RiAB Reference Manual

Brad Hards
bradh @ee.adfa.oz.au

Copyright Copyright ©1994 The R{AB Reference Manual may be reproduced and distributed in whole or in
part, subject to the following conditions:
The R{AB Reference Manual is copyrighted by the author. IT IS NOT IN THE PUBLIC DOMAIN.

e The copyright notice above and this permission notice must be preserved complete on all complete or
partial copies.

e Any translation or derivative work of the RiAB Reference Manual must be approved by the author in writing
before distribution.

o If you distribute the R{AB Reference Manual in part, instructions for obtaining the complete version of
this manual by electronic or physical means must be included, however a means for obtaining a complete
version need not be provided. Someone elses lack of network connectivity is not your problem.

e Small portions may be reproduced as illustrations for reviews or quotes in other works without this
permission notice if proper citation is given.

o The GNU General Public License referenced below may be reproduced under the conditions given within
it.

Exceptions to these rules may be granted for academic and other special purposes: write to the author and
ask. These restrictions are here to protect the author, not to restrict you as educators and learners.

You can get the latest version of this manual as:

file://evans.ee.adfa.oz.au/pub/RLaB/Target-linux/ref-manual.tar.gz

Physical copies can be arranged — contact the Author to arrange this.

All source code in the R{AB Reference Manual is placed under the GNU General Public License, available
as: file://prep.ai.mit.edu/pub/gnu/COPYING

Publishing this Manual If you are a publishing company interested in distributing this manual, read on.

By the license given in the previous section, anyone is allowed to publish and distribute verbatim copies of the
RiAB Reference Manual . You don’t need explicit permission for this. However, if you would like to distribute
a translation or derivative work based on this manual, you must obtain permission from the author, in writing,
before doing so.

You may, of course, sell the RiAB Reference Manual for profit. You are encouraged to do so. Keep in mind,
however, that because the RIAB Reference Manual is freely distributable, anyone may photocopy or distribute
printed copies free of charge, if they wish to do so.

The author would like to be informed of any plans to publish or distribute the RfAB Reference Manual , to
know how this manual is becoming available. It is nice to keep tabs on who is doing what.

Contents

Introduction

Invoking RIAB e
Command Line Arguments L0
Environmental Variables oL o000
The most important command oL Lo
Command Line Editting Lo

Scalars

Creating Scalars

Scalar Operations

Relational Operations L.

Scalar Functions e e
Randomnumbers L

Matrices

Matrix Creation Lo e e e
Vector Creationo e
Matrix Attributes e
Referencing aMatrix
Assignment oL L L e e e
Matrix Operations
Matrix Relational Operations L L Lo
Functions e

Strings

String Creation

String Matrices L.

String Operations Lo
Relational Tests L
Other Operations e

String Functionso

Formatted Strings L

Conditional and Looping Constructs
ifstatemento Lo e
forloop. o e
whileloop
break statement Lo e

~N 0 W W W

O O &

10
10
10

11
11
14
14
15
17
17
18
19

21
21
22
22
22
22
23
23

6 Lists
ListCreation L
ExplicitCreation Lo e
Implicit Creation Lo e
ListIndexing e
Functions returning listso
Global Symbol Table

7 User-defined Functions
Functions e e e e e
Functions are Variables e e e e e e
Function Syntax oL
Local Statement
Return Statement L
Function Scoping Rules oL Lo
Function Argumentso
Function Local Variables
FunctionRecursion
Examples o e
Mean Example oL
MGS Exampleo

File Static Variables
Conclusion L

8 Plotting
Settingup Plots L
Basic Plots e e e e e
Advanced Plots e e e e e e

9 Function Reference
abs — Absolute Valueo
acos—Arc Cosine
acosh—Hyperbolic Arc Cosine oL
all—Test for non-zero matrix Lo
any — Test for non-zero matrix Lo L L e
asin— Arc Sine
asinh — Hyperbolic Arc Sineo
atan — Arc Tangent L L e e
atan2 — Arc Tangent of Ratio oL
atanh — Hyperbolic Arc Tangent L
backsub — solution of linear equations
balance — Matrix Balancingo
cd — Change Directory Lo
ceil —Ceiling Valueo
chol — Cholesky Factorisation L L oL
class—Typeofentity L
clear — Clear variable or functiono
clearall — Erase all variables 0oL o
close—CloseaFile L
compan — Companion matrix Lol
complement — Complementofaset oL
conj — Complex Conjugate

29
29
29
30
31
31
32

CosS— COSINE 72

cosh—HyperbolicCosine L 73
cross — Vector cross product oL Lo e 74
cumprod — Cumulative Product o000 00000 75
cumsum — Cumulative Summation L0000 76
det— Determinant L Lo 77
diag — Diagonalise matrix 78
diary —LogFile 79
diff — Difference between matrix elementso o000 80
disp—Displayentity 81
dot— Vectordot producto 82
eig — Eigen Decomposition L0000l 83
eign — Non-symmetric Eigen Decomposition 0oL 84
eigs — Symmetric Eigen Decomposition 0000000000 85
epsilon — Compute machine epsilon. L0000 86
error — Raise anerror L0l 87
eval — Evaluate expression Lol 88
exist — Test foranargument oL 89
exp—Exponentialo oL oL 90
eye — Identity matrix Lo L 91
factor — LU Factorisation Lo 92
fft — Fourier Transform 93
filter — Digital Filter Structure oL oL 95
find — Find non-zeroelements 97
finite — Test for finite valueso 98
fix —Round towards zero Lo 99
floor—Floor Value L 100
format — Change output format 0oL Lo 101
fprintf — Formatted outputtoafile 0oL oo 102
fvscope — Scope of a function’s argumentso Lo Lo Lo 104
getb — L e 106
getenv — Get Environmental Variableo 0000000000 107
getline— Read scalars and text Lo oL 108
hess — Hessenberg Matrix L Lo 110
hilb — Hilbert Matrix e 111
ifft — Inverse Fourier Tranformo 112
imag — Imaginary Part 0oL 113
inf — Infinity Value oL 114
Input — Get USEr TESPONSE ottt e e 115
int—Integer Filter 116
int2str — integer to String CONVETrSION o v vt e 117
intersection — Set intersectionl 118
inv— Matrix Inverse 119
isempty — Test for zero length matrix 0oL 0oL 120
isinf — Test for Infinity Lo 121
isnan — Test for Not-A-Numbero Lo o oL 122
issymm — Test for symmetric matrix Lo 123
length—Length of Entity 124
linspace — linearly spaced vector 125
load —Fileload L 126
log —natural logarithm L Lo 127
logl0 — Base 10 logarithmo 128

logspace — Logarithmically spaced vector L. 129

lu—LUdecomposition 130

lyap — solution of the lyapunov equation 0oL 131
matrix — Convert to Matrix Lo 133
max — Maximum Value oL 134
maxi — Index of maximum value Lo 135
mean — Average valueo oL 136
members — Itemsinalist. oL Lo 137
min — Minimum Element L0000 Lo 138
mini — Index of Minimum Value Lo 139
mod — Remainder after division Lo 140
nan — Not-a-Number Value 141
norm — Matrix Norm oL 142
num?2str — Number to string conversion Lo 143
ode — ordinary differential equation solver Lo 144
ones — Matrixofones 146
OPEN — o . o v i e e 147
pause — Pause program Lo Lo 148
pclose —close plotwindowo L Lo 149
pend — Close all plotting windows L Lo 150
plalt — Set viewing altitude Lo 151
plaspect — . ..o 152
Plaxis — . ..o 153
Plaz — . . L 154
plegend — 155
plerid — . . . Lo 156
plerid3 — . . Lo 157
plhist— . . . Lo 158
plhistx — . . . Lo 159
plhold — oL 160
plholdoff — oL 161
PHmMits — oL 162
plmesh — . . . oL 163
Plot— . . 164
Plot3 — . 165
plprint— . ..o 166
PIPteX — . . 167
plstyle— . . Lo 168
plwid— . . . o 169
printf — Formatted Output Lo 170
printmat — Pretty printamatriX Lo 172
prod — Product of matrix elements00 o000 173
pstart — Create main plotwindowo 174
ptitle— . . L 175
PWIN — . . L 176
gr— QR decompositiono 177
rand — Random Values L 178
rank — RankofaMatrix oL 180
rcond — Condition Number Lo 181
read —FileRead 182
readb — Read binary data fromafile 00000000 183
readm — Read Matrix fromfile o o 184
real —Real Part 185

redit — Editrfiles 186

replot— . ..o 187
reshape — Reshape matrix oL L Lo 188
round —Roundoff value L0000 189
save — Write workspacetoafile oo o Lo 190
scalar — Scalar Conversion Lo Lo 191
schord — Ordered Schur decomposition Lo 192
schur — Schur decompositiono Lo 193
set — SetCreation 194
show — Display Characteristics L L L 195
showpwin — Current plot status Lo 197
sign —signof theargument 0oL oL oL Lo 198
SIN—SIne 199
sinh — HyperbolicSine 200
size —size of argument L. Lol 201
sizeof — Absolute Valueo 202
solve — Linear Equation Solution L0000 203
sort — Sort Matrix 205
sprintf — Create formatted stringo 206
sqrt — Square Root L. 208
srand —Random Seed 209
std — standard deviation Lo oLl L L oL 210
strsplt — Splitastring 211
strtod — String to decimal conversion oL 0oL Lo oL 212
sum — Summation of elements 0oL L 0oL Lo 213
svd — Singular Value Decompositiono 214
sylv — solution of Sylvester Equation00 oL 216
symm — Symmetric Matrixo oL L 217
system — Access operating System Lol 218
tan— Tangent 219
tanh — Hyperbolic Tangent Lo 220
tic—Start Timer 221
tmp_file — unique filename generator Lo Lo Lo 222
toc—Read timer 223
trace —traceof amatrix Ll 224
tril — lower triangular matrix Lol 225
triu — upper triangular matrixol 226
type — description of argument type L Lo 227
union — Unionof twosets 228
what — List all functions oL L 229
who — listall variableso oL 231
whos — listof variables Lo 232
write —fileoutputo Lo 233
writeb — write binary datatofile 00000000 235
writem — write matrix tofile 0oL o000 236
xlabel — setting X axis labelso o 237
ylabel —setting Y axis labels o000 Lo 238
zeros — matrix of Zeros L. L L 239
zlabel —setting Z axis labelso oo oL Lo 240

A Dis-assembling RiAB Programs 241

Chapter 1

Introduction

R[AB is an interactive or batch mode matrix-oriented programming language. It is intended for prototyping and
other tasks that are not real time. R[AB also serves as a convenient interface to the LAPACK, FFTPACK, and
RANLIB numerical libraries from netlib.

Invoking RjAB

A properly installed RAB can be started by using the following:

$ rlab RETURN
where text highlighted like this is what you enter and RETURN means you have entered the r1ab command
by hitting the RETURN key.

R{AB will start with a message similar to

Welcome to RLaB. New users type ‘help INTRO’

RLaB version 0.99b Copyright (C) 1992, 93, 94 Ian Searle

RLaB comes with ABSOLUTELY NO WARRANTY; for details type ‘help WARRANTY'
This is free software, and you are welcome to redistribute it under
certain conditions; type ‘help CONDITIONS’ for details

>

If that didn’t work, then R{AB is not set up properly on your machine, and you should talk to your local
System Administration ogre, and get them to set it up. If you are the System Administrator ogre, then look at the
README. install file in the R[AB package. Setting up R[AB is not difficult, however it is beyond the scope of
this manual.

If that did work, now is probably a good time to work through the R{AB Primer, which should have come
with this manual. The Primer introduces R{AB and is intended to be complementary to this manual. You can get
a good feel for the capabilities from the Primer, and the hard details from the Reference Manual. So go to it! The
Primer awaits. It doesn’t really matter if you don’t understand it all, since you can get more information from
this manual, but this manual will be a lot easier if you have done the Primer. So give it a try!

Command Line Arguments

When we started R[AB in the last section, we just used the name. That is the way you will normally start RiAB .
However, you might also want to change the behavior of RiAB in some cases, which will require you to use an
argument to R[AB .

Now is a good time to diverge for a moment. Throughout this manual, I will use ‘railroad’ diagrams (also
known as Bachus-Naur diagrams). You may have seen them used in the past in Pascal books. The basic theme

3

4 CHAPTER 1. INTRODUCTION

is that you start in the top-left corner, and work around it. Think of the logic flow as a train. You can’t do hairpin
turns in a train, and you can’t in a railroad diagram either. Here is a simple example:

Demo
.H'

This is what most of the railroad diagrams look like in this manual. The first bit (Mandatory) has to occur.
The next stage gives you three options. You can do one of three things - Optionl, Option2, or skip that
stage all together. The next stage allows you to do that step one or more times. After doing it at least once, you
can exit. That was pretty simple wasn’t it? If the use of the railroad diagram for something eludes you, have a
look for examples of actually using that thing. The railroad diagram is definitive, but examples are usually more
obvious.

Now that you know about railroad diagrams, let’s use one to show what arguments R[AB can take. If you
understand normal Unix notation, then

rlab [-Vdhlmnpgr] [file(s)] [-1]
is probably a perfectly clear explanation.

Here is the same thing in railroad form:

RLaB

Repeat

—EE
s

CANC Y

R

~
/

TLIILITL

|

- /

All the things that start with the minus, —, are referred to as the options. An option affects the way R{AB
works. The options are mostly for debugging, and they shouldn’t normally be required. The options are:

-V which causes a version number to be displayed, and all later arguements to be disregarded. R{ABexits after
displaying the version number.

ENVIRONMENTAL VARIABLES 5

—d which causes a readable form of the internal stack machine’s compiled program to be output to the standard
error device. This option should be used in conjunction with —gln options. This option is not intended
for general use.

—h displays the usage message, then exits.
-1 prevents loading of the R[AB library of rfiles.
—m prevents the startup message being displayed.

—n prevents line number and file name information from being used in the internal stack machine codes. This
option should only be used with the —~d1qg options. This option is not intended for general use.

—p prevents rlab from using the specified pager for all output.
—q prevents loading of the startup file.
—r prevents usage of the GNU readline library for command line editing.

Most of that probably didn’t mean a great deal unless you have studied the inner workings of R{AB , but don’t
worry. You will probably never need to use those options — they are included here only for completeness. If
you want more details see Annex A.

The next thing that can occur is one or more filenames. The filenames should contain R[AB code (which we
will learn to write later). If you specify several files, it reads from each in turn, as if they were all one file. Note
that these files are read after the . rlab file and the contents of the R[AB library directory are read. More on
those later too.

The final thing that can occur is a dash, —, which is only really useful if you specified some files to be read.
Normally, RAB exists after the files have been run. With this option, you get to use R{AB in an interactive mode
after the files have been run. Running interactive is the default if you didn’t specify any files.

Environmental Variables

When you start R{AB , a whole host of things happen. The first thing that happens is the RiAB program is loaded,
and is run. It looks at the options you have specified, and determines what to do next. If you didn’t specify the
—qg option, then the the R{AB startup file is run. The default startup file is /usr/local/lib/rlab/.rlab,
but you can over-ride this by setting an environmental variable called RLAB_RCO0. Consult the manual for your
shell to get more details on how to set up an environmental variable.

The next thing that happens, providing you didn’t turn it off by using the —1 option, is loading the R{AB library.
This library is all the files that end in . r in the library directory. Thisis /usr/local/lib/rlab/rlibby
default, but you can over-ride this one too, by using the environmental variable RLAB_LIB_DIR.

After this, R[AB tries to figure out where it should look for help files. The defaultis /usr/local/lib/rlab/help,
but the environmental variable RLAB_HELP_DIR can be used to change that.

The next thing we do is to find the directory that contains other useful bits of R[AB code, but just aren’t
used enough to be part of the library (which you will recall is loaded every time R{AB is started). This defaults
to /usr/local/lib/rlab/toolbox, but like all good defaults, can be over-ridden by the contents of the
environmental variable RLAB_ SEARCH_PATH.

The final environmental variable is the pager. The pager just a program that is used to display output one
screen full at a time. The default for this (more) is usually fine, but you can use RLAB_PAGER or PAGER to
override it if required. RLAB_PAGER has priority.

The most important command
If you have looked through the Primer, then you will be quite familiar with the he1p command. This is the most

important command in R[AB , since it can tell you about all the other commands. If you didn’t do the Primer,
then shame on you, however it is important enough to be said again here.

CHAPTER 1. INTRODUCTION

help has two forms. The first gives a list of all the topics you can get help on. All you need to do is type
help. The exact result depends on your system, but is should be similar to this

BREAK
COMPLEX
ERRORS
IF
MATRICES
STRING
WHILE
asin

cd
close
diag
exp
floor
getline
inf
load
maxi
nan
printf
rcond
replot
schord
size
sgrt
svd

tic

who

/usr/local/lib/rlab/rlib

acosh
complement
diff

eye
int2str
linspace
num2str
redit

std

tril

/usr/local/lib/rlab/toolbox

angle
detrend
flipud
jordan
mret
gq_normal

BUGS COMMAND

CONDITIONS CONTINUATION

EXAMPLES FILES

INTRO KEYWORDS

OPERATORS RELATIONAL

TRANSPOSE VARIABLES

abs acos

atan atan2

ceil chol

conj cos

diary eig

factor fft

format fprintf

help hess

int inv

log logl0

members min

norm ode

prod qr

read readb

reshape rfile

schur show

sizeof solve

srand strsplt

sylv system

toc trig

write writeb

asinh atanh

cosh cross

disp dot

finite fix

intersection isempty

logspace 1lu

pause plot

save set

symm tanh

triu union
bandred banner center
erf expm faxis
fmin funm gamma
lagrange logm max2
nmsmax ode4 ode78
rem rk4 toeplitz

COMMAND_EDIT
CONTINUE
FOR
LIST
RLAB
VECTOR
all
backsub
class
cosh
error
filter
fvscope
ifft
issymm
matrix
mini
ones
quit
readm
round
sin
sort
strtod
tan
type
writem

clearall
cumprod
epsilon
hilb
isinf
lyap
printmat
sign
tmp_file
whos

chop
fftplot
hankel
mdsmax
pascal
trapz

COMMENT
DIVISION
FUNCTION

MATLAB_DIFF

SCALARS

WARRANTY
any
balance
clear
det
exist
find
getenv
imag
length
max
mod
plprint
rand
real
scalar
sinh
sprintf
sum
tanh
what
zeros

compan
cumsum
eval
input
isnan
mean
rank
sinh
trace

czt
fliplr
house
min2
pinv
window

COMMAND LINE EDITTING 7

Each of those words is a topic you can get help on. The ones in upper case deal with a concept, and those
in lower case deal with a function or command. To get help on a topic, we just type help topic. Here is an
example of how to get help, say on the zeros function:

> help zeros
zeros:

Syntax: zeros (nrow, ncol)
zeros (A)

Description:
Zeros returns a matrix with all zero elements. If the
arguments are two scalars, then zeros returns a matrix with

dimensions S1xS2.

If the argument is a MATRIX, then zeros returns a matrix with
dimensions m[l] by m[2].

Examples:
> zeros(3 , 3)

> A = rand(10,4);
> B zeros (size (Ad))

See Also: size

Well that might not have meant anything, but all will become apparent later. The most important help topics
to look at when learning are those in upper case, and you might choose to look through them now. The same
information (perhaps in a different form) is in later parts of this manual.

Command Line Editting

When you start using RAB , you will probably find that you make a lot of little errors in syntax. However you
don’t have to type a whole line again just because you used a semi-colon instead of a comma somewhere. Instead,
you can use the editting features provided by R{AB . The basic concept behind this feature is that you can recall
previous lines, and modify them, which will produce normal input, just as if you had typed the whole thing in
again. This feature is not restricted to just editting the last line — you should be able to go back to any previous
line.

To edit a line, the first thing you have to do is recall the line you want to edit. Most commonly this will
just be one or more presses of the up-arrow key. If you go past the line you wanted, just use the down-arrow
key to compensate. Then you use the left and right arrow keys to select the point where you want to add or
delete characters. You add characters by typing them, and delete characters using the Delete or Backspace keys.
Characters are added just to the left of the cursor, and are deleted to the left of the cursor. You can then hit the
return key (anywhere on the line - it makes no difference), and the whole line is sent to the R{AB interpreter.

However not all terminals have arrow keys, so there is another way, which just uses control keys. They are
listed below. For those that start with the caret (*) symbol, you hold down the CTRL (Control) key down while
typing the following character. For those that start with ESC—, you type the ESC (Escape) key, and then type the
following character — you don’t hold down the ESC key.

These are the getline key bindings:

8 CHAPTER 1. INTRODUCTION

>

Move cursor to beginning of line
Move cursor left (back) one column.
Move cursor back one word.
Delete the character under the cursor.
Move cursor to end of line.
Move cursor right (forward) one column.
Move cursor forward one word.
Kill from cursor to the end of the line.
Redisplay current line.
Fetches next line from the history list.
Fetches previous line from the history list.
Search backwards.
Search forwards.
Swap character under cursor with character to the left.
Kill the entire line.
Yank previously killed text back at current location.
BACKSPACE Delete the character left of the cursor.
DEL Delete the character left of the cursor.
RETURN Return the current line.
TAB Jump to next tab stop.
UP-ARROW Retrieve previous line from history list.
DOWN-ARROW Retrieve next line from history list.
LEFT-ARROW Move cursor left (back) one column.
RIGHT-ARROW Move cursor right (forward) one column.

In addition, there may be other commands, which are listed below.

To make things a little complex, there are three possible ways that command line editting can be set up using
RiAB . The first is that it cannot be used. This is normally a result of using RiAB on a weird Operating System,
or using the —r option at start-up. If the control characters have no effect (and you have suitable text for them to
work on), then this is probably the reason.

The second way is that the GNU Readline package has been used. This is very similar to the commands
in Emacs. There may be more extensive documentation available using the GNU Emacs info command, under

Readline. The commands added are:
~ Undo the last command.

ESC-d Kill to end of word.
ESC-DEL Delete to start of word.
ESC-y Rotate the kill-ring.
ESC-> Beginning of history.
ESC-< End of history.
ESC-u Uppercase word.
ESC-1 Lowercase word.
ESC-c Capitalise word.
The third situation is if the normal GetLine package has been used. The commands are similar to Emacs, but
this system has a few less features, and is less resource hungry. It adds the following commands:
“H Delete the character left of the cursor.
- Insert spaces to the next tab stop.
Same as hitting RETURN key.
Same as hitting RETURN key.
Toggle overwrite/insert mode.

e
n
Q
> |

>

&3
n
¢

> > > > > > >

>
K OH W2 X"MHEEODEmE®P

>

O X gH

Chapter 2

Scalars

Creating Scalars

Scalar Operations
RAB has a wide range of operators to act upon scalars. The unary operators defined on scalars are:

— Unary negation is the highest priority operator. It is the same as multiplying the expression on the right of the
operator by —1.

++ Increments the operand. Operates on the operand to the left of the operator. If the imaginary part of the
operand is zero, only the real part is incremented, otherwise both real and imaginary parts are incremented.

—— Decrements the operand. Operates on the operand to the left of the operator. If the imaginary part of the
operand is zero, only the real part is decremented, otherwise both real and imaginary parts are decremented.

Lets look at the various binary operations, for A binop B:

+ Adds the operands.

— Subtracts the second operand from the first operand.
* Multiplies the operands together.

/ Divides the first operand by the second operand.

\ Divides the first operand by the second operand. This is the same as the right division operator on scalars —
it differs only on matrices.

J/ Divides the first operand by the second operand. This is the same as the right division operator on scalars —
it differs only on matrices.

.\ Divides the first operand by the second operand. This is the same as the right division operator on scalars —
it differs only on matrices.

¥ Multiplies the operands together. This is the same as the * operator on scalars — it differs only on matrices.
A A" Braises A to the B power.

/AL "Braises A to the B power. This is the same as the normal power operator on scalars — it differs only on
matrices.

The operators that are denoted by two symbols should not have any white space (or any other characters)
between the two symbols.

10 CHAPTER 2. SCALARS

Relational Operations

R{AB relational, equality and logical operators return 1 if the expression is true, and O if the expression is false.
The R{AB relational operators are

< true if the expression on the left hand side is less than the expression on the right hand side.
<= true if the expression on the left hand side is less than or equal to the expression on the right hand side.
> true if the expression on the left hand side is greater than the expression on the right hand side.

>=true if the expression on the left hand side is greater than or equal to the expression on the right hand side.

The relational operators all have the same precedence. If the expression on either side is complex, then
comparison is done on magnitudes.

RLaB equality operators are ==, which is the test for equality, and ! =, which is the test for non-equality. The
equality operators have the same precedence, and are just below the relational operators, in terms of precedence.

R{AB logical operators are &&, which is logical and, and | |, which is logical or. Logical AND operation has
higher precedence than logical OR. Both logical operators are lower in precedence than the equality operators.

The logical operators evaluate left-to-right, however evaluation does not stop as soon as the result is known,
as in C. Full evaluation in required because the operands are not restricted to being simple scalars quantities.
Cases where the operands are matrices requires that full operand evaluation occur.

Scalar Functions

Random numbers

One of the most flexible features in RiAB is the way it can generate random numbers. There are only two functions
used in random number creation — rand, and srand.

srand (See Page 209), is used to set the seed value that the numbers are produced from. Using the same seed
value each time will produce the same sequence of random numbers. You should use srand (*‘*clock’ ") if
you want a unique sequence.

rand is the function that actually produces the random values. You can choose many different distributions,
though the uniform and normal distributions are likely to be of most use. A complete list of distributionsis given
on Page 178.

Chapter 3

Matrices

This chapter is an introduction to the matrix data type. Matrices are the most commonly used data type in R{AB
and there are many powerful operations and functions you can perform on them. A matrix is generally a two
dimensional array of scalars, although R{AB also supports string matrices, see Chapter 4. All numeric operations
and functions work for any combination of real and complex operands or arguments.

The elements inside a matrix are refered to by the number of the row and column they are in. Rows are
specified first and go across, and are numbered from top to bottom. Columns go down, and are numbered from
left to right.

Matrix Creation

The [and] operators are used to create and access a matrix. For example, to create a matrix at the command
line, you would just type:

m =
matrix columns 1 thru 3
1 2 3
4 5 6
7 8 9

The rows of the matrix are delimited with ¢;’ and the elements of each row are delimited with ,’. If you
want a complex matrix you enter it using the normal notation of real and imaginary parts. Here is an example:

> z= [1421, 2433, 3 + 4i;

> 4 -5i, -5+67j, -6 =73 1]
7 =
matrix columns 1 thru 3
1+ 2i 2 + 31 3+ 4i
4 - 5i -5 + 61 -6 — 71

This example shows a few things that are pretty important. You can use either i or j, but you can’t leave
spaces between the imaginary part and the letter. Spaces are generally fine everywhere else.

While the previous method for matrix creation is quite convenient, often you will need specific types of
matrices, such as an identity matrix, a matrix of random values, or a Hilbert matrix. There are R{AB functions to
produce these and many other types of matrices. All functions are described in Chapter 9, however those that are
likely to be of particular interest for creating matrices are:

compan generates the companion matrix of its argument

11

12 CHAPTER 3. MATRICES

diag diagonalises its argument

eye produces an identity matrix

hilb produces a Hilbert matrix

linspace and logspace produce spaced vectors
ones produce a matrix with all elements 1.
rand generates random matrix

reshape changes the structure of a matrix
zeros produce a matrix with all elements 0.

Another useful method for creating a matrix is to read the values from a file. R{AB provides several ways of
doing this. The two most popular are readm () and read ().

read () reads a matrix that has been written with the RiAB write () function (See Section 9 and Section 9).
Here is a contrived example - you would normally write it out in one session, and read it again in a later
session. You should also realise that read and write are not restricted to a storing and retrieving a single
variable, or even a single type of variable, in a file. You can store several different types of variables in each file,
according to your needs.

>z =113, 4; -4-33 , 786]

7 =
3 + 01 4 + 01
-4 - 3i 786 + 0i
> who ()
eps pi z
> write("save_z.dat" , z)

1
> // We have now written out the matrix ‘z’ to the file ‘save_z.dat’
> clear(z);
> who ()
eps pi
> // The matrix ‘z’ is now gone from the symbol table
> read("save_z.dat")

1
> who ()
eps pi z
> // And now it has been read back in.
> diary ()

readm () (See Section 9) reads a text file that contains white-space separated columns of numbers. This is
useful if you are trying to use the output of other programs. If you want to, you can also write out a matrix in the
same format, using the writem function. If you don’t like the way the matrix is organised, the reshape ()
function (See Section 9) is a good way to restructure it.

>a=11, 2, 3, 4, 5, 6, 7, 8; 9, 10, 11, 12]

a =
1 2 3 4
5 6 7 8
9 10 11 12

> // Now we write the matrix to a file.
> writem("matrix_text", a)

MATRIX CREATION 13

1
> clear (a)
1
> who ()
eps pi
> // And get it back - store it in a different variable this time
> b = readm("matrix_text")

b =
1 2 3 4
5 6 7 8
9 10 11 12

> // But we want those elements organised as two rows and six columns
> ¢ = reshape (b, 2,6)

c =
matrix columns 1 thru 6
1 9 6 3 11 8
5 2 10 7 4 12

It appears that things have gone horribly wrong in that last example. However this is expected behavior. The
matrix is stored column by column, and if you run down each column in each matrix, the order is the same in
each matrix. The transposition operator might come in handy if you want it to work by rows, as shown here:

> d = reshape(b’, 2,6)

d =
matrix columns 1 thru 6
1 3 5 7 9 11
2 4 6 8 10 12
> e = (reshape(b’,6,2))’
e =
matrix columns 1 thru 6
1 2 3 4 5 6
7 8 9 10 11 12

Sometimes when you have a problem that is represented as two matrices, you would like to combine them
to make a single matrix. This is a pretty simple task as soon as you realise that there is nothing that makes the
things inside the square brackets have to be scalars — they can also be strings and other matricies. We will look
at using matricies here, and deal with strings later.

When trying to tack several matricies together to make a new matrix, or using a combination of scalars and
matricies to make a new matrix, you should think of the matricies as being equivalent to how they would be
represented if you had to type them yourself. So imagine that each row is terminated with a semicolon and each
element seperated by a comma. Then fill in commas and semicolons between the elements to make up the new
matrix. Here are some examples:

>a = [1, 2,3; 4,5,6]

a =
1 2 3
4 5 6
>b =17, 8, 9; 10, 11, 12]
b =
7 8 9
10 11 12
> c = [a,Db]
c =

matrix columns 1 thru 6

14 CHAPTER 3. MATRICES

1 2 3 7 8 9
4 5 6 10 11 12
> d = [a;Db]
d =
1 2 3
4 5 6
7 8 9
10 11 12
>e =1 -2, -1 ,0; a]l
e =
-2 -1 0
1 2 3
4 5 6

Vector Creation

Although there is no distinct vector type in R{AB, you can pretend that there is. If your algorithm or program
does not need two dimensional arrays, then you can use matrices as one dimensioned arrays.

When using vectors, or single dimension arrays, row matrices are created. The simplest way to create a vector
is with the ‘:’ operator(s):

Vector

|-

° increment

The first operand specifies the starting value, the second operand specifies the last value. The optional third
operand can be used to specify an increment. If this is not specified, the default increment is 1. Here are some
examples:

> c =1:4
c =
1 2 3 4
>d = 1:3:0.5
d =
1 1.5 2 2.5 3
> e = 1:3:0.6
e =
1 1.6 2.2 2.8

The other way to generate a vector is to simply specify it using the matrix form with one of the dimensions
set to 1. This method allows you to generate a vector containing any elements, not just an evenly spaced
sequence. Just remember that RAB doesn’t know anything about vectors — they are just a matrix where one of
the dimensions is 1. Some functions do something slightly different if they come across a matrix that is the vector
form, but they are really just a notational convenience, not a fundamental change, and anything that applies to a
matrix also applies to something that we treat as a vector.

Matrix Attributes

The attributes of a matrix, such as how many rows it has, are accessible in several ways. All attributes are
accesible through function calls, for example:

REFERENCING A MATRIX 15

, 0.333, 0.367, 0.24;

> my_matrix = [1
6, -0.3, 0.9, 31;
)

vV Vv

show (my_matrix
name: my_matrix
class: num
type: real
nr: 2
nc: 4
> size (my_matrix)
2 4
length (my_matrix)
4
> class (my_matrix)
num
> type (my_matrix)
real
> name (my_matrix)
my_matrix

\%

You can learn more about each of those functions by refering to the Function Reference, or by using the
on-line help.
Matrix attributes are also accessible via a shorthand notation:

> // Number of rows
> my_matrix.nr

2
> // Number of columns
> my_matrix.nc

4
> // Number of elements
> my_matrix.n

8
> // Class of variable
> my_matrix.class
num
> // Type of contents
> my_matrix.type
real

Referencing a Matrix

It doesn’t matter how a matrix was created - using the vector or matrix methods, there are two ways to access it.
You can either specify an row and column, or you can specify a particular element. For example:

> a = rand(3,4)

a =
matrix columns 1 thru 4
1 0.333 0.665 0.167
0.975 0.0369 0.0847 0.655
0.647 0.162 0.204 0.129
> all,4]
0.167

> al4]

16 CHAPTER 3. MATRICES

matrix columns 1 thru 4

1 2 3 4
> v[1l;3]

3
> v[2]

2

As you can see, matrices are stored internally in a column-wise fashion. To force a matrix to it’s internal
form you can use the ‘[:]’ operator:

> a = rand (2, 3)

matrix columns 1 thru 3
1 0.647 0.0369
0.975 0.333 0.162
>a []
matrix columns 1 thru 1
1
0.975
0.647
0.333
0.0369
0.162

In addition to accessing single elements, we can also access partial rows and/or columns of a matrix. We
use the ‘;’ symbol to delimit row and column indicies, and the ¢, ’ symbol to delimit individual row or column
indicies. To reference an entire row or column, we leave out the column or row index respectively:

> g = rand(3,4)

g =
1 0.333 0.665 0.167
0.975 0.0369 0.0847 0.655
0.647 0.162 0.204 0.129
> gl3;]
0.647 0.162 0.204 0.129
> gl;2]
0.333
0.0369
0.162

To reference a sub-matrix, we just specify which rows and columns are to be extracted:

> gl2; 3,4]
0.0847 0.655

As stated previously, any expression that evaluates to a matrix can have it’s elements referenced. For example,
the size () function returns a two element matrix, where the first element contains the number of rows in the
argument, and the second element contains the number of columns. For example:

> size(g) [2]
4

ASSIGNMENT 17

Assignment

Just as we can read from parts of a matrix, we can also write to part of a matrix. You have seen assignment of a
whole matrix to a variable in previous examples — now lets look at partial assignment. We can re-assign single
elements, or groups of elements. For single elements, we just specify a reference to that element (either row and
column or vector notation — it doesn’t matter), and equate it to the new value. For a group of elements, we have
to specify a range, and equate that to a matrix of equal size. Here are some examples:

> yellow = rand (3, 3)

yellow =
0.167 0.91 0.265
0.655 0.112 0.7
0.129 0.299 0.95
> yellow[2;2] = 967
yellow =
0.167 0.91 0.265
0.655 967 0.7
0.129 0.299 0.95
> yellow[2,3;1,2] = [100, 200; 300, 400]
yellow =
0.167 0.91 0.265
100 200 0.7
300 400 0.95

Matrix Operations

The usual mathematical operators (eg. +, -, *, /) operate on matrices as well as scalars. Lets look at the
various binary operations, forA binop B:

+ Does element-by-element addition of two matrices. The row and column dimensions of A and B must be the
same, unless either A or B is a 1-by-1 matrix; in this case a scalar-matrix addition operation is performed.

— Does element-by-element subtraction of two matrices. The row and column dimensions of both A and B must
be the same, unless either A or B is a 1-by-1 matrix; in this case a scalar-matrix subtraction operation is
performed.

* Performs matrix multiplication on the two operands. The column dimension of A must match the row dimension
of B, unless either A or B is a 1-by-1 matrix; in this case a scalar-matrix multiplication is performed.

/ Performs matrix “right-division” on it’s operands. The matrix right-division (A/B) can be thought of as
A*inv (B). The column dimensions of A and B must be the same. Internally right division is the same
as “left-division” with the arguments transposed.

A/B = (BT \ AT)T

The exception to this dimension rule occurs when B is a 1-by-1 matrix; in this case a matrix-scalar divide
occurs.

Additionally, R{AB has several other operators that function on matrix operand(s).

¥ Performs element-by-element multiplication on it’s operands. The operands must have the same row and
column dimensions, unless either A or B is a 1-by-1 matrix.

J Performs element-by-element division on it’s operands. The operands must have the same row and column
dimensions, unless either A or B is a 1-by-1 matrix.

18 CHAPTER 3. MATRICES

\ Performs matrix “left-division”. Given operands A\ B, matrix left division is the solution to the set of equations
Ax = B. If B has several columns, then each column of z is a solutionto A*x[;i] = B[;i]. The
row dimensions of A and B must agree.

.\ Performs element-by-element left-division. Element-by-element left-division is provided for symmetry, and
is equivalent to B. /A. The row and column dimensions of A and B must agree, unless either one is a 1-by-1
matrix.

A A"B raises A to the B power. When A is a matrix, and B is an integer scalar, the operation is performed by
successive multiplications. When B is not an integer, then the operation is performed using A’s eigenvalues
and eigenvectors. The operation is not allowed if B is a matrix.

/AL "Braises A to the B power in an element-by-element fashion. Either A or B can be matrix or scalar. If both
A and B are matrices, then the row and column dimensions must agree.

* This unary operator performs the matrix transpose operation. A’ swaps the rows and columns of A. For a
matrix with complex elements a complex conjugate transpose is performed.

> This unary operator performs the matrix transpose operation. A.’ swaps the rows and columns of A. The
difference between ’ and .’ is only apparent when A is a complex matrix; then A.’ does not perform a
complex conjugate transpose.

There are several details that are very important to note:

e The operators that are denoted by two symbol should not have any white space or any other character
between the two symbols.

o The expression 2. /A is not interpreted as 2. /A. R[AB is smart enough to group the period with the /.

Matrix Relational Operations

Just as we can perform relational operations on scalars, we can also do matrix relational operations. When we do
a relational test on two matrices, such as A == B, the operands must be the same dimensions, or one of them
must be a 1-by-1 matrix. The result of a matrix relational test is a matrix the same size as the operands filled
with ones and zeros according to the result of an element-by-element test. A one in a particular location means
the test was true for the pair of elements in those locations in the operands. For example:

a =
matrix columns 1 thru 3
1 2 3
4 5 6
7 8 9
> b = a’
b =
matrix columns 1 thru 3
1 4 7
2 5 8
3 6 9
> a ==
matrix columns 1 thru 3
1 0 0
0 1 0
0 0 1

FUNCTIONS 19

matrix columns 1 thru 3

0 0 0
0 1 1
1 1 1

RAB if-tests do not accept matrices. The any () and all () functions can be used in combination with
relational and logical tests to conditionally execute statements based upon matrix properties.

The function any () returns true if any of the elements of it’s argument are non-zero. The function all ()
returns true if all of the elements of it’s argument are non-zero. The any () function is called on the output
of another any () call because the any () function returns a vector when passed a matrix that is not already a
vector.

Functions

You have already seen some of the functions in use. There are for basic types of functions that can operate on
matricies in RiABThey are:

Scalar Functions: These functions operate on scalars, and treat matrices in an element-by-element fashion.
Some examples are:

abs exp floor round
cos sin tan ceil
sqrt real imag conj
isnan int

Vector Functions: These functions operate on vectors, either row-vectors (1-by-n) or column vectors (m-by-1),
in the same fashion. If the argument is a matrix with both dimensions > 1 then the operation is performed
in a column-wise fashion. Some examples are:

sum prod mean max
min fft sort any

When using a vector oriented function, like max (), on a general matrix, it is possible to obtain scalar
quantities. For example the maximum value in a matrix can be obtained using max (max (a)). The
first call to max () returns a vector of the maximum values from each column, and the second call to
max () returns the maximum value in the matrix.

Matrix Functions: These functions operate on matrices as a single entity. Some examples are:

balance chol det eig
hess inv Iu norm
pinv qr rank rcond

reshape solve svd symm

20

CHAPTER 3. MATRICES

Chapter 4
Strings

A string is a sequence of text characters enclosed in double quote characters:". Single quotes are not sufficient
— forward quoted: * have no meaning, and backward quotes:’ are used to indicate matrix transpose.

String Creation

Strings are pretty simple to create — you just assign a sequence of text characters to a variable.

> str = "Sample String"
Sample String

The show command reveals the attributes associated with each string. The information can also be obtained
using the normal shorthand method.

> show (str)

name: str
class: string
type:
nr: 1
nc: 1
> str.class
string
> str.l
13

You can also put escape characters in strings. The following escape codes are supported:

e \n which produces a newline

¢ \t which produces a horizontal tab
e \f which produces a form feed

¢ \b which produces a backspace

e \r which produces a carriage return
e \a which produces an alert (bell)

e \v which produces a vertical tab

e \\ which produces a backslash

e \’ which produces a single quote

e \" which produces a double quote

21

22 CHAPTER 4. STRINGS

String Matrices

Strings can be used to form matrices, in the same way that numeric values can form a numeric matrix:

> StrMat = ["A string", "Another String";

> "A third string", "The last string" 1;
> StrMat

StrMat =
A string Another String

A third string The last string
> show (StrMat)

name: StrMat
class: string
type:

nr: 2

nc: 2

As shown here, the elements of a string matrix do not need to be the same length. However scalar strings
cannot be mixed with numeric scalars in the same matrix — a list is the only variable capable of making up a
heterogeneous collection.

String Operations

Relational Tests

Any of the normal relational tests can be applied to strings. Two strings are considered equal if they have the
same contents and the same length. When trying to decide if one string is less than another, R[AB tests each
character position in the string in turn. As soon as they differ, the word containing the character that occurs first
in the character set is considered the lesser. Non-existent characters are less than any other character. Here are
some examples that make it clearer:

> "abc" == "abcd"
0

> "dabc" == "abcd"
0

> "dabc" < "abcd"
0

> "abc" == "abcd"
0

> "abc" == "abc"
1

> "abc" == "abcd"
0

> "abc" < "abcd"
1

> "dbc" > "abcd"
1

Other Operations

Strings can be copied using the normal assignment operator, that is =. Two strings may be concatenation (joined)
by using the + operator. These are the only operations defined on strings.

> stringl = "Any old thang”

STRING FUNCTIONS 23

Any old thang
> string2 = stringl + "Some more old things"
Any old thangSome more old things

This example shows something you should be aware of — the concatenation operator doesn’t add any spaces.
If you want them, they have to be added as part of the arguments.

String Functions

strsplt () is a useful string function. It splits up the argument string and returns a row matrix that contains
a single character string as each element. The resulting matrix has as many columns as the input argument had
characters. For example:

> str = "Yet another string”
Yet another string
> str2 = strsplt(str)

str2 =
Y e t a n o t h e r s t r i n g
> show(str2)
name: str2
class: string
type:
nr: 1
nc: 18

Formatted Strings

There are three functions that you can use to produce formatted character strings. They are printf (),
fprintf () and sprintf (). See pages 170, 102 and 206 respectively have detailed descriptions of the
arguments these functions take, however they are described here briefly.

printf () isthe least general of the functions. However it is quite easy to use, and provides an introduction
to the other two functions. print f prints a formatted string to standard output. The return value is the number
of characters written. Since R[AB often has scalar variables that you want to incorporate into strings, you can use
the normal C language formatting options. These are documented, with examples, on Page 170.

fprintf () is an exceptionally versatile command, as it allows you to send formatted strings to files and
processes. The syntax for this function is given on Page 102. It also takes C language formatting options, and
returns the number of characters. Using stdout as the filename is the same as using print £ — you may also
find using stderr is useful.

sprintf () is used to generate a formatted string variable. This function also takes C language formatting
options and returns the number of characters in the string produced. Page 206 has further details, with examples.

24

CHAPTER 4. STRINGS

Chapter 5

Conditional and Looping Constructs

if statement

The 1if statement is very similar to the C if statement.

If
statement
G0 ore
statem

Note that the statements executed inside both the sections of the body can include other if statements, as
shown below.

Example

> if (1+2 <= 4)

a==6
else
a = -6
}
a =
6
> if (1+2 < 3)
{
a==o6
else
a = -6
}
a =
-6
> if(class(a) == "num")
{
b = tan(a)
c = 2+3-4
else
a=20

25

26 CHAPTER 5. CONDITIONAL AND LOOPING CONSTRUCTS
}
b =
0.291
c =
1
> if (0)
{
b =" false "
else if (c < (d = 2))
{
e = —-d
else
e =d
+}
e =
-2
for loop

The RLaB for statement is NOT similar to the C for statement.
The correct usage is best shown by example...

Example:

> for(i in 1:4) {
> for(j in 1:5) {
> m[i;j] = i+3;
>
>

}

The above shows a nested set of for statements. i and j are
automatically initialized to have the values of the vector
expressions ‘1:4’ and ‘1:5’. Each loop proceeds until i and j
have been assigned each element of their respective vector
expressions.

The vector in the for statement can be any expression that
evaluates to a SCALAR or a MATRIX. If the expression evaluates
to a SCALAR the body of the for statement is executed ONCE. If
the expression evaluates to an empty-matrix (‘[]’), then the
loop is not executed at all.

The for statement can be also be used to loop through the
elements of a LIST.

Example:
> xlist = << Mass = sqrt (200); Inertia = eye(3,3); xdot = [1,2,3]
Inertia Mass xdot

> for(i in members (xlist))

{

xlist.[i]

>>

Inertia =
matrix columns 1 thru 3

1 0 0
0 1 0
0 0 1

Mass =

14.14
xdot =
matrix columns 1 thru 3
1 2 3
while loop

The RLaB while statement is similar to the C while statement.
Example:
> i=1;

> while (i<10)
{

al[i]l] = 1.3*i;
i++;
}
> a
a =
matrix columns 1 thru 5
1.3 2.6 3.9 5.2 6.5

matrix columns 6 thru 9
7.8 9.1 10.4 11.7

while (0) { "this will never be executed" }

If the conditional evaluates to zero then the loop is not
executed, if it evaluates to anything other than zero it will
be executed until the condition is zero.

break statement

The break statement functions similar to the C break. The
break statement provides an early exit from the enclosing for,
or while loop. For example:

> while (i < 100) {

> if(i == 10) { break; }
> i++;

>}

> i

10

28 CHAPTER 5. CONDITIONAL AND LOOPING CONSTRUCTS

//
// OR
//

> i=0; j=0;
> while (i < 5) { while (j < 5) { if (j == 3) { break } Jj++; } i++;

RAB if tests do not accept matrices. The any () and all () functions can be used in combination with
relational and logical tests to conditionally execute statements based upon matrix properties.

The function any () (See page 52 returns 1 if any of the elements of its argument are non-zero. The function
all () (See page 51 returns 1 if all of the elements of it’s argument are non-zero. The any () function is often
called on the result of another any () call because the any () function returns a vector when passed a matrix
that is not already a vector.

i

Chapter 6

Lists

This chapter assumes knowledge of the scalar, matrix and string variable types. A list is a convenient way to
group together different types of variables, and treat them as one variable. This is very similar to the way a Pascal
record, or C structure is made up.

A nice thing about lists is that they only contain objects that are explicitly installed, regardless of the index
values. For instance, a list with index values of 1 and 100 will only contains two items, the elements for the
1 and 100 indices, no more. Furthermore, lists can be more efficient than appending rows or columns onto
matrices, since the memory management overhead is less.

Lists can also be a convenient way to have an array that indexes from zero. This may not be as efficient as
using a matrix, though if the problem is expressed more clearly, then a list may be appropriate.

List Creation

A list can be created either explicitly or implicitly. Generally, you will use the implicit method, but we will look
at both methods. Also, note that the two methods are not mutually exclusive. In particular, note that it is quite
legitimate to create a list explicitly, then add more elements implicitly.

Explicit Creation

Creating a list explicitly is common is user defined functions (covered in the next chapter), where you calculate
the various results, then make a list that containing them.

The explicit list creation operators are << and >>. The most basic operation is to create an empty list. Here
is an example of creating a list (called my1ist), with no elements:

> mylist = << >>
<<>>

More useful is creating a list with some elements already in it. You use the same operators, with the names
of the variables you want to put into the list within the the list operators. A semicolon should be used to seperate
the variables. Here is an example:

> a = "a string"
a string
> b = 23.5
b =
23.5
> ¢ = rand(2,2)

1 0.647
0.975 0.333

29

30 CHAPTER 6. LISTS

> heterogenous = << a ; b ; c >>
1 2 3

Notice how the variables are indexed using scalars. Indexing will be discussed later, but suffice for now to
say that the index is how you get the induvidual elements back out of the list. The index is often more useful if
you use strings that add some meaning to the values contained within the list. You do this by assigning the values
to a string label, as shown here:

> a = "a string"
a string
> b = 23.5
b =
23.5
> heterogenous2 = << String=a ; Weight=b ; Product=rand(3,3) >>
Product String Weight

The labels within a list are only visible in relation to that list. That is, they don’t appear in the global symbol
table. Also, note that the values that are being copied into the list do not neccessarily have to exist before the list
is created. The example above shows that you can create the contents at the same time this list is created.

Implicit Creation

Implicit creation is most commonly used at the command line, as it is easier and takes less forward planning.
The basic idea is that you can just add an element to a list without regard to whether that list actually exists. If
the list doesn’t exist, it will be created, and then the element will be added.

Let’s look at an example:

> who ()

eps pi

> mylist.vect = 1:5
vect

> mylist.m = rand (2, 3)
m vect

> mylist.stringval = "one point four two"
m stringval vect

In the explicit method, we saw how it was possible to assign elements without indicies, and have R{AB supply
scalar indicies automatically. There isn’t any way to do this with the implicit list creation method, however it is
possible to get scalar indicies if you want them. To do so, you have to use square braces, [and], around the
scalar index. Carrying on from the previous example, if you want another element with the scalar index 5, you
would do the following.

> mylist.[5] = 4:6:0.5
5 m stringval vect

However the braces are good for much more than simple scalar assignment. Those braces are actually forcing
evaluation of their contents, and then convert the result to a string. Now evaluation of a scalar constant is pretty
simple, but here are more complex examples, again following on from previous examples:

> mylist.[e+sgrt(4)] = 4.56
5 7 m stringval vect
> stringmat = ["stringl"; "string2" ; "string3"]

LIST INDEXING 31

stringmat =
stringl
string2
string3
> mylist.[stringmat[2]] = " more characters"
5 7 m string2 stringval
vect

Although there is considerable power in using scalar indicies, it is strongly recommended that you use
descriptive strings unless you are planning on using that power.

List Indexing

To reference a list member, two methods are available. Both are a lot like the implicit list creation, just without
the equals sign and right hand side.

The first method is of the form listname . index . It interprets index as a character string, and uses that string
as an index to the list specifies by listname.

The second method uses the square braces, [and], and forces evaluation of the contents of the braces as a
string, and then uses the resulting string as an index to the list. The expression inside the braces must evaluate to
a scalar or string. This method is required if you used the explicit creation method, and did not assign indicies.

> // some equivalent methods of getting the first element
> mylist.[5]

5 =
4 4.5 5 5.5 6
> e=5
e =
5
> mylist. [e]
5 =
4 4.5 5 5.5 6
> mylist. [24+sgrt (9)]
5 =
4 4.5 5 5.5 6

> // some more equivalents
> mylist.stringval

one point four two

> mylist.["stringval"]

one point four two

> mylist.["stri" + "ngval"]
one point four two

Functions returning lists

‘We have already alluded to the fact that some functions return lists. This is most common when the return value is
made up of different types, or is made up of matrices with different dimensions. An example is the e ig function,
which returns a list containing two matricies, as shown here:

> a= rand(4,4)

a =

0.665 0.655 0.299 0.0918
0.0847 0.129 0.265 0.902
0.204 0.91 0.7 0.96

32 CHAPTER 6. LISTS

0.167 0.112 0.95 0.915
> a_eig = eig(a)
val vec
> show(a_eig.val)
name: val
class: num
type: complex
nr: 1
nc: 4
> show(a_eig.vec)
name: vec
class: num
type: complex
nr: 4
nc: 4

However sometimes you don’t want all the information. For instance, we might want to conduct a test on
the eigenvalues. So we can throw away the eigenvectors, and just look at the eigenvalues. We can do this using
either method, as shown here:

> eigenvaluesl = eig(a) .val
eigenvaluesl =
matrix columns 1 thru 3
0.554 + 01 2.15 + 0i -0.148 + 0.4571

matrix columns 4 thru 4
-0.148 - 0.4571
> eigenvalues2 = eig(a).["val"]
eigenvalues2 =
matrix columns 1 thru 3
0.554 + 01 2.15 + 0i -0.148 + 0.4571

matrix columns 4 thru 4
-0.148 - 0.4571i

This can be applied to any function that evaluates to a list type.

Global Symbol Table

The R{AB symbol table is just a list. It can be referenced with the special symbol $$. The symbol-table can be
used like other lists, with certain exceptions.

e The global symbol table cannot be copied.
o The global symbol table cannot be destroyed.

Why would you want to use $$? Well, you might use it to reference a variable with a string. For example:

> printf ("Enter variable name to display: "); a= getline("stdin");
Enter variable name to display: eps
> $$.[a.[1]1]

eps =

l.11e-16

Another use might be to list the contents of the variables that are defined.

GLOBAL SYMBOL TABLE

>

for
{
if (class
{
$$.[1]

}
eigenvaluesl =
matrix columns

0

matrix columns
-0.148
eigenvalues2 =
matrix columns
0

matrix columns
-0.148
eps =
l.11e-16
pi =
3.14

(i in members ($3%))

($$.141)

?

1 thru 3
.554 + 01

4 thru 4
- 0.4571

1 thru 3
.554 + 01

4 thru 4
- 0.4571

= "function")

2.15 + 01

2.15 + 01

-0.148 + 0.4571

-0.148 + 0.4571

33

34

CHAPTER 6. LISTS

Chapter 7

User-defined Functions

It is assumed that the reader has had some programming experience with a high-level language like Fortran, or
even better, a lower-level language like C.

Functions

You have already seen some of the functions in use. There are for basic types of functions that can operate on
matricies in RfABThey are:

Scalar Functions: These functions operate on scalars, and treat matrices in an element-by-element fashion.
Some examples are:

abs exp floor round
cos sin tan ceil
sqrt real imag conj
isnan int

Vector Functions: These functions operate on vectors, either row-vectors (1-by-n) or column vectors (m-by-1),
in the same fashion. If the argument is a matrix with both dimensions > 1 then the operation is performed
in a column-wise fashion. Some examples are:

sum prod mean max
min fft sort any

When using a vector oriented function, like max (), on a general matrix, it is possible to obtain scalar
quantities. For example the maximum value in a matrix can be obtained using max (max (a)). The
first call to max () returns a vector of the maximum values from each column, and the second call to
max () returns the maximum value in the matrix.

Matrix Functions: These functions operate on matrices as a single entity. Some examples are:

balance chol det eig
hess inv Iu norm
pinv qr rank rcond
reshape solve svd symm

35

36 CHAPTER 7. USER-DEFINED FUNCTIONS

Functions are Variables

Like matrices, and lists functions are stored as ordinary variables in the symbol table. And, like other variables
in the symbol table, functions are accessible as global variables. Function’s treatment as variables explains the
somewhat peculiar syntax required to create and store a function.

> logsin = function (x) { return log (x) .* sin (x); }

The above statement creates a function, and assigns it to the variable 1ogsin. The function can then be used
like:

> logsin (2)
0.63

Like variables function can be copied, re-assigned, and destroyed.

> // Create a function
> logsin = function (x) { return log (x) .* sin (x); }
>
> // Use it
> logsin (2)
0.63
>
> // Copy it to the variable y
> y = logsin
>y (2)
0.63
>
> // Overwrite it with a matrix
> logsin = rand(3,2)
logsin =
matrix columns 1 thru 2
1 0.333
0.975 0.0369
0.647 0.162
>
> // Check that y still is a function
>y (2)
0.63

If you try re-assigning a built-in function you will get a run-time error message. The built-in functions, those
that are programmed in C, are a permanent part of the environment. So that users may always rely on their
availability, they cannot be re-assigned, or copied.

Variables that represent functions can also be part of list objects. Sometimes it can be useful to group functions
that serve a similar purpose, or perform different parts of a larger procedure.

list = << logsin = logsin >>
logsin
> list.logsin (2)
0.63
> list.expsin = function (x) { return exp (x) .* sin (x); }
expsin logsin

> list.expsin (2)
6.72

FUNCTION SYNTAX 37

Function Syntax
The function syntax is fairly simple. The basic form of a function is:

function (argument list)

{

local (local variable list)
statements

return expression

The local, and return statements are optional.
If a syntax error is encountered while the function is being entered (read), definition of the function must
begin again, from the very beginning.

Local Statement

The local statement is optional. If it is present it must be the first statement in the function. Only one local
statement is allowed.

Return Statement

The return statement is optional. There are no restrictions on the number of return statements, or their placement.
A function can return from any point in it’s execution.

Function Scoping Rules

R[ABS scoping rules will seem somewhat peculiar if you don’t remember that: “everything is a variable”.

By default, all variables used inside a function, with the exception of arguments, and local variables, are
global. This allows users to have access to the other user and builtin functions without special declarations, or
complicated scoping rules.

Variables in a function are resolved by:

1. Looking in the fuction arguments,
2. Looking in the local variables,
3. Looking in the file’s static variables,

4. Looking in the symbol-table.

Function Arguments

Arguments are passed by reference. Thus, when a function argument is modified, the object in the caller’s scope
gets modified directly.

A function can be called with fewer arguments than specified in the definition. When this situation occurs,
rlab pads the argument list with extra undefined variables. These undefined arguments can be detected with the
exist function. Sometimes functions are written to use “default” values for arguments that are unspecified. For
example: in ode 78 . r the argument variable t o1 is set to the “default” value of 1.e-6if tol is UNDEF INED.
Note that an undefined variable does not exist. Therefore, the exist function will return O if it’s argument
is undefined. There are two methods for invoking a function and specifiying undefined arguments. Either the

38 CHAPTER 7. USER-DEFINED FUNCTIONS

arguments can be unspecified and the argument list will be padded with undefined variables, or the argument(s)
can be explicitly specified as undefined by using a variable that is undefined. The variable UNDEF is commonly
used for this, but the choice of undefined variable name(s) is arbitrary.

A function cannot be called with more arguments than specified in the function definition. If you attempt to
do so, a run-time error will result.

Function argument types are not specified during definition. When writing “robust” functions the author should
take some care to check that the function argument(s) are of the correct type. Furthermore, the documentation
(comments) should clearly state the requisite argument types if necessary. If the function documentation does
not clearly state that the arguments will be modified during function execution, care should be exercised to avoid
changing any of the function arguments. If necessary, the function arguments can be copied to local variables, so
that changes will not affect the caller’s variables.

Function Local Variables

Local variables are created each time the function is invoked. Each local variable is initially UNDEF INED. When
execution has left the function, the local variables are destroyed.

If you wish to write function(s) to serve as often used utilities or libraries, then care should be taken to declare
all variables (other than function arguments) as local. Declaring all function variables as local will prevent
accidental destruction of user’s global variables.

Function Recursion

Function can call themselves recursively. Each time execution passes into the function the local variables are
(re)created. There is a special keyword: $self, which can be used to force a function to refer to itself. This is
only necessary if you plan to rename the function after it has been created.

fac = function (a)

return 1;
else
return a*fac (a-1); // return a*S$self (a-1);
}
}i

In the previous example a factorial computation is performed using recursion’. In the second return statement,
the function calls itself until ¢ < 1. In the event that the function is later copied to another variable, and the
original destroyed, the function will no longer work. To avoid this, use the special keyword $self in place of
the function self-reference.

Examples

Many functions are included with the R{AB source distribution. Functions can be found in the distribution
subdirectories . /rlib, . /toolbox,and . /contrib.
We will discuss a few examples from the R{AB source distribution.

Mean Example

The rfile mean . r (See Figure 7.1) has several noteworthy attributes.

!'Not necessarily an efficient way to compute the factorial

EXAMPLES 39

//
// Syntax: mean (A)

// Description:

// Calculate the mean value. If the input is a 1xN, then compute the
// mean value of all the elements.

// If the input is a MxN matrix the compute a row matrix of the mean
// value of each column of the input.

//

mean = function (x)

local (m);

m = size (x)[1];
if(m ==)
{
m = size (x)[2];
}
return sum(x) / m;

}i

Figure 7.1: Mean Function

40 CHAPTER 7. USER-DEFINED FUNCTIONS

1. The top lines of the file contain comments which document the usage of the function. This is useful, since
the the rlab help function will copy the contents of each rfile to the screen. If documentation comments are
include in the topmost portion of the file, then users will have convenient access to the help comments.

2. mean does not do any error checking on the input arguments. Whether it should or not is debatable. We
will present arguments for and against:

For: Calling mean with a string, or a list variable as argument will result in a slightly obscure error
message.

> mean ("string constant")

rlab: NULL, invalid type for sum()

near line 25, file: /usr/local/lib/rlab/rlib/mean.r
> mean (<< [1,2,31; 100 >>)

rlab: NULL, invalid type for sum()

near line 25, file: /usr/local/lib/rlab/rlib/mean.r
>

Instead of mean reporting the error, the error is propagated down to sum. This is somewhat confusing,
since the user committed the error with the function mean.

Against: The function is obviously intended to calculate the mean value of a vector, or matrix object.
And, for any numeric argument mean will work just fine. Users who are foolish enough to try and
compute the mean value of a string, or a heterogeneous object (a list) should not be catered to. That
is, users who use the function correctly, should not have to pay a performance penalty.

MGS Example

This example (See Figure 7.2) implements a modified Gram-Schmidt algorithm to find an orthonormal basis
for the input matrix. There are several important points to recognize in this function.

1. The function returns a list. mgs returns a list containing the matrices ¢} and R. The members of the list
can be accessed by:

> aa = rand(4,4)

aa =
matrix columns 1 thru 4
0.7 0.96 0.924 0.148
0.95 0.915 0.0882 0.879
0.0918 0.441 0.908 0.00543
0.902 0.0735 0.362 0.222
> x = mgs (aa)
a r
> x.qg
q =
matrix columns 1 thru 4
0.47 0.513 0.261 -0.669
0.638 0.243 -0.613 0.396
0.0617 0.436 0.642 0.628
0.606 -0.698 0.379 0.0378
> mgs (aa) .q
q =
matrix columns 1 thru 4
0.47 0.513 0.261 -0.669

0.638 0.243 -0.613 0.396

EXAMPLES

//
// Modified Gram-Schmidt
// Given A (MxN), with rank(A) = N. The following algorithm computes

// the factorization A = Q*R (skinny QR) where Q (MxN) has orthonormal
// columns and R (NxN) is upper triangular

//

// From MATRIX Computations, G.H. Golub, C.F. Van Loan (page 219)

//

mgs = function (A)
{

local (a, kl jlnlmlql r);

a = A;
m = a.nr;
n = a.nc;

for(k in 1:n)
{
rlk;k] = norm(a[l:m;k], "2");
qll:m;k] = all:m;k1/r[k;k];
for(j in k+1l:n)
{
rlk;jl =
all:m;3j]
}
}
return << g = g; r = r >>;
}i

gll:m;k]’” * a[l:m;]];
= af[l:m;3j] - gll:m;k] * rl[k;jl;

Figure 7.2: Modified Gram-Schmidt Function

42 CHAPTER 7. USER-DEFINED FUNCTIONS

0.0617 0.436 0.642 0.628
0.606 -0.698 0.379 0.0378

2. The function argument is copied. The argument A is copied to the local variable a to avoid destroying the
original contents of A (or aa in the callers environment).

Files

Simple “one-liner” functions can be typed in at the command line. However, they are destroyed when the RiAB
session is ended. When writing longer functions, or functions that you want to save for repeated usage; it is
convenient to create them using a text editor and save them on disk as an ordinary ASCII text file.

The function 1oad will execute the rlab statements in a file as if they were typed at the command line. The
rlab command rfile searches a specified path for files with a ‘.r’ extension. When the rfile command finds a
file that matches it’s argument, it executes the rlab statements in the file as if they were typed at the command
line.

Statements in a file are executed in the same manner as they would be had they been typed in interactively,
ordinary commands and multiple functions are O.K. In fact, complete programs can be written and run interactively
or in batch mode. To run a program in batch mode you can try:

$ rlab program.r &

Or the program could contain # ! /usr/local/bin/rlab on the first line. Then, if your operating system
provides the proper support, rlab can execute your program, interactively, or in the background by simply typing:

$ chmod +x program.r
$./program.r

File Static Variables

Although static variables are not peculiar to functions, they are discussed here because they are important when
writing packages. A package is a file that contains some combination of statements and/or functions that perform
some specific purpose, or provides a specific function.

When writing a package for general use, it is important that the elements of the package do not adversely
affect the user’s workspace. The user’s workspace can be avoided through careful use of the local, and static
declarations.

The static declaration restricts the visibility, and accessibility of variables to the file that the static declaration
occurs within. Static variables cannot be altered by functions or statements that are not within the same file scope.

Consider the following example: Figure 7.3 contains two functions, and a static declaration. The entire
contents of Figure 7.3 is contained within a file named 1u. r. Since the static declaration occurs within the file
lu.r, only statements within that file can use the statically declared variable, which, in this case, is the variable
swap (a user function). swap is used like any other variable, except that it is invisible to any statement outside
of the file 1u. r.

Conclusion

This concludes our simple function tutorial. We have just barely covered some of the capabilities of user-functions.
Topics we have not covered, that you may wish to experiment with are:

1. Passing functions as arguments to other functions.
2. Using list variables to get the effect of variable length argument lists.

3. Using list variables, and user-functions to build your own “objects”.

CONCLUSION
static (swap);
lu = function (A)
{
local (i, 1, u, pvt, x)
if (A.nr != A.nc) { error ("lu() requires square A");
x = factor (A); // Do the factorization
//
// Now create 1, u, and pvt from lu and pvt.
//
1 =+tril (x.lu, -1) + eye (size (x.1lu));
u = triu (x.1lu);
pvt = eye (size (x.1lu));
//
// Now re—arange the columns of pvt
//
for (i in l:max (size (x.1lu)))
{
pvt = pvt[; swap (l:pvt.nc, i, x.pvt[il]l) 1;
}
return << 1 = 1; u = u; pvt = pvt >>;
}
//
// In vector V, swap elements I, J
//
swap = function (V, I, J)
{
local (v, tmp);
v = V;
tmp = vI[I];
v[I] = v[J];
v[J] = tmp;

return v;

}i

Figure 7.3: User-Function

43

}

44

CHAPTER 7.

USER-DEFINED FUNCTIONS

Chapter 8

Plotting

R{AB can plot using two methods. The first is to use the plplot library. The other is to use the freely available
gnuplot plotting program. The way your RiAB was built determines whether you can use neither, just one, or both
methods. gnuplot can produce output on many different display types and file formats, though the quality of the
plotting varies according to the capabilities of the output device. plplot does not have the same range of output
options, however it has much better support under R[AB .

Plot Process

Setting up Plots

You set the right type of output using pstart.

The need to redirect output is less common, though it may occur if you want to import your plots into another
package, which requires you to dump the plot to a file.

Setting the output to a file and the terminal type to produce PostScript, and then resetting it to the default
setting, is another of the more common things you need to do. You should be careful not to over-write one plot
with the next.

Note that PostScript is not the only printer format that gnuplot can produce. Most common printers are either
supported directly, or can be configured to emulate a printer that is supported.

Another thing to note is that some terminal types (generally those for printers) take extra options that specify
which mode of the terminal should be used. As mentioned above, a complete list of all terminal types (output
formats), and the options they take, can be found by invoking gnuplot at the command line, then using the
set terminal command.

Basic Plots

plplot is a very powerful library, and has many options for specifying how the plots turn out. However, in most
of the plots you will do, you will simply be looking for the information contained within the plot, and the defaults
will be quite acceptable. The advanced options will be covered in the next section.

The basic command to get information from R{AB to gnuplot is the plot command. See Section 9 for
detailed reference information. plot normally takes either a single matrix, a list of matricies, or a string as its
argument. If you wish to, you may also add a second argument, which is the plot process number (see above).

If the argument is a string, the string (without the surrounding double quotes) is passed directly to gnuplot.
This was used above, and will be used again when we see the advanced plotting features.

If the argument is a single matrix, then first column is taken as the independant variable, and the second and
higher columns are plotted against it.

45

46 CHAPTER 8. PLOTTING

If the matrix only has one column, then the index values are used as the independant variable, and the column
vector is plotted as the dependent variable.

The third type of input is using a list of matricies. This is a very flexible tool, though it has little point unless
the matricies have different first columns. In this case, the two matricies will be plotted on the same graph, over
the domains specified by the first column.

If you want to have two different plots at the same time, you need to specify a plot process number. Here is an
example of how to produce three graphs on a system capable of displaying several windows, such as X windows:

The last command shows how to plot multiple curves on a single plot without using a list — remember that
each column after the first is treated as a dependant variable to the first column.

The effect of this is best seen by actually trying it on a system capable of displaying multiple plots.

After you have produced multiple plots, you may wish to clean up the screen and free up some resources,
so you need to kill some of the plots. You could always exit R[AB, but that is not always desirable. So the
pclose function is provided. Section 9 has all the details, so suffice to say that you can kill off a plot process
by specifying its plot process number as an argument to pclose.

With all those plot process numbers floating around, it is easy to lose track of how each one is set up, and
which files it is using (or would use).

Advanced Plots

This section deals more with the features of plplot and less with the actual R{AB functions that call those features.

replot If you want to change the settings, and then see the result of plotting a graph again, the replot
command may be of use. It simply causes the last plot to be redone.

Chapter 9

Function Reference

RAB has a variety of functions that operate on scalars, matricies, strings and lists. There are two types of RAB
functions — built-in and user-defined. Because some user-defined functions are very useful, they are loaded
automatically when you start R{AB. These are referred to as standard R-files, and are just files containing useful
R{AB code that are stored in a special library directory. In addition, there are other useful functions supplied with
the R[AB distribution, and you can also define other functions.

Both built-in functions and standard R-files are documented in this section.

Layout All the functions are layed out in the same general way. The title tells you the name of the function, and
what it does. The railroad diagrams tell you what you need to enter. The description tells you what the function
returns, and how it works. The example is a short sample showing how you might use this in an RAB program.
Examples are usually pretty simple to keep them short. The See also section gives cross-references to functions
that have related functionality or are often used with this function.

47

48 CHAPTER 9. FUNCTION REFERENCE

abs — Absolute Value
AbsoluteValue

abs returns the absolute value of the argument. It operates element-by-element for a matrix argument,
returning a matrix result. Absolute value is defined as

—z if £ < 0 and « is real
x if x > 0 and x is real
R(x)? 4+ S(x)? if z is complex

Example
> abs (2.34)
2.34
> abs (-2.34)
2.34
> abs(-2.34 + 473)
4.63
> sqrt ((-2.34) 72 + (4)72)
4.63
>b = -3.4, 4.6097; 34437 , -34.5653 -0.017]
b =
-3.4 + 0i 4.61 + 0i
3 + 41 -34.6 - 0.011
> abs (b)
3 4.61

ACOS—ARC COSINE 49

acos—Arc Cosine

ArcCosine

acos returns the arc cosine of the argument. The return value is expressed in radians, in the range [0, 7]. It
is an error if the magnitude of either the real or complex part of the argument exceeds 1. If the argument is a
matrix, then the operation is performed element by element.

Example

> acos (1)
0
> acos (0)
1.57
> acos (-1)
3.14
> acos (0.707+ 0.7077)
0.999 - 0.7641
> c=0+17
c =
0 + 1i
> acos(c)
1.57 - 0.8811
>B=1[120, -0.5; -0.3+13, 0.4-0.00371

B =
0 + 01i -0.5 + 0i
-0.3 + 1i 0.4 - 0.0031
> acos (B)
1.57 + 01 2.09 + 01i
1.78 - 0.8971 1.16 + 0.003271

See also: Page 50 acosh (), Page 53 asin (), Page 55 atan (), Page 56 atan2 (), Page 72 cos ().

50

acosh—Hyperbolic Arc Cosine
ACosh

CHAPTER 9. FUNCTION REFERENCE

acosh returns the hyperbolic arc cosine of the argument. The return value is expressed in radians. If the
argument is a matrix, the operation is performed element-by-element.

= This is not an R{AB built-in function. This function is normally loaded on start-up from the acosh. r file
in the standard r1ib directory. Use of the —r option, incorrectly setting the RLAB_LIB_DIR environmental
variable, or modifying acosh . r may make this function unavailable.

Example

> acosh (0)
0 + 1.571
> acosh(1+17)
1.06 + 0.9051
> acosh (1)

0
> Mat = (rand(2,3)+rand(2,3)*(0+13))*5
Mat =
matrix columns 1 thru 3
5 4+ 3.321 3.24 + 1.021 0.185 + 3.27i
4.87 + 0.423i 1.67 + 0.8371 0.809 + 0.644i

> acosh (Mat)
matrix columns 1 thru 3

2.48 + 0.5931 1.9 + 0.3191 1.9 + 1.521
2.27 + 0.08851 1.28 + 0.5311 0.751 + 0.8971

See also: Page 49 acos (), Page 54 asinh (), Page 57 atanh (), Page 73 cosh (), Page 200 sinh (),

Page 220 tanh ().

ALL—TEST FOR NON-ZERO MATRIX 51

all—Test for non-zero matrix
All

all tests for non-zero arguments. If the argument is a scalar, the result is O if the argument is O - otherwise
the result is 1. If the argument is a row or column vector, all returns a 1 if all of the elements are non-zero. If

the argument is some other kind of matrix, all returns a row vector produced by performing the test on each
column in turn.

Example

>a = [inf(),3,4,4,0]

a =
Infinity 3 4 4 0
> all(a)
0
> b = [0,0,0]
b =
0 0 0
> all (b)
0
> c = [nan(),3,4,4,20]
c =
NaN 3 4 4 20
> all(c)
1
> d = [a;b,7,3;c]
d =
Infinity 3 4 4 0
0 0 0 7 3
NaN 3 4 4 20
> all(d)
0 0 0 1 0
> all(all(d))
0

See also: Page 52 any ().

52 CHAPTER 9. FUNCTION REFERENCE

any — Test for non-zero matrix
Any

any tests for non-zero arguments. If the argument is a scalar, the result is O if the argument is O - otherwise
the result is 1. If the argument is a row or column vector, any returns a 1 if any of the elements are non-zero.

If the argument is some other kind of matrix, any returns a row vector produced by performing the test on each
column of the matrix in turn.

Example

>a=120,3,4,4,0]

a =
0 3 4 4 0
> any (a)
1
> b = [0,0,0]
b =
0 0 0
> any (b)
0
> c = [a;b,6,0]
c =
0 3 4 4 0
0 0 0 6 0
> any (c)
0 1 1 1 0
> any (any(c))
1

See also: Page 51 all ().

ASIN — ARC SINE 53

asin — Arc Sine

ArcSine

asin returns the arc sine of the argument. The return value is expressed in radians, in the range [—7/2, 7 /2].
It is an error if the argument is real and the magnitude of the argument is greater than 1. If the argument is a
matrix, the operation is performed element by element.

Example

> asin (1)
1.57
> asin (0)
0
> asin(-1)
-1.57
> asin(0.5)
0.524
> asin(0+0.57)
0 + 0.4811
> asin(0.5+0.53)
0.452 + 0.5311i
> Mat = (rand(2,3)+rand(2,3)*(0+173))

Mat =
matrix columns 1 thru 3
1 + 0.6651 0.647 + 0.2041i 0.0369 + 0.6551
0.975 + 0.08471 0.333 + 0.1671 0.162 + 0.129i

> asin (Mat)
matrix columns 1 thru 3
0.806 + 0.8531 0.677
1.23 + 0.2541 0.334

+
o

.2591 0.0309 + 0.6161
1761 0.161 + 0.131

+
o

See also: Page 49 acos (), Page 54 asinh (), Page 55 atan (), Page 56 atan2 (), Page 199 sin ().

54

asinh — Hyperbolic Arc Sine

ASinh

CHAPTER 9. FUNCTION REFERENCE

asinh returns the hyperbolic arc sine of the argument. The return value is expressed in radians. If the
argument is a matrix, the operation is performed element-by-element.

= This is not an R{AB built-in function. This function is normally loaded on start-up from the asinh. r file
in the standard r1ib directory. Use of the —r option, incorrectly setting the RLAB_LIB_DIR environmental
variable, or modifying asinh . r may make this function unavailable.

Example

> asinh (0)
0
> asinh (1)
0.881
> asinh (100)
5.3
> asinh (0.5+0.57)
0.531 + 0.452i

> Mat= (rand(2,3)+rand(2,3)*(0+13))*5

Mat =
matrix columns 1 thru 3
5 + 3.321
4.87 + 0.4231

> asinh (Mat)
matrix columns 1 thru 3
2.49 + 0.581i
2.29 + 0.08491

3.24 + 1.021 0.185 + 3.271
1.67 + 0.8371 0.809 + 0.6441
1.93 + 0.2941 1.86 + 1.511
1.36 + 0.4151 0.823 + 0.4941

See also: Page 50 acosh (), Page 53 asin (), Page 57 atanh (), Page 73 cosh (), Page 200 sinh (),

Page 220 tanh ().

ATAN — ARC TANGENT 55

atan — Arc Tangent
ArcTangent

atan returns the arc tangent of the argument. The return value is expressed in radians, in the range
[~7/2, 7/2]. If the argument is a matrix the operation is performed element-by-element.

Example

> atan (0)

0
> atan (1)
0.785
> pi/2
1.57
> atan (—-inf ())
-1.57
> atan (inf ())
1.57
> atan(1+17)
1.02 + 0.4021
> Mat= (rand(2,3)+rand(2,3)*(0+17))*5

Mat =
matrix columns 1 thru 3
5 4+ 3.321 3.24 + 1.021 0.185 + 3.27i
4.87 + 0.423i 1.67 + 0.8371 0.809 + 0.6441i

> atan (Mat)

matrix columns 1 thru 3
1.43 + 0.09071 1.29 + 0.08221 1.55 + 0.3141
1.37 + 0.0171 1.1 + 0.1971 0.807 + 0.3651i

See also: Page 49 acos (), Page 53 asin (), Page 56 atan2 (), Page 57 atanh (), Page 219 tan ().

56 CHAPTER 9. FUNCTION REFERENCE

atan2 — Arc Tangent of Ratio
ArcTan2

atan? returns the arc tangent of the result of dividing the first argument by the second argument. Both
arguments must be real. This should be at least as accurate as, and probably faster than, performing the division
then using atan. The result is expressed in radians, in the range [—, 7]. If the arguments are matricies, then
they must have the same dimensions, and the operation is performed element-by-element.

Example

> atan2 (1, 2)
0.464

> atan2 (0, 2)
0

> atan2(2,0)
1.57

> atan2(0,0)
0

> b = rand(2,5)

1 0.647 0.0369 0.665 0.204
0.975 0.333 0.162 0.0847 0.167
> ¢ = rand(2,5)
c =
0.655 0.91 0.299 0.7 0.0918
0.129 0.112 0.265 0.95 0.902
> b./c
1.53 0.711 0.124 0.95 2.22
7.57 2.98 0.609 0.0891 0.185
> atan2 (b, c)
0.991 0.618 0.123 0.76 1.15
1.44 1.25 0.547 0.0889 0.183

See also: Page 49 acos (), Page 53 asin (), Page 55 atan (), Page 57 atanh (), Page 219 tan ().

ATANH — HYPERBOLIC ARC TANGENT 57

atanh — Hyperbolic Arc Tangent
Alanh

asinh returns the hyperbolic arc tangent of the argument. The return value is expressed in radians. If the
argument is a matrix, the operation is performed element-by-element.

= This is not an R{AB built-in function. This functionis normally loaded on start-up from the atanh. r file
in the standard r1ib directory. Use of the —r option, incorrectly setting the RLAB_LIB_DIR environmental
variable, or modifying atanh . r may make this function unavailable.

Example

> atanh (0)
0
> atanh (pi/2)
0.752 + 1.571
> atanh (pi)
0.33 + 1.571
> atanh(2+27)
0.239 + 1.31i
> d = rand(2,5)

d =
0.96 0.441 0.924 0.908 0.148
0.915 0.0735 0.0882 0.362 0.879
> atanh (d)
1.94 0.474 1.62 1.52 0.149
1.56 0.0737 0.0884 0.379 1.37

See also: Page 50 acosh (), Page 54 asinh (), Page 55 atan (), Page 73 cosh (), Page 200 sinh (),
Page 220 tanh ().

58 CHAPTER 9. FUNCTION REFERENCE

backsub — solution of linear equations
backsub

The backsub function computes the solution to the set of linear equations described by:

AX =B

The list argument to backsub is the result from factor (A). The second argument to backsub is the
matrix B, where each column of B is a seperate right hand side.

backsub returns X, the solution of the linear equations. Each column of X corresponds to that column of
B.

Example

> A = rand(4,4)
A =
0.493 0.161
0.782 0.0642
0.591 0.271
0.0721 0.0384
> X1 = rand(4,1)
X1l =
0.812
0.543
0.254
0.0825
> Bl = A*X1
Bl =
0.595
0.846
0.791
0.329
> X2 = rand(4,1)
X2 =
0.697
0.137
0.815
0.974
> B2 = A*X2
B2 =
1.33
1.66
1.58
0.933
> B = [B1l,B2]

.137
.446
.367
.949

.879
.761
.852
.107

O O O o
O O O o

0.595 1.33
0.846 1.66
0.791 1.58
0.329 0.933
= factor (A)

BACKSUB — SOLUTION OF LINEAR EQUATIONS

lu pvt rcond
> backsub (F, B)
0.812 0.697
0.543 0.137
0.254 0.815
0.0825 0.974

> // This is [X1,X2] - so it works!

See also: Page 92 factor (), Page 119 inv (), Page 203 solve ().

60 CHAPTER 9. FUNCTION REFERENCE

balance — Matrix Balancing

Balance

(batance)-(D-[Marn | ()

balance takes a square argument matrix and attempts to balance the input matrix so that the row and column
norms are approximately equal. It returns a list with elements t and Ab, such that for an argument A:

Ab =t~ At

Ab is the balanced matrix, and ¢ is referred to as the transformation matrix.

Example

>A=1[1, 10, 100; 2,-20,200; -100, 3, -30]
A =
1 10 100
2 =20 200
-100 3 =30
> norm(A)
330
> norm(A’")
222
> res = balance (A)
res =
ab t
> res.ab
Ab =
1 100 100
0.2 -20 20
-100 30 -30
> norm(res.ab)
150
> norm(res.ab’)
201

See also: Page 142 norm ().

CD — CHANGE DIRECTORY 61

cd — Change Directory
CD

&5}

cd changes the location of the current working for RiAB. This affects any search paths that contain . (full
stop), representing the current directory. It also changes the directory in which the diary files are written, and the
directory in which the file read and write functions work on. The argument string supplies an absolute or relative
pathname which specifies the new directory.

Example

> system("pwd")
/home/bradh
0
> cd("rlab")
1
> system("pwd")
/home/bradh/rlab
0
> cd("../archived")
1
> system("pwd")
/home/bradh/archived
0
> // This is a sym-link on my machine
> cd("/linux")
1
> system("pwd")
/usr/src/linux
0

See also: Page 218 system ().

62 CHAPTER 9. FUNCTION REFERENCE

ceil — Ceiling Value
Ceil

ceil returns the smallest integer not less than the argument. If the argument is a matrix then the ceil
operation is performed on an element-by-element basis.

Example

> ceil(4.56)

5
> ceil (4.999999999)
5
> ceil (4.000000001)
5
> a=100*rand (2, 5)
a =
65.5 91 29.9 70 9.18
12.9 11.2 26.5 95 90.2
> ceil (a)
66 92 30 70 10
13 12 27 96 91

See also: Page 100 f1loor (), Page 116 int (), Page 189 round ().

CHOL — CHOLESKY FACTORISATION 63

chol — Cholesky Factorisation
Cholesky

CHFOSTINO

chol computes the Cholesky factorization of the argument matrix. The input matrix must be real symmetric
positive definite, or complex Hermitian positive definite. chol returns an upper triangular matrix U/, such that
UTU and the argument are equal.

Example

> b = rand(4,4)

b =
0.941 0.383 0.103 0.381
0.121 0.448 0.821 0.871
0.402 0.801 0.715 0.555
0.712 0.705 0.311 0.385
> a = b*b’
a =
1.19 0.702 0.97 1.12
0.702 1.65 1.48 0.993
0.97 1.48 1.62 1.29
1.12 0.993 1.29 1.25
> u = chol (a)
u =
1.09 0.644 0.89 1.03
0 1.11 0.814 0.299
0 0 0.408 0.319
0 0 0 0.0686
> u’ *u
1.19 0.702 0.97 1.12
0.702 1.65 1.48 0.993
0.97 1.48 1.62 1.29
1.12 0.993 1.29 1.25

> ¢ = rand(3,3)+rand(3,3) *17;
> b = c’*c

b =
matrix columns 1 thru 3
1.67 + 01 0.983 + 0.411i 1.27 + 0.4671
0.983 - 0.411 1.05 + 01 0.56 - 0.1551
1.27 - 0.4671 0.56 + 0.1551 1.49 + 0i
> u = chol (b)
u =
matrix columns 1 thru 3
1.29 + 0i 0.761 + 0.317i 0.982 + 0.3611
0 + 01 0.612 + 0i -0.492 - 0.1931
0 + 01 0 + 01 0.345 + 01
> u’ *u

matrix columns 1 thru 3
1.67 + 0i 0.983 + 0.411 1.27 + 0.4671

64

0.983 - 0.411
1.27 - 0.4671

See also: Page 130 1u ().

CHAPTER 9. FUNCTION REFERENCE

1.05 + 01 0.56 - 0.1551
0.56 + 0.1551 1.49 + 01

CLASS — TYPE OF ENTITY 65

class — Type of entity
Class

List

©

String

Function

I

class returns a string which identifies what the argument is. There are four possible return strings
num for scalar and numeric matricies.
string for strings and string matricies
list for lists

funct ion for built-in and user defined functions.

This function is very useful inside user-defined functions, for both error checking and decision making.
The class of a variable or function can also be determined by using the class member reference, as shown
below. This technique does not work for a list unless you have given it a class element.

Example

> class (3)

num

> class([3,-3,1;2,6,3])
num

> class("any "ol string")
string

> class(["any "ol string", "and another", "to make a string matrix"])
string
> class(<<a = 3;b = "string">>)
list
> class(sin)
function
> class(sin(3))
num
> "any ’'ol string".class
string
> g = 4437
g =
4 + 31
> g.class
num
> sin.class
function

See also: Page 195 show (), Page 229 what ().

66

clear — Clear variable or function
Clear

GEDYO S rT Sy

Matrix

List

String

Function

- /

i

CHAPTER 9. FUNCTION REFERENCE

clear is a function that allows you to clean up the symbol table. It deletes the variables and functions that
you specify in the argument list. clear accepts up to 32 arguments, and returns the number of objects that have
been successfully cleared. You can not clear a built-in function. You should beware of clearing the values of

pi and eps, as many R-files make implicit use of these.

If you wish to clear the whole symbol table, use the clearall function.

Example

0.647

\%
Q
Il

0.647
rand (2, 2)

\'2
o
I

0.0847 0.167

0.204 0.655
> string3 = "Jus’ another string"
Jus’ another string
> F = << a;b>>

1 2
> who ()
F b pi
a eps string3
> clear (F, pi)
2
> who ()
a b eps string3
> clear(a,b,string3)
3
> who ()
eps
> a = cumsum([1,2,3,4,5])
a =
1 3 6 10

> clear (cumsum) ;
> b = cumsum([1,2,3,4,5])
rlab: cumsum, UNDEFINED

See also: Page 67 clearall (), Page 231 who ().

15

CLEARALL — ERASE ALL VARIABLES 67

clearall — Erase all variables
ClearAll

GO0

clearall clears all data objects from the workspace. Scalars, strings, matrices, and lists are cleared with
the clear function. As a special exception, eps and pi are not affected. User function are also not affected.
If you wish to remove user functions you must do so explicitly with clear.

= This is not an R{AB built-in function. This function is normally loaded on start-up fromthe clearall.r
file in the standard r1ib directory. Use of the —r option, incorrectly setting the RLAB_ LIB_DIR environmental
variable, or modifying clearall . r may make this function unavailable.

Example

> a = rand(3,3);

> b = "a string";

> c =3+ 47;

> who ()

a b c eps pi
> clearall();

> who ()

eps pi

See also: Page 66 clear ().

68 CHAPTER 9. FUNCTION REFERENCE

close — Close a File
Close

CEONORETING

close takes a single string argument, and tries to close the file named by the string. It returns 1, or true, if
the file was closed. It returns O, or false, if the file could not be closed.
You have to close a file between writing to it, and reading from it.

Example

> close("No such File")
0

> write("tmp_file_name",rand(2,2))
1

> close("tmp_file_name")
1

See also: Page 182 read (), Page 233 write ().

COMPAN — COMPANION MATRIX 69

compan — Companion matrix

compan returns the companion matrix of the argument matrix. If the argument is an (n+1)-vector, the
companion matrix is nxn. If the argument is a scalar, say s, then compan (s) is the szs matrix formed by
taking the companion of [1,2, ..., s + 1]. If the argument is a matrix, but is not a vector, an internal conversion
to vector format is done.

= This is not an R{AB built-in function. This function is normally loaded on start-up from the compan. r

file in the standard r1ib directory. Use of the —r option, incorrectly setting the RLAB_ LIB_DIR environmental
variable, or modifying compan . r may make this function unavailable.

Companion

compan

Example

> compan (1)
1
> compan (2)

> compan (3)

o

> compan([1l,2])

(
2

1

(

2

1 0
0 1 0
(

1

> compan([1l,2,3])

2

1

> compan([2,3,5])
-1.5 -2.5
1 0

70 CHAPTER 9. FUNCTION REFERENCE

complement — Complement of a set

Complement

(O |- () [|7

complement takes two sets (either row or column vectors), and finds the complement of the first set in the
second set. This means that it returns the elements of the second set that are not in the first set.

= Thisisnot an RiAB built-in function. This function is normally loaded on start-up from the complement . r
file in the standard r1ib directory. Use of the —r option, incorrectly setting the RLAB_ LIB_DIR environmental
variable, or modifying complement . r may make this function unavailable.

Example

> a = [1,4,-45,24,4.65]

a =
1 4 -45 24 4.65

> b = [0,433,43,1,4.65,4,2,24]

b =

matrix columns 1 thru 6

0 433 43 1 4.65 4

matrix columns 7 thru 8

2 24
> complement (a,b)
0 2 43 433

See also: Page 118 intersection (),Page 194 set (), Page 228 union ().

CONJ — COMPLEX CONJUGATE 71

conj — Complex Conjugate
Conj

con returns the complex conjugate of its argument. For matrix arguments the conjugation is performed
element by element.

Example

> conj(2)

2
> conj(2+5.7627)
2 - 5.761
> conj(2-5.7627)
2 + 5.761
> a = (100*(rand(2,3)+rand(2,3)*(0+13)))—-(50+507)
a =
matrix columns 1 thru 3
50 + 16.51 14.7 - 29.61 -46.3 + 15.51
47.5 - 41.51 -16.7 - 33.31 -33.8 - 37.11

> conij(a)
matrix columns 1 thru 3
50 - 16.51 14.7
47.5 + 41.51 -16.7

+

29.61 -46.3 - 15.51
33.31 -33.8 + 37.11

+

See also: Page 113 imag (), Page 185 real ().

72 CHAPTER 9. FUNCTION REFERENCE

cos — Cosine

Cosine

cos calculates the cosine of the argument, which is taken as being specified in radians. If the argument is
a matrix, the cos operation is performed element by element. If the argument is complex, given by z, then the
result is:

cos(N(z)) cosh(F(z)) — j sin(RN(z)) sinh(F(2))

Example

> cos (0)
1
> cos(pi/2)
6.12e-17
> cos (pi)
-1
> cos(pi/4)
0.707
> cos (1+17)
0.834 - 0.9891
> a = rand(2,5) *pi

a =
3.14 2.03 0.116 2.09 0.641
3.06 1.05 0.508 0.266 0.526

> cos (a)
-1 -0.447 0.993 -0.494 0.801
-0.997 0.501 0.874 0.965 0.865

See also: Page 49 acos (), Page 73 cosh (), Page 199 sin (), Page 219 tan ().

COSH — HYPERBOLIC COSINE 73

cosh — Hyperbolic Cosine
Cosh

cosh calculates the hyperbolic cosine of the argument, specified in radians. If the argument is a matrix, then
the operation is performed element-by-element.

= This is not an R{AB built-in function. This function is normally loaded on start-up from the cosh. r file
in the standard r1ib directory. Use of the —r option, incorrectly setting the RLAB_LIB_DIR environmental
variable, or modifying cosh . r may make this function unavailable.

Example

> cosh (0)
1

> cosh (pi)
11.6

> cosh (0+17)
0.54

> cosh (0+107)

-0.839

> cosh(pi/2)
2.51

> a = rand(2,5) *4

2.59 0.148 2.66 0.817
1.33 0.647 0.339 0.669

6.7 1.01 7.17 1.35
2.03 1.22 1.06 1.23

See also: Page 50 acosh (), Page 54 asinh (), Page 57 atanh (), Page 72 cos (), Page 90 exp (),
Page 200 sinh (), Page 220 tanh ().

74 CHAPTER 9. FUNCTION REFERENCE

cross — Vector cross product

Cross

cross calculates the vector cross product of the two argument matrices. Both arguments must have three
elements, though they need not be organised the same way. The result of the cross product is returned as a 1x3
matrix.

= This is not an R{AB built-in function. This functionis normally loaded on start-up from the cross. r file
in the standard r1ib directory. Use of the —r option, incorrectly setting the RLAB_LIB_DIR environmental
variable, or modifying cross . r may make this function unavailable.

Example

> a = [0,0,1]

0 0 1
> b = [1;0;0]

1
0
0
> c = cross(a,b)

0 1 0
> d = cross(a,c)

-1 -0 0
> d = cross(c,a)

1 -0 0
> e = [1,1,1]

1 1 1

> cross(a,e)
-1 1 0

> cross(c,e)
1 -0 -1

See also: Page 82 dot ().

CUMPROD — CUMULATIVE PRODUCT 75

cumprod — Cumulative Product
CumProd

(samprod)- (DM |- ()

cumprod takes a matrix argument, and produces another matrix of the same dimensions. Each element in the
resultant matrix consists of the cumulative product of the that element and all previous elements in that column
of the argument matrix. If the argument is either a row or column vector, the cumulative product is performed on
that row or column.

= This is not an R{AB built-in function. This function is normally loaded on start-up from the cumprod. r
file in the standard r1ib directory. Use of the —r option, incorrectly setting the RLAB_ LIB_DIR environmental
variable, or modifying cumprod. r may make this function unavailable.

Example

> cumprod (1l:5)

1 2 6 24 120
> cumprod([1,2,3,41")
1
2
6
24
>c¢c=1[1,2,3; 4,5,6; 10, -3.4, 2.09]
c =
1 2 3
4 5 6
10 -3.4 2.09
> cumprod(c)
1 2 3
4 10 18
40 -34 37.6
>d = [2.3+4], 5-47,3.2654+34.57]
d =
matrix columns 1 thru 3
2.3 + 41 5 - 41 3.27 + 34.51

> cumprod (d)
matrix columns 1 thru 3
2.3 + 4i 27.5 + 10.81i -283 + 9841

See also: Page 76 cumsum () .

76 CHAPTER 9. FUNCTION REFERENCE

cumsum — Cumulative Summation

CumSum

cumsum 0 Matrix a

cumsum takes a matrix argument, and produces another matrix of the same dimensions. Each element in the
resultant matrix consists of the cumulative sum of the that element and all previous elements in that column of
the argument matrix. If the argument is either a row or column vector, the cumulative summation is performed
on that row or column.

= This is not an R{AB built-in function. This function is normally loaded on start-up from the cumsum. r
file in the standard r1ib directory. Use of the —r option, incorrectly setting the RLAB_ LIB_DIR environmental
variable, or modifying cumsum. r may make this function unavailable.

Example
> cumsum([1,2,3,4,5])

1 3 6 10 15
> cumsum([1,2,3,4]")

1

3

6

10
>c¢c=1[1,2,3; 4,5,6; 7,8,9; 10, -3.4, 2.09]
c =

1 2 3

4 5 6

7 8 9

10 -3.4 2.09
> cumsum(c)

1 2 3

5 7 9

12 15 18

22 11.6 20.1

See also: Page 75 cumprod ().

DET — DETERMINANT

det — Determinant

Determinant

(320 (D- [-

det calculates the determinant of the matrix argument. The argument must be square and non-singular.

Example

> det ([2,3; 4,5])

-2
>b = [2,4;-4,-8]
b =
2 4
-4 -8
> det (b)

rlab: b, matrix is singular
> ¢ = rand (3, 3)

c =
1 0.333 0.665
0.975 0.0369 0.0847
0.647 0.162 0.204
> ¢ = rand(4,4)
c =
0.167 0.112 0.95 0.915
0.655 0.299 0.0918 0.441
0.129 0.265 0.902 0.0735
0.91 0.7 0.96 0.924
> det (c¢)
0.0765
> d = rand(3,3)+rand(3,3) * (0+173)
d =
matrix columns 1 thru 3
0.414 + 0.2781i 0.29 + 0.7371
0.233 + 0.7891 0.205 + 0.248i
0.555 + 0.6921 0.561 + 0.451i
> det (d)

-0.152 + 0.2421

See also: Page 119 inv ().

0.791 + 0.3631
0.269 + 0.3691
0.334 + 0.5051

78

diag — Diagonalise matrix

Diagonalise

(O[]

O)
N\

CHAPTER 9. FUNCTION REFERENCE

diag has two forms, depending on what type of matrix the first argument is. If the first argument is a row or
column vector, then diag returns a square matrix with that vector on a diagonal.

Which diagonal the vector is placed on is determined by the second argument, which defaults to O if you don’t
specify it. The main diagonal is taken as 0. The diagonal above the main diagonal are taken as positive integers,

and the diagonals below the main diagonal are negative integers.

The second form of diag is used if the first argument is not a row or column vector. The result of this
operation is a column matrix consisting of all the elements taken from a diagonal. As for the first form, you
can use the optional scalar argument to specify which diagonal to extract the elements from. The notation is the

same, as is the default of 0.

As an implementation curiosity, if you specify a matrix as the second argument, then it uses the first element

of that matrix to determine the diagonal to use.

Example

> a = rand(3,5)
a =
1 0.333 0.665
0.975 0.0369 0.0847
0.647 0.162 0.204
diag(a)
1
0.0369
0.204
> diag(a,0)
1
0.0369
0.204
> diag(a,-1)
0.975
0.162
> diag(a,?2)
0.665
0.655
0.299
> b = 1:3

\%

o
o N
w O

> diag(b,1)
0

o O O
O O N O

0
0
0

0.167
0.655
0.129

O w o o

0.91
0.112
0.299

DIAG — DIAGONALISE MATRIX

See also: Page 225 tril (), Page 226 triu().

79

80 CHAPTER 9. FUNCTION REFERENCE

diary — Log File
Diary

(G122 Flemame | (1)

The diary function writes a log of whatever happens in the current R{AB session after the diary function
is called. Both user input and program responses are written to the file specified by the string argument, or to the
default diary file . /DIARY, if no argument is supplied. When the file is opened, a string containing the name
of the diary file and the date and time are written out to the diary file. Invoking diary a second time with no
arguments will close the currently opened diary file. At most one diary file may be in use at any one time.

Example

> diary ()
1
> a = 2

2
3+rand () *1]j

\'
o
I

3+ 11
> diary ()
1
> system("more DIARY");
RLaB diary file: DIARY. Opened Wed Apr 27 09:36:15 1994

1
> a = 2
a =
2
> b = 3+rand() *1]j
b =
3 + 11
> diary ()

> diary ("DiaryFile23");
> a = rand(2,3)+rand(2,3) *1j

a=

matrix columns 1 thru 3
0.975 + 0.08471 0.333 + 0.1671 0.162 + 0.129i
0.647 + 0.2041 0.0369 + 0.6551 0.665 + 0.911

> diary();
> system("more DiaryFile23");
RLaB diary file: DiaryFile23. Opened Wed Apr 27 09:42:54 1994

> a = rand(2,3)+rand(2,3) *1j

a=

matrix columns 1 thru 3
0.975 + 0.08471 0.333 + 0.1671 0.162 + 0.129i
0.647 + 0.2041 0.0369 + 0.6551 0.665 + 0.911

> diary();

DIFF — DIFFERENCE BETWEEN MATRIX ELEMENTS 81

diff — Difference between matrix elements
Difference

“ Matrix @
o

diff calculates the difference between elements of the matrix argument. If the matrix is a vector, then dif £
returns a vector of the differences between adjacent elements. The return vector has one less element than the
argument. If the argument is not a vector, then differences are calulated down each column, returning a matrix
with one less row than the argument.

If the optional scalar argument is present, it specifies the number of times differences are taken. For example,
if it is 2, then the differences between the differences are returned.

= This is not an R{AB built-in function. This function is normally loaded on start-up from the diff. r file
in the standard r1ib directory. Use of the —r option, incorrectly setting the RLAB_LIB_DIR environmental
variable, or modifying diff . r may make this function unavailable.

Example
>a=1[1,2,3,4,5]
a =
1 2 3 4 5
> diff (a)
1 1 1 1
>b = [1,2,4,7,11]
b =
1 2 4 7 11
> diff (b)
1 2 3 4
> diff(diff (b))
1 1 1
> diff (b, 2)
1 1 1
> diff (b, 3)
0 0
>c=11,1,1;
> 2,2,2;
> 3,4,5;
> 4,7,11]
c =
1 1 1
2 2 2
3 4 5
4 7 11
> diff (c)
1 1
1 2 3
1 3 6
> diff (c,2)
0 1 2
0 1 3

> diff (c,3)
0 0 1

82 CHAPTER 9. FUNCTION REFERENCE

disp — Display entity

Disp

disp is a useful function for writing out entities. If the argument is a matrix, then it is printed, without the
variable label, to standard output. If the argument is a string, it prints the string to standard output. The return
value from this function is 1 if the function succeeded, otherwise it is zero.

= This is not an R{AB built-in function. This function is normally loaded on start-up from the disp. r file
in the standard r1ib directory. Use of the —r option, incorrectly setting the RLAB_LIB_DIR environmental
variable, or modifying disp . r may make this function unavailable.

Example

> a = rand(2,4)

a =
1 0.647 0.0369 0.665
0.975 0.333 0.162 0.0847
> disp(a)
1 0.647 0.0369 0.665
0.975 0.333 0.162 0.0847
1
> disp(a);
1 0.647 0.0369 0.665
0.975 0.333 0.162 0.0847
> b = "any string will do"
any string will do
> disp (b)
any string will do
1
> disp(b);

any string will do

See also: Page 170 printf (), Page 172 printmat ().

DOT — VECTOR DOT PRODUCT 83

dot — Vector dot product
Dot

(GOt |- [|

dot () calculates the dot product of two argument vectors. The vectors should have the same number of
elements. The resultant is a scalar consisting of the sum of the element by element product of the two vectors.

= This is not an R[AB built-in function. This function is normally loaded on start-up from the dot . r file
in the standard r1ib directory. Use of the —r option, incorrectly setting the RLAB_LIB_DIR environmental
variable, or modifying dot . r may make this function unavailable.

Example
> a = 1:5
a =
1 2 3 4 5
> b = 6:2:-1
b =
6 5 4 3 2
> a.*b
6 10 12 12 10
> 6+10+12+12+10
50
> dot (a, b)
50
> c = Db’;
> dot (a, c)
50

See also: Page 74 cross()+, Page 213 sum (), Page 224 trace ().

84 CHAPTER 9. FUNCTION REFERENCE

eig — Eigen Decomposition
Eigen

Matrix

O
\J
Matrix }—@—‘ Matrix }—f

eig with a single square argument matrix computes that matrix’s eigenvectors and eigenvalues. The results
are returned as a list with elements val and vec which are the eigenvalues and right eigenvectors respectively.
In general, these will be complex quantities.

eig with two arguments computes the eigenvectors and eigenvalues of the real generalized symmetric (or
complex generalized Hermitian) definite eigenproblem. The eigenvalues and eigenvectors are returned in a list
as for the first form. If the two arguments are A and B, the eigenproblem is defined by

Ax = ABx

Both forms of eig check for symmetry, and use an appropriate solver.

Example

> A = rand (3, 3)

A =

0.108 0.741 0.0646

0.297 0.329 0.0287

0.254 0.345 0.499
> eigen= eig(A)
eigen =

val vec

> A* eigen.vec[;1l] - eigen.val[l]*eigen.vec[;1]

1.39%9e-16 + 01
-1.11e-16 + 0i
4.86e-17 + 0i
> A* eigen.vec[;2] - eigen.val[2]*eigen.vec][;2]
1.11e-16 + 01
-3.33e-16 + 0i
-1.11e-16 + 0i
> A* eigen.vec[;3] - eigen.val[3]*eigen.vec|[; 3]
9.71le-17 + 01
-1.3%-16 + 0i
-1.11e-16 + 0i

See also: Page 84 eign (), Page 85 eigs ().

EIGN — NON-SYMMETRIC EIGEN DECOMPOSITION 85

eign — Non-symmetric Eigen Decomposition
EigenN

©

eign with a single square argument matrix computes that matrix’s eigenvectors and eigenvalues. The results
are returned as a list with elements 1vec, val and rvec which are the left eigenvectors, eigenvalues and right
eigenvectors respectively. In general, these will be complex quantities.

eign with two arguments computes the eigenvectors and eigenvalues of the real generalized symmetric (or
complex generalized Hermitian) definite eigenproblem. The eigenvalues and eigenvectors are returned in a list
as for the first form.

This routine forces use of the non-symmetric eigensolver — no checking is done.

Example

> D = rand(4,4)

D =
0.512 0.522 0.111 0.693
0.807 0.253 0.216 0.762
0.397 0.339 0.0222 0.717
0.361 0.0251 0.356 0.0606
> issymm (D)
0
> eigenN = eign (D)
eigenN =
lvec rvec val
> D * eigenN.rvec[;1l] - eigenN.val[l]* eigenN.rvec[;1]
3.33e-16 + 0i
0 + 01
0 + 01
0 + 01
> D * eigenN.rvec[;2] - eigenN.val[2]* eigenN.rvec][;2]

-2.29%e-16 + 01i
-1.3%e-16 + 01i
-1l.1le-16 + 0i
-9.71le-17 + 01i
> D * eigenN.rvec[;3] - eigenN.val[3]* eigenN.rvec][; 3]
1.94e-16 + 01
6.94e-17 + 01
5.55e-17 + 0i
-5.55e-17 + 0i

See also: Page 83 eig (), Page 85 eigs ().

86 CHAPTER 9. FUNCTION REFERENCE

eigs — Symmetric Eigen Decomposition
EigenS

—Ceigs (

Matrix I

eigs with a single square argument matrix computes that matrix’s eigenvectors and eigenvalues. The results
are returned as a list with elements val and vec which are the eigenvalues and right eigenvectors respectively.
In general, these will be complex quantities.

eigs with two arguments computes the eigenvectors and eigenvalues of the real generalized symmetric (or
complex generalized Hermitian) definite eigenproblem. The eigenvalues and eigenvectors are returned in a list
as for the first form. If the two arguments are A and B, the eigenproblem is defined by

O)
N\

Ax = ABx

This routine forces use of the symmetric eigensolver — no checking is done.

Example

> B = rand (3, 3)

B =
0.57 0.831 0.462
0.683 0.0735 0.435
0.396 0.464 0.63
> C = symm(B)
C =
0.57 0.757 0.429
0.757 0.0735 0.45
0.429 0.45 0.63
> eigenS = eigs(C)
eigenS =
val vec
> C* eigenS.vec[;1l] - eigenS.val[l] * eigenS.vec([;1]
2.78e-16
5.55e-17
2.22e-16
> C* eigenS.vec[;2] - eigenS.val[2] * eigenS.vec][;2]
-1.39%e-16
-6.25e-17
-1.67e-16
> C* eigenS.vec[;3] - eigenS.val[3] * eigenS.vec][;3]
-4.44e-16
2.22e-16
0

See also: Page 83 eig (), Page 84 eign ().

EPSIL.ON — COMPUTE MACHINE EPSILON 87

epsilon — Compute machine epsilon
Epsilon

epsilon calculates the epsilon of this machine. Epsilon is defined as the largest number you can add to 1
and get a result that is indiscernable from 1. There is a variable, eps, that is automatically placed into the global
symbol table by the default . r1ab file. You may find the variable more convenient to use than the function, and
the expense of possible portablity problems.

= This is not an R{AB built-in function. This function is normally loaded on start-up from the epsilon.r
file in the standard r1ib directory. Use of the —r option, incorrectly setting the RLAB_ LIB_DIR environmental
variable, or modifying epsilon. r may make this function unavailable.

Example

> epsilon()
l.11e-16
> eps
eps =
l.11e-16
> l+epsilon()==
1
> 1+2*epsilon () ==
0

88 CHAPTER 9. FUNCTION REFERENCE

error — Raise an error

Error

< o

The error function allows user defined functions to jump back to the prompt when they detect an error has
occurred. The nature of the error message displayed is up to the user. If no argument is supplied, error will
print the default message, which is USER-RAISED-ERROR. If a string arguments is supplied, then that string is
displayed.

Jumping back to the prompt means execution of the current loop or function is terminated immediately, and
the control is returned to the RfAB command line.

Example

> error ()

rlab: USER-RAISED-ERROR

> error ("The argument was of the wrong form")

rlab: The argument was of the wrong form

> error ("Have you got any idea what you are doing?")
rlab: Have you got any idea what you are doing?

See also: Page 170 printf ().

EVAL — EVALUATE EXPRESSION 89

eval — Evaluate expression
Eval

COSETINO,

eval is a way to make up commands and functions at execution time. You do not gain much by using this
function during an interactive session, however it can be very useful when called from a script.

The expression contained in the string argument is evaluated without regard to local functions. Essentially
what occurs is equivalent to replacing the eval function with the contents of the string in a global context. Any
assignments or variable modifications will effect the global symbol table only.

eval does not have any knowledge of local variables. Thus if you use eval within a user-defined function,
you must be careful not to reference that function’s arguments or local variables.

= This is not an R{AB built-in function. This function is normally loaded on start-up from the eval. r file
in the standard r1ib directory. Use of the —r option, incorrectly setting the RLAB_LIB_DIR environmental
variable, or modifying eval . r may make this function unavailable.

Example

> eval("a = cos(0)")

a =
1
0
> eval("a = sin(sqrt(2)/2)");
a =
0.65
> eval ("b = tan(3);")
0
> b
b =
-0.143
> printf("Enter a function: "); x = getline("stdin");

Enter a function: sqgrt
> // this could be in a function

> eval("tmp = " + x.[1] + "(" + "3" + M");
tmp =
1.73
> printf("Enter a function: "); x = getline("stdin");
Enter a function: tanh
> eval("tmp = " + x.[1] + "(" + "3" + M");
tmp =

0.995

90

exist — Test for an argument
Exist

=y
List

CHAPTER 9. FUNCTION REFERENCE

exist is a function that tests whether its argument is actually a legitimate variable or function. If the
argument exists, then exist returns 1, or true if you prefer, and returns 0, or false, if the argument doesn’t exist.
Note that you can’t pass a constant value as an argument, and passing an argument that has enough brackets
to look like a function, but isn’t really a function, gives an error message. This is caused by R{AB not being able

to evaluate the function.

In general, you should be using this function in general purpose user-defined functions to make sure all the
neccessary arguments are present, and to provide defaults as appropriate.

Example

> who ()
eps pi
> exist (eps)
1
> exist (sin)
1
> exist (sin(2))
1
> exist (2)
rlab: invalid argument to exist,

See also: Page 229 what (), Page 231 who ().

EXP — EXPONENTIAL 91

exp — Exponential
Exp

exp returns e raised to the power of the argument. If the argument is a matrix, then an element-by-element
operation is performed. If the argument is complex value, z , then the result is:

) cos(3(2)) 4 jeR) sin(S(2))

example

> exp (0)
1

> 1

2.

2

exp
2
exp

(

(

7.
> exp(l)~2

7

(

w >~ W= 3
> O

.39
> exp(54)
2.83e+23
> exp(3.2)
24.5
> exp (-23)
1.03e-10
> exp([0,1,2,5,34,2.543])
matrix columns 1 thru 6
1 2.72 7.39 148 5.83e+14 12.7

See also: Page 127 log (), Page 128 10g10 ().

92 CHAPTER 9. FUNCTION REFERENCE

eye — Identity matrix
Identity

eye generates an identity matrix. This is a matrix with each element on the main diagonal set to 1 and all
other elements set to 0. If the arguments are two scalars, the first specifies the number of rows and the second
specifies the number of columns in the resultant. If the argument is a matrix, then it must have two elements,
with the first element specifying the number of rows, and the second element specifying the number of columns
in the result.

= This is not an R[AB built-in function. This function is normally loaded on start-up from the eye . r file
in the standard r1ib directory. Use of the —r option, incorrectly setting the RLAB_LIB_DIR environmental
variable, or modifying eye . r may make this function unavailable.

Example
> eye(3,3)
1 0 0
0 1 0
0 0 1
> eye(2,5)
1 0 0 0 0
0 1 0 0 0
> eye([3,4])
1 0 0 0
0 1 0 0
0 0 1 0
> ¢ = rand(2,4)
c =
0.846 0.826 0.29 0.438
0.683 0.252 0.494 0.324
> eye(size(c))
1 0 0 0
0 1 0 0

See also: Page 78 diag (), Page 146 ones (), Page 239 zeros ().

FACTOR — LU FACTORISATION 93

factor — LU Factorisation

Factor

(faston)-(D- e (D)

factor computes the LU factorization of the square, non-singular argument matrix. It returns a list with 3
elements:

1u a matrix containing the LU factors
pvt a vector containing the pivot indices
rcond the reciprocal of the condition estimate

factor returns the results in the above format, so that they may be conveniently used with backsub for
repetitive solutions. The 1u function uses the results from factor to produce separate L and U matrices.

Example

> M = rand(4,4)

M =
1 0.0369 0.204 0.91
0.975 0.162 0.167 0.112
0.647 0.665 0.655 0.299
0.333 0.0847 0.129 0.265
> a = factor (M)
1lu pvt rcond
> a.lu
1 0.0369 0.204 0.91
0.647 0.641 0.523 -0.29
0.975 0.196 -0.134 -0.718
0.333 0.113 -0.0132 -0.0144
> a.pvt
1 3 3 4
> a.rcond
0.000436

See also: Page 58 backsub (), Page 119 inv (), Page 203 solve ().

94 CHAPTER 9. FUNCTION REFERENCE

fft — Fourier Transform
FFT

D
{5

fft calculates the forward Fourier Transform of the argument matrix. If the argument is a row or column
vector, then the transformation is performed on that vector. However if the argument is not such a vector, then
the transformation is performed on each column in turn.

The result is not scaled.

An optional scalar argument can be used to zero-pad or to truncate the argument to a certain length.

To perform two dimensional Fourier Transforms, repeated calls to £ft are required, taking the second call
in the other direction. This is shown below.

Example

> a = 0:2*pi:0.5

matrix columns 1 thru 6
0 0.5 1 1.5 2 2.5

matrix columns 7 thru 12
3 3.5 4 4.5 5 5.5

matrix columns 13 thru 13

6
> sin(a)
matrix columns 1 thru 6
0 0.479 0.841 0.997 0.909 0.598

matrix columns 7 thru 12
0.141 -0.351 -0.757 -0.978 -0.959 -0.706

matrix columns 13 thru 13
-0.279
> fft(sin(a))
matrix columns 1 thru 3
-0.0617 + 0i 0.605 - 6.351 -0.126 + 0.2861

matrix columns 4 thru 6
-0.115 + 0.1411i -0.112 + 0.08161 -0.111 + 0.04391

matrix columns 7 thru 9
-0.111 + 0.01391 -0.111 - 0.01391 -0.111 - 0.04391

matrix columns 10 thru 12
-0.112 - 0.08161 -0.115 - 0.1411i -0.126 - 0.2861

matrix columns 13 thru 13
0.605 + 6.351

> a = rand(4,4)

a =

FFT — FOURIER TRANSFORM

1 0
0.975
0.647
0.333 0

> fft (fft(a)’)
matrix columns
6
1.8

1.8

matrix columns
-0.115

0.573

-0.0817

1.0

> abs
.64
.91
.58
.91

= R P o~

fft (£t (a

.0369
0.162
0.665
.0847

1 thru 3
.64 + -01
+ 0.6381
1.58 + 0i
- 0.6381

4 thru 4
- 0.6031
+ 0.6361
- 0.7571
3 - 1.841
)"))
0.614
2.11
0.761
0.856

See also: Page 112 ifft ().

.204
.167
.655
.129

O O O O

2.19
0.438
0.384
0.438

0.91
0.112
0.299
0.265

-0.115 + 0.6031
1.03 + 1.841i
-0.0817 + 0.7571
0.573 - 0.6361

0.614
0.856
0.761

2.11

95

2.19 + -01i
-0.223 + 0.3771
-0.384 + 01
-0.223 - 0.3771

96 CHAPTER 9. FUNCTION REFERENCE

filter — Digital Filter Structure
Filter

Nt () [|- o @

14

filterisaframework that allows you to performing filtering using finite impulse response (FIR) or infinite
impulse response (IIR) techniques.

Each matrix argument must be a real row or column vector (or a scalar, which will be converted to a one
element vector). The first argument contains the zeros of the transfer function — call it b, containing nb terms
from [b1, by, ..., b,s]. The next argument contains the poles of the transfer function — call it 4, containing na
terms from [ay, az, . . ., dna). '

Note that the a; term must not be zero, as all the other terms are divided by this term in a preprocessing stage.
If you are attempting to make a FIR filter (zeros only), this term is normally set to 1.

The next argument is the input stream to the filter, usually denoted as &, containing nx terms, from[z 1, 22, . . ., Zng].

The last arg is an optional vector of the initial values in each delay bin. It must have number of terms equal
to the maximum of the length of A or B.

The filter outputs are in a list with elements named y, which is the output of the filter - it has the same number
of terms as the input; and z £, which is a vector of the final values in each bin.

The result is calculated by

Yn = blxn + ben—l + ...+ bnb+1xn—nb — WYn—1— .. — Ana+1Yn—na

Example

// We want a bandpass filter, unity gain from 0.2 to 0.4

// Refer Williams and Taylor, 'Electronic Filter Design Handbook’,

// Example 13.1, page 13-8. 31st order FIR. Use their co-efficients
b=120.03820,0.01551,0.08376,-0.12525,-0.05134,0.01481,-0.01461,
.03616,-0.08645,-0.03592,0.00906,0.01462,0.14963,-0.25786,-0.12825,
.41256,-0.12825,-0.25786,0.14963,0.01462,0.00906,-0.03592,-0.08645,
.03616,-0.01461,0.01481,-0.05134,-0.12525,0.08376,0.01551,0.03820]
b =
matrix columns 1 thru 6

0.0382 0.0155 0.0838 -0.125 -0.0513 0.0148

O OOV V V.YV

matrix columns 7 thru 12
-0.0146 0.0362 -0.0864 -0.0359 0.00906 0.0146

matrix columns 13 thru 18
0.15 -0.258 -0.128 0.413 -0.128 -0.258

matrix columns 19 thru 24
0.15 0.0146 0.00906 -0.0359 -0.0864 0.0362

matrix columns 25 thru 30
-0.0146 0.0148 -0.0513 -0.125 0.0838 0.0155

'Some text books(e.g. Rabiner and Gold, Theory and Application of Digital Signal Processing) use these same variables in the opposite
sense

FILTER — DIGITAL FILTER STRUCTURE

matrix columns 31 thru 31
0.0382
a=1;
x = [1l; zeros(99,1)];
// this is useful for the plot
t =0:1:0.01;
output = filter(b,a,x);
plot ([t’,log(fft(x))]1);
plot ([t’,log(fft (output.y))1);

vV V V V V VYV

97

98 CHAPTER 9. FUNCTION REFERENCE

find — Find non-zero elements
Find

(Exnd)- (O M-

find finds the indices of the non-zero elements of the argument matrix. The argument is treated as being
a vector, so the return values are just element numbers, not row and column numbers. The format of the return
values is a row vector.

This function can be used to test for elements that meet a certain criteria.

Example

> b = eye(3,3)

b =
1 0 0
0 1 0
0 0 1
> find(b)
1 5 9
> c¢ = [nan(),3,0,2,0,0,1.43,inf ()]
c =
matrix columns 1 thru 7
NaN 3 0 2 0 0 1.43

matrix columns 8 thru 8

Infinity
>c¢c = 103,0,2,0,0,1.43,inf()]1]
c =
matrix columns 1 thru 7
3 0 2 0 0 1.43 Infinity
> find(c)
1 3 6 7
> d = rand(2,5)
d =
0.7 0.0918 0.96 0.441 0.924
0.95 0.902 0.915 0.0735 0.0882
>d < .5
0 1 0 1 0
0 0 0 1 1
> find(d < .5)
3 7 8 10

See also: Page 51 all (), Page 52 any ().

FINITE — TEST FOR FINITE VALUES 99

finite — Test for finite values
Finite

This function tests the argument for values that are not finite. If the argument is scalar, it returns O if the
argument is finite (i.e. not Inf or NaN) and a 1 if it is either Inf or NaN. If the argument is a matrix, then finite
returns a matrix of the same dimensions as the argument, with the test performed on each element.

= This is not an R{AB built-in function. This function is normally loaded on start-up from the finite.r
file in the standard r1ib directory. Use of the —r option, incorrectly setting the RLAB_ LIB_DIR environmental
variable, or modifying finite.r may make this function unavailable.

Example

c = inf ();
d = nan();
e 3+475;
finite (c)

finite (d)
finite (e)

f =1 _cldlol2linf()]

Hh V~—~V OV OV V V V

—Infinity NaN 0 2 Infinity
> finite (f)
0 0 1 1 0

See also: Page 114 inf (), Page 121 isinf (), Page 122 isnan (), Page 141 nan ().

100 CHAPTER 9. FUNCTION REFERENCE

fix — Round towards zero
Fix

fix rounds the argument towards zero. If the argument is a matrix, this is performed element-by-element.
= This is not an R[AB built-in function. This function is normally loaded on start-up from the fix. r file

in the standard r1ib directory. Use of the —r option, incorrectly setting the RLAB_LIB_DIR environmental
variable, or modifying fix . r may make this function unavailable.

Example

> fix (2.53)

2
> fix (-3.0999)
-3
> fix(3.9999)
3
> fix (1.234+4.327)
1 + 4i
> fix(1.999+4.9999)
1 + 4i
> a = rand(2,3)+rand(2,3) *1j;
> b = 10*a
b =
matrix columns 1 thru 3
2.04 + 2.99i 6.55 + 71 9.1 + 0.918i
1.67 + 2.651 1.29 + 9.51 1.12 + 9.021i
> fix (b)
matrix columns 1 thru 3
2 + 21 6 + 61 9 + 01
1+ 2i 1+ 9i 1+ 9i

See also: Page 62 ceil (), Page 100 £1loor (), Page 189 round ().

FLOOR — FLOOR VALUE 101

floor — Floor Value
Floor

floor returns the largest integer not greater than the argument. If the argument is a matrix then the floor
operation is performed on an element-by-element basis. If the argument is complex, the operation is performed
on real and imaginary parts separately.

Example

> floor(1.00001)
1
> floor(1.999999)
1
> floor(-1)
-1
> floor (-1.73)
-2
> a = 100*rand (2, 5)

65.5 91 29.9 70 9.18
12.9 11.2 26.5 95 90.2
> floor (a)
65 91 29 69 9
12 11 26 95 90
> b = 100*rand (2, 5)

96 44 .1 92.4 90.
91.5 7.35 8.82 36.
> floor (atb* (0+17))
matrix columns 1 thru 3
65 + 95i 91 + 44i 29 4+ 921
12 + 91i 11 + 7i 26 + 81

N
@
<
O

matrix columns 4 thru 5
69 + 901 9 + 141
95 + 361 90 + 871

See also: Page 62 ceil (), Page 116 int ().

102 CHAPTER 9. FUNCTION REFERENCE

format — Change output format

Format

<

format changes the way in which numbers are displayed. If it is invoked with no arguments, then output
format is reset to the default values. If you supply a single argument, that is the new precision, which is the
number of digits to the right of the decimal place. If you supply two arguments, then the first is the new width,
and the second is the new precision. Width is the total number of characters requires, including a decimal point.
The default value is a width is nine, and a precision of three.

Example
> a = rand(2,3)*100+rand (2, 3) *1007;
> a
a =
matrix columns 1 thru 3
38.7 + 98.81 66.5 + 51.81 8.59 + 98.9i
4.92 + 25.51 8.85 + 21.71 33.4 + 49.1i

> format (8);

> a

a =

matrix columns 1 thru 2
38.723569 + 98.7872751 66.502073 + 51.7860621
4.9153286 + 25.4915751 8.8473302 + 21.7288921

matrix columns 3 thru 3
8.5900179 98.9190521
33.449489 + 49.1351131

> format (10, 5)

+

1

> a

a =

matrix columns 1 thru 2
38.724 + 98.7871 66.502 + 51.7861
4.9153 + 25.4921i 8.8473 + 21.7291

matrix columns 3 thru 3
8.59 + 98.919i
33.449 + 49.1351i

FPRINTF — FORMATTED OUTPUT TO A FILE 103

fprintf — Formatted output to a file
FilePrint

(eprined)-(O [soie] () {Sime o
(o]

The fprintf function is intended for writing formatted output to a file. It is similar to the C language
function of the same name, though some features are limited or not available, since RIAB doesn’t have all the data
types of C.

The first argument is a string which specifies which file the formatted string is to be written to. If this argument
starts with |, then the rest of the argument is taken as a process which should be invoked, and the formatted
output string is sent to that process.

The second string argument is the format string. It consists of the text to be written out, and possibly
some conversion specifications. A conversion specification is a sequence of commands that determine how
the remainder of the arguments are to be displayed. The left most conversion specifier is matched to the third
argument, the next specifier to the fourth argument, and so on. Each argument has to be matched to a conversion
specification. When the format string is being scanned, the argument that matches the the specifier that the
scanner is up to is called the current argument.

Conversion specifications always begin with a % sign. The next thing that can occur are the flags:

— causing the conversion to be left-justified, instead of the default right-justified.
+ causing a sign to always be prepended to the conversion, instead of the default of only prepending minus signs.

which causes the format to be of an alternate form. This only has meaning for e, E, £, g and G formats, where
is causes a decimal point to be used always. It also prevents suppression of trailing zeros for g and G
options.

0 (zero) which causes padding by leading zeros, instead of the default space padding. This is overridden by both
- and specifying a precision.

space which causes a space to be prepended if no sign is present. This is overridden by the + flag.

Following any flags, a minimum field width may be specified. This is either a integer constant, or a *
character. If it is a constant, this is the minimum width. If it is a *, then the current argument (which must be
a scalar) is used to specify the minimum width. If there is an optional width, then there may also be an option
precision. This is specified in the same way as the width, using either and integer constant, or a * to signify that
the current argument is to be used.

The next thing that can occur is an optional h or 1 (ell) modifier. This changes the behavior of the subsequent
i and u conversion specifiers. It is legal, but has no effect, with the d specifier. It is illegal with all other
specifiers.

The final thing that must occur is a character specifying the way in which the current variable is to be
displayed. The valid characters are

¢ causes the argument to be converted to an unsigned character format.

d which causes the output to be displayed as a decimal string of the form /- Jdddd. The precision specifies the
minimum number of digits to appear, with a default of one.

e causes the output to be displayed in scientific notation of the form /- Jd.ddde—+dd, where d is any digit. There is
always one non-zero digit before the decimal place if the argument is non-zero. The precision specification
sets how many digits are present after the decimal place, with a default of six.

104 CHAPTER 9. FUNCTION REFERENCE
E is the same as e, except that a upper case letter E is used to seperate the mantissa and exponent instead of a
lower case e.

f causes the output to be displayed as a decimal string of the form ddd.ddd. the precision specifies how many
digits should appear after the decimal place, with a default of six.

g is the same as e is the exponent would be less than -4, or greater than the precision. Otherwise, it is the same
as f.

G is the same as E is the exponent would be less than -4, or greater than the precision. Otherwise, it is the same
as f.

i is the same as d, except that the 1 flag may be used.
s may be used to display strings. If the argument is a scalar, then this is the same as f.

u displays the argument as an unsigned integer value. The precision specifies the minimum number of digits to
be displayed, with a default value of one.

The number of arguments must match the number of conversion specifications, including those required for
width and precision specifications.
fprint £ cannot print out whole matrices or lists. write knows how to deal with entire data objects.

Example
Dummy Example

See also: Page 170 printf (), Page 182 read (), Page 206 sprintf (), Page 233 write ().

FVSCOPE — SCOPE OF A FUNCTION’S ARGUMENTS 105

fvscope — Scope of a function’s arguments
FVScope

0 UserFunction @
o

The fvscope function allows you to determine what variables are used in a function, and what their scope
is. The first argument is the name of the function that you wish to examine, and the optional second argument
allows you to specify a file to write the resulting analysis to.

fvscope is useful for writing general purpose functions that will be used by others. It can be used to identify
errant global variables (variables that should be local, but were overlooked).

Note that the line numbers in the first part of the example are all 1. This is a result of entering the function
at the command line. If you are using a function from a file, as in the second and third examples, the numbers
come out right.

Example

> tansum = function (a,b,c)
{
local (totsum) ;
totsum = atb+c;
return(tan(totsum));
}
<user-function>
> fvscope (tansum) ;
Function Variable SCOPE analysis for : tansum
Filename: stdin

line GLOBAL ARG LOCAL
Local-Var: totsum

1

1 Arg-Var: a
1 Arg-Var:
1
1

o

Arg-Var: c
Global-Var: tan
1 Local-Var: totsum
> fvscope (hilb);
Function Variable SCOPE analysis for : hilb
Filename: /usr/local/lib/rlab/rlib/hilb.r

line GLOBAL ARG LOCAL

15 Local-Var: i
15 Arg-Var: n

16 Local-Var: j
16 Arg-Var: n

17 Local-Var: h
17 Local-Var: i
17 Local-Var: j
17 Local-Var: i
17 Local-Var: j

106 CHAPTER 9. FUNCTION REFERENCE

20 Local-Var: h
> // Note the use of global functions (=variables)
> fvscope (acosh);
Function Variable SCOPE analysis for : acosh
Filename: /usr/local/lib/rlab/rlib/acosh.r

line GLOBAL ARG LOCAL
13 Global-Var: log
13 Arg-Var: x
13 Global-Var: sqrt

13 Arg-Var: x

GETB — 107

getb —
GetB
020
getb
Example
No example yet - coming soon

See also: Page 1 (),

108 CHAPTER 9. FUNCTION REFERENCE

getenv — Get Environmental Variable
GetEnv

(serenn) (O [Same]- ()

getenv searches the environment list for a string that matches the string argument. The value of the
environment variable is returned as a string.

The getenv function is mostly a wrapper around the C language function of the same name. This means
that its behavior depends upon the underlying implementation. On systems with ISO C libraries, getenv will
return a zero length string if the environment variable does not exist.

Example

> getenv ("HOME")
/home/bradh
> getenv ("NOT_HOME")

> my_name = getenv ("LOGNAME")
my_name =

bradh

> my_machine = getenv ("HOSTTYPE")
my_machine =

1386

GETLINE — READ SCALARS AND TEXT 109

getline — Read scalars and text
Getline

(getine)—() String [-())

The getline function is used to read in a line of text from the file specified in the argument, and return
that line as a list. Each time you call get1ine, another line is read from the file. To get back to the start of
the file, you have to use close. getline uses spaces and tabs as delimiters of words. The first word on the
line becomes the first element in the list, the second word on the line becomes the second element, and so on.
getline is smart enough to recognise numbers and strings, and can return either or both as elements in the list.
Numbers are recognised in normal or in exponential notation. You can get around this by putting the number in
"-type quotation marks. Numbers are not recognised in complex notation. A list is always returned — if the line
was empty, you an empty list is returned.

The argument can also be used to specify a process to run instead of a file to read from. The main limitation
is that the process has to be able to write to standard output, which most tools can do. To set this up, just make |
the first character of the filename. You can get even more flexibility by using a filter on the original process.

A common operation is to read the whole file. Since get1ine returns an empty list when there is no input,
we can tell when to terminate the input loop by checking for a zero length result.

Example

> printf ("Go ahead, enter some stuff! "); res = getline("stdin");
Go ahead, enter some stuff! two strings "one string" 2+3j 1e99
> res.[1]
1 =
two
> res.[2]
2 =
strings
> res.[3]
3 =
one string
> res. [4]

4 =
2+37
> show(res. [4])
name: 4
class: string
type: string
nr: 1
nc: 1
> res.[5]
5 =
le+99
> show(res.[5])
name: 5
class: num
type: real
nr: 1
nc: 1

> // a more complex example
> // open the process and throw away the first line

110 CHAPTER 9. FUNCTION REFERENCE

> getline (" |df")

1 2 3 4 5
6 7

> tot = 0;

> // The != 0 can be left out, since when length = 0,

> // the if test fails. 1In here for clarity

> while (length (result = getline("|df")) != 0)

{
tot = tot + result.[2];
}
> tot
tot =
4.58e+05
> system("df");
Filesystem 1024-blocks Used Available Capacity Mounted on
/dev/hdb5 250559 162300 75732 68% /
/dev/hdal 207240 175444 31796 85% /dosC
> 2505594207240
4.58e+05

See also: Page 148 pause ().

HESS — HESSENBERG MATRIX 111

hess — Hessenberg Matrix

Hessenberg

CDFOSTINO

hess finds the Hessenberg form of a matrix. It takes a square matrix, say A, as input, and returns a list with
two elements, h and p, which are the H and P matricies respectively, such that:

A=PHPT

This is also known as finding a similar matrix, where A and H are said to be similar, and P is the change of
base matrix.

Example

> A = rand (3, 3)

A =
0.965 0.239 0.415
0.883 0.54 0.625
0.858 0.0691 0.0172
> L = hess(A)
h P
> L.h
h =
0.965 -0.461 0.132
-1.23 0.633 -0.0267
0 0.53 -0.076
> L.p
p =
1 0 0
0 -0.717 -0.697
0 -0.697 0.717
> L.p*L.h*L.p’
0.965 0.239 0.415
0.883 0.54 0.625
0.858 0.0691 0.0172

See also: Page 193 schur.

112 CHAPTER 9. FUNCTION REFERENCE

hilb — Hilbert Matrix
Hilbert

(10 (O[S D)

hilb generates a Hilbert matrix. The scalar argument specifies the dimensions of the square matrix to be
generated. This is also known as the order of the Hilbert matrix. If we have a Hilbert matrix of order n, and row
and column indicies of ¢ and j respectively, then the matrix elements are given by

1
Ajj =
Y4 —1
= This is not an R{AB built-in function. This function is normally loaded on start-up from the hilb. r file
in the standard r1ib directory. Use of the —r option, incorrectly setting the RLAB_LIB_DIR environmental

variable, or modifying hilb . r may make this function unavailable.

Example
> hilb (1)
1
> hilb(2)
1 0.5
0.5 0.333
> hilb(4)
1 0.5 0.333 0.25
0.5 0.333 0.25 0.2
0.333 0.25 0.2 0.167
0.25 0.2 0.167 0.143
> rcond(hilb(4))
3.52e-05

> rcond (hilb (23))
2.7e-20

IFFT — INVERSE FOURIER TRANFORM

ifft — Inverse Fourier Tranform
IFFT

D
{5

113

ifft computes a discrete Fourier transform of the input. Unlike £ ft, the output is scaled by the reciprocal
of the number of elements in the input, such that a call to ££t followed by a call to ifft() will reproduce the

original matrix. The resultant is always complex.

The argument must be a matrix. If it is a row or column matrix then a Fourier transformation is performed on
that vector. If it is not such a vector, then Fourier transform is performed on each column in turn.
The optional scalar argument can be used to zero-pad or to truncate the argument to the length given as the

scalar.

To perform two dimensional Inverse Fourier Transforms, repeated calls to ifft are required, taking the

second call in the other direction. This is shown below.

Example

> a = rand(2,4)

a =
1 0.647 0.0369 0.665
0.975 0.333 0.162 0.0847
> ifft (a)
matrix columns 1 thru 3
0.987 + 01 0.49 + 01
0.0127 + 0i 0.157 + 0i

matrix columns 4 thru 4

0.375 + 01
0.29 + 0i
> imag (ifft (a))
0 0 0 0
0 0 0 0
> b = rand(4,4)
b =
0.204 0.91 0.7 0.96
0.167 0.112 0.95 0.915
0.655 0.299 0.0918 0.441
0.129 0.265 0.902 0.0735

> 1ifft(ifft(b)’)’
matrix columns 1 thru 3

0.486 + 01 -0.0931 + 0.05021
0.0804 + 0.04841 -0.128 - 0.006381
0.0466 + 01 0.101 - 0.02621
0.0804 - 0.04841 -0.00398 - 0.005191

matrix columns 4 thru 4
-0.0931 - 0.05021
-0.00398 + 0.005191
0.101 + 0.02621

-0.128 + 0.006381

See also: Page 93 ££t ().

0.0993 + 01
-0.0624 + 0i

-0.011
-0.0608 - 0.
-0.109
-0.0608 + 0.

+ -01i
03761
+ -01i
03761

114 CHAPTER 9. FUNCTION REFERENCE

imag — Imaginary Part
Imag

imag returns the imaginary part of the argument. If the argument is a matrix, then the operation is performed
element-by-element, returning a matrix.

Example

> imag (2.4 -3.673)

-3.6
> imag(2.4)
0
> sqgrt (-2)
0 + 1.411
> imag (sqrt (-2))
1.41
> b = [2+3], 4-67j; 3.324, 2-45.65437]
b =
2 + 3i 4 - 61
3.32 + 01 2 - 45.71
> imag (b)
3 -6
0 -45.7

See also: Page 71 conj (), Page 185 real ().

INF — INFINITY VALUE 115

inf — Infinity Value
Infinity

inf returns a scalar which is set to the IEEE-754 infinity value. What this value can be used for depends on
the exact setup of your RIAB implementation.

Example

> inf ()
Infinity
> a = inf ()
a =
Infinity
>B = [2,3; inf (), —-inf ()]
B =
2 3
Infinity -Infinity

See also: Page 121 isinf (), Page 141 nan ().

116

input — Get user response
Input

CHAPTER 9. FUNCTION REFERENCE

O

)
N\

The input function provides an easy method for users to get a simple response from the keyboard. The
string argument is printed on the standard output (usually the screen), and the program waits for the user response.
input then returns the input, which can be either a string, or a number. If you want to force the input to be a
string, then use the optional second argument, " s ", to force the return value to be a string. Actually any argument

will do — just so long as there is some argument.

If the user just hits return when prompted, then input returns an empty matrix.

= This is not an R{AB built-in function. This function is normally loaded on start-up from the input . r file
in the standard r1ib directory. Use of the —r option, incorrectly setting the RLAB_LIB_DIR environmental
variable, or modifying input . r may make this function unavailable.

Example

> response = input ("Don’t just stand there!

Don’t just stand there!
> response

response =
text

> response?2 = input ("Don’t just stand there!

Don’t just stand there!
> response?2

response2 =
sentance with words
> Number = input ("Gimme a number:")
Gimme a number:3.245
Number =
3.25
> show (Number)
name: Number
class: num
type: real
nr: 1
nc: 1
> Number = input ("Gimme a number:",
Gimme a number:2.3456
Number =
2.346
> type (Number)
string

See also: Page 108 getline ().

Do something:");

Do something:text number

Do something:");

Do something:"sentance with words"

"S")

INT — INTEGER FILTER 117

int — Integer Filter
Int

int truncates its argument by conversion to an integer. If the argument is a matrix then the int operation is
performed on an element-by-element basis.

Because R{AB is not an arbitrary precision system, you may occasionally be surprised by the results of this
function, as shown in the example below, where we can ‘truncate’ out input of 1.9999999999999999 to 2, which
is how it is stored internally.

Example

> int (1.0001)
> int (1.5)

> int (1.999999999999999)

> int(l.é999999999999999)
1.9999@9999999999

> b = 10?)*(rand(2,3)+rand(2,3)*(0+1j))

\%

matrix columns 1 thru 3
16.1 + 29i 1.06 + 56.11 23.3 + 26.91
97.5 + 20.51 41.4 + 79.11 55.5 + 33.4i

> int (b)

matrix columns 1 thru 3
16 + 29i 1 + 56i 23 + 261
97 + 20i 41 + 791 55 + 33i

See also: Page 62 ceil (), Page 100 £1oor (), Page 189 round ().

118 CHAPTER 9. FUNCTION REFERENCE

int2str — integer to string conversion

int2str

(imezsen) (O[5t -0

int2str takes a scalar argument, and converts it to a string. It is intended that the argument be integer - if
it has any fractional part, this will be rounded off.

= This is not an R{AB built-in function. This function is normally loaded on start-up from the int2str.r
file in the standard r1ib directory. Use of the —r option, incorrectly setting the RLAB_ LIB_DIR environmental
variable, or modifying int2str.r may make this function unavailable.

Example

> a = int2str (74)

74
> show (a)
name: a
class: string
type: string
nr: 1
nc: 1
> b = "74"
74
> a ==D>b
1
> c = int2str(73.95)
74
> show (c)
name: c
class: string
type: string
nr: 1
nc: 1

See also: Page 143 num2str (), Page 206 sprintf ().

INTERSECTION — SET INTERSECTION 119

intersection — Set intersection

Intersection

(imwerssction)-(D-[Mam (O [oain -

intersection calculates the intersection of the two sets supplied as arguments. The intersection of two
sets is just the items that are common to both.

= Thisisnot an RiAB built-in function. This function is normally loaded on start-up fromthe intersection.r
file in the standard r1ib directory. Use of the —r option, incorrectly setting the RLAB_ LIB_DIR environmental
variable, or modifying intersection.r may make this function unavailable.

Example
> a = 1:6
a =
1 2 3 4 5 6
> b = [0,4,2,-4,7]
b =
0 4 2 -4 7
> intersection(a,b)
2 4

See also: Page 70 complement (), Page 194 set (), Page 228 union ().

120 CHAPTER 9. FUNCTION REFERENCE

inv — Matrix Inverse

Inverse

inv computes the inverse of the argument matrix. The argument must be square and non-singular. If you
specify a scalar argument, this is treated as a 121 matrix, and the reciprocal of the argument is returned.

Example
> inv (3)
0.333
> a = rand (3, 3)
a =
0.908 0.879 0.98
0.362 0.00543 0.83
0.148 0.222 0.00526
> b = inv (a)
b =
-10.9 12.6 42.8
7.14 -8.28 -23.6
4.7 -4.23 -18.5
> a*b
1 -1.6e-16 2.28e-15
S5e-16 1 3.16e-16
-1.32e-16 1.06e-16 1
> ¢ = rand(3,3)+rand(3,3) *1j
c =
matrix columns 1 thru 3
0.246 + 0.233i 0.461 + 0.2051 0.975 + 0.2691
0.782 + 0.5551 0.52 + 0.5611 0.0106 + 0.334i
0.341 + 0.29i 0.161 + 0.791i 0.414 + 0.2781i
> d = inv (c)
d =
matrix columns 1 thru 3
-0.314 - 0.8221 0.828 - 0.911 0.31 + 1.28i
0.196 + 0.8011 0.212 + 0.549i -0.675 - 1.741
0.88 - 0.381 -0.452 - 0.1481 0.313 + 0.483i

See also: Page 77 det (), Page 181 rcond (), Page 203 solve ().

ISEMPTY — TEST FOR ZERO LENGTH MATRIX 121

isempty — Test for zero length matrix
Isempty

(imemees)-(O-[Mams |0

isempty returns 1 if the argument matrix is not empty. Otherwise it returns 0.

= This is not an R{AB built-in function. This function is normally loaded on start-up from the i sempty.r
file in the standard r1ib directory. Use of the —r option, incorrectly setting the RLAB_ LIB_DIR environmental
variable, or modifying i sempty . r may make this function unavailable.

Example

> isempty ([2,4])

0

> isempty ([])
1

> isempty (zeros(1l,1))
0

> isempty (zeros (0,0))
1

> isempty (eye(0,0))
1

> a = []

a =

[1
> isempty (a)
1

122 CHAPTER 9. FUNCTION REFERENCE

isinf — Test for Infinity
IsInf

— Medm)

isinf tests if the argument is equal to £oo. If the test is true, it returns 1, otherwise it returns 0. If the
argument is a matrix, the test is performed element-by-element, returning a matrix the same size as the original.

= This is not an R{AB built-in function. This functionis normally loaded on start-up from the isinf. r file
in the standard r1ib directory. Use of the —r option, incorrectly setting the RLAB_LIB_DIR environmental
variable, or modifying i sinf . r may make this function unavailable.

Example

> isinf (—inf ())
1
> isinf (inf ())
1
> isinf (nan())
0
> isinf (0)
0
> isinf (1)
0
> a = [inf(),23,65,-inf(),inf ()]
a =
Infinity 23 65 -—Infinity Infinity
> isinf (a)
1 0 0 1 1

See also: Page 98 finite (), Page 114 inf (), Page 122 isnan (), Page 141 nan (),

ISNAN — TEST FOR NOT-A-NUMBER 123

isnan — Test for Not-A-Number
NaN

isnan tests if the argument is equal to NaN. If the test is true, it returns 1, otherwise it returns 0. If the
argument is a matrix, the test is performed element-by-element, returning a matrix the same size as the original.

= This is not an R{AB built-in function. This functionis normally loaded on start-up from the i snan. r file
in the standard r1ib directory. Use of the —r option, incorrectly setting the RLAB_LIB_DIR environmental
variable, or modifying i snan.r may make this function unavailable.

Example

> isnan(nan())

1
> isnan (—nan{())

1
> isnan (inf ())

0
> isnan (0)

0
> isnan (1)

0
> a = [nan(),3,2,nan(),-nan()+2,45]
a =
matrix columns 1 thru 6

NaN 3 2 NaN —-NaN 45

> isnan (a)
matrix columns 1 thru 6
1 0 0 1 1 0

See also: Page 98 finite (), Page 121 isinf (), Page 141 nan ().

124 CHAPTER 9. FUNCTION REFERENCE

issymm — Test for symmetric matrix
IsSymm

Gz (D [oain (D

issymmreturns 1 (true) if the argument matrix is symmetric. Otherwise it returns O (false).

= This is not an R{AB built-in function. This function is normally loaded on start-up from the issymm. r
file in the standard r1ib directory. Use of the —r option, incorrectly setting the RLAB_ LIB_DIR environmental
variable, or modifying i ssymm. r may make this function unavailable.

Example

> issymm([0,1;1,01)

> issymm([0,1;1,11])
> issymm([-133,1;1,1])
> issymm([-133,1;1,0+3467]1)

> issymm([-133,1;0,0+3463])

O~ P ~FP AR ~F ~

See also: Page 217 symm.

LENGTH — LENGTH OF ENTITY 125

length — Length of Entity
Length

The length function returns the length of the argument. The meaning of length varies according to the
argument type:

scalar the lengthis 1.
string the number of characters in the string, not including the trailing null.
matrix the greater of the number of rows and the number of columns.

list the number of elements in the list.

Example

> length(3.2567)

1
> length("a string with (count-em) characters")
35
> length("a string with 37 (count-em) characters")
37
> c = eye(2,5)
c =
1 0 0 0 0
0 1 0 0 0
> length (c)
5
>d=<<a=4; v =<<s =3.4427 ;c = eye(2,2)>>; z = zeros(2,2)>>
a v z
> length (d)
3
> length(d.v)
2

See also: Section 195 show (), Section 201 size ().

126 CHAPTER 9. FUNCTION REFERENCE

linspace — linearly spaced vector

Linspace

(O[5

linspace creates a vector of linearly spaced points between the first and second arguments. If the optional
third argument is present, it specifies how many points are to be created. If the third argument is missing, then
100 points are assumed.

= This is not an R{AB built-in function. This function is normally loaded on start-up fromthe 1inspace.r
file in the standard r1ib directory. Use of the —r option, incorrectly setting the RLAB_ LIB_DIR environmental
variable, or modifying 1inspace . r may make this function unavailable.

Example
> a = linspace(2,20);
> show (a)
name: a
class: num
type: real
nr: 1
nc: 100
> b = linspace(3.5,9.6,10)
b =
matrix columns 1 thru 6
3.5 4.18 4.86 5.53 6.21 6.89

matrix columns 7 thru 10

7.57 8.24 8.92 9.6
> A = linspace(5,-5,13)
A =
matrix columns 1 thru 6
5 4.17 3.33 2.5 1.67 0.833

matrix columns 7 thru 12
0 -0.833 -1.67 -2.5 -3.33 -4.17

matrix columns 13 thru 13

-5
> ¢ = linspace(1l,9,10)+(linspace(-4,4,10)*(0+17))
c =
matrix columns 1 thru 3

1 - 41 1.89 - 3.1114 2.78 - 2.221

matrix columns 4 thru 6
3.67 - 1.33i 4.56 — 0.4441 5.44 + 0.4441

matrix columns 7 thru 9
6.33 + 1.331 7.22 + 2.221 8.11 + 3.11i

matrix columns 10 thru 10
9 + 4i

LINSPACE — LINEARLY SPACED VECTOR 127

See also: Page 129 logspace ().

128 CHAPTER 9. FUNCTION REFERENCE

load — File load
FileLoad

(o) (O[S0

loadis a function which opens the file specified by the string argument, and reads in the file’s contents as if
they were being typed by a user at the command line. If you prefer, this can be considered the same as temporarily
redirecting the input to the file specified. The file is closed after it has been read from.

Since 1oad doesn’t use the normal search paths, you have to specify enough path to find the file - generally
the file to be 1oaded is in the current directory, and only the name is required. However, if the file is elsewhere,
you need a complete path. Often, a r£ile command is more convenient and robust.

Example
> // Lets have a look at this file.
> system("more random.cmds");
a = rand()
b = rand(2,4);
c = "a string"
b
> load("random.cmds") ;
a =
1
c =
a string
b =
0.975 0.333 0.162 0.0847
0.647 0.0369 0.665 0.204

See also: Page 182 read.

LOG — NATURAL LOGARITHM 129

log — natural logarithm
Log

logreturns the natural logarithm of its argument. If the argument is a matrix an element-by-element operation

is performed. If the argument is complex, then the operation returns a complex value with the real part set to the
logarithm of the arguments magnitude, and the imaginary part set to the phase of the argument.

Example

> log (1)

> b = exp(l)

> log(b)
1
> b pi
23.1
> log (b"pi)
3.14
> a = rand(2,4)*20
a =
19 18 18.3 1.47
1.84 19.2 8.82 18.5
> log(a)
2.94 2.89 2.91 0.386
0.608 2.95 2.18 2.92

See also: Page 128 1ogl10 ().

130 CHAPTER 9. FUNCTION REFERENCE

logl0 — Base 10 logarithm
Logl0

1og10 returns the base-10 logarithm of it’s argument. If the argument is a matrix, an element-by-element
1og10 operation is performed. If the argument is complex, this is the same as taking natural logarithm of the
argument, then multiplying by the natural logarithm of 10.

Example

\%

logl0 (1)
0
> 1ogl0(10)
1
> 1ogl0(100)
2
> 1ogl0(10074)
8
> 1logl0(1073.52464)
3.52
> a = rand(2,5) *25
a =
6.16 8.52 13 24.4 10.4
19.6 11.5 4.02 0.265 5.82
> loglO(a)
0.789 0.93 1.11 1.39 1.02
1.29 1.06 0.604 -0.576 0.765

See also: Page 127 1log ().

LOGSPACE — LOGARITHMICALLY SPACED VECTOR

logspace — Logarithmically spaced vector

Logspace

(O setar}-()- s

points are to be created. If the third argument is missing, then 50 points are assumed.

(s

logspace creates a vector of logarithmically spaced points. If the first two arguments are z; and z,, then
the points are generated between 10”! and 10°2. If the optional third argument is present, it specifies how many

131

As a special case, if the second argument is equal to , then the points are generated between 10”! and 7.

= This is not an R{AB built-in function. This function is normally loaded on start-up from the logspace.r
file in the standard r1ib directory. Use of the —r option, incorrectly setting the RLAB_ LIB_DIR environmental
variable, or modifying 1ogspace . r may make this function unavailable.

Example

> logspace (0,1)
matrix columns
1

matrix columns
1.39

matrix columns
1.93

matrix columns
2.68

matrix columns
3.73

matrix columns
5.18

matrix columns
7.2

matrix columns
10

1 thru
1.05

8 thru
1.46

15 thru
2.02

22 thru
2.81

29 thru
3.91

36 thru
5.43

43 thru
7.54

50 thru

> logspace (1,3,10)

matrix columns
10

matrix columns
359

> logspace (0, pi,

matrix columns
1

matrix columns
2.44

1 thru
16.7

8 thru
599
10)

1 thru
1.14

8 thru
2.77

7

14

21

28

35

42

49

50

10

10

1.1

27.8

le+03

3.14

46.4

77.4

.26

.76

.44

.39

.71

.55

129

.89

.33

.84

.56

.56

.94

.87

.54

215

.15

132 CHAPTER 9. FUNCTION REFERENCE

See also: Page 125 linspace ().

LU — LU DECOMPOSITION 133

lu — LU decomposition
LU

()O3

1u performs an LU decomposition of the matrix argument. The input matrix must be square and non-singular.
1u returns the lower, upper and pivot matrices as the 1, u and pvt elements of a list. If the argument matrix is
A, then the decomposition has the form:

A = putlu

= This is not an R[AB built-in function. This function is normally loaded on start-up from the 1u. r file
in the standard r1ib directory. Use of the —r option, incorrectly setting the RLAB_LIB_DIR environmental
variable, or modifying 1u. r may make this function unavailable.

Example

> a = rand(4,4)

a =
0.957 0.367 0.641 0.252
0.89 0.638 0.245 0.955
0.279 0.18 0.284 0.921
0.42 0.589 0.869 0.376
> b = lu(a)
1 pvt u
> b.1l
1 =
1 0 0 0
0.439 1 0 0
0.93 0.693 1 0
0.291 0.171 0.00416 1
> b.u
u =
0.957 0.367 0.641 0.252
0 0.428 0.589 0.265
0 0 -0.758 0.537
0 0 0 0.8
> b.pvt
pvt =
1 0 0 0
0 0 1 0
0 0 0 1
0 1 0 0
> b.pvt*b.1*b.u
0.957 0.367 0.641 0.252
0.89 0.638 0.245 0.955
0.279 0.18 0.284 0.921
0.42 0.589 0.869 0.376

See also: Page 58 backsub (), Page 92 factor (), Page 119 inv (), Page 203 solve ().

134 CHAPTER 9. FUNCTION REFERENCE

lyap — solution of the lyapunov equation
Lyapunov

v s - [|-7)

lyap is used to solve the general form of the Sylvester equation, and its special form in the Lyapunov
equation. It is very similar to the sy1v function, except that the arguments need not be upper triangular.

Given the first matrix argument is A, the second matrix argument is B, and the third matrix argument is C,
lyap solves

Ax + 2B =-C

for z.

If there are only two arguments, it is assumed B = AT, and the Lyapunov equation is solved. Note that in
sylv, you leave out the comma and the argument — 1yap requires both commas.

= This is not an R{AB built-in function. This function is normally loaded on start-up from the 1yap. r file
in the standard r1ib directory. Use of the —r option, incorrectly setting the RLAB_LIB_DIR environmental
variable, or modifying 1yap . r may make this function unavailable.

Example

> a = rand (3, 3)

a =
0.341 0.455 0.188
0.623 0.0178 0.946
0.182 0.071 0.799

> b = rand (3, 3)

b =
0.369 0.481 0.931
0.895 0.791 0.98
0.836 0.733 0.195
> ¢ = rand (3, 3)
c =
0.459 0.46 0.749
0.0589 0.225 0.385
0.281 0.957 0.642
> ResSylv = lyap(a,b,c)
ResSylv =
-0.804 0.868 -1.24
0.583 0.0114 -0.375
0.55 -0.825 -0.0942

> a*ResSylv+ResSylv*b + c
4.44e-16 8.88e-16 1.44e-15
5.55e-17 -1.11le-16 6.66e-16

2.22e-16 0 2.22e-16

> ResLyap = lyap(a,,c)

ResLyap =
-3.75 7.11 -0.916
-3.07 2.15 1.22
2.29 -4.2 -0.427

> a*ResLyap+ResLyap*a’ + c

LYAP — SOLUTION OF THE LYAPUNOV EQUATION

0 8.88e-16 2.55e-15
1.9%94e-15 -2.39e-15 l.11e-16
-1.11le-15 -1.11le-16 -1.33e-15

See also: Page 193 schur (), Page 216 sylv ().

135

136 CHAPTER 9. FUNCTION REFERENCE

matrix — Convert to Matrix
Matrix

<

)
N\

The mat rix function attempts to convert its argument to a matrix. If you pass no arguments, you get an
empty matrix back. If you pass a scalar or string argument, you get back a one element matrix with the argument
as that element. If you pass a matrix argument, you just get that matrix back.

Example

> matrix ()

[]

> matrix (3)

3
> show (matrix (3))
name: NULL
class: num
type: real
nr: 1
nc: 1
> show (matrix ("This is a test string"))
name: NULL
class: string
type: string
nr: 1
nc: 1
>a = [2.4,5,3,6;2,-6,-9,102]
a =
2.4 5 3 6
2 -6 -9 102
> matrix(a)
2.4 5 3 6
2 -6 -9 102

See also: Page 191 scalar ().

MAX — MAXIMUM VALUE 137

max — Maximum Value
Max

(O -

max returns the maximum value contained in the argument matrix. If the argument is a row or column vector,
then the largest value is returned. If the argument is a not a vector, then a row vector is returned, containing the
maximum value from each column of the argument. If the argument is complex, magnitudes are used.

Example

> ¢ = rand (3, 3)
c =
0.214 0.87 0.352
0.316 0.11 .226
0.402 0.617 0.217
> max (c)
0.402 0.87 0.352
> d = rand (1, 3)
d =
0.622 0.356 0.156
> max (d)
0.622
> e = rand(3,1)

o

0.802
0.588
0.022
> max (e)
0.802

See also: Page 135 maxi (), Page 138 min (), Page 139 mini ().

138 CHAPTER 9. FUNCTION REFERENCE

maxi — Index of maximum value
Maxl

(O)

maxi returns the index of the maximum value contained in matrix. If the argument is a row or column vector,
then the index of the largest value is returned. If the argument is not a vector, then a row vector of the column
indices of the largest column values of is returned. If the argument is complex, magnitudes are compared.

Example

> a = rand(3,4)

a =
1 0.333 0.665 0.167
0.975 0.0369 0.0847 0.655
0.647 0.162 0.204 0.129
> maxi (a)
1 1 1 2
> a = rand(3,5)
a =
0.91 0.265 0.0918 0.915 0.924
0.112 0.7 0.902 0.441 0.0882
0.299 0.95 0.96 0.0735 0.908
> maxi (a)
1 3 3 1 1
> maxi(a’)
5 3 3

See also: Page 134 max (), Page 138 min (), Page 139 mini ().

MEAN — AVERAGE VALUE 139

mean — Average value
Mean

(O)

mean calculates the arithmetic mean of the argument. If the argument is a row or column vector, then the
mean of all elements is returned, Otherwise mean returns a row matrix formed by taking the arithmetic mean of
each column.

= This is not an R{AB built-in function. This function is normally loaded on start-up from the mean. r file
in the standard r1ib directory. Use of the —r option, incorrectly setting the RLAB_LIB_DIR environmental
variable, or modifying mean . r may make this function unavailable.

Example

> a = rand(3,5)

a =

0.572 0.109 0.929 0.281 0.436
0.576 .902 .935 0.972 0.625
0.501 0.568 0.771 0.0269 0.469
> mean (a)

0.55 0.526 0.878 0.427 0.51

>b = all;]

o
o

0.572 0.109 0.929 0.281 0.436
> mean (b)
0.465
> c = al;1]
c =
0.572
0.576
0.501
> mean(c)
0.55

See also: Page 210 std ().

140 CHAPTER 9. FUNCTION REFERENCE

members — Items in a List

Members

(rempere)- (O[T -

members is a function that takes a list argument, and returns a string matrix containing the names of all the
elements in that list. This string matrix can then be used to reference all the elements in the list.

Example
> mylist = << strl = "a string"; mat = eye(3,3); str2 = "str2.5" >>
mylist =
mat strl str2
> mylist.scalarl = 2.2354e-23
mylist =
mat scalarl strl str2
> members (mylist)
mat scalarl strl str2

> for (elem in members (mylist))
{
printf ("name:%s\n",elem) ;
mylist.[elem]
}

name:mat

mat =
1 0 0
0 1 0
0 0 1
name:scalarl
scalarl =
2.24e-23
name:strl
strl =

a string
name:str2
str2 =

str2.5

See also: Page 229 what (), Page 231 who ().

MIN — MINIMUM ELEMENT 141

min — Minimum Element
Min

(O -

min returns the minimum value or values contained in the matrix argument. If the argument is a row or
column vector, then the smallest value is returned. If the argument is not such a vector, then a row-vector is
returned containing the minimum value from each column of the argument. The minimum value of a complex
argument is found by comparing magnitudes.

Example

> a = rand(3,5)
a =
0.362 0.00543 0.83 0.782 0.52
0.148 0.222 0.00526 .341 0.161
0.879 0.98 0.246 0.461 0.975
> min (a)
0.148 0.00543 0.00526 0.341 0.161
> min(a’)’
0.00543
0.00526
0.246

o

See also: Page 134 max (), Page 135 maxi (), Page 139 mini ().

142 CHAPTER 9. FUNCTION REFERENCE

mini — Index of Minimum Value
Minil

(O D)
mini returns the index of the minimum value contained in the argument matrix. If the argument is a row or
column vector, then the index of the smallest value is returned. If the argument is not such a vector, then a row
vector of the column indices of the smallest value in each column is returned.

Example

> a = rand(3,5)

a =
0.0106 0.555 0.561 0.334 0.692
0.414 0.29 0.791 0.278 0.737
0.233 0.205 0.269 0.789 0.248

> mini (a)
1 3 3 2 3

> mini(a’)’

N B

See also: Page 134 max (), Page 135 maxi (), Page 138 min ().

MOD — REMAINDER AFTER DIVISION 143

mod — Remainder after division
Mod

Matrix }—@—‘ Matrix

mod returns the floating point remainder of the division of the first argument by the second argument. If the
divisor is zero or if the division would overflow, then it returns zero. When the arguments mod are both matrices,
then an element by element operation is performed, so they must have the same dimensions.

Example
> mod (7, 2)
1
> mod (8, 3)
2
> mod (17, 6)
5
> mod (18, 6)
0
> Matl = round(rand(2,5)*100)
Matl =
65 91 30 70 9
13 11 27 95 90
> Mat2 = round(rand(2,5)*10)
Mat2 =
3 3 7 2 4
3 8 7 5 4
> mod (Matl,Mat2)
2 1 2 0 1

1 3 6 0 2

144 CHAPTER 9. FUNCTION REFERENCE

nan — Not-a-Number Value
NotANumber

—(an) {0)—

nan returns a scalar encoded with the IEEE-754 NaN (Not a Number) value. You should be able to use this
value as an argument to just about any operation or function, with a result of NaN.

Example

> nan ()
NaN

> nan() — nanf()
NaN

> nan() + nan{()
NaN

> exp(nan())
NaN

See also: Page 114 inf (), Page 122 isnan ().

NORM — MATRIX NORM

norm — Matrix Norm
Matrix

®
) {se]

145

norm can calculate various types of matrix norms. The type of norm to be calculated is specified by the

optional string matrix, with a defult of 1-norm.

"M" or "m" returns the absolute value of the element with the largest magnitude in the matrix.

"1", "O" or "o" returns the 1-norm. This is defined as the maximum absolute column sum.

" 2" returns the matrix 2-norm. This is the largest singular value in the matrix argument.

"I"or "i" returns the infinity-norm. This is defined as the maximum absolute row sum.

"F", £, "E" or "e" returns the Frobenius norm. This is the square root of the of the sum of squares of all

the elements in the matrix argument.

Example

> a = rand(5,5)

a =
.269 0.737
.334 0.248

0 .505 0.0321
0

0.278 0.45

0

0

m

.529 .411
.877 .982
.465 .686
.806 .447

.789 0.363
.692 0.369
(a)
2.36 2.17 3.18 2.56
> norm(a)
3.18
> norm(a, "o")
3.18
> sum(a’)”’
.87
.51
.32
.84
.48
> norm(a,"i")
3.32
> norm(a, "m")
0.983
> svd(a) .sigma
sigma =
2.68 0.723 0.606 0.465
> norm(a,"2")
2.68
> sqgrt (sum(sum(a.*a)))
2.89
> norm(a,"f")
2.89

O O O o o
o O O O

> su

N DN WD R

.324
.983
.734
.539
.163

O O O O o

2.74

0.256

146 CHAPTER 9. FUNCTION REFERENCE

See also: Page 134 max (). Page 213 sum (), Page 214 svd ().

NUMZ2STR — NUMBER TO STRING CONVERSION 147

num2str — Number to string conversion
NumToStr

(runzsee)-(D- [setr (7

num2str converts a real scalar into a 1z1 string matrix. This may result in scientific notation if the scalar
is particularly large or small. An error will result if the argument is not a real scalar.

= This is not an R{AB built-in function. This function is normally loaded on start-up from the num2str.r
file in the standard r1ib directory. Use of the —r option, incorrectly setting the RLAB_ LIB_DIR environmental
variable, or modifying num2str . r may make this function unavailable.

Example

> a = 3.4321

a =
3.43
> b = num2str (a)
3.432
> show (b)
name: b
class: string
type: string
nr: 1
nc: 1
> num2str (298649678)
2.986e+08
> show (num2str (298649678))
name: NULL
class: string
type: string
nr: 1
nc: 1

See also: Page 117 int2str (), Page 206 sprintf ().

148 CHAPTER 9. FUNCTION REFERENCE

ode — ordinary differential equation solver
ODE

(5520 Fantion |-y () () -,

Scalar

ode is afirst order Ordinary Differential Equation solver. It integrates sets of first order differential equations.

dy (i) /dt = f(t,y(1),y(2), ...,y (N))
y (i) given at t

Syntax: ode (rhsf, ystart, tstart, tend, dtout, relerr, abserr)

rhsf A function that evaluates dy(i)/dt at t. The function
takes two arguments and returns dy/dt. An example that
generates dy/dt for Van der Pol’s equation is shown
below.
Can be user or bltin function.

ystart The initial values of y, y(tstart).
Must be column or row vector

tstart The initial value of the independent variable.
Can also be a matrix - first element will be used.

tend The final wvalue of the independent variable.
Can also be a matrix - first element will be used.
Cannot be same as tstart

dtout The output interval. The vector y will be saved at
tstart, increments of tstart + dtout, and tend. If
dtout is not specified, then the default is to store
output at 101 values of the independent variable.

relerr The relative error tolerance. Default value is 1l.e-6.

abserr The absolute error tolerance. At each step, ode
requires that:

abs (local error) <= abs(y)*relerr + abserr

For each component of the local error and solution
vectors. The default value is 1l.e-6.

ODE — ORDINARY DIFFERENTIAL EQUATION SOLVER 149

The Fortran source code for ode() is completely explained and
documented in the text, "Computer Solution of Ordinary
Differential Equations: The Initial Value Problem" by

L. F. Shampine and M. K. Gordon.

Example:
vdpol = function (t , x)

{
local (xp)

xXp = zeros(2,1);
xpl[l] = x[1] * (1 - x[2]72) - x[2];
xpl[2] = x[1];

return xp;

i

x0 = [0; 0.25];

xbase = ode(vdpol, x0, 0, 20, 0.05, le-9, 1le-9);
Example

Dummy Example

See also: Page 1 ().

150 CHAPTER 9. FUNCTION REFERENCE

ones — Matrix of ones

Ones

ones creates a matrix with each element set to 1. The arguments specify the dimensions of the matrix to
be created. If the argument is a matrix, the matrix must have two elements, with the first argument specifying
the number of rows, and the second argument specifying the number of columns. This is the same format as the
output of the size function. If the arguments are two scalars, then the first argument is the number of rows, and
the second argument is the number of columns.

Example

> ones (2, 5)

1 1 1 1 1
1 1 1 1 1
> ones([2,4])
1 1 1 1
1 1 1 1
>d=1:3:0.5;
> c = 1:5;
> b = [c;d]
b =
1 2 3 4 5
1 1.5 2 2.5 3
> a = ones(size (b))
a =
1 1 1 1 1
1 1 1 1 1

> ones([2,4])

See also: Page 201 size (), Page 239 zeros ().

OPEN —

open —
Open
Oa0,
open
Example
No example yet - coming soon

See also: Page 1 (),

151

152

pause — Pause program

Pause

< o

CHAPTER 9. FUNCTION REFERENCE

pause displays Hit return to continue,and then stops execution of an RAB program until the re-
turn key is pressed. If the optional string argument is present, itisusedinstead of the Hit return to continue

message.

= This is not an R{AB built-in function. This function is normally loaded on start-up from the pause. r file
in the standard r1ib directory. Use of the —r option, incorrectly setting the RLAB_LIB_DIR environmental
variable, or modifying pause . r may make this function unavailable.

Example

> pause ()
Hit return to continue

0
> pause();
Hit return to continue

> pause ("Kindly press any key:");

Kindly press any key:

]

> pause ("Kindly press the return key:");
Kindly press the return key:

> pause ("Hit return, or else!");
Hit return, or else!

>

See also: Page 102 fprintf (), Page 108 getline ().

PCLOSE — CLOSE PLOT WINDOW

pclose — close plot window
PClose

pclose closes the current plot window.

Example
No example yet - coming soon

See also: Page 150 pend (),

153

154 CHAPTER 9. FUNCTION REFERENCE

pend — Close all plotting windows
PEnd

pend is used to end the plotting session. This is useful when you have many plot windows open and do not
wish to use pclose on each one induvidually.

Note: You can begin plotting again by using pstart.

= This is not an R{AB built-in function. This function is normally loaded on start-up from the plot . r file
in the standard r1ib directory. Use of the —r option, incorrectly setting the RLAB_LIB_DIR environmental
variable, or modifying plot . r may make this function unavailable.

Example

> pend()
0
> pend();

See also: Page 68 pclose ().

PLALT — SET VIEWING ALTITUDE 155

plalt — Set viewing altitude
PIAlt

GEOSOSTING

plalt isused to set the viewing altitude for three dimensional plots. This is expressed in degrees above the
XY plane.

= This is not an R{AB built-in function. This function is normally loaded on start-up from the plot . r file
in the standard r1ib directory. Use of the —r option, incorrectly setting the RLAB_LIB_DIR environmental
variable, or modifying plot . r may make this function unavailable.

Example
No example yet - coming soon

See also: Page 154 plaz ().

156

plaspect —
PlAspect

GO0

plaspect

Example
No example yet - coming soon

See also: Page 1 (),

CHAPTER 9. FUNCTION REFERENCE

PLAXIS — 157

plaxis —
PlAxis

s (D-0)
plaxis

Example
No example yet - coming soon

See also: Page 1 (),

158 CHAPTER 9. FUNCTION REFERENCE

plaz —
PIAz

-0

plaz

Example
No example yet - coming soon

See also: Page 1 (),

PLEGEND —

plegend —
Plegend

resend-(0-()

plegend

Example
No example yet - coming soon

See also: Page 1 (),

159

160 CHAPTER 9. FUNCTION REFERENCE

plgrid —
PIGrid

Grerid-(O-0
plgrid

Example
No example yet - coming soon

See also: Page 1 (),

PLGRID3 —

plgrid3 —
PIGrid3

o)D)
plgrid3

Example
No example yet - coming soon

See also: Page 1 (),

161

162 CHAPTER 9. FUNCTION REFERENCE

plhist —
PlHist

ERED-D-D)
plhist

Example
No example yet - coming soon

See also: Page 1 (),

PLHISTX —

plhistx —
Plhistx

Eanisen-(D-0)

plhistx

Example
No example yet - coming soon

See also: Page 1 (),

163

164 CHAPTER 9. FUNCTION REFERENCE

plhold —
PlHold

i (O-0)

plhold

Example
No example yet - coming soon

See also: Page 1 (),

PLHOLD_OFF —

plhold _off —
PIHoldOff

imoraore- (D)

plhold off

Example
No example yet - coming soon

See also: Page 1 (),

165

166

plimits —
PLimits

00
plimits

Example
No example yet - coming soon

See also: Page 1 (),

CHAPTER 9. FUNCTION REFERENCE

PLMESH — 167

plmesh —
Plmesh

Gamesn(O-0)

plmesh

Example
No example yet - coming soon

See also: Page 1 (),

168 CHAPTER 9. FUNCTION REFERENCE

plot —
Plot

900D

plot

Example
No example yet - coming soon

See also: Page 1 (),

PLOT3 — 169

plot3 —
Plot3
020
plot3
Example
No example yet - coming soon

See also: Page 1 (),

170

plprint —
PIlPrint

-0
plprint

Example
No example yet - coming soon

See also: Page 1 (),

CHAPTER 9. FUNCTION REFERENCE

PLPTEX — 171

plptex —
PlpTeX

Fimeen-(D-0)

plptex

Example
No example yet - coming soon

See also: Page 1 (),

172

plstyle —
PiStyle

GEDE0R0

plstyle

Example
No example yet - coming soon

See also: Page 1 (),

CHAPTER 9. FUNCTION REFERENCE

PLWID — 173

plwid —
Plwid

00
plwid

Example
No example yet - coming soon

See also: Page 1 (),

174 CHAPTER 9. FUNCTION REFERENCE

printf — Formatted Output

FormatPrint

®
() st

The print f function is intended for writing formatted output to standard output, which is usually the screen.
It is similar to the C language function of the same name, though some features are limited or not available, since
RiAB doesn’t have all the data types of C.

The first argument is the format string. It consists of the text to be written out, and possibly some conversion
specifications. A conversion specification is a sequence of commands that determine how the remainder of the
arguments are to be displayed. The left most conversion specifier is matched to the third argument, the next
specifier to the fourth argument, and so on. Each argument has to be matched to a conversion specification.
When the format string is being scanned, the argument that matches the the specifier that the scanner is up to is
called the current argument .

Conversion specifications always begin with a % sign. The next thing that can occur are the flags:

- causing the conversion to be left-justified, instead of the default right-justified.
+ causing a sign to always be prepended to the conversion, instead of the default of only prepending minus signs.

which causes the format to be of an alternate form. This only has meaning for e, E, £, g and G formats, where
is causes a decimal point to be used always. It also prevents suppression of trailing zeros for g and G
options.

0 (zero) which causes padding by leading zeros, instead of the default space padding. This is overridden by both
- and specifying a precision.

space which causes a space to be prepended if no sign is present. This is overridden by the + flag.

Following any flags, a minimum field width may be specified. This is either a integer constant, or a *
character. If it is a constant, this is the minimum width. If it is a *, then the current argument (which must be
a scalar) is used to specify the minimum width. If there is an optional width, then there may also be an option
precision. This is specified in the same way as the width, using either and integer constant, or a * to signify that
the current argument is to be used.

The next thing that can occur is an optional h or 1 (ell) modifier. This changes the behavior of the subsequent
i and u conversion specifiers. It is legal, but has no effect, with the d specifier. It is illegal with all other
specifiers.

The final thing that must occur is a character specifying the way in which the current variable is to be
displayed. The valid characters are

¢ causes the argument to be converted to an unsigned character format.

d which causes the output to be displayed as a decimal string of the form /- Jdddd. The precision specifies the
minimum number of digits to appear, with a default of one.

e causes the output to be displayed in scientific notation of the form /- Jd.ddde—+dd, where d is any digit. There is
always one non-zero digit before the decimal place if the argument is non-zero. The precision specification
sets how many digits are present after the decimal place, with a default of six.

E is the same as e, except that a upper case letter E is used to seperate the mantissa and exponent instead of a
lower case e.

PRINTF — FORMATTED OUTPUT 175
f causes the output to be displayed as a decimal string of the form ddd.ddd. the precision specifies how many
digits should appear after the decimal place, with a default of six.

g is the same as e is the exponent would be less than -4, or greater than the precision. Otherwise, it is the same
as f.

G is the same as E is the exponent would be less than -4, or greater than the precision. Otherwise, it is the same
as f.

i is the same as d, except that the 1 flag may be used.
s may be used to display strings. If the argument is a scalar, then this is the same as f.

u displays the argument as an unsigned integer value. The precision specifies the minimum number of digits to
be displayed, with a default value of one.

The number of arguments must match the number of conversion specifications, including those required for
width and precision specifications.
printf cannot print out whole matrices or lists. write knows how to deal with entire data objects.

Example

> a = rand()

a =
0.95
> b = rand() + rand()*1j
b =
0.244 + 0.1621
> ¢ = "der string"
c =

der string

> printf("%e , %g , %d", a,a,a)
9.501680e-01 , 0.950168 , O 27
> printf("%e , %g , %d", a,a,a);
9.501680e-01 , 0.950168 , 0> printf("%e , %g , %d\n", a,a,a);
9.501680e-01 , 0.950168 , O
> printf ("%+15e , %$-f , %s\n", a,b,c);
+9.501680e-01 , 0.244271 , der string
> d = rand(3,4)
d =
0.252 0.985 0.0747 0.462
0.337 0.811 0.482 0.684
0.302 0.702 0.0618 0.351

> for(i in 1l:size(d) [1]
for(j in 1l:size(d) [
printf ("d[%i;%1i]
}

N~
—
00 ~—

{
f\n", i , j, d[i;31);

d[1l;1] = 0.251599
d[1l;2] = 0.984848
d[1;3] = 0.074694
d[1;4] = 0.461953
d[2;1] = 0.336841
d[2;2] = 0.811462
d[2;3] = 0.482371

176 CHAPTER 9. FUNCTION REFERENCE

d[2;4] = 0.684488
d[3;1] = 0.301645
d[3;2] = 0.702280
d[3;3] = 0.061787
d[3;4] = 0.351217

See also: Page 102 fprintf (), Page 182 read (), Page 206 sprintf (), Page 233 write ().

PRINTMAT — PRETTY PRINT A MATRIX 177

printmat — Pretty print a matrix
PrintMat

(im0} 0

String f
o

printmat printsthe matrix specified by the first matrix argument. If the optional string argument is supplied,
itis used as the title — othewise no label is used. The next argument is a string vector containing labels for each
row, and the final argument is a string vector containing labels for each column. If the row or column labels are
missing, labels are generated.

= This is not an R{AB built-in function. This function is normally loaded on start-up fromthe printmat . r
file in the standard r1ib directory. Use of the —r option, incorrectly setting the RLAB_ LIB_DIR environmental
variable, or modifying printmat . r may make this function unavailable.

Example

> a = rand (4, 3)

a =
1 0.0369 0.204
0.975 0.162 0.167
0.647 0.665 0.655
0.333 0.0847 0.129
> ColLabels = ["Col 1", "2nd","The third Column"];
> RowLabels = ["Row 1", "second row", "beavis", "butthead"];
> printmat (a)
-1l = 2—-——= ———= 3————
-— 1 - 1.00000 0.03694 0.20414
-— 2 —-=> 0.97452 0.16171 0.16731
- 3 - 0.64748 0.66465 0.65496
-— 4 ——> 0.33309 0.08467 0.12882
0

> printmat (a, "My very own label", RowLabels, ColLabels);

My very own label =

Col 1 2ndThe third Column
Row 1 1.00000 0.03694 0.20414
second row 0.97452 0.16171 0.16731
beavis 0.64748 0.66465 0.65496
butthead 0.33309 0.08467 0.12882

178 CHAPTER 9. FUNCTION REFERENCE

prod — Product of matrix elements
Prod

(pr02)-(D- [|- ()

If the argument is a row or column vector, prod computes the product of the elements of that vector. If the
argument is not a vector, a row vector containing the product of each column is returned.

Example

>d=1:3:0.5
d =

1
> prod(d)
22.5

> e = d’

1
1.5
2
2.5
3
> prod(e)
22.5
> f = 10*rand (2, 5)
£ =
10 6.47 0.369 6.65 2.04
9.75 3.33 1.62 0.847 1.67
> prod(f)
97.5 21.6 0.597 5.63 3.42
> prod(f’)
325 74.4

> prod(prod(f))
2.41e+04

See also: Page 75 cumprod (), Page 213 sum ().

PSTART — CREATE MAIN PLOT WINDOW 179

pstart — Create main plot window
PStart

< 7Y
Scalar f

pstart is used to create a plotting window. Within each plotting window there can be sub-plots. The first
argument to pstart is the number of sub-plots to be created in the horizontal direction, and the second argument
is the number of sub-plots to be created in the vertical direction. If these arguments are omitted, they default to
1. This means that if both are omitted, a single sub-plot wil be created within the plotting window. The third
argument is the type of output. The list of valid output devices is dependent on the setup of the plotting library for

your particular system, however some typical values include "xwin" — X Window System, "xterm" — X
terminal, "plmeta" — PLPLOT portable meta-file format, "tekt" — Tektronix terminal, "xfig" — Xfig
file, "ps" — Postscript, "psc" — Colour Postscript and "hp7470" —- HPGL plotter. To obtain a full list,

execute pstart without any arguments.

The newly created plot window will become the current plot window.

= This is not an R{AB built-in function. This function is normally loaded on start-up from the plot . r file
in the standard r1ib directory. Use of the —r option, incorrectly setting the RLAB_LIB_DIR environmental
variable, or modifying plot . r may make this function unavailable.

Example
> pstart();

Plotting Options:

< 1> (xwin) X-Window (X1lib)

< 2> (xterm) Xterm Window

< 3> (tekt) Tektronix Terminal (4010)

< 4> (t4107t) Tektronix Terminal (4105/4107)

< 5> (mskermit) MS—-Kermit emulator

< 6> (dg300) DG300 Terminal

< 7> (plmeta) PLPLOT Native Meta-File

< 8> (tekf) Tektronix File (4010)

< 9> (t4107f) Tektronix File (4105/4107)

<10> (ps) PostScript File (monochrome)

<11> (psc) PostScript File (color)

<12> (xfiqg) Xfig file

<13> (1l3jii) LaserJet II Bitmap File (150 dpi)
<14> (hp7470) HP 7470 Plotter File (HPGL Cartridge, Small Plotter)
<15> (hp7580) HP 7580 Plotter File (Large Plotter)
<16> (imp) Impress File

<17> (null) Null device

180 CHAPTER 9. FUNCTION REFERENCE

Enter device number or keyword: 17
Sending output to Null device..
> pstart (1,2, "hp7470")
Enter desired name for graphics output file:
Created dummy.hpgl
P =

dummy . hpgl

1
See also: Page 149 pclose (), Page 150 pend (), Page 176 pwin ().

PTITLE — 181

ptitle —
PTitle

ptitle 0 a
ptitle

Example
No example yet - coming soon

See also: Page 1 (),

182 CHAPTER 9. FUNCTION REFERENCE

pwin —
PWin

pwin)~()0
pwin

Example
No example yet - coming soon

See also: Page 1 (),

QR — QR DECOMPOSITION 183

gr — QR decomposition
OR

O

gr computes the QR decomposition of the argument matrix, returning a list with two elements g and r.
These are the) and R matrices, such that, for an argument matrix of A:

A=QR

If the optional argument "p" is used, column pivoting is used, with the permutation matrix returned in the
list result as p, such that for a permutation matrix P,

AP = QR

() will have orthogonal columns, and R will be upper-triangular.

Example

> a = rand(5,5)

a =
0.81 0.621 0.328 0.0767 0.818
0.909 0.845 0.799 0.647 0.367
0.293 0.132 0.0398 0.0221 0.191
0.743 0.0376 0.398 0.227 0.845
0.705 0.811 0.263 0.431 0.401
> res = gr(a)
res =
a r
> a - res.g*res.r
-1.1le-16 -3.33e-16 -3.89%e-16 -1.1lle-16 -2.22e-16
0 0 l.11e-16 l1.11e-16 -1.67e-16
0 -5.55e-17 -9.71le-17 -1.42e-16 -2.78e-17
0 -6.94e-17 -2.22e-16 -5.55e-17 0
0 0 -5.55e-17 -5.55e-17 -5.55e-17
> res2 = gr(a,"p")
res2 =
p q r

> a*res2.p - res2.g*res.r

-1.11e-16 -3.33e-16 -3.89%e-16 -1.l1lle-16 -2.22e-16
0 0 l.11e-16 l.11le-16 -1.67e-16
0 -5.55e-17 =-9.71le-17 -1.42e-16 -2.78e-17
0 -6.94e-17 -2.22e-16 -5.55e-17 0
0 0 -5.55e-17 -5.55e-17 -5.55e-17

184 CHAPTER 9. FUNCTION REFERENCE

rand — Random Values

Random

Scalar ’ Scalar

"default"

N

5@5

"beta" Scal ’ Scalar

ar ’ Scalar

"bin"

I
(€]
o
=

n

chi" ’ Scalar
"exp" ’ Scalar A
@ ’ Scalar ’ Scalar A

g

|

"nchi" ’ Scalar ’ Scalar
"nf" ’ Scalar }—@—{ Scalar ’

"poisson" ’ Scalar

"uniform" ’ Scalar ’ Scalar

rand has two distinct forms. The first form is used to set the distribution that is used to generate random
values. The second form actually generates the values. We will look at each form in turn.

2

l
i

!

e [distribution. If the first scalar argument is a and the second scalar argument is b, then the density of the

distribution is
$a_1(1 —-$)b_1

B(a,b)

where B(a, b) is the binomial distribution.

forO0 <z <1

e Binomial distribution. The first scalar argument specifies the number of trials, and the second scalar
argument specifies the probability of an event occuring in a trial.

o ? distribution. The scalar argument specifies the number of degrees of freedom.
o Default distribution. The default distribution is a uniform distribution between 0 and 1.
o Exponential distribution. The scalar argument specifies the mean of the distribution.

o F distribution. The first scalar argument specifies the degrees of freedom present in the numerator, and the
second scalar argument specifies the degrees of freedom in the denominator.

e [distribution. If the first scalar argument is a, and the second scalar argument is r, then the density of the

distribution is:

ar r—1_—ax
" e
r(r)

RAND — RANDOM VALUES 185

o Non-central y? distribution The first scalar argument specifies the number of degrees of freedom, and the
second scalar argument specifies the non-centrality.

e Non-central F distribution. The first scalar argument specifies the degrees of freedom present in the
numerator, the second scalar argument specifies the degrees of freedom in the denominator, and the third
scalar argument specifies the non-centrality.

o Normal distribution. The first scalar argument specifies the mean, and the second scalar argument specifies
the standard distribution.

e Poisson distribution. The scalar argument specifies the mean of the distribution.

o Uniform distribution. The first scalar argument specifies the lower limit, and the second scalar argument
specifies the upper limit.

The second form of the rand function is used to produce random variables from whatever distribution is
actually selected at the time. If you supply no arguments, then a random scalar is returned. If you supply two
scalar arguments, then a matrix is returned. The first argument specifies the number of rows, and the second
argument specifies the number of columns. In addition, you can supply a matrix argument, which must have two
elements, where the first is the number of rows, and the second is the number of columns. This is intended for
use with the size function.

If srand is not used to set the seed value, each R{AB session will produce the same results.

Example
> rand ()
1
> rand (2, 4)
0.975 0.333 0.162 0.0847
0.647 0.0369 0.665 0.204
> rand(3,2)+rand(3,2)*1]
0.167 + 0.2651 0.91 + 0.09181i
0.655 + 0.71 0.112 + 0.902i
0.129 + 0.95i 0.299 + 0.961
> rand("bin",100,0.5)
1
> rand (2, 5)
44 56 57 52 56
44 46 48 44 46
> rand("normal",0,1)
1
> rand (2, 5)
0.495 -0.757 0.909 -0.748 -0.586
-0.115 0.684 0.713 -0.456 0.619

See also: Page 209 srand ().

186 CHAPTER 9. FUNCTION REFERENCE

rank — Rank of a Matrix
Rank

o
() [

rank calculates the rank of the argument matrix. The rank of a matrix is the number of non-zero singular
values of that matrix. However since numeric computation introduces errors, the singular values are actually
tested against a set tolerance value. The optional scalar argument, if present, specifies the tolerance, otherwise
the default of the triple-product of the greater dimension of the argument, the 2-norm of the matrix and machine
epsilon is used.

= This is not an R{AB built-in function. This function is normally loaded on start-up from the rank . r file
in the standard r1ib directory. Use of the —r option, incorrectly setting the RLAB_LIB_DIR environmental
variable, or modifying rank . r may make this function unavailable.

Example

> a = rand(5,5)

a =
0.44 0.741 0.842 0.599 0.239
0.685 0.313 0.652 0.455 0.465
0.129 0.759 0.386 0.658 0.546
0.79 0.151 0.583 0.232 0.801
0.868 0.325 0.205 0.797 0.247
> svd(a) .sigma
sigma =
2.6 0.835 0.624 0.442 0.0475
> rank (a)
5
> b = [a,a;a,a]l;
> svd(b) .sigma
sigma =
matrix columns 1 thru 6
5.2 1.67 1.25 0.884 0.095 1.63e-16

matrix columns 7 thru 10
6.15e-17 2.93e-17 1.04e-17 1.45e-18
> rank (b)
5

See also: Page 86 epsilon (), Page 142 norm (), Page 201 size ().

RCOND — CONDITION NUMBER 187

rcond — Condition Number
RCond

(reond)- (- Man |- ()

rcond calculates a scalar that is an approximation to the reciprocal of the condition number of the argument
matrix. An approximation is used to reduce the computation required.

Example

> a = rand (6, 6)

a =

matrix columns 1 thru 6
0.707 0.927 0.558 0.537 0.299 0.411
0.798 0.316 0.108 0.699 0.703 0.356
0.366 0.0293 0.207 0.589 0.485 0.65
0.67 0.188 0.0663 0.431 0.43 0.443
0.235 0.841 0.959 0.12 0.536 0.233
0.573 0.8 0.769 0.113 0.365 0.336

> norm(a) *norm(inv(a))
185
> rcond(a)
0.0054
> 1/rcond(a)
185

See also: Page 77 det (), Page 119 inv (), Page 130 1u ().

188 CHAPTER 9. FUNCTION REFERENCE

read — File Read
Read

(read)- (O[S}

read is a function that allows you to read in variables from a file. The string argument specifies the file to
read from. All the variables that are stored in the file are read in, overwriting any existing variables with the same
name. The file is closed after it has been read from. This function returns 1 is the read succeeds.

The format of the file is quite specific, and it is intended that this function be used with the write function.
Trying to create a file that can be read from is fraught with danger. If it is essential, I suggest using write to
create one similar, and then editing as little as necessary.

Example
Dummy Example

See also: Page 68 close (), Page 184 readm (), Page 233 write (), Page 236 writem().

READB — READ BINARY DATA FROM A FILE 189

readb — Read binary data from a file
ReadMatrix

(reaa)- (O [sme)

readb is used to read in binary data from a file.

This function is directly compatible with the MATLAB”™ matrix storage method.
Example
Dummy Example

See also: Page 68 close (), Page 183 readb (), Page 184 readm (), Page 188 reshape (), Page 233
write (), Page 236 writem().

190 CHAPTER 9. FUNCTION REFERENCE

readm — Read Matrix from file
ReadMatrix

(reasm)-(O-[Sene}- (1)

readm is used to read in a matrix argument. The argument specifies the file to read it from.

The file format is generic ASCIIL. The rows of the matrix are separated by newlines, and the columns are
separated by spaces or tabs. readm is intended to read in data from other programs, either directly or using a
simple script. You shouldn’t try to read in a string sequence using this function - the results will be strange.

This function is directly compatible with the MATLAB”™ matrix storage method.

Example

Dummy Example

See also: Page 68 close (), Page 184 readm (), Page 188 reshape (), Page 233 write (), Page 236
writem().

REAL — REAL PART 191

real — Real Part
Real

real returns the real part of the argument. If the argument is a matrix, then the operation is performed
element-by-element, returning a matrix.

Example

> real (2+57)

2
> real (0.45+5.43267)
0.45
> real (3.32)
3.32
> a = 100*(rand(2,3)+rand(2,3) *(0+17))
a =
matrix columns 1 thru 3
100 + 66.51 64.7 + 20.41 3.69 + 65.51
97.5 + 8.471 33.3 + 16.71 16.2 + 12.91
> real (a)
100 64.7 3.69
97.5 33.3 16.2

See also: Page 71 conj (), Page 113 imag ().

192 CHAPTER 9. FUNCTION REFERENCE

redit — Edit rfiles
Redit

o
(0[]

The redit function is a simple way to edit an rfile, and to then have it automatically reloaded upon exiting
the editor. The first argument specified the name of the rfile to be editted, including the . r extension. The
optional second string specifies the editor to use. The default editor is vi (1)

= This is not an R{AB built-in function. This functionis normally loaded on start-up from the redit . r file
in the standard r1ib directory. Use of the —r option, incorrectly setting the RLAB_LIB_DIR environmental
variable, or modifying redit . r may make this function unavailable.

Example

> redit ("redit.r", "emacs");
edited and loaded rfile: redit.r
> system("diff redit.r redit.r.”17");

28c28

< ED = "emacs";

> ED = "vi";

32c32

< error ("2nd argument to edit () must be string");
> error ("2nd argument ot edit () must be string");

See also: Page 61 cd (), Page 218 system ().

2This decision is possibly the most perverse part of RiAB . Complaints to Tan Searle. — bradh

REPLOT — 193

replot —
Replot

(repton-(D-0)

replot

Example
No example yet - coming soon

See also: Page 1 (),

194 CHAPTER 9. FUNCTION REFERENCE

reshape — Reshape matrix
Reshape

(reshap) (O [t |- () [|- () st |1

reshape changes the internal form of the argument matrix such that the matrix returned has the number of
rows specified by the second argument, and the number of columns specified by the last argument. reshape
will not reform the matrix if the new matrix and the old matrix would not have the same number of elements.

Example

> a = 1:20;

> show (a)
name: a
class: num
type: real
nr: 1
nc: 20
> b = reshape(a,4,5)
b =
1 5 9 13 17
2 6 10 14 18
3 7 11 15 19
4 8 12 16 20
> ¢ = reshape(b,2,10)
c =
matrix columns 1 thru 6
1 3 5 7 9 11
2 4 6 8 10 12

matrix columns 7 thru 10
13 15 17 19
14 16 18 20

ROUND — ROUND OFF VALUE 195

round — Round off value
Round

round returns the nearest integer value to the argument. If the argument is a matrix, the operation is done
element by element.

The returned value is somewhat dependant on the underlying math library function, though in general, if the
difference between the function argument and the rounded result is exactly 0.5, then the result will be rounded to
the nearest even integer.

Example

> round (1.002)

1
> round(1.998)
2
> round(1l.5)
2
> round(2.5)
2
> b = 100*rand (2, 5)
b =
65.5 91 29.9 70 9.18
12.9 11.2 26.5 95 90.2
> round (b)
65 91 30 70 9
13 11 27 95 90
> ¢ = 100*(rand (2, 3)+ (rand (2, 3)* (0+13)))
c =
matrix columns 1 thru 3
96 + 90.81 44.1 + 14.81i 92.4 + 0.5431i
91.5 + 36.21 7.35 + 87.91 8.82 + 22.2i

> round (c)

matrix columns 1 thru 3
96 + 91i 44 + 151 92 + 1i
91 + 361 7 + 881 9 + 22i

See also: Page 62 ceil (), Page 100 £1looxr (),Page 116 int ().

196 CHAPTER 9. FUNCTION REFERENCE

save — Write workspace to a file

< ®

The save function writes the contents of all the workspace variables to a file. The file is then closed. The
file may be specified in the optional argument, with a default of SAVE. Functions are not saved. The variables
can be read back from the file by using the read function (see Page 182).

= This is not an R{AB built-in function. This function is normally loaded on start-up from the save. r file
in the standard r1ib directory. Use of the —r option, incorrectly setting the RLAB_LIB_DIR environmental
variable, or modifying save . r may make this function unavailable.

Save

Example
Dummy Example

See also: Page 68 close (), Page 182 read (), Page 233 write ().

SCALAR — SCALAR CONVERSION 197

scalar — Scalar Conversion

Scalar

<

©

Scalar

Matrix

scalar converts its argument to a scalar. If no argument is supplied, then O is returned. If the argument
is a scalar, that scalar is returned. If the argument is a matrix, the matrix must have a single element, which is
returned.

scalar is provided for symmetry with the matrix function. Functionally it is not required, since scalar
references to matrices are automatically converted to scalar type.

Example

)

> scalar

(

0
> scalar (2)
2
> scalar(2.3462+365.3657)

2.35 + 365i
> scalar([1.3242e-211)
1.32e-21

See also: Page 133 matrix ().

