
PowerLisp User Guide 1

PowerLisp
Common Lisp Development Environment

Version 1.1

by Roger Corman
March 1, 1994

Copyright © 1994 Roger Corman
All rights reserved.

PowerLisp User Guide 2

Contents

1. Introduction 3

2. Licensing 5

3. Quick Start Tutorial 8

4. Files in this Release 12

5. Interactive Environment 14

6. PowerEdit Text Editor 16

7. PowerLisp Compiler 19

8. PowerLisp Assembler 21

9. PowerLisp Disassembler 22

10. Linking and Debugging 23

11. Memory Usage 24

12. Operating System Issues 26

13. PowerLisp History 27

14. Common Lisp Implementation 28

15. Non-standard Extensions 37

16. Notes 39

PowerLisp User Guide 3

Introduction

PowerLisp 1.1 is the second public release of PowerLisp, a Common Lisp development environment for the
Macintosh. It consists of a Common Lisp interpreter, native-code 680x0 compiler, 680x0 macro assembler,
disassembler, incremental linker and multi-window text editor. It requires a Macintosh with at least a 68020
processor and system 7.0 or later. About 2 megabytes of RAM are required to run it, and to do much with it you
need more like 5 or 6 megabytes. Like any Common Lisp system, the more memory the better.

PowerLisp has the ability to run in the background. While executing a Common Lisp program, the user may switch
to another application as it continues to run.

PowerLisp is extremely fast. All compiled PowerLisp functions execute as native 680x0 instructions. The speed is
comparable to other fully compiled languages.

PowerLisp programs execute in the background, while you are using the system. All editor functionality is fully
available while you are compiling or otherwise executing Common Lisp programs. I do not know of another
development environment on the Macintosh that can do this. Of course, you can also use a different application
while your programs execute.

PowerLisp User Guide 4
PowerLisp is being released as shareware. I expect to release regular updates, which will include new features and
bug fixes. The frequency and scope of these will depend on the amount of interest there is in the product. I
encourage everyone who finds this product useful to send me the shareware fee (see Licensing, below) and register
your copy. Even if you don't elect to register it, I appreciate correspondence via e-mail or otherwise letting me know
what you think of it.

The documentation is currently sparse, because of my time constraints. I intend to produce better documentation in
the near future. For now the general information below will have to suffice. Please check this product out. I believe
it offers extraordinary value for the price. The primary alternative for Lisp programming, Macintosh Common Lisp
from Apple, is an excellent product. PowerLisp cannot compete on features or performance with Macintosh
Common Lisp. It is, however, one tenth the cost ($50 as opposed to $500). I feel there may be a niche for a low-cost,
small, easy-to-use product like this.

I enjoy programming with PowerLisp, and I hope you will too.

Roger Corman

PowerLisp User Guide 5

Licensing

PowerLisp is distributed as shareware. I reserve the copyright to the executable application, as well as the source
code to the compiler, assembler and library functions. I am asking $50 for the right to use one copy of PowerLisp. If
you find this program useful, please send a check for this amount to the address below (under Registering Your
Copy of PowerLisp). If you are a teacher, and are interested in using this for a class, please contact me. I am
prepared to offer a very reasonable licensing arrangement for classes. Unlicensed copies of this system cannot be
legitimately used in a class setting otherwise.

I have spent a considerable amount of time developing this program. I may elect to spend a lot more time on it, but
only if licensing fees received warrant it. I do not expect a huge response to a program of this type, but each license
fee I do receive will have a definite impact on the amount of time I will spend improving it.

You may share this program with others. You may not redistribute it for profit, nor make any changes to it,
without the permission of the author.

PowerLisp User Guide 6

PowerLisp 1.1

License Price: $50.00 US

What You Get:

• On receipt of your check, I will forward you any the most up-to-date information I have regarding bugs,
new versions and features. You may also receive a beta pre-release version on floppy disk.

• You will receive at least one free major update by mail. I will send registered owners a copy of a new
major revision before uploading it to on-line services.

• If you send a list of requested additional features, I will do my best to implement them as soon as possible.
I will then forward you a courtesy copy.

• I will attempt to help with any problems you have and answer questions. I can only offer limited phone
support. The preferred method of contacting me is via e-mail or US mail. I will answer all mail
communications as soon as possible.

• If and when I decide to convert this to a commercial version (non-shareware) licensed owners of the
shareware version will be guaranteed a special arrangement. This would likely be a free or at-cost license
upgrade to the commercial version.

PowerLisp User Guide 7

Registering Your Copy of PowerLisp

Send a check for $50.00 US to:

Roger Corman
2124 Cummings Drive
Santa Rosa, CA 95404
USA

You may contact me by mail to the above address, or via e-mail or telephone (see below). Along with the fee, be
sure to send me your address (and phone number if you don’t mind). Also I would appreciate a mention of which
version you have, what your system is like, and any comments you have. A wish list of product improvements would
also be welcome.

America Online:

PowerLisp

Internet:

PowerLisp@aol.com

Telephone:

(707) 528-3321 (evenings and weekends)

(707) 575-4024 (days)

(707) 528-7477 (fax)

PowerLisp User Guide 8

Quick Start Tutorial

This section is intended to briefly lead you through writing, running, compiling, and disassembling a small Common
Lisp program with PowerLisp.

1. Start PowerLisp by double-clicking the application icon.
It will take a few seconds as it loads the standard libraries. When it finishes, your worksheet will be
displayed, with the blinking text cursor. The message “Ready for input” should appear in the status message
area at the top of the worksheet.

2. Turn on Lisp mode editing.
Although this is not the default text editing mode currently, you will typically want to use it when editing
Lisp programs. Text files whose extensions end with “.lisp” automatically default to this mode. To turn it
on, select Lisp under the Mode popup menu at the top of the Worksheet.

3. Enter a PowerLisp expression.
Try typing:

(list-all-packages)

This command invokes the common lisp function which returns the packages loaded in the system. To
execute it, press the Enter key (not the Return key). In PowerLisp, the Return key is only used for editing
—to enter a new line into the text in the window. Only the Enter key executes anything. In this case, the
entire line of text that the cursor is positioned on is read by the PowerLisp system and executed.

Note that you may use -Return ⌘ (hold down the Command key while pressing Return) to simulate the
Enter key if you prefer. Some keyboards do not have an Enter key, and so may require this method.

After pressing Enter , the PowerLisp interpreter will output a list representing the packages loaded in the
system. All PowerLisp output is in bold-faced text. What you type is in normal text.

PowerLisp User Guide 9
4. Create and execute a common lisp function.

Try typing:

(defun print-column (x)
"Prints the elements of a list in a column."
(dolist (i x)

(print i)))

While typing this function, use the Return key to end each line.

After the whole function has been entered, highlight the entire expression by clicking to the left of the
opening parenthesis and dragging to the right of the ending parenthesis. After the whole expression is
highlighted (all four lines) press Enter . The Lisp system will read and execute the expression, and then
return and display the name of the defined function print-column.

Alternatively, since you are editing in Lisp mode, you may leave your text cursor positioned immediately
following the last close parenthesis if the function definition. You should notice that the entire function
definition is outlined. When you press Enter, the outlined expression is first automatically highlighted then
executed.

5. Execute the function.
Type:

(print-column '(see hear taste smell touch))

The print-column function you defined will cause the list elements to be printed vertically in the worksheet
(one element on each line). It is being executed by the interpreter.

6. Get function documentation.
Type:

(documentation 'print-column 'function)

The system will display documentation that you defined for the function.

7. Compile the function.
Type:

(compile 'print-column)

If this is the first time you have requested the compiler, it will take a few seconds to load the compiler and
assembler. The time could take from five to twenty seconds, depending on your machine. After loading the
compiler, the system will compile the function. This should take a second or less.

If the function compiles correctly, the system will print the name of the function.

PowerLisp User Guide 10
8. Execute the compiled function by repeating step 4 above.

It is not necessary to retype this line—just go to the previous line, highlight it and press Enter . In
PowerLisp, you should never have to retype anything!

The system should respond as in step 4.

9. Disassemble the function.
Type and execute the following line:

(disassemble 'print-column)

The system will display a dump of the machine instructions which comprise the function print-column.
You may or may not be interested in this. Compiled PowerLisp functions always include code to check for
the correct number of arguments (in this case, one).

10. Time the function.
You can invoke PowerLisp’s high-resolution timer by executing the line:

(time (print-column '(see hear taste smell touch)))

The function will be executed as before, and will be followed by a message regarding the amount of time
elapsed during execution. You may compare this against the interpreted version by re-executing the
function definition from step 3 and executing the line above again. You will see that as an interpreted
function it executes slower.

11. Save the function you have defined.
Select the New command from the File menu. Name the new file print-column.lisp.

Select PowerLisp Worksheet from the Window menu to return to the worksheet (or just click on its
window). Select the function definition (from step 3) by highlighting the whole thing.

Execute the Copy command via the Edit menu or pressing -C⌘ .

Select the file print-column.lisp from the Window menu or by clicking on its window.

Execute the Paste command via the Edit menu or pressing -V⌘ .

The function definition should be displayed in the print-column.lisp window.

Select Save from the File menu to save the file.

PowerLisp User Guide 11

Important Notes

• You may have any number of files open. As editor memory gets filled up, temporary files may be created to
store copies of the files you are editing. The number of files you have open does not affect the amount of
memory available to Lisp programs (this is new with version 1.1). Actually, it has some affect but not
much.

• There is no difference between the PowerLisp Worksheet and any other file. Every open file may act as a
worksheet. Lisp output will, however, be inserted into any file which you use as a worksheet.

• If you are not using Lisp mode editing, you may enter common lisp expressions either a line at a time,
pressing Enter after each line, or by entering a complete expression and then executing the entire thing at
once. The latter is highly recommended. In the first case, if you have not entered a complete Lisp
expression (perhaps not closed a list), you will see a prompt containing the number of open left parentheses
in the message area at the top of the editor window.

PowerLisp User Guide 12

Files in this Release

The application is called PowerLisp 1.1. Double click on it to launch PowerLisp.
The documentation is in a Microsoft Word format file PowerLisp Documentation. A folder in the PowerLisp main
folder is called Library. It contains libraries that PowerLisp needs while running. These include:

cl.lisp Portions of the PowerLisp standard library.
assembler.lisp The PowerLisp assembler.
compiler.lisp The PowerLisp 680x0 compiler.
loop.lisp The Common Lisp Loop facility (MIT version).
backquote.lisp Optimized backquote facility (from CLTL2, Guy Steele).
defpackage.lisp The defpackage macro implementation.
describe.lisp A partial implementation of the describe function.
format.lisp Format function implementation.
graphics.lisp Some basic graphics routines (PowerLisp specific).
structures.lisp Defstruct macro implementation.

Additionally, compiled versions of these may exist along with these source files. They have the same name, with a
.fasl extension.

The Examples folder contains some PowerLisp source files you may want to refer to for examples of PowerLisp
functions. The file asm-funcs.lisp gives some examples of using the assembler. The file eliza.lisp is a rough
version of the Eliza program from Peter Norvig’s book. The examples are admittedly sparse. I intend to have some
good example programs in future versions. If you have written an interesting program with PowerLisp, and you
wouldn’t mind having it distributed with the releases, please send it to me.

The PowerLisp Worksheet file is the file that normally gets loaded as the worksheet when you launch PowerLisp.
If you remove or delete this file, a new one will automatically be created when you restart PowerLisp.

PowerLisp User Guide 13

Compiling the Libraries

PowerLisp 1.1 is distributed with pre-compiled versions of all
its libraries, so compiling the libraries yourself should not be
necessary. The following section is still useful, however, if you
want or need to make any changes to the library sources.
If compiled version of the libraries were not included with your release, you will want to create them yourself.
Performance of compiled code is much better than interpreted code. Compiled libraries may be left out of the release
to reduce disk space (and modem transfer time).

Compiling the included libraries takes a while. This is because the compiler is very slow when running in interpreted
mode. Fortunately it can compile itself!
A file compile-libraries.lisp is included in the Examples folder with this release. Execute this file to compile the
libraries. Give yourself as much memory as possible and be prepared to wait a while. If you like you can switch to
another application and let the libraries compile in the background.

The assembler is compiled first, as this gives the best performance improvement. It starts out very slow, but speeds
up as it compiles. This is because each function, as it is compiled, is dynamically linked into the run time
environment, speeding future compilations. Likewise, the compiler will start to compile slowly and speed up. After
the compiler is compiled, the other libraries will compile rapidly.

If compilation is successful, versions of the libraries with .fasl extensions should show up in your Library sub-
folder.

The entire set of libraries will probably take from 10 to 70 minutes to compile, depending on your machine.
Compiled PowerLisp files take up considerably more disk space than source files, but not necessarily more memory
when loaded. This is because most of the data in the compiled file is only used for load purposes (symbol references
and loader information). The size of compiled libraries is substantially reduced in version 1.1 (compared to 1.01) by
eliminating much redundant symbol information.

PowerLisp User Guide 14

Interactive Environment

PowerLisp is integrated with the PowerEdit text editor. The environment provides a “worksheet” approach to
Common Lisp development. It is specifically modeled on the MPW environment, and also resembled the approach
used by the Mathematica application.

Rather than having a window which emulates a console (e.g. the “Listener” in Macintosh Common Lisp), the
worksheet approach does not emulate a console. Any number of text windows may be open, and any Common Lisp
code in any open window may be executed at any time. The user typically enters a Common Lisp function or
expression, highlights the expression, then presses the Enter key. Note that the Enter key is distinct from the
Return key on the Macintosh keyboard. The Return key is used in the editor to insert a new line. It will not cause
the PowerLisp system to interpret any text.

Note: You may use -Return ⌘ (hold down the Command key while pressing Return) to simulate
the Enter key if you prefer. Some keyboards do not have an Enter key, and so may require
this method.

For convenience, if no text is highlighted, the entire line of text that the text cursor is on will be interpreted
whenever the Enter key is pressed. This allows for a usage model which is similar to a console (i.e. type a line,
press Enter, type another line, press Enter). Like most Lisp consoles, until a Lisp expression is completely entered,
no evaluation takes place and no output is produced. If a Lisp expression is only partially completed, the message
area will display the message “Ready for input.” followed by the number of open left parentheses. This indicates
that you are in the middle of executing an expression.

Pressing Enter after each line (partial expression input) should not be used when you are in the editor’s Lisp mode,
because Lisp mode will sometimes cause more than just the current line to be executed.

After an entire Common Lisp expression is read, it is interpreted, and the resulting value is output at the line
immediately following the line that the text cursor is on.

PowerLisp User Guide 15
Since Common Lisp code can be entered from anywhere in any window, a prompt is not very useful. Output
prompts also tend to get in the way of entering the next expression, as they can inadvertently get sent back as part of
the next expression. Therefore, by default, PowerLisp has no prompt. You can set up a prompt by assigning the
variable *prompt* to a function to execute. This function can output whatever prompt you want to standard output.

The worksheet approach allows you to very easily edit, execute, re-edit, and re-execute expressions without
unnecessary typing. I think you will come to appreciate it as much as I do.

The front-most edit window contains a status line. This area, under the popup menus, is used by the system to
display messages about what it is doing. Unless the status line reads “Ready for input”, you should not attempt to
execute a Common Lisp expression.

When a Common Lisp expression is being executed, you may execute editor commands, and otherwise edit files.
You may also switch to another application. In this case, the Common Lisp processing will continue in the
background. This is useful, for example, during a long compile. If you attempt to edit a file (with PowerEdit, the
PowerLisp editor), any text output by the Common Lisp program will be directed to what was the current text
insertion point at the time the Enter key was pressed (to begin the execution). I think this is generally what you want.
If you are editing the same file in which the expression was executed, however, the PowerLisp output will reset the
insertion point whenever it outputs text. If you are going to edit files, you probably should avoid editing the same
file you are using to execute Common Lisp code.

PowerLisp User Guide 16

PowerEdit Text Editor

The PowerEdit text editor does not use TextEdit (the built in text editor in the Macintosh ROM). It therefore is not
restricted to text files of 32 kilobytes or less. In fact, it can easily handle text files over a megabyte in size. Your
memory partition size determines how many files can be open. PowerEdit does not need to keep the whole file in
memory (any unmodified portions are left on disk). However, the caching and memory usage are not currently as
efficient as I would like. You may run out of memory if you open a lot of files.

PowerEdit, unlike TextEdit, correctly handles tabs. Tabs can be set to 1, 4 or 8 spaces for the document. Other tab
settings can be added by using ResEdit to modify the Tabs popup menu resource. Each text window gets its own tab
setting. Tabs get saved in the resource fork of the file, so that when the file is reopened the editor will remember the
most recent setting.

The PowerEdit functions should be self-explanatory. Features include Undo, Find, Replace, Copy, Cut, Paste, Select
All, and Print. The Print feature is currently pretty rough. It doesn’t print anything except the text of the file (no
fancy formatting).

The Window menu maintains a list of all open text files. You can use it to navigate between files when you have a
lot of files open.

Scrolling
PowerEdit uses an improved (slightly different) way of scrolling than most Macintosh text editors. While you drag
the scrollbar thumb, the file scrolls. Normally, in other editors, the text window does not scroll until after you release
the thumb. I worked hard to get this scrolling to work this way, and am very pleased with the result. The only
downside I can see is that it may be a bit sluggish on slower macs. I plan to have an option to revert to “normal”
scrollbar behavior in a future version.

Font and Size Pulldowns
Each text window may have a different font and character size associated with it. This information is not currently
saved with the file. The editor uses fractional widths internally to support non-monospaced font editing. Typically
monospaced fonts work best for programming, however. The default font is Monaco, 9 pt. The font and font size
selected are “remembered” by information in the resource fork of the file.

PowerLisp User Guide 17
Document Preferences
A resource of type ‘MPSR’ is added to the resource fork of any text file which is created or viewed by PowerEdit. It
contains the user settings for the window position and size, the tab setting, and the font and font size. It is
compatible with the method that MPW uses to save this information, so that it is convenient to alternate between
PowerEdit and MPW.

Common Lisp Support in PowerEdit

PowerEdit includes some features which make it particularly useful for Common Lisp programming. For one thing,
all PowerLisp interpreter output (which is sent to standard output) is printed in a bold version of the font you have
selected. There is no way to enter bold text otherwise. This serves to distinguish between your input and the
interpreter’s output. The editor stores and remembers text style information (while editing, not when the file is
saved). The PowerLisp system ignores this information, however. All text, bold or otherwise, looks the same to the
interpreter.

An additional Lisp support feature involves the highlighting of parenthesized expressions. If the window is in Lisp
Mode, and the text cursor is next to a parenthesized expression (a left or a right parenthesis which is balanced) the
entire expression is highlighted by an outline. This is difficult to explain but relatively easy to demonstrate. Just turn
on Lisp Mode from the popup menu, and enter a Common Lisp expression with several levels of parentheses.

Lisp Mode is automatically turned on by the editor for any file with a .lisp extension on the filename. You can
explicitly turn it on or off any time from the popup menu. You may find this feature more annoying than useful. If
so, turn it off. I will definitely make that an editor preference item.

Comments are no longer automatically italicized in Lisp Mode. I removed this feature because it didn’t work very
well and tended to make the comments difficult to edit and read.

While PowerEdit was designed to support editing with Common Lisp, it is not implemented in Common Lisp. It is
written entirely in C++. While this limits the control over the editor that you have from Lisp, is allows the editor to
be used in other products. I am considering releasing the editor as a stand-alone product. Let me know if you would
be interested in this.

Line Wrap Mode

Line Wrap mode works better in 1.1 than it did in 1.01, but still has some bugs that show up when editing text.
It is also rather slow on certain machines. You may turn on this mode, via a checkbox to the left of the status line. I
find it occasionally useful to turn this mode on when browsing unformatted Lisp output (which may otherwise
produce vary long lines). Line Wrap mode is not compatible with Lisp mode, so don’t turn them on at the same
time.

PowerLisp User Guide 18

Recent Enhancements

The editor now uses its own heap, which is limited in size to 200k. A source file of about 80k is likely to fill it up.
When the editor limit is reached, text is written to disk in a temporary file. As a result, you may edit many, large files
without any effect on the space you have for your Lisp programs. I find the occasional slowdown from disk activity
is preferable to the way the editor ate up memory in 1.01. Currently a temporary file for each open file is created,
when the editor needs memory. These files will be automatically deleted when the program exits.

The editor has been cleaned up internally, which seems to have eliminated some spurious crashes and data loss. I
still recommend that you keep good backups of your source files.

Lisp mode has been improved. As several of you noted, it seems logical that when a Lisp expression is outlined,
pressing Enter should execute the entire expression, rather than just the current line. I have implemented this. To
make it obvious, the whole expression gets highlighted for a fraction of a second before executing it.

Another problem several people had was getting buried in open parentheses. When you are entering expressions,
and have not closed enough levels of parentheses, the system seems frozen. To make it clearer, the editor now shows
the number of open parentheses in the message bar. I think this helps.

When you save a file which has bold or italicized text in it, the text attributes get stored in a resource of the file. This
causes the bold text to be bold when you later load the file (it saves this attribute). You may use the edit menu
commands Bold, Italics and Plain to control the text attributes of text in a file. These attributes are entirely ignored
by the Lisp interpreter.

Editor Known Bugs

Line Wrap mode and Lisp mode are not totally compatible. I avoid using them at the same time.

Vertical bar text cursors may still get left on the screen from time to time. This is just a screen refresh issue—it does
not affect the text in the file.

PowerLisp User Guide 19

PowerLisp Compiler

The PowerLisp compiler is a full 680x0 native code compiler. This means that a function, once compiled, executes
as direct machine instructions. This allows the compiled lisp functions to execute very fast. It is distinct from the
intermediate code that some Lisp systems produce.

The compiler can be invoked on a single function, with the compile function, or on a source file with the compile-
file function. The first time you call either of these functions, the compiler and assembler modules are loaded into
memory. This can take from 5 to 20 seconds depending on your system. After loading, compiling is quick. A
function typically takes less than one second to compile.

When the compile-file function is used, a binary file of machine code is produced. This file is of type ‘FASL’ and
typically has the extension .fasl. Binary files are typically about 3 times as large as the source files they originate
from, but that is only because of the relatively inefficient way that all the symbol information is stored in the binary
file. PowerLisp 1.1 compiled files are about 40% smaller than 1.01 compiled files (and still compatible with 1.01
files). They need to store a lot of symbol information so that all the addresses can automatically be updated correctly
when the file is loaded in another system or at a later date. Once loaded, compiled code is relatively space efficient.
When compiled code segments are no longer needed, the garbage collector will correctly discard them.

The entire compiler is written in Common Lisp. A couple of support functions had to be added in C++ because there
is no support for packed arrays of short integers, but all the significant stuff is in the file compiler.lisp which is
included in this release. The compiler directly generates 68000 assembler code, which it then passes off to the
assembler to create the function. I could improve the compiler performance somewhat by assembling as it goes, but
I have found the intermediate step useful for debugging the compiler.

The compiler generates code which generally behaves exactly like interpreted code, only faster. I typically see a 5 to
30 times speed improvement when I compile something. In terms of debugging, there are some differences between
interpreted and compiled code. In at least one case, compiled code is more correct than interpreted (in the case of
returning multiple values). Some special forms are not yet implemented in the compiler.

PowerLisp User Guide 20

PowerLisp 1.1 Modifications

The compiler now correctly compiles flet special forms, structures, and special declarations. labels forms compile,
but the generated code is the same as for flet.
labels works correctly when interpreted. Some bugs in the interpreter relating to these forms and function closures
were identified andfixed.

The compiler now behaves in accordance with CLTL2 concerning evaluation of compiled forms. Forms are not
evaluated in general, although eval-when can be used to force evaluation at compile time.

Compiled libraries now use the extension (by default) .fasl which is commonly used by other Lisp systems. Of
course these files are not compatible with other Lisp systems. Compiled libraries are significantly smaller than 1.01
libraries. This is accomplished mostly by eliminating redundancy in the symbol tables. This makes loading faster.
Libraries are about 30% smaller, and should still be compatible with 1.01 libraries. That is, 1.01 libraries should still
load into 1.1b1, but 1.1 libraries will not be usable by 1.01.

The ‘missing function’ warning messages which so often were emitted by the compiler are now eliminated. My hope
is to add a better, more useful warning facility to replace this. In the mean time it was more of a source of confusion
and annoyance than a help. At any rate, if a function is missing at run time, you will get an error message (the
program won’t crash).

Tail recursion is now detected and eliminated by the PowerLisp 1.1 compiler. Expressions which are written
recursively but which end with a recursive call are compiled as though they were coded as iterative expressions.
This eliminates much unnecessary stack usage.

PowerLisp User Guide 21

PowerLisp Assembler

The assembler was designed primarily to service the compiler. It is, however, useful in its own right. It could be used
as a vehicle for accessing toolbox calls and other system services which are not otherwise provided. Little support
for this is included, however, in the current release.

Not all 68000 instructions are implemented, although the most common ones are. The complete source to the
assembler is included with this release, in the file assembler.lisp. The assembler is written in Common Lisp, and all
assembler instructions are implemented as macros in the assembler package. These macros automatically expand
into the machine code for the instruction when expanded by the assembler in the appropriate context. This simple
design allows the easy addition of assembler macros. Many sample macros can be seen in the assembler source.
68000 instructions which are not implemented could be added by anyone who wanted to take the time. I plan to
expand the assembler and add a foreign function interface.

PowerLisp User Guide 22

PowerLisp Disassembler

The disassemble function can be used to disassemble a compiled function to examine its machine code. It will
disassemble functions which have been compiled by the Lisp compiler, as well as built-in functions which have been
compiled by the C++ compiler. It isn’t fancy, but it is pretty useful. For compiled Common Lisp functions, the
disassembler is good at displaying the names of called functions (targets of jsr instructions). Compiled C++
functions often call functions which the disassembler does not know about, so you may get some incorrect function
names. Normally you will only be disassembling compiled Common Lisp functions.

PowerLisp User Guide 23

Linking and Debugging

PowerLisp features an incremental linker which immediately link in functions when they are compiled or loaded.
Whenever a function is replaced by a new function, whether compiled or interpreted, all compiled branches to that
function are correctly routed to the new function. This is done via a distributed jump table which is managed by the
linker. Interpreted functions have a jump table entry which will cause a branch into the interpreter whenever a
compiled function tries to call them. The interpreter can then, based on call stack information, determine which
function was intended, and then evaluate it. If that function is later compiled, a direct jump to it replaces the
interpreter branch.

Debugging facilities are rudimentary. Some non-standard functions are included which will trace the evaluation call
stack or the compiled function call stack. Unfortunately there is not a single integrated function which will trace
both.

While a Common Lisp program is executing, the call stack may in fact have an interpreted lisp function, which calls
a compiled lisp function, which calls a compiled C++ function, which calls an interpreted Lisp function, ad
nauseam. This situation is quite common, in fact. Debugging is a little easier if all the functions you are debugging
are compiled, or all are interpreted.

Trace and untrace functions are useful for interpreted code. They are not of much value for compiled code. I use the
non-standard functions address and exec-address a lot to get addresses which I can then examine in MacsBug.

A function called error-stack is included with PowerLisp 1.1. If your program aborts with an error message, you
may immediately invoke this:

(error-stack)

This will print a processor dump of the top ten stack frames when the error occurred. This works better for
compiled-code than for interpreted code, because all the functionson the processor stack will be interpreter functions
in interpreted mode (as opposed to your functions). It still will print useful information, however.

To see the interpreter stack, you may use the function dump-lisp-stack. This must be invoked prior to an error
occurring, however. Typically you can put it into the code of an interpreted function. When that function executes,
the call to dump-lisp-stack will cause the top interpreter stack frames to get displayed, along with the associated
lexical environments.

PowerLisp User Guide 24

Memory Usage

Like most Lisp systems, PowerLisp likes to have quite a bit of memory. Garbage collection will be invoked
frequently if you are short on memory, and that will cause performance to suffer.

At startup, PowerLisp sets aside enough memory to hold the application’s code segments in memory, as well as
some memory for operating system overhead such as windows, resources, etc. Approximately 200k bytes of RAM
are set aside for the editor to hold text. About 25% of the remaining memory is given to the stack. This allows a
large amount of recursion without overflowing the stack. The rest is allocated as a large non-relocatable block which
is then managed by the PowerLisp memory manager.

The PowerLisp memory manager allocates about 50% of the heap to Lisp nodes. These are each 10 bytes in size,
and consist of two pointers and flag and type bits. They are used to store cons cells, integers, floating point numbers,
ratios, and characters. Other Lisp data types require larger blocks. All larger items and variable sized memory blocks
are allocated by the other 50% of the heap. This strategy has proven to provide good performance. Fixed size cons
nodes can be allocated very quickly. The garbage collector only keeps track of these nodes, or objects which are
referenced by these nodes.

In a typical scenario:

PowerLisp partition size: 4096K bytes (4 megabytes)
System use: 600K
Editor heap: 200K
Stack: 900K
Nodes: 1200K (around 125,000 nodes)
Variable sized heap objects: 1200K (used by Lisp system)

Variable sized heap objects include compiled Lisp code, vectors, arrays, text editor data structures, packages and
hash tables.

PowerLisp User Guide 25

Memory Requirements

PowerLisp 1.1 requires at least a 2.5 megabyte partition. However, 3 megabytes is a more reasonable minimum. If
you want to use the compiler, you will need at least a 3.5 megabyte partition. A larger partition is recommended, or
else you will wait on the garbage collector a lot while compiling. 4 megabytes is a good size for moderate projects.

New Features in PowerLisp 1.1

A major addition is the Memory window, which can be displayed via the Memory command in the new Misc menu.
It brings up a window which gives you animated displays of the PowerLisp heaps, stacks and editor heap usage. It is
useful for monitoring memory usage while you are running, and noticing how much time is spent in garbage
collection. When you see the Nodes and Heap bars shrinking you know garbage is being recycled.

PowerLisp User Guide 26

Operating System Issues

PowerLisp runs only with Macintosh operating systems 7.0 or later. PowerLisp multitasks cooperatively with other
applications, so that programs can continue running in the background while PowerLisp programs are executing.
PowerLisp programs can also run in the background while you are running other applications.

PowerLisp supports the standard four Apple Events: Launch, Open, Print and Quit. It is therefore high-level event
aware. It is 32-bit clean, and makes use of as much memory as you choose to give it.

PowerLisp User Guide 27

PowerLisp History

I have been working on this system, off and on, for the last six years. This has never been my “real” job. I work days
as a software developer of graphic arts applications. The PowerLisp system has become a passion for me, in my off
hours. I began it before I had ever used a Macintosh—the first version ran on an IBM PC. It began as a highly
portable C implementation, which included a subset of Common Lisp. I originally used it to debug my C programs,
as an interactive scripting language.

A couple years later, after my PC had been shelved and replaced with a Mac, I resurrected the Lisp interpreter and
ported it to the Macintosh. I translated it to C++, and redesigned the interpreter to be fully object-oriented internally.
I also figured out the right way to do garbage collection. In overcoming the limitations of DOS 640k address space
and garbage collection, the interpreter development took off. I discovered I could easily implement most features of
Common Lisp in my C++ environment.

As the interpreter developed, I needed a text editor. I use MPW most of the time, so I developed a text editor,
PowerEdit, which looks and acts similarly to MPW. I like the worksheet-based approach to executing commands
and scripts, and modeled the interaction of the user with PowerLisp on this style. In PowerLisp you can execute
Common Lisp code from any window, by highlighting the text and pressing the Enter key, as in MPW.

As I started to toy with the idea of actually creating a product, I decided that the system really needed a compiler for
reasonable performance. I chose to build a native-code compiler entirely in Common Lisp. The source code to the
compiler is included in this package. In building the compiler, I discovered and fixed a lot of problems in the
system. Together with the compiler is an assembler, which assembles a subset of 680x0 assembly instructions. It is
used as the second pass of the compiler, during code generation. Source code to the assembler is also included. All
assembler instructions are implemented as Common Lisp macros, so it would be easy for someone to extend the
assembler to include more instructions.

All the source code of PowerLisp was developed 100% by me (with the exception of the LOOP facility, a few of the
library routines, and some of the example programs). I have not “borrowed” or licensed any technology. This is
somewhat a source of pride for me, though not exactly practical. The editor is entirely my own, and does not use
TextEdit, emacs, or anything else. The source code is mostly MPW C++ and Common Lisp, with a couple small
routines in assembler. The Common Lisp source is included with this release.

PowerLisp User Guide 28

Common Lisp Implementation

The Common Lisp implementation in this release of PowerLisp is lacking in a number of ways, which I will detail
below. As you probably are aware, Common Lisp consists of a huge number of functions and data types. Rather than
wait a couple more years to release this, I have tried to include the most useful features of the language. As a very
rough estimate, I believe this release implements about 95% of Common Lisp as specified in the first edition of Guy
Steele’s Common Lisp: The Language., 2nd edition. If you don’t count CLOS.

CLOS (the Common Lisp Object System) is a very important part of modern Common Lisp, and I hope to add it to
PowerLisp in the future.

I would like to build a reference of what is included, because it would include a huge number of functions and
features. Because of time constraints, however, I will have to base this document more on what is missing from
Common Lisp: The Language. While a number of things are not currently implemented, it is still a very useful
system.

The following section of this document covers the PowerLisp language implementation, roughly in the order in
which they are covered in Guy Steele’s Common Lisp: The Language, Second Edition.

In this document, I will refer to Guy Steele’s Common Lisp: The Language, the first edition, as CLTL1. The
second edition of the reference will be referred to as CLTL2.

PowerLisp User Guide 29

Data Types

Characters
Symbols
Lists
Functions
Text strings
Packages
Hash tables
Read tables
These data types are all implemented according to the language specification.

Numbers
Integers, floating-point and ratios are implemented. PowerLisp 1.1 includes complex numbers and bignums (large
integers). Integers are stored in 32 bits, floating-point in 64 bits and ratios consist of two integers. Only one size of
floating point number is provided. Large integers may be any size up to your memory limitations.

Arrays
Generalized arrays, bit vectors and character strings are supported.
Bit vectors and generalized arrays may be multi-dimensional, up to 7 dimensions. Character strings may only be
single-dimensioned (vectors).
Arrays of specific types (packed arrays of integers, for example) are not supported, but this should largely be
transparent to Common Lisp programs.

Streams
Streams are implemented, but with few variables. All streams are currently input/output.

Pathnames
Pathnames are just text strings currently—no “system independent” path name object is supported. Pathname strings
can represent full path names, or partial path names relative to the default directory. They must be in Macintosh
format, which uses colons rather than slashes to separate directory names.

Examples of paths:

"VolumeName:My Directory:My File" ; full path
"My File" ; in current directory
":My Subdirectory:My File" ; in subdirectory of current
"::MyFile" ; in parent directory (one level up)

Random States
The random number package is fully implemented, including the random state data type. Random state objects not
currently readable, however.

PowerLisp User Guide 30
Structures
Structures are implemented according to the language standard. Some of the
options are not supported yet, however. List-based structures are not supported. In PowerLisp 1.1 code which uses
structures will compile correctly.

Objects
CLOS is not implemented in this version. I expect to add it in a future release. I consider it quite an important
language extension, as most of my programming is object-oriented.

Scope and Extent
PowerLisp adheres to the Common Lisp specification.

New to PowerLisp 1.1 is the correct handling of special declarations
by both the interpreter and compiler. Local variables which are declared special should now be handled correctly. In
1.01, only variables declared via defvar or defparameter were considered special (plus some built-in variables like
package).

Type Specifiers
The Common Lisp type system conforms to CLTL2. No optimizations are currently done based on type declarations.

Program Structure

This area of the language is more or less complete. This includes functions, both interpreted and compiled, special
forms, macros (interpreted and compiled), special variables, constants, etc. All special forms are correctly
recognized.

All defining constructs (defun, defmacro, defstruct, defconstant, etc.) allow the inclusion of a documentation
string. This string gets stored on the property list of the symbol, and can be accessed as specified by the language.

Compiled and interpreted functions can be freely intermixed in the call stack, and compiled functions are
incrementally linked into the system as soon as they are compiled or read.

Defun and defmacro should now work correctly in non top-level contexts (this did not work in 1.01).

Predicates

Implemented.

PowerLisp User Guide 31

Control Structure
Most of this chapter is implemented, with a few exceptions. Compiler macros and the compiler-let form are not
implemented. Some of the features which are new in CLTL2 are not implemented.

It was pointed out to me that the do macro in 1.01 was incorrect. In particular, it did not update the set of local
variables 'in parallel' as it was supposed to do. This has been fixed in PowerLisp 1.1. Also, implementations of
psetq and all of the multiple value handling macros are included.

Declarations
Declarations are mostly allowed but ignored by PowerLisp. In future versions of the compiler, faster code generation
should be possible by paying attention to declarations. Violations of declarations are also ignored.

In PowerLisp 1.1, special declarations are significant, and are correctly interpreted and compiled.

Symbols
Implemented.

Packages
Implemented.

In PowerLisp 1.1, defpackage and the remaining package functions and macros have been included. There may still
be some problems with the way shadowing symbols are handled, and user interaction with the shadowing facility is
not supported (load time querying to resolve ambiguities).

PowerLisp User Guide 32

Numbers
PowerLisp 1.1 includes most of the numeric functionality specified in CLTL2. Specifically, complex numbers have
been added, large integers (unlimited size), and the trig functions. Some math functions will give an error when they
encounter a large integer or complex number. The byte manipulation functions are not implemented, nor the boole
function.

Integers between 0 and 500 now are cached i.e. new ones never need to be created.

(eq 100 100)
t

(eq 501 501)
nil

Characters
All chars are standard-chars. All characters are kept in a table, so never need to be created (as are integers between 0
and 500). This makes some character handling more efficient. Some character-related functions were added in 1.1.

Sequences
These functions are pretty complete. All sequence operations can be applied to lists, vectors, bit vectors and
character strings. A number of missing sequence functions are now implemented in PowerLisp 1.1.

Lists
Implemented.

Hash Tables
Implemented. Hash Tables are used internally by the package system.

Arrays
Partially implemented. Arrays can be up to seven dimensions. Some key arguments to make-array are not
implemented. Packed arrays are not implemented.

PowerLisp User Guide 33

Strings
Mostly implemented. A few of these functions need to be implemented still. A number of string functions which
were missing in 1.01 are now implemented in 1.1.

Structures
Structures can be defined and are correctly added to the type system. Some key arguments to defstruct and some
slot options are not implemented yet. I intend to finish these as a precursor to CLOS support.

In PowerLisp 1.1, the defstruct macro has been rewritten in Common Lisp. It is included in the library
structures.lisp. It the structure printing facility should now work correctly. Code which uses structures now
compiles correctly.

The Evaluator
This is the Common Lisp interpreter. Top level run-time loop features such as +, ++, +++ and *, **, *** are not
implemented, as they are not really necessary in this type of environment.

Streams
Partially implemented. This area is still a little weak and is a high priority for improvement. The most important
features are there, however.

Input/Output
The Lisp reader is implemented as specified, which is not easy in an event-driven environment! Read macros can be
defined, and are used internally for many things (check out the standard library and compiler source code).

Options to the format function are partially implemented. This needs some work still. A number of other features
described in this chapter are not yet implemented.

PowerLisp 1.1 has substantially improved upon PowerLisp 1.01 in this area. In particular, all the output formatting
variables are supported, circular lists can be read and written, and the format function is much more complete.

PowerLisp User Guide 34

File System Interface
As mentioned above, pathnames are just character strings currently. I intend to change this soon, so that a pathname
object contains an FSSpec internally but can still be specified by a path string. Using strings for pathnames is
compatible with Common Lisp.

Some macintosh-specific functions are available:

(set-file-creator my-open-file "ROSA")
(set-file-type my-open-file "EPSF")

These functions can be used to set the type and creator of any open file. An error is signaled if you try to call these
functions on other types of streams.

File wildcard specifiers are not yet supported.

Errors
Errors are implemented as exceptions (as thrown by the throw special form). They are typically caught at the top
level. Continuable errors are not yet implemented (for want of a debugger).

In general, all Lisp functions, both compiled and interpreted, signal errors whenever the wrong number or type of
arguments is passed to them.

Miscellaneous Features

Compiler
The compiler is covered in a separate section.

Documentation
The documentation facility is fully implemented.

Debugging tools
While compiled and interpreted functions peacefully coexist at run-time, their behavior as regards debugging is
significant. The macros trace and untrace are implemented for interpreted, but not compiled code. That is, you can
compile a function which calls trace , but only the interpreted function calls will actually be traced.

The step function is not implemented. There is no real interactive debugger. This should be improved in a future
release.

The time macro is implemented, and uses the Mac’s Time Manager to produce microsecond timings accurate to
about 20 microseconds. This is very useful for performance tuning.

PowerLisp User Guide 35
The describe function is only partially implemented (symbols are well supported). I intend to improve it.

The inspect function is not implemented yet.

The room function can be used to determine how much memory is available. See below for more information about
memory usage. Another function gc invokes the garbage collector. Usually you should call it before calling room to
get an accurate result.

The ed function is implemented for editing files:

(ed filename)

causes the PowerEdit editor to open the file filename for editing. This is identical to using the Open command from
the editor.

The functions dribble and apropos are not implemented.

Environmental Inquiries

These are not yet implemented.

Loop
The complete Loop facility is provided courtesy of the publicly available source code from MIT. This has been
tested and run both in interpreted and compiled mode and seems to work fine. It has not been tested thoroughly,
however.

Loop macros tend to expand into huge Common Lisp expressions, which execute slowly in interpreted mode but
compile into pretty tight, fast code. It is like a language unto itself, and rather interesting.

The first time the system encounters a loop macro, it loads the loop package. This takes a few seconds. Subsequent
uses of loop will not demonstrate this delay.

Pretty Printing
Not implemented.

CLOS
Not implemented (CLTL2 feature). If this product finds any kind of a market I will certainly add CLOS facilities in
the future. I consider it the last remaining large task.

PowerLisp User Guide 36

Conditions
Not implemented (CLTL2 feature).

Series
Not implemented (CLTL2 feature).

PowerLisp User Guide 37

Non-standard Extensions

Here are some non-standard functions and variables which are included in PowerLisp and which you may find
useful.

top-level [variable]
This should normally be bound to the top-level read-eval-print loop.

prompt [variable]
If bound and non-nil, this variable should point to a function to execute during the read-eval-print loop after each
iteration.

address object [function]
Returns the machine address of the lisp object that is its argument.

exec-address compiled-function [function]
Returns the machine execution address of a compiled function. If a symbol which has a compiled-function
associated with it is passed, that symbol’s jump table address (maintained by the incremental linker) is returned.
Note that this is different from the address of the function, but normally just represents a jump instruction to the
other address. This function is useful for debugging compiled code (in combination with a debugger like MacsBug).

function-definition function [function]
Returns the lambda expression of an interpreted function. As Common Lisp does not specify a standard way to
retrieve the lambda expression of a function, this is a useful extension. Note that once a function is compiled, its
lambda expression is discarded.

gc [function]
Explicitly invokes the garbage collector. This is more or less a standard language extension, but is not required by
the standard. Use it before calling the room function for a more accurate estimate of space remaining.

package-hash-table package [function]
Returns the hash table used by the passed package. This is sometimes useful.

print-function interpreted-function [function]
Prints the passed function.

PowerLisp User Guide 38

quit [function]
stop [function]
Exits interpreter. You probably never want to call these. Just exit the program instead (using menu Quit command).

hash-table-misses hash-table [function]
Provides statistics on hash-table effectiveness. Returns the number of times a hash-table lookup attempt has
“missed” (failed).

hash-table-hits hash-table [function]
Provides statistics on hash-table effectiveness. Returns the number of times a hash-table lookup attempt has “hit”
(succeeded).

set-file-type file-stream type-string [function]
Sets the Finder type for the open file. Signals an error if a stream which is not a file is passed to it.

Example:
(setq f (open "myfile"))
(set-file-type f "EPSF") ; sets the file's type to 'EPSF'

set-file-creator file-stream creator-string [function]
Sets the Finder creator for the open file. Signals an error if a stream which is not a file is passed to it.

Example:
(setq f (open "myfile"))
(set-file-creator f "ROSA") ; set the file's creator to 'ROSA'

dump-lisp-stack [function]
This function prints a trace of the evaluator stack. It will only include information on evaluated function calls (not
compiled functions).

%stack-trace [function]
This function returns a list of information on each processor stack frame. This is useful when debugging compiled
functions. Evaluated function calls will show up as calls to the interpreter.

stack-trace [variable]
After any error, this global variable is automatically left bound to a list of stack frames that were in effect at the time
of the error (as obtained with %stack-trace). This is very useful. Use the expression:

(error-stack)

after an error to see the stack trace.

error-stack [function]
This function may be used to print a dump of the processor stack state at the time the last error was encountered.
This function can be used instead of the expression listed above.

PowerLisp User Guide 39

Notes

I would like to thank my wife, Frances, for her assistance with this documentation and for her patience and
encouragement.

I would also like to thank Guy Steele, whose books Common Lisp: The Language, both editions, are a constant
source of assistance and amusement (in the most positive sense). PowerLisp 1.1 also includes the optimized
backquote facility from the second edition, as well as some other functions from the book.

Peter Norvig's text Paradigms of Artificial Intelligence Programming: Case Studies in Common Lisp taught me a
lot about the language and his many sample programs were useful in debugging the interpreter and compiler. I
highly recommend it to anyone learning Common Lisp.

Acknowledgements to MIT for their Loop facility source code, which I have included with this package.

