
TCP/IP Scripting Addition

version 1.1.2
Copyright © 1993-1994 by
Mango Tree Software. All Rights
Reserved.

Mango Tree Software
Box 41119 • Providence, Rhode Island USA 02940
401–942–6882 • atul@netcom.com

Page 1

Chapter 1

Introduction

The TCP/IP Scripting Addition allows Open Scripting Architecture (OSA) scripts — like
AppleScript scripts — to execute commands related to TCP/IP. TCP/IP, which stands for
Transmission Control Protocol/Internet Protocol, is the standard network communications
method used on the Internet. Apple’s implementation of TCP/IP on the Macintosh is MacTCP.
The following diagram describes how the TCP/IP Scripting Addition works with AppleScript.

Compiled Script FaceSpan Project

FaceSpan ExtensionScript EditorCompiled Script App

AppleScript

TCP/IP Scripting Addition

MacTCP

Ethernet SLIP LocalTalk

The TCP/IP Scripting Addition is called by AppleScript whenever a TCP/IP script command is
executed. The TCP/IP Scripting Addition then uses MacTCP to conduct TCP/IP
communications over Ethernet, EtherTalk, LocalTalk or Serial Line Internet Protocol (SLIP).

Page 2

Chapter 2

Installation

The TCP/IP Scripting Addition requires MacTCP 2.0.4 and AppleScript (preferably version 1.1).
Script Editor, Scriptable Text Editor, and FaceSpan are recommended to take full advantage of
the Scripting Addition.
Drag the TCP/IP Scripting Addition to the Scripting Additions folder inside your Extensions
folder, which is in your System Folder. You do not need to restart your Macintosh.

Upgrading
If you are upgrading from a previous version of the TCP/IP Scripting Addition, you will need to
edit and recompile your compiled scripts. If you open a compiled script with the new TCP/IP
Scripting Addition in place, you will notice several of your commands have changed.
Statements using the following commands will need to be edited:

tcp write Parameter text changed to data

tcp connect

tcp wait for
connect

You will need to edit any statements using fields of a returned stream object:

Change «class stid» back to stream id
Change «class drid» back to driver id
Change «class buff» back to buffer address
Change «class read» back to already read

tcp status You will need to edit any statements using fields of a returned stream status
object:

Change «class wait» back to bytes waiting
Change «class stat» back to connection status
Change «class lhst» back to local host
Change «class lprt» back to local port
Change «class rhst» back to remote host
Change «class rprt» back to remote port
You will need to edit any statements using connection status constants:

Change «constant stenstr1» back to No connection
Change «constant stenstr2» back to Waiting
Change «constant stenstr3» back to Establishing

Page 3

Change «constant stenstr4» back to Connected
Change «constant stenstr5» back to Close sent
Change «constant stenstr6» back to Close requested
Change «constant stenstr7» back to Closed

tcp send

tcp receive

You will need to edit any statements using transfer type constants:

Change «constant ttyptyp1» back to ISO88591
Change «constant ttyptyp2» back to Raw Data
Change «constant ttyptyp3» back to Raw Data Fork
Change «constant ttyptyp4» back to Raw Resource Fork
Change «constant ttyptyp5» back to MacBinary

The easiest way to make these changes is to copy your script into a text editor (like MPW Shell
or BBEdit) and use its search and replace functions.

This editing is now necessary because the internal keywords for many field names and
constants had to be changed to prevent conflicts with applications using the same internal
keywords (for example, MacPGP uses the keyword read for one of its parameters and this
was conflicting with already read). The new internal keywords should not conflict with any
applications.

Scripts written using earlier versions of the TCP/IP Scripting Addition and saved as text will, for
the most part, not need to be edited. It is recommended that you save your existing scripts
as text before upgrading to this version.

Important note on registering

Please note that until you become a registered user of the TCP/IP Scripting Addition version
1.1.2 and install the registered version, you will occasionally be presented with reminders to
register while using certain commands. In particular, you will reminded up to two times
whenever you use any of the newer commands and parameters that were not present in
version 1.0, such as MacBinary file transfers, the debugging commands, or the new options in
tcp read. For more information on registering, please read the Licensing Information text file
included in this package, or contact Mango Tree Software at the address on the title page for a
licensing agreement.

Page 4

Chapter 3

Command Set

tcp connect

Creates a TCP/IP stream and connects to the specified remote host and port number

Usage tcp connect

to host (string) — Connect to hostname

port (integer) — Connect to port number

[from port (integer)] — Optional parameter: connect from port number
(default: use any arbitrary port)

[maximum seconds (small integer)] — Optional parameter: try to connect for
this number of seconds (default: 120 seconds)

[buffer size (integer)] — Optional parameter: size of receive buffer in
bytes (minimum/default: 4096)

Result stream — Stream object used for the other commands in the suite

Notes • This new stream must be closed before the script application quits.

Example set command_stream to (tcp connect to host "nic.ddn.mil" ¬
port 30)

tcp wait for connect

Creates a TCP/IP stream and waits for an incoming connection from a remote host

Usage tcp wait for connect

[port (integer)] — Optional parameter: listen on port number (default is to

Page 5

use an unused port)

[buffer size (integer)] — Optional parameter: size of receive buffer in
bytes (minimum/default 4096)

Result stream — Stream object used for the other commands in the suite

Notes • Do not read or write to the stream until the connection status of
the stream (found through the tcp status command) equals Connected.

• This new stream must be closed before the script application quits.

Example — Start waiting for a connection

set gopher_socket to (tcp wait for connect port 70)

— Loop until someone connects to us

repeat while (connection status of ¬
(tcp status stream gopher_socket) ≠ Connected)

end repeat

tcp close

Closes and releases a TCP/IP stream

Usage tcp close

stream (stream) — Stream object

Result none

Notes • Do not use the stream again after this command.

Example tcp close stream command_stream

tcp shutdown

Partially closes one or both directions of a TCP/IP stream

Usage tcp shutdown

stream (stream) — Stream object

[no further reads (boolean)] — Optional parameter: closes the stream
so that no further reading from the stream can take place (default is false)

Page 6

[no further writes (boolean)] — Optional parameter: closes the stream
so that no further writing to the stream can take place (default is false)

Result none

Notes • You must still issue a tcp close on the stream when you are
completely finished using the stream.

• Any tcp read issued on a stream after a tcp shutdown no
further reads will return an empty string.

Example tcp shutdown stream command_stream with no further reads

tcp status

Returns status of TCP/IP stream

Usage tcp status

stream (stream) — Stream object

Result stream status — Status of TCP/IP stream

Notes • If the connection is actually closed or waiting for a close, but data
remains in the internal buffer waiting for a tcp read or tcp receive, then
tcp status will falsify a status of Connected.

• See Chapter 6 for more information on the internal buffers.

Example set gopher_socket to (tcp wait for connect port 70)
tcp status stream gopher_socket

(* until there is a connection, this will return something like:

{class:stream status, bytes waiting:0, connection status:Waiting,
local host:"165.112.52.8", local port:70, remote host:"0.0.0.0",
remote port:0}
*)

tcp my address

Returns Internet address of this computer

Usage tcp my address

Result string — IP address for the given hostname

Notes • This command returns the IP address for the local Macintosh. You do

Page 7

not need any open streams for this to work.

Example display dialog "My address is: " & (tcp my address)

tcp name to address

Returns IP address for the given hostname

Usage tcp name to address [string]

Result string — IP address for the given hostname

Notes • This command returns the IP address for the given hostname. You do
not need any open streams for this to work.

Example display dialog "The IP address for nic.ddn.mil is " & (tcp name to
address "nic.ddn.mil")

tcp address to name

Returns hostname for the given IP address

Usage tcp address to name [string]

Result string — Hostname for the given IP address

Notes • This command returns the hostname for the given IP address. You do
not need any open streams for this to work.

Example display dialog "The hostname for 128.148.128.40 is " & (tcp name to
address "128.148.128.40")

tcp ahead

Returns true if the specified characters are waiting ahead in the TCP/IP stream

Usage tcp ahead

stream (stream) — Stream object

characters (string) — Scan to see if this string of characters have been
received

Result boolean — True if the specified characters are found ahead in the stream

Notes • You will usually use this command before a tcp read, so that you

Page 8

know what to read up to. See the tcp read command for more details.

• tcp ahead will return true only if the entire text to scan for is found
waiting to be read.

• See Chapter 6 for more information on the internal buffers.

Example -- This was wait until the connected user presses return
-- (which is followed by a linefeed)

set LF to (ASCII character of 10)

repeat until tcp ahead stream commandStream characters LF
end repeat

tcp debug dump buffer

Returns data waiting in the buffer to be read

Usage tcp debug dump buffer

stream (stream) — Stream object

Result string — Data waiting in buffer to be read

Notes • tcp debug dump buffer returns the data waiting in the internal
stream buffer. This data has been read by the Scripting Addition from the tcp
stream, but has not yet been returned to the script.

• See Chapter 6 for more information on the internal buffers.

• You can use this command after a tcp ahead fails, so that you may
see exactly what characters are waiting ahead in the stream.

Example set found to (tcp ahead stream s characters "word:")
tcp debug dump buffer stream s

tcp read

Reads from a TCP/IP stream

Usage tcp read

stream (stream) — Stream object

[maximum bytes (integer)] — Optional parameter: maximum number of
bytes to read (default: no limit)

Page 9

[strip characters (string)] — Optional parameter: filter out any of these
characters before returning the string (default: strip no characters)

[until characters (string)] — Optional parameter: read until these
characters are received (default: read whatever is incoming)

[using ISO88591/Raw Data] — Optional parameter: translates characters
using the specified method after receiving (default is Raw Data)

[as (anything)] — Optional parameter: read the incoming data in this form
(default is text)

Result anything — Data returned

Notes • To read up until a linefeed character, use:

tcp read stream commandStream until characters ¬
(ASCII character of 10)

• To do the same, but also stripping linefeeds after carriage returns, use:

tcp read stream commandStream until characters ¬
(ASCII character of 10) using ISO88591

• A tcp read with none of the optional parameters will return all the
characters currently in the internal stream buffer as a string; it will not read
indefinitely.

• The using parameter translates the characters after the until
characters, maximum bytes, and strip characters parameters have
been dealt with, but before assigning a type of the data to be returned to you.
You may only use ISO88591, which uses the ISO 8859–1 translation table
(including stripping linefeeds), or Raw Data, which receives the data without
translation. You may not use any other translation types with tcp read.

• If maximum bytes is specified, no more than that number of
characters is returned. If you are also stripping or translating characters, then
the number of characters returned may be less than the maximum you
specified.

• The until characters parameter can be more than one character.
For example, to read data up to “abcdefg” and return, you might use:

tcp read stream commandStream until characters "abcdefg" & return

• See Chapter 6 for more information on the internal buffers.

• The following figure the order of parameter processing in the tcp read
command

Page 10

TCP/IP Scripting Addition
Internal Buffer

Check if until characters parameter found

Do not take more than maximum bytes parameter

Process with strip characters parameter and ISO88591, if present

Return data with the type specified in the as parameter

Compiled Script

Process with ISO88591 option, if present

• The tcp read attempts to read all the incoming characters waiting in
the stream before trying to find the until characters string. If the last few
incoming characters start to match the until characters string, but there
are no more characters following, then the condition is treated as if the entire
until characters string was found. Continuing the above example, if the
data stream had only “abcd” before the tcp read was executed, the tcp
read will match sucessfully and will return the characters up to and including
“abcd”.

• It is best not to use tcp read unless you know that the number of
characters waiting in the stream (found with tcp status) is greater than
zero, or if the characters you are looking for (found with tcp ahead) are
waiting to be read.

• If the until characters parameter is not found in the incoming
characters, then an empty string or an empty list is returned (depending on
whether a list was requested in the as parameter). This is very important!

• You may specify an AppleScript type in the as parameter to use for
returning the data. For example, if you specify as string, tcp read will
return the data as a string (which is the default behavior).

• Specify as {string} to get the data as a list of single characters.

Page 11

• Specify as integer to get a 4 byte integer (read from the stream as
most significant byte to least significant byte, or the XDR standard).

• Specify as {integer} to get a list with one 4 byte integer (read from
the stream as most significant byte to least significant byte, or the XDR
standard). If you specified maximum bytes 3, then the first 3 bytes will be
used to make an integer. If you specified maximum bytes with more than 4
bytes, then every 4 bytes will be used to make an integer and any remaining
bytes will be used to make a final integer.

• Specify as data to get the entire incoming data as a single data
object.

• Specify as {data} to get a list of 1 byte data objects.

• Specify as "PICT" to get the entire incoming data as a single data
with the type specified in quotes (or in this example, PICT).

• Specify as {"PICT"} to get a list of 1 byte data objects with the type
specified in quotes (or in this example, PICT).

Example -- This will read a line of text up until a linefeed, and will
-- return only the non–return and non-linefeed characters in the
-- line. If the linefeed is not present, it returns the empty
-- string.

set LF to (ASCII character of 10)

set inLine to (tcp read stream s until characters LF ¬
strip characters return & LF)

-- Here are several examples using the as paramter
-- Assume the incoming data is the sequence of bytes
-- (in hexadecimal) 40 41 42 43 44
tcp read stream s as integer
-- will return 1.078018627E+9 (or $40414243 in decimal)
tcp read stream s as {integer}
-- will return {1.078018627E+9} (or $40414243 in decimal)
tcp read stream s as {integer} maximum bytes 10
-- will return {1.078018627E+9, 69} (or $40414243, $44 in
-- decimal)
tcp read stream s as string
-- will return "ABCDE"
-- same as tcp read stream s as text, or just tcp read stream
tcp read stream s as {string}
-- will return {"A", "B", "C", "D", "E"}
-- same as tcp read stream s as {text}
tcp read stream s as short
-- will return 16706 (or $4041 in decimal)
tcp read stream s as {short} maximum bytes 10
-- will return {16706, 17220, 69}
tcp read stream s as {short} maximum bytes 10 until characters "D"
-- will return {16706, 17220}
-- Do you understand why it returned only 2 numbers?
-- All the bytes up to and including the “D” ($44) were used.

Page 12

tcp read stream s as "PICT"
-- will return «data PICT4142434445»
tcp read stream s as "PICT" maximum bytes 4
-- will return «data PICT41424344»
tcp read stream s as data
-- will return «data rdat41424344445»
tcp read stream s as {data}
-- will return {«data rdat41», «data rdat42», «data rdat43»
-- «data rdat44», «data rdat45»}
-- Now assume the incoming data is the sequence of bytes
-- (in hexadecimal) 40 41 0D 0A (or “AB”, carriage return,
-- linefeed)
tcp read stream s as integer
-- will return 1.09484775E+9 (or $40410D0A in decimal)
tcp read stream s as integer using ISO88591
-- will return 4276749 (or $40410D in decimal)
-- Do you see why? The last 0A byte was removed because of the
-- ISO 8859–1 translation.

tcp receive

Receives a file from a TCP/IP stream

Usage tcp receive

stream (stream) — Stream object

destination (anything) — File, alias, or file access reference number

[maximum bytes (integer)] — Optional parameter: maximum number of
bytes to read (default: no limit)

[strip characters (string)] — Optional parameter: filter out these
characters before writing to the file (default: strip no characters)

[until characters (string)] — Optional parameter: read until these
characters are received (default: read until stream is closed)

[maximum seconds (integer)] — Optional parameter: read until this many
seconds have passed waiting for characters (default: no time limit)

[using ISO88591/Raw Data/Raw Data Fork/Raw Resource
Fork/MacBinary] — Optional parameter: translates characters using the
specified method after receiving (default is Raw Data)

[append (boolean)] — Optional parameter: if an existing destination file is
specified, append to the end of that file instead of replacing that file (default is
false — replace the file if it exists)

Result none

Page 13

Notes • This is similar to the tcp read command, except the input is placed
into a file. tcp receive has the same methods of specifying how much to
read, plus it has a maximum seconds parameter to specify how long to wait
when no new characters are being received.

• If maximum bytes is specified, no more than that number of
characters is placed in the file. If you are also stripping or translating
characters, then the number of characters in the file may be less than the
maximum you specified.

• If the stream is closed by the remote host before the until
characters text is found, then the remaining characters are read and written
into the file and the command returns without an error.

• The until characters parameter works differently than the way it
works in tcp read. With tcp receive, characters are read until the entire
until characters parameter is found.

• The countdown timer specified in the maximum seconds parameter
starts after the last character is read. If more characters arrive, the timer is
reset. tcp receive stops waiting for characters only when the countdown
timer expires.

• The destination parameter can be a file (e.g. file "Macintosh
HD:test"), alias (e.g. alias "Macintosh HD:test"), or an open file
reference number (e.g. obtained with open for access alias
"Macintosh HD:test"). You can get file reference numbers by using the
Read/Write Commands Scripting Addition, included with AppleScript 1.1.

• If you specify a open file reference number in the destination
parameter, the received data is placed at the file mark (i.e. right after where
you last read or wrote to the file). However, if you use the append option,
received data is placed at the end of the open file.

• Specifying an existing file in a file or alias object as the destination
parameter overwrites that file, unless you use the append parameter, in which
case the incoming data is appended to the end of the file.

• The destination file name is ignored if the MacBinary option is
used and the stream data is correctly interpretable as a MacBinary file.
However, the location of the file specified by destination is used (e.g. for
destination file "Macintosh HD:folder 1:myfile", the new file is
placed in "Macintosh HD:folder 1" with the original name specified in the
MacBinary data). If a file already exists at that location with the name
prescribed in the MacBinary header data, the data is written out into a file with
the destination file name and an Duplicate File error is returned.

Page 14

• The using parameter translates the characters after the until
characters, maximum bytes, maximum seconds, and strip
characters parameters have been dealt with, and immediately before saving
the characters in the file. Specifying ISO88591 uses the ISO 8859–1
translation table (including stripping linefeeds). Specifying Raw Data and Raw
Data Fork sends the data fork of a file. Specifying Raw Resource Fork
sends the resource fork of a file. Specifying MacBinary sends both forks of a
file as a MacBinary II formatted file.

• Why is there both a Raw Data and Raw Data Fork option? Because
you cannot use the Raw Data Fork, Raw Resource Fork, or MacBinary
options if you specify a file reference number in the destination parameter
(it does not make sense to specify Raw Resource Fork, when the file's data
fork given in the file reference number is already open). Your only two options
when using file reference numbers are ISO88591 and Raw Data.

Example set LF to (ASCII character of 10)

tcp receive stream s destination file "Macintosh HD:inFile" ¬
until characters return & "." & return ¬
maximum seconds 30 using ISO88591

tcp write

Writes text to a TCP/IP stream

Usage tcp write

stream (stream) — Stream from tcp connect

data (anything) — Data to send to host

[using ISO88591/Raw Data] — Optional parameter: translates characters
using the specified method before sending. (default is Raw Data)

Result none

Notes • This command sends the specified data out through the specified
TCP/IP stream.

• The data parameter used to be called text. Be sure to change your
older scripts.

• The using parameter translates the characters before sending them.
You may only specify ISO88591, which uses the ISO 8859–1 translation table
(including adding linefeeds after carriage returns), or Raw Data which sends

Page 15

the data as is.

• The data parameter can be a string, an integer, or a list of such
elements. In the case of a list, the elements are concatenated before sending.
Using data {"Howdy ", "doody"} is the same as data "Howdy
doody".

• Specifying data 1 sends the integer 1 as a 4 byte integer, from most
significant byte to least significant byte. Specifying data (1 as string)
sends the ASCII character "1".

Example set LF to (ASCII character of 10)
set CR to return
set CRLF to CR & LF

tcp write stream data_stream data {"USER ", ftp_user, return} ¬
using ISO88591

tcp send

Sends a file through a TCP/IP stream

Usage tcp send

stream (stream) — Stream object

source (anything) — File, alias, or file access reference number

[using ISO88591/Raw Data/Raw Data Fork/Raw Resource
Fork/MacBinary] — Optional parameter: translates characters using the
specified method before sending. (default is Raw Data)

Result none

Notes • This command simply sends the specified file out through the specified
TCP/IP stream.

• The using parameter translates the characters before sending them.
Specifying ISO88591 uses the ISO 8859–1 translation table (including adding
linefeeds after carriage returns). Specifying Raw Data and Raw Data Fork
sends the data fork of a file. Specifying Raw Resource Fork sends the
resource fork of a file. Specifying MacBinary sends both forks of a file as a
MacBinary II formatted file.

• Why is there both a Raw Data and Raw Data Fork option? Because
you cannot use the Raw Data Fork, Raw Resource Fork, or MacBinary
options if you specify a file reference number in the destination parameter
(it does not make sense to specify Raw Resource Fork, when the file's data

Page 16

fork given in the file reference number is already open). Your only two options
when using file reference numbers are ISO88591 and Raw Data.

• Specifying an open file reference number in the source parameter
sends the file from the current file mark (right after where you last wrote to or
read from the file).

Example tcp send stream s source (file "HD:sample file") using ISO88591

Page 17

Chapter 4

Classes Used

class stream

TCP/IP stream (internal use only; format will definitely change in the future). You should not
need to access any of these fields.

Properties driver id (small integer) [r/o] — MacTCP Driver ID

stream id (integer) [r/o] — Stream ID for this stream

buffer address (integer) [r/o] — Address of internal MacTCP buffer for
this stream

already read (integer) [r/o] — Bytes already read from MacTCP

class stream status

TCP/IP stream status, returned by tcp status.

Properties bytes waiting (integer) [r/o] — Number of bytes waiting to be read

connection status (No connection/ Waiting/ Establishing/ Connected/
Close Sent/ Close requested/ Closed) [r/o] — Connection status of the
stream

local host (string) [r/o] — Internet address of this computer

local port (integer) [r/o] — Port number of this stream

remote host (string) [r/o] — Internet address of the remote computer

remote port (integer) [r/o] — Port of the remote computer

Page 18

Chapter 5

Miscellaneous tips on using the TCP/IP Scripting Addition

• While debugging your scripts, I strongly recommend using the ZapTCP extension, by
Steven Falkenburg. This extension causes open TCP streams to be closed when an
application unexpectedly quits, and is especially useful when you forget to close streams you
have left opened.

• You may find the Regular Expression matching commands in Script Tools, by Mark
Alldritt, very helpful. For example, to parse a line like:

250 test... Sender ok

you can use the commands:

set lline to "250 test... Sender ok"

set expr to (compile regular expression "([0-9]*)(.)(.*)")
set scan to match regular expression expr to lline

and the results are stored as:

scan = {matched:true, match string:"250 test... Sender ok", match 1:"250", match
2:" ", match 3:"test... Sender ok"}

This way, you can easily pick apart the content of messages to get error numbers, error messages, and
other useful items.

• After you use a tcp connect command, the statements following the connect up until
the tcp close should be enclosed in a try/on error construct, like:

set sss to (tcp connect to host "…" port 70)
try

-- Read, write, and otherwise use the stream
on error msg number num from obj partial result pr

tcp close stream sss
error msg number num from obj partial result pr

end try

tcp close stream sss

This way, streams will not be left open accidently if script errors are encountered.

• This extension has been tested with AppleScript 1.1 and with MacTCP 2.0.4. It works

Page 19

under System 7.5 as well.

Page 20

Chapter 6

Internal Details

The following diagram explains the flow of data from a TCP/IP network to an AppleScript script.

Compiled Script

Data automatically
flows into MacTCP
buffers.

Any waiting MacTCP data flows into
the internal buffer during tcp read,
tcp receive, and tcp ahead.

Any data in the internal buffer is passed on during tcp
read and tcp receive. tcp debug dump buffer and tcp
ahead look at the waiting data, but do not remove it.

MacTCP

TCP/IP Scripting Addition
Internal Buffer

MacTCP
Buffer

Data to be written is
immediately sent through
MacTCP.

The Network

From this diagram, you will note that MacTCP and the TCP/IP Scripting Addition have their
own buffers (or buckets of data). Incoming TCP/IP data automatically flows into MacTCP’s
buffer. The size of this MacTCP buffer is set during the tcp connect command.

Data flows into the TCP/IP Scripting Addition internal buffer when the commands tcp read,
tcp receive, and tcp ahead are executed. Note that tcp read and tcp ahead take all
the data that is immediately waiting in the MacTCP buffer, whereas tcp receive will
continue to read until the stopping criteria are met. The size of this internal buffer is variable;
this buffer automatically expands and contracts to hold as much data as is present.

Page 21

Finally, the AppleScript script gets the incoming data with tcp read. This data can be placed
directly into a file with tcp receive. The script can scan the data in the internal buffer to see
if certain characters are present using tcp ahead. The script writer can peek at the contents
of the internal buffer with tcp debug dump buffer.

When tcp shutdown no further reads is executed, all TCP/IP Scripting Addition stream
commands watch for arriving data in the MacTCP buffer. If any is found, the data is discarded
and is not brought into the TCP/IP Scripting Addition internal buffer.

Note that data sent with tcp send and tcp write is sent immediately through MacTCP and
does not accumulate in any buffers.

When tcp shutdown no further writes is executed, the TCP/IP Scripting Addition
performs a half–close on the stream so that the remote host is signalled that no further data
will be arriving.

Page 22

Chapter 7

Learning More About Common Internet Protocols

If you would like to explore further uses of the TCP/IP Scripting Addition, I suggest first
browsing through the sample scripts included with this release.
Request for Comments (RFC) are the best references for the various Internet protocols. Here
is a list of some of the more common Internet protocols, and the RFCs that describe them:
RFC 959 File Transfer Protocol (FTP)

RFC 1436 Gopher

RFC 1179 Line Printer Daemon (LPD)

RFC 821 Simple Mail Transfer Protocol (SMTP)

RFC 854
RFC 857
RFC 859
RFC 1073
RFC 1079
RFC 1080
RFC 1184
RFC 1408

Telnet and the various options to negotiate

You can download RFCs by anonymous FTP to nic.ddn.mil.

I also strongly recommend the text TCP/IP Illustrated, Volume 1 by W. Richard Stevens,
published by Addison–Wesley Publishing Company, 1994 (ISBN 0–201–63346–9). This book
has the clearest examples of all the above protocols, plus many others. I would not have been
able to write the Baby Telnet sample without it.

Page 23

Chapter 8

Acknowledgments

Thanks to Peter Lewis (author of many excellent products including Script Daemon, Finger
daemon, and FTPd) for providing the code for ISO 8859–1 translation.

Thanks to Mark Alldritt for allowing me to use an early version of his upcoming Script
Debugger. This was incredibly valuable in debugging the sample scripts.

Thanks to Roel Vertegaal for providing suggestions for improving the Send Mail sample script.

And of course, thanks to the users who have paid to license the TCP/IP Scripting Addition!
Without your support, I would not be still working on it!

Page 24

