A Gentle Introduction to Haskell

Paul Hudak Joseph H. Fasel
Yale University University of California
Department of Computer Science Los Alamos National Laboratory

1 Introduction

This edition of the tutorial has been updated to reflect changes in the Haskell language that will
appear in the next version of the Haskell report, 1.3. These changes have been implemented in
version 2.2 of the Yale Haskell system and this particular edition of the tutorial has been altered
from its original form to reflect these changes. The only significant change in this tutorial is that
the section on Input/Output has been updated for the new monadic I/O system.

Our purpose in writing this tutorial is not to teach programming, nor even to teach functional
programming. Rather, it is intended to serve as a supplement to the Haskell Report [3], which is
otherwise a rather dense technical exposition. Our goal is to provide a gentle introduction to Haskell
for someone who has experience with at least one other language, preferably a functional language
(even if only an “almost-functional” language such as ML or Scheme). If the reader wishes to
learn more about the functional programming style, we highly recommend Bird and Wadler’s text
fintroffufftffon to Funfftffonffl ffroffrffmmffnff [1], which uses a language sufficiently similar to Haskell
to make translation between the two quite easy. For a useful survey of functional programming
languages and techniques, including some of the language design principles used in Haskell, see [2].

Our general strategy for introducing language features is this: motivate the idea, define some
terms, give some examples, and then point to the Report for details. We suggest, however, that the
reader completely ignore the details until this document has been completely read. On the other
hand, Haskell’s Standard Prelude (in Appendix A of the Report) contains lots of useful examples
of Haskell code; we encourage a thorough reading once this tutorial is completed. This will not
only give the reader a feel for what real Haskell code looks like, but will also familiarize her with
Haskell’s standard set of predefined functions and types.

[We have also taken the course of not laying out a plethora of lexical syntax rules at the outset.
Rather, we introduce them incrementally as our examples demand, and enclose them in brackets,
as with this paragraph. This is in stark contrast to the organization of the Report, although the
Report remains the authoritative source for details (references such as “§2.1” refer to sections in
the Report).]

Haskell is a typfffful programming language: Types are pervasive, and the newcomer is best off
becoming well-aware of the full power and complexity of Haskell’s type system from the outset. For

1A phrase due to Luca Cardelli.

T-1

T-2 2 VALUES, TYPES, AND OTHER GOODIES

those whose only experience is with relatively “untypeful” languages such as Basic or Lisp, this may
be a difficult adjustment; for those familiar with Pascal, Modula, or even ML, the adjustment should
be easier but still not insignificant, since Haskell’s type system is different and somewhat richer
than most. In any case, “typeful programming” is part of the Haskell programming experience,
and cannot be avoided.

2 Values, Types, and Other Goodies

Because Haskell is a purely functional language, all computations are done via the evaluation of
Hrprffssffons (syntactic terms) to yield vffluffs (abstract entities that we regard as answers). Every
value has an associated typff. (Intuitively, we can think of types as sets of values.) Examples
of expressions include atomic values such as the integer 5, the character *a’, and the successor
function succ, as well as structured values such as the list [1,2,3] and the pair (°b’,4).

Just as expressions denote values, typff ffrpr{fssffons are syntactic terms that denote typff vffluffs
(or just typffs). Examples of type expressions include the atomic types Int (fixed-precision integers),
Char (ASCII characters), Int->Int (functions mapping Int to Int), as well as the structured types
[Int] (homogeneous lists of integers) and (Char,Int) (character/integer pairs).

All Haskell values are “first-class”—they may be passed as arguments to functions, returned as
results, placed in data structures, etc. Haskell types, on the other hand, are not first-class. Types
in a sense [fffsffr{f{f[f values, and the association of a value with its type is called a typffnff. Using the
examples of values and types above, we write typings as follows:

5 =:: Int
’a’ :: Char
succ :: Int -> Int

[1,2,3] :: [Int]
(’b’,4) :: (Char,Int)

The :: can be read “has type.”

Functions in Haskell are normally defined by a series of ffqufftffons. For example, the successor
function succ can be defined by the single equation:

succ n = n+l

An equation is an example of a ffffffiffr{ftffon. Another kind of declaration is a typff sffffnffturff [l
riftffon (§4.4.1), with which we can declare an explicit typing for succ:

succ :: Int -> Int

We will have much more to say about function definitions in Section 3.

For pedagogical purposes, when we wish to indicate that an expression e; evaluates, or “re-
duces,” to another expression or value eg, we will write:

€1 = €9

2.1 Polymorphic Types T-3

For example, note that:
succ (succ 3) = 5

Haskell’s stfftff{f typff systffm defines the formal relationship between types and values (§4.1.3).
The static type system ensures that Haskell programs are typff sff{fff; that is, that the programmer has
not mismatched types in some way. For example, we cannot generally add together two characters,
so the expression ’a’+’b’ is ill-typed. The main advantage of statically typed languages is well-
known: All type errors are detected at compile-time. This not only aids the user in reasoning about
programs, but also permits a compiler to generate more efficient code (for example, no run-time
type tags or tests are required).

The type system also ensures that user-supplied type signatures are correct. In fact, Haskell’s
type system is powerful enough to allow us to avoid writing any type signatures at all,? in which
case we say that the type system ffnffffrs the correct types for us. Nevertheless, judicious placement
of type signatures is a good idea, as we did for succ, since it improves readability and helps bring
programming errors to light.

[The reader will note that we have capitalized identifiers that denote specific types, such as Int
and Char, but not identifiers that denote values, such as succ. This is not just a convention: it
is enforced by Haskell’s lexical syntax. In fact, the case of the other characters matters, too: foo,
f0o, and £00 are all distinct identifiers.]

2.1 Polymorphic Types

Haskell also incorporates polymorpff{fff types—types that are universally quantified in some way
over ffll types. Polymorphic type expressions essentially describe ffffmfflff{fs of types. For example,
(Va)[al is the family of types consisting of, for every type a, the type of lists of a. Lists of
integers (e.g. [1,2,3]), lists of characters ([’a’,’b?,’c?]), even lists of lists of integers, etc., are
all members of this family. (Note, however, that [2,°b’] is not a valid example, since there is no
single type that contains both 2 and ’b’.)

[Identifiers such as a above are called typff vffrff{ffflffs, and are uncapitalized to distinguish
them from specific types such as Int. Furthermore, since Haskell has only universally quantified
types, there is no need to explicitly write out the symbol for universal quantification, and thus we
simply write [a] in the example above. In other words, all type variables are implicitly universally
quantified.]

Lists are a commonly used data structure in functional languages, and are a good vehicle for
explaining the principles of polymorphism. The list [1,2,3] in Haskell is actually shorthand for
the list 1:(2:(3:[1)), where [] is the empty list and : is the infix operator that adds its first
argument to the front of its second argument (a list).> Since : is right associative, we can also
write this list as 1:2:3: [].

As an example of a user-defined function that operates on lists, consider the problem of counting
the number of elements in a list:

2With a few exceptions to be described later.

®: and [1 are like Lisp’s cons and nil, respectively.

T-4 2 VALUES, TYPES, AND OTHER GOODIES

length :: [a] -> Int
length [] 0
length (x:xs) 1 + length xs

This definition is almost self-explanatory. We can read the equations as saying: “The length of the
empty list is 0, and the length of a list whose first element is x and remainder is xs is 1 plus the
length of xs.” (Note the naming convention used here; xs is the plural of x, and should be read
that way.)

Although intuitive, this example highlights an important aspect of Haskell that is yet to be
explained: pffttffrn mfftff{ffnff. The left-hand sides of the equations contain pffttffrns such as [] and
x:xs. In a function application these patterns are mfftff{f{f{f against actual parameters in a fairly
intuitive way ([] only matches the empty list, and x:xs will successfully match any list with at least
one element, binding x to the first element and xs to the rest of the list). If the match succeeds,
the right-hand side is evaluated and returned as the result of the application. If it fails, the next
equation is tried, and if all equations fail, an error results.

Defining functions by pattern matching is quite common in Haskell, and the user should become
familiar with the various kinds of patterns that are allowed; we will return to this issue in Section
3.14.

length is also an example of a polymorpffffff ffunfftffon. It can be applied to a list containing
elements of any type. For example:

length [1,2,3] = 3
length [’a’,’b’,’c’] = 3
length [[1,[],[]] = 3

Here are two other useful polymorphic functions on lists that will be used later:

head i [a] -> a
head (x:xs) = x

tail :: [a]l -> [a]
tail (x:xs) = xs

With polymorphic types, we find that some types are in a sense strictly morff ff{fnffrfflthan others.
For example, the type [a] is more general than [Char]. In other words, the latter type can be
derived from the former by a suitable substitution for a. With regard to this generalization ordering,
Haskell’s type system possesses two important properties: First, every well-typed expression is
guaranteed to have a unique prifnffffpffl type (explained below), and second, the principal type can
be finffffrrffff automatically (§4.1.3). In comparison to a monomorpffffififily typffff language such as
Pascal, the reader will find that polymorpffffsm improves expressiveness, and typff ffnffifrifnffif lessens
the burden of types on the programmer.

An expression’s or function’s principal type is the least general type that, intuitively, “contains
all instances of the expression.” For example, the principal type of head is [a]->a; the types

2.2 User-Defined Types T-5

[bl->a, a->a, or even a are too [f[fnffrffl, whereas something like [Int]->Int is too spffff{ffif. The
existence of unique principal types is the hallmark feature of the Fffnffiffy-ff{finffr typff systffm, which
forms the basis of the type systems of Haskell, ML, Miranda,* and several other (mostly functional)
languages.

2.2 User-Defined Types

We can define our own types in Haskell using a data declaration, which we introduce via a series
of examples (§4.2.1).

An important predefined type in Haskell is that of truth values:
data Bool = False | True

The type being defined here is Bool, and it has exactly two values: True and False. Bool is an
example of a (nullary) typff ffonstrufftor, and True and False are (also nullary) fffftff ffonstrufftors
(or just ffonstrufftors, for short).

Similarly, we might wish to define a color type:
data Color = Red | Green | Blue | Indigo | Violet

Both Bool and Color are examples of ffnumffriftffff typffs, since they consist of a finite number of
nullary data constructors.

Here is an example of a type with just one data constructor:
data Point a =Pt aa

Because of the single constructor, a type like Point is often called a tuplff typff, since it is essentially
just a cartesian product (in this case binary) of other types.> In contrast, multi-constructor types,
such as Bool and Color, are called (disjoint) unffon types.

More importantly, however, Point is an example of a polymorpff{fff type: for any type t, it defines
the type of cartesian points that use ¢ as the coordinate type. Point can now be seen clearly as
a unary type constructor, since from the type ¢ it constructs a new type Point ¢. (In the same
sense, using the list example given earlier, [] is also a type constructor (where we have used “.”
to denote the missing argument): given any type t we can “apply” [.] to yield a new type [t].
Similarly, _=>_is a type constructor: given two types ¢ and u, t->u is the type of functions mapping
elements of type ¢ to elements of type u.)

Note that the type of the binary constructor Pt is a -> a -> Point a, and thus the following
typings are valid:

*“Miranda” is a trademark of Research Software, Ltd.
“Tuples are somewhat like records in other languages, except that the elements are positional, rather than having
names (labels) associated with them.

T-6 2 VALUES, TYPES, AND OTHER GOODIES

Pt 2.0 3.0 :: Point Float
Pt ’a’ b’ :: Point Char
Pt True False :: Point Bool

On the other hand, an expression such as Pt ’a’ 1 is ill-typed.

It is important to distinguish between applying a ffonstrufftor to yield a voffluff, and applying a
typff ffonstrufftor to yield a typff; the former happens at run-time and is how we compute things
in Haskell, whereas the latter happens at compile-time and is part of the type system’s process of
ensuring type safety.

2.3 Recursive Types

Types can also be recursive, as in:
data Tree a = Leaf a | Branch (Tree a) (Tree a)

Here we have defined a polymorphic binary tree type whose elements are either leaf nodes containing
a value of type a, or internal nodes (“branches”) containing (recursively) two sub-trees.

When reading data declarations such as this, remember that Tree is a type constructor, whereas
Branch and Leaf are data constructors. Aside from establishing a connection between these con-
structors, the above declaration is essentially defining the following types for Branch and Leaf:

Branch :: Tree a -> Tree a -> Tree a
Leaf i a => Tree a

With this example we have defined a type sufficiently rich to allow defining some interesting
(recursive) functions that use it. For example, suppose we wish to define a function fringe that
returns a list of all the elements in the leaves of a tree from left to right. It’s usually helpful to write
down the type of new functions first; in this case we see that the type should be Tree a -> [a].
That is, fringe is a polymorphic function that, for any type a, maps trees of a into lists of a. A
suitable definition follows:

fringe :: Tree a -> [al
fringe (Leaf x) [x]
fringe (Branch left right) = fringe left ++ fringe right

Where ++ is the infix operator that concatenates two lists (its full definition will be given in Section
3.2). As with the length example given earlier, fringe is defined using pattern matching, except
that here we see patterns involving user-defined constructors: Leaf and Branch. [Note that the
formal parameters are easily identified as the ones beginning with lower-case letters.]

2.4 Type Synonyms T-7

2.4 Type Synonyms

For convenience, Haskell provides a way to define typff synonyms; i.e. names for commonly used
types. Type synonyms are created using a type declaration (§4.2.2). Here are several examples:

type String = [Char]
type Person = (Name,Address)
type Name = String

data Address None | Addr String

Type synonyms do not define new types, but simply give new names for existing types. For
example, the type Person -> Name is precisely equivalent to (String,Address) -> String. The
new names are often shorter than the types they are synonymous with, but this is not the only
purpose of type synonyms: they can also improve readability of programs by being more mnemonic;
indeed, the above examples highlight this. We can even give new names to polymorphic types:

type AssoclList a b = [(a,b)]

This is the type of “association lists” which associate values of type a with those of type b.

2.5 Built-in Types Are Not Special

Earlier we introduced several “built-in” types such as lists, tuples, integers, and characters. We have
also shown how new user-defined types can be defined. Aside from special syntax, are the built-in
types in any way more special than the user-defined ones? The answer is no. The special syntax is
for convenience and for consistency with historical convention, but has no semantic consequence.

We can emphasize this point by considering what the type declarations would look like for these
built-in types if in fact we were allowed to use the special syntax in defining them. For example,
the Char type might be written as:

data Char =’a’> | ’b’> | ’c? | ... -- This is not valid
| 242 | °B> | °C’ | ... -- Haskell code!
I)1) I)2) I)3) I

These constructor names are not syntactically valid; to fix them we would have to write something

like:

data Char = Ca
I

the typefont used in this manuscript.
8Tixity declarations must only appear at the very beginning of a Haskell module, as will be described in Section 6.

3.3 Functions are Non-strict T-13

Both of these specify right-associativity, the first with a precedence level of 5, the other 9. Left
associativity is specified via infix1l, and non-associativity by infix. Also, the fixity of more than
one operator may be specified with the same fixity declaration. If no fixity declaration is given for
a particular operator, it defaults to infixl 9. (See §5.7 for a detailed definition of the associativity
rules.)

3.3 Functions are Non-strict
Suppose bot is defined by:
bot = bot

In other words, bot is a non-terminating expression. Abstractly, we denote the vffluff of a non-
terminating expression as L (read “bottom”). Expressions that result in some kind of a run-time
error, such as 1/0, also have this value.

A function f is said to be strfffft if, when applied to a nonterminating expression, it also fails to
terminate. In other words, £ is strict iff the value of £ bot is L. For most programming languages,
1l functions are strict. But this is not so in Haskell. As a simple example, consider const1, the
constant 1 function, defined by:

constl x =1

The value of constl bot in Haskell is 1. Operationally speaking, since constl does not “need”
the value of its argument, it never attempts to evaluate it, and thus never gets caught in a nonter-
minating computation. For this reason, non-strict functions are also called “lazy functions,” and
are said to evaluate their arguments “lazily,” or “by need.”

Since error and nonterminating values are semantically the same in Haskell, the above argument
also holds for errors. For example, constl (1/0) also evaluates properly to 1.

Non-strict functions are extremely useful in a variety of contexts. The main advantage is that
they free the programmer from many concerns about evaluation order. Computationally expensive
values may be passed as arguments to functions without fear of them being computed if they are
not needed. An important example of this is a possibly ffnfinfftff data structure.

3.4 “Infinite” Data Structures

One advantage of the non-strict nature of Haskell is that data constructors are non-strict, too. This
should not be surprising, since constructors are really just a special kind of function (the distin-
guishing feature being that they can be used in pattern matching). For example, the constructor
for lists, (:), is non-strict.

Non-strict constructors permit the definition of (conceptually) ffnfinfft{f data structures. Here is
an infinite list of ones:

ones = 1 : ones

T-14 3 FUNCTIONS

Perhaps more interesting is the function numsFrom:
numsFrom n = n : numsFrom (n+1)

Thus numsFrom n is the infinite list of successive integers beginning with n. From it we can construct
an infinite list of squares:

squares = map ("2) (numsfrom O)

(Note the use of a section; ~ is the infix exponentiation operator.)

Of course, eventually we expect to extract some finite portion of the list for actual computation,
and there are lots of predefined functions in Haskell that do this sort of thing: take, takeWhile,
filter, and others (see the portion of the Standard Prelude called PreludeList). For example,
take removes the first n elements from a list:

take 5 squares = [0,1,4,9,16]

The definition of ones above is an example of a ffffrffulffr [ffst. In most circumstances this has an
important impact on efficiency, since an implementation can be expected to implement the list as
a true circular structure, thus saving space.

For another example of the use of circularity, the Fibonacci sequence can be computed efficiently
as the following infinite sequence:

fib =1:1: [atb | (a,b) <- zip fib (tail fib)]

where zip is a Standard Prelude function that returns the pairwise interleaving of its two list
arguments:

zip (x:xs8) (y:ys) = (x,y) : zip xs ys
zip xs ys [l

Note how fib, an infinite list, is defined in terms of itself, as if it were “chasing its tail.” Indeed,
we can draw a picture of this computation as shown in Figure la.

For another application of infinite lists, see Section 4.4.

3.5 The Error Function

Haskell has a built-in function called error whose type is String->a. This is a somewhat odd
function: From its type it looks as if it is returning a value of a polymorphic type about which it
knows nothing, since it never receives a value of that type as an argument!

In fact, there ffs one value “shared” by all types: L. Indeed, semantically that is exactly what
value is always returned by error (recall that all errors have value L). However, we can expect that
a reasonable implementation will print the string argument to error for diagnostic purposes. Thus
this function is useful when we wish to terminate a program when something has “gone wrong.”

