
I-APL Ltd. IAPL/Mac User Guide 8/29/24
CONTENTS

Preface 3

Chapter 1: History and aims of the I-APL Project 4
Project Aims 4
Progress 4
Versions of I-APL 5
The Interpreter 5
Variations between versions 5
Workspaces are compatible 5
Books 6

Chapter 2: The APL Notation 7

Chapter 3: What I-APL is good for 9

Chapter 4: Using IAPL/Mac 10
Getting Started with IAPL/Mac 10
Using the pull-down menus 19
Menu: File 19
Menu: Edit 22
Menu: Search 25
Menu: Window 26
Menu: Stop/Go 27
Menu: Control 28
Importing and exporting workspaces to I-APL on other types of computer 29
Exploring an unknown workspace 30
Finding and identifying APL symbols 31
Finding and re-inputting APL expressions and idioms 32
The Direct Definition Facility 32
Simple direct definition 32
Editing items in the workspace 34
Using Text-Only files 36
Embedding samples of APL sessions in a desk-top published document 36

Chapter 5: Extending IAPL/Mac with machine code and other resources 37
Writing Machine Code Resources to call from IAPL/Mac 37
The built-in Machine Code Functions 37
Inspecting or Removing a Resource already attached to IAPL/Mac 39
Adding pictures to your IAPL/Mac application 40
Adding sounds to your IAPL/Mac application 40
Translating IAPL/Mac to another European Language 40

APPENDIX A: IAPL/Mac Standard-Conformance Document 41

APPENDIX B: quadID for all current ports 53

APPENDIX C: Writing a Machine Code Resource using LightspeedC 54

1

I-APL Ltd. IAPL/Mac User Guide 8/29/24

IMPORTANT

I-APL is intended for home and educational use, and to allow businesses to evaluate APL for
very little cost. It is not designed for commercial programming or exploitation.

I-APL takes more computer time than BASIC to perform some tasks, but the competent APL
user needs less time to formulate those tasks.

Program development time is the sum of programmer thinking time and computer execution
time. I-APL may be slower than BASIC for the latter, but is much faster for the former, so
that overall I-APL is faster than BASIC.

Where I-APL is designed to be small and portable, commercial APLs are designed to be fast
and to integrate well with their system environments. They are available for most major
makes of mainframe, mini and micro computer. They offer larger workspaces and better
program development facilities than I-APL, as well as providing filing systems, commercial
formatting, and many other extras.

2

I-APL Ltd. IAPL/Mac User Guide 8/29/24

IAPL/Mac
Instruction Manual

I-APL for the Apple Macintosh
Version 1.

by

Anthony Camacho
Paul Chapman

Ian Clark
David Ziemann

(c) Copyright I-APL Limited 1991
All rights reserved

This book may not be reproduced for sale or included with any product for sale.

Published by:
I-APL Limited

2 Blenheim Road
St Albans

Herts, AL1 4NR
England

3

I-APL Ltd. IAPL/Mac User Guide 8/29/24

Preface

This book is provided as part of the IAPL/Mac product.

Chapters 1 to 5 contain an overview of the International APL project (I-APL) and the
IAPL/Mac interpreter, which runs on the Apple Macintosh computer.

Appendix A contains the standard conformance document required by the draft ISO
International APL Standard DIS 8485. This includes a description of the areas where
IAPL/Mac exceeds the requirements of the Standard.

Appendix B contains a list of the results produced by system function quadID for all I-APL
implementations current at the time of printing, to aid writers of portable I-APL workspaces.

4

I-APL Ltd. IAPL/Mac User Guide 8/29/24

Chapter 1: History and aims of the I-APL Project

At the international APL conference in Manchester in July 1986 an idea of Paul Chapman's
was taken up by a group of enthusiasts. The idea was that it would be possible to write a full
ISO compatible APL interpreter in 25K which would run on school and home computers.
The I-APL project was founded with a committee of five: Ed Cherlin, Editor of APL Market
News, and Anthony Camacho, then secretary of the APL Association, were to be joint
chairmen; Norman Thomson and Howard Peelle were to be education officers and David
Ziemann was the technical expert. Fundraising began that summer and by October there was
sufficient to authorise Paul to begin work.

Project Aims

The project aims were to write and issue an APL interpreter which would run on as many
school and home computers as possible, and be available in any part of the world. There
would be no charge for the software but there would have to be some charge for the medium
and for copying and also for
the books which would go with it. The project and its supporters believe that if APL is to
grow it must be made available in schools. Experience has taught us that efforts to interest
school teachers cease to be effective as soon as the teachers discover that APL would be very
expensive for them to try. By removing the cost barrier it was hoped that many people could
be persuaded to try APL and that many APLers would be encouraged to introduce APL to
teachers. The project has always seen the production of the interpreter as the first step and
probably not the hardest step in the difficult job of getting APL into widespread educational
use.

Progress

Paul Chapman finished the interpreter on 4 July 1987 and debugging, optimisation,
improvements and customisation to the PC occupied the next six months. Version 1.0 was
issued in January 1988 and we sold out of manuals in August 1988. Version 1.1 was
completed in October 1988 and cures all the V.1.0 bugs reported to us as well as adding some
new facilities. The most important of the new features is the option to send output to the
screen through the BIOS; this allows PC clones whose display is not hardware-compatible to
scroll the display correctly, though slower than the
standard version.

The job of porting I-APL requires intimate knowledge of the operating system and
reasonable competence at producing machine code programs for the chosen machine. What a
porter has to do is to write an interpreter for the specially invented language DE in which the
APL interpreter is written, and link it to the operating system of the machine for input from
keyboard, for output to screen, printer etc. and to give at least)SAVE and)LOAD access to
the filing system for workspaces.

In addition to the porting job we like to have some workspaces which use the quad-MC
feature to give access from APL to the machine's filing system, graphics, colours and sound.

If you would like to have a go at a port please contact the project at the address below. If
there is already someone working on your chosen machine we will put you in touch. They
may give you a flying start or you may find you have just the knowledge which is holding

5

I-APL Ltd. IAPL/Mac User Guide 8/29/24
things up. There is 8086, Z80, 6502 and 68008 machine code already available for most of
DEGO.

6

I-APL Ltd. IAPL/Mac User Guide 8/29/24
Versions of I-APL

To get yourself on the mailing list for your machine, write to the I-APL Project, 2 Blenheim
Road, St Albans, Herts, AL1 4NR, UK and mention the machine you want to put it on.

The Interpreter

The I-APL interpreter was written to take the minimum program space. This is necessary so
that it can be used on the small computers generally in use in schools. For example addresses
are held in 16 bits, so a BBC B, a CP/M machine (Z80), a CBM64 or a Spectrum can use all
its directly addressable memory.

If your computer has more than 64K of memory I-APL will not be able to use the extra for
the workspace itself. A clever porter may be able to store fast machine code routines in such
memory and access them from within APL by a far jump; this is why the PC version uses
256K of memory - the DFILE, PGRAPH, FSCREEN workspaces are very small and most of
the code is outside the 64 K range. In the Apple Macintosh version, all extended code
facilities are held in separate machine-code resources, which are read-into memory as
needed. Whenever there was a choice whether to make I-APL fast or small we chose to make
it small.

Variations between versions

Because the interpreter is itelf interpreted, the APL is exactly the same on every machine.
The only things that vary are the keyboard, the screen, the operating system (and the access
to it), the details of how one can write machine code within APL and the method of dealing
with printers and other peripheral devices. The porter writes the interpreter for DE in the
machine code for the CPU chip at the heart of your machine. This program is called DEGO.

Workspaces are compatible

When you save an APL program, what is saved is the complete workspace. A workspace
contains functions (the program), variables and all the APL system settings. If your program
needs a print width of 192 you can set it to that, save the workspace and when it is reloaded
the print width you set is also reloaded. A saved workspace will also contain the APL stack so
a program that has been interrupted by an error or your intervention can be saved and then
when reloaded can be restarted at exactly the point where it was stopped.

Apart from use of the machine code call function, all I-APL workspaces will run on any I-
APL machine. All you have to do is transfer the complete file from the disk or tape format of
one machine to that of another (note that the first two bytes in the file give the length in bytes
of the rest of the file. For example if the total file is 15 bytes long the first two bytes will be
0D 00. If your file transfer mechanism pads the length you will have to readjust it.

Thus a group of people using quite different computers can still use exactly the same APL,
loading the same workspaces and getting the same results. The only difference will be in the
keys they have to press and in the display and perhaps the print they get.

7

I-APL Ltd. IAPL/Mac User Guide 8/29/24
Books

The essential books for the project are as follows:

— This instruction manual.

— A tutorial for total beginners in APL. Norman Thomson produced the Tutorial and
Linda Alvord and others helped with material.

— An APL reference manual, known as "An Encyclopaedia of APL" by Garry Helzer.
Garry had been considering the desirability of producing an APL encyclopaedia with
the primitives arranged in alphabetical order and the project provided the need and
incentive to do it.

There are already several I-APL workspaces. These are available from the British APL
Association Software library. For details see a recent copy of Vector, the Association's
magazine. Some may be available through the CIX or other bulletin boards (join the APL
conference).

I-APL can be used with any of the many APL books. In particular it includes both the "Del
editor" which is part of the ISO standard and "Direct Definition" which is used by many of
the best textbooks on APL. APL booklists are offered by the APL Association, and by
Renaissance Data Systems, PO Box 20023, Cathedral Finance Station, New York, New York
10025-1510, U. S. A. For a British source of APL books see Vector.

8

I-APL Ltd. IAPL/Mac User Guide 8/29/24

Chapter 2: The APL Notation

APL is primarily an imperative notation. This means that what you write in it is instructions
or commands (not statements or questions or interjections). In this it is like other computer
languages. It was invented by Ken Iverson because he saw the need for such a notation for
such purposes as description of the detailed internal workings of computers. Computers have
such a great many potential states that engineering drawings cannot show them in a
comprehensible way. Attempts to describe the states in English become far too bulky - they
begin to read like legal documents.

The many anomalies in conventional mathematical notation (convenience has been more
important than consistency to mathematicians on many occasions over the last three or four
hundred years) made it unsuitable for the expression of algorithms. Furthermore each
variable in conventional notation usually only holds a single item and attempts to indicate a
range (typically by using a row of dots to give the idea) are unsuitable for rigorous
interpretation. APL extends the core of mathematical notation in two ways.

— Its variables can be arrays. This calls for consistent rules to handle the different
shapes and for making selections from or altering the shape of such variables.

— The range of functions is extended to include all of logic, many new functions for
processing arrays and operators which enhance and vary the effect of functions.

An APL variable is a name associated with a rectangular array of any size and number of
dimensions. The functions of logic and mathematics are extended to deal with such array
variables. The single value becomes a special case and consistency is maintained for arrays
which are empty.

APL has a great many primitive functions which are not available in other notations or other
computer languages. For example a single symbol specifies matrix division and another
specifies conversion between decimal and any multi-radix arithmetic. It also includes
operators which enhance the simple functions so that matrix multiplication is specified by
three symbols or adding across or down a table is specified with two symbols. The
consequence is that APL is at least as concise as any other notation and much more concise
than any other programming language, but with a far wider choice of functions.

The first major task APL was used for was to define the internal workings of the IBM 360
computer. APL was used for six or eight years before anyone thought it might be possible to
program a computer to obey a reasonable selection of APL functions. APL began as a means
of communication between people and is still used for that purpose.

In the evaluation of expressions APL is like mathematics; the result of evaluating any
expression replaces the expression for the next stage of evaluation. In a formula (3+4) is
replaced by 7. What you write in APL is more functions which, like plus, have a left and a
right argument (the 3 and the 4) or only one argument like factorial or even no argument. The
functions you write are called 'defined functions'. Each defined function returns a result or by
performance of some action gives an implicit result in the form of a screen display or output
on a printer or other device. In APL the syntax for defined functions is very similar to that for
primitive functions: the same rules of precedence apply, the maximum number of arguments
is two and in general they return a result for the rest of the expression to use.

9

I-APL Ltd. IAPL/Mac User Guide 8/29/24

When APL was implemented many people realised that it was the most concise and analytic
of all the computer languages. During the implementation characters which

10

I-APL Ltd. IAPL/Mac User Guide 8/29/24
would not fit on a single line and superscripts and subscripts were excluded. Its character set
was partly determined by the technical needs of the golf-ball typewriter which was originally
used to print APL.

The character set has changed very little since then: many people have regretted that it causes
difficulty in implementing APL on some computers but the several attempts to replace the
symbols by keywords have never shown any hope of replacing the symbols for most users.
The symbols are an essential part of the notation; it is only people who view APL as just
another programming language that want to or could use keywords.

11

I-APL Ltd. IAPL/Mac User Guide 8/29/24

Chapter 3: What I-APL is good for

I-APL is designed for educational use. It is primarily a learning tool.

It is a complete APL and conforms to the International Standards Organisation standard for
APL (which is also expected to become a British Standard).

Its execution speed is adequate for learning purposes provided that array sizes are kept small
enough to be displayed on a single screen. Its workspaces are large enough for complex work
to be done on such arrays, but as workspace and interpreter (and, in some machines,
operating system scratch memory, buffers and screen memory) all have to be contained in a
64K address space, no machine will be able to provide a clear workspace of more than 32K,
however large its memory.

To reduce the size of arrays of real (floating point) numbers they are held in I-APL less
precisely than in commercial APLs. The accuracy of logarithmic and trigonometrical
functions is also less than most commercial systems; these limitations are to make the
interpreter as economical of space and as fast as possible.

The ISO standard does not require that a filing system is provided and I-APL does not
include one. Nor does it include commercial formatting or a full screen facility.

I-APL does not cater for nested or heterogeneous arrays or the extended functions and
operators of enhanced APLs.

When you have learned APL and begin to notice the limitations of I-APL, you should
consider using one of the commercial APLs advertised in this manual or which you may
learn about from the British APL Association and its magazine Vector.

In the USA contact SigAPL via the ACM. SigAPL's journal is called Quote-Quad.

Commercial APLs offer greater speed, precision, accuracy and space. They are often
beautifully integrated into the operating philosophy of the machines they run on and most
offer filing systems and a wide range of enhancements - new and exciting functions and
operators and heterogeneous and nested arrays. By the time you are ready for them you will
know enough about APL to be able to choose between the rival attractions of the many
alternatives open to you.

I-APL is compatible with all known complete APLs and what you learn here will be valuable
to you whichever APL you use next. This manual highlights the few features in I-APL which
may not work on every APL. If you avoid these it will be easy to transfer your I-APL
workspaces into any other APL environment and get them working.

An I-APL workspace which does not use the quadMC and quadTX functions can be
transferred between any I-APL machine and any other and will produce exactly the same
results wherever it is run, provided there is enough memory.

The knowledge of APL you acquire while using I-APL will similarly be transferable to any
other APL environment and with equally little loss.

12

I-APL Ltd. IAPL/Mac User Guide 8/29/24

Chapter 4: Using IAPL/Mac
Getting Started with IAPL/Mac

When you load your distribution diskette you will see a window like this:

Figure 1. The distribution disk desktop with program and workspace icons.

You can see examples of all the different sorts of icons along the top row. In turn they are:

 (Mortarboard). The IAPL/Mac Interpreter itself, here called Version 1.0.

 (Plain). IAPL.DEB. You needn't bother what this file does. But it must be in the same

folder or desktop as the Mortarboard Icon (the Interpreter) when you try to run it. It contains
the "portable" part of I-APL which is common to all the ports on different machines. It is
NOT "double-clickable".

 (Suitcase). The file: iapl fonts. This is a standard Font file. It contains fonts called

Hex and St Albans. You needn't bother with Hex for now, but in time you may be pleased
you've got it. If you're a programmer it helps you decypher funny characters in text files. The
other two fonts are both St Albans, 9- and 18-point. If you want to print documents
containing APL symbols you need to move this font family into your System file by the usual
method. If you simply want to run IAPL/Mac for viewing on the screen then don't bother to
do this yet. The IAPL/Mac Application has its own copies of St Albans 9 and 18. It will use
these whether or not they are (also) in the System file.

13

I-APL Ltd. IAPL/Mac User Guide 8/29/24

 (IAPL Document) READ.ME . This is a so-called "text only" file which all word-

processors will accept. However it happens to be "double-clickable". Opening this type of
file will run IAPL and load the contents of the file into the Session Window. See Using Text-
Only Files below for what you can do with such files.

 (IWS Workspace) PLANETS. This is what corresponds to a "user program" in APL.

It is an integrated file containing data, functions and environment. IWS files are easily
transferred between the different ports of I-APL. Data and functions can easily be copied,
one at a time, from one workspace to another, or entire workspaces can be merged. There are
several other sample workspaces on the distribution diskette.

Start IAPL/Mac by double-clicking on one of the following kinds of icon:
— On the Mortarboard icon (to start off with a clear workspace)
— On one of the workspace icons, e.g. PLANETS, which will load PLANETS immediately

after starting
— On one of the IAPL Document files, which starts IAPL/Mac with a clear workspace but

with the file's contents visible in the Session Window.

Figure 2. Initial appearance of IAPL/Mac.

Start IAPL/Mac by double-clicking on the mortarboard icon. You will shortly see a display
like that of figure 2 (above).

14

I-APL Ltd. IAPL/Mac User Guide 8/29/24
Conventional APL gives you a six-blank prompt, but IAPL/Mac prompts you by displaying a
window called the Command line, with no leading blanks. It is now waiting for you to type
something on the keyboard. Alternatively you can pull-down a menu and select an item.

Type-in an expression, e.g. 123+456, and press the L-shaped key, {return}. Your keyboard
may also have a key labelled {enter}, which IAPL/Mac accepts as the same thing. As you
type-in the expression, you see the letters appear twice-sized in the Command line, as shown
in figure 3.

Figure 3. Typing an expression into the Command Line.

On hitting {return} your input, and IAPL's reply, will appear in the Session Window, as
figure 4 shows.

Figure 4. The result of inputting an expression.

At this level of use, IAPL/Mac is just a glorified calculating machine, with the advantage of
logging the calculations. However it can be used to do a little more than that. It lets you write
teaching materials to convey advanced mathematical, scientific or engineering concepts to
students. If you teach in terms of the APL notation, then the student can play with your
examples on a machine which actually executes the formulae you write on the blackboard (or
on a worksheet, or in a textbook).

To prove the point, how about a quick lesson in statistics?

Here is a sequence of numbers. It might be rainfall on successive days, or the daily closing
prices of given shares, or any series of observations you like. Type them in (with a space
between each one) and press {return}.

 ⨯ 7.25 7 ⨯.8 ⨯.⨯7 5 4 ∧ 4.2 ⨯.⊂
APL computes your input, but in this case ends up with the same thing. So it simply echoes
what you typed in.

15

I-APL Ltd. IAPL/Mac User Guide 8/29/24

 ⨯ 7.25 7 ⨯.8 ⨯.⨯7 5 4 ∧ 4.2 ⨯.⊂⨯ 7.25 7 ⨯.8 ⨯.⨯7 5 4 ∧ 4.2 ⨯.⊂

16

I-APL Ltd. IAPL/Mac User Guide 8/29/24
This is a time-series. People usually refer to a time-series as X. So let us place this sequence
of numbers in X. Get the numbers back into the Command line. To do this, double-click on
the line of numbers in the session log. Or if you're not handy at double-clicking, sinply click
once on the line (this is called "selecting" it — the whole line blackens) and choose Bring
Down from the Edit menu (or B⌘ for short).

The Command Line now looks like this (see figure 5):

Figure 5. Bringing back a line from the Session Log.

Put the text cursor at the front of the Command Line, either by clicking there with the mouse
or by using the up-arrow key. Now type X¢ in front of the string of numbers and press
{return}.

Figure 6. Using Symbols... in the Search menu (1).

What? Can't find the ¢ key? You novice, you. Fortunately there is a menu to help you (there
are two if you include Help... in the Window menu, which shows you the IAPL keyboard
layout). But unless you like hunting for keys on a keyboard layout,

17

I-APL Ltd. IAPL/Mac User Guide 8/29/24
why not pull down Symbols... in the Search menu. This is what you see (figure 6):

The special APL symbols are here classified by shape. You remember you want an arrow. So
click the Arrows button. A new set of symbols arppears. The one you want just happens to be
at the top left corner (see figure 7).

Figure 7. Using Symbols... in the Search menu (2).

Click on it. The dialog box goes away and the ¢ symbol obligingly appears as if you had
typed it (see figure 8).

Figure 8. Composing new input by overwriting a brought-back line.

Since you will need this symbol a lot, you might as well learn right now that it is {shift-
minus}.

Now you have assigned the time-series to X. Inputting just X will output the numbers again.
Try typing X+1

18

I-APL Ltd. IAPL/Mac User Guide 8/29/24 X≠⊂7 8.25 8 7.8 7.⨯7 ⨯ 5 4 5.2 7.⊂
APL is just as happy dealing with whole series as it is with single numbers. It adds 1 to each
number.

How many numbers does X contain? You find the "shape" of any variable or expression by
placing º (Greek "rho") in front of it. Rho is got by {shift-R} — that's easy to remember. But
if you can't remember it, choose Symbols... again from the Search menu and click the
button for Greeks.

 ºX⊂0
However, you're supposed to be giving a statistics lesson, not a Greek lesson. You don't want
to have to explain to the students what º is. So write yourself a function called something
sensible like ℂOUℕT to count up the terms of any variable (or expression).

Turn that last expression into a function. Double-click the line ºX to re-work it. There's little
point in avoiding typing it in afresh with so simple an expression, but there might be with a
much longer one.

This time, overtype the line to read:

 ℂOUℕT: ºX
and enter it. APL makes no reply (which is generally a good thing) but IAPL/Mac shows it is
working by changing the mouse pointer to a spinning "beachball". Test ℂOUℕT by typing:

 ℂOUℕT⊂0
Great. But ℂOUℕT is only ever going to count the elements of the variable X. How do you
make it count up anything? Well, double-click on the line saying ℂOUℕT: ºX once more and
turn the X into ˇ ("omega"). To save you using Symbols... again, ˇ is {shift-W}. It is a special
symbol which behaves like a variable name, but inside a function definition it takes the value
of the right-hand argument of that function (but it can be reassigned). So now you have: ℂOUℕT: ºˇ
Test it with various different right-hand arguments:

 ℂOUℕT X⊂0 ℂOUℕT ⊂ 2 ∧∧ ℂOUℕT 4 5 ⨯∧ ℂOUℕT X,X (— that's X concatenated with itself)20 ℂOUℕT ⊂⊂/5 (— that's 99 repetitions of the number 5)⊂⊂
So far, so good. Another thing you can do is sum all the terms of X. Try it:

19

I-APL Ltd. IAPL/Mac User Guide 8/29/24 ≠/X5⨯.02

20

I-APL Ltd. IAPL/Mac User Guide 8/29/24

That gives us the basis for another useful function:

 SUM: ≠/ˇ
Now we can start some statistics. Notice that there's no need to teach the class APL in order
to do this. However we need to warn those keenies who taught themselves BASIC at home
that APL uses the conventional mathematical symbols for addition, subtraction,
multiplication and division, namely (≠ - ∂ ∞). Asterisk (*) means "to the power of", not "times"
and Slash (/) is not "divide", but is the replication operator which we have already used in ≠/X and ⊂⊂/5.

The average, or sample mean, of X is:

 ∩SUM X)∞∩ℂOUℕT X)5.⨯02
We can define the function MEAN as:

 MEAℕ:∩SUM ˇ)∞∩ℂOUℕT ˇ)
After that, variance and standard deviation come pretty naturally, not to mention all the other
statistics defined in terms of expectations:

 SQUAℝE : ˇ*2Ⅾ ℝOOT: ˇ*.5 VAℝ AℕℂE: MEAℕ SQUAℝE ∩ˇ-MEAℕ ˇ)Ⅰ Ⅾ STAℕ Aℝ EV AT Oℕ: ℝOOT VAℝ AℕℂE ˇⅮ ⅮⅮ Ⅰ Ⅰ Ⅰ

Incidentally, the parentheses in VAℝ AℕℂE: Ⅰ are redundant, but put them in for the students'
sake, or they'll be asking "Please Sir, does SQUAℝE Ⅾ apply just to the ˇ or to the whole lot?" In
fact SQUAℝE Ⅾ squares each of the elements in the expression, ˇ, it operates upon. Since you'll
be summing squares a lot, you could write more little functions, getting the students to assure
themselves by trials that they come to the same thing:

 SUMSQ: ≠/∩ˇ*2) Ω=SUM OF SQUAℝES ℝMS: ∩MEAℕ ∩ˇ*2))*.5 Ω=ℝOOT-MEAℕ-SQUAℝE STAℕ Aℝ EV AT Oℕ: ℝMS ∩ˇ-MEAℕ ˇ)Ⅾ ⅮⅮ Ⅰ Ⅰ

It's easier than all those sigmas, isn't it?

You see that IAPL/Mac lets you assign your own variables and define your own little
functions, which you can use in place of numbers in the expressions you type in. You can
embed expressions in functions which call other functions, building up your application bit-
by-bit. If you choose, you can end up with a single function called ΓO (or anything you like
— there are no "reserved words" in APL) which runs a highly sophisticated program
requiring no expressions to be typed-in at all. Finally you can ask APL to run an expression
consisting of nothing but the word ΓO as soon as your workspace is loaded. Then you have
built what they call in the trade a "turnkey" system, or in MacSpeak, a "double-clickable
application". Your lucky recipient can double-click the icon and run your application and
need never know it's APL (though he'll need the IAPL/Mac files around).

Your distribution diskette contains just such a workspace, called PLANETS. It is designed to

21

I-APL Ltd. IAPL/Mac User Guide 8/29/24
give you a "taste of APL" (strongly flavored, as it happens — you are not being invited to
write APL in this way). It runs on whatever port of IAPL you are using without you having to
do anything except hit the {return} key.

22

I-APL Ltd. IAPL/Mac User Guide 8/29/24
Let's load the workspace called PLANETS.

Pull down the File Menu and select Load... (or hit O⌘ for "open"). IAPL/Mac will then
invite you to choose a workspace from a scrollable list. This is a standard facility with
Macintosh applications, allowing you to navigate through different folders and even through
different disks and drives to find the data file you want. It does so by showing you a so-called
"dialog box" resembling Figure 9:

Figure 9. Dialog box shown by IAPL/Mac when helping you to locate a workspace.

You must interact with the dialog box to choose a workspace or else make it go away by
hitting the Cancel button.

Suppose you locate PLANETS as figure 9 shows, by double-clicking on the line shown
blackened. Then IAPL/Mac will automatically generate the command:)LOA PLAℕETSⅮ as if
you had typed it yourself. It is better than typing it yourself, however, because the dialog also
tells IAPL the correct folder you found your workspace in.

After a short interval, the screen will look like figure 10 (below). PLANETS has started
immediately after loading (because the writer of PLANETS has used the πLX facility of ISO-
standard APL). The function in control is now waiting for you to hit {enter} to execute the
next step of the demonstration.

Instead of hitting {enter}, hit .⌘ or choose Abort from the Stop/Go menu. This interrupts
the running function and causes APL to prompt you with the Command line for input. You
have now broken into the demo, which would otherwise roll on to its end, disregarding
whatever you typed-in and treating it as if you had just been hitting {enter}. Now you can, if
you choose, re-start the demo by typing:

 TASTEℝ
which happens to be an APL Expression. It is an expression in terms of a function which
takes no arguments, but runs the whole demo. The workspace is "turnkeyed" by placing the
expression TASTEℝ in the so-called "latent expression" of the workspace before saving it. You

23

I-APL Ltd. IAPL/Mac User Guide 8/29/24
can do this yourself by typing:

 πLX¢∪TASTEℝ∪

24

I-APL Ltd. IAPL/Mac User Guide 8/29/24
Note that πLX must be assigned a string value, hence ∪TASTEℝ∪ instead of TASTEℝ.

Figure 10. Screen appearance after loading the distributed workspace PLANETS

Instead of using Load... in the File menu you can load a function the conventional APL way
by typing the command:

)LOA PLAℕETSⅮ

However IAPL/Mac will only succeed in finding the workspace you want to load if it is
"near" the Mortarboard icon you opened to run IAPL/Mac, or "near" the last workspace you
successfully loaded. In this context, "near" means residing in the same folder, or visible in the
same window.

25

I-APL Ltd. IAPL/Mac User Guide 8/29/24

Figure 11. Partial

screen appearance after aborting execution and typing:)OFF

26

I-APL Ltd. IAPL/Mac User Guide 8/29/24
Now let's end this session by typing:)OFF and pressing {return}. See figure 11.
IAPL/Mac will terminate and you will see the window showing the Mortarboard icon once
again.

Using the pull-down menus

IAPL/Mac can be used like a traditional APL system, except that)L BⅠ gives you a display
like that of figure 9 instead of the conventional list of workspaces in the session log.
However IAPL/Mac allows you to work in a more Macintosh-like way, by using pull-down
menus and dialogs.

The menus in IAPL/Mac allow you to do all the things you can do by typing APL commands
like)LOAⅮ)SAVE and)OFF. Usually these generate the appropriate commands for you (to mark
the session log and preserve compatibility with standard APL generally), but often they do
more for you than simply typing the command would do.

Hence if you are new to APL, or don't particularly care to type-in commands, use the pull-
down menus.

Besides offering an alternative interface to the command sub-language which is part of APL,
certain pull-down menus help you compose APL expressions. In particular there are menu
items to do the following:

• help you find (and input) a particular APL symbol
• help you identify a particular symbol whose meaning you might have forgotten
• help you locate a suitable idiom and type it in for you
• help you re-input an expression or part of an expression (with or without changes) which

you have at some time already typed-in
• attach whole expressions to menu items and their corresponding ⌘-keys, to give you a

small stock of instant inputs.

Menu: File

New N⌘
This generates the)ℂLEAℝ command. The result is an empty workspace called CLEAR WS.

Load... O⌘
This puts up the standard dialog box of figure 9 inviting the user to select a workspace by
name. Only the names of workspaces are shown in the list, not other files.

Save S⌘
This simply generates the)SAVE command. The current workspace will be copied to disk.

Save As...
This puts up a standard kind of dialog box inviting the user to save the workspace under the
current workspace name, but providing the usual options to change the name or navigate to a
different disk or folder before saving. Pressing the Save button makes IAPL/Mac generate
the command:)SAVE ℕℕℕℕ using the existing or altered name ℕℕℕℕ.

27

I-APL Ltd. IAPL/Mac User Guide 8/29/24
Drop... D⌘
This puts up a similar dialog box to Load... but the result of selecting one of the listed file is
to erase it, not to load it. Only workspaces are listed.

Copy Item...
This puts up a list of workspaces like Load... but as soon as you select a workspace to copy
from (call it MYWS), IAPL/Mac "obtains" a name of an item (function or variable, call it MY TEMⅠ). IAPL/Mac then generates the command:)ℂOPY MYWS MY TEMⅠ

When we say IAPL/Mac "obtains" a name, this means that it will look for a valid item name
in the following places in turn:
— the selected word in the Command line
— (if no selection) the first word comprising a valid item name in the Command line
— (if the Command line is empty) the first word comprising a valid item name in the
selected line of the Session window
— (if no Session line currently selected) the response from a dialog box looking like figure
12.
The dialog box only accepts the ASCII keyboard, which means that normally you must type
in uppercase, e.g. MY TEMⅠ must be typed into the box as: MYITEM not: myitem.
If you simply press {return} in answer to the dialog box, i.e. you input a blank name, then
IAPL/Mac generates the command:)ℂOPY MYWS
The effect of this is to copy all items (functions and variables) of workspace MYWS into your
current workspace.

Figure 12. Dialog box which appears when no Copy Item implicitly given.

Launder...
This puts up a similar dialog box to Load..., but now all files in the current folder are visible,

not only those files with the "workspace" icon . Selecting a file gives it the

"workspace" icon. Thereafter it will be visible using Load.... This facility is provided for
importing workspaces from a non-Mac system. No translation is needed when copying across
an IAPL workspace in binary form. However, having done so, the resulting files will not
show the proper IWS icon on the desktop and will not be visible to Load... until they have
been 'laundered' by using this menu item. No check is made to see if the file being
"laundered" is in fact a genuine candidate IAPL workspace — it is your responsibility to
ensure this.

28

I-APL Ltd. IAPL/Mac User Guide 8/29/24
Page Setup...
Print P⌘
These menu facilities set up and print the contents of the frontmost window (the Session
window or the Edit window) on the attached printer. They behave like they do in a normal
Macintosh word processor or editor. Any so-called "text-only" file can be printed in this way
(in the special IAPL/Mac font St Albans) if you first load it into the Session log or Edit
window by the Load Window... menu option (see below).

Clear Window *⌘
This empties the frontmost window. Typically this is either the Command Line, the Edit
window or the Session window. You can use this to discard the unwanted contents of the
Session log if you feel this is getting too large, or wish to start afresh in order to compose a
sample session.

Load Window...
This shows you a list of files resembling figure 9, but consisting of text-only files (including
any files saved by the Save Window option to be described).

Save Window
This saves the Session log (or the contents of the Edit window, if that is currently to the fore)
as a recallable file, making the lines and expressions in it re-inputtable. See section below on
the use of saved session logs, also the Bring Down and Re-Input items of the Edit menu.

The saved file is given a desktop icon looking like this: It behaves, for all intents and

purposes, like a text-only file such as most word-processors and the Edit utility recognise. It
carries no font information, but if loaded into a word-processor such as Microsoft Word and
converted to font St Albans in 9-point size, it will reappear as it did in the Session log. It will
start IAPL/Mac and pre-load itself if you double-click it (but IAPL/Mac will nevertheless
start with a Clear WS).

Save Window As...
This saves the Session log (or the contents of the Edit window, if that is currently the
frontmost window) as a recallable file as above, but allowing you to give it a new name first.

Quit Q⌘
Terminates the IAPL/Mac session, first inviting you to save the workspace if it has been
altered.
Menu: Edit

Undo Z⌘
Works only for cut and paste operations on the Edit Window. It will not back-out of an APL
operation.

Cut X⌘
Copy C⌘
Paste V⌘
The usual Macintosh facilities. The most frequent cutting and pasting will take place between
the Session window, the Command line window and the Edit window. You

29

I-APL Ltd. IAPL/Mac User Guide 8/29/24
cannot Cut or Paste the session log, but you can Copy an entire line from it into the
Clipboard, and thence into another window.

Bring Down B⌘
A fast copy/paste from the Session window. Click on a Session window line, which
highlights the entire line. Then choose this menu item, or hit B⌘ , and the line will be copied
into the Command line window. NB: only entire lines can be copied from the session log, but
once in the Command line or the Edit window they can be cut, copied, pasted or re-typed in
whole or in part.

NB: Double-clicking on a line of the Session window will bring it down into the Command
line, i.e. it is equivalent to selecting a line and hitting B⌘ . When you get confident with the
mouse, this is the normal way you'll use to "Bring Down" a line.

Re-Input Y⌘
Like Bring Down, but the entire selected line is immediately re-executed without the
opportunity to overtype it. Best used in conjunction with the arrow keys when the Session
window is frontmost.

Edit Function... =⌘
Edit Char Array...
Edit Num Array...
IAPL/Mac "obtains" the name of an item to edit (see above under Copy Item... to learn what
"obtain" means). It then decides what type of item you have chosen and shows you its
contents in the Edit window for you to alter. You may then edit the item as if using a typical
Macintosh text editor (except that you cannot change font). Then select Finish Edit (E) ⌘
(see below) and the chosen item will be updated.

The item will NOT be updated in the workspace unless you select Finish Edit. If you simply
click the go-away box, or start editing another item, the previous item will simply stay as it
originally was in the workspace. If you click the go-away box by accident (or intentionally,
to look beneath the window), then just choose TextEdit Window (T)⌘ . The window will
reappear with its contents intact and you can carry on editing as if nothing happened.

If the item exists already, it doesn't matter which of the three you choose: IAPL/Mac will
look at the item to decide how best to edit it. However, if the item doesn't yet exist, i.e. the
name is an unused name, then you need to tell IAPL/Mac what sort of item to create:
function, char array or num array. That's the only reason why you have three menu items, not
one.

The way in which IAPL/Mac "obtains" the name it needs allows you to specify the item you
want to edit just by pointing to it. Use the menu item: WS Names... to give you a list of
variables and functions in the workspace. Then edit any desired item by scrolling the Session
Window back to that list, click on a name (to select its Session log line), then hit =⌘ .

If the item you want to inspect or edit appears in a listing, select the whole line. If it is the
first item name in the line, then =⌘ will find it correctly (IAPL/Mac will ignore punctuation
and special APL symbols). If it is NOT the first item, then Bring Down the line and select
(hilite) the name by dragging the cursor across it.

30

I-APL Ltd. IAPL/Mac User Guide 8/29/24
Finish Editing E⌘
The edit window disappears and the item being edited is updated. IAPL/Mac remembers
what it was you were editing. NB: clicking the go-away box of the Edit window does not
update the item being edited. It simply makes the window go away. You can make the
window come back again, with its contents intact, by choosing TextEdit Window (T) ⌘ from
the Window menu. The advantage of this is that you can break off editing a function in order
to try out an APL expression, then copy the successful expression from the Session log into
the function you are editing.

Abort Edit -⌘
Allows any of the three edit choices above to be aborted. The Edit window will be cleared, it
will disappear and the item being edited will remain unchanged. This is tidier than simply
clicking the go-away box of the Edit window.

WS Names...
Displays a list of names of variables in alphabetic order, then functions. This list appears in
the Session log and can be referred-to repeatedly and used for selecting items to edit.

WS Settings...
Displays an alterable window showing the current values of all the so-called "quad" system
variables.

Control...
Displays a dialog window showing the current list of named expressions which can be input
by hitting a single ⌘-{digit} key, 1⌘ to 9⌘ , corresponding to the menu items in menu:
Control. Individual expressions and their corresponding labels in menu: Control can be
altered.

However, for technical reasons, the dialog box requires the use of ASCII only. This means
that any APL symbols in the expressions fields are unrecognisable as such. This does not
matter if the "Control" expressions are simply function calls. If you wish to cause Control to
emit an expression in APL symbols, then you can change the value of a "Control" expression
by using a πMℂ expression in APL. Study the library workspace CONTROL to see how to do
this. CONTROL contains functions SETMENU and SETCONTROL which are used as the
following example shows to set up the first three menu items:

 ⊂ SETMEℕU ∪Funɕtions∪ ⊂ SETℂOℕTℝOL ∪)FℕS∪ 2 SETMEℕU ∪Variablℯs∪ 2 SETℂOℕTℝOL ∪)VAℝS∪ ∧ SETMEℕU ∪Vars≠Fns∪ ∧ SETℂOℕTℝOL ∪πℕL 2 ∧∪
Preferences...
Displays a window giving overall run-time options (figure 13). Use this to alter the behaviour
of some of the menu facilities like Find.

31

I-APL Ltd. IAPL/Mac User Guide 8/29/24

Fi

gure 13. Dialog box which appears when Preferences... is selected.

APL Keyboard K⌘
This menu item can be checked and un-checked by selecting it. When checked (the usual
mode), the keyboard is in "APL mode", suitable for typing APL program code. If you want
ASCII characters (usually mixed case alphabetic characters) hit K⌘ and then type the
desired characters.

The keyboard stays in ASCII mode until you hit K⌘ again. If you want to change this
behaviour, viz. to make it stay in ASCII mode for only one keystroke, then revert to APL
mode, choose Preferences... from this menu and click the appropriate radio button. See
figure 13.

Underline A...Z U⌘
This menu item can be checked and un-checked by selecting it. When checked, the keyboard
is in "Underline mode", suitable for typing uppercase and lowercase underlined characters. If
you want an underlined character (whether uppercase or lowercase) hit U⌘ and then type the
desired character as if in ASCII mode. See: APL Keyboard above. When the keyboard is set
in Underline Mode, it is also automatically set in APL Mode, because underlined characters
are strictly APL characters, not ASCII.

Usually you'll want only one underlined character, not a whole string. Thus the keyboard
stays in Underline mode for only one keystroke, then it reverts to APL mode. If you want to
change this behaviour, viz. to make it stay in Underline mode until you hit U⌘ again, choose
Preferences... from this menu and click the appropriate radio button. See figure 13.

Note that underlined characters, e.g. ¡·¬‚...⁄˙ are a distinct set of characters as far as APL is
concerned, having nothing to do with the standard Macintosh "style" for any

32

I-APL Ltd. IAPL/Mac User Guide 8/29/24
given font called Underline. Typically such characters are used in identifiers employed by
proprietary packages of APL utilities, to minimise accidental clashes with user-chosen
identifiers.
Menu: Search
Find... F⌘
Allows you to set up a search string and look for it in the Session window or Edit window.
This is a conventional Macintosh menu item. It allows lines containing given strings to be
located in the session log. IAPL/Mac "obtains" the required search-string in the same way as
it does for the facilities Copy Item and Edit Function. See above under these headings to
see what "obtains" means.

The typical way of using this facility, e.g. to find the last time you re-assigned the value of
variable Z, is to type the desired search string, e.g. ℤ¢ into the Command line, then hit F⌘ .
IAPL will search backwards through the Session log, (since this is the usual thing you'll
need) and will highlight the entire line containing the search string (in the Edit Window it
will highlight only the actual string ℤ¢).

If you want to change this behaviour, viz. to make IAPL/Mac search forwards (from
beginning to end) instead of backwards, choose Preferences... from the Edit menu and click
the appropriate radio button. See figure 13.

Find Again A⌘
Finds the next occurrence of the search string without you having to set up the search string
again. This is also a conventional Macintosh facililty, frequently invoked by hitting its
keyboard equivalent: A⌘ . The searching begins from the currently selected line. When it
reaches the top it beeps, then further keystrokes A⌘ resume searching from the end of the
Session log again.

If you want to change this behaviour, viz. to make IAPL/Mac search forwards (from
beginning to end) instead of backwards, choose Preferences... from the Edit menu and click
the appropriate radio button. See figure 13.

Idiom... I⌘
Displays the text-only file called IDIOMS in the Session window. This file is identical in
nature to a saved Session log. Expressions can be copied and pasted into the Command line
window, just as with any other saved and reloaded Session log. The IDIOMS file can be
edited by the user (e.g. the tutor, to include his or her own list of idioms) or composed upon a
suitable session log. Remember to save the existing Session log if you want to refer back to
it, since the IDIOMS file replaces it in the Session Window.

You can change the name, IDIOMS, of the file which is loaded into the Session Window
when you select this menu item. Choose Preferences... from the Edit menu and overtype
the contents of the appropriate field. See figure 13.

Symbol... J⌘
APL symbols are classified in a variety of forms, which can be displayed and "typed" by
clicking, once the appropriate symbol has been found. See figures 6 and 7 and the section
below on finding and identifying APL symbols. Once you see the symbol you want, click it.
The symbol you click gets "typed" for you into the Command line at the cursor position. See
figure 8.

33

I-APL Ltd. IAPL/Mac User Guide 8/29/24

Figure 14. Dialog box which appears when What Is It? selected.

What Is It? /⌘
This causes a dialog window to appear with a message identifying the currently selected
symbol. If you have made no selection as such, the symbol immediately before the cursor is
taken to be the one indicated. If you select more than one symbol, only the first is identified.
See figure 14 and the section below on finding and identifying APL symbols.

Mnemonic: '/' is on the same key as '?', but you cannot readily hit ?⌘ .

Use this facility to help you read APL expressions in someone else's function definition if
you are unfamiliar with APL notation. List the function in the session log, then double-click
the line you want to read in order to bring it down into the Command line. Hit {up-arrow}
(twice) to bring the cursor to the front. Then repeatedly hit the sequence:

 /⌘ , {return}, {right-arrow}
to see the names of successive characters.
Menu: Window
This makes windows re-appear which have been covered by other windows, or been made to
disappear by clicking their "go-away boxes".

Help... H⌘
Displays a read-only window of on-line assistance information. Click anywhere on the
window to see the next "page" of assistance. If you know how to move Macintosh resources
between files, it will help you to know that all the pages of Help... are 'PICT' resources with
resIDs lying between 300 and 399 inclusive. Simply attaching a

34

I-APL Ltd. IAPL/Mac User Guide 8/29/24
new 'PICT' resource having a resID lying in this range will cause IAPL/Mac to show it in its
proper sequence.

Cmnd Line M⌘
Makes the Command line window reappear, but does not force IAPL to take note of it.
Anything typed into it will be read when IAPL is ready to accept input. Conversely,
whenever IAPL expects typed-in input it will cause the Command line window to appear.
This item is useful for making the Command line come to the front whenever the Edit
window is in use. Otherwise the best way to make the Command Line come forward is to
start typing something.

Session Window L⌘
This window shows the history of the APL Session so far (see figure 10). Entire lines can be
selected for pasting, but its contents cannot normally be altered retrospectively. The window
can be emptied by clicking upon it, then choosing Clear Window in the File menu, or by
hitting *⌘ (use the * on the numeric keypad if your keyboard has one). Simply clicking on a
line of the session log selects it, and also performs an implicit Copy. You can then go right
ahead and Paste. Double-clicking a line brings it down into the Command line. It is
equivalent to Bring Down above.

TextEdit Window T⌘
This is the window used by the full-screen editor for functions and arrays. It allows full
Macintosh Cut and Paste facilities, like any Macintosh text editor or word-processor.
Normally it is activated by the Edit Function... etc. menu items, so you should not normally
need to use this menu item. The library workspace EDITDEMO contains useful functions to
access and control the Edit window, e.g. for real and simulated file I/O.

Graphics Window G⌘
The graphics window normally appears automatically when graphic operations are
performed. It can be made to reappear by choosing this menu item if its "go-away box" has
been clicked, but any graphics written on it will have disappeared and the window will be
blank.
Menu: Stop/Go
This menu generates a combination of ESCAPE calls to IAPL and the appropriate stack
control command. They have been designed to fit the required task as a beginner might see it,
not as APL expects it. The apparatus for suspended functions is a traditional one in APL and
is provided because the standard demands it. Experience shows that suspended functions are
more of a nuisance than a help to beginners. Fortunately "direct definition" (or "colon")
functions cannot be suspended.

Abort .⌘
Simulates {esc} and then generates the APL command: £
Novices are advised to use Abort rather than Suspend and not to suspend execution of APL
functions deliberately unless they are going to debug them straight away, and to clear out any
suspended functions as soon as possible using Clear Stack (see below)

Suspend ,⌘
Simulates {esc} only. Alternatively you can hit the {esc} key, which keeps its traditional APL
function.

35

I-APL Ltd. IAPL/Mac User Guide 8/29/24
Novices are advised to use Abort rather than Suspend, i.e. not to suspend execution of APL
functions deliberately unless they are going to debug them straight away, and to clear out any
suspended functions as soon as possible using Clear Stack (see below).

Suspend will not escape from the "quad-prompt", i.e. when IAPL asks for numeric input in
response to an expression like: ℤ¢π
Instead you must use Abort (which in this case, and this case only) suspends the calling
function without aborting it).

Resume R⌘
Generates the APL expression: £πLℂ
This causes the topmost suspended function in the stack to resume execution.

Show Stack
Generates the APL command:)SⅠ
This shows the stack of suspended functions, letting you see the different places in which
suspending an expression calling nested functions has caused those functions to halt.

Clear Stack
Generates the APL command:)S ℂⅠ
This empties the stack of suspended functions. You should do this before saving your
workspace to keep things tidy. Otherwise your workspace will be saved, and will reload, with
suspended functions waiting to resume execution. Whilst this is useful for debugging
purposes, it is wasteful of space if you do not wish to perform any debugging.

Pop Stack
Generates the APL expression: £
This causes the topmost suspended function in the stack to quit.
Menu: Control
This menu contains 9 user-alterable menu items, 1⌘ ... 9⌘ , each of which can run an APL
expression specified by the user. It is provided for the use of teachers to assist novices or
others needing to run an IAPL application without typing APL expressions, since it allows
any desired expression to be input by means of a menu choice or a corresponding ⌘-{digit}
keystroke.

You can alter the contents and function of this menu by choosing Control... in menu: Edit
and overtyping fields in the resulting dialog box (see figure 15). Each menu item has a user-
(i.e. tutor-) assigned literal name plus a ⌘-digit key, e.g. 1⌘ , 2⌘ , ...

You can also set up the contents of this menu by means of an IAPL function. See under
Control... above.

36

I-APL Ltd. IAPL/Mac User Guide 8/29/24

Figure 15. Dialog box which appears when Control... is selected from the Edit Menu.
Importing and exporting workspaces to I-APL on other types of computer
Workspaces run under IAPL/Mac are byte-for-byte compatible with those suitable for any
other IAPL system. The πMℂ interface is, as you would expect, incompatible between
different machines.

Workspace files can be imported to the Macintosh in a variety of ways, the Apple File
Exchange utility perhaps being the easiest, since this can read 3.5" IBM format MS-DOS
disks placed directly in the Mac drives. The resulting files however have the wrong icon (the
so-called 'default' icon). They may also have a name like PLANETS.IWS, the .IWS part of
which gets in the way and should be removed by renaming the file as PLANETS. Keep all
workspace names to 8 characters or less. The Macintosh accepts names longer than 8
characters but IAPL does not.

Such a file will not initially be visible to Load... in the File menu, but it will be visible to
Launder..., also in the File menu. Choosing Launder... will show the name of the file in a
dialog box resembling figure 9, along with all the others in that folder. Selecti the file and
press the Open button. This will cause the file to become to all intents and purposes an
IAPL/Mac workspace, provided the filename conforms to the above requirements. A dialog
box confirming this change will appear. It doesn't matter if you do it twice to the same file,
but be sure to "launder" only files which you know to be IAPL workspaces. Thereafter the
file will have the correct icon, be visible in the dialog box of Load... and should load
correctly when double-clicked.

If you "launder" a non-workspace file by mistake, the author supplies a utility program to
undo the damage at the cost of £12 (UK) or £15 (Overseas) which is inclusive of postage and
packing, plus a humiliating sticker to put on your computer (or yourself).

Workspace files may be migrated to IAPL for PC by simply copying them back,
appropriately renamed (e.g. from PLANETS to PLANETS.IWS), to an MS-DOS formatted

37

I-APL Ltd. IAPL/Mac User Guide 8/29/24
disk using the Apple File Exchange utility (the author has successfully used

38

I-APL Ltd. IAPL/Mac User Guide 8/29/24
KERMIT, too, in binary transfer mode). This makes IAPL/Mac a handy, productive way of
developing IAPL workspaces for the PC.
Exploring an unknown workspace
A typical but forbidding task for the novice is to explore an unknown workspace, browsing
the contents of variables and functions, running low-level functions with test-arguments to
see what they give, opening the functions and copying out bits of the code to try and
understand how it works.

Select WS Names... from the Edit menu. Figure 16 shows the appearance of the screen after
doing this.

Figure 16: The effect of choosing WS Names... from the Edit menu and selecting a line.

Figure 17: The effect of choosing WS Settings... from the Edit menu.

39

I-APL Ltd. IAPL/Mac User Guide 8/29/24
To see the current settings of the "quad"-variables, select WS Settings... from the Edit
menu. A dialog box appears as in figure 17 (above). This is the most convenient way for
novices to alter their values. These are updated only when you make the window disappear
by clicking the OK button. If you click Cancel they all stay as they are.

Some tutors write their own APL utilities for inspecting strange workspaces (e.g. SHOW by
the author). These tools sometimes have fixed expressions to run various operations. Instead
of the student having to remember these each time, you can asign a name to them and put
them in the Command menu. See above under Command... in menu Edit.
Finding and identifying APL symbols

IAPL/Mac closely follows the keyboard layout of IAPL for the IBM PC and compatibles. In
APL mode (whenever item APL Keyboard in the Edit menu is checked), unshifted keys give
Uppercase alpha and shifted keys give the corresponding APL symbol as assigned by the
IAPL PC keyboard layout. Those symbols which need Alt in the PC keyboard layout can be
typed by holding down the "Option" key in IAPL/Mac. Otherwise the Option key is not
employed. In non-APL mode (whenever item APL Keyboard in the Edit menu is un-
checked) ordinary keys have their usual values and uppercase and lowercase alpha can be
typed.

APL in general, and IAPL in particular, offers a distinct set of underscored uppercase and
lowercase alphabetic characters. These can be typed by selecting Underline A...Z in the Edit
menu, or hitting U⌘ , which causes the next alphabetic character to be underlined. The
keyboard then reverts after one keystroke to the APL keyboard. The Preferences... item in
menu Edit lets you change this so that Underline A...Z stays checked until explicitly turned
off (by selecting it again).

One of the most frustrating things for the novice (or expert coming from a different APL
system) is to hunt for the special APL symbols on the keyboard. Even a marked keyboard
doesn't help much since it is surprisingly difficult to scan any sort of complex layout for
symbols which have no standardised ordering. Here is where the Symbol... item in menu
Search helps.

Taking a leaf out of Gardiner's Ancient Egyptian Grammar, the symbols of APL are
classified into: Rounds, Nails, Arrows, Dots/Punctuation, Maths, Slashes, Barred, Squares,
Greeks, Triangles, Angles, Logicals, Twiddles and Brackets. Several symbols fall under
more than one of these headings. You will normally find them recurring under each likely
heading.

A collection of panels showing these different groupings may be browsed by button-pressing,
until the required symbol is located and mouse-clicked. It is then pasted into the command
line window at the current cursor position. Figures 6 and 7 illustrate two such panels which
appear whenever Symbol... is selected.
Finding and re-inputting APL expressions and idioms
An idiom is a stock APL expression for achieving a given result, modifiable to employ the
values in-hand. Novices don't find APL idioms particularly memorable. If you've used an
idiom or a particular expression already, it's nice to be able to find it again quickly.

40

I-APL Ltd. IAPL/Mac User Guide 8/29/24
The Session window is scrollable back to the start of a session. If you've done some useful
things you can save the contents of this window. You can reload an old session log, or
somebody else's, although of course this won't put your workspace in a compatible state.
Nevertheless this enables teachers to set up practice drills and expressions for the student to
explore, allowing APL to be used as a docile vehicle for whatever topic is to be taught.

The session log window lets you select lines to re-input, but doesn't allow the full Macintosh
facilities for editing text. It doesn't make much sense to rewrite history, and anyway you are
supposed to use the Command line to edit old expressions. However the Idiom... item in
menu Search helps here. It can load an old Session log (of which the IDIOMS file is a
special case) into the Session window for you to select lines to re-execute. Alternatively, if
you load the old Session log file into the Edit window (by selecting TextEdit Window in
menu Windows and then Load Window... in menu File) then you can edit the file at will,
saving it back in due course with Save Window.

You can temporarily substitute your own version of the file IDIOMS by selecting
Preferences... in menu Edit to change the name by which IAPL/Mac knows the Idiom file.
The Direct Definition Facility
There is a fuller description of the Direct Definition facility in Garry Helzer's book "An
Encyclopaedia of APL" available from I-APL Ltd. For those familiar with the concept of
direct definition, details are given here about how it is implemented in I-APL.

There are two types of directly defined function in I-APL: simple and conditional.

Simple direct definition

A simple definition may be made in immediate execution mode by entering a name followed
by a colon followed by an expression, e.g.
 <name> : <expr>
or:
 <name> : <expr> Ω <comment>
where <name> represents the name of the function being defined and <expr> is any I-APL
expression which may optionally be followed by a comment symbol and a comment. When
executed, the explicit result of the function is the value of <expr>, if any.

If either or both of the special identifiers † and ˇ appear in the expression outside single
quotes, the function is ambivalent, and † and ˇ represent the left and right function arguments
respectively. Ambivalent functions may be either monadic or dyadic, according to the
arguments provided when it is invoked. Eg, in the simple case, the entry:

 PLUS: † ≠ ˇ Ω PLUS FUℕℂT OℕⅠ

defines a function called 'PLUS' which implements addition.

The function NULL, below, simply returns its right argument as the first example of its use
shows, but if provided with a left argument it will ignore it as the second and third examples
show.

 ℕULL: ˇ
41

I-APL Ltd. IAPL/Mac User Guide 8/29/24 ∧ ≠ ℕULL 7⊂0 ∧ ≠ 5 ℕULL 7⊂0 ∧ ≠ ∪A∪ ℕULL 7
Thus NULL implements the Iverson and Sharp function 'Dex' (see A Dictionary of APL by
K. E. Iverson). 'Lev' is equally easy:

 LEV: †
If neither † nor ˇ appears outside single quotes, the function is niladic. Eg, the entry

 P : ©⊂Ⅰ

defines a function 'PI' which returns the value of π.

Conditional direct definition
A conditional definition may be made in immediate execution mode by entering a three-
segment expression separated by colons, as follows:

 <name> :<expr0> : <cond> : <expr1>

When run, the function executes the <cond> expression first. It must evaluate to a boolean
value which is a scalar or one-element vector otherwise an error is reported. If it evaluates to
0, the explicit result of the function is the evaluation of the left hand expression <expr0>. If
1, the explicit result is the execution of the right hand expression <expr1>.

For example, a recursive factorial function can be defined by entering:

 FAℂT: ⊂ : ˇ>0 : ˇ ∂ FAℂT ˇ-⊂
A directly defined function may be dynamically established by applying the system function πFX to a suitable character vector.

Editing and displaying directly defined functions
Any extant directly defined function may be displayed or edited by entering, in immediate
execution mode, its name followed by a colon:

 <name>:
The definition is displayed and the cursor positioned at the right hand end of the line, inviting
an edit. Pressing {return} redefines the function, signalling an attention aborts the edit.

The definition may also be extracted as a character vector by applying the system function πℂℝ to the name of the function (without the colon).

Invocation
All directly defined functions are either niladic or ambivalent. An ambivalent function can be
invoked either monadically or dyadically, and if invoked monadically, the name A has no
value. For example:

42

I-APL Ltd. IAPL/Mac User Guide 8/29/24 2 PLUS ∧5

43

I-APL Ltd. IAPL/Mac User Guide 8/29/24 PLUS ∧VALUE EℝℝOℝPLUS: †≠ˇ Ω PLUS FUℕℂT OℕⅠ ß PLUS ∧ ß
 FAℂT ∧⨯ 2 FAℂT ∧⨯
Miscellaneous facts
Any user name or system variable name to the immediate left of an assignment arrow in a
directly defined function is localised. If you localise a system variable in this way, e.g. π OⅠ , it
starts off with the values of its global namesake.

The name class of a directly defined function is 3. In other words, if 'PLUS' is a directly-
defined function:

 πℕℂ ∪PLUS∪∧
Directly defined function names are displayed with a colon suffix when they appear in the
output from)FℕS.

The del (∪≠∪)-editor cannot be used to define, edit or display directly defined functions.

πSTOP and πTℝAℂE do not apply to directly defined functions.

Directly defined functions cannot be suspended. An error in a directly defined function
causes the state indicator to be stripped back to where a suspension can occur. If the)SⅠ stack
was empty before the error, it is also empty afterwards.

πℂℝ ∪FOO∪ is a vector when applied to a directly defined function 'FOO'.

Editing items in the workspace
Editing functions
There's nothing wrong with using the 'del' ∩≠) editor built-into IAPL. This is the original
1960's standard line-editor, so every APL interpreter has it. You can display a listing of a
given function, e.g. MYFUN, by the expression:

≠MYFUℕ[π]
Then, by selecting lines of the listing of MYFUN from the Session log using Bring Down in
menu Edit, overtyping and re-inputting them, you can alter MYFUN with hardly any more
effort than with the screen editor. Eventually you finish editing the function by typing the
symbol 'del' ∩≠) which is on the 'dollar' key (it's meant to be a mnemonic). This closes the
function and IAPL/Mac accepts expressions once more.

However by typing MYFUN into the Command line and choosing Edit Function... you can
edit the function by means of IAPL/Mac's screen editor. This allows you free use of the
arrow keys, delete, cut, copy and paste, to modify the listing in whatever order you like.
When you choose Finish Editing the contents of this window are fed back into IAPL. Note

44

I-APL Ltd. IAPL/Mac User Guide 8/29/24
that there can actually exist global variables † and ˇ, although these "variable names" are
normally used only for function arguments.

45

I-APL Ltd. IAPL/Mac User Guide 8/29/24
However IAPL/Mac puts its own values in them, destroying any values they may already
have. So don't store values in global † and ˇ which you want to keep.

If the function MYFUN happens to be a directly-defined (or "colon") function then you do
not get the Edit window, but the Command line window, filled with the function definition,
just as if you had double-clicked the function definition line in the Session log. By
overtyping the contents of this, you simply re-input the entire function definition.

Editing character arrays
These are edited just like functions. Simply type in the name of the character array variable
and select Edit Char Array... (or hit =⌘). It doesn't matter if you select Edit Function... by
mistake, IAPL/Mac will discover that it's really a variable and edit it accordingly.
Incidentally, scalar or 1-dimensional character vectors will be converted to 2-dimensional
arrays, so remember to ravel it afterwards (e.g. ℤ¢,ℤ) if you really find it valuable to use the
screen editor on a scalar or vector.

Edit Char Array... will create the variable for you if it does not yet exist. Just edit it as if it
were there. The empty Edit window will appear. Be sure to use Edit Char Array... this time
and not Edit Function... (or =⌘) or else the new item will be created as a function.

Editing character arrays is slightly faster if you do not change the line length or the number
of lines. However, if you do, IAPL/Mac will square-off a ragged right edge. The width of the
edited variable becomes that of the longest line. So be wary of leaving a lot of trailing blanks
on the end of a line.

Editing numeric arrays
These are edited just like functions. Simply type in the name of the numeric array variable
and select Edit Num Array... (or hit =⌘). It doesn't matter if you select Edit Function... by
mistake, IAPL/Mac will discover that it's really a numeric variable and edit it accordingly.
Incidentally, scalar numbers will get converted into 1-vectors, and 1-dimensional numeric
vectors will be converted to 2-dimensional arrays, so remember to ravel it afterwards (e.g. ℕ¢,ℕ) if you really find it valuable to use the screen editor on a scalar or vector.

Numeric variables get converted into character arrays and back to numeric arrays again. If
you type a non-numeric character, the conversion process will fail and your variable may be
corrupted. However usually it will remain unchanged from what it was. Incidentally, if the
process does fail, ˇ will contain a ravelled form of the edited numeric variable, and † will
contain the shape IAPL/Mac was trying to give it.

Editing numeric arrays is slightly faster if you do not change the number of elements, nor the
shape of the array. If you do, IAPL/Mac recomputes a new shape based on the number of
rows and the total number of elements, which it will pad with zeros until the number of rows
divides it without remainder. Unlike Edit Char Array... it does not pad every row of the
array to the width of the widest row. Thus if two rows contain different numbers of elements,
then elements may spill from one row to another.

Edit Num Array... will create the variable for you if it does not yet exist. Just edit it as if it
were there. The empty Edit window will appear. Be sure to use Edit Num Array... this time
and not Edit Function... (or =⌘) or Edit Char Array... or else the new item will be created
as a function, or a character array.

46

I-APL Ltd. IAPL/Mac User Guide 8/29/24
Using Text-Only files
Any text-only file, even a LightspeedC listing, can be loaded into either the Session window
or the Edit window, depending which is to the front as you select Load Window... from the
File menu. Conversely if you save the contents of either the Session window or the Edit
window by using Save Window or Save Window As... you create a text-only file, which is
capable of being opened by the Apple Computer Inc. utility: Edit, or by LightspeedC, or by
most word-processors or program development systems. If you do so, you will find that these
text-editors show the file in a default font, which may be New York, Geneva or Monaco.
Unless you are using ASCII characters only, the result will look like gibberish until you
select a piece of text and change the font to St Albans.

Any text-only file created or saved back by IAPL/Mac carries the icon: which simply

serves to denote "ownership" by IAPL/Mac and makes it double-clickable.

Such a file can also be moved to- and fro- between a Macintosh and an IBM-compatible PC
running under MS-DOS, e.g. by using the Apple Computer Inc. utility: Apple File Exchange.
Use the Text File conversion to do so, since MS-DOS and Apple have slightly different text-
only file conventions. The difference is that Apple files terminate each line of the file by
Return, i.e. the byte ASCII 13. MS-DOS files use a pair of bytes: Return,Line-Feed, i.e. the
bytes ASCII 13, ASCII 10. MS-DOS text-only files are also apt to be terminated by EOF, i.e.
the byte ASCII 26 (also known as {ctl-Z}).

You can manage text-only files by means of a collection of IAPL functions in the library
workspace EDITDEMO. These allow you to write APL functions to do the following:

— load a named text-only file into the Edit window
— save the Edit window as a file of a given name (expressed as a character vector)
— fetch the contents of the Edit window in the form of a 2D character matrix
— place a 2D character array value into the Edit window
— fetch line N of the Edit window in the form of a character vector
— place a character vector into line N of the Edit window
— show or hide the Edit window
— get or set the selected text or the "i-beam" cursor position in the Edit window.

These facilities provide what is, in effect, text-file I/O using the Edit Window as a visible
buffer.
Embedding samples of APL sessions in a desk-top published document
If you cut/copy a piece of APL text, wherever from, its corresponding ASCII codes (coded
according to πAV) go into the so-called Clipboard. Unfortunately this will not preserve the
font information, so if you now paste the clipboard contents (a standard Mac idiom) into a
word-processed document you will see ASCII text in the default font, perhaps Geneva or
New York.

Never despair. Just select the text you've just embedded and change it into font: St Albans
and you will see recognisable APL text reappear.

St Albans exists both in 9 and 18-point sizes. Installing both fonts in your System File will
allow you to print documents containing IAPL text on the ImageWriter in "Best" quality,
since the printer driver will "scale the 18-point font down to 9-point in order to get the
double-density of pixels that "Best" asks for.

In LaserWriter-printed documents, the quality of St Albans font as derived from its bitmap

47

I-APL Ltd. IAPL/Mac User Guide 8/29/24
image can be gauged from its use in this document.

48

I-APL Ltd. IAPL/Mac User Guide 8/29/24

Chapter 5: Extending IAPL/Mac with machine code and other resources
Writing Machine Code Resources to call from IAPL/Mac
All machine code on the Apple Macintosh is held in the form of resources. In a conventional
application these resources are of type 'CODE', but many compilers allow you to generate
code-resources having any desired type-code. This facility is used with HyperCard to create
add-in commands and functions of type 'XCMD' and 'XFCN'. A comparable technique is
used to attach code-resources of type 'APCC' to IAPL/Mac.

If the following APL expression is executed:

 ⊂2∧45 πMℂ VAℝℕAMES
IAPL/Mac looks for an 'APCC' resource attached to itself, having the Resource ID (ResID):
12345. If it finds it, it loads it into memory and branches to its entry-point. If there is no such
resource, IAPL/Mac responds with an error message. If you receive a ready-written 'APCC'
resource to attach to IAPL/Mac you need to know its ResID because this is the number by
which you call it using πMℂ.

This machine-code facility differs from that provided in, say, the PC version of I-APL,
inasmuch as the left-hand argument is the Resource ID of the add-in machine-code segment,
given as a scalar integer. In the PC version, the left-hand argument of MC is an actual string
of code-bytes in the form of a scalar integer or vector integers.

ResIDs 128 to 32767 are available for add-on resources. ResIDs 0 to 127 are reserved by I-
APL Ltd to allow built-in facilities to be invoked via the πMℂ interface. ResID 11519 is
reserved for future emulation of the built-in machine-code facility of IAPL for the PC. (The
binary representation of 11519 just happens to be a PC machine-code instruction which
branches to the required internal routines.)

Appendix C contains the source-code of a sample 'APCC' written in C for the LightspeedC or
THINK C environments.

The built-in Machine Code Functions
There are a number of built-in machine code functions. They are called just like an attached
'APCC' code resource, but they all have ID numbers less than 128. Calling them is slightly
tricky, so normally you will invoke them by means of cover-functions in the supplied
workspaces. However, if you want to call them directly, you should consult the table below,
using one of the expressions:

(i): m πMℂ ∪ˇ∪
(ii): m πMℂ ⊂ 2 º∪†ˇ∪
(iii): m πMℂ ⊂ ⊂ ⊂ º∪ˇ∪
(iv): m πMℂ ⊂ ⊂ 2 º∪†ˇ∪
The second and third columns are headed † and ˇ. If there is a dash (-) in the †-column, use (i)
above, else use (ii). An entry in the †-column (say) denotes the type of variable expected as †.
See the Key at the bottom. If there are no asterisks (*) against the type-entries, you may
optionally use (iii) instead of (i), or (iv) instead of (ii).

You must pass a table of variable names to πMℂ as the right-hand argument. You cannot use

49

I-APL Ltd. IAPL/Mac User Guide 8/29/24
numbers. Thus the following is wrong and will fail:

m πMℂ ∪∧∪

50

I-APL Ltd. IAPL/Mac User Guide 8/29/24

The table of built-in quadMC functions is as follows:

m † ˇ Description

10 - N specifies the target window of 11 to 20 below
(N specifies window: 0=Command line, 1=Session, 3=Edit,
4=Work)

11 - S moves given string vector S into Target window
12 - SS moves given 2D ch-array SS into Target window
13 - SS* moves Target window contents into given char array SS

(SS must be initialised to be an array of spaces of the correct shape, ℝº∪ ∪ where ℝ[⊂] is the number of rows and ℝ[2] is the width of the
widest row in the Target window. See 15 below)

14 N S moves S into Target Window to replace line N
15 - N2* sets N2 to be the required shape of Target window contents

(mainly used in conjunction with 13)
16 - N* sets N to be the line-length of given line in Target window

(mainly used in conjunction with 17)
17 N S* moves given line N of Target window into S
18 N S moves S into Target Window to become (precede) line N
19 - S moves contents of named file S into Target window
20 - S moves Target window into named file S
21 - N shows window having ID: N

(ID for window: 0=Command line, 1=Session, 2=Help,
3=Edit, 4=Work, 5=Graphics)

22 - N hides window having ID: N
(ID for window: see 21 above)

23 - N* waits for key struck, sets N to be the key code
24 - N2* waits for mouseDown, gets back coords in N2
25 - N2* sets N2 to (row,column) of start of selection in Edit Window
26 - N* sets N to width of selection in Edit Window
27 - S* sets S to the string value of selection in Edit Window
30 N X graph-drawing package, op-code N (Type of X depends on the

value of N)
31 - N draws (Graphics window) picture having 'PICT' resource ID: N
32 N4* N sets N4 to the enclosing rectangle of picture having 'PICT'

resource ID: N
33 N4 N draws picture having 'PICT' resource ID: N in rectangle N4.
40 - N/ NN plays sound having 'snd ' resource ID: N, or vector NN

of resource IDs.
50 - N2 emulates a menu selection (N2[1] is menu number, N2[2] is

item number)
51 - N sets hourglass cursor (N=0 thru 7)
60 N S sets Control menu expression N to string S (N=0 thru 9)
61 N S sets Control menu label N to string S (N=0 thru 9)

Key: S=char vector (1D), SS=char matrix (2D), X=unspecified here, N=scalar
integer, NN=integer vector (1D), N2=integer 2-vector, N4=integer 4-vector.
If starred, e.g. N*, then the variable, e.g. N, is altered. Use expressions (i) or (ii) only.
Otherwise the variable is not altered. Expressions (iii) or (iv) may optionally be used

51

I-APL Ltd. IAPL/Mac User Guide 8/29/24
instead.
If the † column contains dash (-) then the function accepts the name of only one
variable. In that case, either expressions (i) or (iii) must be used to call πMℂ.

52

I-APL Ltd. IAPL/Mac User Guide 8/29/24
Note that you can, in principle, use the names of other variables besides † and ˇ. You can also
pass the names of up to 20 variables. But the easiest way to handle πMℂ calls is by means of a
directly-defined or "colon" function, as illustrated by the library workspaces GRAFDEMO,
CONTROL and EDITDEMO. However, do remember that ˇ must appear in the direct
definition itself in order to make the function monadic (requiring one argument only),
otherwise it will be niladic (requiring no arguments). If † appears, whether or not ˇ also
appears, the function will become ambivalent (i.e. accepting both left and right arguments).
Now the problem is that ∪ˇ∪ does not constitute an appearance of ˇ. In the eyes of APL, ∪ˇ∪ is
only a string constant! So some finesse is necessary, for example:

MYℂALL: m πMℂ ∪ˇ∪,0ºˇ
LEV:†MYℂALL2: m πMℂ ⊂ 2 º∪†ˇ∪ LEV †

in order to "mention" † or ˇ without actually needing to use it.
Inspecting or Removing a Resource already attached to IAPL/Mac
There are a number of utilities, usually freeware applications, for copying a resource from
one file to another. The most general way is to use the Apple Computer Inc. resource-editor,
ResEdit. Any sort of resource can be attached to the IAPL/Mac application, but it is no use
doing so unless it is a type which IAPL/Mac, or an attached machine-code resource, makes
use of.

When you open IAPL/Mac with ResEdit, you will see a list of the following resource types
(call it List A):

'ALRT' 'APCC' 'APKB' 'BNDL' 'CURS' 'DITL' 'DLOG' 'FOND' 'FONT'
'FREF' 'IAPL' 'ICN#' 'MENU' 'PICT' 'snd ' 'STR ' 'WIND'

All resource types are strings of four letters. 'STR ' and 'snd ' in fact have a trailing blank
which is mandatory. The main types of interest to you, if you wish to customise IAPL/Mac
yourself, are:

'APCC' 'APKB' 'PICT' 'snd ' 'STR'

('APKB' is the keyboard layout) If you double-click on one of these names in list A, say
'PICT', a further window will appear (call it List B), showing what resources of type 'PICT'
are present already. A line of the window stands for the resource, giving its name (if it has
one) and its ResID.

Often you may wish to alter the ResID of some resource (but not of the ones that IAPL/Mac
uses internally!). Here's how to do it for any resource type:

Choose a number between 1 and 32767 (ideally greater than 128) which does not appear in
the window already (you cannot usefully have two resources of the same ResID number
unless they are of different types). Select Get Info I⌘ from the File menu. A dialog window
appears. The very first field on it (hilighted) is the ResID, which you overtype.

You may also wish to delete a resource, e.g. in order to make IAPL/Mac take up less room on
disk (Resources take up no space in memory until they are called-for, then they can be erased
from memory if the space is needed). IAPL comes with certain "demo" resources which are

53

I-APL Ltd. IAPL/Mac User Guide 8/29/24
not generally needed, e.g. the 'PICT' resources of the USA Map and World Map, also all the
'snd ' resources. Once you have List B, which

54

I-APL Ltd. IAPL/Mac User Guide 8/29/24
shows a line for each resource, click on the line belonging to the resource you want to get rid
of. This highlights the line. The choose Clear from the Edit menu.
Adding pictures to your IAPL/Mac application
As well as using Clear on a selected resource, you can also Cut, Copy and Paste resources
between different files. In particular you can open the Scrapbook File (the contents of your
Scrapbook) and Copy a 'PICT' resource, then open IAPL/Mac (it is the file called Version
., e.g. 1.0) and Paste the 'PICT' resource into it. Notice you need only have List A showing
in order to do this. Then you must change the ResID of the 'PICT' you have just Pasted,
because it has a silly number like -32767. Change it to something sensible, like 1234.

If you attach a resource of type 'PICT' (the standard resource name for a "picture" resource as
it is stored inside the standard System file called Scrapbook File) you can draw this picture in
the Graphics window by means of either of the functions DRAWPICT or INDRAWPICT in
the library workspace GRAFDEMO. Both functions take the ResID of the 'PICT' resource as
the right argument. INDRAWPICT takes a left argument consisting of the enclosing rectangle
to be used. DRAWPICT takes no left argument, but instead uses the "natural" enclosing
rectangle (the one the 'PICT' resource was created with).

If the ResID of the 'PICT' resource you attach lies between 300 and 399, then it will be
treated as one of the HELP pages, which are shown in their due numerical sequence
whenever Help... is selected or H⌘ is hit.. Conversely you can use DRAWPICT to display a
HELP page in the Graphics window if you know its ResID.
Adding sounds to your IAPL/Mac application
If you attach a resource of type 'snd ' (the standard resource name for a sound resource) you
can play this resource by means of the PLAY function in the library workspace VOICE. This
is something like the Hypercard facility, except that the sound is known by its resource
identifier (ResID, an integer between 0 and 32767) and not by its resource name.

If N is the ResID of the 'snd ' resource, PLAY N will play its sound. N=1, 2, 3 or 4 plays the
built-in system sounds which can be specified as variations on the plain warning "beep" of
the Macintosh ("SysBeep"), viz. "Peep", "Clink-Klunk", "Boing" and "Monkey". N=10000+J
for J=0 to 9 plays a recorded voice speaking the digit J.

Digitised sound is expensive in Macintosh storage space, but in IAPL/Mac sounds are not
stored in the workspace itself. The waveforms are added to the Application file's "resource
fork" at need. As far as IAPL is concerned they can be as large as your machine allows. If
you don't want them and think they take up too much space on disk, then remove them using
ResEdit as explained above.
Translating IAPL/Mac to another European Language
All English text (apart from words like)LOAⅮ and)SAVE which are embedded in the IAPL
nucleus itself) are contained in the resources of IAPL/Mac. They can therefore be altered
using ResEdit, e.g. to translate them into another (Macintosh European alphabet) language.

If you want to try translating IAPL/Mac into a "National Language" (called "localizing" in
MacSpeak) then these are the resource-types you must examine and translate:

'DITL', 'MENU', 'STR '.

In most cases it is simply a matter of double-clicking on each resource in turn, and
overtyping the English text you see.

55

I-APL Ltd. IAPL/Mac User Guide 8/29/24
APPENDIX A
IAPL/Mac Standard-Conformance Document

This Appendix describes facilities the I-APL interpreter provides, and documents these
facilities to the degree required for a conforming implementation by the Draft International
Standard for the APL programming language, document ISO/DIS 8485.

At the time of writing the APL standard has not yet achieved the status of International
Standard, but is still at the draft stage. The technical work on the document has been
completed however, and no further changes to the draft are envisaged.

The term 'I-APL' refers to a family of APL interpreters designed for small computers. It is
intended that all versions of I-APL conform to the standard, but it is possible that a specific
port may not exactly conform in all details. This standard conformance document therefore
only applies to IAPL/Mac for the Apple Macintosh, for English language users running on a
black-and-white screen.

For the rest of this document the term 'IAPL/Mac' is used only where there is an expectation
that another version of I-APL may differ in behaviour.

A conforming implementation of the APL language is required to provide all the defined
facilities and implementation defined facilities described in the standard, exactly as specified
therein. The I-APL implementation is designed to meet this requirement.

A conforming implementation may provide optional facilities. If provided, each such facility
must behave as specified in the standard. The I-APL implementation provides exactly one
such optional facility (TRACE AND STOP).

A conforming implementation may provide consistent extensions. The presence of consistent
extensions is not permitted to affect the behaviour of a conforming program (ie a program
that does not use them).

The I-APL implementation includes a number of 'minor' consistent extensions, none of which
affects the behaviour of conforming programs.

A conforming implementation is required to use algorithms that produce the same results as
those produced by the evaluation sequences presented in the standard. The I-APL
implementation is designed to meet this requirement.

A conforming implementation of APL is required to produce documentation of its optional
facilities, its implementation defined facilities and its consistent extensions. The following
sub-sections contain this material for the I-APL implementation.
A-1 Optional Facilities
The status of each optional facility is as follows:

Shared Variable Protocol - absent
Statement Separator Facility - absent
Trace and Stop Control - present

56

I-APL Ltd. IAPL/Mac User Guide 8/29/24
A-2 Implementation Defined Facilities
A-2.1 The Character Set
The character set consists of 256 unique characters, including all of the characters in the
required character set. The following table shows the distribution of the characters in the I-
APL atomic vector.

Dec: 0 ⊂ 2 ∧ 4 5 ⨯ 7 8 ⊂ ⊂0 ⊂⊂ ⊂2 ⊂∧ ⊂4 ⊂5
Hex2: *0 *⊂ *2 *∧ *4 *5 *⨯ *7 *8 *⊂ *A *B *ℂ * *E *FⅮ
Hex1 Dec.___

0* 0 ó ò ô ö õ ú ù û ò ô ö õ ú nl. û ü
⊂* ⊂⨯ ó ò ô ö õ ú ù û ò ô ö õ ú ù û ü
2* ∧2 sp. ! ∪ # $ % & ∪ ∩) * ≠ , - . /
∧* 48 0 ⊂ 2 ∧ 4 5 ⨯ 7 8 ⊂ : ; < = > ?
4* ⨯4 @ A B ℂ E F Γ H J K L M ℕ O Ⅾ Ⅰ
5* 80 P Q ℝ S T U V W X Y ℤ [\] ^ _
⨯* ⊂⨯ ` a b ɕ δ ℯ f g ℎ i j k l m n o
7* ⊂⊂2 q r s t u w x y z { | } ~ ƿ ⅴ
8* ⊂28 Ä Å Ç É Ñ Ö Ü á à â ä ã å ç é è
⊂* ⊂44 ê ë í ì î ï ñ
A* ⊂⨯0 † ° ¢ £ § • ¶ ß ® © ™ ´ ¨ ≠ Æ Ø
B* ⊂7⨯ ∞ ± ≤ ≥ ¥ µ ∂ ∑ ∏ π ∫ ª º Ω æ ø
ℂ* ⊂⊂2 ¿ ¡ ¬ √ ƒ ≈ ∆ « » … À Ã Õ Œ œ

* 208Ⅾ – — “ ” ‘ ’ ÷ ◊ ÿ Ÿ ⁄ € ‹ › fi fl
E* 224 ‡ · ‚ „ ‰ Â Ê Á Ë È Í Î Ï Ì Ó Ô
F* 240  Ò Ú Û Ù ı ˆ ˜ ¯ ˘ ˙ ˚ ¸ ˝ ˛

A character's decimal number is obtained by adding the number above its column to the
decimal number of its row. The letter ˙ is thus 10+240=250.

A character's zero-origin index in πAV is also given by the expression:

 ⊂⨯ ⊂⨯€∩-π O)≠∪0⊂2∧45⨯78⊂ABℂ EF∪≥ℝOW,ℂOLUMℕⅠ Ⅾ

where ℝOW and ℂOLUMℕ are the (hex) row and column labels in the above table.

Unused entries in the above table are not assigned any symbol or meaning, and are displayed
as squish-quads (π).

57

I-APL Ltd. IAPL/Mac User Guide 8/29/24
A-2.2 The Numbers
There are three distinct representations for the numbers: 1-bit booleans, 2-byte integers and
6-byte floating-point. A boolean number is represented by a single bit with value 0 or 1 only.
Integers are represented by 16 bits in 2s complement format, yielding a range of -32768 to
32767 inclusive. The floating-point numbers are held in a Binary Coded Decimal
representation consisting of a normalised 10 digit fraction, a 7-bit binary biased exponent and
a 1-bit sign, with an implied decimal point to the left of the fraction. The floating-point
number zero is represented by a zero fraction, zero biased exponent and zero sign bit.
A-2.3 Implementation Algorithms
An Implementation Algorithm is an algorithm used in the standard whose behaviour is
implementation defined. A description of the characteristics of each implementation
algorithm is required for a conforming implementation. The polynomials for the
transcendental functions were obtained from "Approximations for Digital Computers" by
Cecil Hastings Jr (Princeton University Press). The matrix divide algorithm is based on one
kindly provided by I P Sharp Associates.

The implementation algorithms for the transcendental functions provide an accuracy of better
than seven significant digits. The other arithmetic algorithms yield an accuracy of ten
significant digits. The results are rounded by using a single guard digit. Where appropriate a
fixed iteration Newton-Raphson square-root algorithm is used, accurate to nine significant
digits.
A-2.3.1 Cosine
Calculated as ⊂ © ⊂.5707⊂⨯∧27-flˇ
A-2.3.2 Current Time
A nonnegative integer less than 32768 representing a number of seconds. This limits the right
argument of π LⅮ to less than 32768.
A-2.3.3 Deal
If 0<ˇµ∧27⨯7 then πℝL¢next πℝL is π O≠æˇ∂πℝL∞∧⊂⊂04Ⅰ

If ˇ>∧27⨯7 then it is π O≠æˇ∂∩⊂0000€∩π O)≠?2º⊂0000)∞⊂E8Ⅰ Ⅰ

A-2.3.4 Display
The argument to Display is an APL array or an exception.

If the argument is an array then it is displayed as recommended in the Standard, except that
an exponent field width of 3 is always employed where the output format is decimal-
exponential.

If it is an exception then an error message line is displayed, followed by pairs of lines, each
pair comprising a code line and a caret line.

The error message line will include one of the following error messages (these may be
subject to translation in other I-APL ports).

AX S EℝℝOℝ Ⅰ ℕTEℝℝUPT Ⅰ ℕOT SAVE ⅮEFℕ EℝℝOℝ Ⅾ LEℕΓTH EℝℝOℝ ℝAℕK EℝℝOℝ SK EℝℝOℝ ⅮⅠ L M T EℝℝOℝ Ⅰ Ⅰ SYℕTAX EℝℝOℝ OMA ℕ EℝℝOℝ Ⅾ Ⅰ ℕOT ℂOP E Ⅰ Ⅾ VALUE EℝℝOℝ ℕℂOℝℝEℂT ℂOMMAℕ Ⅰ Ⅾ ℕOT EℝASE Ⅾ WS FULL ℕ EX EℝℝOℝ Ⅰ Ⅾ ℕOT FOUℕⅮ
A code line includes the APL expression that was executing when the execution was
signalled. A caret line contains a caret which indicates the approximate point at which
execution was halted.

58

I-APL Ltd. IAPL/Mac User Guide 8/29/24

59

I-APL Ltd. IAPL/Mac User Guide 8/29/24
A code line may take one of three forms. These forms are as follows:

Immediate/quad-input/execute: linℯ
Defined function execution: fnnamℯ[ln] linℯ
Direct function execution: fnnamℯ: linℯ

Key: line = any line
fnname = function name
ln = function line number

The last code/caret line pair will always display an immediate execution line, a quad-input
line, or a function line. Any additional code/caret line pairs will always display an execute
line or a direct definition function line.

If WS FULL or ℕTEℝℝUPT Ⅰ is signalled during the lexical analysis phase of the immediate
execution and quad-input modes then the caret line is not displayed.

The display produced by this algorithm is subject to the current value of the system variable πPW so that wide lines are folded, and each continuation line is indented by six spaces.
A-2.3.5 Divided by
Implements division. Division by zero signals a domain- error, overflow signals a domain-
error and underflow returns a zero result.
A-2.3.6 Exponential
A polynomial is used to provide an accuracy of better than seven significant digits.
A-2.3.7 Function Display
The following forms are used to display traditional function lines:

 ≠ header [ln] label:line[ln] Ω any [ln] line ≠
Key: header = function header line

ln = function line number
label = label name
line = any line (including empty line)
any = any string of characters.

A-2.3.8 Gamma Function
For non-negative integer arguments multiplication is used. For other valid arguments a
polynomial, followed by multiplication and/or division, is used to yield a result accurate to
better than seven significant digits.
A-2.3.9 Hyperbolic Cosine .5∂∩*ˇ)≠∞*ˇ
A-2.3.10 Hyperbolic Sine .5∂∩∂ˇ)∂∩*flˇ)-∞*flˇ
A-2.3.11 Hyperbolic Tangent ∩∂ˇ)∂∩∏⊂≠*fl2∂ˇ)∞⊂≠*fl2∂ˇ
A-2.3.12 Inverse Cosine ⊂.5707⊂⨯∧27-∏⊂©ˇ
A-2.3.13 Inverse Sine fⅠ ⊂∑flˇ tℎℯn ∩∂ˇ)∂∏∧©flˇ∞0©ˇ ℯlsℯ ⊂.5707⊂⨯∧27

60

I-APL Ltd. IAPL/Mac User Guide 8/29/24
A-2.3.14 Inverse Tangent
A polynomial is used to provide an accuracy of greater than seven digits.
A-2.3.15 Inverse Hyperbolic Cosine fⅠ ⊂µˇ<5E⨯2 tℎℯn ´ˇ≠∏4©ˇℯlsℯ if ˇ≤5E⨯2 tℎℯn ∩´2)≠´ˇ
A-2.3.16 Hyperbolic Sine fⅠ 5E⨯2≤flˇ tℎℯn ∩∂ˇ)∂´∩flˇ)≠4©ˇℯlsℯ if 5E⨯2µˇ tℎℯn ∩∂ˇ)∂∩´2)∂´flˇ
A-2.3.17 Inverse Hyperbolic Tangent .5∂∩∂ˇ)∂´∩⊂≠flˇ)∞⊂-flˇ
A-2.3.18 Matrix Divide
Uses the Householder transformation. Based on an APL model supplied by I P Sharp
Associates.
A-2.3.19 Minus
Implements subtraction. Underflow is ignored. Overflow signals a domain-error.
A-2.3.20 Modulo
In general P Modulo Q is equivalent to the APL expression P-Q∂æP∞Q executed with
comparison tolerance set to zero, except when overflow or underflow would occur. When P∞Q would give an overflow the result is zero, and when an underflow the result is P.
A-2.3.21 Natural Logarithm
A polynomial is used to provide an accuracy of better than seven significant digits.
A-2.3.22 Next Definition Line
The following pseudo-APL algorithm calculates the Next Definition Line. Comparison
tolerance is ZERO and N is the current definition line number:

 fⅠ ℕ=7⊂ or ℕ=7⊂.⊂ or ℕ=7⊂.⊂⊂ tℎℯn ℕℯlsℯ ℕ≠⊂0*-≠/0∑⊂ .⊂flℕ
A-2.3.23 Numeric Input Conversion
This algorithm converts a list of characters representing a number in the decimal notation
into a number. The result is either a number or an error. Numbers are rounded after the tenth
significant digit, eg the input ⊂⊂⊂⊂⊂⊂⊂⊂⊂⊂⊂ gives the number 1E12 internally.
A-2.3.24 Numeric Output Conversion
This algorithm converts a number into a list of characters that represent the number in the
decimal notation. The algorithm suggested in the standard in used. The exponent field width
is three.
A-2.3.25 Pi Times
Multiplies by 3.141592654
A-2.3.26 Plus
Implements addition. Underflow is ignored and overflow signals a domain-error.
A-2.3.27 Pseudo Random Number Generator
The following line indicates the algorithm used to calculate the next value of the random
link.

 πℝL¢∧⊂⊂04fl⨯57⊂≠⨯25∂πℝL

61

I-APL Ltd. IAPL/Mac User Guide 8/29/24
A-2.3.28 Read Keyboard
In IAPL/Mac an input line is buffered in a window called the Command line. Therefore
characters can be typed-in at any time. As soon as a (typeable) character is hit, the Command
line appears and becomes the active window. The cursor-control keys and mouse have their
usual function. Thus the "i-beam" pointer places the character cursor wherever required in a
string of characters, and{delete} deletes the character preceding the cursor. The Edit menu
items (e.g. Cut, Copy and Paste) also function with the Command line active.
A-2.3.29 Sine
A polynomial is used to provide an accuracy of better than seven significant digits.
A-2.3.30 Tangent ∩∂ˇ)∂ S ℕE ∞0© S ℕE ¢⊂©flˇⅠ Ⅰ

A-2.3.31 Times
Implements multiplication. Underflow is ignored and overflow signals a domain-error.
A-2.3.32 Time Stamp
The result of Time Stamp depends on the accuracy of the system clock. On machines which
do not have a system clock the result is 7º0.

A-2.3.33 To the Power
For integer right arguments repeated multiplication is used to calculate the result, except for ˇ=.5 or ˇ=∏.5 when square root is used. Otherwise the result is calculated by the APL
expression:

 *ˇ∂´†
A-2.3.34 Trace Display
The form of the Trace Display depends on the result of executing the line, as follows:

Result Display
value or committed value fnname[ln] d
value or committed value fnname[ln] h
branch fnname[ln] £n
nil fnname[ln]
escape No display

Key: fnname = function name
ln = function line number
d = scalar or vector array
h = matrix or higher rank array
n = branch target line number.

62

I-APL Ltd. IAPL/Mac User Guide 8/29/24
A-2.4 Implementation Parameters
Implementation Parameters are quantities referred to in the standard whose values are
implementation defined. The value of each implementation parameter is now presented.

Atomic Vector……………………………… see above
Initial Comparison Tolerance ……………… ⊂E∏7
Initial Index Origin ………………………… ⊂
Initial Latent Expression…………………… ∪∪
Initial Print Precision……………………… 7
Initial Random Link………………………… 0
Clear Workspace Identifier………………… ∪ℂLEAℝ WS∪
Positive Number Limit…………………… ⊂.⊂⊂⊂⊂⊂⊂⊂⊂⊂E⨯2
Negative Number Limit…………………… ∏⊂.⊂⊂⊂⊂⊂⊂⊂⊂⊂E⨯2
Positive Counting Number Limit…………… ⊂⊂⊂⊂⊂⊂⊂⊂⊂⊂
Negative Counting Number Limit………… ∏⊂⊂⊂⊂⊂⊂⊂⊂⊂⊂
Index Limit………………………………… ∧27⨯7
Count Limit………………………………… ∧27⨯⨯
Rank Limit………………………………… 7
Workspace Name Length Limit…………… 8
Identifier Length Limit……………………… ∧2
Quote Quad Output Limit…………………… value of πPW
Comparison Tolerance Limit……………… ⊂E∏5
Integer Tolerance…………………………… ⊂E∏7
Full Print Precision………………………… ⊂0
Print Precision Limit……………………… ⊂0
Exponent Field Width……………………… ∧
Session Identification Type………………… character
User Identification Type…………………… character
Indent Prompt……………………………… ⨯º∪ ∪
Quad Prompt………………………… ∪π:∪,newline,⨯º∪ ∪
Function Definition Prompt………………… ∪[∪,line,∪]∪
Line Limit………………………………… 80
Definition Line Limit……………………… 7⊂.⊂⊂
General Offer……………………………… Not Applicable

Any action that would cause a limit specified by an implementation parameter to be exceeded
will signal a limit- error.
A-2.5 Internal Value Sets
The system parameter which underlies each system variable may only be assigned values
which belong to the internal value set for that system parameter. For example the internal
value set for πLX is all character vectors; you can write πLX¢∪A∪ because scalar ∪A∪ is
coercible to a vector of length 1. After such an assignment ºπLX will return a 1 which shows
that the scalar ∪A∪ has indeed been coerced to a vector. Any attempt to assign a value not in
the set will signal a limit-error.

The internal value sets are:

Comparison Tolerance: all nonnegative numbers not greater than ⊂E∏5
Random Link: all integers from 0 to 31103 inclusive
Print Precision: all integers from 1 to 10 inclusive
Index Origin: the integers 0 and 1

63

I-APL Ltd. IAPL/Mac User Guide 8/29/24
Latent Expression: all character vectors
Print Width: 19 to 254 inclusive.

64

I-APL Ltd. IAPL/Mac User Guide 8/29/24
A-3 Consistent Extensions
A consistent extension is any facility not specified in the ISO APL standard that, for a
construct the standard specifies as producing an error, gives some effect other than signalling
the specified error. This section documents the consistent extensions in I-APL.

Note that the use of any consistent extension in an I-APL program prevents that program
from conforming to the standard.

In what follows, related consistent extensions have been grouped under a common heading.
Every consistent extension is given a unique "CE" code for ease of reference. The code is
followed by a short description of the extension, followed by the error that is replaced, in
parentheses. After this line a fuller description of the extension is given.

Each example is executed in a freshly cleared I-APL workspace.

A-3.1 Direct Definition

CE1: Immediate execution direct function definition (syntax- error)
The following form is permitted in immediate execution mode:

>>---simple-identifier---b---colon---b---line--->>

A syntax error is replaced with a behaviour which defines or allows editing of a directly
defined function whose name is simple-identifier.

If "line" is empty, the current definition is displayed on a new line and the keyboard unlocked
for editing.

If "line" is non-empty, the function definition is determined by the content of line. The letter
b represents any number of blanks. A definition-error is signalled if simple-identifier cannot
be defined as a function.

Example: ASK: ∩ºˇ)°ª,0ºª¢ˇ ASK:ASK: ∩ºˇ)°ª,0ºª¢ˇ
CE2: Direct function fixing (rank-error)
When the argument to the system function πFX is a character vector, then I-APL attempts to
fix a directly defined function in the active workspace, rather than signalling a rank-error. If
successful, the name of the fixed function is returned. If the character vector does not
correctly define a directly defined function, a definition-error is signalled.

Example: πFX ∪PLUS:†≠ˇ Ω MPLEMEℕTS A T Oℕ∪Ⅰ ⅮⅮⅠ ⅠPLUS
CE2.2 Canonical Representation
When the argument to the system function πℂℝ is the name of a directly defined function,
then a character vector representing the definition of that function is returned.

65

I-APL Ltd. IAPL/Mac User Guide 8/29/24
A-3.2 Extensions to primitive functions

CE3: Extension of multi-dimensional singles in primitive dyadic scalar functions (rank-error)
The behaviour of dyadic-scalar-extension is relaxed to allow a multi-dimensional array
containing one element to conform with a non-scalar array. Instead of signalling a rank-error,
the single is reshaped to match the shape of the other array prior to the application of the
function. If both arguments are singles, the result has the rank of the argument of greater
rank.

Example:

 ∩⊂ ⊂º⊂)≠⊂ 2 ∧2 ∧ 4 ºº∩⊂ ⊂º⊂)≠⊂ ⊂ ⊂ ⊂º⊂4
CE4: Extension of vector singles in primitive dyadic scalar functions (length-error)
The behaviour of dyadic-scalar-extension is relaxed to allow a one-element vector to
conform with a non-scalar array. Instead of signalling a length-error, the single is reshaped to
match the shape of the other array prior to the application of the function.

Example: ⊂ 2≠,⊂2 ∧
CE5: Inner product axis extension (length-error)
The standard requires that the inner axes of the arguments to the derived Inner product
function must be equal in length. I-APL relaxes this restriction by permitting either inner axis
to have a unit length and still conform. Rather than signal a length-error, the unit axis is
replicated (if necessary) to match the length of the other inner axis prior to application of the
function. It is worth noting here that the equivalent extension is not made in the case of the
Base Value function.

Example: º∩2 ∧ 4º0)≠.∂⊂ 5 ⨯º02 ∧ 5 ⨯
CE6: Grade up on character matrices (rank-error)

The Grade up function will return a result when applied to character matrices, rather than
signal a rank-error. The result is an origin-dependent vector of indices which specify a
monotone increasing lexical ordering of the rows of the character matrix. The atomic vector
is used as the collating sequence.

Example: Ø4 5º∪YO A LE A LUKE AℝTH∪Ⅾ Ⅰ Ⅾ4 2 ∧ ⊂
CE7: Grade down on character matrices (rank-error)

The grade down function will return a result when applied to character matrices, rather than
signal a rank-error. The result is an origin-dependent vector of indices which specify a

66

I-APL Ltd. IAPL/Mac User Guide 8/29/24
decreasing lexical ordering of the rows of the character matrix. The atomic vector is used as
the collating sequence.

67

I-APL Ltd. IAPL/Mac User Guide 8/29/24
Example: Æ4 5º∪YO A LE A LUKE AℝTH∪Ⅾ Ⅰ Ⅾ⊂ ∧ 2 4
CE8: Replicate (domain-error)
The standard requirement for the left argument of the Compress function to be near-boolean
is relaxed to be non- negative near-integer. The effect is that for non-negative integer left
arguments the specified number of copies of the corresponding element is returned, rather
than signalling a domain-error. This extension is called Replicate.

The extension also applies to the first-axis and specified- axis forms.

Example: 2 0 ∧/4 5 ⨯4 4 ⨯ ⨯ ⨯ 2 ⊂/[⊂]2 ∧º∪ℂAT OΓ∪ⅮℂATℂATOΓⅮ

CE9: Catenation of empties (domain-error)
The type of the array resulting from the catenation of two empty arrays is the same as the
type of the left argument to the catenate function.

A-3.3 New system variables

CE10: πPW (syntax-error)
The current value of the system variable πPW determines the Printing Width, used to
determine where folding occurs in the output of the display algorithm. The internal value set
of πPW is the set of integers from 19 to 254 inclusive.

CE11: πHℂ (syntax-error)
The current value of the system variable πHℂ determines the status of Hard Copy control. The
internal value set of πHℂ is the integers 0 and 1. When its value is 1 the display algorithm
additionally routes all screen output to the system printer, if attached. When its value is 0
screen output will not be printed. The value of πHℂ in a clear workspace is 0.

A-3.4 New system functions

CE12: πWA (syntax-error)
The niladic system function πWA returns an integer scalar of the Workspace Available, a
measure in bytes of the amount of unused workspace.

CE13: πⅠⅮ (syntax-error)
The niladic system function πⅠⅮ returns a 5 by 12 character matrix which identifies the
characteristics of the operating environment, as follows:

Row Meaning
1 Computer identification
2 CPU identification
3 Operating system identification
4 Display type identification

68

I-APL Ltd. IAPL/Mac User Guide 8/29/24
5 Port identification

See appendix B for the values in Macintosh, BBC, Archimedes and PC clones.

69

I-APL Ltd. IAPL/Mac User Guide 8/29/24

CE14: πTX (syntax-error)
The dyadic system function πTX provides a basic transmit facility in I-APL. The right
argument may be a data array of characters or integers and the left argument may be one of
the scalar integers 1,2 or 3. The data array is transmitted in ravel order to a destination
determined by the left argument, as follows:

Left argument Right argument Destination
1 Raw codes Screen
2 Raw codes Printer
3 πAV elements or indices Printer

The explicit result of πTX is 0 0º0.

CE15: πMℂ (syntax-error)
The dyadic system function πMℂ provides I-APL with a mechanism for executing Machine
Code programs. The left argument is a vector of characters or integers that represent a
program written in the machine language of the host computer. The right argument is a
character array of maximum rank 3 containing the names of argument and result variables.
The explicit result of πMℂ is 0 0º0.

A-3.5 System commands

CE16:)PCOPY (incorrect-command)
The system command)PℂOPY provides I-APL with a Protected Copy facility. The behaviour
is similar to that produced by)ℂOPY, except that in the event of a name clash between objects
in the library and active workspaces, the objects are NOT copied.

As with)ℂOPY, two forms are permitted;)PℂOPY WS will perform a protected copy on all
defined functions and variables in the library workspace WS.)PℂOPY WS OBJ will perform a
protected copy on the object OBJ in the workspace WS. Multiple object names may not be
specified.

CE17:)ERASE A B C (incorrect-command)
Multiple global objects in the active workspace may be erased by using the)EℝASE system
command with more than one object name. Notice that)EℝASE is not atomic: if the operation
fails before completing, some objects may have been successfully erased, whereas others
may not. Objects are erased in the order specified.

CE18:) (incorrect-command)
A single right parenthesis entered in immediate execution mode causes the last APL
statement entered in immediate execution mode at the current level of the state indicator, if
any, to be re-displayed for editing.

A-3.6 Defined function

CE19: Ambivalent functions (syntax-error)
A dyadic defined function may be invoked either with two arguments or with a single
argument on the right. In the latter case the name class of the left argument name is initially
0.

70

I-APL Ltd. IAPL/Mac User Guide 8/29/24
CE20: Leaky locals (implicit-error)
The initial value on entry to a defined function of a localised system variable is determined
by its value immediately prior to localistion.

71

I-APL Ltd. IAPL/Mac User Guide 8/29/24
CE21: Duplication of local names (defn-error/domain-error)
Duplicates in the local-name-list of a defined function are permitted. Names are localised and
labels assigned their values in the order in which they appear in the definition. As a final step
the argument names, if any, are assigned their values from left to right.

CE22: Function line display: [nπ] (defn-error)
In function definition mode the form [nπ] may be used to display line n.

CE23: Function line edit: [nπm] (defn-error)
In function definition mode the form [nπm] may be used to edit line n. The number m is
ignored.

CE24: Delete function line: [~n] (defn-error)
In function definition mode the form [~n] may be used to delete line n.

CE25: Create empty function line: [n] ESC (defn-error)
A blank line may be inserted into a function definition by signalling an attention inside
function definition mode.

CE26: Tolerant imbalanced quotes (defn-error)
Imbalanced quotes are permitted in a function definition body-line.

A-3.7 Identifiers and ideograms

CE27: † and ˇ as identifiers (syntax-error)
The single character tokens † and ˇ may be used as identifiers.

CE28: Fifty-two additional letters (syntax-error)
The letter diagram is extended to include the lowercase alphabet and the underscored
lowercase alphabet. This permits their use in I-APL identifiers.

CE29: Additional ideograms (syntax-error)
A number of additional ideograms is included in I-APL. These are given in the πAV table
above.

72

I-APL Ltd. IAPL/Mac User Guide 8/29/24

APPENDIX B: πⅠⅮ for all current ports

B.1 IBM Personal Computer and compatibles

Row Contents⊂ Pℂ2 808X∧ MS OSⅮ4 TEXT or ℂΓA or EΓA or HEℝℂULES5 PΓHℂB
B.2 BBC B and Master

Row Contents⊂ BBℂ B2 ⨯502∧ OS ⊂.24 MO E Ⅾ <n>5 Tony ℂℎℯal
B.3 Archimedes

Row Contents⊂ Arɕℎimℯδℯs2 AℝM∧ ℝ SℂOSⅠ4 MO E Ⅾ <n>5 Tony ℂℎℯal
B.4 RC Piccoline

Row Contents⊂ ℝℂ P ℂℂOL ℕEⅠ Ⅰ2 808X∧ ℂℂP/M≠ℂ- OSⅮ4 TEKST5 KSA7
B.5 Apple Macintosh (IAPL/Mac)

Row Contents⊂ MAℂ ℕTOSHⅠ2 ⨯8000∧ F ℕ EℝⅠ Ⅾ4 ℕ/A5 Aℕ A ℂLAℝKⅠ

73

I-APL Ltd. IAPL/Mac User Guide 8/29/24
APPENDIX C:
Writing a Machine Code Resource using LightspeedC

Below is a simple program written in C, which can be compiled into a self-contained code
resource using LightspeedC (or THINK C). Select 'Set Project Type' from the Project Menu.
Give it the resource type 'APCC' and a resource ID like 1234. You can also give it a name,
but IAPL/Mac won't use that.

Once compiled by 'Build Code Resource', it can be moved by means of ResEdit into the
IAPL/Mac application. With IAPL/Mac running, you can call it by e.g.

 BEEP: ⊂2∧4 πMℂ ∪ˇ∪,0ºˇ
Thereafter BEEP 5 will issue 5 system-beeps.

An 'APCC' resource can read from the workspace variables which the πMℂ facility passes to
it, and write back into them, using the ptab pointer array. It can communicate interactively by
means of calls to the Macintosh ROM routines, e.g. to employ its own windows and dialogs,
although there is obviously the possibility of interfering with IAPL/Macs own windows and
dialogs. In addition, IAPL/Mac passes it a pointer argument, msg_str, which points to an 80-
byte buffer initialised to '\0' followed by blanks. A non-null string value (in C format) placed
in this buffer will be output to the session log when the 'APCC' routine terminates.

The 'APCC' should return the integer value 1 on completion, to signal success, or 0 to signal
failure. If 0 is returned, then IAPL will issue its DOMAIN ERROR message.

/***/
/* Sample quadMC code resource for IAPL/Mac */
/* Beeps n times, given by value of arg(0) */
/* Written by Ian A. Clark */
/***/

#include "MacTypes.h"

/*** These #defines might usefully be put in a header file, for use */
/* by all 'APCC' code resources ... */
#define WSENTRY(m) ((char *) ptab[m])
#define Type(n) (WSENTRY(n)[0])/* type of APL VAR: 'n' or 'c' */
#define Esize(n) (WSENTRY(n)[2])/* bytes per element (0=Booln) */
#define Rank(n) (WSENTRY(n)[3])/* number of axes (0..7) */
#define Elements(n) ((int)MINT(WSENTRY(n)+4)) /* tot.no.of elems */
#define Rows(n) ((int)MINT(WSENTRY(n)+6)) /* no. of mx rows */
#define Columns(n) ((int)MINT(WSENTRY(n)+8)) /* no. of mx cols */
#define ScalarInteger(n) Rows(n) /* value of scalar */
#define ScalarContents(n) ((byte *)WSENTRY(n)+6) /* element[1] (vc) */
#define VectorContents(n) ((byte *)WSENTRY(n)+8) /* element[1] (vc) */
#define MatrixContents(n) ((byte *)WSENTRY(n)+10) /* element[1] (mx) */

#define byte unsigned char
#define JMAX 10

main(n, ptab, msg_str)
int n; /* the number of entries in ptab table */
unsigned char *ptab[]; /* table of abs pointers into workspace */
char *msg_str; /* buffer for returned msg to be output */

74

I-APL Ltd. IAPL/Mac User Guide 8/29/24
{

int i,j;

/* Expects just one integer scalar value, in *ptab[0]. Hence n==1 */
if (n!=1) return 0;

/* 1 signals OK to IAPL, 0 forces DOMAIN ERROR */

/* Verify that value(0) is really numeric, having just one element */
if ((Type(0)!='n') || (Elements(0)!=1)) return 0;

/* Pick up the value of the scalar integer in arg(0) */
j = ScalarInteger(0);

/* Use the integer value in j to issue between 1 and JMAX beeps */
if (j<=0) j=1;
if (j>JMAX) j=JMAX;
for (i=0; i<j; i++) SysBeep(10);

return 1; /* 1 signals OK to IAPL, 0 forces DOMAIN ERROR */
}

int MINT(p)
byte *p;

/* p points 2-byte lo/hi. MINT(p) returns int value with swapped bytes */
{

return (*p)|((*(p+1))<<8);
}

75

