
ImgDLL 3.7

ImgDLL

This is a Win32 DLL which provides a variety of image file and image processing functions. The
functions are described below.

This DLL has been used in VC++ 4 and 5, Visual BASIC, Borland, Watcom and Access.

What the package includes

 ImgDLL.DLL - the image library
 ImgDLL.H - the main header file
 ImgDLL.LIB - the library file, used for static linking of the DLL
 ImgDemo.ZIP - a small MFC sample application, written in VC++ 5.0, that demonstrates

image file reading , processing and writing using ImgDLL.DLL.
 ImgDemo.EXE - the compiled ImgDemo application
 ImgDLLVx.RTF – this file.
 Function.TXT - brief descriptions of the functions and the versions in which they were

introduced.
 Free tech support via e-mail
 Free bug fixes and upgrades on request
 See http://www.smalleranimals.com/imgboard/imgboard.html for the ImgDLL discussion

board

Cost

What it costs for an unlimited license (one copy, use as you please) :

 $15, US

 
The DLL on my website is a full, working version. However, to use it properly, you will need an access
key, which you will use when you initialize the DLL. The access key is what you get for your $15.
Without the key, the ability to read and write images will be limited to images of less than 100 pixels in
either dimension.

Source

Source is not included in the regular ImgDLL package. Source may be purchased separately from
ImgDLL at a cost of $45 ($30 for registered users).

Static Lib Version

This library is also available as a set of static LIBs. The release and debug multi-threaded versions of
two static libraries are included. All functionality is the same as in the DLL; all pricing and access-key
policies are the same as for the DLL. Contact smallest@smalleranimals.com for info on how to obtain
the static LIB version.

Product Information

 JPG info from IJG 6b. Full IJG source available at the simtel archives.
 PNG code from LibPng v1.0.0
 TIFF code from LibTIFF 3.4 beta 024
 PCX code from Bob Johnson
 Color quantizer based on Dennis Lee's DL1Quant.
 All other code Copyright 1997, 1998 Smaller Animals Software

RGB

When ImgDLL refers to something as being an “RGB” buffer, it means that the size of this buffer is
exactly :

3 * imageWidth * imageHeight BYTEs.

If you are getting images which seems to be tripled, or skewed or only 1/3 wide or high, make sure you
have accounted for the “3” when allocating space for your image.

Sample C/C++ code

See the ImgDemo project for a more thorough example.

Copy a BMP file to a JPG file

UINT width, height;

 // read the BMP to a packed buffer of RGB bytes
 HGLOBAL hpRGB=ImgDLLReadRGBFromBMP(inPath, &width, &height);

 // test for error
 if (hpRGB==NULL) {
 // error
 } else {
 // lock the global memory
 BYTE * pRGB = (BYTE *)GlobalLock(hpRGB);
 if (pRGB==NULL) {
 // error! clean up
 GlobalFree(hpRGB);
 } else {

 // add an optional JPEG_COM text string
 ImgDLLAddJPGText(“ImgDLL Sample”);

 // save it
 BOOL ok = ImgDLLSaveRGBToJPG(outPath, pRGB,
 width, height,

 qualityVal,
 TRUE);

 // clear JPG output text so that we don’t
 // write it to the next JPG file by mistake
 ImgDLLClearJPGOutputText();

 // test for error
 if (!ok)
 // error

 GlobalUnlock(hpRGB);
 GlobalFree(hpRGB);
 }
 }

Read a PNG file and its text fields

// read the PNG to a packed buffer of RGB bytes
 HGLOBAL hpRGB=ImgDLLReadRGBFromPNG(inPath, &width, &height);

 // test for error
 if (hpRGB==NULL) {
 // error
 } else {

// how many fields were in that file?
UINT numText = ImgDLLGetPNGTextCount();

CString text="";
for (UINT t=0;t<numText;t++) {

// get a key
HGLOBAL hKey = ImgDLLGetPNGKey(t);
if (hKey!=NULL) {

char * pKey = (char *)GlobalLock(hKey);
text+=”Key:”;
text+=pKey;
text+="\n";
GlobalUnlock(hKey);
GlobalFree(hKey);

}

// get some text
HGLOBAL hTxt = ImgDLLGetPNGText(t);
if (hTxt!=NULL) {

char * pTxt = (char *)GlobalLock(hTxt);
text+”Text”;
text+=pTxt;
text+="\n";
GlobalUnlock(hTxt);
GlobalFree(hTxt);

}
}

ImgDLLClearPNGText(); // clear buffers, to be nice

// display the text in a msg box
AfxMessageBox(text);

GlobalFree(hpRGB); // free image memory

}

A note about HGLOBAL, GlobalLock, GlobalUnlock, GlobalFree.

ImgDLL passes images back to the caller in buffers that are allocated with GlobalAlloc(GHND,..).
This means that, in order to get a pointer to the images, you must use GlobalLock.

Example :

// step 1
// allocate 10000 BYTEs
HGLOBAL hMemory;

hMemory = GlobalAlloc(GHND, 10000);

if (hMemory==NULL)
{
error!
}

// step 2
// get a pointer to the memory
BYTE * pMemory;

pMemory = (BYTE *)GlobalLock(hMemory);

if (pMemory==NULL)
{
error!
}

// step 3
// now you can use pMemory as a pointer to 10000 BYTEs of data.
….

// when you’re done….

// step 4
// release the lock . this doesn’t delete the memory!! you can
// always GlobalLock it again.
GlobalUnlock(hMemory);

// step 5
// clean up
GlobalFree(hMemory);

ImgDLL performs step 1 for you whenever it returns an HGLOBAL. It is up to you to at least
perform steps 4 and 5 to release the memory back to the OS.

Single-line de/compression

As of v3.6, ImgDLL supports single-line JPG and BMP de/compression. This allows you to read and
write JPG and BMP files a single line at a time.

Sample:

// read pic1.jpg
// create the decompression object
// DJIS = Decompress Jpeg Info Struct

UINT w,h;
HGLOBAL hJIS = ImgDLLCreateDJIS("C:\\pic1.jpg", &w, &h);
if (hJIS)
{

// now that we know how big the image will be,
// allocate a place to put it

BYTE *pRGB = new BYTE[w * h * 3];
UINT row = 0;
BOOL ok = TRUE;  
UINT res = IMGOK;

while (ok && (res==IMGOK))
{

// move our pointer to the next image row
BYTE * rowPtr = pRGB + (row * w * 3);

// read the next line
ok = ImgDLLGetNextDJISLine(hJIS, rowPtr);

row++;  
res = ImgDLLGetLastError();

}

// IMGNOLINES is set when you reach the end of the file
if (res!=IMGNOLINES)
{

// error ?
}

// clean up. This is important!!
ImgDLLDestroyDJIS(hJIS);

// destroy the image, because we’re not using it
// in this example
delete [] pRGB;

}

Single line writing is similar :

1 Get a CJIS object from ImgDLLCreateCJIS

2 Feed one RGB pixel line at a time to ImgDLLWriteNextCJISLine

3 When finished, clean up with ImgDLLDestroyCJIS

Note: BMP files are stored upside-down. This means you have to read and write the lines in reverse
order. This is part of the BMP format and not necessarily an ImgDLL limitation.

Disclaimer

 Use at your own risk. I make no guarantees as to the suitability of this software for any particular use.
I find that it works fine for what I need it to do, but I cannot anticipate all uses to which people might
try to put this. Any bugs, if reported to me, will be fixed as soon as possible. I can not be held
responsible for any bugs or the consequences of any bugs which were not reported to me.

PLEASE!!! Report any bugs you find. I take great pains to insure that this is quality software. I don't
want bugs!

Technical Support

I have been told this has been used successfully on VC++ 4.x, 5.0, Borland 5.0,3.0 C++, Borland's C+
+ Builder, Visual BASIC, and MS Access.

I know VC++ 1.5, 4.x and 5.0, I don't know Visual BASIC or Borland's C++. From what I understand,
though, this is a standard C-interfaced DLL and thus should be compatible with all environments -
correct me if I'm wrong, I don't want to mislead anyone here.

I will try to help you as much as I can. Please do not ask the IJG or PNG people for help with this, nor
should you ask anyone else who's code I have included - they have provided their code with no
obligations to support what I do with it.

Error: Reference source not found

ImgDLL Functions as of V3.7

General DLL functions
ImgDLLGetLastError Find out what caused a failure
ImgDLLInitDLL Initialize the DLL
ImgDLLStringInitDLL Initialize with a string
ImgDLLSetCallback Set a callback function

BMP file functions
ImgDLLGetBMPDimensions Find size of BMP image
ImgDLLReadRGBFromBMP Read 24-bit from BMP
ImgDLLSaveColormappedToBMP Write 1,4,8 bit BMP
ImgDLLSaveDIBColormappedToBMP Save DIB to BMP
ImgDLLSaveRGBToBMP24 Write 24-bit BMP
ImgDLLReadHBITMAPFromBMP Read HBITMAP from BMP
ImgDLLCreateDBIS Create a single-line BMP read struct
ImgDLLGetNextDBISLine Read a single scanline
ImgDLLDestroyDBIS Clean up
ImgDLLCreateCBIS Create a single-line BMP write struct
ImgDLLWriteNextCBISLine Write a single scanline
ImgDLLDestroyCBIS Clean up

JPG file functions
ImgDLLGetJPGDimensions Find size of JPG image
ImgDLLReadRGBFromJPG Read JPG to 24-bit buffer
ImgDLLGrayscaleToJPG Save 8-bit gray image to JPG
ImgDLLSaveRGBToJPG Save 24-bit buffer to JPG
ImgDLLSetJPGErrorMsgBox En/Disable the JPG error boxes
ImgDLLReadRGBFromJPGMem Read JPG stream to RGB
ImgDLLSaveRGBToJPGMem Create JPG stream in memory
ImgDLLSetJPGDCT Control JPG compression
ImgDLLReadHBITMAPFromJPG Read JPG to HBITMAP
ImgDLLRead8bitGrayscaleFromJPG Read JPG to 8-bit grayscale
ImgDLLCreateDJIS Create a single-line JPG read struct
ImgDLLGetNextDJISLine Read a single scanline
ImgDLLDestroyDJIS Clean up
ImgDLLCreateCJIS Create a single-line JPG write struct
ImgDLLWriteNextCJISLine Write a single scanline
ImgDLLDestroyCJIS Clean up
ImgDLLAddJPGText Add optional JPEG_COM marker text
ImgDLLGetJPGText Return JPG text read from file
ImgDLLGetJPGInputTextCount How many JPG text fields were read
ImgDLLClearJPGInputText Clear input text strings
ImgDLLClearJPGOutputText Clear JPG output text

TIFF file functions
ImgDLLGetTIFFDimensions Get TIFF image dimensions
ImgDLLTIFFToRGB Read 24-bit from TIFF
ImgDLLSaveColormappedToTIFF Write 8 bit TIFF
ImgDLLSaveRGB24ToTIFFRGB Write 24 bit to TIFF

PNG file functions
ImgDLLGetPNGDimensions Get PNG image dimensions
ImgDLLReadRGBFromPNG Read a PNG file to an RGB buffer
ImgDLLSave8BitToPNG8Bit Save 8-bit image to PNG 8-bit
ImgDLLSaveRGB24ToPNGRGB Save RGB 24-bit to PNG RGB 24-bit
ImgDLLSaveToPNG Save image buffer to PNG file
ImgDLLPNGSetScreenGamma Set the screen gamma for PNG reads
ImgDLLPNGSetDefBackground Set default background color for PNG

reads
ImgDLLGetPNGTextCount Find out how many text fields were read

during the last PNG file read operation.
ImgDLLGetPNGKey Fetch text field keys from the ImgDLL PNG

input text buffer.
ImgDLLGetPNGText Fetch text fields from the ImgDLL PNG

text input buffer.
ImgDLLClearPNGText Remove all PNG text fields from the input

and output ImgDLL PNG text buffers.
ImgDLLAddPNGText Add a new text field to the ImgDLL PNG

output text buffer.

PCX file functions
ImgDLLGetPCXDimensions Get the width and height of a PCX file
ImgDLLReadRGBFromPCX Read a PCX file to a 24-bit buffer
ImgDLLSaveRGB24ToPCXRGB Save RGB-24 image to a 24-bit PCX file
ImgDLLSaveColormappedToPCX Save 8-bit colormapped to PCX -bit

Buffer manipulation functions
ImgDLLDIBToRGB Convert a DIB to RGB
ImgDLLRGBToDIB Convert a 24-bit RGB buffer to a DIB
ImgDLLDWORDAlignBuf DWORD align a buffer of pixels
ImgDLLDWORDAlignBufBytes DWORD align a buffer of bytes
ImgDLLRGBFromDWORDAligned un-DWORD align a buffer

Image processing functions

ImgDLLMakeGrayScale Create 24-bit grayscale image
ImgDLLMake8BitGrayScale Create 8-bit gray from 24-bit RGB
ImgDLLRGBFrom8Bit Apply palette to 8-bit image
ImgDLLQuantizeRGBTo8Bit Generate 8-bit image from 24-bit
ImgDLLCountRGBColors Count colors in RGB image
ImgDLLColorSubRGB Replace one color with another
ImgDLLVerticalFlipBuf Vertically flip a buffer
ImgDLLHorizontalFlipRGB Horizontal flip an RGB image
ImgDLLBlurRGB Blur an RGB image
ImgDLLResizeRGB Resize an RGB image
ImgDLLResizeRGB2 Resize an RGB image
ImgDLLSharpenRGB Sharpen an RGB image
ImgDLLHistogramEqualizeRGB Apply EQ to an RGB image
ImgDLLRotateRGB Rotate an RGB image
ImgDLLQuickRotateRGB Rotate an RGB image 90, 180 or 270 deg.
ImgDLLCropRGB Crop an RGB image
ImgDLLZoomRGB Zoom in on an RGB image
ImgDLLApplyConvolutionFilter Apply an arbitrary filter to an image
ImgDLLApplyMatrixToRGB Apply 3x3 matrix to an RGB image
ImgDLLApplyLUTToRGB Apply 256-entry LUT to an RGB image
ImgDLLOverlayRGB Overlay one RGB image on another
ImgDLLOverlayRGBTransparent Overlay with transparency
ImgDLLDrawTextOnRGB Render text onto RGB image
ImgDLLDrawTextOnRGB2 Render text using a valid LOGFONT *
ImgDLLSetAlphaChannelToImage Fill Alpha channel of an RGBA image with

8-bit image
ImgDLLRGBAFromRGB24 Create RGBA from an RGB image
ImgDLLBGRFromRGB Swap red and blue in RGB
ImgDLLGet8BitPalette Generate 8-bit palette from an RGB image
ImgDLLGetBrightnessHistogram Get the brightness histogram for an image
ImgDLLGetChannelHistogram Get the histogram for a single channel
ImgDLLDecimateRGB Reduce an RGB image, using a block

averaging algorithm
ImgDLLDecimateRGB2 Reduce an RGB image, using a block

averaging algorithm

HBITMAP functions
ImgDLLLoadResourceBMP Load resource BMP with palette
ImgDLLHBITMAPToGGB Convert HBITMAP to RGB
ImgDLLRGBToHBITMAP Convert RGB to HBITMAP
ImgDLLDCToRGB Grab a section of a DC to an RGB buffer

Image output functions
ImgDLLDrawHBITMAP Draw HBITMAP to screen
ImgDLLDrawRGB Draw RGB to screen
ImgDLLDrawRGB2 Fast RGB draw
ImgDLLDrawTranparentRGB Draw RGB with one color transparent
ImgDLLDrawTransparentHBITMAP Draw HBITMAP with one color transparent

GIF Notes

The Unisys corporation charges $750 in advance royalties for a GIF/LZW software license for
“toolkit” software. ImgDLL would qualify as toolkit software. This is cheap, compared to the $2500 in
advance royalties Unisys charges for end-user software. That is, if you want to use GIF in your own
software, you would have to pay Unisys $2500 up-front, as an advance on the per-copy royalties they
will collect on your software. (this is as of 4/98).

PNG notes

Alpha channels:

PNG permits images to be stored with an alpha channel. This is an extra BYTE (or 2 BYTEs,
depending on the bit depth of the image) that controls the blending of the image with the
background. Depending on the reader, this could be a single solid color or an actual image. A web-
browser might be able to display a semi-transparent PNG image over the background image of a
web-page. An alpha value of 255 means fully opaque, a value of 0 means fully transparent (no
image, all background).

Gamma:

Gamma is a complicated topic. In **extremely** simple terms, it is a brightness response value of
a monitor or other output device. Every output device has a certain Gamma value . PC monitors
tend to have values near 2.2, Mac monitors tend to have values of around 1.8, SGI - 1.5, Next 1.0,
etc.. This means that a given GIF image (for example) will be drawn differently on each monitor.
This can be a problem, for some images and applications. PNG allows the creator of an image to
specify the gamma value of the device it was created on. All other (competent) PNG readers
should then be able to adjust the output image so that it matches the initial on-screen appearance.
Some PNG readers are not fully gamma capable.    There are various methods to find the gamma
value for your own particular monitor. Most of them are inaccurate. Paint Shop Pro has a gamma
value section in its on-line Help.

NOTE : when specifying a file gamma value, don't use the actual gamma value for your monitor,
use the inverse (1 / screen_gamma) ! File gammas must be < 1.0.

Color Type:

PNG allows images to be saved in a number of different formats. The benefits of each format
depend on the image you are saving.

Using ImgLibSaveToPNG,

if you want to save an ordinary RGB 24-bit image, specify :

PNG_COLOR_TYPE_RGB for color type
8 for bit depth
inWidthPix * 3 for width bytes
NULL for palette

if you are saving a 32-bit RGBA image, specify :
PNG_COLOR_TYPE_RGB_ALPHA for color type
8 for bit depth
inWidthPix * 4 for width bytes
NULL for palette

if you are saving an 8-bit image with a 256 color palette, specify :
PNG_COLOR_MASK_PALETTE for color type
8 for bit depth
inWidthPix for width bytes
a pointer to your palette for palette

Background:

The background color to be used in this image is set with ImgDLLPNGSetDefBackground. The
meaning of the value you set is dependent on the colorType value you use for your image data.

Interlacing:

PNG defines two kids of interlacing - none, and Adam7. These have no effect on the actual image
that is saved: they are used by PNG readers to control how the image is displayed as it is read.
Adam7 is a 2-D interlacing that allows images to be drawn in 2D (not simply vertically, like JPG
or GIF) as they are read.

Text fields:

PNG allows a file to have an arbitrary number of text fields. These fields consist of a 1-79
character "key" and a text buffer of unlimited size. The text can be compressed or uncompressed.
Keys should be plain ASCII, no control or non-printable chars. You may add as many fields as you
wish.

The keywords that are given in the PNG Specification are:

Title                        Short (one line) title or caption for image
Author                      Name of image's creator
Description            Description of image (possibly long)
Copyright                Copyright notice
Creation Time Time of original image creation
Software                  Software used to create the image
Disclaimer              Legal disclaimer
Warning                    Warning of nature of content
Source                      Device used to create the image
Comment                    Miscellaneous comment

ImgDLL maintains two global PNG text field buffers. One is used to hold text fields that will be
written with the next PNG file write operation; these are set with ImgDLLAddPNGText . The
other buffer contains text fields that were read during the last file read operation; these are
accessed with ImgDLLGetPNGKey and ImgDLLGetPNGText. You can only read the strings in
the input buffer, and you can only add strings to the output buffer.

To write a PNG file with text fields, you need to do two things prior to the PNG file write call.
First, call ImgDLLClearPNGText(). This clears the ImgDLL global PNG text buffers. Second, call
ImgDLLAddPNGText(), once for each text field you want to be written.

The sample C/C++ code shows how to read the text fields in a PNG file.

Bottom line:

PNG is a format with a great deal of flexibility. As with most flexible formats, it requires that you
know what you're doing before you can truly take advantage of it.

	ImgDLL
	Cost
	Source
	Product Information
	RGB
	Copy a BMP file to a JPG file
	Read a PNG file and its text fields

	A note about HGLOBAL, GlobalLock, GlobalUnlock, GlobalFree.
	Single-line de/compression
	Disclaimer
	Technical Support
	ImgDLL Functions as of V3.7
	GIF Notes
	PNG notes
	Alpha channels:
	Gamma:
	Color Type:
	Background:
	Interlacing:
	Text fields:
	Bottom line:

