Contents

HP VISA User’'s Manual
Edition 3

1

Introduction
HP VISA OVEIVIBW ...ttt 16
WiNAOWS SUPPOIToeeiieiiie ettt et e s e e reesnee s 16
HP-UX SUPPOIeeeiiecee et e st e e s s 17
U ST S, ettt ettt 19
Other DOCUMENEELIONvouveieeiiriirieieeee et 20
WHEr€t0 GO NEXL......ceeeieiiiieiiieeees e 21
Building an HP VISA Application in Windows
Reviewing an HP VISA Program ..o 25
Example Program CONtents.............cococvvviieniiiciniicicicicnnssinnns 27
Specifying Memory Modelsfor Windows 3.1.......cccccevvvveceiiniecnieenns 28
Linking to HP VISA Librariesccccceveeieiiee s 29
Compiling and Linking an HP VISA Program.........cccceeeevieeieenieesnennnens 30
32-bit APPIICALIONS.......coieecieiceecee e 30
16-bit APPlIiCALIONS......ccuiiveieieiee e e 31
LOgging Error MESSAgES.ccvviueeveeiiecieie e sie st sie sttt enas 34
Windows 95 and WIindows 3.1ccoceverieirenininieneenesese s 34
WINAOWS NT .ot 34
Running an HP VISA Programccccccceeviiiieesieeiieeseeseeseesiee e e 35
WHhEr@ 10 GO NEXL......iieiieeieie et ens 36
Building an HP VISA Application in HP-UX
Reviewing an HP VISA Program.........ccccceceeiieeiieesieeseeseesieeseeseeeseee e 39
The Example Program COntentscccoeeveeiieevieesieeeeeesieeseeeseee e 41
Compiling and Linking an HP VISA Program.........cccceeeeveeviievieesnennnens 42
LOgging Error MESSAgES.ccuviveeveeiiecieie sttt se sttt enas 43
Running an HP VISA Programccccceeeeieieenieieceese e eeieseseesse e 44
Getting ONINEHEIP ..o 45
Using the HyperHEIP VIEWENcccoc i 45
Using HP-UX Manual PagesS.........cccveviieieiiee e see e ee e 46
WHEr€t0 GO NEXL......cvceiciirieriiieseees e 47

Contents-1

4. Programming with HP VISA

Including the HP VISA Declarations File.........ccccoovvveivieceeic e, 51
OPENING @ SESTION ...ttt sttt re e sresreenaesaens 52
DEVICE SESSIONS.cviiiiiniesieieete ettt sae b 53
AddressSing @ SESSIONcceeieeiiiiieeie e see e sre e sreesree e 55
ClOSING @ SESSION......cciiiiieiiertee e see e e e e be e e e ste e sreesreesreesneenreesreens 57
Searching for RESOUICESc.ccieiiie ittt 58
Sending 1/0 ComMMANGScceeeerieiieiieieee e 61
FOrMEatted [/O ... 62
NON-FOrMEIE 1/O ... 72
UL g To N 1] 011 (= 76
HP VISA Resource AttribULEScoieeiieeeeeeeee e 77
HP VISA Generic Instrument Atributesccocooevvoeveeie e 78
HP VISA Interface Specific Instrument Attributescccveeeee. 79
HP VISA Event AtIDULES........ccoiireeeieeree e 84
Using Events and Handlerscccovveeece s 85
Events and AtHDULEScoveieee e 87
The Callback Method ..o 89
The QUEUING MENOUc.coiueeiiceece e 97
TrapPING EFTOIS ..c.veiiceeeceee et 101
HP VISA EITOIS ..ot 101
INSIFUMENT EITOIS......oeiiiiiece e 102
USING LOCKS ...ttt sttt 103
[0 0! Sl 1) == TS 105
NS <o 0o P 108
LOCK EXAMPIES.....ccveeieiecie ettt 108

5. Programming VXI Devices

Programming OVENVIEWccceeiieiiieiisieeciecie ettt ee e sre e e nneas 115
Using High-Level Memory FUNCLIONScccciveveevee e 117
Programming to the REQISLENS.....ccecvvieieceee e 118
High-Level Memory Functions EXamples.........cccccvveeveveeieceennenne, 121
Using Low-Level Memory FUNCLIONScccovevvveieiieieeceece e 123
Programming to the REQISLErS........ccoveieeiiecie e 124
Low-Level Memory Functions EXamples.........cccocovevivviveevieieennnens 126
Considering VX1 Backplane Memory 1/0O Performance...................... 129
Using the VISA Memory Access RESOUICEccceveeriveeeeesieereennenes 134

Contents-2

High-Level Memory 1/0 SErViCeS.......cccvvvieeveie e 134

Low-Level Memory 1/O SErVICES.......ccevvieeiee i 134
MEMACC Resource Program EXamplecccocoeviveveenecceeninn, 135
MEMACC Attribute DeSCriptionS........cccccveveeeieeseesreseeseeeeeeneeens 137
Using VXI Specific ARIDULEScceevviiii e 141
Using the Map Address asaPOiNterccceeveveeveiiiieseeieeiesieas 141
Setting the VXI Trigger LiNe ..o.oooveeeee e 143

Programming over LAN

Overview of the LAN ... e 148
LAN Software ArchiteCtureccooeeverireneneeeeesese e 150
Considering LAN Configuration and Performancecccccvvuvenne.n. 154
Communicating with Devicesover LANcooovievevicieece e 155
Addressing @ SESSIONcccueecveeiieiiieiee e e erre e e st reereesree s 155
LAN Session EXamMPIEcccoveviiieeecie et 156
Using TIMeoUtS With LANooiiiiee e 158
Default LAN Timeout VaIUEScccvverirerieieeeeee e 159
Application Terminations and TiMEOULS..........cccecvveveieeeesicie e, 161
Using Signal Handling With LAN ..o 162
SIGIO SIgNEIS.....uiciieiieeie et reereenree s 162
HP VISA Function Support With LAN ..., 163
GPIB Sessions and Service Requests over LANcocoveveeveeniee 163

HP VISA Language Reference

(TN = i I e o = P 172
(VL <= R 174
(V1O Lo SRR 176
VIDISADIEEVENL ...ttt s 178
VIDISCArABEVENES. ...ttt st 181
VIENADIEEVENT ..ottt 183
AV VL= 10 =10 = 186
A LT 10 |V AR 188
AV T 10 | o 189
AL 10 o TR 191
(VLTS 7N 1] oLV (R 194
VIING, VIINLG, QNA VIINS2 ..oeoeeeieeeeeeeeeee ettt e e e e e e aeeeees 196
VIINSEATHANAIET ...t 198

Contents-3

A1 o o2 OO PR 200

VIMBPAAAIESS.......oeciieieciectece ettt 204
VIMEMAITOC.... et e e 206
VIMEMFTEE ... s e e e s be e s se e s 208
VIIVIOVE ettt ettt ettt et a e e s e e s s bae e s s ebe e e s enares 209
VIMOVEASYIIC ...ttt ettt st ne e 212
viMoveln8, viMovelnl6, and VIMOVEIN32.........ccceecveeecieeceee e, 215
viMoveOut8, viMoveOut16, and VIMoveOUL32...........ccceeeeeeeeeveeeennen. 218
AVL1 o= o [S 221
(AL o= = = 0 1 224
VIOUL8, VIOULLO, AN VIOUL3Z ...t eeeeeee e e e eeeeeeaaee e 226
ViPeek8, ViPeek16, and VIPEEK32.........cccoviceeeeee e 229
ViPoke8, viPokel6, and VIPOKESZ............cocuveeeeeeeie et 230
AL 1SR 231
VIQUENYT . e re et re e s re e be e beeneenreens 239
(VL= o IR 241
(LR TS 0 NS Y o o 243
VLR (S 0 N I = TR 245
A 1o 1 | TR 247
VISELALITDULE ...t 255
VIS S 1 =1 | IR 257
VIS L0 5D s o 259
VITEIMINGLE.veie ettt s e e s sbae e e s sbbe e e s ebe e e s eaares 260
VIUNINSEAITHANAIES ... s 261
A1 Lo T SR 263
VIUNMEBPAAAIESS ..ottt 265
A YA = 111 SRR 266
A LAY Z 0 1= S 268
VIV SCANT ...ttt ettt e st e e s e s s ebe e s be e e sreeesrenas 270
VIWAITONEVENE ...ttt st 272
A YL 1 (SRR 275
VIWFITEASYNC....cviveeee ettt s ne e 277

A. HP VISA System Information

Windows DireCtory StIUCIUNEcccovieeieiieeieeie s 281
UNIX DiIreCtory StrUCIUIE......cc.eeveieiiieeeeeeeete et e e 283
ADOUL the DIFECIONES ...t e 284

Contents-4

The HPVISA SUBAITeCtOrYcveoveieieee e 284

INCIUAE FITES ... 284
LiDIAITES. ..ottt nnea 284
SaMPIE PrOgramIS........ocieeiiieieiiiee ettt 285
VXIplug& play Instrument DIIVENS........ccceieeiieciee e see e 285

B. HP VISA Attributes

HP VISA Resource AttribULESc.oovioeiiiieeeeee e 289
HP VISA Generic Instrument Atributesccooveveieiieie e 290
HP VISA Interface Specific Instrument Attributescccccceevvecveennee. 291
GPIB and GPIB-V XI INtEIfaCesccccovireeeieirene e 291
VXI and GPIB-VXI INErfacesccccovveririnineineie e 292
GPIB-VXI INtEIfaCeevvieeeesi s 294
ASRL Specific INSTR Resource Interface Attributes.................... 295
MEMACC Resource Attributes (VISA 1.1 0nlY)...cccccvvvevcieeniciieennens 297
Generic MEMACC ALHDULES........ooveeeieceeeee e 297
VX1 and GP-1B-V XI Specific MEMACC Resource Attributes...... 297
... 299
GPIB-VXI Specific MEMACC Resource Attributes...................... 300
HP VISA Event AtHDULEScooeieie e 301

C. HPVISA Completion and Error Codes
Alphabetized Completion and Error Codes..........ccevevvreevenercveevennnn, 305
Completion and Error Codes for Each HP VISA Function.................. 310
D. HP VISA Type Definitions

E. EditingtheHP VISA Configuration

ON Windows 95 and WINAOWS NTcoooveeeeeeeeeieeeeeeeeee e e eeeeeeneeeeenn 343
ON HP-=UX oot e e et e e e e e e e eaeeeeaan 345
(€10 | Y USSR 347
IO X ettt e e et e e e e e e et e e e e e e e e e e e e e 351

Contents-5

Contents-6

HP VISA

User’s Guide

viii

Notice

The information contained in this document is subject to change without
notice.

Hewlett-Packard Company (HP) shall not be liable for any errors contained
in this document. HP makes no warranties of any kind with regard to this
document, whether express or implied. HP specifically disclaimsthe implied
warranties of merchantability and fitness for a particular purpose. HP shall
not be liable for any direct, indirect, special, incidental, or consequential
damages, whether based on contract, tort, or any other legal theory, in
connection with the furnishing of this document or the use of the
information in this document.

Warranty Information

A copy of the specific warranty terms applicable to your Hewlett-Packard
product and replacement parts can be obtained from your local Sales and
Service Office.

U.S. Government Restricted Rights

The Software and Documentation have been developed entirely at private
expense. They are delivered and licensed as “commercial computer
software” as defined in DFARS 252.227-7013 (Oct 1988),

DFARS 252.211-7015 (May 1991) or DFARS 252.227-7014 (Jun 1995),
as a “commercial item” as defined in FAR 2.101(a), or as “Restricted
computer software” as defined in FAR 52.227-19 (Jun 1987) (or any
equivalent agency regulation or contract clause), whichever is applicable.
You have only those rights provided for such Software and Documentation
by the applicable FAR or DFARS clause or the HP standard software
agreement for the product involved.

Copyright O 1984, 1985, 1986, 1987, 1988 Sun Microsystems, Inc.

Microsoft, Windows NT, and Windows 95 are U.S. registered trademarks of
Microsoft Corporation.

Pentium isaU.S. registered trademark of Intel Corporation.

Copyright O 1994, 1995, 1996, 1997, 1998 Hewlett-Packard Company.
All rights reserved.

This document contains information which is protected by copyright. All
rights are reserved. Reproduction, adaptation, or trandation without prior
written permission is prohibited, except as allowed under the copyright laws.

Printing History

Thisisthe fifth edition of the HP Sandard Insrtument Control Library
User’s Guide for Window$ote: on previous editions the Reference section

was actually a separate manual.
Edition 1 - May 1996
Edition 2 - September 1996
Edition 3 - February 1998

Xi

Xii

| ntroduction

Note

Note

I ntroduction

Welcome to the HP VISA User’s Guide. This manual describes the HP
VISA (Virtual Instrument Software Architecture) library and how to useit to
develop instrument drivers and I/O applications on M icrosoft® Windows
95® and Windows NT®, as well as on HP-UX version 10.20 or later. This
manual also describes how to use the HP VISA Transition Library (VTL),
which is a subset of the VISA library. You can use VTL to develop
instrument drivers and applications on Microsoft Windows 3.1™,

Because VTL is a subset of the VISA library, programs developed using
VTL are fully supported on VISA.

For simplicity, "VISA" is used throughout this manual to represent both
VISA and VTL. "VTL" is used only in those cases where the VTL
functionality is specifically meant.

Before using VISA, you must install and configure VISA according to the
instructions in thédP 1/O Libraries Installation and Configuration Guide.

14 Chapter 1

Introduction

Thisfirst chapter provides an overview of VISA. In addition, this guide
contains the following chapters:

Chapter 2 - Building an HP VISA Application in Windows describes
how to build a VISA application in a Microsoft Windows environment.
A simple example program is also provided to help you get started
programming with VISA.

Chapter 3 - Building an HP VISA Application in HP-UX describes
how to build a VISA application in the HP-UX environment. A simple
example program is also provided to help you get started programming
with VISA.

Chapter 4 - Programming with HP VI SA describes the basics of
VISA, aong with some detailed example programs. You can find
information on creating sessions, and on using formatted 1/0, events and
handlers, attributes, locking, and more.

Chapter 5 - Programming V XI Devices describes how to use VISA to
communicate over the VXI and GPIB-VXI interfacesto VXI
instruments.

Chapter 6 - Programming over L AN provides an overview of the LAN
and describes how to use VISA to communicate with devices over LAN.
Chapter 7 - HP VISA Language Reference describes the supported
VISA functions. These functions are provided in alphabetical order to
make them easy to look-up and reference.

This guide also contains the following appendices.

Appendix A - HP VISA System Information provides information on
VISA software files and system interaction.

Appendix B - HP VISA Attributes provides atable of al VISA
attributes and their associated values.

Appendix C - HP VISA Completion and Error Codeslists all the
completion and error codes for VISA.

Appendix D - HP VISA Type Definitionsliststhe VISA datatypes and
their definitions.

Appendix E - Editing the HP VISA Configuration describes how to
edit the VISA configuration to gain better performance.

Thisguide aso includes a Glossary of terms and their definitions, aswell as
an Index.

Chapter 1 15

Introduction
HP VISA Overview

HP VISA Overview

VISA (Virtua Instrument Software Architecture) isan /O library that can
be used to develop 1/0 applications and instrument drivers that comply with
the VXIplug& play standards. Applications and instrument drivers
developed with VISA can execute on V XIplug& play system frameworks
that have the VISA 1/O layer. Therefore, software from different vendors
can be used together on the same system.

Windows Support

Thereisa 32-bit version of VISA on both Windows 95 and Windows NT,
and a 16-hit version of VISA on Windows 95. Note that you can use one or
both versions of VISA (32-bit and/or 16-bit VISA) on your 32-bit computer
when running Windows 95.

The following two tables summarize the support for the 32-bit and 16-bit
versions of VISA on Windows environments.

Support for 32-bit VISA on Windows 95 and Windows NT

Interfaces Programming
Languages
GPIB, VXI!, GPIB-VXI, RS-232, LAN? C, C++, Visual BASIC3

1. VISA for the VXI interface on Windows NT (version 4.0 or later)
is shipped with the HP VXI Pentium® Controller product only.

2. LAN support from within VISA occurs via an address translation
such that a GPIB interface can be accessed remotely over a com-
puter network.

3. Although VISA for Windows supports the Visual BASIC pro-
gramming language, this manual only supports and shows VISA
programming techniques using the C and C++ programming lan-
guages at this time.

16 Chapter 1

Introduction
HP VISA Overview

Support for 16-bit VISA on Windows 95

Interfaces Programming
Languages

GPIB, VXI, GPIB-VXI, RS-232 C, C++, Visual BASIC?

1. Although VISA for Windows supports the Visual BASIC pro-
gramming language, this manual only supports and shows VISA
programming techniques using the C and C++ programming lan-
guages at thistime.

HP-UX Support

The following table summarizes the support for VISA on HP-UX version
10.20 or later.

Chapter 1 17

Introduction
HP VISA Overview

Support for VISA on HP-UX Version 10.20 or L ater

Interfaces Programming\Languages

GPIB, VXI, GPIB-VXI, LAN! | C, C++

1. LAN support from within VISA occurs viaan address translation
such that a GPIB interface can be accessed remotely over a com-
puter network.

18 Chapter 1

Introduction
HP VISA Overview

Users

VISA hastwo specific users. Thefirst user is the instrumentation end user
who wants to use V XIplug& play instrument driversin his or her
applications. The second user is the instrument driver or 1/0O application
developer who wants to be compliant with V XlIplug& play standards.

Software development using VISA isintended for instrument 1/0
programmers who are familiar with either the Windows 95, Windows NT, or
HP-UX environment. If you will be performing the VISA installation and
configuration on Windows NT or HP-UX, you must also have either system
administration privileges on your Windows NT system, or super-user

(r oot) privileges on your HP-UX system.

Chapter 1 19

Introduction
Other Documentation

Other Documentation

The following documentation is also helpful when using VISA:

HP 1/0 Libraries Installation and Configuration Guide explains how to
install and configure the HP VISA library and the HP Standard|
Instrument Control Library (SICL) on Microsoft Windows or HP-UX.

HP VISA Quick Reference Guide for C Programmers helps you find
VISA function syntax information quickly.

HP VISA Online Help is provided in the form of Windows Help on
Microsoft Windows, and in the form of manual pages (man pages) and
online help on HP-UX.

HP VISA Example Programs are provided online to help you develop
your VISA applications more easily.

The following documents may also be helpful when using VISA:

V Xlplug& play System Alliance VISA Library Specification 4.3

|EEE Sandard Codes, Formats, Protocols, and Common Commands -
ANSI/IEEE Standard 488.2-1992

The following V X1bus Consortium specifications may aso be helpful when
using VISA over LAN:

TCP/IP Instrument Protocol Specification - VXI-11, Rev. 1.0
TCP/IP-VXIlbus Interface Specification - VXI-11.1, Rev. 1.0
TCP/IP-1EEE 488.1 Interface Specification - VXI-11.2, Rev. 1.0

TCP/IP-1EEE 488.2 Instrument Interface Specification - VXI-11.3,
Rev. 1.0

20

Chapter 1

Introduction
Where to Go Next

Whereto Go Next

Now that you have a better understanding of VISA, continue with one of the
following chapters:

Chapter 2, "Building an HP VISA Application in Windows'
® Chapter 3, "Building an HP VISA Application in HP-UX"

Chapter 1 21

Introduction
Where to Go Next

22 Chapter 1

Buildingan HP VISA Application in
Windows

Building an HP VISA Application in Windows

This chapter describes what you need to know to build aVISA applicationin
aWindows environment. This chapter contains the following sections:

Reviewing an HP VISA Program

Specifying Memory Models for Windows 3.1
Linking to HP VISA Libraries

Compiling and Linking an HP VISA Program
Logging Error Messages

Running an HP VISA Program

Where to Go Next

24 Chapter2

Building an HP VISA Application in Windows
Reviewing an HP VISA Program

Reviewing an HP VISA Program

In this section, you will first review a simple example program called idn
that queries an HP-1B instrument for itsidentification string. This example
uses the QuickWin or EasyWin feature of Microsoft and Borland C or C++
compilers on Windows.

Thei dn example files are located in the following subdirectories.

32-bit VISA on Windows 95:
\ VXI PNP\ W N95\ HPVI SA\ SAMPLES

32-bit VISA on Windows NT:
\ VXI PNP\ W NNT\ HPVI SA\ SAMPLES

16-bit VISA on Windows 95, or
16-bit VTL on Windows 3.1:
\ VXI PNP\ W N\ HPVI SA\ SAMPLES

The sourcefilei dn. c islisted on the following page. An explanation of the
various function calsin the example is provided directly after the program
listing for your review.

Chapter 2 25

Building an HP VISA Application in Windows
Reviewing an HP VISA Program

/*idn.c
Thi s exanpl e program queries a GPI B device for an
identification string and prints the results. Note
that you nust change the address. */

#i ncl ude <vi sa. h>
#i ncl ude <stdi o. h>

void main () {

Vi Session defaul tRM vi;
char buf [256] = {0};

/* Open session to GPIB device at address 22 */
vi OpenDef aul t RM &def aul t RM ;
vi Open(defaul tRM "GPl BO::22:: I NSTR", VI _NULL, VI _NULL, &vi);

/* Initialize device */
viPrintf(vi, "*RST\n");

/* Send an *IDN? string to the device */
viPrintf(vi, "*IDN?\n");

/* Read results */
vi Scanf (vi, "%", buf);

/* Print results */
printf("lnstrunent identification string: %\n", buf);

/* C ose session */
vi Cl ose(vi);
vi Cl ose(defaul t RV ;

26 Chapter2

visa.h

ViSession

viOpenDefaultRM

viOpen

viPrintf and
viScanf

viClose

Building an HP VISA Application in Windows
Reviewing an HP VISA Program

Example Program Contents

Thefollowing is a summary of the VISA function calls used in the example
program. For amore detailed explanation of VISA functionality, see
Chapter 4, "Programming with HP VISA."

Thisfileisincluded at the beginning of the fileto provide the function
prototypes and constants defined by VISA.

The Vi Sessi on isaVISA datatype. Each object that will establish a
communication channel must be defined as Vi Sessi on.

You must first open a session with the default resource manager with the
vi OpenDef aul t RMfunction. This function will initialize the default
resource manager and return a pointer to that resource manager session.

This function establishes a communication channel with the device
specified. A sessionidentifier that can be used with other VISA functionsis
returned. This call must be made for each device you will be using.

These are the VISA formatted 1/0 functions that are patterned after those
used in the C programming language. Thevi Pri nt f call sendsthe |IEEE
488.2 * RST command to the instrument and putsit in aknown state. The
vi Printf call isused againto query for the device identification (* | DN?).
Thevi Scanf call isthen used to read the results.

This function must be used to close each session. When you close a device
session, all data structures that had been allocated for the session will be
deallocated. When you close the default manager session, all sessions
opened using that default manager session will be closed.

Refer to Chapter 7, "HP VISA Language Reference," for more detailed
information on these VISA function calls and to learn about all of the
functions provided by VISA.

Chapter 2 27

Building an HP VISA Application in Windows
Specifying Memory Models for Windows 3.1

Specifying Memory Modelsfor
Windows 3.1

WE strongly reccomend that you use the large memory model when
designing VTL applications on Windows 3.1. Thisis because VISA equires
al pointer parametersto be"far" pointers. Most VISA function prototypesin
thevi sa. h declarations file explicitly declare all pointer parameters to be
far. However, there is no way to declare pointer types for functions that take
avariable number of arguments (such as formatted 1/0 functions), and your
compiler will not be ableto properly check or cast types for these functions.

28 Chapter 2

Building an HP VISA Application in Windows
Linking to HP VISA Libraries

LinkingtoHP VISA Libraries

Your application must link to one of the VISA import libraries, as follows.
32-bit VISA on Windows 95:

C: \ VXI PNP\ W N95\ LI B\ MSC\ VI SA32. LI B for Microsoft compilers
C: \ VXI PNP\ W N95\ LI B\ BC\ VI SA32. LI B for Borland compilers

32-bit VISA on Windows NT:

C: \ VXI PNP\ W NNT\ LI B\ MSC\ VI SA32. LI B for Microsoft compilers
C: \ VXI PNP\ W NNT\ LI B\ BC\ VI SA32. LI B for Borland compilers

16-bit VISA on Windows 95, or
16-bit VTL on Windows 3.1:

C:\ VXI PNP\ W N\ LI BV MBC\ VI SA. LI B for Microsoft compilers
C:\ VXI PNP\ W N\ LI B\BC\ VI SA. LI B' for Borland compilers

See the following section, "Compiling and Linking an HP VISA Program,”
for information on how to use the VISA run-time libraries.

Chapter 2 29

Building an HP VISA Application in Windows
Compiling and Linking an HP VISA Program

Compiling and Linking an HP VISA
Program

32-bit Applications

The following is a summary of important compiler-specific considerations
for several C/C++ compiler products when developing WIN32 applications.

For Microsoft Visual C++ version 2.0 compilers:

Select Proj ect | Update All Dependenci es from the menu.
Select Proj ect | Settings fromthemenu. Click ontheC/ C++
button. Select Code Gener at i on from the Cat egor y list box and
select Mul ti - Threaded usi ng DLL fromtheUse Run-Ti ne

Li brari es list box. VISA requiresthese definitions for WIN32. Click
on OK to close the dialog boxes.

Sdlect Proj ect | Settings fromthemenu. Click ontheLi nk button
andadd vi sa32.1i btotheoj ect / Library Mdul es list box.
Optionally, you may add the library directly to your project file. Click on
OK to close the dialog boxes.

You may wish to add the include file and library file search paths. They
are set by doing the following:

a. Sdect Tool s | Opti ons from the menu.
b. ClickontheDi rect ori es button to set the include file path.
c. Sdectlnclude Fil es fromthe Show Directories For list box.

d. Click onthe Add button and type in one of the following:

C: \ VXI PNP\ W N95\ | NCLUDE
Or:
C: \ VXI PNP\ W NNT\ | NCLUDE

e. SdectLibrary FilesfromtheShow Directories For list box.

30

Chapter 2

Building an HP VISA Application in Windows
Compiling and Linking an HP VISA Program

f. Click on the Add button and type in one of the following:

C:\ VXI PNP\ W N95\ LI B\ M5C
Or:
C:\ VXI PNP\ W NNT\ LI B\ M5C
For Borland C++ version 4.0 compilers:

® You may wish to add the include file and library file search paths. They
are set under the Opti ons | Proj ect menu selection. Double-click
onDirectories fromthe Topi cs list box and add one of the
following:
C:\ VXI PNP\ W N95\ | NCLUDE C:\ VXI PNP\ W N95\ LI B\ BC

Or:
C:\ VXI PNP\ W NNT\ | NCLUDE C: \ VXI PNP\ W NNT\ LI B\ BC

16-bit Applications

Thefollowing is a summary of important compiler-specific considerations
for several C/C++ compiler products when devel oping WIN16 applications.

For Microsoft Visual C++ version 1.5 compilers:

® To set the memory model, do the following:
a. SdectOptions | Project.

b. Click onthe Conpi | er button, then select Menory Model from the
Cat egory list.

c. Click ontheModel list arrow to display the model options, and select
Lar ge.

d. Click on K to close the Conpi | er dialog box.

Chapter 2 31

Building an HP VISA Application in Windows
Compiling and Linking an HP VISA Program

You may wish to add the include file and library file search paths. They
are set under the Opti ons | Directories menu selection:

C:\ VXI PNP\ W N\ | NCLUDE
C:\ VXI PNP\ W N\ LI B\ M5C

Otherwise, the library and include files should be explicitly specified in
the project file.

For Borland C (or Turbo C) compilers:

To

Make sure large memory model is sel ected:

a Select Options | Project.

b. Double-click on 16-bit Conpi |l er inthe Topi cs list box.
c. ClickonMenory Model .

d. ChangeM xed Model Override toLarge.

e. Click on K to close the dialog box.

You can do this from the command line environment by specifying the
/ M option to the compiler.

The Borland C linker defaults to being case-insensitive when resolving

references. To link to the VISA libraries, you will need to tell the linker
to be case-sensitive for exports.

do this from Borland's Integrated Development Environment:
a. Select Options | Project.

b. Double-click on Li nker inthe Topi cs list box.

c. Click on General intheTopi cs list box.

d. Select Case Sensitive exports and inports.

e. Click on K to close the diaog box.

32

Chapter2

Building an HP VISA Application in Windows
Compiling and Linking an HP VISA Program

You can do this from the command line environment by specifying the/ C
optionto TLINK.

® You may wish to add the include file and library file search paths. They
are set under the Opti ons | Proj ect menu selection. Double-click
onDirectories fromthe Topi cs list box and add:
C:\ VXI PNP\ W N\ | NCLUDE C:\ VXI PNP\ W N\ LI B\ BC

®* Thefollowing isrequired for building Borland EasyWin programs:

#i f defined (_BORLANDC) && !defined(_WN32)
_InitEasyWn();
#endi f

Chapter 2 33

Building an HP VISA Application in Windows
Logging Error Messages

L ogging Error Messages

Windows 95 and Windows 3.1

While developing or debugging your VISA application, you may wish to
view internal VISA messages while your applicationisrunning. Thiscan be
done by using the Message Vi ewer utilityintheHP 1/ O Libraries
program group on Windows 95, or in the VXI PNP program group on
Windows 3.1. This utility provides a debug window to which VISA logs
internal messages during application execution. Some of these interna
messages do not represent programming errors and are actually error
messages from VISA which are being handled internally by VISA.

To start the utility, double-click on the Message Vi ewer iconinthe

HP |/ O Li brari es or VXI PNP program group. The utility must be started
before execution of the VISA application. It will receive messages while
minimized, however. The Message Vi ewer utility also provides menu
selections for saving the logged messages to afile, and for clearing the
message buffer.

Windows NT

VISA logs internal messages as Windows NT events. While developing
your VISA application or tracking down problems, you may wish to view
these messages. You can do so by starting the Event Vi ewer utility in the
Adni ni strative Tool s group. Both system and application messages
can beloggedto the Event Vi ewer from VISA. VISA messages are
identified either by SI CL LOG or by the driver name (for example,

hp341i 32).

34 Chapter 2

Building an HP VISA Application in Windows
Running an HP VISA Program

Running an HP VISA Program
Torunthei dn example program, do the following:
® |f you use the command line interface:
SdectFil e | Run fromthe Windows Program Manager menu.
® |f you use the Windows interface:

——For Borland, select Run | Run.
—— For Microsoft, select Proj ect | Execute or Run | Co.

If the program runs correctly, the following is an example of the output if
connected to an HP 54601A oscilloscope:

HEWLETT- PACKARD, 54601A, 0, 1. 7

If the program does not run, refer to the message logger for alist of run-time
errors.

Chapter 2 35

Building an HP VISA Application in Windows
Where to Go Next

Whereto Go Next

Now that you understand some basics of programming with VISA, continue
on to Chapter 4, "Programming with HP VISA." Chapter 4 provides
detailed example programs. |t also contains information on sessions,
addressing, interrupt handling, locking, and so forth.

36 Chapter 2

Buildingan HP VISA Application in
HP-UX

Building an HP VISA Application in HP-UX

This chapter describes what you need to know to build aVISA application
on HP-UX version 10.20 or later. This chapter contains the following
sections:

Reviewing an HP VISA Program

Compiling and Linking an HP VISA Program
Logging Error Messages

Running an HP VISA Program

Getting Online Help

Where to Go Next

38 Chapter 3

Building an HP VISA Application in HP-UX
Reviewing an HP VISA Program

Reviewing an HP VISA Program

In this section, you will first review a simple example program called i dn
that queries an HP-1B instrument for its identification string. Thei dn
example program is located in the following subdirectory:

opt / vxi pnp/ hpux/ hpvi sa/ shar e/ exanpl es

The sourcefilei dn. c islisted on the following page. An explanation of the
various function callsin the exampleis provided directly after the program

listing for your review.

Chapter 3 39

Building an HP VISA Application in HP-UX
Reviewing an HP VISA Program

/*idn.c
Thi s exanpl e program queries a GPI B device for an
identification string and prints the results. Note
that you nust change the address. */

#i ncl ude <vi sa. h>
#i ncl ude <stdi o. h>

void main () {

Vi Session defaul tRM vi;
char buf [256] = {0};

/* Open session to GPIB device at address 22 */
vi OpenDef aul t RM &def aul t RM ;
vi Open(defaul tRM "GPl BO:: 24:: I NSTR', VI _NULL, VI _NULL, &vi);

/* Initialize device */
viPrintf(vi, "*RST\n");

/* Send an *IDN? string to the device */
viPrintf(vi, "*IDN?\n");

/* Read results */
vi Scanf (vi, "%", buf);

/* Print results */
printf ("lInstrunment identification string: %\n", buf);

/* Close sessions */
vi Cl ose(vi);
vi Cl ose(defaul t RV ;

40 Chapter 3

vi sa. h

Vi Sessi on

Building an HP VISA Application in HP-UX
Reviewing an HP VISA Program

The Example Program Contents

Thefollowing is a summary of the VISA function calls used in the example
program. For amore detailed explanation of VISA functionality, see
Chapter 4, "Programming with HP VISA."

Thisfileisincluded at the beginning of the fileto provide the function
prototypes and constants defined by VISA.

The Vi Sessi on isaVISA datatype. Each object that will establish a
communication channel must be defined as Vi Sessi on.

vi QoenDef aul t RM You must first open a session with the default resource manager with the

vi Open

vi Printf
and vi Scanf

vi Cl ose

vi OpenDef aul t RMfunction. This function will initialize the default
resource manager and return a pointer to that resource manager session.

This function establishes a communication channel with the device
specified. A sessionidentifier that can be used with other VISA functionsis
returned. This call must be made for each device you will be using.

These are the VISA formatted 1/0 functions that are patterned after those
used in the C programming language. Thevi Pri nt f call sendsthe |IEEE
488.2 * RST command to the instrument and putsit in aknown state. The
vi Printf call isused againto query for the device identification (* | DN?).
Thevi Scanf call isthen used to read the results.

This function must be used to close each session. When you close a device
session, all data structures that had been allocated for the session will be
deallocated. When you close the default manager session, all sessions
opened using that default manager session will be closed.

Refer to Chapter 7, "HP VISA Language Reference," for more detailed
information on these VISA functions and to learn about all of the functions
provided by VISA.

Chapter 3 41

Building an HP VISA Application in HP-UX
Compiling and Linking an HP VISA Program

Compiling and Linking an HP VISA
Program

You can create your VISA applicationsin ANSI C or C++. When compiling
and linking a C program that uses VISA, usethe- | vi sa command line
option to link in the VISA library routines. The following example creates
thei dn executablefile:

cc -Aa -oidnidn.c -lvisa
® The- Aa option indicates ANSI C.

®* The- o option creates an executablefile called i dn.
® The-1 optionlinksinthe VISA library.

42 Chapter 3

Building an HP VISA Application in HP-UX
Logging Error Messages

L ogging Error Messages

To view any VISA internal errorsthat may occur on HP-UX, edit the
/ et ¢/ opt/ vxi pnp/ hpux/ hpvi sa/ hpvi sa. i ni file. Changethe
Err or Log= linein thisfile to the following:

ErrorLog=true

The error messages, if any, will be then be printed to stderr.

Chapter 3 43

Building an HP VISA Application in HP-UX
Running an HP VISA Program

Running an HP VISA Program

Execute your VISA program by typing the program name at the command
prompt. For example:

i dn
When using an HP 54601A Four Channel Oscilloscope, you should get
something similar to the following:
Hewl et t - Packar d, 54601A, 0, 1.7

If you have problems running thei dn example program, first check to make
sure the device address specified in your program is correct. If the program
till doesn't run, check the I/O configuration. Seethe HP I/O Libraries
Installation and Configuration Guide for HP-UX for information on 1/0O
configuration.

44 Chapter 3

Building an HP VISA Application in HP-UX
Getting Online Help

Getting Online Help

Online help for VISA on HP-UX is provided with Bristol Technology’s
HyperHe p Viewer, or in the form of HP-UX manual pages (man pages), as
explained in the following subsections.

Using the HyperHelp Viewer

The Bristol Technology HyperHelp Viewer allows you to view the VISA
functions online. To start the HyperHelp Viewer with the VISA help file,
type the following:

hyper hel p /opt/ hyper hel p/ vi sahel p. hl p

When you start the Viewer, you can also specify any of the following
options:

-k keyword Opens the Viewer and searches for the specified
keyword.

-p partial_keyword Opens the Viewer and searches for a specific
partial keyword.

- s viewmode Opensthe Viewer in the specified viewmode. If 1

is specified as the viewmode, then the Viewer is
shared by all applications. If 0 is specified, thena
separate Viewer is opened for each application
(default).

-di spl ay display Opens the Viewer on the specified display.

Chapter 3 45

Building an HP VISA Application in HP-UX
Getting Online Help

Using HP-UX Manual Pages

To use manual pages, type the HP-UX man command followed by the VISA
function name:

man function
The following are examples of getting online help on VISA functions:

man vi Printf
man vi Scanf
man vi Peek

46 Chapter 3

Building an HP VISA Application in HP-UX
Where to Go Next

Whereto Go Next

Now that you understand some basics of programming with VISA, continue
on to Chapter 4, "Programming with HP VISA." Chapter 4 provides detailed
example programs. It also contains information on sessions, addressing,
interrupt handling, locking, and so forth.

Chapter 3 47

Building an HP VISA Application in HP-UX
Where to Go Next

48 Chapter 3

Programming with HP VISA

Programming with HP VI SA

This chapter describes how to program with VISA. The basics of VISA are
described, including formatted 1/0O, events and handlers, attributes, and
locking. Example programs are also provided and can be found in the
SAMPLES subdirectory on Windows environments, or in the exanpl es
subdirectory on HP-UX. See Appendix A, "HP VISA System Information,"
for the specific location of the example programs on your operating system.

This chapter contains the following sections:

Including the HP VISA Declarations File
Opening a Session

Addressing a Session

Closing a Session

Searching for Resources

Sending 1/0 Commands

Using Attributes

Using Events and Handlers

Trapping Errors

Using Locks

For specific details on the VISA functions, see Chapter 7, "HP VISA
Language Reference.”

50 Chapter4

Programming with HP VISA
Including the HP VISA Declarations File

Including the HP VI SA Declarations File

For C and C++ programs, you must include thevi sa. h header file a the
beginning of every file that contains VISA function calls:

#i ncl ude "visa.h"

This header file contains the VISA function prototypes and the definitions
for al VISA constants and error codes. Thevi sa. h header file also
includesthevi sat ype. h header file.

Thevi sat ype. h header file defines most of the VISA types. The VISA
types are used throughout VISA to specify data types used in the functions.
For example, the vi OpenDef aul t RMfunction requires a pointer to a
parameter of type Vi Sessi on. If youfindVi Sessi on inthevi satype. h
header file, you will find that Vi Sessi on iseventualy typed as an unsigned
long. Note that the VISA types are also listed in Appendix D, "HP VISA
Type Definitions."

Chapter 4 51

Note

Programming with HP VISA
Opening a Session

Opening a Session

A session isachannel of communication. Sessions must first be opened on
the default resource manager, and then for each device you will be using.
Thefollowing is a summary of sessionsthat can be opened:

® A resource manager session isused toinitiadizethe VISA system. Itis
aparent session that knows about all the opened sessions. A resource
manager session must be opened before any other session can be opened.

® A devicesession is used to communicate with adevice on an interface.
A device session must be opened for each device you will be using.
When you use a device session you can communicate without worrying
about the type of interface to which it is connected. Thisinsulation
makes applications more robust and portable across interfaces. Typicaly
adeviceisan instrument, but could be a computer, a plotter, or a printer.

All devices that you will be using need to be connected and in working
condition prior to the first VISA function cal (vi QpenDef aul t RM). The
system is configured only on the first vi OpenDef aul t RMper process.
Therefore, if vi OQpenDef aul t RMis called without devices connected and
then called again when devices are connected, the devices will not be
recognized. You must close ALL Resource Manager sessions and reopen
with all devices connected and in working condition.

52 Chapter4

Programming with HP VISA
Opening a Session

Device Sessions

There are two parts to opening a communications session with a specific
device. First you must open a session to the default resource manager with
thevi OpenDef aul t RMfunction. Thefirst call to thisfunction initializes
the default resource manager and returns a session to that resource manager
session. You only need to open the default manager session once. However,
subsequent callsto vi OpenDef aul t RMreturns a unique session to the same
default resource manager resource.

Next, you open a session with a specific device with the vi Qpen function.
This function uses the session returned from vi OpenDef aul t RMand
returns its own session to identify the device session. The following shows
the function syntax:

vi QpenDef aul t RM sesn) ;])
vi Open(sesn, rsrcName, accessMode, timeout, Vi) ;

The session returned from vi OpenDef aul t RMmust be used in the sesn
parameter of the vi Open function. Thevi Open function then uses that
session and the device address specified in the rsrcName parameter to open a
device session. Thevi parameter in vi Open returns a session identifier that
can be used with other VISA functions.

Your program may have several sessions open at the same time by creating
multiple session identifiers by calling the vi Open function multiple times.

The following summarizes the parameters in the previous function calls:

sesn Thisisasession returned from the vi QpenDef aul t RM
function that identifies the resource manager session.

rsrcName This is a unique symbolic name of the device (device
address).

accessMode This parameter is not used for VISA 1.0. Use VI _NULL.
timeout This parameter is not used for VISA 1.0. Use VI _NULL.

vi This is a pointer to the session identifier for this particular
device session. This pointer will be used to identify this
device session when using other VISA functions.

Chapter 4 53

Programming with HP VISA
Opening a Session

Thefollowing is an example of opening sessions with a GPIB multimeter
and a GPIB-V XI scanner:

Vi Sessi on defaul tRM dmm scanner;

;/i OpenDef aul t RM &def aul t RM ;
vi Qpen(defaul tRM "GPl BO::22::INSTR', M _NULL, M _NULL, &Jmm);
vi Quen(defaul tRVM "GAIB-VX 0::24:: INSTR', MI_NULL, M _NULL, &scanner);

vi O ose(scanner);

vi Cl ose(dmm) ;

vi Cl ose(defaul tRV;
The previous example first opens a session with the default resource
manager. The session returned from the resource manager and a device
address is then used to open a session with the GPIB device at address 22.
That session will now be identified asdmmwhen using other VISA
functions. The session returned from the resource manager is then used
again with another device address to open a session with the GPIB-V X |
device at primary address 9 and VX1 logical address 24. That session will
now beidentified as scanner when using other VISA functions. Seethe
following section, "Addressing a Session," for information on addressing
particular devices.

54 Chapter4

Note

Programming with HP VISA
Addressing a Session

Addressing a Session

As seen in the previous section, the rsrcName parameter in the vi Open
function is used to identify a specific device. This parameter consists of the
VISA interface name and the device address. Theinterface nameis
determined when you run the VISA configuration utility. Thisnameis
usually the interface type followed by a number. The following table
illustrates the format of the rsrcName for the different interface types:

Interface Syntax

VXI VXI[board]::VXI logical addresy::INSTR]
GPIB-VXI GPIB-VXI[board]::VXI logical addresy::INSTR]
GPIB GPIB[board]::primary address[::secondary address|[::INSTR]
ASRL ASRL[board][::INSTR]

The following describes the parameters used above:

board This optional parameter is used if you have more
than one interface of the same type. The default
value for board is 0.

VXl logical address This is the logical address of the VXI instrument.
primary address This is the primary address of the GPIB device.

secondary address This optional parameter is the secondary address
of the GPIB device. If no secondary address is
specified, none is assumed.

I NSTRis an optional parameter that indicates that you are communicating
with aresource that is of type | NSTR, meaning instrument.

If you want to be compatible with future releases of VISA, you must include
the | NSTR parameter in the syntax.

Chapter 4 55

Programming with HP VISA
Addressing a Session

The following are examples of valid symbolic names:
VX 0::24::INSTR Deviceat VXI logical address 24 that is of VISA
type INSTR.

VXl 2::128 Deviceat VXI logical address128, in thethird VXI
system (VX12).

GPI B-VXI 0: : 24 A VXI device at logical address 24. ThisVXI
deviceis connected via a GPIB-V X| command

module.

GPIBO::7::0 A GPIB device at primary address 7 and secondary
address 0 on the GPIB interface.

ASRL1: : | NSTR A serial device located on port 1 that is of VISA
type INSTR.

The following is an example of opening a device session with the GPIB
device at primary address 23.

Vi Sessi on defaul tRM vi;

vi OpenDef aul t RV &def aul t RM ;
vi Qpen(defaul tRM "GPIBO: : 23: : INSTR', VI _NULL, VI _NULL, &vi);

vi O ose(vi):
vi Cl ose(defaul tRV;

56 Chapter4

Programming with HP VISA
Closing a Session

Closing a Session

Thevi O ose function must be used to close each session. You can close
the specific device session, which will free all data structures that had been
alocated for the session. If you close the default resource manager session,
all sessions opened using that resource manager session will be closed.

Since system resources are al so used when searching for resources

(vi Fi ndRsr c), thevi d ose function needsto be called to free up find
lists. Seethe next section, "Searching for Resources," for more information
on closing find lists.

Chapter 4 57

Programming with HP VISA
Searching for Resources

Searching for Resources

When you open the default resource manager, you are opening a parent
session that knows about al the other resources in the system. Since the
resource manager session knows about all resources, it has the ability to
search for specific resources and open sessions to these resources. You can,
for example, search an interface for devices and open a session with one of
the devices found.

Usethevi Fi ndRsr ¢ function to search an interface for device resources.
This function finds matches and returns the number of matches found and a
handle to the resources found. If there are more matches, use the

vi Fi ndNext function with the handle returned from vi Fi ndRsr ¢ to get
the next match:

vi Fi ndRsr c(sesn, expr, findList, retent, instrDesc) ;
vi Fi ndNext (findList, instrDesc) ;

vi O ose(findList) ;
Where the parameters are defined as follows:

sesn The resource manager session.

expr The expression that identifies what to search (see table that
follows).

findList A handle that identifies this search. This handle will then

be used asan input to the vi Fi ndNext function when
finding the next match.

retcnt A pointer to the number of matches found.
instrDesc A pointer to a string identifying the location of the match.

Note that you must allocate storage for this string.

The handler returned from vi Fi ndRsr ¢ should be closed to free up all the
system resources associated with the search. To close the find object, pass
the findList to thevi O ose function.

58 Chapter 4

Programming with HP VISA
Searching for Resources

Usethe expr parameter of thevi Fi ndRsr ¢ function to specify the interface
to search. You can search for devices on the specified interface. Usethe
following table to determine what to use for your expr parameter.

Interface expr Parameter
GPIB GPI B[0- 9] *:: ?*I NSTR
VXI VXI ?2* | NSTR
GPIB-VXI GPI B- VXI ?*| NSTR
GPIB and GPIB-VXI GPI B?*I NSTR
All VXI ?*VXI[0-9] *:: ?2*I NSTR
ASRL ASRL[0-9] *: : ?2*I NSTR
All ?*1 NSTR

Note Because VISA interprets strings as regular expressions, notice that the string
GPI B?* | NSTR appliesto both GPIB and GPIB-V XI devices.

Chapter 4 59

Programming with HP VISA
Searching for Resources

The following example searches the V X1 interface for devices. The number
of matches found isreturned in nmat ches, and mat ches pointsto the
string that contains the matches found. Thefirst call returns the first match
found, the second call returns the second match found, and so on.

Vi Char buffer [VI_FI ND_BUFLEN];

Vi Rsrc mmt ches=buf fer;

Vi Ul nt 32 nmat ches;
Vi Fi ndLi st 1ist;

;/i Fi ndRsrc(defaul tRM "VXI ?*I NSTR', & ist, &wmatches, matches);

;/i Fi ndNext (1ist, matches);

vi 0 ose(list);

Notethat VI _FI ND_BUFLENisdefined inthevi sa. h declarationsfile.

60 Chapter4

Programming with HP VISA
Sending I/0O Commands

Sending I/O Commands

Once you have established a communi cations session with a device, you can
start communicating with that device using VISA's I/O routines. VISA
provides both formatted and non-formatted I/O routines:

®* Formatted 1/O converts mixed types of data under the control of a
format string. The datais buffered, thus optimizing interface traffic.

* Non-formatted /O sends or receives raw datato or from adevice. With
non-formatted I/O, no format or conversion of the datais performed.
Thus, if formatted datais required, it must be done by the user.

You can choose between VISA’s formatted and non-formatted 1/O routines.
However, since the non-formatted 1/O performs the low-level 1/0O, you
should not mix formatted 1/0 and non-formatted 1/0O in the same session.
See the following sections for a complete description and examples of using
formatted 1/0 and non-formatted I/O in VISA.

Chapter 4 61

Programming with HP VISA
Sending I/O Commands

Formatted 1/0

The VISA formatted I/0O mechanism is similar to the C st di o mechanism.
The VISA formatted 1/0O functions are buffered. They are asfollows:

Thevi Printf functionsformat according to the format string and send
datatoadevice. Thevi Pri nt f function sends separate arg parameters,
whilethevi VPri nt f function sendsalist of parametersin params:

vi Printf(vi, writeFmt[, argl][, arg2][, ...]);
vi VPri nt f (vi, writeFmt, params) ;

Thevi Scanf functions receive and convert data according to the format
string. Thevi Scanf function receives separate arg parameters, while
thevi VScanf function receivesalist of parametersin params.

vi Scanf (vi, readFmt[, argl][, arg2][, ..]);
vi VScanf (i, readFmt params) ;

Thevi Quer yf functionsformat and send data to a device and then
immediately receive and convert the response data. Hence, the

vi Quer yf functionisacombination of thevi Pri ntf andvi Scanf
functions. Similarly, thevi VQuer yf function is acombination of the
vi VPrintf andvi VScanf functions.

Thevi Quer yf function sends and receives separate arg parameters,
whilethevi VQuer yf function sends and receives alist of parametersin
params.

vi Quer yf (vi, writeFmt, readFnmt[, argl][, arg2][, ...]) ;
vi VQuer yf (Vi, wrlteFmt readFmt params) ;

Note Thevi Queryf andvi VQuer yf functions are not supported with the VISA
Transition Library (VTL).

62

Chapter4

Formatted I/O
Conversion

Modifiers

Programming with HP VISA
Sending I/0O Commands

There are two non-buffered and non-formatted |/O functions that
synchronously transfer datacalled vi Read andvi Wi t e, and there are two
that asynchronously transfer data called vi ReadAsync and

vi WiteAsync. Theseareraw I/O functions and do not intermix with the
formatted 1/0 functions. See "Non-Formatted 1/O" later in this chapter.

Seevi Printf,vi Queryf,andvi Scanf in Chapter 7, "HP VISA
Language Reference," for more information on how datais converted under
the control of the format string.

The formatted I/O functions convert data under the control of the format
string. The format string specifies how the argument is converted beforeit is
input or output. The format specifier sequence consists of a%(percent)
followed by an optional modifier(s), followed by a conversion character:

94 modifiers] conversion character

Zero or more modifiers may be used to change the meaning of the
conversion character. Modifiers are only used when sending or receiving
formatted 1/0.

For sending formatted 1/0O, the asterisk (*) can be used to indicate that the
number is taken from the next argument. However, when the asterisk is
used when receiving formatted 1/0, it indicates that the assignment is
suppressed and the parameter is discarded. Use the pound sign (#) when
receiving formatted 1/0 to indicate that an extraargument is used.

The following are supported modifiers.

Chapter 4 63

Programming with HP VISA
Sending I/O Commands

Field Width. Field width is an optional integer that specifies how many

characters areinthefield. If thevi Printf orvi Queryf (writeFmt)

formatted data has fewer characters than specified in the field width, it will

be padded on the left, or on the right if the — flag is present. You can use an
asterisk) in place of the integer wi Pri ntf orvi Queryf (writeFmt) to
indicate that the integer is taken from the next argument. Foi tEanf

orvi Queryf (readFmt) functions, you can use#asign to indicate that the

next argument is a reference to the field width.

The field width modifier is only supported with Pri nt f andvi Quer yf
(writeFmt) conversion characteds f, s, andvi Scanf andvi Quer yf
(readFmt) conversion charactees s, and[] .

The following example padsunb to six characters and sends it to the
session specified byi:

int nunmb = 61,
viPrintf(vl, "9%d\n", nunb);

Inserts four spaces, for a total of 6 characters: 61

64 Chapter4

Programming with HP VISA
Sending I/0O Commands

. Precision. Precision is an optional integer preceded by a period. This
modifier is only used with thevi Pri nt f and vi Quer yf (writeFmt)
functions. The meaning of this argument is dependent on the conversion
character used:

Precision Modifiers

Conversion Description
Character
d Indicates that the minimum number of digits to

appear is specified forthe @, @4, @ and @ flags,
andthei, o, u, x, and X conversion characters.

f Indicates that the maximum number of digits after the
decimal point is specified.

S Indicates that the maximum number of characters for the
string is specified.

g Indicates that the maximum significant digits are specified.

You can use an asterisk (*) in place of the integer to indicate that the integer
is taken from the next argument.

Thefollowing example converts nunb so that there are only two digitsto the
right of the decimal point and sendsiit to the session specified by vi:

float nunb = 26.9345;
vViPrintf(wvl, "% 2f\n", nunb);

Sends: 26. 93

Chapter 4 65

Programming with HP VISA
Sending I/O Commands

Argument Length Modifier. The meaning of the optional argument length
modifierh, 1, L, z'’orZisdependent on the conversion character, as
listed in the following table. Notethat z and Z are not ANSI C standard
modifiers.

Argument Length Modifiers

Argument Conversion Description
Length Character
Modifier
h d, b, B Corresponding argument is a short integer or

a reference to a short integer for d. For b or B,
the argument is the location of a block of data
or a reference to a data array. (B is only used
with vi Printf or vi Queryf (writeFmt).)

d, f, Corresponding argument is a long integer or a

b, B reference to a long integer for d. For f, the
argument is a double float or a reference to a
double float. For b or B, the argument is the
location of a block of data or a reference to a
data array. (B is only used with vi Pri ntf or
vi Quer yf (writeFmt).)

L f Corresponding argument is a long double or a
reference to a long double.

z b, B Corresponding argument is an array of floats
or a reference to an array of floats. (B is only
used with vi Printf orvi Queryf (writeFmt).)

z b, B Corresponding argument is an array of double
floats or a reference to an array of double
floats. (B is only used with vi Printf or
vi Quer yf (writeFmt).)

66 Chapter4

Note

Programming with HP VISA
Sending I/0O Commands

, Array Size. The comma operator is aformat modifier which allows you to
read or write acomma-separated list of numbers (only valid with %a and %
conversion characters). Itisacommafollowed by an integer. The integer
indicates the number of elementsin the array. The comma operator has the
format of , dd where dd is the number of elementsto read or write.

Forvi Printf orvi Queryf (writeFmt), you can usean asterisk (*) in place
of the integer to indicate that the integer is taken from the next argument.
For vi Scanf or vi Queryf (readFmt), you can use a# sign to indicate that
the next argument is areference to the array size.

The following example specifies a comma-separated list to be sent to the
session specified by vi:

int 1ist[5]={101, 102, 103, 104, 105} ;
Vi Printf(wvl, "%5d\n", list);

Sends: 101, 102, 103, 104, 105

Seethevi Pri ntf functionin Chapter 7, "HP VISA Language Reference,”
for additional, enhanced modifiers (@, @, @, @4, @D or @).

Special Characters. Special formatting character sequences will send
special characters. The following describes the special characters and what
will be sent:

\n Sends the ASCII line feed character. The END identifier will also
be sent.

\r Sends an ASCII carriage return character.

\ t Sends an ASCII TAB character.

\ ### Sends the ASCII character specified by the octal value.
\ " Sends the ASCII double quote character.

\\ Sends a backslash character.

Note that the * while using thevi Scanf functions acts as an assignment
suppression character. Theinput is not assigned to any parametersand is
discarded.

Chapter 4 67

Programming with HP VISA
Sending I/O Commands

Conversion Characters. The conversion characters for sending and
receiving formatted 1/0 are different. The following tables summarize the
conversion characters for each:

ViPrintf/viVPrintf and viQuer yf/viVQueryf (writeFmt)
Conversion Characters

Conversion Description
Character
d, i Corresponding argument is an integer.
f Corresponding argument is a double.
c Corresponding argument is a character.
S Corresponding argument is a pointer to a null terminated
string.
% Sends an ASCII percent (%9 character.

0, u, X, X Corresponding argument is an unsigned integer.
e, E, g, G Corresponding argument is a double.
n Corresponding argument is a pointer to an integer.

b, B Corresponding argument is the location of a block of data.

viScanf/viV Scanf and viQuer yf/viV Queryf (readFmt)
Conversion Characters

Conversion Description
Character
d,i,n Corresponding argument must be a pointer to an integer.
e, f,g Corresponding argument must be a pointer to a float.
c Corresponding argument is a pointer to a character
sequence.
s, t, T Corresponding argument is a pointer to a string.
o, u, X Corresponding argument must be a pointer to an unsigned
integer.
[Corresponding argument must be a character pointer.
b Corresponding argument is a pointer to a data array.

68 Chapter4

Formatted I/O
Example

Programming with HP VISA
Sending I/0O Commands

The following example receives data from the session specified by the vi
parameter and converts the data to a string:

char data[180];
vi Scanf (v, "% ", data);

The following C program example shows sending and receiving formatted
I/0. Thisexample opens a session with a GPIB device and sends acomma
operator to send a comma-separated list. This example program isintended
to show specific VISA functionality and does not include error trapping.
Error trapping, however, is good programming practice and is recommended
inyour VISA applications. See"Trapping Errors' later in this chapter.

This example program isinstalled on your system in the SAMPLES
subdirectory on Windows environments, or in the exanpl es subdirectory
on HP-UX. See Appendix A, "HP VISA System Information,” for the
specific location of the example programs on your operating system.

Chapter 4 69

Programming with HP VISA
Sending I/O Commands

/*formatio.c

Thi s exanpl e program nmakes a rnul tineter measuremnent
with a comma separated |ist passed with formatted

I/O and prints the results.

Note that you nust change the device address.

#i ncl ude <vi sa. h>
#i ncl ude <stdio. h>

void main () {

Vi Sessi on defaul tRM vi;
doubl e res;
double list [2] = {1,0.001};

*/

/* Open session to GPIB device at address 22 */

vi OpenDef aul t RM &ef aul t RM ;

vi Open(defaul tRM "GPl BO:: 22:: I NSTR',

/* Initialize device */
viPrintf(vi, "*RST\n");

/* Set up device and send comra separated list */

viPrintf(vi, "CALC. DBM REF 50\ n");
Vi Printf(vi, "MEAS: VOLT: AC? % 2f\n",

/* Read results */
vi Scanf (vi, "%f", &res);

/* Print results */
printf("Measurement Results: %f\n",

/* C ose session */
vi Cl ose(vi);
vi Cl ose(defaul tRV;

VI _NULL, VI _NULL, &vi);

list);

res);

70

Chapter4

Format String

Formatted I/O
Buffers

Programming with HP VISA
Sending I/0O Commands

Theformat string for vi Pri nt f and vi Quer yf (writeFmt) puts a special
meaning on the newline character (\ n). The newline character in the format
string flushes the output buffer to the device. All charactersin the output
buffer will be written to the device with an END indicator included with the
last byte (the newline character). This meansthat you can control at what
point you want the data written to the device. If no newline character is
included in the format string, then the characters converted are stored in the
output buffer. It will require another call tovi Pri nt f, vi Quer yf
(writeFmt), or vi FI ush to have those characters written to the device.

This can be very useful in queuing up datato send to adevice. It can aso
raise 1/0 performance by doing afew large writes instead of several smaller
writes.

The VISA software maintains both aread and write buffer for formatted 1/0
operations. Occasionaly, you may want to control the actions of these
buffers.

The write buffer is maintained by thevi Pri nt f or vi Quer yf (writeFmt)
functions. The buffer queues charactersto send to the device so that they are
sent in large blocks, thus increasing performance. The write buffer
automatically flushes when it sends a newline character from the format
string. 1t may occasionally be flushed at other non-deterministic times, such
as when the buffer fills. When the write buffer flushes, it sends its contents
to thedevice. If you settheVl _ATTR WR BUF _OPER_MODE attribute to

VI _FLUSH _ON_ACCESS, the write buffer will also be flushed every time a
vi Printf orvi Queryf operation completes. See "Using Attributes' |ater
in this chapter for information on setting VISA attributes.

The read buffer is maintained by thevi Scanf and vi Quer yf (readFmt)
functions. It queuesthe datareceived from adevice until it is needed by the
format string. Flushing the read buffer destroys the data in the buffer and
guarantees that the next call to vi Scanf or vi Quer yf reads data directly
from the device rather than data that was previously queued. If you set the
VI _ATTR_RD BUF_OPER_MODE attributeto VI _FLUSH ON_ACCESS, the
read buffer will be flushed every time avi Scanf or vi Quer yf operation
completes. See"Using Attributes' later in this chapter for information on
setting VISA attributes.

Chapter 4 71

Note

Programming with HP VISA
Sending I/O Commands

You can manually flush the read and write buffers by using the viFlush
function.

Flushing the read buffer also includes reading all pending response data
from adevice. If the deviceis still sending data, the flush process will
continue to read data from the device until it receives an END indicator from
the device.

You can modify the size of the buffer by using thevi Set Buf function. See
Chapter 7, "HP VISA Language Reference," for more information on this
function.

Non-Formatted |/O

There are two non-buffered, non-formatted 1/0 functions that synchronously
transfer data called vi Read and vi Wi t e, and there are two that
asynchronoudly transfer datacalled vi ReadAsync and vi Wi t eAsync.
These are raw 1/0 functions and do not intermix with the formatted 1/0
functions.

The non-formatted I/O functions are as follows;

®* Thevi Read function synchronously reads raw data from the session
specified by the vi parameter and stores the results in the location where
buf is pointing. Only one synchronous read operation can occur at any
onetime.

vi Read(Vi, buf, count, retCount) ;

®* Thevi Wi t e function synchronously sends the data pointed to by buf to
the device specified by vi. Only one synchronous write operation can
occur at any onetime.

vi Wi te(vi, buf, count, retCount) ;

72 Chapter4

Programming with HP VISA
Sending I/0O Commands

®* Thevi ReadAsync function asynchronously reads raw data from the
session specified by the vi parameter and stores the resultsin the location
where buf ispointing. Thisoperation normally returns before the transfer
terminates. Thus, the operation returns jobld, which you can use with
either vi Ter mi nat e to abort the operation or with an I/O completion
event to identify which asynchronous read operation compl eted.

vi ReadAsync(Vi, buf, count, jobld) ;

®* Thevi Wit eAsync function asynchronously sends the data pointed to
by buf to the device specified by vi. This operation normally returns
before the transfer terminates. Thus, the operation returns jobld, which
you can use with either vi Ter mi nat e to abort the operation or with an
I/0O completion event to identify which asynchronous write operation
completed.

vi Wi teAsync(Vi, buf, count, jobld) ;

Note Thevi ReadAsync, vi WiteAysnc, andvi Ter mi nat e functions are not
supported with the Visa Transition Library (VTL).

For more information, seethevi Read, vi Wite, vi ReadAsync,
vi Wi teAsync, andvi Ter i nat e functionsin Chapter 7, "HP VISA
Language Reference.”

Chapter 4 73

Non-Formatted
I/O Example

Programming with HP VISA
Sending I/O Commands

The following example program illustrates using non-formatted 1/O
functionsto communicate with aGPIB device. A similar exampleisused to
illustrate formatted 1/O earlier in this chapter. This example program is
intended to show specific VISA functionality and does not include error
trapping. Error trapping, however, is good programming practice and is
recommended in your VISA applications. See "Trapping Errors’ later in
this chapter.

This example program is installed on your system in the SAMPLES
subdirectory on Windows environments, or in the exanpl es subdirectory
on HP-UX. See Appendix A, "HP VISA System Information," for the
specific location of the example programs on your operating system.

74 Chapter4

Programming with HP VISA
Sending I/0O Commands

/*nonfntio.c
Thi s exanpl e program neasures the AC voltage on a
multimeter and prints the results. Note that you nust
change the device address. */

#i ncl ude <vi sa. h>
#i ncl ude <stdi o. h>

void main () {
Vi Sessi on defaul tRM vi;
char strres [20];

unsi gned | ong actual ;

/* Open session to GPIB device at address 22 */
vi OpenDef aul t RM &def aul t RM ;

vi Open(defaul tRM "GPl BO::22::INSTR', VI _NULL, VI NULL, &vi);

/* Initialize device */
viWwite(vi, (ViBuf)"*RST\n", 5, &actual);

/* Set up device and take neasurenent */
viWite(vi, (ViBuf)"CALC. DBM REF 50\ n", 16, &actual);

viWite(vi, (ViBuf)"MEAS: VOLT: AC? 1, 0.001\n", 23, &actual);

/* Read results */
vi Read(vi, (ViBuf)strres, 20, &actual);

/* NULL terminate the string */
strres[actual] =0;

I* Print results */
printf("Measurement Results: %\n", strres);

/* Cl ose session */
vi Cl ose(vi);
vi Cl ose(defaul t RV ;

Chapter 4

75

Note

Programming with HP VISA
Using Attributes

Using Attributes

Attributes are associated with resources or sessions. You can use attributes
to determine the state of aresource or session. You can also use attributes to
set aresource or session to a specified state.

Usethevi Get At t ri but e function to read the state of an attribute for a
specified session, event context, or find list. There are read only (RO) and
read/write (RW) attributes. Usethevi Set At t ri but e function to modify
the state of a read/write attribute for a specified session, event context, or
find list.

The following exampl e reads the state of the VI _ATTR_TERMCHAR_EN
attribute and changesit if it isnot true:

Vi Bool ean state, newstate;
newst at e=VI _TRUE;

;/i GetAttribute(vi, VI_ATTR TERMCHAR EN, &state);
if (state err !=VI_TRUE) vi SetAttribute(vi,
VI _ATTR_TERMCHAR_EN, newstate);

The pointer passed tovi Get At t ri but e must point to the exact type
required for that attribute: Vi Ul nt 16, Vi | nt 32, and so forth. For example,
when reading an attribute state that returnsaVi Ul nt 16, then you must
declare avariable of that type and use it for the returned data. If Vi Stri ng
is returned, then you must allocate an array and pass a pointer to that array
for the returned data.

The attributes are described in the following subsections. For programming
information on attributes, such as attribute types and ranges, see Appendix
B, "HP VISA Attributes.”

76 Chapter 4

Programming with HP VISA
Using Attributes

HP VISA Resource Attributes

The VISA resource attributes are primarily used to find out information
about the VISA version implemented and its manufacturer. Information can
also be obtained about the current resource manager session, as well asthe

locking state of aresource.

VI _ATTR_MAX_QUEUE_LENGTH

VI _ATTR_RM_SESSI ON

VI _ATTR_RSRC_| MPL_VERSI ON
VI _ATR_RSRC_LOCK_STATE

VI _ATTR_RSRC_MANF_| D

VI _ATTR_RSRC_MANF_NAVE

VI _ATTR_RSRC_NAME

VI _ATTR_RSRC_SPEC_VERSI ON
VI _ATTR_USER DATA

Specifies the maximum number of
events that can be queued.

Returns the session of the resource
manager that was used to open this
session.

Returns the resource identification.

Returns the current locking state of
the resource.

Returns the VXI manufacturer’s
identification of the manufacturer
that created the implementation.

Returns the VXI manufacturer’s
name of the manufacturer that
created the implementation.

Returns the identifier of the resource
compliant with the address
specified.

Returns the VISA version.

This is a place for you to store your
own data.

Chapter 4

77

Programming with HP VISA
Using Attributes

HP VISA Generic Instrument Attributes

The following are generic attributes that can be called on sessions. These
attributes determine such things as when a buffer is flushed, timeout values,
and the type of interface the deviceis on.

VI _ATTR | NTF_NUM Returns the board number of the
specified interface.

VI _ATTR I NTF_TYPE Returns the interface type for the
specified session.

VI _ATTR_| NTF_I NST_NAVME Human-readable text describing the
interface. (VISA 1.1 only)

VI _ATTR | O PROT For VXI, specifies if you use normal word

serial or fast data channel (FDC)
protocol. For GPIB, only normal data
transfers are accepted.

VI _ATTR_RD BUF_OPER_MODE Determines when the read buffer is
flushed.

VI _ATTR _SEND END EN Specifies whether the END is asserted
during the transfer of the last byte of the
buffer.

VI _ATTR _SUPPRESS END EN Specifies whether the END is
suppressed.

VI _ATTR_TERMCHAR Specifies if the termination character is to
be used. When
VI _ATTR _TERMCHAR ENis enabled and
the termination character is read, the
read operation will terminate.

VI _ATTR TERMCHAR EN Determines if the read operation will
terminate when a termination character
is received.

VI _ATTR TMO VALUE Specifies a timeout value.

VI _ATTR TRIG ID Specifies the current trigger line.

VI _ATTR WR BUF_OPER_MODE Determines when the write buffer is
flushed.

78 Chapter4

GPIB and GPIB-
VXI Interfaces

VXI and GPIB-
VXI Interfaces

Programming with HP VISA
Using Attributes

HP VISA Interface Specific Instrument Attributes

The interface specific attributes provide information about an interface or a
device on aninterface. The attributes are listed by interface type.

VI _ATTR_GPI B_PRI MARY_ADDR

VI _ATTR_GPl B_SECONDARY_ADDR

VI _ATTR_GPl B_READDR_EN

VI _ATTR_GPl B_UNADDR_EN

VI _ATTR_CMDR LA

Returns the primary address of the
GPIB device for the specified
session.

Returns the secondary address of the
GPIB device for the specified
session.

Specified whether to use repeat
addressing before each read or write
operation. (VISA 1.1 only)

Specifies whether to unaddress the
device (UNT and UNL) after each
read or write operation. (VISA 1.1

only)

Returns the logical address of the

commander of the VXI device in the
specified session.

VI _ATTR_DEST_| NCREMENT

Specifies how much the destination

offset is to be incremented after every
transfer in the vi MoveQut XX function.
If set to 0, the vi MoveQut XX function
will always write to the same element,
essentially treating the destination as a
FIFO register.

VI _ATTR_FDC_CHNL

Determines which fast data channel

(FDC) will be used to transfer the buffer.

Chapter 4

79

Programming with HP VISA
Using Attributes

VI _ATTR_FDC_GEN_SI GNAL_EN Setting this attribute to VI _TRUE lets

VI _ATTR_FDC_MODE

VI _ATTR_FDC_USE_PAI R

VI _ATTR_| MVEDI ATE_SERV

VI _ATTR_MAI NFRAME_LA

VI _ATTR_MANF_| D

VI _ATTR_MEM BASE

VI _ATTR_MEM S| ZE

VI _ATTR_MEM_SPACE

VI _ATTR_MODEL_CODE

VI _ATTR_SLOT

the servant send a signal when control
of the FDC channel is passed back to
the commander. This action frees the
commander from having to poll the FDC
header while engaging in an FDC
transfer.

Determines which FDC mode to use
(Normal or Stream mode).

If setto VI _TRUE, a channel pair will be
used for transferring data. Otherwise,
only one channel will be used.

Specifies whether or not the given
device is an immediate servant of the
controller running VISA.

Returns the lowest logical address in
the mainframe. VI _UNKNOWN LA is
returned if the logical address is not
known.

Returns the manufacturer’s
identification number of the VXI device
in the specified session.

Returns the base address of the device
in A24 or A32 VXI memory address
space.

Returns the size of memory requested
by the device in A24 or A32 VXI
address space.

Returns the VXI address space used by
the device (A16, A16/A24, or A16/A32).

Returns the model code of the device in
the specified session.

Returns the physical slot location of the
VXI device in the specified session.

80

Chapter4

VI _ATTR_SRC_| NCREMENT

VI_ATTR VXl _LA

VI _ATTR_ W N_ACCESS

VI _ATTR_W N_BASE_ADDR

VI_ATTR W N_SI ZE

VI _ATTR_SRC BYTE ORDER

VI _ATTR_DEST_BYTE_ORDER

VI _ATTR_W N_BYTE_ORDER

VI _ATTR_SRC_ACCESS_PRI V

Programming with HP VISA
Using Attributes

Specifies how much the source offset is
to be incremented after every transfer in
the vi Movel nXX function. Defaultis 1;
set it to either 0 or 1. If set to O, the

vi Movel nXX function will always read
from the same element, essentially
treating the source as a FIFO register.

Returns the logical address of the VXI
device in the specified session.

Returns the mode in which the current
window can be accessed.

Returns the base address of the
interface bus to which this window is
mapped.

Returns the size of the region mapped
to this window.

Specifies the byte order ot be used in
high-level access operations, such as
vi I nxx and vi Movel nxx, when reading
from the source. (VISA 1.1 only)

Specifies the byte order ot be used in
high-level access operations, such as
vi Qut xx and vi MoveCQut xx, when
writing to the destination. (VISA 1.1

only)

Specifies the byte order to be used in
low-level access operations, such as

vi MapAddr ess, vi Peekxx, and

vi Pokexx, when accessing the mapped
window. (VISA 1.1 only)

Specifies the address modifier used in
high-level access operations, such as
vi I nxx and vi Movel nxx, when reading
from the source. (VISA 1.1 only)

Chapter 4

81

GPIB-VXI
Interface

ASRL Interface

Programming with HP VISA
Using Attributes

VI _ATTR_DEST_ACCESS_PRI V

VI _ATTR_W N_ACCESS_PRI V

VI _ATTR_| NTF_PARENT _NUM

VI _ATTR_ASRL_AVAI L_NUM

VI _ATTR_ASRL_BAUD
VI _ATTR_ASRL_DATA BI TS

VI_ATTR_ASRL_END | N

VI _ATTR_ASRL_END OUT

VI _ATTR_ASRL_FLOW CNTRL

VI _ATTR_ASRL_PARI TY

Specifies the address modifier used in
high-level access operations, such as
vi Qut xx and vi MoveQut xx, when
writing to the destination. (VISA 1.1

only)

Specifies the address modifier to be
used in low-level access operations,
such as vi MapAddr ess, vi Peekxx, and
vi Pokexx, when accessing the mapped
window. (VISA 1.1 only)

Returns the board number of the GPIB
interface to which the GPIB-VXI is
attached.

Returns the number of bytes available in
the global receive buffer.

Returns the baud rate of the interface.

Returns the number of data bits
contained in each frame (from 5 to 8).
The data bits for each frame are located
in the low-order bits of every byte stored
in memory.

Indicates the method used to terminate
read operations.

Indicates the method used to terminate
write operations.

Returns the kind of flow control that the
transfer mechanism is using.

Returns the parity used with every frame
transmitted and received.

82

Chapter4

VI_ATTR_ASRL_STOP_BI TS

VI _ATTR_ASRL_CTS_STATE

VI _ATTR_ASRL_RTS_STATE

VI _ATTR_ASRL_DTR _STATE

VI _ATTR_ASRL_DSR_STATE

VI _ATTR_ASRL_DCD _STATE

VI_ATTR_ Rl _STATE

Programming with HP VISA
Using Attributes

Returns the number of stop bits used to
indicate the end of a frame.

Shows the current state of the Clear To
Send (CTS) input signal. (VISA 1.1 only)

Manually assert or unassert the Request
To Send (RTS) output signal. When the
VI _ATTR_ASRL_FLOW CNTRL attribute is
setto VI _ASRL_FLOW RTS_CTS, this
attribute is ignored when changed, but
can be read to determine whether the
background flow control is asserting or
unasserting the signal. (VISA 1.1 only)

Manually assert or unassert the Data
Terminal Ready (DTR) output signal.
(VISA 1.1 only)

Shows the current state of the Data Set
Ready (DSR) input signal. (VISA 1.1

only)

Shows the current state of the Carrier
Detect (DCD) input signal. The DCD
signal is often used by modems to
indicate the detection of a carrier
(remote modem) on the telephone line.
The DCD signal is also known as
Receive Line Signal Detect (RLSD).
(VISA 1.1 only)

Shows the current state of the Ring
Indicator (RI) input signal. (VISA 1.1

only)

Chapter 4

83

Programming with HP VISA
Using Attributes

HP VISA Event Attributes

The following attributes are read only attributes that can only be read on
event contexts returned from event handlers or vi Wai t OnEvent .

VI _ATTR_EVENT_TYPE
VI _ATTR_SI GP_STATUS_| D

VI_ATTR RECV_TRIG I D

VI _ATTR_STATUS

VI_ATTR JOB I D

VI _ATTR_BUFFER

VI _ATTR_RET_COUNT

Returns the type of event enabled.

Returns the 16-bit status (ID) value. (Only
for VI _EVENT_VXI _SI GP event type.)

Returnswhich trigger line wasfired. (Only
for VI _EVENT_TRI Gevent type.)

Returns the return code of the
asynchronous 1/O operation that has
completed. (Only for

VI _EVENT_| O COVPLETI ON event type.)

Returns the job identifier (ID) of the
asynchronous operation that has
completed. (Only for

VI _EVENT_| O COVPLETI ON event type.)

Returns the address of a buffer that was
used in an asynchronous operation. (Only
for VI _EVENT | O COVPLETI ON event
type.)

Returns the actual number of elements that
were asynchronously transferred. (Only for
VI _EVENT_| O COVPLETI ON event type.)

84

Chapter4

Programming with HP VISA
Using Events and Handlers

Using Eventsand Handlers

Events are special occurrences that require attention from your application.
Event types include Service Requests (SRQs), interrupts, and hardware
triggers. Events will not be delivered unless the appropriate events are
enabled.

There are two ways you can receive notification that an event has occurred:

® |nstall an event handler with vi | nst al | handl er, and enable one or
several events with vi Enabl eEvent . If the event was enabled with a
handler, the specified event handler will be called when the specified
event occurs. Thisiscalled a callback.

® Enable oneor severa eventswith vi Enabl eEvent and call the
vi Wi t OnEvent function. Thevi Wai t OnEvent function will suspend
the program execution until the specified event occurs or the specified
timeout period isreached. Thisis called queuing.

These methods are independent of each other, and one or both can be used at
onetime. The callback method is generally used when immediate response
is needed, and the queuing method is for non-critical events.

Examples of each of these methods follows. For amore detailed explanation
of each method, see the following sections.

Chapter 4 85

Programming with HP VISA
Using Events and Handlers

Callback Method:

voi d ny_handl er (Vi Session vi, ViEventType event Type,
Vi Event context, Vi Addr usrHandle) {

/* your event handling code here */

vi Cl ose(context);
mai n() {

Vi Session vi;
Vi Addr addr =0;

;/i Instal |l Handl er (vi, VI_EVENT_SERVI CE_REQ ny_handl er, addr);
vi Enabl eEvent (vi, VI _EVENT_SERVI CE_REQ VI _HNDLR, VI _NULL);
' /* your code here */

;/i Di sabl eEvent (vi, VI_EVENT_SERVI CE_REQ VI _HNDLR);
vi Uni nstal | Handl er (vi, M _EVENT_SERVI CE_REQ ny_handl er, addr);

)

Queuing Method:|

mai n() ;

Vi Sessi on vi;

Vi Event Type event Type;
Vi Event event;

vi Enabl eEvent (vi, VI_EVENT SERVICE REQ VI _QUEUE, VI _NULL):

vi Wi t OnEvent (vi, VI _EVENT_SERVI CE_REQ VI _TMO | NFI NI TE,
&event Type, &event);

;/i Cl ose(event);
vi Di sabl eEvent (vi, VI _EVENT_SERVI CE_REQ VI _QUEUE);
}

86

Chapter4

Programming with HP VISA
Using Events and Handlers

Events and Attributes

The following events can be enabled:

Event Name Description

VI _EVENT_SERVI CE_REQ Notification that a device is requesting
service.

VI _EVENT_VXI _SI GP Notification that a VXI signal or VXI
interrupt has been received from a device.

VI _EVENT_TRI G Notification that a hardware trigger was
received from a device.

VI _EVENT_| O COVPLETI ON Notification that an asynchronous
operation has completed.

Note TheVlI _EVENT_VXI _SI GP and VI _EVENT_TRI Gevents are not supported
on the GPIB-V XI interface.

Note Event contexts should not be closed in event handlers. (That is, do not use
vi Cl ose to close contexts in event handlers.)

Chapter 4 87

Programming with HP VISA
Using Events and Handlers

Once the application has received an event, information about that event can
be obtained by using thevi Get At t ri but e function onthat particular event
context. The following table lists the events and the associated read only
attributes that can be read to get event information on a specific event.

Event Name Attributes Data Type Values
VI _EVENT _SERVI CE REQ VI _ATTR EVENT TYPE Vi Event Type VI _EVENT_SERVI CE_REQ
VI _EVENT_VX _SI GP VI _ATTR_EVENT_TYPE Vi Event Type VI _EVENT_VXI _SI GP
VI _ATTR_SI GP_STATUS ID Vi Ul nt16 0 to FFFF,
VI _EVENT_TRI G VI _ATTR _EVENT TYPE Vi Event Type VI _EVENT_TRI G
VI_ATTR RECV. TRIGID Vilnt16 VI _TRIG TTLO to
VI_TRI G _TTL7
VI_TRI G ECLO to
VI_TRI G _ECL1
VI _EVENT_| O COMPLETI ON VI _ATTR EVENT TYPE Vi Event Type VI _EVENT_| O_COVPLETI ON
VI _ATTR_STATUS Vi St at us N A
VI_ATTR JOB_ I D Vi Jobl d N A
VI _ATTR_BUFFER Vi Buf N A
VI _ATTR_RET_COUNT Vi Ul nt 32 0 to FFFFFFFF,

Reading the
Attribute

Usethe VISA vi ReadSTB function to read the status byte of the service
request.

Once you have decided which attribute to check, you can read the attribute
usingthevi Get At t ri but e function. Thefollowing showshow you would
check to find out which trigger line fired when the VI _EVENT_TRI Gevent
was delivered:

Vilntl6 state;

Vi Get Attri but e(context, VI_ATTR RECV. TRIG ID, &state);

Note that the context parameter is either the event context passed to your
event handler, or the outcontext specified when doing await on event. See
"Using Attributes" earlier in this chapter for more information on reading
attribute states.

88 Chapter4

Installing
Handlers

Programming with HP VISA
Using Events and Handlers

The Callback Method

The callback method of event notification is used when you need to
immediately respond to an event. To use the callback method for receiving
notification that an event has occurred, you must do the following:

® |pstall an event handler with thevi | nst al | Handl er function.
®* Enable one or several eventswith thevi Enabl eEvent function.

Then when the enabled event occurs, the installed event handler is called.

A handler isinstalled on a specified session. Only one handler can be
installed on a specific event in agiven session, or you can install a different
handler for each event type. However, the same handler can be installed on
more than one event type. Use the following function when installing an
event handler:

vi I nstal | Handl er (Vi, eventType, handler, userHandle) ;
Where the parameters are defined as follows:

Vi The session the handler will be installed on.
eventType The event type that will activate the handler.
handler The name of the handler to be called.

userHandle A user value that uniquely identifies the handler for

the specified event type.

The userHandl e parameter allows you to assign a value to be used with the
handler on the specified session. Thus, you can install the same handler for
the same event type on several sessions with different userHandle values.
The same handler is called for the specified event type. However, the value
passed to userHandle is different. Therefore the handlers are uniquely
identified by the combination of the handler and the userHandle. This may
be useful when you need a different handling method depending on the
userHandle.

Chapter 4 89

Writing the
Handler

Programming with HP VISA
Using Events and Handlers

The following shows how to install an event handler to call ny_handl er
when a Service Request occurs. Notethat VI _EVENT_SERVI CE_REQ must
also be an enabled event with thevi Enabl eEvent functionin order for the
service request event to be delivered.

vilnstal | Handl er (vi, VI _EVENT_SERVI CE_REQ ny_handl er, addr);

Usethevi Uni nst al | Handl er function to uninstall a specific handler. Or
you can use wildcards (VI _ANY_HNDLR in the handler parameter) to
uninstall groups of handlers. Seevi Uni nst al | Handl er in Chapter 7,
"HHP VISA Language Reference," for more details on this function.

The handler installed needs to be written by the programmer. The event
handler typically reads an associated attribute and performs some sort of
action. Seethe event handler in the example program later in this section.

90 Chapter4

Programming with HP VISA
Using Events and Handlers

Enabling Before an event can be delivered, it must be enabled using the
Events vi Enabl eEvent function. This function causes your application to be
notified when the enabled event has occurred:

vi Enabl eEvent (Vi, eventType, mechanism, context) ;
Where the parameters are defined as follows:

Vi The session the handler will be installed on.
eventType The type of event to enable.

mechanism The mechanism by which the event will be enabled. It
can be enabled in several different ways:

® UseVl _HNDLR inthis parameter to specify that the
installed handler will be called when the event occurs.

® UseVIl _SUSPEND_HNDLR in this parameter which
puts the events in a queue and waits to call the
installed handlers until vi Enabl eEvent iscalled
with VI _HNDLR specified in the mechanism
parameter. When vi Enabl eEvent is called with
VI _HNDLR specified, the handler for each queued
event will be called.

Note Using VI _QUEUE in the mechanism parameter specifies a queuing method
for the events to be handled. If you use both VI _QUEUE and one of the
mechanisms listed above, notification of events will be sent to both
locations. See the next subsection for information on the queuing method.

context Not used in VISA 1.0. Use VI _NULL.

Chapter 4 91

Event Callback
Example

Programming with HP VISA
Using Events and Handlers

The following illustrates enabling a hardware trigger event:

vilnstal | Handl er(vi, VI_EVENT_TRI G ny_handl er, &addr)
vi Enabl eEvent (vi, VI_EVENT_TRIG VI_HNDLR, VI _NULL);

The VI _HNDLR mechanism specifies that the handler installed for
VI _EVENT_TRI Gwill be called when a hardware trigger occurs.

If you specify VI _ALL_ENABLE_EVENTS in the eventType parameter, al
events that have previously been enabled on the specified session will be
enabled for the mechanism specified in this function call.

Usethevi Di sabl eEvent function to stop servicing the event specified.

The following example program installs an event handler and enables the
trigger event. When the event occurs, the installed event handler is called.
This example program is intended to show specific VISA functionality and
does not include error trapping. Error trapping, however, is good
programming practice and is recommended in your VISA applications. See
"Trapping Errors' later in this chapter.

This example program is installed on your system in the SAMPLES
subdirectory on Windows environments, or in the exanpl es subdirectory
on HP-UX. See Appendix A, "HP VISA System Information,” for the
specific location of the example programs on your operating system.

/* evnthdlr.c
This exanple programillustrates installing an event
handl er tobe called when a trigger interrupt
occurs. Note that you nust change the address. */

#i ncl ude <vi sa. h>
#i ncl ude <stdio. h>

[* trigger event handler */
Vi Status _VI _FUNCH nyHdl r (Vi Sessi on vi, Vi Event Type
event Type, Vi Event ctx, Vi Addr userHdlr){
Vilnt16 trigld;

/* make sure it is a trigger event */
i f(event Type! =VI _EVENT_TRI G {
/* Stray event, so ignore */
return VI_SUCCESS
}
[* print the event information */
printf("Trigger Event Cccurred!\n");

92 Chapter4

}

Programming with HP VISA
Using Events and Handlers

printf("...Oiginal Device Session = %d\n", vi);

/* get the trigger that fired */
Vi GetAttribute(ctx, VI_ATTR RECV._TRIGID, &rigld);
printf("Trigger that fired: ");
switch(trigld){
case VI _TRI G TTLO:
printf("TTLO");
br eak;
defaul t:
printf("<other Ox%>", trigld);
br eak;

}
printf("\n");

return VI _SUCCESS;

voi d mai n(){

Vi Sessi on def aul t RM vi ;

/* open session to VXl device */
vi OpenDef aul t RM &def aul t RM ;
vi Open(defaul tRM "VXI0::24::1NSTR', VI _NULL, VI_NULL, &vi);

/* select trigger line TTLO */

vi Set Attribute(vi, VI_ATTR. TRIG ID, VI_TRIG TTLO);

/* install the handler and enable it */

vilnstall Handl er(vi, VI_EVENT_TRIG nyHdlr, (Vi Addr)10);
vi Enabl eEvent (vi, VI_EVENT_TRI G, VI_HNDLR, VI _NULL);

[* fire trigger line, twice */

vi Assert Trigger(vi, VI_TRI G _PROT_SYNC);

vi Assert Trigger(vi, VI_TRI G_PROT_SYNC);

/* unenabl e and uninstall the handler */
vi Di sabl eEvent (vi, VI_EVENT_TRIG VI_HNDLR);
vi Uni nstal | Handl er (vi, VI_EVENT_TRI G nyHdlr, (ViAddr)10);

/* close the sessions */
vi Cl ose(vi);
vi Cl ose(defaul tRV;

Chapter 4 93

SRQ Callback
Example

Programming with HP VISA
Using Events and Handlers

The following example program installs an event handler and enables an
SRQ event. When the event occurs, the installed event handler is called.
This example program is intended to show specific VISA functionality and
does not include error trapping. Error trapping, however, is good
programming practice and is recommended in your VISA applications. See
"Trapping Errors' later in this chapter.

This example program is installed on your system in the SAMPLES
subdirectory on Windows environments, or in the exanpl es subdirectory
on HP-UX. See Appendix A, "HP VISA System Information," for the
specific location of the example programs on your operating system.

/* srghdlr.c
Thi s exanple programillustrates installing an event handl er
to be call ed when an SRQi nterrupt occurs. Note that you nust
change the address. */

#i ncl ude <visa. h>

#i ncl ude <stdio. h>

#i f defined (_WN32)
#i ncl ude <wi ndows. h> /* for Sleep() */
#define YIELD Sleep(10)

#elif defined (_BORLANDC)
#i nclude <wi ndows.h> /* for Yield() */
#define YIELD Yield()

#elif defined (_W NDOAB)

#i ncl ude <io. h> [* for _wyield */
#define YIELD _wyiel d()
#el se

#i ncl ude <uni std. h>
#define YIELD sleep (1)
#endi f

int srqCccurred;

[* trigger event handler */
Vi Status _VI _FUNCH nySrqHdl r (Vi Sessi on vi, Vi Event Type
event Type, Vi Event ctx, Vi Addr userHdlr){

Vi U nt 16 statusByte;

/* make sure it is an SRQ event */

i f (event Type! =VI _EVENT_SERVI CE_REQ) {
/* Stray event, so ignore */
printf("\nStray event of type Ox% x\n", eventType);
return VI _SUCCESS;

}

94 Chapter4

}

Programming with HP VISA
Using Events and Handlers

/* print the event information */
printf("\nSRQ Event Cccurred!\n");
printf("...Oiginal Device Session = %d\n", vi);

/* get the status byte */
vi ReadSTB(vi, &statusByte);
printf("...Status byte is Ox%\n", statusByte);

srqCccurred = 1;
return VI _SUCCESS;

voi d mai n(){

*/

Vi Sessi on def aul t RM vi ;
| ong count ;

/* open session to nessage based VXI device */
vi OpenDef aul t RM &def aul t RM ;
vi Qpen(defaul tRV "GPIB-VXI0::24::INSTR', M _NULL, VI_NUL, &i);

/* Enabl e conmmand error events */
viPrintf(vi, "*ESE 32\n");

/* Enabl e event register interrupts */
viPrintf(vi, "*SRE 32\n");

/* install the handl er and enable it */
vilnstal |l Handl er (vi, M _EVENT_SERV CE REQ nySrqgHdir, (M Addr) 10);
vi Enabl eEvent (vi, VI _EVENT_SERVI CE_REQ VI _HNDLR, VI _NULL);

srqCccurred = 0;

/* Send a bogus command to t he message based devi ce to cause an SRQ

/* Note: 'IDN causes the error -- 'IDN?” is the correct syntax */
ViPrintf(vi, "IDN\\n");

/* Wait a while for the SRQto be generated and for the */

/* handler to be called. Print something while we wait */

printf("Waiting for an SRQto be generated .");

for (count =0 ; (count < 10) && (srqCccurred == 0); count ++) {
I ong count2 = O;

printf(".");

while ((count2++ < 100) && (srqCccurred ==0)){
Yl ELD;

}

}
printf("\n");

Chapter 4 95

Programming with HP VISA
Using Events and Handlers

/* disable and uninstall the handler */
vi Di sabl eEvent (vi, VI_EVENT_SERVI CE_REQ VI_HNDLR);
vi Uni nstal | Handl er (vi, VI_BEVENT_SERM CE REQ nySrqHdir, (M Addr) 10);

/* Aean up after ourselves - don't | eave device in error state */
ViPrintf(vi, "*CLS\n");

/* close the sessions */
vi Cl ose(vi);
vi Cl ose(defaul t RV ;

printf("End of programin");

96

Chapter4

Enabling
Events

Programming with HP VISA
Using Events and Handlers

The Queuing Method

The queuing method is generally used when you do not need immediate
response from your application. To use the queuing method for receiving
notification that an event has occurred, you must do the following:

® Enable oneor severa events with the vi Enabl eEvent function.
®* When ready to query, usethevi Wai t OnEvent function to check for
queued events.

If the specified event has occurred, then the event information is retrieved
and the program returns immediately. |f the specified event has not
occurred, then the program suspends execution until a specified event occurs
or until the specified timeout period is reached.

Before an event can be delivered, it must be enabled using the
vi Enabl eEvent function:

vi Enabl eEvent (Vi, eventType, mechanism, context) ;
Where the parameters are defined as follows:

Vi The session the handler will be installed on.
eventType The type of event to enable.
mechanism The mechanism by which the event will be enabled.

Specify VI _QUEUE to use the queuing method.

context Not used in VISA 1.0. Use VI _NULL.

When you use VI _QUEUE in the mechanism parameter, you are specifying
that the events will be put into aqueue. Then, when avi Wai t OnEvent
function is invoked, the program execution will suspend until the enabled
event occurs or the timeout period specified is reached. If the event has
aready occurred, thevi Wai t OnEvent function will return immediately.

Chapter 4 97

Programming with HP VISA
Using Events and Handlers

The following illustrates enabling a hardware trigger event:
vi Enabl eEvent (vi, VI_EVENT_TRIG VI _QUEUE, VI _NULL);

The VI _QUEUE mechanism specifies that when an event occurs, it will go
into a queue.

If you specify VI _ALL_ENABLE_EVENTS in the eventType parameter, al
events that have previously been enabled on the specified session will be
enabled for the mechanism specified in this function call.

Usethevi Di sabl eEvent function to stop servicing the event specified.

Wait on the When using the vi Wai t OnEvent function, specify the session, the event
Event typeto wait for, and the timeout period to wait:

vi Wai t OnEvent (Vi, inEventType, timeout, outEventType, outContext) ;

Note that the event must have previously been enabled with VI _QUEUE
specified as the mechanism parameter.

The following shows how to install await on event for service requests:

vi Enabl eEvent (vi, VI_EVENT_SERVI CE_REQ VI _QUEUE, VI _NULL);
vi Wi t OnEvent (vi, VI_EVENT_SERVI CE_REQ VI _TMO | NFI NI TE,
&event Type, &event);

;/i Di sabl eEvent (vi, VI_EVENT_SERVI CE_REQ VI _QUEUE);

Every time await on event isinvoked, an event context object is created.
Specifying VI _TMO_| NFI NI TE in the timeout parameter indicates that the
program execution will suspend indefinitely until the event occurs. To clear
the event queue for a specified event type, usethevi Di scar dEvent s
function.

98 Chapter4

Programming with HP VISA
Using Events and Handlers

Event Queuing Thefollowing example program enables the trigger event in a queuing
Example mode. Whenthevi Wi t OnEvent function is called, the program will

suspend operation until the trigger line isfired or the timeout period is
reached. Sincethetrigger lineswere already fired and the events were put
into a queue, the function will return and print the trigger line that fired.
This example program is intended to show specific VISA functionality and
does not include error trapping. Error trapping, however, is good
programming practice and is recommended in your VISA applications. See
"Trapping Errors’ later in this chapter.

This example program isinstalled on your system in the SAMPLES
subdirectory on Windows environments, or in the exanpl es subdirectory
on HP-UX. See Appendix A, "HP VISA System Information,” for the
specific location of the example programs on your operating system.

/* evnt queu.c
This exanple programillustrates enabling an event queue
usi ng vi Wit OnEvent. Note that you nust change the device
address. */

#i ncl ude <vi sa. h>
#i ncl ude <stdi o. h>

voi d mai n(){
Vi Sessi on defaul tRM vi;
Vi Event Type event Type;
Vi Event event Vi ;
Vi Status err;
Vilnt16 trigld;

/* open session to VXl device */
vi OpenDef aul t RM &def aul t RM ;
vi Open(defaul tRM "VXI0::24::1NSTR', VI _NULL, VI_NULL, &vi);

/* select trigger line TTLO */
vi Set Attribute(vi, VI_ATTR. TRIG ID, VI_TRI G TTLO);

/* enabl e the event */
vi Enabl eEvent (vi, VI_EVENT_TRIG VI_QUEUE, VI _NULL);

/[* fire trigger line, twice */
vi Assert Trigger(vi, VI_TRI G _PROT_SYNC);
vi Assert Trigger(vi, VI_TRI G _PROT_SYNC);

Chapter 4 99

Programming with HP VISA
Using Events and Handlers

/* Wait for the event to occur */
err=vi i tnEvent (vi, VI _BEVENT_TRI G 10000, &event Type, &eventMi);
i f(err==VI _ERROR _TMO) {

printf("Tineout Cccurred! Event not received.\n");

return;

}

/* print the event information */
printf("Trigger Event Cccurred!\n");
printf("...Oiginal Device Session = %d\n", vi);

/* get trigger that fired */
Vi GetAttribute(eventVi, VI_ATTR RECV._TRIG ID, &rigld);
printf("Trigger that fired: ");
switch(trigld){
case VI _TRI G TTLO:
printf("TTLO");
br eak;
defaul t:
printf("<other Ox%>",trigld);
br eak;

}
printf("\n");

/* close the context before continuing */
vi Cl ose(event Vi) ;

/* get second event */
err=vi i tnEvent (vi, VI _EVENT_TR G 10000, &event Type, &vent\Vi);
i f(err==VI _ERROR _TMO) {
printf("Tineout Cccurred! Event not received.\n");
return;

printf("Got second event\n");

/* close the context before continuing */
vi Cl ose(event Vi) ;

/* disabl e event */
vi Di sabl eEvent (vi, VI_EVENT_TRI G VI _QUEUE);

/* close the sessions */
vi Cl ose(vi);
vi Cl ose(defaul tRV;

100 Chapter 4

Note

Programming with HP VISA
Trapping Errors

Trapping Errors

HP VISA Errors

The example programs in this guide show specific VISA functionality and
do not include error trapping. Error trapping, however, is good
programming practice and is recommended in all your VISA applications.
To trap VISA errors you must check for VI _SUCCESS after each VISA
function call. The following illustrates checking for VI _SUCCESS. If

VI _SUCCESS is not returned, then an error handler, written by the
programmer, is called. Thismust be done with each VISA function call.

If you want to ignore WARNINGS, you can test to seeif er r islessthan (<)
VI _SUCCESS. Since WARNINGS are greater than VI _SUCCESS and
ERRORS are less than VI _SUCCESS, er r _handl er would only be called
when the function returns an ERROR. For example:

if (err < VI_SUCCESS) err_handler (vi, err);

Vi Status err;

érrzviPrintf(vi, "*RST\n");
if (err < VI_SUCCESS) err_handler(vi, err);

Chapter 4 101

Programming with HP VISA
Trapping Errors

Thefollowing error handler prints a user-readabl e string describing the error
code passed to the function:

voi d err_handl er (Vi Session vi, ViStatus err){

char err_nsg[1024] ={0};

vi StatusDesc (vi, err, err_nsg);
printf ("ERROR = %\n", err_nsQ);
return;

Instrument Errors

When programming instruments, it's good practice to check the instrument
to make sure there are no instrument errors after each instrument function.
Thefollowing function uses a SCPI command to check a specific instrument
for errors:

void systemerr(){

Vi Status err;
char buf[1024] ={0};
int err_no;

err=viPrintf(vi, "SYSTEM ERR?\ n");
if (err < VI_SUCCESS) err_handler (vi, err);

err=vi Scanf (vi, "%l%", &err_no, &buf);
if (err < VI_SUCCESS) err_handler (vi, err);

while (err_no >0){
printf ("Error Found: %, %s\n", err_no, buf);
err=vi Scanf (vi, "%l%", &err_no, &buf);

}
err=vi Fl ush(vi, VI _READ BUF);
if (err < VI_SUCCESS) err_handler (vi, err);

err=vi Flush(vi, VI_WR TE_BUF);
if (err < VI_SUCCESS) err_handler (vi, err);

102 Chapter 4

Programming with HP VISA
Using Locks

Using L ocks

In VISA, applications can open multiple sessionsto a VISA resource
simultaneously. Applications can therefore access a VISA resource
concurrently through different sessions. However, in certain cases,
applications accessing a VISA resource may want to restrict other
applicationsfrom accessing that resource. For example, when an application
needs to perform successive write operations on a resource, the application
may require that, during the sequence of writes, no other operation can be
invoked through any other session to that resource. For such circumstances,
VISA defines alocking mechanism that restricts access to resources.

The VISA locking mechanism enforces arbitration of accessesto VISA
resources on a per-session basis. If a session locks a resource, operations
invoked on the resource through other sessions either are serviced or are
returned with an error, depending on the operation and the type of lock used.

If aVISA resourceis not locked by any of its sessions, all sessions have full
privilege to invoke any operation and update any global attributes. Sessions
are not required to have locks to invoke operations or update global
attributes. However, if some other session has already locked the resource,
attempts to update global attributes or invoke certain operations will fail.
Refer to descriptions of the individual VISA functions in Chapter 7, "HP
VISA Language Reference," to determine which would fail when aresource
islocked.

The VISA vi Lock function is used to acquire alock on aresource:
vi Lock(Vi, lockType, timeout, requestedKey, accessKey) ;

TheVl _ATTR_RSRC _LOCK_STATE attribute specifies the current locking
state of the resource on the given session, which can be either VI _NO_LOCK,
VI _EXCLUSI VE_LOCK, or VI _SHARED LOCK. The VISA vi Unl ock
function is then used to release the lock on aresource. The following
subsection explains the different types, or access modes, of locks.

Chapter 4 103

Programming with HP VISA
Using Locks

Note Thevi Lock andvi Unl ock functions are not supported with 16-bit VISA
on Windows 95.

Note If aresourceislocked and the current session does not have the lock, the
error VI _ERROR _RSRC_LOCKED s returned.

104 Chapter 4

Programming with HP VISA
Using Locks

Lock Types
VISA defines two different types of locks:

® ExclusivelLock - A session canlock aVISA resource using thelock type
VI _EXCLUSI VE_LOCK to get exclusive access privilegesto the resource.
This exclusive lock type excludes access to the resource from al other
sessions. If asession has an exclusive lock, other sessions cannot modify
global attributes or invoke operations on the resource; however, the other
sessions can still get atttributes.

® Shared Lock - A session can sharealock on aVISA resource with other
sessions by using the lock type VI _SHARED LOCK. Shared locksin
VISA aresimilar to exclusive locks in terms of access privileges, but can
still be shared between multiple sessions. If a session has a shared lock,
other sessions that share the lock can also modify global attributes and
invoke operations on the resource (of course, unless some other session
has a previous exclusive lock on that resource). A session that does not
share the lock will lack these capabilities.

See the next subsection, "Lock Sharing," for more information about the
shared lock type.

Locking aresource restricts access from other sessions and, in the case
where an exclusive lock is acquired, ensures that operations do not fail
because other sessions have acquired alock on that resource. Thus, locking
aresource prevents other, subsequent sessions from acquiring an exclusive
lock on that resource.

Yet, when multiple sessions have acquired a shared lock, note that VISA
alows one of the sessionsto acquire an exclusive lock along with the shared
lock itisholding. Thisisexplained in detail later in this section. Also hote
that VISA supports nested locking & emdash; that is, a session can lock the
same VISA resource multiple times (for the same lock type) viamultiple
invocations of the vi Lock function. In such a case, unlocking the resource
requires an equal number of invocations of the vi Unl ock function. Nested
locking is also explained in detail later in this section.

Chapter 4 105

Note

Lock Sharing

Programming with HP VISA
Using Locks

Some VISA operations may be permitted even when there is an exclusive
lock on aresource, or some global attributes may not be read when there is
any kind of lock on the resource. These exceptions, when applicable, are
mentioned in the descriptions of the individual VISA functions and
atributes. See Chapter 7, "HP VISA Language Reference," for descriptions
of theindividual functionsto determine which are applicable for locking and
which are not restricted by locking.

Because the locking mechanism in VISA is session-based, multiple threads
sharing a session that has locked a VISA resource have the same privileges
for accessing the resource. Some applications, though, may have separate
sessions to aresource and may want all the sessions in that application to
have the same privilege as the session that locked the resource. In other
cases, there may be a need to share locks among sessions in different
applications. Essentially, a session that acquired alock to a resource may
share the lock with other sessions it selects, and exclude access from other
sessions.

Asexplained earlier, VISA definesthe VI _SHARED LOCK lock typeto give
exclusive access privileges to a session along with the capability to share
these exclusive privileges with other sessions at the discretion of the original
session. When locking the resource using the VI _SHARED LOCK lock type,
thevi Lock function returns an accessKey that can be used to share the lock.
The session can then share this lock with any other session by passing
around this accessKey.

Before other sessions can access the locked resource, they need to acquire
the lock by passing the accessKey in the requestedKey parameter of the

vi Lock function. Invokingvi Lock with the same key will register the new
session to have the same access privileges as the original session. The new
session that acquired the access privileges through the sharing mechanism
can also pass the accessKey to other sessions for sharing of the resource, and
so forth. Of course, all the sessions sharing a resource via the shared lock
should synchronize their accesses to maintain a consistent state of the
resource.

106 Chapter 4

Acquiring an
Exclusive Lock
While Holding a

Shared Lock

Programming with HP VISA
Using Locks

VISA also provides the flexibility for the application(s) to specify akey to
use as the accessKey, instead of VISA generating the accessKey. The
application(s) can suggest akey value to use through the requestedKey
parameter of thevi Lock function. If the resource was not locked, the
resource will use this requestedKey as the accessKey. If the resource was
locked using a shared lock, and the requestedKey matches the key with
which the resource was locked, the resource will grant shared access to the
session. |f an application attemptsto lock aresource using a shared lock, but
passes VI _NULL as the requestedKey parameter, then VISA will generate an
accessKey for the session.

A session seeking to share exclusive access to aresource with other sessions
needsto acquireaVl _SHARED LOCK for this purpose. If it requests

VI _EXCLUSI VE_LOCK instead, no valid accessKey will be returned.
Consequently, the session will not be able to share the lock with any other
Sessions.

When multiple sessions have acquired a shared lock on aresource, VISA
allows one of the sessions to acquire an exclusive lock along with the shared
lock it isholding viathevi Lock function. The session holding both the
exclusive and shared lock will have the same access privileges that it had
when it was holding only the shared lock. However, this precludes the other
sessions holding the shared lock from accessing the locked resource. Thisis
useful when multiple sessions holding a shared lock must synchronize
operations, or when one of the sessions must execute a critical operation.

When the session holding the exclusive lock unlocks the resource viathe

vi Unl ock function, all the sessions (including the one that had acquired the
exclusive lock) will again have al the access privileges associated with the
shared lock.

Note that in the reverse case where a session is holding an exclusive lock
only (no shared locks), VISA does not allow it to change to
VI _SHARED LOCK.

Chapter 4 107

Programming with HP VISA
Using Locks

Nested L ocks

VISA also supports nested locking, in which asession can lock the same
VISA resource multiple times (for the same lock type) via multiple
invocations of the vi Lock function. Unlocking the resource requires an
equal number of invocations of thevi Unl ock operation. In other words, for
each invocation of vi Lock, alock count will be incremented, and for each
invocation of vi Unl ock, the lock count will be decremented. A resource
will be truly unlocked only when the lock count is O (zero).

Each session maintains a separate lock count for each type of lock.
Therefore, repeated invocations of the vi Lock function for the same session
will increase the appropriate lock count, depending on the type of lock
requested. In the case of ashared lock, nesting vi Lock functionswill return
with the same accessKey every time. In the case of an exclusive lock,

vi Lock will not return any accessKey, regardless of whether it is nested or
not.

For nesting shared locks, VISA does not require an accessKey be passed in
toinvokethevi Lock function. That is, a session does not need to passin
the accessKey obtained from the previous invocation of vi Lock to gaina
nested lock on the resource. However, if an application does passin an
accessKey when nesting shared locks, it must be the correct one for that
session. Seethe description of thevi Lock functionin Chapter 7, "HP VISA
Language Reference," for further details on the accessKey parameter.

L ock Examples

Thefollowing two examplesillustrate the two different lock types, exclusive
and shared locks, in VISA. Thefirst example shows a session gaining an
exclusive lock to perform thevi Pri nt f and vi Scanf VISA operations on
aGPIB device. It then releases the lock viathe vi Unl ock function.

108 Chapter 4

Programming with HP VISA
Using Locks

/* | ockexcl.c
Thi s exanpl e program queries a GPI B device for an
identification string and prints the results. Note that
you nust change the address. */

#i ncl ude <vi sa. h>
#i ncl ude <stdi o. h>

void main () {

Vi Sessi on defaul tRM vi;
char buf [256] = {0};

/* Open session to GPIB device at address 22 */
vi OpenDef aul t RM (&def aul t RM) ;
vi Qpen (defaul tRM "GPIBO::22:: 1 NSTR', VI _NULL, VI _NULL, &vi);

/* Initialize device */
viPrintf (vi, "*RST\n");

/* Make sure no other process or thread does anything to this
resource between the viPrintf() and the vi Scanf() calls */
vi Lock (vi, WI_EXCLUSIVE_LCCK, 2000, VI _NULL, VI_NULL);

/* Send an *IDN? string to the device */
viPrintf (vi, "*IDN?\n");

/* Read results */
vi Scanf (vi, "%", &buf);

/* Unl ock this session so other processes and threads can use it */
vi Unl ock (vi);

/[* Print results */
printf ("Instrument identification string: %\n", buf);

/* Close session */
vi Cl ose (vi);
vi Cl ose (defaul tRM;

Chapter 4 109

Programming with HP VISA
Using Locks

This second locking example shows a session gaining a shared lock with the
accessKey caled | ockkey. Other sessions can now use this accessKey in
the requestedKey parameter of thevi Lock function to share access on the
locked resource. This example then shows the original session acquiring an
exclusive lock while maintaining its shared lock. When the session holding
the exclusive lock unlocks the resource viathe vi Unl ock function, all the
sessions sharing the lock again have all the access privileges associated with
the shared lock.

/* lockshr.c
Thi s exanpl e program queries a GPIB device for an
identification string and prints the results. Note that
you nust change the address. */

#i ncl ude <vi sa. h>
#i ncl ude <stdio. h>

void main () {

Vi Sessi on defaul tRM vi;
char buf [256] = {0};
char | ockkey [256] = {0};

/* QOpen session to GPIB device at address 22 */
vi OpenDef aul t RM (&def aul t RM) ;
vi Qpen (defaul tRM "GPIBO::22:: 1 NSTR', VI _NULL, VI _NULL, &vi);

/* acquire a shared lock so only this process and processes
that we know about can access this resource */
vi Lock (vi, VI_SHARED LOCK, 2000, VI_NULL, | ockkey);

/* at this time, we can nake '| ockkey' avail able to other
processes that we know about. This can be done with shared
menory or other inter-process comunication nethods.

These ot her processes can then call "viLock(vi,
VI _SHARED LOCK, 2000, | ockkey, |ockkey)" and they will
al so have access to this resource. */

/* Initialize device */
viPrintf (vi, "*RST\n");

/* Make sure no other process or thread does anything to this
resource between the viPrintf() and the vi Scanf()
calls NOTE: this also |ocks out the processes with which
we shared our ’shared | ock’ key. */

vi Lock (vi, WVI_EXCLUSIVE_LOCK, 2000, WI_NULL, WI_NULL);

/* Send an *IDN? string to the device */

110 Chapter4

Programming with HP VISA
Using Locks

ViPrintf (vi, "*IDN?\n");

/* Read results */
vi Scanf (vi, "%", &buf);

/* unl ock this session so other processes and threads can use it */
vi Unl ock (vi);

/[* Print results */
printf ("Instrunment identification string: %\n", buf);

/* release the shared | ock too */
vi Unl ock (vi);

/* C ose session */
vi Cl ose (vi);
vi Cl ose (defaul tRM;

Chapter 4 111

Programming with HP VISA
Using Locks

112 Chapter4

Programming VXI Devices

Programming VXI Devices

VISA supports three interfaces you can use to access VXI: GPIB, VXI, and
GPIB-VXI. The GPIB interface can be used to access V X instrumentsviaa
Command Module. In addition, the VXI backplane can be directly accessed
with the VXI or GPIB-V XI interfaces. This chapter describes additional
information for programming V X1 devices with the VXI or GPIB-V XI
interfaces. See Chapter 4, "Programming with HP VISA," for general
information on VISA programming for all three interfaces.

This chapter contains the following sections:

Programming Overview

Using High-Level Memory Functions

Using Low-Level Memory Functions

Considering VXI Backplane Memory /O Performance
Using the VISA Memory Access Resource

Using V XI Specific Attributes

For information on the specific VISA functions, see Chapter 7, "HP VISA
Language Reference."

114 Chapter5

Programming VXI Devices
Programming Overview

Programming Overview

You can use VISA to program VX1 instruments over three different
interfaces:

VXI Interface Uses an embedded VXI controller or other VXI
interfaces and accesses VXI instruments directly
over the VXI backplane.

GPIB-VXI Uses the GPIB interface connected to a Command
Interface Module to directly access the VXI backplane.

GPIB Interface Uses the GPIB interface connected to a Command
Module and communicates with the Command
Module, which then sends commands to the VXI
instruments. There is no direct access to the VXI
backplane.

Chapter 5 115

Programming VXI Devices
Programming Overview

This chapter discusses using the VX1 and GPIB-V X1 interfaces for direct
access to the V XI backplane. When directly accessing the VX1 backplane,
you must be aware of the different types of V XI instruments:

M essage-Based

Register-Based

A message-based device has its own processor which
alowsit to interpret the high-level commands, such as
SCPI (Standard Commands for Programmable
Instruments). While using VISA, you can simply place
the SCPI command within your VISA output function
call, and then the message-based device interprets the
SCPI command. In this case you can usethe VISA
formatted /O or non-formatted 1/O functions and
program the message-based device as you would a GPIB
device. However, if your message-based device has
shared memory, you can access the device's shared
memory by doing register peeks and pokes. VISA
provides two different methods that you can use to
program directly to the registers: high-level memory
functions or low-level memory functions. Each of these
programming methods is discussed in the following
sections.

A register-based device typically does not have a
processor to interpret high-level commands; therefore, it
must be programmed with register peeks and pokes
directly to the device's registers. VISA provides two
different methods that you can use to program register-
based devices: high-level memory functions or low-level
memory functions. Each of these programming methods
is discussed in the following sections.

116

Chapter5

Note

Programming VXI Devices
Using High-Level Memory Functions

Using High-L evel Memory Functions

High-level memory functions allow you to access memory on the interface
through simple function calls. Thereisno need to map memory to a
window. Instead, use the high-level memory functions, and the memory
mapping and direct register access is done for you.

Thetrade off, however, is speed. The high-level memory functions are
easier to use. Yet, because these functions encompass mapping of memory
space and direct register access, the associated overhead slows down the
program’s execution time. If speed iswhat you need, use the low-level
memory functions discussed in the next section.

The high-level memory functionsincludethevi | n and vi Qut functionsfor
transferring 8-, 16-, or 32-bit values, aswell asthevi Movel n and

vi MoveQut functionsfor transferring 8-, 16-, or 32-bit blocks of datato or
from local memory.

Thevi I n32, vi Qut 32, and al thevi Movel n and vi MoveQut functions
are not supported with the VISA Transition Library (VTL).

Chapter 5 117

Note

Programming VXI Devices
Using High-Level Memory Functions

Programming to the Registers

When using thevi | n and vi Qut high-level memory functions to program
to the device registers, al you have to do is specify the session identifier,
address space, and the offset of the register. The memory mapping is done
for you. For example, in this function:

vi I n32(vi, space, offset, val32) ;

vi isthe session identifier, and offset is used to indicate the offset of the
memory to be mapped. offset isreative to the location of this device's
memory in the given address space. The space parameter determines which
memory location to map the space. The following are valid space values:

® VI _A16_SPACE - Mapsin VXI/MXI A16 address space.
® VI _A24 SPACE - Mapsin VXI/MXI A24 address space.
® VI _A32 SPACE - Mapsin VXI/MXI A32 address space.

The val 32 parameter is a pointer to where the data read will be stored. If,
instead, you were writing to the registers viathe vi Qut 32 function, the
val 32 parameter would be a pointer to the data to write to the specified
registers.

If the device specified by vi does not have memory in the specified address
space, an error is returned.

Thefollowing is an example of using vi | n16:

Vi Sessi on defaul tRM vi;
Vi Ul nt 16 val ue;

;/i OpenDef aul t RM &&def aul t RV ;
vi Open(defaul tRM "VXI::24", VI_NULL, VI_NULL, &vi);
vilnl6(vi, VI_Al16_SPACE, 0x100, &val ue);

118 Chapter5

Programming VXI Devices
Using High-Level Memory Functions

You can also usethevi Movel n and vi MoveQut high-level memory
functions to move blocks of datato or from local memory. Specificaly, the
vi Movel n functions moves an 8-, 16-, or 32-bit block of datafrom the
specified offset to local memory, whereas the vi MoveQut functions moves
an 8-, 16-, or 32-hit block of datafrom local memory to the specified offset.
Again, the memory mapping is done for you. For example, in this function:

vi Movel n32(Vi, space, offset, length, buf32) ;

Vi is the session identifier, and offset is used to indicate the offset of the
memory to be mapped. offset isrelative to the location of this device's
memory in the given address space. The space parameter determines which
memory location to map the space, and the length parameter specifies the
number of elements to transfer (8-, 16-, or 32-hits).

The buf32 parameter is a pointer to where the data read will be stored. If,
instead, you werewriting to theregistersviathe vi MoveQut 32 function, the
buf32 parameter would be a pointer to the datato write to the specified
registers.

Chapter 5 119

Programming VXI Devices

Using High-Level Memory Functions

You can therefore program using 8-, 16-, or 32-bit transfers. The following
table summarizes the high-level memory functions.

Function

Description

vi | n8(vi, space, offset, val8) ;

vi | n16(vi, space, offset, val16) ;

vi | n32(vi, space, offset, val32) ;

vi Qut 8(vi, space, offset, val8) ;

vi Qut 16(vi, space, offset, vall6) ;

vi Qut 32(vi, space, offset, val32) ;

vi Movel n8(vi, space, offset, length, buf8) ;

vi Movel n16(vi, space, offset, length, buf16) ;
vi Movel n32(vi, space, offset, length, buf32) ;
vi MoveQut 8(vi, space, offset, length, buf8) ;
vi MoveQut 16(vi, space, offset, length, bufl6) ;

vi MoveQut 32(vi, space, offset, length, buf32) ;

Reads 8 bits of data from the specified offset.
Reads 16 bits of data from the specified offset.
Reads 32 hits of data from the specified offset.
Writes 8 bits of data to the specified offset.
Writes 16 bits of data to the specified offset.
Writes 32 bits of data to the specified offset.

Moves an 8-bit block of data from the specified
offset to local memory.

Moves a 16-bit block of data from the specified
offset to local memory.

Moves a 32-bit block of data from the specified
offset to local memory.

Moves an 8-bit block of data from local
memory to the specified offset.

Moves a 16-bit block of data from local
memory to the specified offset.

Moves a 32-bit block of data from local
memory to the specified offset.

120

Chapter5

Programming VXI Devices
Using High-Level Memory Functions

High-Level Memory Functions Examples

The following example programs use the high-level memory functions to
read the ID and Device Type registers of the device at the VXI logica
address of 24. The contents of the registers are then printed out. Thefirst
program uses the VX1 interface, and the second program accesses the
backplane with the GPIB-V X interface. Note that these two programs are
identical except for the string passed to vi Open.

/* vxihl.c
Thi s exanpl e program uses the high-level nmenory functions
to read the id and device type registers of the device at
VXl 0::24. Change this address if necessary. The register
contents are then displayed. */

#i ncl ude <vi sa. h>
#i ncl ude <stdlib. h>
#i ncl ude <stdio. h>

void main () {

Vi Sessi on defaul tRM dmm
unsi gned short id_reg, devtype_reg;

/* Open session to VXl device at address 24 */
vi OpenDef aul t RM &def aul t RM ;
vi Open(defaul tRM "VXI0::24::INSTR', VI_NULL, VI _NULL, &dmm);

/* Read instrument id register contents */
vilnl6(dmm VI _Al6_SPACE, 0x00, & d_regq);

/* Read device type register contents */
vi Il nl16(dmm VI _Al16_SPACE, 0x02, &devtype_req);

/* Print results */
printf ("ID Register = Ox%X\n", id_reg);
printf ("Device Type Register = Ox%X\n", devtype_req);

/* Close sessions */
vi O ose(dmm);
vi Cl ose(defaul tRV;

Chapter 5 121

Programming VXI Devices
Using High-Level Memory Functions

The following example program uses the GPIB-V X| interface for direct
register access through aV X1 Command Module.

[*gpi bvxi h. c
Thi s exanpl e program uses the high-level nmenory functions
toread the id and device type registers of the device at
GPI B-VXI 0::24. Change this address if necessary. The
regi ster contents are then displayed. */

#i ncl ude <vi sa. h>
#i ncl ude <stdlib. h>
#i ncl ude <stdio. h>

void main () {

Vi Sessi on defaul tRM dnmm
unsi gned short id_reg, devtype_reg;

/* Open session to VXI device at address 24 */
vi OpenDef aul t RM &def aul t RM ;
vi Open(defaul tRM "GPl B-VXI 0::24:: 1 NSTR",

VI _NULL, VI _NULL, &dmm);

/* Read instrument id register contents */
vilnl6(dmm VI _Al16_SPACE, 0x00, & d_regq);

/* Read device type register contents */
vi Il nl16(dnmm VI _A16_SPACE, 0x02, &devtype_req);

/* Print results */
printf ("ID Register = Ox%X\n", id_reg);
printf ("Device Type Register = Ox%X\n", devtype_req);

/* O ose sessions */
vi O ose(dnmm);
vi Cl ose(defaul t RV ;

122 Chapter5

Programming VXI Devices
Using Low-Level Memory Functions

Using Low-Level Memory Functions

L ow-level memory functions allow you direct access to memory on the
interface just as with high-level memory functions. However, with low-
level memory function calls, you must map arange of addresses and directly
access the registers with low-level memory functions, such asvi Peek32
and vi Poke32.

Thereis more programming effort required when using low-level memory
functions. However, the program execution speed can increase.
Additionally, to increase program execution speed, the low-level memory
functions do not return error codes.

Note Thevi Peek32 andvi Poke32 functions are not supported with the VISA
Transition Library (VTL).

Chapter 5 123

Mapping
Memory Space

Note

Programming VXI Devices
Using Low-Level Memory Functions

Programming to the Registers

When using the low-level memory functions for direct register access, you
must first map arange of addresses using thevi MapAddr ess function.
Then you can send a series of peeks and pokes using thevi Peek and

vi Poke low-level memory functions. When you are done, you must freethe
address window using the vi UnmapAddr ess function. In sum, the process
you might follow is:

1. Map memory space using vi MapAddr ess.

2. Read and write to the register’'s contents using vi Peek32 and
vi Poke32.

3. Unmap the memory space using vi UnnepAddr ess.

When using VISA to access the device's registers, you must map memory
space into your process space. Note that on a given session, you can only
have one map at atime. To map space into your process, use the VISA

vi MapAddr ess function:

vi MapAddr ess(Vi, mapSpace, mapBase, mapS ze, access, suggested, address) ;

This function maps space for the device specified by the vi session.
mapBase, mapSize, and suggested are used to indicate the offset of the
memory to be mapped, amount of memory to map, and a suggested starting
location, respectively. mapSpace determines which memory location to map
the space. The following are valid mapSpace choices:

VI _A16_SPACE - Mapsin VXI/MXI A16 address space.
VI _A24 SPACE - Mapsin VXI/MXI A24 address space.
VI _A32_SPACE - Mapsin VXI/MXI A32 address space.

A pointer to the address space where the memory was mapped isreturned in
the address parameter.

If the device specified by vi does not have memory in the specified address
space, an error is returned.

124 Chapter5

Reading and
Writing to the
Device
Registers

Programming VXI Devices
Using Low-Level Memory Functions

The following are example vi MapAddr ess function calls:

/* Maps to A32 address space */
vi MapAddr ess(vi, VI_A32_SPACE, 0x000, 0x100, VI_FALSE, VI _NULL,
&addr ess) ;

/* Maps to A24 address space */
vi MapAddress(vi, VI_A24_SPACE, 0x00, 0x80, VI_FALSE, VI_NULL,
&addr ess) ;

Once you have mapped the memory space, use the VISA low-level memory
functions to access the device's registers. First, determine which device
register you need to access. Then, you need to know the register’s offset.
See the instrument’s user’s manual for a description of the registers and
register locations. You can then use thisinformation and the VISA low-level
functions to access the device registers.

Thefollowing is an example of using vi Peek16:

Vi Sessi on defaul tRM vi;
Vi Ul nt 16 val ue;
Vi Addr addr ess;
Vi Ul nt 16 val ue;

vi OpenDef aul t RM &&def aul t RM) ;
vi Open(defaul tRM "VXl::24::1NSTR', VI_NULL, WI_NULL, &vi);
vi MapAddress(vi, VI_A16_SPACE, 0x00, 0x04, VI _FALSE,
VI _NULL, &address);
vi Peek16(vi, addr, &val ue)

Chapter 5 125

Programming VXI Devices
Using Low-Level Memory Functions

You can therefore program using 8-, 16-, or 32-bit transfers. The following
table summarizes the low-level memory functions.

Function

Description

vi MapAddr ess(vi, mapSpace, mapBase, Maps the specified memory space.

mapSize, access, suggested, address) ;
vi Peek8(vi, addr, val8) ;

vi Peek16(vi, addr, val16) ;

vi Peek32(vi, addr, val32) ;

vi Poke8(vi, addr, val8) ;

vi Pokel6(vi, addr, val16) ;

vi Poke32(vi, addr, val32) ;

vi UnmapAddr ess(Vi) ;

Reads 8 bits of data from the address specified.
Reads 16 bits of data from the address specified.
Reads 32 bits of data from the address specified.
Writes 8 bits of data to the address specified.
Writes 16 bits of data to the address specified.
Writes 32 bits of data to the address specified.

Unmaps memory space previously mapped.

Unmapping Make sure you use the vi UnmapAddr ess function to unmap the memory
Memory Space space when it is no longer needed. Unmapping memory space makes the
window available for the system to reall ocate.

L ow-Level Memory Functions Examples

The following example programs use the low-level memory functions to

read the ID and Device Type registers of the device at V X| logical address
24. The contents of theregisters are then printed out. Thefirst program uses
the VXI interface, and the second program uses the GPIB-V X| interface to
access the V X1 backplane. Note that these two programs are identical except
for the string passed to vi Open.

126 Chapter5

Programming VXI Devices
Using Low-Level Memory Functions

[*vxill.c
Thi s exanpl e program uses the | ow | evel menory functions to
read the id and device type registers of the device at
VXl 0::24. Change this address if necessary. The register
contents are then displayed. */

#i ncl ude <vi sa. h>
#i ncl ude <stdlib. h>
#i ncl ude <stdi o. h>

void main () {

Vi Sessi on defaul tRM dnm
Vi Addr addr ess;
unsi gned short id_reg, devtype_reg;

/* Open session to VXI device at address 24 */
vi OpenDef aul t RM &def aul t RM ;
vi Open(defaul tRM "VXI0::24::INSTR", VI_NULL, VI _NULL, &dmm);

/* Map into menory space */
vi MapAddr ess(dmm VI _A16_SPACE, 0x00, 0x10, VI _FALSE,
VI _NULL, &address);

/* Read instrunent id register contents */
vi Peek16(dmm address, & d_reg);

/* Read device type register contents */
/* Vi Addr is defined as a void * so we nmust cast it to
sonet hi ng el se */
/* in order to do pointer arithnetic */
vi Peek16(dmm (Vi Addr) ((ViU nt16 *)address + 0x01),
&devtype_req);

/* Unmap nenory space */
vi UnmapAddr ess(dnm ;

/[* Print results */
printf ("ID Register = Ox%X\n", id_reg);
printf ("Device Type Register = Ox%X\n", devtype_req);

/* C ose sessions */
vi Cl ose(dnmm) ;
vi Cl ose(defaul t RM ;

Chapter 5 127

Programming VXI Devices
Using Low-Level Memory Functions

This example program uses the GPIB-V X1 interface for direct register
access through a VX1 Command Module.

[*gpibvxil.c
Thi s exanpl e program uses the | ow | evel nenory functions to
read the id and device type registers of the device at
GPIB-VXI 0::24. Change this address if necessary. The
register contents are then displayed. */

#i ncl ude <vi sa. h>
#i nclude <stdlib. h>
#i ncl ude <stdio. h>

void main () {

Vi Sessi on def aul tRM dnmm
Vi Addr addr ess;
unsi gned short id_reg, devtype_reg;

/* Open session to VXl device at address 24 */

vi OpenDef aul t RM &def aul t RM ;

vi Qpen(defaul tRM "GPl B-VXI0::24:: I NSTR', W _NULL, VI _NULL,
&dnm) ;

/* Map into menory space */
vi MapAddr ess(dmm VI _Al16_SPACE, 0x00, 0x10, VI _FALSE,
VI _NULL, &address);

/* Read instrunent id register contents */
vi Peek16(dmm address, & d_reg);

/* Read device type register contents */
/* ViAddr is defined as a void * so we nust cast it to
sonet hing el se */
/* in order to do pointer arithnetic */
vi Peek16(dmm (Vi Addr) ((ViU nt16 *)address + 0x01),
&devtype_req);

/* Unmap nenory space */
vi UnmapAddr ess(dnmm ;

/* Print results */
printf ("ID Register = Ox%X\n", id_reg);
printf ("Device Type Register = Ox%X\n", devtype_reg);

/* O ose sessions */
vi C ose(dnm) ;
vi Cl ose(defaul t RM ;

128 Chapter5

Programming VXI Devices
Considering VXI Backplane Memory 1/O Performance

Considering VXI Backplane Memory 1/O
Performance

VISA supports three different memory 1/0 mechanisms for accessing
memory on the VXI backplane:

® Low-level vi Peek/ vi Poke:
g Vi MapAddress
g Vi UnmapAddr ess
q vi Peek8, viPeekl16, viPeek32
q vi Poke8, viPokel6, viPoke32

® High-level vi I n/ vi Qut :
q viln8, vilnl6, viln32
q viQut8, viQutl6, viQut32

® High-level vi Movel n/ vi MoveQut :
g vi Movel n8, viMvel nl6, vi Movel n32
q vi MoveQut8, viMyveQut16, vi MoveQut 32

All three of these access mechanisms can be used to read and write VXI
memory in the A16, A24, and A32 address spaces. The best method to use
depends on the VISA program characteristics.

Low-level vi Peek/ vi Poke isthe most efficient in programs which require
repeated access to different addresses in the same memory space. The
advantages are;

® |ndividua vi Peek/ vi Poke callsare faster than vi I n/ vi Qut or
vi Movel n/ vi MoveQut calls.

®* Memory pointer may be directly dereferenced in some cases for the
lowest possible overhead. (See the example later in this section.)

Chapter 5 129

Programming VXI Devices
Considering VXI Backplane Memory I/O Performance

The disadvantages of low-level vi Peek/ vi Poke are:

® vi MapAddr ess call isrequired to set up mapping before vi Peek/
vi Poke can be used.
vi Peek/ vi Poke callsdo not return status codes.
Only one activevi MapAddr ess is allowed per vi session.
There may be alimit to the number of simultaneous active
vi MapAddr ess calls per process or system.

High-level vi | n/ vi Qut cals are best in situations where afew, widely
scattered memory access are required and speed is not amajor consideration.
The advantages are:

® Simplest method to implement.
® No limit on humber of active maps.
®* A16, A24, and A32 memory access can be mixed in asingle vi session.

The disadvantage of high-level vi | n/ vi Qut callsisthat they are slower
than vi Peek/ vi Poke.

High-level vi Movel n/ vi MoveQut cals provide the highest possible
performance for transferring blocks of datato or from the VXI backplane.
Although these calls have higher initial overhead than the vi Peek/ vi Poke
calls, they are optimized by HP on each platform to provide the fastest

possible transfer rate for large blocks of data. Notethat for small blocks, the
overhead associated with vi Movel n/ voMoveQut may actually make these
callslonger than an equivalent loop of vi | n/ vi Qut calls. Theblock sizeat
whichvi Movel n/ vi MoveQut becomes faster depends on the particular
platform and processor speed. The advantages are:

Simpleto use.

No limit on number of active maps.

A16, A24, and A32 memory access can be mixed in asingle vi session.
Provides the best performance when transferring large blocks of data.
Supports both block and FIFO mode.

The disadvantage of vi Movel n/ vi MoveQut callsisthat they have higher
initial overhead than vi Peek/ vi Poke.

The following is an example of the various types of VX1 memory 1/0.

130 Chapter5

Programming VXI Devices
Considering VXI Backplane Memory 1/O Performance

/* mem o. ¢
Thi s exanpl e program denonstrates the use of various menory 1/0O nmet hods
in VISA */

#i ncl ude <vi sa. h>
#i nclude <stdlib. h>
#i ncl ude <stdi o. h>

#define VXI_INST "VXIO0::24::|NSTR'

void main () {
Vi Sessi on defaul tRM vi;
Vi Addr addr ess;
Vi Ul nt 16 accessMode;
unsi gned short *menPtr 16;
unsi gned short id_reg;
unsi gned short devtype_reg;
unsi gned short memArray|2];

/*QOpen the default resource nmanager and a session to our instrunent*/
vi OpenDef aul t RM (&def aul t RM) ;
vi Open (defaul tRM VXl _I NST, VI _NULL, VI _NULL, &vi);

= vi Peek16

= direct nenory dereference (when all owed)

s s s */

/* Map into nenory space */

vi MapAddress (vi, VI_Al6_SPACE, 0x00, 0x10, VI _FALSE, VI_NULL, &address);

| ¥ ================== |sSj ng vi Peek == | *
Read instrunment id register contents */
vi Peek16 (vi, address, & d_reg);

/* Read device type register contents
Vi Addr is defined as a (void *) so we nust cast it to sonething
else in order to do pointer arithnetic. */

vi Peek16 (vi, (ViAddr)((ViUntl6 *)address + 0x01), &devtype_reg);

[* Print results */

printf (" vi Peek16: | D Register = Ox%X\n", id_reg);

printf (" vi Peek16: Device Type Register = Ox%X\n", devtype_reqg);
/* Use direct menory dereferencing if it is supported */

vi GetAttribute(vi, VI_ATTR W N_ACCESS, &accesshMde);

if (accessMbde == VI _DEREF_ADDR) {

/* assign the pointer to a variable of the correct type */
menPtr16 = (unsigned short *)address;

Chapter 5 131

Programming VXI Devices
Considering VXI Backplane Memory I/O Performance

/* do the actual nenory reads */
id_reg = *menPtr 16;
devtype_reg = *(nenPtr16+1);

/* Print results */

printf ("dereference: |ID Register = Ox%X\n", id_reg);

printf ("dereference: Device Type Register = Ox%X\n", devtype_reg);
}

/* Unmap nenory space */
vi UnmapAddr ess (vi);

H gh Level nermory 1/0O

*/
/* Read instrument id register contents */
vilnl6é (vi, VI_Al16_SPACE, 0x00, && d_req);
/* Read device type register contents */
vilnlé (vi, VI_Al16_SPACE, 0x02, &devtype_req);
/* Print results */
printf (" vilnl6: 1D Register = Ox%X\n", id_reg);
printf (" vil n16: Device Type Register = Ox%X\n", devtype_reg);
/* oo ———=—

================== H gh Level bl ock nenory 1/0O
= vi Movel n16
The vi Movel n/ vi MoveQut conmands do both block read/ wite and
FIFO read wite.

These commands offer the best performance for readi ng and
witing |arge data bl ocks on the VXI backplane. Note that for
this exanple we are only noving 2 words at a tinme. Normally
these functions would be used to nove nuch | arger bl ocks of data.

If the value of VI_ATTR SRC I NCREMENT is 1 (the default), then
vi Movel n does a block read. |If the value of VI _ATTR SRC | NCREMENT i s
0 then vi Moveln does a FI FO read.

If the value of VI_ATTR DEST INCREMENT is 1 (the default), then
vi MoveQut does a block wite. |If the value of VI_ATTR DEST | NCREMENT
is 0 then vi MoveQut does a FIFO write.

132 Chapter5

/*

Programming VXI Devices
Considering VXI Backplane Memory 1/O Performance

s ——— */

================ Denonstrate bl ock read
Read instrunment id register and device type register into an array.*/
vi Movel n16 (vi, VI_Al16_SPACE, 0x00, 2, nenArray);

[* Print results */
printf (" viMvelnl6: |ID Register = Ox%X\n", memArray[0]);
printf (" viMvelnl6: Device Type Register = Ox%X\n", nemArray[1]);

/* ================== Denonstrate FlI FO read
First set the source increment to O so we will repetatively read
fromthe sane nmenory | ocation. */

vi SetAttribute(vi, VI_ATTR_SRC | NCREMENT, 0);

/* Do a FIFOread of the Id Register */
vi Movel n16 (vi, VI_Al16_SPACE, 0x00, 2, nenArray);

[* Print results */
printf (" viMvelnl6: 1 |ID Register
printf (" viMvelnl6: 2 |ID Register

ox%#X\n", memArray[0]);
ox%X\n", memArray[1]);

/* Close sessions */
vi Cl ose (vi);
vi Ol ose (defaul tRM;

Chapter 5 133

Programming VXI Devices
Using the VISA Memory Access Resource

Using the VISA Memory Access Resource

For VISA 1.1, the Memory Access Resource (MEMACC) type has been
added to VX1 and GPIB-VXI. VXI::MEMACC and GPIB-VXI.::MEMACC
alow accessto all of the A16, A24, and A32 memory. It doesthis by
providing the controller with access to arbitrary registers or memory
addresses on memory-mapped buses.

The VISA MEMACC resource, like any other resource, starts with the basic
operations and attributes of other VISA resources. For example, modifying
the state of an attribute is done viathe the operation vi Set Attri but e
(refer to Chapter 7, "HP VISA Language Reference” for details).

High-Level Memory I/O Services

High-level Memory 1/0 services allow register-level accessto theinterfaces
that support direct memory access, such asthe VXlbus, VMEbus, MXIbus,
or even VME or VXI memory through a system controlled by a GPIB-V XI
controller. A resource exists for each interface to which the controller has
access. You can access memory on the interface bus through simple
operationssuch asvi | N16 and vi Qut 16. These operations encapsul ate the
map/unmap and peek/poke operations found in the low-level service. There
is no need to explicitly map the memory to a window.

Low-Level Memory 1/O Services

Low-level Memory I/O also alows register-level accessto the interfaces that
support direct memory access. Before an application can use the low-level
service on the interface bus, it must map arange of addresses using the
operation vi MapAddr ess. Although the resource handles the allocation and
operation of the window, the programmer must free the window via

vi UnMapAddr ess when finished. This makes the window available for the
system to reallocate.

134 Chapter5

Programming VXI Devices
Using the VISA Memory Access Resource

MEMACC Resour ce Program Example

The following program example demonstrates how to use the MEMACC
resource to open the entire VXI A16 memory and then calculate an offset to
address a specific module.

/'l peekl6.c

#i ncl ude <stdi o. h>
#i nclude <stdlib. h>
#i ncl ude <vi sa. h>

#define EXIT 1
#define NOEXIT O

[/ This function sinplifies checking for VISA errors.
voi d checkError(Vi Session vi, ViStatus status, char *errStr, int doexit){
char buf[256];
if (status >= VI _SUCCESS)
return;
buf[0] = O;
vi St at usDesc(vi, status, buf);
printf("ERROR 0x%lx (%s)\n '%s’\n", status, errStr, buf);
if (doexit == EXIT)
exit(1);
}

void main() {
ViSession drm;
ViSession vi;
Viulntlé inDatal6 = 0;
ViuInt16 peekDatal6 = 0;
ViuInt8 *addr;
ViUIntl6 *addrl6;
ViStatus status;
Viulntl6 offset;

status = viOpenDefaultRM (&drm);
checkError(0, status, "viOpenDefaultRM", EXIT);

// Open a session to the VXI MEMACC Resource

1

status = viOpen(drm, "vxiO::memacc", VI_NULL, VI_NULL, &vi);
checkError (0, status, "viOpen", EXIT);

/I Calculate the A16 offset of the VXI REgisters for the device at
/I VXI logical address 8.

Chapter 5 135

Programming VXI Devices
Using the VISA Memory Access Resource

of fset = 0xc000 + 64 * 8;

/1l Open a map to all of Al6 menory space

I

status = vi MapAddr ess(vi, VI _Al6_SPACE, 0, 0x10000, VI _FALSE, 0, (Vi PAddr) (&addr));
checkError(vi, status, "vi MapAddress", EXIT);

/1 OFfset the address pointer retruned from vi MapAddress for
/1 use with viPeekl6

I

addr16 = (ViU nt16 *) (addr + offset);

I/ Peek the contents of the card’s ID register (offset 0 from card’s
/I base address. Note that viPeek does not return a status code.
viPeek16(vi, addr16, &peekDatal6);

// Now use viln16 and read the contents of the same register

1

status = viln16(vi, VI_A16_SPACE, (ViBusAddress)offset, &inDatal6);
checkError(vi, status, "viln16", NO_EXIT);

/Il Print the results

1

printf("inDatal6 : 0x%04hx\n", inDatal6);
printf("peekDatal6: 0x%04hx\n", peekDatal6);

viClose(vi);
viClose (drm);

136 Chapter5

Programming VXI Devices

Using the VISA Memory Access Resource

MEMACC Attribute Descriptions

Generic Thefollowing Read Only attributes (VI _ATTR_TMO_VALUE is Read/Write)
MEMACC provide general interface information.

Attributes
VI _ATTR_|I NTF_TYPE

VI _ATTR_| NTF_NUM
VI _ATTR_TMO_VALUE

VI _ATTR_I NTF_| NST_NAVE

Interface type of the given session.
(VISA 1.1)

Board number for the given interface.

Minimum timeout value to use, in
milliseconds. A timeout value of
VI_TMO_IMMEDIATE means operation
should never wait for the device to
respond. A timeout value of
VI_TMO_INFINITE disables the timeout
mechanism.

Human-readable text describing the
given interface.

VXI and GPIB- Teh following attributes, most are read/write, provide memory window

VXI Specific control information.
MEMACC
Attributes VvI_ATTR VX _LA

VI _ATTR_SRC_| NCREMENT

Logical address of the local controller.
(VISA 1.1)

Used in vi Movel nxx operation to
specify how much the source offset is
to be incremented after every
transfer. The default value is 1 and
the vi Movel nxx operation moves
from consecutive elements. If this
attribute is set to 0, the vi Movel nxx
operation will always read from the
same element, essentially treating
the source as a FIFO register. (VISA
1.1)

Chapter 5

137

Programming VXI Devices

Using the VISA Memory Access Resource

VI _ATTR_DEST_| NCREMENT

VI _ATTR_W N_ACCESS

VI _ATTR_W N_BASE_ADDR

VI_ATTR W N_SI ZE

VI _ATTR_SRC BYTE_ORDER

VI _ATTR_DEST_BYTE_ORDER

VI _ATTR_W N_BYTE_ORDER

Used in vi MoveQut xx operation to
specify how much the destination
offset is to be incremented after every
transfer. The default value is 1 and
the vi MoveQut xx operation moves
into consecutive elements. If this
attribute is set to 0, the vi MoveQut xx
operation will always write to the
same element, essentially treating
the destination as a FIFO register.
(VISA 1.1)

Specifies modes in which the current
window may be addressed: not
currently mapped, through the

vi Peekxx or vi Pokexx operations
only, or through operations and/or by
directly de-referencing the address
parameter as a pointer. (VISA 1.1)

Base address of the interface bus to
which this window is mapped. (VISA
1.1)

Size of the region mapped to this
window. (VISA 1.1)

Specifies the byte order used in high-
level access operations, such as

vi I nxx and vi Movel nxx, when
reading from the source. (VISA 1.1)

Specifies the byte order used in high
level access operations, such as

vi Qut xx and vi MoveQut xx, when
writing to the destination. (VISA 1.1)

Specifies the byte order used in low-
level access operations, such as

vi MapAddr ess, vi Peekxx, and

vi Pokexx, when accessing the
mapped window. (VISA 1.1)

138

Chapter5

Programming VXI Devices

Using the VISA Memory Access Resource

VI _ATTR_SRC_ACCESS_PRI V

VI _ATTR_DEST_ACCESS_ PRI V

VI _ATTR_W N_ACCESS_PRI V

Specifies the address modifier used
in high-level access operations, such
as vi | nxx and vi Movel nxx, when
reading from the source. (VISA 1.1)

Specifies the address modifier used
in high-level access operations such
as vi Qut xx and vi MoveQut xx, when
writing to the destination. (VISA 1.1)

Specifies the address modifier used
in low-level access operations, such
as vi MapAddr ess, vi Peekxx, and
vi Pokexx, when accessing the
mapped window. (VISA 1.1)

GPIB-VXI Teh following Read Only attributes provide specific address information

Specific about GPIB hardware.
MEMACC

Attributes vI _ATTR | NTF_PARENT NUM

VI _ATTR_GPI B_PRI MARY_ADDR

Board number of the GPIB board
to which the GPIB-VXl is attached.
(VISA 1.1)

Primary address of the GPIB-VXI
controller used by the session.
(VISA 1.1)

VI _ATTR _GPlI B_SECONDARY_ADDR Secondary address of the GPIB-

VXI controller used by the
session. (VISA 1.1)

Chapter 5

139

Programming VXI Devices
Using the VISA Memory Access Resource

MEMACC Thefollowing Read Only events provide notification that an asynchronous
Resource operation has completed.
Event Attribute
VI _ATTR _EVENT_TYPE Unique logical identifier of the event. (VISA
1.1)

VI _ATTR_STATUS Return code of the asynchronous I/O
operation that has completed. (VISA 1.1)

VI _ATTR JOB ID Job ID of the asynchronous I/O operation that
has completed. (VISA 1.1)

VI _ATTR BUFFER Address of a buffer used in an asynchronous
operation. (VISA 1.1)

VI _ATTR _RET_COUNT Actual number of elements that were
asynchronously transferred. (VISA 1.1)

140 Chapter5

Programming VXI Devices
Using VXI Specific Attributes

Using VXI Specific Attributes

The VX1 specific attributes can be useful to determine the state of your V XI
system. There are read only and read/write attributes. The read only
attributes specify things such as the logical address of the VXI device, and
information about where your V X| device is mapped.

The following subsections show how you might use some of the VXI
specific attributes. See Appendix B, "HP VISA Attributes," for
programming information on the VISA attributes.

Using the Map Address as a Pointer

TheVl _ATTR_W N_ACCESS read only attribute specifies how awindow can
be accessed. You can access a mapped window with the VISA low-level
memory functions or with a C pointer if the addressis de-referenced. To
determine how to access the window, read the VI _ATTR_W N_ACCESS
atribute. Thisread only attribute can be set to one of the following:

VI _NMAPPED Specifies that the window is not mapped.

VI _USE_OPERS Specifies that the window is mapped, and you can
only use the low-level memory functions to access
the data.

VI _DEREF_ADDR Specifies that the window is mapped and has a de-
referenced address. In this case you can use the
low-level memory functions to access the data, or
you can use a C pointer. Using a de-referenced C
pointer will allow faster access to data.

Chapter 5 141

Programming VXI Devices
Using VXI Specific Attributes

The following example shows how you can read the
VI _ATTR_W N_ACCESS attribute and use the result to determine how to
access memory:

Vi Addr addr ess;
Vi Ul nt 16 access;
Vi Ul nt 16 val ue;

;/i MapAddress(vi, VI _Al16_SPACE, 0x00, 0x04, VI _FALSE,
VI _NULL, &address);
Vi GetAttribute(vi, VI_ATTR W N_ACCESS, &access);

| f (access==VI _USE_OPERS) {

vi Peek16(vi, (MiAddr)(((ViU ntl1l6 *)address) +

4/ si zeof (ViU nt16)), &val ue)

}else if (access==VI _DEREF_ADDR) {

val ue=*((ViU nt16 *)address+4/sizeof (Vi U nt16));
lelse if (access==VI _NVAPPED){

return error;
}

142 Chapter5

Note

Programming VXI Devices
Using VXI Specific Attributes

Settingthe VXI Trigger Line

TheVl _ATTR TRI G_| D attribute is used to set the VX1 trigger line. This
attribute is listed under generic attributes and defaultsto VI _TRI G_SW
(software trigger). If you would like to set one of the VX1 trigger lines, set
theVl _ATTR TRI G_| D attribute as follows:

viSetAttribute(vi, VI_ATTR TRIGID, VI_TR G TTLO);

The above function setsthe VXI trigger lineto TTL trigger line 0
(VI _TRI G_TTLO). Thefollowing arevalid VXI trigger lines.

VXI Trigger Line VI _ATTR _TRI G_| D"’ Value
TTLO VI _TRI G TTLO
TTL1 VI_TRIG TTL1
TTL2 VI_TRIG TTL2
TTL 3 VI _TRI G TTL3
TTL 4 VI_TRI G TTL4
TTL5 VI _TRI G TTL5
TTL 6 VI _TRIG TTL6
TTL7 VI_TRIG TTL7
ECLO VI _TRI G _ECLO
ECL1 VI _TRI G ECL1

Onceyou set aVXI trigger line, you can set up an event handler to be called
when the trigger line fires. See "Using Events and Handlers" in Chapter 4
for more information on setting up an event handler.

Oncethe VI _EVENT_TRI Geventisenabled, thevl ATTR TRIG I D
becomes aread only attribute and cannot be changed. You must set this
attribute prior to enabling event triggers.

TheVlI _ATTR _TRI G_| D attribute can also be used by the
vi Assert Tri gger function to assert software or hardware triggers. If

Chapter 5 143

Programming VXI Devices
Using VXI Specific Attributes

VI _ATTR TRI G I DisVI _TRI G_SWthen the device is sent a Word Serial
Trigger command. If the attribute is any other value, a hardware trigger is
sent on the line corresponding to the value of that attribute.

144 Chapter5

Programming over LAN

Note

Programming over LAN

This chapter describes how to use VISA over the LAN (Local Area
Network). LAN isanatural way to extend the control of instrumentation
beyond the limits of typical instrument interfaces. In order to communicate
over the LAN, you must have configured theVl SA LAN d i ent duringthe
HP 1/O Libraries configuration. See the HP 1/O Libraries Installation and
Configuration Guide for instructions.

LAN is not supported with 16-bit VISA on Windows 95.

This chapter contains the following sections:

Overview of the LAN

Considering LAN Configuration and Performance
Communicating with Devices over LAN

Using Timeouts with LAN

Using Signal Handling with LAN

HP VISA Function Support with LAN

146 Chapter 6

Programming over LAN

Note To start the LAN server on a Windows 95 or Windows NT system, seethe
"Starting the LAN Server" section of Chapter 2, "Installing and Configuring
the HP /O Libraries," in the HP |/O Libraries Installation and
Configuration Guide for Windows.

To stop the LAN server on a Windows 95 or Windows NT system, see the
"Stopping the LAN Server" section of Chapter 2, "Installing and
Configuring the HP I/O Libraries," in the HP 1/O Libraries Installation and
Configuration Guide for Windows.

Chapter 6 147

Programming over LAN
Overview of the LAN

Overview of the LAN

The LAN software provided with VISA alows you to control
instrumentation over aLAN. LAN connections are included on many
systems being sold today. By making use of these standard LAN
connections, instrument control can be driven from a computer which does
not have a special interface for instrument control.

The LAN software provided with VISA uses the client/server model of
computing. Client/server computing refers to a model where an
application, the client, does not perform all the necessary tasks of the
application itself. Instead, the client makes requests of another computing
device, the server, for certain services. Examples that you may havein your
workplace include shared file servers, print servers, or database servers.

The use of LAN for instrument control aso provides other advantages
associated with client/server computing:

Resource sharing by multiple applications/people within an organization.
Distributed control, where the computer running the application
controlling the devices need not be in the same room or even the same
building as the devices themselves.

Asshown in the following figure, aLAN client computer system (a Series
700 HP-UX workstation, a Windows 95 PC, or aWindows NT PC) makes
VISA requests over the network to a LAN server (a Series 700 HP-UX
workstation, a Windows 95 PC, aWindows NT PC, or an HP E2050 LAN/
HP-IB Gateway). The LAN server is connected to the instrumentation or
devices that must be controlled. Once the LAN server has completed the
reguested operation on the instrument or device, the LAN server sends a
reply to the LAN client. This reply contains any requested data and status
information which indicates whether the operation was successful.

148 Chapter 6

Programming over LAN
Overview of the LAN

Series 700s, Windows95 PCs, or Windows NT PCs

|
|
|

Client - - -
| 1
- —c=
1
LAN
r HP E2050
LAN / HP-IB
C i y | — m—
O == 5]
| 1
Server — — HP-1B

bus

L [—
HP-IB bus ‘: t t t t
Series 700s, Windows95 (or other) o
PCs, or Windows NT PCs
Gateway

rrrr
rrrr
rrrr
rrrr
rrrr

[rrr
rrrr
rrrr
rrrr
rrrr

HP-IB
Instruments

Instrument

Figure 6-1. Using the LAN Client and LAN Server (Gateway)

The LAN server acts as a gateway between the LAN that your client system
supports, and the instrument-specific interface that your device supports.
Dueto the LAN server's gateway functionality, we refer to devices or
interfaces which are accessed via one of these LAN-to-instrument_interface
gateways as being a LAN-gatewayed device or a LAN-gatewayed interface.

Chapter 6 149

Client System

Programming over LAN
Overview of the LAN

L AN Software Architecture

Asthe following figure shows, the client system contains the LAN client
software and the LAN software (TCP/IP) needed to access the server
(gateway). The gateway containsthe LAN server software, LAN (TCP/IP)
software, and the instrument driver software needed to communicate with
the client and to control the instruments or devices connected to it.

Application

SICL

LAN Client

TCP

IP

LAN Interface

Server (Gateway)

Instrument
LAN Server
TCP Instrument
P Instrl_Jment Firmware
Driver
LAN Interface

HP-IB bus (or other)

Figure 6-2. LAN Software Architecture

150

Chapter 6

Programming over LAN
Overview of the LAN

LAN The LAN software provided with VISA isbuilt on top of standard LAN
Networking networking protocols. There aretwo LAN networking protocols provided
Protocols with the VISA software. You can choose one or both of these protocols
when configuring your systems (viathe HP 1/O Libraries configuration) to

use VISA over LAN. Thetwo protocols are as follows:

® SICL LAN Protocol isanetworking protocol developed by HP which is
compatiblewith all existing VISA LAN products. ThisLAN networking
protocol isthe default choiceinthe HP I/O Libraries configuration when
you are configuring the LAN client. The SICL LAN protocol on HP-UX
10.20, Windows 95, and Windows NT currently supports VISA
operations over the LAN to GPIB interfaces.

® TCP/IP Instrunent Protocol isanetworking protocol developed
by the V XIbus Consortium based on the SICL LAN Protocol which
permitsinteroperability of LAN software from different vendors that
meet the V X1bus Consortium standards. Note that this LAN networking
protocol may not be implemented with all the LAN products at thistime.
The TCP/IP Instrument Protocol on Windows 95 and Windows NT
currently supports VISA operations over the LAN to GPIB interfaces.

When using either of these networking protocols, the LAN software
provided with VISA uses the TCP/IP protocol suite to pass messages
between the LAN client and the LAN server. The server accepts device 1/O
reguests over the network from the client and then proceeds to execute those
I/0 requests on alocal interface, such as HP-IB.

You can use both LAN networking protocols (SICL LAN Protocol and
TCP/IP Instrument Protocol) withaLAN client. To do so, configureaLAN
clientand aVISA LAN client interface for each protocol, one specifying the
SICL LAN Protocol and one specifying the TCP/IP Instrument Protocol.
The LAN client and VISA LAN client are configured during the HP 1/O
Libraries configuration. (Seethe HP I/O Libraries Installation and
Configuration Guide for information.)

Once you have configured VISA LAN client interfaces, one specifying
SICL LAN Protocol, and one specifying TCP/IP Instrument Protocol, then
you can use the interface name specified during configuration in your VISA
vi Open call of your program. Note, however, that the LAN server does not
support simultaneous connections from LAN clients using the SICL LAN
Protocol and from other LAN clients using the TCP/IP Instrument Protocol.

Chapter 6 151

Programming over LAN
Overview of the LAN

LAN Client and You can use multi-threaded designs (where VISA calls are made from
Threads multiple threads) in WIN32 VISA applications over LAN. However, only
one thread is permitted to accessthe LAN driver at atime. This sequential
handling of individual threads by the LAN driver prevents multiple threads
from colliding or overwriting one another. Note that requests are handled
sequentially even if they are intended for different LAN servers.

If you want concurrent threads to be processed simultaneously with VISA
over LAN, use multiple processes.

152 Chapter 6

Programming over LAN
Overview of the LAN

LAN Server Currently there are three LAN serversthat can be used with VISA: the HP
E2050 LAN/HP-IB Gateway, an HP Series 700 running HP-UX, or aPC
running Windows 95 or Windows NT. To use this capability, the LAN
server must have aloca HP-IB or GPIB interface configured for 1/0. See
the
HP 1/0 Libraries Installation and Configuration Guide for information on
configuration.

Note that the timing of operations performed remotely over a network will
be different from the timing of operations performed locally. The extent of
thetiming difference will, in part, depend on the bandwidth of and the traffic
on the network being used.

Contact your local HP representative for a current list of other HP supported
LAN servers.

Chapter 6 153

Programming over LAN
Considering LAN Configuration and Performance

Considering LAN Configuration and
Performance

Aswith other client/server applications on a LAN, when deploying an
application which uses VISA over LAN, consideration must be given to the
performance and configuration of the network to which the client and server
will be attached. If the network to be used is not adedicated LAN or
otherwiseisolated viaabridge or other network device, current utilization of
the LAN must be considered. Depending on the amount of data which will
be transferred over the LAN viathe VISA application, performance
problems could be experienced by the VISA application or other network
usersif sufficient bandwidth is not available. Thisisnot uniqueto VISA
over LAN, but issimply ageneral design consideration when deploying any
client/server application.

If you have questions concerning the ability of your network to handle VISA
traffic, consult with your network administrator or network equipment
providers.

154 Chapter 6

Programming over LAN
Communicating with Devices over LAN

Communicating with Devicesover LAN

VISA supports LAN-gatewayed sessions. What this meansisthat you can
communicate with configured LAN servers. The LAN server configuration
is determined by the type of server present. The only action required by the
user isto configure VISA for aVl SA LAN d i ent. Thisconfigurationis
done during the HP 1/O Libraries configuration. Seethe HP 1/O Libraries
Installation and Configuration Guide for information on configuring aVvl SA
LAN Cient.

Addressing a Session

The same rules apply as when addressing a GPIB session. The only
differenceisthat you use the VISA Interface Name provided during the 110
configuration that relatesto the VI SA LAN C i ent . Thefollowing
illustrates addressing a GPIB device configured over the LAN:

GPIBO::7::0 A GPIB device at primary address 7 and secondary
address 0 on the GPIB interface. Note that this
GPIB interface (GPIB0) happens to be configured as
aVI SA LAN d i ent inthe HP I/O Libraries
configuration.

The following is an example of opening a device session with the GPIB
device at primary address 23.

Vi Sessi on defaul tRM vi;

vi OpenDef aul t RV &def aul t RM ;
vi Open(defaul tRM "GPl BO::23::INSTR", VI_NULL,
VI_NULL, &vi):

;/i Cl ose(vi);
vi Cl ose(defaul t RV ;

See Chapter 4, "Programming with HP VISA," for more information on how
to address device sessions.

Chapter 6 155

Programming over LAN
Communicating with Devices over LAN

L AN Session Example

Thefollowing C program exampl e isthe same exampl e program as shown in
Chapter 4, "Programming with HP VISA," only the address is modified to
the GPIB device connected over LAN. This example opens a session with a
GPIB device and sends a comma operator to send a comma-separated list.
This example program is intended to show specific VISA functionality and
does not include error trapping. Error trapping, however, is good
programming practice and is recommended in your VISA applications. See
"Trapping Errors" in Chapter 4, "Programming with HP VISA."

156 Chapter 6

Programming over LAN
Communicating with Devices over LAN

/*formatio.c
Thi s exanpl e program nmakes a rnul tineter measuremnent
with a comma separated |ist passed with formatted
I/O and prints the results. Note that you nust
change the device address. */

#i ncl ude <vi sa. h>
#i ncl ude <stdio. h>

void main () {

Vi Sessi on defaul tRM vi;
doubl e res;
double list [2] = {1,0.001};

/* Open session to GPIB device at address 22 */
vi OpenDef aul t RM &def aul t RM ;
vi Open(defaul tRM "GPl BO: : 22:: I NSTR', VI _NULL, VI _NULL, &vi);

/* Initialize device */
viPrintf(vi, "*RST\n");

/* Set up device and send comma separated list */
viPrintf(vi, "CALC. DBM REF 50\ n");
viPrintf(vi, "MEAS: VOLT: AC? % 2f\n", list);

/* Read results */
vi Scanf (vi, "%f", &res);

/* Print results */
printf ("Measurenment Results: %f\n", res);

/* Cl ose session */
vi Cl ose(vi);
vi Cl ose(defaul tRV;

Chapter 6 157

Programming over LAN
Using Timeouts with LAN

Using Timeoutswith LAN

The client/server architecture of the LAN software requires the use of two
timeout values, one for the client and one for the server. The server’s
timeout value is specified by setting aVISA timeout viathe

VI _ATTR_TMO VALUE attribute. The server will also adjust the requested
valueif infinity isrequested. The client’stimeout valueis determined by the
values set when you configurethe LAN Cl i ent during the HP I/O Libraries
configuration. Seethe HP 1/O Libraries Installation and Configuration
Guide for configuration information.

When the client sends an 1/0 request to the server, the timeout value
determined by the values set with the VI _ATTR_TMO_VALUE attributeis
passed with the request. The client may also adjust the value sent to the
server if VI _TMO | NFI NI TE was specified. The server will use that timeout
in performing the I/O operation, just asif that timeout value had been used
on alocal I/O operation. If the server’'s operation is not complete in the
specified time, then the server will send areply to the client which indicates
that atimeout occurred, and the VISA call made by the application will
return an error.

When the client sends an 1/0 request to the server, it starts atimer and waits
for the reply from the server. If the server does not reply in the time
specified, then the client stops waiting for the reply from the server and
returns an error.

158 Chapter 6

Programming over LAN
Using Timeouts with LAN

Default LAN Timeout Values

TheLAN d i ent configuration specifies two timeout-related configuration
values for the LAN software. These values are used by the software to

calculate timeout values:

Server Timeout

Client Timeout Delta

Timeout value passed to the server when an
application sets the VISA timeout to infinity

(VI _TMO_I NFI NI TE). Value specifies the
number of seconds the server will wait for the
operation to complete before returning an error.
If this value is zero (0), then the server will wait
forever.

Value added to the VISA timeout value (server’s
timeout value) to determine the LAN timeout
value (client’s timeout value). Value specifies
the number of seconds.

See the HP 1/O Libraries Installation and Configuration Guide for
information on setting these values.

The timeouts are adjusted via the following a gorithm:

®* TheVISA timeout, which is sent to the server, for the current call is
adjusted if itiscurrently infinity (VI _TMO_I NFI NI TE). In that case it
will be set to the Server Timeout value.

®* TheLAN timeout is adjusted if the VISA timeout plusthe Client
Timeout Deltais greater than the current LAN timeout. In that case the
LAN timeout will be set to the VISA timeout plus the Client Timeout

Delta

®* Thecaculated LAN timeout only increases as necessary to meet the
needs of the application, but never decreases. This avoids the overhead of
readjusting the LAN timeout every time the application changes the

VISA timeout.

Chapter 6

159

Programming over LAN
Using Timeouts with LAN

To change the defaults, do the following:

1. Runthel/ O Confi g utility (Windows) or thevi sacf g utility
(HP-UX).

2. Editthe LAN d i ent interface.

3. Changethe Server Timeout or Client Timeout Delta parameter. (Seethe
online help for information on changing these values.)

4. Restart the VISA LAN applications.

160 Chapter 6

Programming over LAN
Using Timeouts with LAN

Application Terminations and Timeouts

If an application iskilled either via Ctrl-C or the HP-UX ki I | command
whilein the middle of a VISA operation which is performed at the LAN
server, the server will continue to try the operation until the server’s timeout
isreached. By default, the LAN server associated with an application using
atimeout of infinity which iskilled may not discover that the client is no
longer running for 2 minutes. (If you are using a server other than the LAN
server supported with this product, check that server's documentation for its
default behavior.)

If both the LAN client and LAN server are configured to use a long timeout
value, then the server may appear "hung." If this situation is encountered,
the LAN client (viathe Server Timeout value) or the LAN server may be
configured to use a shorter timeout value.

If long timeouts must be used, the server may be reset. An HP-UX server
may be reset by logging into the server host and killing the running

si cl | and daemon(s). Note that the latter procedure will affect all clients
connected to the server. A Windows 95 or Windows NT server may be reset
by typing Ctrl-C in the LAN Server window, and then restarting the server
fromtheHP I/ O Li brari es program group. This procedure will also
affect all clients connected to the server.

Chapter 6 161

Programming over LAN
Using Signal Handling with LAN

Using Signal Handling with LAN

SIGIO Signals

VISA uses SIGIO for SRQs on LAN interfaceson HP-UX. The VISA LAN
client installs a signa handler to catch SIGIO signals. To enable sharing of
SIGIO signals with other portions of an application, the VISA LAN SIGIO
signal handler remembers the address of any previoudly installed SIGIO
handler, and calls this handler after processing a SIGIO signal itself. If your
application ingtalls a SIGIO handler, it should also remember the address of
apreviously installed handler and call it before completing.

The signal number used with LAN (SIGIO) can not be changed.

162 Chapter 6

Programming over LAN
HP VISA Function Support with LAN

HP VISA Function Support with LAN

A LAN session to aremote interface provides the same VISA function
support asif the interface was local, with the following exceptions or
qualifications.

All VXI specific functions are not supported over LAN.

GPIB Sessions and Service Requests over LAN

If multiple devices assert SRQs at roughly the same time causing the SRQ
line to stay asserted, even after all devices have been polled using

vi ReadSTB, then subsequent service requests from devices may be lost
since the SRQ handler(s) will not be invoked again until the lineis cleared.
For SRQs to bereliably delivered, an SRQ handler must not exit without
first clearing the SRQ line. However, VISA does not provided away to
check the SRQ line.

One way to ensure reliable delivery of SRQsisto service all devices from
one handler, disabling all devicesfrom sending additional SRQs at the top of
the handler. See the following:

di sable all devices fromrequesting service
serial _poll (devicel)

i f (needs_service) service_devicel

serial _poll (device2)

i f (needs_service) service_device2

enabl e all devices to send service requests

Chapter 6 163

Programming over LAN
HP VISA Function Support with LAN

Evenif the different sessionsarein different processes, it isimportant to stay
in the SRQ handler until the SRQ lineisreleased. However, the only way to
ensure true independence of multiple GPIB processes isto use multiple

GPIB interfaces.

Another way in which this situation can be avoided isif aVISA LAN client
is configured to use the SICL LAN protocol and the LAN serverisa
Windows 95, Windows NT, or HP-UX 10.x system running the LAN server
that is shipped as part of this product. This method is handled transparently,
just as for other interfaces.

164 Chapter 6

HP VISA Language Reference

Note

HP VISA Language Reference

This chapter describes each function in the VISA library for the
Windowsand HP-UX programming environments. The VISA functions are
provided in alphabetica order in this chapter for easy reference.

The VISA functions can be grouped according to the types of functions
performed, as shown in the following table. Note that the OUT parameters
are identified by the type definition. In other words, all OUT parameters are
defined with a pointer type: Vi PUI nt 16, Vi PRsr ¢, and so forth.

The datatypesfor the VISA function parameters (for example, Vi Sessi on,
Vi Event Type, and so forth) are defined in the VISA declarationsfile. They
are also explained in Appendix D, "HP VISA Type Definitions,” in this
manual.

166 Chapter7

HP VISA Language Reference

Chapter 7 167

HP VISA Language Reference

Operation

Functi on (Type Parameterl, Type Parameter2,...);

Resource Management:

Open Default Resource Manager Session vi OpenDef aul t RM Vi PSessi on s&n) ;

Lifecycle:
Open Session

Close Session

Characteristic Control:
Get Attribute

Set Attribute

Get Status Code Description

Asynchronous Operation Control:

Terminate Asynchronous Operation

Access Control:
Lock Resource

Unlock Resource

Event Handling:
Enable Event

Disable Event

Discard Events

Event Handling
Wait on Event

Install Handler

Uninstall Handler

Event Handler Prototype

vi Open(Vi Sessi on sesn, Vi Rsrc rsrcName,
Vi AccessMbde accessMode, Vi Ul nt 32 timeout, Vi PSessi on vi);

vi Cl ose(Vi Sessi on/ Vi Event/ Vi Fi ndLi st vi);

Vi Get Attri but e(Vi Sessi on/ Vi Event/ Vi Fi ndLi st i,
Vi Attr attribute, Vi PAttr State attrSate);

vi Set Attri bute(Vi Sessi on/ Vi Event/ Vi Fi ndLi st i,
Vi Attr attribute, Vi AttrState attrSate);

vi St at usDesc(Vi Sessi on/ Vi Event / Vi Fi ndLi st i,
Vi St atus status, Vi PString desc);

vi Term nat e(Vi Session vi, ViU ntl6 degree,
Vi Jobl d jobld) ;

vi Lock(Vi Sessi on vi, Vi AccessMbde lockType, Vi Ul nt 32 timeout,
Vi Keyl d requestedKey, Vi PKeyl d accessKey) ;

vi Unl ock(Vi Sessi on vi);

vi Enabl eEvent (Vi Sessi on vi, Vi Event Type eventType,
Vi Ul nt 16 mechanism, Vi EventFilter context);

vi Di sabl eEvent (Vi Sessi on vi, Vi Event Type eventType,
Vi Ul nt 16 mechanism) ;

vi Di scardEvent s(Vi Sessi on vi, Vi Event Type eventType,
Vi Ul nt 16 mechanism) ;

vi Wai t OnEvent (Vi Sessi on vi, Vi Event Type inEventType,
Vi Ul nt 32 timeout, Vi PEvent Type outEventType, Vi PEvent outContext);

vi I nstal | Handl er (Vi Sessi on vi, Vi Event Type eventType,
Vi Hndl r handler, Vi Addr userHandle) ;

vi Uni nst al | Handl er (Vi Sessi on vi, Vi Event Type eventType,
Vi Hndl r handler, Vi Addr userHandle) ;

vi Event Handl er (Vi Sessi on vi, Vi Event Type eventType,
Vi Event context, Vi Addr userHandle) ;

168

Chapter7

HP VISA Language Reference

Operation

Functi on (Type Parameterl, Type Parameter2,...);

Searching:
Find Device

Find Next Device

Basic I/O:
Read Data from Device

Read Data Asynchronously from Device

Write Data to Device

Write Data Asynchronously to Device

Assert Software/Hardware Trigger
Read Status Byte

Clear a Device

Formatted 1/O:
Set Size of Buffer

Flush Read and Write Buffers

Convert, Format, and Send Parameters
Convert, Format, and Send Parameters
Read, Convert, Format, and Store Data
Read, Convert, Format, and Store Data

Write and Read Formatted Data

Write and Read Formatted Data

vi Fi ndRsrc(Vi Session sesn, ViString expr,
Vi PFi ndLi st findList, Vi PUI nt 32 retcnt, Vi PRsrc instrDesc) ;

vi Fi ndNext (Vi Fi ndLi st findList, Vi PRsrc instrDesc) ;

vi Read(Vi Sessi on vi,
Vi PUI nt 32 retCount) ;

Vi PBuf buf, Vi Ul nt32 count,

vi ReadAsync (Vi Sessi on vi, Vi PBuf buf,
Vi Ul nt 32 count, Vi PJobld jobld);

vi Wite(Vi Session vi,
Vi PUI nt 32 retCount) ;

Vi Buf buf, Vi U nt32 count,

vi WiteAsync(Vi Session vi, ViBuf buf,
Vi Ul nt 32 count, Vi PJobld jobld);

vi Assert Tri gger (Vi Sessi on vi, ViU nt16 protocol);

vi ReadSTB(Vi Sessi on vi, ViPU nt16 status);

vi Cl ear (Vi Sessi on vi);

vi Set Buf (Vi Session vi, ViU ntl1l6 mask, ViU nt32 size);

vi Fl ush(Vi Session vi, ViU ntl1l6 mask);

vi Printf (Vi Session vi, ViString writeFmt, argl, arg2, ...);
vi VPrintf(ViSession vi, ViString writeFmt, Vi VALi st params) ;
vi Scanf (Vi Session vi, ViString readFmt, argl, arg2, ...);

vi VScanf (Vi Sessi on vi, ViString readFmt, Vi VALi st params);

vi Quer yf (Vi Sessi on i,
argl, arg2, ...);

Vi String writetFmt, Vi String readFnt,

vi VQuer yf (Vi Session vi, Vi String writeFnt,
Vi String readFmt, Vi VALi st params) ;

Chapter 7

169

HP VISA Language Reference

Operation Function (Type Parameterl, Type Parameter2,...);

Memory 1/O:
Read 8-bit Value from Memory Space vi I n8(Vi Session vi, ViU ntl6 space, Vi BusAddress offset,
Vi PUI nt 8 val8) ;

Read 16-bit Value from Memory Space vi I n16(Vi Session vi, ViU nt1l6 space, Vi BusAddress offset,
Vi PUl nt 16 vall6);

Read 32-bit Value from Memory Space vi I n32(Vi Session vi, ViU ntl1l6 space, Vi BusAddress offset,
Vi PUI nt 32 val32);

Write 8-bit Value to Memory Space vi Qut 8(Vi Session vi, ViU nt1l6 space, Vi BusAddress offset,
ViUl nt8 val);
Write 16-bit Value to Memory Space vi Qut 16(Vi Sessi on vi, ViU nt16 space, Vi BusAddress offset,

Vi Ul nt 16 vall6);

Write 32-bit Value to Memory Space vi Qut 32(Vi Session vi, ViU nt1l6 space, Vi BusAddress offset,
Vi Ul nt 32 val32);

Move data from source to destination vi Move (Vi Session vi, ViU nt1l6 srsSpace, Vi BusAddress srcOffset,

(VISA 1.1 only) Vi Ul nt 16 srcWidth, Vi Ul nt 16 destSpace, Vi BusAddr ess destOffset,
Vi Ul nt 16 destWdth, Vi BusSi ze length)

Move data from source to destination vi MoveAsync (Vi Session vi, ViUl nt1l6 srsSpace,

asynchronously (VISA 1.1 only) Vi BusAddr ess srcOffset, Vi Ul nt 16 srcWidth, Vi Ul nt 16 destSpace,
Vi BusAddr ess destOffset, Vi Ul nt 16 destWdth, Vi BusSi ze length,
Vi Jobl d jobld)

170 Chapter7

HP VISA Language Reference

Operation

Functi on (Type Parameterl, Type Parameter2,...);

Memory /O (continued):
Move 8-bit Value from Device Memory
to Local Memory

Move 16-bit Value from Device Memory to
Local Memory

Move 32-bit Value from Device Memory to
Local Memory

Move 8-bit Value from Local Memory to
Device Memory

Move 16-bit Value from Local Memory to
Device Memory

Move 32-bit Value from Local Memory to
Device Memory

Map Memory Space

Unmap Memory Space

Read 8-bit Value from Address
Read 16-bit Value from Address
Read 32-bit Value from Address
Write 8-bit Value to Address
Write 16-bit Value to Address

Write 32-bit Value to Address

Shared Memory:
Allocate Memory

Free Memory Previously Allocated

vi Movel n8(Vi Session vi, ViU ntl6 space, Vi BusAddress offset,
Vi BusSi ze length, Vi AUI nt 8 buf8) ;

vi Movel n16(Vi Sessi on vi, ViU nt16 space, Vi BusAddress offset,
Vi BusSi ze length, Vi AUl nt 16 bufl6);

vi Movel n32(Vi Sessi on vi, ViU ntl6 space, Vi BusAddress offset,
Vi BusSi ze length, Vi AUl nt 32 buf32);

vi MoveQut 8(Vi Sessi on vi, ViU ntl16 space, Vi BusAddress offset,
Vi BusSi ze length, Vi AUI nt 8 buf8) ;

vi MoveCQut 16(Vi Sessi on vi, ViU nt16 space, Vi BusAddress offset,
Vi BusSi ze length, Vi AUl nt 16 bufl6);

vi MoveCQut 32(Vi Sessi on vi, ViU nt16 space, Vi BusAddress offset,
Vi BusSi ze length, Vi AUl nt 32 buf32);

vi MapAddr ess(Vi Sessi on vi, ViU nt16 mapSpace,
Vi BusAddr ess mapBase, Vi BusSi ze mapSze, Vi Bool ean access,
Vi Addr suggested, Vi PAddr address) ;

vi UnmapAddr ess(Vi Sessi on vi);

vi Peek8(Vi Sessi on vi, Vi Addr addr, Vi PU nt8 val8);

vi Peek16(Vi Sessi on vi, Vi Addr addr, Vi PU nt16 vall6);

vi Peek32(Vi Sessi on vi, Vi Addr addr, Vi PU nt32 val32);

vi Poke8(Vi Sessi on vi, Vi Addr addr, ViU nt8 val8);

vi Pokel6(Vi Sessi on vi, Vi Addr addr, Vi U nt16 vall6);

vi Poke32(Vi Sessi on vi, Vi Addr addr, Vi U nt32 val32);

vi MemAl | oc(Vi Sessi on vi, ViBusSize size, Vi PBusAddress offset);

vi Menfree(Vi Sessi on vi, Vi BusAddress offset);

The following sections explain each of the VISA functions in alphabetical

order.

Chapter 7

171

Syntax

Note

Description

Parameters

HP VISA Language Reference
viAssertTrigger

ViAssertTrigger

vi Assert Tri gger (Vi Session vi, ViU nt16 protocol);

Thisfunction is not supported with the GPIB-V X | interface.

This function asserts a software or hardware trigger dependent on the
interfacetype. For a GPIB device, the device is addressed to listen, and then
the GPIB GET command is sent. For aVXI| device, if VI_ATTR TRIG | D
isVI _TRI G_SWthen the device is sent the Word Seria Trigger command.
For aVXI device, if VI _ATTR_TRI G_|I Disany other value, a hardware
trigger is sent on the line corresponding to the value of that attribute.

For GPIB and V XI softwaretriggers, VI _TRI G_PROT_DEFAULT isthe only
valid protocol. For VXI hardware triggers, VI _TRI G_PROT_DEFAULT is
equivalentto VI _TRI G_PROT_SYNC.

Name Direction Type Description
vi IN Vi Sessi on Unique logical identifier to a session.
protocol IN Vi Ul nt 16 Trigger protocol to use during assertion.

Valid values are:

VI _TRI G_PROT_DEFAULT,
VI _TRI G_PROT_ON,

VI _TRI G_PROT_OFF, and
VI _TRI G_PROT_SYNC.

172 Chapter7

Return Values

Type Vi St at us

HP VISA Language Reference
viAssertTrigger

This is the function return status. It returns either a completion

code or an error code as follows.

Completion Code

Description

VI _SUCCESS

The specified trigger was successfully asserted to the
device.

Error Code

Description

VI _ERROR | NV_SESSI ON
VI _ERROR | N\V_OBJECT

The given session or object reference is invalid
(both are the same value).

VI _ERROR_NSUP_CPER

The given vi does not support this function.

VI _ERROR_RSRC_LOCKED

Specified operation could not be performed because
the resource identified by vi has been locked for this
kind of access.

VI _ERROR_| NV_PROT

The protocol specified is invalid.

VI _ERROR_TMD

Timeout expired before function completed.

VI _ERROR_RAW W\R_PROT_VI OL

Violation of raw write protocol occurred during
transfer.

VI _ERROR_RAW RD_PROT_VI OL

Violation of raw read protocol occurred during transfer.

VI_ERROR | NP_PROT_VI OL

Device reported an input protocol error occurred
during transfer.

VI _ERROR BERR

Bus error occurred during transfer.

VI _ERROR LI NE_I N_USE

The specified trigger line is currently in use.

VI _ERROR_NCI C

The interface associated with the given Vi is not
currently the controller in charge.

VI _ERRCR_NLI STENERS

No Listeners condition is detected (both NRFD and
NDAC are deasserted).

VI _ERROR | N\V_SETUP

Unable to start operation because setup is invalid (due
to attributes being set to an inconsistent state).

Chapter 7

173

HP VISA Language Reference

viClear

viClear

Syntax vi d ear (Vi Sessi on Vi) ;

Description Thisfunction performsan |IEEE 488.1-style clear of the device. VXI usesthe
Word Serial Clear command, and GPIB uses the Selective Device Clear

command.

Parameters

Name Direction

Type Description

Vi IN

Vi Sessi on Unique logical identifier to a session.

Return Values
TypeVi St at us

Thisisthe function return status. It returns either a
completion code or an error code as follows.

Completion Code

Description

VI _SUCCESS

Operation completed successfully.

174

Chapter7

HP VISA Language Reference
viClear

Error Code

Description

VI _ERROR | NV_SESSI ON
VI _ERROR_| N\V_OBJECT

The given session or object reference is invalid (both
are the same value).

VI _ERROR_NSUP_OPER

The given vi does not support this function.

VI _ERROR_RSRC_LOCKED

Specified operation could not be performed because
the resource identified by vi has been locked for this
kind of access.

VI _ERROR_TMD

Timeout expired before function completed.

VI _ERROR_RAW V\R_PROT_VI OL

Violation of raw write protocol occurred during
transfer.

VI _ERROR_RAW RD_PROT_VI OL

Violation of raw read protocol occurred during
transfer.

VI _ERROR BERR

Bus error occurred during transfer.

VI _ERROR _NCI C

The interface associated with the given vi is not
currently the controller in charge.

VI _ERRCR_NLI STENERS

No Listeners condition is detected (both NRFD and
NDAC are deasserted).

VI _ERROR | NV_SETUP

Unable to start operation because setup is invalid
(due to attributes being set to an inconsistent state).

Chapter 7

175

HP VISA Language Reference
viClose

viClose

Syntax vi Cl ose(Vi Sessi on/ Vi Event/ Vi Fi ndLi st vi);

Description This function closes the specified resource manager session, device session,
find list (returned from thevi Fi ndRsr ¢ function), or event context
(returned from the vi Vi t OnEvent function, or passed to an event
handler). Inthis process, all the data structures that had been allocated for
the specified vi are freed.

Note Thevi O ose function should not be called from within an event handler.

Parameters
Name | Direction Type Description
vi IN Vi Sessi on Unique logical identifier to a session, event, or find
Vi Event list.
Vi Fi ndLi st

Note InVISA 1.1only,vi O ose (VI _NULL) returnsVI _WARN NULL_BQJECT
rather than an error.

176 Chapter7

HP VISA Language Reference
viClose

Return Values

TypeVi St at us Thisisthe function return status. It returns either a
completion code or an error code as follows.

Completion Code Description
VI _SUCCESS Session closed successfully.
VI _WARN_NULL_OBJECT The specified object reference is uninitialized.
Error Code Description
VI _ERROR_| NV_SESSI ON The given session or object reference is invalid (both are
VI _ERROR_| NV_OBJECT the same value).
VI _ERROR_CLGSI NG_FAI LED Unable to deallocate the previously allocated data
structures corresponding to this session or object
reference.

See Also "viOpen", "viFindRsrc", "viWaitOnEvent", "viEventHandler"

Chapter 7 177

HP VISA Language Reference
viDisableEvent

viDisableEvent

Syntax vi Di sabl eEvent (Vi Sessi on vi, Vi Event Type eventType,
Vi Ul nt 16 mechanism) ;

Description Thisfunction disables servicing of an event identified by the eventType
parameter for the mechanisms specified in the mechanism parameter.
Specifying VI _ALL_ENABLED_ EVENTS for the eventType parameter allows a
session to stop receiving all events. The session can stop receiving queued
events by specifying VI _QUEUE. Applications can stop receiving callback
events by specifying either VI _HNDLR or VI _SUSPEND_HNDLR. Specifying
VI _ALL_MECH disables both the queuing and callback mechanismes.

Parameters
Name Direction Type Description
vi IN Vi Sessi on Unique logical identifier to a
session.
eventType IN Vi Event Type Logical event identifier. (See

the following tables.)

mechanism IN Vi Ul nt 16 Specifies event handling
mechanisms to be disabled.
The queuing mechanism is
disabled by specifying

VI _QUEUE; the callback
mechanism is disabled by
specifying VI _HNDLR or

VI _SUSPEND_HNDLR. Itis
possible to disable both
mechanisms simultaneously by
specifying VI _ALL_MECH. (See
the following table.)

Special Valuesfor eventType Par ameter

Value Action Description

VI _ALL_ENABLED EVENTS Disable all events that were previously enabled.

178 Chapter7

Return Values

HP VISA Language Reference
viDisableEvent

The following events can be disabled:

Event Name

Description

VI _EVENT_SERVI CE_REQ

Notification that a device is requesting service.

VI_EVENT_VXI _SI GP

Notification that a VXI signal or VXI interrupt has been
received from a device.

VI_EVENT_TRI G

Notification that a hardware trigger was received from a
device.

VI _EVENT_| O_COMPLETI ON

Notification that an asynchronous operation has completed.

Special Values for mechanism Parameter

Value Action Description
VI _QUEUE Disable this session from receiving the specified event(s)
via the waiting queue.
VI _HNDLR or Disable this session from receiving the specified event(s)
VI _SUSPEND_HNDLR via a callback handler or a callback queue.
VI _ALL_MECH Disable this session from receiving the specified event(s)
via any mechanism.

TypeVi St at us Thisisthe function return status. It returns either a
completion code or an error code as follows.

Completion Code

Description

VI _SUCCESS

Event disabled successfully.

VI _SUCCESS_EVENT DI S

Specified event is already disabled for at least one of the
specified mechanisms.

Error Code

Description

VI _ERROR | NV_SESSI ON
VI _ERROR | N\V_OBJECT

The given session or object reference is invalid (both are the
same value).

VI _ERROR | N\V_EVENT

Specified event type is not supported by the resource.

VI _ERROR | N\V_MECH

Invalid mechanism specified.

Chapter 7

179

HP VISA Language Reference
viDisableEvent

See Also Seethe handler prototype, "viEventHandler", for its parameter description,
and "viEnableEvent". Also refer to the "vilnstallHandler" and
"viUninstallHandler" descriptions for information about installing and
uninstalling event handlers. Refer to event descriptionsfor context structure
definitions.

180 Chapter7

Syntax

Description

Parameters

HP VISA Language Reference
viDiscardEvents

vi Di scar dEvent s(Vi Sessi on vi,

viDiscar dEvents

Vi Ul nt 16 mechanism) ;

Vi Event Type eventType,

Thisfunction discards al pending occurrences of the specified event types
for the mechanisms specified in a given session. The information about all
the event occurrences which have not yet been handled is discarded. This
function is useful to remove event occurrences that an application no longer

needs.
Name Direction Type Description
vi IN Vi Sessi on Unique logical identifier to a session.
eventType IN Vi Event Type Logical event identifier. (See the
following tables.)
mechanism IN Vi Ul nt 16 Specifies the mechanisms for which

the events are to be discarded.

VI _QUEUE is specified for the queuing
mechanismand VI _SUSPEND_HNDLR
is specified for the pending events in
the callback mechanism. Itis possible
to specify both mechanisms
simultaneously by specifying

VI _ALL_MECH. (See the following
table.)

Special Valuesfor eventType Par ameter

Value

Action Description

VI _ALL_ENABLED_EVENTS

Discard events of every type that is enabled.

Chapter 7

181

Return Values

See Also

HP VISA Language Reference

viDiscardEvents

The following events can be discarded:

Event Name

Description

VI _EVENT_SERVI CE_REQ

Notification that a device is requesting service.

VI_EVENT_VXI _SI GP

Notification that a VXI signal or VXI interrupt has been
received from a device.

VI_EVENT_TRI G

Notification that a hardware trigger was received from a
device.

VI _EVENT_| O_COMPLETI ON

Notification that an asynchronous operation has completed.

Special Values for mechanism Parameter

Value Action Description
VI _QUEUE Discard the specified event(s) from the waiting queue.
VI _SUSPEND_HNDLR Discard the specified event(s) from the callback queue.
VI _ALL_MECH Discard the specified event(s) from all mechanisms.

TypeVi St at us Thisisthe function return status. It returns either a
completion code or an error code as follows.

Completion Code

Description

VI _SUCCESS

Event queue flushed successfully.

VI _SUCCESS QUEUE_EMPTY

Operation completed successfully, but queue was empty.

Error Code

Description

VI _ERROR | NV_SESSI ON
VI _ERROR_| N\V_OBJECT

The given session or object reference is invalid (both are
the same value).

VI _ERROR_| NV_EVENT

Specified event type is not supported by the resource.

VI _ERROR | N\V_MECH

Invalid mechanism specified.

"viEnableEvent", "viWaitOnEvent", "vilnstallHandler"

182

Chapter7

Syntax

HP VISA Language Reference
viEnableEvent

viEnableEvent

vi Enabl eEvent (Vi Sessi on i,

Vi Event Type eventType,

Vi Ul nt 16 mechanism, Vi Event Filter context);

Description Thisfunction enables notification of an event identified by the eventType
parameter for mechanisms specified in the mechanism parameter. The
specified session can be enabled to queue events by specifying VI _ QUEUE.
Applications can enable the session to invoke a callback function to execute
the handler by specifying VI _HNDLR. The applications are required to
install at least one handler to be enabled for this mode. Specifying

VI _SUSPEND_HNDLR enables the session to receive callbacks, but the
invocation of the handler is deferred to alater time. Successive callsto this
function replace the old callback mechanism with the new callback
mechanism. Specifying VI _ALL_ENABLED_ EVENTS for the eventType
parameter refersto all events which have previously been enabled on this
session, making it easier to switch between the two callback mechanisms for
multiple events.

Parameters

Name

Direction

Type

Description

vi

Vi Sessi on

Unique logical identifier to a session.

eventType

Vi Event Type

Logical event identifier. (See the
following tables.)

mechanism

Vi Ul nt 16

Specifies event handling mechanisms to
be enabled. The queuing mechanism is
enabled by specifying VI _QUEUE, and
the callback mechanism is enabled by
specifying VI _HNDLR or

VI _SUSPEND_HNDLR. Itis possible to
enable both mechanisms simultaneously
by specifying "bit-wise OR" of

VI _QUEUE and one of the two mode
values for the callback mechanism.

context

Vi EventFil ter

VI _NULL (Not used for VISA 1.0.)

Chapter 7

183

HP VISA Language Reference
viEnableEvent

Special Valuesfor eventType Parameter

Value Action Description

VI _ALL_ENABLED EVENTS | Switch all events that were previously enabled to the callback
mechanism specified in the mechanism parameter.

The following events can be enabled:

Event Name Description

VI _EVENT_SERVI CE_REQ Notification that a device is requesting service.

VI _EVENT_VXI _SI GP Notification that a VXI signal or VXI interrupt has been
received from a device.

VI _EVENT_TRI G Notification that a hardware trigger was received from a
device.

VI _EVENT_| O_COWPLETI ON | Notification that an asynchronous operation has completed.

Special Valuesfor mechanism Parameter

Value Action Description

VI _QUEUE Enable this session to receive the specified event via the
waiting queue. Events must be retrieved manually via the
vi Vi t OnEvent function.

VI _HNDLR Enable this session to receive the specified event via a
callback handler, which must have already been installed via
vi I nstal | Handl er.

VI _SUSPEND_HNDLR Enable this session to receive the specified event via a
callback queue. Events will not be delivered to the session
until vi Enabl eEvent is invoked again with the VI _HNDLR
mechanism.

Note Any combination of VISA-defined values for different parameters of this
function is also supported (except for VI _HNDLR and VI _SUSPEND_HNDLR,
which apply to different modes of the same mechanism).

184 Chapter7

Return Values

HP VISA Language Reference
viEnableEvent

TypeVi St at us Thisisthe function return status. It returns either a
completion code or an error code as follows.

Completion Code

Description

VI _SUCCESS

Event enabled successfully.

VI _SUCCESS_EVENT_EN

Specified event is already enabled for at least one of
the specified mechanisms.

Error Code

Description

VI _ERROR_| NV_SESSI ON
VI _ERROR_| NV_OBJECT

The given session or object reference is invalid (both
are the same value).

VI _ERROR_| NV_EVENT

Specified event type is not supported by the resource.

VI _ERROR_| NV_NMECH

Invalid mechanism specified.

VI _ERROR_| NV_CONTEXT

Specified event context is invalid.

VI _ERROR_HNDLR NI NSTALLED

A handler is not currently installed for the specified
event. The session cannot be enabled for the
VI _HNDLR mode of the callback mechanism.

See Also Seethe handler prototype, "viEventHandler", for its parameter description,
and "viDisableEvent". Also refer to the "vilnstallHandler" and
"viUninstallHandler" descriptions for information about installing and

uninstalling event handlers.

Chapter 7

185

Syntax

Description

Parameters

HP VISA Language Reference
viEventHandler

viEventHandler

vi Event Handl er (Vi Sessi on vi, Vi Event Type eventType,
Vi Event context, Vi Addr userHandle) ;

Thisis aprototype for afunction, which you define. The function you
defineis called whenever a session receives an event and is enabled for
handling eventsin the Vi _HNDLR mode. The handler servicesthe event and
returns VI _SUCCESS on completion.

Because each eventType definesits own context in terms of attributes, refer to
the appropriate event definition to determine which attributes can be
retrieved using the context parameter.

Name | Direction Type Description
vi IN Vi Sessi on Unique logical identifier to a session.
eventType IN Vi Event Type | Logical event identifier. (See the following table.)
context IN Vi Event A handle specifying the unique occurrence of an
event.
userHandle IN Vi Addr A value specified by an application that can be
used for identifying handlers uniquely in a session
for an event.

186 Chapter7

HP VISA Language Reference
viEventHandler

The following table lists the events and the associated read only attributes
that can be read to get event information on a specific event:

Event Name

Attributes

Data Type

Values

VI _EVENT_SERVI CE_REQ

VI _ATTR _EVENT_TYPE

Vi Event Type

VI _EVENT_SERVI CE_REQ

VI _EVENT_VXI _SI GP

VI _ATTR_EVENT_TYPE
VI _ATTR_SI GP_STATUS_I D

Vi Event Type
Vi Ul nt 16

VI _EVENT_VXI _SI GP
0 to FFFF,

VI _EVENT_TRI G

VI _ATTR_EVENT_TYPE
VI _ATTR RECV_TRIG | D

Vi Event Type
Vil nt 16

VI _EVENT_TRI G
VI_TRI G TTLO to

VI_TRIG TTL7 VI _TRI G ECLO to
VI _TRI G ECL1

VI _EVENT_| O_COVPLETI ON

VI _ATTR _EVENT_TYPE
VI _ATTR STATUS
VI_ATTR JOB_ | D
VI_ATTR BUFFER

VI _ATTR _RET_COUNT

Vi Event Type
Vi St at us

Vi Jobl d

Vi Buf

Vi Ul nt 32

VI _EVENT_| O_COVPLETI ON
N/A

N/A

N/A

0 to FFFFFFFF,

Usethe VISA vi ReadSTB function to read the status byte of the service
request.

Return Values

Type Vi St at us

Thisisthe function return status. It returns either a

completion code or an error code as follows.

Note

Return values are not used in VISA 1.0, but will be significant in future

versions of VISA. Therefore, you should always return VI _SUCCESS from
an event handler.

Completion Code

Description

VI _SUCCESS

Event handled successfully.

See Also

Refer to the "Using Events and Handlers' section of Chapter 4,

"Programming with HP VISA," for more information on event handling and
exception handling.

Chapter 7

187

HP VISA Language Reference
viFindNext

viFindNext

Syntax vi Fi ndNext (Vi Fi ndLi st findList, Vi PRsrc instrDesc) ;

Description Thisfunction returns the next resource found in the list created by
vi Fi ndRsr c. Thelist isreferenced by the handle that was returned by

vi Fi ndRsrc.
Parameters
Name | Direction Type Description

findList IN Vi Fi ndLi st | Describes a find list. This parameter must be
created by vi Fi ndRsrc.

instrDesc ouT Vi PRsr ¢ Returns a string identifying the location of a
device. Strings can then be passed to vi Open
to establish a session to the given device.

Return Values

Type Vi St at us Thisisthe function return status. It returns either a
completion code or an error code as follows.

Completion Code Description
VI _SUCCESS Resource(s) found.
Error Code Description

VI _ERROR_| NV_SESSI ON | The given session or object reference is invalid (both are the
VI _ERRCOR_| NV_OBJECT | same value).

VI _ERROR_NSUP_OPER The given findList does not support this function.

VI _ERROR_RSRC_NFOUND | There are no more matches.

See Also "viFindRsrc"

188 Chapter7

Syntax

HP VISA Language Reference
viFindRsrc

viFindRsrc

vi Fi ndRsrc(Vi Session sesn, Vi String expr, Vi PFindLi st
findList, Vi PUl nt 32 retent, Vi PRsrc instrDesc) ;

Description Thisfunction queries aVISA system to locate the resources associated with
aspecified interface. This function matches the value specified in the expr
parameter with the resources available for a particular interface. On
successful completion, it returns the first resource found in the list and
returns a count to indicate if there were more resources found that match the
value specified in the expr parameter.

Parameters

Thisfunction also returns ahandle to afind list. This handle points to the
list of resources, and it must be used asan input tovi Fi ndNext . When this
handle is no longer needed, it should be passed to vi C ose.

Name | Direction Type Description
sesn IN Vi Sessi on Resource Manager session (should always be the
Default Resource Manager for VISA returned from
vi OpenDef aul t RM).
expr IN Vi String This expression sets the criteria to search an
interface or all interfaces for existing devices. (See
the following table for description string format.)
findList ouT Vi Fi ndLi st Returns a handle identifying this search session.
This handle will be used as an input in
vi Fi ndNext .
retcnt ouT Vi Ul nt 32 Number of matches.
instrDesc ouT Vi Rsrc Returns a string identifying the location of a
device. Strings can then be passed to vi Open to
establish a session to the given device.

Chapter 7

189

Return Values

See Also

HP VISA Language Reference

viFindRsrc
Description Sring for expr Parameter
Interface Expression
GPIB GPI B[0-9] *:: ?*I NSTR
VXI VXI ?* 1 NSTR
GPIB-VXI GPI B- VXI ?* 1 NSTR
GPIB and GPIB-VXI GPI B?*| NSTR
All VXI ?*VXI[0-9] *:: ?*I NSTR
ASRL ASRL[0- 9] *:: ?*] NSTR
Al ?*1 NSTR

TypeVi St at us Thisisthe function return status. It returns either a
completion code or an error code as follows.

Completion Code Description
VI _SUCCESS Resource(s) found.
Error Code Description

VI _ERROR | NV_SESSI ON
VI _ERROR_| NV_OBJECT

The given session or object reference is invalid (both are the
same value).

VI _ERROR_NSUP_OPER

The given sesn does not support this function.

VI_ERROR | N\V_EXPR

Invalid expression specified for search.

VI _ERROR_RSRC_NFOUND

Specified expression does not match any devices.

"viFindNext", "viClose"

190

Chapter7

HP VISA Language Reference
viFlush

viFlush

Syntax vi Fl ush(Vi Session vi, ViU nt1l6 mask);

Description Thisfunction manually flushes the read and write buffers associated with
formatted 1/0O functions.

Parameters
Name | Direction Type Description
vi IN Vi Sessi on | Unique logical identifier to a session.
mask IN Vi Ul nt 16 | Specifies the action to be taken with flushing the buffer.
(See the following table.)

Chapter 7

191

Note

Note

HP VISA Language Reference

viFlush
Values for mask Parameter
Flag Interpretation
VI _READ BUF Discard the read buffer contents and, if data was present in

the read buffer and no END-indicator was present, read
from the device until encountering an END indicator (which
causes the loss of data). This action resynchronizes the
next vi Scanf call to read a <TERMINATED RESPONSE
MESSAGE>. (Refer to the IEEE 488.2 standard.)

VI _READ BUF_DI SCARD

Discard the read buffer contents (does not perform any 1/0
to the device).

VI_WRI TE_BUF

Flush the write buffer by writing all buffered data to the
device.

VI _WRI TE_BUF_DI SCARD

Discard the write buffer contents (does not perform any 1/O
to the device).

VI _ASRL_I N_BUF

Discard the receive buffer contents (same as
VI _ASRL_| N_BUF_DI SCARD).

VI _ASRL_I N_BUF_DI SCARD

Discard the receive buffer contents (does not perform an
1/O to the device).

VI_ASRL_OUT_BUF

Flush the transmit buffer by writing all buffered data to the
device.

VI_ASRL_OUT_BUF_DI SCARD

Discard the transmit buffer contents (does not perform any
1/O to the device).

It is possible to combine any of these read flags with awrite flag (and vice
versa) by ORing the flags. However, combining two read flags or two write
flagsinthe samecall tovi Fl ush isillegal.

In this implementation, it is not possible to discard the ASRL in and out
buffers separately. VI _ASRL_| N_BUF_DI SCARD and

VI _ASRL_QUT_BUF_DI SCARD must always be set together. If only oneis
set, VI _ERROR | NV_MASK is returned.

192

Chapter7

Return Values

HP VISA Language Reference
viFlush

TypeVi St at us Thisisthe function return status. It returns either a
completion code or an error code as follows.

Completion Code

Description

VI _SUCCESS

Buffers flushed successfully.

Error Code

Description

VI _ERROR | NV_SESSI ON
VI _ERROR_| NV_OBJECT

The given session or object reference is invalid (both are the
same value).

VI _ERROR_RSRC_LOCKED

Specified operation could not be performed because the
resource identified by vi has been locked for this kind of access.

VI_ERROR | O

Could not perform read/write function because of I/O error.

VI _ERROR_TMD

The read/write function was aborted because timeout expired
while function was in progress.

VI _ERROR | NV_MASK

The specified mask does not specify a valid flush function on
read/write resource.

See Also "viSetBuf"

Chapter 7

193

HP VISA Language Reference
viGetAttribute

viGetAttribute

Syntax vi Cet Attri but e(Vi Sessi on/ Vi Event/ Vi Fi ndLi st i,
Vi Attr attribute, Vi PAttrState attrSate);

Description Thisfunction retrieves the state of an attribute for the specified session.

Parameters
Name | Direction Type Description
vi IN Vi Sessi on Unique logical identifier to a session, event, or find
Vi Event list.
Vi Fi ndLi st
attribute IN ViAttr Resource attribute for which the state query is
made.

attrSate ouT See Note below. | The state of the queried attribute for a specified

resource. The interpretation of the returned value
is defined by the individual resource. Note that you
must allocate space for character strings returned.

Note The pointer passed tovi Get At t ri but e must point to the exact type
required for that attribute, Vi Ul nt 16, Vi | nt 32, and so forth. For example,
when reading an attribute state that returnsaVi Char , you must pass a
pointer toaVi Char variable. You must allocate space for the returned data.

194 Chapter7

HP VISA Language Reference
viGetAttribute

Return Values

TypeVi St at us Thisisthe function return status. It returns either a
completion code or an error code as follows.

Completion Code Description
VI _SUCCESS Resource attribute retrieved successfully.
Error Code Description

VI _ERROR_I NV_SESSI ON | The given session or object reference is invalid (both are the
VI _ERROR_| NV_OBJECT | same value).

VI _ERROR_NSUP_ATTR The specified attribute is not defined by the referenced
resource.

See Also "viSetAttribute"

Chapter 7 195

HP VISA Language Reference
viln8, viln16, and viln32

vilng, viln16, and viln32

Syntax vi I n8(Vi Session vi, ViU nt1l6 space, Vi BusAddress offset,
Vi PUI nt 8 val8) ;

Vi I n16(Vi Session vi, ViU ntl1l6 space, ViBusAddress offset,
Vi PUI nt 16 vall6) ;

Vi I n32(Vi Session vi, ViU ntl1l6 space, ViBusAddress offset,
Vi PUI nt 32 val32) ;

Note Thevi | n32 function is not supported with the VISA Transition Library
(VTL).

Description Thisfunction readsin an 8-bit, 16-bit, or 32-bit value from the specified
memory space (assigned memory base + offset). This function takes the 8-
bit, 16-bit, or 32-bit value from the address space pointed to by space. The
offset must be avalid memory address in the space. This function does not
require vi MapAddr ess to be called prior to its invocation.

Parameters
Name Direction Type Description
vi IN Vi Sessi on Unique logical identifier to a session.
space IN Vi ulnt16 Specifies the address space. (See the
following table.)
offset IN Vi BusAddr ess | Offset (in bytes) of the memory to read
from.
val8, val16, or val32 ouT Vi PUI nt 8, Data read from bus (8-bits for vi | n8,
Vi PUI nt 16, or | 16-bits for vi | n16, and 32-bits for
Vi PUI nt 32 vi 1 n32).

196 Chapter7

Return Values

HP VISA Language Reference
vilng, viln16, and viln32

Valuesfor space Parameter

Value

Description

VI _A16_SPACE

Maps in VXI/MXI A16 address space.

VI _A24_SPACE

Maps in VXI/MXI A24 address space.

VI _A32_SPACE

Maps in VXI/MXI A32 address space.

Type Vi St at us

Thisisthe function return status. It returns either a

completion code or an error code as follows.

Completion Code

Description

VI _SUCCESS

Operation completed successfully.

Error Code

Description

VI _ERROR | NV_SESSI ON
VI _ERROR | NV_OBJECT

The given session or object reference is invalid (both are the
same value).

VI _ERROR_NSUP_CPER

The given Vi does not support this function.

VI _ERROR_RSRC_LOCKED

Specified operation could not be performed because the
resource .
identified by VI has been locked for this kind of access.

VI _ERROR_BERR

Bus error occurred during transfer.

VI_ERROR | NV_SPACE

Invalid address space specified.

VI _ERROR | NV_OFFSET

Invalid offset specified.

VI _ERROR_NSUP_OFFSET

Specified offset is not accessible from this hardware.

VI _ERROR_NSUP_W DTH

Specified width is not supported by this hardware.

VI_ERROR_NSUP_ALI GN_
OFFSET

The specified offset is not properly aligned for the access width
of the operation.

See Also "viOut8, viOut16, and viOut32", "viPeek8, viPeek16, and viPeek32",
"viMoveln8, viMovelnl16, and viMoveln32"

Chapter 7

197

Syntax

Description

Parameters

HP VISA Language Reference

vilnstallHandler

vilnstall[Handler

vi I nst al | Handl er (Vi Sessi on i,

Vi Hndl r handler, Vi Addr userHandle) ;

Vi Event Type eventType,

This function allows applications to install handlers on sessions for event
callbacks. The handler specified in the handler parameter isinstalled along
with previously installed handlers for the specified event. Applications can
specify avalue in the userHandle parameter that is passed to the handler on
itsinvocation. VISA identifies handlers uniquely using the handler
reference and thisvalue.

Name | Direction Type Description
vi IN Vi Sessi on Unique logical identifier to a session.
eventType IN Vi Event Type | Logical event identifier.
handler IN Vi Hndl r Interpreted as a valid reference to a handler to be
installed by an application.
userHandle IN Vi Addr A value specified by an application that can be

event type.

used for identifying handlers uniquely for an

The following events can be enabled:

Event Name

Description

VI _EVENT_SERVI CE_REQ Notification that a device is requesting service.

device.

VI _EVENT_VXI _SI GP Notification that a VXI signal or VXI interrupt has been
received from a device.
VI _EVENT_TRI G Notification that a hardware trigger was received from a

VI _EVENT_| O_COMPLETI ON

Notification that an asynchronous operation has completed.

198

Chapter7

HP VISA Language Reference
vilnstallHandler

Return Values

TypeVi St at us Thisisthe function return status. It returns either a
completion code or an error code as follows.

Completion Code Description
VI _SUCCESS Event handler installed successfully.
Error Code Description
VI _ERROR | NV_SESSI ON The given session or object reference is invalid (both are
VI _ERROR_| NV_OBJECT the same value).
VI _ERROR | NV_EVENT Specified event type is not supported by the resource.
VI _ERROR_| NV_HNDLR_REF The given handler reference is invalid.
VI _ERROR_HNDLR_NI NSTALLED | The handler was not installed. This may be returned if an
application attempts to install multiple handlers for the
same event on the same session.

See Also "viEventHandler"

Chapter 7 199

Syntax

Note

Description

HP VISA Language Reference
viLock

viL ock

vi Lock(Vi Sessi on vi, Vi AccessMde lockType, Vi Ul nt 32
timeout, Vi Keyl d requestedKey, Vi PKeyl d accessKey) ;

Thevi Lock function is not supported with 16-bit VISA on Windows 95.
Thisfunction is also not supported on network devices.

Thisfunction is used to obtain alock on the specified resource. The caler
can specify the type of lock requested (exclusive or shared lock) and the
length of time the operation will suspend while waiting to acquire the lock
before timing out. This function can also be used for sharing and nesting
locks.

The requestedKey and the accessKey parameters apply only to shared locks.
These parameters are not applicable when using the lock type

VI _EXCLUSI VE_LOCK. Inthis case, requestedKey and accessKey should be
setto VI _NULL. VISA allows user applications to specify akey to be used
for lock sharing through the use of the requestedkey parameter. Alternatively,
auser application can pass VI _NULL for the requestedKey parameter when
obtaining a shared lock, in which case VISA will generate a unique access
key and return it through the accessKey parameter. If auser application does
specify arequestedkey value, VISA will try to use this value for the
accessKey. Aslong asthe resourceis not locked, VISA will use the
requestedKey as the access key and grant the lock. When the operation
succeeds, the requestedkey will be copied into the user buffer referred to by
the accessKey parameter.

200 Chapter7

Note

Note

HP VISA Language Reference
viLock

The session that gained a shared |ock can pass the accessKey to other sessions
for the purpose of sharing thelock. The session wanting to join the group of
sessions sharing the lock can use the key as an input value to the
requestedKey parameter. VISA will add the session to the list of sessions
sharing the lock, aslong as the requestedKey value matches the accessKey
value for the particular resource. The session obtaining a shared lock in this
manner will then have the same access privileges as the original session that
obtained the lock.

It is also possible to obtain nested locks through this function. To acquire
nested locks, invoke the vi Lock function with the same lock type as the
previous invocation of thisfunction. For each session, vi Lock and

vi Unl ock share alock count, which isinitialized to 0. Each invocation of
vi Lock for the same session (and for the same lockType) increases the lock
count. In the case of ashared lock, it returns with the same accessKey every
time. When a session locks the resource a multiple number of times, itis
necessary to invoke the vi Unl ock function an equal number of timesin
order to unlock the resource. That is, the lock count increments for each
invocation of vi Lock, and decrementsfor each invocation of vi Unl ock. A
resource is actually unlocked only when the lock count is 0.

OnHP-UX, SIGALRM isused inimplementing thevi Lock when timeout is
non-zero. Thevi Lock function's use of SIGALRM is exclusive — an
application should not also expect to use SIGALRM at the same time.

On HP-UX, some semaphores used in locking are permanently allocated and
diminish the number of semaphores available for applications. If the
operating system runs out of semaphores, the number of semaphores may be
increased by doing the following:

1. Runsam

2. Double-click orKer nel Confi gurati on.

3. Double-click orConf i gur abl e Paraneters.

4. Changesenmmi andsemms to a higher value, such aso.

Chapter 7 201

Parameters

Return Values

HP VISA Language Reference

viLock

Name

Direction

Type

Description

Vi

Vi Sessi on

Unique logical identifier to a session.

lockType

Vi AccessMode

Specifies the type of lock requested, which
can be either VI _EXCLUSI VE_LOCK or
VI _SHARED LOCK.

timeout

Vi Ul nt 32

Absolute time period (in milliseconds) that a
resource waits to get unlocked by the locking
session before returning this operation with an
error. VI _TMO_| MVEDI ATE and

VI _TMO_I NFI NI TE are also vlaid values.

reguestedKey

Vi Keyl d

This parameter is not used and should be set
to VI _NULL when | ockType is

VI _EXCLUSI VE_LQOCK (exclusive lock).
When trying to lock the resource as

VI _SHARED LOCK (shared lock), a session
can either set it to VI _NULL so that VISA
generates an accessKey for the session, or the
session can suggest an accessKey to use for
the shared lock. Refer to the previous
"Description" subsection for more details.

accessKey

ouT

Vi PKeyl d

This parameter should be set to VI _NULL
when lockTypeis VI _EXCLUSI VE_LOCK
(exclusive lock). When trying to lock the
resource as VI _SHARED LOCK (shared lock),
the resource returns a unique access key for
the lock if the operation succeeds. This
accessKey can then be passed to other
sessions to share the lock.

Type Vi St at us

Thisisthe function return status. It returns either a
completion code or an error code as follows.

Completion Code

Description

VI _SUCCESS

The specified access mode was successfully
acquired.

VI _SUCCESS_NESTED EXCLUSI VE

The specified access mode was successfully
acquired, and this session has nested exclusive locks.

VI _SUCCESS_NESTED SHARED

The specifed access mode was successfully acquired,
and this session has nested shared locks.

202

Chapter7

HP VISA Language Reference
viLock

Error Code

Description

VI _ERROR | NV_SESSI ON
VI _ERROR_| NV_OBJECT

The given vi does not identify a valid session or object.

VI _ERROR_RSRC_LOCKED

The specified type of lock cannot be obtained because
the resource is already locked with a lock type
incompatible with the lock requested.

VI _ERROR | NV_LOCK_TYPE

The specified type of lock is not supported by this
resource.

VI _ERROR | NV_ACCESS_KEY

The requestedKey value passed is not a valid access
key to the specified resource.

VI _ERROR_TMO

The specified type of lock could not be obtained within
the specified timeout period.

See Also "viUnlock". For more information on locking, see the "Using Locks"
section of Chapter 4, "Programming with HP VISA."

Chapter 7

203

Syntax

Description

Note

Parameters

HP VISA Language Reference
viMapAddress

viMapAddress

vi MapAddr ess(Vi Sessi on i,

Vi Ul nt 16 mapSpace,

Vi BusAddr ess mapBase, Vi BusSi ze mapSze,
Vi Bool ean access, Vi Addr suggested, Vi PAddr address);

This function maps in a specified memory space. The memory spacethat is
mapped is dependent on the type of interface specified by the vi parameter
and the mapSpace parameter (refer to the following table). The address
parameter returns the address in your process space where memory is

mapped.

For agiven session, you can only have one map at onetime. If you need to
have multiple mapsto a device, you must open one session for each map

needed.
Name | Direction Type Description
Vi IN Vi Sessi on Unique logical identifier to a session.
mapSpace IN Vi Ul nt 16 Specifies the address space to map. (See the
following table.)
mapBase IN Vi BusAddr es | Offset (in bytes) of the memory to be mapped.
s
mapSize IN Vi BusSi ze Amount of memory to map (in bytes).
access IN Vi Bool ean VI _FALSE.
suggested IN Vi Addr If suggested parameter is not VI _NULL, the
operating system attempts to map the memory
to the address specified in suggested. There is
no guarantee, however, that the memory will be
mapped to that address. This function may map
the memory into an address region different
from suggested.
address ouT Vi PAddr Address in your process space where the
memory was mapped.
204 Chapter7

Return Values

See Also

HP VISA Language Reference
viMapAddress

Values for mapSpace Parameter

Value

Description

VI _A16_SPACE

Maps in VXI/MXI A16 address space.

VI _A24 SPACE

Maps in VXI/MXI A24 address space.

VI _A32_SPACE

Maps in VXI/MXI A32 address space.

TypeVi St at us

Thisisthe function return status. It returns either a

completion code or an error code as follows.

Completion Code Description
VI _SUCCESS Map successful.
Error Code Description

VI _ERROR_| NV_SESSI ON
VI _ERROR_| N\V_OBJECT

The given session or object reference is invalid (both are the
same value).

VI _ERROR_NSUP_OPER

The given vi does not support this function.

VI _ERROR_RSRC_LOCKED

Specified operation could not be performed because the
resource identified by vi has been locked for this kind of
access.

VI _ERROR | NV_SPACE

Invalid mapSpace specified.

VI _ERROR | N\V_OFFSET

Invalid offset specified.

VI _ERROR_NSUP_OFFSET

Specified region is not accessible from this hardware.

VI _ERROR_TMD

vi MapAddr ess could not acquire resource or perform
mapping before the timer expired.

VI _ERROR | NV_SI ZE

Invalid size of window specified.

VI_ERROR ALLOC

Unable to allocate window of at least the requested size.

VI _ERROR_| NV_ACC_MODE

Invalid access mode.

VI _ERROR_W NDOW MAPPED

The specified session already contains a mapped window.

VI _ERROR | N\V_SETUP

Unable to start operation because the setup is invalid (due to
attributes being set to an inconsistent state).

"viunmapAddress"

Chapter 7

205

HP VISA Language Reference
viMemAlloc

viMemAlloc

Syntax vi MemAl | oc(Vi Session vi, Vi BusSi ze dze, Vi PBusAddr ess offs) ;

Note Thisfunction is not supported with the VISA Transition Library (VTL).

Description Thisfunction returns an offset into a device’'s memory region that has been
alocated for use by this session. If the deviceto which the given vi refersis
located on the local interface card, the memory can be allocated either on the
deviceitself or on the computer’s system memory.

Parameters
Name | Direction Type Description
vi IN Vi Sessi on Unique logical identifier to a session.
size IN Vi BusSi ze Specifies the size of the allocation.
offset ouT Vi PBusAddr ess | Returns the offset of the allocated device memory.

Return Values

TypeVi St at us Thisisthe function return status. It returns either a
completion code or an error code as follows.

Completion Code Description
VI _SUCCESS The operation completed successfully.
Error Code Description

VI _ERROR | NV_SESSI ON | The given session or object reference is invalid (both are the
VI _ERROR_| NV_OBJECT | same value).

VI _ERROR_NSUP_GCPER The given vi does not support this operation.

VI _ERROR_RSRC_LOCKED | Specified operation could not be performed because the
resource identified by vi has been locked for this kind of access.

VI _ERROR_| NV_SI ZE Invalid size specified.

VI _ERROR _ALLCC Unable to allocate shared memory block of the requested size.

VI _ERROR_MEM NSHARED | The device does not export any memory.

206 Chapter7

HP VISA Language Reference
viMemAlloc

See Also "viMemFree"

Chapter 7 207

HP VISA Language Reference
viMemFree

viMemFree

Syntax vi MenFree(Vi Sessi on vi, Vi BusAddress offset) ;

Note Thisfunction isnot supported with the VISA Transition Library (VTL).

Description Thisfunction frees the memory previously alocated using vi MemAl | oc.

Parameters
Name | Direction Type Description
vi IN Vi Sessi on Unique logical identifier to a session.
offset IN Vi BusAddr ess | Specifies the memory previously allocated with
vi MemAl | oc.

Return Values

TypeVi St at us Thisisthe function return status. It returns either a
completion code or an error code as follows.

Completion Code Description
VI _SUCCESS The operation completed successfully.
Error Code Description
VI _ERROR | NV_SESSI ON The given session or object reference is invalid (both are
VI _ERROR_| NV_OBJECT the same value).
VI _ERROR_NSUP_CPER The given Vi does not support this operation.
VI _ERROR_| NV_OFFSET Invalid offset specified.

VI _ERROR_W NDOW NVMAPPED | The specified offset is currently in use by vi MapAddr ess.

See Also "viMemAlloc"

208 Chapter7

HP VISA Language Reference
viMove

viMove

Syntax vi Move (Vi Session vi,

Vi Ul nt 16 srcSpace,

Vi BusAddr ess srcOffset, Vi Ul nt 16 srcWdth,
Vi Ul nt 16 destSace, Vi BusAddr ess destOffset,
Vi Ul nt 16 destWidth, Vi BusSi ze length)

Note Thisfunctionisavailableonly on VISA 1.1.

Description This operation moves data from the specified source to the specified
destination. The source and the destination can either belocal memory or the
offset of the interface with which thisINST or MEMACC Resourceis
associated. This operation uses the specified data width and address space.

Parameters
‘ Name ‘Dnecﬂon‘ Type Description
vi IN Vi Sessi on Unique logical identifier to a session.
srcSpace IN Vi Ulnt16 Specifies the address space of the source.
srcOffset IN Vi BusAddr ess Offset of the starting address or register from
which to read.

srcWidth IN Vi Ul nt 16 Specifies the data width of the source.
destSpace IN Viulnt16 Specifies the address space of the destination.
destOffset IN Vi BusAddr ess Offset of the starting address or register to write to.
destWidth IN Viulnt16 Specifies the data width of the destination.

length IN Vi BusSi ze Number of data elements to transfer, where the

data width of the elements to transfer is identical to
the source data width.

Valid entries for specifying address space:

Value

Description

VI _A16_SPACE

Address the A16 memory address space of the VXI/MXI bus.

VI _A24 SPACE

Address the A24 memory address space of the VXI/MXI bus.

VI _A32_SPACE

Address the A32 memory address space of the VXI/MXI bus.

Chapter 7

209

Return Values

HP VISA Language Reference

viMove

Value

Description

VI _LOCAL_SPACE | Addresses the process-local memory (using virtual address).

Valid entries for specifying widths:

Value Description
VI _WDTH_8 Performs an 8-bit (D08) transfer.
VI _WDTH_16 Performs a 16-bit (D16) transfer.
VI _W DTH_32 Performs a 32-bit (D32) transfer.

Type Vi St at us

This is the operational return status. It returns either a completion

code or an error code as follows.

Completion Code

Description

VI _SUCCESS

Operation completed successfully.

Error Code

Description

VI _ERROR | NV_SESSI ON
VI _ERROR_OBJECT

The given session or object reference is invalid (both are
the same value).

VI _ERROR_NSUP_OPER

The given vi does not support this operation.

VI _ERROR_RSRC_LOCKED

Specified operation could not be performed because the
resource identified by vi has been locked for this kind of
access.

VI _ERROR BERR

Bus Error occurred during transfer.

VI _ERROR | NV_SPACE

Invalid source or destination address specified.

VI _ERROR | N\V_OFFSET

Invalid source or destination offset specified.

VI _ERROR_| N\V_W DTH

Invalid source or destination width specified.

VI _ERROR_NSUP_OFFSET

Specified source or destination offset is not accessible
from this hardware.

VI _ERROR_NSUP_VAR W DTH

Cannot support source and destination widths that are
different.

VI _ERROR | NV_SETUP

Unable to start operation because setup is invalid (due to
attributes being set to an inconsistent state).

VI _ERROR_NSUP_W DTH

Specified width is not supported.

VI _ERROR NSUP_ALI GH_OFFSET

The specified offset is not properly aligned for the access
width of the operation.

210

Chapter7

HP VISA Language Reference

viMove
Error Code Description
VI _ERROR_| NV_LENGTH Invalid length specified.
See Also Refer to the MEMACC Resource Description. Also refer to
"viMoveAsync".
Chapter 7 211

Syntax

Note

Description

HP VISA Language Reference
viMoveAsync

viMoveAsync

vi MoveAsync (Vi Session vi, ViU nt16 srcSpace,
Vi BusAddr ess srcOffset, Vi Ul nt 16 srcWidth,
Vi Ul nt 16 destSace, Vi BusAddr ess destOffset,
Vi Ul nt 16 destWdth, Vi BusSi ze length,
Vi Jobl d jobld)

Thisfunction isavailable only on VISA 1.1.

This operation asynchronously moves data from the specified source to the
specified destination. This operation queues up the transfer in the system,
then it returns immediately without waiting for the transfer to compl ete.
When the transfer terminates, aVl _EVENT | O COMPLETE event indicates
the status of the transfer.

The operation returns jobld, which you can use either with vi Ter i nat e()
to abort the operation or with VI _EVENT_| O_COVPLETI ON eventsto
identify which asynchronous move operations completed.

The source and destination can be either local memory or the offset of the
devicelinterface with which thisINST or MEMACC Resource is associated.
This operation uses the specified data width and address space.

212 Chapter7

Parameters

HP VISA Language Reference
viMoveAsync

Name | Direction Type Description
vi IN Vi Sessi on Unique logical identifier to a session.
srcSpace IN Vi Ulnt16 Specifies the address space of the source.
srcOffset IN Vi BusAddr ess | Offset of the starting address or register from
which to read.
srcWidth IN Vi Ul nt 16 Specifies the data width of the source.
destSpace IN ViUl nt16 Specifies the address space of the destination.
destOffset IN Vi BusAddr ess | Offset of the starting address or register to write to.
destWidth IN ViUl nt16 Specifies the data width of the destination.
length IN Vi BusSi ze Number of data elements to transfer, where the
data width of the elements to transfer is identical to
the source data width.
jobld ouT Vi Jobl d Represents the location of an integer that will be
set to the job identifier of this asynchronous move
operation. Each time an asynchronous move
operation is called, it is assigned a unigue job
identifier.

Valid entries for specifying address space:

Value

Description

VI _A16_SPACE

Address the A16 memory address space of the VXI/MXI bus.

VI _A24 SPACE

Address the A24 memory address space of the VXI/MXI bus.

VI _A32_SPACE

Address the A32 memory address space of the VXI/MXI bus.

VI _LOCAL_SPACE

Addresses the process-local memory (using virtual address).

Valid entries for specifying widths:

Value Description
VI _W DTH_8 Performs an 8-bit (D08) transfer.
VI _WDTH 16 Performs a 16-bit (D16) transfer.
VI _W DTH_32 Performs a 32-bit (D32) transfer.

Special value for jobld parameter:

Value

Description

VI _NULL

Operation does not return a job identifier.

Chapter 7

213

HP VISA Language Reference

viMoveAsync

Return Values
Type Vi St at us

This is the operational return status. It returns either a completion

code or an error code as follows.

Completion Code

Description

VI _SUCCESS

Asynchronous operation completed successfully.

VI _SUCCESS_SYNC

Operation Perfomed synchronously.

Error Code

Description

VI _ERROR | NV_SESSI ON
VI _ERROR_OBJECT

The given session or object reference is invalid (both are
the same value).

VI _ERROR_NSUP_OPER

The given vi does not support this operation.

VI _ERROR_RSRC_LOCKED

Specified operation could not be performed because the
resource identified by vi has been locked for this kind of
access.

VI _ERROR_QUEUE

Unable to queue move operation.

See Also Seethe INSTR and MEMACC Resource descriptions. See also "viMove".

214

Chapter7

HP VISA Language Reference
viMoveln8, viMoveln16, and viMoveln32

viMovel n8, viM ovel n16, and viM ovel n32

Syntax vi Movel n8(Vi Sessi on vi, ViU nt16 space,
Vi BusAddr ess offset, Vi BusSi ze length, Vi AUl nt8 buf8);

vi Movel n16(Vi Session vi, ViU nt16 space,
Vi BusAddr ess offset, Vi BusSi ze length, Vi AUl nt 16 bufl6) ;

vi Movel n32(Vi Session vi, ViU nt16 space,
Vi BusAddr ess offset, Vi BusSi ze length, Vi AUl nt 32 buf32) ;

Note These functions are not supported with the VISA Transition Library (VTL).

Description Thisfunction moves an 8-hit, 16-hit, or 32-bit block of data from the
specified memory space (assigned memory base + offset) to local memory.
This function reads the 8-bit, 16-hit, or 32-bit value from the address space
pointed to by space. The offset must be a valid memory address in the space.

These functions do not require vi MapAddr ess to be called prior to their
invocation.

Note Thevi Movel n functions do ablock move of memory from aV Xl device if
VI _ATTR_SRC | NCREMENT is1. However, they do a FIFO read of aVXI
memory location if VI _ATTR_SRC | NCREMENT is 0 (zero).

Chapter 7 215

Parameters

Return Values

HP VISA Language Reference
viMoveln8, viMoveln16, and viMoveln32

Name | Direction Type Description
vi IN Vi Sessi on Unique logical identifier to a session.
space IN Vi Ul nt 16 Specifies the address space. (See the following
table.)
offset IN Vi BusAddr ess | Offset (in bytes) of the starting address or register
to read from.
length IN Vi BusSi ze Number of elements to transfer, where the data
width of the elements to transfer is 8-bits for
vi Movel n8, 16-bits for vi Movel n16, or 32-bits
for vi Movel n32.
buf8, ouT Vi AUl nt 8, Data read from bus (8-bits for
buf16, or Vi AUl nt 16, or | vi Movel n8, 16-bits for vi Movel n16, and 32-bits
buf32 Vi AUl nt 32 for vi Movel n32).
Valuesfor space Parameter
Value Description

VI _A16_SPACE

Maps in VXI/MXI A16 address space.

VI _A24_SPACE

Maps in VXI/MXI A24 address space.

VI _A32_SPACE

Maps in VXI/MXI A32 address space.

TypeVi St at us

Thisisthe function return status. It returns either a
completion code or an error code as follows.

Completion Code

Description

VI _SUCCESS

Operation completed successfully.

216

Chapter7

See Also

HP VISA Language Reference
viMoveln8, viMoveln16, and viMoveln32

Error Code

Description

VI _ERROR | NV_SESSI ON
VI _ERROR_| NV_OBJECT

The given session or object reference is invalid (both are the
same value).

VI _ERROR_NSUP_OPER

The given Vi does not support this function.

VI _ERROR_RSRC_LOCKED

Specified operation cou_ld not be performed because the
resource identified by VI has been locked for this kind of access.

VI _ERROR BERR

Bus error occurred during transfer.

VI _ERROR | N\V_SPACE

Invalid address space specified.

VI _ERROR | NV_OFFSET

Invalid offset specified.

VI _ERROR_NSUP_OFFSET

Specified offset is not accessible from this hardware.

VI _ERROR_NSUP_W DTH

Specified width is not supported by this hardware.

VI _ERROR_| N\V_LENGTH

Invalid length specified.

VI _ERROR_NSUP_ALI GN_
OFFSET

The specified offset is not properly aligned for the access width
of the operation.

VI _ERROR | NV_SETUP

Unable to start operation because setup is invalid (due to
attributes being set to an inconsistent state).

"viMoveOut8, viMoveOut16, and viMoveOut32",
"vilng, viln16, and viln32"

Chapter 7

217

HP VISA Language Reference
viMoveOut8, viMoveOutl16, and viMoveOut32

viM oveOut8, viM oveOut16, and
viM oveOut32

Syntax vi MoveQut 8(Vi Session vi, ViU nt16 space,
Vi BusAddr ess offset, Vi BusSi ze length, Vi AUl nt8 buf8);
vi MoveQut 16(Vi Sessi on vi, ViU nt16 space,
Vi BusAddr ess offset, Vi BusSi ze length, Vi AUl nt 16 bufl6) ;
vi MoveQut 32(Vi Sessi on vi, ViU ntl16 space,
Vi BusAddr ess offset, Vi BusSi ze length, Vi AUl nt 32 buf32) ;

Note These functions are not supported with the VISA Transition Library (VTL).

Description Thisfunction moves an 8-bit, 16-bit, or 32-bit block of data from local
memory to the specified memory space (assigned memory base + offset).
This function writes the 8-bit, 16-bit, or 32-bit value to the address space
pointed to by space. The offset must be avalid memory address in the space.

This function does not require vi MapAddr ess to be called prior to its
invocation.

Note Thevi MoveCQut functionsdo ablock move of memory fromaVXI deviceif
VI _ATTR_DEST_I NCREMENT is1. However, they do aFIFO read of aVXI
memory location if VI _ATTR_DEST_| NCREMENT isO (zero).

218 Chapter7

Parameters

Return Values

HP VISA Language Reference
viMoveOut8, viMoveOutl16, and viMoveOut32

Name Direction Type Description
vi IN Vi Sessi on Unique logical identifier to a session.
space IN Vi ulnt16 Specifies the address space. (See the
following table.)
offset IN Vi BusAddr ess | Offset (in bytes) of the starting address or
register to write to.
length IN Vi BusSi ze Number of elements to transfer, where the
data width of the elements to transfer is 8-
bits for vi MoveCut 8, 16-bits for
vi MoveCut 16, or 32-bits for
vi MoveCut 32.
buf8, buf16, or IN Vi AUI nt 8, Data written to bus (8-bits for vi MoveQut 8,
buf32 Vi AUI nt 16, or | 16-bits for vi MoveCQut 16, and 32-bits for
Vi AUI nt 32 vi MoveCQut 32).
Valuesfor space Parameter
Value Description

VI _A16_SPACE

Maps in VXI/MXI A16 address space.

VI _A24 SPACE

Maps in VXI/MXI A24 address space.

VI _A32_SPACE

Maps in VXI/MXI A32 address space.

TypeVi St at us Thisisthe function return status. It returns either a
completion code or an error code as follows.

Completion Code

Description

VI _SUCCESS

Operation completed successfully.

Error Code

Description

VI _ERROR | NV_SESSI ON
VI _ERROR_| N\V_OBJECT

The given session or object reference is invalid (both are the
same value).

VI _ERROR_NSUP_OPER

The given vi does not support this function.

VI _ERROR_RSRC_LOCKED

Specified operation could not be performed because the
resource identified by vi has been locked for this kind of access.

VI _ERROR_BERR

Bus error occurred during transfer.

VI _ERROR | N\V_SPACE

Invalid address space specified.

VI _ERROR | N\V_OFFSET

Invalid offset specified.

Chapter 7

219

HP VISA Language Reference
viMoveOut8, viMoveOutl16, and viMoveOut32

Error Code Description

VI _ERROR_NSUP_OFFSET | Specified offset is not accessible from this hardware.

VI _ERROR_NSUP_W DTH | Specified width is not supported by this hardware.

VI _ERROR_| NV_LENGTH | Invalid length specified.

VI _ERROR_NSUP_ALI GN_ | The specified offset is not properly aligned for the access width
OFFSET of the operation.

VI _ERROR_| NV_SETUP Unable to start operation because setup is invalid (due to
attributes being set to an inconsistent state).

See Also "wviMoveln8, viMoveln16, and viMoveln32", "viOut8, viOut16, and
viOut32"

220 Chapter7

HP VISA Language Reference
viOpen

viOpen

Syntax vi Open(Vi Sessi on sesn, Vi Rsrc rsrcName,
Vi AccessMbde accessMode, Vi Ul nt 32 timeout, Vi PSessi on vi);

Description This function opens a session to the specified device. It returns a session
identifier that can be used to call any other functions to that device.

Parameters
Name

sesn

rsrcName

accessMode

timeout

Vi

Direction

IN

ouT

Type
Vi Sessi on
Vi Rsrc

Vi AccessMbde

Vi Ul nt 32

Vi PSessi on

Description

Resource Manager session (should always be
the Default Resource Manager for VISA
returned from vi OpenDef aul t RM).

Unique symbolic name of a resource. (See the
following tables.)

Specifies the modes by which the resource is to
be accessed. The value VI _EXCLUSI VE_LOCK
is used to acquire an exclusive lock immediately
upon opening a session; if a lock cannot be
acquired, the session is closed and an error is
returned. The value VI _LOAD_CONFI Gis used
to configure attributes specified by some
external configuration utility; if this value is not
used, the session uses the default values
provided by this specification. Multiple access
modes can be used simultaneously by
specifying a "bit-wise OR" of the values.

Must use VI _NULL in VISA 1.0.

If the accessMode parameter requires a lock,
this parameter specifies the absolute time period
(in milliseconds) that the resource waits to get
unlocked before this operation returns an error;
otherwise, this parameter is ignored.

Must use VI _NULL in VISA 1.0.

Unique logical identifier reference to a session.

Chapter 7

221

HP VISA Language Reference

viOpen
Address Sring Grammar for rsrcName Par ameter
Interface Grammar
VXI VXI [board] : : VXI logical address] : : | NSTR]

GPIB-VXI GPI B- VXI [board] : : VXI logical addresy : : | NSTR]

GPIB GPI B[board] : : primary address| : : secondary address] [: : | NSTR]

ASRL ASRL[board] [: : | NSTR]

Examples of Address Strings for rsrctName Par ameter

Address String Description
VXI 0::1::1NSTR A VXI device at logical address 1 in VXI interface VXI 0.
GPI B- VXI : : 24: : I NSTR | A VXI device at logical address 24 in a GPIB-VXI controlled
VXI system.

GPIB::1::0::1NSTR A GPIB device at primary address 1 and secondary address 0
in GPIB interface 0.

ASRL1:: | NSTR A serial device located on port 1.

Return Values

TypeVi St at us Thisisthe function return status. It returns either a
completion code or an error code as follows.

Completion Code Description

VI _SUCCESS Session opened successfully.

VI _SUCCESS_DEV_NPRESENT | Session Opened Successfully, but the device at the
specified address is not responding.

VI _WARN_CONFI G_NLOADED | The specified configuration either does not exist or could
not be loaded; using VISA-specified defaults.

222 Chapter7

HP VISA Language Reference
viOpen

Error Code

Description

VI _ERROR_| NV_SESSI ON
VI _ERROR_| NV_OBJECT

The given session or object reference is invalid (both are the
same value).

VI _ERROR_NSUP_OPER

The given sesn does not support this function. For VISA, this
function is supported only by the Default Resource Manager
session.

VI _ERROR_| NV_RSRC_NAME

Invalid resource reference specified. Parsing error.

VI _ERROR_| N\V_ACC_MODE

Invalid access mode.

VI _ERROR_RSRC_NFOUND

Insufficient location information or resource not present in the
system.

VI _ERROR_ALLCC

Insufficient system resources to open a session.

VI _ERROR_RSRC_BUSY

The resource is valid but VISA cannot currently access it.

VI _ERROR_RSRC_LOCKED

Specified type of lock cannot be obtained because the
resource is already locked with a lock type incompatible with
the lock requested.

VI _ERROR_TMD

A session to the resource could not be obtained within the
specified timeout period.

See Also "viClose"

Chapter 7

223

Syntax

Description

Note

Parameters

HP VISA Language Reference
viOpenDefaultRM

viOpenDefaultRM

vi OpenDef aul t RM Vi PSessi on sesn) ;

This function returns a session to the Default Resource Manager resource.
This function must be called before any VISA functions can be invoked.
Thefirst call to this function initializes the VISA system, including the
Default Resource Manager resource, and also returns a session to that
resource. Subsequent calls to this function return unique sessions to the
same Default Resource Manager resource.

All devices that you will be using need to be connected and in working
condition prior to the first VISA function cal (vi QpenDef aul t RM). The
system is configured only on the first vi OpenDef aul t RMper process.
Therefore, if vi OQpenDef aul t RMis called without devices connected and
then called again when devices are connected, the devices will not be
recognized. You must close ALL Resource Manager sessions and reopen
with all devices connected and in working condition.

Name | Direction Type Description

sesn ouT Vi Sessi on | Unique logical identifier to a Default Resource Manager
session.

224 Chapter7

HP VISA Language Reference
viOpenDefaultRM

Return Values

TypeVi St at us Thisisthe function return status. It returns either a
completion code or an error code as follows.

Completion Code Description

VI _SUCCESS Session to the Default Resource Manager resource created
successfully.

Error Code Description
VI _ERROR_SYSTEM ERROR | The VISA system failed to initialize.

VI _ERROR_ALLCC Insufficient system resources to create a session to the Default
Resource Manager resource.

VI _ERROR_| NV_SETUP Some implementation-specific configuration file is corrupt or
does not exist.

See Also "viOpen", "viFindRsrc", "viClose"

Chapter 7 225

HP VISA Language Reference
viout8, viout16, and viOut32

viOut8, viOut16, and viOut32

Syntax vi Qut 8(Vi Session vi, ViU ntl6 space, Vi BusAddress offset,
ViUl nt8 val8);

vi Qut 16(Vi Session vi, ViU ntl1l6 space, Vi BusAddress offset,
Vi Ul nt16 valls);

vi Qut 32(Vi Session vi, ViU ntl6 space, Vi BusAddress offset,
Vi Ul nt 32 val32) ;

Note These functions are not supported with the VISA Transition Library (VTL).

Description Thisfunction writes an 8-bit, 16-bit, or 32-bit word to the specified memory
space (assigned memory base + offset). This function takes the 8-bit, 16-bit,
or 32-bit value and stores its contents to the address space pointed to by
space. The offset must be a valid memory address in the space. This function
does not require vi MapAddr ess to be called prior to its invocation.

226 Chapter7

Parameters

Return Values

HP VISA Language Reference
viOut8, viout16, and viOut32

Name | Direction Type Description
vi IN Vi Sessi on Unique logical identifier to a session.
space IN Vi Ul nt 16 Specifies the address space. (See the following
table.)
offset IN Vi BusAddr ess | Offset (in bytes) of the address or register to
write to.
val8, val16, IN Vi Ul nt 8, Data to write to bus (8-bits for vi Qut 8,
or val32 Vi Ul nt 16, or | 16-bits for vi Qut 16, and 32-bits for vi Qut 32).
Vi Ul nt 32
Valuesfor space Parameter
Value Description
VI _Al6_SPACE Maps in VXI/MXI A16 address space.
VI _A24 SPACE Maps in VXI/MXI A24 address space.
VI _A32_SPACE Maps in VXI/MXI A32 address space.

TypeVi St at us

Thisisthe function return status. It returns either a

completion code or an error code as follows.

Completion Code

Description

VI _SUCCESS

Operation completed successfully.

Error Code

Description

VI _ERROR_| NV_SESSI ON
VI _ERROR_| NV_OBJECT

The given session or object reference is invalid (both are the
same value).

VI _ERROR_NSUP_OPER

The given vi does not support this function.

VI _ERROR_RSRC_LOCKED

Specified operation could not be performed because the
resource identified by vi has been locked for this kind of access.

VI _ERROR_BERR

Bus error occurred during transfer.

VI _ERROR | NV_SPACE

Invalid address space specified.

VI _ERROR_| NV_OFFSET

Invalid offset specified.

VI _ERROR_NSUP_OFFSET

Specified offset is not accessible from this hardware.

VI _ERROR_NSUP_W DTH

Specified width is not supported by this hardware.

Chapter 7

227

HP VISA Language Reference
viout8, viout16, and viOut32

Error Code Description

VI _ERROR_NSUP_ALI GN_ | The specified offset is not properly aligned for the access width
OFFSET of the operation.

VI _ERROR | NV_SETUP Unable to start operation because setup is invalid (due to
attributes being set to an inconsistent state).

See Also "viln8, viln16, and viln32", "viPoke8, viPokel6, and viPoke32",
"viMoveOut8, viMoveOut16, and viM oveOut32"

228 Chapter 7

HP VISA Language Reference
viPeek8, viPeek16, and viPeek32

viPeek 8, viPeck 16, and viPeek 32

Syntax vi Peek8(Vi Sessi on vi, Vi Addr addr, Vi PU nt8 val8);
vi Peek16(Vi Sessi on vi, Vi Addr addr, Vi PU nt16 vall6);

vi Peek32(Vi Sessi on vi, Vi Addr addr, Vi PU nt32 val32);

Note These functions are not supported with the VISA Transition Library (VTL).

Description Thisfunction reads an 8-hit, 16-bit, or 32-bit value from the address location
specified in addr. The address must be avalid memory addressin the current
process mapped by a previousvi MapAddr ess call.

Parameters
Name | Direction Type Description
vi IN Vi Sessi on Unique logical identifier to a session.
addr IN Vi Addr Specifies the source address to read the value.
val8, val16, ouT Vi PUI nt 8, Data read from bus (8-bits for vi Peek8, 16-bits
or val32 Vi PUI nt 16, or | for vi Peek16, and 32-bits for vi Peek32).
Vi PUI nt 32

Note Vi Addr isdefinedasavoi d *. To do pointer arithmetic, you must cast this
to an appropriate type (Vi Ul nt 8, Vi Ul nt 16, or Vi Ul nt 32). Then be sure
the offset is correct for the type of pointer you are using. For example,
(Viunt8 *)addr + 4 pointstothe samelocation as
(Viuntl6 *)addr + 2.

Return Values None.

See Also "viPoke8, viPokel6, and viPoke32", "viMapAddress’',
"vilng, vilnl6, and viln32"

Chapter 7 229

HP VISA Language Reference
viPoke8, viPokel6, and viPoke32

viPoke8, viPokel6, and viPoke32

Syntax vi Poke8(Vi Sessi on vi, Vi Addr addr, ViU nt8 val8);
vi Pokel6(Vi Sessi on vi, Vi Addr addr, Vi U nt16 vall6);

vi Poke32(Vi Sessi on vi, Vi Addr addr, Vi U nt32 val32);

Note These functions are not supported with the VISA Transition Library (VTL).

Description Thisfunction takes an 8-bit, 16-bit, or 32-bit value and stores its content to
the address pointed to by addr. The address must be avalid memory address
in the current process mapped by a previousvi MapAddr ess call.

Parameters
Name Direction Type Description
Vi IN Vi Sessi on Unique logical identifier to a session.
addr IN Vi Addr Specifies the destination address to store the
value.
val8, val16 IN Vi Ul nt 8, Data written to bus (8-bits for vi Poke8, 16-
or val32 Vi Ul nt 16, bits for vi Poke16, and 32-bits for vi Poke32).
or ViU nt32

Note Vi Addr isdefinedasavoi d *. To do pointer arithmetic, you must cast this
to an appropriate type (Vi Ul nt 8, Vi Ul nt 16, or Vi Ul nt 32). Then be sure
the offset is correct for the type of pointer you are using. For example,
(ViU nt8 *)addr + 4 pointsto the samelocation as
(Viuntle *)addr + 2.

Return Values None.

See Also "viPeek8, viPeek16, and viPeek32", "viMapAddress',
"viOut8, viOutl16, and viOut32"

230 Chapter7

Syntax

Description

Parameters

HP VISA Language Reference
VviPrintf

viPrintf

vi Printf(ViSession vi, ViString writeFmt, argl, arg2,...) ;

Thisfunction converts, formats, and sendsthe parametersargl, arg2, ... to the
device as specified by the format string. Before sending the data, the
function formats the arg characters in the parameter list as specified in the
writeFmt string.

You should not usethevi Wit e and vi Pri nt f functionsin the same
session.

The writeFmt string can include regular character sequences, special
formatting characters, and special format specifiers. The regular characters
(including white spaces) are written to the device unchanged. The special
characters consist of \ (backslash) followed by a character. The format
specifier sequence consists of %(percent) followed by an optional modifier
(flag), followed by a conversion character.

Name | Direction Type Description
Vi IN Vi Sessi on | Unique logical identifier to a session.
writeFmt IN Vi String String describing the format for arguments.
argl, arg2 IN (varies) Parameters format string is applied to.

Chapter 7 231

Special
Formatting
Characters

HP VISA Language Reference
viPrintf

The special formatting characters and what they send to the device are:

\'n Sends the ASCII LF character. The END identifier will also
be automatically sent.

\r Sends an ASCII CR character.

\'t Sendsan ASCII TAB character.

\ ### Sends the ASCII character specified by the octal vaue.

\" Sends the ASCII double-gquote (") character.

\\ Sends a backslash (\) character.

Format Theformat specifiers convert the next parameter in the sequence according

Specifiers

to the modifier and conversion character, after which the formatted data is
written to the specified device. The format specifier has the following
syntax:

% modifiers] conversion character

where conversion character specifies which data type the argument is
represented in. The modifiers are optional codes that describe the target data.

In the following tables, ad conversion character refersto all conversion
codesof typeinteger (d, i, o, u, x, X),unlessspecified asd only.
Similarly, anf conversion character refersto all conversion codes of type
float (f, e, E, g, G,unlessspecifiedas% only.

Every conversion command starts with the %character and ends with a
conversion character. Between the %character and the conversion character,
the modifiers in the following tables can appear in the sequence.

232 Chapter7

HP VISA Language Reference
VviPrintf

ANSI C Sandard Modifiers

Supported with

Modifier Conversion Description
Character
An integer specifying d, f, s This specifies the minimum field width of the converted argument. If

field width.

conversion characters

an argument is shorter than the field width, it will be padded on the
left (or on the right if the - flag is present).

Special case: For the @1, @ and @ flags,
the field width includes the #H, #Q, and #B strings, respectively.

An asterisk (*) may be present in lieu of a field width
modifier, in which case an extra arg is used.

This arg must be an integer representing the

field width.

An integer specifying
precision.

d, f, s
conversion characters

The precision string consists of a string of decimal digits. A .
(decimal point) must prefix the precision string. The precision string
specifies the following:

a. The minimum number of digits to appear for the @, @4, @
and @ flags and thei, o, u, x, and Xconversion characters.

b. The maximum number of digits after the decimal point in case of
f conversion characters.

¢. The maximum numbers of characters for the string (s) specifier.
d. Maximum significant digits for g conversion character.
An asterisk (*) may be present in lieu of a precision modifier, in which

case an extra arg is used. This arg must be an integer representing
the precision of a numeric field.

An argument length
modifier.

h, I, L, z, andZ
are legal values. (z and
Z are not ANSI C
standard flags.)

h d, b, B
conversion characters)

| d, f, b, B
conversion characters)

L (f conversion
character)

z, Z (b, B
conversion characters)

The argument length modifiers specify one of the following:

a. The h modifier promotes the argument to a short or unsigned
short, depending on the conversion character type.

b. The | modifier promotes the argument to a long or unsigned
long.

c. The L modifier promotes the argument to a long double
parameter.

d. The z modifier promotes the argument to an array of floats.

e. The Z modifier promotes the argument to an array of doubles.

Chapter 7

233

HP VISA Language Reference

ViPrintf

Enhanced Modifiersto ANSI C Sandards

Modifier Supported with Description
Conversion Character
A comma (,) %l and % only The corresponding argument is interpreted as a reference to

followed by an
integer n, where n
represents the array
size.

the first element of an array of size N. The first N elements of
this list are printed in the format specified by the conversion
character. An asterisk (*) may be present after the , modifier,
in which case an extra arg is used. This arg must be an
integer representing the array size of the given type.

a

%l and % only

Converts to an IEEE 488.2 defined NR1 compatible number,
which is an integer without any decimal point (for example,
123).

%l and % only

Converts to an IEEE 488.2 defined NR2 compatible number.
The NR2 number has at least one digit after the decimal point
(for example, 123. 45).

%l and % only

Converts to an IEEE 488.2 defined NR3 compatible number.
An NR3 number is a floating point number represented in an
exponential form (for example, 1. 2345E- 67).

%l and % only

Converts to an IEEE 488.2 defined <HEXADECIMAL
NUMERIC RESPONSE DATA>. The number is represented
in a base of sixteen form. Only capital letters should represent
numbers. The number is of the form #HXXX.., where XXX.. is
a hexadecimal number (for example, #HAF35B).

%l and % only

Converts to an IEEE 488.2 defined <OCTAL NUMERIC
RESPONSE DATA>. The number is represented in a base of
eight form. The number is of the form #QYYY.., where YYY.. is
an octal number (for example, #Q71234).

% and % only

Converts to an IEEE 488.2 defined <BINARY NUMERIC
RESPONSE DATA>. The number is represented in a base
two form. The number is of the form #BZZZ.., where ZZZ.. is a
binary number (for example, #8011101001).

The following are the allowed conversion characters. A format specifier
sequence should include one and only one conversion character.

234

Chapter7

HP VISA Language Reference
VviPrintf

Sandard ANSI C Conversion Characters

%

Send the ASCII percent (%9 character.
Argument type: A character to be sent.
Argument type: An integer.

Modifier

Interpretation

Default functionality

Print an integer in NR1 format (an integer without a decimal point).

@2 or @3 The integer is converted into a floating point number and output in the
correct format.
field width Minimum field width of the output number. Any of the six IEEE 488.2

modifiers can also be specified with field width.

Length modifier |

arg is a long integer.

Length modifier h

arg is a short integer.

,array size arg points to an array of integers (or long or short integers, depending
on the length modifier) of size array size. The elements of this array
are separated by array size — 1 commas and output in the specified
format.

f Argument type: A floating point number.

Modifier Interpretation

Default functionality

Print a floating point number in NR2 format (a number with at least one
digit after the decimal point).

@1 Print an integer in NR1 format. The number is truncated.

@3 Print a floating point number in NR3 format (scientific notation).
Precision can also be specified.

field width Minimum field width of the output number. Any of the six IEEE 488.2

modifiers can also be specified with field width.

Length modifier |

arg is a double float.

Length modifier L

arg is a long double.

,array size

arg points to an array of floats (or doubles or long doubles), depending
on the length modifier) of size array size. The elements of this array are
separated by array size— 1 commas and output in the specified format.

Chapter 7

235

HP VISA Language Reference

ViPrintf

Argument type: A reference to aNULL-terminated
string that is sent to the device without change.

Enhanced Format Codes

b Argument type: A location of ablock of data.

Flag or Interpretation

Modifier
Default The data block is sent as an IEEE 488.2 <DEFINITE LENGTH
functionality ARBITRARY BLOCK RESPONSE DATA>. A count (long integer) must

appear as a flag that specifies the number of elements (by default, bytes)
in the block. A field width or precision modifier is not allowed with this
conversion character.

* (asterisk)

An asterisk may be present instead of the count. In such a case, two args
are used, the first of which is a long integer specifying the count of the
number of elements in the data block. The second arg is a reference to
the data block. The size of an element is determined by the optional
length modifier (see below), the default being byte width.

Length modifier
h

The data block is assumed to be an array of unsigned short integers (16-
bits). The count corresponds to the number of words rather than bytes.
The data is swapped and padded into standard IEEE 488.2 (big endian)
format if native computer representation is different.

Length modifier

The data block is assumed to be an array of unsigned long integers. The
count corresponds to the number of longwords (32-bits). Each longword
data is swapped and padded into standard IEEE 488.2 (big endian) format
if native computer representation is different.

Length modifier
V4

The data block is assumed to be an array of floats. The count
corresponds to the number of floating point numbers (32-bits). The
numbers are represented in IEEE 754 (big endian) format if native
computer representation is different.

Length modifier
Z

The data block is assumed to be an array of doubles. The count
corresponds to the number of double floats (64-bits). The numbers are
represented in IEEE 754 (big endian) format if native computer
representation is different.

236

Chapter7

y
(VISA 1.1 only)

HP VISA Language Reference
VviPrintf

Argument type: A location of ablock of data. The
functionality is similar to b, except the data block is
sent as an |IEEE 488.2 <INDEFINITE LENGTH
ARBITRARY BLOCK RESPONSE DATA>. This
format involves sending an ASCII LF character with
the END indicator set after the last byte of the block.

Argument Type: A location of block binary data.

Flag or Modifier

Interpretation

Default functionality

The data block is sent as raw binary data. A count (long integer)
must appear as a flag that specifies the number of elements (by
default, bytes) in the block. A field width or precision modifier is not
allowed with this format code.

* (asterisk)

An asterisk may be present instead of the count. In such a case,
two args are used, the first of which is a long integer specifying the
count of the number of elements in the data block. The second
arg is a reference to the data block. The size of an element is
determined by the optional length modifier (see below), the default
being byte width.

Length modifier h

The data block is an array of unsigned short integers (16-bits).
The count corresponds to the number of words rather than bytes.
If the optional ! ol byte order modifier is present, the data is sent
in little endian format; otherwise, the data is sent in standard IEEE
488.2 format. Data will be byte swapped and padded as
appropriate if native computer representation is different.

Length Modifier |

The data block is an array of unsigned long integers (32 bits) .
The count corresponds to the number of longwords rather than
bytes. If the optional ! ol byte order modifier is present, the data
is sent in little endian format; otherwise, the data is sent in
standard IEE 488.2 format. Data will be byte swapped and padded
as appropriate if native computer representation is different.

Byte order modifier ! ob

Data is sent in standard IEE 488.2 (big endian) format. This is the
default behavior if neither ! ob nor ! ol is present.

Byte order modifier ! ol

Data is sent in little endian format.

Chapter 7

237

HP VISA Language Reference

ViPrintf

Return Values

TypeVi St at us Thisisthe function return status. It returns either a
completion code or an error code as follows.

Completion Code

Description

VI _SUCCESS

Parameters were successfully formatted.

Error Code

Description

VI _ERROR | NV_SESSI ON
VI _ERROR_| NV_OBJECT

The given session or object reference is invalid (both are the
same value).

VI _ERROR_RSRC_LOCKED

Specified operation cou]d not be performed because the
resource identified by VI has been locked for this kind of access.

VI_ERROR | O

Could not perform write function because of I/O error.

VI _ERROR_TMD

Timeout expired before write function completed.

VI _ERROR | NV_FMI

A format specifier in the writeFmt string is invalid.

VI _ERROR_NSUP_FMT

A format specifier in the writeFmt string is not supported.

VI _ERROR ALLOC

The system could not allocate a formatted I/O buffer because of
insufficient resources.

See Also "viVPrintf"

238

Chapter7

Syntax

HP VISA Language Reference
viQueryf

viQuer yf

vi Quer yf (Vi Sessi on i,

Vi String writeFmt,

Vi String readFmt, argl,arg2,...);

Note Thisfunction isnot supported with the VISA Transition Library (VTL).

Description Thisfunction performs aformatted write and read through a single operation
invocation. This function provides a mechanism of "Send, then receive"
typical to acommand sequence from a commander device. In this manner,
the response generated from the command can be read immediately.

Parameters

Thisfunction isacombination of thevi Pri ntf andvi Scanf functions.
Thefirst n arguments corresponding to the first format string are formatted
by using the writeFmt string and then sent to the device. The write buffer is
flushed immediately after the write portion of the operation completes. After
these actions, the response datais read from the device into the remaining
parameters (starting from parameter n + 1) using the readFmt string.

This function returns the same VISA status codesasvi Pri nt f , vi Scanf

and vi Fl ush.
Name | Direction Type Description
vi IN Vi Sessi on | Unique logical identifier to a session.

writeFmt IN Vi String | Vi String describing the format of the write
arguments.

readFmt IN Vi String | Vi String describing the format of the read
arguments.

argl,arg2| INOUT | N/A Parameters on which write and read format strings are
applied.

Chapter 7

239

HP VISA Language Reference
viQueryf

Return Values

TypeVi St at us Thisisthe function return status. It returns either a
completion code or an error code as follows.

Completion Code Description
VI _SUCCESS Successfully completed the Query operation.
Error Code Description

VI _ERROR_| NV_SESSI ON | The given session or object reference is invalid (both are the
VI _ERROR_| NV_OBJECT same value).

VI _ERROR_RSRC_LOCKED | Specified operation could not be performed because the
resource identified by vi has been locked for this kind of

access.

VI _ERROR_|1 O Could not perform read/write operation because of I/O error.
VI _ERROR_TMO Timeout occurred before read/write operation completed.

VI _ERROR_| NV_FMT A format specifier in the writeFmt or readFmt string is invalid.

VI _ERROR_NSUP_FMI The format specifier is not supported for current argument type.
VI _ERROR_ALLCC The system could not allocate a formatted I/O buffer because

of insufficient resources.

See Also "viPrintf", "viScanf", "viVQueryf"

240 Chapter7

HP VISA Language Reference
viRead

viRead

Syntax vi Read(Vi Sessi on vi, Vi PBuf buf, ViUl nt32 count,
Vi PUI nt 32 retCount) ;

Description Thisfunction synchronously transfers data from adevice. The datathat is
read is stored in the buffer represented by buf. This function returns only
when the transfer terminates. Only one synchronous read function can occur
at any onetime.

Note You must set specific attributes to make the read terminate under specific
conditions. See Appendix B, "HP VISA Attributes."

Parameters
Name | Direction Type Description
vi IN Vi Sessi on | Unique logical identifier to a session.
buf ouT Vi PBuf Represents the location of a buffer to receive data from
device.
count IN Vi Ul nt 32 | Number of bytes to be read.
retCount ouT Vi PUI nt 32 | Represents the location of an integer that will be set to
the number of bytes actually transferred.

Special value for retCount Parameter:

VI _NULL Do not return the number of bytes transferred. (VISA 1.1 only)

Chapter 7 241

Return Values

See Also

HP VISA Language Reference

viRead

TypeVi St at us

Thisisthe function return status. It returns either a

completion code or an error code as follows.

Completion Code

Description

VI _SUCCESS

The function completed successfully and the END
indicator was received (for interfaces that have END
indicators).

VI _SUCCESS TERM CHAR

The specified termination character was read.

VI _SUCCESS_MAX_CNT

The number of bytes read is equal to count.

Error Code

Description

VI _ERROR | NV_SESSI ON
VI _ERROR | N\V_OBJECT

The given session or object reference is invalid (both are
the same value).

VI _ERROR_NSUP_OPER

The given vi does not support this function.

VI _ERROR_RSRC_LOCKED

Specified operation could not be performed because the
resource identified by vi has been locked for this kind of
access.

VI _ERROR_TMD

Timeout expired before function completed.

VI _ERROR_RAW W\R_PROT_VI OL

Violation of raw write protocol occurred during transfer.

VI _ERROR_RAW RD_PROT_VI OL

Violation of raw read protocol occurred during transfer.

VI _ERROR_OUTP_PROT_VI OL

Device reported an output protocol error occurred during
transfer.

VI _ERROR BERR

Bus error occurred during transfer.

VI _ERROR | NV_SETUP

Unable to start read function because setup is invalid
(due to attributes being set to an inconsistent state).

VI _ERROR_NCI C

The interface associated with the given Vi is not currently
the controller in charge.

VI _ERRCR_NLI STENERS

No Listeners condition is detected (both NRFD and
NDAC are deasserted).

VI _ERROR_ASRL_PARI TY

A parity error occurred during transfer.

VI _ERROR_ASRL_FRAM NG

A framing error occurred during transfer.

VI _ERROR_ASRL_OVERRUN

An overrun error occurred during transfer. A character
was not read from the hardware before the next character
arrived.

VI _ERROR_ 1 O An unknown 1/O error occurred during transfer.
"viWrite"
242 Chapter7

HP VISA Language Reference
viReadAsync

viReadAsync

Syntax vi ReadAsync(Vi Sessi on vi, Vi PBuf buf, ViU nt32 count,
Vi PJobl d jobld);

Note Thisfunction isnot supported with the VISA Transition Library (VTL).

Description Thisfunction asynchronously transfers data from adevice. The datathat is
read is stored in the buffer represented by buf. This function normally
returns before the transfer terminates. An 1/0 Completion event is posted
when the transfer is actually compl eted.

This function returns jobld, which you can use either with vi Ter mi nat e to
abort the operation, or with an 1/0 Completion event to identify which
asynchronous read operation completed.

Parameters
Name | Direction Type Description
vi IN Vi Sessi on | Unique logical identifier to a session.
buf ouT Vi PBuf Represents the location of a buffer to receive data from
the device.
count IN Vi Ul nt 32 | Number of bytes to be read.
jobld ouT Vi PJobl d | Represents the location of a variable that will be set to
the job identifier of this asynchronous read operation.

Special value for jobld Parameter:

VI _NULL Do not returna job identifier. (VISA 1.1 only)

Chapter 7 243

HP VISA Language Reference

viReadAsync

Return Values

TypeVi St at us Thisisthe function return status. It returns either a
completion code or an error code as follows.

Completion Code

Description

VI _SUCCESS

Asynchronous read operation successfully queued.

VI _SUCCESS_SYNC

Read operation performed synchronously.

Error Code

Description

VI _ERROR | NV_SESSI ON
VI _ERROR | N\V_OBJECT

The given session or object reference is invalid (both are the
same value).

VI _ERROR_RSRC_LOCKED

Specified operation could not be performed because the
resource identified by vi has been locked for this kind of
access.

VI _ERROR_QUEUE_ERROR

Unable to queue read operation.

See Also "viRead", "viTerminate", "viWrite", "viWriteAsync"

244

Chapter7

HP VISA Language Reference
viReadSTB

viReadSTB

Syntax vi ReadSTB(Vi Sessi on vi, Vi PU nt16 status);

Description Thisfunction reads a status byte of the service request from a service
requester (the message-based device). For example, on the |EEE 488.2
interface, the message is read by polling devices; for other types of
interfaces, amessageis sent in response to a service request to retrieve status
information. If the status information is only one byte long, the most
significant byte is returned with the zero value. If the service requester does
not respond in the actual timeout period, VI _ERROR_TMOis returned.

Parameters
Name | Direction Type Description
vi IN Vi Sessi on | Unique logical identifier to the session.
status ouT Vi PUl nt 16 | Service request status byte.

Return Values

TypeVi St at us Thisisthe function return status. It returns either a
completion code or an error code as follows.

Completion Code Description

VI _SUCCESS Operation completed successfully.

Chapter 7 245

HP VISA Language Reference

viReadSTB

Error Code

Description

VI _ERROR | NV_SESSI ON
VI _ERROR_| N\V_OBJECT

The given session or object reference is invalid
(both are the same value).

VI _ERROR_NSUP_OPER

The given vi does not support this function.

VI _ERROR_RSRC_LOCKED

Specified operation could not be performed
because the resource identified by vi has been
locked for this kind of access.

VI _ERROR_SRQ NOCCURRED

Service request has not been received for the
session.

VI _ERROR_TMD

Timeout expired before function completed.

VI _ERROR_RAW W\R_PROT_VI OL

Violation of raw write protocol occurred during
transfer.

VI _ERROR_RAW RD_PROT VI OL

Violation of raw read protocol occurred during
transfer.

VI _ERROR BERR

Bus error occurred during transfer.

VI _ERROR NCI C

The interface associated with the given Vi is not
currently the controller in charge.

VI _ERRCR_NLI STENERS

No Listeners condition is detected (both NRFD and
NDAC are deasserted).

VI _ERROR | N\V_SETUP

Unable to start operation because setup is invalid
(due to attributes being set to an inconsistent state).

246

Chapter7

Syntax

Description

HP VISA Language Reference
viScanf

viScanf

vi Scanf (Vi Sessi on vi, Vi String readFnt, argl, arg2,...) ;

This function receives data from a device, formatsit by using the format
string, and stores the data in the arg parameter list. The format string can
have format specifier sequences, white space characters, and ordinary
characters. The white characters (blank, vertical tabs, horizontal tabs, form
feeds, new line/linefeed, and carriage return) are ignored except in the case
of %¢ and %4]. All other ordinary characters except %should match the
next character read from the device.

A format specifier sequence consists of a % followed by optional modifier
flags, followed by one of the conversion characters, in that sequence. It is of
the form:

% modifiers] conversion character

where the optional modifier describes the data format, while conversion
character indicates the nature of data (datatype). One and only one
conversion character should be performed at the specifier sequence. A format
specification directs the conversion to the next input arg. The results of the
conversion are placed in the variabl e that the corresponding argument points
to, unlessthe asterisk (*) assignment-suppressing character isgiven. Insuch
acase, ho arg is used, and the results are ignored.

Thevi Scanf function acceptsinput until an END indicator isread or al the
format specifiersin the readFmt string are satisfied. It also terminates if the
format string character does not match the incoming character. Thus,
detecting an END indicator before the readFmt string is fully consumed will
result in ignoring the rest of the format string. Also, if some dataremainsin
the buffer after all format specifiersin the readFnmt string are satisfied, the
datawill be kept in the buffer and will be used by the next vi Scanf
function.

Chapter 7 247

HP VISA Language Reference

Parameters

viScanf
Name | Direction Type Description
vi IN Vi Sessi on | Unique logical identifier to a session.
readFmt IN Vi String | String describing the format for arguments.
argl, arg2 ouT N/A A list with the variable number of parameters into
which the data is read and the format string is applied.

The following two tables describe optional modifiers that can be used in a
format specifier sequence.

ANSI C Sandard Modifiers

Modifier Supported with Description
Conversion
Character
An integer %, %, A | It specifies the maximum field width that the argument will take. A # may also
representing the conversion appear instead of the integer field width, in which case the next arg is a
field width characters reference to the field width. This arg is a reference to an integer for % and %s.
The field width is not allowed for % or % .

A length modifier | h (d, b The argument length modifiers specify one of the following:
(I, h, L, zor [conversion a. The h modifier promotes the argument to be a reference to a short integer
Z).z and Z are not | characters) or unsigned short integer, depending on the conversion character.
ANSI C standard
modifiers. I d, f, b b. The | modifier promotes the argument to point to a long integer or unsigned

conversion long integer.

characters)

L (f conversion
character)

z, Z (b
conversion
character)

c. The L modifier promotes the argument to point to a long double floating
point parameter.

d. The Z modifier promotes the argument to point to an array of floats.

e. The Z modifier promotes the argument to point to an array of double floats.

* (asterisk)

All conversion
characters

An asterisk acts as the assignment suppression character. The input is not
assigned to any parameters and is discarded.

248

Chapter7

HP VISA Language Reference

viScanf
Enhanced M odifiersto ANSI C Sandards
Modifier | Supported Description
with
Conversio
n
Character
Acomma(,) | %d and % The corresponding argument is interpreted as a reference to
followed by only the first element of an array of size N. The first N elements of
an integer n, this list are printed in the format specified by the conversion
where n character.
represents
the array A number sign (#) may be present after the , modifier, in
size. which case an extra arg is used. This arg must be an integer
representing the array size of the given type.
Conversion ANSI C Conversion Characters
Characters
c Argument type: A reference to a character.
Flags or Interpretation
Modifiers

Default A character is read from the device and stored in the parameter.
functionality
field width field width number of characters are read and stored at the reference

location (the default field width is 1). No NULL character is added at the

end of the data block

Note White spacein the device input stream is not ignored when using % .

Chapter 7 249

HP VISA Language Reference

viScanf
d Argument type: A reference to an integer.
Flags or Modifiers Interpretation

Default functionality Characters are read from the device until an entire number is read.
The number read must be in one of the following IEEE 488.2
formats:

« <DECIMAL NUMERIC PROGRAM DATA", also known as NRf.
« Flexible numeric representation (NR1, NR2, NR3, ...).

*« <NON-DECIMAL NUMERIC PROGRAM DATA> (#H, #Q and
#B).

field width The input number will be stored in a field at least this wide.

Length modifier | arg is a reference to a long integer.

Length modifier h arg is a reference to a short integer. Rounding is performed
according to IEEE 488.2 rules (0. 5 and up).

,array size arg points to an array of integers (or long or short integers,
depending on the length modifier) of size array size. The
elements of this array should be_ separated by commas. Elements
will be read until either array size number of elements are
consumed or they are no longer separated by commas.

f Argument type: A reference to afloating point

number.

Flags or Modifiers Interpretation

Default functionality Characters are read from the device until an entire number is read.
The number read must be in either IEEE 488.2 formats: <DECIMAL
NUMERIC PROGRAM DATA> (NRf), or <NON-DECIMAL
NUMERIC PROGRAM DATA> (#H, #Q, and #B).

field width The input number will be stored in a field at least this wide.

Length modifier | arg is a reference to a double floating point number.

Length modifier L arg is a reference to a long double number.

, array size arg points to an array of floats (or doubles or long doubles,
depending on the length modifier) of size array size. The elements of
this array should be separated by commas. Elements will be read
until either array size number of elements are consumed or they are
no longer separated by commas.

250 Chapter7

HP VISA Language Reference

viScanf
s Argument type: A reference to astring.
Flags or Modifiers Interpretation
Default functionality All leading white space characters are ignored. Characters are
read from the device into the string until a white space character is
read.
field width This flag gives the maximum string size. If the field width contains

a # sign, two arguments are used. The first argument read gives
the maximum string size. The second should be a reference to a
string. In case of field width characters already read before
encountering a white space, additional characters are read and
discarded until a white space character is found. In case of # field
width, the actual number of characters read are stored back in the
integer pointed to by the first argument.

Enhanced Conversion Characters

b Argument type: A reference to a data array.

Flags or Modifiers Interpretation

Default functionality The data must be in IEEE 488.2 <ARBITRARY BLOCK PROGRAM
DATA> format. The format specifier sequence should have a flag
describing the array size, which will give a maximum count of the
number of bytes (or words or longwords, depending on length
modifiers) to be read from the device. If the array size contains a #
sign, two arguments are used. The first argument read is a pointer to
a long integer specifying the maximum number of elements that the
array can hold. The second one should be a reference to an array.
Also in this case, the actual number of elements read is stored back
in the first argument. In absence of length modifiers, the data is
assumed to be of byte-size elements. In some cases, data might be
read until an END indicator is read.

Length modifier h The array is assumed to be an array of 16-bit words, and count refers
to the number of words. The data read from the interface is assumed
to be in IEEE 488.2 (big endian) byte ordering. It will be byte
swapped and padded as appropriate to the native computer format.

Length modifier | The array is assumed to be a block of 32-bit longwords rather than

bytes, and count refers to the number of longwords. The data read
from the interface is assumed to be in IEEE 488.2 (big endian) byte
ordering. It will be byte swapped and padded as appropriate to the
native computer format.

Chapter 7 251

HP VISA Language Reference

viScanf

Flags or Modifiers

Interpretation

Length modifier z

The data block is assumed to be a reference to an array of floats, and
count refers to the number of floating point numbers. The data block
received from the device is an array of 32-bit IEEE 754 format
floating point numbers.

Length modifier Z

The data block is assumed to be a reference to an array of doubles,
and the count refers to the number of floating point numbers. The
data block received from the device is an array of 64-bit IEEE 754
format floating point numbers.

Argument type: A referenceto astring.

Flags or Modifiers

Interpretation

Default functionality

Characters are read from the device until the first END indicator is
received. The character on which the END indicator was received is
included in the buffer.

field width

This flag gives the maximum string size. If an END indicator is not
received before field width number of characters, additional
characters are read and discarded until an END indicator arrives.
#field width has the same meaning as in 8.

Argument type: A reference to a string.

Flags or Modifiers Interpretation

Default functionality

Characters are read from the device until the first linefeed
character (\ N) is received. The linefeed character is included

in the buffer.
field width This flag gives the maximum string size. If a linefeed character
is not received before field width number of characters,
additional characters are read and discarded until a linefeed
character arrives. #field width has the same meaning as in %s.
252 Chapter7

y
(VISA 1.1 only)

HP VISA Language Reference
viScanf

Argument Type: A location of block binary data.

Flag or Modifier

Interpretation

Default functionality

The data block is read as raw binary data. The format specifier
sequence should have a flag describing the array size, which will
give a maximum count of the number of bytes (or words or
longwords, depending on length modifiers) to be read from the
device. If the array size contains a # sign, two arguments are sued.
The first argument read is a pointer to a long integer specifying the
maximum number of elements that the array can hold. The
second argument should be a reference to an array. Also, in this
case, the actual number of elements read is stored back in teh first
argument. In the absence of length modifiers, the data is assumed
to be of byte-size elements. In some cases, data might be read
until an END indicator is read.

Length modifier h

The data block is assumed to be a reference to an array of
unsigned short integers (16-bits). The count corresponds to the
number of words rather than bytes. If the optional ! ol byte order
modifier is present, the data being read is assumed to be in little
endian format; otherwise, the data being read is assumed to be in
standard IEE 488.2 format. Data will be byte swapped and padded
as appropriate to native computer format.

Length Modifier |

The data block is assumed to be a reference to an array of
unsigned long integers (32 bits) . The count corresponds to the
number of longwords rather than bytes. If the optional ! ol byte
order modifier is present, the data being read is assumed to be in
little endian format; otherwise, the data being read is assumed to
be in standard IEE 488.2 format. Data will be byte swapped and
padded as appropriate if native computer representation is
different.

Byte order modifier ! ob

Data being read is assumed to be in standard IEE 488.2 (big
endian) format. This is the default behavior if neither ! ob nor ! ol
is present.

Byte order modifier ! ol

Data being read is assumed to be in little endian format.

Chapter 7

253

HP VISA Language Reference

viScanf
Return Values
Type Vi St at us Thisisthe function return status. It returns either a
completion code or an error code as follows.
Completion Code Description
VI _SUCCESS Data was successfully read and formatted into arg
parameter(s).
Error Code Description

VI _ERROR_| NV_SESSI ON The given session or object reference is invalid (both are the
VI _ERROR | NV_OBJECT same value).

VI _ERROR_RSRC_LOCKED Specified operation cou_ld not be performed because the
resource identified by VI has been locked for this kind of

access.
VI _ERROR | O Could not perform read function because of I/O error.

VI _ERROR_TMO Timeout expired before read function completed.

VI _ERROR_| NV_FMT A format specifier in the readFnt string is invalid.

VI _ERROR_NSUP_FMT A format specifier in the readFmt string is not supported.

VI _ERROR_ALLCC The system could not allocate a formatted I/O buffer because

of insufficient resources.

See Also "viVScanf"

254 Chapter7

HP VISA Language Reference
viSetAttribute

viSetAttribute

Syntax vi Set Attri but e(Vi Sessi on/ Vi Event/ Vi Fi ndLi st i,
Vi Attr attribute, Vi AttrState attrSate);

Description Thisfunction sets the state of an attribute for the specified session.

Parameters
Name | Direction Type Description
vi IN Vi Sessi on Unique logical identifier to a session, event, or find
Vi Event list.
Vi Fi ndLi st
attribute IN ViAttr Resource attribute for which the state is modified.
attrSate IN Vi At tr St at e | The state of the attribute to be set for the specified
resource. The interpretation of the individual attribute
value is defined by the resource.

Return Values

TypeVi St at us Thisisthe function return status. It returns either a
completion code or an error code as follows.

Completion Code Description

VI _SUCCESS Attribute value set successfully.

VI _WARN_NSUP_ATTR_STATE | Although the specified attribute state is valid, it is not
supported by this resource implementation. (The
application will still work, but this may have a performance
impact.)

Chapter 7 255

HP VISA Language Reference

viSetAttribute

Error Code

Description

VI _ERROR | NV_SESSI ON
VI _ERROR_| NV_OBJECT

The given session or object reference is invalid (both are
the same value).

VI _ERROR_RSRC_LOCKED

Specified operation could not be performed because the
resource identified by Vi has been locked for this kind of
access.

VI _ERROR_NSUP_ATTR

The specified attribute is not defined by the referenced
resource.

VI _ERROR_NSUP_ATTR_STATE

The specified state of the attribute is not valid, or is not
supported as defined by the resource. (The application
probably will not work if this error is returned.)

VI _ERROR _ATTR_READONLY

The specified attribute is read-only.

See Also "viGetAttribute". Also refer to Appendix B, "HP VISA Attributes," for alist
of attributes and attribute values. Chapter 4, "Programming with HPVISA,"
provides detailed descriptions of the VISA attributes.

256

Chapter7

HP VISA Language Reference
viSetBuf

viSetBuf

Syntax vi Set Buf (Vi Session vi, ViU ntl1l6 mask, ViU nt32 size);

Description Thisfunction sets the size of the read and/or write buffer for formatted 1/0
and/or serial communication. The mask parameter specifies whether the
buffer isaread or write buffer. The mask parameter can specify multiple
buffers by "bit-ORing" any of the following values together.

Flag Interpretation
VI _READ BUF Formatted I/O read buffer.
VI _WRI TE_BUF Formatted I/O write buffer.

VI _ASRL_I N_BUF

Serial communication receive buffer.

VI_ASRL_OUT_BUF

Serial communication transmit buffer.

Parameters
Name | Directio Type Description
n
vi IN Vi Sessi on | Unique logical identifier to a session.
mask IN Vi Ul nt 16 | Specifies the type of buffer. (See previous table.)
size IN Vi Ul nt 32 | The size to be set for the specified buffer(s).

Return Values

TypeVi St at us

Thisisthe function return status. It returns either a
completion code or an error code as follows.

Completion Code

Description

VI _SUCCESS

Buffer size set successfully.

VI _WARN_NSUP_BUF

The specified buffer is not supported.

Chapter 7

257

HP VISA Language Reference

viSetBuf
Error Code Description

VI _ERROR | NV_SESSI ON The given session or object reference is invalid (both

VI _ERROR_| NV_OBJECT are the same value).

VI _ERROR_RSRC_LOCKED Specified operation could not be performed because
the resource identified by vi has been locked for this
kind of access.

VI _ERROR_ALLCC The system could not allocate the buffer(s) of the
specified size because of insufficient system resources.

VI _ERROR_| NV_NMASK The system cannot set the buffer for the given mask.

258 Chapter7

HP VISA Language Reference
viStatusDesc

viSatusDesc

Syntax vi St at usDesc(Vi Sessi on/ Vi Event/ Vi Fi ndLi st i,
Vi St at us status, Vi PString desc);

Description Thisfunction returns a user-readabl e string which describes the status code

passed to the function.
Parameters
Name | Direction Type Description
Vi IN Vi Sessi on | Unique logical identifier to a session, event, or find list.

Vi Event
Vi Fi ndLi st

status IN Vi St at us Status code to interpret.

desc ouT Vi PString | The user-readable string interpretation of the status
code passed to the function.

Return Values

TypeVi St at us

Thisisthe function return status. It returns either a
completion code or an error code as follows.

Completion Code

Description

VI _SUCCESS

Description successfully returned.

VI _WARN_UNKNOAN_STATUS

The status code passed to the function could not be
interpreted.

Chapter 7

259

HP VISA Language Reference
viTerminate

viTerminate

Syntax vi Ter mi nat e(Vi Sessi on vi, Vi U nt 16 degree, Vi Jobl d jobld);

Description Thisfunction requests aVISA session to terminate normal execution of an
asynchronous operation.

Note Thisfunction is not supported with the VISA Transition Library (VTL).

Parameters
Name | Direction Type Description
vi IN Vi Sessi on | Unique logical identifier to an object.
degree IN Viunti16 | VI _NULL
jobld IN Vi Jobl d Specifies an operation identifier.

Return Values

TypeVi St at us Thisisthe function return status. It returns either a
completion code or an error code as follows.

Completion Code Description
VI _SUCCESS Request serviced successfully.
Error Code Description

VI _ERROR_| NV_SESSI ON | The given session or object reference is invalid (both are the
VI _ERROR_| NV_OBJECT | same value).

VI _ERROR | NV_DEGREE | Invalid degree specified.

VI _ERROR_INV_JOB_| D | Invalid job identifier specified.

See Also "viReadAsync", "viWriteAsync"

260 Chapter7

Syntax

Description

Parameters

HP VISA Language Reference
viUninstallHandler

viUninstallHandler

vi Uni nst al | Handl er (Vi Sessi on vi, Vi Event Type eventType,

Vi Hndl r

handler, Vi Addr

userHandle) ;

This function allows applications to uninstall handlers for events on
sessions. Applications should also specify the value in the userHandle
parameter that was passed to vi | nst al | Handl er whileinstalling the
handler. VISA identifies handlers uniquely using the handler reference and
thisvalue. All the handlers, for which the handler reference and the value
matches, are uninstalled.

Name | Direction Type Description
vi IN Vi Sessi on Unique logical identifier to a session.
eventType IN Vi Event Type | Logical event identifier.
handler IN Vi Hndl r Interpreted as a valid reference to a handler to
be uninstalled by an application. (See the
following table.)
userHandle IN Vi Addr A value specified by an application that can be
used for identifying handlers uniquely in a
session for an event.

Chapter 7

261

Return Values

HP VISA Language Reference

viUninstallHandler

The following events are valid:

Event Name

Description

VI _EVENT_SERVI CE_REQ

Notification that a device is requesting service.

VI_EVENT_VXI _SI GP

Notification that a VXI signal or VXI interrupt has been
received from a device.

VI_EVENT_TRI G

Notification that a hardware trigger was received from a
device.

VI _EVENT_| O_COMPLETI ON

Notification that an asynchronous operation has completed

Special Valuesfor handler Parameter

Value

Action Description

VI _ANY_HNDLR

Uninstall all the handlers with the matching value in the UserHandle
parameter.

Type Vi St at us

Thisisthe function return status. It returns either a

completion code or an error code as follows.

Completion Code

Description

VI _ERROR_| N\V_OBJECT

VI _SUCCESS Event handler successfully uninstalled.
Error Code Description
VI _ERRCR | The given session or object reference is invalid (both are the

same value).

VI _ERROR | N\V_EVENT

Specified event type is not supported by the resource.

VI _ERROR | N\V_HNDLR REF

Either the specified handler reference or the user context
value (or both) does not match any installed handler.

VI _ERROR_HNDLR NI NSTAL
LED

A handler is not currently installed for the specified event.

See Also Seethe handler prototype, "viEventHandler", for its parameter description.
Also refer to the "viEnableEvent” description for information about enabling
different event handling mechanisms. Refer to individual event descriptions

for context definitions.

262

Chapter7

HP VISA Language Reference

viUnlock

viUnlock

Syntax vi Unl ock(Vi Sessi on Vi) ;

Note Thevi Unl ock functionis not supported with 16-bit VISA on Windows 95.

Description Thisfunction isused to relinquish alock previously obtained using the

vi Lock function.

Parameters

Name | Direction Type

Description

\i IN Vi Sessi on

Unique logical identifier to a session.

Return Values

TypeVi St at us Thisisthe function return status. It returns either a
completion code or an error code as follows.

Completion Code

Description

VI _SUCCESS

The lock was successfully relinquished.

VI _SUCCESS_NESTED_ EXCLUSI VE

The call succeeded, but this session still has nested

exclusive locks.

VI _SUCCESS_NESTED_SHARED

The call succeeded, but this session still has nested

shared locks.

Chapter 7

263

HP VISA Language Reference
viUnlock

Error Code

Description

VI _ERROR | NV_SESSI ON
VI _ERROR_| N\V_OBJECT

The given vi does not identify a valid session or object.

VI _ERROR_SESN_NLOCKED

The current session did not have any lock on the resource.

See Also "viLock". For more information on locking, see the "Using Locks" section
of Chapter 4, "Programming with HP VISA."

264

Chapter7

HP VISA Language Reference
viUnmapAddress

viUnmapAddress

Syntax vi UnmapAddr ess(Vi Sessi on Vi) ;

Description This function unmaps memory space previously mapped by the
vi MapAddr ess function.

Parameters

Name | Direction Type Description

Vi IN Vi Sessi on | Unique logical identifier to a session.

Return Values

TypeVi St at us Thisisthe function return status. It returns either a
completion code or an error code as follows.

Completion Code Description
VI _SUCCESS Operation completed successfully.
Error Code Description
VI _ERROR_| NV_SESSI ON The given session or object reference is invalid (both are
VI _ERROR_| NV_OBJECT the same value).
VI _ERROR_NSUP_OPER The given vi does not support this function.
VI _ERROR_W NDOW NMAPPED | The specified session is not currently mapped.

See Also "viMapAddress'

Chapter 7 265

HP VISA Language Reference
ViVPrintf

viVPrintf

Syntax vi VPrintf (Vi Session vi, ViString writeFnt, Vi VALi st params) ;

Description Thisfunction converts, formats, and sends params to the device as specified
by the format string. Thisfunctionissimilar tovi Pri nt f , except that the
Vi VALi st parameters list provides the parameters rather than separate arg

parameters.
Parameters
Name | Direction Type Description
vi IN Vi Sessi on | Unique logical identifier to a session.
writeFmt IN Vi String | The format string to apply to parameters in Vi VAL st .
See vi Printf for description.
params IN Vi VALI st A list containing the variable number of parameters on
which the format string is applied. The formatted data is
written to the specified device.

Return Values

TypeVi St at us

Thisisthe function return status. It returns either a
completion code or an error code as follows.

Completion Code

Description

VI _SUCCESS

Parameters were successfully formatted.

266

Chapter7

HP VISA Language Reference
viVPrintf

Error Code

Description

VI _ERROR | NV_SESSI ON
VI _ERROR_| N\V_OBJECT

The given session or object reference is invalid (both are the
same value).

VI _ERROR_RSRC_LOCKED

Specified operation could not be performed because the
resource identified by vi has been locked for this kind of access.

VI_ERROR | O

Could not perform write function because of 1/O error.

VI _ERROR_TMO

Timeout expired before write function completed.

VI _ERROR | N\V_FMT

A format specifier in the writeFmt string is invalid.

VI _ERROR_NSUP_FMT

A format specifier in the writeFmt string is not supported.

VI _ERROR ALLOC

The system could not allocate a formatted I/O buffer because of
insufficient resources.

See Also "viPrintf"

Chapter 7

267

HP VISA Language Reference
viVQueryf

viVQueryf

Syntax vi VQuer yf (Vi Session vi, Vi String writeFmt,
Vi String readFmt, Vi VALi st params) ;

Note Thisfunction isnot supported with the VISA Transition Library (VTL).

Description Thisfunction performs aformatted write and read through a single operation
invocation. Thisfunctionissimilar tovi Quer yf , except that the
Vi VALi st parameters list provides the parameters rather than the separate
arg parameter listinvi Quer yf .

Parameters
Name | Direction Type Description
vi IN Vi Sessi on | Unique logical identifier to a session.

writeFmt IN Vi String The format string is applied to write parameters in
Vi VAL st .

readFmt IN Vi String | The format string is applied to read parameters in
Vi VAL st .

params IN OUT | Vi VALI st A list containing the variable number of write and read
parameters. The write parameters are formatted and
written to the specified device. The read parameters
store the data read from the device after the format
string is applied to the data.

Return Values

TypeVi St at us Thisisthe function return status. It returns either a
completion code or an error code as follows.

Completion Code Description

VI _SUCCESS Successfully completed the Query operation.

268 Chapter7

HP VISA Language Reference
viVQueryf

Error Code

Description

VI _ERROR | NV_SESSI ON
VI _ERROR_| N\V_OBJECT

The given session or object reference is invalid (both are the
same value).

VI _ERROR_RSRC_LOCKED

Specified operation could not be performed because the
resource identified by Vi has been locked for this kind of
access.

VI _ERRCR | O

Could not perform read/write operation because of I/O error.

VI _ERROR_TMD

Timeout occurred before read/write operation completed.

VI _ERROR | N\V_FMI

A format specifier in the writeFmt or readFmt string is invalid.

VI _ERROR_NSUP_FMI

The format specifier is not supported for current argument type.

VI _ERROR_ALLCC

The system could not allocate a formatted I/O buffer because of
insufficient resources.

See Also "viVPrintf", "viVScanf", "viQueryf"

Chapter 7

269

HP VISA Language Reference
viVScanf

viV Scanf

Syntax vi VScanf (Vi Session vi, Vi String readFnt, Vi VALi st params);

Description Thisfunction reads, converts, and formats data using the format specifier,
and then stores the formatted data in params. This function is similar to
vi Scanf , except that the Vi VALi st parameterslist providesthe parameters
rather than separate arg parameters.

Parameters
Name | Direction Type Description
vi IN Vi Sessi on | Unique logical identifier to a session.
readFmt IN Vi String | The format string to apply to parameters in Vi VAL st .

See vi Scanf for description.

params ouT Vi VALI st

A list with the variable number of parameters into which
the data is read and the format string is applied.

Return Values

TypeVi St at us Thisisthe function return status. It returns either a
completion code or an error code as follows.

Completion Code

Description

VI _SUCCESS Data was successfully read and formatted into arg parameter(s).

270

Chapter7

HP VISA Language Reference
viVScanf

Error Code

Description

VI _ERROR | NV_SESSI ON
VI _ERROR_| N\V_OBJECT

The given session or object reference is invalid (both are the
same value).

VI _ERROR_RSRC_LOCKED

Specified operation could not be performed because the
resource identified by vi has been locked for this kind of
access.

VI _ERRCR | O

Could not perform read function because of 1/O error.

VI _ERROR_TMD

Timeout expired before read function completed.

VI _ERROR | N\V_FMI

A format specifier in the readFnmt string is invalid.

VI _ERROR_NSUP_FMI

A format specifier in the readFtmt string is not supported.

VI _ERROR_ALLCC

The system could not allocate a formatted I/O buffer because
of insufficient resources.

See Also "viScanf"

Chapter 7

271

Syntax

Description

Parameters

Note

HP VISA Language Reference
viwaitOnEvent

viwaitOnEvent

vi Wi t OnEvent (Vi Sessi on i,
Vi Ul nt 32 timeout,

Vi PEvent outContext) ;

Vi Event Type inEventType,

Vi PEvent Type outEventType,

This function waits for an occurrence of the specified event for agiven
session. In particular, this function suspends execution of an application
thread and waits for an event inEventType for at |east the time period
specified by timeout. Refer to individual event descriptions for context

definitions.

If the specified inEventTypeis VI _ALL_ENABLED EVENTS, the function
waits for any event that is enabled for the given session. If the specified
timeout valueis VI _TMO_I NFI NI TE, the function is suspended indefinitely.

Name Direction Type Description
vi IN Vi Sessi on Unique logical identifier to a session.
inEventType IN Vi Event Type | Logical identifier of the event(s) to wait for.
timeout IN Vi Ul nt 32 Absolute time period in time units that the
resource shall wait for a specified event to
occur before returning the time elapsed error.
The time unit is in milliseconds.
OutEventType ouT Vi PEvent Type | Logical identifier of the event actually received.
outContext ouT Vi PEvent A handle specifying the unique occurrence of
an event.

Since system resources are used when waiting for events
(vi Wai t OnEvent), thevi d ose function needsto be called to free up
event contexts (outContext).

272

Chapter7

HP VISA Language Reference
viWwaitOnEvent

The following table lists the events and the associated read only attributes
that can beread using vi Get At t ri but e to get event information on a

specific event:
Event Name Attributes Data Type Values
VI _EVENT_SERVI CE_REQ VI _ATTR_EVENT_TYPE Vi Event Type | VI _EVENT_SERVI CE_REQ
VI _EVENT_VXI _SI GP VI _ATTR_EVENT_TYPE Vi Event Type | VI _EVENT_VXI _SI GP
VI _ATTR_SI GP_STATUS_I D Vi Ul nt 16 0 to FFFFy,
VI _EVENT_TRI G VI _ATTR_EVENT_TYPE Vi Event Type | VI_EVENT_TRI G
VI _ATTR RECV_TRI G I D Vilnt16 VI_TRIG TTLO to
VI_TRI G TTL7
VI_TRI G ECLO to
VI_TRI G ECL1
VI _EVENT_| O COMPLETION | VI _ATTR_EVENT_TYPE Vi Event Type | VI _EVENT_| O COMPLETI ON
VI _ATTR_STATUS Vi St at us N/A
VI_ATTR JOB I D Vi Jobl d N/A
VI _ATTR_BUFFER Vi Buf N/A
VI _ATTR_RET_COUNT Vi Ul nt 32 0 to FFFFFFFF,

Use the VISA vi ReadSTB function to read the status byte of the service
request.

Special value for outEventType Parameter:
VI _NULL Do not return the type of event. (VISA 1.1 only)
Special value for outContect Parameter:

VI _NULL Do not returnan event context. (VISA 1.1 only)

Chapter 7 273

HP VISA Language Reference
viwaitOnEvent

Return Values

TypeVi St at us Thisisthe function return status. It returns either a
completion code or an error code as follows.

Completion Code Description

VI _SUCCESS Wait terminated successfully on receipt of an event
occurrence. The queue is empty.

VI _SUCCESS_QUEUE_NEMPTY | Wait terminated successfully on receipt of an event
notification. There is still at least one more event
occurrence of the specified inEventType type available for

this session.
Error Code Description
VI _ERROR | NV_SESSI ON The given session or object reference is invalid (both are
VI _ERROR_| NV_OBJECT the same value).
VI _ERROR_| NV_EVENT Specified event type is not supported by the resource.
VI _ERROR_TMO Specified event did not occur within the specified time
period.

See Also Refer to the "Using Events and Handlers" section in Chapter 4,
"Programming with HP VISA," for more information on event handling.

274 Chapter7

HP VISA Language Reference
viWrite

I
viWrite
Syntax vi Wite(Vi Session vi, ViBuf buf, ViU nt32 count,
Vi PUI nt 32 retCount) ;

Description Thisfunction synchronously transfers datato adevice. The datato be
written isin the buffer represented by buf. This function returns only when
the transfer terminates. Only one synchronous write function can occur at

any onetime.

Parameters

Name | Direction Type Description
vi IN Vi Sessi on | Unique logical identifier to a session.
buf IN Vi Buf Represents the location of a data block to be sent to
device.
count IN Vi Ul nt 32 | Specifies number of bytes to be written.

retCount ouT

Vi PUl nt 32 | Represents the location of an integer that will be set to
the number of bytes actually transferred.

Special value for retCount Parameter:

VI _NULL

Return Values
Type Vi St at us

Do not return the number of bytes transferred. (VISA 1.1 only)

Thisisthe function return status. It returns either a
completion code or an error code as follows.

Completion Code

Description

VI _SUCCESS

Transfer completed.

Chapter 7

275

HP VISA Language Reference
viWrite

Error Code

Description

VI _ERROR | NV_SESSI ON
Vi _

ERROR_| NV_OBJECT

The given session or object reference is invalid (both
are the same value).

Vi

ERROR_NSUP_OPER

The given vi does not support this function.

VI _ERROR_RSRC_LOCKED

Specified operation cou}d not be performed because the
resource identified by VI has been locked for this kind of
access.

VI

ERRCR_TNMD

Timeout expired before function completed.

VI _ERROR_RAW W\R_PROT_VI OL

Violation of raw write protocol occurred during transfer.

VI _ERROR_RAW RD_PROT VI OL

Violation of raw read protocol occurred during transfer.

VI _ERROR | NP_PROT_VI OL

Device reported an input protocol error occurred during
transfer.

Vi

ERROR_BERR

Bus error occurred during transfer.

VI

ERROR | N\V_SETUP

Unable to start write function because setup is invalid
(due to attributes being set to an inconsistent state).

Vi

ERROR_NCI C

The interface associated with the given Vi is not
currently the controller in charge.

Vi

ERRCR_NLI STENERS

No Listeners condition is detected (both NRFD and
NDAC are deasserted).

Vi

ERRCR | O

An unknown /O error occurred during transfer.

See Also "viRead"

276

Chapter7

Syntax

Note Thisfunction isnot supported with the VISA Transition Library (VTL).

Description Thisfunction asynchronously transfers datato adevice. The datato be

Parameters

HP VISA Language Reference
viWriteAsync

viwriteAsync

Vi WiteAsync(Vi Session vi, ViBuf buf, ViU nt32 count,

Vi PJobl d jobld);

written isin the buffer represented by buf. This function normally returns
before the transfer terminates. An 1/O Completion event is posted when the

transfer is actually completed.

This function returns jobld, which you can use either with vi Ter mi nat e to

abort the operation, or with an 1/0 Completion event to identify which

asynchronous write operation compl eted.

Name | Direction Type Description
vi IN Vi Sessi on | Unique logical identifier to a session.
buf IN Vi Buf Represents the location of a data block to be sent to the
device.
count IN Vi Ul nt 32 | Specifies number of bytes to be written.
jobld ouT Vi PJobl d | Represents the location of a variable that will be set to

the job identifier of this asynchronous write operation.

Special value for retCojobldunt Parameter:

VI _NULL

Do not return a job identifier. (VISA 1.1 only)

Chapter 7

277

HP VISA Language Reference
viWriteAsync

Return Values

TypeVi St at us Thisisthe function return status. It returns either a
completion code or an error code as follows.

Completion Code Description
VI _SUCCESS Asynchronous write operation successfully queued.
VI _SUCCESS_SYNC Write operation performed synchronously.
Error Code Description

VI _ERROR_| NV_SESSI ON | The given session or object reference is invalid (both are the
VI _ERROR_| NV_OBJECT | same value).

VI _ERROR_RSRC_LOCKED | Specified operation cou_ld not be performed because the
resource identified by VI has been locked for this kind of
access.

VI _ERROR_QUEUE_ERROR | Unable to queue write operation.

See Also "viRead", "viTerminate", "viWrite", "viReadAsync"

278 Chapter7

HP VISA System Information

HP VISA System Information

This appendix provides information about the VISA software files. This
information can be used as reference, or for removing the VISA software

from your system, if necessary.

280 Appendix A

HP VISA System Information
Windows Directory Structure

Windows Directory Structure

The VXIplug& play aliance defines directory structures to be used with the
Windows system framework. As shown the following directory structure,
32-bit VISA isautomatically installed into either the W N95 subdirectory on
[Windows 95, or the W NNT subdirectory on Windows NT. The
[VXIPNPPATH] is an optional path that you can change during the software
installation.

VXIPNPPATH

——KBASE
—— WIN95

—BIN
—LIB

h e
MSC
—— INCLUDE

—— HPVISA

L SAMPLES
<INSTRUMENT>

— WINNT

—BIN
—LIB

h e
MSC
—— INCLUDE

—— HPVISA

L SAMPLES
—— <INSTRUMENT>

Windows Directory Structure for 32-bit VISA

The VI SA32. DLL and HPVI SA32. DLL files are stored in the
\ W NDOWB\ SYSTEM subdirectory.

Appendix A 281

HP VISA System Information
Windows Directory Structure

As shown in the following directory structure, either 16-bit VISA on
Windows 95 or VTL on Windows 3.1 isautomatically installed into the W N
subdirectory. The [VPNPPATH] is an optional path that you can change
during the software installation.

[VPNPPATH]
VXIPNP

—— KBASE
—WIN

— BIN
—LIB

— BC
— MSC
—— INCLUDE

—— HPVISA

L SAMPLES
—— <INSTRUMENT>
Windows Directory Structure for 16-bit VISA

The VI SA. DLL fileis stored in the\ W NDOAB\ SYSTEMsubdirectory.

282 Appendix A

HP VISA System Information
UNIX Directory Structure

UNIX Directory Sructure

The VXIplug& play alliance defines a directory structure to be used with the
UNIX system framework. VISA isautomaticaly installed into the
following directory structure on HP-UX 10.20. The [opt] isan optional path
that you can change during the software installation.

opt
L vxipnp
—— kbase
— hpux
— bin
— lib
— include
— hpvisa
L share
L <instrument>
—— examples
—— man
— help

UNIX Directory Structure

Appendix A 283

HP VISA System Information
About the Directories

About the Directories

The HPVISA Subdirectory

TheHPVI SA. I NI file (on Windows 3.1 only, the Registry is used for
Windows 95 and Windows NT), aswell as any associated readmefiles, help
files, and HP specific DLLs can be found in the HPVI SA subdirectory .
Thesefilesare VISA or VTL specific.

Include Files

The VI SA. H, VI SATYPE. H, and VPPTYPE. Hinclude files can be found in
the | NCLUDE subdirectory.

Libraries

A VISA library is provided for Microsoft and Borland compilers on
Windows, and the C compiler for HP-UX. You must usethelibrary for your
system.

284 Appendix A

HP VISA System Information
About the Directories

Sample Programs

Sample programs are provided for the Windows or UNIX operating system,
depending on which you haveinstalled. The VISA sample programs can be
found in the HPVI SA\ SAMPLES subdirectory on Windows, or in the

hpvi sa/ shar e/ exanpl es subdirectory on HP-UX 10.20.

VXlplug&play Instrument Drivers

All instrument drivers that comply with the V X1plug& play specification can
be found in the <instrument> subdirectory, where <instrument> is the base
directory of the instrument driver.

Appendix A 285

HP VISA System Information
About the Directories

286 Appendix A

HP VISA Attributes

HP VISA Attributes

Usethevi Get At t ri but e function to read the state of an attribute for a
specified session, event context, or find list. There are read only (RO) and
read/write (RW) attributes. Usethevi Set At t ri but e function to modify
the state of aread/write attribute for a specified session, event context, or
find list.

Attributes are also local or global. A local attribute only affects the session
specified. A global attribute affects the specified device from any session.

For descriptions of all the attributes and how to use them, see the "Using
Attributes" section of Chapter 4, "Programming with HP VISA".

288 Appendix B

HP VISA Attributes
HP VISA Resource Attributes

HP VISA Resource Attributes

Attribute Name RO Local Data Type Range
or or
RW Global
VI _ATTR_MAX_QUEUE_LENGTH |Rw! |Local |Vi U nt32 1, to 32,767 (50 default)
VI _ATTR_RM SESSI ON RO Local Vi Sessi on N/A
VI _ATTR RSRC | MPL_VERSI ON |[RO | Global | Vi Version Oh to FFFFFFFFh
VI _ATTR_RSRC_LOCK_STATE RO Global | Vi AccessMbde |VI_NO_LOCK (default)
VI _EXCLUSI VE_LOCK’
VI _SHARED LOCK
VI _ATTR_RSRC_MANF_I D RO |Global |ViU nt16 Op to 3FFFy,
VI _ATTR_RSRC_MANF_NANE RO | Global |ViString N/A
VI _ATTR_RSRC_NAME RO | Global |ViRsrc N/A
VI _ATTR _RSRC_SPEC VERSI ON |RO | Global |Vi Version 00100000, (VISA 1.0 default)
00100100y, (VISA 1.1 default)
VI _ATTR_USER_DATA RW |Local |Vi Addr N/A

1. For VISA 1.0, this attribute becomes RO (read only) oncevi Enabl eEvent hasbeen called

for thefirst time.

Appendix B

289

HP VISA Attributes

HP VISA Generic Instrument Attributes

HP VISA Generic I nstrument Attributes

Attribute Name RO | Local Data Type Range
or or
RW | Global
VI _ATTR_| NTF_NUM RO |Global |vi U nt16 |0 to FFFFy (0 default)
VI _ATTR | NTF_TYPE RO |Global |ViUnt16 |Vl _INTF_VXI
VI _INTF_GPI B
VI _I NTF_GPI B_VXI
VI _| NTF_ASRL
VI _ATTR_| O PROT RW |Local |viulnt16 |VI_NORMAL (default)
VI _FDC
VI _HS488
VI _ASRL488 (VISA 1.1 only)
VI _ATTR_RD BUF_OPER MODE|RW |Local |Vviunt16 |VI_FLUSH ON_ACCESS
VI _FLUSH DI SABLE (default)
VI _ATTR_SEND END EN RW |Local |ViBool ean |VI_TRUE (default)
VI _FALSE
VI _ATTR SUPPRESS END EN |RW |Local |ViBool ean, |VI _TRUE
VI _FALSE (default)
VI _ATTR_TERMCHAR, RW |Local |ViU nt8§, 0 to FFy, (OAy, default)
VI _ATTR _TERMCHAR EN, RW |Local |ViBool ean, |VI _TRUE
VI _FALSE (default)
VI _ATTR TMO VALUE RW |Local |Viulnt32 |VI_TMO_| MVEDI ATE
1to FFFFFFFE
VI _TMO_I NFI NI TE
(2000 milliseconds default)
VI_ATTR. TRIG ID Rw! |Local |vilnt16 VI _TRI G_SW (default)
VI_TRIG TTLO to VI_TRIG TTL7
VI_TRIG ECLO to VI_TRI G ECL1
VI _ATTR WR BUF_OPER MOD |RW |Local |VviUntl16 |VI_FLUSH ON ACCESS
VI _FLUSH WHEN_FULL (default)

1. Theattribute VI _ATTR_TRI G_I Dis RW (readable and writable) when the corresponding ses-
sion is not enabled to receive trigger events. When the session is enabled to receive trigger
events, this attribute is RO (read only).

290

Appendix B

HP VISA Attributes

HP VISA Interface Specific Instrument Attributes

HP VISA Interface Specific I nstrument

Attributes

GPIB and GPIB-VXI Interfaces

Attribute Name RO | Local Data Type Range
or or
RW | Global
VI _ATTR_GPI B_PRI MARY_ADDR |RO |Global | Vi Ul nt16 0to 30
VI _ATTR_GPI B_SECONDARY_ADDR| RO | Global |Vi Ul nt 16 0to 30

VI _ATTR GPI B_READDR_EN RW |Local |Vibool ean
(VISA 1.1 only)

VI _ATTR _GPlI B_UNADDR EN RW |Local |Vibool ean
(VISA 1.1 only)

VI _NO_SEC_ADDR

VI _TRUE (default)
VI _FALSE

VI _TRUE
VI _FALSE (default)

Appendix B

291

HP VISA Attributes

HP VISA Interface Specific Instrument Attributes

VXI and GPIB-VXI Interfaces

Attribute Name RO Local Data Type Range
or or
RW Global
VI _ATTR_CMVDR_LA RO | Global |Vilnt16 0to 255
VI _UNKNOAN_LA (VISA 1.1)
VI _ATTR_DEST_| NCREMENT RW | Local |Vilnt32 Otol
(1 default)
VI _ATTR_FDC_CHNL RW |Local |ViUnt16 Oto7
VI _ATTR FDC GEN SIGNAL_EN |RW |Local |ViBool ean VI _TRUE
VI _FALSE (default)
VI _ATTR_FDC_MODE RW |Local |ViUnt16 VI _FDC_NORMAL (default)
VI _FDC_STREAM
VI _ATTR_FDC _USE_PAI R RW | Local |ViBool ean VI _TRUE
VI _FALSE (default)
VI _ATTR | MVEDI ATE_SERV RO Global | Vi Bool ean VI _TRUE
VI _FALSE
VI _ATTR_MAI NFRAMVE_LA RO Global |ViInt16 0to 255
VI _UNKNOMAN_LA
VI _ATTR_MANF_I D RO Global | Vi U nt 16 0to FFFy,
VI _ATTR_MEM BASE RO Global |Vi BusAddress |N/A
VI _ATTR_MEM SI ZE RO Global | Vi BusSi ze N/A
VI _ATTR_MEM SPACE RO Global |Vvi U nt16 VI _A16_SPACE (default)
VI _A24 SPACE
VI _A32_SPACE
VI _ATTR_MODEL_CODE RO Global |Vi U nt 16 0to FFFFy
VI _ATTR SLOT RO Global |VilInt16 Oto 12
VI _UNKNOAN_SLOT
VI _ATTR_SRC_| NCREMENT RW | Local |Vilnt32 Otol
(1 default)
VI _ATTR VXI _LA RO Global |ViInt16 0to 255 (VISA 1.0)

0to 511 (VISA 1.1 only)

292

Appendix B

HP VISA Attributes

HP VISA Interface Specific Instrument Attributes

Attribute Name RO Local Data Type Range
or or
RW | Global

VI _ATTR_W N_ACCESS RO Local Vi Ul nt 16 VI _NVAPPED
VI _USE_OPERS
VI _DEREF_ADDR

VI _ATTR_W N_BASE_ADDR RO Local Vi BusAddress | N/A

VI _ATTR_W N_SI ZE RO Local Vi BusSi ze N/A

VI _ATTR_SRC BYTE_ORDER RW Local Vi Ul nt 16 VI _BI G_ENDI AN

(VISA 1.1 only) VI _LI TTLE_ENDI AN

VI _ATTR _DEST_BYTE_ORDER RW Local Vi Ul nt 16 VI _BI G_ENDI AN

(VISA 1.1 only) VI _LI TTLE_ENDI AN

VI _ATTR_W N_BYTE_ORDER rwl | Local Vi Ul nt 16 VI _BI G_ENDI AN

(VISA 1.1 only) VI _LI TTLE_ENDI AN

VI _ATTR_SRC ACCESS PRIV RW Local Vi Ul nt 16 VI _DATA _NPRI'V

(VISA 1.1 only) VI - DATA PRIV
VI _PROG_NPRI 'V
VI _PROG PRIV
VI _BLCK_NPRI'V
VI _BLCK PRIV
VI _D64_NPRI V
VI _D64_PRIV

VI _ATTR DEST_ACCESS PRIV |RW Local Vi Ul nt 16 VI _DATA _NPRI'V

(VISA 1.1 only) VI - DATA PRIV
VI _PROG_NPRI V
VI _PROG PRIV
VI _BLCK_NPRI'V
VI _BLCK PRIV
VI _D64_NPRI V
VI _D64_PRIV

VI _ATTR_W N_ACCESS_PRI V rw! | Local Vi Ul nt 16 VI _DATA_NPRI V

(VISA 1.1 only)

VI - DATA_PRI V
VI _PROG_NPRI V
VI _PROG PRIV
VI_BLCK_NPRI V
VI_BLCK_PRI V

1. For VISA 1.1, theattributes VI _ATTR_ W N_BYTE_ORDERand VI _ATTR_W N_ACCESS PRI V are
RW (readable and writeable) when the corresponding session is not mapped (VI _ATTR_W N_ACCESS ==
VI _NVAPPED). When the session is mapped, these attributes are RO (Read OnlyO.

Appendix B

293

HP VISA Attributes

HP VISA Interface Specific Instrument Attributes

GPIB-VXI Interface

Attribute Name RO Local Data Type Range
or or
RW Global
VI _ATTR_I NTF_PARENT_NuM| RO Global Vi Ul nt 16 0 to FFFFy

294

Appendix B

HP VISA Attributes

HP VISA Interface Specific Instrument Attributes

ASRL Specific INSTR Resource Interface Attributes

Attribute Name RO | Local | Data Type Range
or or
RW | Global
VI _ATTR_ASRL_AVAI L_NUM |RO |Global |vi Ul nt32 |0 to FFFFFFFFy
VI _ATTR_ASRL_BAUD RW | Global |vi Ul nt 32 |0 to FFFFFFFFy
(9600 default)
VI _ATTR _ASRL_DATA BI TS |RW |Global |viunt16|5t08
(8 default)
VI _ATTR ASRL_END I N RW [Local |ViUnt16|VI_ASRL_END NONE
VI _ASRL_END LAST BIT
VI _ASRL_END TERMCHAR (default)
VI _ATTR_ASRL_END QUT RW | Local |Vi Ul nt16|VI_ASRL_END NONE (default)
VI _ASRL_END LAST BIT
VI _ASRL_END BREAK
VI _ATTR_ASRL_FLOW CNTRL | RW | Global |vi Ul nt 16 | VI _ASRL_FLOW NONE (default)
VI _ASRL_FLOW XON_XOFF
VI _ASRL_FLOW RTS_CTS
VI _ATTR _ASRL_PARI TY RW | Global |Vi Ul nt 16 | VI _ASRL_PAR_NONE (default)
VI _ASRL_PAR_ODD
VI _ASRL_PAR_EVEN
VI _ASRL_PAR_MARK
VI _ASRL_PAR_SPACE
VI _ATTR_ASRL_STOP _BITS |RW |Global |vi Ul nt16|VI _ASRL_STOP_ONE (default)
VI _ASRL_STOP_TWOD
VI _ATTR _ASRL_CTS STATE |RO |Global |Vvi Ul nt 16|Vl _STATE_ASSERTED
(VISA 1.1 only) VI _STATE_UNASSERTED
VI _STATE_UNKNOWN
VI _ATTR _ASRL_DCD STATE |RO |Global |Vvi Ul nt 16|Vl _STATE_ASSERTED

(VISA 1.1 only)

VI _STATE_UNASSERTED
VI _STATE_UNKNOWN

Appendix B

295

HP VISA Attributes
HP VISA Interface Specific Instrument Attributes

Attribute Name RO | Local | Data Type Range
or or
RW | Global
VI _ATTR_ASRL_DSR_STATE |RO |Global |Vi Ul nt16|VI _STATE_ASSERTED
(VISA 1.1 only) VI _STATE_UNASSERTED
VI _STATE_UNKNOWN
VI _ATTR _ASRL_DTR STATE |RW | Global |Vi Ul nt 16 |VI _STATE ASSERTED
(VISA 1.1 only) VI _STATE_UNASSERTED
VI _STATE_UNKNOWN
VI _ATTR ASRL_RI _STATE RO |Global |Vi Ul nt 16 |VI STATE ASSERTED
(VISA 1.1 only) VI _STATE_UNASSERTED
VI _STATE_UNKNOWN
VI _ATTR _ASRL_RTS_STATE |RW | Global |Vi Ul nt 16 |VI _STATE ASSERTED

(VISA 1.1 only)

VI _STATE_UNASSERTED
VI _STATE_UNKNOMN

296

Appendix B

HP VISA Attributes

MEMACC Resource Attributes (VISA 1.1 only)

MEMACC Resource Attributes

(VISA 1.1only)
Generic MEMACC Attributes
Attribute Name RO Local Data Type Range
or or
RW | Global
VI _ATTR_|I NTF_NUM RO Global Vi Ul nt 16 0 to FFFF,
VI _ATTR_|I NTF_TYPE RO | Global |ViU nt16 VI _| NTF_VXI
VI _| NTF_GPI B_VXI
VI _ATTR_| NTF_| NST_NAME RO | Global |ViString N/A
VI _ATTR _TMO VALUE RW | Local |ViU nt32 VI_TMO_| MVEDI ATE
1 TO FFFFFFFE,
VI _TMO_INFINITE

VX1 and GP-I1B-VXI Specific MEMACC Resource

Attributes
Attribute Name RO | Local Data Type Range
R(’)Vrv Global

VI _ATTR_VXI _LA RO | Global | Vi Ul nt 16 0to 255

VI _ATTR_SRC_| NCREMENT RW | Local | Vi U nt132 Otol

VI _ATTR_DEST_| NCREMENT | RW | Local |Vi U nt 132 Otol

VI _ATTR_W N_ACCESS RO | Local |Vi U nt16 VI _NMAPPED
VI _USE_OPERS
VI _DEREF_ADDR

VI _ATTR W N_BASE_ADD RO | Local |Vi BusAddress|N/A

VI _ATTR_W N_SI ZE RO | Local |Vi BusSi ze N/A

VI _ATTR_SRC _BYTE_CORDER | RW | Local Vi U nt 16 VI _BI G_ENDI AN

VI _LI TTLE_ENDI AN

Appendix B

297

HP VISA Attributes
MEMACC Resource Attributes (VISA 1.1 only)

Attribute Name RO | Local Data Type Range
or or
RW | Global
VI _ATTR _DEST_BYTE_CORDER| RW | Local |Vi U nt 16 VI _BI G_ENDI AN
VI _LI TTLE_ENDI AN
VI _ATTR_W N _BYTE _ORDER | gw! | Local |Vi Ul nt 16 VI _BI G_ENDI AN
VI _LI TTLE_ENDI AN
VI _ATTR_SRC_ACCESS_PRI V| RW | Local Vi U nt 16 VI _DATA_NPRI V

VI - DATA_PRI V
VI _PROG_NPRI V
VI _PROG PRIV
VI_BLCK_NPRI V
VI_BLCK_PRI V
VI_D64_NPRI V
VI_D64_PRIV

VI _ATTR DEST_ACCESS PR V| RW | Local | Vi U nt 16 VI _DATA_NPRI V
VI - DATA_PRI V
VI _PROG_NPRI V
VI _PROG PRIV
VI _BLCK_NPRI V
VI_BLCK_PRI V
VI_D64_NPRI V
VI_D64_PRIV

VI _ATTR_ W N_ACCESS PRI V| gw! | Local |Vi Ul nt16 VI _DATA_NPRI V
VI - DATA_PRI V
VI_PROG_NPRI V
VI_PROG PRIV
VI_BLCK_NPRI V
VI_BLCK_PRIV

1. For VISA 1.1, the attributes VI _ATTR_W N_BYTE_ORDER and
VI _ATTR W N _ACCESS PRI V are RW (readable and writeable) when the corresponding ses-
sionisnot mapped (VI _ATTR W N_ACCESS ==VI _NVMAPPED). When the session is
mapped, these attributes are RO (Read Only).

298 Appendix B

HP VISA Attributes
MEMACC Resource Attributes (VISA 1.1 only)

Appendix B 299

HP VISA Attributes

MEMACC Resource Attributes (VISA 1.1 only)

GPIB-VXI Specific MEMACC Resource Attributes

Attribute Name RO Local Data Type Range
or or
RW | Global
VI _ATTR_| NTF_PARENT_NUM RO Global | Vi Ul nt 16 0 TO FFFF,
VI _ATTR_GPI B_PRI MARY_ADDR RO Global | Vi Ul nt 16 0TO 31
VI _ATTR_GPI B_SECONDARY_ADDR| RO Global | Vi Ul nt 16 0TO 31

VI _NO_SEC_ADDR

300

Appendix B

HP VISA Attributes
HP VISA Event Attributes

HP VISA Event Attributes

Attribute Name RO\or\RW | Local\or\Global Data Type Range
VI _ATTR BUFFER RO Local Vi Buf N/A
VI _ATTR_EVENT_TYPE RO Local Vi Event Type | VI _EVENT_SERVI CE_REQ

VI_EVENT_VXI _SI GP
VI_EVENT_TRI G
VI _EVENT_| O_COVPLETI (

VI_ATTR JOB I D RO Local Vi Jobl d N/A

VI_ATTR RECV. TRIGID |RO Local Vil nt16 VI_TRI G TTLO tO
VI_TRI G TTL7
VI_TRI G ECLO to
VI_TRI G ECL1

VI _ATTR_RET_COUNT RO Local Vi Ul nt 32 0 to FFFFFFFFy,
VI _ATTR_SI GP_STATUS_I D| RO Local Viunt16 |0 to FFFF,
VI _ATTR_STATUS RO Local Vi St at us N/A

Note TheVI _EVENT_VXI _SI GP and VI _EVENT_TRI Gevents are not supported
with the GPIB-V X1 interface.

Appendix B 301

HP VISA Attributes
HP VISA Event Attributes

302 Appendix B

HP VISA Completion and Error Codes

HP VISA Completion and Error Codes

This appendix liststhe VISA completion and error codes. The codes are
presented in two different ways. The completion and error codes are listed:

® |naphabetical order for easy look up.

® According to the VISA function that returns the codes. You can use this
list to determine what type of codes to expect from each VISA function.

304 Appendix C

HP VISA Completion and Error Codes
Alphabetized Completion and Error Codes

Alphabetized Completion and Error Codes

The following tables list the completion and error codesfor VISA in
aphabetical order for easy look up.

VISA Completion Codes and Description

Completion Code

Description

VI _SUCCESS
VI _SUCCESS_DEV_NPRESENT

VI _SUCCESS_EVENT DI S
VI _SUCCESS_EVENT_EN

VI _SUCCESS_MAX_CNT
VI _SUCCESS_NESTED EXCLUSI VE

VI _SUCCESS_NESTED_ SHARED

VI _SUCCESS_QUEUE_EMPTY

VI _SUCCESS_QUEUE_NEMPTY
VI _SUCCESS_SYNC

VI _SUCCESS_TERM CHAR

VI _WARN_CONFI G_NLOADED

VI _WARN_NSUP_ATTR_STATE
VI _WARN_NSUP_BUF
VI _\WARN_UNKNOWN_STATUS

Operation completed successfully.

Session opened successfully, but the device at the specified
addressis not responding.

The specified event is already disabled.

The specified event is already enabled for at least one
of the specified mechanisms.

The number of bytes specified were read.

The specified access mode was successfully acquired,
and this session has nested exclusive locks.

The specified access mode was successfully acquired,
and this session has nested shared locks.

The event queue was empty while trying to discard
gueued events.

The event queue is not empty.
The read or write operation performed synchronously.
The specified termination character was read.

The specified configuration either does not exist or could not be
loaded using VI SA-specified defaults.

The attribute state is not supported by this resource.
The specified buffer is not supported.

The status code passed to the function was unable
to be interpreted.

Appendix C

305

HP VISA Completion and Error Codes
Alphabetized Completion and Error Codes

306 Appendix C

HP VISA Completion and Error Codes
Alphabetized Completion and Error Codes

VISA Error Codes and Descriptions

Error Code

Description

VI _ERROR_ALLOC

VI _ERROR_ASRL_PARI TY
VI _ERROR_ASRL_FRAM NG
VI _ERROR_ASRL_OVERRUN

VI _ERROR_ATTR_READONLY
VI _ERROR_BERR
VI _ERROR_CLOSI NG_FAI LED

VI _ERROR_HNDLR NI NSTALLED

VI _ERROR_| NP_PROT_VI OL
VI _ERROR_| N\V_ACCESS_KEY

VI _ERROR | N\V_ACC_MODE
VI _ERROR | NV_CONTEXT
VI_ERROR | N\V_DEGREE

VI _ERROR | N\V_EVENT
VI_ERROR | N\V_EXPR

VI _ERROR | NV_FMT
VI_ERROR | N\V_HNDLR_REF

VI_ERROR | NV_JOB I D

VI _ERROR | NV_LENGTH

VI _ERROR | N\V_LOCK_TYPE
VI _ERROR | NV_MASK

Insufficient system resources to open a session or to allocate the
buffer(s) or memory block of the specified size.

A parity error occurred during transfer.
A framing error occurred during transfer.

An overrun error occurred during transfer. A character was not
read from the hardware before the next character arrived.

The attribute specified is read-only.
A bus error occurred during transfer.

Unable to deallocate the previously allocated data structures for
this session.

A handler is not currently installed for the specified event.
The session cannot be enabled for the VI_HNDLR mode of the
callback mechanism.

Input protocol error occurred during transfer.

The requestedKey value passed in is not avalid access
key to the specified resource.

The access mode specified isinvalid.

The event context specified isinvalid.

The specified degreeisinvalid.

The event type specified isinvalid for the specified resource.
The expression specified isinvalid.

The format specifier isinvalid for the current argument.

The specified handler reference and/or the user context value does
not match the installed handler.

The specified job identifier isinvalid.
The length specified isinvalid.
The specified type of lock is not supported by this resource.

The system cannot set the buffer for the given mask, or the
specified mask does not specify avalid flush operation on the
read/write resource.

Appendix C

307

HP VISA Completion and Error Codes
Alphabetized Completion and Error Codes

VISA Error Codes and Descriptions (Continued)

Error Code

Description

VI _ERROR_| NV_MECH

VI _ERROR_| N\V_OBJECT

VI _ERROR_| N\V_OFFSET

VI _ERROR_| N\V_PARAMETER
VI _ERROR_| NV_PROT

VI _ERROR_| N\V_RSRC_NAVE
VI _ERROR_| NV_SESSI ON
VI _ERROR_| N\V_SETUP

VI_ERROR_| NV_SI ZE
VI _ERROR_| NV_SPACE
VI_ERROR | O

VI _ERROR LI NE_| N_USE
VI _ERROR_MEM NSHARED
VI _ERROR_NCI C

VI _ERROR_NI MPL_OPER
VI _ERROR_NLI STENERS

VI _ERROR_NSUP_ATTR

VI _ERROR_NSUP_ATTR_STATE
VI _ERROR_NSUP_FMI

VI _ERROR_NSUP_OFFSET

VI _ERROR_NSUP_OPER

VI _ERROR_NSUP_W DTH

VI _ERROR_QUEUE_ERROR

VI _ERROR_OUTP_PROT_VI OL
VI _ERROR_RAW RD_PROT_VI OL

The mechanism specified for the event isinvalid.
The object referenceisinvalid.

The offset specified isinvalid.

The value of some parameter isinvalid.

The protocol specified isinvalid.

The resources specified are invalid.

The session specified isinvalid.

The setup specified isinvalid, possibly due to attributes being set
to an inconsistent state, or some implementation-specific config-
uration fileis corrupt or does not exist.

The specified sizeisinvalid.
The address space specified isinvalid.

Could not perform read/write function because of an 1/0 error,
or an unknown 1/O error occurred during transfer.

The specified trigger lineisin use.
The device does not export any memory.

The session is referring to something other than the controller in
charge.

The given operation is not implemented.

No listeners are detected. (Both NRFD and NDAC are deasserted.)
The attribute specified is not supported by the specified resource.
The state specified for the attribute is not supported.

The format specifier is not supported for the current argument type.
The offset specified is not accessible.

The operation specified is not supported in the given session.

The specified width is not supported by this hardware.

Unable to queue read or write operation.

Output protocol error occurred during transfer.

A violation of raw read protocol occurred during atransfer.

308

Appendix C

HP VISA Completion and Error Codes
Alphabetized Completion and Error Codes

VISA Error Codes and Descriptions (Continued)

Error Code

Description

VI _ERROR_RAW WR_PROT_VI OL
VI _ERROR_RSRC_BUSY
VI _ERROR_RSRC_LOCKED

VI _ERROR_RSRC_NFOUND

VI _ERROR_SRQ_NOCCURED
VI _ERROR_SYSTEM ERROR
VI _ERROR_TMO

VI _ERROR_USER BUF

VI _ERROR_W NDOW MAPPED
VI _ERROR_W NDOW NVAPPED

A violation of raw write protocol occurred during a transfer.
The respourceisvalid, but VISA cannot currently accessit.

The specified operation could not be performed because the resource
identifed by vi has been locked for this kind of access.

The expression specified does not match any device, or resource
was not found.

A service request has not been received for the session.
Unknown system error.
The operation failed to complete within the specified timeout period.

A specified user buffer is not valid or cannot be accessed for the
required size.

The specified session already contains a mapped window.

The specified session is not currently mapped.

Appendix C

309

HP VISA Completion and Error Codes
Completion and Error Codes for Each HP VISA Function

Completion and Error Codesfor Each
HP VISA Function

The following lists the VISA functionsin a phabetical order, with the
associated completion and error codes for each function.

vi Assert Tri gger (vi,protocol)

Codes

Description

VI _SUCCESS
VI _ERROR_| NV_SESSI ON
VI _ERROR_| N\V_OBJECT
VI _ERROR_NSUP_OPER

VI _ERROR_RSRC_LOCKED

VI _ERROR_| NV_PROT

VI _ERROR_TMD

VI _ERROR_RAW WR_PROT_VI OL
VI _ERROR_RAW RD_PROT_VI OL
VI _ERROR_| NP_PROT_VI OL

VI _ERROR_BERR

VI _ERROR LI NE_| N_USE

VI _ERROR_NCI C

VI _ERROR_NLI STENERS

VI _ERROR_| NV_SETUP

The specified trigger was successfully asserted to the device.
The given session isinvalid.

The given object referenceisinvalid.

The given Vi does not support this function.

Specified operation could not be performed because the resource
identified by vi has been locked for this kind of access.

The protocol specified isinvalid.

Timeout expired before function completed.

Violation of raw write protocol occurred during transfer.
Violation of raw read protocol occurred during transfer.
Device reported an input protocol error during transfer.
Bus error occurred during transfer.

The specified trigger lineis currently in use.

Vi does not refer to an interface that is currently the
controller in charge.

No listeners condition is detected
(both NRFD and NDAC are deasserted).

Unableto start operation because setup isinvalid (dueto attributes
being set to an inconsistent state).

310

Appendix C

vi C ear (Vi)

HP VISA Completion and Error Codes
Completion and Error Codes for Each HP VISA Function

Codes

Description

VI _SUCCESS

VI _ERROR_| NV_SESSI ON
VI _ERROR_| N\V_OBJECT
VI _ERROR_NSUP_OPER

VI _ERROR_RSRC_LOCKED

VI _ERROR_TMD

VI _ERROR_RAW WR_PROT_VI OL
VI _ERROR_RAW RD_PROT_VI OL
VI _ERROR_BERR

VI _ERROR_NCI C

VI _ERROR_NLI STENERS

VI _ERROR_| N\V_SETUP

Operation completed successfully.

The given sessionisinvalid.

The given object referenceisinvalid.

The given Vi does not support this function.

Specified operation could not be performed because the resource
identified by vi has been locked for this kind of access.

Timeout expired before function completed.

Violation of raw write protocol occurred during transfer.
Violation of raw read protocol occurred during transfer.
Bus error occurred during transfer.

Vi does not refer to an interface that is currently
the controller in charge.

No listeners condition is detected
(both NRFD and NDAC are deasserted).

Unableto start operation because setup isinvalid (due to attributes
being set to an inconsistent state).

vi Cl ose(Vi)

Codes

Description

VI _SUCCESS
VI_WARN_NULL_OBJECT

VI _ERROR_| NV_SESSI ON

VI _ERROR_| N\V_OBJECT

VI _ERROR_CLOSI NG_FAI LED

Session closed successfully.

The specified object reference is uninitialized.
The given Vi does not identify avalid session.
The given object referenceisinvalid.

Unable to deallocate the previously allocated data structures
corresponding to this session or object reference.

Appendix C

311

HP VISA Completion and Error Codes
Completion and Error Codes for Each HP VISA Function

vi Di sabl eEvent (vi,eventType,mechanism)

Codes Description
VI _SUCCESS Event disabled successfully.
VI _SUCCESS EVENT_DI S| Specified event is already disabled for at least one of the specified mecha
nisms.

VI _ERROR | NV_SESSI ON| The given vi does not identify avalid session.

VI _ERROR_| NV_OBJECT | Thegiven object referenceisinvalid.

VI _ERROR_| NV_EVENT Specified event type is not supported by the resource.
VI _ERROR | NV_MECH Invalid mechanism specified.

vi Di scar dEvent s(vi,eventType,mechanism)

Codes Description
VI _SUCCESS Event queue flushed successfully.
VI _SUCCESS QUEUE_EMPTY Operation completed successfully, but queue empty.
VI _ERROR | NV_SESSI ON The given Vi does not identify avalid session.
VI _ERROR | NV_OBJECT The given object referenceisinvalid.
VI _ERROR | NV_EVENT Specified event type is not supported by the resource.
VI _ERROR | NV_MECH Invalid mechanism specified.

312 Appendix C

HP VISA Completion and Error Codes
Completion and Error Codes for Each HP VISA Function

vi Enabl eEvent (vi,eventType,mechanism,context)

Codes

Description

VI _SUCCESS
VI _SUCCESS_EVENT_EN

VI _ERROR_| NV_SESSI ON
VI _ERROR_| N\V_OBJECT

VI _ERROR_| NV_EVENT

VI _ERROR_| NV_MECH

VI _ERROR_| NV_CONTEXT

VI _ERROR_HNDLR NI NSTALLED

Event enabled successfully.

The specified event is already enabled for at least one of
the specified mechanisms.

The given Vi does not identify avalid session.

The given object referenceisinvalid.

The specified event type is not supported by the resource.
Invalid mechanism specified.

Invalid event context specified.

A handler is not currently installed for the specified event.
The session cannot be enabled for the VI _ HNDL R mode of
the callback mechanism.

vi Fi ndNext (findList,instrDesc)

Codes

Description

VI _SUCCESS Resource(s) found.

VI _ERROR | NV_SESSI ON | Thegiven findList is not avalid session.

VI _ERROR | NV_OBJECT | Thegiven object referenceisinvalid.

VI _ERROR_NSUP_OPER The given findList does not support this function.
VI _ERROR_RSRC _NFOUND | There are no more matches.

Appendix C

313

HP VISA Completion and Error Codes
Completion and Error Codes for Each HP VISA Function

vi Fi ndRsr ¢(sesn,expr,findList,retcnt,instrDesc)

Codes

Description

VI _SUCCESS

VI _ERROR_| NV_SESSI ON
VI _ERROR_| N\V_OBJECT
VI _ERROR_NSUP_OPER

VI _ERROR_| N\V_EXPR

VI _ERROR_RSRC_NFOUND

Resource(s) found.

The given sesnis not avalid session.

The given object referenceisinvalid.

The given sesn does not support this function.
Invalid expression specified for search.

Specified expression does not match any devices.

vi Fl ush(vi,mask)

Codes

Description

VI _SUCCESS

VI _ERROR_| NV_SESSI ON
VI _ERROR_| N\V_OBJECT
VI _ERROR_RSRC_LOCKED

VI_ERROR | O
VI _ERROR_TMO

VI _ERROR_| NV_MASK

Buffers flushed successfully.
The given sessionisinvalid.
The given object referenceisinvalid.

Specified operation could not be performed because the resource
identified by vi has been locked for this kind of access.

Could not perform read/write operation because of 1/O error.

The read/write operation was aborted because timeout expired while
operation was in progress.

The specified mask does not specify avalid flush operation on
read/write resource.

vi Get At t ri but e(vi,attribute,attr Sate)

Codes

Description

VI _SUCCESS
VI _ERROR_| NV_SESSI ON
VI _ERROR_| N\V_OBJECT
VI _ERROR_NSUP_ATTR

Resource attribute retrieved successfully.

The given Vi does not identify avalid session.

The given object referenceisinvalid.

The specified attribute is not defined by the referenced resource.

314

Appendix C

vi | n8(vi,space,offset,val8)
vi | n16(vi,space,offset,val 16)
vi | n32(vi,space,offset,val 32)

HP VISA Completion and Error Codes
Completion and Error Codes for Each HP VISA Function

Codes

Description

VI _SUCCESS
VI _ERROR_| NV_SESSI ON
VI _ERROR_| N\V_OBJECT
VI _ERROR_NSUP_OPER

VI _ERROR_RSRC_LOCKED

VI _ERROR_BERR

VI _ERROR_| NV_SPACE

VI _ERROR_| N\V_OFFSET

VI _ERROR_NSUP_OFFSET

VI _ERROR_NSUP_W DTH

VI _ERROR_NSUP_ALI GN_OFFSET

Operation completed successfully.

The given session isinvalid.

The given object referenceisinvalid.

The given Vi does not support this function.

Specified operation could not be performed because the resource
identified by vi has been locked for this kind of access.

Bus error occurred during transfer.

Invalid address space specified.

Invalid offset specified.

Specified offset is not accessible from this hardware.
Specified width is not supported by this hardware.

The specified offset isnot properly aligned for the access width of
the operation.

vi | nst al | Handl er (vi,eventType,handler,userHandle)

Codes

Description

VI _SUCCESS
VI _ERROR_| NV_SESSI ON

VI _ERROR_| N\V_OBJECT

VI _ERROR_| NV_EVENT

VI _ERROR_| N\V_HNDLR_REF

VI _ERROR_HNDLR NI NSTALLED

Event handler installed successfully.

The given sessionisinvalid.

The given object referenceisinvalid.

Specified event typeis not defined by the resource.
The given handler referenceisinvalid.

The handler was not installed. This may bereturned if an
application attempts to install multiple handlers for the same
event on the same session.

Appendix C

315

HP VISA Completion and Error Codes
Completion and Error Codes for Each HP VISA Function

vi Lock(vi,lockType,timeout,requestedKey,accessKey)

Codes

Description

VI _SUCCESS
VI _SUCCESS_NESTED_EXCLUSI VE

VI _SUCCESS_NESTED_SHARED

VI _ERROR_| NV_SESSI ON
VI _ERROR_| N\V_OBJECT
VI _ERROR_RSRC_LOCKED

VI _ERROR_| N\V_LOCK_TYPE
VI _ERROR_| N\V_ACCESS_KEY

VI _ERROR_TMD

The specified access mode was successfully acquired.

The specified access mode was successfully acquired, and this
session has nested exclusive locks.

The specifed access mode was successfully acquired, and this
session has nested shared locks.

The given sessionisinvalid.
The given object referenceisinvalid.

The specified type of lock cannot be obtained because the
resourceis already locked with alock type incompatible with
the lock requested.

The specified type of lock is not supported by this resource.

The requestedKey value passed is not avalid access
key to the specified resource.

The specified type of lock could not be obtained within the
specified timeout period.

316

Appendix C

HP VISA Completion and Error Codes
Completion and Error Codes for Each HP VISA Function

vi MapAddr ess(vi,mapSpace,mapBase,mapS ze,access,suggested,address)

Codes

Description

VI _SUCCESS

VI _ERROR_| NV_SESSI ON
VI _ERROR_| N\V_OBJECT
VI _ERROR_NSUP_OPER

VI _ERROR_RSRC_LOCKED

VI _ERROR_| NV_SPACE
VI _ERROR_| N\V_OFFSET
VI _ERROR_NSUP_OFFSET
VI _ERROR_TMD
VI_ERROR_| NV_SI ZE

VI _ERROR_ALLOC

VI _ERROR_| N\V_ACC_MODE

VI _ERROR_W NDOW MAPPED

VI _ERROR_| NV_SETUP

Map successful.

The given sessionisinvalid.

The given object referenceisinvalid.

The given Vi does not support this function.

Specified operation could not be performed because the resource
identified by vi has been locked for this kind of access.

Invalid address space specified.

Invalid offset specified.

Specified region is not accessible from this hardware.

Could not acquire resource or perform mapping before the timer expired.
Invalid size of window specified.

Unable to allocate window of at least the requested size.

Invalid access mode.

The specified session already contains a mapped window.

Unable to start operation because setup isinvalid (due to attributes being
set to an inconsistent state).

Appendix C

317

HP VISA Completion and Error Codes
Completion and Error Codes for Each HP VISA Function

vi MemAl | oc(vi,size,offset)

Codes Description

VI _SUCCESS The operation completed successfully.

VI _ERROR_| NV_SESSI ON| The given sessionisinvalid.

VI _ERROR_| NV_OBJECT | Thegiven object referenceisinvalid.

VI _ERROR_NSUP_CPER | Thegiven Vi does not support this operation.

VI _ERROR_RSRC _LOCKED| Specified operation could not be performed because the resource
identified by vi has been locked for this kind of access.

VI _ERROR | NV_SI ZE Invalid size specified.
VI _ERROR ALLCC Unable to allocate shared memory block of the requested size.
VI _ERROR_MEM NSHARED| The device does not export any memory.

vi Menfr ee(vi,offset)

Codes Description

VI _SUCCESS The operation completed successfully.

VI _ERROR | NV_SESSI ON The given sessionisinvalid.

VI _ERROR | NV_OBJECT The given object referenceisinvalid.

VI _ERROR _NSUP_OPER The given Vi does not support this operation.

VI _ERROR | NV_OFFSET Invalid offset specified.

VI _ERROR_W NDOW MAPPED | The specified offset is currently in use by viMapAddress.

318 Appendix C

HP VISA Completion and Error Codes
Completion and Error Codes for Each HP VISA Function

vi Move(vi, srcSpace, srcOffset, srcWidth, destSpace, destOffset, destWidth, Length)

Codes

Description

VI _SUCCESS

VI _ERROR_| NV_SESSI ON
VI _ERROR_| N\V_OBJECT
VI _ERROR_NSUP_ORDER
VI _ERROR_RSRC_LOCKED

VI _ERROR_BERR

VI _ERROR_| NV_SPACE
VI _ERROR_| N\V_OFFSET
VI _ERROR_| N\V_W DTH
VI _ERROR_NSUP_OFFSET

VI _ERROR_NSUP_VAR_ W DTH

VI _ERROR_| N\V_SETUP

VI _ERROR_NSUP_W DTH

VI _ERROR_NSUP_ALI GN_OFFSET

VI _ERROR_| NV_LENGTH

Operation completed successfully.

The given session isinvalid.

The given object referenceisinvalid.

The given Vi does not support this operation.

Specified operation could not be performed because the resource
identified by vi has been locked for this kind of access.

Bus error occurred during transfer.

Invalid source or destination address space specified.
Invalid source or destination offset specified.

Invalid source or destination width specified.

Invalid source or destination offset is not accessible from this
hardware.

Cannot support source and destination widths that are different.

Unable to start operation because setup isinvalid (dueto
attributes being set to an inconsistent state).

Specified width is not supported by this hardware.

The specified offset isnot properly aligned for the access width of
the operation.

Invalid length specified.

Appendix C

319

HP VISA Completion and Error Codes
Completion and Error Codes for Each HP VISA Function

vi MoveAsync(Vi, srcSpace, srcOffset, srcWidth, destSpace, destOffset, dest\Width, Length,

jobld)
Codes Description
VI _SUCCESS Operation completed successfully.
VI _SUCCESS SYNC Operation performed synchronously.
VI _ERROR | NV_SESSI ON The given session isinvalid.
VI _ERROR | NV_OBJECT The given object referenceisinvalid.
VI _ERROR_NSUP_ORDER The given Vi does not support this operation.
VI _ERROR_RSRC LOCKED Specified operf';\tion could not be performed because the resource
identified by Vi has been locked for this kind of access.
VI - ERROR_QUEUE Unable to queue move operation.

320 Appendix C

HP VISA Completion and Error Codes
Completion and Error Codes for Each HP VISA Function

vi Movel n8(vi,space,offset,|ength,buf8)
vi Movel n16(vi,space,offset,length,buf16)
vi Movel n32(vi,space,offset,length,buf32)

Codes

Description

VI _SUCCESS
VI _ERROR_| NV_SESSI ON
VI _ERROR_| N\V_OBJECT
VI _ERROR_NSUP_OPER

VI _ERROR_RSRC_LOCKED

VI _ERROR_BERR

VI _ERROR_| NV_SPACE
VI _ERROR_| NV_OFFSET
VI _ERROR_NSUP_OFFSET
VI _ERROR_NSUP_W DTH
VI _ERROR_| N\V_LENGTH

VI _ERROR_NSUP_ALI GN_
OFFSET

VI _ERROR_| NV_SETUP

Operation completed successfully.

The given sessionisinvalid.

The given object referenceisinvalid.

The given Vi does not support this function.

Specified operation could not be performed because the resource
identified by vi has been locked for this kind of access.

Bus error occurred during transfer.

Invalid address space specified.

Invalid offset specified.

Specified offset is not accessible from this hardware.
Specified width is not supported by this hardware.
Invalid length specified.

the specified offset is not properly aligned for the access width of the opera-
tion.

Unableto start operation because setup isinvalid (due to attributes being set
to an inconsistent state).

Appendix C

321

HP VISA Completion and Error Codes
Completion and Error Codes for Each HP VISA Function

vi MoveQut 8(vi,space,offset,|ength,buf8)
vi MoveQut 16(vi,space,offset,|ength,buf16)
vi MoveQut 32(vi,space,offset,length,buf32)

Codes Description

VI _SUCCESS Operation completed successfully.

VI _ERROR_| NV_SESSI ON | Thegiven sessionisinvalid.

VI _ERROR | NV_OBJECT The given object referenceisinvalid.

VI _ERROR _NSUP_OPER The given Vi does not support this function.

VI _ERROR_RSRC LOCKED | Specified operation could not be performed because the resource
identified by vi has been locked for this kind of access.

VI _ERROR_BERR Bus error occurred during transfer.

VI _ERROR | NV_SPACE Invalid address space specified.

VI _ERROR | NV_OFFSET Invalid offset specified.

VI _ERROR_NSUP_OFFSET | Specified offset is not accessible from this hardware.
VI _ERROR_NSUP_W DTH Specified width is not supported by this hardware.
VI _ERROR_| NV_LENGTH Invalid length specified.

VI _ERROR _NSUP_ALI GN_O| the specified offset is not properly aligned for the access width of the oper-
FFSET ation.

VI _ERROR_| NV_SETUP Unable to start operation because setup is invalid (due to attributes being
set to an inconsistent state).

322 Appendix C

HP VISA Completion and Error Codes
Completion and Error Codes for Each HP VISA Function

vi Open(sesn,rsrcName,accessMode,timeout,vi)

Codes

Description

VI _SUCCESS

Session opened successfully.

VI _SUCCESS DEV_NPRESENT | session opened successfully, but the device at the specified addressis

VI _WARN_CONFI G_NLOADED

VI _ERROR_| NV_SESSI ON
VI _ERROR_| N\V_OBJECT
VI _ERROR_NSUP_OPER

VI _ERROR_| N\V_RSRC_NAVE
VI _ERROR_| N\V_ACC_MODE
VI _ERROR_RSRC_NFOUND
VI _ERROR_ALLOC

VI _ERROR_RSRC_BUSY

VI _ERROR_RSRC_LOCKED

VI _ERROR_TMD

not responding.

The specified configuration either does not exist or could not be
loaded using V1SA-specified defaults.

The given sesn does not identify avalid session.
The given object referenceisinvalid.

The given sesn does not support this function. For VISA, this
operation is supported only by the Default Resource Manager session.

Invalid resource reference specified. Parsing error.

Invalid access mode.

Insufficient location information or resource not present in the system.
Insufficient system resources to open a session.

Theresourceisvalid, but VISA cannot currently accessit.

Specified type of lock cannot be obtained because the resource is
already locked with alock type incompatible with the lock requested.

A session to the resource could not be obtained within the specified
timeout period.

vi OpenDef aul t RM sesn)

Codes

Description

VI _SUCCESS
VI _ERROR_SYSTEM ERROR
VI _ERROR_ALLOC

VI _ERROR_| N\V_SETUP

Session to the Default Resource Manager resource created successfully.
The VISA system failed to initialize.

Insufficient system resources to create a session to the Default Resource
Manager resource.

Some implementation-specific configuration file is corrupt or does not
exist.

Appendix C 323

HP VISA Completion and Error Codes
Completion and Error Codes for Each HP VISA Function

vi Qut 8(vi,space,offset,val8)
vi Qut 16(vi,space,offset,val 16)
vi Qut 32(vi,space,offset,val 32)

Codes Description

VI _SUCCESS Operation completed successfully.

VI _ERROR_| NV_SESSI ON| The given sessionisinvalid.

VI _ERROR_| NV_OBJECT | Thegiven object referenceisinvalid.

VI _ERROR_NSUP_CPER | Thegiven vi does not support this function.

VI _ERROR_RSRC LOCKED| Specified operation could not be performed because the resource
identified by vi has been locked for this kind of access.

VI _ERROR_BERR Bus error occurred during transfer.

VI _ERROR | NV_SPACE Invalid address space specified.

VI _ERROR_| NV_OFFSET | Invalid offset specified.

VI _ERROR_NSUP_OFFSET | Specified offset is not accessible from this hardware.
VI _ERROR_NSUP_W DTH | Specified width is not supported by this hardware.

VI _ERROR _NSUP_ALI GN_ | The specified offset is not properly aligned for the access width of the oper-
OFFSET ation.

VI _ERROR_| NV_SETUP Unable to start operation because setup is invalid (due to attributes being
set to an inconsistent state).

vi Peek8(vi,addr,val8)

vi Peek16(vi,addr,val 16)

vi Peek32(vi,addr,val32)

These functions do not return any conpletion or error codes.

vi Poke8(vi,addr,val8)

vi Poke16(vi,addr,val 16)

vi Poke32(vi,addr,val32)

These functions do not return any conpletion or error codes.

324 Appendix C

HP VISA Completion and Error Codes
Completion and Error Codes for Each HP VISA Function

ViPrintf(vi,witefFnt, argl, arg?2)

Codes

Description

VI _SUCCESS

VI _ERROR_| NV_SESSI ON
VI _ERROR_| N\V_OBJECT
VI _ERROR_RSRC_LOCKED

VI_ERROR | O
VI _ERROR_TMD

VI _ERROR_| NV_FMI
VI _ERROR_NSUP_FMI
VI _ERROR_ALLOC

Parameters were successfully formatted.
The given sessionisinvalid.
The given object referenceisinvalid.

Specified operation could not be performed because the resource
identified by vi has been locked for this kind of access.

Could not perform write operation because of 1/0 error.
Timeout expired before write operation completed.

A format specifier in the writeFmt string isinvalid.

A format specifier in the writeFmt string is not supported.

The system could not allocate a formatted 1/O buffer because of
insufficient resources.

vi Quer yf (vi,writeFmt,readFmt,argl,arg2)

Codes

Description

VI _SUCCESS
VI _ERROR_| NV_SESSI ON
VI _ERROR_| N\V_OBJECT

VI _ERROR_RSRC_LOCKED

VI_ERROR | O
VI _ERROR_TMD
VI _ERROR_| NV_FMT

VI _ERROR_NSUP_FMI
VI _ERROR_ALLOC

Successfully completed the Query operation.
Thegiven sessionisinvalid.
The given object referenceisinvalid.

Specified operation could not be performed because the resource
identified by vi has been locked for this kind of access.

Could not perform read/write operation because of 1/O error.
Timeout occurred before read/write operation completed.

A format specifier in thewriteFmt or readFmt
string isinvalid.

The format specifier is not supported for current argument type.

The system could not allocate a formatted /O buffer because of
insufficient resources.

Appendix C

325

HP VISA Completion and Error Codes
Completion and Error Codes for Each HP VISA Function

vi Read(vi,buf,count,retCount)

Codes

Description

VI _SUCCESS

VI _SUCCESS_TERM CHAR
VI _SUCCESS_MAX_CNT

VI _ERROR_| NV_SESSI ON
VI _ERROR_| N\V_OBJECT
VI _ERROR_NSUP_OPER

VI _ERROR_RSRC_LOCKED

VI _ERROR_TMO

The operation completed successfully and the END indicator was
received (for interfaces that have END indicators).

The specified termination character was read.
The number of bytes read is equal to count.
The given sessionisinvalid.

The given object referenceisinvalid.

The given Vi does not support this function.

Specified operation could not be performed because the resource
identified by vi has been locked for this kind of access.

Timeout expired before function completed.

VI _ERROR_RAW WR_PROT_VI L | Violation of raw write protocol occurred during transfer.
VI _ERROR_RAW RD PROT_VI L | Violation of raw read protocol occurred during transfer.

VI _ERROR_OUTP_PROT_VI OL Device reported an output protocol error occurred during transfer.

VI _ERROR_BERR
VI _ERROR_| N\V_SETUP

VI _ERROR_NCI C

VI _ERROR_NLI STENERS

VI _ERROR_ASRL_PARI TY
VI _ERROR_ASRL_FRAM NG
VI _ERROR_ASRL_OVERRUN

VI_ERROR | O

Bus error occurred during transfer.

Unable to start read operation because setup isinvalid
(due to attributes being set to an inconsistent state).

Vi does not refer to an interface that is currently the
controller in charge.

No listeners condition is detected
(both NRFD and NDAC are deasserted).

A parity error occurred during transfer.
A framing error occurred during transfer.

An overrun error occurred during transfer. A character was not
read from the hardware before the next character arrived.

An unknown 1/O error occurred during transfer.

326

Appendix C

HP VISA Completion and Error Codes
Completion and Error Codes for Each HP VISA Function

vi ReadAsync(vi,buf,count,jobld)

Codes

Description

VI _SUCCESS
VI _SUCCESS_SYNC

Asynchronous read operation successfully queued.
Read operation performed synchronously.

VI _ERROR_| NV_SESSI ON
VI _ERROR_| N\V_OBJECT
VI _ERROR_RSRC_LOCKED

VI _ERROR_QUEUE_ERRCR

The given sessionisinvalid.
The given object referenceisinvalid.

Specified operation could not be performed because the resource
identified by vi has been locked for this kind of access.

Unable to queue read operation.

vi ReadSTB(vi,status)

Codes

Description

VI _SUCCESS

VI _ERROR_| NV_SESSI ON
VI _ERROR_| N\V_OBJECT
VI _ERROR_NSUP_OPER

VI _ERROR_RSRC_LOCKED

VI _ERROR_SRQ NOCCURRED

VI _ERROR_TMO

VI _ERROR_RAW WR_PROT_VI OL
VI _ERROR_RAW RD_PROT_VI OL
VI _ERROR_BERR

VI _ERROR_NCI C

VI _ERROR_NLI STENERS

VI _ERROR_| N\V_SETUP

Operation completed successfully.

The given sessionisinvalid.

The given object referenceisinvalid.

The given Vi does not support this function.

Specified operation could not be performed because the resource
identified by vi has been locked for this kind of access.

Service request has not been received for the session.
Timeout expired before function completed.

Violation of raw write protocol occurred during transfer.
Violation of raw read protocol occurred during transfer.
Bus error occurred during transfer.

Vi does not refer to an interface that is currently the
controller in charge.

No listeners condition is detected
(both NRFD and NDAC are deasserted).

Unable to start operation because setup is invlaid(due to attributes
being set to an inconsistent state).

Appendix C

327

HP VISA Completion and Error Codes
Completion and Error Codes for Each HP VISA Function

vi Scanf (vi,readFmt,argl,arg2)

Codes

Description

VI _SUCCESS

VI _ERROR_| NV_SESSI ON
VI _ERROR_| N\V_OBJECT
VI _ERROR_RSRC_LOCKED

VI_ERROR | O
VI _ERROR_TMD

VI _ERROR_| N\V_FMI
VI _ERROR_NSUP_FMI
VI _ERROR_ALLOC

Data was successfully read and formatted into arg parameter(s).
The given session isinvalid.
The given object referenceisinvalid.

Specified operation could not be performed because the resource identified
by Vi has been locked for this kind of access.

Could not perform read operation because of 1/O error.
Timeout expired before read operation completed.

A format specifier in the readFmt string isinvalid.

A format specifier in the readFmt string is not supported.

The system could not allocate aformatted 1/0 buffer because of insufficient
resources.

vi Set At t ri but e(vi,attribute,attr Sate)

Codes

Description

VI _SUCCESS

All attribute values set successfully.

VI _WARN NSUP_ATTR _STATE | Although the specified state of the attribute is valid, it is not supported

VI _ERROR_| NV_SESSI ON
VI _ERROR_| N\V_OBJECT
VI _ERROR_RSRC_LOCKED

VI _ERROR_NSUP_ATTR

by this resource implementation
Thegiven sessionisinvalid.
The given object referenceisinvalid.

The specified operation could not be performed because the resource
identified by vi has been locked for this kind of access.

The specified attribute is not defined by the referenced resource.

VI _ERROR_NSUP_ATTR_STATE | The specified state of the attribute is not valid, or is not supported

as defined by the resource.

VI _ERROR_ATTR_READONLY | The specified attribute is read-only.

328

Appendix C

vi Set Buf (vi,mask,size)

HP VISA Completion and Error Codes
Completion and Error Codes for Each HP VISA Function

Codes

Description

VI _SUCCESS

VI _\WARN_NSUP_BUF

VI _ERROR_| NV_SESSI ON
VI _ERROR_| N\V_OBJECT
VI _ERROR_RSRC_LOCKED

VI _ERROR ALLOC

VI _ERROR_| NV_MASK

Buffer size set successfully.
The specified buffer is not supported.
The given sessionisinvalid.
The given object referenceisinvalid.

Specified operation could not be performed because the resource identified
by vi has been locked for this kind of access.

The system could not allocate the buffer(s) of the specified size because of
insufficient system resources.

The system cannot set the buffer for the given mask.

vi St at usDesc(vi,status,desc)

Codes

Description

VI _SUCCESS

VI _WARN_UNKNOWN_STATUS

Description successfully returned.
The status code passed to the function could not be interpreted.

vi Ter mi nat e(vi,degree,jobld)

Codes

Description

VI _SUCCESS

VI _ERROR_| NV_SESSI ON
VI _ERROR_| N\V_OBJECT
VI _ERROR_| NV_DEGREE
VI_ERROR_ | NV_JOB I D

Request serviced successfully.

The given session isinvalid.

The given object referenceisinvalid.
Invalid degree specified.

Invalid job identifier specified.

Appendix C

329

HP VISA Completion and Error Codes

Completion and Error Codes for Each HP VISA Function

vi Uni nst al | Handl er (vi,eventType,handler,userHandle)

Codes Description
VI _SUCCESS Event handler successfully uninstalled.
VI _ERROR | NV_SESSI ON The given session isinvalid.
VI _ERROR | NV_OBJECT The given object referenceisinvalid.
VI _ERROR_| NV_EVENT Specified event typeis not supported by the resource.

VI _ERROR | NV_HNDLR REF Either the specified handler reference or the user context value

(or both) does not match any installed handler.

VI _ERROR_HNDLR NI NSTALLED| A handler is not currently installed for the specified event.

vi Unl ock(i)

Codes

Description

VI _SUCCESS
VI _SUCCESS_NESTED EXCLUSI VE

VI _SUCCESS_NESTED SHARED
VI _ERROR_| NV_SESSI ON

VI _ERROR_| N\V_OBJECT

VI _ERROR_SESN_NLOCKED

Thelock was successfully relinquished.

The call succeeded, but this session still has nested exclusive
locks.

The call succeeded, but this session still has nested shared locks.
The given session isinvalid.

The given object referenceisinvalid.

The current session did not have any lock on the resource.

vi UnmapAddr ess(i)

Codes Description
VI _SUCCESS Operation completed successfully.
VI _ERROR | NV_SESSI ON The given session isinvalid.
VI _ERROR | NV_OBJECT The given object referenceisinvalid.
VI _ERROR _NSUP_OPER The given Vi does not support this function.
VI _ERROR_W NDOW NMAPPED | The specified session is not currently mapped.

330

Appendix C

HP VISA Completion and Error Codes
Completion and Error Codes for Each HP VISA Function

vi VPri nt f (vi,writeFmt,params)

Codes

Description

VI _SUCCESS

VI _ERROR_| NV_SESSI ON
VI _ERROR_| N\V_OBJECT
VI _ERROR_RSRC_LOCKED

VI_ERROR | O
VI _ERROR_TMO

VI _ERROR_| NV_FMI
VI _ERROR_NSUP_FMI
VI _ERROR_ALLOC

Parameters were successfully formatted.
The given sessionisinvalid.
The given object referenceisinvalid.

Specified operation could not be performed because the resource identified
by Vi has been locked for this kind of access.

Could not perform write operation because of 1/0 error.
Timeout expired before write operation completed.

A format specifier in the writeFmt string isinvalid.

A format specifier in the writeFmt string is not supported.

The system could not allocate aformatted 1/0 buffer because of insufficient
resources.

vi VQuer yf (vi,writeFmt,readFmt,params)

Codes

Description

VI _SUCCESS
VI _ERROR_| NV_SESSI ON
VI _ERROR_| N\V_OBJECT

VI _ERROR_RSRC_LOCKED

VI_ERROR | O
VI _ERROR_TMD

VI _ERROR_| NV_FMI
VI _ERROR_NSUP_FMI
VI _ERROR_ALLOC

Successfully completed the Query operation.
The given session isinvalid.
The given session or object referenceisinvalid (both are the same value).

Specified operation could not be performed because the resource identified
by Vi has been locked for this kind of access.

Could not perform read/write operation because of 1/O error.
Timeout occurred before read/write operation completed.

A format specifier in the writeFmt or readFmt string isinvalid.
The format specifier is not supported for current argument type.

The system could not allocate aformatted 1/O buffer because of insufficient
resources.

Appendix C

331

HP VISA Completion and Error Codes
Completion and Error Codes for Each HP VISA Function

vi VScanf (vi,readFmt,params)

Codes Description

VI _SUCCESS Data was successfully read and formatted into arg parameter(s).
VI _ERROR_| NV_SESSI ON | The given session isinvalid.
VI _ERROR_| NV_OBJECT | Thegiven object referenceisinvalid.

VI _ERROR_RSRC LOCKED | Specified operation could not be performed because the resource identi-
fied by Vi has been locked for this kind of access.

VI _ERROR |1 O Could not perform read operation because of 1/O error.

VI _ERROR_TMO Timeout expired before read operation completed.

VI _ERROR | NV_FMr A format specifier in the readFmt string isinvalid.

VI _ERROR_NSUP_FMT A format specifier in the readFmt string is not supported.

VI _ERROR ALLCC The system could not allocate a formatted 1/O buffer because of insuffi-

cient resources.

vi Wai t OnEvent (vi,ineventType,timeout,outEventType,outcontext)

Codes Description

VI _SUCCESS Wait terminated successfully on receipt of an event occurrence.
The queue is empty.

VI _SUCCESS QUEUE_NEMPTY | Wait terminated successfully on receipt of an event notification.
Thereis still at |east one more event occurrence available for this ses-

sion.
VI _ERROR | NV_SESSI ON The given Vi does not identify avalid session.
VI _ERROR_| NV_OBJECT The given object referenceisinvalid.
VI _ERROR_| NV_EVENT Specified event typeis not supported by the resource.
VI _ERROR_TMO Specified event did not occur within the specified time period.

332 Appendix C

HP VISA Completion and Error Codes
Completion and Error Codes for Each HP VISA Function

vi Wi t e(vi,buf,count,retCount)

Codes

Description

VI _SUCCESS

VI _ERROR_| NV_SESSI ON
VI _ERROR_| N\V_OBJECT
VI _ERROR_NSUP_OPER

VI _ERROR_RSRC_LOCKED

VI _ERROR_TMD

Transfer compl eted.

The given Vi does not identify avalid session.
The given object referenceisinvalid.

The given Vi does not support this function.

Specified operation could not be performed because the resource
identified by vi has been locked for this kind of access.

Timeout expired before operation compl eted.

VI _ERROR_RAW WR PROT_VI QL | Violation of raw write protocol occurred during transfer.
VI _ERROR_RAW RD PROT_VI L | Violation of raw read protocol occurred during transfer.

VI _ERROR_| NP_PROT_VI OL
VI _ERROR_BERR
VI _ERROR_| N\V_SETUP

VI _ERROR_NCI C

VI _ERROR_NLI STENERS

VI_ERROR | O

Device reported an input protocol error occurred during transfer.
Bus error occurred during transfer.

Unable to start read operation because setup isinvalid
(due to attributes being set to an inconsistent state).

Vi does not refer to an interface that is currently the
controller in charge.

No listeners condition is detected
(both NRFD and NDAC are deasserted).

An unknown 1/O error occurred during transfer.

vi Wi t eAsync(vi,buf,count,jobld)

Codes

Description

VI _SUCCESS

VI _SUCCESS_SYNC

VI _ERROR_| NV_SESSI ON
VI _ERROR_| N\V_OBJECT
VI _ERROR_RSRC_LOCKED

VI _ERROR_QUEUE_ERROR

Asynchronous write operation successfully queued.
Write operation performed synchronously.
Thegiven sessionisinvalid.

The given object referenceisinvalid.

Specified operation could not be performed because the resource
identified by vi has been locked for this kind of access.

Unable to queue write operation.

Appendix C 333

HP VISA Completion and Error Codes
Completion and Error Codes for Each HP VISA Function

334 Appendix C

HP VISA Type Definitions

HP VISA Type Definitions

This appendix liststhe VISA datatypes and their definitions.

336 Appendix D

HP VISA Type Definitions

VISA Type Definition

VISA Data Type

Type Definition

Description

Vi Ul nt 32 unsi gned long |A 32-bit unsigned integer.

Vi PUI nt 32 Viunt32 * The location of a 32-bit unsigned integer.

Vi AUI nt 32 ViUl nt32 * The location of a 32-bit unsigned integer.

Vil nt32 signed | ong A 32-bit signed integer.

Vi Pl nt 32 Vilnt32 * The location of a 32-bit signed integer.

Vi Al nt 32 Vilnt32 * The location of 32-bit signed integer.

Vi Ul nt 16 unsi gned short | A 16-bit unsigned integer.

Vi PUI nt 16 Viulnt16 * The location of a 16-bit unsigned integer.

Vi AUl nt 16 Viulnt16 * The location of a 16-bit unsigned integer.

Vilnt16 si gned short A 16-bit signed integer.

Vi PI nt 16 Vilntl6 * The location of a 16-bit signed integer.

Vi Al nt 16 Vilnt16 * The location of 16-bit signed integer.

ViUl nt8 unsi gned char | An 8-bit unsigned integer.

Vi PUI nt 8 Viuntg * The location of an 8-bit unsigned integer.

Vi AUl nt 8 Viulntg * The location of an 8-bit unsigned integer.

Vilnt8 si gned char An 8-bit signed integer.

Vi PInt 8 Vilntg * The location of an 8-bit signed integer.

Vi Al nt 8 Vilntg8 * The location of an 8-bit signed integer.

Vi Addr void * A type that references another data type.

Vi PAddr Vi Addr * The location of a Vi Addr

Vi Char char An 8-bit integer representing an ASCII character.

Vi PChar Vi Char * The location of aVi Char.

Vi Byt e unsi gned char | An 8-bit unsigned integer representing an
extended ASCI| character.

Vi PByt e Vi Byte * The location of a Vi Byt e.

Appendix D

337

HP VISA Type Definitions

VISA Type Definition (Continued)

VISA Data Type

Type Definition

Description

Vi Bool ean Vi Ul nt 16 A typethat is either Vi _TRUE or VI _FALSE.

Vi PBool ean Vi Bool ean * The location of a Vi Bool ean.

Vi Buf Vi PByt e The location of ablock of data.

Vi PBuf Vi PByt e The location of ablock of data.

Vi String Vi PChar The location of a NULL-terminated ASCII string.

Vi PString Vi PChar The location of aNULL-terminated ASCI| string.

Vi St at us Vi I nt 32 Values that correspond to VISA-defined
completion and error codes.

Vi PSt at us Vi Status * The location of the completion and error codes.

Vi Rsrc Vi String A Vi String type.

Vi PRsr c Vi String A Vi String type.

Vi AccessMWbde | Vi Ul nt 32 Specifies the different mechanisms that control
access to aresource.

Vi BusAddress | Vi Ul nt 32 Represents the system dependent physical address.

Vi BusSi ze Vi Ul nt 32 Represents the system dependent physical
address size.

ViAttr Vi Ul nt 32 Identifies an attribute.

Vi Ver si on Vi Ul nt 32 Specifies the current version of the resource.

Vi PVer si on Vi Version * The location of Vi Ver si on.

ViAttrState Vi Ul nt 32 Specifies the type of attribute.

ViPAttrState |void * Thelocation of Vi Attr St at e.

Vi VAL st va_|ist The location of alist of variable number of
parameters of differing types.

Vi Event Type Vi Ul nt 32 Specifies the type of event.

Vi PEvent Type

Vi Event Type *

The location of aVi Event Type.

338

Appendix D

HP VISA Type Definitions

VISA Type Definition (Continued)

VISA Data Type

Type Definition

Description

Vi Event Filter |[ViU nt32 Specifies filtering masks or other information
unique to an event.
Vi Qbj ect Vi Ul nt 32 Contains attributes and can be closed when no
longer needed.
Vi PQbj ect Vi Obj ect * The location of aVvi bj ect .
Vi Sessi on Vi Obj ect Specifies the information necessary to manage
a communication channel with aresource.
Vi PSessi on Vi Sessi on * The location of aVi Sessi on.
Vi Fi ndLi st Vi Qoj ect Contains areference to al resources found
during a search operation.
Vi PFi ndLi st Vi Fi ndLi st * The location of a Vi Fi ndLi st .
Vi Event Vi bj ect Contains information necessary to process an event.
Vi PEvent Vi Event * The location of aVi Event .
Vi Hndl r ViStatus (*) A value representing an entry point to an
(Vi Sessi on# operation for use as a callback.
Vi Event Type#
Vi Event #
Vi Addr)
Vi Real 32 fl oat A 32-hit# single-precision value.
Vi PReal 32 Vi Real 32 * The location of a 32-bit# single-precision value.
Vi Real 64 doubl e A 64-bit# double-precision value.
Vi PReal 64 Vi Real 64 * The location of a 64-bit# double-precision value.
Vi Jobl d Vi Ul nt 32 The location of avariable that will be set to the
job identifier.
Vi Keyl d Vi PString The location of astring.

Appendix D

339

HP VISA Type Definitions

340 Appendix D

Editing the HP VISA Configuration

Editingthe HP VISA Configuration

When the HP I/O Libraries are configured, certain values are used as
defaults in the VISA configuration. In some cases the default values will
affect your system performance. If you are having system performance
problems, you may need to edit the configuration and change some default
values. This appendix describes how to edit the configuration for VISA on
Windows 95 and Windows NT, and on HP-UX.

Note If you needto edit aWindows 3.1 VTL configuration, contact your HP sales
representative for instructions on where to get the information.

342 Appendix E

Note

Editing the HP VISA Configuration
On Windows 95 and Windows NT

On Windows 95 and Windows NT

When you first configured the HP /O Libraries, the default configuration
specified that all VISA devices would be identified at run-time. However,
thisisnot ideal for all users. If you are experiencing performance problems,
particularly during vi OpenDef aul t RM you may want to change the VISA
configuration to identify devices during configuration. This may be
especially helpful if you areusing aVISA LAN client.

To edit the default VISA configuration on Windows 95 or Windows NT, do
the following:

1. If you have not already done so, start up Windows 95 or Windows NT.

2. Runthel /O Confi g utility, whichislocated intheHP I/ O
Li brari es program group.

3. Sdect the interface you wish to configure from the Conf i gur ed
I nt er f aces box, and click on the Edit button.

The Interface Edit window is now displayed.
4. Click onthe Edit VISA Config button at the bottom of the window.
The dialog box which alows you to add devices is now displayed.

5. You can now manually identify devices by clicking on the Add Device
button and entering the device address.

If you wish to turn off the default of identifying devices at run-time, you
must un-select thel denti fy devices at run-time box at the top of
the dialog box.

Appendix E 343

Editing the HP VISA Configuration
On Windows 95 and Windows NT

You may also click on the Auto Add Devices button at the bottom of the
screen to automatically check for devices at thistime. If you select this
button, the utility will prompt you to make sure all devices are connected
and turned on. Once this process is complete, you may edit this list with
the Add Device and Remove Device buttons.

6. Once you have completed adding or removing devices, select the OK
button to exit the window. Then exitthel / O Confi g utility to save the
changes you have made.

344 Appendix E

Editing the HP VISA Configuration
On HP-UX

On HP-UX

When you first configured the HP I/O Libraries, the default configuration
specified that all VISA devices would be identified at run-time. However,
thisisnot ideal for all users. If you are experiencing performance problems,
particularly during vi OpenDef aul t RM you may want to change the VISA
configuration to identify devices during configuration.

To edit the default VISA configuration on HP-UX, use the following
command to run the vi sacf g utility:

[opt / vxi pnp/ hpux/ hpvi sa/ vi sacfg

Follow the instructions provided in the utility. When prompted, select the
Add Device button and add all devices that will be used.

Appendix E 345

Editing the HP VISA Configuration
On HP-UX

346 Appendix E

Glossary

Glossary

address
A string uniquely identifying a particular device on an interface.

attributes
Values that determine the state of aresource. The operational state of
some attributes can be changed.

buserror
An action that occurs when accessto a given address fails either because
no register exists at the given address, or the register at the address
refuses to respond.

controller
A device, such as acomputer, used to communicate with aremote device,
such asan instrument. In the communications between the controller and
the device, the controller isin charge of and controls the flow of
communication (that is, the controller does the addressing and/or other
bus management).

device
A unit that receives commands from acontroller. Typically adeviceisan
instrument but could also be a computer acting in a non-controller role,
or another peripheral such as a printer or plotter.

devicedriver
A segment of software code that communicates with adevice. It may
either communicate directly with adevice by reading to and writing from
registers, or it may communicate through an interface driver.

device session
A session that communicates as a controller specifically with asingle
device, such as an instrument.

348 Glossary

handler
A software routine used to respond to an asynchronous event such as an
SRQ or an interrupt.

instrument
A device that accepts commands and performs a test or measurement
function.

interface
A connection and communication media between devices and
controllers, including mechanical, electrical, and protocol connections.

interrupt
An asynchronous event requiring attention out of the normal flow of
control of a program.

mapping
An operation that returns a pointer to a specified section of an address
space and makes the specified range of addresses accessible to the
reguester.

process
An operating system object containing one or more threads of execution
that share adataspace. A multi-process system isacomputer system that
alows multiple programs to execute simultaneously, each in a separate
process environment. A single-process system is a computer system that
allows only a single program to execute at a given point in time.

register
An address |ocation that controls or monitors hardware.

resource
An instrument while using VISA.

Session
Aninstance of a communications path between a software element and a
resource.

Glossary 349

SRQ
Service Request. An asynchronous request (an interrupt) from aremote
device indicating that the device requires servicing.

status byte
A byte of information returned from aremote device showing the current
state and status of the device.

thread
An operating system object that consists of aflow of control within a
process. A single process may have multiple threads with each having
access to the same data space within the process. However, each thread
has its own stack, and all threads may execute concurrently with each
other (either on multiple processors, or by time-sharing asingle
processor). Note that multi-threaded applications are only supported
with 32-bit VISA.

VISA
Virtual Instrument Software Architecture. VISA isacommon I/O library
where software from different vendors can run together on the same
platform.

VTL
VISA Transition Library. VTL isan /O that isa subset of VISA and is
interchangeabl e with native VISA calls.

350 Glossary

| ndex

A D

Addressing Declarationsfile, 51
devices, 55 Default resource manager, 52
over LAN, 155 Device sessions
sessions, 55 addressing, 55

Applications, building, 29 closing, 57

Argument length modifier, 66 opening, 53

, Array size, 67 Directory structure

ASRL, attributes, 82, 295 HP-UX, 283

Attributes Windows, 281
ASRL, 82, 295 DLLs, building, 29
changing, 76 Documentation, 20
events, 84, 87, 301
generic INSTR, 78, 290 E
GPIB, 79, 291

Editing VISA configuration, 342
Enable events
for callback, 91

: for queuing, 97
reading for events, 88 !
resource, 77, 289 Error codes, 306

serial, 82, 295 Error messages, logging

; : : on HP-UX, 43
setting V XI trigger lines, 143 i '
VXI, 79, 141, 292 on Windows 95, 34

on Windows NT, 34

GPIB-VXI, 79, 82, 291, 292, 294
interface specific, 79, 291
reading, 76

Error trapping
B instrument errors, 102
Buffers VISA errors, 101
flushing, 71 Event attributes, 84, 87, 301
formatted /O, 71 Event handler, 90
Building DLLs, 29 Event Types
VI_EVENT_ 10 COMPLETION, 87
C VI_EVENT_SERVICE_REQ, 87
VI_EVENT TRIG, 87
gf‘c') g?;‘:gkg‘;ﬁ;’egs' &, 89 VI_EVENT VXI_SIGP, &7
5 ' Event Viewer utility, 34
Compiling
16-bit, 31 Events
32-bi t: 0 attributes, 87
in HP-UX, 42 callback, 85, 89

enable for callback, 91
enable for queuing, 97
handlers, 85

hardware triggers, 85
interrupts, 85
gueuing, 85, 97
reading attributes, 83
SRQs, 85

Completion codes, 305
Configuration

editing VISA, 342

LAN, 154
Conversion characters, 68
Conversion of formatted 1/0O, 63

Index 352

wait on event, 98
evnthdir.c example, 92
evntqueu.c example, 99
Examples

directory location, 285

evnthdir.c, 92

evntqueu.c, 99

formatio.c, 69

formatio.c over LAN, 156

gpibvxi.c, 122

gpibvxil.c, 128

idn.c, 25, 39

lockexcl.c, 108

lockshr.c, 110

nonfmtio.c, 74

running on HP-UX, 44

running on Windows, 35

srghdir.c, 94

vxihl.c, 121

vxill.c, 126
Exclusive locks, 105, 107

F

Field width, 64
Finding resources, 58
Flushing buffers, 71
Format string, 71
formatio.c example, 69
formatio.c example over LAN, 156
Formatted 1/0

argument length modifier, 66

, array size, 67

buffers, 71

conversion, 63

conversion characters, 68

description, 61

field width, 64

format string, 71

functions, 62

modifiers, 63

.precision, 65

special characters, 67
Functions

formatted 1/0O, 62

iMapAddress, 204

non-formatted 1/O, 72
viAssertTrigger, 172
viClear, 174

viClosg, 57, 176
viDisableEvent, 92, 178
viDiscardEvents, 181
viEnableEvent, 91, 97, 183
viEventHandler, 186
viFindNext, 58, 188
viFindRsrc, 58, 189
viFlush, 71, 191
viGetAttribute, 76, 194
vilnl6, 120, 196
viln32, 120, 196

vilng, 120, 196
vilnstallHandler, 89, 198
viLock, 103, 200
viMapAddress, 124, 126
viMemAlloc, 206
viMemFree, 208
viMove, 209
viMoveAsync, 212
viMovelnl16, 120, 215
viMoveln32, 120, 215
viMoveln8, 120, 215
viMoveOut16, 120, 218
viMoveOut32, 120, 218
viMoveOut8, 120, 218
viOpen, 53, 221
viOpenDefaultRM, 52, 224
viOut16, 120, 226
viOut32, 120, 226
viOut8, 120, 226
viPeek16, 126, 229
viPeek32, 126, 229
viPeek8, 126, 229
viPokel6, 126, 230
viPoke32, 126, 230
viPoke8, 126, 230
viPrintf, 62, 231
viQueryf, 62, 239
viRead, 72, 241
viReadAsync, 72, 243
viReadSTB, 245
viScanf, 62, 247

Index 353

ViSetAttribute, 255
viSetBuf, 71, 257
viStatusDesc, 259
viTerminate, 260
viUninstall[Handler, 261
viUnlock, 103, 263
viUnmapAddress, 126, 265
viVPrintf, 62, 266
viVQueryf, 62, 268

viV Scanf, 62, 270
viWaitOnEvent, 98, 272
viWrite, 72, 275
viWriteAsync, 72, 277

G

Generic INSTR attributes, 78, 290
GPIB
and SRQsover LAN, 163
attributes, 79, 291
interface, 115
GPIB-VXI
attributes, 79, 82, 141, 291, 292, 294
high-level memory functions, 117
interface, 115
low-level memory functions, 123
mapping memory space, 124
message-based devices, 116
programming overview, 115
register programming, 118, 124
register-based devices, 116
setting trigger lines, 143
writing to registers, 125
gpibvxi.c example, 122
gpibvxil.c example, 128

H

Handlers, 85
event, 90
installing, 89
prototype, 90
Hardware triggers and events, 85
Header file, visa.h, 51
Help
HyperHelp on HP-UX, 45

man pages on HP-UX, 46
High-level memory functions for VXI,
117, 118
HP-UX
compiling, 42
directory structure, 283
linking, 42
logging messages, 43
online help, 45
HPVISA subdirectory, 284
HyperHelp on HP-UX, 45

idn.c example, 25, 39
|EEE Standard, 20
Includefiles, 284
Installing handlers, 89
INSTR, 55
Instrument drivers, directory location,
285
Instrument errors, 102
Interface specific attributes, 79, 291
Interfaces
GPIB, 115
GPIB-VXI, 115
LAN, 148
VXI, 115
Interrupts and events, 85

L

LAN
addressing, 155
and SRQs, 163
client/server, 148
communication, 155
configuration, 154
networking protocols, 151
overview, 148
performance, 154
servers, 153
SICL LAN Protocol, 151
signal handling, 162
software architecture, 150
starting or stopping server, 146

Index 354

TCP/IP Instrument Protocol, 151
threads with LAN client, 152
timeouts, 158
VISA function support, 163
LAN client
definition, 148
threads used with, 152
LAN server
definition, 148
description of, 153
starting or stopping, 146
LAN-to-Instrument Gateway, 149
Libraries, 29, 284
Linking
16-bit, 31
32-bit, 30
in HP-UX, 42
Linking to VISA libraries, 29
lockexcl.c example, 108
Locks
access modes, 105
acquiring exclusive lock while
holding shared lock, 107
examples, 108
exclusive, 105
lockexcl.c example, 108
lockshr.c example, 110
nested, 108
shared, 105, 106
types, 105
using, 103
lockshr.c example, 110
Logging messages
on HP-UX, 43
on Windows 95, 34
on Windows NT, 34
Low-level memory functionsfor VXI,
123, 124

M

man pages on HP-UX, 46

MEMACC, 134

Memory 1/0 performance with VXI,
129

Memory mapping, 124

Memory models, 31
Memory space, unmappin

viUnmapAddre, 126
Message Viewer utility, 34
M essage-based devices, 116
Modifiers, 63

N

Nested locks, 108
Networking protocols, 151
nonfmtio.c example, 74
Non-formatted 1/O

description, 61

functions, 72

mixing with formatted 1/O, 72

O

Online help in HP-UX, 45
Opening sessions, 52
Overview

VISA, 16

P

Performance

with LAN, 154

with VXI, 129
.Precision, 65
Protocols, networking, 151

Q

Queuing and events, 85, 97

R

Raw 1/O, 72
Register programming
high-level memory functions, 118
low-level memory functions, 124
mapping memory space, 124
Register-based devices, 116
Resource attributes, 77, 289
Resource manager, 52
Resource manager session, 52
Resources

Index 355

finding, 58
locking, 103
MEMACC, 134
Running an example program, 35, 44

S

Searching for resources, 58
Serid, attributes, 82, 295
Servers, LAN, 153
Sessions

addressing, 55

closing, 57

device, 53

LAN, 155

opening, 52

resource manager, 52
Shared locks, 105, 106, 107
SICL LAN Networking Protocol, 151
Signal handling with LAN, 162
Special characters, 67
srghdlr.c example, 94
SRQs

and events, 85

over LAN, 163
Starting or stopping the LAN Server,

146

Starting the resource manager, 52

T

TCP/IP Instrument Networking
Protocol, 151
Threads in 32-bit, 152
Timeoutswith LAN, 158
Trapping errors
instrument errors, 102
VISA errors, 101
Trigger lines, 143
Triggers and events, 85
Types, VISA, 336

U

Unmapping memory space, 126
Using the VISA Memory Access
Resource, 134

Utilities
Event Viewer, 34
Message Viewer, 34

\Y,

VI_EVENT_|O COMPLETION, 87
VI_EVENT_SERVICE_REQ, 87
VI_EVENT_TRIG, 87
VI_EVENT_VXI_SIGP, 87
ViAssertTrigger, 172
viClear, 174

viClosg, 57, 176
viDisableEvent, 92, 178
viDiscardEvents, 181
viEnableEvent, 91, 97, 183
viEventHandler, 186
viFindNext, 58, 188
viFindRsrc, 58, 189
viFlush, 71, 191
viGetAttribute, 76, 194
vilnl6, 120, 196

viln32, 120, 196

vilng, 120, 196
vilnstallHandler, 89, 198
viLock, 103, 200
viMapAddress, 124, 126, 204
viMemAlloc, 206
viMemFree, 208

viMove, 209
viMoveAsync, 212
viMovelni16, 120, 215
viMoveln32, 120, 215
viMoveln8, 120, 215
viMoveOut16, 120, 218
viMoveOut32, 120, 218
viMoveOut8, 120, 218
viOpen, 53, 221
viOpenDefaultRM, 52, 224
viOutl6, 120, 226

viOut32, 120, 226

viOut8, 120, 226

viPeek16, 126, 229
viPeek32, 126, 229
viPeek8, 126, 229
viPokel6, 126, 230

Index 356

viPoke32, 126, 230
viPoke8, 126, 230
viPrintf, 62, 231
viQueryf, 62, 239
viRead, 72, 241
viReadAsync, 72, 243
viReadSTB, 245
VISA

completion codes, 305

editing configuration, 342

error codes, 306
errors, 101
HP-UX support, 17

interfaces on HP-UX, 17
interfaces on Windows, 16

other documentation, 20
overview, 16

programming languages on HP-UX,

17

programming languageson Windows,

16

specification, 20

trigger lines, 143

types, 336

users, 19

Windows support, 16
visa.h header file, 51
viScanf, 62, 247
viSetAttribute, 255
viSetBuf, 71, 257
viStatusDesc, 259
viTerminate, 260
viUninstallHandler, 261
viUnlock, 103, 263
viUnmapAddress, 265
ViV Printf, 62, 266
ViV Queryf, 62, 268
viV Scanf, 62, 270
viWaitOnEvent, 98, 272
viWrite, 72, 275
viWriteAsync, 72, 277
VXI

attributes, 79, 141, 292

high-level memory functions, 117

interface, 115

low-level memory functions, 123
mapping memory space, 124
message-based devices, 116

performance, 129

programming overview, 115
register programming, 118, 124
register-based devices, 116

setting trigger lines, 143

writing to registers, 125
vxihl.c example, 121
vxill.c example, 126

w

Wait on event, 98
Windows

building applications, 29

building DLLs, 29
directory structure, 281

linking to VISA libraries, 29

Windows 95
compiling for 16-bit, 31
compiling for 32-bit, 30

LAN client and threads, 152

linking for 16-bit, 31
linking for 32-bit, 30
logging messages, 34

starting or stopping LAN server, 146

threads in 32-hit, 152
Windows NT
compiling, 30

LAN client and threads, 152

linking, 30
logging messages, 34

starting or stopping LAN server, 146

threads, 152

Writing to VXI registers, 125

Index 357

Index 358

	Contents
	1 Introduction
	HP VISA Overview
	Other Documentation
	Where to Go Next

	2 Building an HP VISA Application in Windows
	Reviewing an HP VISA Program
	Specifying Memory Models for Windows�3.1
	Linking to HP VISA Libraries
	Compiling and Linking an HP VISA Program
	Logging Error Messages
	Running an HP VISA Program
	Where to Go Next

	3 Building an HP VISA Application in HP-UX
	Reviewing an HP VISA Program
	Compiling and Linking an HP VISA Program
	Logging Error Messages
	Running an HP VISA Program
	Getting Online Help
	Where to Go Next

	4 Programming with HP VISA
	Including the HP VISA Declarations File
	Opening a Session
	Addressing a Session
	Closing a Session
	Searching for Resources
	Sending I/O Commands
	Using Attributes
	Using Events and Handlers
	Trapping Errors
	Using Locks

	5 Programming VXI Devices
	Programming Overview
	Using High-Level Memory Functions
	Using Low-Level Memory Functions
	Considering VXI Backplane Memory I/O Performance
	Using the VISA Memory Access Resource
	Using VXI Specific Attributes

	6 Programming over LAN
	Overview of the LAN
	Considering LAN Configuration and Performance
	Communicating with Devices over LAN
	Using Timeouts with LAN
	Using Signal Handling with LAN
	HP VISA Function Support with LAN

	7 HP VISA Language Reference
	viAssertTrigger
	viClear
	viClose
	viDisableEvent
	viDiscardEvents
	viEnableEvent
	viEventHandler
	viFindNext
	viFindRsrc
	viFlush
	viGetAttribute
	viIn8, viIn16, and viIn32
	viInstallHandler
	viLock
	viMapAddress
	viMemAlloc
	viMemFree
	viMove
	viMoveAsync
	viMoveIn8, viMoveIn16, and viMoveIn32
	viMoveOut8, viMoveOut16, and viMoveOut32
	viOpen
	viOpenDefaultRM
	viOut8, viOut16, and viOut32
	viPeek8, viPeek16, and viPeek32
	viPoke8, viPoke16, and viPoke32
	viPrintf
	viQueryf
	viRead
	viReadAsync
	viReadSTB
	viScanf
	viSetAttribute
	viSetBuf
	viStatusDesc
	viTerminate
	viUninstallHandler
	viUnlock
	viUnmapAddress
	viVPrintf
	viVQueryf
	viVScanf
	viWaitOnEvent
	viWrite
	viWriteAsync

	A HP VISA System Information
	Windows Directory Structure
	UNIX Directory Structure
	About the Directories

	B HP VISA Attributes
	HP VISA Resource Attributes
	HP VISA Generic Instrument Attributes
	HP VISA Interface Specific Instrument Attributes
	MEMACC Resource Attributes (VISA�1.1�only)
	HP VISA Event Attributes

	C HP VISA Completion and Error Codes
	Alphabetized Completion and Error Codes
	Completion and Error Codes for Each HP�VISA Function

	D HP VISA Type Definitions
	E Editing the HP VISA Configuration
	On Windows 95 and Windows NT
	On HP-UX

	Glossary
	Index

