
AeEntryBox Control

Members
Properties
Methods
Events

For most requirements, simply setting the Style property to 1 of 7 types of data entry, will be sufficient.
This will configure the control’s buttons and properties to defaults for that type of data. All the styles are
based on a text area on the left, and one or more buttons on the right, aiding the user enter the required
text.

In addition to the predefined styles, the combo buttons, drop-down list and popup menu can all be
configured by using the property pages at design-time, or using the exposed object model at run-time.
(See the Buttons, List and Menu objects for more details)

Other new features include:

+ With AutoComplete on, selected text is appended as the user types by
searching the list for matching entries, or using the FormatString and
DataType properties to construct default values for date and numeric types.

+ Styles can be changed at run-time, for building forms “on the fly”.

+ UpperCase and AutoCapsLock properties for handling text case.

+ Simplify code with automatic conversion and validation using the Value
property, which reads/writes a variant value, and the IsValid method, which
validates the text, both according to the DataType property.

+ EnterKeyBehaviour allows users to tab to the next control, or click the first
button.

Note The AeEntryBox.List property provides a AeList object with it’s own methods and properties
for managing the list items. This differs from a standard ComboBox control, which provides
the Listxxx methods and properties.

AeEntryBox Properties
Properties      Methods      Events      Overview >>

Alignment MaxValue/MinValue
AllowEdit Menu
Appearance MouseIcon
BorderStyle MousePointer
AutoCapsLock Name
AutoComplete Object
Buttons Parent
BackColor PasswordChar
Container Picture
DataField PictureWidth
DataSource PopupForm
DataType SelLength
DragIcon SelStart
DragMode SelText
Enabled Step
EnterKeyBehaviour Style
Font TabIndex
ForeColor TabStop
FormatString Tag
Height Text
HelpContextID ToolTipText
hWnd Top
Index UpperCase
Left UseMaskColor
List Value
Locked Visible
MaskColor WhatsThisHelpID
MaxLength Width

AeEntryBox Methods
Properties      Methods      Events      Overview >>

Action
CreatePopupForm
Drag
IsValid
Move
Refresh
SetFocus
ShowWhatsThis
ZOrder

AeEntryBox Events
Properties      Methods      Events      Overview >>

ActionSet
ButtonClick
Change
Click
DblClick
DragDrop
DragOver
GotFocus
KeyDown
KeyPress
KeyUp
LostFocus
MenuClick
MenuHighlight
MenuPopup
MouseDown
MouseMove
MouseUp

Style Property

Returns or sets the type data entry the AeEntryBox control is used for.

Syntax Object.Style [= Value]

Part Description

Object An AeEntryBox control.

Value An AeEntryBoxStyles constant.

Settings The settings for AeEntryBoxStyles are

Setting Description

0 - aeCustomBox Custom built styles.

1 - aeTextBox Standard TextBox. DataType is set to vbString,
buttons are cleared.

2 - aeComboBox Standard ComboBox. DataType is set to vbString,
and a button with aePopupList action added.

3 - aeSpinBox Improved Spin controls. DataType is set to vbLong,
and a pair of buttons with aeIn/DecreaseValue
actions, and RepeatRates set for spinning when the
mouse is held down, added.

4 - aeDateBox Advanced Date entry. DataType is set to vbDate,
and a button with aePopupCalendar action added.

5 - aeTimeBox Advanced Time entry. DataType is set to vbDate,
and a button with aePopupClock action added.

6 - aeYesNoBox For when a CheckBox doesn't fit. DataType set to
vbBoolean, FormatString    set to "Yes/No", pair of
aeGroup buttons with aeSetTrue/aeSetFalse
actions added.

7 - aeNavigationBox Unbound DataControl. DataType set to vbString, six
buttons added (4 navigation symbols, add and
delete), with no actions set.

Remarks The Style property provides a quick and simple way to set up an AeEntryBox for standard

types of data. Whenever the Style is changed (at design or run-time), the DataType,
FormatString and Value properties, and Buttons collection, are adjusted to pre-defined
settings that best suit the type of data entry required.

In most development situations, the Style will be the first property set, according to the type
of data entry required. Subsequent changes can then be made to refine the behaviour of the
control.

Whenever the DataType, Value, FormatString or Buttons members are changed after the
Style has been set, the Style is reset to aeCustomBox.

Tip Experimenting with the different Style settings is a good way to learn the capabilities of the
AeEntryBox control.

Value Property

Returns or sets a variant value of the text in an AeEntryBox Control.

Syntax Object.Value [= NewValue]

Part Description

Object An AeEntryBox control.

NewValue A Variant expression.

Remarks The Value property works in conjunction with the DataType and FormatString properties to

provide convenient conversion of the text entered in an AeEntryBox control.

When reading the Value property, the text entered is converted into the appropriate Variant
value according to the DataType. When setting the Value the FormatString is used to create
the text entry in the same way as the VB Format function.

If the Text entered can not be converted into the specified data type, an Empty value is
returned. The IsValid method can also be used.

DataType Property

Returns or sets the type of data of the text entered into an AeEntryBox control.

Syntax Object.DataType [= Value]

Part Description

Object An AeEntryBox control.

Value An AeDataTypes constant.

Settings The settings for AeDataTypes are:

Setting Description
 2    - aeInteger Whole numbers.
 3    - aeLong Large whole numbers.
 4    - aeSingle Single precision numbers.
 5    - aeDouble Double precision numbers.
 6    - aeCurrency Currency values. FormatString set to "Currency".

Formatted as decimal when the control is active.
 7    - aeDate FormatString set to "Short Date". AutoComplete

appends today's date.
 8    - aeString Text entries.
11 - aeBoolean True or False. FormatString set to "Yes/No".

AutoComplete enters Yes or No.
12 - aeVariant Variable contents.
13 - aeTime FormatString set to "Time". AutoComplete appends

current time.
14 - aeDecimal Decimal numbers.
17 - aeByte Single character.

Remarks The DataType determines what type of text the AeEntryBox should display, ie numbers,
names, currency values etc..

When the DataType is changed the FormatString is cleared or set to one of the presets listed
in the table above. You can overide the default setting by subsequently changing the
FormatString.

The AeDataType constants are compatible with the VbVarType constants in Visual Basic
except for aeTime.

The Value property uses the DataType to determine which conversion to apply to the text
entered, and the control uses the DataType for various other operations such as the Action
settings. Therefore, if the DataType has not been set correctly, unexpected behaviour may
result.

FormatString Property

Returns or sets the format used to display text in an AeEntryBox control.

Syntax Object.FormatString [= Value]

Part Description

Object An AeEntryBox control.

Value A String expression specifying the format string.

Remarks The FormatString is used to convert values in to text using the same formatting as the

Format$ function in Visual Basic. Please refer to the Visual Basic help for a full listing of the
format codes available.

Setting the DataType property, automatically sets the FormatString to preset default values
appropriate for that data type. In most situations the default FormatStrings will be sufficient.
Custom FormatStrings, however can be entered for specific requirements.

The system formats for date, time and currency are used for international compatibility.

UpperCase Property

Returns or sets whether text typed into an AeEntryBox control is converted into upper case.

Syntax object.UpperCase [= Value]

Part Description

object An AeEntryBox control.

Value A Boolean expression.

Remarks When the UpperCase is set to True, all characters typed in the control will be forced into

upper case. The default is False.

AllowEdit Property

Returns or sets whether the user can edit the text in an AeEntryBox control.

Syntax Object.AllowEdit [= Value]

Part Description

Object An AeEntryBox control.

Value A Boolean expression.

Remarks When AllowEdit is set to False, the user will not be able to edit the text portion of the control

directly with a text cursor. When the control becomes active, the text becomes highlighted
with a focus rectangle. Clicking the text area also pops up the list, if available. This behaviour
is functionally compatible to a standard ComboBox control with the Style property set to
vbComboDropDownList.

When AllowEdit is set to True (default), the text area of the control behaves like a standard
TextBox.

EnterKeyBehaviour Property

Returns or sets the behaviour of an AeEntryBox control when the Enter key is pressed.

Syntax Object.EnterKeyBehaviour [= New_EnterKeyBehaviour]

Part Description

Object An AeEntryBox control.

New_EnterKeyBehaviour A AeEnterKeyBehaviours constant, defining
the response to the Enter key.

Settings The settings for AeEnterKeyBehaviours are:

Setting Description

 0 - aeDefaultEnterKey The enter key is handled like a standard
TextBox.

 1 - aeForwardFocus Focus is moved to the next control in the tab
order when the enter key is pressed. This
behaviour is equivalent to pressing the Tab
key.

 2 - aeCustomEnterKey The Action of the first button is performed
when the enter key is pressed.

Remarks The extra responses to the enter key are provided to allow developers to create screens with
faster and more natural data entry.

The standard Windows behaviour is to employ default CommandButtons, however this is
frequently confusing for users. The aeForwardFocus can be used to provide a more
traditional data entry screen, and the aeCustomEnterKey can be used for custom behaviour
(also prevents Windows from beeping).

Note: If the control is on a form that includes a CommandButton with it's Default property set to
True, the control will not receive the enter key stroke, regardless of the EnterKeyBehaviour
setting.

AutoComplete Property

Returns or sets whether text is automatically completed as the user types it into an AeEntryBox control.

Syntax Object.AutoComplete [= Value]

Part Description

Object An AeEntryBox control.

Value A Boolean expression.

Remarks When AutoComplete is set to True (default), the control will intelligently guess what the user

is about to type, and automatically complete the entry with selected text.

A combination of other properties are used to complete the entries. If the DataType is set to
aeDate or aeTime, the current date or time respectively, are completed. If the List contains
any items, it is searched and the best match is completed.

This particular implementation greatly increases productivity speed and, unlike other
methods such as "masked" entries, maintains a simple and consistent user-interface.

MaxValue, MinValue Properties

Returns or sets the maximum and minimum values that can be entered into an AeEntryBox or
AeCalendar control.

Syntax Object.MaxValue [= New_Value]

Object.MinValue [= New_Value]

Part Description

object An AeEntryBox or AeCalendar control.

New_Value A Variant expression that can be converted to the
AeEntryBox's DataType property, or a Date for the
AeCalendar.

Remarks Controls with a numeric DataType can be limited to a range of values with MaxValue and

MinValue properties.

The limits set are applied in the following situations:

· When aeIncrement/aeDecrement Actions are performed, such as by pressing the
plus/minus keys or clicking a button set to change the value.

· When the Value is set to a value outside the range.
· When the IsValid property is inspected.

The popup calendar assumes the Min/MaxValues of the AeEntryBox control.

Action Method

Performs an action on an AeEntryBox control.

Syntax Object.Action ActionId

Part Description

Object An AeEntryBox control.

ActionId An AeEntryBoxActions constant specifying the
action to be performed.

Settings The settings for AeEntryBoxActions are:

Setting Description

 0 - aeCustomAction No action is performed.

 1 - aeIncreaseValue The value for numeric data types is increased by
value of the Step property.

 2 - aeDecreaseValue As aeIncrement, but decreases the value.

 3 - aePopupList Shows/Hides the popup list.

 4 - aePopupCalendar Shows/Hides the popup calendar.

 5 - aePopupClock Shows/Hides the popup clock.

 6 - aePopupMenu Shows/Hides the popup menu.

 7 - aePopupCustom Shows/Hides the custom popup form.

 8 - aeSetTrue Sets the value to True.

 9 - aeSetFalse Sets the value to False.

Remarks The actions are also assigned to each button, using the Buttons property pages or
Buttons.Actions property. These actions are performed whenever the button is clicked.
providing a convenient way of setting up the control for common operations.

The ActionSet event is triggered whenever the Action method is called.

The CreatePopupForm method must be called first before using the aePopupCustom action.

If a popup form is already visible, performing one of the popup actions again will hide it.

ButtonClick Event

Occurs whenever a Button in an AeEntryBox control is clicked.

Syntax Private Sub Object_ButtonClick(Button As Integer)

Part Description
Object An AeEntryBox Control.
Button The index of the button clicked.

Remarks The ButtonClick event can be used to design buttons that perform customised operations, for
example, opening a search form to find the correct entry.

When the button is clicked, the button's Action will be performed on the AeEntryBox before
the ButtonClick event is raised.

MaxLength Property

Returns or sets the maximum number of characters a user can enter into an AeEntryBox control.

Syntax Object.MaxLength [= New_MaxLength]

Part Description
Object An AeEntryBox control.
New_MaxLength An Integer expression specifying the number

characters.

Remarks A value of 0 (default) sets no limit.

IsValid Method

Returns True if the text of an AeEntryBox control can be converted to a variant value of the appropriate
DataType. Read-only at run-time, not available at design-time.

Syntax Object.IsValid()

Part Description
Object An AeEntryBox Control.

Remarks Use this property in data entry forms where the user entry validation is required.

Blank entries return True. aeBoolean DataTypes also return True regardless of the text
entered, since the VB runtime offers limited boolean validation, and in most situations,
boolean data entry is easily restricted, i.e. AllowEdit is False.

ActionSet Event

Occurs whenever the Action method is called for an AeEntryBox control.

Syntax Private Sub Object_ActionSet(ActionCode As AeEntryBoxActions, Cancel As Boolean)

Part Description
Object An AeEntryBox Control.
ActionCode A AeEntryBoxActions constant specifying the

action about to be performed.
Cancel A Boolean value which is False. Setting this

to True will cancel the action.

Settings The settings for AeEntryBoxActions are:

Setting Description

 0 - aeCustomAction No action is performed.

 1 - aeIncreaseValue The value for numeric data types is increased by
value of the Step property.

 2 - aeDecreaseValue As aeIncrement, but decreases the value.

 3 - aePopupList Shows the popup list.

 4 - aePopupCalendar Shows the popup calendar.

 5 - aePopupClock Shows the popup clock.

 6 - aePopupMenu Shows the popup menu.

 7 - aePopupCustom Shows the custom popup form.

 8 - aeSetTrue Sets the value to True.

 9 - aeSetFalse Sets the value to False.

Remarks

AutoCapsLock Property

Returns or sets whether the keyboards CapsLock is automatically turned off, when the shift key is used
typing a letter into an AeEntryBox control.

Syntax Object.AutoCapsLock [= Setting]

Part Description
Object An AeEntryBox Control.
Setting A Boolean expression

Remarks With AutoCapsLock set to True (default), when the user accidentally leaves the CapsLock on

and then enters a letter with the shift key press, the CapsLock will be turned off, and an
upper case letter entered.

The behaviour of the standard TextBox, is for a lower case letter to be inserted. Whilst this
can be useful for entering long strings of upper case characters with occasional lower case
ones, more often than not, the user just left the CapsLock on from a previous control.

CreatePopupForm Method

Creates a custom popup form for an AeEntryBox or AeCommandBox control. Returns a AePopupForm
object.

Syntax Set PopupForm = Object.CreatePopupForm(hWnd)

Part Description
PopupForm A AePopupForm variable.
Object An AeEntryBox or AeCommandBox

control.
hWnd A Long expression specifying the Window

handle of the form or control to be displayed
by the aePopupCustom Action.

Remarks The AePopupForm object allows you to hook into popup mechanism of the control and
show your own forms and controls, providing a powerful way of expanding the functionality of
the controls.

The topic Creating a Custom Popup Form, provides examples and more information on
using the CreatePopupForm method.

Step Property

Returns or sets the incremental value applied when using the aeIncreaseValue and aeDecreaseValue
actions on an AeEntryBox control.

Syntax Object.Step [= Value]

Part Description
Object An AeEntryBox Control.
Value A Double expression specifying the

incremental value.

Remarks The Step property is set to default values whenever the DataType is changed. You can

change the default values, typically a aeSpinBox style control might need to be ‘spun’ 10 at a
time rather than 1. aeDate and aeTime default to 1 day and 1 minute respectively.

Alignment Property

Returns or sets the text justification in an AeEntryBox control.

Syntax Object.Alignment [= New_Alignment]

Part Description
Object An AeEntryBox control.
New_Alignment An AlignmentConstants value specifying the

type of alignment.

Settings The settings for AlignmentConstants are:

Setting Description

 0 - vbLeftJustify Text is aligned on the left side (default).

 1 - vbRightJustify Text is aligned on the right side.

 2 - vbCenter Text is aligned in the center.

Remarks The Alignment property only effects the text when control doesn’t have the focus or the
AllowEdit property is set to False. When the control text is being editing, the alignment is
always on the left.

The Alignment property can also be changed at run-time.

Picture Property

Returns or sets the picture displayed to the left of the AeEntryBox Control.

Syntax Set Object.Picture [= New_Picture]

Part Description
Object A AeEntryBox control.
New_Picture A valid Picture expression. Windows bitmap

and icons supported.

Remarks Use the PictureWidth property to set the amount of space allocated for picture.

PictureWidth Property

Returns or sets the width in pixels of the space available for pictures or indentation, in a AeEntryBox
Control.

Syntax Object.PictureWidth [= NewWidth]

Part Description
Object A AeEntryBox Control.
NewWidth An Integer specify the indentation width in

pixels.

Remarks If the Picture property is left clear, the PictureWidth can still be used for indenting the text.

AeCommandBox Control

Members
Properties
Methods
Events

The AeCommandBox is an extended CommandButton control.

The Style property adds support for other types of button including an on/off switch style, and buttons that
popup a List, Menu or your own custom popup forms.

Other enhancements to the standard button are:

+ HighlightPicture allows a web style effect when the mouse hovers over the control.
+ The HasComboButton property works with the popup button styles, and provides a second combo button for showing the popup form.
+ RepeatRate allows the user to hold the mouse down and have Click events triggered repeatedly at a specified interval, like for example scroll bars or spin boxes.
+ TextAlignment & PictureAlignment provide complete control over the positioning of both text and graphics.
+ ShowBorder and ShowFocus for more control over the appearance.

AeCommandBox Methods
Properties      Methods      Events            Overview >>

CreatePopupForm
Drag
Move
Popup
Refresh
SetFocus
ShowWhatsThis
ZOrder

AeCommandBox Properties
Properties      Methods      Events            Overview >>

Appearance Name
BackColor Object
Cancel Parent
Caption Picture
ComboWidth PictureAlignment
Container PopupForm
Default PopupSymbol
DisabledPicture PressedPicture
DragIcon RepeatRate
DragMode ShowBorder
Enabled ShowFocus
Font Style
ForeColor TabIndex
HasComboButton TabStop
Height Tag
HelpContextId TextAlignment
HighlightPicture ToolTipText
Index Top
Left Value
List Visible
MaskColor WhatsThisHelpID
Menu Width
MouseIcon
MousePointer

AeCommandBox Events
Properties      Methods      Events            Overview >>

Click
ComboClick
DragDrop
DragOver
GotFocus
KeyDown
KeyPress
KeyUp
ListClick
LostFocus
MenuClick
MenuHighlight
MenuPopup
MouseDown
MouseMove
MouseUp

ComboClick Event

Occurs when the users clicks the second combo button of a AeCommandBox control.

Syntax Private Sub Object_ComboClick()

Part Description
Object A AeCommandBox control.

Remarks This event is only raised if HasComboButton is set to True.

The click event for the combo button is raised before the MouseUp event, in contrast to the
standard button which waits till after the mouse is released.

ListClick Event

Occurs when the user selects an item from the popup List of a AeCommandBox control.

Syntax Private Sub Object_ListClick(Index As Integer)

Part Description
Object A AeCommandBox Control.
Index An Integer expression identifying the index of

the list item clicked.

ComboWidth Property

Returns or sets the width of the combo button of a AeCommandBox control.

Syntax Object.ComboWidth [= New_ComboWidth]

Part Description
Object A valid AeCommandBox Control.
New_ComboWidth A Single expression representing the width of

the combo button in pixels.

Remarks Setting the ComboWidth to 0 (default), uses the width of the systems vertical scrollbar.

The ComboWidth is ignored if HasComboButton is set to False.

Picture Property

Returns or sets the graphical image displayed on a AeCommandBox control or AeButton object.

Syntax Set Object.Picture [= New_Picture]

Part Description
Object A AeCommandBox control or AeButton

object.
New_Picture A valid Picture expression.

Remarks At design-time you can use the Properties window to load a graphic from a file. The graphics

set at design-time are saved in the application.

At run-time, any valid Picture object can be used such as the Visual Basic LoadPicture
function to load a graphic from file, the Picture property of another control, or a picture
variable you have created.

Other optional picture properties are provided for disabled, pressed and highlighted button
states. If the Picture property alone is set, the other pictures are created automatically.

Note: You can adjust the PictureAlignment and/or TextAligment properties to position the pictures
and text as required.

Value Property

Returns or sets the state of a AeCommandBox control or AeButton object.

Syntax Object.Value [= New_Value]

Part Description
Object A AeCommandBox control or AeButton

object.
New_Value A AeButtonStates constant identifying the

button state.

Settings The settings for AeButtonStates are:

Setting Description
    0 - aeUp The normal resting state. Shows a raised

border.
    1 - aeDown The pressed state after the user has pressed

the mouse button down. Shows an inset
border.

    2 - aeToggled The alternative resting state for switch
buttons that are pressed.

Remarks The Value property is set according to the mouse and keyboard events raised by the user,
and can be used to monitor the AeButton's state.

The Value can also be set at run-time to manually change the AeButton state.

Style Property

Returns or sets the type of behaviour of a AeCommandBox control.

Syntax Object.Style [= New_Style]

Part Description
Object A AeCommandBox control.
New_Style A AeCommandBoxStyles expression

Settings The settings for AeCommandBoxStyles are:

Setting Description

 0 - aeCommandButton Standard CommandButton behaviour.
 1 - aeSwitchButton Button with two states, aeUp and aeToggled.

Clicking the button toggles between the two
states.

 2 - aeListPopup Clicking the button pops up a List.
 3 - aeMenuPopup Clicking the button pops up a Menu.
 4 - aeCustomPopup clicking the button pops up a custom form.

Remarks

RepeatRate Property

Returns or sets the rate at which a AeCommandBox control or AeButton object raises Click events when
the mouse is held down over the control.

Syntax Object.RepeatRate [= New_RepeatRate]

Part Description
Object A AeCommandBox control or AeButton

object.
New_RepeatRate An Integer expression represent the repeat

rate in milliseconds at which the Click event
is raised. A value of 0 disables repeated Click
events.

Remarks The RepeatRate is used to create ‘spinning’ or ‘scrolling’    buttons that perform an action

repeatedly whilst the user holds the mouse down. The RepeatRate is set, for example, in the
aeSpinBox style AeEntryBox control for spinning numeric values.

The value set is the number of milliseconds between each Click event, ie. the setting 500 will
auto-repeat twice a second.

Setting the value to 0 (default) disables the auto-repeat feature.

TextAlignment, PictureAlignment Properties

Returns or sets the alignment of the text and pictures in a AeCommandBox control or AeButton object.

Syntax Object.TextAlignment [= New_Alignment]

Object.PictureAlignment [= New_Alignment]

Part Description
Object A AeCommandBox control or AeButton

object.
New_Alignment An AeButtonAlignments constant

representing the type of alignment.

Settings The settings for AeButtonAlignments are:

Setting Description
 0 - aeAlignLeft Aligned on the left side, centered vertically.
 1 - aeAlignRight Aligned on the right side, centered vertically.
 2 - aeAlignTop Aligned at the top, centered horizontally.
 3 - aeAlignBottom Aligned at the bottom, centered horizontally.
 4 - aeAlignCenter Default. Centered vertically and horizontally.

Remarks The PictureAlignment property, which determines the alignment of the Picture, takes
precendence over the TextAlignment property, ie. if both picture and text are aligned to the
right, the picture will be right-most.

As a convenience, the alignments are changed when the combination of Picture and
Caption properties are altered. When either picture or caption is set, but not both, the
alignment is set to aeAlignCenter. When both picture and caption are set, both alignments
are set to aeAlignLeft.

Word-wrapping is not supported.

DisabledPicture, PressedPicture, HighlightPicture Properties

Returns or sets the custom graphic images to display in a AeCommandBox control or AeButton object,
when the button is in active states.

Syntax Set Object.DisabledPicture [= New_Picture]

Set Object.PressedPicture [= New_Picture]

Set Object.HighlightPicture [= New_Picture]

Part Description
Object A AeCommandBox control or AeButton

object.
New_Picture A valid Picture expression

Remarks The DisablePicture is used when the button’s Enabled is False. The PressedPicture is

used when the button is pressed. The HighlightPicture is used in conjunction with the
aeCool3D Appearance property, providing the image to use when the mouse ‘hovers’ over
the button.

If any or all of these pictures are not set, the Picture property is used to create standard
button pictures automatically. The Graphical style used by the standard CommandButton
doesn’t need to be set and is not included.

Tip: By setting the ShowBorder and ShowFocus properties to False, you can create highly
graphical buttons using the pictures alone to illustrate the various states. Note also that the
PressedPicture is moved a pixel down and to the right only when ShowBorder is True.

HasComboButton Property

Returns or sets whether a second combo button is added to a AeCommandBox control with a popup
Style.

Syntax Object.HasComboButton [= Setting]

Part Description
Object A AeCommandBox Control.
Setting A Boolean expression

Remarks When HasComboButton is False (default), and the Style property is set to one of the popup

styles, the button itself triggers the popup form when clicked. When set to True, a second
combo button is added to the right of the main button, which shows the popup form.

The Click and ComboClick events can be used to identify which button is clicked.

The PopupSymbol is used in both cases, either added to right of the main button, or as the
picture of the combo button.

Popup Method

Shows the popup list, menu or form of a AeCommandBox control.

Syntax Object.Popup

Part Description

Object A AeCommandBox Control.

Remarks This method only applies to the popup Styles.

If the popup form is already visible, calling the Popup method again, hides it.

PopupSymbol Property

Returns or sets the predefined picture in a AeCommandBox control, used to illustrate a popup form.

Syntax Object.PopupSymbol [= New_Symbol]

Part Description
Object A AeCommandBox control.
New_Symbol A AeSymbols constant identifying the symbol

to display.

Settings The settings for AeSymbols are:

Setting
    0 - aeNoSymbol
    1 - aeDownSymbol
    2 - aeUpSymbol
    3 - aeLeftSymbol
    4 - aeRightSymbol
    5 - aeCalendarSymbol
    6 - aeClockSymbol
    7 - aeSearchSymbol
    8 - aeNewSymbol
    9 - aeEllipsisSymbol
 10 - aeCarriageReturnSymbol
 11 - aeHelpSymbol
 12 - aeAsteriskSymbol
 13 - aePlusSymbol
 14 - aeMinusSymbol
 15 - aeTickSymbol
 16 - aeCrossSymbol
 17 - aeFirstSymbol
 18 - aeLastSymbol
 19 - aeMaximiseSymbol
 20 - aeMinimiseSymbol
 21 - aeCloseSymbol
 22 - aeStopSymbol
 23 - aeRecordSymbol
 24 - aePlaySymbol
 25 - aePauseSymbol
 26 - aeFastForwardSymbol
 27 - aeRewindSymbol
 28 - aeLEDOffSymbol
 29 - aeLEDRedSymbol
 30 - aeLEDGreenSymbol
 31 - aeComboSymbol

Remarks The default symbol is the aeComboSymbol.

When HasComboButton is False, the PopupSymbol is shown on the right of the main
button. When HasComboButton is True, it is shown on the combo button.

ShowFocus Property

Returns or sets whether a AeCommandBox control changes its appearance when it receives the focus.

Syntax Object.ShowFocus [= Setting]

Part Description
Object A AeCommandBox Control.
Setting A Boolean expression

Remarks Setting ShowFocus to False prevents the button from change appearance when it gets or

loses the focus.

When ShowFocus is True (default), and the Appearance is aeFlat or aeAuto3D, a focus
rectangle is drawn on the button when it has the focus. If the Appearance is aeCool3D, the
button appears highlighted, as if the mouse was over it.

AeCalendar Control

Members
Properties
Methods
Events

Features include:

Year and Month titles can each be hidden and automatically align side by
space if wide enough. Day titles also expand to 2 or 3 letters.

International support for different system locales.

Customised with Font and Color properties.

AeCalendar Methods
Properties      Methods      Events            Overview >>

Refresh

AeCalendar Properties
Properties      Methods      Events            Overview >>

Appearance
BackColor
BorderStyle
ButtonItem
DefaultDate
CurrentMonth
CurrentYear
Enabled
Font
ForeColor
Font
hWnd
MinValue
MaxValue
ShowMonth
ShowNone
ShowToday
ShowYear
Value

AeCalendar Events
Properties      Methods      Events            Overview >>

Change
Click
KeyDown
KeyPress
KeyUp
MonthChange
MouseDown
MoveMove
MouseUp

Click Event

Occurs when the user selects a day in the AeCalendar control.

Syntax Private Sub Object_Click()

Part Description

Object A AeCalendar control.

Remarks

Change Event

Occurs whenever the selected date of an AeCalendar control changes.

Syntax Private Sub Object_Change()

Part Description

Object A AeCalendar control.

Remarks The Change event is not triggered when the displayed month is changed. Use the
MonthChange event to handle this.

Value Property

Returns or sets the selected date of an AeCalendar control.

Syntax Object.Value [= New_Value]

Part Description
Object A AeCalendar control.
New_Value A Date expression represent the selected

date.

Remarks The Value can be used to examine the currently selected date, or set the date to a new

value. The selected date is shown in bold text.

As an alternative to setting the Value, the DefaultDate property can be used to set a pre-
defined value relative to the current date.

Note: It is possible for the displayed month to be different from the selected date, in which case
none of the days will appear selected.

CurrentMonth, CurrentYear Properties

Returns or sets the currently displayed month and year of an AeCalendar control.

Syntax Object.CurrentMonth [= New_Value]

Object.CurrentYear [= New_Value]

Part Description
Object A AeCalendar control.
New_Value A Integer expression from 1 to 12 for the

CurrentMonth, or a valid 4 digit number for
the CurrentYear.

Remarks The user can select the displayed month and year at run-time by selecting the values in the

month and year titles, or pressing the PageUp/PageDown and Cursor keys in the table of
days.

Setting the Value or DefaultDate properties also changes the month and year displayed.

The MonthChange event is triggered whenever the month or year changes.

DefaultDate Property

Sets the current date of an AeCalendar control to a pre-defined value relative to the current date.

Syntax Object.DefaultDate = New_DefaultDate

Part Description
Object A AeCalendar control.
New_DefaultDate A AeDefaultDates constant.

Settings The settings for AeDefaultDates are:

Setting Description
 0 - aeToday Selects today.
 1 - aeTomorrow Selects tomorrow.
 2 - aeYesterday Selects yesterday.
 3 - ae1WeekToday Selects 1 week from today.
 4 - ae2WeeksToday Selects 2 weeks from today.
 5 - ae3WeeksToday Selects 3 weeks from today.
 8 - ae4WeeksToday Selects 4 weeks from today.

Remarks Setting the DefaultDate to one of the above constants is equivalent to setting the Value

property to the corresponding date.

The DefaultDate is write-only.

MonthChange Event

Occurs whenever the month or year displayed by a AeCalendar Control changes.

Syntax Private Sub Object_MonthChange()

Part Description

Object A AeCalendar Control.

ShowMonth, ShowYear Properties

Returns or sets whether the month and year titles, of an AeCalendar control, are visible.

Syntax Object.ShowMonth [= New_Value]

Object.ShowYear [= New_Value]

Part Description
Object A AeCalendar control.
New_Value A Boolean expression.

Remarks When both titles are visible, the year is aligned above the month box, unless the control is

wide enough to align the two titles side by side.

ShowToday, ShowNone Properties

Returns or sets the Today and/or None button commands at the bottom of a AeCalendar control are
visible.

Syntax Object.ShowNone [= Setting]

Part Description
Object A AeCalendar Control.
Setting A Boolean expression

Remarks

ButtonItem Property

Returns one the buttons in a AeCalendar control, as a AeButton object.

Syntax Object.ButtonItem(Index)

Part Description
Object A AeCalendar control.
Index An Integer expression identifying the button

as follows:
1 - Month increase button
2 - Month decrease button
3 - Year increase button
4 - Year decrease button
5 - Select None button
6 - Select Today button

Remarks

AeClock Control

Members
Properties
Methods
Events

Features include:

Each clock hand can be dragged around with the mouse. Set the time with 2
mouse clicks!

Can be set to display the time like a clock, or tick backwards like a stopwatch.

Each of the elements can be hidden for custom use.

AeClock Methods
Properties      Methods      Events            Overview >>

ClearAlarm
HitTest
Refresh
SetAlarm

AeClock Properties
Properties      Methods      Events            Overview >>

AllowEdit
Appearance
BackColor
BorderStyle
DataField
DataSource
ForeColor
Font
MaskColor
MouseIcon
MousePointer
Picture
ShowAmPm
ShowFrame
ShowHourHand
ShowMinuteHand
ShowNone
ShowSecondHand
ShowTime
Style
UseMaskColor
Value

AeClock Events
Properties      Methods      Events            Overview >>

Alarm
Click
Change
DblClick
KeyDown
KeyPress
KeyUp
MouseDown
MouseMove
MouseUp

Change Event

Occurs whenever the time displayed by an AeClock control changes.

Syntax Private Sub Object_Change()

Part Description

Object An AeClock control.

Remarks

Value Property

Returns or sets the time dispalyed by an AeClock control.

Syntax Object.Value [= New_Value]

Part Description
Object An AeClock control.
New_Value A Date expression representing the time to

be displayed.

Remarks Times are stored with the Date data type. These variables use a double precision number to

store both Date and Time by using the number day number starting from 30/12/1899 plus a
fraction from 0 to 1 corresponding to the time of day.

Style Property

Returns or sets the type of time to display in a AeClock Control.

Syntax Object.Style [= New_Style]

Part Description
Object An AeClock Control.
New_Style A AeClockStyles constant representing the

style.

Settings The settings for AeClockStyles are:

Setting Description

 0 - aeFixedTime The time displayed remains fixed.
 1 - aeCurrentTime The current time is displayed and updated

every second.
 2 - aeTickForwards The clock ticks forwards every second, but

may be set to any time.
 3 - aeTickBackwards The clock ticks backwards every second, but

may be set to any time.

Remarks For controls requiring the user to enter a time, the aeFixedTime is generally used. Setting the
Style to aeCurrentTime, makes the control behave like a standard clock. The
aeTickForwards and aeTickBackwards styles are useful for other customised clock
behaviours.

The Style setting effects the behaviour of the AllowEdit property in determining how the user
can change the time.

The Style and AllowEdit properties can be changed at run-time, for example creating stop-
watch controls.

Alarm Event

Occurs when a previously set alarm is triggered by a AeClock Control.

Syntax Private Sub Object_Alarm(Name As String, Message As String)

Part Description

Object An AeClock Control.

Name The name of the alarm.

Message An optional message associated with the
alarm.

Remarks The SetAlarm method is used to set an alarm. The event is triggered whenever the time
displayed passes the alarm time.

ClearAlarm Method

Clears an alarm which has previously set for an AeClock Control.

Syntax Object.ClearAlarm Name

Part Description

Object A AeClock Control.

Name A String specifying the name of the alarm to
be cleared.

Remarks The SetAlarm method is used to set an alarm.

SetAlarm Method

Sets an alarm to occur at a specified time for a AeClock Control.

Syntax Object.SetAlarm Name, AlarmTime, Message

Part Description

Object A AeClock Control.

Name A unique String for identifying the alarm.

AlarmTime A Date expression specifying the time the
alarm is triggered.

Message Optional. A String specifying a message to be
associated with the alarm.

Remarks When the time displayed passes the specified AlarmTime, the Alarm event is triggered. If
AllowEdit is set to True, then the user can also trigger an alarm by changing the time
displayed.

Once the alarm is triggered, it is removed. The ClearAlarm method can also be used to
cancel an alarm before it is triggered.

HitTest Method

Returns the clock hand at the specified co-ordinates of a AeClock Control. Returns a AeClockHands
constant.

Syntax variable = Object.HitTest(X, Y)

Part Description

Object A AeClock Control.

X A Long value identifying the X co-ordinate in
pixels.

Y A Long value identifying the Y co-ordinate in
pixels.

Settings The settings for AeClockHands are:

Setting Description

 0 - aeNoHand None of the hands are at the position.
 1 - aeHourHand The Hour hand is at the position.
 2 - aeMinuteHand The Minute hand is at the position.
      3 - aeSecondHand The Second hand is at the position.

Remarks Since the clock hands may be overlapping, the HitTest methods examines the aeMinuteHand
first, followed by the aeMinuteHand, then the aeSecondHand.

This method is used internally for dragging the hands with the mouse, and so the regions
tested for each hand may be larger than their graphical representations on the screen.

ShowAmPm Property

Returns or sets whether the AM and PM buttons of a AeClock Control are displayed.

Syntax Object.ShowAmPm [= Setting]

Part Description
Object A AeClock Control.
Setting A Boolean expression.

Remarks When the buttons are not visible, there is no way for the user to determine whether the time

is AM or PM. An alternative view of the time should therefore be given in, for example, a
Label control.

ShowFrame Property

Returns or sets whether the minute and hour tick marks of a AeClock Control are displayed.

Syntax Object.ShowFrame [= Setting]

Part Description
Object A AeClock Control.
Setting A Boolean expression

ShowHourHand Property

Returns or sets whether the hour hand of a AeClock Control is displayed.

Syntax Object.ShowHourHand [= Setting]

Part Description
Object A AeClock Control.
Setting A Boolean expression

ShowMinuteHand Property

Returns or sets whether the minute hand of a AeClock Control is displayed.

Syntax Object.ShowMinuteHand [= Setting]

Part Description
Object A AeClock Control.
Setting A Boolean expression

ShowSecondHand Property

Returns or sets whether the second hand of a AeClock Control is displayed.

Syntax Object.ShowSecondHand [= Setting]

Part Description
Object A AeClock Control.
Setting A Boolean expression

AllowEdit Property

Returns or sets whether the user can change the time displayed in a AeClock Control.

Syntax Object.AllowEdit [= Setting]

Part Description
Object A AeClock Control.
Setting A Boolean expression

Remarks When AllowEdit is set to True, the user can change the time displayed by using the mouse to

drag individual hands around, or using    the keyboard with the Left/Right and Plus/Minus
keys to rotate the minute hand, or Up/Down and PageUp/PageDown keys to rotate the hour
hand.

Clicking the left mouse button will move the minute hand to that position (unless clicked on
another hand). Clicking the right mouse button will move the hour hand. This provides a
quick way to enter times with two mouse clicks.

If the Style property is set to aeCurrentTime, then AllowEdit will usually need to be set to
False, since the time will always revert to the current time. The aeTickForwards and
aeTickBackwards styles work with AllowEdit set to True, and will continue to tick from the
new time set by the user.

ShowTime, ShowNone Properties

Returns or sets the selected time and/or None button commands at the bottom of a AeClock control are
visible.

Syntax Object.ShowNone [= Setting]

Part Description
Object A AeCalendar Control.
Setting A Boolean expression

Picture Property

Returns or sets the image to display on the background of a AeClock Control.

Syntax Set Object.Picture [= New_Picture]

Part Description
Object A AeClock Control.
New_Picture A valid Picture expression. Windows bitmaps

and icons supported.

Remarks Use the MaskColor property to define the transparent areas.

AeButton Object, AeButtons Collection

Members
Properties
Methods

Containers
AeEntryBox control
AeCalendar control

The Buttons collection contains the strip of buttons on the right of an AeEntryBox control.

Syntax Control.Buttons

Control.Buttons(Index)

Part Description
Control A container control.
Index An Integer expression referencing the

Button's index in the collection, starting at 1.

Remarks At design-time, buttons can be added and configured using the custom property pages. Right
click the control, and select Properties to view the custom property pages. At run-time, the
Buttons collection of a control can be refrerenced in code to change the button properties.

Example: The following example loops through each button in an AeEntryBox named aebAuthor:
Dim oButton As AeButton
Dim n As Integer
For n = 1 To ebxAuthor.Buttons.Count
 Set oButton = aebAuthor.Buttons(n)
 MsgBox "Button " & CStr(n) & "'s caption is " _
 & oButton.Caption
Next n

Note: At run-time, after changing the Buttons colleciton, the Refresh method may need to be
called to update the control.

AeButton Object, AeButtons Collection Properties
Properties      Methods            Overview >>      Legend

 Actions
 Appearance
 BackColor
 DefaultWidth
 Caption
 Count
 CustomWidths
 DisabledPicture
 Enabled
 Height
 HighlightPicture
 Index
 Item
 Left
 MaskColor
 Picture
 PictureAlignment
 PressedPicture
 RepeatRate
 ShowBorder
 Style
 Symbols
 TextAlignment
 ToolTipText
 Top
 Value
 Width

AeButton Object, AeButtons Collection Methods
Properties      Methods          Overview >>      Legend

 Add
 Clear
 HitTest
 Refresh
 Remove

 Object only
 Collection only
 Object and Collection

HitTest Method

Returns the index of the AeButton located at the specified coordinates.

Syntax Variable = Object.HitTest(X, Y)

Part Description
Object A AeButtons collection.
X A Single expression, representing the

horizontal position from the left.
Y A Single expression, representing the vertical

position from the top.

Remarks This method is useful when examining mouse movement or implementing drag-and-drop
operations.

Add Method

Adds a AeButton object to a AeButtons collection and returns a reference to the newly created
AeButton object.

Syntax Set Button = Object.Add([Position])

Part Description
Button A AeButton variable.
Object A AeButtons collection.
Position Optional. An Integer expression specifying

the position of the new button.

Remarks You can add AeButton’s at design-time by using the custom property pages of the control.
At run-time, you could use the following sample code:

Dim NewButton as AeButton
Set NewButton = EntryBox1.Add()

If the Position part is not specified, the new AeButton is added to the end of the collection.

Remove Method

Removes a specified AeButton object from a AeButtons collection.

Syntax Object.Remove Index

Part Description
Object A AeButtons collection.
Index An Integer expression specifying the Index of

the AeButton to be removed.

Remarks To remove all the buttons, use the Clear method.

Clear Method

Clears all the AeButton objects in a AeButtons collection.

Syntax Object.Clear

Part Description
Object A AeButtons collection.

Remarks To remove a specific button, use the Remove method.

Item Method

Returns a reference to a specified AeButton object in a AeButtons collection.

Syntax Object.Item(Index)

Object(Index)

Part Description

Object A AeButtons collection.

Index An Integer specifying the Index of the button.

DefaultWidth Property

Sets the width of AeButton objects within a AeButtons collection.

Syntax Object.DefaultWidth = Value

Part Description
Object A AeButtons collection.
Value A Single expression specifying the width in

Pixels, of the buttons.

Remarks New buttons added to a collection are given a default Width equal to the DefaultWidth

property.

By default, the Width is set to the width of a vertical scroll-bar. You can change this width at
design-time in the property page, or at run-time from code.

AeButton objects can be given different widths. Note however that when the DefaultWidth
is changed, all the existing buttons in the collection are resized.

Count Property

Returns the number of AeButton objects in a AeButtons collection.

Syntax Object.Count

Part Description

Object A AeButtons collection.

Symbols Property

Returns or sets a pre-defined images to display in a AeButton object or AeCommandBox control.

Syntax Object.Symbols(Index) [= Icon]

Part Description
Object A AeButtons collection.
Index An Integer expression, representing the index

of the button within it's collection.
Icon An AeSymbols constant, defining which

image to display.

Settings The settings for AeSymbols are:

Setting
    0 - aeNoSymbol
    1 - aeDownSymbol
    2 - aeUpSymbol
    3 - aeLeftSymbol
    4 - aeRightSymbol
    5 - aeCalendarSymbol
    6 - aeClockSymbol
    7 - aeSearchSymbol
    8 - aeNewSymbol
    9 - aeEllipsisSymbol
 10 - aeCarriageReturnSymbol
 11 - aeHelpSymbol
 12 - aeAsteriskSymbol
 13 - aePlusSymbol
 14 - aeMinusSymbol
 15 - aeTickSymbol
 16 - aeCrossSymbol
 17 - aeFirstSymbol
 18 - aeLastSymbol
 19 - aeMaximiseSymbol
 20 - aeMinimiseSymbol
 21 - aeCloseSymbol
 22 - aeStopSymbol
 23 - aeRecordSymbol
 24 - aePlaySymbol
 25 - aePauseSymbol
 26 - aeFastForwardSymbol
 27 - aeRewindSymbol
 28 - aeLEDOffSymbol
 29 - aeLEDRedSymbol
 30 - aeLEDGreenSymbol
 31 - aeComboSymbol

Remarks Setting the Symbol property is equivalent to setting the Picture property.

Since all the icons are small, the system resources used are minimal.

Actions Property

Returns or sets the action to be performed when a AeButton object is clicked.

Syntax Object.Actions [= Index]

Part Description
Object A valid AeButton Object.
Index An Integer expression
Action An AeEntryBoxActions constant identifying

the action.

Settings The settings for AeEntryBoxActions are:

Setting Description

 0 - aeCustomAction No action is performed.

 1 - aeIncreaseValue The value for numeric data types is increased by
value of the Step property.

 2 - aeDecreaseValue As aeIncrement, but decreases the value.

 3 - aePopupList Shows the popup list.

 4 - aePopupCalendar Shows the popup calendar.

 5 - aePopupClock Shows the popup clock.

 6 - aePopupMenu Shows the popup menu.

 7 - aePopupCustom Shows the custom popup form.

 8 - aeSetTrue Sets the value to True.

 9 - aeSetFalse Sets the value to False.

Remarks

Style Property

Returns or sets the type of a AeButton object.

Syntax Object.Style [= Value]

Part Description
Object A AeButton object.
Value A AeButtonStyles constant.

Settings The settings for AeButtonStyles are:

Setting Description

 0 - aePushButton Standard button
 1 - aeToggleButton Button toggles between aeUp and aeToggled

states.
 2 - aeGroupButton As aeToggleButton, but only one group

button can be selected at a time.

Remarks The aeGroupButton Style is only applicable to buttons that are part of a collection. Any
neighbouring buttons in the collection with the aeGroupButton style are treated as part of the
group.

CustomWidths Property

Returns or sets the width of a button within a AeButtons collection.

Syntax Object.CustomWidths(Index) = Setting

Part Description
Object A AeButtons collection.
Index An Integer identifying which button in

collection, starting at 1.
Setting A Boolean expression.

Remarks Setting the CustomWidths to 0 (default), uses the default width for all buttons stored in the

DefaultWidth property.

AeList Collection

Members
Properties
Methods

Containers
AeEntryBox control
AeCommandBox control

The AeList collection maintains a list of text items associated with a control and a ListBox for displaying
the items. Searching and formatting features are also provided.

Syntax Control.List

Control.List(Index)

Part Description
Control A AeEntryBox or AeCommandBox control.
Index An Integer expression referencing the index

of the item in the list, starting at 1.

Remarks The List property returns an AeList collection with its own propertys and methods. This
differs from a standard ComboBox control. The equivalent members are listed below:

ComboBox control AeList collection
AddItem Add
RemoveItem Remove
List(Index) Item(Index)
ListIndex Index
ListCount Count

Note: The popup ListBox control is not created until the first time it is displayed. Therefore, items
can be added and utilised without consuming many system resources. A common example
of this is creating a aeComboBox style AeEntryBox with some list items added, and
changing the button to do something other than show the popup list. The AutoComplete
feature will help the user type in common values by searching the list, whilst the combo
button is used to show a more advanced search form for example.

AeList Methods
Properties      Methods            Overview >>

Add
Clear
FindFirst
Remove

AeList Properties
Properties      Methods            Overview >>

Count
Data
Index
Item
ItemData
NoVisibleItems
Sorted
Width

Add Method

Adds an item to a AeList collection. Returns the Index of the new item.

Syntax Object.Add Text[, Index]

New_Index = Object.Add(Text[, Index[, Data]])

Part Description
New_Index An Integer variable.
Object A AeList object.
Text A String expression specifying the item

contents.
Index Optional. An Integer expression, specifying

the position to put the new item in.
Data Optional. An Integer expression, specifying

the ItemData value of the new item.

Remarks If successful, the method returns the Index of the new item, or 0 if the new item could not be
added.

If the AeList has the Sorted property set to True, the Index part is ignored, and the new item
is positioned in the sorted order.

Remove Method

Removes an item from a AeList collection.

Syntax Object.Remove Index

Part Description

Object A AeList object.
Index An Integer expression specifying the index of

the item to be removed, starting with 1.

Remarks To remove all the items in a AeList, use the Clear method.

Clear Method

Removes all the items in a AeList collection.

Syntax Object.Clear

Part Description
Object A AeList Object.

FindFirst Method

Searches the items in a AeList collection for a string. Returns the index of the first item found.

Syntax Index = Object.FindFirst(Value[[, Start], ExactMatch])

Part Description
Index An Integer variable.
Object A AeList object.
Value A String expression specifying the text to

search for.
Start Optional. An integer expression specifying

the position in the list to start searching from.
If ommitted, the search begins from the
beginning.

ExactMatch Optional. A boolean expression specifiying
whether an exact match is returned. The
default is False.

Remarks The FindFirst operation searches the items for an exact match if it can find one, or the first
item that starts with the same characters. If no item is found, the method returns 0.   
Specifying the ExactMatch parameter, forces the search to find an exact match only.

The text case is ignored.

Count Property

Returns the number of items in a AeList collection.

Syntax Variable = Object.Count

Part Description
Object A AeList object.

Item Property

Returns or sets the text of the specified item in a AeList collection.

Syntax Object(Index) [= Text]

Object.Item(Index) [= Text]

Part Description
Object A AeList object.
Index An Integer expression specifying the item's

index, starting with 1.
Text A String expression representing the text of

the specified item.

ItemData Property

Returns or sets a numeric data value for the items in a AeList object.

Syntax Object.ItemData(Index) [= Value]

Part Description
Object A AeList object.
Index An Integer expression specifying the item's

index, starting with 1.
Value A Long expression representing the data

value of the specified item.

Remarks The ItemData is useful for associating a numeric value with each item in the list, for

example, to cross-reference with a database table.

NoVisibleItems Property

Returns or sets the NoVisibleItems that a AeList collection will display when the ListBox pops up.

Syntax Object.NoVisibleItems [= Value]

Part Description
Object A AeList object.
Value An Integer expression

Remarks The standard VB ComboBox only displays up to 8 items in the drop-down list. The

NoVisibleItems property allows you to specify how many items are displayed. For example,
a drop-down list of months can have 12 items.

Setting the NoVisibleItems to 0 (default) will show however many items there are in the list,
up to the default maximum 12.

Index Property

Returns or sets the index of the currently selected item in a AeList object.

Syntax Object.Index [= Value]

Part Description
Object A AeList object.
Value A Long expression representing the data

value of the specified item.

Remarks The AeList object retains the currently selected item, even if the list is not visible, and

continues to remain synchronised with the edit area in the AeEntryBox control. This allows
quick validation that the text entered by the user exists in the list. For example…

Private Sub AeEntryBox1_Change()

        If AeEntryBox1.List.Index = 0 Then
                'Text entered not in list
        End If
 
End Sub

Sorted Property

Returns or sets whether the items in a AeList object are sorted alphabetically.

Syntax Object.Sorted [= New_Sorted]

Part Description
Object A AeList object.
New_Sorted A Boolean expression

Remarks The Sorted property can be changed at design-time and run-time. The sort is not case-

sensitive

Width Property

Returns or sets the width of the popup List in a AeList object.

Syntax Object.Width [= New_Width]

Part Description
Object A AeList object.
New_Width An Integer expression, specifiying the width

in pixels. A value of 0 (default), uses the
width of the control.

Data Property

Returns the Data of the currently selected item in a AeList object.

Syntax ItemData = Object.Data

Part Description
Object A AeList object.
ItemData An integer variable.

Aebacus Popup Control Library

The Aebacus Popup Control Library is an ActiveX control file (.OCX), containing 4 controls:

AeEntryBox Control Cool Input control combining ComboBox,
MaskedEdit, DatePicker, SpinBox, and MS
Forms functionality, and adding data validation,
flat-look, auto-complete, popup clocks, custom
popup forms, menus, and configurable combo
buttons.

AeCommandBox Control An advanced CommandButton control. Includes
flexible alignment, ‘hover’ effects, popup forms,
built in combo button, plus…

AeCalendar Control

User-friendly calendar control for selecting dates.
Includes spin buttons, extended keyboard
handling, and formatting features.

AeClock Control Flexible clock control allows the user to enter a
time with the clock hands. Also displays the
current time or ticks backwards for stopwatches.

+ All controls provide a aeCool3D Appearance for building modern 'flat-look' user
interfaces (like Office 97 and Internet Explorer)

+ Developer-friendly Property Pages are provided for quick and easy
configuration, including an improved menu editor.

+ Online documentation, context-sensitive help, standard naming conventions,
and loads of helpful samples.

+ Dependent only the Visual Basic run-time library.

+ Extensible at run-time through a comprehensive object model and informative
events.

+ Ideal for building Data entry forms ‘on-the-fly’ using control arrays, centralized
event handling, and built in data type conversion.

+ Data bound Value property for quick connection to databases.

+ ActiveX container support, for embedding the controls in a variety of
environments, including Office 97, Internet Explorer 3/4,    Visual Studio, Outlook
etc.

User Guide:

Installation Installation instructions and file descriptions.

Getting Started Summary of the 4 controls for getting up and
running quickly.

Creating Custom Popup Forms Details about creating your own custom popup
forms with examples.

Creating Menus at Run-Time Example code for creating menus at run-time,
and handling menu events.

ActiveX Container Support Issues relating to using the controls in ActiveX
containers other than VB.

Support:

Registration & Support How to register, and support information.

System Requirements Platforms supported and design environments.

Dependencies & Distribution List of file dependencies and distribution
details.

Terms & Conditions Software Product License.

Appearance Property

Returns or sets the Appearance of an AeEntryBox, AeCommandBox, AeCalendar or AeClock control,
and an AeButton object.

Syntax Object.Appearance [= Value]

Part Description

Object A valid control.

Value An AeAppearances constant:

Settings The settings for AeAppearances are:

Setting Description

aeFlat Flat border styles.

aeAuto3D Standard 3D appearance.

aeCool3D Flat appearance when inactive, becoming 3D when
it becomes the active control or the mouse moves
over it.

Remarks The standard Appearance property had been enhanced throughout the Aebacus Controls
with a third aeCool3D setting in addition to the standard aeFlat and aeAuto3D settings.

The aeCool3D style is an active appearance that "comes alive" when the mouse moves over
the control or it receives the focus. This appearance provides a modern look-and-feel similar
to Microsoft Office 97 and Internet Explorer 4.

MaskColor Property

Returns or sets the colour to use for the transparent part of images drawn on the    AeEntryBox,
AeCommandBox, AeCalendar or AeClock controls.

Syntax Object.MaskColor [= Color]

Part Description

Object A Button object.

Color A RGB value representing the mask color.

Remarks Colors can be set using the color palette in the property pages, or using the RGB and

QBColor functions in code.

The default MaskColor is vbGrey, RGB(192,192,192).

ShowBorder Property

Returns or sets whether the border of a AeCommandBox is visible.

Syntax Object.ShowBorder [= Setting]

Part Description
Object A valid control.
Setting A Boolean expression

BorderStyle Property

Returns or sets the type of border surrounding the AeEntryBox, , AeCalendar and AeClock controls.

Syntax Object.BorderStyle [= NewStyle]

Part Description
Object A valid control.
NewStyle A AeBorderStyles constant

Settings The settings for AeBorderStyles are:

Setting Description
 0 - aeNoBorder The control border hidden.
 1 - aeInset A 3D inset border
 2 - aeRaised A 3D raised border

Remarks The border is also effected by the Appearance setting

Registration & Support

For the most up to date information on registration and support, please visit our web site, or send an
enquiry by email, at:

Web Address: http://www.aebacus.demon.co.uk/

E-Mail Address: enquiries@aebacus.demon.co.uk

Technical support is only available to registered owners.

Registered owners receive:
+ Single user design-time license

+ Unlimited run-time license (no royalties)

+ Free Delivery via the internet

+ Free Updates

+ Discounted Upgrades

+ Technical Support

Installation

The evaluation copy is distributed in a self-extracting file (AeDemo.exe). Keep this file in case you need to
re-install the program.

To install, run the AeDemo.exe file, which extracts the set up files into a temporary directory and starts the
installation. After completing the installation, you can delete the set-up files from the temporary directory.

The program can be uninstalled using the Windows 'Add/Remove Programs' control panel, or using the
shortcut added to the Start menu.

The following files are installed into the directory specified during the setup:

Filename Description
AePopup(D).ocx ActiveX control library.
AePopup.hlp/.cnt/.gid This help file.
Popup Properties.exe/.vbp Sample program for all 4 controls (source code in sub-dir).
Entry Outlook.exe/.vbp AeEntryBox sample program (source code in sub-dir).
Value Bound.exe/.vbp Data bound version of Entry Outlook (requires DAO v3.51).
Global Clock.exe/.vbp AeClock sample program (source code in sub-dir).
Popup Browser.htm Web page sample with embedded controls.
Data.mdb/.txt Databases for Entry Outlook samples.
TimeZones.txt Database for Global Clock sample.
Readme.txt Overview and maintenance history.
Vendor.txt Information for software distributors.
UnInst.isu Information required for uninstall.

For your safety, no files are installed in the Windows or System folders.

System Requirements

Platform Support

The library runs on 32-bit Windows platforms, specifically:

Windows 95
Windows 98
Windows NT 3.51
Windows NT 4
Windows NT 2000

Design Environments

The controls may also used in any application which supports ActiveX controls.    The following ActiveX
containers have been tested:

Visual Basic 5 & 6
Office 97 VBE
Access 97
Word 97
Excel 97
Outlook 97/98
Internet Explorer 4/5
ActiveX Control Pad (Web Pages)

This number of design environments that support ActiveX controls is continuing to grow. See the ActiveX
Container Support page for more details.

Dependencies & Distribution

Dependencies

The Aebacus Popup Controls is only dependant on the Visual Basic 5 run-time library.    This is available
with Visual Basic 5 (SP2/3), or as a separate installable file from the Microsoft web site at
http://support.microsoft.com/download/support/mslfiles/Msvbvm50.exe.    The VB5 run-time is also pre-
installed with the Windows 98 operating system.

Msvbvm50.exe installs the following files, which ship with Visual Basic 5.0 Service Pack 2 and Service
Pack 3, into the Windows System folder:

File Version
Msvbvm50.dll 5.00.4319
Oleaut32.dll 2.20.4118
Olepro32.dll 5.0.4118
Stdole2.tlb 2.20.4118
Asycfilt.dll 2.20.4118
Comcat.dll 4.71

Distribution

The registered version provides an unlimited run-time license, which enables you to include the controls
in your applications, and distribute those applications freely without having to pay royalty fees.

If distributing the controls in a VB5 application, then only the AePopup.ocx file needs to be included, since
the VB5 run-time will already be included by the installation software (e.g. Application Setup Wizard).

If distributing the controls in a VB6 application, or any other ActiveX container, then the installation
software will also need to install the VB5 run-time.    This can be done by either including the above files in
the installation routine, or simply including the Msvbvm50.exe with the distribution set, and running it prior
to starting the installation.

The AePopup.dep file (registered version only), can be used by installation packages, to automatically
determine the file dependencies.

The controls are marked safe for initialisation and scripting (registered version only), and so may be
distributed and installed through Web browsers in Intranet applications.

Getting Started

For the best overview, it is recommended you play with the “Popup Properties.exe” sample, and the
custom Property Pages at design-time.

AeEntryBox

The AeEntryBox provides the same standard properties, methods and events as the Visual Basic TextBox
and ComboBox controls. The main enhancements to these controls are:

+ The Style property is provided for a quick way to configure the control’s properties for
common types of data entry (aeComboBox for list pickers, aeDateBox for date pickers
etc.). The property is slightly unusual, in that it automatically configures other properties.
Subsequently changing those effected properties, sets the Style to aeCustomBox.

+ The standard ComboBox’s popup list has been implemented as a List collection object
for simpler coding.    Also provides a FindFirst searching method, a custom Width
property, and better co-operation with text area.

+ In addition to the list, there’s also a popup calendar, clock, menu, and even a custom
popup form.    Each button is assigned an Action to perform when clicked, e.g.
aePopupList to show the list or aePopupCalendar to show the calendar.

+ A number of extra properties are available for data entry applications. The DataType is
used in conjunction with the Value property for built in conversion, the FormatString
exposes VB’s formatting capabilities, and Min/MaxValue, and IsValid properties are for
validation.

+ Setting AutoComplete to True (default), not only completes matching entries from the
List, but also completes dates and times.

+ The Buttons collection is completely configurable, providing functionality similar to a
whole toolbar! The buttons’ Custom Property Page best illustrates this.

AeCommandBox

The AeCommandBox provides the same standard properties, methods and events, as the Visual Basic
CommandButton control. The main enhancements include:

+ In addition to the default aeCommandButton, the Style property includes aeSwitchButton,
aeListPopup, aeMenuPopup, and aeCustomPopup styles.

+ Setting the HasComboButton property to True, adds a second combo button to the right
of the main button, like those in the IE and Office toolbars.

+ The TextAlignment and PictureAlignment properties should satisfy most alignment needs.

+ Setting the ShowFocus property to False, prevents the focus rectangle from appearing on
the button.

+ The HighlightPicture, has been added to the standard Picture properties, for mouse
‘hover’ effects.

The AeCalendar and AeClock controls, are also provided as standalone controls. These are suited more
specifically to date/time applications.

Creating Custom Popup Forms

The AeEntryBox and AeCommandBox controls, both provide a mechanism for attaching your own
customised popup forms. Custom forms are attached to the controls at run-time through the
CreatePopupForm method. This provides a powerful way to enhance the functionality of the controls with
limitless possibilities.

Note: Modeless forms are the easiest and most flexible type of custom popup form, but should be
approached with CAUTION. Some containers do not support showing modeless forms.
Modal forms are far safer and supported by all containers, but are limited to childless
windows (i.e. they can’t have any contained controls).

Modeless Popup Forms

An example best illustrates using the CreatePopupForm method. A main form contains a single
AeEntryBox control, with the aeCustomPopup Action assigned to the combo button. A second form
containing two standard buttons, labelled OK and Cancel, is used for the popup form.

‘Main Form
‘=========
Private Sub Form_Load()

Set frmPopup.PopupForm = AeEntryBox1.CreatePopupForm(frmPopup.hWnd)
End Sub

‘Custom Popup Form (frmPopup)
‘=================
Public PopupForm As AePopupForm

‘OK button
Private Sub Command1_Click()

PopupForm.Value = “OK clicked”
PopupForm.Hide

End Sub

‘Cancel button
Private Sub Command2_Click()

PopupForm.Cancelled = True
PopupForm.Hide

End Sub

Your custom popup form must communicate with the control, to tell it when a value has been    selected.
This is done through the AePopupForm object, returned by the CreatePopupForm method.

Clicking the combo button will display the frmPopup window below the AeEntryBox control. Pressing OK
results in the text changing to “OK clicked”, pressing Cancel will leave the text unchanged.

The AeEntryBox control shows the form either when a button, with the aePopupCustom Actions
assigned, is clicked, or when the Action method is called from code. The AeCommandBox control shows
the form when the Style is set to aeCustomPopup, or when the Popup method is called from code.

If the popup form contains child windows (i.e. like the two CommandButtons in this example), then it can
be activated, and is considered Modeless.

Note: Some containers may not support modeless forms (the VB property pages and Internet
Explorer are examples of this).

Modal Popup Forms

If the popup form does not contain any child windows (i.e. a form containing only windowless controls like
Labels, or a single control like a ListBox), the it can not be activated, and is considered Modal.

Although modal forms are more limited in terms of functionality, they are better suited for custom popup
forms. Since they don’t receive the focus, the user interface is improved, and also, modal forms are
supported by VB property pages and Internet Explorer.

The following example illustrates a modal custom popup form, using a ListBox control instead of a second
form used in the modeless example. The ListBox control is placed on the same form as the AeEntryBox
control, and its Visible property is set to False.

‘Main Form
‘=========
Private m_PopupForm As AePopupForm

Private Sub Form_Load()
Set m_PopupForm = AeEntryBox1.CreatePopupForm(ListBox1.hWnd)

End Sub

Private Sub ListBox1_Click()
PopupForm.Value = ListBox1.List(ListBox1.ListIndex)
PopupForm.Hide

End Sub

Note: Whilst the standard controls can be used as modal popup forms, more complicated controls,
such as the ListView and TreeView common controls, may not support the
CreatePopupForm method.

Creating Menus at Run-Time

Both the AeEntryBox and AeCommandBox controls, provide a Menu object that can be built at design-
time or run-time.

Using the standard VB menu, a ‘seed’ menu item needs to be created at design-time, and used to create
extra menu items at run-time. The AeMenu does not impose this restriction, and allows new menus, and
submenus, to be created at run-time.

The following example illustrates this.    Create a new project, and place a AeCommandBox and a Label
control on the form. Change the AeCommandBox.Style property to aePopupMenu.    The code creates the
menu when the form loads, and changes the Label Caption in response to the menu items being selected
AND highlighted.

Private Sub Form_Load()

 'construct a new menu
 With AeCommandBox1.Menu

 'standard collection methods used to add items
 .Add "&Built"
 .Add "&at"
 .Add "&Runtime"
 .Add "", aeSeperatorMenuItem

 'create a submenu, and keep reference for adding items to
 Dim oMenu As AeMenuItem
 Set oMenu = .Add("&Submenu", aeSubMenuItem, "Submenu1")

 'define some Radio and Check menu items, with Keys defined
 oMenu.Submenu.Add "Option &1", aeRadioMenuItem, "Option1"
 oMenu.Submenu.Add "Option &2", aeRadioMenuItem, "Option2"
 oMenu.Submenu.Add "", aeSeperatorMenuItem
 oMenu.Submenu.Add "&Check", aeCheckMenuItem, "Check"

 End With

End Sub

Private Sub AeCommandBox1_MenuClick(MenuItem As AePopup.AeMenuItem)

 'use the item's Parent and Index to identify
 If MenuItem.Parent Is AeCommandBox1.Menu Then
 Select Case MenuItem.Index
 Case 1: Label1 = "Build selected"
 Case 2: Label1 = "at selected"
 Case 3: Label1 = "Runtime selected"
 End Select
 Else
 Select Case MenuItem.Index
 Case 1: Label1 = "Option1 selected"
 Case 2: Label1 = "Option2 selected"
 Case 4
 If MenuItem.Checked Then
 Label1 = "Check selected"
 Else
 Label1 = "Check cleared"
 End If
 End Select
 End If

End Sub

Private Sub AeCommandBox1_MenuHighlight(MenuItem As AePopup.AeMenuItem)

 'or, use the item's Key to identifiy

 Select Case MenuItem.Key
 Case "Option1": Label1 = "Use the first option"
 Case "Option2": Label1 = "Use the second option"
 Case "Check": Label1 = "Toggle the check option"
 End Select

End Sub

ActiveX Container Support

The controls have been tested on a wide variety of ActiveX containers, and we are continuing to ensure
compatibility with the growing number of development environments that support ActiveX controls.

This page contains a number of issues related to ActiveX containers, other than Visual Basic.

Extender Name Conflicts

Most design environments provide a "wrapper" control around every ActiveX control.    When you access
a property or method of the control, the wrapper passes this on to the actual control behind the scenes.   
A problem arises when both the wrapper and the ActiveX control provide a property with the same name,
since the compiler has no way of knowing which property to use, and defaults to the wrapper’s property.   
To get around this, the wrapper provides an Object property, that forces the compiler to use the Active
control’s property.

A known example of this is with MS Access, which provides a Value property for any ActiveX control.   
This conflicts with the AeEntryBox control, which provides it’s own Value property, so the following code…

Debug.Print AeEntryBox1.Value

…prints the Value stored by the Access 97 wrapper (which may produce an error if not used).    To get to
the actual AeEntryBox1.Value property, instead use…

Debug.Print AeEntryBox1.Object.Value

AeEntryBox Property Pages

The General, Behaviour, and Buttons tabs on the AeEntryBox custom Property Pages are inter-
dependent, for example, the DataType property on the General tab, effect a number of properties on the
Behaviour tab.

Under Visual Basic, making changes in one tab, will correctly notify other tabs to refresh themselves.   
However most other ActiveX containers, notably MS Office, do NOT refresh the other tabs.

This can lead to some problems with the AeEntryBox.    In particular, the Style option on the General
should be changed to aeCustomBox whenever changes are made in the Buttons tab, and this can lead to
conflicts if the Style is left unchanged.    To work around this, always change the Style to aeCustomBox
manually, BEFORE making any changes in the Buttons tab.

The properties on the Behaviour tab, can be refreshed by closing and re-opening the property pages,
whenever the Style or DataType is changed on the General tab.

Storing Binary Properties in HTML Web Pages

When employing ActiveX controls in web pages, the properties are stored in <PARAM> tags, for example
the following HTML code displays a default AeCommandBox with it’s Caption set to “Run”…

<OBJECT CLASSID="clsid:139767BC-DE13-11D2-AFDE-B1B99C86281E"
ID="AeCommandBox1"
WIDTH=100
HEIGHT=30>
<PARAM NAME="Caption" VALUE="Run">

</OBJECT>

Since the properties are stored as a String, it is not possible to store binary values, such as the Picture
and Font properties.    There is a convenient workaround for the Font, since by default, the controls use
the Font of the container, which in web browsers, is determined by the and other formatting

tags.

The Picture properties require the use of tool capable of persisting binary properties in HTML tags, such
as the ActiveX Control Pad which is freely available from Microsoft’s web site.    This provides a simple
designer for building ActiveX controls using the built in property pages (including the Picture tab).    When
a Picture property is stored, the program will create a DATA attribute for the <OBJECT> tag like
"DATA:application/x-oleobject;BASE64,xxx…” which stores all the properties in binary format
(gobbledegook).

Terms & Conditions

AEBACUS POPUP CONTROLS
version 1.02

19 March, 1999

Software Product License

The Aebacus Popup Controls is protected by copyright laws and international copyright treaties, as well
as other intellectual property laws and treaties. The Aebacus Popup Controls is licensed, not sold.

LICENSE AGREEMENT. The registered Aebacus Popup Controls includes a design time license,
permitting a single user to use the control in a development environment, and an unlimited run-time
license, permitting free distribution of the Aebacus Popup Controls ActiveX control file with developed
applications. No royalties are charged. Distribution of the registered Aebacus Popup Controls installation
file, or license keys, are forbidden by law. A separate multi-user license is required for persons, other than
the registered owner, who wish to use the Aebacus Popup Controls in a design-time environment.

COPYRIGHT. All title and copyrights in and to the Aebacus Popup Controls (including but not limited to
any images, photographs, animations, video, audio, music, text, source code, and applets, incorporated
into the Aebacus Popup Controls), the accompanying printed materials, and any copies of the Aebacus
Popup Controls, are owned by Bayley Consultancy Ltd.. The Aebacus Popup Controls is protected by
copyright laws and international treaty provisions.

Disclaimer Agreement

Users of Aebacus Popup Controls must accept this disclaimer of warranty:

"Aebacus Popup Controls is supplied as is.    The author disclaims all warranties, expressed or implied,
including, without limitation, the warranties of merchantability and of fitness for any purpose. The author
assumes no liability for damages, direct or consequential, which may result from the use of Aebacus
Popup Controls."

Aebacus Popup Controls is a "shareware program" and is provided at no charge to the user for
evaluation.    Feel free to share it with your friends, but please do not give it away altered or as part of
another system.    The essence of "user-supported" software is to provide personal computer users with
quality software without high prices, and yet to provide incentive for programmers to continue to develop
new products.    If you find this program useful and find that you are using Aebacus Popup Controls and
continue to use Aebacus Popup Controls after a reasonable trial period, you must make a registration to
Bayley Consultancy Ltd..    The registration fee will license one copy for use on any one computer at any
one time.    You must treat this software just like a book.    An example is that this software may be used by
any number of people and may be freely moved from one computer location to another, so long as there
is no possibility of it being used at one location while it's being used at another. Just as a book cannot be
read by two different persons at the same time.

Commercial users of Aebacus Popup Controls must register and pay for their copies of Aebacus Popup
Controls within 30 days of first use or their license is withdrawn.    Site-License arrangements may be
made by contacting Bayley Consultancy Ltd..

Anyone distributing Aebacus Popup Controls for any kind of remuneration must first contact Bayley
Consultancy Ltd. for authorisation. This authorisation will be automatically granted to distributors
recognised by the (ASP) as adhering to its guidelines for shareware distributors, and such distributors
may begin offering Aebacus Popup Controls immediately (However Bayley Consultancy Ltd. must still be
advised so that the distributor can be kept up-to-date with the latest version of Aebacus Popup Controls.).

You are encouraged to pass a copy of Aebacus Popup Controls along to your friends for evaluation.   
Please encourage them to register their copy if they find that they can use it.    All registered users will
receive a copy of the latest version of the Aebacus Popup Controls.

Copyright ã, 1998-1999 Bayley Consultancy Ltd.
ALL RIGHTS RESERVED

AePopupForm Object

Members
Properties
Methods

Containers
AeEntryBox control
AeCommandBox control

The AePopupForm object is used internally to handle all popup forms in the Aebacus Popup Control
library, including custom popup forms from your own application that you can add to the controls using the
CreatePopupForm method.

Both the AeEntryBox and AeCommandBox controls have the the CreatePopupForm method which
returns a AePopupForm object. The returned object can then be used in your application to notify the
control that a value in your custom form was selected or that the form was cancelled.

See the the Creating Custom Popup Forms topic for an example and more details.

Remarks Advanced Windows messaging techniques are used to provide the popup forms with a
modern display mechanism similar to that used in Microsoft’s Outlook 98. The standard
ComboBox captures the mouse whenever the popup list is displayed, with the result that
clicking another control in the application to do something else, merely hides the popup form
and ‘eats’ the mouse click. The AePopupForm does not capture the mouse. You can even
move the parent window around the screen whilst the popup form is displayed.

AePopupForm Methods
Properties      Methods      Events            Overview >>

Hide

AePopupForm Properties
Properties      Methods      Events            Overview >>

Cancelled
Modal
MoveWithParent
RightAlign
Value
Visible

AePopupForm Events
Properties      Methods      Events            Overview >>

Change
Load
Unload

Hide Method

Hides a window previously shown by a AePopupForm object.

Syntax Object.Hide

Part Description

Object A AePopupForm Object.

Modal Property

Returns or sets whether the form of a AePopupForm object is displayed modally by disabling the parent
desktop window whilst displayed.

Syntax Object.Modal [= Setting]

Part Description
Object A AePopupForm Object.
Setting A Boolean expression

Remarks This method is NOT completely implemented.

The property is provided as a safety guard against future problems showing modeless forms
in ActiveX containers. The Modal property is currently only applicable to popup forms
containing child windows (i.e. those that can’t be prevented from receiving the focus).

When Modal is True, the desktop window, that the popup form is be displayed over, is
disabled during the period the form is displayed. This is equivalent to using the VB Form’s
Show method with the vbModal argument.

Visible Property

Returns whether the form of a AePopupForm object is currently displayed.

Syntax Variable = Object.Visible

Part Description
Variable A Boolean variable
Object A AePopupForm Object.

Value Property

Returns or sets a value that the user selected from a AePopupForm object.

Syntax Object.Value [= NewValue]

Part Description
Object A AePopupForm Object.
NewValue A Variant expression

Remarks This property is used to notify parent controls of the value selected from custom popup forms

in your application. When the popup form closes, the AeEntryBox will set it’s own Value to
that of the AePopupForm unless it’s Cancelled property has been set to True.

Cancelled Property

Returns or sets whether a displayed from from a AePopupForm object was hidden without the user
selecting a value.

Syntax Object.Cancelled [= Setting]

Part Description
Object A AePopupForm object.
Setting A Boolean expression

Remarks The Cancelled property is reset to False whenever the popup form is displayed. If the user

cancels a custom popup form in your application, the Cancelled property should be set to
True before calling the Hide method.

RightAlign Property

Returns or sets whether a displayed from from a AePopupForm object aligns to the bottom-right corner of
the parent control.

Syntax Object.RightAlign [= Setting]

Part Description
Object A AePopupForm object.
Setting A Boolean expression.

Remarks By default, popup forms are aligned to the bottom-left of the parent control.

Change Event

Occurs whenever the Value of a AePopupForm object changes.

Syntax Private Sub Object_Change()

Part Description

Object A AePopupForm object.

Unload Event

Occurs when a displayed form from a AePopupForm object is about to be hidden.

Syntax Private Sub Object_Unload(Cancel As Boolean,)

Part Description

Object A AePopupForm object.

Cancel A Boolean variable set to False. Setting
Cancel to True will prevent the popup form
from hiding.

Load Event

Occurs when the form of a AePopupForm object is about to be displayed.

Syntax Private Sub Object_Load(Modal As Boolean)

Part Description

Object A AePopupForm Object.

Modal A Boolean expression signifying whether the
form is being loaded modally.

Remarks The Modal argument is used internally only, and can be ignored for the moment.

MoveWithParent Property

Returns or sets whether the window shown by a AePopupForm object is moved whenever the parent
desktop window is moved.

Syntax Object.MoveWithParent [= Setting]

Part Description
Object A AePopupForm Object.
Setting A Boolean expression

Remarks Set this property to False, will hide the popup form whenever the mouse is clicked, similar in

behaviour to the popup forms in Outlook 98. Note that the mouse is still not ‘captured’ if
MoveWithParent is set to False.

If you find the popup form is being left behin, when the parent form is moved, setting
MoveWithParent to True, will prevent it.    This can happed in MDI child forms, for example.

AeMenu Object

Members
Properties
Methods

Containers
AeEntryBox control
AeCommandBox control

The AeMenu object provides an enhanced standard Menu control. The object maintains a collection of
AeMenuItem objects.

Syntax Control.Menu

Part Description
Control A AeEntryBox or AeCommandBox control.

Remarks The AeMenu can be set up at desgn-time using the Menu property page, or at run-time
using the object model.

The nested model for AeMenu and AeMenuItem objects provide easier handling of menu
items and submenus. A AeMenuItem can contain a nested AeMenu object for building
submenus, reflecting the actual menu structure. Also, submenus can be created at run-time
and menu items can be moved around.

The following example illustrates the code required to access the 2nd menu item of a root
menu’s 2nd item’s submenu’s 1st item’s submenu.
Dim oMenuItem As AeMenuItem
Set oMenuItem = AeCommandBox1.Menu(2).Submenu(1).Submenu(2)

The Highlight event is provided for notification of when the mouse highlights a menu item.

AeMenu Methods
Properties      Methods      Events            Overview >>

Add
Clear
MoveItem
Remove

AeMenu Properties
Properties      Methods      Events            Overview >>

Count
hMenu
Item
Parent
RightAlign

AeMenu Events
Properties      Methods      Events            Overview >>

Click
Highlight
Show

Highlight Event

Occurs when menu item belonging to a AeMenu object becomes highlighted.

Syntax Private Sub Object_Highlight(MenuItem As AeMenuItem)

Part Description

Object A AeMenu object.

MenuItem The AeMenuItem object that became
highlighted.

Click Event

Occurs when menu item belonging to a AeMenu object is selected by the user.

Syntax Private Sub Object_Click(MenuItem As AeMenuItem,)

Part Description

Object A AeMenu Object.

MenuItem The AeMenuItem object that was selected.

Show Event

Occurs whenever a AeMenu object pops up up.

Syntax Private Sub Object_Show(Menu As AeMenu)

Part Description
Object A AeMenu Object.
Menu The AeMenu that popped up.

Remarks The Show event is triggered for the root menu and submenus alike.

Add Method

Adds a new menu item to a AeMenu object. Returns a reference to the new AeMenuItem object.

Syntax Set MenuItem = Object.Add(Caption[, ItemType[, Key[, Position]]])

Part Description
MenuItem A AeMenuItem variable.
Object A AeMenu object.
Caption The text to display on the menu item.
ItemType Optional. A AeMenuItemTypes constant

specifying the type of menu item to add. The
default is aeDefaultMenuItem.

Key Optional. A unique String expression
identifying the menu item.

Position Optional. The position of the new menu item.

Remarks

 

Remove Method

Removes a menu item from a AeMenu object.

Syntax Object.Remove Index

Part Description

Object A AeMenu object.

Index A String or Integer expression identifying the
Key or Index, respectively, of the menu item
to remove.

Clear Method

Removes all menu item from a AeMenu object.

Syntax Object.Clear

Part Description

Object A AeMenu object.

MoveItem Method

Moves a menu item to another position in a AeMenu object.

Syntax Object.MoveItem Index, Position,

Part Description

Object A AeMenu Object.

Index A String or Integer expression identifying the
Key or Index, respectively, of the item to be
moved.

Position An Integer expression specifying the position
to move to.

Item Property

Returns a AeMenuItem object belonging to a AeMenu object.

Syntax Set MenuItem = Object.Item(Index)

Set MenuItem = Object(Index)

Part Description
MenuItem A AeMenuItem variable.
Object A AeMenu Object.
Index A String or Integer expression identifying the

Key or Index, respectively, of the item.

Count Property

Returns the number of menu items in a AeMenu object.

Syntax Variable = Object.Count

Part Description
Variable An Integer variable
Object A AeMenu object.

hMenu Property

Returns the Windows menu handle of a AeMenu object.

Syntax Variable = Object.hMenu

Part Description
Variable An Integer variable
Object A AeMenu object.

Remarks This property is used in calls to the Windows API.

Parent Property

Returns the parent AeMenuItem of submenu AeMenu objects, or Nothing if the menu is the root menu.

Syntax Object.Parent

Part Description
Object A AeMenu object.

Remarks The Parent property is useful identifying the position in complex menu structures, of the

AeMenu object passed in the menu events.

RightAlign Property

Returns or sets whether the root menu of a AeMenu object aligns to the bottom-right corner of the parent
control.

Syntax Object.RightAlign [= Setting]

Part Description
Object A AeMenu Object.
Setting A Boolean expression, which if False

(default), aligns the menu down the left side
of the parent control.

Remarks

AeMenuItem Object

Members
Properties

Containers
AeMenu

A AeMenuItem object is created for each menu item in a AeMenu object.

Syntax Object.Item(Index)

Object(Index)

Part Description
Object A AeMenu object.
Index A String or Integer expression identifying the

Key or Index, respectively, of the item.

Remarks The aeCheckMenuItem and aeRadioMenuItem Styles provide automatic handling of check
marks and radio group marks.

Items with the aeSubMenuItem Style provide a Submenu object for natural coding of the
menu structure within the object model.

AeMenuItem Properties
Properties Overview >>

Caption
Checked
Enabled
HelpContextId
Index
Style
Key
Parent
Submenu
Visible

Key Property

Returns or sets a unique string for identifying a AeMenuItem object.

Syntax Object.Key [= Name]

Part Description
Object A AeMenuItem object.
Name A unique String expression.

Remarks The Key need only be unique within the item’s parent AeMenu object. Other menus in the

structure can have items with the same key.

Style Property

Returns or sets the type of a AeMenuItem object.

Syntax Object.Style [= New_Type]

Part Description
Object A AeMenuItem object.
New_Type A AeMenuItemStyles constant identifying the

type.

Settings The settings for AeMenuItemStyles are:

Setting Description

 0 - aeDefaultMenuItem Normal menu item.
 1 - aeCheckMenuItem Includes a check mark on the left which

toggles on/off when selected.
 2 - aeRadioMenuItem Includes a radio mark on the left which

toggles on when selected, and off when a
neighbouring aeRadioMenuItem is
selected.

 3 - aeSeperatorMenuItem An inactive item displaying a separator
bar.

 4 - aeSubMenuItem An item that includes a submenu AeMenu
object.

Remarks The first four types correspond with those found in the standard Menu control.

Submenu Property

Returns a AeMenu object belonging to a aeSubMenuItem style AeMenuItem object.

Syntax Object.Submenu

Part Description
Object A AeMenuItem Object.

Remarks The Submenu property is only available for items with the aeSubMenuItem Style.

The following example prints whether the second item on a submenu is selected.
Debug.Print AeCommandBox1.Menu(1).Submenu(2).Checked

Parent Property

Returns the parent AeMenu object of a AeMenuItem object.

Syntax Object.Parent

Part Description
Object A AeMenuItem Object.

Remarks The Parent property can be used to identify the position of a menu item within the menu

structure.    For example, if you have two Submenus with similar items, then the code to
handle the MenuClick event might be:

Private Sub AeCommandBox1_MenuClick(MenuItem As AeMenuItem)

Dim ParentItem As AeMenuItem

‘get reference to the submenu item using the parent’s parent.
Set ParentItem = MenuItem.Parent.Parent

‘if no Parent, then item is on the root menu
If ParentItem Is Nothing Then

Else
‘use the Key to identify which submenu to use
If ParentItem.Key = “SubmenuA” Then

DoSomething MenuItem.Index
Elseif ParentItem.Key = “SubmenuB” Then

DoSomethingElse MenuItem.Index
End If
End If

End Sub

