and then expand the region.

Lines 535-537 fill the port rectangle with the pattern white, and set the pen pattern and
mode.

Line 539 allocates memory for a new region and a region pointer, initialises the contents of
the region and make it an empty rectangle.

Lines 541-548 initiate the recording of a region shape (Line 541), create a region definition
comprising two rectangles and an overlapping oval (Lines 542-547) and terminate the recording
(Line 548).

Lines 552-554 set the pen pattern and pen size and draw a framed region based on the region
definition.

Lines 559-560 offset the region to the right and then draw a filled region with the pattern
dkGray.

Lines 565-568 offset the region to the left and down, inset (shrink) the region by 10 pixels
horizontally and vertically, and paint the shrunken region. (Note that the inset is applied
to each outline in the region).

Lines 573-576 offset the region to the right, inset (expand) the region by 10 pixels
horizontally and vertically and paint the expanded region. (Note that the inset is once again
applied to each outline in the region. Note also that the demonstration shows that
information can be lost when a region is shrunk and then expanded again.).

Line 578 deallocates the memory used to store the region.

doTransferMode

doTransferMode demonstrates the effects of the source modes srcCopy, srcOr, srcXor, and
srcBic.

Lines 593-597 fill the port rectangle with the pattern white, and set the pen size, pattern
and pattern mode.

Lines 599-609 retrieve two 32 bit by 32 bit 'ICON' resources. One icon contains the image of
a cross and the other contains the image of a square.

Lines 612 and 618 use PlotIcon to draw the icons, expanding them into the 71 pixel by 71 pixel
rectangle defined at Lines 611 and 617. The expanded icons are then outlined in a one pixel
line and identified to the user as the destination image (the square) and the source image
(the cross).

Lines 623-628 then draw the cross icon, once again expanded into a 71 pixel by 71 pixel
square, eight times in two rows of four images.

As a preamble to what is to come, note that there is no special data type for an icon. It is
simply 128 bytes of bit data arranged as 32 rows of 4 bytes per row. All that is available is

10-36 Basic QuickDraw

a handle to that 128 bytes of data. The intention is to cause the 128 bytes of data which
constitutes the square icon to be regarded as bitmap data pointed to by the baseAddr field of
a BitMap record. That way, the CopyBits routine can be used to copy the bitmap into the
graphics port.

Because CopyBits is one of those functions which can move memory around, the first action is
to lock the icon data in the heap (Line 630). The address of the square icon image data is
then assigned to the baseAddr field of a BitMap record (Line 632), the rowBytes field is
assigned the value 4 (Line 633), and the bounds field is assigned a rectangle defining the
normal icon size (Line 634).

Lines 636-646 copy the bit image into the graphics port eight times, overdrawing the
previously drawn cross icons. Line 640 establishes the expanded destination rectangle which
governs the size at which the image will be drawn. This is used in the call to CopyBits at
Line 641. Note that, in this call, the value of the parameter which specifies the source mode
is incremented each time through the loop so that the square image overdraws the cross image
once in each of the eight available source modes. Lines 643-645 retrieve the appropriate
string containing the relevant source mode from the 'STR#' resource and print this string
under each image.

Line 648 unlocks the icon image data.

doCopyBits

doCopyBits copies a bit image from one graphics port to another, resizing and reshaping the
image in the process.

Line 661 prepares the way by filling the port rectangle with the pattern white.

Line 663 opens a small window over the right side of the main window. Lines 666-667 save the
current graphics port and make the new window's port the current graphics port.

Line 669 loads a picture from a 'PICT' resource. Since the purgeable bit of the resource's
attributes is set, the resource is immediately made non-purgeable (Line 676), used immediately
(Line 678), and immediately made purgeable again (Line 679). The picture is drawn in the
current graphics port (the small window).

When the user clicks the mouse button (Line 682), a large rectangle is defined to represent
the size and shape in which the copied image is to be drawn (Line 684). This is used in the
call to CopyBits (Line 686), which copies the image from the small window's graphics port to
the main window's graphics port.

When the user again clicks the mouse button (Line 691), Lines 693-694 dispose of the small
window and reset the current graphics port to that of the main window.

doText

doText draws text in various fonts, sizes and styles. The last line of text is drawn using
the grayishTextOr transfer mode.

Line 704 prepares the way by filling the port rectangle with the pattern white.

Line 706 gets a position half way across the window. This will be used to centre the lines of
text in the window as they are drawn.

Line 708-755 is a loop within which the text font, size and style are changed, a string is
retrieved from a 'STR#' resource (Line 751), the width of the string in pixels is determined
(Line 752), and the string is drawn centrally (from left to right) in the window (Lines 753-
754).

Note that, the last time around the loop, the transfer mode is set to grayishTextOr (Line
743).

Lines 757-761 reset the font, size and transfer mode back to the settings which existed before
doText was called.

doBasicColours

doBasicColours draws eight rectangles in each of the eight colours pre-defined by basic
QuickDraw. (On black and white screens, all colours except white will be drawn in black. On
greyscale screens the colours will appear as shades of gray.)

Basic QuickDraw 10-37

doDrawWithMouse

doDrawWithMouse is called when the user has chosen the Draw With Mouse item from the
Demonstration menu and subsequently clicks in the window. While the mouse button remains
down, a "rubber-band" rectangle is continually erased and redrawn as the mouse is moved. When
the mouse button is released, a rectangle, a rounded rectangle, and a painted rectangle are
drawn at a location and size determined by the "rubber-band" rectangle.

Lines 803-805 set the pen size to 1 pixel wide and high, the pen pattern to gray, and the pen
mode to patXOr.

Line 807 gets the mouse location where the mouse-down occurred. Those coordinates are then
used to initialise the fields of a Rect structure, the left and top fields of which will
remain unchanged from this point.

Line 811 assigns the same mouse location to another Point variable, which will be used for
comparison purposes within the while loop entered at Line 813.

The while loop continues to execute while the mouse button remains down. Within the loop, the
current mouse location is retrieved (Line 815) and compared with the previous mouse location
(Line 817). If the mouse has moved, FrameRect is called, the current mouse coordinates are
assigned to the bottom and right fields of the Rect, and FrameRect is again called (Lines 819-
824). Because the drawing mode is patXor, the first call to FrameRect erases the old
rectangle. Note that, because Lines 819-824 only execute if the mouse has moved, the flicker
which would otherwise occur when the mouse is stationary is avoided. At Lines 827-828, and
preparatory to the next Line 817 comparison, the current mouse position is assigned to the
variable which holds the previous mouse position.

When the mouse button is released, Line 831 erases the final "rubber-band" rectangle. Lines
833-855 then draw a rectangle, a rounded rectangle, and a painted rectangle based on the
location and size of the "rubber-band" rectangle when the mouse button was released.

Creating 'PICT' Resources Using ResEdit

Open the chap10cw_demo demonstration program folder. Double-click on the BasicQuickDraw.µ.rsrc
icon to start ResEdit and open BasicQuickDraw.µ.rsrc. The BasicQuickDraw.µ.rsrc window opens.

Double-click the PICT icon. The PICTs from BasicQuickDraw.µ.rsrc window opens. A thumbnail
image of one 'PICT' resource (ID 128) appears in the window. Double-click the thumbnail image. The
PICT ID = 128 from BasicQuickDraw.µ.rsrc window opens, displaying the picture.

To procedure for creating the 'PICT' resource is as follows:

• Within a paint or draw application, copy an image to the Clipboard.

• Open BasicQuickDraw.µ.rsrc in ResEdit. Choose Resource/Create New Resource. A small
dialog opens. Click the PICT item in the scolling list, and then click the dialog's OK button. The
PICTs from BasicQuickDraw.µ.rsrc window opens, followed by the PICT ID = 128 from
BasicQuickDraw.µ.rsrc window. (ResEdit automatically assigns 128 as the resource ID of the
first 'PICT' resource you create.)

• Choose Edit/Paste. The picture appears in the PICT ID = 128 from BasicQuickDraw.µ.rsrc
window.

Further 'PICT' resources may be created by copying other images to the Clipboard and, within
ResEdit, choosing Edit/Paste while the PICTs from BasicQuickDraw.µ.rsrc window is open and in
front. (ResEdit automatically increments the resource ID at each successive paste.)

Another way to copy an image to the Clipboard for the purpose of creating a 'PICT' resource is to
capture the image directly from the screen using a screen capture utility such as Flash-It™.

	Mathematical Foundations of QuickDraw
	The Coordinate Plane
	Points
	Rectangles
	Regions

	Black and White Drawing: The Basic Graphics Port
	The GrafPort Structure
	Field Descriptions

	More on The Boundary Rectangle, Port Rectangle, Visible Region and Clipping Region

	Drawing in Basic Graphics Ports
	The Graphics Pen
	Graphics Pen Characteristics

	Bit Patterns
	Other Bit Patterns

	Boolean Transfer Modes With 1-Bit Pixels
	Adding Dithering to Source Modes

	Drawing Lines, Rectangles, Ovals, Arcs and Wedges
	Lines
	Rectangles
	Bounding Rectangles
	Rounded Rectangles
	Ovals, Arcs and Wedges
	Drawing Polygons, Regions and Pictures
	Polygons
	Regions

	Routines for Drawing Lines
	Routines for Drawing Shapes — Framing, Painting, Filling, Erasing, and Inverting
	Drawing Text
	Setting the Font
	Setting and Modifying the Text Style
	Setting the Font Size
	Changing the Width of Characters
	Specifying the Transfer Mode

	Drawing Other Graphics Entities
	Manipulating Rectangles and Regions
	Manipulating Rectangles
	Manipulating Regions
	Manipulating Polygons
	Scaling Shapes and Regions Within the Same Graphics Port

	Copying Bits Between Graphics Ports
	Use of Offscreen Graphics Worlds

	Scrolling Pixels in the Port Rectangle

	Main Basic QuickDraw Constants, Data Types and Routines
	Demonstration Program
	Demonstration Program Comments
	Creating 'PICT' Resources Using ResEdit
	Pictures

