EasyRexx Guide

Ketil Hunn

EasyRexx Guide

Copyright © CopyrightA©1994,1995 Ketil Hunn

EasyRexx Guide

COLLABORATORS
TITLE :
EasyRexx Guide
ACTION NAME DATE SIGNATURE
WRITTEN BY Ketil Hunn July 22, 2024
\ REVISION HISTORY
NUMBER DATE DESCRIPTION NAME

EasyRexx Guide

Contents

1 EasyRexx Guide
1.1 Documentation for EasyRexx
1.2 Copyrights and Licence . . .

1.3 Description

1.4 Programming using easyrexx.library

1.5 History
1.6 Author.

EasyRexx Guide

Chapter 1

EasyRexx Guide

1.1 Documentation for EasyRexx

easyrexx.library
Copyrights & Licence
Description
Programming

History

Author

1.2 Copyrights and Licence

easyrexx.library is © 1994,1995 Ketil Hunn

All rights reserved.

DISCLAIMER

The files are provided "AS-IS" and with no warranties. Use at your own
risk.

DISTRIBUTION

The files may be distributed as needed. That means that for products that
use the easyrexx.library, only that file needs to be distributed. For
development purposes, the library and its documentation should be all
distributed together.

LICENSE

The license is the same for all software, regardless of what type of
software the library is used in, be they commercial, freeware, shareware
or whatever as long as you:

1) Note in the program and documentation that easyrexx.library is

copyrighted © 1994,1995 Ketil Hunn.

EasyRexx Guide

2/7

2) You give me a copy (address below) of the software it is used in which
includes different versions of the software that use the library.

There should be no cost to me.

1.3 Description

DESCRIPTION

easyrexx.library is a small and very fast shared run-time library that

lets application developers add an AREXX port to your application with no
fuzz at all. A whole new world will open up, just by calling 4 functions

in this library! :D

When a message arrives at the AREXX port, easyrexx.library will parse the
line for you and stuff all arguments in an array. Interpreting EasyRexx
AREXX messages will now be as easy as reading arguments from a DOS prompt!
Most functions are tagbased which makes them very easy to use and fully
extendable for future features. The example source is pretty much self-
explanatory so you should take a look it and see how easy it is to use the
library.

All functions in the library are thoroughly described in the EasyRexx

autodoc.

1.4 Programming using easyrexx.library

This is how you use easyrexx.library to add AREXX to your application
(description given in C only):

1) #include <libraries/easyrexx.h>

2) Define unique IDs for each AREXX command your application will handle.
ex:

#define AREXX_QUIT 1

#define AREXX_OPEN 2

#define AREXX_SAVE 3

3) Create a table of commands that your application will handle. The
table contains:

{

LONG id // ID that will be returned (i.e. AREXX_QUIT).

UBYTE command, // Name of the command. Will be parsed quicker if
the name is given in upper-case (i.e. "QUIT").

template // Argument template. Standard DOS way of defining

how the arguments should be parsed. (i.e.

EasyRexx Guide

3/7

"FORCE/S". More about this later.

APTR userdata // You can put anything you want here. Will not be
touched by any functions in the library.

Normally you could put the address of a function

to be associated with a certain AREXX command.

Test2 shows how to use this method.

}

ex:

struct ARexxCommandTable table[]=

{

AREXX_QUIT, "QUIT", "FORCE/S", NULL,
AREXX_OPEN, "OPEN", "FILENAME/K,FORCE/S", NULL,
AREXX_SAVE, "SAVE", NULL, NULL,

TABLE_END,

b

4) Create your function to handle incoming AREXX events.
ex:

void myHandleAREXX(void)

{

if(GetARexxMsg(context))

{

switch(context->id)

{

case AREXX_QUIT:

quit=TRUE;

break;

case AREXX_OPEN:

OpenProject(ARGSTRING(context, 0), ARGBOOL(context, 1));
break;

case AREXX_SAVE:

SaveProject();

break;

}

ReplyARexxMsg(context, TAG_DONE);

}

}
5) Make your event-handler handle incoming AREXX signals.

BEFORE:
signal=Wait(1L<<myport->mp_SigBit);

EasyRexx Guide

477

if(signal & 1L<<myport->mp_SigBit)

handlestuff();

AFTER:

signal=Wait(1L<<myport->mp_SigBit | ER_SIGNAL(context));

if(signal & ER_SIGNAL(context))

myHandleAREXX(context);

else if(signal & 1L<<myport->mp_SigBit)

handlestuff();

6) Allocate and free the structure needed by the easyrexx.library.

struct ARexxContext *context;
context=AllocARexxContext(ER_Portname, "MYAPP",
ER_CommandTable, table,

TAG_DONE);

/* input handler */

FreeARexxContext(context);

7) That’s it and that’s that :D

See the easyrexx.doc (autodoc) for further details about defined tags and
macros.

Your application will now be able to understand three AREXX commands:
OPEN, SAVE, QUIT.

When easyrexx.library receives an AREXX command that matches a command in
the command table, it will parse the arguments according to the template.
If the arguments do not match or are too few it will reply the message

with an error and your application will never hear the message.

If success, your application will receive the command with all arguments
stuffed in an array with the first argument in 0, second in 1 etc.

QUIT takes one argument FORCE so both *QUIT’ and ’QUIT FORCE’ will be
accepted. You can find out if the FORCE argument was given using the
macro ARG(context, 0) which is defined in <libraries/easyrexx.h>.

OPEN takes two arguments: FILENAME and FORCE. The FILENAME argument needs
the keyword FILENAME to be present.

Accepted:

OPEN FILENAME "ram:foo" FORCE

OPEN FILENAME "ram:foo"

Rejected:

OPEN "ram:foo" FORCE

OPEN "ram:foo"

SAVE takes no arguments.

Other useful macros to get the arguments:

EasyRexx Guide

5/7

ARGSTRING(context, i) - returns the string in argument i.
ARGNUMBER(context, i) - returns the number in argument i.
ARG(context, i) - returns 0 if the argument is NULL and non-zero if

it present.

ARGBOOL(context,i) - returns TRUE if the argument is not empty and
FALSE if it is.

Defining templates

Options in the template are separated by commas. To get the results of
EasyRexx message, you examine the array of longwords you passed to it (one
entry per option in the template). Exactly what is put in a given entry
depends on the type of option. The default is a string (a sequence of
non-whitespace characters, or delimited by quotes, which will be stripped,
in which case the entry will be a pointer.

Options can be followed by modifiers, which specify things such as the
type of the option. Modifiers are specified by following the option with
a/ and a single character modifier. Multiple modifiers can be specified
by using multiple /s. Valid modifiers are:

/S - Switch. This is considered a boolean variable, and will be set if

the option name appears in the command-line. The entry is the

boolean (0 for not set, non-zero for set).

/K - Keyword. This means that the option will not be filled unless the
keyword appears. For example if the template is "Name/K", then

unless "Name=<string>" or "Name <string>" appears in the command
line, Name will not be filled.

/N - Number. This parameter is considered a decimal number. If an
invalid number is specified, an error will be returned. The entry

will be a pointer to the longword number (this is how you know if a
number was specified).

/T - Toggle. This is similar to a switch, but when specified causes the
boolean value to "toggle". Similar to /S.

/A - Required. This keyword must be given a value during command-line
processing, or an error is returned.

/F - Rest of line. If this is specified, the entire rest of the line is

taken as the parameter for the option, even if other option

keywords appear in it.

/M - Multiple strings. This means the argument will take any number of
strings, returning them as an array of strings. Any arguments not
considered to be part of another option will be added to this

option. Only one /M should be specified in a template. Example for

EasyRexx Guide

6/7

a template "Dir/M,All/S" the command-line "foo bar all qwe" will set

the boolean "all", and return an array consisting of "foo", "bar",

and "qwe". The entry in the array will be a pointer to an array of

string pointers, the last of which will be NULL.

There is an interaction between /M parameters and /A parameters. If there
are unfilled /A parameters after parsing, it will grab strings from the

end of a previous /M parameter list to fill the /As. This is used for

things like Copy ("From/A/M,To/A").

1.5 History

V1.77 29.Nov.94

Initial release

V1.78 30.Nov.94

NEW Small linkable library included that automates calling context->
userdata functions. Included another testprogram with source that
shows this function handling.

V1.105 10.Jan.95

FIX SendARexxCommand vararg prototype was not named properly.
FIX ReplyARexxMsg did not handle returncodes properly.

FIX Some mistakes in the documentation corrected.

NEW ReplyARexxMsg can now return strings to the calling AREXX-script.
NEW ReplyARexxMsg can now return values to the calling AREXX-script.

NEW More tag aliases.
NEW ’Small linkable library’-source included to show how to automaticly

call functions.

1.6 Author

Send your contribution, suggestions and bug-reports to this address:
Ketil Hunn

Apartment 107C

Fabrikkveien 4-8

N-6400 Molde

NORWAY

e-mail:

Ketil. Hunn @hiMolde.no

After May 1995:

Ketil Hunn

EasyRexx Guide

717

Nabbetorpveien 35B
N-1632 Gamle Fredrikstad
NORWAY

Have fun :)

Ketil Hunn

January, 1995

	EasyRexx Guide
	Documentation for EasyRexx
	Copyrights and Licence
	Description
	Programming using easyrexx.library
	History
	Author

