
CMIDICMIDI

M I D I M a n a g e r C l a s s L i b r a r y

f o r S y m a n t e c C + + ™

Version 2.2

Programmer’s Guide

Paul D. Ferguson

Copyright Notices
CMIDI is copyright © 1991-94 Paul D. Ferguson. All rights
reserved.

Apple, PatchBay, and Macintosh are registered trademarks of
Apple Computer, Inc.

THINK C and Symantec C++ are trademarks of Symantec
Corporation.

The style of this manual is unabashedly borrowed from the
Symantec C++ documentation. Not only is imitation the sincerest

form of flattery1*, so too can it be justified as being familiar to
THINK C programmers.

Contacting the Author
Please send any comments, suggestions, or bug reports to me at
the following addresses. I look forward to hearing from you.

America Online: pferguson
 Internet: pferguson@aol.com

CompuServe: 70441,3055
Snail Mail: Paul Ferguson

258 Rodonovan Drive
Santa Clara, CA 95051

1* Or as Ben Franklin said, “There is much difference between imitating a good man and
counterfeiting him.”

Voice: (408) 249-7189
Fax: no fax, fax sux

Contents

1 Introduction..1

Audience... 1

Big, Fat Disclaimer... 2

Caveat Programmer...2

Software Requirements...2

What’s New in CMIDI 2.2.. 3

2 CMIDI Programming Basics..4

Adding CMIDI to a Project File...4

Modifying MIDI.h..5

Lefty.. 5

Supported MIDI Manager Calls..6

CMIDI Classes.. 7

Creating CMIDI Objects... 7

Reading MIDI Data...9

Interrupt Level Read Hooks..9

Polled Read Hooks..9

A Better Approach...10

Time Bases.. 11

Quitting Time..12

MIDI Packet Objects...12

3 CMIDIClient.. 13

4 CMIDIDataPort..15

5 CMIDIInputPort... 16

6 CMIDIOutputPort.. 18

7 CMIDIPort... 20

8 CMIDITimePort...23

9 Global Variables...26

Introduction

1

Apple’s MIDI Manager is the future
of MIDI programming on the
Macintosh. The MIDI Manager
allows applications to exchange MIDI
messages with external devices
(keyboards, synthesizer modules,
drum machines) as well as with other
MIDI Manager compatible
applications. Using PatchBay, MIDI
musicians can connect multiple MIDI
Manager applications under
MultiFinder.

The CMIDI class library provides an
object oriented programming (OOP)
interface to the MIDI Manager. A
wide range of MIDI applications,
from simple editors and librarians to
sophisticated real-time musical tools,

lend themselves to object oriented
design.

Built on the OOP extensions in
Symantec Corporation’s Symantec C+
+ 6.0 compiler, CMIDI defines a set
of classes integrated into the THINK
Class Library (TCL). CMIDI classes
define MIDI Manager objects
including input, output, and time
ports.

Audience
I assume that you are an experienced
Macintosh programmer and are
already familiar with Symantec C++,
TCL, and object oriented
programming.

I also assume that you are familiar
with the MIDI Manager and have the
developer’s documentation and
software “MIDI Management Tools”

Version 2.0 or later. Presently, the
only place to obtain this package is
through APDA21 (part number M0240LL/D or later). You must have this

developer’s kit to use CMIDI in your application. CMIDI is useless without the “MIDI Management
Tools”package.

These classes make it easier to deal with the MIDI Manager, but they don't completely insulate the
programmer from it. For example, it is up to you to understand what an input port readHook routine
does, and how to initialize and manipulate MIDI ports. In the documentation which follows, I often
refer you to the “MIDI Management Tools” documentation for specific information about the MIDI
Manager.

21 The Apple Programmer’s and Developer’s Association. For more information, contact
APDA on CompuServe, AppleLink, or elsewhere.

Big, Fat Disclaimer
This source code and documentation is made available as freeware from Paul Ferguson. The source
code and documentation are copyrighted in their entirety by the author. All rights reserved.
Commercial distribution of the source code or documentation is expressly prohibited without
written permission from the author.

You may freely use these routines in applications which you develop, provided that you acknowledge
my copyright in your application and documentation.

(I wouldn't mind if you sent me a copy of your program, either.)

Caveat Programmer
This code is thoroughly untested.

Let me repeat that: This code is thoroughly untested.

Do I have to say it again?

THIS CODE IS THOROUGHLY UNTESTED!

I created these classes primarily for my own use in developing
MIDI Manager applications (mostly the shareware program
“Chroma”). I have used some, but not all, of the features in these
classes in this development. The rest, well...

Don’t be fooled by this great documentation into thinking that
just because I said a class method will do a certain thing, it
actually will. I’m a dreamer, not a tester (pardon me, I meant
“quality assurance engineer”).

Software Requirements
You must have the following to use CMIDI:

Product Preferred Supported

Macintosh System Software 7.0/7.1 6.0.4

Symantec C++ 6.0 6.0

MIDI Manager Developer’s Kit 2.0 1.2

Figure 1–1 Software requirements

This version of CMIDI is designed for version 2.0 of the MIDI Manager. Applications
developed using CMIDI are compatible with version 1.2, and the CMIDI routines

compensate for differences between 1.2 and 2.0. If you only have access to version 1.2 for
your

development system, you will need to make modifications to the source files. Methods
which are valid only under version 2.0 are noted.

What’s New in CMIDI 2.2
This version of CMIDI is an upgrade from version 2.1. The primary purpose of this version
is to work with Symantec C++ 6.0. If you are still using THINK C 4.0 or 5.0, you should
continue to use version 2.1 of CMIDI.

The only significant change in this version is that many simple methods have been made
inline for execution efficiency. The basic design of the classes is unchanged.

Note that CMIDI still resides within the TCL hierarchy as subclasses of CObject. They
maintain the TCL-style initialization and destruction approach, rather than the standard C++
style.

CMIDI Programming Basics

2

Assumptions
I assume you are familiar with
programming in the Symantec C++
environment and that you understand
the concepts of Symantec C++’s
object oriented programming and the
THINK Class Library.

I also assume you have an
understanding of the MIDI Manager
programming interfaces. As with
TCL, you must be familiar with its
concepts, philosophy and theory of
operations. For example, you will
need to create your application’s read
hook functions, which requires an
intimate understanding of the MIDI
Manager.

This chapter discusses the class
hierarchy, creating client and port
objects, and provides some sample
code indicating usage. For detailed
information about the CMIDI classes,
refer to the appropriate chapter of this
manual.

Modifying MIDI.h
The header file MIDI.h supplied with
Symantec C++ 6.0 is from an
obsolete version of the MIDI
Manager (version 1.2). Since CMIDI
is designed for MIDI Manager 2.0,
you should substitute the MIDI.h file
found on your MIDI Management
Tools diskette for the one in the Mac
#includes folder, and make the
following changes.

(a) Add the preprocessor
statement:
#pragma once

at the beginning of the file.

(b) Remove the extern keyword from the declaration of SndDispVersion.

(c) If you wish, using a tool like ResEdit or DiskTop, change the file creator to
'KAHL' so that it has a Symantec C++ document icon (this step is not required).

Adding CMIDI to a Project File
To use CMIDI in your application, you must add the following files to your project:

CMIDIClient.cp

CMIDIDataPort.cp

CMIDIInputPort.cp

CMIDIOutputPort.cp

CMIDIPort.cp

CMIDITimePort.cp

MIDI Manager Estr.r

MIDIGlue.o

The MIDIGlue.o file can be found on the “MIDI Management Tools” diskette.

NOTE: You must select the .o Converter… option (under the Edit menu) and set the
“use ‘.v’ file” option for the converter vocabulary.

Lefty
Lefty is a simple TCL application that shows how to create and use CMIDI objects. Refer
to the header comments in Lefty.cp for more information about what this program does.

Supported MIDI Manager Calls
The CMIDI class methods support the following MIDI Manager functions.

CMIDI CMIDI CMIDI CMIDI
Client Time Input Output

Function Port Port Port

SndDispVersion •
MIDIGet/SetConnectProc* •
MIDIGetPorts •
MIDISignIn/Out •
MIDIWorldChanged •

MIDIAddPort • • •
MIDIGetPortInfo • • •
MIDIGet/SetPortName • • •
MIDIGet/SetRefCon • • •

MIDIGet/SetCurTime •
MIDIGet/SetOffsetTime •
MIDIGet/SetSync •
MIDIStart/StopTime •
MIDIWakeUp •

MIDIDiscardPacket* •
MIDIFlush •
MIDIGet/SetReadHook •
MIDIGet/SetTCFormat • •
MIDIWritePacket •

* MIDI Manager Version 2.0 only

Figure 2–1 Supported MIDI Manager functions

The following MIDI Manager calls are not supported in CMIDI.

MIDIRemovePort MIDIGetClients
MIDIGet/SetClientName MIDIConnect/UnConnectData
MIDIConnect/UnConnectTime MIDIGet/SetClRefCon
MIDIConvertTime MIDIGetClientIcon
MIDISetRunRate All MDVR calls

Figure 2–2 Unsupported MIDI Manager functions

These functions are mostly used by patchers or other clients. Refer to the“MIDI
Management Tools” manual for details about these calls. If you need the functionality of
one of these, you can define additional methods for CMIDIClient or one of the port classes.

CMIDI Classes
CMIDI defines six classes derived from CObject. Figure 2–3 illustrates their relationship.

CMIDIClient

CMIDIPort

CObject

CMIDIDataPort

CMIDITimePort
CMIDIInputPort

CMIDIOutputPort

Figure 2–3 CMIDI class hierarchy

Two abstract classes are defined: CMIDIPort and CMIDIDataPort. You normally don’t
create instances of these, rather you create CMIDITimePort, CMIDIInputPort, and
CMIDIOutputPort objects.

The CMIDIClient class is responsible for initializing the MIDI Manager interface, and
registering the application with the MIDI Manager. A global CMIDIClient object,
gMIDIClient, must be created and initialized prior to creating any port objects.

MIDI port objects manage sending and receiving MIDI data. An application may have one
or more of each type of port object. Refer to the “MIDI Management Tools” manual for
more information about MIDI Manager ports.

Creating CMIDI Objects
At runtime, CMIDI objects are created. The hierarchy of these objects is simple: an
application can have zero, one, or more input, output, or time ports. Any of these port
objects may be subclassed to specialize or expand their behavior. Every application must
have exactly one CMIDIClient object, referenced by the global variable gMIDIClient.

Let’s look at the basic flow of CMIDI programming. The code fragment in figure 4 shows
the creation of one of each type of object.

By design, you can create any of the CMIDI objects and send them messages even if the
MIDI Manager drivers aren’t loaded. Obviously no MIDI packets can be read or written in
this situation, but otherwise the objects should behave normally. Methods which return an
error code will return ErrNoMIDI (see CMIDIClient.h).

Note that this example does not include any error checking on creation of the objects. Of
course, you would never program this way, would you?

#include "CMIDIClient.h"
#include "CMIDIInputPort.h"
#include "CMIDIOutputPort.h"
#include "CMIDITimePort.h"

extern CMIDIClient * gMIDIClient;
extern pascal myConnProc(short refNum ...);

void CMyApp::IMyApp(...)
{

...
// Initialize gMIDIClient and our port objects.
// And remember, error checking is for wimps!

gMIDIClient = new CMIDIClient;
err = gMIDIClient->IMIDIClient(MIDIRes);

itsMIDITime = new CMIDITimePort;
err = itsMIDITime->IMIDITimePort(

“\pMy Time”, // Port name
'ATim', // Port ID
TRUE, // Visible?
midiFormatMSec); // Time format

itsMIDITime->LoadPatches('ATim', 128);
itsMIDITime->StartTime();
itsMIDITime->SetConnection(myConnProc);

itsMIDIOut = new CMIDIOutputPort;
err = itsMIDIOut->IMIDIOutputPort(

“\pMy Out”, // Port name
'Out ', // Port ID
TRUE, // Visible?
itsMIDITime, // Time base object
0L); // Time offset

itsMIDIOut->LoadPatches('Out ', 128);

itsMIDIIn = new CMIDIInputPort;
err = itsMIDIIn->IMIDIInputPort(

“\pMy In”, // Port name
'In ', // Port ID
TRUE, // Visible?
itsMIDITime, // Time base object
midiGetNothing, // Time offset
INBUFSIZE, // Input buffer size
midiReader); // Read hook

itsMIDIIn->LoadPatches('In ', 128);
}

Example 2–4 Initializing CMIDI objects

Reading MIDI Data
The MIDI Manager notifies an application of incoming MIDI data via a readHook
procedure. There are two times when your readHook can be called: at interrupt or non–
interrupt time. For time–critical applications you typically must have a readHook routine
which is called at interrupt time.

For other types of applications like patch librarians or editors it may be simpler to have a
non–interrupt readHook. You can receive MIDI data by polling the MIDI Manager from
your application, document, or other object.

Interrupt Level Read Hooks
Interrupt level routines in the Macintosh are subject to significant restrictions. Most
QuickDraw routines cannot be called, nor can any Toolbox calls that might move memory.

Since standard TCL applications use handles for objects (known as indirect or pascal
objects), most objects are subject to being moved by the memory manager.

Consequently, using CMIDI presents some issues to address if you wish to process MIDI
data during an interrupt. If your readHook routine references any object handles, those
handles should be locked (using CObject::Lock) before any MIDI packets are received by
the readHook. You cannot allocate new indirect objects while in an interrupt and you must
take care not to spend too much time, or else you are likely to experience data loss.

Still, there are many situations where an interrupt level read hook is required. If your
application uses an interrupt–level readHook you may optimize its speed by storing a copy
of your output port object’s reference number (using GetRefNum) in a global variable that
the readHook can access after restoring register A5. You may then call MIDI Manager
functions such as MIDIWritePacket directly, bypassing the overhead of method calls
within your readHook.

Polled Read Hooks
If your application does not depend on receiving MIDI data in real time (for example, a
sysex librarian), you can poll the MIDI Manager in your application or document object’s
Dawdle method. Make sure to specify midiGetNothing to the IMIDIInputPort
method to prevent your read hook routine from being called at interrupt time. This will
avoid the restrictions inherent in interrupt processing.

void CMyApp::Dawdle(long * maxSleep)
{

itsMIDIIn->Poll(midiGetCurrent); // Get MIDI data?
*maxSleep = 5; // Wait 5 somethings

}

Example 2–5 Polling MIDI Manager at idle time.

Depending on how quickly you need to retrieve MIDI data, you may wish to call
CMIDIInputPort::Poll more than once in your Dawdle method.

In general, frequently polling the MIDI Manager is not a good idea because of the CPU
cycles involved in repeatedly calling the MIDI Manager drivers to see whether there is any
MIDI data waiting. Since the MIDI Manager is most likely used in MultiFinder
environments, this is a real concern.

A Better Approach
You may wish to consider a “hybrid” of the two methods: Design an interrupt level read
hook, which sets a global flag whenever it requires the attention of your application. Your
application’s Dawdle methods can then poll the global flag (which is more efficient than
executing the Toolbox trap for MIDIPoll) to know when to act. Your application can then
process the MIDI data in non–interrupt mode.

The code segment in figure 6 shows an interrupt level read hook which reads note on/off
messages and builds a ring buffer for processing by the application’s Dawdle routine.

Other types of hybrid approaches are possible, depending on your application.

//--- midiReader ---------------------------------
// This places MIDI note on/off data into a ring
// buffer.
//--
long MIDINotes[1000]; // Assume initialized to 0’s
long * currNote = MIDINotes;
long * nextNote = MIDINotes;

pascal short midiReader(MIDIPacket * thePacket,
 long TheRefCon)
{

long SysA5 = SetA5(TheRefCon);
long * notePtr;

if ((thePacket->flags == 0) &&
 (thePacket->data[0] < 0xA0)) // Note on/off

{
notePtr = (long *) &thePacket->data[0];
*currNote = *notePtr;
*currNote >>= 8;
if (++currNote == &MIDINote[1000])

currNote = MIDINote;
}
SetA5(SysA5);
return midiMorePacket;

}
...
// Dawdle routine extracts notes.
void CMyApp::Dawdle(long * maxSleep)
{

while (*nextNote)
{

this->ProcessNote(*nextNote);
*nextNote = 0L;
if (++nextNote == &MIDINote[1000])

nextNote = MIDINote;
}

}

Example 2–6 A hybrid polling method.

Time Bases
When you create a time port object, it is initially set to internal time synchronization unless
a virtual connection is resolved which indicates external synchronization.

While your application is running, if an external time port is connected to your time port
(via PatchBay), you should check to see whether your time port’s synchronization should be
changed to external. Likewise, if a connection to your time port is broken, you should

change back to internal synchronization.

In version 1.x of the MIDI Manager, the only way to accomplish this was to call
MIDIWorldChanged in your event loop, and if it returns TRUE, check the time port’s
connections to see whether the synchronization state should be changed. Version 2.0
introduced the concept of a connection procedure to handle timing synchronization
changes. Refer to the “MIDI Management Tools” documentation for information about
writing a connection procedure.

The CMIDITimePort objects can automatically handle timing connections from other MIDI
Manager applications. After creating a time port object, send it an AssignIdleChore
message or a SetConnectionProc message.

Quitting Time
When quitting, your application should send each CMIDI object a SavePatches
message if you wish to save the current port connections (this is strongly recommended in
“MIDI Management Tools”). After that, send each port object a Dispose message, then
finally dispose of gMIDIClient.

MIDI Packet Objects
CMIDI does not include a class definition to encapsulate the behavior of a MIDI Packet.
MIDI packets are the central data structures that the MIDI Manager itself deals with, so it
would seem natural to create a corresponding class to wrap around a MIDI packet.

In my applications, however, I haven’t found the need for an explicit packet class. Incoming
MIDI data is immediately converted to specific messages for existing objects, usually in the
CView visual hierarchy. These messages may contain MIDI information, such as velocity
or note value, which are interpreted by the target object.

For more complex applications, you may find that a MIDI packet class is desirable. This
class should be fairly easy to define, and is left as an exercise.

CMIDIClient

3

Introduction
CMIDIClient implements a class for
registering an application with the
MIDI Manager.

Heritage
Superclass CObject
Subclasses None

Using CMIDIClient
Each Macintosh application that
wishes to use the MIDI Manager must
register itself with the MIDI Manager.
This process allows other MIDI
Manager applications to recognize it,
and establish patches (connections) to

your application. The CMIDIClient
class is responsible for this.

You must have one and only one
CMIDIClient object in your
application. The global variable
gMIDIClient, which is declared in CMIDIClient.c, must be created and initialized prior
to any port objects.

Refer to the CMIDI Programming Basics chapter for examples of how to create and
initialize gMIDIClient.

Variables
Variable Type Description
midiMgrVerNum unsigned long Returned by

SndDispVersion indicating what version of the
MIDI Manager is present.

If IMIDIClient was unsuccessful at signing into the MIDI Manager, midiMgrVerNum
will be zero.

Methods
IMIDIClient void IMIDIClient(short theIconID);

This method initializes a CMIDIClient object. It signs into the MIDI Manager using the
creator type of the application (found in gSignature), icon number theIconID, and
the application’s file name.

NOTE: This method uses an ICN# resource rather than an ICON resource so that you may
simply specify your application’s bundle ICN# resource.

Dispose void Dispose(void);

Dispose of this object. Calls MIDISignOut.

GetPorts MIDIIDListHdl GetPorts(void);

Return a list of ports. See the “MIDI Management Tools” documentation of
MIDIGetPorts for more information about the fields of the MIDIIDList structure this
handle points to.

WorldChanged Boolean WorldChanged(void);

Calls MIDIWorldChanged. If the MIDI Manager is not present, returns FALSE.

GetVerNum unsigned long GetVerNum(void);

Return midiMgrVerNum. This is the full 32–bit version number from the BNDL resource
of the MIDI Manager. If the MIDI Manager is not present, midiMgrVerNum will be zero.

GetShortVerNum unsigned short GetShortVerNum(void);

Return the upper word of midiMgrVerNum which contains the MIDI Manager’s version
number, for example 0x0120 = version 1.2, 0x0200 = version 2.0. You can use this in
your application to check for specific functionality or to alert the user of an incompatibility.

CMIDIDataPort

4

Introduction
CMIDIDataPort is an abstract class
for implementing input and output
ports.

Heritage
Superclass CMIDIPort
Subclasses CMIDIInputPort

CMIDIOutputPort

Using CMIDIDataPort
CMIDIDataPort contains methods
common to both input and output
ports. You should not create objects of
this type, but rather create
CMIDIInputPort and

CMIDIOutputPort objects.

Variables
None.

Methods
LoadPatches OSErr LoadPatches(ResType theResType, short theResID);

If itsResult is zero, check for a resource of type theResType and ID equal
theResID. If present, call MIDIConnectData for each connection. If a resource error
occurs or the specified resource does not appear to be a valid patch list for this port, an error
is returned.

GetTCFormat short GetTCFormat(void);

Return the port’s current time code format. Valid return values (midiFormatMSec, etc.)
are defined in MIDI.h. If the MIDI Manager is not present, this method returns a -1.

SetTCFormat void SetTCFormat(short theFormat);

Set the port’s time code format. Valid format types are defined in MIDI.h

CMIDIInputPort

5

Introduction
CMIDIInputPort implements a MIDI
Manager input port.

Heritage
Superclass CMIDIDataPort
Subclasses None

Using CMIDIInputPort
An application may have one or more
input ports for reading incoming
MIDI data.

Incoming MIDI Manager packets are
read by a read hook procedure, which
can be set using SetReadHook. See the CMIDI Programming

Basics chapter and the “MIDI Management Tools” manual for more information about

creating CMIDIInputPorts and read hooks.

Variables
Variable Type Description
midiDiscardProc
midiFlushProc
midiPollProc static ProcPtr Function pointers

directly to the entry points for these MIDI
Manager functions.

Methods
IMIDIInputPort OSErr IMIDIInputPort(StringPtr theName, OSType thePortID,

Boolean theVisibleFlag, CMIDITimePort * theTimePort, long
theOffset, short theBufSize, ProcPtr theReadHook);

This method initializes the input port object and registers the port with the MIDI Manager.

Specify the port name, four character port ID, time offset, buffer size, and read hook as per
“MIDI Management Tools”. Set theVisibleFlag to TRUE if the port should be visible
in PatchBay (only MIDI Manager 2.x or later supports invisible input ports). Pass in a
CMIDITimePort object in theTimePort, or NULL if no time base is needed. Following
common convention, this method stores

the current A5 register value in the port’s refCon. You may change this by calling
SetRefCon.

GetReadHook ProcPtr GetReadHook(void);

Return pointer to the current read hook. Refer to “MIDI Management Tools” for
information about read hook procedures.

SetReadHook void SetReadHook(ProcPtr theReadHook);

Set the port’s read hook procedure.

Flush void Flush(void);

Call MIDIFlush to flush all packets currently waiting in the port’s input buffer.

Poll void Poll(long offsetTime);

Call MIDIPoll. If a MIDI packet is waiting, the MIDI manager will call the port’s read
hook procedure.

DiscardPacket void DiscardPacket(PacketPtr thePacket);

If the MIDI Manager version is 2.0 or greater, call MIDIDiscardPacket. Otherwise do
nothing.

CMIDIOutputPort

6

Introduction
CMIDIOutputPort implements a
MIDI output port.

Heritage
Superclass CMIDIDataPort
Subclasses None

Using CMIDIOutputPort
An application may have one or more
output port objects for writing MIDI
data.

You can send MIDI messages to the
MIDI Manager in one of two ways. If
the message you wish to send is

already in a valid MIDI Manager
packet (MIDIPacket data structure,
see MIDI.h), you can call WritePacket to send it.

This is useful in read hooks to echo packets back to the MIDI Manager.

If your message is not in a MIDI Manager packet, then you can call Write and WriteTS.
These methods will copy a valid MIDI message into a MIDIPacket structure, initialize the
other fields, and call the MIDI Manager. If the length of the data exceeds 249 bytes, it is
automatically broken up into multiple MIDI Manager packets. This is especially useful for
sending long system exclusive messages.

Variables
Variable Type Description
midiWriteProc static ProcPtr Function pointer to

the MIDIWrite function.

Methods
IMIDIOutputPort OSErr IMIDIOutputPort(StringPtr theName, OSType thePortID,

Boolean theVisibleFlag, CMIDITimePort * theTimePort, long
theOffset);

This method initializes the output port object and registers the port with the MIDI Manager.

Specify the port name, four character port ID, and time offset as per “MIDI Management
Tools”. Set theVisibleFlag equal TRUE if the port should be visible in PatchBay
(only MIDI Manager 2.x or

later supports invisible output ports). Pass in a CMIDITimePort object in theTimePort,
or NULL if no time base is needed. Following common convention, this method stores the
current A5 register value in the port’s refCon. You may change this by calling
SetRefCon.

WritePacket OSErr WritePacket(MIDIPacketPtr theMIDIPacket);

Call MIDIWritePacket to send theMIDIPacket to the MIDI Manager.

Write OSErr Write(char * theData, short theDataLen);

Copy theData to the MIDI Manager with a timestamp of zero and MIDI packet flags
value of midiTimeStampCurrent. Breaks long messages into multiple MIDI Manager
calls.

WriteTS OSErr WriteTS(char * theData, short theDataLen, long
theTimeStamp);

Copy theData to the MIDI Manager with the specified timestamp and a MIDI packet
flags value of midiTimeStampValid. Breaks long messages into multiple MIDI
Manager calls.

DoMIDIWrite OSErr DoMIDIWrite(char * theData, short theDataLen,
unsigned char theFlags, long theTimeStamp);

This method is used by Write and WriteTS to send MIDI data. It is private to
CMIDIOutputPort.

CMIDIPort

7

Introduction
CMIDIPort is an abstract class for
MIDI ports.

Heritage
Superclass CObject
Subclasses CMIDIDataPort

CMIDITimePort

Using CMIDIPort
CMIDIPort contains methods and
instance variables which are common
to all port classes.

Variables
Variable Type Description

itsRefNum short Reference number returned by
MIDIAddPort.

itsPortID OSType Four byte port identifier.
itsResult OSErr Result code from MIDIAddPort.
itsVersion unsigned short Stores the short

MIDI Manager version number.

ItsVersion flags whether the gMIDIClient object has been created, and whether it
appears that it was successful opening the MIDI driver. All port methods check this variable
before issuing any MIDI Manager trap calls. Some methods use it to check for the presence
of MIDI Manager version 2.0. ItsResult is used by LoadPatches and
SavePatches to determine whether any virtual connections were resolved when the port
was created.

Methods
IMIDIPort OSErr IMIDIPort(MIDIPortParamsPtr portParams, short

bufSize);

This method initializes the object and calls MIDIAddPort to add itself to the list of
application ports. IMIDIPort is a protected method, you should not call it directly. This
method is called by IMIDITimePort, IMIDIInputPort, and IMIDIOutputPort.

The global TCL variable gSignature, which normally contains the application’s creator
ID, is used as the client ID for all ports.

This method initializes the instance variable itsVersion to gMIDIClient-
>GetShortVerNum(), so that port methods can efficiently determine whether the MIDI
Manager drivers are present. It also stores the result of MIDIAddPort in itsResult
for use by LoadPatches and SavePatches.

Dispose void Dispose(void);

Note that Dispose does not call MIDIRemovePort. Doing so causes serious problems
with the MIDI Manager (as I discovered after many long hours of debugging).

GetPortInfo MIDIPortInfoHdl GetPortInfo(void);

Return a data structure containing all port connections. See the “MIDI Management Tools”
documentation of MIDIGetPortInfo for more information about the fields of the
MIDIPortInfoHdl structure this handle points to.

GetRefNum short GetRefNum(void);

Return the port reference number. Directly using a port’s reference number can increase
performance within a read hook routine.

GetRefCon long GetRefCon(void);

Return the port’s refCon, which is initially set to register A5.

SetRefCon void SetRefCon(long theRefCon);

Change the port’s refCon.

GetPortName void GetPortName(StringPtr theName);

Return the port name. The name can be up to 32 characters long.

SetPortName void SetPortName(StringPtr theName);

Set the port name. The name can be up to 32 characters long.

LoadPatches OSErr LoadPatches(ResType theResType, short theResID);

This is a pure virtual function (it calls the CObject method
SubclassResponsibility) to define the interface. The actual LoadPatches code
resides in overridden methods in CMIDIDataPort and CMIDITimePort.

SavePatches OSErr SavePatches(ResType theResType, short theResID);

Save the current patch connections in a resource of type theResType with ID equal
theResID. The name of the resource is set to the port’s name.

SetConnectionProc void SetConnectionProc(ProcPtr theConnectProc, long
theRefCon);

This method is for MIDI Manager version 2.0 or later. The function theConnectProc
will be called whenever a connection is made or broken for this port. Refer to “MIDI
Management Tools 2.0 Addendum” for more information about connection procedures.

GetConnectionProc void GetConnectionProc(ProcPtr * theConnectProc, long *
theRefCon);

Returns the port’s connection procedure address and its associated refCon. Valid for MIDI
Manager 2.0 or later.

CMIDITimePort

8

Introduction
CMIDITimePort implements a MIDI
Manager time port.

Heritage
Superclass CMIDIPort
Subclasses None

Using CMIDITimePort
An application may have one or more
time ports to derive timing
information. You should create time
port objects before any input or
output ports which use the time port
as a time base.

Variables
None.

Methods
IMIDITimePort OSErr IMIDITimePort(StringPtr theName, OSType

thePortID, Boolean theVisibleFlag, short theFormat);

This method initializes a timeport object and registers the port with the MIDI Manager.

Specify the port name and four character port ID. Set theVisibleFlag to TRUE if the
port should be visible in PatchBay.

Refer to MIDI.h for time format constants passed in theFormat.

LoadPatches OSErr LoadPatches(ResType theResType, short theResID);

If itsResult is zero, check for a resource of type theResType and ID equal
theResID. If present, call MIDIConnectTime for each connection.

GetSync short GetSync(void);

Call MIDIGetSync. Possible return values are midiInternalSync or
midiExternalSync. If the MIDI Manager is not present, returns a -1. To change port
synchronization, call SetExternalSync or SetInternalSync.

SetExternalSync void SetExternalSync(void);

Call MIDISetSync to set external synchronization.

SetInternalSync void SetInternalSync(void);

Call MIDISetSync to set internal synchronization.

UpdateSync short UpdateSync(void);

This method checks whether the time base is connected to another time base and adjusts the
time port’s synchronization accordingly. It is called by IMIDITimePort and Perform.

You may call UpdateSync directly from your application when you wish to have a time
port’s synchronization checked. If gMIDIClient–>WorldChanged() returns TRUE,
you should send all CMIDITimePort objects an UpdateSync message.

UpdateSync returns the (possibly new) current sync setting for the port.

GetCurTime long GetCurTime(void);

Call MIDIGetCurTime. If the MIDI Manager is not present, returns zero.

SetCurTime void SetCurTime(long theTime);

Call MIDISetCurTime.

StartTime void StartTime(void);

Call MIDIStartTime.

StopTime void StopTime(void);

Call MIDIStopTime.

GetOffsetTime long GetOffsetTime(void);

Call MIDIGetOffSetTime. If the MIDI Manager is not present, returns zero.

SetOffsetTime void SetOffsetTime(long theOffset);

Call MIDISetOffSetTime.

WakeUp void WakeUp(long theBaseTime, long thePeriod, ProcPtr
theTimeProc);

Call MIDIWakeUp.

SetConnection void SetConnection(ProcPtr theConnectionProc);

This method performs one of two actions.

If the version of MIDI Manager running is at least 2.0, and theConnectionProc is not
NULL, then it calls SetConnectionProc using the port’s refCon (usually A5).

Otherwise it sends gApplication an AssignIdleChore(this) message (see
Perform).

Perform void Perform(long * maxSleep);

This method allows you to automatically check for connections made while your program
runs. Pass this time port object to gApplication–>AssignIdleChore, and the
application will call its Perform method during idle time. This method checks for a
change in its MIDI world, and calls the UpdateSync method when a change is detected.

If you create a connectionProc (MIDI Manager version 2.x or later) you do not need to use
this method; connection procedures are more efficient.

Global Variables

9

Introduction
CMIDI contains one global object,
gMIDIClient.

Global Objects
gMIDIClient CMIDIClient * gMIDIClient;

Every application which uses CMIDI objects must initialize gMIDIClient before any port objects are created. Refer
to the section on CMIDIClient (pp. 12–13) for more information.

