
Graphic Elements copyright ©1994 by Al Evans. All rights reserved. (V1.5 6/7/94) Page 1

An Overview of the Graphic Elements System

The Graphic Elements system is based on the interaction between an application
program (or other enclosing software entity, such as a pane or view in a class
library system), a display controller which deals with groups of graphical entities
(GEWorlds or worlds), and a number of graphical entities (Graphic Elements or
elements). The relationships between the parts of the Graphic Elements system
are shown in Diagram 1.

.

GRF1 GRF2 GRF3 GRF4

Program
Module1

Graphics Creation

Names:

GRF1
GRF2
GRF3

Program
Module2

Graphics Creation

GRF4

Names:

APPLICATION
PROGRAM

CONTROL

Data

Optional
Procs

Render

{ }QuickDraw or
other “Built-In"

Graphics

Window
on Screen

Data

Optional
Procs

Render

Data

Optional
Procs

Render

Data

Optional
Procs

Render

CENTRAL
DISPLAY

CONTROLLER

Generate Frames
Handle Mouse

Diagram 1. The relationships between Application Program, Display Controller,
and Graphic Elements.

The application program calls the display controller to create new Graphic
Elements and GEWorlds to store them in, to generate updated images and display
them on the screen, and to give the elements in a world the opportunity to respond
to user actions. Through the display controller, the

Graphic Elements copyright ©1994 by Al Evans. All rights reserved. (V1.5 6/7/94) Page 2

application can also access individual Graphic Elements and manipulate them
explicitly

The display controller manages the memory allocated for Graphic Elements and
offscreen work areas, and provides access to the data structures of individual
elements. It calls individual Graphic Elements to perform their periodic functions
or to interact with each other or the user, calls individual elements to render
themselves as needed, and “projects” updated frames onscreen as demanded by the
application program.

Each related group of Graphic Elements handled by the display controller is one
GEWorld. A Graphic Elements world is a rectangle, within a window, for which
the Graphic Elements system handles all graphic operations.

One world may contain any number of Graphic Elements (limited only by memory
and processor speed), which may lie on up to 32,767 “planes” within this world.
Elements on higher-numbered planes are drawn “in front of” elements on lower-
numbered planes.

Each Graphic Element in a GEWorld is, at a minimum, responsible for rendering
itself, on demand from the display controller, into a graphical environment
provided by the display controller. Optionally, it may do any or all of the
following: 1) Change its appearance periodically, for example by moving or
changing frames; 2) interact with other Graphic Elements (collision); and
3) interact with the user (by tracking mouse movements and executing an action
procedure in response to the user releasing the mouse button).

Anything that can be drawn on the screen can be a Graphic Element. Each
Graphic Element is identified by a unique 4-character “name.”

Graphic Elements copyright ©1994 by Al Evans. All rights reserved. (V1.5 6/7/94) Page 3

Display Controller Interactions

The display controller interacts with the display “hardware” (actually, with the
combination of hardware and system-level graphics facilities), with the application
program, and with the individual Graphic Elements. These interactions are shown
in Diagram 2.

Application Interactions Display Interactions

Graphic Element Interactions

Data Management:

• Allocate GEWorld memory
• Provide “keyword”
 access to Graphic Elements

Graphics Control:
• Generate new frames
• Interact with mouse clicks

Data Interaction:

Hardware Interaction:

• Manage list of changes which
 need to be made to screen
 image at any moment

• Use system services, e.g.
 QuickDraw, to draw screen

Task Management:

• Call autochange procs
• Call collision procs
• Call tracking procs
• Call rendering procs
 as required

Graphic Elements Services:

• Position control — Move, MoveTo,
 change plane
• Visibility control (show/hide)
• Access to data

DISPLAY CONTROLLER

Diagram 2. Interactions of Display Controller with display hardware, application
program, and individual Graphic Elements.

The application program deals directly with the display controller to create and
maintain Graphic Elements worlds. The bulk of this interaction takes place at a
few well-defined times. The application creates GEWorlds and installs them into a
window. It may activate and deactivate them, and set their minimum update
intervals. Through the display controller, it gives them regular opportunities to
update their appearance and to handle user actions within their screen areas. The
application may also call the display controller to gain access to the data record of
any individual Graphic Element, and may manipulate elements explicitly at any
time. Finally, the application program uses the display controller to dispose of
GEworlds and the elements they contain when it has finished using them.

Graphic Elements copyright ©1994 by Al Evans. All rights reserved. (V1.5 6/7/94) Page 4

The display controller handles all interactions with the graphics hardware. It
maintains a list of all changes which have been made since it generated the last
frame, and calls the Graphic Elements affected by these changes to draw the
required portions of themselves. The display controller then uses services provided
by the operating system to transfer the results of these changes to the computer
screen.

The display controller interacts with some or all of the individual Graphic
Elements in a GEWorld during the generation of each graphics frame. Each
element may have an “autochange” procedure, which is called periodically by the
display controller to give that element an opportunity to move, change frames, or
perform any other time-based task. Each element may also have a collision
procedure, called by the display controller whenever that element comes in contact
with an element in its “collision plane.” Each element must have a rendering
procedure, which draws some or all of the element as required by the display
controller. Finally, the display controller acts as an intermediary in handling user
interactions: when the application passes a mouseDown event to the display
controller, it finds the Graphic Element which handles events in that area of the
screen, and passes the event along to that element's mouse-tracking procedure.

The display controller provides the same services to individual Graphic Elements
that it provides to the application program. Individual elements call the display
controller to change their position, their plane, or their visibility. They may also
call the display controller to gain access to their own data records or those of other
Graphic Elements.

Graphic Elements copyright ©1994 by Al Evans. All rights reserved. (V1.5 6/7/94) Page 5

Graphic Element Interactions

Every interaction in the Graphic Elements system results in an action by, or on, an
individual Graphic Element. Graphic Elements are “smart” graphical objects
which may change their appearance, position, or other attributes in response to any,
all, or none of three kinds of external events. These events include: 1) the passage
of time, 2) collision with another Graphic Element, and 3) being “clicked” on by
the user. All of these events are detected by the display controller and passed on to
the appropriate Graphic Element.

Offscreen
Source
Graphic

Exists if element
is based on a bitmap

Graphic's Data Record

Rendering Procedure

Bit-copy
Procedure

Draws graphic on
commands from
Display Controller

Periodic Change
Procedure

Called at regular
intervals. Can move,
change frames, etc.

Collision Procedure

Called when element
touches another element

Called when user presses
mouse button in element

Interact Procedure
Action
Procedure

Subsidiar y
Element

Diagram 3. An individual Graphic Element. Required components
are outlined in bold.

Graphic Elements copyright ©1994 by Al Evans. All rights reserved. (V1.5 6/7/94) Page 6

As Diagram 3 above shows, a Graphic Element has only two essential components:
a data record, and a rendering procedure. Its data record includes all the
information needed by the display controller to access and manipulate it. This data
record contains the element's identification (a four-character “name” used to gain
access to the element), its location (a rectangle in the coordinates of its GEWorld),
and its plane (a number between 0 and 32,767 representing its “height” above the
background), along with other information. An element's data record may also
include pointers to “master” and “slave” Graphic Elements. A “slave” element
automatically maintains its horizontal and vertical distance from its “master”
element. Since this “slave” can also have a “slave” element, the application
program can easily construct “chains” of graphics that move together.

A Graphic Element's rendering procedure is a procedure which is capable of
drawing all or part of the element at a location specified by the display controller,
into a graphical environment provided by the display controller. This rendering
procedure may use any appropriate method to do its drawing. In many cases, the
rendering operation will involve copying a pixel array from one area of memory to
another. A Graphic Element may optionally include a specialized routine to
perform this copying.

The real flexibility and utility of Graphic Elements derive from their optional
components.

Each Graphic Element may have an autochange procedure, in conjunction with a
change interval. This procedure will be called by the display controller, at
appropriate intervals, during frame-generation cycles for the world containing the
element. It can change the element's appearance and position, or the appearance
and position of any other element, as desired.

Each Graphic Element may have a collision procedure, together with a collision
plane. The display controller will call this procedure any time the element comes
in contact with another Graphic Element on its collision plane.

Finally, each Graphic Element may have an interaction procedure, called by the
display controller whenever the user presses the mouse button while the cursor is
within the screen area of that element. This interaction procedure will normally
track the user's actions with the mouse, and may call an optional action procedure,
for example as the user moves the mouse or when the mouse button is released
within its area.

Graphic Elements copyright ©1994 by Al Evans. All rights reserved. (V1.5 6/7/94) Page 7

Graphic Elements—Method of Use

The Graphic Elements system is designed to be an open system. It is as free as
possible of all artificial restrictions on data access and sequence of events. Thus
the following constitutes only a recommendation, a structured framework for using
Graphic Elements which has been found to be convenient, easy to understand and
maintain, and portable. Note that the term “application program,” as used in this
document, also includes such software entities as the panes and views of various
class libraries. In general, it denotes any software module which creates, uses, and
disposes of Graphic Elements worlds.

First, divide the Graphic Elements to be used into “scenes,” groups of related or
interacting elements. For example, all components of the background could be
placed into one scene.

Each scene should include all of the “optional” procedures for elements within that
scene, for example autochange procedures and collision procedures. Each scene
should also include a function to intialize all the scene's elements by creating them,
installing their autochange and collision procedures, installing their subsidiary
elements as required, etc. This function is called from the application program,
and should return either a Boolean or an error code so that the application can tell
whether the scene has been successfully initialized.

During its own initialization phase, the application program creates a window,
installs a GEWorld of the appropriate size in it, and calls each of the scene
initialization functions. If all the initialization functions execute without errors, the
application activates the GEWorld.

From this point on, the Graphic Elements system is almost automatic. Once each
time through its main event loop, the application program calls the display
controller to generate a new frame if required. When the application receives a
mouseDown event in the area covered by the GEWorld, it passes the event to the
display controller for eventual action by one of the Graphic Elements in that world.

This same basic procedure may be replicated as necessary for software systems
which require multiple windows and/or multiple Graphic Elements worlds.

