Contents

HP SICL User’s Guide for Windows
Edition 5

1. Introduction

HP SICL OVEIVIEBW. ...veiiiteeiieteeee ettt s abe s s sarae e s 20
0] 00 S 20
LSS £ 22

Other DOCUMENEBEIONeeivieitee ettt ste s s ebeeeereeens 23

2. Getting Started with HP SICL

Getting Started USING C.....ooooveeiiececiesee et sreeses e sreesnee s 27
Reviewing an HP SICL Programccccvceeveeveeneesceseeeceescee e 27
Compiling an HP SICL Programcccccevveveieieeciese e 32
Running an HP SICL Program..........cccceeceveiienese e 34
WHEr€ t0 GO NEXL ..ot e 35
Loading and Running an HP SICL Program..........cccccceeeveeveeenieennen. 36
WhEre 10 GO NEXL ...ttt 37

3. Buildingan HP SICL Application

Including the HP SICL Declaration File.........ccccccvovveeieve e, 41
Memory Models for 16-bit Windows Applications..........c.cccecveiieennenne. 42
Librariesfor C Applications and DLLS.......cccccccevieiiericicve e 43
32-DIt WINOOWS......oiiieieieee et 43
16-DIt WINAOWS.....cviiiiiiieiieicniee et 44
Compiling and Linking C Applicationsccceevveveeeieseeiese e 45
32-Dit WINAOWS......ccviiiiieieieirie et 45
16-Dit WINAOWS.......eeoeeeie et 47
Loading and Running Visual BASIC Applications.........c.ccccecveiveenieene. 49
Thread Support for 32-bit Windows Applications.........cccccevveeveevnenee. 50
Avoiding Nested I/O in 16-bit Windows Applications.............cccceeune.e.. 51
ApPPlICation ClEANUPccvv e 52
16-bit WINdOWS @nd C.........coereieiriniiriesieisesesie s 52
16-bit Windows and Visual BASIC..........cooiiiireieeeee e 53

Contents-1

4. Programming with HP SICL

Opening a CommuniCationNS SESSION........ccvevereereseceesese e sree e e 57
DEVICE SESSIONS.cviiiiiniesieeete ettt e e sbe e 58
INtEITACE SESSIONS.......eiuiriiitiite e 60
COMMEANAET SESSIONSeeeieieieeeieerierie e see e siesee e sresreeee e e e neeeees 61

Sending 1/0 COMMANGScccveieiiieieereecee e seesree e 62
Formatted [/O in C AppliCationS.........ccceveeeieeeiecie e 63
Formatted I/O in Visual BASIC Applications.........ccccceveveveiveenne 72
NON-FOrMEIE /O ... 82

Handling Asynchronous Eventsin C Applications..........ccccocveveieennns 85
SRQ HANAIENS.......occiieieceeecse et 87
INtErrupt HaNAIErS ..o e 87
Temporarily Disabling/Enabling Asynchronous Events................... 88

Logging HP SICL Error MESSAQES.......ccoveivierieieeireesiesieseeseseessesseseesnas 20
WINAOWS NT o 90
Windows 95 and WIindowSs 3.1coceveriereninenieneesesese e 90

UsSIiNG Error HaNIErS.........oooe et 91
Error Handlersin C ...t 91
Error Handlersin Visual BASIC.......coviiiiiiieee e 95

USING LOCKS.....viitiiieeie sttt s 97
LOCK ACHIONSoiuiiiiriiiiieee e 98
Locking in aMulti-User ENVironmMentcccceeeeeeveseevieseseennens 98
LOCKiNg EXAMPIES.......ccciieiceiie et s 99

5. UsingHP SICL with HP-IB

Creating a Communications Session With HP-IBccccoov e 105
Communicating With HP-1B DeViCeS..........ccccecvviieveie e, 106
Addressing HP-IB DEVICEScccccvevieie et 106
HP SICL Function Support with HP-1B Device Sessions............... 108
HP-IB Device Session EXamplesS........ccccvvevieeveicieeseesieeseesiee s 109
Communicating with HP-I1B Interfaces.........cccccovvvvveece e, 113
Addressing HP-IB INterfacesccovveveeieiesiiee e 113
HP SICL Function Support with HP-IB Interface Sessions 114
HP-IB Interface Session EXamMpPIES..........cccccceeveeneeiiiesieescreeiee e 115
Communicating with HP-IB Commanderscccccoevveneeiiieereenneen, 118
Addressing HP-IB COMMAaNdErS.........ccccveeeveiieniese e seeee e 118
HP SICL Function Support with HP-IB Commander Sessions 119

Contents-2

Writing HP-IB Interrupt Handlers..........ccooveieieeiiciccesce e 120

Multiple! _I NTR_GPI B_TLAC INtEITUPLS......cceverreieeiee e 120
Handling SRQs from Multiple HP-IB Instruments.............ccccue.... 120
Summary of HP-I1B Specific FUNCLIONSc.cccceecvciieiiccec e 124

. Using HP SICL with GPIO

Creating a Communications Session with GPIO............ccccccvveeveninnee, 127
Communicating with GPIO Interfacescccccveeeve v 128
Addressing GPIO [Nterfaces.......coovvvieicieieecee e 128
HP SICL Function Support with GPIO Interface Sessions 129
GPIO Interface Session EXamplesS........cccvcveveeiececeeseesie e 131
GPIO Interrupts EXamPple......cccoovieeieie e 135
Summary of GPIO Specific FUNCLIONScccccovvieiieiiciec e 137

. Using HP SICL with VXI

Creating a Communications Session With VX1cccocvveiieveiesee, 141
Communicating With VXI DeVICEScccevviieciieiie e 142
Message-Based DEVICES.........ccvevviieeciice e 143
Register-Based DEVICES......ccovive ettt 147
Communicating with VXI Interfaces.........cccoeveeveevecvec e 158
Addressing VXI Interface SESSIONS........coccveveeveeiieccee e 158
VX1 Interface Session EXamplecccvceeveieeie v 160
Communicating With VIME DEVICES.........ccceevieeieiiee e 161
DeClaring RESOUICES.........ccveeiiiiteeiee sttt 162
Mapping VME MEMOTYcccciieiieieeciecceece et 162
Reading and Writing to the Device RegISLEN'Sccoevveveveceevinnne 164
Unmapping Memory SPaCE........cccveieereeiieeieeenieeieeeseeseeseesseessens 165
VME INEEITUPES. ..ottt s 165
VME EXGMPIE...eicieiiiiceee sttt 166
Looking at HP SICL Function Support with VX1ccccceevvieiiieee, 168
DEVICE SESSIONS. ...uieiiiiietieee ettt nre e 168
INEEIfACE SESSIONSeiiiieeieieseee et 171
Considering VXI Backplane Memory |/O Performance...................... 172
Using VXI SpeCifiC INEITUPLS......covveiieieciecce et 176
Processing VME Interrupts Example........cccocevvveeceieceeceseeee 178
Summary of VXI Specific FUNCLIONScccouevcieveccec e 180

Contents-3

8. UsingHP SICL with RS-232

Creating a Communications Session with RS-232..........ccccccevvvevvenee 183
Communicating With RS-232 DEVICES.........cceveiieeieeee e, 184
Addressing RS-232 DEVICES.......cccviiieeiieitiee s 184
HP SICL Function Support with RS-232 Device Sessions............. 185
RS-232 Device Session EXampPIES........ccccceveeeveeceeseesee e see e 187
Communicating with RS-232 Interfacesccccocvevveveevec e ccee e 190
Addressing RS-232 INterfaces........coovveveieice v 190
HP SICL Function Support with RS-232 Interface Sessions.......... 191
RS-232 Interface Session EXamples........ccccevvveeeevveceecie e 194
Summary of RS-232 Specific FUNCLIONS..........ccccceeveeiee e 198

9. UsingHP SICL with LAN

Overview of LAN With HP SICLcooiiiiirierese e 204
LAN Software ArchiteCturecooeerererene s 206
Considering LAN Configuration and Performanceccccccceeeevvennee. 209
Communicating With LAN DEVICEScccceecvvieeieciee e 210
LAN-gatewayed SESSIONSccceeieeeeeiiieenieesieesieesresseessesssesneeensens 210
LAN INterface SESSIONS.......covriiiiirieiesieseseeeee s 219
Using Locks and Multiple Threads over LANcccooviiiievecceeienne, 221
Using TimeoutS With LANocooieie e 223
LAN Timeout FUNCLIONScooiiiireeeece e 224
Default LAN Timeout ValUeS........cooeiviereenieee e 225
Timeouts in Multi-threaded Applications..........ccccvevvieeiiieeve e, 227
Timeout Configurationsto Be Avoided..........cccovevviviievviieeienne 228
Application Terminations and TiMEOULS...........ccoveveveiieecieseieennns 229
Summary of LAN Specific FUNCtiONScccccevieveeiicececcc e, 230

10. Troubleshooting Your HP SICL Program

HP SICL EITor COUES........veeiiceiee et eeee e et e s et e sree e s renea s s 233
Common Problems with WIindowS 95oooveveveieceiee e 237
Subsequent Execution of SICL Application Fails..........ccccceeveueenee. 237

Common Problems with WIN16 Programs on
Windows 95 and Windows 3.1

GIVes Strange BEhaVIOrcooierieirerisieeesee e 238
General Protection Fault Occurs When Interrupt, SRQ, or Error
Handler Called ..o 238

Contents-4

General Protection Fault When Calling

SICL Formatted I/O ROULINE..........ccoueiieieicieece e 238
Reference to Undefined FUNCtion or Arrayccceceveeeeevieeseecsnenn 239
General Protection Fault Occurs When

iwite,iread,orivscanf isCalled from Visua BASIC....239

| _ERR NESTED | OOCCUIS.....cccoitiieeiieeeectiee e eiie e eteee e e sree e 240
Common Problems with Windows 3.1........cccccveiiieiie e 241
Unresolved SICL Externals when Building a SICL Application....241
Can’t Find “llibxxxx” When Building a SICL Application............ 241
Common Problems with Windows NTcocoiiiiiiiiiiiiiiie e, 242
Program Appears to Hang and Cannot Be Killed 242
Formatted 1/0 Using# Causes Application Error............ccccvvvvenes 242
Common Problems with RS-232cccooiiiiiiiiiiiiiievveeeeevveeeeeeee 243
No Response from Instrument.............ccceeee i, 243
Data Received from Instrument is Garbled................cccciiieenn 243
Data Lost During Large Transfers.......ccccceeeivieeiiiiiiiiiiiie e, 243
Common Problems with GPIOciiiiiii i 244
Bad Address (fOr 0PEN)vviviiiiiiiiiiieeee e 244
Operation NOt SUPPOME..........uuviiiiiiiiiiiiiiiee e 245
NO DBVICE ..ot e e e e e e e 246
Bad Parameter ..o e 246
Common Problems with HP SICL over LAN (Client and Server) 247
LAN Client ProblemsS.........oooviiie e 250
LAN Server Problemscccoooiiiiiiiii e 252

11. MoreHP SICL Example Programs

Example C Program for OSCilloSOPESc.cvieiiieiiiiiiiiiiiic e, 257
Building a 16-bit C Program for Windows 95 or Windows 3.1...... 258
Building a 32-bit C Program for Windows 95 or Windows NT260

C Program OVEIVIEW.........uuuuiuiiiiiiiiireerireriieeeeeeeeereeeeeeereeseeesaeaseaaaees 261
Example Visual BASIC Program for Oscillosopes.............ccceeeeeee. 267

Loading and Running the Visual BASIC Programccceceue. 268

Visual BASIC Program OVEIVIEWccccevvuiiiiieeeeeeeiiiiiineeeeeeeeannnnns 269

12. HP SICL Language Reference

AB O R T s 276
IBLOCKCOPY ..ot 277
IBLOCKMOVEX ... iiitiiitiiiieiiieiiiieeeeeeeeee ettt et e et ea e aa e e e e e eeeeeas 279

ICAUSEERR ... 281

Contents-5

i@ < = 283
D)= =l == =S 284
TFLUSH oo eeeeeeeessesseeeseseesssesesesssssesssssseeesssssssesssesseneseeeen 285
=217 o YO 287
LY=L =T 289
L33 7)] =S 291
IGETDATA oo eeeee e seeseeeseeeeeeeeeeessee s seee s s 292
IGETDEVADDR ..o eeeeeesseeeeeeeseessesesssesesssessssesessssssesesseeee 293
L=l = N[0 J 294
IGETERRSTR .ovvoooreeeeeeeeessesseeesssssssseessessssssssesesssessssesesssesseseeseeee 296
IGETGATEWAY TYPE.....oovveeeeeeeeeeeeeesseeeeeeeesssseeeseeeessssssssse s 297
IGETINTESESS......ooovveeeeeeseeeeeeeeeseesseeeessessesseeesesssessseesessssssseeeesseeees 298
IGETINTFTYPE c.oooooeveeoeeeeeeeeeeeseeseeseeeeeesseeeeeseesesssesseeeeesssessese e 299
IGETLOCKWAIT oo eeeeseeseeseeeeeessesseseseessessssssessssssssenesseeees 300
L33 1 R SO 301
IGETLUINFO ovvvooeeeeeeeeeeeeeeesseeeeeeseessseessesessesssseesessssssesesssssseeeesseees 302
=3 IO 1= S 304
IGETONERROR........oovvecoeeeeeseeeeseeseesseeesessesssseesssseesseeeeesssssssenessenens 305
3=) N N1 SO 306
IGETONSRQ w.vvvveooeeeeeeeereeseeseeeeeessessseessessesssssessesssssssseessssssesesseeen 307
e RS sy I = T 308
IGETTERMCHR ..o eeveeoeeeeee oo eseseesseeesessesssssesesssessssesessssessseseseeeen 309
3= A LY=o U 310
IGPIBATNCTL covooroeeeeeeeeeeeeeeeeeeeeseeseeeeesseesssseseseeseesseeesessessseee s 311
LS T=1=T0ET)] =S 312
IGPIBBUSSTATUS.oovveeooeeeeeeeeeseeseeeeeessseseseesessssssssesssssesssenssseeees 313
IGPIBGETTIDELAY wovvoooeeeeeeeeeeeeeeeeeeessesssseesesessesssessssssssseneseseen 315
3= =TI O 316
LTl =12T NS ot IR 317
LI zT=1= =0 318
IGPIBPPOLLCONFIG.......oovveeeeeeeeeeeeeeseseeeeeeesesssesseeeessssessesesseeen 319
IGPIBPPOLLRESP.......vvccoeeeeeeeeeessessseeessssesssesssessssssssesesssssssesssseeees 320
eIzl =1=1= N Tox 1 E 321
IGPIBSENDCMDooveeeeeeeeeeeeseeeeeeeeseeeeseeee e e sessesssee s 322
IGPIBSETTLIDELAY ..oovoeooeeeeeeeeseeeeeeeeesseeeseeeesesseeseeeeesssessseee e 323
eIz 0 103 1 = E 324
IGPIOGETWIDTH weeoevveeoeeeeeeeeeeseeseeeeeesessesseeeessssssssesesssssssenessseees 329

Contents-6

IGPIOSETWIDTH ...t 330

IGPIOSTAT oo eeeeeeeseeeeeeseeeeesesessees e s e eesseeseeesesseeees 332
THINT oo eeeeeeeeeesseeeseeessssssesesseessssseesesessssssseessssssssesseessnenes 335
LR R 20 = =SS 337
HINTRON ovvveeoees e eeeesseeeeeeesessssseseseeessseseesesessssesesessssseseessesesssens 338
TN = A LY=o U Y 339
ILANTIMEOUT w.oovocooeeeeeeeeeeeeeeveeseeseeseeesessseesseeeseesessseseesssesseeees 340
ILOCAL oo eeeeeeseeeeseeeeeseee s esseeesseessseeeseeseees e 344
ILOCK wervvvveeeeeeeeseeeeseeeeesssseesesesssssessesseessssssssesssssssseeessssssssessseesssens 345
LY =S 348
IMAPX ovvveeeeeeeeseeeeeeeeeeseeeeeesesssssesesssessseseesssessesssesesssssesessesessnens 351
IMAPINFO ..ot eeeeeeseeeeeeeeeeeeseeeeeeseeeeseseesseesesseeesseeeeessessseeesen 354
IONERRORotvveeeeeeeeseeeeeeseeseseeseeseesseeesssssessesesssesssseeseesseeesssee 356
TONINTR oot eeeeeeeeeeeseeeseeseessseeeesesesseseesseeesseeeseeseeeseeees 360
LIS =Y O 363
)= N OO 364
L2l T 367
IPEEK X8, IPEEKX 16, IPEEKX32........eovveeeeesseseeeeeresseesseessseseeseeen 368
120 L TSP 370
IPOKEX8, IPOKEX16, IPOKEX32ovvveeeeeeeseeeeeeesseeeseeessssesseene 372
1201 = =0 JO 374
IPRINTF ovvvvveeoeeeseeeeeeeeeesseeeeeeesessssessseesessseseeessesssseseseessssseseeessessseeens 376
2=t Y =4 =SSO 387
LU =] =0 F O 389
IREAD .o sesee e s seea s eeseee s ssseeeeseeeseeeee 391
LRI 011 1= T 393
LRI 1 1 =3 394
1S 07N] =S 395
ISERIALBREAK .ovvocooeeeevveeeeseeesseeeeessssesssesssssessesseessssesssesssssesseeees 407
ISERIALCTRL .o eeeeeeeeeeeeseeesssessseseesseseeeesseesseeessseeesseeees 408
ISERIALMCLCTRL ...oooveeeeeeeeeeeeeeessesesseeeesssseessesseessesesseeessesesseenes 412
ISERIALMCLSTAT weoooeeeeeeeeeeseeeeeeeesesesseeesseseesseseeessseessseessesesseenes 413
ISERIALSTAT woeevveeeeeseeseeeeeeeessssssesssssesssessessessessseesssesssesesssssseeees 414
ISETBUF ovvveeeeeeeseeeceeeeeesseeeeeeseesssseseessessssssssssessssesssessssssssssesesssess 420
ISETDATA coooeeeeveeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeseeeessssesssesessseesseeeesseeeseeeen 422
ISETINTR covveeeeeeeeeeeeeeeeeeseeeeesseeeesseesessssesseessessesseseesesesesseeesesesesseeee 423
ISETLOCKWAIT coveecoeeeeeeeeeeeeeveeeeeeeesseeseseseeseeeeseesessseseesesessseees 432
1S B 1= TS 433

Contents-7

[SWAP ... 436
ITERMOCHR ... 439
ITIMEOUT ..o 440
ITRIGGER ... 441
TUNLOCK ..o 443
TUNMARP .o 444
TUNMARPRX e s 446
IVERSION ... 448
IVXIBUSSTATUS. ..o 449
IVXIGETTRIGROUTE ..ot 452
IVXIRMINFO ..ot 453
IVXISERVANTS ... 456
IVXITRIGOFF ... 457
IVXITRIGONt 459
IVXITRIGROUTE ...ttt 461
[VXIWAITNORMORP ... 463
IVXIWS. ..o 464
IWAITHDLR ..o 465
IWRITE .. 467
IXTRIG. ..o 469
_SICLCLEANUP ... 472

A. HP SICL System Information

WINAOWS 5.ttt s 475
1 L=Y oo 1 o o 475
THEREGISIIY ..ottt e 476
HP SICL Configuration Information............cccceeeveeiienieesiiecieenneens 476

WINAOWS NT ..ot s 477
[T (=Y oo (o o USSR 477
TREREGISIIY ..ottt 477
HP SICL Configuration Information............cccceveveeiienieesiiecieennens 477

LAY L0 (0TS 5t 478
1 L=Y oo 1 o o 478
USE OFf WINLINT ..ottt 478
HP SICL Configuration Database..........cccoveveveieevesieiiese e 478

Contents-8

E.

F.

Porting from the HP 82335 Command Library
Porting to Visual BASIC 4.0

HP SICL Error Codes

HP SICL Function Summary

RS-232 Cables

Glossary

Index

Contents-9

Contents-10

HP Sandard Instrument Control Library

User’s Guide for Windows

Xii

Notice

The information contained in this document is subject to change without
notice.

Hewlett-Packard Company (HP) shall not be liable for any errors contained
in this document. HP makes no warranties of any kind with regard to this
document, whether express or implied. HP specifically disclaimsthe implied
warranties of merchantability and fitness for a particular purpose. HP shall
not be liable for any direct, indirect, special, incidental, or consequential
damages, whether based on contract, tort, or any other legal theory, in
connection with the furnishing of this document or the use of the
information in this document.

Warranty Information

A copy of the specific warranty terms applicable to your Hewlett-Packard
product and replacement parts can be obtained from your local Sales and
Service Office.

U.S. Government Restricted Rights

The Software and Documentation have been developed entirely at private
expense. They are delivered and licensed as “commercial computer
software” as defined in DFARS 252.227-7013 (Oct 1988),

DFARS 252.211-7015 (May 1991) or DFARS 252.227-7014 (Jun 1995),
as a “commercial item” as defined in FAR 2.101(a), or as “Restricted
computer software” as defined in FAR 52.227-19 (Jun 1987) (or any
equivalent agency regulation or contract clause), whichever is applicable.
You have only those rights provided for such Software and Documentation
by the applicable FAR or DFARS clause or the HP standard software
agreement for the product involved.

Xiii

Copyright O 1984, 1985, 1986, 1987, 1988 Sun Microsystems, Inc.

Microsoft, Windows NT, and Windows 95 are U.S. registered trademarks of
Microsoft Corporation.

Pentium isaU.S. registered trademark of Intel Corporation.

Copyright O 1994, 1995, 1996, 1997, 1998 Hewlett-Packard Company.
All rights reserved.

This document contains information which is protected by copyright. All
rights are reserved. Reproduction, adaptation, or trandation without prior
written permission is prohibited, except as allowed under the copyright laws.

Xiv

Printing History

Thisisthe fifth edition of the HP Sandard Insrtument Control Library
User’s Guide for Window$ote: on previous editions the Reference section
was actually a separate manual.

Edition 1 - April 1994
Edition 2 - September 1995
Edition 3 - May 1996
Edition 4 - October 1996
Edition 5 - February 1998

XV

XVi

| ntroduction

I ntroduction

Welcome to the HP Standard Instrument Control Library (SICL) User’s
Guide for WindowsThis guide explains how to use SICL to develop I/O
applications on Microsoft® Windows 952, and Windows NT®. A getting
started chapter is provided to help you write and run your first SICL
program. Then this guide explains how to build and program SICL
applications. Later chapters are interface-specific, describing how to use
SICL with the HP-IB, GPIO, VX1, RS-232, and LAN interfaces.

Seethe HP I/O Libraries Installation and Configuration Guide for Windows
for detailed information on SICL installation and configuration.

Thisfirst chapter provides an overview of SICL. In addition, this guide
contains the following chapters:

® Chapter 2 - Getting Started with HP SICL steps you through building
and running a simple example program in C/C++ and in Visual BASIC.
Thisisagood place to start if you are afirst-time SICL user.

® Chapter 3- Buildingan HP SICL Application explains how to build a
SICL application in a Windows environment.

® Chapter 4 - Programming with HP SICL provides some detailed
example programs and considerations to remember when programming
in a Windows environment. You can find information on
communications sessions, addressing, error handling, locking, and more.

® Chapter 5- Using HP SICL with HP-IB describes how to
communicate over the HP-1B interface. Example programs are also
provided.

® Chapter 6-Using HP SICL with GPIO describes how to communicate
over the GPIO interface. Example programs are also provided.

® Chapter 7 - Using HP SICL with VXI describes how to communicate
over the V XIbus. Example programs are a so provided.

® Chapter 8 - Using HP SICL with RS-232 describes how to
communicate over the RS-232 interface. Example programs are also
provided.

18 Chapter 1

Introduction

® Chapter 9-Using HP SICL with L AN describes how to communicate
over aLocal Area Network (LAN). Example programs are also provided.

® Chapter 10 - Troubleshooting Your HP SICL Program describes
some of the most common SICL programming problems and provides
troubleshooting procedures to help you solve the problems.

® Chapter 11 - More HP SICL Example Programs contains additional
example programs to help you develop your SICL applications.

® Chapter 12 - HP SICL Reference provides the function syntax and
description of each SICL function.

This guide also contains the following appendices:

®* Appendix A - HP SICL System Information provides information on
SICL software files and system interaction.

®* Appendix B - Porting from the HP 82335 Command Library
provides tips for moving from the HP-IB Command Library productsto
SICL.

®* Appendix C - Porting to Visual BASI C 4.0 explains how to move SICL
applications from earlier versions of Visual BASIC (such as version 3.0)
to Visual BASIC version 4.0.

®* Appendix D - HP SICL Error Codes providesalist of error codes andf
error strings along with a brief description.

®* Appendix E - HP SICL Function Summary summarizes the supported
features for each SICL function.

* Appendix F - RS-232 Cables lists and shows the wiring diagram for
many HP RS-232 cabels.

Thisguide also contains a Glossary of terms and their definitions, aswell as
an Index.

Chapter 1 19

Introduction
HP SICL Overview

HP SICL Overview

SICL isamodular instrument communications library that works with a
variety of computer architectures, I/O interfaces, and operating systems.
Applications written in C/C++ or Visual BASIC using thislibrary can be
ported at the source code level from one system to another without, or with
very few, changes.

SICL uses standard, commonly used functions to communicate over awide
variety of interfaces. For example, a program written to communicate with a
particular instrument on a given interface can also communicate with an
equivalent instrument on a different type of interface. Thisis possible
because the commands are independent of the specific communications
interface. SICL also provides commands to take advantage of the unique
features of each type of interface, thus giving you, the programmer,
complete control over |/O communications.

Support

Thereis a 32-bit version of SICL on both Windows 95 and Windows NT,
and a 16-bit version of SICL on Windows 95. Note that you can use one or
both versions of SICL (32-bit and/or 16-bit) on your 32-bit computer when
running Windows 95. The following two tables summarize the support for
the 32-bit and 16-bit versions of SICL.

20 Chapter 1

Introduction
HP SICL Overview

Support for 32-bit SICL on Windows 95 and Windows NT

Interfaces Programming Languages

HP-IB, GPIO, VXI!, RS-232, LAN C, C++, Visual BASIC?

Support for 16-bit SICL on Windows 95

Interfaces Programming Languages

HP-IB, GPIO, VXI?, RS-232 C, C++, Visual BASICP

a. SICL for the VXI interface on Windows 95 is supported with the
HP VXI Pentiun® Controller, VX| Embedded PC Controller,
and VXLink products. SICL for the VXI interface on Windows
NT (version 4.0 or later) is supported with the HP VX | Pentium
Controller product only.

b. This edition of this manual supports and shows how to program
SICL applicationsin Visual BASIC version 4.0 or later only.

Note If you have existing SICL applications written in an earlier Visual BASIC
version than version 4.0 (for example, version 3.0), you can easily port your
SICL applications to Visual BASIC version 4.0. See AppendixRorting

to Visual BASIC 4.¢' in this manual.

Chapter 1 21

Introduction
HP SICL Overview

Users

SICL isintended for instrument I/O and C/C++ or Visual BASIC
programmers who are familiar with Windows 95 or Windows NT. If you
will be performing the SICL installation and configuration on Windows NT,
you must also have system administration privileges on your Windows NT
system.

22 Chapter 1

Introduction
Other Documentation

Other Documentation

The following documentation is also helpful when using SICL.:

HP 1/O Libraries Ingtallation and Configuration Guide for Windows
explains how toinstall and configurethe HP SICL and HP VISA (Virtual
Instrument Software Architecture) libraries on Windows.

HP SICL Quick Reference Guide for C Programmers helps you find
SICL function syntax information quickly if you are programming in
C/C++.

HP SICL Quick Reference Guide for Visual BASIC Programmers helps
you find SICL function syntax information quickly if you are
programming in Visual BASIC.

HP SICL Online Help is provided in the form of Windows Help.

HP SICL Example Programs are provided in the C\ SAMPLES (for
C/C++) subdirectory and in the VB\ SAMPLES subdirectory (for Visual
BASIC) under the base directory where SICL isinstalled (for example,
under the C: \ SI CL95 or C: \ SI CLNT base directory if the default
installation directory was used). These examples are designed to help you
develop your SICL applications more easily.

The following V X1bus Consortium specifications may aso be helpful when
using SICL over LAN:

TCP/IP Instrument Protocol Specification - VXI-11, Rev. 1.0
TCP/IP-VXIlbus Interface Specification - VXI-11.1, Rev. 1.0
TCP/IP-1EEE 488.1 Interface Specification - VXI-11.2, Rev. 1.0

TCP/IP-1EEE 488.2 Instrument Interface Specification - VXI-11.3,
Rev. 1.0

Chapter 1 23

Introduction
Other Documentation

24 Chapter 1

Getting Started with HP SICL

Getting Started with HP SICL

This chapter will help you to get started programming with SICL. This
chapter steps through asimple example to let you verify your configuration
and introduce you to some of SICL's basic features.

This chapter is divided into two sections: the first is for C programmers, and
the second is for Visual BASIC programmers. Please go to the appropriate
section depending on whether you will use SICL with the C/C++
programming language, or SICL with the Visual BASIC programming
language.

You may also want to look through Chapter 1RIP“SICL Language
Referencg to familiarize yourself with SICL's functionality. Note that this
reference information is also available as online help. To get the reference
information online, simply double-click on tliel p icon in theHP 1/ O

Li brari es program group for Windows 95 or Windows NT, or in Hire

Sl CL program group for Windows 3.1.

26 Chapter2

Getting Started with HP SICL
Getting Started Using C

Getting Sarted Using C

In this section, you will first review a simple example program called | DN
that queries an HP-1B instrument for itsidentification string. This example
either uses the QuickWin or EasyWin feature of Microsoft and Borland C
compilers for WIN16 programs (that is, for 16-bit SICL programs on
Windows 95 or Windows 3.1 environment), or it builds a console
application for WIN32 programs (that is, for 32-bit SICL programs on
Windows 95 or Windows NT). Once you have reviewed the program, you
will then learn how to compile and run the example program.

Reviewing an HP SICL Program

All files used to develop SICL applicationsin C or C++ are located in the

C subdirectory of the base SICL directory (for example, C: \ SI CL95\ C or
C:\ SI CLNT\ Cif you installed SICL in the default location). Sample C/C++
programs are located in the C\ SAMPLES subdirectory of the base SICL
directory (for example, C: \ SI CL95\ C\ SAMPLES or

C: \ SI CLNT\ C\ SAMPLES). Each sample program subdirectory contains
makefiles or project files that you can use to build each sample C program.
Note that you must first compile the sample C/C++ programs before you can
execute them.

The | DN example files are located in the C\ SAMPLES\ | DN subdirectory
under the SICL base directory. This subdirectory contains the source
program, | DN. C.

The source file | DN. Cislisted on the following pages. An explanation of
the various function calls in the example is provided directly after the
program listing for your review.

Chapter 2 27

Getting Started with HP SICL
Getting Started Using C

FEPEEEEEE b r bbb b r bbb bbb rrrr

11

/1 The follow ng sinple denonstration program uses the Standard

/'l Instrunment Control Library to query an HP-IB instrunent for
/1 an identification string and then prints the result.

11

/1 Edit the DEVI CE_ADDRESS |ine below to specify the address of the

/1 device you want to talk to. For exanple:
11

/1 hpi b7, 0 - refers to an HP-1B device at bus address 0
1 connected to an interface named “hpib7” by the

1 I/O Config utility.

I

I/l hpib7,9,0 - refersto an HP-IB device at bus address 9,

1 secondary address 0, connected to an interface

1 named “hpib7” by the I/O Config utility.

I

I/l Note that this program is meant to be built either as a WIN16

I/l QuickWin or EasyWin program on 16 bit Windows 95, or as a WIN32
I/ console application on 32 bit Windows 95 or Windows NT. Also

I/ note that WIN16 programs must be compiled with the Large memory
// model.

I

I T]

#include <stdio.h> /I for printf()

#include “sicl.h” /I Standard Instrument Control Library routines

#define DEVICE_ADDRESS “hpib7,0” // Modify this line to match your setup

void main(void)
{
INST id; /I device session id
char buf[256] ={ 0 }; // read buffer for idn string

#if defined(__BORLANDC__) && !defined(__WIN32_)
_InitEasyWin();// required for Borland EasyWin programs.

#endif

I Install a default SICL error handler that logs an error message

/I and exits. On Windows 95 or Windows 3.1 view messages with the

/Il SICL Message Viewer,and on Windows NT use the Event Viewer.

ionerror(_ERROR_EXIT);

28

Chapter2

}

Getting Started with HP SICL
Getting Started Using C

/1 Open a device session using the DEVI CE_ADDRESS
id = i open(DEVI CE_ADDRESS) ;

[/ Set the I/O tinmeout value for this session to 1 second
i ti meout(id, 1000);

/Il Wite the *RST string (and send an EQ indicator) to put the
[/ instrument in a known state.
iprintf(id, “*RST\n");

I/l Write the *IDN? string and send an EOI indicator, then read

I/ the response into buf.

I For WIN16 programs, this will only work with the Large memory model
/I since ipromptf expects to receive far pointers to the format

/I strings.

ipromptf(id, “*IDN?\n", “%t", buf);
printf(“%s\n”, buf);

iclose(id);

// For WIN16 programs, call _siclcleanup before exiting to release
I/ resources allocated by SICL for this application. This call is a
// no-op for WIN32 programs.

_siclcleanup();

Chapter 2 29

sicl.h

INST

ionerror

iopen

itimeout

Getting Started with HP SICL
Getting Started Using C

The SICL example C program includes the following:

Thesi cl . h fileisincluded at the beginning of the file to provide the
function prototypes and constants defined by SICL.

Notice the declaration of | NST i d at the beginning of mai n. Thetype

I NST isdefined by SICL and isused to represent auniqueidentifier that will
describe the specific device or interface that you are communicating with.
Thei d isset by the return value of the SICL i open call, and will besetto 0
if i open failsfor any reason.

Thefirst SICL call, i onerror, installs a default error handling routine that
isautomatically called if any of the subsequent SICL callsresult in an error.
| _ERROR_EXI T specifies abuilt-in error handler that will print out a
message about the error and then exit the program. If desired, acustom error
handling routine could be specified instead. On Windows 95 and Windows
3.1, the error messages may be viewed by executing the Message Vi ewer
utility inthe HP 1/ O Li brari es program group. On Windows NT, these
messages may be viewed with the Windows NT Event Vi ewer utility in
the Admi ni strative Tool s group.

Then ani open call ismade. The parameter string "hpib7,0” passed to
iopen specifies the HP-IB interface, followed by the bus address of the
instrument. Theinterface name, "hpib7” , isthe name given to theinterface
during execution of the 1/O Config utility. The bus (primary) address of
theinstrument follows, inthiscase”0” , and istypically set with switcheson
the instrument, or from the front panel of the instrument.

You may wish to modify the program to set the interface name and

instrument address to those applicable for your setup. Refer to the section

titled “Opening a Communications SessianChapter 4, Programming

with HP SICL” for a complete description of how to use SICL's addressing
capabilities.

Next,i ti meout is called to set the length of time (in milliseconds) that
SICL will wait for an instrument to respond. The specified value will
depend on the needs of your configuration. Different timeout values can be
set for different sessions as needed.

30 Chapter2

iprintf and

Getting Started with HP SICL
Getting Started Using C

SICL provides formatted I/O functions that are patterned after those used in

ipromptf the C programming language. These SICL functions support the standard

iclose and
_siclcleanup

ANSI C format strings, plus additional formats defined specifically for
instrument 1/0.

The SICL i pri ntf call sendsthe Standard Commands for Programmable
Instruments (SCPI) commantRST” to the instrument that puts itin a

known state. Thenpr onpt f is used to query the instrument for its
identification string. The string is read back ihtd and then printed to the
screen. (Separateri ntf andi scanf calls could have been used to
perform this operation.) T read format string specifies that an ASCII
string is to be read back, with end indicator termination. SICL automatically
handles all addressing and HP-IB bus management necessary to perform
these reads and writes to instrument.

Thei cl ose function closes the device session to this instrumehis(no
longer valid after this point). Finally, for WIN16 programs, a call to

_si cl cl eanup tells Windows 95 or Windows 3.1 that the WIN16 program
is done and that the SICL I/O resources are no longer needed. WIN32
programs on

Windows 95 or Windows NT do not require thei cl cl eanup call.

Refer to Chapter 12HP SICL Language Referericer the SICL online
Hel p for more detailed information on these SICL function calls and to
learn about all of the functions provided by SICL.

Chapter 2 31

Getting Started with HP SICL
Getting Started Using C

Compilingan HP SICL Program

In this subsection, you will learn how to compile the | DN example.

The C\ SAMPLES\ | DN subdirectory (under the SICL base directory) contains
anumber of filesto help you build the example with specific compilers. You
will have a subset of the following files depending on which Windows
environment you are using.

IDN. C Example program sourcefile.
| DN. DEF Module definition file for the IDN example
program.
MSCI DN. MAK Windows 3.1 makefile for Microsoft C and
Microsoft SDK compilers.
VCl DN. MAK Windows 3.1 project file for Microsoft Visual C++.
VCl DN32. MAK Windows 95 or Windows NT (32-bit) project file for
Microsoft Visual C++.
VCl DN16. MAK Windows 95 (16-bit) project file for Microsoft
Visual C++.
QClI DN. MAK Windows 3.1 project file for Microsoft QuickC for
Windows.
BCI DN. | DE Windows 3.1 project file for Borland C Integrated
Deve opment Environment.
BCl DN32. | DE Windows 95 or Windows N T (32-bit) project file for
Borland C Integrated Devel opment Environment.
BCl DN16. | DE Windows 95 (16-bit) project file for Borland C
Integrated Devel opment Environment.
32 Chapter2

Getting Started with HP SICL
Getting Started Using C

Follow these steps to compile the | DN example program:

1

Connect an instrument to your HP 82341 or 82335 HP-1B interfacethat is
compatible with | EEE 488.2 directives.

Change directories to the location of the example (for example,
CD \ SI CL95\ C\ SAMPLES\ | DN or CD \ SI CLNT\ C\ SAMPLES\ | DN).

The program assumes that the HP-IB interface nameis hpi b7 (set using
I / O Confi g) and that the instrument is at bus address 0. If necessary,
use an editor to modify the interface name and instrument address on the
DEVI CE_ADDRESS definition linein the | DN. C sourcefile.

Compile the program as follows:

-- If you use the command line interface for your compiler (for
Windows 3.1 only), compile the program using the makefile from the
command prompt as follows:

s For Borland compilers, type : MAKE BCI DN. MAK.
m For Microsoft compilers, type: NMAKE MSCI DN. MAK.

Now go on to the next subsection, “Running an HP SICL Program.”

-- If you use the Windows interface for your compiler, select and load
the appropriate project or make file. Then compile the program as

follows:

m For Borland compilers, uger oj ect | Qpen Project. Then
selectProject | Build All.

m For Microsoft compilers, user oj ect | Open. Then set the
include file path by selectingpti ons | Directories. Inthe

Include File Path box, add a semicolon followed by the full path to

the C subdirectory (for exampl&; \ SI CL95\ CorC: \ SI CLNT\ C
if you installed SICL in the default location). Then select
Project | Re-build All.

Chapter 2 33

Getting Started with HP SICL
Getting Started Using C

Running an HP SICL Program

To run the | DN example program, do the following. Notethat if you are
using Windows 95 or Windows NT, you should execute the program from a
console command prompt.

® |f you use the command line interface (Windows 3.1 only):

Select FI LE | RUNfrom the Windows Program Manager menu. (For
example, type C: \ SI CL\ C\ SAMPLES\ | DN\ | DN in the input box. Then
click on &K.)

® |f you use the Windows interface:

-- For Borland, select Run | Run.
-- For Microsoft, select Proj ect | Execute or Run | Co.

If the program runs correctly, the following is an example of the output if
connected to an HP 54601A oscilloscope:

HEW.ETT- PACKARD, 54601A, 0, 1. 7

If the program does not run, refer to the message logger for alist of run-time
errors, and see Chapter 10r6ubleshooting Your HP SICL Progréahfior
assistance in correcting the problem.

34 Chapter2

Getting Started with HP SICL
Getting Started Using C

Whereto Go Next

Now that you understand some basics of programming with SICL, continue
on to Chapter 3,Building an HP SICL Applicatiofi and Chapter 4,
“Programming with HP SICL Chapter 4 provides detailed example
programs and some considerations for programming in the Windows
environment. It also contains information on communications sessions,
addressing, error handling, and so forth.

Additionally, you should look at the chapter(s) that describe how to use
SICL with your particular interface(s):

® Chapter 5 - Using HP SICL with HP-I1B

® Chapter 6 - Using HP SICL with GPIO

® Chapter 7 - Using HP SICL with VXT

® Chapter 8 - Using HP SICL with RS-232

® Chapter 9 - Using HP SICL with LAN

You might also want to familiarize yourself with all the SICL functions,

which are defined in Chapter 12JP SICL Language Refereriand in the
reference information that is provided in the SICL onkikép.

If you have any problems, see Chapter 10 in this guitteubleshooting
Your HP SICL Programi

Chapter 2 35

Getting Started with HP SICL
Getting Started Using C

L oading and Running an HP SICL Program

In this subsection, you will learn how to load and run the | OCVD Visual
BASIC example program.

The VB\ SAMPLES\ | OCVD subdirectory (under the SICL base directory)
contains the following files:

IOCMD.FRM Visual BASIC source for the IOCMDexample program.
IOCMD.MAK Visual BASIC project file for the IOCMDexample program.

Follow these steps to load and run the | OCVD sample program:

1

Connect an instrument to your interface that is compatible with Standard
Commands for Programmable I nstruments (SCPI) directives.

Run Visua BASIC.

Open the project file | OCVD. MAK by selecting Fil e | Open Proj ect
from the Visual BASIC menu.

Run the program by pressing F5, or by pressing the Run button on the
Visual BASIC Toolbar.

Typeinthe address of theinstrument inthe Text box labeled | nt er f ace
Addr ess. Note that the default address that appearsin this Text box is
"hpib7,7” . Thisrefersto an HP-IB instrument at bus address 7
connected to the interface named hpib7 . You should typein the
interface name you assigned to your interface (with the 1/0 Config
utility) and the bus address of your instrument (if applicable). Make sure
to separate the interface name and bus address with a comma, and do not
include space characters.

Type the command you want to send in the Text box labeled Command..
Note that the default command in this Text box is*IDN? . This command
requests an identification string for the instrument.

Press the Output Command button to send the command to the
instrument at the specified address.

36

Chapter 2

Getting Started with HP SICL
Getting Started Using C

Note that after performing the previous steps, you can create a standalone
executable (. EXE) version of this program by selectingFil e | Make EXE
Fi | e from the Visual BASIC menu.

Whereto Go Next

Now that you understand the basics of programming with SICL, continue on

to Chapter 3, Building an HP SICL Applicatiofi and Chapter 4,
“Programming with HP SICL Chapter 4 provides detailed example
programs and some considerations for programming in the Windows
environment. It also contains information on communications sessions,
addressing, error handling, and so forth.

Additionally, you should look at the chapter(s) that describe how to use
SICL with your particular interface(s):

® Chapter 5 - Using HP SICL with HP-I1B

® Chapter 6 - Using HP SICL with GPIO

® Chapter 7 - Using HP SICL with VXT

® Chapter 8 - Using HP SICL with RS-232

® Chapter 9 - Using HP SICL with LAN

You might also want to familiarize yourself with all the SICL functions,

which are defined in Chapter 124P SICL Language Refereriand in the
reference information that is provided in the SICL onkikép.

If you have any problems, see Chapter 10 in this guitteubleshooting
Your HP SICL Programi

Chapter 2 37

Getting Started with HP SICL
Getting Started Using C

38 Chapter2

Buildingan HP SICL Application

Buildingan HP SICL Application

This chapter explains how to build a SICL application in a Windows
environment. This chapter contains the following sections:

® Including the HP SICL Declaration File

®* Memory Models for 16-bit Windows Applications

® Librariesfor C Applicationsand DLLs

® Compiling and Linking C Applications

® | oading and Running Visual BASIC Applications

® Thread Support for 32-bit Windows Applications

® Avoiding Nested I/O in 16-bit Windows Applications

® Application Cleanup

40 Chapter 3

Building an HP SICL Application
Including the HP SICL Declaration File

Including the HP SICL Declaration File

For C and C++ programs, you must include the si ¢l . h header file a the
beginning of every file that contains SICL function calls. This header file
contains the SICL function prototypes and the definitions for all SICL
constants and error codes.

#include “sicl.h”

For Visual BASIC version 3.0 or earlier programs, you must add the
SICL.BAS fileto each project that calls SICL. For Visual BASIC
Version 4.0 or later programs, you must add the SICL4.BAS fileto each
project that calls SICL.

Chapter 3 41

Building an HP SICL Application
Memory Models for 16-bit Windows Applications

Memory Modelsfor 16-bit
Windows Applications

We strongly recommend that you use the Large memory model when

designing WIN16 applications that call SICL functions. Thisis because

SICL requires all pointer parameters to be “far” pointers. Most SICL
function prototypes in thei cl . h header file explicitly declare all pointer
parameters to be far. However, there is no way to declare pointer types for
functions that take a variable number of arguments (such as SICL's
formatted 1/O functions), and your compiler will not be able to properly
check or cast types for these functions.

42 Chapter 3

Building an HP SICL Application
Libraries for C Applications and DLLs

Librariesfor C Applicationsand DLLs

32-bit Windows

All WIN32 applications and DL Lsthat use SICL must link to the
S| CL32. LI Bimport library. (Borland compilers use BCSI CL32. DLL.)

The SICL libraries are located in the C directory under the SICL base
directory (for example, C: \ SI CL95\ Cor C: \ SI CLNT\ Cif you installed
SICL inthe default location). You may wish to add this directory to the
library file path used by your language tools.

Usethe DLL version of the C run-time libraries, because the run-time
libraries contain global variables that must be shared between your
application and the SICL DLL.

If you use the static version of the C run-time libraries, these global variables
will not be shared, and unpredictable results could occur. For example, if
you usei sscanf with the % format, an application error will occur. The
following sections describe how to use the DLL versions of the run-time
libraries.

Chapter 3 43

Building an HP SICL Application
Libraries for C Applications and DLLs

16-bit Windows

All WIN16 applications that use SICL must link to the SI CL16. LI Bimport
library and to one additional import library that is compil er-dependent.
Selecting the proper library depends on the compiler you are using and
whether you are calling SICL functions from another dynamic link library
(DLL), or from an application program.

MSAPP16. LI B Link to thislibrary if you are developing an
application with a Microsoft compiler.

BCAPP16. LI B Link to thislibrary if you are developing an
application with a Borland compiler.

MSDLL16. LI B Link tothislibrary if you are developing aDLL with
aMicrosoft compiler.

BCDLL16.LIB Link tothislibrary if you are developing aDLL with
aBorland compiler.

All SICL libraries are located in the C directory under the SICL base
directory (for example, C: \ SI CL95\ Cif you installed SICL in the default
location).

44 Chapter 3

Note

Building an HP SICL Application
Compiling and Linking C Applications

Compiling and Linking C Applications

32-bit Windows

Thefollowing is a summary of important compiler-specific considerations
for several C/C++ compiler products when devel oping WIN32 applications.

If you are using another version of the Microsoft or Borland compilers than
those listed in this subsection, note that the menu structure and selections
may be different than indicated here. However, the equivalent functionality
existsin your particular version.

For Microsoft Visual C++ compilers:

Select Project | Settings or Build | Settings fromthemenu
(depending on the version of your compiler). Click onthe ¢/ C++ button.
Then select Code Gener at i on from the Cat egor y list box and select
Mul tithreaded Using DLL fromtheUse Run-Tinme Library list
box. Click on OK to close the dialog box.

Select Project | Settings or Build | Settings fromthe
menu. Click ontheLi nk button. Thenadd si cl 32.1i b tothe

Obj ect/ Li brary Mdul es list box. Click on OK to close the dialog
box.

Chapter 3 45

Building an HP SICL Application
Compiling and Linking C Applications

® You may wish to add the SICL Cdirectory (for example, C: \ SI CL95\ C
or C:\ SI CLNT\ C) to theinclude file and library file search paths. They
are set by selecting Tool s | Opt i ons from the menu and clicking on
the Di rect ori es button. Then do the following:

-- To set theinclude file path, select | ncl ude Fi | es from the Show
Directories for: listbox. Then click onthe Add button and type
in either C: \ SI CL95\ Cif on Windows 95, or C: \ SI CLNT\ Cif on
Windows NT. Click on OK.

-- Toset thelibrary file path, select Li brary Fi | es from the Show
Directories for: listbox. Then click onthe Add button and type
ineither C:\ SI CL95\ Cor C:\ SI CLNT\ C. Click on &K.

For Borland C++ version 4.0 compilers:

® Link your programswith BCSI CL32. LI B, not SI CL32. LI B.
BCSI CL32. LI Bislocated in the C subdirectory under the SICL base
directory (for example, C:\ SI CL95\ C or C:\ SI CLNT\ Cif SICL is
installed in the default location).

® Editthe BCC32. CFGand TLI NK32. CFGfiles, which are located in the
BI N subdirectory of the Borland C installation directory.

-- Add thefollowing line to BCC32. CFGso the compiler can find the
si cl. hfile:

-1 G\ SICL_base dir\ C
where SICL_base _dir isthe SICL base directory on your system.

-- Add the fallowing line to both files so the compiler and linker can
find BCSI CL32. LI B:

-LC:\ SCL_base dir\ C
where SICL_base _dir isthe SICL base directory on your system.

* Asanexample, to create MYPROG. EXE from MYPROG. C, you would type:

BCC32 MYPROG. C BCSI CL32. LIB

46 Chapter 3

Building an HP SICL Application
Compiling and Linking C Applications

16-bit Windows

Thefollowing is a summary of important compiler-specific considerations
for several C/C++ compiler products when developing WIN16 applications.

For Microsoft compilers on Windows 3.1 only, such as Microsoft C 7.0 or
SDK compilers:

®* Make sure the Large Memory Model is selected using / AL.

® Be sure to compile with an option that adds prolog code for exported
functions (/ GA or / GSWfor applications, / GD for DLLS). This causes the
application’s data segment to be loaded correctly at the beginning of an
exported function. It is also required for SICL error and interrupt
handlers to work correctly.

® You may wish to add the SICL C directory (for example C: \ SI CL\ C) to
theincludefile and library file search paths. These are typically set suing
the LI B and I NCLUDE environment variablesin the AUTOEXEC. BAT file
in the root directory. Otherwise, the library and include files and paths
should be explicitly specified in the makefile.

For the Microsoft Visual C++ version 1.52 compiler:
® To set the memory model, do the following:
1. Select Options | Project.

2. Click on the Conpi | er button, then select Menory Model from the
Cat egor y list box.

3. Click onthe Mbdel list arrow to display the model options, and select
Lar ge.

4. Click on OK to close the Conpi | er dialog box.

® You may wish to add the SICL Cdirectory (for example, C: \ SI CL95\ C)
totheinclude file and library file search paths. They are set under the
Options | Directories menuseection. Otherwise, thelibrary and
include files and paths should be explicitly specified in the project file.

For Borland C 4.0 compilers.

Chapter 3 47

Building an HP SICL Application
Compiling and Linking C Applications

®* Make sure the Large memory model is selected:
1. Select Options | Project.

2. Double-click on 16-bi t Conpi | er inthe Topi cs list box, then
click on Menory Mdel .

3. Click on the radio button next to Lar ge inthe M xed Model
Overri de box.

4. Click on K to close the dialog box.

You can do this from the command line environment by specifying the/ m
option to the compiler.

®* TheBorland C linker defaults to being case-insensitive when resolving
references. To link to the SICL libraries, you will need to tell the linker
to be case-sensitive.
To do this from Borland’s Integrated Environment:

1. Selectptions | Project.

2. Double-click orLi nker in theTopi cs list box, then click on
Cener al .

3. Click on the checkbox next tase Sensitive Exports and
| nports.

4. Click onK to close the dialog box.

You can do this from the command line environment by specifyingGhe
option to TLINK.

48 Chapter 3

Building an HP SICL Application
Loading and Running Visual BASIC Applications

L oading and Running Visual BASIC
Applications

To load and run an existing Visual BASIC application, first run Visual
BASIC. Then open the project file for the program you want to run by
selecting Fil e | Open Proj ect from the Visua BASIC menu. Visua
BASIC project fileshave a. MAK file extension. Once you have opened the
application’s project file, you can run the application by pressing either
or theRun button on the Visual BASIC Toolbar.

Note that you can create a standalone executaBKE] version of this
program by selectingi | e | Make EXE Fi |l e from the Visual BASIC
menu. Once this is done, your application can be run stand-alone just like
any other. EXE file without having to run Visual BASIC.

Chapter 3 49

Building an HP SICL Application
Thread Support for 32-bit Windows Applications

Thread Support for 32-bit Windows
Applications

SICL can be used in multi-threaded designs, and SICL calls can be made
from multiple threads, in WIN32 applications. However, there are afew
important points to remember:

® SICL error handlers (installed withi oner r or) are per process, not per
thread, but are called in the context of the thread that caused the error to
occur. Calingi onerror from onethread will overwrite any error
handler presently installed by another thread.

®* Thei get errno isper thread, and returnsthe last SICL error that
occurred in the current thread.

® You may wish to make use of the SICL session locking functions (i | ock
and i unl ock) to help coordinate common instrument accesses from
more than one thread.

Also see the “LAN Client and Threads” section in Chapter 9, “Using HP
SICL with LAN,” for thread information specific to the use of SICL with
LAN.

50 Chapter 3

Building an HP SICL Application
Avoiding Nested I/O in 16-bit Windows Applications

Avoiding Nested /0O in 16-bit Windows
Applications

In WIN16 applications, thel _ERR _NESTED | Oerror is generated by SICL
whenever an attempt is made to call a SICL function before a previous call
to another SICL function is complete. This error can occur in event-driven
WIN16 programs where SICL functions are called in response to events
such as menu selections or button clicks.

To avoid this problem, you should disable menu items, buttons, or other
controls that cause SICL callsto be made before previous SICL function
callsare complete. Notethat all of the sasmple programs that make SICL
callsin responseto events do this. In particular, the oscilloscope examplein
Chapter 11 shows one design method to prevent this WIN16 problem.

Chapter 3 51

Note

Building an HP SICL Application
Application Cleanup

Application Cleanup

16-bit Windowsand C

WIN32 SICL applications on Windows 95 or Windows NT do not require
the _si cl cl eanup cdl.

SICL has a specia function, _si cl cl eanup() , to ensure that Windows
performs the necessary clean-up required when a WIN16 SICL program
written in C completes execution. Each WIN16 SICL application writtenin
C should call _si cl cl eanup() before exiting or posting aWwv QUI T
message in order to release resources allocated for the application by the
SICL library. Without this call, you may experience difficulty in executing
your application, especially from within debuggers.

Note that thel ERROR EXI T handler calls_si cl cl eanup()
automatically before it exits.

52 Chapter 3

Building an HP SICL Application
Application Cleanup

16-bit Windows and Visual BASIC

SICL has a specia function, si cl cl eanup, to ensure that Windows
performs the necessary cleanup required when a 16-bit SICL program
written in Visual BASIC completes execution. Each 16-bit SICL
application written in Visual BASIC should call si cl cl eanup before
exiting.

The best placeto call si cl cl eanup isinthe For m Unl oad routine of the
Start Up formin aVisual BASIC program. Thisiswheresi cl cl eanup is
calledin al of the SICL example programsthat are written in Visual BASIC
throughout this manual.

Chapter 3 53

Building an HP SICL Application
Application Cleanup

54 Chapter 3

Programming with HP SICL

Programming with HP SICL

This chapter first describes what you need to know to build a SICL
application. Then some of the basic features of SICL, such as formatted 1/0,
error handling, and locking are described.

Detailed example programs are also provided to help you develop your SICL
applications more easily. Copies of the example programs are located in the
C\ SAMPLES\ M SC subdirectory (for C/C++) and in the VB\ SAMPLES\ M SC
subdirectory (for Visual BASIC) under the SICL base directory (for
example, under the C: \ SI CL95 or C: \ SI CLNT base directory, if SICL was
installed in the default location).

This chapter contains the following sections:

® Opening a Communications Session

® Sending I/O Commands

® Handling Asynchronous Eventsin C Applications
® | ogging HP SICL Error Messages

® Using Error Handlers

® Using Locks

For specific details on the SICL functions, see ChaptertR,SICL
Language Referenter the SICL onlineHel p.

56 Chapter4

Programming with HP SICL
Opening a Communications Session

Opening a Communications Session

A communications session is a channel of communication with a particular
device, interface, or commander:

® A device session is used to communicate with a device on an interface.
A deviceisaunit that receives commands from a controller. Typically a
deviceis an instrument but could be a computer, a plotter, or a printer.

®* Aninterface session is used to communicate with a specified interface.
Interface sessions allow you to use interface-specific functions (for
example, i gpi bsendcnd).

®* A commander session is used to communicate with the interface’s

commander. Typically a commander session is used when a computer is
acting like a device.

There are two parts to opening a communications session with a specific
device, interface, or commander. First, you must declare a variable for the
SICL session identifier. C and C++ programs should declare the session
variable to be of typeNST. Visual BASIC programs should declare the
session variable to be of typat eger. Once the variable is declared, you
can open the communication channel by using the $kipen function, as
shown in the following examples.

C example:

I NST id;

id = i open (addr);
Visual BASIC example:

Di mid As I nteger

id = i open (addr)
Whereid is the session identifier used to communicate to a device, interface,
or commander. Thaddr parameter specifies a device or interface address,
or the termcmdr for a commander session. See the sections that follow for
details on creating the different types of communications sessions.

Your program may have several sessions open at the same time by creating
multiple session identifiers with th@pen function. Use the SICLcl ose
function to close a channel of communication.

Chapter 4 57

Programming with HP SICL
Opening a Communications Session

Device Sessions

A device session allows you direct access to a device without worrying
about the type of interface to which it is connected. On GPIB, for example,
you do not have to address adeviceto listen before sending datato it. This
insulation makes applications more robust and portable across interfaces,
and is recommended for most applications.

Device sessions are the recommended way of communicating using SICL.
They provide the highest level programming method, best overall
performance, and best portability.

Addressing Device To create a device session, specify the interface logical unit or symbolic
Sessions npame and a particular device logical addressin the addr parameter of the
i open function. Theinterfacelogical unit and symbolic name are set by
running thel / O Confi g utility fromtheHP 1/ O Li brari es program
group for Windows 95 or Windows NT, or from the HP SI CL program
group for Windows 3.1. See Chapter 2, “Installing and Configuring the HP
I/O Libraries,” in theHP I/O Libraries Installation and Configuration
Guide for Windows for information on thé/ O Confi g utility.

The logical unit is an integer corresponding to the interface. The device
address generally consists of an integer that corresponds to the device’s bus
address. It may also include a secondary address which is an integer.

Note Secondary addressing is not supported on RS-232 interfaces.

58 Chapter4

Programming with HP SICL
Opening a Communications Session
The following are valid device addresses:

7,23 Device at address 23 connected to an interface card
at logical unit 7.

7,23,1 Device at address 23, secondary address 1,
connected to an interface card at logical unit 7.

hpi b, 23 HP-IB device at address 23.

hpi b2, 23,1 HP-IB device at address 23, secondary address 1,
connected to a second HP-IB interface card.

conl, 488 RS-232 device

The following are examples of opening a device session with the HP-1B
device at address 23.

C example:

I NST dmm
dmm = iopen (“hpib,23");

Visual BASIC example:

Dim dmm As Integer
dmm = iopen (“hpib,23")

More on addressing specific devices can be found in the interface-specific
chapter (for example, “Using HP SICL with HP-IB”) later in this manual.

Chapter 4 59

Programming with HP SICL
Opening a Communications Session

| nter face Sessions

An interface session allows direct, low-level control of the specified
interface. Thereisafull set of interface-specific SICL functions for
programming features that are specific to a particular interface type (GPIB,
Serial, and so forth). Thisgivesyou full control of the activities on a given
interface, but does make for less portable code.

Addressing To create an interface session, specify the particular interface logical unit or
Interface Sessions symbholic name in the addr parameter of thei open function. Theinterface
logical unit and symbolic name are set by running thel / O Confi g utility
fromtheHP 1/ 0O Li brari es program group for Windows 95 or Windows
NT, or fromthe HP SI CL program group for Windows 3.1. See Chapter 2,
“Installing and Configuring the HP I/O Libraries,” in th#> I/O Libraries
Installation and Configuration Guide for Windows for information on the/
O Confi g utility.

The logical unit is an integer that corresponds to a specific interface. The
symbolic name is a string which uniquely describes the interface.

The following are valid interface addresses:

7 Interface card at logical unit 7
hpi b HP-IB interface card.

hpi b2 Second HP-IB interface card.
coml RS-232 interface card.

The following examples open an interface session with an RS-232 interface.
C example:

I NST cont,;
coml = iopen (“com1”);

Visual BASIC example:

Dim coml As Integer
coml =iopen (“com1”)

More on addressing specific interfaces can be found in the interface-specific
chapter (for example, “Using HP SICL with HP-IB") later in this manual.

60 Chapter 4

Programming with HP SICL
Opening a Communications Session

Commander Sessions

The commander session allows you to talk to the interface controller.
Typically, the controller is the computer used to communicate with devices
on theinterface. When your computer is not active controller, commander
sessions can be used to talk to the computer which is active controller. In
this mode, your computer is acting like a device on the interface.

Addressing To create acommander session, specify avalid interface address followed
Cogmander by a commaand then the string cndr inthei open function. The following
€SSIONS re valid commander addresses:

hpib,cmdr HP-IB commander session.

7,cmdr Commander session on interface at logical unit 7.

The following are examples of creating a commander session with the HP-
IB interface.

C example:

I NST cndr;
cmdr = iopen(“hpib,cmdr”);

Visual BASIC example:

Dim cmdr As Integer
cmdr = iopen (“hpib,cmdr”)

The above function calls will open a session of communication with the
commander on the HP-IB interface.

Chapter 4 61

Programming with HP SICL
Sending I/O Commands

Sending I/0O Commands

Once you have established a communications session with a device,
interface, or commander, you can start communicating with that session
using SICL's I/O routines. SICL provides both formatted 1/0 and non-
formatted 1/O routines:

®* Formatted 1/O converts mixed types of data under the control of a
format string. The datais buffered, thus optimizing interface traffic. The
formatted 1/0 routines are geared towards instruments, and reduce the
amount of 1/0 code.

®* Non-formatted |1/O sends or receives raw datato a device, interface, or
commander. With non-formatted 1/O, no format or conversion of the data
isperformed. Thus, if formatted datais required, it must be done by the
user.

See the following sections for a complete description and examples of using
formatted 1/0O (for C applications and for Visual BASIC applications) and
non-formatted 1/0.

62 Chapter 4

Programming with HP SICL
Sending I/0O Commands

Formatted I/O in C Applications

The SICL formatted I/O mechanism is similar to the C st di o mechanism.
SICL formatted 1/0O, however, is designed specifically for instrument
communication and is optimized for |EEE 488.2 compatible instruments.
The three main functions for formatted 1/0 in C applications are as follows:

® Theiprintf function formats according to the format string and sends
datato a device:
i printf(id, format[,argl][,arg2][,...]);

®* Thei scanf function receives and converts data according to the format
string:

i scanf (id, format [,argl][,arg2][....]) ;

® Thei pronptf function formats and sends data to a device and then
immediately receives and converts the response data:

i pronpt f (id, writefmt, readfmt [,argl][,arg2][,...]) ;

The formatted 1/O functions are buffered. There are two non-buffered and
non-formatted 1/O functionscalled i read andi wri t e. See “Non-

Formatted 1/O” later in this chapter. These are raw I/O functions and do not
intermix with the formatted 1/O functions.

If raw I/O must be mixed, use théread/i f writ e functions. They have
the same parametersiasead andi wri t e, but read or write raw output

data to the formatted I/O buffers. Refer to the “Formatted 1/O Buffers”
subsection later in this section for more details.

Formatted I/O The formatted I/O functions convert data under the control of the format
Conversion string. The format string specifies how the argument is converted before it is
input or output. The typical format string syntax is as follows:

%[format flags] [field width][. precision] [, array size] [argument modifier] conversion character

Seei printf,ipronptf,andi scanf in Chapter 12,MP SICL Language
Referencéfor more information on how data is converted under the control
of the format string

Chapter 4 63

Programming with HP SICL
Sending I/O Commands

Format Flags. Zero or more flags may be used to modify the meaning of the
conversion character. The format flags are only used when sending
formatted 1/0O (i printf andi pronpt f). Thefollowing are supported
format flags:

Format Flags for iprintf and ipromptf in C Applications

Format Description
Flag

@1 Converts to a 488.2 NR1 number.

@2 Converts to a 488.2 NR2 number.

@3 Converts to a 488.2 NR3 number.

@H Converts to a 488.2 hexadecimal number.

@Q Converts to a 488.2 octal number.

@B Converts to a 488.2 binary number.

+ Prefixes number with sign (+ or -).

- Left justifies result.

space Prefixes number with blank space if positive or with — if
negative.

Uses alternate form. For o conversion, it prints a leading zero.
For x or X, a nonzero will have 0x or 0X as a prefix. Fore, E, f,
g, or G, the result will always have one digit on the right of the
decimal point.

0 Causes left pad character to be a zero for all numeric
conversion types.

The following example converts nunb into a 488.2 floating point number
and sendsiit to the session specified by id:

int numb = 61;
iprintf (id,“%@2d&n", numb);

Sends: 61.000000

64 Chapter4

Programming with HP SICL
Sending I/0O Commands

Field Width. Field width is an optional integer that specifies how many
characters arein the field. If the formatted data has fewer characters than
specified in the field width, it will be padded. The padded character is
dependent on various flags. You can use an asterisk (*) in place of the
integer to indicate that the integer is taken from the next argument.

The following example pads nunb to six characters and sends it to the
session specified by id:

| ong nunb = 61,
iprintf (id,“%6ld&n", numb);

Padsto six characters: 61

. Precision. Precision is an optional integer preceded by a period. When
used with conversion characterse, E , and f , the number of digitsto the
right of the decimal point are specified. For thed, i, o, u, x, and X
conversion characters, the minimum number of digitsto appear is specified.
For the s and S conversion characters, the precision specifies the maximum
number of characters to be read from the argument. Thisfield isonly used
when sending formatted 1/O (iprintf and ipromptf). You can use an
asterisk (*) in place of theinteger to indicate that the integer is taken from
the next argument.

The following example converts numb so that there are only two digitsto the
right of the decimal point and sends it to the session specified by id:

float numb = 26.9345;
iprintf (id, “.2f\n”, numb);

Sends: 26.93

Chapter 4 65

Programming with HP SICL
Sending I/O Commands

, Array Size. The comma operator isaformat modifier which allows you to
read or write a comma-separated list of numbers (only valid with %a and %
conversion characters). Itisacommafollowed by an integer. The integer
indicates the number of elementsin the array. The comma operator has the
format of , dd where dd is the number of elementsto read or write.

The following exampl e specifies a comma separated list to be sent to the
session specified by id:

int list[5]={101, 102, 103, 104, 105};
iprintf (id,“%,5d\n", list);

Sends: 101,102,103,104,105

Argument Moaodifier. The meaning of the optional argument modifier h,
I, w, z, or Z is dependent on the conversion character.

Argument Modifiers in C Applications

Argument Conversion Description
Modifier Character
h d,i Corresponding argument is a short integer.
h f Corresponding argument is a float for

iprintf or a pointer to a float for iscanf
I d,i Corresponding argument is a long integer.

I b,B Corresponding argument is a pointer to a
block of long integers.

f Corresponding argument is a double for
iprintf or a pointer to a double for
iscanf

w b,B Corresponding argument is a pointer to a

block of short integers.

z b,B Corresponding argument is a pointer to a
block of floats.

z b,B Corresponding argument is a pointer to a
block of doubles.

66 Chapter4

Programming with HP SICL
Sending I/0O Commands

Conversion Characters. The conversion characters for sending and
receiving formatted 1/0 are different. The following tables summarize the
conversion characters for each:

i printf andi pronptf Conversion Characters in C Applications

Conversion Description
Character
d, Corresponding argument is an integer.
f Corresponding argument is a float.
b,B Corresponding argument is a pointer to an arbitrary block
of data.
c,C Corresponding argument is a character.
t Controls whether the END indicator is sent with each LF
character in the format string.
s,S Corresponding argument is a pointer to a null terminated
string.
% Sends an ASCII percent (%) character.
o,u,x,X Corresponding argument will be treated as an unsigned
integer.
e,E,g0,G Corresponding argument is a double.
n Corresponding argument is a pointer to an integer.
F Corresponding argument is a pointer to a FILE descriptor

opened for reading.

The following example sends an arbitrary block of datato the session
specified by the id parameter. The asterisk (*) is used to indicate that the
number is taken from the next argument:

int size = 1024;
char data [1024];

i printf (id,“%*b&\n", size, data);
Sends 1024 characters of block data

Chapter 4 67

Programming with HP SICL
Sending I/O Commands

i scanf and i pronptf Conversion Characters
in C Applications

Conversion Description
Character
d,i,n Corresponding argument must be a pointer to an integer.
efg Corresponding argument must be a pointer to a float.
c Corresponding argument is a pointer to a character.
s,S,t Corresponding argument is a pointer to a string.
0,U,X Corresponding argument must be a pointer to an
unsigned integer.
[Corresponding argument must be a character pointer.
F Corresponding argument is a pointer to a FILE descriptor
opened for writing.

The following example receives data from the session specified by theid
parameter and converts the data to a string:

char data[180];
i scanf (id, “%s”, data);

Formatted I/0O The following C program example shows sending and receiving formatted
C Example |/O. This example opens an HP-IB communications session with a
multimeter and uses a comma operator to send a comma separated list to the
multimeter. The If conversion characters are then used to receive a double
from the multimeter.

68 Chapter4

Programming with HP SICL
Sending I/0O Commands

/* formatio.c
Thi s exanpl e program nmekes a mul ti nmeter measurenent
with a comm separated list passed with formatted /0O
and prints the results */

#i ncl ude <sicl.h>

#i ncl ude <stdi o. h>

mai n()

I NST dvm

doubl e res;
double list[2] = {1,0.001};

#i f defined(__BORLANDC) && !defined(__WN32_)
_InitEasyWn(); /*Required for Borland EasyW n prograns*/
#endi f

/* Log nmessage and terninate on error */
ionerror (I _ERROR EXIT);

/* Open the nmultineter session */
dvm = iopen (“hpib7,16");
itimeout (dvm, 10000);

[Initialize dvm*/
iprintf (dvm, “*RST\n");

/*Set up multimeter and send comma separated list*/
iprintf (dvm, “CALC:DBM:REF 50\n");
iprintf (dvm, “MEAS:VOLT:AC? %,2If\n", list);

/* Read the results */
iscanf (dvm,"%lf",&res);

* Print the results */
printf (“Result is %f\n",res);

/* Close the multimeter session */
iclose (dvm);

I* For WIN16 programs, call _siclcleanup before exiting
to release resources allocated by SICL for this
application. This call is a no-op for WIN32 programs.*/
_siclcleanup();

return O;

}
Chapter 4 69

Programming with HP SICL
Sending I/O Commands

Format String Theformat string for i pri nt f putsaspecial meaning on the newline
character (\ n). The newline character in the format string flushes the output
buffer to the device. All charactersin the output buffer will be written to the
device with an END indicator included with the last byte (the newline
character). This means that you can control at what point you want the data
written to the device. If no newline character isincluded in the format string
forani printf cal, thenthe characters converted are stored in the output
buffer. It will require another call toi printf oracaltoi fl ush to have
those characters written to the device.

This can be very useful in queuing up datato send to adevice. It can aso
raise |/O performance by doing afew large writes instead of several smaller
writes. This behavior can be changed by thei set buf andi set ubuf
functions. See the following subsection on “Formatted I/O Buffers.”

The format string for scanf ignores most white-space characters. Two
white-space characters that it does not ignore are newlingarfd carriage
returns (r). These characters are treated just like normal characters in the
format string, whichmust match the next non-white-space character read
from the device.

Formatted I/0O The SICL software maintains both a read and write buffer for formatted 1/0
Buffers gperations. Occasionally, you may want to control the actions of these
buffers.

The write buffer is maintained by theri nt f and the write portion of the

i pronpt f functions. It queues characters to send to the device so that they
are sent in large blocks, thus increasing performance. The write buffer
automatically flushes when it sends a newline character from the format
string (see thes conversion character to change this feature). It also
flushes immediately after the write portion of thg onpt f function. It

may occasionally be flushed at other non-deterministic times, such as when
the buffer fills. When the write buffer flushes, it sends its contents to the
device.

The read buffer is maintained by thecanf and the read portion of the

i pronpt f functions. It queues the data received from a device until it is
needed by the format string. The read buffer is automatically flushed before
the write portion of anpr onpt f . Flushing the read buffer destroys the data
in the buffer and guarantees that the next calktaanf ori pr onpt f reads

data directly from the device rather than data that was previously queued.

70 Chapter 4

Programming with HP SICL
Sending I/0O Commands

Note Flushing the read buffer also includes reading all pending response data
from adevice. If the deviceisstill sending data, the flush process will
continue to read data from the device until it receives an END indicator from

the device.

Seethei set buf function for other options for buffering data.

Related Formatted Thefollowingisaset of functions that are related to formatted |/O:

I/0 Functions

i fread

ifwite

i printf

i scanf

i pronpt f

i flush

i set buf

i set ubuf

Obtains raw data directly from the read formatted 1/O buffer.
This is the same buffer that i scanf uses.

Writes raw data directly to the write formatted 1/O buffer.
This is the same buffer thati pri nt f uses.

Converts data via a format string and writes the arguments
appropriately.

Reads data from a device/interface, converts this data via a
format string, and assigns the values to your arguments.

Sends, then receives, data from a device/instrument. It also
converts data via format strings that are identical to
i printf andi scanf.

Flushes the formatted 1/O read and write buffers. A flush of
the read buffer means that any data in the buffer is lost. A

flush of the write buffer means that any data in the buffer is
written to the session’s target address.

Sets the size of the formatted 1/O read and the write buffers.
A size of zero (0) means no buffering. Note that if no
buffering is used, performance can be severely affected.

Sets the read or the write buffer to your allocated buffer.
The same buffer cannot be used for both reading and
writing. Also you should be careful when using buffers that
are automatically allocated.

Chapter 4

71

Programming with HP SICL
Sending I/O Commands

Formatted 1/O in Visual BASIC Applications

SICL formatted 1/0O is designed specifically for instrument communication
and is optimized for |IEEE 488.2 compatible instruments. The two main
functions for formatted 1/0 in Visual BASIC applications are as follows:

® Thei vprintf function formats according to the format string and sends
datato a device:

Function ivprintf(id As Integer, fmt As String,
ap As Any) As Integer

®* Thei vscanf function receives and converts data according to the
format string:

Function ivscanf(id As Integer, fmt As String,
ap As Any) As Integer

Note There are certain restrictionswhen usingi vpri ntf andi vscanf with
Visual BASIC. For details about these restrictions, see either the
“Restrictions Using vpri nt f in Visual BASIC” section under the
i printf function, or the “Restrictions Using/scanf in Visual BASIC”
section under thiescanf function, in Chapter 12HP SICL Language
Referencé

The formatted 1/O functions are buffered. There are two non-buffered and
non-formatted I/O functions called ead andi wri t e. See “Non-

Formatted I/O” later in this chapter. These are raw I/O functions and do not
intermix with the formatted I/O functions.

If raw I/0O must be mixed, use thér ead/i f wri t e functions. They have
the same parametersiasead andi wri t e, but read or write raw output

data to the formatted I/O buffers. Refer to the “Formatted I/O Buffers”
subsection later in this section for more details.

72 Chapter 4

Programming with HP SICL
Sending I/0O Commands

Formatted I/O The formatted 1/O functions convert data under the control of the format
Conversion gring. The format string specifies how the argument is converted beforeit is
input or output. The typical format string syntax is as follows:

%fornat flags][fieldwdth][. precision][, array size][argunent nodifier]conversion character

Seeiprintf andi scanf in Chapter 12,MP SICL Language Refererice
for more information on how data is converted under the control of the
format string.

Format Flags. Zero or more flags may be used to modify the meaning of the
conversion character. The format flags are only used when sending
formatted I/O (vpri nt f). The following are supported format flags:

Format Flags fori vpri ntf in Visual BASIC Applications

Format Description
Flag
@ Converts to a 488.2 NR1 number.
@ Converts to a 488.2 NR2 number.
@ Converts to a 488.2 NR3 number.
@ Converts to a 488.2 hexadecimal number.
@ Converts to a 488.2 octal number.
@ Converts to a 488.2 binary number.
+ Prefixes number with sign (+ or -).
- Left justifies result.
space Prefixes number with blank space if positive or with — if
negative.
Uses alternate form. For o conversion, it prints a leading

zero. Forx or X, a nonzero will have 0x or OX as a prefix.
For e, E, f, g, or G, the result will always have one digit on
the right of the decimal point.

0 Causes left pad character to be a zero for all numeric
conversion types.

Chapter 4 73

Programming with HP SICL
Sending I/O Commands

The following example converts nunb into a 488.2 floating point number to
the session specified by id. Note how the function return values must be
assigned to variables for al Visual BASIC function calls. Also note that +
Chr $(10) addsthe newline character to the format string to indicate that the
formatted 1/0 write buffer should be flushed. (Thisisequivalent tothe\ n
character sequence used for C/C++ programs.

Di m nunb As | nteger
Dimret_val As Integer

nunb = 61
ret_val = ivprintf(id, “%@2d”+ Chr$(10), numb)

Sends: 61.000000

Field Width. Field width is an optional integer that specifies how many
characters arein the field. If the formatted data has fewer characters than
specified in the field width, it will be padded. The padded character is
dependent on various flags.

The following example pads numb to six characters and sendsiit to the
session specified by id:

Dim numb As Integer
Dim ret_val As Integer

numb = 61
ret_val = ivprintf(id, “%6d” + Chr$(10), numb)

Padsto six characters; 61

74 Chapter4

Programming with HP SICL
Sending I/0O Commands

. Precision. Precision is an optional integer preceded by a period. When
used with conversion characterse, E, andf, the number of digitsto the
right of the decimal point are specified. Forthed, i, o, u, x, andX
conversion characters, the minimum number of digitsto appear is specified.
Thisfield is only used when sending formatted I/O (i vpri nt f).

The following exampl e converts numb so that there are only two digitsto the
right of the decimal point and sends it to the session specified by id:

Di m nunb As Doubl e

Dimret_val As |nteger

numb = 26. 9345

ret _val = ivprintf(id, “%.2lf"+ Chr$(10), numb)

Sends: 26.93

, Array Size. The comma operator is aformat modifier which allows you to
read or write a comma-separated list of numbers (only valid with %dand %f
conversion characters). Itisacommafollowed by an integer. The integer
indicates the number of elementsin the array. The comma operator has the
format of , dd where dd is the number of elementsto read or write.

The following exampl e specifies a comma separated list to be sent to the
session specified by id:

Dim list(4) As Integer
Dim ret_val As Integer

list(0) = 101
list(1) = 102
list(2) = 103
list(3) = 104
list(4) = 105
ret_val = ivprintf(id, “%,5d” + Chr$(10), list(0))

Sends: 101,102,103,104,105

Chapter 4 75

Programming with HP SICL

Sending I/O Commands

Argument Modifier. The meaning of the optional argument modifier h,
I, w, z, orZisdependent onthe conversion character.

Argument Modifiers in Visual BASIC Application

Argument Conversion Description
Modifier Character
h d,i Corresponding argument is an Integer.
h f Corresponding argument is a Single.
I d,i Corresponding argument is a Long.
I d, B Corresponding argument is an array of Long.
I f Corresponding argument is a Double.
w d, B Corresponding argument is an array of
Integer.
z d, B Corresponding argument is an array of
Single.
z d, B Corresponding argument is an array of
Double.
76 Chapter4

Programming with HP SICL
Sending I/0O Commands

Conversion Characters. The conversion characters for sending and
receiving formatted 1/0 are different. The following tables summarize the
conversion characters for each:

i vprintf Conversion Characters in Visual BASIC Applications

Conversion Description
Character
d, i Corresponding argument is an Integer.
b, B Not supported on Visual BASIC.
c,C Not supported on Visual BASIC.
t Not supported on Visual BASIC.
s, S Not supported on Visual BASIC.
% Sends an ASCII percent (%) character.

o, u,x, X Corresponding argument will be treated as an Integer.
f,e, E g, G Corresponding argumentis a Double.
Corresponding argument is an Integer.

F Corresponding arg is a pointer to a FILE descriptor.

i vscanf Conversion Characters in Visual BASIC Applications

Conversion Description
Character
d,i,n Corresponding argument must be an Integer.
e, f,g Corresponding argument must be a Single.
c Corresponding argument is a fixed length String.
s, S, t Corresponding argument is a fixed length String.
0, u, X Corresponding argument must be an Integer.
[Corresponding argument must be a fixed length character String.
F Not supported on Visual BASIC.

Chapter 4 77

Formatted 1/O
Visual BASIC
Example

Programming with HP SICL
Sending I/O Commands

The following example receives data from the session specified by theid
parameter and converts the data to a string:

Dimret_val As Integer
Dimdata As String * 180

ret _val = ivscanf(id, “%180s”, data)

Thefollowing Visual BASIC program example shows sending and receiving
formatted 1/0. This example opens an HP-1B communications session with
amultimeter and uses a comma operator to send a comma separated list to
the multimeter. Thelf conversion characters are then used to receive a
Double from the multimeter.

78 Chapter4

Programming with HP SICL
Sending I/0O Commands

A

* The following subroutine makes a multimeter measurement with acomma

formatio.bas

separated list passed with formatted I/O and prints the results.

s

Sub main()

Dim dvm As Integer
Dim res As Double
ReDim list(2) As Double
Dim nRetVal As Integer

On Error GoTo ErrorHandler

‘ Initialize values in list
list(0) =1
list(1) = 0.001

 Open the multimeter session
dvm = iopen(“hpib7,0")
Call itimeout(dvm, 10000)

“ Initialize dvm.
nRetVal = ivprintf(dvm, “*RST” + Chr$(10), 0&)

‘ Set up multimeter and send comma separated list
nRetVal = ivprintf(dvm, “CALC:DBM:REF 50" + Chr$(10))
nRetVal = ivprintf(dvm, “MEAS:VOLT:AC? %,2If" + Chr$(10), list())

‘ Read the results.
nRetVal = ivscanf(dvm, “%lIf", res)

‘ Display the results
MsgBox “Result is “ + Format$(res)

‘ Close the multimeter session
Call iclose(dvm)

‘ Tell SICL to cleanup for this task
Call siclcleanup
End

ErrorHandler:

‘ Display the error message

MsgBox “*** Error : “ + Error$, MB_ICON_EXCLAMATION
‘ Tell SICL to cleanup for this task

Call siclcleanup

End

End Sub

Chapter 4

79

Format String

Formatted 1/O
Buffers

Programming with HP SICL
Sending I/O Commands

Intheformat string fori vpri nt f , when the special charactersChr $(10) is
used, the output buffer to the deviceis flushed. All charactersin the output
buffer will be written to the device with an END indicator included with the
last byte. This means that you can control at what point you want the data
written to the device. If no Chr $(10) isincluded in the format string for an
i vpri nt f cal, thenthe characters converted are stored in the output buffer.
It will require another call toi vprintf oracal toi f1 ush to havethose
characters written to the device.

This can be very useful in queuing up datato send to adevice. It can aso
raise |/O performance by doing afew large writes instead of several smaller
writes.

The format string for i vscanf ignores most white-space characters. Two
white-space characters that it does not ignore are newlines (Chr $(10)) and
carriage returns (Chr $(13)). These characters are treated just like normal
charactersin the format string, which must match the next non-white-space
character read from the device.

The SICL software maintains both a read and write buffer for formatted 1/0O
operations. Occasionally, you may want to control the actions of these
buffers.

The write buffer is maintained by thei vpri nt f function. It queues
characters to send to the device so that they are sent in large blocks, thus
increasing performance. The write buffer automatically flushes when it
sends a newline character from the format string. It may occasionally be
flushed at other non-deterministic times, such as when the buffer fills. When
the write buffer flushes, it sends its contents to the device.

Theread buffer is maintained by thei vscanf function. It queues the data
received from adevice until it is needed by the format string. Flushing the
read buffer destroys the data in the buffer and guarantees that the next call to
i vscanf reads data directly from the device rather than data that was
previously queued.

80 Chapter 4

Programming with HP SICL
Sending I/0O Commands

Note Flushing the read buffer also includes reading all pending response data
from adevice. If the deviceisstill sending data, the flush process will
continue to read data from the device until it receives an END indicator from

the device.

Related Formatted Thefollowing isaset of functionsthat are related to formatted 1/0O in Visual

IO Functions BASIC:

i fread

ifwite

ivprintf

i vscanf

i flush

Obtains raw data directly from the read formatted
I/0 buffer. This is the same buffer that i vscanf
uses.

Writes raw data directly to the write formatted I/O
buffer. This is the same buffer thati vpri ntf uses.

Converts data via a format string and converts the
arguments appropriately.

Reads data from a device/interface, converts this
data via a format string, and assigns the value to
your arguments.

Flushes the formatted I/O read and write buffers. A
flush of the read buffer means that any data in the
buffer is lost. A flush of the write buffer means that
any data in the buffer is written to the session’s
target address.

Chapter 4

81

Non-Formatted
I/O Examples

Programming with HP SICL
Sending I/O Commands

Non-Formatted 1/0O

There are two non-buffered, non-formatted 1/0 functions called i r ead and
iwrite. Theseareraw I/O functions and do not intermix with the
formatted 1/O functions. If raw I/O must be mixed, usethei f r ead and

i fwrite functions. They havethe same parametersasi read andi wri t e,
but read/write raw data from/to the formatted 1/0O buffers.

The non-formatted 1/0O functions are described as follows:

® Thei r ead function reads raw datafrom the device or interface specified
by the id parameter and stores the results in the location where buf is
pointing.

C example:
i read(id, buf, bufsize, reason, actualcnt) ;

Visual BASIC example:
Cal | iread(id, buf, bufsize, reason, actualcnt)

®* Theiwrite function sends the data pointed to by buf to the interface or
device specified by id:

C example:
i write(id, buf, datalen, end, actualcnt) ;

Visual BASIC example:
Cal | iwrite(id,buf, datalen, end, actualcnt)

The following program examples illustrate using non-formatted 1/0 to

communicate with a multimeter over the HP-IB interface. The SICL non-

formatted |/O functionsi wri t e andi r ead areused for the communication.
A similar example was used to illustrate formatted 1/O earlier in this chapter.

82 Chapter4

Programming with HP SICL
Sending I/0O Commands

C example

/

* nonfnt.c
Thi s exanpl e program neasures AC voltage on a
mul timeter and prints out the results*/

#i ncl ude <sicl. h>
#i ncl ude <stdi o. h>

mai n()

{

I NST dvm
char strres[20];
unsi gned | ong actual ;

#if defined(_ BCRLANDC) && !'defined(_ WN32_)
_InitEasyWn(); /*required for Borland EasyWn prograns*/
#endi f

/* Log nessage and term nate on error */
ionerror (I_ERROR EXIT);

/* Open the multineter session */
dvm = iopen (“hpib7,16");
itimeout (dvm, 10000);

[*Initialize dvm®*/
iwrite (dvm, “*RST\n”, 5, 1, NULL);

[*Set up multimeter and take measurements*/
iwrite (dvm,"CALC:DBM:REF 50\n”",16,1,NULL);
iwrite (dvm,"MEAS:VOLT:AC? 1, 0.001\n",23,1,NULL);

[* Read measurements */
iread (dvm, strres, 20, NULL, &actual);

FNULL terminate result string and print the results*/
FThistechnique assumesthe lastbyte sentwas aline-feed*/
if (actualy

strres[actual - 1] = (char) O;

printf(‘Result is %os\n”, strres);

/* Close the multimeter session */
iclose(dvm);

Chapter 4 83

Programming with HP SICL
Sending I/O Commands

/* For WNL6 prograns, call _siclcleanup before exiting
to rel ease resources allocated by SICL for this
application. This call is a no-op for WN32 prograns. */

_siclcleanup();

return 0; }

Visual BASIC example:

CELCOELEhblbhlbhblhbllhlbbbEbbEbbEEbEEiEeEeettete

nonfmt.bas

‘ The following subroutine measures AC voltage on a
* multimeter and prints out the results.

Sub Main ()

Dim dvm As Integer

Dim strres As String * 20

Dim actual As Long

* Open the multimeter session
dvm = iopen(“hpib7,16")
Call itimeout(dvm, 10000)

‘ Initialize dvm
Call iwrite(dvm,ByVal “*RST” + Chr$(10), 5, 1, 0&)

* Set up multimeter and take measurements
Call iwrite(dvm,ByVal “CALC:DBM:REF 50" + Chr$(10),16,1, 0&)

Callirite(dvm ByVal MEASVOLTAC?1,0001"+Chr$(10).23,1,08)

‘ Read measurements
Call iread(dvm,ByVal strres, 20, 0&, actual)

* Print the results
Print “Result is “ + Left$(strres, actual)

* Close the multimeter session
Call iclose(dvm)

‘ Tell SICL to cleanup for this task
Call siclcleanup

Exit Sub

End Sub

84 Chapter4

Note

Note

Programming with HP SICL
Handling Asynchronous Events in C Applications

Handling Asynchronous Eventsin
C Applications

Asynchronous events are events that happen outside the control of your
application. These eventsinclude Service ReQuests (SRQs) and interrupts.
An SRQ isanotification that a device requires service. Both devices and
interfaces can generate SRQs and interrupts.

SICL dlowsyou toinstall SRQ and interrupt handlersin C programs, but
does not support them in Visual BASIC programs.

By default, asynchronous events are enabled. However, the library will not
generate any events until the appropriate handlers are installed in your
program.

If an application is using asynchronous events (i onsr g, i oni ntr), be
aware that a callback thread is created by the underlying SICL
implementation to service the asynchronous event. Thisthread will not be
terminated until some other thread of the application performs an

Exi t Process on Windows 95, or callsi cl ose on Windows NT.

Chapter 4 85

Programming with HP SICL
Handling Asynchronous Events in C Applications

Note For WIN16 programs, custom SRQ and interrupt handler (callback)
functions installed using SICLisonsr g andi oni nt r functions should be
declared using the SICL modifigr CLCALLBACK, which is defined as
“_export _far _pascal "in sicl.h. Failure to do this usually causes a
“General Protection Fault” error at the time the handler is called in 16-bit
Windows.

Example declarations:

void S ALCALLBACK ny_int_handl er (INST id, int reason, |ong sec) {
/* your code here */
}

voi d SI CLCALLBACK ny_srqg_handl er (I NST id) {
/* your code here */
}

Additionally, if you are developing a 16-bit application using the QuickWin
feature provided with Microsoft compilers and are installing a custom
handler, you must also use theoadds modifier with your handler
declaration.

Example declaration for QuickWin applications:

voi d SI CLCALLBACK | oadds ny_srqg_handl er (I NST id) {
/* your code here */
}

86 Chapter4

Programming with HP SICL
Handling Asynchronous Events in C Applications

SRQ Handlers

Thei onsr g function installs an SRQ handler. The currently installed SRQ
handler is called any time its corresponding device generates an SRQ. If an
interface is unable to determine which device on the interface generated the
SRQ, al SRQ handlers assigned to that interface will be called.

Therefore, an SRQ handler cannot assume that its corresponding device
generated an SRQ. The SRQ handler should usethei r eadst b function to
determine whether its device generated an SRQ. If two or more sessions
refer to the same device, the handlers for each of the sessions are called.

Interrupt Handlers

Two distinct steps are required for an interrupt handler to be called. First, the
interrupt handler must be installed. Second, the interrupt event or events
need to be enabled. Thei oni nt r function installs an interrupt handler.
Thei seti ntr function enables the interrupt event or events.

Aninterrupt handler can be installed with no events enabled. Conversely,
interrupt events can be enabled with no interrupt handler installed. Only
when both an interrupt handler isinstalled and interrupt events are enabled
will the interrupt handler be called.

Chapter 4 87

Note

Programming with HP SICL
Handling Asynchronous Events in C Applications

Temporarily Disabling/Enabling Asynchronous Events

To temporarily prevent all SRQ and interrupt handlers from executing, use
thei i ntrof f function. This disablesall asynchronous handlers for all
sessions in the process.

To re-enable asynchronous SRQ and interrupt handlers previously disabled
byiintroff,usetheiintron function. Thisenablesall asynchronous
handlers for al sessionsin the process, that had been previously enabled.

These functions do not affect thei set i nt r valuesor thehandlers (i onsr g
orionintr)inanyway. Seeioni ntr andi onsrq in Chapter 12, MP
SICL Language Refererite

Default ison.

On operating systems that support multiple threads such as Windows 95 and
Windows NT, SRQ and interrupt handlers execute on a separate thread (a
thread created and managed by SICL). This means that a handler can be
executing when thei ntrof f call is made. If this occurs, the handler will
continue to execute until it has completed. An implication of this is that the
SRQ or interrupt handler may need to synchronize its operation with the
application’s primary thread. This could be accomplished via WIN32
synchronization methods, or by using SICL locks, where the handler uses a
separate session to perform its work.

Calls toi i ntrof f /i i nt r on may be nested, meaning that there must be an
equal number of on’s and off's. This means that calling the r on
function may not actually re-enable interrupts.

88 Chapter4

Note

Programming with HP SICL
Handling Asynchronous Events in C Applications

Occasionally, you may want to suspend a process and wait until an event
occursthat causesahandler to execute. Thei wai t hdl r function causesthe
process to suspend until either an enabled SRQ or interrupt condition occurs
and the related handler executes. Once the handler completes its operation,
this function returns and processing continues.

For this function to work properly, your application must turn interrupts off
(that is, usei i ntrof f). Theiwai t hdl r function behavesasif interrupts
areenabled. Interrupts are still disabled after thei wai t hdl r function has
completed.

Interrupts must be disabled if you areusingi wai t hdl r. Usei i ntroff to
disable interrupts.

The reason for disabling interrupts is because there may be arace condition
between thei seti ntr andi wai t hdl r and, if you only expect one
interrupt, it might come before thei wai t hdl r. Thismay or may not be the
effect you desire.

For example:

|on| ntr (hpib, act _isr);
isetintr (hpib, | _INTR INTFACT, 1);

iintroff ();
i gpi bpassct! (hpib, ba);
whil e (!done)

iwaithdlr (0);
iintron ();

Chapter 4 89

Programming with HP SICL
Logging HP SICL Error Messages

Logging HP SICL Error Messages

Windows NT

SICL logsinternal messages as Windows NT events. Thisincludes error
messages logged by thel _ERROR_EXI T and | _ERROR _NCEXI T error
handlers. While developing your SICL application or tracking down
problems, you may wish to view these messages. You can do so by starting
the Event Vi ewer utility inthe Admi ni strative Tool s group. Both
system and application messages can be logged to the Event Vi ewer from
SICL. SICL messages are identified either by SI CL LOG or by the driver
name (for example, hp341i 32).

Windows 95 and Windows 3.1

While developing your SICL application or tracking down problemsin
either Windows 95 or Windows 3.1, you may wish to use the Message

Vi ewer utility. This utility provides a debug window to which SICL logs
internal messages during application execution, including those logged by
thel ERROR EXI T and | _ERROR _NCEXI T error handlers. The Message
Vi ewer utility provides menu selectionsfor saving the logged messagesto a
file, and to clear the message buffer.

To start the utility, double-click on the Message Vi ewer iconinthe

HP 1/ O Li brari es program group for Windows 95, or intheHP Sl CL
program group for Windows 3.1. The utility must be started before
execution of the SICL application. It will receive messages while
minimized, however.

90 Chapter 4

Programming with HP SICL
Using Error Handlers

Using Error Handlers

Error handling is supported in C and Visual BASIC. Refer to the following
subsection that applies to your programming language.

Error Handlersin C

When a SICL function call in a C/C++ program resultsin an error, it
typically returns a special value such asa NULL pointer or a non-zero error
code. SICL provides a convenient mechanism for handling errors. SICL
alowsyoutoinstall an error handler for all SICL functions within a C/C++
application.

This allows your application to ignore the return value, and simply permits
the error procedure to detect errors and recover. The error handler is caled
before the function that generated the error completes. It isimportant to note
that error handlers are per process (not per session or per thread).

Thefunctioni oner r or isused to install an error handler. It is defined as
follows:

int ionerror (proc);
void (*proc) ();

Where;

voi d SI CLCALLBACK proc (id, error) ;
I NST id;
i nt error;

Chapter 4 91

Note

Programming with HP SICL
Using Error Handlers

The routine proc is the error handler and is called whenever a SICL error
occurs. Two special reserved values of proc may be passed to the
i onerror function:

| ERROR EXIT This value installs a special error handler which will
log a diagnostic message and then terminate the
process.

| ERROR NCEXIT This value installs a special error handler which will
log a diagnostic message and then allow the
process to continue execution.

This mechanism has substantial advantages over other 1/O libraries, because
error handling code is located away from the center of your application.
This makes the application easier to read and understand.

Custom error handler (callback) functions installed using SICL's

i onerror function in WIN16 applications should be declared using the
SICL modifierSl CLCALLBACK, which is defined as ‘export _far

_pascal "in thesi cl . h file. Failure to do this usually causes a “General
Protection Fault” error at the time the handler is called in 16-bit Windows.

Example declarations:

void SI CLCALLBACK my_err_handl er (INST id, int error) {
/* your code here */
}

Additionally, if you are developing a WIN16 application using the
QuickWin feature provided with Microsoft compilers and are installing a
custom handler, you must also use theadds maodifier with your handler
declaration.

Example declaration for QuickWin applications:

voi d S ALCALLBACK | oadds ny _err_handler(INSTid, int error) {
/* your code here */
}

92 Chapter4

Programming with HP SICL
Using Error Handlers

Error Handlers in Typically in an application, error handling code is intermixed with the 1/O
C Example code. However, with SICL error handling routines, no special error
handling code is inserted between the |/O calls.

Instead, asingle line at the top (calling i oner r or) installs an error handler
that gets called any time an error occurs. In this example, a standard,
system-defined error handler isinstalled that logs a diagnostic message and
exits.

/* errhand. c
Thi s exanpl e denmonstrates how a SICL error handl er
can be installed. */

#i ncl ude <sicl. h>
#i ncl ude <stdio. h>

main ()

I NST dvm
doubl e res;

#if defined(__BCRLANDC) && !defined(__WN32_)
_InitEasyWn(); /* Required for Borland EasyWn prograns */
#endi f

ionerror (I _ERROR EXIT);

dvm = iopen (“hpib7,16");

itimeout (dvm, 10000);

iprintf (dvm, “%s\n”, “MEAS:VOLT:DC?");
iscanf (dvm, “%lf", &res);

printf (“Result is %lf\n”, res);

iclose (dvm);

/*For WIN16 programs, call _siclcleanup before exiting
to release resources allocated by SICL for this
application. This call is a no-op for WIN32
programs.*/

_siclcleanup();

return O;

Chapter 4 93

Programming with HP SICL
Using Error Handlers

The following is an example of writing and implementing your own error
handler.

/* errhand2.c
This program shows how you can install your own error
handl er */
#i ncl ude <sicl. h>
#i ncl ude <stdi o. h>
#i ncl ude <stdlib. h>

voi d SI CLCALLBACK err_handler (INST id, int error) {
fprintf (stderr, “Error: %s\n”, igeterrstr (error));
exit (1);

main () {
INST dvm;
double res;

#if defined(_ BORLANDC_) && !defined(_ WIN32_)
_InitEasyWin(); /* Required for Borland EasyWin programs */
#endif

ionerror (err_handler);

dvm = iopen (“hpib7,16");

itimeout (dvm, 10000);

iprintf (dvm, “%s\n”, “MEAS:VOLT:DC?");
iscanf (dvm, “%lf", &res);

printf (“Result is %lf\n”, res);

iclose (dvm);

[* For WIN16 programs, call _siclcleanup before exiting
to release resources allocated by SICL for this
application. This call is a no-op for WIN32 programs*/

_siclcleanup();

return O;

}

Note If anerror occursiniopen , theid that is passed to the error handler may not
be valid.

94 Chapter4

Programming with HP SICL
Using Error Handlers

Error Handlersin Visual BASIC

Typically in an application, error handling code is intermixed with the 110
code. However, by using Visual BASIC's error handling capabilities, no
special error handling code needs to be inserted between the I/O calls.

Instead, a single line at the tam(Er r or GoTo) installs an error handler in
the subroutine that gets called any time a SICL or Visual BASIC error
occurs.

When a SICL call results in an error, the error is communicated to Visual
BASIC by setting Visual BASIC’Er r variable to the SICL error code, and
Error $ is set to a human-readable string that corresponsrto This
allows SICL to be integrated with Visual BASIC’s built-in error handling
capabilities. SICL programs written in Visual BASIC can set up error
handlers with the Visual BASIOn Error statement.

The SICLi oner r or function for C programs is not used with Visual
BASIC. Similarly, thd _ERROR EXI T andl _ERROR_NCEXI T default
handlers used in C programs are not defined for Visual BASIC.

When an error occurs within a Visual BASIC program, the default behavior
is to display a dialog box indicating the error and then halt the program. If
you want your program to intercept errors and keep executing, you will need
to install an error handler with tit@ Err or statement. For example:

On Error GoTo MyError Handl er

This will cause your program to jump to code at the label

MyEr r or Handl er when an error occurs. Note that the error handling code
must exist within the subroutine or function where the error handler was
declared.

If you don’t want to call an error handler or have your application terminate
when an error occurs, you can use@hekr r or statement to tell Visual
BASIC to ignore errors. For example:

On Error Resume Next

This tells Visual BASIC to proceed to the statement following the statement
in which an error occurs. In this case, you could call the Visual BASIC
function in subsequent lines to find out which error occurred.

Chapter 4 95

Error Handlers in
Visual BASIC
Example

Programming with HP SICL
Using Error Handlers

Visual BASIC error handlers are only active within the scope of the
subroutine or function in which they are declared. Each Visual BASIC
subroutine or function that wants an error handler must declare its own error
handler. Note that thisis different than the way SICL error handlers
installed with i oner ror work in C programs. An error handler installed
withi oner r or remains active within the scope of the whole C program.

For more information on Visual BASIC error handlers, see the section
“Handling Run-Time Errors” in th¥isual BASIC Programmer’s Guide

In the following Visual BASIC example, the error handler displays the error
message in adialog box and then terminates the program. When an error
occurs, the Visual BASIC Er r variableis set to the error code, and the

Er r or $ variableis set to the error message string for the error that occurred.

errhand.bas

Sub Main()

Dim dvm As Integer
Dim res As Double

On Error GoTo ErrorHandler

dvm = iopen(“hpib7,16")

Call itimeout(dvm, 10000)

argcount = ivprintf(dvm, “MEAS:VOLT:DC?” + Chr$(10))
argcount = ivscanf(dvm, “%lf", res)

MsgBox “Result is “ + Format(res)

iclose (dvm)

‘ Tell SICL to cleanup for this task
Call siclcleanup
End

ErrorHandler:
‘ Display the error message
MsgBox “*** Error : “ + Error$, MB_ICON_EXCLAMATION
‘ Tell SICL to cleanup for this task
Call siclcleanup
End
End Sub

96 Chapter4

Programming with HP SICL
Using Locks

Using L ocks

Because SICL allows multiple sessions on the same device or interface, the
action of opening does not mean you have exclusive use. In some casesthis
isnot an issue, but should be a consideration if you are concerned with
program portability.

The SICL i | ock function is used to lock an interface or device. The SICL
i unl ock function is used to unlock an interface or device.

Locks are performed on a per-session (device, interface, or commander)
basis. Also, locks can be nested. The device or interface only becomes
unlocked when the same number of unlocks are done asthe number of locks.
Doing an unlock without alock returns the error | _ERR_NOLOCK.

What does it mean tolock? Locking an interface (from an interface session)
restricts other device and interface sessions from accessing this interface.
Locking a device restricts other device sessions from accessing this device;
however, other interface sessions may continue to access the interface for
thisdevice. Locking acommander (from a commander session) restricts
other commander sessions from accessing this commander.

Caution It is possible for an interface session to access a device locked from a device
session. In such acase, data may be lost from the device session that was
underway.

In particular, be aware that HP Visual Engineering Environment (HP VEE)
applications use SICL interface sessions. Hence, 1/0 operations from these
applications can supercede any device session that has alock on a particular
device.

Not all SICL routines are affected by locks. Some routinesthat simply set or
return session parameters never touch the interface hardware and therefore
work without locks.

For information on using locks in multi-threaded SICL applications over
LAN, see the section, “Using Locks and Multiple Threads over LAN,” in
Chapter 9, Using HP SICL with LAN"

Chapter 4 97

Programming with HP SICL
Using Locks

Lock Actions

If asession triesto perform any SICL function that obeyslockson an
interface or device that is currently locked by another session, the default
action isto suspend the call until the lock isreleased or, if atimeout is set,
until it times out.

This action can be changed with thei set | ockwai t function (see Chapter

12, “HP SICL Language Refererider a full description). If the

i setl ockwait function is called with thtag parameter set to 0 (zero), the
default action is changed. Rather than causing SICL functions to suspend,
an error will be returned immediately.

To return to the default action, to suspend and wait for an unlock, call the
i setl ockwai t function with theflag set to any non-zero value.

Locking in a Multi-User Environment

In a multi-user/multi-process environment where devices are being shared, it
is a good idea to use locking to ensure exclusive use of a particular device or
set of devices. (However, as explained in the previous section, “Using
Locks,” remember that an interface session can access a device locked from
a device session.) In general, it is not friendly behavior to lock a device at
the beginning of an application and unlock it at the end. This can result in
deadlock or long waits by others who want to use the resource.

The recommended way to use locking is per transaction. Per transaction
means that you lock before you setup the device, then unlock after all the
desired data has been acquired. When sharing a device, you cannot assume
the state of the device, so the beginning of each transaction should have any
setup needed to configure the device or devices to be used.

98 Chapter 4

Programming with HP SICL
Using Locks

L ocking Examples

Thefollowing C and Visual BASIC examples show how device locking can
be used to grant exclusive access to a device by an application.

C example:

/* 1 ocking.c
Thi s exanpl e shows how devi ce | ocking can be
used to gain exclusive access to a device*/

#i ncl ude <sicl. h>
#i ncl ude <stdio. h>

mai n()
I NST dvm

char strres[20];
unsi gned | ong actual ;

#if defined(__BCRLANDC) && !defined(__WN32_)
_InitBEasyWn(); // required for Borland EasyWn prograns
#endi f

/* Log nmessage and terninate on error */
ionerror (I _ERROR EXIT);

/* Open the multineter session */
dvm = iopen (“hpib7,16");
itimeout (dvm, 10000);

/* Lock the multimeter device to prevent access from
other applications*/
ilock(dvm);

[* Take a measurement */
iwrite (dvm, “MEAS:VOLT:DC?\n", 14, 1, NULL);

/* Read the results */
iread (dvm, strres, 20, NULL, &actual);

/* Release the multimeter device for use by others */
iunlock(dvm);

Chapter 4 99

Programming with HP SICL
Using Locks

/* NLLL termnate result string and print the results */
/* Thi s techni que assunes the | ast byte sent was a line-feed */
if (actual) {
strres[actual - 1] = (char) O;
printf(‘Resultis %s\n”, stires);
}

/* Close the multimeter session */
iclose(dvm);

IIForWIN16programs, call_sicideanupbefore exitingtorelease
I/ resources allocated by SICL for this application. This call

s ano-op for WIN32 programs.

_siclcleanup();

return O;

}
Visual BASIC example:

‘ locking.bas

Sub Main ()
Dim dvm As Integer
Dim strres As String * 20
Dim actual As Long

‘ Install an error handler
On Error GoTo ErrorHandler

* Open the multimeter session
dvm = iopen(“hpib7,16")
Call itimeout(dvm, 10000)

‘ Lockthemutimeterdevicetopreventaccessfromotherapplications
Call ilock(dvm)

‘* Take a measurement
Calliwrite(dvm,ByVal“MEAS:VOLT:DC?"+Chr$(10), 14, 1,0&)

‘ Read the results
Call iread(dvm,ByVal strres, 20, 0&, actual)

‘ Release the multimeter device for use by others
Call iunlock(dvm)

100 Chapter 4

Programming with HP SICL
Using Locks

‘ Display the results
MsgBox “Result is “ + Left$(strres, actual)

* Close the multimeter session
Call iclose(dvm)

‘ Tell SICL to cleanup for this task
Call siclcleanup

End

ErrorHandler:
‘ Display the error message.
MsgBox “*** Error : “ + Error$
‘* Tell SICL to cleanup for this task
Call siclcleanup

End

End Sub

Chapter 4 101

Programming with HP SICL
Using Locks

102 Chapter 4

Using HP SICL with HP-IB

Note

Using HP SICL with HP-I1B

The HP-1B interface (Hewlett-Packard Interface Bus) is Hewlett-Packard
Company’s implementation of the IEEE 488.1 Bus. Other IEEE 488
versions include GPIB (General Purpose Interface Bus) and IEEE Bus.
GPIB and HP-IB are both used synonymously in the discussions and
examples in this chapter.

This chapter describes in detail how to open a communications session and
communicate with HP-IB devices, interfaces, or controllers. The example
programs shown in this chapter are also provided iQtS&MPLES\ M SC

(for C/C++) andvB\ SAMPLES\ M SC (for Visual BASIC) subdirectories

under the SICL base directory (for example, ur@eérs| CL95 or

C:\ SI CLNT if the default installation directory was used).

This chapter contains the following sections:

® Creating a Communications Session with HP-1B
® Communicating with HP-IB Devices

® Communicating with HP-IB Interfaces

® Communicating with HP-1IB Commanders

® Writing HP-IB Interrupt Handlers

* Summary of HP-1B Specific Functions

Using the HP 82335 HP-IB interface with both SICL and the HP-IB
Command Library at the same time on the same interface is not supported.
No error will be reported, but unexpected results could occur.

104 Chapter5

Using HP SICL with HP-IB
Creating a Communications Session with HP-IB

Creating a Communications Session with
HP-1B

Once you have determined that your HP-IB system is setup and operating
correctly, you may want to start programming with the SICL functions.
First you must determine what type of communications session you need.
The three types of communications sessions are device, interface, and
commander.

Chapter 5 105

Using HP SICL with HP-IB
Communicating with HP-IB Devices

Communicating with HP-IB Devices

The device session allows you direct access to a device without worrying
about the type of interface to which it is connected. The specifics of the
interface are hidden from the user.

Addressing HP-IB Devices

To create a device session, specify the interface logical unit or symbolic

name and a particular device logical addressin the addr parameter of the

i open function. Theinterfacelogical unit and symbolic name are set by

running thel / O Confi g utility fromtheHP 1/ O Li brari es program

group for Windows 95 or Windows NT, or from the HP SI CL program

group for Windows 3.1. See Chapter 2, “Installing and Configuring the HP
I/O Libraries,” in theHP /O Libraries Installation and Configuration Guide

for Windows for information on thé/ O Confi g utility.

The following are example HP-IB addresses for device sessions:
GPIB, 7 A device address corresponding to the device at
primary address 7
hpi b, 3, 2 A device address corresponding to the device at
primary address 3, secondary address 2
SICL supports both primary and secondary addressing on GPIB interfaces.

Remember that the primary address must be between 0 and 30 and that the
secondary address must be between 0 and 30. The primary and secondary
addresses correspond to the HP-IB primary and secondary addresses.

106 Chapter5

Using HP SICL with HP-IB
Communicating with HP-IB Devices

Note If you are connecting to a VvV XI card cage through an HP E1405/06
Command Module or equivalent, the primary address passed to i open
corresponds to the address of the Command Module, and the secondary
address must be specified to select a specific instrument in the card cage.
Secondary addresses of 0, 1, 2, ... 30 correspond to VX1 instruments at
logical addresses of 0, 8, 16, ... 240, respectively. See “HP-IB Device
Session Examples” later in this chapter for an example program of
communicating with a VXI card cage over the HP-IB interface.

The following are examples of opening a device session with an HP-I1B
device at bus address 16.

C example:

I NST dmm
dmm = iopen (“hpib,16");

Visual BASIC example:

Dim dmm As Integer
dmm = iopen (“hpib,16")

Chapter 5 107

HP-IB Device
Session Interrupts

HP-IB Device
Sessions and
Service Requests

Using HP SICL with HP-IB
Communicating with HP-IB Devices

HP SICL Function Support with HP-1B Device Sessions

The following describes how some SICL functions are implemented for
HP-IB device sessions. The data transfer functions work only when the HP-
IB interface is the Active Controller. Passing control to another HP-IB
device causes this device to lose active control.

iwite Causes all devices to untalk and unlisten. It sends this
controller’s talk address followed by unlisten, and then the
listen address of the corresponding device session. Then it
sends the data over the bus.

iread Causes all devices to untalk and unlisten. It sends an
unlisten, then sends this controller’s listen address followed
by the talk address of the corresponding device session.
Then it reads the data from the bus.

i readstb Performs a GPIB serial poll (SPOLL).
itrigger Performs an addressed GPIB group execute trigger (GET).

i clear Performs a GPIB selected device clear (SDC) on the
device corresponding to this session.

There are no device-specific interrupts for the HP-IB interface.

HP-1B device sessions support Service Requests (SRQs). On the HP-IB
interface, when one device issues an SRQ, the library will inform all HP-1B
device sessionsthat have SRQ handlersinstalled (seei onsr g in Chapter 12,
“HP SICL Language Refererige This is an artifact of how HP-IB handles
the SRQ line. The interface cannot distinguish which device requested
service; therefore, the library acts as if all devices require service. Your
SRQ handler can retrieve the devicgatus byte by using the r eadst b
function. For more information, see the section “Writing HP-IB Interrupt
Handlers” later in this chapter.

108 Chapter5

Using HP SICL with HP-IB
Communicating with HP-IB Devices

HP-IB Device Session Examples

The following examples illustrate communicating with an HP-IB device
session. These examples open two HP-IB communications sessions with
VX1 devices (through a VXI Command Module). Then ascanlistissent to
aswitch, and measurements are taken by the multimeter every time a switch
is closed.

C example:

/* hpi bdev. c
Thi s exanpl e programsends a scan list to a switch and
whi | e | oopi ng cl oses channel s and takes neasurenents. */

#i ncl ude <sicl. h>
#i ncl ude <stdi o. h>

mai n()

I NST dvm
I NST sw;

doubl e res;
int i;

#if defined(_ BCRLANDC) && !'defined(__ WN32_)
_InitBEasyWn();/* Required for Borland EasyWn prograns */
#endi f

/* Log nmessage and terninate on error */
ionerror (I_ERROR EXIT);

/* Open the multineter and switch sessions*/
dvm =iopen (“hpib7,9,3");

sw = iopen (“hpib7,9,14");

itimeout (dvm, 10000);

itimeout (sw, 10000);

[*Set up trigger*/
iprintf (sw, “TRIG:SOUR BUS\n");

Chapter 5 109

Using HP SICL with HP-IB
Communicating with HP-IB Devices

/*Set up scan list*/
iprintf (sw,”"SCAN (@100:103)\n");
iprintf (sw,”INIT\n");

for (i=1;i<=4;i++)

[* Take a measurement */
iprintf (dvm,”"MEAS:VOLT:DC?\n");

/* Read the results */
iscanf (dvm,"%lf",&res);

I* Print the results */
printf (“Result is %lf\n”,res);

[* Trigger to close channel */
iprintf (sw, “TRIG\n");

[* Close the multimeter and switch sessions */
iclose (dvm);
iclose (sw);

/*For WIN16 programs, call _siclcleanup before exiting
to release resources allocated by SICL for this
application. This callis a no-op for WIN32
programs*/

_siclcleanup();

return O;

}

110 Chapter5

Using HP SICL with HP-IB
Communicating with HP-IB Devices

Visual BASIC example:

‘hpibdev.bas
* This example program sends a scan list to a switch and
* while looping closes channels and takes measurements.

Sub Main ()
Dim dvm As Integer
Dim sw As Integer
Dim res As Double
Dim i As Integer
Dim argcount As Integer

 Open the multimeter and switch sessions
dvm = iopen(“hpib7,9,3")

sw = iopen(“hpib7,9,14")

Call itimeout(dvm, 10000)

Call itimeout(sw, 10000)

‘ Set up trigger
argcount = ivprintf(sw, “TRIG:SOUR BUS" + Chr$(10))

‘ Set up scan list
argcount = ivprintf(sw, “SCAN (@100:103)" + Chr$(10))

argcount = ivprintf(sw, “INIT” + Chr$(10))

‘ Display form1 and print voltage measurements
form1.Show

Fori=1To4
‘ Take a measurement
argcount = ivprintf(dvm, “MEAS:VOLT:DC?” + Chr$(10))

‘ Read the results
argcount = ivscanf(dvm, “%lf", res)

‘ Print the results
form1.Print “Result is “ + Format(res)

‘ Trigger to close channel
argcount = ivprintf(sw, “TRIG” + Chr$(10))
Next i

Chapter 5 111

Using HP SICL with HP-IB
Communicating with HP-IB Devices

‘ Close the voltmeter session
Call iclose(dvm)

‘ Close the switch session
Call iclose(sw)

‘ Tell SICL to cleanup for this task
Call siclcleanup

End Sub

112 Chapter5

Using HP SICL with HP-IB
Communicating with HP-IB Interfaces

Communicating with HP-IB Interfaces

Interface sessions allow you direct, low-level control of the specified
interface. You must do all the bus maintenance for the interface. Thisalso
implies that you know alot about the interface. Additionally, when using
interface sessions, you need to use interface-specific functions. The use of
these functions means that the program can not be used on other interfaces
and, therefore, becomes less portable.

Addressing HP-IB Interfaces

To create an interface session on your HP-IB system, specify the particular
interface logical unit or symbolic namein the addr parameter of thei open
function. The interface logical unit and symbolic name are set by running
thel / O Confi g utility fromtheHP |/ O Li brari es program group for
Windows 95 or Windows NT, or from the HP SI CL program group for
Windows 3.1. See Chapter 2, “Installing and Configuring the HP I/O
Libaries,” in theHP 1/O Libraries Installation and Configuration Guide for
Windows for information on theé/ O Confi g utility.

The following are example interface addresses:

GPIB An interface symbolic name.
hpib An interface symbolic name.
gpib2 An interface symbolic name.
IEEE488 An interface symbolic name.
7 An interface logical unit.

The following are examples that open an interface session with the HP-IB
interface.

C example:

I NST hpi b;
hpib = iopen (“hpib”);

Chapter 5 113

Using HP SICL with HP-IB
Communicating with HP-IB Interfaces

Visual BASIC example:

Dim hpi b As | nteger
hpib = iopen (“hpib”)

HP SICL Function Support with HP-1B Interface
Sessions

The following describes how some SICL functions are implemented for
HP-IB interface sessions.

iwite Sends the specified bytes directly to the interface without
performing any bus addressing. The i wri t e function
always clears the ATN line before sending any bytes, thus
ensuring that the GPIB interface sends the bytes as data,
not command bytes.

i read Reads the data directly from the interface without
performing any bus addressing.

itrigger Performs a broadcast GPIB group execute trigger (GET)
without additional addressing. Use this function with
i gpi bsendcnd to send a UNL followed by the appropriate
device addresses. This will allow the i t ri gger function
to be used to trigger multiple GPIB devices
simultaneously.

Passing the | _TRI G_STD value to the ixtrig function also
causes a broadcast GPIB group execute trigger (GET).
There are no other valid values for the i xt ri g function.

i clear Performs a GPIB interface clear (pulses IFC), which resets
the interface.

HP-IB Interface There are specific interface session interrupts that can be used. See
Session Interrupts jsetintr ~ in Chapter 12, P SICL Language Refererider information
on the interface session interrupts for HP-IB. Also see the section “Writing
HP-IB Interrupt Handlers” later in this chapter for more information.

114 Chapter5

Using HP SICL with HP-IB
Communicating with HP-IB Interfaces

HP-IB Interface HP-IB interface sessions support Service Requests (SRQs). On the HP-IB

Sessions and
Service Requests

interface, when one device issues an SRQ, the library will inform all HP-1B
interface sessions that have SRQ handlersinstalled (seei onsr q in Chapter

12, “HP SICL Language Refereri¢eFor more information, see the section
“Writing HP-IB Interrupt Handlers” later in this chapter.

HP-IB Interface Session Examples

The following example programs retrieve the HP-IB interface bus status
information and displays it for the user.

C example:

/* hpibstat.c
The followi ng exanple retrieves and di spl ays
HP-1B bus status information. */

#i ncl ude <stdio. h>
#i ncl ude <sicl. h>

mai n()

{
I NST id; /* session id */
int rem /* renote enabl e */
int srq; /* service request */
i nt ndac; /* not data accepted */
int sysctlr; [/* systemcontroller */
int actctlr; /* active controller */
int tal ker; /* tal ker */
int listener; /* |istener */
i nt addr; /* bus address * [

#if defined(__BORLANDC) && !defined(__WN32_)
_InitEasyWn(); /* Required for Borland EasyWn prograns */
#endi f

/* exit process if SICL error detected */
i onerror (|l _ERROR EXIT);

/* open HP-IB interface session */
id = iopen(“hpib”);
itimeout (id, 10000);

Chapter 5 115

Using HP SICL with HP-IB
Communicating with HP-IB Interfaces

/* retrieve HP-1B bus status */

i gpi bbusstatus(id, |_GPlB _BUS REM &rem;

i gpi bbusstatus(id, |_GPlB _BUS SRQ &srq);

i gpi bbusstatus(id, |_GPlB BUS NDAC, &ndac) ;

i gpi bbusstatus(id, | _GPIB BUS SYSCTLR, &sysctlr);

i gpi bbusstatus(id, | _GPIB BUS ACTCTLR, &actctlr);

i gpi bbusstatus(id, |_GPlB BUS TALKER, &t al ker);

i gpi bbusstatus(id, |_GPIB BUS LI STENER, &l i stener);
i gpi bbusstatus(id, |_GPlB_BUS ADDR, &addr) ;

/* display bus status */

printf(“%6-5s%6-55%6-55%0-55%-55%-55%-55%-5s\n”, “REM", “SRQ",
HNDCH, HSYSH’ “AC-l—", “TLKH’ “LTNH, HADDRH);

printf(“%62d%65d%65d%65d%65d%5d%5d%6d\n", rem, srg, ndac,
sysctlr, actctlr, talker, listener, addr);

/*For WIN16 programs, call _siclcleanup before exiting
to release resources allocated by SICL for this
application. This call is no-op for WIN32 programs.*/

_siclcleanup();

return O;

}

116 Chapter5

Using HP SICL with HP-IB
Communicating with HP-IB Interfaces

Visual BASIC example:

‘hpibstat.bas
‘ The following example retrieves and displays
* HP-IB bus status information.
Sub main ()
Dim id As Integer * session id
Dim remen As Integer ‘ remote enable
Dim srq As Integer ‘ service request
Dim ndac As Integer ‘ not data accepted
Dim sysctlr As Integer* system controller
Dim actctlr As Integer* active controller
Dim talker As Integer ‘ talker
Dim listener As Integer’ listener
Dim addr As Integer ‘ bus address
Dim header As String ‘ report header
Dim values As String ‘ report output

* Open HP-IB interface session
id = iopen(“hpib7")
Call itimeout(id, 10000)

‘ Retrieve HP-IB bus status
Call igpibbusstatus(id, |_GPIB_BUS_REM, remen)
Call igpibbusstatus(id, |_GPIB_BUS_SRQ, srq)
Call igpibbusstatus(id, |_GPIB_BUS NDAC, ndac)
Call igpibbusstatus(id, |_GPIB_BUS SYSCTLR, sysctlr)
Call igpibbusstatus(id, | GPIB_BUS ACTCTLR, actctlr)
Call igpibbusstatus(id, |_GPIB_BUS_TALKER, talker)
Call igpibbusstatus(id, |_GPIB_BUS_LISTENER, listener)
Call igpibbusstatus(id, |_GPIB_BUS_ADDR, addr)

‘ Display formZ1 and print results
form1.Show
form1.Print “REM”; Tab(7); “SRQ"; Tab(14); “NDC”; Tab(21);
“SYS'; Tab(28);"ACT", Tab(35); TLK"; Tab(42);"LTN"; Tab(49);
“ADDR"
formL.Print remen; Tab(7); srg; Tab(14); ndac; Tab(21);
sysctir; Tab(28); actctlr; Taby(35); talker; Tab(42); listener,
Tab(49); addr

‘ Tell SICL to cleanup for this task
Call siclcleanup

End Sub

Chapter 5 117

Using HP SICL with HP-IB
Communicating with HP-IB Commanders

Communicating with HP-IB Commanders

Commander sessions are intended for use on HP-IB interfaces that are not
active controller. Inthis mode, acomputer that is not the controller is acting
like a device on the HP-I1B bus. In acommander session, the data transfer
routines only work when the GPIB interface is not active controller.

Addressing HP-IB Commanders

To create a commander session on your HP-IB interface, specify the
particular interface logical unit or symbolic namein the addr parameter
followed by acomma and the string cndr inthei open function. The
interface logical unit and symbolic name are set by running the 1 / O

Confi g utility fromtheHP 1/ 0O Li brari es program group for Windows
95 or Windows NT, or fromthe HP SI CL program group for Windows 3.1.
See Chapter 2, “Installing and Configuring the HP I/O Libraries,” irHRe
I/O Libraries Installation and Configuration Guide for Windows for
information on thé / O Confi g utility.

The following are example HP-IB addresses for commander sessions:

GPIB,cmdr A commander session with the GPIB interface.
hpib2,cmdr A commander session with the hpib2 interface.
7,cmdr A commander session with the interface at logical unit 7.

The following are examples that open a commander session with the HP-IB
interface.

C example:

I NST hpi b;
hpib = iopen (“hpib,cmdr”);

Visual BASIC example:

Dim hpib As Integer
hpib = iopen (“hpib,cmdr”)

118 Chapter5

Using HP SICL with HP-IB
Communicating with HP-IB Commanders

HP SICL Function Support with HP-1B Commander
Sessions

The following describes how some SICL functions are implemented for
HP-1B commander sessions.

iwite If the interface has been addressed to talk, the data is
written directly to the interface. If the interface has not been
addressed to talk, it will wait to be addressed to talk before
writing the data.

i read If the interface has been addressed to listen, the data is
read directly from the interface. If the interface has not been
addressed to listen, it will wait to be addressed to listen
before reading the data.

i setstb Sets the status value that will be returned on ai readst b
call (that is, when this device is SPOLLed). Bit 6 of the
status byte has a special meaning. If bit 6 is set, the SRQ
line will be set. If bit 6 is clear, the SRQ line will be cleared.

HP-IB Commander There are specific commander session interrupts that can be used. See
Session Interrupts j set i ntr in Chapter 12, P SICL Language Refererider information
on the commander session interrupts. Also see the following section,
“Writing
HP-IB Interrupt Handlers,” for more information.

Chapter 5 119

Using HP SICL with HP-IB
Writing HP-IB Interrupt Handlers

Writing HP-1B Interrupt Handlers

This section provides some additional information you should be aware of
when writing interrupt handlers for HP-IB applicationsin SICL.

Multiple! _| NTR_GPI B_TLAC Interrupts

Thisinterrupt occurs whenever adevice has been addressed to talk or untalk,
or adevice has been addressed to listen or unlisten. Due to hardware
limitations, your SICL interrupt handler may be called twice in response to
any of these events.

Your HP-1B application should be written to handl e this situation gracefully.
This can be done by keeping track of the current talk/listen state of the
interface card, and ignoring the interrupt if the state does not change. For
more information, see the secval parameter definition of thei seti ntr
function in Chapter 12,HMP SICL Language Refererice

Handling SRQs from Multiple HP-1B Instruments

HP-IB is a multiple-device bus, and SICL allows multiple device sessions
open at the same time. On the HP-IB interface, when one device issues a
Service Request (SRQ), the library will infoeth HP-IB device sessions

that have SRQ handlers installed (seasr q in Chapter 12, P SICL
Language Referen®e This is an artifact of how HP-IB handles the SRQ
line; the underlying HP-IB hardware does not support session-specific
interrupts like VXI does. Therefore, your application must reflect the nature
of the HP-IB hardware if you expect to reliably service SRQs from multiple
devices on the same HP-IB interface.

120 Chapter5

Using HP SICL with HP-IB
Writing HP-IB Interrupt Handlers

It isvital that you never exit an SRQ handler without first clearing the SRQ
line. If the multiple devices are al controlled by the same process, the
easiest technique isto service al devices from one handler. The pseudo-
code for thisis:

while (srg_asserted) {
serial _poll (devicel)
i f (needs_service) service_devicel
serial _poll (device?2)
i f (needs_service) service_device2

check _SRQ li ne

}
This algorithm loops through all the device sessions and does not exit until
the SRQ lineisreleased (not asserted). The following example shows a
SICL program segment which implements this algorithm. Checking the
state of the SRQ line requires an interface session. Only one device session
needs to executei onsr q because that handler is invoked regardless of
which instrument asserted the SRQ line. Assuming |EEE 488 compliance,
anireadst b is all that is needed to clear the device’s SRQ.

Chapter 5 121

Using HP SICL with HP-IB
Writing HP-IB Interrupt Handlers

/* Must be gl obal */
I NST idl, id2, bus;

voi d handl er (dumy)

I NST dumy;

{
int srg_asserted = 1;
unsi gned char statusbyte;

/* Service all sessions in turn until no one is
requesting service */
while (srg_asserted) {
i readstb(idl, &statusbyte);
if (statusbyte & SRQ BIT) {
/* Actual service actions depend upon application */
iscanf(idl, “%f", &datal);

ireadstb(id2, &statusbyte);

if (statusbyte & SRQ_BIT){

iscanf(id2, “%f”, &data2);

}

igpibbusstatus(bus, I_GPIB_BUS_SRQ, &srq_asserted);
}

}

main() {
)* Device sessions for instruments */
id1 = iopen(“hpib, 177);
id2 = iopen(“hpib, 18");

[* Interface session for SRQ test */
bus = iopen(“hpib”);

/* Only one handler needs to be installed */
ionsrq(id1, handler);

122 Chapter5

Using HP SICL with HP-IB
Writing HP-IB Interrupt Handlers

Since the program cannot leave the handler until all devices have released
SRQ, it isrecommended that the handler do as little as possible for each
device. The previous example assumed that only onei scanf was needed to
service the SRQ. If lengthy operations are needed, a better techniqueis
simply to performthei r eadst b and set aflag in the handler. Then the
main program can test the flags for each device and perform the more
lengthy service.

Even if the different device sessions arein different processes, it is still
important to stay in the SRQ handler until the SRQ lineis released.
However, itisnot likely that a process which only knows about Device A
can do anything to make Device B release the SRQ line. Insucha
configuration, a single unserviced instrument can effectively disable SRQs
for all processes attempting to use that interface. Again, thisisahardware
characterigtic of HP-1B. The only way to ensure true independence of
multiple HP-1B processes is to use multiple HP-IB interfaces.

Chapter 5 123

Using HP SICL with HP-IB
Summary of HP-IB Specific Functions

Summary of HP-IB Specific Functions

Table 5-1. SICL GPIB Functions

Function Name Action
i gpi bat nct | Sets or clears the ATN line
i gpi bbusaddr Changes bus address
i gpi bbusst at us Returns requested bus data

i gpi bgettldel ay Returns the current T1 setting for the interface

igpibllo Sets bus in Local Lockout Mode
i gpi bpassct | Passes active control to specified address
i gpi bppol | Performs a parallel poll on the bus

i gpi bppol I config Configures device for PPOLL response

i gpi bppol | resp Sets PPOLL state
i gpi brenctl Sets or clears the REN line
i gpi bsendcnd Sends data with ATN line set

i gpi bsett ldel ay Sets the T1 delay value for this interface

124 Chapter5

Using HP SICL with GPIO

Using HP SICL with GPIO

GPIO isapardld interface that is flexible and allows a variety of custom
connections. Although GPIO typically requires more time to configure than
HP-1B, its speed and versatility make it the perfect choice for many tasks.

Note GPIO isonly supported with SICL on Windows 95 and Windows NT.

GPIO is not supported with SICL over LAN.

This chapter describes in detail how to open a communications session and
communicate with an instrument over a GPIO connection. The example
programs shown in this chapter are also provided in the C\ SAMPLES\ M SC”
(for C/C++) andvB\ SAMPLES\ M SC” (for Visual BASIC) subdirectories
under the SICL base directory (for example, ur@eérs| CL95” or

C:\ SI CLNT if the default installation directory was used).

This chapter contains the following sections:
® Creating a Communications Session with GPIO
® Communicating with GPIO Interfaces

* Summary of GPIO Specific Functions

126 Chapter 6

Using HP SICL with GPIO
Creating a Communications Session with GPIO

Creating a Communications Session with
GPIO

Once you have configured your system for GPIO communications, you can
start programming with the SICL functions. If you have programmed GPIO
before, you will probably want to open the interface and start sending
commands.

With HP-IB, there can be multiple devices on asingle interface. These
interfaces support a connection called a device session. With GPIO, only
one device is connected to the interface. Therefore, you communicate with
GPIO devices using an interface session.

Chapter 6 127

Using HP SICL with GPIO
Communicating with GPIO Interfaces

Communicating with GPIO I nterfaces

Interface sessions are used for GPIO data transfer, interrupt, status, and
control operations. When communicating with a GPIO interface session,
you specify the interface name.

Addressing GPIO Interfaces

To create an interface session on GPIO, specify the interface logical unit or
symbolic namein the addr parameter of thei open function. The interface
logical unit and symbolic name are defined by runningthel / O Confi g
utility fromtheHP |/ O Li brari es program group. See Chapter 2,
“Installing and Configuring the HP 1/O Libraries,” in thP |/O Libraries
Installation and Configuration Guide for Windows for information on the
I/ O Confi g utility.

The following are example addresses for GPIO interface sessions:

gpio An interface symbolic name

12 Aninterface logical unit

The following example opens an interface session with the GPIO interface:

INST intf;
intf = iopen (“gpio”);

128 Chapter 6

Using HP SICL with GPIO
Communicating with GPIO Interfaces

HP SICL Function Support with GPIO Interface

Sessions

The following describes how some SICL functions are implemented for
GPIO interface sessions.

iwite,
i read

i printf,
i scanf

iternchr

ixtrig

itrigger

i cl ear

The size parameters for non-formatted 1/O functions are
always byte counts, regardless of the current data width of
the interface.

All formatted I/O functions work with GPIO. When
formatted 1/O is used with 16-bit data widths, the formatting
buffers re-assemble the data as a stream of bytes. On
Windows 95, these bytes are ordered: high-low-high-low...
Because of this “unpacking” operation, 16-bit data widths
may not be appropriate for formatted I/O operations. For

i scanf termination, an END value must be specified using
i gpi octrl.See Chapter 12, “HP SICL Language
Reference” for details.

With 16-bit data widths, only the low (least-significant) byte
is used.

Provides a method of triggering using either the CTLO or
CTL1 control lines. This function pulses the specified
control line for approximately 1 or 2 microseconds. The
following constants are defined:

| _TRI G _STD Pulse CTLOline

| _TRIG GPI O CTLO Pulse CTLO line

| _TRIG GPIOCTL1 Pulse CTL1 line

Sameasixtrig (I _TRI G_STD). Pulses the CTLO control
line.

Pulses the P_RESET line for at least 12 microseconds,
aborts any pending writes, discards any data in the receive
buffer, and resets any error conditions. Optionally clears
the Data Out port, depending upon the configuration
specified via the I/O Config utility.

Chapter 6

129

Using HP SICL with GPIO
Communicating with GPIO Interfaces

i onsrq

i readstb

Installs a service request handler for this session. The
concept of service request (SRQ) originates from HP-IB.
On an HP-IB interface, a device can request service from
the controller by asserting a line on the interface bus. On
GPIO, the EIR line is assumed to be the service request
line.

Chapter 12, “HP SICL Language Reference” says that

i readst b is for device sessions only. Since GPIO has no
device sessions, i r eadst b is allowed with GPIO interface
sessions. The interface status byte has bit 6 set if EIR is
asserted; otherwise, the status byte is 0 (zero). This allows
normal SRQ programming techniques in GPIO SRQ
handlers.

GPIO Interface There are specific interface session interrupts that can be used. See
Session Interrupts j set i ntr in Chapter 12, P SICL Language Refererider information
on the interface session interrupts for GPIO.

130

Chapter 6

Using HP SICL with GPIO
Communicating with GPIO Interfaces

GPIO Interface Session Examples

C example:

/* gpi oneas. c

This program does the foll ow ng:

- Oeates a GPIO session with tineout and error checking
- Signals the device with a CTLO pul se

- Reads the device’s response using formatted I/O */

#include <sicl.h>
main()

INST id; /* interface session id */
float result; /* data from device */

#if defined (__ BORLANDC__) && !defined (__ WIN32_)
_InitEasyWin(); /*required for Borand EasyWin programs ¥/
#endif

/* log message and exit program on error */
ionerror(l_ERROR_EXIT);

/* open GPIO interface session, with 3-second timeout*/
id = iopen(“gpio”);
itimeout(id, 3000);

* setup formatted I/O configuration */
igpiosetwidth(id, 8);
igpioctrl(id, |_GPIO_READ_EOI, ‘\n’);

/* monitor the device’s PSTS line */
igpioctrl(id, |_GPIO_CHK_PSTS, 1);

/* signal the device to take a measurement */
itrigger(id);

[* get the data */
iscanf(id, “%f%*t", &result);
printf(“Result = %f\n”, result);

Chapter 6 131

Using HP SICL with GPIO
Communicating with GPIO Interfaces

/* For WN16 applications, call _siclcleanup before
exiting to rel ease resources allocated by SICL for this
application. This call is a no-op for WN32 applications. */

_siclcleanup();

/* close session */
iclose (id);

132 Chapter 6

Using HP SICL with GPIO
Communicating with GPIO Interfaces

Visual BASIC example:

€173779373379999999999999999999999999999999999999333333

* This program does the following:

* - Creates a GPIO session with timeout and error checking
‘ - Signals the device with a CTLO pulse

‘ - Reads the device’s response using formatted I/O

€17377937937999999999999999999999999999999999999933339)

Sub cmdMeas_Click ()

Dim id As Integer ‘ device session id

Dim retval As Integer ‘ function return value
Dim buf As String ‘ buffer for displaying
Dim real_data As Double ‘ data from device

Set up an error handler within this subroutine that will
be called if a SICL error occurs.
On Error GoTo ErrorHandler

‘ Disable the button used to initiate 1/O while I/O is
being performed.
cmdMeas.Enabled = False

Open an interface session using a known symbolic name
id = iopen(“gpiol2”)

Set the I/O timeout value for this session to 3 seconds
Call itimeout(id, 3000)

Setup formatted I/O configuration
Call igpiosetwidth(id, 8)
Call igpioctrl(id, |_GPIO_READ_EOI, 10)

Signal the device to take a measurement
Call itrigger(id)

‘ Get the data
retval = ivscanf(id, “%lf%*t", real_data)

Display the response as string in a Message Box
buf = Str$(real_data)
retval = MsgBox(buf, MB_OK, “GPIO Data”)

Close the device session.
Call iclose(id)

Chapter 6 133

Using HP SICL with GPIO
Communicating with GPIO Interfaces

‘ Enable the button used to initiate |/O
cmdMeas.Enabled = True

Exit Sub

ErrorHandler:
‘ Display the error message string in a Message Box
retval = MsgBox(Error$, MB_ICONEXCLAMATION, “SICL Error”)

‘ Close the device session if iopen was successful.
Ifid <> 0 Then
iclose (id)
End If

* Enable the button used to initiate I/O
cmdMeas.Enabled = True
Exit Sub

End Sub

€39939993399)

* The following routine is called when the application’s
* Start Up form is unloaded. It calls siclcleanup to
‘ release resources allocated by SICL for this
‘ application.
Sub Form_Unload (Cancel As Integer)

Call siclcleanup * Tell SICL to clean up for this task
End Sub

134 Chapter 6

Using HP SICL with GPIO
Communicating with GPIO Interfaces

GPIO Interrupts Example

/* gpiointr.c
Thi s program does the foll ow ng:
- Creates a GPIO session with error checking
- Installs an interrupt handl er and enables EIR interrupts
- Wiits for EIR, invokes the handl er for each interrupt
*/

#i ncl ude <sicl. h>

voi d SI CLCALLBACK handl er (i d, reason, sec)
I NST i d;
i nt reason, sec;

if (reason == 1_INTR GPIO EIR) {
printf(“EIR interrupt detected\n”);

* Proper protocol is for the peripheral device to hold
* EIR asserted until the controller “acknowledges” the
* intemupt. The method for acknowledging and/or responding
* toEIR isvery device-dependent. PerhapsaCTLxlineis
* pulsed, or datais read, etc. The response should be
* executed at this point in the program.
*/
}
else
printf(“Unexpected Interrupt; reason=%d\n”, reason);

main()
INST intf; /* interface session id */

#if defined (__BORLANDC__) && !defined (__WIN32_)
_InitEasyWin(); fr equired for Borland EasyWin programs*/
#endif

* log message and exit program on error */
ionerror(l_ERROR_EXIT);

Chapter 6 135

Using HP SICL with GPIO
Communicating with GPIO Interfaces

/* open GPIOinterface session */
intf = iopen(“gpio”);

/* suspend interrupts until configured */
iintroff();

[* configure interrupts */
ionintr(intf, handler);
isetintr(intf, | INTR_GPIO_EIR, 1);

[* wait for interrupts */
printf(“Ready for interrupts\n”);
while (1) {
iwaithdlIr(0); * optionaltimeoutcanbe specifiedhere*/
}

Fwaithdlr performs an automatic iintron(). if your program

* does concurrent processing, instead of waiting, then you need
*to execute iintron() when you are ready for interrupts.

#

FThissimplified example loops forever. Mostreal applications
*would have termination conditions that cause the loop to exit.
*
iclose(id);
/* For WIN16 applications, call _siclcleanup before
exiting to release resources allocated by SICL for

this application. This call is a no-op for WIN32
applications. */

_siclcleanup();

136 Chapter 6

Using HP SICL with GPIO
Summary of GPIO Specific Functions

Summary of GPIO Specific Functions

Function Name

Action

i gpi octrl Sets the following characteristics of the GPIO
interface:
Request Characteristic Settings
| _GPI O_AUTO_HDSK Auto-Handshake mode lor0
| _GPlI O_AUX Auxiliary Control lines 16-bit mask
| _GPI O CHK_PSTS Check PSTS beforeread/ 1lor0

| _GPI O CTRL

| _GPI O DATA

| _GPI O PCTL_DELAY
| _GPI O POLARI TY

| _GPI O READ_CLK

| _GPl O_ READ_EOI

| _GPI O SET_PCTL

write

Control lines

Data Output lines
PCTL delay time
Logical polarity

Data input latching

END termination pattern

Start PCTL handshake

| _GPIO_CTRL_CTLO
| _GPIO CTRL_CTL1

8-bit or 16-bit mask
0-7
0-31

(See HP SICL
Reference Manual)

| _GPIO EO _NONE
or 8-bit or 16-bit mask

1

i gpi ogetw dth

ports.

i gpi osetw dth

Either 8 or 16.

Returns the current width (in bits) of the GPIO data

Sets the width (in bits) of the GPIO data ports.

Chapter 6

137

Using HP SICL with GPIO
Summary of GPIO Specific Functions

Function Name Action
i gpi ost at Gets the following information about the GPIO
interface:
Request Characteristic Value

| GPI O CTRL Control Lines | _GPI O CTRL_CTLO
| GPIOCTRL_CTL1

| _GPlI O_DATA Data In lines 16-bit mask

I _GPI O I NFO GPIO information | _GPI O AUTO HDSK
| _GPlI O CHK PSTS
| GPIO EIR
| _GPI O ENH_MODE
| _GPI O PSTS
| _GPI O READY

| _GPI O_READ EA END termination pattern | _GPI O_EQ _NONE
or 8-bit or 16-bit mask

| _GPlI O_STAT Status lines | _GPI O STAT_STIO
| _GPI O_STAT_STI 1

138 Chapter 6

Using HP SICL with VXI

Using HP SICL with VXI

This chapter explains how to use SICL to communicate over the VXIbus.
The example programs shown in this chapter are also provided in the

C\ SAMPLES\ M SC subdirectory under the SICL base directory (for
example, under C: \ SI CL95 or C: \ SI CLNT if the default installation
directory was used).

This chapter contains the following sections:

Creating a Communications Session with V XI|
Communicating with VXI Devices

Communicating with VXI Interfaces

Communicating with VME Devices

Looking at HP SICL Function Support with V XI
Considering VXI Backplane Memory /O Performance
Using V XI Specific Interrupts

Summary of VX1 Specific Functions

140 Chapter7

Using HP SICL with VXI
Creating a Communications Session with VXI

Creating a Communications Session with
VXI

Before you start programming your VX1 system, ensure that the system is
set up and operating correctly.

To begin programming your VXI system, you must determine what type of
communication session you need. The two supported VXI communication
sessions are as follows:

Device Session The device session allows you direct access to a
device without worrying about the type of interface
to which it is connected.

Interface Session An interface session allows direct low-level control
of the specified interface. This gives you full control
of the activities on a given interface, such as VXI.

Device sessions are the recommended method for communicating while
using SICL. They provide the highest level of programming, best overall
performance, and best portability.

Note Commander Sessions are not supported with VX1 interfaces.

Chapter 7 141

Using HP SICL with VXI
Communicating with VXI Devices

Communicating with VXI Devices

If you are going to use SICL functions to communicate directly with V XI
devices, you must first be aware of the two different types of VXI devices:

Message-Based Message-based devices have their own processors
which allow them to interpret the high-level SCPI
(Standard Commands for Programmable
Instruments) commands. While using SICL, you
simply place the SCPI command within your SICL
output function call, and the message-based device
interprets the SCPI command.

Register-Based The register-based device typically does not have a
processor to interpret high-level commands; and
therefore, only accepts binary data. Use the
following methods to program register-based
instruments:

® |nterpreted SCPI - Usethe SICL i scpi
interface and program using high-level SCPI
commands. 1-SCPI interprets the high-level
SCPI commands and sends the data to the
instrument.

®* Register programming - Do register peeks and
pokes and program directly to the device’s
registers with thexi interface.

Note Interpreted SCPI (I-SCPI) is supported over LAN. However, register
programming (i map, i peek, i poke, and so forth) is not supported over
LAN.

[-SCPI runson the LAN server if used in a LAN-based system.

142 Chapter7

Note

Using HP SICL with VXI
Communicating with VXI Devices

Other HP Products:

®* HP Compiled SCPI - Use the C-SCPI product and program with high-
level SCPI commands (achieve higher throughput as well).

® HP Command Module - Use a Command Module to interpret the high-
level SCPI commands. The hpi b interface is used with a Command

Module. A Command Module may also be accessed over aLAN using a
LAN-to-HPIB gateway, such as the HP E2050 LAN/HP-1B Gateway.

Programming with register-based and message-based devicesisdiscussed in
further detail later in this section.

You can program a V Xlbus system that is mixed with both message-based
and register-based devices. To do this, open a communications session for
each device in your system and program as shown in the following sections.

M essage-Based Devices

M essage-based devices have their own processors which allow them to
interpret the high-level SCPI commands. While using SICL, you simply
place the SCPI command within your SICL output function call and the
message-based device interprets the SCPI command. SICL functions used
for programming message-based devicesincludei read,iwri t e,

i printf,iscanf,andsoforth.

Chapter 7 143

Using HP SICL with VXI
Communicating with VXI Devices

Note If your message-based device has shared memory, you can access the
device’s shared memory by doing register peeks and pokes. See “Register-
Based Devices” later in this chapter for information on register
programming.

Addressing VXI To create a device session, specify either the interface symbolic name or
Messag%'svaiigg logical unit and a particular device’s address inatidr parameter of the
i open function. The interface symbolic name and logical unit are set by
running the / O Confi g utility from theHP 1/ O Li brari es program
group. See Chapter 2, “Installing and Configuring the HP 1/O Libraries,” in
theHP 1/O Libraries Instalation and Configuration Guide for Windows for
information on the / O Confi g utility.

The following are example addresses for VXI device sessions:
vXi, 24 A device address corresponding to the device at
primary address 24 on the vxi interface.
vxi, 128 A device address corresponding to the device at

primary address 128 on the vxi interface.

Remember that the primary address must be between 0 and 255. The
primary address corresponds to the VXI logical address and specifies the
address in A16 space of the VXI device.

144 Chapter7

Using HP SICL with VXI
Communicating with VXI Devices

Note The previous examples use the default symbolic name specified during the
system configuration. If you want to change the name listed above, you
must also change the symbolic name or logical unit specified during the
configuration. The name used in your SICL program must match the logical
unit or symbolic name specified in the system configuration. Other possible
interface names are VXI , vxi , and so forth.

SICL supports only primary addressing on the V X| device sessions.
Specifying a secondary address causes an error.

The following is an example of opening a device session with the VXI
device at logical address 64:

I NST dmm
dmm = iopen (“vxi,64");

Chapter 7 145

Message-Based
Device Session
Example

Using HP SICL with VXI
Communicating with VXI Devices

The following example program opens a communication session with aV Xl
message-based device and measures the AC voltage. The measurement
results are then printed.

/* vxindev. c
Thi s exanpl e program neasures AC voltage on a
mul timeter andprints out the results */

#i ncl ude <sicl.h>

#i ncl ude <stdio. h>

mai n()

I NST dvm
char strres[20];

/* Print nessage and terminate on error */
ionerror (I_ERROR EXIT);

/* Open the multineter session */
dvm = iopen (“vxi,24");
itimeout (dvm, 10000);

/* Initialize dvm */
iwrite (dvm, “*RST\n", 5, 1, NULL);

[* Take measurement */
iwrite (dvm,”"MEAS:VOLT:AC? 1, 0.001\n", 23, 1, NULL);

/* Read measurements */
iread (dvm, strres, 20, NULL, NULL);

[* Print the results */
printf(“Result is %s\n”, strres);

[* Close the multimeter session */
iclose(dvm);

}

146 Chapter7

Using HP SICL with VXI
Communicating with VXI Devices

Register-Based Devices

There are several methods that can be used for communicating with register-
based devices:

i scpi Use the SICL i scpi interface and program using

interface SCPI commands. The i scpi interface interprets the
SCPI commands and allows you to communicate
directly with register-based devices. This method is
supported over LAN.

Register Use the vxi interface to program directly to the

Programming device’s registers with a series of register peeks and
pokes. This method can be very time consuming and
difficult. This method is not supported over LAN.

Other HP Products:

HP Compiled The HP Compiled SCPI product is another

SCPI programming language that can be used with SICL to
program register-based instruments with SCPI
commands. Because this product interprets the SCPI
commands at compile time, it can be used to achieve
high throughput of register-based devices.

HP Command When you use an HP Command Module to

Module communicate with VXI devices, you are actually
communicating over HP-IB. The Command Module
interprets the high-level SCPI commands for register-
based instruments and then sends out low-level
commands over the VXIbus backplane to the
instruments. See the “Using HP SICL with HP-1B”
chapter for more details on communicating through a
Command Module.

If you currently have a SICL application that accesses V X1 devices by using
HP-1B and the HP E1405/06 Command Module, you can port your
application to use thei scpi interface and directly access the VXI
backplane without the use of the Command Module. This can be done by
changing thei open function to usethei scpi interface followed by the
device logical address.

Chapter 7 147

Using HP SICL with VXI
Communicating with VXI Devices

See “Addressing VXI Register-Based Devices” later in this chapter for more
details on addressing rules. Since I-SCPI was designed to simulate control
of register-based instruments using HP-IB and the Command Module, you

usually will not need to change anything else in your application.

Note There are also other applications that use SICL as their I/O library but have
their own methods of communicating with the instruments. These
applications hide most of the I/O complexity behind the user interface.

Contact your local sales representative for information on other HP products
that might interpret the high-level SCPI commands for register-based
devices.

Addressing VXI To create a device session, specify either the interface symbolic name or
Register-Based |ggijcal unit and a particular device’s address inatidr parameter of the
Devices i open function. The interface symbolic nhame and logical unit are set by
running the / O Conf i g utility from theHP 1/ O Li brari es program
group. See Chapter 2, “Installing and Configuring the HP 1/O Libraries,” in
theHP 1/O Libraries Installation and Configuration Guide for Windows for
information on thé / O Confi g utility.

The following are example addresses for VXI device sessions:
i scpi, 32 A register-based device address corresponding to the
device at primary address 32 ontkepi interface.

vXi, 24 A device address corresponding to the device at
primary address 24 on the vxi interface.

vxi, 128 A device address corresponding to the device at
primary address 128 on the vxi interface.

Remember that the primary address must be between 0 and 255. The
primary address corresponds to the VXI logical address.

148 Chapter7

Using HP SICL with VXI
Communicating with VXI Devices

Note The previous examples use the default symbolic name specified during the
system configuration. If you want to change the name listed above, you
must also change the symbolic name or logical unit specified during the
configuration. The name used in your SICL program must match the logical
unit or symbolic name specified in the system configuration. Other possible
interface names are VXI , vxi , and so forth.

SICL supports only primary addressing on the V X| device sessions.
Specifying a secondary address causes an error.

The following is an example of opening a device session with the VXI
device at logical address 64:

I NST dmm
dmm = iopen (“vxi,64");

Interpreted SCPI The simplest way to address a register-based device using theiscpi
Addressingslgﬂlles) interface i to use the same rules described in the last section: Specify the
interface logical unit or symbolic name and a particular device logical
address in the addr parameter of the iopen function. For example:

dmm=iopen (“iscpi,24");

In most cases thisis sufficient and additional addressing is not needed.
I-SCPI automatically configures your system according to specific
combining rules that determine how the instruments are set up relative to
other VXI instruments.

Generally, when aniopen is performed, an instrument isformed consisting

of all devices at logical addresses contiguous to the base logical address
passed in the address string. Let's say, for example, that you open an
instrument at logical address 24 and the next logical address is 25. The
i scpi interface will search for an instrument driver that supports the
combined instruments found.

Chapter 7 149

Note

Using HP SICL with VXI
Communicating with VXI Devices

If you wish to specify how instruments are combined or what instrument
driver to use, see the following sections for details on specifying this
information.

Defining an Instrument. There may be times you would like to have
control over which logical addresses are used to form a particular
instrument. In this case you can use an explicit list in the logical address
portion of thei open cal. Definethe instrument by adding a colon after the
interface symbolic name followed by the backplane name aswas specified in
the 1/ O Confi g utility (backplane is the symname of the VX1 backplane
SICL driver, usually vxi). Then add the instrument logical addresses
enclosed within parentheses separated by commas. For example:

dmm=iopen (“iscpi:vxi,(24,25)");

The above example combinesinstruments at logical address 24 and 25 to
form oneinstrument. Note that the logical addresses of these instruments do
not have to be contiguous.

Defining an Instrument Driver. There may be times when you would like
to specify an instrument driver to usefor a particular set of logical addresses.
Thisalows you to create your own instrument drivers or you can form
unique virtual instrument combinations. This can be done by adding the
instrument driver name within brackets. For example:

dmm=iopen (“iscpi,24[E1326]");
If you would like to specify the instrument driver plus which instruments are
grouped together to form the instrument, use the following form:
dmm=iopen (“iscpi[E1326]:vxi,(24,25)");

The directory location specified during the SICL installation (default is
C:\HPVXNBIN for 16-bit, and C:\SICLXX\DRIVERS\ISCPI for 32-hbit) is
searched for a matching instrument driver.

Theiopen call will run faster if you specify an instrument driver name
since it does not have to search through all the instrument driversfor a
match.

150 Chapter7

Programming with
Interpreted SCPI
(the i scpi
Interface)

Using HP SICL with VXI
Communicating with VXI Devices

Thei scpi interface allows you to program register-based instruments with
high-level SCPI commands. To program using thei scpi interface, open a
device session with a specific register-based instrument and then program
using the SICL functionssuch asi printf,i scanf,andir eadst b.

When opening the device session, you need to specify i scpi asthe

interface typein the SICL i open call. See “Interpreted SCRIdcpi)
Addressing Rules” earlier in this chapter for information addressing with the
i scpi interface.

Thei scpi interface was designed to closely simulate control of register-
based instruments using the HP Command Module over HP-IB. When an

i open is performed, I-SCPI searches for an instrument driver consisting of
all the devices at logical addresses contiguous to the base logical address. If
no instrument driver will support the list of contiguous logical addresses, the
device with the highest logical address will be removed and the search
process repeated. This will continue until the driver is found or this list is
exhausted. If no instrument driver is founditl@en call will fail.

Once an open is successful, I-SCPI runs in an infinite loop waiting to parse
SCPI commands for the instrument. A separate process is created for each
instrument that is opened.

In order to use thiescpi interface, you must have configured the system to
includei scpi as an interface. See Chapter 2, “Installing and Configuring
the HP I/O Libraries,” in th&élP 1/O Libraries Installation and

Configuration Guide for Windows for information on thé / O Confi g

utility.

Register-Based Instrument Drivers. i scpi includes drivers for most
Hewlett-Packard register-based devices. These drivers are located in the
directory specified during the HP 1/O Libraries installation (default is

C: \ HPVXI \ BI N for 16-bit, andC: \ SI CLXX\ DRI VERS\ | SCPI for 32-bit).
Additionally, you can see either tite\ HPVXI \ Bl N\ READVE. TXT file for
16-bit, or theC: \ SI CLXX\ DRI VERS\ | SCPI \ READVE32. TXT file for

32-bit, for a list of currently supported, register-based devices.

Chapter 7 151

i scpi Device
Session Example

Using HP SICL with VXI
Communicating with VXI Devices

The following example program opens a communication session with aV Xl
register-based device with the i scpi interface. Thisexample then uses
SCPI commands to measure the AC voltage and print out the results.

/* vxiiscpi.c
Thi s exanpl e program neasures AC voltage on a
multimeter and prints out the results */

#i ncl ude <sicl.h>

#i ncl ude <stdio. h>

mai n()

I NST dvm
char strres[20];

/* Print nessage and terminate on error */
ionerror (I_ERROR EXIT);

/* Open the multineter session */
dvm = iopen (“iscpi,24");
itimeout (dvm, 10000);

/* Initialize dvm */
iwrite (dvm, “*RST\n", 5, 1, NULL);

[* Take measurement */
iwrite (dvm,”"MEAS:VOLT:AC? 1, 0.001\n", 23, 1, NULL);

/* Read measurements */
iread (dvm, strres, 20, NULL, NULL);

[* Print the results */
printf(“Result is %s\n”, strres);

[* Close the multimeter session */
iclose(dvm);

152 Chapter7

Programming
Directly to the
Registers

Note

Using HP SICL with VXI
Communicating with VXI Devices

When communicating with register-based devices, you either haveto send a
series of peeks and pokes directly to the device’s registers, or you have to
have a command interpreter to interpret the high-level SCPI commands.
Command interpreters include thecpi interface, HP C-Size Command
Module, HP B-Size card cage (built-in Command Module), or HP Compiled
SCPI (C-SCPI).

When sending a series of peeks and pokes to the device’s registers, use the
following process:

® Map memory space into your process space.

®* Read the register’s contents usirgpeek.

* Writeto the deviceregistersusingi ?poke.

® Unmap the memory space.

Note that the above procedure is only used on register-based devicesthat are
not using thei scpi interface.

Note that programming directly to the registers is not supported over LAN.

Mapping Memory Space for Register-Based Devices. When using SICL

to communicate directly to the device’s registers, you must map a memory
space into your process space. This can be done by using thé &L
function:

i mp (id, map_space, pagestart, pagecnt, suggested) ;

This function maps space for the interface or device specified ligt the
parameter.pagestart, pagecnt, andsuggested are used to indicate the page
number, how many pages, and a suggested starting location respectively.
map_space determines which memory location to map the space. The
following are validmap_space choices:

® | MAP_A16 Mapsin VXI A16 address space (device or interface
sessions, 64K byte pages).

® | MAP_A24 Mapsin VXI A24 address space (device or interface
sessions, 64K byte pages).

Chapter 7 153

Note

Using HP SICL with VXI
Communicating with VXI Devices

| _MAP_A32 Mapsin VXI A32 address space (device or interface
sessions, 64K byte pages).

| _MAP_VXI DEV Mapsin VXI A16 device registers (device session only,
64 bytes).

| _MAP_EXTEND Mapsin V XI device extended memory address space in
A24 or A32 address space (device sessions only).

| _MAP_SHARED Mapsin VXI A24/A32 memory that is physically
located on the computer (sometimes called local shared memory,
interface sessions only).

| _MAP_AM| address modifer Maps in the specified region (address
modifer) of VME address space. See the “Communicating with VME

Devices” section later in this chapter for more information on this map
space argument.

The following are exampliemap function calls:

/* Map to the VXI device vmstarting at pagenunber O for 1 page */
base address = imap (vm | _MAP_VXIDEV, 0, 1, NULL);

/* Map to A32 address space (16 Mytes) */
ptr = imap (id, |_MAP_A32, 0x000, 0x100, NULL);

/* Map to a device’s A24 or A32 extended memory */
ptr=imap (id, |_ MAP_EXTEND, 0, 1, 0);

/* Map to a computer’'s A24 or A32 shared memory */
ptr=imap (id, |_MAP_SHARED, 0, 1, 0);

Due to hardware constraints on given devices or interfaces, not all address
spaces may be implemented. In addition, there may be a maximum number
of pagesthat can be simultaneously mapped.

If arequest is made that cannot be granted due to hardware constraints, the
process will hang until the desired resources become available. To avoid
this, use the isetlockwait with the flag parameter set to 0, and thus
generate an error instead of waiting for the resources to become available.
You may also usetheimapinfo function to determine hardware constraints
before making animap call.

154 Chapter7

Using HP SICL with VXI
Communicating with VXI Devices

Use the following tabl e to determine which map-space argument to use with
your SICL i map/ i unmap function.

i map/i unmap Widths VME Data
(map-space argument) Access Mode

I_MAP_A16 D8,D16 Supervisory
I_MAP_A24 D8,D16 Supervisory
I_MAP_A32 D8,D16 Supervisory
I_ MAP_Al16_D32 D32 Supervisory
|_MAP_A24 D32 D32 Supervisory
I_ MAP_A32_D32 D32 Supervisory

However, all accesses through the* D32 map windows can only be 32-bit
transfers. The application software must do a 32-bit assignment to generate
the access, and only accesses on 32-bit boundaries are allowed. If 8- or
16-hit accesses to the device are al so necessary, a normal

| _MAP_A16/ 24/ 32 map must also be requested.

Chapter 7 155

Register-Based
Programming
Example

Using HP SICL with VXI
Communicating with VXI Devices

Reading and Writing to the Device Registers. Once you have mapped the
memory space, usethe SICL i ?peek andi ?poke functionsto

communicate with the register-based instruments. With these functions, you

need to know which register you want to communicate with and the

register’s offset. See the instrument’s user’s manual for a description of the
registers and register locations.

The following is an example of usingweek:

id = iopen (“vxi,24");

addr = imap (id, |_ MAP_VXIDEV, 0, 1, 0);

reg_data = iwpeek (addr + 4);
See Chapter 12HP SICL Language Refererider a complete description
of thei ?peek andi ?poke functions.

Unmapping Memory Space. Make sure you use theinmap function to
unmap the memory space when it is no longer needed. This frees the
mapping hardware so it can be used by other processes.

The following example program opens a communication session with the
register-based device connected to the address entered by the user. The
program then reads the Id and Device Type registers. The register contents
are then printed.

156 Chapter7

Using HP SICL with VXI
Communicating with VXI Devices

/* vxirdev.c

The followi ng exanple pronpts the user for an instrunent
address and then reads the id register and device type
regi ster. The contents of the register are displayed. */

#i ncl ude <stdio. h>
#i ncl ude <stdlib. h>
#i ncl ude <sicl. h>

void main (){
char inst_addr[80];
char *base_addr;
unsi gned short id_reg, devtype_reg;
I NST i d;

/* get instrument address */

puts (“Please enter the logical address of the
register-based instrument, for example, vxi,24 : \n");

gets (inst_addr);

[* install error handler */
ionerror (I_ERROR_EXIT);

[* open communications session with instrument */
id = iopen (inst_addr);
itimeout (id, 10000);

/* map into user memory space */
base_addr = imap (id, |_MAP_VXIDEV, 0, 1, NULL);

[* read registers */
id_reg=iwpeek ((unsigned short *)(base_addr + 0x00));
devtype_reg=iwpeek ((unsigned short*)(base_addr+0x02));

[* print results */

printf (“Instrument at address %s\n”, inst_addr); printf (“ID

Register = 0x%4X\n Device Type Register = 0x%4X\n”, id_reg,
devtype_reg);

/* unmap memory space */
iunmap (id, base_addr, |_MAP_VXIDEV, 0, 1);

/* close session */
iclose (id);

Chapter 7 157

Using HP SICL with VXI
Communicating with VXI Interfaces

Communicating with VXI Interfaces

Interface sessions allow you direct low-level control of the interface. You
must do all the bus maintenance for the interface. Thisalso impliesthat you
have considerable knowledge of the interface. Additionally, when using
interface sessions, you need to use interface specific functions. The use of
these functions means that the program can not be used on other interfaces,
and therefore, becomes less portable.

Addressing VXI Interface Sessions

To create an interface session on your V X| system, specify either the
interface symbolic name or logical unit in the addr parameter of thei open
function. The interface symbolic name and logical unit are set by running
thel / O Confi g utility fromtheHP I/ O Li br ari es program group. See
Chapter 2, “Installing and Configuring the HP I/O Libraries,” in iHfe1/O
Libraries Installation and Configuration Guide for Windows for
information on thé / O Confi g utility.

The following are example addresses for VXI interface sessions:

VXi An interface symbolic name.

i scpi An interface symbolic name.

Note The above examples use the default symbolic name specified during the
system configuration. If you want to change the name listed above, you
must also change the symbolic name or logical unit specified during the
configuration. The name used in your SICL program must match the logical
unit or symbolic name specified in the system configuration. Other possible
interface names aiké&l , vxi , and so forth.

158 Chapter7

Using HP SICL with VXI
Communicating with VXI Interfaces

The following example opens a interface session with the VX1 interface:

I NST vxi;
vXi = iopen (“vxi");

Note The only interface session operations supported by 1-SCPI are service
reguests and locking.

Chapter 7 159

Using HP SICL with VXI
Communicating with VXI Interfaces

VXI Interface Session Example

The following example program opens a communication session with the

V XI interface and uses the SICL interface specifici vxi r mi nf o function to
get information about a specific VXI device. Thisinformation comes from
the VX1 resource manager and is only valid as of the last time the VX
resource manager was run.

[* vxiintr.c
The fol |l owi ng exanpl e gets informati on about a specific
vxi device and prints it out. */

#i ncl ude <stdio. h>

#i ncl ude <sicl.h>

void main () {
int | addr;
struct vxiinfo info;
I NST i d;

/* get instrument |ogical address */
printf (“Please enter the logical address of the

register-based instrument, for example, 24 : \n");
scanf (“%d”, &laddr);

[* install error handler */
ionerror (I_ERROR_EXIT);

[* open a vxi interface session */
id = iopen (“vxi");
itimeout (id, 10000);

Fread VXIresource manager information for specified device*/
ivxirminfo (id, laddr, &info);

[* print results */

printf (“Instrument at address %d\n”, laddr);

printf (“Manufacturer’'s Id = %s\n Model = %s\n”,
info.manuf_name, info.model_name);

/* close session */
iclose (id);

160 Chapter7

Using HP SICL with VXI
Communicating with VME Devices

Communicating with VME Devices

Note Not supported over LAN.

Many people assume that since VXI is an extension of VME that VME
should be easy to usein aV Xl system. Unfortunately, thisisnot true. Since
the VXI standard defines specific functionality that would be a custom
design in VME, some of the resources required for VME custom design are
actually used by VXI. Therefore, there are certain limitation and
requirements when using VME in aVXI system. Note that VME isnot an
officially supported interface for SICL.

Use the following process when using VME devicesin aV XI| mainframe:

® Declaring Resources

®* Mapping VME Memory

® Reading and Writing to Device Registers
® Unmapping Memory

Each of the above items are described in further detail in the following
subsections. An example program is also provided.

Chapter 7 161

Using HP SICL with VXI
Communicating with VME Devices

Declaring Resour ces

The VXI Resource Manager does not reserve resources for VME devices.
Instead, a configuration file is used to reserve resources for VME devicesin
aVXIl system. Usethe VXI Device Configurator to edit theDEVI CESfile, or
edit the file directly, to reserve resources for VME devices. The VXI
Resource Manager reads this file to reserve the VME address space and
VME IRQ lines. The VXI Resource Manager then assigns the VXI devices
around the already reserved VME resources.

For VME devices requiring A16 address space, the device’s address space
should be defined in the lower 75% of A16 address space (addresses below
0xCO000). This is necessary because the upper 25% of A16 address space is
reserved for VXI devices.

For VME devices using A24 or A32 address space, use A24 or A32 address
ranges just higher than those used by your VXI devices. This will prevent
the Resource Manager from assigning the address range used by the VME
device to any VXI device. (The A24 and A32 address range is software
programmable for VXI devices.)

Mapping VM E Memory

SICL defaults to byte, word, and longword supervisory access to simplify
programming VXI systems. However, some VME cards use other modes of
access which are not supported in SICL. Therefore, SICL provides a map
parameter that allows you to use the access modes defined in the VME
Specification. See the VME Specification for information on these access
modes.

162 Chapter7

Note

Note

Using HP SICL with VXI
Communicating with VME Devices

Use care when mixing VXI and VME devices. You MUST know what VME
address space and offset within that address space that VME devices use.
VME devices cannot use the upper 16K of the A16 address space since this
areaisreserved for VXI instruments.

Usethel _MAP_AM| address modifer map space argument in thei map

function to specify the map space region (address modifer) of VME address

space. Seethe VMEbus Specifications for information on what value to use

as the address modifier. Note that if the controller doesn't support specified
address mode, then theap call will fail (see table in the next section).

The following maps A24 non-privileged data access mode:

prt = imp (id, (I_MAP_AM| 0x39), 0x20, 0x4, 0);
The following maps A32 non-privileged data access mode:

prt = imp (id, (I_MAP_AM| 0x09), 0x20, 0x40, 0);

When accessing VME or VXI devices via an embedded controller such as an
HP E6232/33 VXI Pentium Controller, current versions of SICL use the
“supervisory data” address modifiers 0x2D, 0x3D, and 0x0D for A16, A24,
and A32 accesses, respectively. (Some older versions of SICL use the “non-
privileged data” address modifiers.)

Chapter 7 163

Using HP SICL with VXI
Communicating with VME Devices

Supported Access Thefollowing table lists VME access modes supported on HP controllers.
Modes

VME Mapping Support

Al6 A24 A32
D08 D16 D32 | D08 D16 D32 | D08 D16 D32

Supervisory data X X X X X X X X X

Non-Privilege data

Reading and Writing to the Device Registers

Once you have mapped the memory space, use the SICL i ?peek and

i ?poke functions to communicate with the VME devices. With these
functions, you needed to know which register you want to communicate

with and the register’s offset. See the instrument’s user’'s manual for a
description on the registers and register locations.

The following is an example of usingweek:

id = iopen (“vxi");
addr = imap (id, (I_MAP_AM | 0x39), 0x20, 0x4, 0);
reg_data = iwpeek ((unsigned short *)(addr + 0x00));

See Chapter 12HP SICL Language Refererider a complete description
of thei ?peek andi ?poke functions.

164 Chapter7

Using HP SICL with VXI
Communicating with VME Devices

Unmapping Memory Space

Make sure you usethei unmap function to unmap the memory space when it
isno longer needed. This frees the mapping hardware so it can be used by
other processes.

VME Interrupts

There are seven VME interrupt lines that can be used. By default, VXI
processing of the IACK valuewill be used. However, if you configure VME
IRQ linesand VME Onl y, no VX1 processing of the IACK vaue will be
done. That isthe IACK value will be passed to a SICL interrupt handler
directly. Seei setintr in Chapter 12,MP SICL Language Refererider
information on the VME interrupts.

Chapter 7 165

Using HP SICL with VXI
Communicating with VME Devices

VME Example

The following ANSI C example program opens aV X| interface session and
setsup aninterrupt handler. Whenthel _| NTR_VME_| RQL interrupt occurs,
the function defined in the interrupt handler will be called. The program
then writes to the registers, causing thel _I NTR_VME_| RQL interrupt to
occur. Note that you must edit this program to specify the starting address
and register offset of your specific VME device. Thisexample program also
requiresthe VME deviceto beusing | _| NTR_VME_| RQL and the controller
to be the handler for the VME IRQL.

/* vmedev. c

Thi s exanpl e programopens a VXl interface session and sets
up an interrupt handler. Wen the specifiedinterrupt occurs,
the procedure defined in the interrupt handler is called. You
nust edit this programto specify starting address and

regi ster offset for your specific VME device. */

#i ncl ude <stdio. h>

#i ncl ude <stdlib. h>

#i ncl ude <sicl.h>

#define ADDR “vxi”

void handler (INST id, long reason, long secval){
printf (“Got the interrupt\n”);

void main ()

unsigned short reg;
char *base_addr;
INST id;

[* install error handler */
ionerror (I_ERROR_EXIT);

[* open an interface communications session */
id = iopen (ADDR);
itimeout (id, 10000);

166 Chapter7

Using HP SICL with VXI
Communicating with VME Devices

/* install interrupt handler */
ionintr (id, handler);
isetintr (id, |_INTR VME_|RQL, 1);

/* turn interrupt notification off so that interrupts are
not recogni zed before the iwaithdl r function is call ed*/
iintroff ();

/* map into user nenory space */
base addr = imap (id, |_MAP_A24, 0x40, 1, NULL);

/* read a register */
reg = i wpeek((unsigned short *)(base_addr + 0x00));

[* print results */
printf (“The registers contents were as follows:
0x%4X\n", req);

[* write to a register causing interrupt */
iwpoke ((unsigned short *)(base_addr + 0x00), reg);

/* wait for interrupt */
iwaithdlIr (10000);

[* turn interrupt notification on */
iintron ();

[* unmap memory space */
iunmap (id, base_addr, |_MAP_A24, 0x40, 1);

/* close session */
iclose (id);

Chapter 7 167

Using HP SICL with VXI
Looking at HP SICL Function Support with VXI

L ooking at HP SICL Function Support

with VXI

This section describes how SICL functions are implemented for VXI

Sessions.

Device Sessions

Message-Based Thefollowing describes how some SICL functions areimplemented for VXI
Device Sessions deyice sessions (for message-based devices):

iwite

i read

i readstb

itrigger

i cl ear

i onsrq

Sends the data to the (message-based) servant
using the byte-serial write protocol and the byte
available word-serial command.

Reads the data from the (message-based) servant
using the byte-serial read protocol and the byte
request word-serial command.

(read status byte) Performs a VXI readSTB word-
serial command.

Sends a word-serial trigger to the specified
message-based device.

Sends a word-serial device clear to the specified
message-based device.

Can be used to catch SRQs from message-based
devices.

Interpreted SCPI Thei scpi interface is used to program VX1 register-based instruments.

(i scpi) Device However, the VX specific and register-based specific SICL functions, such
asi vxi ws, i map, andi peek are not necessary, and therefore, are not
implemented for thei scpi interface.

Sessions

168

Chapter7

Using HP SICL with VXI
Looking at HP SICL Function Support with VXI

The following describes how some SICL functions are implemented for
i scpi device sessions.

iwite Sends the SCPI commands to the register-based
instrument driver’s input buffer. The driver will
interpret the command and do register peeks and
pokes. If the command is a query, the driver will put
the data into its output buffer.

i read Reads the data from the register-based instrument
driver’s output buffer.

i readstb Performs the equivalent of a serial poll (SPOLL).

itrigger Performs the equivalent of an addressed group

execute trigger (GET).

i clear Performs the equivalent of a device clear (DCL) on
the device corresponding to this session.

Interpreted SCPI (i scpi) Device Session Interrupts. Thei scpi
interface does not support interrupts. Therefore, the SICL i oni nt r
function is not implemented for i scpi device sessions. There are no
device-specific interrupts for thei scpi interface.

Interpreted SCPI (i scpi) Device Session Service Request. i scpi

device sessions support Service Requests (SRQ) in the same manner as HP-

IB. When one deviceissuesan SRQ, all i scpi device sessions that have

SRQ handlersinstalled (seei onsr q in Chapter 12,MP SICL Language
Referenct will be informed. This is an emulation of how HP-IB handles
the SRQ line. The interface cannot distinguish which device requested
service, thereforé,scpi acts as if all devices require service. Your SRQ
handler can retrieve the devicetgtus byte by using the r eadst b

function. The status byte can be used to determine if the instrument needs
service. It is good practice to ensure that a device isn't requesting service
before leaving the SRQ handler. The easiest technique for this is to service
all devices from one handler.

Chapter 7 169

Using HP SICL with VXI
Looking at HP SICL Function Support with VXI

Register-Based Because register-based devices do not support the word serial protocol and
Device Sessions qther features of message-based devices, the following SICL functions are
not supported with register-based device sessions (unless you're using the
i scpi interface, see “Programming with Interpreted SCPI”).

* Non-formatted I/O:
-- iread
- iwite
-- iternchr
* Formatted |/O:
- iprintf
-- i scanf
-- ipronptf
- ifread
- ifwite
-- iflush
-- i set buf
-- i set ubuf
® Devicel/lnterface Control:
-- iclear
-- ireadstb
-- isetsthb
-- itrigger
® Service Reguests:
-- igetonsrq
-- ionsrq
* Timeouts:
-- igettineout
-- itinmeout
* VXl Secific:
-- Pvxiws

All other functions will work with al VXI devices (message-based, register-
based, and so forth.)

Usethei ?peek andi ?poke functionsto communicate with register-based
devices.

170 Chapter7

Using HP SICL with VXI
Looking at HP SICL Function Support with VXI

| nter face Sessions

The following describes how some SICL functions are implemented for VXI

interface sessions:

iwite andiread

i cl ear

Not supported for V XI interface sessions and
returnthel ERR _NOTSUPP error.

Causes the VXI interface to perform a SY SREST
on interface sessions. Note that thiswill cause al
VXI devicestoreset. If thei scpi interfaceis
being used, thei scpi instrument will be
terminated. If this happens, you will get a No
Connect error message and you need to re-open
thei scpi communications session. All servant
devices will cease to function until the VXI
resource manager runs and normal operation is re-
established.

Note [-SCPI interface sessions only support service requests and locking
(ionsrq,il ock,andi unl ock).

Chapter 7

171

Using HP SICL with VXI
Considering VXI Backplane Memory I/O Performance

Considering VXI Backplane Memory 1/O
Performance

SICL supportstwo different memory 1/O mechanisms for accessing memory
on the VX1 backplane:

® Single location peek/poke and direct memory dereference:
-- imap
-- i unmap
-- i bpeek, iwpeek, il peek
-- i bpoke, iwpoke, il poke
-- value = *pointer
-- *pointer = value

® Block memory access:
-- i map
-- i unmap
-- i bbl ockcopy, iwbl ockcopy, il bl ockcopy
-- i bpushfifo, iwpushfifo, ilpushfifo
-- i bpopfifo, iwpopfifo, ilpopfifo

Singlelocation peek/poke or direct memory dereferenceis the most efficient
in programs which require repeated access to different addresses.

On many platforms, the peek/poke operations are actually macros which
expand to direct memory dereferencing. The notable exception ison
Microsoft Windows platforms, wherei peek/i poke areimplemented as
functions. Thisis necessary because, under certain conditions, the compiler
will attempt to optimize adirect dereference and cause aV X| memory
access of thewrong size. For example, when masking the results of a 16-hit
read in an expression:

data = i wpeek(addr) & Oxff;

the compiler will simplify this to an 8-bit read of the contents of the addr
pointer. Thiswould cause an error when attempting to read memory on a

V XI card that did not support 8-bit access. Wheni wpeek isimplemented as
afunction, the correct size memory accessis guaranteed.

172 Chapter7

Using HP SICL with VXI
Considering VXI Backplane Memory 1/0O Performance

The block memory access functions provide the highest possible
performance for transferring large blocks of data to or from the VXI
backplane.

Although these calls have higher initial overhead than thei peek/i poke
calls, they are optimized by HP on each platform to provide the fastest
possible transfer rate for large blocks of data. These routines may, for
example, use DMA, which is not available withi peek/i poke.

Note that for small blocks, the overhead associated with the block memory
access functions may actually make these calls longer than an equivalent
loop of i peek/i poke calls. Theblock size at which the block functions
become faster depends on the particular platform and processor speed.

The following is an example of the various types of VXI memory I/O in
SICL.

/*
siclnmemc
Thi s exanpl e program denonstrates the use of
simpl e and block nenory |1/0O nethods in SICL.
*/

#i ncl ude <sicl. h>
#i ncl ude <stdlib. h>
#i ncl ude <stdi o. h>

#define VXI_INST “vxi,24”

void main () {
INST id;
unsigned short *memPtrl6;
unsigned short id_reg;
unsigned short devtype_reg;
unsigned short memArray|[2];
int err;

/* Open a session to our instrument */
id = iopen(VXI_INST);

Chapter 7 173

Using HP SICL with VXI
Considering VXI Backplane Memory I/O Performance

i wpeek()
di rect nenory dereference

Note that on nmany platforns, the ipeek/ipoke operations are
actual |y nacros whi ch expand to direct nenory dereferencing.
The notabl e exception is on Mcrosoft Wndows pl atforns where
i peek/ipoke are inplenmented as functions. This is necessary
because under certain conditions, the conpiler will attenpt to
optimze a direct dereference and cause a VXI nenory access of
the wong si ze. For exanpl e when nasking the results of a 16
bit read in a expression:

data = iwpeek(addr) & Oxff;
the conpiler will sinplify this to an 8 bit read of the
contents of the addr pointer. This would cause an error when
attenpting to read nenory on a VXI card that did not support
8 bit access.

/* Map into menory space */
menPtr16 = (unsigned short *)inmap(id, |_MAP_VXIDEV, 0, 1, 0);

| * ================= USing peek e
/* Read instrunent id register contents */
id_reg = iwpeek(nmenPtr16);

/* Read device type register contents */
id reg = iweek(nenPtri16+1);

/* Print results */

printf(* iwpeek: ID Register = 0x%4X\n”", id_req);

printf(* iwpeek: Device Type Register = 0x%4X\n”,
devtype_req);

/* Use direct memory dereferencing */
id_reg= *memPtrl6;
devtype_reg = *(memPtrl6+1);

* Print results */

printf(“dereference: ID Register = 0x%4X\n", id_reg);

printf(“dereference: Device Type Register = 0x%4X\n”,
devtype_req);

174 Chapter7

Using HP SICL with VXI
Considering VXI Backplane Memory 1/0O Performance

i wbl ockcopy
i wpushfifo
i wpopfifo

These commands of fer the best perfornance for readi ng and witing
| arge data bl ocks on the VXl backplane. Note that for this
exanple we are only noving 2 words at a tine. Normally these
functions woul d be used to nove much | arger bl ocks of data.

—============= Denonstrate bl ock read ==================
Read the instrument id register and device type register
into an array.

*/

err = iwblockcopy(id, nmenPtrl6, nmemArray, 2, 0);

/* Print results */

printf(* iwblockcopy: ID Register = 0x%4X\n”, memArray|[0]);
printf(* iwblockcopy: Device Type Register = 0x%4X\n”",
memArray[1]);

/*

Demonstrate popfifo

*/

/* Do a popfifo of the Id Register */
err = iwpopfifo(id, memPtrl6, memArray, 2, 0);

I* Print results */
printf(“ iwpopfifo: 1 ID Register = 0x%64X\n”, memArray[0]);
printf(“ iwpopfifo: 2 ID Register = 0x%64X\n”, memArray[1]);

/*

Cleanup and exit =*/
/* Unmap memory space */
iunmap(id, (char *)ymemPtrl6, |_MAP_VXIDEV, 0, 1);

[* Close instrument session */
iclose(id);

Chapter 7 175

Using HP SICL with VXI
Using VXI Specific Interrupts

Using VXI Specific Interrupts

Seethei seti ntr function in Chapter 12HP SICL Language Refererice
for a list of VXI specific interrupts.

The following pseudo-code describes the actions performed by SICL when a
VME interrupt arrives and/or a VXI signal register write occurs.

VME Interrupt arrives:
get iack val ue
send | _|I NTR_VME_| RQ?
is VME IRQ line configured VME only
if yes then
exit
do I ower 8 bits natch | ogi cal address of one of our servants?
if yes then
/* iack is fromone of our servants */
call servant_signal _processi ng(iack)

el se
/* jlack i s fromnon-servant VXI device or VVME devi ce*/
send | _INTR_ VXI _VME interrupt to interface sessions

Si gnal Register Wite occurs:
get value witten to signal register
send | _INTR _ANY_SI G
do I ower 8 bits natch | ogi cal address of one of our servants?
if yes then
/* Signal is fromone of our servants */
call Servant_signal _processing(val ue)
el se
/* Stray signal */
send | _INTR VXI _UKNSIGto interface sessions
servant _si gnal _processing (signal_val ue)
/* Value is formone of our servants */
is signal value a response signal?
If yes then
process response sigha
exit
/* Signal is an event signal */
is signal an RT or RF event?
if yes then
/* A request TRUE or request FALSE arrived */
process request TRUE or request FALSE event
generate SRQ if appropriate
exit

176 Chapter7

Using HP SICL with VXI
Using VXI Specific Interrupts

is signal an undefined command event ?
if yes then

/* Undefined command event */

process an undefined comand event

exit
/* Signal is a user-defined or undefined event */
send | _INTR VXI _SIGNAL to device sessions for this device
exit

Chapter 7 177

Using HP SICL with VXI
Using VXI Specific Interrupts

Processing VME Interrupts Example

/* vmeintr.c
This exanpl e uses SICL to cause a VME interrupt froman
HP E1361 regi ster-based rel ay card at | ogi cal address 136. */
#i ncl ude <sicl.h>

static void vneint (INST, unsigned short);
static void int_setup (INST, unsigned |ong);
static void int_hndlr (INST, |ong, |ong);
int intr = 0;
mai n() {

int o; INST id intfl;

unsi gned | ong mask = 1;

ionerror (I_ERROR EXIT);
iintroff ();

id_intf1 = iopen (“vxi,136");

int_setup (id_intfl, mask);

vmeint (id_intf1, 136);

/* wait for SRQ or interrupt condition */
iwaithdlr (0);

iintron ();
iclose (id_intf1);
}
static void int_setup(INST id, unsigned long mask) {
ionintr(id, int_hndlr);
isetintr(id, I_INTR_VXI_SIGNAL, mask);

static void vmeint (INST id, unsigned short laddr) {
int reg;
char *al6_ptr = 0;

reg = 8;
al6_ptr =imap (id, |_MAP_A16, 0, 1, 0);

178 Chapter7

Using HP SICL with VXI
Using VXI Specific Interrupts

/* Cause uhf mux to interrupt: */

i wpoke ((unsigned short *)(al6_ptr + Oxc000 + |addr *
64 + reg), 0x0);
}
static void int_hndlr (INST id, long reason, |ong sec) {
printf (“VME interrupt: reason: 0x%X, sec: 0x%x\n",
reason,sec);
intr=1;

}

Chapter 7 179

Using HP SICL with VXI
Summary of VXI Specific Functions

Summary of VXI Specific Functions

Note Usingthese VXI interface specific functions means that the program can not
be used on other interfaces and, therefore, becomes less portable.

These functions will work over a LAN-gatewayed session if the server
supports the operation.

SICL VXI Functions

Function Name Action
i vXi busst at us Returns requested bus status information
i vxi gettrigroute Returns the routing of the requested trigger line
i vxirm nfo Returns information about VXI devices
i vxi servants Identifies active servants
i vxitrigoff De-asserts VXI trigger line(s)
ivxitrigon Asserts VXI trigger line(s)
ivxitrigroute Routes VXI trigger lines
i vXi wai t nor nop Suspends until normal operation is established
i VXi ws Sends a word-serial command to a device

180 Chapter7

Using HP SICL with RS-232

Using HP SICL with RS-232

RS-232 isaseria interface that is widely used for instrumentation.
Although it is slow in comparison to HP-IB or VXI, itslow cost makes it an
attractive solution in many situations. Because HP SICL for Windows uses
the RS-232 facilities built into the Windows operating system, controlling
RS-232 instruments is easy to do.

This chapter describes in detail how to open a communications session and
communicate with an instrument over an RS-232 connection. The example
programs shown in this chapter are also provided in the C\ SAMPLES\ M SC
(for C/C++) and VB\ SAMPLES\ M SC (for Visual BASIC) subdirectories
under the SICL base directory (for example, C: \ SI CL95 or C: \ SI CLNT if
the default installation directory was used).

This chapter contains the following sections:

e Creating a Communications Session with RS-232
e Communicating with RS-232 Devices

e Communicating with RS-232 Interfaces

e Summary of RS-232 Specific Functions

182 Chapter 8

Using HP SICL with RS-232
Creating a Communications Session with RS-232

Creating a Communications Session with
RS-232

Once you have configured your system for RS-232 communications, you
can start programming with the SICL functions. If you have programmed
RS-232 before, you will probably want to open the interface and start
sending commands. With SICL, you must first determine what type of
communications session you will need.

SICL is designed to provide a standard way of accessing instrumentation
that is independent from the type of connection. With HP-IB, there can be
multiple devices on asingleinterface. SICL allowsyou direct accessto a
device on an interface without worrying about the type of interface to which
it isconnected. To do this, you communicate with adevice session. SICL
aso alows you to do interface-specific actions, such as setting up device
addresses or setting other interface-specific characteristics. To do this, you
communicate with an inter face session.

With RS-232, only one device is connected to the interface. Therefore, it
may seem like extra work to have device sessions and interface sessions.
However, structuring your code so that interface-specific actions areisolated
from actions on the device itself makes your programs easier to maintain.
Thisisespecialy important if, at some point, you will want to use a program
with asimilar instrument on a different interface, such as HP-IB.

Using SICL to communicate with an instrument on RS-232 is similar to
using SICL over HP-IB. You must first determine what type of
communications session you will need. An RS-232 communications session
can be either adevice session or an interface sesson. Commander sessions
are not supported on RS-232.

An RS-232 device session should be used when sending commands and
receiving data from an instrument. Setting interface characteristics (such as
the baud rate) must be done with an interface session.

Chapter 8 183

Using HP SICL with RS-232
Communicating with RS-232 Devices

Communicating with RS-232 Devices

The device session allows you direct access to a device without worrying
about the type of interface to which it is connected. The specifics of the
interface are hidden from the user.

Addressing RS-232 Devices

To create a device session, specify the interface logical unit or symbolic
name, followed by a devicelogical address of 488. The interface logical
unit and symbolic name are defined by runningthel / O Confi g utility
fromtheHP 1/ O Li brari es program group for Windows 95 or Windows
NT, or from the HP SI CL program group for Windows 3.1. See Chapter 2,
“Installing and Configuring the HP I/O Libraries,” in thi# I/O Libraries
Installation and Configuration Guide for Windows for information on
runningl / O Confi g. The device address @fg8 tells SICL that you are
communicating with an instrument that uses the IEEE 488.2 standard
command structure.

Note If your instrument does not “speak” IEEE 488.2, you can still use SICL to
communicate with it. However, some of the SICL functions that work only
with device sessions may not operate correctly. See the next section, “HP
SICL Function Support with RS-232 Device Sessions.”

184 Chapter 8

Using HP SICL with RS-232
Communicating with RS-232 Devices

The following are example addresses for RS-232 device sessions:

COML, 488
serial , 488

For other interfaces, SICL supports the concept of primary and secondary
addresses. For RS-232, the only primary address supported is488. SICL
does not support secondary addressing on RS-232 interfaces.

The following are examples of opening a device session with an RS-232

device.

C example:

I NST dmm

dmm = iopen (“com1,488");

Visual BASIC example:

Dim dmm As Integer
dmm = iopen (“com1,488"

HP SICL Function Support with RS-232 Device Sessions

The following describes how some SICL functions are implemented for
RS-232 device sessions.

iprintf ,
iscanf
ipromptf

i readstb

SICL's formatted I/O routines depend on the concept of
an EOIl indicator. Since RS-232 does not define an EOI
indicator, SICL uses the newline character)(by

default. You cannot change this with a device session;
however, you can use theeri al ct rl function with an
interface session. See the section titled “HP SICL
Function Support with RS-232 Interface Sessions” later in
this chapter.

Sends the IEEE 488.2 commar®irB? to the instrument,
followed by the newline charactam()). It then reads the
ASCII response string and converts it to an 8-bit integer.
Note that this will work only if the instrument understands
this command.

Chapter 8

185

Using HP SICL with RS-232
Communicating with RS-232 Devices

itrigger

i cl ear

i onsrq

Sends the IEEE 488.2 commantRG to the instrument,
followed by the newline charactam(). Note that this
will work only if the instrument understands this
command.

Sends a break, aborts any pending writes, discards any
data in the receive buffer, resets any flow control states
(such as XON/ XOFF), and resets any error conditions. To
reset the interface without sending a break, use the
following function:

iserialctrl (id, | _SERI AL_RESET, 0)

nstalls a service request handler for this session. Service
requests are supported for both device sessions and
interface sessions. See the section titled “HP SICL
Function Support for RS-232 Interface Sessions” later in
this chapter.

RS-232 Device There are specific device session interrupts that can be used. Seei setintr
Session Interrupts iy Chapter 12, MP SICL Language Refererider information on the
device session interrupts for RS-232.

186

Chapter 8

Note

Using HP SICL with RS-232
Communicating with RS-232 Devices

RS-232 Device Session Examples

Thefollowing ser _dev example programs were tested with an HP 34401A
Digital Voltmeter. When you run the program with a serial connection to
the HP 34401A, make sure that DTR/DSR flow control is set for the serial
port. Otherwise, the program will appear not to work.

C example:

/* ser_dev.c
Thi s exanpl e programtakes a nmeasurenment froma DVM
using a SICL device session

*/

#i ncl ude <sicl.h>

#i ncl ude <stdi o. h>

#i ncl ude <stdlib. h>

#if 1defined(WN32)

#defi ne LOADDS _ | oadds
#el se

#defi ne LOADDS
#endi f

voi d SI CLCALLBACK LQADDS error_handler (INST id, int error) {

printf (“Error: %s\n”, igeterrstr (error));
exit (1);
}

main()

INST dvm;
double res;

#if defined(_ BORLANDC__) && !defined(___WIN32__
_InitEasyWin(); // required for Borland EasyWin
programs
#endif

Chapter 8 187

Using HP SICL with RS-232
Communicating with RS-232 Devices

/* Log nmessage and terninate on error */
i onerror (error_handler);

/* Open the multineter session */
dvm = iopen (“COM1,488");
itimeout (dvm, 10000);

[* Prepare the multimeter for measurements */
iprintf (dvm,”™RST\n");
iprintf (dvm,”SYST:REM\n");

[* Take a measurement */
iprintf (dvm,”"MEAS:VOLT:DC?\n");

[* Read the results */
iscanf (dvm,"%lf",&res);

/* Print the results */
printf (“Result is %f\n”,res);

[* Close the voltmeter session */
iclose (dvm);

/I For WIN16 programs, call _siclcleanup before exiting to
/I release resources allocated by SICL for this

I/l application. This call is a no-op for WIN32 programs
_siclcleanup();

return O;

188 Chapter 8

Using HP SICL with RS-232
Communicating with RS-232 Devices

Visual BASIC example:

ser_dev.bas

‘ This example program takes a measurement from a DVM
‘ using a SICL device session.

Sub Main ()

Dim dvm As Integer

Dim res As Double

Dim argcount As Integer

 Open the multimeter session
dvm = iopen(“COM1,488")
Call itimeout(dvm, 10000)

‘ Prepare the multimeter for measurements
argcount = ivprintf(dvm, “*RST” + Chr$(10), 0&)

argcount = ivprintf(dvm, “SYST:REM” + Chr$(10), 0&)

‘ Take a measurement
argcount = ivprintf(dvm, “MEAS:VOLT:DC?” + Chr$(10))

‘ Read the results
argcount = ivscanf(dvm, “%lf", res)

‘ Print the results
MsgBox “Result is “ + Format(res), MB_ICON_EXCLAMATION

‘ Close the multimeter session
Call iclose(dvm)

‘* Tell SICL to cleanup for this task
Call siclcleanup

End Sub

Chapter 8 189

Using HP SICL with RS-232
Communicating with RS-232 Interfaces

Communicating with RS-232 Interfaces

Interface sessions can be used to get or set the characteristics of the RS-232
connection. Examples of some of these characteristics are baud rate, parity,
and flow control.

Addressing RS-232 I nterfaces

To create an interface session on RS-232, specify theinterface logical unit or
symbolic name in the addr parameter of thei open function. The interface
logical unit and symbolic name are defined by runningthel / O Confi g
utility fromtheHP |/ O Li brari es program group for Windows 95 or
Windows NT, or from the HP SI CL program group for Windows 3.1. See
Chapter 2, “Installing and Configuring the HP I/O Libraries,” in Hfe1/O
Libraries Installation and Configuration Guide for Windows for information
on runningl / O Confi g.

The following are example addresses for RS-232 interface sessions:

COM1 An interface symbolic name
serial An interface symbolic name
1 An interface logical unit

The following examples open an interface session with the RS-232 interface.
C example:

INST intf;
intf = iopen (“COM1");

Visual BASIC example|

Dim intf As Integer
intf = iopen (“COM1")

190 Chapter 8

Using HP SICL with RS-232
Communicating with RS-232 Interfaces

HP SICL Function Support with RS-232 I nterface

Sessions

The following describes how some SICL functions are implemented for
RS-232 interface sessions.

iwrite,
i read

ixtrig

itrigger

i cl ear

All /O functions (non-formatted and formatted) work the
same as for device sessions. However, it is
recommended that all I/O be performed with device
sessions to make your programs easier to maintain.

Provides a method of triggering using either the DTR or
RTS modem status line. This function clears the
specified modem status line, waits 10 milliseconds, then
sets it again. Specifying| _TRI G_STDis the same as
specifying| _TRI G_SERI AL_DTR.

Pulses the DTR modem control line for 10 milliseconds.

Sends a break, aborts any pending writes, discards any
data in the receive buffer, resets any flow control states
(such as XON/ XOFF), and resets any error conditions.
To reset the interface without sending a break, use the
following function:

iserialctrl (id, |_SERI AL_RESET, 0)

Chapter 8

191

Using HP SICL with RS-232
Communicating with RS-232 Interfaces

i onsrq|

iserialctrl

Installs a service request handler for this session. The
concept of service request (SRQ) originates from HP-IB.
On an HP-IB interface, a device can request service
from the controller by asserting a line on the interface
bus. RS-232 does not have a specific line assigned as a
service request line. However, you can assign one of the
modem status lines (RI, DCD, CTS, or DSR) as the
service request line by running the | / O Conf i g utility.
Any transition on the designated service request line will
cause an SRQ handler in your program to be called.
(Be sure not to set the SRQ line to CTS or DSR if you
are also using that line for hardware flow control.)

Service requests are supported for both device sessions
and interface sessions. When the designated SRQ line

changes state, the RS-232 driver calls all SRQ handlers
installed by either device sessions or interface sessions.

Sets the characteristics of the serial interface. The
following requests are clarified:

® | _SERI AL_DUPLEX: The duplex setting determines
whether data can be sent and received
simultaneously. Setting full duplex allows
simultaneous send and receive data traffic. Setting
half duplex (the default) will cause reads and writes
to be interleaved, so that data is flowing in only one
direction at any given time. (The exception to this is
if XON/ XOFF flow control is used.)

® | SERI AL_READ BUFSZ: The default read buffer
size is 2048 bytes.
® | SERI AL_RESET: Performs the same function as

the i cl ear function on an interface session, except
that a break is not sent.

192

Chapter 8

Using HP SICL with RS-232
Communicating with RS-232 Interfaces

i serial stat Gets the characteristics of the serial interface. The
following requests are clarified:

® | SERI AL_MBL: Gets the state of the modem status
line. Because of the way Windows supports RS-232,
the | _SERI AL_RI bit will never be set. However,
the | _SERI AL_TERI bit will be set when the RI
modem status line changes from high to low.

® | SERI AL_STAT: Gets the status of the transmit
and receive buffers and the errors that have occurred
since the last time this request was made. Only the
error bits (I _SERI AL_PARI TY,
| _SERI AL_OVERFLOW | _SERI AL_FRAM NG,
and | _SERI AL_BREAK) are cleared; the
| _SERI AL_READ DAV and | _SERI AL_TEM bits
reflect the status of the buffers at all times.

® | SERI AL_READ DAV: Gets the current amount of
data available for reading. This shows how much
data is in Windows’ receive buffer, not how much
data is in the buffer used by the formatted input
functions such as i scanf.

i serial - Controls the modem control lines RTS and DTR. If one

nclctrl of these lines is being used for flow control, you cannot
set that line with this function.

i serial - Determines the current state of the modem control lines.

ncl st at If one of these lines is being used for flow control, this

function may not give the correct state of that line.

RS-232 Interface There are specific interface session interrupts that can be used. See
Session Interrupts j set i ntr in Chapter 12, P SICL Language Refererider information
on the interface session interrupts for RS-232.

Chapter 8 193

Using HP SICL with RS-232
Communicating with RS-232 Interfaces

RS-232 Interface Session Examples

C example:

/*

ser_intf.c

This program does the foll ow ng:

1) gets the current configuration of the serial port,

2) sets it to 9600 baud, no parity, 8 data bits, and
1 stop bit, and

3) Prints the old configuration.

*/

#i ncl ude <stdio. h>
#i ncl ude <sicl. h>
mai n()

{

INST intf; /* interface session id */
unsi gned | ong baudrate, parity, databits, stopbits;
char *parity_str;

#i f defined(__BORLANDC) && !defined(__WN32_)
_InitEasyWn(); /1 required for Borland EasyWn prograns
#endi f

/* Log nessage and exit programon error */
ionerror (I _ERROR EXIT);

/* open RS-232 interface session */
intf = iopen (“COM1");
itimeout (intf, 10000);

/* get baud rate, parity, data bits, and stop bits */
iserialstat (intf, |_SERIAL_BAUD, &baudrate);
iserialstat (intf, |_SERIAL_PARITY, &parity);
iserialstat (intf, |_SERIAL_WIDTH, &databits);
iserialstat (intf, |_ SERIAL_STOP, &stopbits);

* determine string to display for parity */

if (parity ==I1_SERIAL_PAR_NONE) parity_str = “NONE”;
else if (parity == |_SERIAL_PAR_ODD) parity_str =“ODD";
else if (parity == |_SERIAL_PAR_EVEN) parity_str = “EVEN?";
elseif (parity==1_SERIAL_PAR_MARK) parity_str="MARK”;
else fparity==I_SERIAL_PAR_SPACE*/parity_str="SPACE”";

194 Chapter 8

Using HP SICL with RS-232
Communicating with RS-232 Interfaces

/* set to 9600, NONE, 8,1 */
iserialctrl (intf, |I_SER AL_BAUD, 9600) ;
iserialctrl (intf, I _SERAL PARTY, |_SER AL PAR NON\B);
iserialctrl (intf, | SERAL WDIH | _SERIAL CHAR 8);
iserialctrl (intf, | _SER AL _STCP, | _SERIAL STCP_ 1);
/* Display previous settings */
printf(“Old settings: %05Id,%s,%ld,%ld\n”,

baudrate, parity_str, databits, stopbits);

* close port */
iclose (intf);

/ For WIN16 programs, call _siclcleanup before exiting
/I to release resources allocated by SICL for this

/I application. This call is a no-op for WIN32 programs.
_siclcleanup();

return O;

Chapter 8 195

Using HP SICL with RS-232
Communicating with RS-232 Interfaces

Visual BASIC example:

ser_intf.bas

* This program does the following:

1) gets the current configuration of the serial port
2) sets it to 9600 baud, no parity, 8 data bits, and

1 stop bit

3) prints the old configuration

Sub main ()

Dim intf As Integer

Dim baudrate As Long
Dim parity As Long
Dim databits As Long
Dim stopbits As Long
Dim parity_str As String
Dim msg_str As String

‘ open RS-232 interface session
intf = iopen(*COML1")
Call itimeout(intf, 10000)

‘ get baud rate, parity, data bits, and stop bits
Call iserialstat(intf, |_SERIAL_BAUD, baudrate)
Call iserialstat(intf, |_SERIAL_PARITY, parity)
Call iserialstat(intf, |_SERIAL_WIDTH, databits)
Call iserialstat(intf, |_SERIAL_STOP, stopbits)

‘ determine string to display for parity

Select Case parity

Case |_SERIAL_PAR_NONE
parity_str = “NONE”"

Case |_SERIAL_PAR_ODD
parity_str = “ODD”

Case |_SERIAL_PAR_EVEN
parity_str = “EVEN”"

Case |_SERIAL_PAR_MARK
parity_str = “MARK”

Case Else
parity_str = “SPACE”

End Select

196

Chapter 8

Using HP SICL with RS-232
Communicating with RS-232 Interfaces

‘ set to 9600,NONE,8, 1

Call iserialctrl(intf, |_SERIAL_BAUD, 9600)

Call iserialctri(intf, |_SERIAL_PARITY, |_SERIAL_PAR_NONE)
Call iserialctri(intf, |_SERIAL_WIDTH, |_SERIAL_CHAR_8)
Calliserialctrl(intf, |_SERIAL_STOP,| SERIAL_STOP_1)

‘ display previous settings

msg_str = “Old settings: “ + Str$(baudrate) + “,” +
parity_str + “,” + Str$(databits) + “,” +
Str$(stopbits)

MsgBox msg_str, MB_ICON_EXCLAMATION

‘ close port
Call iclose(intf)

‘ Tell SICL to cleanup for this task
Call siclcleanup

End Sub

Chapter 8 197

Using HP SICL with RS-232
Summary of RS-232 Specific Functions

Summary of RS-232 Specific Functions

Function Name

Action

iserialctrl Sets the following characteristics of the RS-232
interface:
Request Characteristic Settings
| _SERI AL_BAUD Data rate 2400, 9600, etc.
| SERI AL_PARI TY Parity _SERI AL_PAR_NONE

| _SERI AL_STOP

| _SERI AL_W DTH

| _SERI AL_READ BUFSZ
| _SERI AL_DUPLEX

| _SERI AL_FLOW CTRL

| _SERI AL_READ_EOI

| _SERI AL_WRI TE_EO

| _SERI AL_RESET

Stop bits / frame

Data bits / frame

Receive buffer size

Data traffic

Flow control

EOI indicator for reads

EOI indicator for writes

Interface state

_SERI AL_PAR_| GNORE
_SERI AL_PAR_EVEN
_SERI AL_PAR_ODD
_SERI AL_PAR_MARK
_SERI AL_PAR_SPACE

| _SERIAL_STOP_1
| _SERI AL_STOP 2

_SERI AL_CHAR 5
_SERI AL_CHAR 6
_SERI AL_CHAR 7
_SERI AL_CHAR 8

Number of bytes

| _SERI AL_DUPLEX_HALF
| _SERI AL_DUPLEX_FULL

| _SERI AL_FLOW NONE
| _SERI AL_FLOW XON

| _SERI AL_FLOW RTS_CTS
| _SERI AL_FLOW DTR_DSR

| _SERI AL_EO _NONE
| _SERIAL_EO _BI T8
| _SERIAL_EO _CHAR|(n)

| _SERI AL_EO _NONE
| _SERIAL_EO _BI T8

(none)

198

Chapter 8

Function Name

Using HP SICL with RS-232
Summary of RS-232 Specific Functions

Action

i serial stat Gets the following information about the RS-232
interface:
Request Characteristic Value
| _SERI AL_BAUD Data rate 2400, 9600, etc.
| _SERI AL_PARI TY Parity | _SERI AL_PAR *

| _SERI AL_STCP
| _SERI AL_W DTH

| _SERI AL_DUPLEX
| _SERI AL_MBL

| _SERI AL_STAT

| _SERI AL_READ BUFSZ

| _SERI AL_READ DAV

| _SERI AL_FLOW CTRL

| _SERI AL_READ_EOI
| _SERI AL_WRI TE_EO

Stop bits / frame
Data bits / frame
Data traffic

Modem status lines

Misc. status

Receive buffer size
Data available

Flow control

EOI indicator for reads

EOI indicator for writes

_SERI AL_STOP_*
_SERI AL_CHAR _*
_SERI AL_DUPLEX_*

_SERI AL_DCD
SERI AL_DSR
SERI AL_CTS
SERI AL_RI
SERI AL_TERI
SERI AL_D _DCD
SERI AL_D DSR
_SERIAL_D_CTS

_SERI AL_DAV
_SERI AL_TEMT
_SERI AL_PARI TY
_SERI AL_OVERFLOW
_SERI AL_FRAM NG
_SERI AL_BREAK

Number of bytes

Number of bytes

_SERI AL_FLOW *

_SERIAL_EO *

_SERI AL_EQ *

Chapter 8

199

Using HP SICL with RS-232
Summary of RS-232 Specific Functions

Function Name Action

iserialntlctrl Sets or Clears the modem control lines. Modem
control lines are either | _SERI AL_RTS or
| _SERI AL_DTR.

i serial ntlstat Gets the current state of the modem control lines.

i serial break Sends a break to the instrument. Break time is
10 character times, with a minimum time of
50 milliseconds and a maximum time of
250 milliseconds.

200 Chapter 8

Using HP SICL with LAN

Note

Using HP SICL with LAN

This chapter explains how to use SICL over LAN (Local Area Network).
LAN isanatural way to extend the control of instrumentation beyond the
limits of typical instrument interfaces.

LAN isonly supported with 32-bit SICL on Windows 95 and Windows NT.
If you are programming in Visual BASIC, this meansthat LAN isonly
supported with 32-hit Visual BASIC version 4.0.

Also, the GPIO interface is not supported with SICL over LAN.

This chapter describes in detail how to open a communications session and
communicate with devices over LAN. The example programs shown in this
chapter are also provided in the C\ SAMPLES\ M SC (for C/C++) and

VB\ SAMPLES\ M SC (for Visual BASIC) subdirectories under the SICL base
directory (for example, under C: \ SI CL95 or C: \ SI CLNT if the default
installation directory was used).

This chapter contains the following sections:

® Overview of LAN with HP SICL

® Considering LAN Configuration and Performance
® Communicating with LAN Devices

® Using Locksand Multiple Threads over LAN

® Using Timeouts with LAN

* Summary of LAN Specific Functions

202 Chapter9

Using HP SICL with LAN

Note To start the LAN server on a Windows 95 or Windows NT system, see the
appropriate “Starting the LAN Server” section of Chapter 2, “Installing and
Configuring the HP 1/O Libraries,” in thdP /O Libraries Installation and
Configuration Guide for Windows.

To stop the LAN server on a Windows 95 or Windows NT system, see the
appropriate “Stopping the LAN Server” section of Chapter 2, “Installing and
Configuring the HP /O Libraries,” in thdP /O Libraries Installation and
Configuration Guide for Windows.

Chapter 9 203

Using HP SICL with LAN
Overview of LAN with HP SICL

Overview of LAN with HP SICL

The LAN software provided with SICL allows you to control
instrumentation over aLAN. LAN connections are included on many
systems being sold today. By making use of these standard LAN
connections, instrument control can be driven from a computer which does
not have a special interface for instrument control.

The LAN software provided with SICL uses the client/server model of
computing. Client/server computing refers to a model where an
application, the client, does not perform all the necessary tasks of the
application itself. Instead, the client makes requests of another computing
device, the server, for certain services. Examples that you may havein your
workplace include shared file servers, print servers, or database servers.

The use of LAN for instrument control aso provides other advantages
associated with client/server computing:

® Resource sharing by multiple applications/people within an organization.

® Distributed control, where the computer running the application
controlling the devices need not be in the same room or even the same
building as the devices themselves.

Asshown in the following figure, aLAN client computer system (a Series
700 HP-UX workstation, a Windows 95 PC, or aWindows NT PC) makes
SICL requests over the network to aLAN server (a Series 700 HP-UX
workstation, a Windows 95 PC, aWindows NT PC, or an HP E2050 LAN/
HP-1B Gateway). The LAN server is connected to the instrumentation or
devices that must be controlled. Once the LAN server has completed the
requested operation on the instrument or device, the LAN server sends a
reply to the LAN client. This reply contains any requested data and status
information which indicates whether the operation was successful.

204 Chapter9

Using HP SICL with LAN
Overview of LAN with HP SICL

Series 700s, Windows95 PCs, or Windows NT PCs

Client E

LAN
[HP E2050
LAN / HP-IB
Gateway —
O =]
I]
Server = ‘ = .
bus
L
e R HP-IB bus e o
Series 700s, Windows95 (or other) L
PCs, or Windows NT PCs
Gateway

rrrr
rrrr
rrrr
rrrr
rrrr

rrrr
rrrr
rrrr
rrrr
rrrr

HP-1B
Instruments

Instrument

Using the LAN Client and LAN Server (Gateway)

The LAN server acts as agateway between the LAN that your client system
supports, and the instrument-specific interface that your device supports.

Due to the LAN server’s gateway functionality, we refer to devices or
interfaces which are accessed via one of these LAN-to-instrument_interface
gateways as being a LAN-gatewayed device or a LAN-gatewayed interface.

Chapter 9 205

Using HP SICL with LAN
Overview of LAN with HP SICL

L AN Software Architecture

Asthe following figure shows, the client system contains the LAN client
software and the LAN software (TCP/IP) needed to access the server
(gateway). The gateway containsthe LAN server software, LAN (TCP/IP)
software, and the instrument driver software needed to communicate with
the client and to control the instruments or devices connected to it.

Client System

Server (Gateway)

Application

LAN Server

Instrument

SICL

TCP

LAN Client

IP

TCP

LAN Interface

Instrument

Driver

Instrument
Firmware

IP

LAN Interface

LAN Software Architecture

HP-IB bus (or other)

206

Chapter9

Using HP SICL with LAN
Overview of LAN with HP SICL

LAN Networking The LAN software provided with SICL is built on top of standard LAN
Protocols networking protocols. There aretwo LAN networking protocols provided
with the SICL software. You can choose one or both of these protocols
when configuring your systems (viathe |1 / O Confi g utility) to use SICL
over LAN. Thetwo protocols are asfollows:

® SICL LAN Protocol isanetworking protocol developed by HP which is
compatible with all existing SICL LAN products. This LAN networking
protocol isthe default choiceinthel / O Confi g utility when you are
configuring LAN for SICL. The SICL LAN Protocol on Windows 95
and Windows NT supports SICL operations over the LAN to HP-1B/
GPIB and RS-232 interfaces.

® TCPI/IP Instrument Protocol isanetworking protocol developed by the
V Xlbus Consortium based on the SICL LAN Protocol which permits
interoperability of LAN software from different vendors that meet the
V Xlbus Consortium standards. Note that this LAN networking protocol
may not be implemented with all the SICL LAN products at this time.
The TCP/IP Instrument Protocol on Windows 95 and Windows NT
supports SICL operations over the LAN to HP-1B/GPIB interfaces. Also,
some SICL operations are not supported when using the TCP/IP
Instrument Protocol. See the section titled “HP SICL Function Support
with LAN-gatewayed Sessions” later in this chapter.

When using either of these networking protocols, the LAN software

provided with SICL uses the TCP/IP protocol suite to pass messages
between the LAN client and the LAN server. The server accepts device 1/O
requests over the network from the client and then proceeds to execute those
I/O requests on a local interface, such as HP-IB.

You can use both LAN networking protocols with a LAN client. To do so,
simply configureboth the SICL LAN Protocol and the TCP/IP Instrument
Protocol on the LAN client system via theO Confi g utility. (See

Chapter 2, “Installing and Configuring the HP I/O Libraries,” inil/O
Libraries Installation and Configuration Guide for Windows for information

on running / O Confi g.) Then use the name of the interface supporting the
protocol you wish to use in each SICbpen call of your program. (See the
“Communicating with LAN Devices” section later in this chapter for details
on how to create communications sessions with SICL over LAN using each
of these protocols.) Note, however, that the LAN server datesupport

Chapter 9 207

LAN Client and
Threads

LAN Server

Using HP SICL with LAN
Overview of LAN with HP SICL

simultaneous connections from LAN clients using the SICL LAN Protocol
and from other LAN clients using the TCP/IP Instrument Protocol.

You can use multi-threaded designs (where SICL calls are made from
multiple threads) in WIN32 SICL applications over LAN. However, only
one thread is permitted to accessthe LAN driver at atime. This sequential
handling of individual threads by the LAN driver prevents multiple threads
from colliding or overwriting one another. Note that requests are handled
sequentially even if they are intended for different LAN servers.

If you want concurrent threads to be processed simultaneously with SICL

over LAN, use multiple processes. For more information on using threadsin
WIN32 SICL applications, refer to the section, “Thread Support for 32-bit
Windows Applications,” in Chapter 3Blilding an HP SICL Applicatiori

Also see the section, “Using Locks and Multiple Threads over LAN,” later
in this chapter for information on using locks in multi-threaded applications.

SICL includes the necessary software to allow a Windows 95 PC or a
Windows NT PC to act as a LAN-to-instrument_interface gateway. To use
this capability, the PC must have a local interface configured for I/O. The
supported interfaces for this release are GPIB/HP-IB and RS-232 with the
SICL LAN Protocol, and GPIB/HP-IB with the TCP/IP Instrument Protocol.
(The LAN server doesot support VXI operations with either protocol.)

Note that the timing of operations performed remotely over a network will
be different from the timing of operations performed locally. The extent of
the timing difference will, in part, depend on the bandwidth of and the traffic
on the network being used.

Contact your local HP representative for a current list of other HP supported
LAN servers.

208 Chapter9

Using HP SICL with LAN
Considering LAN Configuration and Performance

Considering LAN Configuration and
Performance

Aswith other client/server applications on aLAN, when deploying an
application which uses SICL over LAN, consideration must be given to the
performance and configuration of the network to which the client and server
will be attached. If the network to be used is not adedicated LAN or
otherwiseisolated viaabridge or other network device, current utilization of
the LAN must be considered. Depending on the amount of data which will
be transferred over the LAN viathe SICL application, performance
problems could be experienced by the SICL application or other network
users if sufficient bandwidth is not available. Thisis not unique to SICL
over LAN, but issimply ageneral design consideration when deploying any
client/server application.

If you have questions concerning the ability of your network to handle SICL
traffic, consult with your network administrator or network equipment
providers.

Chapter 9 209

Using HP SICL with LAN
Communicating with LAN Devices

Communicating with LAN Devices

There are several different types of sessions which are supported over LAN.
This section describes those session types and what behavior should be
expected for the various SICL calls.

L AN-gatewayed Sessions

Communicating with adevice over LAN through a LAN-to-

instrument_interface gateway preserves the functionality of the gatewayed-
interface with only a few exceptions. (See the “HP SICL Function Support
with LAN-gatewayed Sessions” section later in this chapter.) This means
most operations you might request of an interface, such as HP-1B, connected
directly to your controller, you can also request of a remote interface via the
LAN gateway. The only portions of your application which must change are
the addresses passed toithpen calls (unless those addresses are stored in
a configuration file, in which case no changes to the application itself are
required). The address used for a local interface must have a LAN prefix
added to it so that the SICL software knows to direct the request to a LAN
server on the network.

Addressing To create a LAN-gatewayed session, specify the LAN’s interface logical
Interl?;gelzgev?/i?r: unit or interface name, the IP a}ddress or hostname of the server machine,
LAN-gatewayed and the address of the remote interface or device ewtireparameter of the
Sessions i open function. The interface logical unit and interface name are defined
by running thd / O Confi g utility from theHP 1/ O Li brari es program
group. See Chapter 2, “Installing and Configuring the HP I/O Libraries,” in
theHP 1/O Libraries Installation and Configuration Guide for Windows for

information on running/ O Confi g.

210 Chapter9

Using HP SICL with LAN
Communicating with LAN Devices

The following are examples of LAN-gatewayed addresses:

| an[instserv]:GPIB, 7 A device address corresponding
to the device at primary address 7
on the GPI B interface attached to
the machine named i nst serv.

| an[instserv. hp.conj: hpib,7 A device address corresponding
to the device at primary address 7
on the hpi b interface attached to
the machine named i nst serv in
the hp. comdomain. (Fully
qualified domain names may be
used.)

| an1[128.10. 0. 3] : GPI BO, 3, 2 A device address corresponding
to the device at primary address
3, secondary address 2, on the
GPI BO interface attached to the
machine with IP address
128.10.0.3

I anl[i ntserv]: GPI B2 An interface address
corresponding to the GPI B2
interface attached to the machine
named i nt serv.

30,intserv: hpib, 3,2 A device address corresponding
to the device at primary address
3, secondary address 2, on the
hpi b interface attached to the
machine named i nt serv. (30 is
the default logical unit for LAN.)

| an[intserv]:GPl B, cndr A commander session with the
GPI B interface attached to the
machine named i nt ser v. (This
example assumes that the server
supports GPIB commander
sessions).

Chapter 9 211

Note

Using HP SICL with LAN
Communicating with LAN Devices

If you are using the | P address of the server machine rather than the
hostname, then you cannot use the comma notation, but must use the bracket
notation.

Incorrect:
| an, 128. 10.0. 3: hpi b

Correct:
l an[128. 10.0. 3] : hpi b

The following table shows the rel ationship between the address passed to
iopen, the session type returned by i get sesst ype, theinterface type
returned by i geti nt ft ype, and the valuereturned by i get gat ewayt ype.

Address Session Type Interface Type Gateway Type

lan | _SESS_INTF | _I NTF_LAN | _I NTF_NONE
lan[instserv]:hpib 1 _SESS INTF | _INTF_GPIB | _INTF_LAN
lan[instserv]:hpib,7 | _SESS DEV | INTF_GPIB | _INTF_LAN

hpib | _SESS INTF [|_INTF_GPIB | _I NTF_NONE

hpib,7 | _SESS DEV | _INTF_GPIB | _I NTF_NONE

212 Chapter9

HP SICL Function
Support with LAN-
gatewayed
Sessions

Using HP SICL with LAN
Communicating with LAN Devices

A gatewayed-session to aremote interface provides the same SICL function
support asif the interface was local, with the following exceptions or
qualifications.

The following SICL functions are not supported over LAN using either
protocol:

® ibl ockcopy
® imp

® imapinfo

® jpeek

® ipoke

® jipopfifo
® jpushfifo
® junmap

The following SICL functions, in addition to those listed above, are not
supported with the TCP/IP Instrument Protocol:
* All RS-232/serial specific functions

® jgetlu

® jonintr

® jisetintr

® jgetintfsess

® jgetonintr

® igpi bgettldel ay

® jgpi bppoll

® jgpibppollconfig

® igpi bppollresp

® jgpi bsettldel ay

Chapter 9 213

Using HP SICL with LAN
Communicating with LAN Devices

For thei get devaddr,i getintftype, andi get sesst ype functionsto

be supported with the TCP/IP Instrument Protocol, the remote address

strings must follow the TCP/IP Instrument Protocol naming conventions —
gpi b0, gpi b1, and so forth. For example:

gpi bo, 7

gpi bl,7,2

gpi b2
However, since the interface names at the remote server may be
configurable, this is not guaranteed. Also note that the correct behavior of
i renot e andi cl ear depend on the correct address strings being used.

Finally, note that whenr enot e is executed over the TCP/IP Instrument
Protocol,i r enot e will also send the LLO (local lockout) message in
addition to placing the device in the remote state.

Any of the following functions may timeout over LAN, even those functions
which cannot timeout over local interfaces. (See the “Using Timeouts with
LAN” section later in this chapter for more details.) These functions all
cause a request to be sent to the server for execution.

* All GPIB/HP-IB specific functions
® All RS-232/serial specific functions

® jabort

® jclear
® iclose
® iflush
® ifread
® ifwite

® jgetintfsess

® ilocal
® ilock
® jionintr
® ionsrq
® jopen
® jprintf

214 Chapter9

LAN-gatewayed
Session Example

i pronpt f
i read

i readstb
i renote
i scanf

i set buf

isetintr
isetsthb

i set ubuf

trigger
unl ock
version
wite

xtrig

Using HP SICL with LAN
Communicating with LAN Devices

The following SICL functions perform as follows with LAN-gatewayed
sessions:

idrvrversion

iwite,iread

Returns the version numbers from the server.

act ual cnt may be reported as 0 when some bytes
were transferred to or from the device by the server.
This can happen if the client times out while the
server is in the middle of an 1/O operation.

The following example programs open an HP-IB device session viaa LAN-
to-HPIB gateway. Note that these examples are the same asthe first example

in the “Using HP SICL with HP-IB” chapter, only the addresses passed to
thei open calls are modified. The addresses used in these examples assume
the machine with hostnameast serv is acting as a LAN-to-HPIB

gateway.

Chapter 9

215

Using HP SICL with LAN
Communicating with LAN Devices

C Example:

/* | andev.c

Thi s exanpl e program sends a scan list to a switch and
whi | e | oopi ng cl oses channel s and t akes nmeasur enents. */
#i ncl ude <sicl.h>

#i ncl ude <stdio. h>

mai n() {
I NST dvm
I NST sw;

doubl e res;

int i;

/* Print nessage and terminate on error */
ionerror (I _ERROR EXIT);

/* Open the multineter and switch sessions */
dvm = iopen (“lan[instserv]:hpib,9,3");

sw = iopen (“lan[instserv]:hpib,9,14");

itimeout (dvm, 10000);

itimeout (sw, 10000);

[*Set up trigger*/
iprintf (sw, “TRIG:SOUR BUS\n");

[*Set up scan list*/
iprintf (sw,"SCAN (@100:103)\n");
iprintf (sw,”INIT\n");

for (i=1;i<=4;i++) {
[* Take a measurement */
iprintf (dvm,”"MEAS:VOLT:DC?\n");

/* Read the results */
iscanf (dvm,"%lf", &res);

* Print the results */

printf (“Result is %f\n",res);
[*Trigger to close channel*/
iprintf (sw, “TRIG\n");

[* Close the multimeter and switch sessions */
iclose (dvm);
iclose (sw);

216 Chapter9

Using HP SICL with LAN
Communicating with LAN Devices

Visual BASIC Example:

‘ landev.bas
‘ This program sends a scan list to a switch and while
“looping closes channels and takes measurements.

Attribute VB_Name = “Modulel”

Public Sub lanmain()
Dim dvm As Integer, sw As Integer
Dim nargs As Integer, | As Integer
Dim res As Double
Dim actual As Long
Dim res1 As String

‘ Set up an error handler within this subroutine that
* will get called if a SICL error occurs.
On Error GoTo ErrorHandler

‘Open the multimeter and switch sessions
dvm = iopen(“lan[intserv]:hpib,9,3")
sw = iopen(“lan[intserv]:hpib,9,14")

Call itimeout(dvm, 10000)
Call itimeout(sw, 10000)

‘set up the trigger
nargs = iwrite(id, “TRIG:SOUR BUS” + Chr$(10) + Chr$(0), 14, 1, actual)

‘set up scan list
nargs = iwrite(id, “SCAN (@100:103)” + Chr$(10) + Chr$(0), 15, 1, actual)
nargs = iwrite(id, “INIT” + Chr$(10) + Chr$(0), 5, 1, actual)

ForI=1To4 Step 1
nargs = iwrite(id, “MEAS:VOLT:DC?” + Chr$(10) + Chr$(0), 14, 1, actual)
nargs = iread(id, res1, |, &H0&, actual)

MsgBox “Result is”
MsgBox resl

nargs = iwrite(id, “TRIG” + Chr$(10) + Chr$(0), 5, 1, actual)
Next |

Dim x As Integer

Chapter 9 217

Using HP SICL with LAN
Communicating with LAN Devices

X = iclose(dvm
X = iclose(sw)
Exit Sub

Er r or Handl er:

‘ Display the error message in the txtResponse TextBox.
txtResponse.Text = “*** Error : “ + Error$
MsgBox txtResponse.Text
‘ Close the device session if iopen was successful.
Ifid <> 0 Then
iclose (id)
End If

Exit Sub
End Sub

218 Chapter9

Addressing LAN
Interface Sessions

HP SICL Function
Support with LAN
Interface Sessions

Using HP SICL with LAN
Communicating with LAN Devices

LAN Interface Sessions

The LAN interface, unlike most other supported SICL interfaces, does not

alow for direct communication with devices viainterface commands. LAN
interface sessions, if used at all, will typically be used only for setting the

client side LAN timeout. (See the “Using Timeouts with LAN” section later
in this chapter.)

To create a LAN interface session, specify the interface logical unit or
interface name in thaddr parameter of theopen function. The interface
logical unit and interface name are defined by running th@ Confi g
utility from theHP 1/ O Li brari es program group. See Chapter 2,
“Installing and Configuring the HP 1/O Libraries,” in thi® |/O Libraries
Installation and Configuration Guide for Windows for information on
runningl / O Confi g.

The following are examples of LAN interface addresses:

I an A LAN interface address using the interface name | an.

30 A LAN interface address using the logical unit 30. (Note that
30 is the default logical unit for LAN.)

The following SICL functions areot supported over LAN interface
sessions and will retudin_ ERR_NOT SUPP:

® All HP-1B specific functions

® All serial specific functions

® All formatted 1/O routines

® iwite
® iread
® ilock
® junlock

® jisetintr
® itrigger
® ixtrig

® jreadstb

Chapter 9 219

Using HP SICL with LAN
Communicating with LAN Devices

i setsth
i mapi nfo
il ocal

i renote

The following SICL functions perform as follows with LAN interface

Sessions:
i clear Performs no operation, returns | _ ERR_NOERROR.
i onsrq Performs no operation against LAN gateways for SICL,
returns | _ ERR_NOERRCOR
ionintr Performs no operation, returns | _ ERR_NOERROR.

igetluinfo Thisfunction returns information about local interfaces
only. It does not return information about remote
interfaces that are being accessed viaa LAN-to-
instrument_interface gateway.

220 Chapter9

Using HP SICL with LAN
Using Locks and Multiple Threads over LAN

Using Locks and Multiple Threads over
LAN

If two or more threads are accessing the same device or interface using two
or more different sessions over LAN, and they are using SICL locksto
synchronize access, the following situations may cause timeouts to occur or
may hang an application which does not use timeouts. The common ideain
al of these scenariosisthat all threads which are using their own sessions to
access the same device or interface should use the same string to identify the
device or interface in their callsto i open. Hence, the following scenarios
should be avoided:

® Using a hostname to identify the remote host in one call toi open while
using an alias or IP address to identify the same host in another call to
i open.

® Using adevice symbolic namein onecal toi open (such asdmt,
where ‘dmm? equals ‘hpi b, 1”) while using the fully specified device
name (such aspi b, 1) in another call.

® Using a remote interface’s logical unit (such @3 in one call while
using the remote interface’s symbolic name (suchhpsti”) in another.

® Usingi getint f sess to open an interface session (which internally
uses the logical unit to identify the remote interface) while opening the
interface with its symbolic name for another session.

You can avoid each of the previous situations by always using the same

strings to identify the same device or interface in multi-threaded

applications. You can also usethei geti nt f sess function if other

sessions use the logical unit to specify the interface instead of the interface’s
symbolic name.

Note that if any thread is usimg ock andi unl ock to synchronize access

to a particular device or interface, all threads accessing that same device or
interface using a different session must also isek andi unl ock.

WIN32 synchronization techniques may also be used to ensure that a thread
does not attempt 1/Q (ead/ i wri t e, and so forth) to a device already

Chapter 9 221

Using HP SICL with LAN
Using Locks and Multiple Threads over LAN

locked via adifferent session from a different thread within the same
process.

Note that if asession has an interface locked, and if a different thread using
its own session attemptsto lock a device on that interface, the device lock
will be held off either until the interface is unlocked by the other thread, or
until atimeout occurs on the device lock. Thisisdifferent fromhow i | ock
works on other interfaces (where a lock on a device when the device’s
interface is already locked will not hold off theock operation, but rather
will hold off any subsequent I/O to the device).

222 Chapter9

Using HP SICL with LAN
Using Timeouts with LAN

Using Timeoutswith LAN

The client/server architecture of the LAN software requires the use of two
timeout values, one for the client and one for the server. The server’'s
timeout value is the SICL timeout value specified withitheneout

function. The client’s timeout value is the LAN timeout value, which may be
specified with the | ant i meout function.

When the client sends an I/O request to the server, the timeout value
specified withi t i meout , or the SICL default, is passed with the request.
The server will use that timeout in performing the 1/0O operation, just as if
that timeout value had been used on a local I/O operation. If the server’s
operation is not completed in the specified time, then the server will send a
reply to the client which indicates that a timeout occurred, and the SICL call
made by the application will retutn ERR_TI MEQOUT.

When the client sends an I/O request to the server, it starts a timer and waits
for the reply from the server. If the server does not reply in the time
specified, then the client stops waiting for the reply from the server and
returnsl _ERR_TI MEQUT to the application.

Chapter 9 223

Using HP SICL with LAN
Using Timeouts with LAN

L AN Timeout Functions

Theil anti meout andi | angetti meout functions can be used to set or
query the current LAN timeout value. They work much like thei t i meout
andi getti meout functions. The use of these functionsis optional,
however, since the software will calculate the LAN timeout based on the
SICL timeout in use and the configuration values set viathel / O Confi g
utility (see the next subsection). Oncei | ant i meout is called by the
application, the automatic LAN timeout adjustment described in the next
subsection is turned off. See Chapter HR ‘SICL Language Refererice
for details of the | anti meout andi | anget ti meout functions.

Note that a timeout value afused with thé | ant i meout function has
special significance, causing the LAN client to not wait for a response from
the LAN server. However, the timeout valuelafhould be used in special
circumstances only and should be used with extreme caution. For more
information about this timeout value, see the section, “Using the No-Wait
Value,” under the | ant i meout function in Chapter 12 HP SICL

Language Referente

224 Chapter9

Using HP SICL with LAN
Using Timeouts with LAN

Default LAN Timeout Values

Thel /O Confi g utility specifies two timeout-related configuration values
for the LAN software. These values are used by the software to calculate
timeout values if the application has not previously caledi | ant i meout .

Server Timeout Timeout value passed to the server when an
application either uses the SICL default timeout
value of infinity or sets the SICL timeout to infinity
(0). Value specifies the number of seconds the
server will wait for the operation to complete before
returning | _ERR_TI MEQUT.

A value of 0 in this field will cause the server to be
sent a value of infinity if the client application also
uses the SICL default timeout value of infinity or sets
the SICL timeout to infinity (0).

Client Timeout Value added to the SICL timeout value (server’s

Delta timeout value) to determine the LAN timeout value
(client’s timeout value). Value specifies the number
of seconds.

Note Oncei |l anti meout iscalled, the software no longer sends the Server
Timeout value to the server and no longer attemptsto determine areasonable
client-side timeout. It is assumed that the application itself wants full control
of timeouts, both client and server.

Also notethati | anti meout isper process. That is, all sessions which are
going out over the network are affected wheni | ant i meout iscalled.

Chapter 9 225

Using HP SICL with LAN
Using Timeouts with LAN

If the application has not called thei | ant i meout function, then the
timeouts are adjusted via the following algorithm:

The SICL timeout, which is sent to the server, for the current call is
adjusted if itis currently infinity (0). In that case it will be set to the
Server Timeout value.

The LAN timeout isadjusted if the SICL timeout plusthe Client Timeout
Deltais greater than the current LAN timeout. In that case the LAN
timeout will be set to the SICL timeout plus the Client Timeout Delta.

The calculated LAN timeout only increases as necessary to meet the
needs of the application, but never decreases. This avoids the overhead of
readjusting the LAN timeout every time the application changes the
SICL timeout.

Thefirsti open call used to set up the server connection uses the Client
Timeout Delta specified viathel / O Confi g utility for portions of the
i open operation. The timeout value for TCP connection establishment
is not affected by the Client Timeout Delta.

To change the defaults, do the following:

1

2.

Exit any LAN applications for SICL which you want to reconfigure.

Runthel / O Confi g utility. (Double-clickthel/ O Confi giconinthe
HP I/ O Li brari es program group.) Change the Server Timeout and/
or Client Timeout Delta vaue(s).

Restart the LAN applications for SICL.

226 Chapter9

Using HP SICL with LAN
Using Timeouts with LAN

Timeoutsin Multi-threaded Applications

If you need to manually set the client side timeout in an application using
multiple threads, notethat i | anti meout may itself timeout due to
contention for the LAN subsystem where multiple threads in an application
are simultaneously using SICL over LAN. Thus, if multiple threads will be
using SICL over LAN at the sametime, and LAN timeouts are expected by
the application, it isrecommended that i | ant i neout be called when no
other LAN 1/O is occurring, such asimmediately after session creation

(i open).

Also, theuse of thei | ant i meout No-Wait Value for certain special cases

is described under thei | ant i meout function in Chapter 12 HP SICL
Language Referentelf the no-wait value is used and multiple threads are
attempting I/O over the LAN, the I/O operations using the no-wait option
will wait for access to the LAN for 2 minutes. If another thread is using the
LAN interface for greater than 2 minutes, the no-wait operation will timeout.

Chapter 9 227

Using HP SICL with LAN
Using Timeouts with LAN

Timeout Configurationsto Be Avoided

The LAN timeout used by the client should always be set greater than the
SICL timeout used by the server. This avoids the situation where the client
times out while the server continues to attempt the request, potentially
holding off subsequent operations from the same client. This also avoids
having the server send unwanted replies to the client.

The SICL timeout used by the server should generally be less than infinity.

Having the LAN server wait less than forever allowsthe LAN server to

detect clients that have died abruptly or network problems and subsequently

rel ease resources associated with those clients, such aslocks. Using the

smallest possible value for your application will maximize the server’s
responsiveness to dropped connections, including the client application
being terminated abnormally. Using a value less than infinity is made easy
for application developers due to the Server Timeout configuration value set
via thel / O Confi g utility. Even if your application uses the SICL default

of infinity, or if i ti meout is used to set the timeout to infinity, by setting

the Server Timeout value to some reasonable number of seconds, the server
will be allowed to timeout and detect network trouble if it has occurred and
release resources.

228 Chapter9

Using HP SICL with LAN
Using Timeouts with LAN

Application Terminations and Timeouts

If an application iskilled while in the middle of a SICL operation which is
performed at the LAN server, the server will continue to try the operation

until the server’s timeout is reached. By default, the LAN server associated
with an application using a timeout of infinity which is killed may not
discover that the client is no longer running for 2 minutes. (If you are using
a server other than the LAN server on HP-UX, Windows 95, Windows NT,
or the HP E2050, check that server’s documentation for its default behavior.)

If i ti meout is used by the application to set a long timeout value, or if both
the LAN client and LAN server are configured to use infinity or a long
timeout value, then the server may appear “hung.” If this situation is
encountered, the LAN client (via the Client Timeout Delta value set via the
I/ O Confi g utility) or the LAN server (via its Server Timeout value) may
be configured to use a shorter timeout value.

If long timeouts must be used, the server may be reset. A LAN server may
be reset by logging into the server system and killing the LAN server that is
running. Note that the latter procedure will affect all clients connected to the
server. See the LAN section in Chapter Il0ptibleshooting Your HP

SICL Prograni’ for more details. Also see the documentation of the server
you are using for the method to be used to reset the server.

Chapter 9 229

Using HP SICL with LAN
Summary of LAN Specific Functions

Summary of LAN Specific Functions

Function Name

Action

i I anti meout
il angetti meout

i get gat ewayt ype

Sets LAN timeout value

Returns LAN timeout value

Indicates whether the session is via a LAN gateway

230

Chapter9

10

Troubleshooting Your HP SICL
Program

Troubleshooting Your HP SICL Program

This chapter contains a description of SICL error codes. It also provides
help for troubleshooting common problems with SICL and:

® Windows 95

®* WIN16 Programs on Windows 95 and Windows 3.1

® WindowsNT

* RS-232

* GPIO

®* LAN Client and Server

232 Chapter 10

Troubleshooting Your HP SICL Program
HP SICL Error Codes

HP SICL Error Codes

When you install adefault SICL error handler suchas| _ERROR _EXI T or
| _ERROR_NCEXI T withani onerror cal, aSICL internal error message
will belogged. To view these messages.

e OnWindows 95 or Windows 3.1, start thevessage Vi ewer utility by
double-clicking on the icon in théP |/ O Li brari es program group
for Windows 95 or in theélP SI CL program group for Windows 3.1.
You may want to iconify the utility during execution of your program.
However, you must always start it before you execute a program in order
for messages to be logged.

e OnWindowsNT, SICL logs internal messages as Windows NT events
that you can view by starting tiseent Vi ewer utility in the
Adni ni strative Tool s group. Both system and application
messages can be logged toEent Vi ewer from SICL. SICL
messages are identified BYyCL LOG or by the driver name (such as
hp341i 32 for the HP-IB driver).

If you are programming in C, you may also useerr or to install your
own custom error handler. Your error handler caniegdt er r st r with

the given error code, and the corresponding error message string will be
returned.

See either the “Error Handlers in C” or “Error Handlers in Visual BASIC”
section in Chapter 4Programming with HP SICL for more information
on installing error handlers.

The following table contains an alphabetical summary of SICL error codes
and messages.

Chapter 10 233

Troubleshooting Your HP SICL Program

HP SICL Error Codes

SICL Error Codes and Messages

Error Code Error String Description
| ERR_ABORTED External |y aborted A SICL call was aborted by external means.
| ERR BADADDR Bad address The device/interface address passed to

| _ERR_BADCONFI G

| _ERR_BADFMT

| _ERR BADI D

| _ERR_BADMAP
| _ERR_BUSY

| _ERR_DATA

| _ERR_| NTERNAL
| _ERR_| NTERRUPT

| _ERR_| NVLADDR
|_ERR IO
| _ERR_LOCKED

| _ERR_NESTEDI O

Invalid configuration

Invalid formt

I nvalid | NST

Invalid map request

Interface is in use by
non- Sl CL process

Data integrity
viol ation
Internal error occurred

Process interrupt
occurred

I nval i d address
Ceneric I/O error

Locked by anot her user

Nested I/ O

Commander session is
not active or avail abl e

i open doesn't exist. Verify that the interface
name is the one assigned with the I / O
Confi g utility.

An invalid configuration was identified when
calling i open.

Invalid format string specified for i pri ntf or
i scanf.

The specified | NST id does not have a
corresponding i open.

The i map call has an invalid map request.

The specified interface is busy.

The use of CRC, Checksum, and so forth
imply invalid data.

SICL internal error.

A process interrupt (signal) has occurred in
your application.

The address specified in i open is not a valid
address (for example, "hpi b, 577).

An /O error has occurred for this
communication session.

Resource is locked by another session (see
i setl ockwait).

Attempt to call another SICL function when
current SICL function has not completed
(WIN16). More than one I/O operation is
prohibited.

Tried to specify a commander session when it
is not active, available, or does not exist.

234

Chapter 10

Troubleshooting Your HP SICL Program
HP SICL Error Codes

SICL Error Codes and Messages (Continued)

Error Code Error String Description
| ERR NOCONN No connecti on Communication session has never been
established, or connection to remote has
been dropped.
| _ERR _NODEV Device is not active Tried to specify a device session when it is
or avail abl e not active, available, or does not exist.
| ERR _NCERRCR No Error No SICL error returned; function return value
is zero (0).
| _ERR_NO NTF Interface is not active Tried to specify an interface session when it
is not active, available, or does not exist.
| ERR NCOLOCK Interface not | ocked Ani unl ock was specified when device
wasn't locked.
| ERR_NOPERM Per m ssi on deni ed Access rights violated.
| ERR _NORSRC Qut of resources No more system resources available.
| _ERR _NOTI MPL Oper ation not Call not supported on this implementation.
i mpl enent ed The request is valid, but not supported on this
implementation.
| _ERR_NOTSUPP Oper ation not Operation not supported on this
support ed implementation.
| _ERR Cs Generic O S. error SICL encountered an operating system error.

| _ERR_OVERFLOW

| _ERR_PARAM

| _ERR_SYMNAVE

| _ERR_SYNTAX

Arithnetic overfl ow

I nvalid paraneter

Invalid synbolic nane

Syntax error

Arithmetic overflow. The space allocated for
data may be smaller than the data read.

The constant or parameter passed is not valid
for this call.

Symbolic name passed to i open not
recognized.

Syntax error occurred parsing address
passed to i open. Make sure that you have
formatted the string properly. White space is
not allowed.

Chapter 10

235

Troubleshooting Your HP SICL Program
HP SICL Error Codes

SICL Error Codes and Messages (Continued)

Error Code Error String Description

| ERR TI MEQUT Ti meout occurred A timeout occurred on the read/write
operation. The device may be busy, in a bad
state, or you may need a longer timeout value
for that device. Check also that you passed
the correct address to i open.

| ERR VERSI ON Ver si on The i open call has encountered a SICL
i nconmpatibility library that is newer than the drivers. Need to
update drivers.

236 Chapter 10

Troubleshooting Your HP SICL Program
Common Problems with Windows 95

Common Problemswith Windows 95

Subsequent Execution of SICL Application Fails

If you terminate a program using the Task Manager, or if a program has an
abnormal termination, then some drivers may not unload from memory.
This could cause subsequent attempts to execute your /O program to fail.
To recover from this situation, you must restart (reboot) Windows 95.

Chapter 10 237

Troubleshooting Your HP SICL Program

Common Problems with WIN16 Programs on Windows 95 and
Windows 3.1

Common Problemswith WIN16 Programs
on Windows 95 and Windows 3.1

Subsequent Execution of SICL Application Gives
Strange Behavior

Check that _si cl cl eanup for C, or si cl cl eanup for Visual BASIC, is
called at the end of the program and at any other possible program exit-point
(at error handlers, and so forth).

General Protection Fault OccursWhen Interrupt, SRQ,
or Error Handler Called

Check that the interrupt or error handler routine was declared with the

S| CLCALLBACK modifer. Also, make sure that compiler optionsto generate
prolog code for exported functions were selected. If you are using the
QuickWin feature of Microsoft compilers, you must also use the _| oadds
modifier in the handler declaration.

General Protection Fault When Calling SICL
Formatted 1/0O Routine

Verify that al pointer parameters passed to SICL formatted I/O routines are
declared as_f ar, or that the compiler large memory model option is
selected.

238 Chapter 10

Troubleshooting Your HP SICL Program
Common Problems with WIN16 Programs on Windows 95 and Windows 3.1

Reference to Undefined Function or Array

Visual BASIC gives this message when a call is made to afunction that is
not defined in aprogram. If you get this message when you try to call a
SICL routine, then you need to add the SI CL4. BAS fileto your Project for
Visual BASIC 4.0, or the SI CL. BAS file to your Project for Visual BASIC
3.0o0r earlier.

Do thisby sdlectingFi | e | Add from the Visual BASIC menu. The

S| CL4. BAS and SI CL. BAS files are located in the VB subdirectory under
the SICL base directory (for example, C: \ SI CL95\ VB or C: \ SI CLNT\ VB if
you installed SICL in the default directory).

General Protection Fault OccursWheniwrite,iread,
or i vscanf isCalled from Visual BASIC

Make sure that all strings used as buffersfori read andi vscanf arefixed
length strings that are large enough to accommodate the data to be read in.

Chapter 10 239

Troubleshooting Your HP SICL Program

Common Problems with WIN16 Programs on Windows 95 and
Windows 3.1

| ERR NESTED | OOccurs

A subsequent SICL function call has been made before a previous call
completed. In order to allow other WIN16 applications to execute while a
SICL applicationisrunning, SICL may temporarily suspend execution in the
middle of a SICL call while waiting for aslow HP-IB transaction to
complete. Without this feature, your Windows system would be locked up
until the transaction compl etes.

However, because Windows is an event-/message-driven operating system,
it is possible that the SICL application would receive a message instructing
it to initiate another SICL call before thefirst one completes. Thiswill result
ina SICL error. Your program must be designed so that this situation does
not occur.

240 Chapter 10

Troubleshooting Your HP SICL Program
Common Problems with Windows 3.1

Common Problemswith Windows 3.1

Unresolved SICL Externalswhen Building a SICL
Application

Check that you are linking to the correct import libraries. Refer to Chapter 3,
“Building an HP SICL Applicatiori

Can’t Find “llibxxxx” When Building a SICL
Application

You probably did not load the large memory model libraries when you
installed your compiler software. Re-run the setup program for your
compiler and specifically request that large memory model libraries be
installed.

Chapter 10 241

Troubleshooting Your HP SICL Program
Common Problems with Windows NT

Common Problemswith WindowsNT

Program Appearsto Hang and Cannot BeKilled

Check that ani t i neout value has been set for all SICL sessionsin your
program. Otherwise, when an instrument does not respond to a SICL read or
write, SICL will wait indefinitely in the SICL kernel access routine,
preventing the application from being killed.

To kill the application, click on the “toaster” button in the upper-left corner
of the window and then close the window. After a few second®an

Task dialog box will appear. Press thed Task button. The application

is now Killed.

Formatted 1/0O Using % Causes Application Error

Verify that you are using(cvar sdl |) when compiling your application,
and eithes(gui | i bsdl 1) for Windows applications &(conl i bsdl)
for console applications when linking your application.

Also note that thed format character farpri nt f only works with
languages that use eiti3VCRT. DLL, MSVCRT20. DLL, or MSVCRT40. DLL
for their run-time library. Some versions of Visual C/C++ and Borland C/
C++ use their own versions of the run-time library. They cannot share
global data with SICL's version of the run-time library. Therefore, they
cannot usés- at all.

242 Chapter 10

Troubleshooting Your HP SICL Program
Common Problems with RS-232

Common Problemswith RS-232

Unlike HP-1B, special care must be taken to ensure that RS-232 devices are
correctly connected to your computer. Verifying your configuration first
can save many wasted hours of debugging time.

No Response from I nstrument

Check to make sure that the RS-232 interface is configured to match the
instrument. Check the Baud Rate, Parity, Data Bits, and Stop Bits.

Also make sure that you are using the correct cabling. Refer to Appendix F,
“RS-232 Cablésas well as the “RS-232 Cables and HP Instruments”
appendix in thédP 1/O Libraries Installation and Configuration Guide, for
more information on correct cabling.

If you are sending many commands at once, try sending them one at a time
either by inserting delays, or by single-stepping your program.

Data Received from Instrument is Gar bled

Check the interface configuration. Install an interrupt handler in your
program that checks for communication errors.

Data Lost During Large Transfers
Check the following:

» Flow control settings match
» Full/half duplex for 3-wire connections

e Cabling is correct for hardware handshaking

Chapter 10 243

Troubleshooting Your HP SICL Program
Common Problems with GPIO

Common Problemswith GPIO

Because the GPI O interface has such flexibility, most initial problems come
from cabling and configuration. There are many configuration fieldsin the
I/ O Confi g utility that must be configured for GPIO. For example, no data
transfers will work correctly until the handshake mode and polarity have
been correctly set. A GPIO cable can have up to 50 wiresin it, and you
often must solder your own plug to at least one end. It isimportant to have
the hardware configuration under control before you begin troubleshooting
your software.

If you are porting an existing HP 98622 application, the hardware task is
simplified. The cable connections are the same, and many | / O Confi g
fields closely approximate HP 98622 DIP switches. If yoursisanew
application, someone on the project with good hardware skills should
become familiar with the HP E2075 cabling and handshake behavior. In
either case, it isimportant to read the HP E2074/5 GPIO Interface
Installation Guide.

Thefollowing are some GPI O-specific reasonsfor certain SICL errors. Keep
in mind that many of these can also be caused by non-GPIO problems. (For
example, “Operation not supported” will happen on any interface if you
executd get i nt f sess with an interface ID.) Such general causes are
discussed earlier in this book. The following discussion highlights the
causes of errors that relate directly to the HP E2075 GPIO interface.

Bad Address (for i open)

This means the same thing for GPIO as for any interface. It indicates that
thei open did not succeed because the specified address (symbolic name)
does not correspond to a correctly configured entty d Confi g. This is
mentioned here because the GPIO has more configuration fields (and thus
more chances for mistakes) than any other interface.

244 Chapter 10

Troubleshooting Your HP SICL Program
Common Problems with GPIO

If your i open fails, make sure that the interface was properly configured.
Thel/ O Confi g utility establishes an entry for the GPIO card in your
Windows 95 or Windows NT registry. You are strongly encouraged to let
I/ O Confi g handleall registry maintenance for SICL. However, thereis
nothing which prohibits you from editing registry entries manually. If you
manually change the registry and enter an improper configuration value,
then the failed i open may send a diagnostic message to the Message

Vi ener (onWindows 95) or Event Vi ewer (on WindowsNT) utility. For
example:

HPe2074: GPI O config, bad read _clk entry
| SA card in slot #0 NOT | NI TI ALI ZED (I nval i d paraneter)

In such circumstances, you need to correct the configuration datain the
registry. The recommended procedureisto usel/ O Confi g, remove the
problematic interface name, and create aConf i gured | nt er f ace with
legal values selected fromthel / O Confi g utility’s dialog boxes.

Operation Not Supported

The HP E2075 has several modes. Certain operations are valid in one mode,
and not supported in another. Two examples are:

igpioctrl(id, |I_GPIOAUX value);

This operation applies only to the Enhanced mode of the data port. Auxiliary
control lines do not exist when the interface is in HP 98622 Compatibility
mode.

igpioctrl(id, I _GPIOSET PCTL, 1);

This operation is allowed only in Standard-Handshake mode. When the
interface is in Auto-Handshake mode (the default), explicit control of the
PCTL line is not possible.

Chapter 10 245

Troubleshooting Your HP SICL Program
Common Problems with GPIO

No Device

This error indicates that you wanted PSTS checks for read/write operations,
and afalse state of the PSTS line was detected. Enabling and disabling
PSTS checks is done with the command:

igpioctrl(id, |I_GPIOCHK PSTS, val ue);

If the check seemsto be reporting the wrong state of the PSTS line, then
correct the PSTS polarity bit viathel / O Confi g utility. If the PSTS check
is functioning properly and you get this error, then some problem with the
cable or the peripheral deviceisindicated.

Bad Par ameter

This error has the same meaning for GPIO as for any interface. However,
one case may be less obvious than typical parameter passing errors. If the
interface isin 16-bit mode, the number of bytes requested inani r ead or
i writ e function must be an even number. Although you probably view
16-hit data as words, the syntax of i read andi wri t e requires alength
specified as bytes.

246 Chapter 10

Note

Troubleshooting Your HP SICL Program
Common Problems with HP SICL over LAN (Client and Server)

Common Problemswith HP SICL over
LAN (Client and Server)

Both the LAN client and server may log messagesto the Message Vi ewer
(on Windows 95) or Event Vi ewer (on Windows NT) utility under certain
conditions, whether an error handler has been registered or not.

Before SICL over LAN can be expected to function, the client must be able
to talk to the server over the LAN. Use the following techniques to
determine whether the problem you are experiencing is a general network
problem, or is specific to the LAN software provided with SICL:

« If your application is unable to open a session to the LAN server for
SICL, the first diagnostic to try is thp ng utility. This command allows
you to test general network connectivity between your client and server
machines. Usingi ng looks something like the following:

>pi ng i nstserv. hp.com

Pi ngi ng instserv. hp. conj 128.10.0.3] with 32 bytes of data:
Reply from 128.10.0. 3: bytes=32 ti me=10ns TTL=255
Reply from 128.10.0. 3: bytes=32 ti me=10ns TTL=255
Reply from 128.10.0. 3: bytes=32 ti me=10ns TTL=255
Reply from 128.10.0. 3: bytes=32 ti me=10ns TTL=225

Where each line after th ngi ng line is an example of a packet
successfully reaching the server.

Chapter 10 247

Troubleshooting Your HP SICL Program
Common Problems with HP SICL over LAN (Client and Server)

However, if pi ng is unable to reach the host, you will see a message
similar to the following:

Pi ngi ng i nstserv. hp.conj 128.10.0.3] with 32 bytes of data:
Request tined out.
Request tinmed out.
Request tinmed out.
Request tinmed out.

Thisindicates that the client was unable to contact the server. In this
situation you should contact your network administrator to determine
what iswrong with the LAN. Once the LAN problem has been corrected,
you can then retry your SICL application over LAN.

« Another tool which can be used to determine where a problem might
reside is the pci nf o utility on an HP-UX workstation or other UNIX
workstation. This tool tests whether a client can make an RPC call to a
server. The first pci nf o option to try is p, which will print a list of
registered programs on the server:

> rpcinfo -p instserv
program verses proto port

100001 1 udp 1788 rstatd
100001 2 udp 1788 rstatd
100001 3 udp 1788 rstatd
100002 1 udp 1789 rusersd
100002 2 udp 1789 rusersd
395180 1 tcp 1138

395183 1 tcp 1038

Several lines of text will likely be returned, but the ones of interest are the
lines for program895180, which is for the SICL LAN Protocol, and

395183, which is for the TCP/IP Instrument Protocol (the port numbers will
vary). If the line for program395180 or 395183 is not present, your LAN
server is likely misconfigured. Consult your server's documentation, correct
the configuration problem, and then retry your application.

248 Chapter 10

Troubleshooting Your HP SICL Program
Common Problems with HP SICL over LAN (Client and Server)

e The secondpci nf o option which can be tried i , which will attempt
to execute procedure 0 of the specified program. You should see aline
similar to the following.

For the SICL LAN Protocol:

> rpcinfo -t instserv 395180
program 395180 version 1 ready and waiting

For the TCP/IP Instrument Protocol ;

> rpcinfo -t instserv 395183
program 395183 version 1 ready and waiting

If you do not see one of the above, your server is likely misconfigured or

not running. Consult your server’s documentation, correct the problem,
and then retry your application. See tipei nf o(1M man page for

more information.

Chapter 10 249

i open Fails -
Syntax Error

i open Fails - Bad
Address

i open Fails -
Unrecognized
Symbolic Name

i open Fails -
Timeout

Troubleshooting Your HP SICL Program
Common Problems with HP SICL over LAN (Client and Server)

LAN Client Problems

Inthiscase, i open failswith theerror | _ERR_SYNTAX. If using the
“lan,net_address” format, ensure that the net_address is a hostname, not an
IP address. If you must use an IP address, specify the address using the
bracket notation, an[128. 10. 0. 3], rather than the comma notation

| an, 128. 10. 0. 3.

Ani open fails with the errot _ERR_BADADDR, and the error text isor e
connect failed: program not registered. This indicates that the
LAN server for SICL has not registered itself on the server machine. This
may also be caused by specifying an incorrect hostname. Ensure that the
hostname or IP address is correct, and if so, check the LAN server’s
installation and configuration.

Thei open fails with the errot _ERR_SYMNAME, and the error text isad

host nanme, get host bynane() fail ed. This indicates that the
hostname used in th@pen address is unknown to the networking software.
Ensure that the hostname is correct and, if so, contact your network
administrator to configure your machine to recognize the hostname. The
pi ng utility can be used to determine if the hostname is known to your
system. Ifpi ng returns with the errd8ad | P addr ess, the hostname is
not known to the system.

Ani open fails with a timeout error. Increase the Client Timeout Delta
configuration value via the/ O Confi g utility. See the “Using Timeouts
with LAN” section in Chapter 9,Using HP SICL with LAN” for more
information.

250 Chapter 10

i open Fails -
Other Failures

I/O Operation
Times Out

Operation
Following a Timed
Out Operation
Fails

i open Fails or
Other Operations
Fail Due to Locks

Troubleshooting Your HP SICL Program
Common Problems with HP SICL over LAN (Client and Server)

Ani open fails with some error other than those already mentioned above.
Try the steps mentioned at the beginning of this section to determine if the
client and server can talk to one another over the LAN. If thepi ng and

r pci nf o procedures described earlier in this chapter work, then check any
server error logs which may be available for further clues. Check for
possible problems such as alack of resources at the server (memory, number
of SICL sessions, and so forth).

An /O operation times out even though the timeout being used is infinity.
Increase the Server Timeout configuration value viathel / O Confi g

utility. Also ensure that the LAN client timeout is large enough if you used

il anti neout. See the “Using Timeouts with LAN” section in Chapter 9,
“Using HP SICL with LAN" for more information.

An 1/O operation following a previous timeout fails to return or takes longer
than expected. Ensure that the LAN timeout being used by the system is
sufficiently greater than the SICL timeout being used for the session in
guestion. The LAN timeout should be large enough to allow for the network
overhead in addition to the time that the 1/O operation may take.

If you are usind | ant i meout , you must determine and set the LAN
timeout manually. Otherwise, ensure that the Client Timeout Delta
configuration value is large enough (via thed Confi g utility). See the
“Using Timeouts with LAN" section in Chapter 9J5sing HP SICL with
LAN,” for more information.

An i open fails due to insufficient resources at the server or I/O operations
fail because some other session has the device or interface locked. Old LAN
server connections for SICL from previous clients may not have terminated
properly. Consult your server’s troubleshooting documentation and follow
its instructions for cleaning-up any old server processes.

Chapter 10 251

Troubleshooting Your HP SICL Program
Common Problems with HP SICL over LAN (Client and Server)

LAN Server Problems

SICL LAN After starting the LAN server, aSICL LAN application fails and returns a

Application message similar to the following:
Fails - RPC Error 9

RPC_PROG_NOT_REG STERED

There is a short (approximately 5 second) delay between starting the LAN
server and the LAN server being registered with the Portmapper. Simply try
running the SICL LAN application again.

r pci nf o Does Not Anr pci nf o failsto indicate that program 395180 (SICL LAN Protocol) or
List 395180 or 395183 (TCP/IP Instrument Protocol) is available on the server. Did you
395183 start the LAN server? If not, do so. (See the “Starting the LAN Server”
section of Chapter 2, “Installing and Configuring the HP 1/O Libraries,” in
theHP I/O Libraries Installation and Configuration Guide for Windows.) If
so, try the pci nf o query again after a few seconds to ensure that the LAN
server had time to register itself.

i open Fails Ani open fails when you run your application, byici nf o indicates that
the LAN server is ready and waiting. Ensure that the requested interface has
been configured on the server. See Chapter 2, “Installing and Configuring
the HP I/O Libraries,” in th&élP 1/O Libraries Installation and
Configuration Guide for Windows for information on using the/ O
Conf i g utility to configure interfaces for SICL.

LAN Server The LAN server appears hung (possibly due to along timeout being set by a
Appears “Hung” client on an operation which will never succeed). Login to the LAN server

and stop the hung LAN server process. (To stop the LAN server, see the
“Stopping the LAN Server” section of Chapter 2, “Installing and
Configuring the HP I/O Libraries,” in thdP 1/O Libraries Installation and
Configuration Guide for Windows.) Note that this will affect all connected
clients, even those which may still be operational. If informational logging
has been enabled using theD Confi g utility, then connected clients can
be determined by log entries in either essage Vi ewer (on Windows
95) orEvent Vi ewer (on Windows NT) utility.

252 Chapter 10

r pci nf o Fails -
can’t contact
portmapper

r pci nf o Fails -
program 395180 is
not available

Mouse Hung When
Stopping LAN
Server

Troubleshooting Your HP SICL Program
Common Problems with HP SICL over LAN (Client and Server)

Anr pci nf o returns the message rpcinfo: can't contact

portmapper: RPC_SYSTEM_ERROR - Connection refused . Ensure

that the LAN server isrunning. If not, start it. If so, stop the currently

running LAN server and restart it. Use Ctrl-Alt-Del to get atask list. Ensure

that both LAN Server and Portmap are not running before restarting the

LAN server. (See the “Starting the LAN Server” and the “Stopping the
LAN Server” sections of Chapter 2, “Installing and Configuring the HP 1/O
Libraries,” in theHP 1/O Libraries Installation and Configuration Guide for
Windows.)

Anrpcinfo -t server_hosthame 395180 1 returns the following
message:

rpci nfo: RPC_SYSTEM ERROR - Connection refused
program 395180 version 1 is not avail able

Ensure that the LAN server program is running on the server.

If after attempting to stop a LAN server via eitkerl-C or the Windows 95
X-button (the “kill” button in the upper-right hand corner of a Windows 95
window), the mouse may appear to be hung. Hit any keyboard key and the
LAN server will stop and the mouse will again be operational.

Chapter 10 253

Troubleshooting Your HP SICL Program
Common Problems with HP SICL over LAN (Client and Server)

254 Chapter 10

11

More HP SICL Example Programs

More HP SICL Example Programs

This chapter contains additional example programs that help show you how
to develop your SICL applications. The example programs are:

* Anexample C program for oscilloscopes

* Anexample Visual BASIC program for oscilloscopes

256 Chapter 11

More HP SICL Example Programs
Example C Program for Oscillosopes

Example C Program for Oscillosopes

This C example programs an oscilloscope (such as an HP 54601), uploads
the measurement data, and instructs the scopeto print its display to a
ThinkJet printer. This example program uses many SICL features and
illustrates some important C and Windows programming techniques for
SICL. An overview of the program follows the sections on building the
program.

The oscilloscope example files are located in the C\ SAMPLES\ SCOPE
subdirectory under the SICL base directory (for example,

C:\ SI CL95\ C\ SAMPLES\ SCOPE or C: \ SI CLNT\ C\ SAMPLES\ SCOPE if
you installed SICL in the default location). The subdirectory contains the
source program and a number of files to help you build the example with
specific compilers, depending on which Windows environment you are
using.

SCOPE. C Example program source file.

SCOPE. H Example program header file.

SCOPE. RC Example program resource file.

SCOPE. DEF Example program module definitions file.
SCOPE. | CO Example program icon file.

MSCSCOPE. MAK Windows 3.1 makefile for Microsoft C and Microsoft
SDK compilers.

VCSCOPE. MAK Windows 3.1 project file for Microsoft Visual C++.

VCSCP32. MAK Windows 95 or Windows NT (32-bit) project file for
Microsoft Visual C++.

VCSCP16. MAK Windows 95 (16-bit) project file for Microsoft Visual
C++.

QCSCOPE. MAK Windows 3.1 project file for Microsfot QuickC for
Windows.

BCSCOPE. | DE Windows 3.1 project file for Borland C Integrated
Development Environment.

BCSCP32. | DE Windows 95 or Windows NT (32-bit) project file for
Borland C Integrated Development Environment.

BCSCP16. | DE Windows 95 (16-bit) project file for Borland C

Integrated Development Environment.
Chapter 11 257

More HP SICL Example Programs
Example C Program for Oscillosopes

Building a 16-bit C Program for Windows 95 or
Windows 3.1

This section explains how to create the project file for this example using
Microsoft Visual C. The following procedure summarizes many of the
considerations discussed earlier in this guide. An overview of this example
program is provided later in this chapter.

You may also load the makefile directly from the C\ SAMPLES\ SCOPE
subdirectory, if you desire. If you are using another language tool, choose
the corresponding project file or makefile from the C\ SAMPLES\ SCOPE
subdirectory.

To compile and link the example program with Microsoft Visua C, follow
these steps:

1. SelectProject | Open fromthe menu, and enter aname (with the path
of your working directory) for the project in the dialog box. Also select
W ndows Appl i cati on asthe project type. Click on the OK button.

2. TheEdi t dialog box will now be displayed. Double-click on the source
file SCOPE. Cto add it to the project. Alsoadd SI CL16. LI Band
MSAPP16. LI B from the SICL Cdirectory (for example, C: \ SI CL95\ C
or C:\ SI CLNT\ Cif youinstalled SICL in the default location). Click on
the d ose button.

3. Sdlect Options | Directories fromthe menu and add the SICL C
directory (for example, C: \ SI CL95\ Cor C: \ SI CLNT\ Cif you installed
SICL inthe default location) to the end of the pathslistedinthel ncl ude
edit box. Be sureto add a semicolon before the SICL path. Click the OK
button.

258 Chapter 11

More HP SICL Example Programs
Example C Program for Oscillosopes

4. Select Options | Project. Click onthe Conpil er button, then
select Menory Mbdel fromthe Cat egory list. Click onthe Model list
arrow to display the model options, and select Lar ge. Click on OK to
close the Compiler dialog box.

5. Select Proj ect | Buil d to build the application.

If there are no errors reported, you can execute the program by selecting
Proj ect | Execute. Anapplication window will be opened. Several
commands are available from the Act i ons menu, and any results or output
will be printed in the program window.

To end the program, select Fi | e | Exit from the program menu.

Chapter 11 259

More HP SICL Example Programs
Example C Program for Oscillosopes

Building a 32-bit C Program for Windows 95 or
Windows NT

This section explains how to create the project file for this example using
Microsoft Visual C. The following procedure summarizes many of the
considerations discussed earlier in this guide. An overview of this example
program is provided in the next section.

You may aso load the makefile directly from the C\ SAMPLES\ SCOPE
subdirectory, if you desire. If you are using another language tool, choose
the appropriate project file or makefile from the C\ SAMPLES\ SCOPE
subdirectory.

To compile and link the example program with Microsoft Visua C, follow
these steps:

1. SelectFile | Newfromthe menuand select Proj ect fromthelist box
that appears. Then click on OK.

2. TheNew Proj ect dialog box isnow displayed. Type the name you
want for the project in the edit box labeled Pr oj ect Name. Then select
Appl i cation fromtheProj ect Type list box. Select the directory
location for the project inthe Di r ect or y list box. Then click on the
Cr eat e button.

3. TheProject Files diaogbox isnow displayed. Double-click on the
source filesscope. ¢, scope. rc, and scope. def to add them to the
project. Also add si cl 32. i b from the SICL C directory (for example,
C:\SICL95\ Cor C:\ SI CLNT\ Cif you installed SICL in the default
location). Then pressthe d ose button.

4, Select Proj ect | Settings fromthe menuand click onthe C\ C++
button. Select Code Gener ati on from the Cat egory list box. Then
select Mul ti t hreaded Usi ng DLL fromtheUse Run-Ti ne
Li brary list box. Click on OK.

5. Select Tool s | Opti ons from the menu and click on the
Di rectori es buttoninthe Opt i ons dialog box. Select | ncl ude
Fil es fromthe Show Directories for: list box and click onthe
Add button. Thentypein\ SI CL\ Cand click on OK.

260 Chapter 11

Custom Error
Handler

More HP SICL Example Programs
Example C Program for Oscillosopes

6. Select Project | Buil dto buildthe application.

If there are no errors reported, you can execute the program by selecting
Proj ect | Execute. An application window will open. Several
commands are available from the Act i ons menu, and any results or output
will be printed in the program window.

To end the program, select Fi |l e | Exit from the program menu.

C Program Overview

You may want to view the program with an editor as you read through this
section. (The entire oscilloscope example program is not listed here because
of itslength.) This example program is designed to illustrate particular SICL
features and programming technigues — it is not meant to be a robust
Windows application.

Refer to Chapter 12HP SICL Language Refererioar the SICL online
Hel p for more detailed information on the SICL features used in this
example program.

The oscilloscope program defines a custom error handler that will be called
whenever an error occurs during a SICL call. The handler is installed using
i onerror before any other SICL function call is made, and will be used for
all SICL sessions created in the program.

void SI CLCALLBACK ny_err_handl er (I NST id, int error)
{

sprintf(text_buf[numlines++],
“session id=%d, error = %d:%s", id, error,
igeterrstr(error));
sprintf(text_buf[num_lines++], “Select ‘File | Exit’
to exit program!”);

/I If error is from scope, disable I/O actions by
graying out menu picks.
if (id == scope) {
... code to disallow further 1/O requests from user
}
}

Chapter 11 261

Locks

More HP SICL Example Programs
Example C Program for Oscillosopes

The error number is passed to the handler, andi get errstr isusedto
trangate the error number into a more useful description string. If desired,
different actions can be taken depending on the particular error or i d that
caused the error.

SICL alows multiple applications to share the same interfaces and devices.
Different applications may access different devices on the same interface, or
may alternately access the same device (a shared resource). If your program
will be executing along with other SICL applications, you may wish to
prevent another application from accessing a particular interface or device
during critical sections of your code. SICL providesthei | ock/ i unl ock
functions for this purpose.

void get _data (INST id)

{
non- Sl CL code

/'l 1ock the device to prevent access fromother applications
il ock(scope);

SI CL I/ O code to program scope and get data

/'l release the scope for use by others
i unl ock(scope);

non- SI CL code
}

Lock the interface or devicewithi | ock before critical sections of code, and
release the resource with i unl ock at the end of the critical section. Using

i | ock onadevice session prevents any other device session from accessing

the particular device. Usingi | ock on an interface session prevents any

other session from accessing the interface and any device connected to the
interface. Seethe description of i set | ockwai t in Chapter 12,MP SICL
Language Referentto determine what actions can be taken when a SICL
call in your code attempts to access a resource that is locked by another
session.

262 Chapter 11

Formatted I/O

Interface Sessions

More HP SICL Example Programs
Example C Program for Oscillosopes

SICL provides extensive formatted 1/0O functionality to help facilitate
communication of 1/O commands and data. The example program uses just
afew of the capabilities of thei pri ntf/i scanf/i pronpt f functionsand
their derivatives.

Thei printf functionisused to send commands. Aswith al of the
formatted 1/0 functions, the datais actually buffered. Inthiscall, the\ n at
the end of the format:

iprintf(id,”:waveform:preamble?\n");

causes the buffer to be flushed and the string to be output. If desired, several
commands can be formatted before being sent, and then all output at once.
Theformatted 1/0 buffers are automatically flushed whenever the buffer fills
(seeisetbuf) or when aniflush call is made.

When reading data back from adevice, theiscanf functionisused. Toread
the preambl e information from the scope, we use the format string
“0 20f\ n™:

iscanf(id,”%,20f\n",pre);

This string expectsto input 20 comma-separated floating point numbersinto
the pre array.

To upload the scope waveform data, the stridgwb\ n” is used. Thewb
indicates that it should read word-wide binary data. fpeeceding the
data modifer tell$ scanf to get the maximum number of binary words to
read from the next paramet&e(ement s):

iscanf(id,"%#wb\n”,&elements,readings);

The read will continue until an EOI indicator is received, or the maximum
number of words has been read.

Sometimes it may be necessary to control the HP-IB bus directly instead of
using SICL commands that do it for you. Thisisaccomplished using an
interface session and interface-specific commands. This example uses
igetintfsess to get a session for the interface to which the scopeis
connected. (If you know which interfaceisbeing used, it is also possible to
just use aniopen cal on that interface.) Thenigpibsendcmd isusedto
send some specific command bytes out on the bus to tell the printer to listen
and the scopeto send itsdata. Theigpibatnctl function directly controls
the state of the ATN signal on the bus.

Chapter 11 263

More HP SICL Example Programs
Example C Program for Oscillosopes

void print_disp (INST id)

I NST hpi bi nt f
hpi bintf = igetintfsess(id);

/1 tell scope to talk and printer to listen

/1 the listen comand is fornmed by adding 32 to the
/| device address of the device to be a |istener

/1 the talk cormmand i s formed by addi ng 64 to t he device
/1 address ofthe device to be a talker

cmd[0]
cmd[1]

unsi gned char) 63 ; /1 63 is unlisten

unsi gned char) (32+1) ; // printer at addr 1,
make it a listener

cnd[2] = (unsigned char)(64+7) ; [/ scope at addr 7,

make it a tal ker

= (
= (

cmd[3] =10’ /[terminate the string
length = strlen (cmd) ;
igpibsendcmd(hpibintf,cmd,length);
igpibatnctl(hpibintf,0);

}

SRQs and Many instruments are capable of using the service request, or SRQ, signal

iwaithdlr

on the HP-1B busto signal the controller that an event has occurred. If an
application wishes to respond to SRQs, an SRQ handler must be installed
withtheionsrg call. All SRQ handlers will be called whenever an SRQ
OCCUrs.

264 Chapter 11

More HP SICL Example Programs
Example C Program for Oscillosopes

In the example handler, the scope status is read to verify that the scope
asserted SRQ, and then the SRQ is cleared and a status message is displayed.
If the scope did not assert SRQ, the handler prints an error message.

voi d SI CLCALLBACK my_srqg_handl er (1 NST i d)
{

unsi gned char stat us;

/1 make sure it was the scope requesting service
i readstb(id, &t at us);

if (status &= 64) {
/1 clear the status byte so the scope can assert SRQ
again i f needed.
iprintf(id,”*CLS\n");

sprintf(text_buf[num_lines++],
“id = %d, SRQ received!, stat=0x%x", id,status);
}else {
sprintf(text_buf[num_lines++],
“SRQ received, but not from the scope”);

}
InvalidateRect(hwWnd, NULL, TRUE);
}

In the routine that commands the scope to print its display, the scopeis set to
assert SRQ when printing is finished. While the scopeis printing, the
example program has the application suspend execution. SICL providesthe
function iwaithndlr that will suspend execution and wait until either an
event occurs that would call ahandler, or a specified timeout valueis
reached.

In the example, interrupt events are turned off with iintroff so that all
interrupts are disabled while interrupts are being set up. Then the SRQ
handler isinstaled withionsrq . Code to program the scope to print and
send an SRQ is next, then the call to iwaithdlr ~ , with atimeout value of 30
seconds. When the scope finishes printing and sends the SRQ, the SRQ
handler will be executed and then iwaithdlir ~ will return. A cal to

iintron re-enables interrupt events.

Chapter 11 265

More HP SICL Example Programs
Example C Program for Oscillosopes

void print_disp (INST id)
{

iintroff();
ionsrq(id,ny_srq_handler); // Not supported on HP 82335

/I tell the scope to SRQ on ‘operation complete’
iprintf(id,”*CLS\n");
iprintf(id,”*SRE 32 ; *ESE 1\n") ;

/1 tell the scope to print
iprintf(id,”:print ; *OPC\n") ;

... code to tell the scope to print
I/ wait for SRQ before continuing program

iwaithdIr(30000L);
iintron();

sprintf (text_buf[num_lines++],”Printing complete!”) ;
}

Nested 1/0 and 16- WIN16 programs must be designed so that a new SICL call cannot be
bit Windows jnjtiated until the previous call completes. In this program, it would be

possible for the user to select another action from the program menu that
required a SICL call before the previous action completed. To prevent this,
any action that uses SICL functionsfirst disables all other actions by using
Windows commands to gray out and disable other 1/0 menu items (see the
enable_io_menu_items function). These menu itemsarethen re-enabled
after the desired SICL calls have completed.

void print_disp (INST id)
{
... hon-SICL code

// do this before making all SICL calls
enable_io_menu_items(FALSE);

... SICL I/O code

// do this after making all SICL calls
enable_io_menu_items(TRUE);

266 Chapter 11

More HP SICL Example Programs
Example Visual BASIC Program for Oscillosopes

Example Visual BASIC Program for
Oscillosopes

This Visual BASIC example program uses 16-bit SICL to get and plot
waveform data from an HP 54601A (or compatible) oscilloscope. This
routine is called each time the cndGet Wavef or mcommand button is
clicked. This example program uses many SICL features and illustrates
some important Visual BASIC and Windows programming techniques for
SICL. An overview of the program follows the section on loading and
running the program.

The oscilloscope example files are located in the VB\ SAMPLES\ SCOPE
subdirectory under the SICL base directory (for example,

C:\ SI CL95\ VB\ SAMPLES\ SCOPE if you installed SICL in the default
location). Thefiles provided are:

SCOPE. FRM Visual BASIC source for the SCOPE example
program.

SCOPE. MAK Visual BASIC project file for the SCOPE example
program.

Chapter 11 267

More HP SICL Example Programs
Example Visual BASIC Program for Oscillosopes

L oading and Running the Visual BASIC Program

Follow these steps to load and run the SCOPE sample program:
1. Connect an HP 54601A scope to your interface.
2. RunVisua BASIC.

3. Open the project file SCOPE. MAK by selectingFil e | Open Proj ect
from the Visual BASIC menu.

4. Edit the SCOPE. FRMfile to set the scope_addr ess constant to the
address of your scope. To do this:

a. Select W ndow | Procedur es from the Visual BASIC menu. A
View Procedure dialog box will appear.

b. Select SCOPE. FRMfrom the Modules list box and (decl! ar at i ons)
from the Procedures list box. Then click OK.

c. Edit thefollowing line so that the address is set to the address of your
scope:

>> Const scope_address = “hpib7,7”

5. Run the program by pressing either the F5 key or the RUNbutton on the
Visual BASIC Toolbar.

6. Pressthe Waveform button to get and display the waveform.
7. Pressthelintegral button to calculate and display the integral.
Note that after performing the previous steps, you can create a standal one

executable (.EXE) version of this program by selecting File | Make EXE
File from the Visual BASIC menu.

268 Chapter 11

More HP SICL Example Programs
Example Visual BASIC Program for Oscillosopes

Visual BASIC Program Overview

You will want to view the program with an editor as you read through this
section. (The oscilloscope example program is not listed here because of its
length.) Refer to Chapter 12{P SICL Language Referericer the SICL
onlineHel p for more detailed information on the SICL features used in this
example program.

cmdGetWaveform Subroutine that gets called when timaiGet Wavef or mcommand button is
_Click pressed. The command button is lab&tedef or m

On Error This Visual BASIC statement enables an error handling routine within a
procedure. In this example, an error handler is installed starting at label
Er r or Handl er within thecndQut put Cnmd_Cl i ck subroutine. The error
handling routine will be called any time an error occurs during the
processing of thendGet Wavef orm_Cl i ck procedure. Note that SICL
errors are handled in the same way that Visual BASIC errors are handled
with theOn Error statement.

cmdGetWaveform. Notice how the button that causes thelGet Wavef orm C i ck routine to
Enabled pe called is disabled when code is executing insigut put Cnd_dl i ck.
This is good programming style.

iopen Next, ani open call is made to open a device session for the scope. The
device address for the scope is contained i tlupe_addr ess string.
Note that, in this example, the default addressis b7, 7”. The interface
name hpi b7” is the name given to the interface with thed Confi g
utility. The bus (primary) address of the scope follows, in this case 7. You
will probably want to change thexzope_addr ess string to specify the
correct address for your configuration.

igetintfsess Next,i geti nt f sess is called to return an interface sessidifior the
interface to which the scope instrument is connected. This interface session
will be used by the followingcl ear call to send an interface clear to reset
the interface.

iclear Thei cl ear function is called to reset the interface.

Chapter 11 269

itimeout

ivprintf

ivscanf

ivprintf

ivscanf

More HP SICL Example Programs
Example Visual BASIC Program for Oscillosopes

Next, i ti meout is called to set the timeout value for the scope’s device
session to 3 seconds.

Thei vprintf function is called four times to set up the scope and then
request the scope’s preamble information. Notice in each case how

Chr $(10) is appended to the format string passed as the second argument to
i vprintf. This tellsi vprintf to flush the formatted I/O write buffer

after writing the string specified in the format string. Also, notice l8@As

used to specify a NULL pointer for the third argumerittpri ntf. A

NULL pointer must be passed as the third argument since no argument
conversion characters were specified in the format strinigvari nt f .

Thei vscanf function is called to read the scope’s preamble information
into the preamble array. Note how the first element of the preamble array is
passed as the third parameter ¥gcanf . This passes the address of the

first element of the preamble array to thepri nt f SICL function.

For more information on passing numeric arrays as arguments, see the
“Arrays” section of the “Calling Procedures in DLLs” chapter of seial
BASIC Programmer’s Guide

Nexti vprintf iscaledto prompt the scope for its waveform data. Again,
notice how Chr $(10) is appended to the format string passed as the second
argument toi vprintf. Thistdlsi vpri nt f to flush the formatted I/O
write buffer after writing the string specified in the format string. Also
notice how 0& is used to specify aNULL pointer for the third argument to

i vprintf, since no additional arguments were specified in the format
string.

Nexti vscanf is called to read in the scope’s waveform. The waveform is
read in as an arbitrary block of data. Note that the format string passed as
the second parameteritescanf specifies a maximum of 4000 Integer

values that can be read into the array. Also note how the first element of the
waveform array is passed as the 3rd parameterdoanf . This passes the
address of the first element of the waveform array to the SiGkanf

function.

For more information on passing numeric arrays as arguments, see the
“Arrays” section of the “Calling Procedures in DLLs” chapter of fseial
BASIC Programmer’s Guide

270 Chapter 11

iclose

cmdGetWaveform.
Enabled

Exit Sub

errorhandler:

Error$

iclose

cmdGetWaveform.
Enabled

Exit Sub

More HP SICL Example Programs
Example Visual BASIC Program for Oscillosopes

Thei cl ose subroutine closesthescope_i d device session for the scope as
well asthei ntf _i d interface session obtained withi geti nt f sess.

Notice how the button that causes the cndGet Wavef or m C i ck routine to
be called is re-enabled when execution inside cndGet Wavef orm O i ck is
finished. Thisallows the program to get another waveform.

This Visual BASIC statement causes the cndGet Wavef orm d i ck
subroutine to be exited after normal processing has compl eted.

This label specifies the beginning of the error handler that was installed for
this subroutine. This handler gets called whenever arun-time error occurs.

ThisVisual BASIC function is called to get the error message for the error.

Thei cl ose subroutine is called inside the error handler to close the
scope_i d device session for the scope aswell asthei nt f _i d interface
session obtained withi geti nt f sess.

Thisre-enablesthe button that causesthe cndGet Wavef or m C i ck routine
to becalled. Thisallows the program to get another waveform.

This Visual BASIC statement causesthe cndGet Wavef orm d i ck
subroutine to be exited after processing an error in the subroutine’s error
handler.

Chapter 11 271

More HP SICL Example Programs
Example Visual BASIC Program for Oscillosopes

272 Chapter 11

12

HP SICL Language Reference

Note

HP SICL Language Reference

This chapter defines all of the supported SICL functions. The functions are
listed in alphabetical order to make them easier for you to look-up and
reference. In this chapter, the entry for each SICL function includes:

® Csyntax and Visual BASIC syntax (if the function is supported on
Visual BASIC).
Complete description.
Return value(s).
Related SICL functions that you may want to see, also.

This edition of this manual supports and shows the syntax structure for
programming SICL applicationsin Visual BASIC version 4.0 or later.

If you have SICL applications written in an earlier Visual BASIC version
than version 4.0 (for example, version 3.0), you can easily port your SICL
applications to Visual BASIC version 4.0. See AppendixRorting to
Visual BASIC 4.Q" in this manual.

Along with this chapter, you may also want to refer to:

® Appendix D, HP SICL Error Codes, which lists all the SICL error codes.
® Appendix E, HP SICL Function Summary, which summarizes the
supported features of each core and interface-specific SICL function.

274 Chapter 12

Session
Identifiers

Device,
Interface, and
Commander
Sessions

Functions
Affected by
Locks

Functions
Affected by
Timeouts

Per-Process
Functions

SICL uses session identifiersto refer to specific SICL sessions. Thei open
function will create a SICL session and return a session identifier to you. A
session identifier is needed for most SICL functions.

Note that for the C and C++ languages, SICL definesthevariabletypel NST.
C and C++ programs should declare session identifiers to be of type | NST.
For example:

I NST i d;

Visual BASIC programs should declare session identifiersto be of type
I nt eger. For example:

DMid As I|nteger

Some SICL functions are supported on device sessions, some on interface
sessions, some on commander sessions, and some on all three. The listing
for each function in this chapter indicates which sessions support that
function.

In addition, some functions are affected by locks (refer to thei | ock
function). This means that if the device or interface that the session refersto
islocked by another process, this function will block and wait for the device
or interface to be unlocked before it will succeed, or it will return
immediately with the error | _ERR LOCKED. Refer to thei set | ockwai t
function.

Likewise, some functions are affected by timeouts (refer to thei t i neout

function). This means that if the device or interface that the session refersto
is currently busy, this function will wait for the amount of time specified by
i ti meout to succeed. If it cannot, it will returntheerror | _ERR_TI MEOUT.

Functions that do not support sessions and are not affected by i | ock or

i ti meout areper-processfunctions. The SICL functioni onerror isan
example of this. Thei onerr or function installs an error handler for the
process. As such, it handles errors for al sessions in the process regardless
of the type of session.

Chapter 12 275

C Syntax

Note

Description

Return Value

IABORT

|ABORT

Supported Sessions. device, interface, commander

#i ncl ude <sicl. h>

int iabort (id);
i nst id;

Thisfunction is only supported with C/C++ on Windows 3.1 and Series 700
HP-UX. (Not supported with Visual BASIC, Windows 95, or Windows NT.)

Thisfunction is aso not implemented for the HP 82341 HP-IB interface and
will return | _ERR_NOTI MPL.

Also, thisfunction has no effect over LAN for any of the LAN servers, such
as the HP E2050 LAN/HP-1B Gateway.

Thei abort function will abort any SICL calls currently executing with the
current session id, regardless of what thread it is executing on. However,
since session ids are only valid within a single process, only SICL callsin
progress in the current process will be affected. The SICL call being aborted
will return the error code | _ERR_ABORTED, implying that it was aborted by
another thread. If no thread has any SICL calls pending on the given
session id, this function will perform no action.

For C programs, this function returns zero (0) if successful, or a non-zero
error number if an error occurs.

276 Chapter 12

C Syntax

Visual BASIC
Syntax

HP SICL Language Reference

#i ncl ude <sicl. h>

int ibblockcopy (id, src, dest, cnt);
I NST id;

unsi gned char *src;

unsi gned char *dest;

unsi gned | ong cnt;

i nt iwblockcopy (id, src, dest, cnt, swap);

I NST id;

unsi gned char *src;
unsi gned char *dest;
unsi gned | ong cnt;

i nt swap

int ilblockcopy (id, src, dest, cnt, swap);

I NST id;

unsi gned char *src;
unsi gned char *dest;
unsi gned | ong cnt;

i nt swap

Functi on i bbl ockcopy
(Byval id As Integer, ByVal src As Long,
ByVal dest As Long, ByVal cnt As Long)

Functi on iwbl ockcopy

(Byval id As Integer, ByVal src As Long,
ByVal dest As Long, ByVal cnt As Long,
ByVal swap As I|nteger)

Function il bl ockcopy

(Byval id As Integer, ByVal src As Long,
Byval dest As Long, ByVal cnt As Long,
ByVal swap As I|nteger)

IBLOCKCOPY
IBLOCK COPY
Supportedsessions. device, interface, commander
Affected by functions. il ock,itimeout

Chapter 12

277

Note

Description

Note

Return Value

See Also

HP SICL Language Reference
IBLOCKCOPY

Not supported over LAN.

Thethree formsof i bl ockcopy assume three different types of data: byte,
word, and long word (8 hit, 16 bit, and 32 bit). Thei bl ockcopy functions
copy data from memory on one device to memory on another device. They
can transfer entire blocks of data.

Theid parameter, although specified, is normally ignored except to
determine an interface-specific transfer mechanism such as DMA. To
prevent using an interface-specific mechanism, pass a zero (0) for this
parameter. The src argument is the starting memory address for the source
data. The dest argument is the starting memory address for the destination
data. The cnt argument is the number of transfers (bytes, words, or long
words) to perform. The swap argument is the byte swapping flag. If swapis
zero, no swapping occurs. If swap is non-zero the function swaps bytes (if
necessary) to change byte ordering from the internal format of the controller
to/from the VX1 (big-endian) byte ordering.

If abus error occurs, unexpected results may occur.

For C programs, this function returns zero (0) if successful, or a non-zero
error number if an error occurs.

For Visual BASIC programs, no error number is returned. I nstead, the global
Err variableisset if an error occurs.

“IPEEK’, “IPOKE’, “IPOPFIFCJ, “IPUSHFIFO

278 Chapter 12

C Syntax

Visual BASIC
Syntax

HP SICL Language Reference

IBLOCKMOVEX
IBLOCKMOVEX
Supportedsessions. device, interface, commander
Affected by functions. il ock,itimeout

#i ncl ude <sicl. h>

i nt iblockmovex (id,src_handle, src_offset, src_width,
src_increment, dest_handle, dest_offset,
dest width, dest_increment, cnt, swap) ;

I NST id;

unsi gned | ong src_handlg
unsi gned | ong src_offset;
i nt src_width;

i nt src_increment;

unsi gned | ong dest_handle
unsi gned | ong dest_offset;
i nt dest_width;

i nt dest_increment;

unsi gned | ong cnt;

i nt swap;

Function i bl ocknovex

(Byval id As Integer, ByVal src handle As Long,

ByVval src offset as Long, ByVval ue src width as | nteger,
ByVal src increment as | nteger, ByVal dest handle As Long,
ByVal dest offset as Long, ByVal dest_wi dth as Integer,
ByVal dest _increnent as Integer, ByVal cnt As Long,
ByVal swap As | nteger)

Note Not supported over LAN.

Note If either the src_handle or the dest_handleis NULL, then the handleis

assumed to be for local memory. In this case, the corresponding offset isa
valid memory address.

Chapter 12 279

Description

Note

Return Value

See Also

HP SICL Language Reference
IBLOCKMOVEX

i bl ocknovex moves data (8-hit byte, 16-bit word, and 32-bit long word).
from memory on one device to memory on another device. This function
alows local-to-local memory copies (both src_handle and dest_handle are
zero), VXI-to-V X1 memory transfers (both src_handle and dest_handle are
valid handles), local-to-VXI memory transfers (src_handleis zero,

dest handleisvalid handl€), or V XI-to-local memory transfers (src_handle
isvalid handle, dest_handleis zero).

Theid parameter isthe value returned from i open. If the id parameter is
zero (0) then all handles must be zero and all offsets must be either local
memory or directly dereferencable VXI pointers.

The src_handle argument is the starting memory address for the source data.
The dest_handle argument is the starting memory address for the destination
data. These handles must either be valid handles returned from the i mapx
function (indicating valid VX1 memory), or zero (0) indicating local
memory. Both src_width and dest_width must be the same value; they
specify the width (in number of bits) of the data. Specify them as 8, 16, or
32. Offset values (src_offset and dest_offset) are generally used in memory
transfers to specify memory locations. The increment parameters specify
whether or not to increment memory addresses. The cnt argument is the
number of transfers (bytes, words, or long words) to perform. The swap
argument is the byte swapping flag. If swap is zero, no swapping occurs. If
swap is non-zero the function swaps bytes (if necessary) to change byte
ordering from the internal format of the controller to/from the VX1 (big-
endian) byte ordering.

If abus error occurs, unexpected results may occur.

For C programs, this function returns zero (0) if successful, or a non-zero
error number if an error occurs.

For Visual BASIC programs, no error number is returned. I nstead, the global
Err variableisset if an error occurs.

“IPEEKXS8, IPEEKX16, IPEEKX32 “IPOKEXS, IPOKEX16,
IPOKEX3Z, “IPOPFIFC, “IPUSHFIFCO, “IDEREFPTR

280 Chapter 12

HP SICL Language Reference
ICAUSEERR

| CAUSEERR

Supportedsessions. device, interface, commander

C Syntax #include <sicl.h>

voi d icauseerr (id, errcode, flag);
I NST id;

i nt errcode;

int flag;

Visual BASIC Sub icauseerr
Syntax (Byval id As Integer, ByVal errcode As I nteger,
Byval flag As | nteger)

Description Occasionally it is necessary for an application to ssmulate a SICL error. The
i causeerr function performs that function. This function causes SICL to
act asif the error specified by errcode (see Appendix D, HP SICL Error
Codes, for alist of errors) has occurred on the session specified by id. If flag
is 1, the error handler associated with this processis called (if present);
otherwise it is not.

On operating systems that support multiple threads, the error is per-thread,
and the error handler will be called in the context of thisthread.

See Also “IONERROR, “IGETONERROR, “IGETERRNO, “IGETERRSTR

Chapter 12 281

HP SICL Language Reference
ICLEAR

|ICLEAR

SUPPOMted SESSIONS. .+ ..o i i device, interface
Affected by functions. il ock,itimeout

C Syntax #include <sicl.h>

int iclear (id);
I NST id;

Visual BASIC Function iclear
Syntax (ByVal id As Integer)

Description Usethei cl ear function to clear adevice or interface. If id refersto a
device session, this function sends adevice clear command. If id refersto an
interface, this function sends an interface clear command.

Thei cl ear function aso discards the datain both the read and the write
formatted /O buffers. Thisdiscard is equivalent to performing the following
i f1 ush cal (inaddition to the device or interface clear function):

i flush (id, | _BUF_DI SCARD READ | | _BUF_DI SCARD WRI TE);
Return Value For C programs, this function returns zero (0) if successful, or a non-zero
error number if an error occurs.

For Visual BASIC programs, no error number is returned. I nstead, the global
Err variableisset if an error occurs.

See Also “IFLUSH", and the interface-specific chapter in this manual for details of
implementation.

282 Chapter 12

HP SICL Language Reference
ICLOSE

|ICLOSE

Supportedsessions. device, interface, commander

C Syntax #include <sicl.h>

int iclose (id);
I NST id;

Visual BASIC Function icl ose
Syntax (ByVval id As I nteger)

Description Once you no longer need asession, closeit using thei cl ose function. This
function closesa SICL session. After calling thisfunction, thevaluein theid
parameter is no longer avalid session identifier and cannot be used again.

Note Donot call i cl ose from an SRQ or interrupt handler, because it may cause
unpredictable behavior.

Return Value For C programs, this function returns zero (0) if successful, or a non-zero
error number if an error occurs.

For Visual BASIC programs, no error number is returned. I nstead, the global
Err variableisset if an error occurs.

See Also “IOPEN

Chapter 12 283

HP SICL Language Reference
IDEREFPTR

IDEREFPTR

Supported Sessions; device, interface, commander

C Syntax #include <sicl.h>

int idereptr (id,handle, *value);
I NST id;
unsi gned | ong handleg
unsi gned char *value

Visual BASIC Function iderefptr
Syntax (Byval id as Integer, ByVval handle as Long,
ByVal value as | nteger)

Description Thisfunction tests the handle returned by i mapx. Theid isthe valid SICL
session id returned from the i open function, handleisthe valid SICL map
handle obtained from thei mapx function. This function sets *value to zero
(0) if i map or i mapx returns amap handle that cannot be used as a memory
pointer; you must usei peekx8, i peekx16, i peekx32,i pokexs,

i pokex16,i pokex32, ori bl ocknovex functions. Alternately, the
function returns anon-zero value if i mapx returns avalid memory pointer
that can be directly dereferenced.

Return Value For C programs, this function returns zero (0) if successful, or it returns a
non-zero error number if an error occurs.

For Visual BASIC programs, no error number isreturned. Instead, the global
Err variableisset if an error occurs.

See Also “IMAPX", “IUNMAPX", “IPEEKX8, IPEEKX16, IPEEKX32,
“IPOKEXS, IPOKEX16, IPOKEX32 “IBLOCKMOVEX”

284 Chapter 12

HP SICL Language Reference
IFLUSH

|FLUSH

C Syntax

#i ncl ude <sicl. h>

............. device, interface, commander

il ock,itineout

int iflush (id, mask);

I NST id;
i nt mask;

Visual BASIC
Syntax

Function iflush
(ByVal

id As | nteger,

ByVal mask As | nteger)

Description Thisfunction is used to manually flush the read and/or write buffers used by
formatted 1/0O. The mask may be one or acombination of the following flags:

| _BUF_READ

| _BUF_WRI TE

| _BUF_W\RI TE_END

| _BUF_DI SCARD_READ

| _BUF_DI SCARD W\RI TE

Indicatesthe read buffer (i scanf). If datais
present, it will be discarded until the end of
data(that is, if the END indicator is not
currently in the buffer, reads will be
performed until it is read).

Indicates the write buffer (i pri nt f). If data
is present, it will be discarded.

Flushes the write buffer of formatted 1/0
operations and sets the END indicator on the
last byte (for example, sets EOI on HP-1B).

Discards the read buffer (does not perform
I/O to the device).

Discards the write buffer (does not perform
I/O to the device).

Thel BUF_READand | _BUF_WRI TE flags may be used together (by OR-
ing them together), and the | _BUF_DI SCARD READ and

Chapter 12

285

Return Value

See Also

HP SICL Language Reference
IFLUSH

| _BUF_DI SCARD WRI TE flags may be used together. Other combinations
areinvalid.

Ifi cl ear iscalled to perform either a device or interface clear, then both
the read and the write buffers are discarded. Performing ani cl ear is
equivalent to performing the following iflush call (in addition to the device
or interface clear function):

i flush (id, | _BUF_DI SCARD READ | | _BUF_DI SCARD WRI TE) ;

For C programs, this function returns zero (0) if successful, or anon-zero
error number if an error occurs.

For Visual BASIC programs, no error number isreturned. Instead, the global
Err variableisset if an error occurs.

“IPRINTF’, “ISCANF’, “IPROMPTF, “IFWRITE", “IFREAD”,
“ISETBUF, “ISETUBUF, “ICLEAR”

286 Chapter 12

C Syntax

Visual BASIC
Syntax

Description

HP SICL Language Reference

IFREAD
|IFREAD
Supportedsessions. device, interface, commander
Affected by functions. il ock,itimeout

#i ncl ude <sicl. h>

int ifread (id, buf, bufsize, reason, actualcnt);
I NST id;

char *buf;

unsi gned | ong bufsize;

i nt *reason;

unsi gned | ong *actualcnt;

Function ifread

(Byval id As Integer, buf As String,
ByVal bufsize As Long, reason As Integer,
actual As Long)

This function reads a block of data from the device viathe formatted I/0O
read buffer (the same buffer used by i scanf). The buf argument is a pointer
to thelocation where the block of data can be stored. The bufsize argument is
an unsigned long integer containing the size, in bytes, of the buffer specified
in buf.

The reason argument is a pointer to an integer that, upon exiting i f r ead,
contains the reason why the read terminated. |f the reason parameter
contains a zero (0), then no termination reason is returned. The reason
argument is a bit mask, and one or more reasons can be returned.

Vaues for reason include:

| _TERM MAXCNT bufsize characters read.
| _TERM END END indicator received on last character.

| _TERM CHR Termination character enabled and received.

Chapter 12 287

Return Value

See Also

HP SICL Language Reference
IFREAD

The actualcnt argument is a pointer to an unsigned long integer which, upon
exit, contains the actual number of bytes read from the formatted /O read
buffer.

If atermination condition occurs, thei f r ead will terminate. However, if
there is nothing in the formatted 1/0O read buffer to terminate the read, then
i fread will read from the device, fill the buffer again, and so forth.

Thisfunction obeysthei t er nchr termination character, if any, for the
specified session. The read terminates only on one of the following
conditions:

® |t reads bufsize number of bytes.
® |t finds a byte with the END indicator attached.

® |t finds the current termination character in the read buffer (set with
i ternchr).

® An error occurs.

Thisfunction actsidentically to thei r ead function, except the datais not
read directly from the device. Instead the datais read from the formatted 1/0O
read buffer. The advantage to this function over i r ead isthat it can be
intermixed with callstoi scanf , whilei r ead may not.

For C programs, this function returns zero (0) if successful, or anon-zero
error number if an error occurs.

For Visual BASIC programs, no error number isreturned. Instead, the global
Err variableisset if an error occurs.

“IPRINTF’, “ISCANF’, “IPROMPTF, “IFWRITE", “ISETBUF’,
“ISETUBUF, “IFLUSH”, “ITERMCHR’

288 Chapter 12

C Syntax

Visual BASIC
Syntax

Description

HP SICL Language Reference
IFWRITE

IFWRITE

Supportedsessions. device, interface, commander
Affected by functions. il ock,itimeout

#i ncl ude <sicl. h>

int ifwite (id, buf, datalen, end, actualcnt);
I NST id;

char *buf;

unsi gned | ong datalen;

i nt end;

unsi gned | ong *actualcnt;

Function ifwite

(Byval id As Integer, ByVal buf As String,
ByVal datalen As Long, ByVal endi As Integer,
actual As Long)

Thisfunction is used to send a block of data to the device via the formatted
I/0O write buffer (the same buffer used by i pri nt f). Theid argument
specifies the session to send the data to when the formatted 1/0 write buffer
is flushed. The buf argument is a pointer to the datathat is to be sent to the
specified interface or device. The datalen argument is an unsigned long
integer containing the length of the data block in bytes.

If the end argument is non-zero, this function will send the END indicator
with the last byte of the data block. Otherwise, if end is set to zero, no END
indicator will be sent.

The actualcnt argument is a pointer to an unsigned long integer. Upon exit,
it will contain the actual number of bytes written to the specified device. A
NULL pointer can be passed for this argument, and it will be ignored.

Thisfunction actsidentically to thei wri t e function, except the dataiis not
written directly to the device. Instead the datais written to the formatted I/O
write buffer (the same buffer used by i pri nt f). The formatted 1/0 write
buffer is then flushed to the device at normal times, such as when the buffer
isfull, or wheni f | ush iscalled. The advantage to this function over

i write isthatit canbeintermixed with callstoi printf,whileiwite
cannot.

Chapter 12 289

HP SICL Language Reference
IFWRITE

Return Value For C programs, this function returns zero (0) if successful, or anon-zero
error number if an error occurs.

For Visual BASIC programs, no error number isreturned. Instead, the global
Err variableisset if an error occurs.

See Also “IPRINTF, “ISCANF, “IPROMPTF, “IFREAD", “ISETBUF’,
“ISETUBUF, “IFLUSH”, “ITERMCHR", “IWRITE", “IREAD”

290 Chapter 12

HP SICL Language Reference
IGETADDR

|GETADDR

Supportedsessions. device, interface, commander

C Syntax #include <sicl.h>

int igetaddr (id, addr);
I NST id;
char * *addr;

Note Not supported on Visual BASIC.

Description Thei get addr function returns a pointer to the address string which was
passed to thei open call for the session id.

Return Value Thisfunction returns zero (0) if successful, or a non-zero error number if an
€rror OCCcurs.

See Also “IOPEN

Chapter 12 291

HP SICL Language Reference
IGETDATA

| GETDATA

Supportedsessions. device, interface, commander

C Syntax #include <sicl.h>

int igetdata (id, data);
I NST id;
voi d * *datg;

Note Not supported on Visual BASIC.

Description Theigetdata function retrieves the pointer to the data structure stored by
isetdata associated with a session.

The isetdata/igetdata functions provide a good method of passing data to
event handlers, such as error, interrupt, or SRQ handlers.

For example, you could set up a data structure in the main procedure and
retrieve the same data structure in a handler routine. You could set adevice
command string in this structure so that an error handler could re-set the
state of the device on errors.

Return Value Thisfunction returns zero (0) if successful, or a non-zero error number if an
error occurs.

See Also “ISETDATA”

292 Chapter 12

C Syntax

Visual BASIC
Syntax

Return Value

See Also

HP SICL Language Reference
IGETDEVADDR

| GETDEVADDR

SUPPOEd SESSIONS. .« .ot i e e e device

#i ncl ude <sicl. h>

int igetdevaddr (id, prim, sec);
I NST id;

int *prim;

i nt *sec,

Functi on i getdevaddr
(Byval id As Integer, prim As I|nteger,
sec As | nt eger)

Description

Theigetdevaddr function returns the device address of the device associated
with a given session. This function returns the primary device addressin
prim. The sec parameter contains the secondary address of the deviceor -1 if
no secondary address exists.

For C programs, this function returns zero (0) if successful, or anon-zero
error number if an error occurs.

For Visual BASIC programs, no error number isreturned. Instead, the global
Err variableisset if an error occurs.

“IOPEN’

Chapter 12 293

C Syntax

Visual BASIC
Syntax

Description

HP SICL Language Reference
IGETERRNO

|GETERRNO

#i ncl ude <sicl.h>

int igeterrno ();

Function igeterrno ()

All functions (except afew listed below) return a zero if no error occurred
(I _ERR_NOERROR), or anhon-zero error code if an error occurs (see
Appendix D, HP SICL Error Codes). This value can be used directly. The
i get err no function will return the last error that occurred in one of the
library functions.

Also, if an error handler isinstalled, the library calls the error handler when
an error occurs.

The following functions do not return the error code in the return value.
Instead, they simply indicate whether an error occurred.

i open
iprintf

i sprintf
ivprintf
i svprintf
i scanf

i sscanf

i vscanf

i svscanf
i pronptf
i vpronpt f
i map

i ?peek

i ?poke

For these functions (and any of the other functions), when an error is
indicated, read the error code by using thei get er r no function, or read the
associated error message by using thei get err st r function.

294 Chapter 12

HP SICL Language Reference
IGETERRNO

Return Value Thisfunction returns the error code from the last failed SICL call. If aSICL
function is completed successfully, this function returns undefined results.

On operating systems that support multiple threads, the error number is per-
thread. This means that the error number returned isfor the last failed SICL
function for thisthread (not necessarily for the session).

See Also “IONERROR, “IGETONERROR, “IGETERRSTR, “ICAUSEERR

Chapter 12 295

HP SICL Language Reference
IGETERRSTR

|GETERRSTR

C Syntax #include <sicl.h>

char *igeterrstr (errorcode);
i nt errorcode

Visual BASIC Function igeterrstr
Syntax (ByVal errcode As Integer, myerrstr As String)

Description SICL hasaset of defined error messages that correspond to error codes (see
Appendix D, HP SICL Error Codes) that can be generated in SICL
functions. To get these error messages from error codes, use the
i geterrstr function.

Return Value Passthis function the error code you want, and this function will return a
human-readabl e string.

See Also “IONERROR, “IGETONERROR, “IGETERRNO, “ICAUSEERR

296 Chapter 12

HP SICL Language Reference
IGETGATEWAYTYPE

|GETGATEWAYTYPE

Supportedsessions. device, interface, commander

C Syntax #include <sicl.h>

i nt igetgatewaytype (id, gwtype) ;
I NST id;
i nt *gwtype;

Visual BASIC Function i get gat ewayt ype
Syntax (Byval id As Integer, pdata As Integer) As |nteger

Note LAN isnot supported with 16-bit SICL on Windows 95.

Description Thei get gat ewayt ype function returnsin gwtype the gateway type
associated with a given session id.

This function returns one of the following values in gwtype:
| _INTF_LAN The session is using a LAN gateway to access the
remote interface.

I I NTF_NONE The session is not using a gateway.

Return Value For C programs, this function returns zero (0) if successful, or anon-zero
error number if an error occurs.

For Visual BASIC programs, no error number isreturned. Instead, the global
Err variableisset if an error occurs.

See Also The “Using HP SICL with LAN chapter of this manual.

Chapter 12 297

C Syntax

Visual BASIC
Syntax

Description

Return Value

See Also

HP SICL Language Reference
IGETINTFSESS

|GETINTFSESS

Supported sessions. device, commander

#i ncl ude <sicl. h>

I NST igetintfsess (id);
I NST id;

Function igetintfsess
(Byval id As Integer)

Thei geti nt f sess function takes the device session specified by id and
returns anew session id that refers to an interface session associated with the
interface that the deviceis on.

Most SICL applications will take advantage of the benefits of device
sessions and not want to bother with interface sessions. Since some
functions only work on device sessions and others only work on interface
sessions, occasionally it is necessary to perform functions on an interface
session, when only adevice session is available for use. An exampleisto
perform an interface clear (seei cl ear) from within an SRQ handler (see
i onsrq).

Inaddition, multiplecallstoi get i nt f sess withthesameidwill returnthe
same interface session each time. This makes this function useful as afilter,
taking adevice session in and returning an interface session.

SICL will close the interface session when the device or commander session
is closed. Therefore, do not close this session.

If no errors occur, thisfunction returns avalid session id; otherwiseit returns
zero (0).

“IOPEN’

298 Chapter 12

HP SICL Language Reference
IGETINTFTYPE

IGETINTFTYPE

Supportedsessions. device, interface, commander

C Syntax #include <sicl.h>

int igetintftype (id, pdata);
I NST id;
i nt *pdata;

Visual BASIC Function igetintftype
Syntax (Byval id As Integer, pdata As | nteger)

Description Thei geti nt f t ype function returns avalue indicating the type of interface
associated with a session. This function returns one of the following values
in pdata:

I INTF_GPI B This session is associated with a GPIB interface.
I INTF_GPI O This session is associated with a GPIO interface.
| I NTF_LAN This session is associated with a LAN interface.

I _INTF_RS232 This session is associated with an RS-232 (Serial)
interface.

I I NTF_VXI This session is associated with a VXI interface.

Return Value For C programs, this function returns zero (0) if successful, or anon-zero
error number if an error occurs.

For Visual BASIC programs, no error number isreturned. Instead, the global
Err variableisset if an error occurs.

See Also “IOPEN

Chapter 12 299

HP SICL Language Reference
IGETLOCKWAIT

IGETLOCKWAIT

Supportedsessions. device, interface, commander

C Syntax #include <sicl.h>

int igetlockwait (id, flag);
I NST id;
int *flag;

Visual BASIC Function igetl ockwai t
Syntax (Byval id As Integer, flag As Integer)

Description To get the current status of the lockwait flag, usethei get | ockwai t
function. This function stores a one (1) in the variable pointed to by flag if
the wait mode is enabled, or azero (0) if ano-wait, error-producing modeis
enabled.

Return Value For C programs, this function returns zero (0) if successful, or a non-zero
error number if an error occurs.

For Visual BASIC programs, no error number is returned. I nstead, the global
Err variableisset if an error occurs.

See Also “ILOCK”, “IUNLOCK”, “ISETLOCKWAIT”

300 Chapter 12

HP SICL Language Reference
IGETLU

IGETLU

Supportedsessions. device, interface, commander

C Syntax #include <sicl.h>

int igetlu (id, lu);
| NST id;
int *lu;

Visual BASIC Function igetlu
Syntax (Byval id As Integer, lu As Integer)

Description Thei get | u function returnsin lu the logical unit (interface address) of the
device or interface associated with a given session id.

Return Value For C programs, this function returns zero (0) if successful, or anon-zero
error number if an error occurs.

For Visual BASIC programs, no error number isreturned. Instead, the global
Err variableisset if an error occurs.

See Also “IOPEN’, “IGETLUINFO”

Chapter 12 301

HP SICL Language Reference
IGETLUINFO

|GETLUINFO

C Syntax #include <sicl.h>

int igetluinfo (lu, luinfo);
int lu _ _
struct lu_info *luinfo;

Visual BASIC Function igetluinfo
Syntax (Byval lu As Integer, result As lu info)

Description Thei get | ui nf o function is used to get information about the interface
associated with the lu (logical unit). For C programs, the lu_info structure
has the following syntax:

struct lu_info {

ibﬁg logical_unit; /* same as val ue passed into
igetluinfo */
char symname[32]; /* synbolic name assignedtointerface

*/

char cardname[32]; /* nane of interface card */

| ong intftype; /* same val ue returned by i getintftype
*/

s

For Visual BASIC programs, the lu_info structure has the following syntax:

Type lu_info

| ogi cal _unit As Long
symame As String
cardname As String
fillerl As Long
intftype As Long

End Type

302 Chapter 12

Return Value

See Also

HP SICL Language Reference
IGETLUINFO

Notice that, in a given implementation, the exact structure and contents of
the lu_info structure isimplementation-dependent. The structure can contain
any amount of non-standard, implementation-dependent fields. However,
the structure must always contain the above fields. If you are programming
in C, please refer to the si cl . h file to get the exact lu_info syntax. If you
are programming in Visual BASIC, please refer to the SI CL. BAS or

S| CL4. BAS file for the exact syntax.

Notethat i get | ui nf o will return information for valid local interfaces
only, not remote interfaces being accessed viaLAN.

For C programs, this function returns zero (0) if successful, or anon-zero
error number if an error occurs.

For Visual BASIC programs, no error number isreturned. Instead, the global
Err variableisset if an error occurs.

“IOPEN’, “IGETLU”, “IGETLULIST”

Chapter 12 303

HP SICL Language Reference
IGETLULIST

IGETLULIST

C Syntax #include <sicl.h>

int igetlulist (lulist);
int * *lulist;

Visual BASIC Function igetlulist
Syntax (list() As Integer)

Description Thei get | ul i st function storesin lulist the logical unit (interface address)
of each valid interface configured for SICL. Thelast element in thelist is set
to-1.

Thisfunction can be used with i get | ui nf o to retrieve information about
al local interfaces.

Return Value For C programs, this function returns zero (0) if successful, or a non-zero
error number if an error occurs.

For Visual BASIC programs, no error number is returned. I nstead, the global
Err variableisset if an error occurs.

See Also “IOPEN’, “IGETLUINFO", “IGETLU”

304 Chapter 12

HP SICL Language Reference
IGETONERROR

|GETONERROR

C Syntax #include <sicl.h>

int igetonerror (proc);
void (* *proc) (I NST, int);

Note Not supported on Visual BASIC.

Note For WIN16 programs on Microsoft Windows platforms, the variable used to
store a handler’s address must be declared
(_far _pascal * _far *proc).

Description Thei get onerror function returns the current error handler setting. This
function stores the address of the currently installed error handler into the
variable pointed to bgroc. If no error handler exists, it will store a ze@). (

Return Value This function returns zero (0) if successful, or a non-zero error number if an
error occurs.

See Also “IONERROR, “IGETERRNO, “IGETERRSTR, “ICAUSEERR

Chapter 12 305

HP SICL Language Reference
IGETONINTR

IGETONINTR

Supportedsessions. device, interface, commander

C Syntax #include <sicl.h>

int igetonintr (id, proc);
I NST id;
void (* *proc) (I NST, long, |ong);

Note Not supported on Visual BASIC.

Note For WIN16 programs on Microsoft Windows platforms, the variable used to
store a handler’s address must be declared
(_far _pascal * _far *proc).

Description Thei get oni nt r function stores the address of the current interrupt handler
in proc. If no interrupt handler is currently installgatpc is set to zeroQ).

Return Value This function returns zero (0) if successful, or a non-zero error number if an
error occurs.

See Also “IONINTR”, “IWAITHDLR ", “lIINTROFF’, “IINTRON"

306 Chapter 12

HP SICL Language Reference
IGETONSRQ

IGETONSRQ

SUPPOMEd SESSIONS:, .+ .. oo v e device, interface

C Syntax #include <sicl.h>

int igetonsrg (id, proc);
I NST id;
void (* *proc) (I NST);

Note Not supported on Visual BASIC.

Note For WIN16 programs on Microsoft Windows platforms, the variable used to
store a handler’s address must be declared
(_far _pascal * _far *proc).

Description Thei get onsr g function stores the address of the current SRQ handler in
proc. If there is no SRQ handler installguoc will be set to zeroq).

Return Value This function returns zero (0) if successful, or a non-zero error number if an
error occurs.

See Also “IONSRQ, “IWAITHDLR”, “lIINTROFF", “IINTRON"

Chapter 12 307

HP SICL Language Reference
IGETSESSTYPE

|GETSESSTY PE

Supportedsessions. device, interface, commander

C Syntax #include <sicl.h>

int igetsesstype (id, pdata);
I NST id;
i nt *pdata;

Visual BASIC Function i get sesstype
Syntax (Byval id As Integer, pdata As | nteger)

Description Thei get sesst ype function returnsin pdata a value indicating the type of
session associated with a given sessioniid.

This function returns one of the following values in pdata:
| _SESS CMDR The session associated with id is a commander
session.
| _SESS DEV The session associated with id is a device session.

| _SESS | NTF The session associated with id is an interface session.

Return Value For C programs, this function returns zero (0) if successful, or anon-zero
error number if an error occurs.

For Visual BASIC programs, no error number isreturned. Instead, the global
Err variableisset if an error occurs.

See Also “IOPEN

308 Chapter 12

HP SICL Language Reference
IGETTERMCHR

IGETTERMCHR

Supportedsessions. device, interface, commander

C Syntax #include <sicl.h>

int igetternchr (id, tchr);
I NST id;
i nt *tchr;

Visual BASIC Function igetternchr
Syntax (Byval id As Integer, tchr As Integer)

Description Thisfunction setsthe variable referenced by tchr to the termination character
for the session specified by id. If no termination character is enabled for the
session, then the variable referenced by tchr isset to -1.

Return Value For C programs, this function returns zero (0) if successful, or a non-zero
error number if an error occurs.

For Visual BASIC programs, no error number is returned. I nstead, the global
Err variableisset if an error occurs.

See Also “ITERMCHR’

Chapter 12 309

C Syntax

Visual BASIC
Syntax

HP SICL Language Reference
IGETTIMEOUT

IGETTIMEOUT

Supportedsessions. device, interface, commander

#i ncl ude <sicl. h>

int igettinmeout (id, tval);
I NST id;
| ong *tval;

Function igetti meout
(Byval id As Integer, tval As Long)

Description Thei getti meout function stores the current timeout vauein tval. If no

timeout value has been set, tval will be set to zero (0).

Return Value For C programs, this function returns zero (0) if successful, or anon-zero

error number if an error occurs.

For Visual BASIC programs, no error number isreturned. Instead, the global
Err variableisset if an error occurs.

See Also “ITIMEOUT”

310 Chapter 12

C Syntax

Visual BASIC
Syntax

Description

Note

Return Value

See Also

HP SICL Language Reference

IGPIBATNCTL
|GPIBATNCTL
SUPPOMEd SESSIONS. .« .ot e interface
Affected by functions. il ock,itimeout

#i ncl ude <sicl. h>

int igpibatnctl (id, atnval);
I NST id;
i nt atnval;

Function i gpi batnctl
(Byval id As Integer, ByVal atnval As | nteger)

Thei gpi bat nct | function controls the state of the ATN (Attention) line.
If atnval is non-zero, then ATN is set. If atnval is O, then ATN is cleared.

Thisfunction is used primarily to alow GPIB devices to communicate
without the controller participating. For example, after addressing one
deviceto talk and another to listen, ATN can be cleared with i gpi bat nct |
to allow the two devices to transfer data.

This function will not work withi wri t e to send GPIB command data onto
thebus. Thei wri t e function on a GPIB interface session always clears the
ATN line before sending the buffer. To send GPIB command data, use the

i gpi bsendcnd function.

For C programs, this function returns zero (0) if successful, or a non-zero
error number if an error occurs.

For Visual BASIC programs, no error number is returned. I nstead, the global
Err variableisset if an error occurs.

“IGPIBSENDCMD, “IGPIBRENCTL", “IWRITE”

Chapter 12 311

HP SICL Language Reference
IGPIBBUSADDR

| GPIBBUSADDR

SUPPOMEd SESSIONS. .« .t it e it e interface
Affected by functions. il ock,itimeout

C Syntax #include <sicl.h>

i nt igpi bbusaddr (id, busaddr);
I NST id;
i nt busaddr;

Visual BASIC Function i gpi bbusaddr
Syntax (Byval id As Integer, ByVal busaddr As | nteger)

Description This function changes the interface bus address to busaddr for the GPIB
interface associated with the session id.

Return Value For C programs, this function returns zero (0) if successful, or a non-zero
error number if an error occurs.

For Visual BASIC programs, no error number is returned. I nstead, the global
Err variableisset if an error occurs.

See Also “IGPIBBUSSTATUS

312 Chapter 12

HP SICL Language Reference
IGPIBBUSSTATUS

|GPIBBUSSTATUS

.............................. interface

request, result);

Supported sessions.
C Syntax #include <sicl.h>
i nt igpibbusstatus (id,
I NST id;
i nt request;
int *result;
Visual BASIC Functi on i gpi bbusst at us
Syntax (Byval id As Integer,

result As | nteger)

ByVal request As I nteger,

Description Thei gpi bbusst at us function returns the status of the GPIB interface.
Thisfunction takes one of the following parametersin the request parameter
and returns the status in the result parameter.

| _GPI B_BUS_REM

| _GPI B_BUS_SRQ

| _GPI B_BUS_NDAC

| _GPI B_BUS_SYSCTLR

| _GPI B_BUS_ACTCTLR

| _GPI B_BUS_TALKER

| _GPI B_BUS_LI STENER

Returns a 1 if the interface is in remote
mode, 0 otherwise.

Returns a 1 if the SRQ line is asserted, 0
otherwise.

Returns a 1 if the NDAC line is asserted, O
otherwise.

Returns a 1 if the interface is the system
controller, 0 otherwise.

Returns a 1 if the interface is the active
controller, O otherwise.

Returns a 1 if the interface is addressed to
talk, O otherwise.

Returns a 1 if the interface is addressed to
listen, O otherwise.

Chapter 12

313

HP SICL Language Reference
IGPIBBUSSTATUS

| _GPI B_BUS ADDR Returns the bus address (0-30) of this
interface on the GPIB bus.

| _GPI B_BUS_LI NES Returns the state of various GPIB lines. The
result is a bit mask with the following bits
being significant (bit O is the least-
significant-bit):

Bit 0: 1 if SRQ line is asserted.

Bit 1: 1 if NDAC line is asserted.

Bit 2: 1if ATN line is asserted.

Bit 3: 1 if DAV line is asserted.

Bit 4: 1 if NRFD line is asserted.

Bit 5: 1 if EOI line is asserted.

Bit 6: 1 if IFC line is asserted.

Bit 7: 1if REN line is asserted.

Bit 8: 1 if in REMote state.

Bit 9: 1ifin LLO (local lockout) mode.
Bit 10: 1 if currently the active controller.
Bit 11: 1 if addressed to talk.

Bit 12: 1 if addressed to listen.

Return Value For C programs, this function returns zero (0) if successful, or a non-zero
error number if an error occurs.

For Visual BASIC programs, no error number is returned. I nstead, the global
Err variableisset if an error occurs.

See Also “IGPIBPASSCTL, “IGPIBSENDCMD'

314 Chapter 12

HP SICL Language Reference
IGPIBGETT1DELAY

|IGPIBGETT1DELAY
SUPPOMEd SESSIONS. .« .ot e interface
Affected by functions. il ock,itimeout

C Syntax #include <sicl.h>

int igpibgettldelay (id, delay);
I NST id;
i nt *delay;

Visual BASIC Function i gpi bgett 1del ay
Syntax (Byval id As Integer, delay As Integer)

Description Thisfunction retrieves the current setting of t1 delay on the GPIB interface
associated with session id. The value returned isthe time of t1 delay in
nanoseconds.

Return Value For C programs, this function returns zero (0) if successful, or a non-zero
error number if an error occurs.

For Visual BASIC programs, no error number is returned. I nstead, the global
Err variableisset if an error occurs.

See Also “IGPIBSETT1DELAY"

Chapter 12 315

HP SICL Language Reference
IGPIBLLO

|GPIBLLO

SUPPOMEd SESSIONS. .« .t it e it e interface
Affected by functions. il ock,itimeout

C Syntax #include <sicl.h>

int igpibllo (id);
I NST id;

Visual BASIC Function igpibllo
Syntax (ByVal id As Integer)

Description Thei gpi bl | o function puts all GPIB devices on the given busin local
lockout mode. Theid specifiesa GPIB interface session. Thisfunction sends
the GPIB LLO command to all devices connected to the specified GPIB
interface. Local Lockout prevents you from returning to local mode by
pressing a device’s front panel keys.

Return Value For C programs, this function returns zero (0) if successful, or a non-zero
error number if an error occurs.
For Visual BASIC programs, no error number is returned. Instead, the global
Err variable is set if an error occurs.

See Also “IREMOTE’, “ILOCAL"

316 Chapter 12

HP SICL Language Reference
IGPIBPASSCTL

|GPIBPASSCTL
SUPPOMEd SESSIONS. .« .ot e interface
Affected by functions. il ock,itimeout

C Syntax #include <sicl.h>

i nt igpibpassct! (id, busaddr);
I NST id;
i nt busaddr;

Visual BASIC Function i gpi bpassctl
Syntax (Byval id As Integer, ByVal busaddr As I nteger)

Description Thei gpi bpassct | function passes control from this GPIB interface to
another GPIB device specified in busaddr. The busaddr parameter must be
between 0 and 30. Note that thiswill also causean | INTR_INTFDEACT
interrupt, if enabled.

Return Value For C programs, this function returns zero (0) if successful, or a non-zero
error number if an error occurs.

For Visual BASIC programs, no error number is returned. I nstead, the global
Err variableisset if an error occurs.

See Also “IONINTR”, “ISETINTR"

Chapter 12 317

HP SICL Language Reference

IGPIBPPOLL
|
| GPIBPPOLL
SUPPOMEd SESSIONS. .« .t it e it e interface
Affected by functions. il ock,itimeout

C Syntax #include <sicl.h>

i nt igpibppoll (id, result);
I NST id;
unsi gned int *result;

Visual BASIC Function i gpi bppol |
Syntax (Byval id As Integer, result As Integer)

Description Thei gpi bppol I function performs a parallel poll on the bus and returns
the (8-bit) result in the lower byte of result.

Return Value For C programs, this function returns zero (0) if successful, or a non-zero
error number if an error occurs.

For Visual BASIC programs, no error number is returned. I nstead, the global
Err variableisset if an error occurs.

See Also “IGPIBPPOLLCONFIG, “IGPIBPPOLLRESP

318 Chapter 12

HP SICL Language Reference
IGPIBPPOLLCONFIG

| GPIBPPOLL CONFIG

SUpPOrted SessioNS.o v i e device, commander
Affected by functions. il ock,itimeout

C Syntax #include <sicl.h>

i nt igpibppollconfig (id, cval);
I NST id;
unsi gned int cval;

Visual BASIC Functi on i gpi bppol | config
Syntax (Byval id As Integer, ByVal cval As Integer)

Description For device sessions, thei gpi bppol | confi g function enables or disables
the parallel poll responses. If cval is greater than or equal to 0, then the
device specified by id is enabled in generating parallel poll responses. In this
case, the lower 4 bits of cval correspond to:

bit 3 Set the sense of the PPOLL response. A 1 in this bit
means that an affirmative response means service
request. A 0 in this bit means that an affirmative response
means no service request.

bit 2-0 A value from 0-7 specifying the GPIB line to respond on
for PPOLL’s.

If cval isequal to -1, then the device specified by id is disabled from
generating parallel poll responses.

For commander sessions, the i ?pi bppol | conf i g function enables and
disables parallel poll responsesfor thisdevice (that is, how we respond when
our controller PPOLL's us).

Return Value For C programs, this function returns zero (0) if successful, or a non-zero
error number if an error occurs.

For Visual BASIC programs, no error number is returned. Instead, the global
Err variable is set if an error occurs.

See Also “IGPIBPPOLL, “IGPIBPPOLLRESP

Chapter 12 319

HP SICL Language Reference
IGPIBPPOLLRESP

| GPIBPPOLLRESP

SUPPOMEd SESSIONS. .« .ot i i e commander
Affected by functions. il ock,itimeout

C Syntax #include <sicl.h>

i nt igpibppollresp (id, sval);
I NST id;
int sval;

Visual BASIC Functi on i gpi bppol | resp
Syntax (Byval id As Integer, ByVal sval As Integer)

Description Thei gpi bppol | r esp function sets the state of the PPOLL bit (the state of
the PPOLL bit when the controller PPOLL's us).

Return Value For C programs, this function returns zero (0) if successful, or a non-zero
error number if an error occurs.

For Visual BASIC programs, no error number is returned. Instead, the global
Err variable is set if an error occurs.

See Also “IGPIBPPOLL, “IGPIBPPOLLCONFIG

320 Chapter 12

HP SICL Language Reference

IGPIBRENCTL
|
IGPIBRENCTL
SUPPOMEd SESSIONS. .« .ot e interface
Affected by functions. il ock,itimeout

C Syntax #include <sicl.h>

int igpibrenctl (id, ren);
I NST id;
int ren

Visual BASIC Function igpi brenct]|
Syntax (Byval id As Integer, ByVal ren As Integer)

Description Thei gpi brenct | function controls the state of the REN (Remote Enable)
line. If ren isnon-zero, then REN is set. If renis 0, then REN is cleared.

Return Value For C programs, this function returns zero (0) if successful, or a non-zero
error number if an error occurs.

For Visual BASIC programs, no error number is returned. I nstead, the global
Err variableisset if an error occurs.

See Also “IGPIBATNCTL”

Chapter 12 321

HP SICL Language Reference
IGPIBSENDCMD

|GPIBSENDCMD

SUPPOMEd SESSIONS. .« .t it e it e interface
Affected by functions. il ock,itimeout

C Syntax #include <sicl.h>

i nt igpibsendcnd (id, buf, length);
I NST id;

char *buf;

i nt length;

Visual BASIC Functi on i gpi bsendcnd

Syntax (Byval id As Integer, ByVal buf As String,
ByVval length As I nteger)

Description Thei gpi bsendcnd function setsthe ATN line and then sends bytes to the
GPIB interface. This function sends length number of bytes from buf to the

GPIB interface. Note that the i gpi bsendcnd function leavesthe ATN line
Set.

If the interface is not active controller, this function will return an error.
Return Value For C programs, this function returns zero (0) if successful, or a non-zero

error number if an error occurs.

For Visual BASIC programs, no error number is returned. I nstead, the global

Err variableisset if an error occurs.

See Also “IGPIBATNCTL”, “IWRITE”

322 Chapter 12

C Syntax

Visual BASIC
Syntax

Description

Return Value

See Also

HP SICL Language Reference
IGPIBSETT1DELAY

|GPIBSETT1DELAY

SUPPOMEd SESSIONS. .« .ot e interface
Affected by functions. il ock,itimeout

#i ncl ude <sicl. h>

int igpibsettldelay (id, delay);
I NST id;
i nt delay;

Function igpi bsettldel ay
(Byval id As Integer, ByVal delay As I nteger)

Thisfunction setsthetl delay on the GPIB interface associated with session
id. The value isthetime of t1 delay in nanoseconds, and should be no less
than| _GPI B_T1DELAY_M Nor no greater than | _GPI B_T1DELAY_MAX.

Note that most GPIB interfaces only support a small number of t1 delays, so
the actual value used by the interface could be different than that specified in
thei gpi bset t 1del ay function. You can find out the actual value used by
calling thei gpi bget t 1del ay function.

For C programs, this function returns zero (0) if successful, or a non-zero
error number if an error occurs.

For Visual BASIC programs, no error number is returned. I nstead, the global
Err variableisset if an error occurs.

“IGPIBGETT1DELAY’

Chapter 12 323

C Syntax

Visual BASIC
Syntax

HP SICL Language Reference

IGPIOCTRL

|GPIOCTRL
SUPPOMEd SESSIONS. .« .t it e it e interface
Affected by functions. il ock,itimeout

#i ncl ude <sicl. h>

i nt

I NST id;
i nt request;

unsi gned | ong setting;

Function igpioctrl
(ByVal

By Val

id As | nteger,
setting As Long)

By Val

igpioctrl (id, regquest, setting);

request As | nteger,

Note GPIO isnot supported over LAN.

324

Chapter 12

HP SICL Language Reference
IGPIOCTRL

Description Thei gpi oct rl function is used to control various lines and modes of the
GPIO interface. This function takes request and sets the interface to the
specified setting. The request parameter can be one of the following:

| _GPl O_AUTO_HDSK

| _GPl O_AUX

| _GPI O_CHK_PSTS

If the setting parameter is non-zero, then the
interface uses auto-handshake mode (the
default). This gives the best performance for

i read and iwrite operations. If the setting
parameter is zero (0), then auto-handshake
mode is canceled. This is required for
programs that implement their own handshake
using| _GPI O SET_PCTL.

The setting parameter is a mask containing the
state of all auxiliary control lines. A 1 bit asserts
the corresponding line; a O (zero) bit clears the
corresponding line.

When configured in Enhanced Mode, the HP
E2074/5 interface has 16 auxiliary control lines.
In HP 98622 Compatibility Mode, it has none.
Attempting to use | _GPI O_AUXin HP 98622
Compatibility Mode results in the error:
Operation not supported.

If the setting parameter is non-zero, then the
PSTS line is checked before each block of data
is transferred. If the setting parameter is zero
(0), then the PSTS line is ignhored during data
transfers. If the PSTS line is checked and false,
SICL reports the error: Devi ce not active
or avail abl e.

Chapter 12

325

HP SICL Language Reference

IGPIOCTRL

| _GPI O _CTRL

| _GPl O_DATA

| _GPl O_READ_EOI

| _GPl O_SET_PCTL

The setting parameter is a mask containing the
state of all control lines. A 1 bit asserts the
corresponding line; a 0 (zero) bit clears the
corresponding line.

The HP E2074/5 interface has two control lines,
so only the two least-significant bits have
meaning for that interface. These can be
represented by the following. All other bits in
the setting mask are ignored.

| _GPI O_CTRL_CTLOThe CTLO line.

| _GPI O CTRL_CTL1The CTL1 line.

The setting parameter is a mask containing the
state of all data out lines. A 1 bit asserts the
corresponding line; a 0 (zero) bit clears the
corresponding line. The HP E2074/5 interface
has either 8 or 16 data out lines, depending on
the setting specified by i gpi oset wi dt h.

Note that this function changes the data lines
asynchronously, without any type of
handshake. It is intended for programs that
implement their own handshake explicitly.

If the setting parameter is | _GPl O_EQ _NONE,
then END pattern matching is disabled for read
operations. Any other setting enables END
pattern matching with the specified value. If the
current data width is 16 bits, then the lower 16
bits of setting are used. If the current data width
is 8 bits, then only the lower 8 bits of setting are
used.

If the setting parameter is non-zero, then a
GPIO handshake is initiated by setting the
PCTL line. Auto-handshake mode must be
disabled to allow explicit control of the PCTL
line. Attempting touse | _GPI O_SET_PCTL in
auto-handshake mode results in the error:
Operation not supported.

326

Chapter 12

HP SICL Language Reference
IGPIOCTRL

| _GPI O_PCTL_DELAY The setting parameter selects a PCTL delay

| _GPl O POLARI TY

value from a set of eight “click stops” humbered
0 through 7. A setting of 0 selects 200 ns; a
setting of 7 selects 50 ps. For a complete list of
delay values, see the HP E2074/5 GPIO
Interface Installation Guide.

Changes made by this function can remain in
the interface hardware after your program ends.
On HP-UX and Windows NT, the setting
remains until the computer is rebooted. On
Windows 95, it remains until hp074i 16. dl | is
reloaded.

The setting parameter determines the logical
polarity of various interface lines according to
the following bit map. A 0 sets active-low
polarity; a 1 sets active-high polarity.

Bit 4 Bit 3 Bit 2 Bit 1 Bit 0
Data Out | Data In PSTS PFLG PCTL
Value=16 | Value=8 | Value=4 | Value=2 | Value=1
Chapter 12 327

HP SICL Language Reference

IGPIOCTRL

| _GPl O_READ_CLK

Changes made by this function can remain in
the interface hardware after your program ends.
On HP-UX and Windows NT, the setting
remains until the computer is rebooted. On
Windows 95, it remains until hp074i 16. dl | is
reloaded.

The setting parameter determines when the
data input registers are latched. It is
recommended that you represent Setting as a
hex number. In that representation, the first hex
digit corresponds to the upper (most-significant)
input byte, and the second hex digit
corresponds to the lower input byte. The
clocking choices are: 0=Read, 1=Busy,
2=Ready. For an explanation of the data-in
clocking, see the HP E2074/5 GPIO Interface
Installation Guide.

Changes made by this function can remain in
the interface hardware after your program ends.
On HP-UX and Windows NT, the setting
remains until the computer is rebooted. On
Windows 95, it remains until hp074i 16. dl | is
reloaded.

Return Value For C programs, this function returns zero (0) if successful, or a non-zero
error number if an error occurs.

For Visual BASIC programs, no error number is returned. I nstead, the global
Err variableisset if an error occurs.

See Also “IGPIOSTAT, “IGPIOSETWIDTH

328

Chapter 12

C Syntax

Visual BASIC
Syntax

Note

Description

Return Value

See Also

HP SICL Language Reference
IGPIOGETWIDTH

|GPIOGETWIDTH

SUPPOMEd SESSIONS. .« .ot e interface

#i ncl ude <sicl. h>

int igpiogetw dth (id, width);
I NST id;
int *width;

Function i gpi ogetw dth
(Byval id As Integer, width As Integer)

GPIO is not supported over LAN.

Thei gpi oget wi dt h function returns the current data width (in bits) of a
GPIO interface. For the HP E2074/5 interface, width will be either 8 or 16.

For C programs, this function returns zero (0) if successful, or anon-zero
error number if an error occurs.

For Visual BASIC programs, no error number isreturned. Instead, the global
Err variableisset if an error occurs.

“IGPIOSETWIDTH

Chapter 12 329

C Syntax

Visual BASIC
Syntax

Note

Description

HP SICL Language Reference
IGPIOSETWIDTH

|GPIOSETWIDTH

SUPPOMEd SESSIONS. .« .t it e it e interface
Affected by functions. il ock,itimeout

#i ncl ude <sicl. h>

int igpiosetwidth (id, width);
I NST id;
i nt width;

Function igpi osetw dth
(Byval id As Integer, ByVal width As Integer)

GPIO is not supported over LAN.

Thei gpi oset wi dt h function is used to set the data width (in bits) of a
GPIO interface. For the HP E2074/5 interface, the acceptable values for
width are 8 and 16.

Whilein 16-bit width mode, al i r ead callswill return an even number of
bytes, and all i wri t e calls must send an even number of bytes.

16-bit words are placed on the data lines using “big-endian” byte order (most
significant bit appears on data line D_15). Data alignment is automatically
adjusted for the native byte order of the computer. This is a programming
concern only if your program does its own packing of bytes into words. The
following program segment is amw i t e example. The analogous situation
exists fori r ead.

/* System automatically handles byte order */
unsi gned short words[5];

/* Programer assunes responsibility for byte order */
unsi gned char bytes[10];

/* Using the GPIO interface in 16-bit node */
i gpi osetwidth(id, 16);

330 Chapter 12

HP SICL Language Reference
IGPIOSETWIDTH

/* This call is platformindependent */
iwite(id, words, 10, ...);

/* This call is NOT platformindependent */
iwite(id, bytes, 10, ...);

/* This sequence is platformindependent */
i beswap(bytes, 10, 2);
iwite(id, bytes, 10, ...);

There are several notable details about GPIO width. The “count” parameters
foriread andi wri t e always specify bytes, even when the interface has a
16-bit width. For example, to send 1@0rds, specify 20Mytes. The

i ter nchr function always specifies an 8-bit character. If a 16-bit width is
set, only the lower 8 bits are used when checking fot annchr match.

Return Value For C programs, this function returns zero (0) if successful, or a non-zero
error number if an error occurs.
For Visual BASIC programs, no error number is returned. Instead, the global
Err variable is set if an error occurs.

See Also “IGPIOGETWIDTH'

Chapter 12 331

C Syntax

Visual BASIC
Syntax

HP SICL Language Reference

IGPIOSTAT

|GPIOSTAT

Supported sessions:

#i ncl ude <sicl. h>

int igpiostat (id,
I NST id;
i nt request;

unsi gned | ong *result;

Functi on i gpi ost at

(ByVal
By Val

id As | nteger,
result As Long)

request,

By Val

result) ;

request As | nteger,

.................................. interface

Note GPIO isnot supported over LAN.

332

Chapter 12

HP SICL Language Reference
IGPIOSTAT

Description Thei gpi ost at function is used to determine the current state of various
GPIO modes and lines. The request parameter can be one of the following:

| _GPI O CTRL The result is a mask representing the state of
all control lines.
The HP E2074/5 interface has two control lines,
so only the two least-significant bits have
meaning for that interface. These can be
represented by the following. All other bits in
the result mask are 0 (zero).
| _GPI O_CTRL_CTLOThe CTLO line.
| _GPI O CTRL_CTL1The CTL1 line.

| _GPlI O_DATA The result is a mask representing the state of
all data input latches. The HP E2074/5 interface
has either 8 or 16 data in lines, depending on
the setting specified by i gpi oset wi dt h.
Note that this function reads the data lines
asynchronously, without any type of
handshake. It is intended for programs that
implement their own handshake explicitly.
An i gpi ost at function from one process will
proceed even if another process has a lock on
the interface. Ordinarily, this does not alter or
disrupt any hardware states. Reading the data
in lines is one exception. A data read causes an
“input” indication on the I/O line (pin 20). In rare
cases, that change might be unexpected, or
undesirable, to the session that owns the lock.

| _GPI O I NFO The result is a mask representing the following
information about the device and the HP
E2074/5 interface:

| _GPI O PSTS State of the PSTS line.
| _GPIO EIR State of the EIR line.
| _GPlI O READY True if ready for a handshake. (Exact meaning

depends on the current handshake mode.)

Chapter 12 333

HP SICL Language Reference
IGPIOSTAT

| _GPI O AUTO HDSK True if auto-handshake mode is enabled. False
if auto-handshake mode is disabled.

| _GPlI O CHK _PSTS True if the PSTS line is to be checked before
each block of data is transferred. False if PSTS
is to be ignored during data transfers.

| _GPI O_ENH_MODE True if the HP E2074/5 data ports are
configured in Enhanced (bi-directional) Mode.
False if the ports are configured in HP 98622
Compatibility Mode.

| _GPI O_READ EQ The result is the value of the current END
pattern being used for read operations. If the
resultis | _GPI O EO _NONE, then no END
pattern matching is being used. Any other
result is the value of the END pattern.

| _GPlI O STAT The result is a mask representing the state of
all status lines.
The HP E2074/5 interface has two status lines,
so only the two least-significant bits have
meaning for that interface. These can be
represented by the following. All other bits in
the result mask are 0 (zero).
| _GPlI O_STAT_STI 0The STIO line.
| _GPlI O_STAT_STI 1The STI1 line.

Return Value For C programs, this function returns zero (0) if successful, or anon-zero
error number if an error occurs.

For Visual BASIC programs, no error number isreturned. Instead, the global
Err variableisset if an error occurs.

See Also “IGPIOCTRL, “IGPIOSETWIDTH’

334 Chapter 12

HP SICL Language Reference
IHINT

IHINT

Supportedsessions. device, interface, commander

C Syntax #include <sicl.h>

int ihint (id, hint);
I NST id;
i nt hint;

Visual BASIC Function i hint
Syntax (Byval id As Integer, ByVal hint As Integer)

Description There are three common ways a driver can implement 1/O communications:
Direct Memory Access (DMA), Polling (POLL), and Interrupt Driven
(INTR). Note, however, that some systems may not implement all of these
transfer methods.

The SICL software permits you to “recommend” your preferred method of
communication. To do this, use thki nt function. Thehint argument can
be one of the following values:

| _HI NT_DONTCARE No preference.

I _HI NT_USEDVA Use DMA if possible and feasible. Otherwise use

POLL.

| _HI NT_USEPOLL Use POLL if possible and feasible. Otherwise use
DMA or INTR.

I _HI NT_USEINTR Use INTR if possible and feasible. Otherwise use
DMA or POLL.

I _HI NT_SYSTEM The driver should use whatever mechanism is
best suited for improving overall system
performance.

I HINT_ IO The driver should use whatever mechanism is

best suited for improving I/O performance.

Keep the following in mind as you make your suggestions to the driver:

Chapter 12 335

HP SICL Language Reference
IHINT

®* DMA tendsto be very fast at sending data but requires more time to set
up atransfer. It is best for sending large amounts of datain asingle
regquest. Not all architectures and interfaces support DMA.

® Polling tends to be fast at sending data and has a small set up time.
However, if the interface only accepts data at a slow rate, polling wastes
alot of CPU time. Polling is best for sending smaller amounts of datato
fast interfaces.

® [nterrupt driven transfers tend to be slower than polling. It also hasa
small set up time. The advantage to interruptsis that the CPU can
perform other functions while waiting for datatransfersto complete. This
mechanism is best for sending small to medium amounts of data to sow
interfaces or interfaces with an inconsistent speed.

Note The parameter passed ini hi nt isonly asuggestion to the driver software.
Thedriver will till make its own determination of which technique it will
use. The choice has no effect on the operation of any intrinsics, just on the
performance characteristics of that operation.

Return Value For C programs, this function returns zero (0) if successful, or anon-zero
error number if an error occurs.

For Visual BASIC programs, no error number is returned. Instead, the global
Err variableisset if an error occurs.

See Also “IREAD”, “IWRITE”, “IFREAD", “IFWRITE”", “IPRINTF’, “ISCANF’

336 Chapter 12

HP SICL Language Reference
IINTROFF

IINTROFF

C Syntax #include <sicl.h>

int iintroff ();

Note Not supported on Visual BASIC.

Description Theiintroff function disables SICL's asynchronous events for a process.
This means that all installed handlers for any sessions in a process will be
held off until the process enables them withmt r on.

By default, asynchronous events are enabled. However, the library will not
generate any events until the appropriate handlers are installed. To install
handlers, refer to theonsr g andi oni nt r functions.

Note Theii ntroff/iintron functions do not affect theetintr values or the
handlers in any way.

Default is on.

Return Value This function returns zero (0) if successful, or a non-zero error number if an
error occurs.

See Also “IONINTR”, “IGETONINTR”, “IONSRQ, “IGETONSRQ,
“IWAITHDLR”, “lINTRON”

Chapter 12 337

C Syntax

Note

Description

Note

Return Value

See Also

HP SICL Language Reference
IINTRON

IINTRON

#i ncl ude <sicl.h>

int iintron ();

Not supported on Visual BASIC.

Thei i nt ron function enables all asynchronous handlersfor al sessionsin
the process.

Thei i ntroff/iintron functionsdo not affect thei seti ntr vauesor
the handlersin any way.

Default ison.

Callstoi i ntroff/iintron can be nested, meaning that there must be an

equal number of on’s and off’s. This means that simply callingither on
function may not actually enable interrupts again. For example, note how the
following code enables and disables events.

iintroff(); /* Events Disabled */
iintron(); /* Events Enabled */

iintroff(); /* Events Disabled */
iintroff(); /* Events Disabled */
iintron(); /* Events STILL Disabled */

iintron(); /* Events NOW Enabled */

This function returns zero (0) if successful, or a non-zero error number if an
error occurs.

“IONINTR”, IGETONINTR, “IONSRQ', “IGETONSRQ,
“IWAITHDLR”, “IINTROFF’, “ISETINTR”

338 Chapter 12

HP SICL Language Reference
ILANGETTIMEOUT

ILANGETTIMEOUT

SUPPOMEd SESSIONS. .« .ot e interface

C Syntax #include <sicl.h>

int ilangettimeout (id, tval);
I NST id;
| ong *tval;

Visual BASIC Function il angetti neout
Syntax (Byval id As Integer, tval As Long) As Integer

Note LAN isnot supported with 16-bit SICL on Windows 95.

Description Thei | angetti meout function storesthe current LAN timeout valuein
tval. If the LAN timeout value has not been set viai | ant i neout , then tval
will contain the LAN timeout value calculated by the system.

Return Value For C programs, this function returns zero (0) if successful, or anon-zero
error number if an error occurs.

For Visual BASIC programs, no error number isreturned. Instead, the global
Err variableisset if an error occurs.

See Also “ILANTIMEOUT”, and the tUsing Timeouts with LAN section of the
“Using HP SICL with LAN chapter of this manual.

Chapter 12 339

HP SICL Language Reference
ILANTIMEOUT

ILANTIMEOUT

SUPPOMEd SESSIONS. .« .t it e it e interface

C Syntax #include <sicl.h>

int ilantinmeout (id, tval);
I NST id;
| ong tval;

Visual BASIC Function il anti meout
Syntax (Byval id As Integer, ByVal tval As Long) As Integer

Note LAN isnot supported with 16-bit SICL on Windows 95.

Description Thei | anti meout function is used to set the length of time that the
application (LAN client) will wait for aresponse from the LAN server. Once
an application has manually set the LAN timeout viathis function, the
software will no longer attempt to determine the LAN timeout which should
be used. Instead, the software will simply use the value set via this function.

In this function, tval defines the timeout in milliseconds. A value of zero (0)
disables timeouts. The value 1 has specia significance, causing the LAN

client to not wait for aresponse from the LAN server. However, the value 1
should be used in special circumstances only and should be used with

extreme caution. See the following subsection, “Using the No-Wait Value,”
for more information.

Note Theil anti meout function is per process. Thus, whidrant i neout is
called, all sessions which are going out over the network are affected.

340 Chapter 12

Note

Note

Using the No-
Wait Value

Caution

HP SICL Language Reference
ILANTIMEOUT

Not all computer systems can guarantee an accuracy of one millisecond on
timeouts. Some computer clock systems only provide a resolution of 1/50th
or 1/60th of asecond. Other computers have aresolution of only 1 second.
Note that the time value is always rounded up to the next unit of resolution.

This function does not affect the SICL timeout value set viathei t i meout
function. The LAN server will attempt the 1/O operation for the amount of
time specified viai t i meout before returning aresponse.

If the SICL timeout used by the server is greater than the LAN timeout used
by the client, the client may timeout prior to the server, while the server
continues to service the request. This use of the two timeout values is not
recommended, since under this situation the server may send an unwanted
response to the client.

A tval value of 1 has special significancetoi | ant i meout , causing the
LAN client to not wait for aresponse from the LAN server. For avery
limited number of cases, it may make sense to use this no-wait value. One
such scenario is when the performance of paired writes and reads over a
wide-area network (WAN) with long latency timesis critical, and losing
status information from the write can be tolerated. Having the write (and
only the write) call not wait for a response allows the read call to proceed
immediately, potentially cutting the time required to perform the paired
WAN write/read in half.

Thisvalue should be used with great caution. If i | ant i meout issettol
and then is not reset for a subsequent call, the system may deadlock dueto
responses being buffered which are never read, filling the buffers on both the
LAN client and server.

Chapter 12 341

Note

HP SICL Language Reference
ILANTIMEOUT

To use the no-wait value, do the following:

Prior tothei wri t e call (or any formatted 1/0 call that will write data)
which you do not wish to block waiting for the returned status from the
server, cal i | anti meout with atimeout value of 1.

Maketheiwrite cal. Theiwrite cal will return as soon as the
message is sent, not waiting for areply. Thei wri t e call’'s return value
will be I _ERR_TI MEQUT, and the reported count will I9e(even though
the data will be written, assuming no errors).

Note that the server will send a reply to the write, even though the client
will simply discard it. There is no way to directly determine the success
or failure of the write, although a subsequent, functioning read call can be
a good sign.

Reset the client side timeout to a reasonable value for your network by
callingi | anti meout again with avaue sufficiently large enough to
alow aread reply to be received. It is recommended that you use avalue
which provides some margin for error. Note that the timeout specified to
i | anti meout isin milliseconds (rounded up to the nearest second).

Make the blocking i r ead call (or formatted /O call that will read data).
Sincei | ant i neout has been set to avalue other than 1 (preferably not
0), thei r ead call will wait for a response from the server for the
specified time (rounded up to the nearest second).

If the no-wait value is used in a multi-threaded application and multiple
threads are attempting 1/0 over the LAN, the 1/O operations using the no-
wait option will wait for accessto the LAN for 2 minutes. If another thread
isusing the LAN interface for greater than 2 minutes, the no-wait operation
will timeout.

342 Chapter 12

HP SICL Language Reference
ILANTIMEOUT

Return Value For C programs, this function returns zero (0) if successful, or anon-zero
error number if an error occurs.

For Visual BASIC programs, no error number isreturned. Instead, the global
Err variableisset if an error occurs.

See Also ILANGETTIMEOUT, and the Using Timeouts with LAN section of the
“Using HP SICL with LAN chapter of this manual.

Chapter 12 343

HP SICL Language Reference
ILOCAL

ILOCAL

SUPPOMEd SESSIONS. .« .t i it e device
Affected by functions. il ock,itimeout

C Syntax #include <sicl.h>

int ilocal (id);
I NST id;

Visual BASIC Function il ocal
Syntax (ByVal id As Integer)

Description Usethei | ocal function to put adeviceinto Local Mode. Putting a device
in Local Mode enables the device’s front panel interface.

Return Value For C programs, this function returns zero (0) if successful, or a non-zero
error number if an error occurs.

For Visual BASIC programs, no error number is returned. Instead, the global
Err variable is set if an error occurs.

See Also “IREMOTE’, and the interface-specific chapter of this manual for details of
implementation.

344 Chapter 12

C Syntax

Visual BASIC
Syntax

Note

Description

HP SICL Language Reference

ILOCK
ILOCK
Supportedsessions. device, interface, commander
Affected by functions.l i timeout
#i ncl ude <sicl. h>
int ilock (id);
I NST id;

Function il ock
(ByVval id As Integer)

L ocks are not supported for LAN interface sessions, such as those opened
with:

lan_intf = iopen(“lan™);

To lock asession, ensuring exclusive use of aresource, use theilock
function.

Theid parameter refers either to a device, interface, or commander session.
If it refersto an interface, then the entire interface is locked; other interfaces
are not affected by this session. If theid refersto a device or commander,
then only that device or commander islocked, and only that session may
access that device or commander. However, other devices either on that
interface or on other interfaces may be accessed as usual.

L ocks are implemented on a per-session basis. If a session within agiven
process locks a device or interface, then that device or interface is only
accessible from that session. It is not accessible from any other sessionin
this process, or in any other process.

Chapter 12 345

HP SICL Language Reference
ILOCK

Attempting to call a SICL function that obeys locks on a device or interface
that islocked will cause the call either to hang until the device or interfaceis
unlocked, to timeout, or to return with the error | _ERR_LOCKED (see

i setlockwait).

Locking an interface (from an interface session) restricts other device and
interface sessions from accessing this interface.

Locking a device restricts other device sessions from accessing this device;
however, other interface sessions may continue to use thisinterface.

Locking acommander (from a commander session) restricts other
commander sessions from accessing this controller; however, interface
sessions may continue to use this interface.

Note Locking aninterface doeslock out all device session accesses on that
interface, suchas i wite (dev2, ..),aswell asal other SICL interface
Session accesses on that interface.

The following C example will cause the device session to hang:

intf = iopen (“hpib™);
dev = iopen (“hpib,7");

ilock (intf);
ilock (dev); [* this will succeed */
iwrite (dev, “*CLS", 4, 1, 0); /* this will hang */

The following Visual BASIC example will cause the device session to hang:

intf = iopen(“hpib”)
dev = iopen(“hpib,7")

call ilock (intf)
call ilock(dev) “ this will succeed
call iwrite(dev, “*CLS", 4, 1, 0&) * this will hang

L ocks can be nested. So every ilock requires a matching iunlock

346 Chapter 12

HP SICL Language Reference
ILOCK

Note Ificl ose iscaled (either implicitly by exiting the process, or explicitly) for
asession that currently has alock, the lock will be released.

Return Value For C programs, this function returns zero (0) if successful, or anon-zero
error number if an error occurs.

For Visual BASIC programs, no error number isreturned. Instead, the global
Err variableisset if an error occurs.

See Also “IUNLOCK?", “ISETLOCKWAIT", “IGETLOCKWAIT”

Chapter 12 347

Note

C Syntax

Visual BASIC
Syntax

Note

Description

HP SICL Language Reference
IMAP

IMAP

Supportedsessions. device, interface, commander
Affected by functions. il ock,itimeout

Not recommended for new program development. Use IMAPX instead.

#i ncl ude <sicl. h>

char *imap (id, map _space, pagestart, pagecnt, suggested);
I NST id;

i Nt map_space;

unsi gned i nt pagestart;

unsi gned i nt pagecnt;

char *suggested;

Function i map

(Byval id As Integer, ByVal mapspace As I nteger,
ByVal pagestart As | nteger, ByVal pagecnt As | nteger,
ByVal suggested As Long) As Long

Not supported over LAN.

Thei map function maps amemory space into your process space. The SICL
i ?peek andi ?poke functions can then be used to read and write to V XI
address space.

Theid argument specifiesaV X| interface or device. The pagestart
argument indicates the page number within the given memory space where
the memory mapping starts. The pagecnt argument indicates how many
pages to use. For Visual BASIC, you must specify 1 for the pagecnt
argument.

348 Chapter 12

HP SICL Language Reference
IMAP

The map_space argument will contain one of the following values:

| _MAP_A16 Map in VXI A16 address space (64 Kbyte pages).
| _MAP_A24 Map in VXI A24 address space (64 Kbyte pages).
| _MAP_A32 Map in VXI A32 address space (64 Kbyte pages).

| _MAP_VXI DEV Map in VXI device registers. (Device session only, 64
bytes.)

| _MAP_EXTEND Map in VXI Device Extended Memory address space in
A24 or A32 address space. See individual device
manuals for details regarding extended memory
address space. (Device session only.)

| _MAP_SHARED Map in VXI A24/A32 memory that is physically located
on this device (sometimes called local shared
memory). If the hardware supports it (that is, the local
shared VXI memory is dual-ported), this map should be
through the local system bus and not through the VXI
memory. This mapping mechanism provides an
alternate way of accessing local VXI memory without
having to go through the normal VXI memory system.
The value of pagestart is the offset (in 64 Kbyte pages)
into the shared memory. The value of pagecnt is the
amount of memory (in 64 Kbyte pages) to map.

Note The E1489 MXIbus Controller Interface can generate 32-bit data reads and
writes to V X1bus devices with D32 capability. To use 32-bit transfers with
the E1489, use| MAP_A16 D32, MAP_A24 D32,and| _MAP_A32_ D32
inplace of | _MAP_A16, | _NMAP_A24, and | _MAP_A32 when mapping to
D32 devices.

The suggested argument, if non-NULL, contains a suggested address to
begin mapping memory. However, the function may not always use this
suggested address. For Visual BASIC, you must pass a0 (zero) for this
argument.

After memory is mapped, it may be accessed directly. Since this function
returns a C pointer, you can also use C pointer arithmetic to manipulate the

Chapter 12 349

Note

Return Value

See Also

HP SICL Language Reference
IMAP

pointer and access memory directly. Note that accidentally accessing non-
existent memory will cause bus errors. See the “Using HP SICL with VXI”
chapter in thédP SICL User’s Guide for HP-U¥or an example of trapping

bus errors. Or see your operating system’s programming information for
help in trapping bus errors. You will probably find this information under
the commandi gnal in your operating system’s manuals. Note that Visual
BASIC programs can perform pointer arithmetic within a single page.

Due to hardware constraints on a given device or interface, not all address
spaces may be implemented. In addition, there may be a maximum number
of pages that can be simultaneously mapped. If a request is made that cannot
be granted due to hardware constraints, the process will hang until the
desired resources become available. To avoid this, usa#é ockwai t
command with thélag parameter set t, and thus generate an error instead

of waiting for the resources to become available. You may also use the

i mapi nf o function to determine hardware constraints before making an

i map call.

Remember td unmap a memory space when you no longer need it. The
resources may be needed by another process.

For C programs, this function returns a zero (0) if an error occurs or a non-
zero number if successful. This non-zero number is the address to begin
mapping memory.

For Visual BASIC programs, no error number is returned. Instead, the global
Err variable is set if an error occurs.

“IUNMAP”, “IMAPINFO”

350 Chapter 12

HP SICL Language Reference

IMAPX
|
IMAPX
Supportedsessions. device, interface, commander
Affected by functions. il ock,itimeout

C Syntax #include <sicl.h>

unsi gned | ong i mapx (id, mapspace, pagestart, pagecnt) ;
I NST id;
i Nt mapspace;
unsi gned i nt pagestart;
unsi gned i nt pagecnt;

Visual BASIC Function i mapx
Syntax Byval id As Integer, ByVal mapspace As I nteger,
ByVal pagestart As | nteger, ByVal pagecnt As | nteger)

Note Not supported over LAN.

Description Thei mapx function returns an unsigned long number, used in other
functions, that maps a memory space into your process space. The SICL
i peek?x andi poke?x functions can then be used to read and writeto V XI
address space.

Theid argument specifiesaV X| interface or device. The pagestart
argument indicates the page number within the given memory space where
the memory mapping starts. The pagecnt argument indicates how many
pages to use. For Visual BASIC, you must specify 1 for the pagecnt
argument.

The map_space argument will contain one of the following values:

| _MAP_A16 Map in VXI A16 address space (64 Kbyte pages).
| _MAP_A24 Map in VXI A24 address space (64 Kbyte pages).
| _MAP_A32 Map in VXI A32 address space (64 Kbyte pages).

Chapter 12 351

HP SICL Language Reference
IMAPX

| _MAP_VXI DEV Map in VXI device registers. (Device session only, 64
bytes.)

| _MAP_EXTEND Map in VXI Device Extended Memory address space in
A24 or A32 address space. See individual device
manuals for details regarding extended memory
address space. (Device session only.)

| _MAP_SHARED Map in VXI A24/A32 memory that is physically located
on this device (sometimes called local shared
memory). If the hardware supports it (that is, the local
shared VXI memory is dual-ported), this map should be
through the local system bus and not through the VXI
memory. This mapping mechanism provides an
alternate way of accessing local VXI memory without
having to go through the normal VXI memory system.
The value of pagestart is the offset (in 64 Kbyte pages)
into the shared memory. The value of pagecnt is the
amount of memory (in 64 Kbyte pages) to map.

Note The E1489 MXIbus Controller Interface can generate 32-bit data reads and
writes to V X1bus devices with D32 capability. To use 32-bit transfers with
the E1489, use| MAP_A16 D32, MAP_A24 D32,and| _MAP_A32_ D32
inplaceof | _MAP_A16,| _MAP_A24, and | _MAP_A32 when mapping to
D32 devices.

Depending on what iderefptr returns, memory may be accessed directly.
Since this function returns a C pointer, you can also use C pointer arithmetic
to manipulate the pointer and access memory directly. Note that accidentally

accessing non-existent memory will cause bus errors. See the “Using HP

SICL with VXI” chapter in theHP SICL User’s Guide for HP-U¥or an
example of trapping bus errors. Or see your operating system’s

programming information for help in trapping bus errors. You will probably

find this information under the commaasignal in your operating

system’s manuals. Note that Visual BASIC programs can perform pointer

arithmetic within a single page.

352 Chapter 12

Note

Return Value

See Also

HP SICL Language Reference
IMAPX

Due to hardware constraints on a given device or interface, not all address
spaces may be implemented. In addition, there may be a maximum number
of pagesthat can be simultaneously mapped. If arequest is made that cannot
be granted due to hardware constraints, the process will hang until the
desired resources become available. To avoid this, usethei set | ockwai t
command with the flag parameter set to 0, and thus generate an error instead
of waiting for the resources to become available. You may also use the

i mapi nf o function to determine hardware constraints before making an

i map call.

Remember to i unmapx amemory space when you no longer need it. The
resources may be needed by another process.

For C programs, this function returns a zero (0) if an error occurs or a non-
zero number if successful. This non-zero number is either ahandle or the
address to begin mapping memory. Use thei der ef pt r function to
determine wheter the returned handle is avalid address or a handle.

For Visual BASIC programs, no error number is returned. Instead, the global
Err variableisset if an error occurs.

“IUNMAPX”, “IMAPINFO”, “IDEREFPTR

Chapter 12 353

C Syntax

Visual BASIC
Syntax

Note

Description

HP SICL Language Reference
IMAPINFO

IMAPINFO

Supportedsessions. device, interface, commander

#i ncl ude <sicl. h>

int imapinfo (id, map_space, numwindows, Wwinsize);
I NST id;

i nt map_space;

i nt * numwindows;

int *winsize

Function i mapinfo
(Byval id As Integer, ByVal mapspace As I nteger,
numwindows As | nteger, winsize As | nteger)

Not supported over LAN.

To determine hardware constraints on memory mappings imposed by a
particular interface, use thei mapi nf o function.

Theid argument specifiesa V X| interface. The map_space argument
specifies the address space. Valid values for map_space are:

| _MAP_A16 VXI Al16 address space (64 Kbyte pages).
| _MAP_A24 VXI A24 address space (64 Kbyte pages).
| _MAP_A32 VXI A32 address space (64 Kbyte pages).

The numwindows argument is filled in with the total number of windows
available in the address space.

The winsize argument is filled in with the size of the windows in pages.

Hardware design constraints may prevent some devices or interfaces from
implementing all of the various address spaces. Also there may be alimit to
the number of pages that can simultaneously be mapped for usage. In
addition, some resources may already be in use and locked by another

354 Chapter 12

HP SICL Language Reference
IMAPINFO

process. If resource constraints prevent a mapping request, thei map
function will hang, waiting for the resources to become available.

Remember to unmap a memory space when you no longer need it. The
resources may be needed by another process.

Return Value For C programs, this function returns zero (0) if successful, or a non-zero
error number if an error occurs.

For Visual BASIC programs, no error number is returned. I nstead, the global
Err variableisset if an error occurs.

See Also “IMAP”, “IUNMAP”

Chapter 12 355

C Syntax

Note

Note

Description

HP SICL Language Reference
IONERROR

| ONERROR

#i ncl ude <sicl.h>

i nt ionerror(proc);
void (*proc)(id, error);
I NST id;

int error;

For WIN16 programs on Microsoft Windows platforms, handler functions
usedwithi onerror,ionintr,andi onsr g must be exported and declared
as_far _pascal.

For Visual BASIC, error handlers are installed using the Visual BASIC
On Error statement. See the section titl&iror Handlers in Visual
BASIC” in the “Programming with HP SICLchapter of this manual for
more information on error handling with Visual BASIC.

Thei oner ror function is used to install a SICL error handler. Many of the
SICL functions can generate an error. When a SICL function errors, it
typically returns a special value such as a NULL pointer, zero, or a non-zero
error code. A process can specify a procedure to execute when a SICL error
occurs. This allows your process to ignore the return value and simply
permit the error handler to detect errors and do the appropriate action.

The error handler procedure executes immediately before the SICL function
that generated the error completes its operation. There is only one error
handler for a given process which handles all errors that occur with any
session established by that process.

On operating systems that support multiblesads, the error handler is still
per-process. However, the error handler will be called in the context of the
thread that caused the error.

356 Chapter 12

HP SICL Language Reference
IONERROR

Error handlers are called with the following arguments:

voi d proc (id, error);
I NST id;
int eror;

The id argument indicates the session that generated the error.

Theerror argument indicates the error that occurred. See Appendix D, HP
SICL Error Codes, for a complete description of the error codes.

Note Thel NST id that is passed to the error handler isthe same | NST id that was
passed to the function that generated the error. Therefore, if an error
occurred because of aninvalid | NST id, the | NST id passed to the error
handler isalso invalid. Also, if i open generates an error before a session
has been established, the error handler will be passed a zero (0) | NST id.

Two special reserved values of proc can be passed to thei oner r or

procedure:
| ERROR EXIT This value installs a special error handler which
logs a diagnostic message and terminates the
process.

| _ERROR _NO EXIT This value also installs a special error handler
which logs a diagnostic message but does not
terminate the process.

If azero (0) ispassed as the value of proc, it will remove the error handler.

Note that the error procedure could perform a setjmp/longjmp or an escape
using the try/recover clauses.

Chapter 12 357

HP SICL Language Reference
IONERROR

Example for using setjmp/longjmp:

#i ncl ude <sicl. h>

I NST id;
j mp_buf env;
void proc (INST,int) {

/* Error occurred, performa longjnm */
| ongj nmp (env, 1);

void xyzzy () {
if (setjmp (env) == 0) {
/* Normal code */
i onerror (proc);

/* Do actions that could cause errors */

iwite (.......);
iread (........)
et c.

i onerror (0);
} else {
/* Error Code */
ionerror (0);
... do error processing ..
if (igeterrno () ==...)
etc ...;

358 Chapter 12

HP SICL Language Reference
IONERROR

Or, using try/recover/escape:

#i ncl ude <sicl. h>
I NST id;

voi d proc (I NST id, int error) {
/* Error occurred, performan escape */
escape (id);

void xyzzy () {

try {
/* Normal code */

i onerror (proc);

/* Do actions that could cause errors */

iwite (.......);
iread (........);
etc

i onerror (0);

} recover {
/* Error Code */
i onerror (0);
... do error processing ..
if (igeterrno () == ...)

etc ...;
}
}

Return Value Thisfunction returns zero (0) if successful, or a non-zero error number if an
error occurs.

See Also “IGETONERROR, “IGETERRNO, “IGETERRSTR, “ICAUSEERR

Chapter 12 359

HP SICL Language Reference
IONINTR

IONINTR

Supportedsessions. device, interface, commander

C Syntax #include <sicl.h>

int ionintr (id, proc);

I NST id;

void (*proc) (id, reason, secval);
I NST id;

| ong reason;

| ong secval;

Note Not supported on Visual BASIC.

Note For WIN16 programs on Microsoft Windows platforms, handler functions
usedwithi onerror,ioni ntr,andi onsr g must be exported and declared
as_far _pascal.

Description Thelibrary can notify a process when an interrupt occurs by using the
i oni nt r function. Thisfunction installs the procedure proc as an interrupt
handler.

After you install the interrupt handler withi oni ntr, usethei setintr
function to enable notification of the interrupt event or events.

Thelibrary callsthe proc procedure whenever an enabled interrupt occurs. It
calls proc with the following parameters.

voi d proc (id, reason, secval);
I NST id;

| ong reason;

| ong secval;

360 Chapter 12

HP SICL Language Reference

IONINTR
Where:

id The | NST that refers to the session that installed the
interrupt handler.

reason Contains a value which corresponds to the reason
for the interrupt. These values correspond to the
i setintr function parameter inthum. See a listing
of the values below.

secval Contains a secondary value which depends on the

type of interrupt which occurred. For | _I NTR_TRI G
it contains a bit mask corresponding to the trigger
lines which fired. For interface-dependent and
device-dependent interrupts, it contains an
appropriate value for that interrupt.

The reason parameter specifies the cause for the interrupt. Valid reason
valuesfor al interface sessions are:

I I NTR_I NTFACT Interface became active.

| I NTR_I NTFDEACT Interface became deactivated.

| _INTR.TRI G A Trigger occurred. The secval parameter
contains a bit-mask specifying which triggers
caused the interrupt. See the i xtri g function’s
which parameter for a list of valid values.

| _INTR * Individual interfaces may use other interface-
interrupt conditions.

Valid reason values for all device sessions are;

I _INTR * Individual interfaces may include other interface-
interrupt conditions.

To remove the interrupt handler, pass a zero (0) in the proc parameter. By
default, no interrupt handler isinstalled.

Chapter 12 361

HP SICL Language Reference
IONINTR

Return Value Thisfunction returns zero (0) if successful, or a non-zero error number if an
error OCCcurs.

See Also “ISETINTR’, “IGETONINTR’, “IWAITHDLR”, “lINTROFF,
“lINTRON", and the section titled “Asynchronous Events and HP-UX
Signals” in the “Programming with HP SICL” chapter of ttie SICL
User’s Guide for HP-UXor protecting I/O calls against interrupts.

362 Chapter 12

C Syntax

Note

Note

Description

Return Value

See Also

HP SICL Language Reference
IONSRQ

|ONSRQ

SUPPOMEd SESSIONS:, .+ .. oo v e device, interface

#i ncl ude <sicl. h>

int ionsrq (id, proc);
I NST id;
void (*proc) (id);

I NST id;

For WIN16 programs on Microsoft Windows platforms, handler functions
usedwithi onerror,ioni ntr,andi onsr g must be exported and declared
as _far _pascal.

Not supported on Visual BASIC.

Usethei onsr g function to notify an application when an SRQ occurs. This
function installs the procedure proc as an SRQ handler.

An SRQ handler is called any time its corresponding interface generates an
SRQ. If an interface device driver receives an SRQ and cannot determinethe
generating device (for example, on HP-IB), it passesthe SRQ to all SRQ
handlers assigned to theinterface. Therefore, an SRQ handler cannot assume
that its corresponding device actually generated an SRQ. An SRQ handler
should use thei r eadst b function to determine whether its corresponding
device generated the SRQ. It calls proc with the following parameters:

void proc (id);
I NST id;

To remove an SRQ handler, pass a zero (0) as the proc parameter.
This function returns zero (0) if successful, or a non-zero error number if an
€rror occurs.

“IGETONSRQ, “IWAITHDLR”, “IINTROFF’, “IINTRON”",
“IREADSTB’

Chapter 12 363

C Syntax

Visual BASIC
Syntax

Description

Note

HP SICL Language Reference
IOPEN

|OPEN

Supportedsessions. device, interface, commander

#i ncl ude <sicl. h>

I NST i open (addr);
char *addr

Function i open
(Byval addr As String)

Before using any of the SICL functions, the application program must
establish a session with the desired interface or device. Create a session by
using thei open function.

Thisfunction creates a session and returns a session identifier. Note that the
session identifier should only be passed as a parameter to other SICL
functions. It is not designed to be updated manually by you.

The addr parameter contains the device, interface, or commander address.

An application may have multiple sessions open at the same time by creating
multiple session identifierswith thei open function.

If an error handler has been installed (seei onerror), and ani open
generates an error before a session has been established, the handler will be
called with the session identifier set to zero (0). Caution must be used if
using the session identifier in an error handler.

Also, itispossiblefor ani open to succeed on a device that does not exist.
In this case, other functions (such asi r ead) will fail with a nonexistent
device error.

364 Chapter 12

Creating A
Device Session

Creating An
I nter face Session

Creating A
Commander
Session

HP SICL Language Reference
IOPEN

To create a device session, specify a particular interface name followed by
the device’s address in thddr parameter. For more information on
addressing devices, see the sectionAuidtessing Device Sessidna the
“Programming with HP SIClchapter of this manual.

C example:

I NST dmm
dmm = iopen(“hpib,15”);

Visual BASIC example:

DIM dmm As Integer
dmm = iopen(“hpib,15")

To create an interface session, specify a particular interface in the addr
parameter. For more information on addressing interfaces, see the section on
“Addressing Interface Sessidriiis the “Programming with HP SICL
chapter of this manual.

C example:

I NST hpi b;
hpib = iopen(“hpib”);

Visual BASIC example:

DIM hpib As Integer
hpib = iopen(“hpib”)

To create a commander session, use the keyword cmdr in the addr
parameter. For more information on commander sessions, see the section on
“Addressing Commander Sessibimsthe “Programming with HP SICL
chapter of this manual.

C example:

I NST cndr;
cmdr = iopen(“hpib,cmdr”);

Visual BASIC example:

DIM cmdr As Integer
cmdr = iopen(“hpib,cmdr”)

Chapter 12 365

HP SICL Language Reference
IOPEN

Return Value Thei open function returnsa zero (0) id valueif an error occurs; otherwise a
valid session id is returned.

See Also “ICLOSE

366 Chapter 12

HP SICL Language Reference
IPEEK

|PEEK

Note Not recommended for new program devel opment. Use IPEEK X8,
IPEEK X 16, IPEEK X 32 instead.

C Syntax #i ncl ude

unsi gned
unsi gned

unsi gned
unsi gned

unsi gned
unsi gned

Visual BASIC Functi on

<sicl.h>

char ibpeek (addr);
char *addr;

short iwpeek (addr);
short *addr;

| ong il peek (addr);
| ong *addr;

i bpeek

Syntax (Byval addr As Long) As Byte

Functi on

i wpeek

(Byval addr As Long) As Integer

Functi on

i | peek

(Byval addr As Long) As Long

Note Not supported over LAN.

Description Thei ?peek functionswill read the value stored at addr from memory and
return the result. Thei ?peek functions are generally used in conjunction
with the SICL i map function to read data from VX1 address space.

Note Thei wpeek andi | peek functions perform byte swapping (if necessary) so
that VX1 memory accesses follow correct VX1 byte ordering.
Also, if abus error occurs, unexpected results may occur.

See Also “IPOKE’, “IMAP”

Chapter 12

367

HP SICL Language Reference
IPEEKX8, IPEEKX16, IPEEKX32

| PEEK X8, IPEEKX16, |PEEK X32

C Syntax #include <sicl.h>

i nt i peekx8 (id, handle, offset, *value) ;
I NST id;
unsi gned | ong handleg
unsi gned | ong offset;
unsi gned char *valueg

int i peekx16 (id, handle, offset, *value) ;
I NST id;
unsi gned | ong handleg
unsi gned | ong offset;
unsi gned short *val ue

i nt i peekx32 (id, handle, offset, *value) ;
I NST id;
unsi gned | ong handleg
unsi gned | ong offset;
unsi gned | ong *value))

Visual BASIC Function i peekx8
Syntax (Byval id As Integer, ByVal handle As Long,
ByVval offset as Long, ByVal value As |nteger)

(syntax is the same for ipeekx16 and ipeekx32)

Note Not supported over LAN.

Description Thei peekx8, ipeekx16, and i peekx32 functionsread the values
stored at handle and offset from memory and returns the value from that
address. These functions are generally used in conjunction with the SICL
i mapx function to read data from V X1 address space.

368 Chapter 12

HP SICL Language Reference
IPEEKX8, IPEEKX16, IPEEKX32

Note Thei peekx8 andi peekx16 functions perform byte swapping (if
necessary) so that VXI memory accesses follow correct VXI byte ordering.
Also, if abus error occurs, unexpected results may occur.

See Also “IPOKEXS8, IPOKEX16, IPOKEX32 “IMAPX"

Chapter 12 369

HP SICL Language Reference
IPOKE

|POKE

Note Not recommended for new program devel opment. Use IPOKEXS,
IPOKEX16, IPOKEX32 instead.

C Syntax #include <sicl.h>

voi d i bpoke (addr, val);
unsi gned char *addr;
unsi gned char val;

voi d i wpoke (addr, val);
unsi gned short *addr;
unsi gned short val;

voi d il poke (addr, val);
unsi gned | ong *addr;
unsi gned | ong val;

Visual BASIC Sub i bpoke
Syntax (ByVval addr As Long, ByVal value As | nteger)

Sub i wpoke
(ByVval addr As Long, ByVal value As | nteger)

Sub il poke
(ByVval addr As Long, ByVal value As Long)

Note Not supported over LAN.

370 Chapter 12

HP SICL Language Reference
IPOKE

Description Thei ?poke functionswill write to memory. Thei ?poke functions are
generaly used in conjunction with the SICL i map function to writeto V XI
address space.

The addr isavalid memory address. The val isavalid data value.

Note Thei wpoke andi | poke functions perform byte swapping (if necessary) so
that VX1 memory accesses follow correct VX1 byte ordering.

Also, if abus error occurs, unexpected results may occur.

See Also “IPEEK’, “IMAP”

Chapter 12 371

HP SICL Language Reference
IPOKEXS8, IPOKEX16, IPOKEX32

|POKEXS, IPOKEX16, IPOKEX32

C Syntax #include <sicl.h>

i nt i pokex8 (id, handle, offset, value) ;
I NST id;
unsi gned | ong handleg
unsi gned | ong offset;
unsi gned char valueg

i nt i pokex16 (id, handle, offset, value) ;
I NST id;
unsi gned | ong handleg
unsi gned | ong offset;
unsi gned short value

i nt i pokex8 (id, handle, offset, value) ;
I NST id;
unsi gned | ong handleg
unsi gned | ong offset;
unsi gned | ong value,

Visual BASIC Sub i pokex8
Syntax (Byval id As Integer, ByVval handle As Long,
ByVval offset as Long, ByVal value As | nteger)

(syntax is the same for ipokex16 and ipokex32.)

Note Not supported over LAN.

Description Thei pokex8, ipokex16, and i pokex32 functionswriteto memory.
The functions are generally used in conjunction with the SICL i mapx
function to write to VXI address space.

The handle is avalid memory address, offset isavalid memory offset. The
val isavalid data value.

372 Chapter 12

HP SICL Language Reference
IPOKEXS8, IPOKEX16, IPOKEX32

Note Thei pokex16 andi pokex32 functions perform byte swapping (if
necessary) so that VXI memory accesses follow correct VXI byte ordering.

Also, if abus error occurs, unexpected results may occur.

See Also “IPEEKX8, IPEEKX16, IPEEKX32 “IMAPX”

Chapter 12 373

C Syntax

Visual BASIC
Syntax

HP SICL Language Reference

IPOPFIFO

| POPFIFO
#i ncl ude <sicl.h>
int ibpopfifo (id, fifo, dest, cnt);
I NST id;

unsi gned char
unsi gned char
unsi gned | ong

int iwpopfifo
I NST id;

unsi gned char
unsi gned char
unsi gned | ong

i nt swap
int ilpopfifo
I NST id;

unsi gned char
unsi gned char
unsi gned | ong
i nt swap

*fifo
* dest;
cnt;

(id, fifo, dest, cnt, swap);
*fifo;
* dest;
cnt;
(id, fifo, dest, cnt, swap);
*fifo;

* dest;
cnt;

Function i bpopfifo
(Byval id As Integer, ByVval fifo As Long,
ByVal dest As Long, ByVal cnt As Long)

Functi on iwpopfifo

(Byval id As Integer, ByVal fifo As Long,
Byval dest As Long, ByVal cnt As Long,
ByVal swap As |nteger)

Function il popfifo

(Byval id As Integer, ByVval fifo As Long,
ByVal dest As Long, ByVal cnt As Long,
ByVal swap As |nteger)

Note Not supported over LAN.

374

Chapter 12

Description

Note

Return Value

See Also

HP SICL Language Reference
IPOPFIFO

Thei ?popfi f o functionsread datafrom a FIFO and puts it in memory.
Useb for byte, wfor word, and | for long word (8-bit, 16-bit, and 32-hit,
respectively). These functions increment the write address, to write
successive memory locations, while reading from a single memory (FIFO)
location. Thus, these functions can transfer entire blocks of data.

Theid, although specified, is normally ignored except to determine an
interface-specific transfer mechanism such as DMA. To prevent using an
interface-specific mechanism, pass azero (0) in this parameter. The dest
argument is the starting memory address for the destination data. The fifo
argument is the memory address for the source FIFO register data. The cnt
argument isthe number of transfers (bytes, words, or longwords) to perform.
The swap argument is the byte swapping flag. If swap is zero, no swapping
occurs. If swap is non-zero, the function swaps bytes (if necessary) to
change byte ordering from the internal format of the controller to/from the
VX1 (big-endian) byte ordering.

If abus error occurs, unexpected results may occur.

For C programs, this function returns zero (0) if successful, or anon-zero
error number if an error occurs.

For Visual BASIC programs, no error number isreturned. Instead, the global
Err variableisset if an error occurs.

“IPEEK’, “IPOKE’, “IPUSHFIFO, “IMAP”

Chapter 12 375

C Syntax

Note

Visual BASIC
Syntax

Description

HP SICL Language Reference
IPRINTF

IPRINTF

Supportedsessions. device, interface, commander
Affected by functions. il ock,itimeout

#i ncl ude <sicl. h>

int iprintf (id, format [,argl][,arg?][,..]);
int isprintf (buf format [,argl][,arg2][,..]);
int ivprintf (id, format, va listap);

int isvprintf (buf, format, va listap);

I NST id;

char *buf;

const char *format;

param argl, arg2, ..;

va_list ap;

For WIN16 programs on Microsoft Windows platforms, if compiling with
tiny, small, or medium models, make sure all pointer/address parameters are
passed as_f ar.

Function ivprintf
(Byval id As Integer, ByVval fmt As String,
ByVal ap As Any)

These functions convert data under the control of the format string. The
format string specifies how the argument is converted beforeit is output. If
thefirst argument is an | NST, the data is sent to the device to which the

I NST refers. If the first argument is a character buffer, the datais placed in
the buffer.

The format string contains regular characters and special conversion
sequences. Thei pri nt f function sends the regular characters (not a %
character) in the format string directly to the device. Conversion
specifications are introduced by the %character. Conversion specifications
control the type, the conversion, and the formatting of the arg parameters.

376 Chapter 12

HP SICL Language Reference
IPRINTF

Note The formatted I/O functions, i pri ntf andi pronptf, can re-address the
bus multiple times during execution. This behavior may cause problems
with instruments which do not comply with |EEE 488.2.

Re-addressing occurs under the following circumstances:

After theinternal buffer fills. (Seei set buf .)

When a\ n isfound in the format string in C/C++, or when a Chr $(10)
isfound in the format string in Visual BASIC.

When a%C is found in the format string.

This behavior affects only non-1EEE 488.2 devices on the GPIB interface.

Use the special characters and conversion commands explained later in this
section to create the format string’s contents.

Restrictions The following restrictions apply when usingpri nt f with Visual BASIC.

Usingivprintfin
Visual BASIC *

Format Conversion Commands:

Only one format conversion command can be specified in aformat string
fori vprintf (aformat conversion command begins with the %
character). For example, the following isinvalid:

nargs% = i vpri ntf (id, “%lf%d” + Chr$(10), ...)

Instead, you must call ivprintf once for each format conversion
command, as shown in the following example:

nargs% = ivprintf(id, “%lIf" + Chr$(10), dbl_value)
nargs% = ivprintf(id, “%d” + Chr$(10), int_value)

Chapter 12 377

HP SICL Language Reference
IPRINTF

® Writing Numeric Arrays.

For Visual BASIC, when writing from a numeric array withi vprintf,
you must specify the first element of anumeric array as the ap parameter
toi vpri nt f. This passes the address of the first array element to

i vprintf.For example:

Dmflt_array(50) As Doubl e
nargs% = i vprintf (id, “%,50f", dbl_array(0))

This code declares an array of 50 floating point numbers and then calls
ivprintf to write from the array.

For more information on passing numeric arrays as arguments with
Visual BASIC, see the “Arrays” section of the “Calling Procedures in
DLLs” chapter of thé/isual BASIC Programmer’s Guide

® \Writing Strings:

The %8 format string is not supported for i vpri nt f on Visua BASIC.

Special Special charactersin C/C++ consist of a backslash (\) followed by another
Charactersfor character. The special characters are:

C/C++
\'n Send the ASCII LF character with the END indicator set.
\r Send the ASCII CR character.
\\ Send the backslash (\) character.
\t Send the ASCII TAB character.
\ #i# Send the ASCII character specified by the octal value ###.
\'v Send the ASCII VERTICAL TAB character.
\ f Send the ASCII FORM FEED character.
\ " Send the ASCII double-quote (") character.

378 Chapter 12

HP SICL Language Reference
IPRINTF

Special Special charactersin Visua BASIC are specified with the CHR$() function.
Charactersfor These special characters are added to the format string by using the + string
Visual BASIC concatenation operator in Visual BASIC. For example:

nar gs=i vprintf (id, “*RST"+CHR$(10), 0&)

The special characters are:

Chr$(10) Send the ASCII LF character with the END indicator set.
Chr$(13) Send the ASCII CR character.

\ Sends the backslash (\) character.?

Chr $(9) Send the ASCII TAB character.

Chr$(11) Send the ASCII VERTICAL TAB character.
Chr $(12) Send the ASCIlI FORM FEED character.
Chr $(34) Send the ASCII double-quote (") character.

a. InVisual BASIC, the backslash character can be specified in aformat
string directly, instead of being “escaped” by prepending it with another
backslash.

Format Aniprintf format conversion command begins with a %character. After
Conversion the %character, the optional modifiers appear in this order: format flags,
Commands field width, aperiod and precision, acomma and array size (comma

operator), and an argument modifier. The command ends with a conversion
character.

conv

@ L L { L | _char
format field i array argument
gttt pOaa il nig b

Chapter 12 379

HP SICL Language Reference

IPRINTF

The modifiersin a conversion command are;

format flags

field width

. precision

Zero or more flags (in any order) that modify the
meaning of the conversion character. See the
following subsection, “List of format flags’ for the
specific flags you may use.

An optional minimum field width is an integer (such
as “%8d"). If the formatted data has fewer
characters than field width, it will be padded. The
padded character is dependent on various flags. In
C/C++, an asterisk (*) may appear for the integer, in
which case it will take another arg to satisfy this
conversion command. The next arg will be an
integer that will be the field width (for example,
iprintf (id, “%*d”, 8, num)).

The precision operator is an integer preceded by a
period (such as “%.6d”). The optional precision for
conversion characters e, E, and f specifies the
number of digits to the right of the decimal point. For
thed, i, o, u, X, and X conversion characters, it
specifies the minimum number of digits to appear.
For the s and S conversion characters, the precision
specifies the maximum number of characters to be
read from your arg string. In C/C++, an asterisk (*)
may appear in the place of the integer, in which case
it will take another arg to satisfy this conversion
command. The next arg will be an integer that will
be the precision (for example,

iprintf (id, “%.*d”, 6, num)).

380

Chapter 12

, array size

argument modifier

conv char

HP SICL Language Reference
IPRINTF

The comma operator is an integer preceded by a
comma (such as “%,10d”). The optional comma
operator is only valid for conversion characters d
and f . This is a comma followed by a number. This
indicates that a list of comma-separated numbers is
to be generated. The argument is an array of the
specified type instead of the type (that is, an array of
integers instead of an integer). In C/C++, an asterisk
(*) may appear for the number, in which case it will
take another arg to satisfy this conversion
command. The next arg will be an integer that is the
number of elements in the array.

The meaning of the modifiers h, | , w, z, and Z is
dependent on the conversion character (such as
“%Wd”).

A conversion character is a character that specifies
the type of arg and the conversion to be applied.
This is the only required element of a conversion
command. See the following subsection, “List of
conv chars’ for the specific conversion characters
you may use.

Examples of Thefollowing are some examples of conversion commands used in the
Format format string and the output that would result from them. (The output dataiis

Conversion
Commands

arbitrary.)
Conversion
Command
%@Hd
%0s
% 10s
% 6f
% 3d

Output Description
#H3A41 format flag
str field width
str format flag (left justify) & field width
21.560000 precision
18, 31, 34 comma operator

Chapter 12

381

HP SICL Language Reference

IPRINTF
Conversion Output Description
Command
%6l d 132 field width & argument modifier (long)
% 61 d 000132 precision & argument modifier (long)
%L d 61 format flag (IEEE 488.2 NR1)
%R d 61. 000000 format flag (IEEE 488.2 NR2)
%aBd 6. 100000E+01 format flag (IEEE 488.2 NR3)

List of Theformat flags you can usein conversion commands are:
format flags
@ Convert to an NR1 number (an IEEE 488.2 format integer with

no decimal point). Valid only for %d and % . Note that %
values will be truncated to the integer value.

@ Convert to an NR2 number (an IEEE 488.2 format floating
point number with at least one digit to the right of the decimal
point). Valid only for % and % .

Convert to an NR3 number (an IEEE 488.2 format number
expressed in exponential notation). Valid only for %d and 96 .

@ Convert to an IEEE 488.2 format hexadecimal number in the
form #Hxxxx. Valid only for % and % . Note that % values
will be truncated to the integer value.

@ Convert to an IEEE 488.2 format octal number in the form
#Qxxxx. Valid only for % and % . Note that % values will be
truncated to the integer value.

@B Convert to an IEEE 488.2 format binary number in the form
#Bxxxx. Valid only for % and % . Note that % values will be
truncated to the integer value.

- Left justify the result.

+ Prefix the result with a sign (+ or -) if the output is a signed
type.

space Prefix the result with a blank () if the output is signed and
positive. Ignored if both blank and + are specified.

382 Chapter 12

HP SICL Language Reference
IPRINTF

Use alternate form. For the o conversion, it prints a leading
zero. For x or X, a non-zero will have Ox or 0X as a prefix. For
e, E f, g, and G the result will always have one digit on the
right of the decimal point.

0 Will cause the left pad character to be a zero (0) for all
numeric conversion types.

List of The conv chars (conversion characters) you can use in conversion
conv chars commands are:

Corresponding arg is an integer. If no flags are given, send
the number in IEEE 488.2 NR1 (integer) format. If flags
indicate an NR2 (floating point) or NR3 (floating point) format,
convert the argument to a floating point number. This
argument supports all six flag modifier formatting options:
NR1 - @, NR2 - @, NR3 - @, @, @ or @. If the |
argument modifier is present, the arg must be a long integer.
If the h argument modifier is present, the arg must be a short
integer for C/C++, or an Integer for Visual BASIC.

Corresponding arg is a double for C/C++, or a Double for
Visual BASIC. If no flags are given, send the number in IEEE
488.2 NR2 (floating point) format. If flags indicate that NR1
format is to be used, the arg will be truncated to an integer.
This argument supports all six flag modifier formatting
options: NR1 - @, NR2 - @, NR3 - @, @, @ or @. If the |
argument modifier is present, the arg must be a double. If the
L argument modifier is present, the arg must be a long double
for C/C++ (not supported for Visual BASIC).

In C/C++, corresponding arg is a pointer to an arbitrary block
of data. (Not supported in Visual BASIC.) The data is sent as
IEEE 488.2 Definite Length Arbitrary Block Response Data.
The field width must be present and will specify the number of
elements in the data block. An asterisk (*) can be used in
place of the integer, which indicates that two args are used.
The first is a long used to specify the number of elements.
The second is the pointer to the data block. No byte swapping
is performed.

Chapter 12

383

HP SICL Language Reference

IPRINTF

If the wargument modifier is present, the block of data is an
array of unsigned short integers. The data block is sent to the
device as an array of words (16 bits). The field width value
now corresponds to the number of short integers, not bytes.
Each word will be appropriately byte swapped and padded so
that they are converted from the internal computer format to
the standard IEEE 488.2 format.

If the | argument modifier is present, the block of data is an
array of unsigned long integers. The data block is sent to the
device as an array of longwords (32 bits). The field width
value now corresponds to the number of long integers, not
bytes. Each word will be appropriately byte swapped and
padded so that they are converted from the internal computer
format to the standard IEEE 488.2 format.

If the z argument modifier is present, the block of data is an
array of floats. The data is sent to the device as an array of
32-bit IEEE 754 format floating point numbers. The field width
is the number of floats.

If the Z argument modifier is present, the block of data is an
array of doubles. The data is sent to the device as an array of
64-bit IEEE 754 format floating point numbers. The field width
is the number of doubles.

Same as b in C/C++, except that the data block is sent as
IEEE 488.2 Indefinite Length Arbitrary Block Response Data.
(Not supported in Visual BASIC.) Note that this format
involves sending a newline with an END indicator on the last
byte of the data block.

In C/C++, corresponding arg is a character. (Not supported in
Visual BASIC.)

In C/C++, corresponding arg is a character. Send with END
indicator. (Not supported in Visual BASIC.)

In C/C++, control sending the END indicator with each LF
character in the format string. (Not supported in Visual
BASIC.) A + flag indicates to send an END with each
succeeding LF character (default), a - flag indicates to not
send END. If no + or - flag appears, an error is generated.

384

Chapter 12

HP SICL Language Reference

IPRINTF
s Corresponding arg is a pointer to a null-terminated string that
is sent as a string.
S In C/C++, corresponding arg is a pointer to a null-terminated

string that is sent as an IEEE 488.2 string response data
block. (Not supported in Visual BASIC.) An IEEE 488.2 string
response data block consists of a leading double quote (")
followed by non-double quote characters and terminated with
a double quote.

% Send the ASCII percent (% character.

i Corresponding arg is an integer. Same as d except that the
six flag modifier formatting options: NR1 - @1 NR2 - @2 NR3
- @3 @H@Qor @Bare ignored.

o,u,x,X Corresponding arg will be treated as an unsigned integer. The
argument is converted to an unsigned octal (0), unsigned
decimal (u), or unsigned hexadecimal (x,X). The letters
abcdef are used with x, and the letters ABCDEFare used
with X. The precision specifies the minimum number of
characters to appear. If the value can be represented with
fewer than precision digits, leading zeros are added. If the
precision is set to zero and the value is zero, no characters
are printed.

eE Corresponding arg is a double in C/C++, or a Double in Visual
BASIC. The argument is converted to exponential format (that
is, [-]d.dddde+/-dd). The precision specifies the number
of digits to the right of the decimal point. If no precision is
specified, then six digits will be converted. The letter e will be
used with e and the letter E will be used with E.

0.G Corresponding arg is a double in C/C++, or a Double in Visual
BASIC. The argument is converted to exponential (e with g, or
E with G) or floating point format depending on the value of
the arg and the precision. The exponential style will be used if
the resulting exponent is less than -4 or greater than the
precision; otherwise it will be printed as a float.

Chapter 12 385

Return Value

Buffersand
Errors

See Also

HP SICL Language Reference

IPRINTF
n Corresponding argis a pointer to an integer in C/C++, or
an Integer for Visual BASIC. The number of bytes written
to the device for the entire i pri ntf call is written to the
arg. No argument is converted.
F On HP-UX or Windows NT, corresponding arg is a pointer to

a FILE descriptor. (Not supported on Windows 95.) The data
will be read from the file that the FILE descriptor points to and
written to the device. The FILE descriptor must be opened for
reading. No flags or modifiers are allowed with this conversion
character.

This function returns the total number of arguments converted by the format
string.

Sincei pri nt f doesnot return an error code and datais buffered beforeitis
sent, it cannot be assumed that the device received any data after the
i printf hascompleted.

The best way to detect errorsisto install your own error handler. This
handler can decide the best action to take depending on the error that has
occurred.

If an error has occurred during an'i pri nt f with no error handler installed,
the only way you can be informed that an error has occurred isto use
i get er r no right after thei pri ntf call.

Remember that i pri nt f can be called many times without any data being
flushed to the session. There are only three conditions where the write
formatted 1/0 buffer is flushed. Those conditions are:

If anewlineis encountered in the format string.
® If the buffer isfilled.
* |fiflushiscalledwiththel BUF WRI TE value.

If an error occurs while writing data, such as atimeout, the buffer will be
flushed (that is, the datawill be lost) and, if an error handler isinstalled, it
will be called, or the error number will be set to the appropriate value.

“ISCANF’, “IPROMPTF, “IFLUSH", “ISETBUF’, “ISETUBUF,
“IFREAD”, “IFWRITE”

386 Chapter 12

C Syntax

Note

Note

Description

HP SICL Language Reference

IPROMPTF
|PROMPTF
Supportedsessions. device, interface, commander
Affected by functions. il ock,itimeout

#i ncl ude <sicl. h>

int ipronptf (id, writefmt, readfmt[, argl][, arg2][, ..]);
int ivpronptf (id, writefmt, readfmt, va listap);

I NST id;

const char *writefnt;

const char *readfnt;

param argl, arg2, ...;

va_list ap;

Not supported on Visual BASIC.

For WIN16 programs on Microsoft Windows platforms, if compiling with
tiny, small, or medium models, make sure all pointer/address parameters are
passed as_f ar.

Thei pronpt f function is used to perform aformatted write immediately
followed by aformatted read. This function is a combination of the

i printf andiscanf functions. Firg, it flushes the read buffer. It then
formats a string using the writefmt string and the first n arguments necessary
to implement the prompt string. The write buffer isthen flushed to the
device. It then uses the readfmt string to read data from the device and to
format it appropriately.

The writefmt string isidentical to the format string used for thei pri nt f
function.

The readfmt string is identical to the format string used for thei scanf
function. It uses the arguments immediately following those needed to
satisfy the writefmt string.

Chapter 12 387

HP SICL Language Reference
IPROMPTF

This function returns the total number of arguments used by both the read
and write format strings.

See Also “IPRINTF, “ISCANF, “IFLUSH", “ISETBUF’, “ISETUBUF,
“IFREAD", “IFWRITE"

388 Chapter 12

HP SICL Language Reference
IPUSHFIFO

|PUSHFIFO

C Syntax #include <sicl.h>

int ibpushfifo (id, src, fifo,
I NST id;

unsi gned char *src;

unsi gned char *fifo;

unsi gned | ong cnt;

int iwpushfifo (id, src, fifo,
I NST id;

unsi gned short *src;

unsi gned short *fifo;

unsi gned | ong cnt;

i nt swap;

int ilpushfifo (id, src, fifo,
I NST id;

unsi gned | ong *sSIc;

unsi gned | ong *fifo;

unsi gned | ong cnt;

i nt swap;

Visual BASIC
Syntax

Function i bpushfifo
(ByVval id As Integer,
Byval fifo As Long,

ByVal
By Val

Functi on iwpushfifo

(Byval id As Integer, ByVal
Byval fifo As Long, ByVal
ByVal swap As I|nteger)

Function il pushfifo

(Byval id As Integer, ByVal
Byval fifo As Long, ByVal
ByVal swap As |nteger)

cnt) ;

cnt, swap) ;

cnt, swap) ;

src As Long,
cnt As Long)

src As Long,
cnt As Long,

src As Long,
cnt As Long,

Note Not supported over LAN.

Chapter 12

389

Description

Note

Return Value

See Also

HP SICL Language Reference
IPUSHFIFO

Thei ?pushfi f o functions copy data from memory on one deviceto a
FIFO on another device. Use b for byte, wfor word, and | for long word
(8-hit, 16-hit, and 32-bit, respectively). These functions increment the read
address, to read successive memory locations, while writing to asingle
memory (FIFO) location. Thus, they can transfer entire blocks of data.

Theid, although specified, is normally ignored except to determine an
interface-specific transfer mechanism such as DMA. To prevent using an
interface-specific mechanism, pass azero (0) in this parameter. The src
argument is the starting memory address for the source data. Thefifo
argument is the memory address for the destination FIFO register data. The
cnt argument is the number of transfers (bytes, words, or longwords) to
perform. The swap argument is the byte swapping flag. If swap is zero, no
swapping occurs. If swap is non-zero the function swaps bytes (if necessary)
to change byte ordering from the internal format of the controller to/from the
VX1 (big-endian) byte ordering.

If abus error occurs, unexpected results may occur.

For C programs, this function returns zero (0) if successful, or anon-zero
error number if an error occurs.

For Visual BASIC programs, no error number isreturned. Instead, the global
Err variableisset if an error occurs.

“IPOPFIFC, “IPOKE’, “IPEEK’, “IMAP”

390 Chapter 12

C Syntax

Visual BASIC
Syntax

Description

HP SICL Language Reference

IREAD
Supportedsessions. device, interface, commander
Affected by functions. il ock,itimeout
#i ncl ude <sicl. h>
int iread (id, buf, bufsize, reason, actualcnt);
I NST id;
char *buf;
unsi gned | ong bufsize;
i nt *reason;

unsi gned | ong *actualcnt;

Function iread

(Byval id As Integer, buf As String,
ByVal bufsize As Long, reason As Integer,
actual As Long)

This function reads raw data from the device or interface specified by id.
The buf argument is a pointer to the location where the block of data can be
stored. The bufsize argument is an unsigned long integer containing the size,
in bytes, of the buffer specified in buf.

The reason argument is a pointer to an integer that, on exiting the i r ead
call, contains the reason why the read terminated. If the reason parameter
contains a zero (0), then no termination reason is returned. Reasons include:

| _TERM MAXCNT bufsize characters read.
| _TERM END END indicator received on last character.
| TERM CHR Termination character enabled and received.

The actualcnt argument is a pointer to an unsigned long integer. Upon exit,
this contains the actual number of bytes read from the device or interface. If
the actualcnt parameter is NULL, then the number of bytes read will not be
returned.

Chapter 12 391

Return Value

See Also

HP SICL Language Reference
IREAD

If you want to passa NULL reason or actualcnt parameter toi read in
Visual BASIC, you should pass the expression 0&.

For LAN, if the client times out prior to the server, the actualcnt returned
will be 0, even though the server may have read some data from the device
or interface.

This function reads data from the specified device or interface and stores it
in buf up to the maximum number of bytes allowed by bufsize. The read
terminates only on one of the following conditions:

It reads bufsize number of bytes.

It receives a byte with the END indicator attached.

It receives the current termination character (set with itermchr).
An error occurs.

For C programs, this function returns zero (0) if successful, or anon-zero
error number if an error occurs.

For Visual BASIC programs, no error number isreturned. Instead, the global
Err variableisset if an error occurs.

“IWRITE”, “ITERMCHR’, “IFREAD”, “IFWRITE”

392 Chapter 12

HP SICL Language Reference

IREADSTB
|
IREADSTB
SUPPOEd SESSIONS. .« .ot i e e e device
Affected by functions. il ock,itimeout

C Syntax #include <sicl.h>

int ireadstb (id, stb);
I NST id;
unsi gned char *stb;

Visual BASIC Function ireadstb
Syntax (Byval id As Integer, stb As String)

Description Thei r eadst b function reads the status byte from the device specified by
id. The stb argument is a pointer to a variable which will contain the status
byte upon exit.

Return Value For C programs, this function returns zero (0) if successful, or a non-zero
error number if an error occurs.

For Visual BASIC programs, no error number is returned. I nstead, the global
Err variableisset if an error occurs.

See Also “IONSRQ, “ISETSTB’

Chapter 12 393

HP SICL Language Reference
IREMOTE

IREMOTE

SUPPOMEd SESSIONS. .« .t i it e device
Affected by functions. il ock,itimeout

C Syntax #include <sicl.h>

int irenote (id);
I NST id;

Visual BASIC Function irenpte
Syntax (ByVal id As Integer)

Description Usethei r enot e function to put a device into remote mode. Putting a
device in remote mode disables the device’s front panel interface.

Return Value For C programs, this function returns zero (0) if successful, or a non-zero
error number if an error occurs.

For Visual BASIC programs, no error number is returned. Instead, the global
Err variable is set if an error occurs.

See Also “ILOCAL”, and the interface-specific chapter in this manual for details of
implementation.

394 Chapter 12

C Syntax

Note

Visual BASIC
Syntax

Description

HP SICL Language Reference

ISCANF
| SCANF
Supportedsessions. device, interface, commander
* Affected by functions: il ock,itimeout

#i ncl ude <sicl. h>

int iscanf (id, format [,argl][,arg?][,..]);
int isscanf (buf, format [,argl][,arg2][,..]);
int ivscanf (id, format, va list ap);

int isvscanf (buf, format, va listap);

I NST id;

char *buf;

const char *format;

ptr argl, arg2, ..;

va_list ap;

For WIN16 programs on Microsoft Windows platforms, if compiling with
tiny, small, or medium models, make sure all pointer/address parameters are
passed as_f ar.

Function ivscanf
(Byval id As Integer, ByVval fmt As String,
ByRef ap As Any)

These functions read formatted data, convert it, and store the results into
your args. These functions read bytes from the specified device, or from buf,
and convert them using conversion rules contained in the format string. The
number of args converted is returned.

The format string contains.
® White-space characters, which are spaces, tabs, or specia characters.

® Anordinary character (not %9, which must match the next non-white-
space character read from the device.

® Format conversion commands.

Chapter 12 395

HP SICL Language Reference
ISCANF

Use the white-space characters and conversion commands explained later in
this section to create the format string’s contents.

Noteson Using ® Usingi ternchr withi scanf:

i scanf

Thei scanf function only terminates reading on an END indicator or the
termination character specified by i t er nchar.

® Usingi scanf with Certain Instruments:

Thei scanf function cannot be used easily with instruments that do not
send an END indicator.

® Buffer Management with iscanf:

By default, i scanf does not flush itsinternal buffer after each call. This
means data |eft from one call of i scanf can be read with the next call to
i scanf. One side effect of thisisthat successive callstoi scanf may
yield unexpected results. For example, reading the following data:

“1.25\r\n”
“1.35\r\n”
“1.45\r\n”

With:

iscanf(id, “%lf*, &res1); // Will read the 1.25
iscanf(id, “%lf*, &res2); // Will read the \r\n
iscanf(id, “%lf*, &res3); // Will read the 1.35

There are four ways to get the desired results:

-- Usethe newline and carriage return characters at the end of the format
string to match the input data. Thisisthe recommended approach. For
example:

iscanf(id, “%lf%\r\n”, &resl);
iscanf(id, “%lf%\r\n", &res2);
iscanf(id, “%lf%\r\n”, &res3);

396 Chapter 12

HP SICL Language Reference
ISCANF

-- Usei set buf with anegative buffer size. Thiswill create a buffer the
size of the absolute value of bufsize. This also sets aflag that tells
i scanf to flush its buffer after every i scanf cal.

i setbuf (id, | _BUF_READ, -128);
-- Do explicit callstoi f | ush to flush the read buffer.

i scanf (id, “%lf", &resl);
iflush(id, |_BUF_READ);
iscanf(id, “%lf", &res2);
iflush(id, |_ BUF_READ);
iscanf(id, “%lf*, &res3);
iflush(id, |_BUF_READ);

-- Usethe %*t conversion to read to the end of the buffer and discard the
charactersread, if the last character has an END indicator.

iscanf(id, “%lf%*t", &resl);
iscanf(id, “%If%*t", &res2);
iscanf(id, “%lf%*t", &res3);

Restrictions The following restrictions apply when using ivscanf ~ with Visual BASIC.

Using ivscanf
in Visual BASIC ® Format Conversion Commands:

Only one format conversion command can be specified in aformat string
fori vscanf (aformat conversion command begins with the %
character). For example, the following isinvalid:

nar gs% = i vscanf (id, “%,50lIf%,50d", ...)

Instead, you must call ivscanf — once for each format conversion
command, as shown in the following valid example:

nargs% = ivscanf(id, “%,50If", dbl_array(0))
nargs% = ivscanf(id, “%,50d", int_array(0))

Chapter 12 397

HP SICL Language Reference
ISCANF

® Reading in Numeric Arrays.

For Visual BASIC, when reading into a numeric array with i vscanf,
you must specify the first element of anumeric array as the ap parameter
toi vscanf . This passes the address of the first array element to
i vscanf . For example:

Di m preanbl e(50) As Doubl e

nar gs% = i vscanf (id, “%,50If", preamble(0))
This code declares an array of 50 floating point numbers and then calls
ivscanf to read into the array.
For more information on passing numeric arrays as arguments with
Visual BASIC, see the “Arrays” section of the “Calling Procedures in
DLLs” chapter of theé/isual BASIC Programmer’s Guide

® Readingin Strings:

For Visual BASIC, when reading in a string value with i vscanf , you

must pass afixed length string asthe ap parameter toi vscanf . For more
information on fixed length strings with Visual BASIC, see the “String
Types” section of the “Variables, Constants, and Data Types” chapter of
theVisual BASIC Programmer’s Guide

White-Space White-space characters are spaces, tabs, or special characters. For C/C++,
Charactersfor the white-space characters consist of a backslash (\) followed by another
C/C++ character. The white-space characters are:

\ 't The ASCII TAB character

\v The ASCII VERTICAL TAB character
\ f The ASCII FORM FEED character
space The ASCII space character

White-Space White-space characters are spaces, tabs, or special characters. For Visual
Charactersfor BASIC, the white-space characters are specified with the Chr $() function.
Visual BASIC Thewhite-space characters are:

Chr $(9) The ASCII TAB character

Chr$(11) TheASCll VERTICAL TAB character
Chr$(12) The ASCIlI FORM FEED character
space The ASCII space character

398 Chapter 12

HP SICL Language Reference
ISCANF

Format Ani scanf format conversion command begins with a%character. After
Conversion the %character, the optional modifiers appear in this order: an assignment
Commands suppression character (*), field width, acommaand array size (comma

operator), and an argument modifier. The command ends with a conversion

character.

_ | conv
% L " | char
% field array argument
width size modifier

The modifiersin a conversion command are;

field width

, array size

An optional, assignment suppression character (*). This
provides a way to describe an input field to be skipped.
An input field is defined as a string of non-white-space
characters that extends either to the next inappropriate
character, or until the field width (if specified) is
exhausted.

An optional integer representing the field width. In
C/C++, if a pound sign (#) appears instead of the
integer, then the next arg is a pointer to the field width.
This arg is a pointer to an integer for %, %, % , and %&5.
This arg is a pointer to a long for %b. The field width is
not allowed for % or % .

An optional comma operator is an integer preceded by a
comma. It reads a list of comma-separated numbers.
The comma operator is in the form of , dd, where dd is
the number of array elements to read. In C/C++, a pound
sign (#) can be substituted for the number, in which case
the next argument is a pointer to an integer that is the
number of elements in the array.

Chapter 12

399

HP SICL Language Reference

ISCANF

argument
modifier

conv char

The function will set this to the number of elements read.
This operator is only valid with the conversion characters
d and f . The argument must be an array of the type
specified.

The meaning of the optional argument modifiers h, | , w,
z, and Z is dependent on the conversion character.

A conversion character is a character that specifies the
type of arg and the conversion to be applied. This is the
only required element of a conversion command. See
the following subsection, “List of conv chars” for the
specific conversion characters you may use.

Note Unlike C'sscanf function, SICL'si scanf functions do not treat the
newline { n) and carriage return) characters as white-space. Therefore,
they are treated as ordinary characters and must match input characters.
(Note that this doesot apply in Visual BASIC.)

The conversion commands direct the assignment of theargexthe

i scanf function places the converted input in the corresponding variable,
unless the assignment suppression character causes it to g aad to
ignore the input.

This function ignores all white-space characters in the input stream.

Examplesof The following are examples of conversion commands used in the format
Format string and typical input data that would satisfy the conversion commands.

Conversion
Commands

Conversion Input Data Description
Command
% s onestring suppression (no assignment)
%Ws Y two strings suppression (two) assignment (strings)
% 3d 21,12,61 comma operator
ohd 64 argument modifier (short)
400 Chapter 12

%d.0s
%4.0c
od 0t

HP SICL Language Reference
ISCANF

onestring field width
onestring field width

two strings field width (10 chars read into 1 arg)

List of Theconv chars (conversion characters) are:

conv chars

Corresponding arg must be a pointer to an integer for C/C++,
or an Integer in Visual BASIC. The library reads characters
until an entire number is read. It will convert IEEE 488.2 HEX,
OCT, BIN, and NRf format numbers. If the | (ell) argument
modifier is used, the argument must be a pointer to a long
integer in

C/C++, or it must be a Long in Visual BASIC. If the h argument
modifier is used, the argument must be a pointer to a short
integer for C/C++, or an Integer for Visual BASIC.

Corresponding arg must be a pointer to an integer in C/C++,
or an Integer in Visual BASIC. The library reads characters
until an entire number is read. If the number has a leading
zero (0), the number will be converted as an octal number. If
the data has a leading Ox or 0X, the number will be converted
as a hexadecimal number. If the | (ell) argument modifier is
used, the argument must be a pointer to a long integer in C/
C++, or it must be a Long for Visual BASIC. If the h argument
modifier is used, the argument must be a pointer to a short
integer for C/C++, or an Integer for Visual BASIC.

Corresponding arg must be a pointer to a float in C/C++, or a
Single in Visual BASIC. The library reads characters until an
entire number is read. It will convert IEEE 488.2 HEX, OCT,
BIN, and NRf format numbers. If the | (ell) argument modifier
is used, the argument must be a pointer to a double for C/C++,
or it must be a Double for Visual BASIC. If the L argument
modifier is used, the argument must be a pointer to a long
double for C/C++ (not supported for Visual BASIC).

Chapter 12

401

HP SICL Language Reference

ISCANF

e, g

Corresponding arg must be a pointer to a float for C/C++, or a
Single for Visual BASIC. The library reads characters until an
entire number is read. If the | (ell) argument modifier is used,
the argument must be a pointer to a double for C/C++, or a
Double for Visual BASIC. If the L argument modifier is used,
the argument must be a pointer to a long double for C/C++
(not supported for Visual BASIC).

Corresponding arg is a pointer to a character sequence for
C/C++, or a fixed length String for Visual BASIC. Reads the
number of characters specified by field width (default is 1)
from the device into the buffer pointed to by arg. White-space
is not ignored with %&. No null character is added to the end of
the string.

Corresponding arg is a pointer to a string for C/C++, or a fixed
length String for Visual BASIC. All leading white-space
characters are ignored, then all characters from the device are
read into a string until a white-space character is read. An
optional field width indicates the maximum length of the string.
Note that you should specify the maximum field width of the
buffer being used to prevent overflows.

Corresponding arg is a pointer to a string for C/C++, or a fixed
length String for Visual BASIC. This data is received as an
IEEE 488.2 string response data block. The resultant string
will not have the enclosing double quotes in it. An optional
field width indicates the maximum length of the string. Note
that you should specify the maximum field width of the buffer
being used to prevent overflows.

Corresponding arg is a pointer to a string for C/C++, or a fixed
length String for Visual BASIC. Read all characters from the
device into a string until an END indicator is read. An optional
field width indicates the maximum length of the string. All
characters read beyond the maximum length are ignored until
the END indicator is received. Note that you should specify the
maximum field width of the buffer being used to prevent
overflows.

402

Chapter 12

HP SICL Language Reference
ISCANF

Corresponding arg is a pointer to a buffer. This conversion
code reads an array of data from the device. The data must be
in IEEE 488.2 Arbitrary Block Program Data format. Note that,
depending on the structure of the data, data may be read until
an END indicator is read.

The field width must be present to specify the maximum
number of elements the buffer can hold. For C/C++ programs,
the field width can be a pound sign (#). If the field width is a
pound sign, then two arguments are used to fulfill this
conversion type. The first argument is a pointer to a long that
will be used as the field width. The second will be the pointer
to the buffer that will hold the data. After this conversion is
satisfied, the field width pointer is assigned the number of
elements read into the buffer. This is a convenient way to
determine the actual number of elements read into the buffer.

If there is more data than will fit into the buffer, the extra data
is lost.

If no argument modifier is specified, the array is assumed to
be an array of bytes.

If the wargument modifier is specified, then the array is
assumed to be an array of short integers (16 bits). The data
read from the device is byte swapped and padded as
necessary to convert from IEEE 488.2 byte ordering (big
endian) to the native ordering of the controller. The field width
is the number of words.

If the | (ell) argument modifier is specified, then the array is
assumed to be an array of long integers (32 bits). The data
read from the device is byte swapped and padded as
necessary to convert from IEEE 488.2 byte ordering (big
endian) to the native ordering of the controller. The field width
is the number of long words.

If the z argument modifier is specified, then the array is
assumed to be an array of floats. The data read from the
device is an array of 32 bit IEEE-754 floating point numbers.
The field width is the number of floats.

Chapter 12

403

HP SICL Language Reference

ISCANF

If the Z argument modifier is specified, then the array is
assumed to be an array of doubles. The data read from the
device is an array of 64 bit IEEE-754 floating point numbers.
The field width is the number of doubles.

Corresponding arg must be a pointer to an unsigned integer
for C/C++, or an Integer for Visual BASIC. The library reads
characters until the entire octal number is read. If the | (ell)
argument modifier is used, the argument must be a pointer to
an unsigned long integer for C/C++, or a Long for Visual
BASIC. If the h argument modifier is used, the argument must
be a pointer to an unsigned short integer for C/C++, or the
argument must be an Integer for Visual BASIC.

Corresponding arg must be a pointer to an unsigned integer
for C/C++, or an Integer for Visual BASIC. The library reads
characters until an entire number is read. It will accept any
valid decimal number. If the | (ell) argument modifier is used,
the argument must be a pointer to an unsigned long integer for
C/C++, or a Long for Visual BASIC. If the h argument modifier
is used, the argument must be a pointer to an unsigned short
integer for C/C++, or the argument must be an Integer for
Visual BASIC.

Corresponding arg must be a pointer to an unsigned integer
for C/C++, or an Integer for Visual BASIC. The library reads
characters until an entire number is read. It will accept any
valid hexadecimal number. If the | (ell) argument modifier is
used, the argument must be a pointer to an unsigned long
integer for C/C++, or a Long for Visual BASIC. If the h
argument modifier is used, the argument must be a pointer to
an unsigned short integer for C/C++, or it must be an Integer
for Visual BASIC.

404

Chapter 12

HP SICL Language Reference
ISCANF

Corresponding arg must be a character pointer for C/C++, or a
fixed length character String for Visual BASIC. The [
conversion type matches a hon-empty sequence of characters
from a set of expected characters. The characters between
the [and the] are the scanlist. The scanset is the set of
characters that match the scanlist, unless the circumflex (*) is
specified. If the circumflex is specified, then the scanset is the
set of characters that do not match the scanlist. The circumflex
must be the first character after the [, otherwise it will be
added to the scanlist.

The - can be used to build a scanlist. It means to include all
characters between the two characters in which it appears (for
example, % a- z] means to match all the lower case letters
between and including a and z). If the - appears at the
beginning or the end of conversion string, - is added to the
scanlist.

Corresponding arg is a pointer to an integer for C/C++, or it is
an Integer for Visual BASIC. The number of bytes currently
converted from the device is placed into the arg. No argument
is converted.

Supported on HP-UX only. (Not supported on Windows 95 or
Windows NT.) Corresponding arg is a pointer to a FILE
descriptor. The input data read from the device is written to the
file referred to by the FILE descriptor until the END indicator is
received. The file must be opened for writing. No other
modifiers or flags are valid with this conversion character.

Data Thefollowing table lists the types of data that each of the numeric formats

Conversions accept.

IEEE 488.2 HEX, OCT, BIN, and NRf formats (for example,
#HA, #QL2, #B1010, 10, 10. 00, and 1. OOE+01).

IEEE 488.2 HEX, OCT, BIN, and NRf formats (for example,
#HA, #QL12, #B1010, 10, 10. 00, and 1. 00E+01).

Chapter 12

405

HP SICL Language Reference

ISCANF
i Integer. Data with a leading 0 will be converted as octal; data
with leading Ox or OX will be converted as hexadecimal.
u Unsigned integer. Same as i except value is unsigned.
o] Unsigned integer. Data will be converted as octal.
X, X Unsigned integer. Data will be converted as hexadecimal.
e g Floating. Integers, floating point, and exponential numbers will

be converted into floating point numbers (default is float).

Note that the conversion typesi and d are not the same. Thisisalso true for
f ande,g.

Return Value Thisfunction returns the total number of arguments converted by the format
string.

See Also “IPRINTF, “IPROMPTF, “IFLUSH", “ISETBUF, “ISETUBUF’,
“IFREAD”, “IFWRITE”

406 Chapter 12

HP SICL Language Reference

ISERIALBREAK
|
|SERIALBREAK
SUPPOMEd SESSIONS. .« .ot e interface
* Affected by functions: il ock,itimeout

C Syntax #include <sicl.h>

int iserialbreak (id);
I NST id;

Visual BASIC Function iseri al break
Syntax (ByVal id As Integer)

Description Thei seri al br eak function is used to send aBREAK on the interface
specified by id.

Return Value For C programs, this function returns zero (0) if successful, or a non-zero
error number if an error occurs.

For Visual BASIC programs, no error number is returned. I nstead, the global
Err variableisset if an error occurs.

Chapter 12 407

HP SICL Language Reference

ISERIALCTRL
|
ISERIALCTRL
SUPPOMEd SESSIONS. .« .t it e it e interface
Affected by functions. il ock,itimeout

C Syntax #include <sicl.h>

int iserialctrl (id, request, setting);
I NST id;

i nt request;

unsi gned | ong setting;

Visual BASIC Function iserialctrl
Syntax (Byval id As Integer, ByVal request As I nteger,
ByVal setting As Long)

Description Thei seri al ctrl functionisused to set up the serial interface for data
exchange. This function takes request (one of the following values) and sets
the interface to the setting. The following are valid values for request:

| _SERI AL_BAUD The setting parameter will be the new speed
of the interface. The value should be a valid
baud rate for the interface (for example, 300,
1200, 9600). The baud rate is represented as
an unsigned long integer, in bits per second. If
the value is not a recognizable baud rate, an
err_param error is returned. The following are
the supported baud rates: 50, 110, 300, 600,
1200, 2400, 4800, 7200, 9600, 19200, 38400,
and 57600.

| _SERIAL_PARI TY The following values are acceptable values for
setting:
| _SERI AL_PAR_EVENEven parity
| _SERI AL_PAR_ODDOdd parity
| _SERI AL_PAR_NONENOoO parity bit is used
| _SERI AL_PAR_MARKParity is always one
| _SERI AL_PAR_SPACEParity is always zero

408 Chapter 12

| _SERI AL_STOP

| _SERI AL_W DTH

| _SERI AL_READ BUFSZ

| _SERI AL_DUPLEX

| _SERI AL_FLOW CTRL

| _SERI AL_READ_EOI

HP SICL Language Reference
ISERIALCTRL

The following are acceptable values for
setting:

| _SERI AL_STOP_11 stop bit

| SERI AL_STOP_22 stop bits

The following are acceptable values for
setting:

| _SERI AL_CHAR 55 bit characters

| _SERI AL_CHAR 66 bit characters

| _SERI AL_CHAR 77 bit characters

| _SERI AL_CHAR 88 bit characters

This is used to set the size of the read buffer.
The setting parameter is used as the size of
buffer to use. This value must be in the range
of 1 and 32767.

The following are acceptable values for
setting:

| _SERI AL_DUPLEX_ FULLUSse full duplex
| _SERI AL_DUPLEX HALFUse half duplex

The setting parameter must be set to one of
the following values. If no flow control is to be
used, set setting to zero (0). The following are
the supported types of flow control:

| _SERI AL_FLOW NONENo handshaking

| SERI AL_FLOW XONSoftware handshaking
| SERI AL_FLOW RTS_CTSHardware
handshaking

| SERI AL_FLOW DTR_DSRHardware
handshaking

Used to set the type of END Indicator to use
for reads.

In order for i scanf to work as specified, data
must be terminated with an END indicator.
The RS-232 interface has no standard way of
doing this. SICL gives you two different
methods of indicating EOI.

Chapter 12

409

HP SICL Language Reference
ISERIALCTRL

The first method is to use a character. The
character can have a value between 0 and
Oxff. Whenever this value is encountered in a
read (i read, i scanf, ori pronpt f), the
read will terminate and the term reason will
include | _TERM END. The default for serial is
the newline character (\ n).

The second method is to use bit 7 (if
numbered 0-7) of the data as the END
indicator. The data would be bits 0 through 6
and, when bit 7 is set, that means EOI. The
following values are valid for the setting
parameter:

® | _SERIAL_EQ _CHR|(n) - A character is
used to indicate EOI, wherenisthe
character. Thisisthe default type, and\ n
is used.

* | SERIAL_EO _NONE - No EOI indicator.

®* | _SERIAL_EQ _BI T8 - Usetheeighth bit
of the data to indicate EOI. On the last
byte, the eighth bit will be masked off, and
the result will be placed into the buffer.

410 Chapter 12

| _SERI AL_WRI TE_EO

| _SERI AL_RESET

HP SICL Language Reference
ISERIALCTRL

The setting parameter will contain the value of
the type of END Indicator to use for writes.
The following are valid values to use:

®* | SERIAL_EO _NONE - NoEOI indicator.
Thisisthedefault for | _SERI AL_WRI TE

(i printf).

®* | _SERIAL_EQ _BI T8 - Usetheeighth bit
of the datato indicate EOI. On the last
byte, the eighth bit will be masked off, and
the result will be placed into the buffer.

This will reset the serial interface. The
following actions will occur: any pending
writes will be aborted, the data in the input
buffer will be discarded, and any error
conditions will be reset. This differs from

i cl ear in that no BREAK will be sent.

Return Value For C programs, this function returns zero (0) if successful, or anon-zero
error number if an error occurs.

For Visual BASIC programs, no error number isreturned. Instead, the global
Err variableisset if an error occurs.

See Also “ISERIALSTAT”

Chapter 12

411

C Syntax

Visual BASIC
Syntax

Description

Return Value

See Also

HP SICL Language Reference
ISERIALMCLCTRL

ISERIALMCLCTRL

SUPPOMEd SESSIONS. .« .t it e it e interface
Affected by functions. il ock,itimeout
#i ncl ude <sicl. h>

int iserialnclctrl (id, dsling state);

I NST id;

int dine

i nt state

Function iserialntlctrl
(Byval id As Integer, ByVal dline As Integer,
ByVal state As | nteger)

Thei seri al ncl ctrl function is used to control the Modem Control
Lines. The sline parameter sends one of the following values:

| _SERI AL_RTSReady To Send line
| _SERI AL_DTRData Termina Ready line

If the state value is non-zero, the Modem Control Line will be asserted:;
otherwise it will be cleared.

For C programs, this function returns zero (0) if successful, or a non-zero
error number if an error occurs.

For Visual BASIC programs, no error number is returned. I nstead, the global
Err variableisset if an error occurs.

“ISERIALMCLSTAT”, “IONINTR”, “ISETINTR"

412 Chapter 12

C Syntax

Visual BASIC
Syntax

Description

Return Value

See Also

HP SICL Language Reference
ISERIALMCLSTAT

|ISERIALMCLSTAT

SUPPOMEd SESSIONS. .« .ot e interface
Affected by functions. il ock,itimeout

#i ncl ude <sicl. h>

int iserialnclstat (id, sline state);
I NST id;

i nt ding

i nt *dstate;

Function iserial ntl stat
(Byval id As Integer, ByVal dline As Integer,
State As | nt eger)

Thei seri al ntl st at function is used to determine the current state of the
Modem Control Lines. The sine parameter sends one of the following
values:

| _SERI AL_RTSReady To Send line
| _SERI AL_DTRData Terminal Ready line

If the value returned in state is non-zero, the Modem Control Lineis
asserted; otherwiseit is clear.

For C programs, this function returns zero (0) if successful, or anon-zero
error number if an error occurs.

For Visual BASIC programs, no error number isreturned. Instead, the global
Err variableisset if an error occurs.

“ISERIALMCLCTRL”

Chapter 12 413

HP SICL Language Reference

ISERIALSTAT
|
| SERIALSTAT
SUPPOMEd SESSIONS. .« .t it e it e interface
Affected by functions. il ock,itimeout

C Syntax #include <sicl.h>

int iserialstat (id, request, result);
I NST id;

i nt request;

unsi gned | ong *result;

Visual BASIC Function iserial stat
Syntax (Byval id As Integer, ByVal request As I nteger,
result As Long)

Description Thei seri al st at function is used to find the status of the serial interface.
Thisfunction takes one of the following values passed in request and returns
the statusin the result parameter:

| _SERI AL_BAUD The result parameter will be set to the speed
of the interface.

| SERIAL_PARI TY The result parameter will be set to one of the
following values:

| _SERI AL_PAR_EVENEven parity
| _SERI AL_PAR_CODDOdd parity
| _SERI AL_PAR_NONENO parity bit is
used
| _SERI AL_PAR_NMARKParity is always
one
| _SERI AL_PAR_SPACEParity is always
zero

| SERI AL_STOP The result parameter will be set to one of the
following values:
| _SERI AL_STOP_11 stop bits
| _SERI AL_STOP_22 stop hits

414 Chapter 12

HP SICL Language Reference
ISERIALSTAT

| _SERI AL_W DTH The result parameter will be set to one of the
following values:
| _SERI AL_CHAR 55 hit characters
| _SERI AL_CHAR 66 hit characters
| _SERI AL_CHAR 77 hit characters
| _SERI AL_CHAR 88 hit characters

| _SERI AL_DUPLEX The result parameter will be set to one of the
following values:
| _SERI AL_DUPLEX FULLUsefull
duplex
| _SERI AL_DUPLEX_HALFUse half
duplex

Chapter 12 415

HP SICL Language Reference
ISERIALSTAT

| _SERI AL_MSL ® Theresult parameter will be set to the bit

wise OR of all of the Modem StatusLines
that are currently being asserted. The
value of the result parameter will be the
logical OR of all of the seria lines
currently being asserted. The serial lines
are both the Modem Control Lines and
the Modem Status Lines. The following
are the supported serial lines:

| _SERI AL_DCD - Data Carrier Detect.

| _SERI AL_DSR - Data Set Readly.

| _SERI AL_CTS - Clear To Send.

| _SERI AL_RI - Ring Indicator.

| _SERI AL_TERI - Trailing Edge of RI.

| _SERIAL_D DCD- The DCD line has
changed since the last time this status has
been checked.

| _SERIAL_D DSR-TheDSR line has
changed since the last time this status has
been checked.

| _SERIAL_D CTS-TheCTSlinehas

changed since the last time this status has
been checked.

416

Chapter 12

HP SICL Language Reference
ISERIALSTAT

| SERI AL_STAT This is a read destructive status. That means
reading this request resets the condition.
The result parameter will be set the bit wise
OR of the following conditions:

| _SERI AL_DAV - Dataisavailable.

| _SERI AL_PARI TY - Parity error has
occurred since the last time the status was
checked.

| _SERI AL_OVERFLOW- Overflow error
has occurred since the last time the status
was checked.

| _SERI AL_FRAM NG- Framing error has
occurred since the last time the status was
checked.

| SERI AL_BREAK - Break has been
received since the last time the status was
checked.

| _SERI AL_TEMT - Transmitter empty.

| _SERI AL_READ BUFSZ The result parameter will be set to the
current size of the read buffer.

| _SERI AL_READ DAV The result parameter will be set to the
current amount of data available for reading.

Chapter 12

417

HP SICL Language Reference

ISERIALSTAT

| _SERI AL_FLOW CTRL

The result parameter will be set to the value
of the current type of flow control that the
interface is using. If no flow control is being
used, result will be set to zero (0). The
following are the supported types of flow
control:

| _SERI AL_FLOW NONENo handshaking

| _SERI AL_FLOW XONSoftware
handshaking

| _SERI AL_FLOW RTS_CTSHardware
handshaking

| _SERI AL_FLOW DTR_DSRHardware
handshaking

418

Chapter 12

HP SICL Language Reference
ISERIALSTAT

| SERI AL_READ EQ The result parameter will be set to the value

of the current type of END indicator that is

being used for reads. The following values

can be returned:

® | _SERIAL_EQ _CHR|(n) - A character is
used to indicate EOI, where nisthe
character. These two values are logically
OR-ed together. To find the value of the
character, AND result with Oxff. The
defaultisa\ n.

®* | SERIAL_EO _NONE - No EOI
indicator. Thisisthe default for
| _SERI AL_READ (i scanf).

®* | _SERIAL_EQ _BI T8 - Usethe eighth
bit of the datato indicate EOI. Thislast
byte will mask off this bit and use the rest
for the datathat is put in your buffer.

| SERIAL_ WRI TE_EQ The result parameter will be set to the value

of the current type of END indicator that is

being used for reads. The following values

can be returned:

® | _SERI AL_EQ _NONE - No EOI
indicator. Thisisthe default for
| _SERIAL_WRI TE (i printf).

® |_SERIAL_EQO _BI T8 - Usethe eighth
bit of the data to indicate EOI. This last
byte will mask off this bit and use the rest
for the datathat is put in your buffer.

Return Value For C programs, this function returns zero (0) if successful, or anon-zero
error number if an error occurs.

For Visual BASIC programs, no error number isreturned. Instead, the global
Err variableisset if an error occurs.

See Also “ISERIALCTRL"

Chapter 12 419

C Syntax

Note

Description

HP SICL Language Reference
ISETBUF

| SETBUF

Supportedsessions. device, interface, commander
* Affected by functions. il ock,itimeout

#i ncl ude <sicl. h>

int isetbuf (id, mask, size);
I NST id;

i nt mask;

int size

Not supported on Visual BASIC.

Thisfunction is used to set the size and actions of the read and/or write
buffers of formatted 1/0. The mask can be one or the bit-wise OR of both of
the following flags:

| _BUF_READSpecifies the read buffer.
| _BUF_WRI TESpecifiesthe write buffer.

The size argument specifies the size of the read or write buffer (or both) in
bytes. Setting a size of zero (0) disables buffering. This means that for write
buffers, each byte goes directly to the device. For read buffers, the driver
reads each byte directly from the device.

Setting a size greater than zero creates a buffer of the specified size. For
write buffers, the buffer flushes (writes to the device) whenever the buffer
fillsup and for each newline character in the format string. (However, note
that the buffer is not flushed by newline charactersin the argument list.) For
read buffers, the buffer is never flushed (that is, it holds any |eftover datafor
thenexti scanf /i pronpt f call). Thisisthe default action.

Setting a size less than zero creates a buffer of the absolute value of the
specified size. For write buffers, the buffer flushes (writes to the device)
whenever the buffer fills up, for each newline character in the format string,
or at the completion of every i pri nt f call. For read buffers, the buffer
flushes (erases its contents) at the end of every i scanf (ori pronpt f)
function.

420 Chapter 12

HP SICL Language Reference
ISETBUF

Note Cadlingi set buf flushesany datain the buffer(s) specified in the mask
parameter.

Return Value Thisfunction returns zero (0) if successful, or a non-zero error number if an
€rror OCCcurs.

See Also “IPRINTF, “ISCANF, “IPROMPTF, “IFWRITE”, “IFREAD”",
“IFLUSH", “ISETUBUF

Chapter 12 421

HP SICL Language Reference
ISETDATA

| SETDATA

Supportedsessions. device, interface, commander

C Syntax #include <sicl.h>

int isetdata (id, data);
I NST id;
voi d *data;

Note Not supported on Visual BASIC.

Description Thei set dat a function stores a pointer to a data structure and associates it
with asession (or | NST id).

You can use these user-defined data structures to associate device-specific
datawith a session such as device name, configuration, instrument settings,
and so forth.

You are responsible for the management of the buffer (that is, if the buffer
needs to be allocated or deallocated, you must do it).

Return Value Thisfunction returns zero (0) if successful, or a non-zero error number if an
€rror OCCurs.

See Also “IGETDATA”

422 Chapter 12

HP SICL Language Reference
ISETINTR

ISETINTR

Supportedsessions. device, interface, commander

C Syntax #include <sicl.h>

int isetintr (id, intnum, secval);
I NST id;

i nt inthum;

| ong secval;

Note Not supported on Visual BASIC.

Description Thei seti ntr function is used to enable interrupt handling for a particular
event. Installing an interrupt handler only allows you to receive enabled
interrupts. By default, all interrupt events are disabled.

The intnum parameter specifies the possible causes for interrupts. A valid
intnum value for any type of sessioniis:

| _INTR_OFF Turns off all interrupt conditions previously
enabled with callstoi setintr.

A valid intnum value for all device sessions (except for GPIB and GPIO,
which have no device-specific interrupts) is:

I _INTR * Individual interfaces may include other interface-
interrupt conditions. See the following information
on each interface for more details.

Chapter 12 423

HP SICL Language Reference
ISETINTR

Valid intnum values for all interface sessions are;

I I NTR_I NTFACT Interrupt when the interface becomes active.
Enable if secval!=0; disable if secval=0.

I _I NTR_I NTFDEACT Interrupt when the interface becomes deactivated.
Enable if secval!=0; disable if secval=0.

| _INTR.TRI G Interrupt when a trigger occurs. The secval
parameter contains a bit-mask specifying which
triggers can cause an interrupt. See the i xtri g
function’s which parameter for a list of valid
values.

| _INTR * Individual interfaces may include other interface-
interrupt conditions. See the following information
on each interface for more details.

Valid intnumvalues for all commander sessions (except RS-232 and GPIO,
which do not support commander sessions) are:

| _INTR_STB Interrupt when the commander reads the status
byte from this controller. Enable if secval!=0;
disable if secval=0.

| I NTR_DEVCLR Interrupt when the commander sends a device
clear to this controller (on the given interface).
Enable if secval!=0; disable if secval=0.

Interruptson GPIB Device Session Interrupts. There are no device-specific interrupts
GPIB for the GPIB interface.

424 Chapter 12

HP SICL Language Reference
ISETINTR

GPIB Interface Session I nterrupts. The interface-specific interrupt for the

GPIB interfaceis:

| _INTR_GPIB_I FC

Interrupt when an interface clear occurs. Enable
when secval!=0; disable when secval=0. This
interrupt will be generated regardless of whether
this interface is the system controller or not (that
is, regardless of whether this interface generated
the IFC, or another device on the interface
generated the IFC).

The following are generic interrupts for the GPIB interface:

| _I NTR_| NTFACT

| _I NTR_| NTFDEACT

Interrupt occurs whenever this controller becomes
the active controller.

Interrupt occurs whenever this controller passes
control to another GPIB device. (For example, the
i gpi bpassct | function has been called.)

GPIB Commander Session Interrupts. The following are commander-
specific interrupts for GPIB:

I _INTR_GPI B_PPOLLCONFI G This interrupt occurs whenever there is

a change to the PPOLL configuration.
This interrupt is enabled using

i setintr by specifying a secval
greater than 0. If secval=0, this interrupt
is disabled.

| _INTR_GPI B_REM.OC This interrupt occurs whenever a

remote or local message is received
and addressed to listen. This interrupt
is enabled using i setintr by
specifying a secval greater than 0. If
secval=0, this interrupt is disabled.

Chapter 12

425

HP SICL Language Reference
ISETINTR

| INTR_GPI B _GET This interrupt occurs whenever the
GET message is received and
addressed to listen. This interrupt is
enabled using i seti nt r by specifying
a secval greater than 0. If secval=0, this
interrupt is disabled.

| INTR_GPI B TLAC This interrupt occurs whenever this
device has been addressed to talk or
untalk, or the device has been
addressed to listen or unlisten. When
the interrupt handler is called, the
secval value is set to a bit mask. Bit 0 is
for listen, and bit 1 is for talk. If:

®* Bijt0=1, thenthisdeviceis
addressed to listen.

®* Bit 0=0, then thisdeviceis not
addressed to listen.

®* Bijt1=1,thenthisdeviceis
addressed to talk.

® Bijt1=0, then thisdeviceisnot
addressed to talk.

This interrupt is enabled using isetintr
by specifying a secval greater than 0. If
secval=0, this interrupt is disabled.

Interruptson GPIO Device Session Interrupts. GPIO does not support device sessions.
GPIO Therefore, there are no device session interrupts for GPIO.

426 Chapter 12

HP SICL Language Reference
ISETINTR

GPIO Interface Session | nterrupts. The interface-specific interrupts for
the GPIO interface are:

| _INTR_GPI O _EIR Thisinterrupt occurs whenever the EIR lineis
asserted by the peripheral device. Enabled when
secval! =0, disabled when secval=0.

| _INTR_GPI O_RDY Thisinterrupt occurs whenever the interface
becomes ready for the next handshake. (The exact
meaning of “ready” depends on the configured
handshake mode.) Enabled whseaval =0,
disabled whersecval=0.

Note The GPIO interface is always active. Therefore, the interrupts for
I _INTR_I NTFACT and | _| NTR_| NTFDEACT will never occur.

GPIO Commander Session Interrupts. GPIO does not support
commander sessions. Therefore, there are no commander session interrupts
for GPIO.

Interruptson RS-232 Device Session Interrupts. The device-specific interrupt for the
RS-232 (Serial) RS-232interfaceis:

| _INTR_SERI AL_DAV This interrupt occurs whenever the receive
buffer in the driver goes from the empty to the
non-empty state.

Chapter 12 427

HP SICL Language Reference

ISETINTR

RS-232 Interface Session I nterrupts. The interface-specific interrupts for

the RS-232 interface are:

| I NTR_SERI AL_MBL

| I NTR_SERI AL_BREAK

| I NTR_SERI AL_ERRCR

This interrupt occurs whenever one of the
specified modem status lines changes states.
The secval argument ini oni ntr isthe
logical OR of the Modem Status Linesto
monitor. In the interrupt handler, the sec
argument will be the logical OR of the MSL
lineg(s) that caused the interrupt handler to be
invoked.

Note that most implementations of the ring
indicator interrupt only deliver the interrupt
when the state goes from high to low (that is,
atrailing edge). This differs from the other
MSLs in that it's not simply just a state
change that causes the interrupts.

The status lines that can cause this interrupt
are DCD, CTS, DSR, and RI.

This interrupt occurs whenever a BREAK is
received.

This interrupt occurs whenever a parity,
overflow, or framing error happens. The
secval argument i oni nt r is the logical OR
of one or more of the following values to
enable the appropriate interrupt. In the
interrupt handler, theec argument will be the
logical OR of these values that indicate which
error(s) occurred:

® | _SERI AL_PARERR - Parity Error

® | SERI AL_OVERFLOW Buffer Overflow
Error

® | _SERI AL_FRAM NG- Framing Error

428

Chapter 12

| I NTR_SERI AL_DAV

HP SICL Language Reference
ISETINTR

This interrupt occurs whenever the receive
buffer in the driver goes from the empty to the
non-empty state.

| _INTR_SERI AL_TEMI' Thisinterrupt occurs whenever the transmit

buffer in the driver goes from the non-empty
to the empty state.

The following are generic interrupts for the RS-232 interface:

| _I NTR_| NTFACT

| _I NTR_| NTFDEACT

This interrupt occurs when the Data Carrier
Detect (DCD) lineis asserted.

This interrupt occurs when the Data Carrier
Detect (DCD) lineiscleared.

RS-232 Commander Session Interrupts. RS-232 does not support
commander sessions. Therefore, there are no commander session interrupts

for RS-232.

Interruptson VXI Device Session Interrupts. The device-specific interrupt for the VXI

VXI| interfaceis:

| _INTR_VXI _SI GNAL

A specified device wroteto the VXI signal
register (or aVME interrupt arrived from a VXl
devicethat isin the servant list), and the signa
was an event you defined. Thisinterrupt is
enabled using i set i ntr by specifying a
secval!=0. If secval=0, then thisis disabled. The
value written into the signal register is returned
in the secval parameter of the interrupt handler.

Chapter 12

429

HP SICL Language Reference
ISETINTR

VXI Interface Session I nterrupts. The following are interface-specific
interrupts for the VXI interface:

| I NTR_VXI _SYSRESET A VXI| SYSRESET occurred. This
interrupt isenabled using i seti ntr by
specifying a secval!=0. If secval=0, then
thisis disabled.

I _INTR_VXI _VNME A VME interrupt occurred from anon-V X|
device, or aVXI devicethat isnot a servant
of thisinterface. Thisinterrupt is enabled
usingi seti ntr by specifying asecval!=0.
If secval=0, then thisis disabled.

I _I NTR_VXI _UKNSI G A write to the VXI signal register was
performed by a device that is not a servant
of thiscontroller. Thisinterrupt condition is
enabled using i set i ntr by specifying a
secvall=0. If secval=0, then thisisdisabled.
The value written into the signal register is
returned in the secval parameter of the
interrupt handler.

| _INTR_VXI _VMESYSFAIL TheVME SYSFAIL line has been asserted.

| | NTR_VME_I| RQL VME IRQ1 has been asserted.
| _INTR_VME_ I RQ2 VME IRQ2 has been asserted.
| | NTR_VME_| RQB VME IRQ3 has been asserted.
| _INTR_VME_ | R4 VME IRQ4 has been asserted.
| | NTR_VME_I R VME IRQ5 has been asserted.
| I NTR_VME_ I RQ6 VME IRQ6 has been asserted.
| _| NTR_VME_I RQ7 VME IRQ7 has been asserted.

430 Chapter 12

HP SICL Language Reference
ISETINTR

The following are generic interrupts for the VXI interface:

| I NTR_| NTFACT This interrupt occurs whenever the interface
receives aBNO (Begin Normal Operation)
message.

| _I NTR_I NTFDEACT = Thisinterrupt occurs whenever the interface
receives an ANO (Abort Normal Operation) or
ENO (End Normal Operation) message.

VX1 Commander Session Interrupts. The commander-specific interrupt
for VXl is:

| _INTR_VXI _LLOCK A lock/clear lock word-serial command has
arrived. Thisinterruptisenabledusingi seti ntr
by specifying asecval=0. If secvaf0, thenthisis
disabled. If alock occurred, the secvalin the
handler ispassed a 1; if an unlock, the secvalin
the handler is passed 0.

Return Value Thisfunction returns zero (0) if successful, or a non-zero error number if an
€rror occurs.

See Also “IONINTR”, “IGETONINTR?, “IWAITHDLR”, “IINTROFF’,
“lINTRON", “IXTRIG", and the section titled “Asynchronous Events and
HP-UX Signals” in the “Programming with HP SICL” chapter of kie
SICL User’s Guide for HP-UXor protecting 1/0O calls against interrupts.

Chapter 12 431

C Syntax

Visual BASIC
Syntax

Description

Note

Return Value

See Also

HP SICL Language Reference
ISETLOCKWAIT

ISETLOCKWAIT

Supportedsessions. device, interface, commander

#i ncl ude <sicl. h>

int isetlockwait (id, flag);
I NST id;
int flag;

Function isetl ockwait
(Byval id As Integer, ByVal flag As Integer)

Thei set | ockwai t function determines whether library functions wait for
adevice to become unlocked or return an error when attempting to operate
on alocked device. The error that isreturned is| _ERR_LOCKED.

If flag is non-zero, then all operations on adevice or interface locked by
another session will wait for the lock to be removed. Thisisthe default case.

If flag is zero (0), then all operations on adevice or interface locked by
another session will return an error (I _ERR_LOCKED). This will disable the
timeout value set up by thei t i meout function.

If arequest is made that cannot be granted due to hardware constraints, the
process will hang until the desired resources become available. To avoid
this, usethei set | ockwai t command with the flag parameter set to 0, and
thus generate an error instead of waiting for the resources to become
available.

For C programs, this function returns zero (0) if successful, or anon-zero
error number if an error occurs.

For Visual BASIC programs, no error number isreturned. Instead, the global
Err variableisset if an error occurs.

“ILOCK”, “IUNLOCK", “IGETLOCKWAIT”

432 Chapter 12

C Syntax

Visual BASIC
Syntax

Description

Return Value

See Also

HP SICL Language Reference

ISETSTB
ISETSTB
SUPPOMEd SESSIONS. .+ .ot commander
Affected by functions. il ock,itimeout

#i ncl ude <sicl. h>

int isetstb (id, sth);
I NST id;
unsi gned char stb;

Function isetstb
(Byval id As Integer, ByVal stb As Byte)

Thei set st b function alows the status byte value for this controller to be
changed. Thisfunction isonly valid for commander sessions.

Bit 6 in the stb (status byte) has special meaning. If bit 6 is set, then an SRQ
notification is given to the remote controller, if itsidentity is known. If bit 6
is not set, then the SRQ notification is canceled. The exact mechanism for
sending the SRQ notification is dependent on the interface.

For C programs, this function returns zero (0) if successful, or anon-zero
error number if an error occurs.

For Visual BASIC programs, no error number isreturned. Instead, the global
Err variableisset if an error occurs.

“IREADSTB’, “IONSRQ

Chapter 12 433

C Syntax

Note

Description

HP SICL Language Reference

ISETUBUF

|SETUBUF
Supportedsessions. device, interface, commander
Affected by functions. il ock,itimeout

#i ncl ude <sicl. h>

int isetubuf (id, mask, size, buf);
I NST id;

i nt mask;

int size

char *buf;

Not supported on Visual BASIC.

Thei set ubuf function is used to supply the buffer(s) used for formatted
I/0. With this function you can specify the size and the address of the
formatted 1/0 buffer.

This function is used to set the size and actions of the read and/or write
buffers of formatted 1/0. The mask may be one, but NOT both of the
following flags:

| _BUF_READ Specifies the read buffer.

| _BUF_WRI TE Specifies the write buffer.

Setting a size greater than zero creates a buffer of the specified size. For
write buffers, the buffer flushes (writes to the device) whenever the buffer
fillsup and for each newline character in the format string. For read buffers,
the buffer is never flushed (that is, it holds any leftover data for the next

i scanf/i pronpt f call). Thisisthe default action.

Setting a size less than zero creates a buffer of the absolute value of the
specified size. For write buffers, the buffer flushes (writes to the device)
whenever the buffer fills up, for each newline character in the format string,
or at the completion of every i pri nt f call. For read buffers, the buffer

434 Chapter 12

Note

Note

Return Value

See Also

HP SICL Language Reference
ISETUBUF

flushes (erases its contents) at the end of every i scanf (ori pronptf)
function.

Cdlingi set ubuf flushesthe buffer specified in the mask parameter.

Once abuffer isallocated to i set ubuf , do not use the buffer for any other
use. In addition, once abuffer isallocated toi set ubuf (either for aread or
write buffer), don’t use the same buffer for any other session or for the
opposite type of buffer on the same session (write or read, respectively).

In order to free a buffer allocated to a session, make a déalktdouf ,

which will cause the user-defined buffer to be replaced by a system-defined
buffer allocated for this session. The user-defined buffer may then be either
re-used, or freed by the program.

This function returns zero (0) if successful, or a non-zero error number if an
error occurs.

“IPRINTF’, “ISCANF’, “IPROMPTF, “IFWRITE", “IFREAD”,
“ISETBUF, “IFLUSH”

Chapter 12 435

HP SICL Language Reference
ISWAP

| SWAP

C Syntax #include <sicl.h>

int iswap (addr, length, datasize);
int ibeswap (addr, length, datasize);
int ileswap (addr, length, datasize);
char *addr;

unsi gned | ong length;

i nt datasize;

Visual BASIC Function i swap
Syntax (Byval addr As Long, ByVal length As Long,
ByVal datasize As | nteger)

Function i beswap
(Byval addr As Long, ByVal length As Long,
ByVal datasize As | nteger)

Function il eswap
(Byval addr As Long, ByVal length As Long,
ByVal datasize As | nteger)

Description These functions provide an architecture-independent way of byte swapping
datareceived from aremote device or datathat isto be sent to aremote
device. Thisdatamay bereceived/sent using thei wri t efi r ead calls, or the
ifwiteli freadcals.

Thei swap function will always swap the data.

Thei beswap function assumes the datais in big-endian byte ordering (big-
endian byte ordering is where the most significant byte of datais stored at

the least significant address) and converts the data to whatever byte ordering

is native on this controller’s architecture. Or it takes the data that is byte
ordered for this controller’s architecture and converts the data to big-endian
byte ordering. (Notice that these two conversions are identical.)

Thei | eswap function assumes the data is in little-endian byte ordering
(little-endian byte ordering is where the most significant byte of data is
stored at the most significant address) and converts the data to whatever byte

436 Chapter 12

HP SICL Language Reference
ISWAP

ordering is native on this controller’s architecture. Or it takes the data that is
byte ordered for this controller’s architecture and converts the data to little-
endian byte ordering. (Notice that these two conversions are identical.)

Note Depending on the native byte ordering of the controller in use (either little-
endian, or big-endian), that either ihgeswap ori | eswap functions will
always be a no-op, and the other will always swap bytes, as appropriate.

In all three functions, thaddr parameter specifies a pointer to the data. The
length parameter provides the length of the data in bytesdaitasi ze must

be one of the values 1, 2, 4, or 8. It specifies the size of the data in bytes and
the size of the byte swapping to perform:

® 1 = byte dataand no swapping is performed.

® 2= 16-hit word data and bytes are swapped on word boundaries.

® 4 =32-bit longword data and bytes are swapped on longword boundaries.
® 8 =64-hit dataand bytes are swapped on 8-byte boundaries.

The length parameter must be an integer multiple of datasize. If not,
unexpected results will occur.

|EEE 488.2 specifies the default data transfer format to transfer datain big-
endian format. Non-488.2 devices may send data in either big-endian or
little-endian format.

Note Thesefunctionsdo not depend on aSICL session id. Therefore, they may be
used to perform non-SICL related task (namely, file 1/0).

The following constants are available for use by your application to
determine which byte ordering is native to this controller’s architecture.

| _ORDER LE This constant is defined if the native controller is
little-endian.

| ORDER BE This constant is defined if the native controller is
big-endian.

Chapter 12 437

HP SICL Language Reference
ISWAP

These constants may beused in#i f or #i f def statementsto determine the

byte ordering requirements of this controller’s architecture. This information
can then be used with the known byte ordering of the devices being used to
determine the swapping that needs to be performed.

Return Value For C programs, this function returns zero (0) if successful, or a non-zero
error number if an error occurs.

For Visual BASIC programs, no error number is returned. Instead, the global
Err variable is set if an error occurs.

See Also “IPOKE’, “IPEEK”, “ISCANF’, “IPRINTF’

438 Chapter 12

C Syntax

Visual BASIC
Syntax

Description

Note

Return Value

See Also

HP SICL Language Reference
ITERMCHR

I TERMCHR

Supportedsessions. device, interface, commander

#i ncl ude <sicl. h>

int iternchr (id, tchr);
I NST id;
i nt tchr;

Function iternchr
(Byval id As Integer, ByVal tchr As Integer)

By default, asuccessful i r ead only terminates when it reads bufsize number
of characters, or it reads a byte with the END indicator. Thei t er nchr
function permits you to define a termination character condition.

The tchr argument isthe character specifying the termination character. If
tchr is between 0 and 255, theni r ead terminates when it reads the specified
character. If tchr is-1, then no termination character exists, and any previous
termination character is removed.

Cdlingi t er nchr affectsall further callstoi read andi f r ead until you
make another call toi t er nthr. The default termination character is -1,
meaning no termination character is defined.

Thei scanf function terminates reading on an END indicator or the
termination chgaracter specified by i t er nchr.

For C programs, this function returns zero (0) if successful, or anon-zero
error number if an error occurs.

For Visual BASIC programs, no error number isreturned. Instead, the global
Err variableisset if an error occurs.

“IREAD”, “IFREAD", “IGETTERMCHR’

Chapter 12 439

C Syntax

Visual BASIC
Syntax

Description

Note

Return Value

See Also

HP SICL Language Reference
ITIMEOUT

ITIMEOUT

Supportedsessions. device, interface, commander

#i ncl ude <sicl. h>

int itinmeout (id, tval);
I NST id;
| ong tval;

Function iti meout
(Byval id As Integer, ByVal tval As Long)

Thei ti meout function isused to set the maximum time to wait for an I/0
operation to complete. In thisfunction, tval defines the timeout in
milliseconds. A value of zero (0) disables timeouts.

Not all computer systems can guarantee an accuracy of one millisecond on
timeouts. Some computer clock systems only provide a resolution of 1/50th
or 1/60th of a second. Other computers have aresolution of only 1 second.
Note that the time value is always rounded up to the next unit of resolution.

For C programs, this function returns zero (0) if successful, or a non-zero
error number if an error occurs.

For Visual BASIC programs, no error number is returned. I nstead, the global
Err variableisset if an error occurs.

“IGETTIMEOUT”

440 Chapter 12

C Syntax

Visual BASIC
Syntax

Description

Triggerson
GPIB

Triggerson
GPIO

Triggerson RS-
232 (Serial)

HP SICL Language Reference

ITRIGGER
I TRIGGER
SUPPOMEd SESSIONS:, .+ .. oo v e device, interface
Affected by functions. il ock,itimeout

#i ncl ude <sicl. h>

int itrigger (id);
I NST id;

Function itrigger
(ByVval id As Integer)

Thei tri gger function isused to send atrigger to adevice.

GPIB Device Session Triggers. Thei t ri gger function performs an
addressed GPIB group execute trigger (GET).

GPIB Interface Session Triggers. Thei tri gger function performs an
unaddressed GPIB group execute trigger (GET). Thei t ri gger command
on a GPIB interface session should be used in conjunction with

i gpi bsendcnd.

GPIO Interface Session Triggers. Thei t ri gger function performsthe
samefunctionascallingi xt ri g withthel _TRI G_STDvalue passed to it: it
pulses the CTLO control line.

RS-232 Device Session Triggers. Thei t ri gger function sends the 488.2
*TRG n command to the serial device.

RS-232 Interface Session Triggers. Thei t ri gger function performsthe
samefunctionascallingi xt ri g withthel _TRI G_STDvalue passed to it: it
pulses the DTR modem control line.

Chapter 12 441

VXI Triggers

Note

Return Value

See Also

HP SICL Language Reference
ITRIGGER

VXI Device Session Triggers. Thei t ri gger function sends aword-serial
trigger command to the specified device.

Thei tri gger functionisonly supported on message-based device sessions
with VXI.

VXI Interface Session Triggers. Thei t ri gger function performsthe
samefunctionascallingi xt ri g withthel _TRI G_STDvalue passed to it: it
causes one or more VXI trigger linesto fire. Which trigger lines are fired is
determined by thei vxi t ri gr out e function.

For C programs, this function returns zero (0) if successful, or anon-zero
error number if an error occurs.

For Visual BASIC programs, no error number isreturned. Instead, the global
Err variableisset if an error occurs.

“IXTRIG", and the interface-specific chapter in this manual for more
information on trigger actions.

442 Chapter 12

C Syntax

Visual BASIC
Syntax

Description

Return Value

See Also

HP SICL Language Reference
I[UNLOCK

|[UNLOCK

Supportedsessions. device, interface, commander

#i ncl ude <sicl. h>

int iunlock (id);
I NST id;

Function iunl ock
(Byval id As Integer)

Thei unl ock function unlocks adevice or interface that has been
previoudy locked. If you attempt to perform an operation on a device or
interface that islocked by another session, the call will hang until the device
or interface is unlocked.

Callstoi | ock/i unl ock may be nested, meaning that there must be an
equal number of unlocks for each lock. This means that simply calling the
i unl ock function may not actually unlock a device or interface again. For
example, note how the following C code locks and unlocks devices:

i lock(id); /* Device | ocked */
i unl ock(id); /* Device unl ocked */
i lock(id); /* Device | ocked */
i lock(id); /* Device | ocked */
i unl ock(id); /* Device still |ocked */
i unl ock(id); /* Device unl ocked */

For C programs, this function returns zero (0) if successful, or a non-zero
error number if an error occurs.

For Visual BASIC programs, no error number is returned. I nstead, the global
Err variableisset if an error occurs.

“ILOCK”, “ISETLOCKWAIT”, “IGETLOCKWAIT”

Chapter 12 443

Note

C Syntax

Visual BASIC
Syntax

Note

Description

HP SICL Language Reference
IUNMAP

IUNMAP

Supportedsessions. device, interface, commander

Not recommended for new program development. Use IUNMAPX instead.

#i ncl ude <sicl. h>

int iunmap (id, addr, map_space, pagestart, pagecnt);
I NST id;

char *addr;

i nt map_space;

unsi gned i nt pagestart;

unsi gned i nt pagecnt;

Function i unmap

(Byval id As Integer, ByVal addr As Long,
ByVal mapspace As | nteger,
ByVal pagestart As | nteger,
ByVal pagecnt As | nteger)

Not supported over LAN.

Thei unmap function unmaps a mapped memory space. Theid specifies a
V XI interface or device session. The addr argument contains the address
value returned from the i map call. The pagestart argument indicates the

page within the given memory space where the memory mapping starts. The

pagecnt argument indicates how many pages to free.

444 Chapter 12

HP SICL Language Reference
IUNMAP

The map_space argument contains the following legal values.

| _MAP_A16 Map in VXI A16 address space.
| _MAP_A24 Map in VXI A24 address space.
| _MAP_A32 Map in VXI A32 address space.

| _MAP_VXIDEV Map in VXI device registers. (Device session only.)
| _MAP_EXTEND Map in VXI A16 address space. (Device session only.)

| _MAP_SHARED Map in VXI A24/A32 memory that is physically
located on this device (sometimes called local shared
memory).

Return Value For C programs, this function returns zero (0) if successful, or anon-zero
error number if an error occurs.

For Visual BASIC programs, no error number isreturned. Instead, the global
Err variableisset if an error occurs.

See Also “IMAP”

Chapter 12 445

C Syntax

Visual BASIC
Syntax

Note

Description

HP SICL Language Reference
IUNMAPX

[UNMAPX

Supportedsessions. device, interface, commander

#i ncl ude <sicl. h>

i nt iunmapx (id, handle, mapspace, pagestart, pagecnt) ;
I NST id;
unsi gned | ong handleg
i nt mapspace;
unsi gned i nt pagestart;
unsi gned i nt pagecnt;

Function i unmap

(Byval id As Integer, ByVal addr As Long,
ByVal mapspace As | nteger,
ByVal pagestart As | nteger,
ByVal pagecnt As | nteger)

Not supported over LAN.

Thei unmapx function unmaps a mapped memory space. Theid specifies a
V XI interface or device session. The addr argument contains the address
value returned from the i map call. The pagestart argument indicates the
page within the given memory space where the memory mapping starts. The
pagecnt argument indicates how many pages to free.

The map_space argument contains the following legal values.

| _MAP_A16 Map in VXI A16 address space.
| _MAP_A24 Map in VX1 A24 address space.
| _MAP_A32 Map in VXI A32 address space.

| _MAP_VXIDEV MapinVXI deviceregisters. (Device session only.)

446 Chapter 12

HP SICL Language Reference
IUNMAPX

| _MAP_EXTEND Map in VXI A16 address space. (Device session only.)

| _MAP_SHARED Map in VXI A24/A32 memory that is physically
located on this device (sometimes called local shared
memory).

Return Value For C programs, this function returns zero (0) if successful, or anon-zero
error number if an error occurs.

For Visual BASIC programs, no error number isreturned. Instead, the global
Err variableisset if an error occurs.

See Also “IMAPX”

Chapter 12 447

C Syntax

Visual BASIC
Syntax

Description

Return Value

HP SICL Language Reference
IVERSION

|IVERSION

#i ncl ude <sicl.h>

int iversion (siclversion, implversion);
int *siclversion;
i nt *implversion;

Function iversion
(ByVval id As Integer, siclverson As Integer,
implversion As | nteger)

Thei ver si on function storesin siclversion the current SICL revision
number times ten that the application is currently linked with. The SICL
version number is aconstant definedinsi cl . h for C, andin SI CL. BAS or
S| CL4. BASfor Visual BASIC, as|1 _SI CL_REVI SI ON. Thisfunction stores
in implversion an implementation specific revision number (the version
number of this implementation of the SICL library).

For C programs, this function returns zero (0) if successful, or a non-zero
error number if an error occurs.

For Visual BASIC programs, no error number is returned. I nstead, the global
Err variableisset if an error occurs.

448 Chapter 12

HP SICL Language Reference
IVXIBUSSTATUS

IVXIBUSSTATUS

Supported sessions.

C Syntax

#i ncl ude <sicl. h>

int ivxibusstatus (id,
I NST id;

i nt request;

unsi gned | ong *result;

Visual BASIC
Syntax

Function i vxi busst at us
(Byval id As Integer,
result As Long)

request,

ByVal

......................... interface

result) ;

request As | nteger,

Description Thei vxi busst at us function returns the status of the VXI interface. This
function takes one of the following parameters in the request parameter and
returns the status in the result parameter.

| VXl _BUS_TRI GGER

| _VXI _BUS_LADDR

| _VXI _BUS_SERVANT AREA

| _VXI _BUS_NORMOP

| _VXI _BUS_CMDR_LADDR

Returns a bit-mask corresponding to
the trigger lines which are currently
being driven active by adevice on the
VXI bus.

Returns the logical address of the VXI
interface (viewed as a device on the
VX1 bus).

Returns the servant area size of this
device.

Returns 1 if in normal operation, and a
0 otherwise.

Returns logical address of this device’s
commander, or -1 if no commander is
present (either this device is the top
level commander, or normal operation
has not been established.

Chapter 12

449

HP SICL Language Reference
IVXIBUSSTATUS

_VXI_BUS_MAN_| D

VXI _BUS_MODEL_I D
VXl _BUS_PROTOCOL

VXl _BUS_XPROT

_VXI_BUS_SHM SI ZE

VXl _BUS_SHMV ADDR_SPACE

VXl _BUS_SHM PAGE

Returns the manufacturer’s ID of this
device.

Returns the model ID of this device.

Returns the value stored in this
device’s protocol register.

Returns the value that this device will
use to respond toraad protocol word-
serial command.

Returns the size of VXI memory
available on this device. For A24
memory, this value represents 256 byte
pages. For A32 memory, this value
represents 64 Kbyte pages. Interpret as
an unsigned integer for this command.

Returns eithe24 or 32 depending on
whether the device’s VXI memory is
located in A24 or A32 memory space.

Returns the location of the device’s
VXI memory. For A24 memory, the
result is in 256 byte pages. For A32
memory, theesult is in 64 Kbyte
pages.

450

Chapter 12

HP SICL Language Reference
IVXIBUSSTATUS

I VXl _BUS VXl MXI Returns 0 if device is a VXI device.

Returns 1 if device is a MXI device.

| VXl _BUS_TRI GSUPP Returns a numeric value indicating
which triggers are supported. The
numeric value is the sum of the

following values:

|_TRIG_STD 0x00000001L
|_ TRIG_ALL OXFFFFFFFFL
|_TRIG_TTLO 0x00001000L
|_ TRIG_TTL1 0x00002000L
|_TRIG_TTL2 0x00004000L
|_ TRIG_TTL3 0x00008000L
|_ TRIG_TTL4 0x00010000L
|_ TRIG_TTL5 0x00020000L
|_TRIG_TTL6 0x00040000L
|_ TRIG_TTL7 0x00080000L
|_TRIG_ECLO 0x00100000L
|_ TRIG_ECL1 0x00200000L
|_TRIG_ECL2 0x00400000L
|_ TRIG_ECL3 0x00800000L
|_TRIG_EXTO 0x01000000L
|_TRIG_EXT1 0x00200000L
|_TRIG_EXT2 0x00400000L
|_TRIG_EXT3 0x00800000L
|_TRIG_CLKO 0x10000000L
|_TRIG_CLK1 0x20000000L
|_TRIG_CLK2 0x40000000L
|_TRIG_CLK10 0x80000000L
|_TRIG_CLK100 0x00000800L

|_ TRIG_SERIAL_DTR 0x00000400L
|_ TRIG_SERIAL_RTS 0x00000200L
|_TRIG_GPIO_CTLO 0x00000100L
|_TRIG_GPIO_CTL1 0x00000080L

Return Value For C programs, this function returns zero (0) if successful, or anon-zero
error number if an error occurs.

For Visual BASIC programs, no error number isreturned. Instead, the global
Err variableisset if an error occurs.

See Also “IVXITRIGON”, “IVXITRIGOFF”

Chapter 12 451

HP SICL Language Reference
IVXIGETTRIGROUTE

IVXIGETTRIGROUTE

SUPPOMEd SESSIONS. .« .t it e it e interface
Affected by functions. il ock,itimeout

C Syntax #include <sicl.h>

int ivxigettrigroute (id, which, route);
I NST id;

unsi gned | ong which;

unsi gned | ong *route

Visual BASIC Function ivxigettrigroute

Syntax (Byval id As Integer, ByVal which As Long,
route As Long)

Description Thei vxi get tri gr out e function returnsin route the current routing of the
which parameter. Seethei vxi t ri gr out e function for more details on
routing and the meaning of route.

Return Value For C programs, this function returns zero (0) if successful, or anon-zero
error number if an error occurs.

For Visual BASIC programs, no error number isreturned. Instead, the global
Err variableisset if an error occurs.

See Also “IVXITRIGON”, “IVXITRIGOFF”, “IVXITRIGROUTE”, “IXTRIG”

452 Chapter 12

C Syntax

Visual BASIC
Syntax

Description

HP SICL Language Reference
IVXIRMINFO

IVXIRMINFO

Supportedsessions. device, interface, commander

#i ncl ude <sicl. h>

int ivxirmnfo (id, laddr, info);
I NST id;

i nt laddr;

struct vxiinfo *info;

Function ivxirmnnfo
(Byval id As Integer, ByVal laddr As I nteger,
info As vxi i nfo)

Thei vxi r mi nf o function returnsinformation about aVV X1 device from the
V XI Resource Manager. Theidisthe | NST for any open VXI session. The
laddr parameter contains the logical address of the VXI device. The info
parameter pointsto astructure of typest ruct vxi i nf o. Thefunction fills
in the structure with the relevant data.

Thestructurest ruct vxi i nf o (definedinthefilesi cl . h) islisted onthe
following pages.

For C programs, thevxi i nf o structure has the following syntax:

struct vxiinfo {
/* Device ldentification */

short laddr; /* Logi cal Address */

char namg 16] ; /* Synbolic Name (primary) */
char manuf_name] 16] ; /* Manuf acturer Name */

char model_name] 16] ; /* NModel Nanme */

unsi gned short man_id;, /* Manufacturer 1D */

unsi gned short model; /* NModel Nunber */

unsi gned short devclass, /* Device O ass */

/* Self Test Status */

short sel ftest; /* 1=PASSED 0=FAI LED */

/* Location of Device */

short cage num; /* Card Cage Number */

short dot; /* Slot #, -1is unknown, -2 is MXI */

Chapter 12 453

HP SICL Language Reference
IVXIRMINFO

/* Device Information */

unsi gned short protocol; /* Value of protocol register
*/

unsi gned short X protocal; / * Val ue f romRead Pr ot ocol
conmmand */

unsi gned short servant_area; /* Val ue of servant area */

/* Mermory |Information */

/* page size is 256 bytes for A24 and 64K bytes for
A32*/

unsi gned short addrspace; /* 24=A24, 32=A32, O=none */

unsi gned short memsize;/* Amount of nmenory in pages */

unsi gned short memstart;/* Start of menory in pages */

/* Msc. Information */

short dotO laddr; /* LU of slot 0 device, -1 if unknown
*/

short cmdr_laddr; /* LU of commander, -1 if top |evel*/

/* Interrupt Information */

short int_handler[8] ; /* List of interrupt handlers */
short interrupter[8] ; /* List of interrupters */

short filg[10]; /* Unused */

}
This static datais set up by the VX resource manager.

For Visua BASIC programs, the vxiinfo structure has the following syntax:

Type vxiinfo
laddr As Integer
name As String * 16
manuf_name As String * 16
model_hame As String * 16
man_id As | nt eger
model As | nt eger
devclass As | nt eger
selftest As | nteger
cage num As | nteger
dot As | nteger
protocol As I nteger
X_protocol As | nt eger
servant_area As | nt eger
addrspace As | nt eger
memsize As | nt eger

454 Chapter 12

HP SICL Language Reference
IVXIRMINFO

memstart As | nt eger
dot0_laddr As | nteger
cmdr_laddr As | nt eger
int_ handler(0 To 7) As Integer
interrupter(0 To 7) As Integer
fill(0 To 9) As Integer

End Type

Return Value For C programs, this function returns zero (0) if successful, or a non-zero
error number if an error occurs.

For Visual BASIC programs, no error number is returned. I nstead, the global
Err variableisset if an error occurs.

See Also See the platform-specific manual for the section on the Resource Manager.

Chapter 12 455

HP SICL Language Reference
IVXISERVANTS

IVXISERVANTS

SUPPOMEd SESSIONS. .« .t it e it e interface

C Syntax #include <sicl.h>

int ivxiservants (id, maxnum, list);
I NST id;

i nt maxnum;

int *list

Visual BASIC Function ivxi servants
Syntax (Byval id As Integer, ByVal maxnum As |nteger,
list() As I nteger)

Description Thei vxi servant s function returns alist of VXI servants. This function
returns the first maxnum servants of this controller. Thelist parameter points
to an array of integersthat holds at least maxnumintegers. Thisfunction fills
in the array from beginning to end with the list of active VXI servants. All
unneeded elements of the array are filled with - 1.

Return Value For C programs, this function returns zero (0) if successful, or anon-zero
error number if an error occurs.

For Visual BASIC programs, no error number isreturned. Instead, the global
Err variableisset if an error occurs.

456 Chapter 12

HP SICL Language Reference

IVXITRIGOFF
|
IVXITRIGOFF
SUPPOMEd SESSIONS. .« .ot e interface
Affected by functions. il ock,itimeout

C Syntax #include <sicl.h>

int ivxitrigoff (id, which);
I NST id;
unsi gned | ong which;

Visual BASIC Function ivxitrigoff
Syntax (Byval id As Integer, ByVal which As Long)

Description Thei vxi tri gof f function de-asserts trigger lines and leaves them
deactivated. The which parameter uses all of the same values asthei xtri g
command, namely:

| _TRI G ALL All standard triggersfor thisinterface (that is, the
bitwise OR of all valid triggers)
| _TRIG TTLO TTL Trigger Line 0
| _TRIG TTL1 TTL Trigger Line 1
| _TRIG TTL2 TTL Trigger Line 2
| _TRIG TTL3 TTL Trigger Line3
| _TRIG TTL4 TTL Trigger Line 4
| _TRIG TTL5 TTL Trigger Line5
| _TRIG TTL6 TTL Trigger Line 6
| _TRIG TTLY TTL Trigger Line7
| _TRI G _ECLO ECL Trigger Line O
| _TRIG ECL1 ECL Trigger Line 1

Chapter 12 457

Note

Return Value

See Also

HP SICL Language Reference

IVXITRIGOFF

| _TRI G _ECL2
| _TRI G _ECL3
| _TRI G_EXTO

| _TRI G_EXT1

ECL Trigger Line 2
ECL Trigger Line 3
External BNC or SMB Trigger Connector 0
External BNC or SMB Trigger Connector 1

Any combination of values may be used in which by performing a bit-wise
OR of the desired values.

To simply fire trigger lines (assert then de-assert the lines), usei xtri g
instead of i vxitrigonandivxitrigoff.

For C programs, this function returns zero (0) if successful, or anon-zero
error number if an error occurs.

For Visual BASIC programs, no error number isreturned. Instead, the global
Err variableisset if an error occurs.

“IVXITRIGON™, “IVXITRIGROUTE”", “IVXIGETTRIGROUTE,
“IXTRIG”
458 Chapter 12

C Syntax

Visual BASIC
Syntax

HP SICL Language Reference

IVXITRIGON
IVXITRIGON
SUPPOMEd SESSIONS. .« .ot e interface
Affected by functions. il ock,itimeout

#include <sicl.h”

int ivxitrigon (

INST id;

unsigned long

id, which);

which;

Function ivxitrigon
(Byval id As Integer, ByVal which As Long)

Description The ivxitrigon

|_TRIG_ALL

|_TRIG_TTLO
|_TRIG_TTL1
| TRIG_TTL2
|_TRIG_TTL3
|_ TRIG_TTL4
|_TRIG_TTL5
|_TRIG_TTL6
|_TRIG_TTL7
|_TRIG_ECLO
|_TRIG_ECL1

|_TRIG_ECL2

function asserts trigger lines and leaves them activated.

The which parameter uses al of the same values astheixtrig ~ command,
namely:

All standard triggers for this interface (that is, the
bitwise OR of all valid triggers)

TTL Trigger Line0
TTL Trigger Line 1
TTL Trigger Line 2
TTL Trigger Line 3
TTL Trigger Line 4
TTL Trigger Line5
TTL Trigger Line 6
TTL Trigger Line 7
ECL Trigger LineO
ECL Trigger Line 1
ECL Trigger Line 2

Chapter 12

459

HP SICL Language Reference

IVXITRIGON
| _TRIG ECL3 ECL Trigger Line 3
| _TRI G_EXTO External BNC or SMB Trigger Connector 0
| _TRI G EXT1 External BNC or SMB Trigger Connector 1

Any combination of values may be used in which by performing a bit-wise
OR of the desired values.

Return Value For C programs, this function returns zero (0) if successful, or a non-zero
error number if an error occurs.

For Visual BASIC programs, no error number is returned. I nstead, the global
Err variableisset if an error occurs.

See Also “IVXITRIGOFF”, “IVXITRIGROUTE", “IVXIGETTRIGROUTE,
“IXTRIG”

460 Chapter 12

C Syntax

Visual BASIC
Syntax

Description

HP SICL Language Reference
IVXITRIGROUTE

IVXITRIGROUTE

SUPPOMEd SESSIONS. .« .ot e interface
Affected by functions. il ock,itimeout

#i ncl ude <sicl. h>

int ivxitrigroute (id, in_which, out which);
I NST id;

unsi gned | ong in_which;

unsi gned | ong out_which;

Function ivxitrigroute

(Byval id As Integer, ByVal in which As Long,
ByVal out_which As Long)

Thei vxi tri grout e function routes VXI trigger lines. With some VXI
interfaces, it is possible to route one trigger input to several trigger outputs.

Thein_which parameter may contain only one of the valid trigger values.
The out_which may contain zero, one, or several of the following valid

trigger values:

| _TRI G ALL All standard triggers for this interface (that is, the
bit-wise OR of all valid triggers) (out_which
ONLY)

| _TRIG TTLO TTL Trigger Line O

|_TRIG TTL1 TTL Trigger Line 1

| _TRIG TTL2 TTL Trigger Line 2

| _TRIG TTL3 TTL Trigger Line 3

| _TRIG TTL4 TTL Trigger Line 4

| _TRIG TTL5 TTL Trigger Line5

| _TRI G TTL6 TTL Trigger Line 6

Chapter 12

461

HP SICL Language Reference
IVXITRIGROUTE

| _TRIG TTL7 TTL Trigger Line 7
| _TRI G_ECLO ECL Trigger Line O
| _TRIG ECL1 ECL Trigger Line 1
| _TRI G ECL2 ECL Trigger Line 2
| _TRI G_ECL3 ECL Trigger Line 3
| _TRI G_EXTO0 External BNC or SMB Trigger Connector 0
| _TRI G_EXT1 External BNC or SMB Trigger Connector 1

Thein_which parameter may also contain:

| _TRI G_CLKO Internal clocks provided by the controller
(implementation- specific)

| _TRI G CLK1 Internal clocks provided by the controller
(implementation- specific)

| _TRIG CLK2 Internal clocks provided by the controller
(implementation- specific)

This function routes the trigger linein the in_which parameter to the trigger
lines contained in the out_which parameter. In other words, when the line
contained in in_which fires, all of the lines contained in out_which are also
fired.

For example, the following command causes EXTO to fire whenever TTL3
fires:

ivxitrigroute(id, | _TRIG TTL3, | _TRI G EXT0);
Return Value For C programs, this function returns zero (0) if successful, or a non-zero
error number if an error occurs.

For Visual BASIC programs, no error number is returned. I nstead, the global
Err variableisset if an error occurs.

See Also “IVXITRIGON”, “IVXITRIGOFF", “IVXIGETTRIGROUTE", “IXTRIG”

462 Chapter 12

HP SICL Language Reference
IVXIWAITNORMOP

IVXIWAITNORMOP
Supportedsessions. device, interface, commander
Affected by functions.l i timeout

C Syntax #include <sicl.h>

int ivxiwaitnormop (id);
I NST id;

Visual BASIC Function i vxi wai t nor mop
Syntax (ByVal id As Integer)

Description Thei vxi wai t nor mop function is used to suspend the process until the
interface or deviceis active (that is, establishes normal operation). See the
i wai t hdl r function for other methods of waiting for an interface to
become ready to operate.

Return Value For C programs, this function returns zero (0) if successful, or anon-zero
error number if an error occurs.

For Visual BASIC programs, no error number isreturned. Instead, the global
Err variableisset if an error occurs.

See Also “IWAITHDLR”, “IONINTR”, “ISETINTR’, “ICLEAR”

Chapter 12 463

C Syntax

Visual BASIC
Syntax

Description

Note

Return Value

See Also

HP SICL Language Reference
IVXIWS

IVXIWS

SUPPOMEd SESSIONS. .« .t i it e device
Affected by functions. il ock,itimeout

#i ncl ude <sicl. h>

i nt ivxiws(id, wscmd, wsresp, rpe) ;
I NST id;

unsi gned short wscmd;

unsi gned short *wsresp;

unsi gned short *rpe;

Function ivxiws
(Byval id As Integer, ByVal wscmd As | nteger,
wsresp As I nteger, rpe As |nteger)

Thei vxi ws function sends aword-serial command to aV X| message-based
device. The wscmd contains the word-serial command. If wsresp contains
zero (0), then this function does not read aword-serial response. If wsresp is
non-zero, then the function reads aword-serial response and storesit in that
location. If i vxi ws executes successfully, rpe does not contain valid data. If
the word-serial command errors, rpe contains the Read Protocol Error
response, thei vxi ws function returns| _ERR | O, and the wsresp parameter
containsinvalid data.

Thei vxi ws function will alwaystry to read the response data if the wsresp
parameter is non-zero. If you send aword serial command that does not
return response data, and the wsresp argument is non-zero, this function will
hang or timeout (seei t i meout) waiting for the response.

For C programs, this function returns zero (0) if successful, or anon-zero
error number if an error occurs.

For Visual BASIC programs, no error number isreturned. Instead, the global
Err variableisset if an error occurs.

“ITIMEOUT”

464 Chapter 12

C Syntax

Note

Description

Note

HP SICL Language Reference
IWAITHDLR

IWAITHDLR

#i ncl ude <sicl. h>

int iwaithdlr (timeout);
| ong timeout;

Not supported on Visual BASIC.

Thei wai t hdl r function causes the process to suspend until either an
enabled SRQ or interrupt condition occurs and the related handler executes.
Once the handler completes its operation, this function returns and
processing continues.

If timeout is non-zero, then iwaithdlr terminates and generates an error if no
handler executes before the given time expires. If timeout is zero, then
i wai t hdl r waitsindefinitely for the handler to execute.

Specify timeout in milliseconds.

Not all computer systems can guarantee an accuracy of one millisecond on
timeouts. Some computer clock systems only provide a resolution of 1/50th
or 1/60th of a second. Other computers have aresolution of only 1 second.
Note that the time value is always rounded up to the next unit of resolution.

Thei wai t hdl r function will implicitly enable interrupts. In other words, if
you havecalledi i ntroff,iwaithdl r will re-enableinterrupts, then
disable them again before returning.

Chapter 12 465

HP SICL Language Reference
IWAITHDLR

Note Interrupts should be disabled if you areusing i wai t hdl r. Usei i ntrof f
to disable interrupts.

The reason for disabling interrupts is because there is a race condition
betweenthei seti ntr andi wai t hdl r, and, if you only expect one
interrupt, it might come before thei wai t hdl r executes.

The interrupts will still be disabled after thei wai t hdl r function has
completed.

For example:

iintroff ();
ionintr (hpib, act _isr);
isetintr (hpib, |I_INTR INTFACT, 1);

i gpi bpassct! (hpib, ba);
i wai thdlr (0);
iintron ();

In amulti-threaded application, i wai t hdl r will enable interrupts for the
whole process. If two threads call i i nt r of f, and one of them then calls
i wai t hdl r, interrupts will be enabled and both threads can receive
interrupt events. Note that thisis not a defect, since your application must
handle the enabling/disabling of interrupts and keep track of when all
threads are ready to receive interrupts.

Return Value Thisfunction returns zero (0) if successful, or a non-zero error number if an
error occurs.

See Also “IONINTR”, “IGETONINTR”, “IONSRQ, “IGETONSRQ,
“lINTROFF’, “IINTRON”"

466 Chapter 12

C Syntax

Visual BASIC
Syntax

Description

HP SICL Language Reference

IWRITE
IWRITE
Supportedsessions. device, interface, commander
Affected by functions. il ock,itimeout

#i ncl ude <sicl. h>

int iwite (id, buf, datalen, endi, actualcnt);
I NST id;

char *buf;

unsi gned | ong datalen;

i nt endi;

unsi gned | ong *actualcnt;

Function iwite

(Byval id As Integer, ByVal buf As String,
ByVal datalen As Long, ByVal endi As Integer,
actual As Long)

Thei wri t e function is used to send a block of datato an interface or
device. Thisfunction writes the data specified in buf to the session specified
in id. The buf argument is a pointer to the data to send to the specified
interface or device. The datalen argument is an unsigned long integer
containing the length of the data block in bytes.

If the endi argument is non-zero, this function will send the END indicator
with the last byte of the data block. Otherwise, if endi is set to zero, no END
indicator will be sent.

The actualcnt argument is a pointer to an unsigned long integer which, upon
exit, will contain the actual number of byteswritten to the specified interface
or device. A NULL pointer can be passed for this argument and no value
will be written.

If you want to passa NULL actualcnt parameter toi wri t e in Visual
BASIC, you should pass the expression 0&.

For LAN, if the client times out prior to the server, the actualcnt returned
will be 0, even though the server may have written some data to the device
or interface.

Chapter 12 467

HP SICL Language Reference
IWRITE

Return Value For C programs, this function returns zero (0) if successful, or anon-zero
error number if an error occurs.

For Visual BASIC programs, no error number isreturned. Instead, the global
Err variableisset if an error occurs.

See Also “IREAD”, “IFREAD”, “IFWRITE"

468 Chapter 12

HP SICL Language Reference

IXTRIG
|
IXTRIG
SUPPOMEd SESSIONS. .« .ot e interface
Affected by functions. il ock,itimeout

C Syntax #include <sicl.h>

int ixtrig (id, which);
I NST id;
unsi gned | ong which;

Visual BASIC Function ixtrig
Syntax (Byval id As Integer, ByVal which As Long)

Description Theixtrig function is used to send an extended trigger to an interface. The
argument which can be;

| _TRI G STD Standard trigger operation for all interfaces. The
exact operation of |_TRIG_STD depends on the
particular interface. See the following subsections
for interface-specific information.

| _TRIG ALL All standard triggers for this interface (that is, the
bit-wise OR of all supported triggers).
| _TRIG TTLO TTL Trigger Line0
| _TRIG TTL1 TTL Trigger Line 1
| _TRIG TTL2 TTL Trigger Line2
| _TRIG TTL3 TTL Trigger Line 3
| _TRIG TTL4 TTL Trigger Line4
| _TRIG TTL5 TTL Trigger Line5
| _TRI G TTL6 TTL Trigger Line 6
| _TRIG TTL7 TTL Trigger Line7

Chapter 12 469

HP SICL Language Reference

IXTRIG
| _TRIG ECLO ECL Trigger LineO
| _TRI G ECL1 ECL Trigger Line 1
| _TRIG ECL2 ECL Trigger Line 2
| _TRI G_ECL3 ECL Trigger Line 3
| _TRI G_EXTO External BNC or SMB Trigger Connector 0
| _TRI G EXT1 External BNC or SMB Trigger Connector 1
| _TRI G_EXT2 External BNC or SMB Trigger Connector 2
| _TRI G EXT3 External BNC or SMB Trigger Connector 3

Triggerson When used on a GPIB interface session, passing thel _TRI G_STDvaueto
GPIB thei xtri g function causes an unaddressed GPIB group execute trigger
(GET). Thei xt ri g command on a GPIB interface session should be used
in conjunction with thei gpi bsendcnd. There are no other valid values for
thei xt ri g function.

Triggerson Thei xt ri g function will pulse either the CTLO or CTL1 control line. The
GPIO following values can be used:

| _TRIG _STD CTLO
| _TRIG_GPI O_CTLO CTLO
| _TRIG_GPI O CTL1 CTL1

Triggerson Thei xt ri g function will pulse either the DTR or RTS modem control
RS-232 (Serial) lines. The following values can be used:
| _TRI G STD Data Terminal Ready (DTR)
| TR G_SERIAL_DTR Data Termina Ready (DTR)
| _TRI G_SERI AL_RTS Ready To Send (RTS)

470 Chapter 12

HP SICL Language Reference
IXTRIG

Triggerson VXI When used on aVXI interface session, passing thel _TRI G_STDvaueto
thei xt ri g function causes one or more V XI trigger lines to fire. Which
trigger lines are fired is determined by the i vxi t ri gr out e function. The
| _TRI G_STDvalue has no default value. Therefore, if it is not defined
before it is used, no action will be taken.

Return Value For C programs, this function returns zero (0) if successful, or anon-zero
error number if an error occurs.

For Visual BASIC programs, no error number isreturned. Instead, the global
Err variableisset if an error occurs.

See Also “ITRIGGER’, “IVXITRIGON", “IVXITRIGOFF"

Chapter 12 471

HP SICL Language Reference
_SICLCLEANUP

_SICLCLEANUP

C Syntax #include <sicl.h>

int _siclcleanup(void);

Visual BASIC Function siclcleanup () As Integer
Syntax

Note Visual BASIC programs call this routine without the initial underscore ().

Description Thisroutineis called when aprogram is done with all SICL 1/O resources.
The routine must be called before aWIN16 SICL program terminates on
Windows 95. Calling this routine is not required on Windows NT or HP-
UX. Calling thisroutine is aso not required for WIN32 SICL programs on
Windows 95.

Return Value For C programs, this function returns zero (0) if successful, or anon-zero
error number if an error occurs.

For Visual BASIC programs, no error number isreturned. Instead, the global
Err variableisset if an error occurs.

472 Chapter 12

HP SICL System Information

HP SICL System Information

This appendix provides information on SICL software files and system
interaction in Windows 95, Windows NT, and Windows 3.1. This
information can be used as a reference for removing SICL from a system, if
necessary.

474 Appendix A

HP SICL System Information
Windows 95

Windows 95

File L ocation

All SICL filesareinstaled in the base directory specified by the person who
installs SICL, with the exception of several common files that Windows
must be able to locate. On Windows 95, the following files are copied to the
system subdirectory of the main Windows directory:

¢ SICL16.DLL

¢ SICLUT17. DLL

® SICLUT16. DLL

¢ SICL32.DLL

® SICLUT31. DLL

¢ SICLRPC. DLL

¢ HPCSCP32. DLL

¢ VBSI CL32. DLL

® VBSI CL16. DLL

® HPIB.DLL

® HPI OCLAS. DLL

¢ HP341l 32. VXD

Appendix A 475

HP SICL System Information
Windows 95

The Registry

SICL places the following key in the Windows 95 registry under
HKEY LOCAL_NACHI NE:
Sof t war e\ Hewl et t - Packar d\ SI CL\ Cur r ent Ver si on

Also, if the LAN Server is configured, the following key will be created
under HKEY_LOCAL_MACHI NE if it didn’t previously exist:

Sof t war e\ M cr osof t \ W ndows\ Cur r ent Ver si on\ RunSer vi ces

HP SICL Configuration Information

SICL configuration information is stored in the Windows 95 registry under
the Sof t war e\ Hew et t - Packar d\ SI CL\ Cur r ent Ver si on branch
underHKEY LOCAL_MACHI NE.

476 Appendix A

HP SICL System Information
Windows NT

Windows NT

File L ocation

All SICL filesareinstaled in the base directory specified by the person who
installs SICL, with the exception of several common files that Windows
must be able to locate. The common filesSI CL32. DLL, SI CLRPC. DLL,
HPCSCP32. DLL, and VBSI CL32. DLL are placed in the SYSTEM32
directory, and the HP3411 32. SYS and HP074I1 32. SYS are placed in the
SYSTEMB2\ DRI VERS directory, under the main Windows directory.

The Registry

SICL places the following keysin the Windows NT registry under
HKEY LOCAL_MACHI NE:

® Software\ Hew ett - Packar d\ SI CL\ Cur r ent Ver si on

® System Current Control Set\ Control\ G oupOrder Li st

® System Current Control Set\ Control\ Servi ceOrder Li st
® System Current Control Set\ Servi ces\ hp341i 32

® System Current Control Set\ Servi ces\ Event Log\ Applicatio
n\ SI CL Log

® System Current Control Set\ Servi ces\ Event Log\ Syst em hp3
41i 32

HP SICL Configuration Information

SICL configuration information is stored in the Windows NT registry under
the Sof t war e\ Hewl et t - Packar d\ SI CL\ Cur r ent Ver si on branch
under HKEY LOCAL_MACHI NE.

Appendix A 477

HP SICL System Information
Windows 3.1

Windows 3.1

File L ocation

All SICL filesareinstaled in the base directory specified by the person who
installs SICL, with the exception of several common files that Windows
must be able to locate. These common files, SI CL16. DLL, SI CLUT16. DLL,
and HPI B. DLL, are placed in the Windows Directory.

Use of WIN.INI

SICL modifiesthethe W N. I NI file in the Windows directory during
installation. A [SI CL] sectionisadded, and aBASEDI Rdeclaration ismade
to record the location of the SICL directory on the system. This has no other
impact on your Windows configuration.

Also notethat SICL usesthe[ports] section of theW N. I NI fileto get
configuration parameters for RS-232 interfaces. Boththel / O Confi g
utility and the Windows control Panel will modify this section.

HP SICL Configuration Database

Thel/ O Confi g utility createsand maintainsa Sl CL. | NI file containing
al SICL configuration information. Thisfile islocated under the SICL base
directory. under normal circumstances, this file should only be modified
usingthel / O Confi g utility.

478 Appendix A

Porting from the
HP 82335 Command Library

Porting from the HP
82335 Command Library

The following table provides a cross-reference between HP 82335
Command Library commands and SICL function calls. It can be used as an
aid for porting programs written for the older-style callsto using SICL calls
instead.

Remember to add i open, i cl ose, and _si cl cl eanup calsto the
program. Additionally, SICL provides other features (such as error
handling) that you may wish to take advantage of, instead of doing a straight
tranglation of your existing code.

Definitions:
--nla -- Means “Not Available.”
auto Means “Happens Automatically” with no commands

needed.

480 Appendix B

Porting from the HP 82335 Command Library

82335 DOS 82335 SICL
Command Lib Windows DLL

SESSION CONTROL
- Open/Close auto HpibOpen/HpibClose iopen/iclose
- Lock/Unlock --nla -- --nla -- ilock/iunlock
- Timeout IOTIMEOUT HpibTimeout itimeout
- Error handler -n/a-- - n/a -- ionerror
DATA OUTPUT
- Unformatted IOOUTPUTB HpibOutputb iwrite
- Formatted Strings IOOUTPUTS HpibOutputs iprintf
- 488.2 Quoted Strings --n/a -- --n/a -- iprintf
- ASCII Formatted Numbers
- - Integer (NR1) IOOUTPUT HpibOutput iprintf
- - Real number(NR2,NR3) IOOUTPUT HpibOutput iprintf
- - Real array IOOUTPUTA HpibOutputa iprintf
- Binary
- - 16-bit Integers IOOUTPUTB HpibOutputb iprintf
- - 32-bit Integers IOOUTPUTB HpibOutputb iprintf
- - 32-bit Reals IOOUTPUTB HpibOutputb iprintf
- - 64-bit Reals IOOUTPUTB HpibOutputb iprintf
- 488.2 Binary
- - #B, #Q, #H --n/a -- --n/a -- iprintf
- - Arbitrary Block IOOUTPUTAB HpibOutputab iprintf
- File Output IOOUTPUTF HpibOutputf iprintf

Appendix B

481

Porting from the HP 82335 Command Library

82335 DOS 82335 SICL
Command Lib Windows DLL
DATA INPUT
- Unformatted IOENTERB HpibEnterb iread
- Formatted Strings IOENTERS HpibEnters iscanf
- 488.2 Quoted Strings --nl/a -- --nla -- iscanf
- ASCII Formatted Numbers
- - Integer (NR1) IOENTER HpibEnter iscanf
- - Real number(NR2,NR3) IOENTER HpibEnter iscanf
- - Real array IOENTERA HpibEntera iscanf
- Binary
- -16-bit Integers
- -32-bit Integers IOENTERB HpibEnterb iscanf
- -32-bit Reals IOENTERB HpibEnterb iscanf
- -64-bit Reals IOENTERB HpibEnterb iscanf
- 488.2 Binary IOENTERB HpibEnterb iscanf
- - #B, #Q, #H
- - Arbitrary Block --nl/a -- --nla -- iscanf
- File Input IOENTERAB HpibEnterab iscanf
IOENTERF HpibEnterF iscanf
DATA 1/0 CONTROL
- Prompted Input --n/a -- --n/a -- ipromptf
- Auto Byte Swap YES YES YES
- DMA ON/OFF IODMA --n/a -- ihint
- EOlI ON/OFF IOEOI HpibEoi auto
- EOL string [length] IOEOQI HpibEoi see note (2)
- Short T1 Capability IOFASTOUT HpibFastout auto
- Set Match Char IOMATCH HpibMatch itermchar
- Read termination reason IOGETTERM HpibGetterm auto
INSTRUMENT CONTROL
- CLEAR an instrument IOCLEAR HpibClear iclear
- Put device in LOCAL IOLOCAL HpibLocal ilocal or igpibrenctl
- Put device in REMOTE IOREMOTE HpibRemote iremote or igpibrenctl
- TRIGGER a device IOTRIGGER HpibTrigger itrigger
- Read stb (serial poll) IOSPOLL HpibSpoll ireadstb

482

Appendix B

Porting from the HP 82335 Command Library

82335 DOS 82335 SICL
Command Lib Windows DLL

BUS CONTROL
- Send IFC IOABORT Hpibabort iclear
- Make all dev's REMOTE IOREMOTE HpibRemote igpibrenctl
- Make all dev's LOCAL IOLOCAL HpibLocal igpibrenctl
- CLEAR all devices IOCLEAR HpibClear iclear
- Lock device front panel IOLLOCKOUT HpibLlockout igpibllo
- Send bus commands IOSEND HpibSend igpibsendcmd
- TRIGGER bus IOTRIGGER HpibTrigger itrigger
- Reset to Power up state IORESET HpibReset auto
- Set interface bus addr. IOCONTROL HpibControl igpibbusaddr
- Get interface status IOSTATUS HpibStatus igpibbusstatus
- Set/Drop ATN IOCONTROL HpibControl igpibatnctl
PARALLEL POLL
- Configure Parallel Poll IOPPOLLC HpibPpollc igpibppollconfig
- Unconfigure parallel poll IOPPOLLU HpibPpollu igpibppollconfig
- Conduct a parallel poll IOPPOLL HpibPpoll igpibppoll
MISC. CAPABILITIES
- SRQ Support IOPEN --nl/a-- ionsrq
- Interrupt support --nl/a -- --n/a-- ionintr/isetintr
- Wait for event --n/a--(1) - n/a -- iwaithdlIr
NON-CONTROLLER
- Respond to serial poll IOREQUEST HpibRequest isetstb
- Respond to parallel poll - n/a-- - n/a -- igpibppollresp
- Request Service IOREQUEST HpibRequest isetstb
- Pass Control IOPASSCTRL HpibPassctl igpibpassctl
- Take Control IOTAKECTRL HpibTakectl auto
- Can be non-Sys Ctlr? YES YES YES

Notes:

1. Can be done manually using IOSTATUS in aloop.

2. The LF"END EOL sequence (required by 488.2) can be added with
i printf.

Appendix B

Porting from the HP 82335 Command Library

484 Appendix B

Portingto Visual BASIC 4.0

Porting to Visual BASIC 4.0

This edition of this manual supports and shows how to program SICL
applicationsin Visual BASIC version 4.0 or later. If you have SICL
applicationswritten in an earlier Visual BASIC version than version 4.0 (for
example, version 3.0), you can easily port your SICL applicationsto Visual
BASIC version 4.0.

Porting your SICL applications to Visual BASIC 4.0 is a simple matter of
adding the SI CL4. BAS declaration file (rather than the SI CL. BAS file) to
each project that calls SICL for WIN16 or WIN32 (16-bit or 32-bit) Visual
BASIC 4.0 programs. There may also be changesin functions where you are
passing null pointers for stringsto SICL functions. For example, in Visua
BASIC version 3.0, the preceding By Val keyword was used as follows:

ivprintf(id, nystring, ByVal 0&)

In Visual BASIC version 4.0, you only need to pass the 0& null pointer
because version 4.0 knows thisis by reference:

ivprintf(id, nystring, 0&)

Once you have added the SI CL4. BAS declaration file to each project and
removed ByVal keywords preceding null pointersfor strings, your SICL
applications will run correctly with Visual BASIC 4.0.

486 Appendix C

HP SICL Error Codes

HP SICL Error Codes

The following table contains the error codes for the SICL software.

Error Code

Error String

Description

|_ ERR_ABORTED
|_ERR_BADADDR

|_ERR_BADCONFIG

|_ERR_BADFMT

|_ERR_BADID

|_ERR_BADMAP
|_ERR_BUSY

|_ERR_DATA

|_ERR_INTERNAL
|_ERR_INTERRUPT

|_ERR_INVLADDR

|_ERR_IO

|_ERR_LOCKED

|_ERR_NESTEDIO

|_ERR_NOCMDR

Externally aborted
Bad address

Invalid configuration

Invalid format

Invalid INST

Invalid map request

Interface is in use by
non-SICL process
Data integrity violation

Internal error occurred
Process interrupt occurred

Invalid address

Generic I/O error

Locked by another user

Nested 1/0

Commander session is not
active or available

A SICL call was aborted by external means.

The device/interface address passed to

i open doesn't exist. Verify that the interface
name is the one assigned inthe | / O Set up
utility (hweonf i g. cf file) for HP-UX, or with
the I / O Confi g utility for Windows.

An invalid configuration was identified when
calling i open.

Invalid format string specified fori pri nt f or
i scanf .

The specified | NST !lid!! does not have a
corresponding i open.

The i map call has an invalid map request.
The specified interface is busy.

The use of CRC, Checksum, and so forth imply
invalid data.

SICL internal error.

A process interrupt (signal) has occurred in
your application.

The address specified in i open is not a valid
address (for example, "hpi b, 577).

An 1/O error has occurred for this
communication session.

Resource is locked by another session (see
i setl ockwait).

Attempt to call another SICL function when
current SICL function has not completed
(WIN16). More than one I/O operation is
prohibited.

Tried to specify a commander session when it
is not active, available, or does not exist.

488

Appendix D

HP SICL Error Codes

Error Code Error String Description
|_ ERR_NOCONN No connection Communication session has never been
established, or connection to remote has been
dropped.
|_ERR_NODEV Device is not active or Tried to specify a device session when it is not

|_ERR_NOERROR

|_ERR_NOINTF

|_ERR_NOLOCK

|_ERR_NOPERM
|_ERR_NORSRC
|_ERR_NOTIMPL

|_ERR_NOTSUPP

|_ ERR_OS
|_ERR_OVERFLOW

|_ERR_PARAM

|_ERR_SYMNAME

|_ERR_SYNTAX

|_ERR_TIMEOUT

|_ERR_VERSION

available
No Error

Interface is not active

Interface not locked

Permission denied
Out of resources
Operation not implemented

Operation not supported

Generic O.S. error
Arithmetic overflow

Invalid parameter

Invalid symbolic name

Syntax error

Timeout occured

Version incompatibility

active, available, or does not exist.

No SICL error returned; function return value is
zero (0).

Tried to specify an interface session when it is
not active, available, or does not exist.

Ani unl ock was specified when device
wasn't locked.

Access rights violated.
No more system resources available.

Call not supported on this implementation. The
request is valid, but not supported on this
implementation.

Operation not supported on this
implementation.

SICL encountered an operating system error.

Arithmetic overflow. The space allocated for
data may be smaller than the data read.

The constant or parameter passed is not valid
for this call.

Symbolic name passed to i open not
recognized.

Syntax error occurred parsing address passed
toi open. Make sure that you have formatted
the string properly. White space is not allowed.

Atimeout occurred on the read/write operation.
The device may be busy, in a bad state, or you
may need a longer timeout value for that
device. Check also that you passed the correct
address to i open.

The i open call has encountered a SICL
library that is newer than the drivers. Need to
update drivers.

Appendix D

489

HP SICL Error Codes

490 Appendix D

HP SICL Function Summary

HP SICL Function Summary

The following tables summarize the supported features for each SICL
function. The first table lists the core (interface-independent) SICL
functions. The core SICL functions work on all types of devices and
interfaces. The tables after that list the interface-specific SICL functions
(that is, the SICL functionsthat are specific to HP-IB/GPIB, GPIO, LAN,
RS-232/Serid, and V XI interfaces, respectively).

Each table notes if the particular SICL function that is listed:

® Supportsdevice (DEV), interface (INTF), and/or commander (CM DR)
session(s).

® |saffected by thei | ock (LOCK) and/or thei ti meout (TIMEOUT)
function(s).

Also, the first table titled “Core SICL Functions” and the last table titled
“VXI-Specific SICL Functions” have the additional colunitAN CLIENT
TIMEOUT. The SICL functions that have X'’s in this column may timeout
over LAN, even those functions which cannot timeout over local interfaces.

Function DEV INTF CMDR LOCK TIMEOUT LAN CLIENT
TIMEOUT

IABORT
IBLOCKCOPY
ICAUSEERR X X X
ICLEAR X X X X X
ICLOSE X X X X
IFLUSH X X X X X X
IFREAD X X X X X X

492 Appendix E

HP SICL Function Summary

Function

DEV

INTF CMDR LOCK TIMEOUT LAN CLIENT

TIMEOUT

IFWRITE
IGETADDR
IGETDATA
IGETDEVADDR
IGETERRNO
IGETERRSTR
IGETINTFSESS
IGETINTFTYPE
IGETLOCKWAIT
IGETLU
IGETLUINFO
IGETLULIST
IGETONERROR
IGETONINTR
IGETONSRQ
IGETSESSTYPE
IGETTERMCHR
IGETTIMEOUT
IHINT

IINTROFF
IINTRON
ILOCAL

ILOCK

X X X X

xX X X X

X X X X X X X

X X X X X X X

X X X X

x

X X X X

X X

Appendix E

493

HP SICL Function Summary

Function DEV INTF CMDR LOCK TIMEOUT LAN CLIENT
TIMEOUT
IONERROR
IONINTR X X X X
IONSRQ X X X
IOPEN X X X X
IPOPFIFO
IPRINTF X X X X X X
IPROMPTF X X X X X X
IPUSHFIFO
IREAD X X X X X X
IREADSTB X X X X
IREMOTE X X X X
ISCANF X X X X X X
ISETBUF X X X X
ISETDATA X X X
ISETINTR X X X X
ISETLOCKWAIT X X X
ISETSTB X X X X
ISETUBUF X X X X
ISWAP
ITERMCHR X X X
ITIMEOUT X X X
ITRIGGER X X X X X
IUNLOCK X X X X
494 Appendix E

HP SICL Function Summary

Function DEV INTF CMDR LOCK TIMEOUT LAN CLIENT
TIMEOUT
IVERSION X
IWAITHDLR
IWRITE X X X X X X
IXTRIG X X X X
Function DEV INTF CMDR LOCK TIMEOUT
IGPIBATNCTL X X X
IGPIBBUSADDR X X X
IGPIBBUSSTATUS X X X
IGPIBGETT1DELAY X X X
IGPIBLLO X X X
IGPIBPASSCTL X X X
IGPIBPPOLL X X X
IGPIBPPOLLCONFIG X X X X
IGPIBPPOLLRESP X X
IGPIBRENCTL X X
IGPIBSENDCMD X X
IGPIBSETT1DELAY X X X

Appendix E 495

HP SICL Function Summary

Function DEV INTF CMDR LOCK TIMEOUT
IGPIOCTRL X X X
IGPIOGETWIDTH X
IGPIOSETWIDTH X X X
IGPIOSTAT X

Function DEV INTF CMDR LOCK TIMEOUT
IGETGATEWAYTYPE X X X
ILANGETTIMEOUT X
ILANTIMEOOUT X

496

Appendix E

HP SICL Function Summary

Function DEV INTF CMDR LOCK TIMEOUT
ISERIALBREAK X X X
ISERIALCTRL X X X
ISERIALMCLCTRL X X X
ISERIALMCLSTAT X X X
ISERIALSTAT X X X
Function DEV INTF CMDR LOCK TIMEOUT LAN CLIENT
TIMEOUT
IMAP X X X X X
IMAPINFO X X X
IPEEK
IPOKE
IUNMAP X X X
IVXIBUSSTATUS X X X X
IVXIGETTRIGROUTE X X X X
IVXIRMINFO X X X X
IVXISERVANTS X X
IVXITRIGOFF X X X X
IVXITRIGON X X X X
IVXITRIGROUTE X X X X
IVXIWAITNORMOP X X X X X
IVXIWS X X X X

Appendix E 497

HP SICL Function Summary

498 Appendix E

RS-232 Cables

RS-232 Cables

This appendix lists several general purpose HP RS-232 cables and adapters.
Consult your instrument’s operating manual for information on which status
lines are used for handshaking. Recommended cables and adapters are
shown inboldface type; the others are listed because they may work better
in some applications.

Instrument Computer/Printer HP Cable HP Adapter Length

Connector Connector Part Number Part Number

9-pin Male 25-pin Male 24542H none 3m (9ft 10in)
24542U 5181-66412 3m (9ft 10in)
F1047-80002° 5181-6641° 2.5m (8ft 2.5in)

9-pin Male 25-pin Female 24542G none 3m (9ft 10in)
24542U 5181-66402 3m (9ft 10in)
F1047-80002° 5181-66402 2.5m (8ft 2.5in)

9-pin Male 9-pin Male 24542U none 3m (9ft 10in)

24542H & 24542M
F1047-80002°

none
none

6m (19ft 10in)
2.5m (8ft 2.5in)

a. One of four adaptersin the HP 34399A RS-232 Adapter Kit. Kit
includes four adapters to go from DB9 Female Cable (HP 34398A) to
PC/Printer DB25 male or female, or to modem DB9 Female or DB25
Female.

b. Part of HP 34398A RS-232 Cable Kit. HP 34398A comes with RS-232,
9-pin female to 9-pin female Null modem/printer cable and one adapter
9-pin male to 25-pin female (HP p.n. 5181-6641). The adapter isalso
included in HP 34399A above.

500

Appendix F

RS-232 Cables

Instrument Computer/Printer HP Cable HP Adapter Length

Connector Connector Part Number Part Number

9-pin Male 25-pin Female 24542M none 3m (9ft 10in)
24542U 5181-66422 3m (9ft 10in)
F1047-80002° 5181-66422 2.5m (8ft 2.5in)

9-pin Male 9-pin Female 24542U 5181-66392 3m (9ft 10in)
F1047-80002° 5181-66392 2.5m (8ft 2.5in)

a. One of four adaptersin the HP 34399A RS-232 Adapter Kit. Kit
includes four adapters to go from DB9 Female Cable (HP 34398A) to
PC/Printer DB25 male or female, or to modem DB9 Female or DB25

Female.

b. Part of HP 34398A RS-232 Cable Kit. HP 34398A comes with RS-232,
9-pin female to 9-pin female Null modem/printer cable and one adapter
9-pin male to 25-pin female (HP p.n. 5181-6641). The adapter is aso
included in HP 34399A above.

Instrument Computer/Printer HP Cable HP Adapter Length
Connector Connector Part Number Part Number
25-pin Female 25-pin Female 24542G 5181-66422 3m (9ft 10in)
25-pin Female 9-pin Female 24542G 5181-66392 3m (9ft 10in)
24542M none 3m (9ft 10in)

a. One of four adaptersin the HP 34399A RS-232 Adapter Kit. Kit
includes four adapters to go from DB9 Female Cable (HP 34398A) to
PC/Printer DB25 male or female, or to modem DB9 Female or DB25

Female.
Instrument Computer/Printer HP Cable HP Adapter Length
Connector Connector Part Number Part Number
25-pin Female 25-pin Male 17255D 1.2m (3ft 11in)
C2913A 1.2m (3ft 11in)
24542G 5181-66412 3m (9ft 10in)
501

Appendix F

RS-232 Cables

Instrument Computer/Printer HP Cable HP Adapter Length
Connector Connector Part Number Part Number
25-pin Female 25-pin Female 13242G 5m (16ft 8in)
17255M 1.5m (4ft 11in)
C2914A 1.2m (3ft 11in)
24542G 5181-66402 3m (9ft 10in)
25-pin Female 9-pin Male 24542G none 3m (9ft 10in)
24542U 5181-66402 3m (9ft 10in)
F1047-80002° 5181-66402 2.5m (8ft 2.5in)

a. One of four adaptersin the HP 34399A RS-232 Adapter Kit. Kit
includes four adapters to go from DB9 Female Cable (HP 34398A) to
PC/Printer DB25 male or female, or to modem DB9 Female or DB25
Female.

b. Part of HP 34398A RS-232 Cable Kit. HP 34398A comes with RS-232,
9-pin female to 9-pin female Null modem/printer cable and one adapter
9-pin male to 25-pin female (HP p.n. 5181-6641). The adapter is aso
included in HP 34399A above.

502 Appendix F

RS-232 Cables

92219J
Instrument Cable PC
1 1
TX 2 2 TX
RX 3 3 RX
RTS 4 4 RTS
CTS 5 17 5 CTS
DSR 6 6 DSR
GND 7 7 GND
DTR 20 20 DTR
DB25 DB25 DB25 DB25
Female Male Female Male

Note: The 92219J is directional. This cable
may work differently when swapped

end to end.
13242G
Instrument Cable PC/Printer
1 1 Shield
TX 2 2 TX
RX 3 3 RX
RTS 4 8 CD
CTS 5 20 DTR
DSR 6 J
GND 7 7 GND
CDh 8 4 RTS
SCD 12 19 SRTS
11 j L 11
SRTS 19 12 SCD
DTR 20 5 CTS
L 6 DSR
DB25 DB25 DB25 DB25
Female Male Male Female

Appendix F

503

RS-232 Cables

24542U
Instrument Cable PC
DCD 1 G 1 DCD
RX 2 2 RX
TX 3 3 TX
DTR 4 4 DTR
GND 5 5 GND
DSR 6 6 DSR
RTS 7 7 RTS
CTS 8 — — 8 CTS
RI 9 9 RI
DB9 DB9 DB9 DB9
Male Female Female Male
F1047-80002
Instrument Cable PC
DCD 1 1 DCD
RX 2 2 RX
TX 3 3 TX
DTR 4 4 DTR
GND 5 5 GND
DSR 6 6 DSR
RTS 7 7 RTS
CTS 8 8 CTS
RI 9 9 RI
DB9 DB9 DB9 DB9
Male Female Female Male

504 Appendix F

RS-232 Cables

24542G/H
Instrument Cable PC
DCD 1 2 TX
RX 2 3 RX
TX 3 4 RTS
DTR 4 L 5 CTS
GND 5 x 6 DSR
DSR 6 7 GND
RTS 7 8 DCD
CTS 8 20 DTR
RI 9
DB9 DB9 DB25 DB25
24542H Male Female Female Male
DB9 DB9 DB25 DB25
24542G Male Female Male Female
24542M
Instrument Modem Cable Modem
DCD 1 8 DCD
RX 2 3 RX
TX 3 2 TX
DTR 4 20 DTR
GND 5 7 GND
DSR 6 6 DSR
RTS 7 4 RTS
CTS 8 5 CTS
RI 9 22 RI
DB9 DB9 DB25 DB25
Male Female Male Female

Appendix F

505

RS-232 Cables

PC

TX
RX
RTS
CTS
DSR
GND
DTR

DB25
Male

DB25
Female

PC

TX
RX
RTS
CTS
DSR
GND
DCD
DTR
RI

Instrument C2913A/C2914A
1 1
TX 2 2
RX 3 3
RTS 4 4
CTS 5 5
DSR 6 j ﬁ 6
GND 7 7
DTR 20 20
DB25 DB25 DB25
CH13A Female Male Female
DB25 DB25 DB25
C2914A Female Male Male
Typical Mouse
Instrument Adapter
DCD 1 2
RX 2 3
TX 3 4
DTR 4 5
GND 5 6
DSR 6 7
RTS 7 8
CTS 8 20
RI 9 22
DB9 DB9 DB25
Female Male Female

A mouse adapter works well as a 9 pin
to 25 pin adapter with a PC.

DB25
Male

506

Appendix F

RS-232 Cables

PC

TX

RX

RTS
CTS
DSR
GND
DCD
DTR

DB25
Male

PC/Printer

TX

RX

RTS
CTS
DSR
GND
DCD
DTR

DB25
Female

Modem

TX
RX
RTS
CTS
DSR
GND
DCD
DTR
RI

F1047-80002 5181-6641
Instrument Cable Adapter (Black)
DCD 11— 1 1 2
RX || 272 | | 2 3
TX 3 3 3 4
DTR 4 4 4 7 5
DSR 6 6 6 | 7
RISI| T > 7| |1 ——— 38
CTS 8 8 8 20
RI 9 —— 9 9
DB9 DB9 DB9 DB9 DB25
Male Female Female Male Female
F1047-80002 5181-6640
Instrument Cable Adapter (White)
DCD 11— 1 1 2
RX || 272 | | 2 2
TX 3 3 3 4
DTR 4 4 4 5
DSR 6 6 6 7
RISI| T < 7| |1 ——— 38
CTS 8 8 8 20
RI 9 — 9 9
DB9 DB9 DB9 DB9 DB25
Male Female Female Male Male
F1047-80002 5181-6642
Instrument Cable Adapter (Gray)
DCD 11— 1 1 2
RX || 27> 2| | 2 2
X 3 3 3 4
DTR 4 4 4 5
DSR 6 6 6 7
RISI| T > 7| |7 8
CTS 8 8 8 20
RI 9 —— 9 9 22
DB9 DB9 DB9 DB9 DB25
Male Female Female Male Male
F1047-80002 5181-6639
Instrument Cable Adapter (Black)
DCD 11— 1 1 1
ol N I = B - ———
X 3 3 3 3
DTR 4 4 4 4
DSR 6 6 6 6
Y I I B G————
CTS 8 8 8 8
RI 9 — 9 9 9
DB9 DB9 DB9 DB9 DB9
Male Female Female Male Male

DB25
Female

Modem

DCD
RX
TX
DTR
GND
DSR
RTS
CTS
RI

DB9
Female

Appendix F

507

RS-232 Cables

245420 5181-6641
Instrument Cable Adapter (Black) PC
DCD 17— 1 1 2 X
RX 2 2 2 3 RX
TX 3 3 3 4 RTS
DTR 4 4 4 T 5 CTS
GND 5 5 5 *>é 6 DSR
DSR 6 6 6 | 7 GND
rrs | | 7 AN Ry R
CTS 8 8 8 20 DTR
RI 9 9 9
DB9 DB9 DB9 DB9 DB25 DB25
Male Female Female Male Female Male
245420 5181-6640
Instrument Cable Adapter (White) PC/Printer
DCD 17 /——— 1 1 2 X
RX 2 2 2 3 RX
TX 3 3 3 4 RTS
DTR 4 4 4 5 CTS
GND 5 5 5 *>é 6 DSR
DSR 6 6 6 | 7 GND
RISI | I ﬂ» J[! [—— e N 4
CTS 8 8 8 20 DTR
RI 9 9 9
DB9 DB9 DB9 DB9 DB25 DB25
Male Female Female Male Male Female
245420 5181-6642
Instrument Cable Adapter (Gray) Modem
DCD 1T /71 1 2 TX
RX 2 2 2 3 RX
X 3 3 3 4 RTS
DTR 4 4 4 5 CTS
GND 5 5 5 6 DSR
DSR 6 6 6 7 GND
RTS 7 :I“ J[7 7 8 DCD
CTS 8 8 8 20 DTR
RI 9 9 9 22 RI
DB9 DB9 DB9 DB9 DB25 DB25
Male Female Female Male Male Female
24542U 5181-6639
Instrument Cable Adapter (Black) Modem
DCD 1 V77— 1 1 1 DCD
RX 1| 2 2 2T T 2| |RX
X 3 3 3 3 X
DTR 4 4 4 4 DTR
GND 5 5 5 5 GND
DSR 6 6 6 6 DSR
RIST| I ﬂ» J[! [A] AL
CTS 8 8 8 8 CTS
RI 9 9 9 9 RI
DB9 DB9 DB9 DB9 DB9 DB9
Male Female Female Male Male Female

508 Appendix F

Glossary

Glossary

address
A string uniquely identifying a particular interface or a device on that
interface.

buserror
An action that occurs when accessto a given address fails either because
no register exists at the given address, or the register at the address
refuses to respond.

buserror handler
Programming code executed when a bus error occurs.

commander session
A session that communicates to the controller of this bus.

controller
A computer used to communicate with a remote device such as an
instrument. Inthe communications between the controller and the device
the controller isin charge of, and controls the flow of communication
(that is, does the addressing and/or other bus management).

controller role
A computer acting as a controller communicating with adevice.

device
A unit that receives commands from a controller. Typically adeviceis
an instrument but could also be a computer acting in a non-controller
role, or another peripheral such as a printer or plotter.

devicedriver
A segment of software code that communicates with adevice. It may
either communicate directly with a device by reading and writing
registers, or it may communicate through an interface driver.

510

device session
A session that communicates as a controller specifically with asingle
device, such as an instrument.

handler
A software routine used to respond to an asynchronous event such as an
error or an interrupt.

instrument
A device that accepts commands and performs a test or measurement
function.

interface
A connection and communication media between devices and controllers,
including mechanical, electrical, and protocol connections.

interfacedriver
A software segment that communicates with an interface. It also handles
commands used to perform communications on an interface.

inter face session
A session that communicates and controls parameters affecting an entire
interface.

interrupt
An asynchronous event requiring attention out of the normal flow of control
of aprogram.

lock
A state that prohibits other users from accessing aresource, such asadevice
or interface.

logical unit
A logical unit isanumber associated with an interface. A logica unit, in
SICL, uniquely identifiesaninterface. Each interface on the controller must
have aunique logical unit.

511

mapping
An operation that returns a pointer to a specified section of an address space
aswell as makes the specified range of addresses accessible to the requester.

non-controller role
A computer acting as a device communicating with a controller.

process
An operating system object containing one or more threads of execution that
shareadataspace. A multi-process system isacomputer system that allows
multiple programs to execute simultaneoudly, each in a separate process
environment. A single-process system is a computer system that allows
only asingle program to execute at a given point in time.

register
An address location that controls or monitors hardware.

Session
An instance of a communications channel with adevice, interface, or
commander. A session is established when the channdl is opened with the
i open function and is closed with a corresponding call toi cl ose.

SRQ
Service Request. An asynchronous request (an interrupt) from aremote
device indicating that the device requires servicing.

status byte
A byte of information returned from a remote device showing the current
state and status of the device.

symbolic name
A name corresponding to asingle interface or device. This name uniquely
identifies theinterface or device on this controller. If thereis more than one
interface or device on the controller, each interface or device must have a
unigue symbolic name.

512

thread
An operating system object that consists of aflow of control within a
process. A single process may have multiple threads that each have access
to the same data space within the process. However, each thread hasits own
stack and all threads may execute concurrently with each other (either on
multiple processors, or by time-sharing asingle processor). Note that multi-
threaded applications are only supported with 32-bit SICL.

513

514

| ndex

Symbols

_siclcleanup (16-bit C applications), 52

_siclcleanup (C), 472

A

Access Modes, VME, 164
Active Controller, GPIB, 313
Active Controller, HP-IB as, 108
Address
bus, GPIB, 314
device, 293
interface, 301
logical unit (lu), 301
logical unit (lu) information, 302
logical unit (lu) list, 304
session, 291
Addressing
commanders, 61
devices, 58
GPIB commander sessions, 118
GPIB device sessions, 106
GPIB interface sessions, 113
GPIO interface sessions, 128
HP-1B commander sessions, 118
HP-1B device sessions, 106
HP-1B interface sessions, 113
interfaces, 60
I-SCPI device sessions, 149
LAN interface sessions, 219
LAN-gatewayed sessions, 210
parallel interface sessions, 128
RS-232 device sessions, 184
RS-232 interface sessions, 190
serial device sessions, 184
seria interface sessions, 190
VXI interface sessions, 158
V X1 message-based device sessions,
144
V X1 register-based device sessions,
148
V X1 symbolic name, 158
Application Cleanup
for 16-bitin C, 52
for Visual BASIC, 53
Applications

building 16-bit C, 44

building 32-bit C, 43

loading and running Visual BASIC,

49

Argument Modifier

in C applications, 66

in Visual BASIC applications, 76
Array Size

in C applications, 66

in Visual BASIC applications, 75
Asynchronous Events

disable, 337

enable, 338
Asynchronous Eventsin C

Applications, 85

ATN, See GPIB lines
Attention (ATN) Line, See GPIB

B

Baud Rate, 408
Big-endian Byte Order, 436
Block Transfers, 277

from FIFO, 374

to FIFO, 389
BREAK, 411
BREAK, sending, 407
Buffers

data structure, 422

flush, 285

set size, 420

set size and location, 434
Buffers, Formatted 1/0O

in C applications, 70

in Visual BASIC Applications, 80
Bus Address, GPIB, 314
Byte Order

big-endian, 436

determine, 437

little-endian, 436

C

C Language
_siclcleanup for 16-bit, 52
application cleanup for 16-bit, 52

516

asynchronous events, 85
building 16-bit DLLs, 44
building 32-bit DLLs, 43
compiling for 16-hit, 47
compiling for 32-hit, 45
error handlers, 91
error handlers examples, 93
error handlers for 32-bit, 50
formatted |/O, 63
formatted I/O example, 68
GPIB device session example, 109
GPIB interface session example, 115
GPIO interface session example, 131
handler declarations, 85
handler declarations for 16-bit, 92
handling asynchronous events, 85
HP-1B device session example, 109
HP-1B interface session example, 115
interrupt handlers, 85
linking for 16-bit, 47
linking to other libraries, 43
linking to SICL libraries for 16-bit,
a4
linking to SICL libraries for 32-bit,
43
locking example, 99
memory models for 16-bit, 42
non-formatted 1/0O example, 83
RS-232 device session example, 187
RS-232 interface session example,
194
serial device session example, 187
serial interface session example, 194
Clean up SICL for WIN16, 472
Cleanup
for 16-bit C applications, 52
for 16-bit Visual BASIC applications,
53
Clear
device, 282
interface, 282
cmdr, 61
Commander
close, 283
interrupts, 424

lock, 346

session, 365

set status byte, 433
Commander Sessions, 61

addressing, 61

cmdr, 61

GPIB, 118

HP-IB, 118
Communications Sessions

commander, 61

creating, 57

device, 58

GPIB commander, 118

GPIB device, 106

GPIB interface, 113

GPIO interface, 127

HP-1B commander, 118

HP-1B device, 106

HP-IB interface, 113

identifier, 57

interface, 60

LAN, 210

multiple, 57

paralel interface, 127

RS-232 device, 184

RS-232 interface, 190

serial device, 184

serial interface, 190
Compiling

in C for 16-hit, 47

in C for 32-hit, 45
Configuration

I/O Config utility, 476, 477

LAN, 209
Conversion Characters, 383, 401

in C applications, 67

in Visual BASIC applications, 77
Conversion of Formatted I/O

in C applications, 63

in Visual BASIC applications, 73
Converting HP 82335 Command

Library to SICL, 480

C-SCHI, 142

517

D

D32, 32-hit Access, 154
Data Transfer
direct memory access (DMA), 335
interrupt driven (INTR), 335
polling mode (POLL), 335
set preferred mode, 335
DAV, See GPIB lines
Declaration Files, 41
Device
address, 293
clear, 282
close, 283
disable front panel, 394
get device address, 293
get interface of, 298
interrupts, 423
lock, 346
remote mode, 394
session, 364, 365
status byte, 393
unlock, 443
Device Sessions, 58
addressing, 58
GPIB, 106
HP-1B, 106
|-SCPI example, 152
LAN-gatewayed, 210
RS-232, 184
serial, 184
VME devices, 161
VXI, 141
VX1 addressing, 144, 148
VX1 example, 146, 156
V XI register programming, 153
Disable Asynchronous Event Handlers,
337
Disable Events, 88
DLLs
building in C for 16-hit, 44
building in C for 32-bit, 43
DMA, 336
Drivers, |-SCPI, 151

E

Enable Asynchronous Event Handlers,
338
Enable Events, 85, 88
END Indicator, 288, 289, 326, 334,
392, 439, 467
using with iscanf, 396
EOQI, See GPIB lines
Error Handlers
C examples, 93
| ERROR _EXIT, 52, 90, 92
| ERROR_NOEXIT, 90, 92
in 32-bit C applications, 50
in C applications, 91
in Visual BASIC applications, 95
logging messages, 233
viewing error messages, 233
Visual BASIC example, 96
Error Message Logging
in Windows 95, 90
in Windows NT, 90
Errors
codes, 233, 488
current handler setting, 305
get error code, 294
get error message, 296
handlers, 356
multiple threads, 281, 295, 356
simulate, 281
troubleshooting for GPIO, 244
troubleshooting for LAN, 247
troubleshooting for LAN client, 250
troubleshooting for LAN server, 252
troubleshooting for RS-232, 243
troubleshooting for WIN16 in
Windows 95, 238
troubleshooting in Windows 95, 237
troubleshooting in Windows NT, 242
Event Viewer in Windows NT, 90
Events
asynchronous in C applications, 85
disable, 88
enable, 85, 88
Events, see Asynchronous Events
Examples

518

error handlersin C applications, 93

error handlersin Visual BASIC
applications, 96

formatted 1/O in C applications, 68

formatted I/O in Visual BASIC
applications, 78

GPIB device session, 109

GPIB interface session, 115

GPIO interface session, 131

GPIO interrupts, 135

HP-IB device session, 109

HP-IB interface session, 115

IDN program (C), 27

|1-SCPI device session, 152

LAN-gatewayed session (C), 216

LAN-gatewayed session (Visual
BASIC), 217

locking, 99

non-formatted /O, 82

oscilloscope program (C), 257

oscilloscope program (Visual
BASIC), 267

register-based example, 156

RS-232 device session, 187

RS-232 interface session, 194

serial device session, 187

serial interface session, 194

VME device interrupt, 166

VME interrupts, 178

VXI interface session, 160

V X1 message-based device, 146

=

Field Width

in C applications, 65

in Visual BASIC applications, 74
FIFO Transfers, 374, 389
Flow Control, 409
Format Flags

in C applications, 64

in Visual BASIC applications, 73
Format String

in C applications, 70

in Visual BASIC applications, 80
Formatted Data

read, 287, 387, 395

read format conversion characters,

401
read format modifiers, 399
read white-space, 398
set buffer size, 420
set buffer size and location, 434
write, 289, 376, 387

write format conversion characters,

383

write format flags, 382

write format modifiers, 380

write special characters, 378
Formatted 1/O in C Applications

argument modifier, 66

array size, 66

buffers, 70

conversion characters, 67

conversion|, 63

example, 68

field width, 65

format flags, 64

format string, 70

functions, 63

mixing with raw /O, 63

precision, 65

related functions, 71
Formatted /O in Visual BASIC

Applications

argument modifier, 76

array size, 75

buffers, 80

conversion, 73

conversion characters, 77

example, 78

field width, 74

format flags, 73

format string, 80

functions, 72

mixing with raw /O, 72

precision, 75

related functions, 81
Formatted 1/O, Description of, 62
Functions

formatted I/O in C applications, 63

519

formatted I/O in Visual BASIC
applications, 72

GPIB specific, 124

GPIO specific, 137

HP-1B specific, 124

iabort, 276

iclear, 108, 114, 129, 185, 191, 220

iclose, 57

idrvrversion, 215

iflush, 71, 81

ifread, 63, 71, 72, 81

ifwrite, 63, 71, 72, 81

igetluinfo, 220

iintroff, 88

iintron, 88

ilangettimeout, 224

ilantimeout, 224

ilock, 97

iointr, 87

ionerror, 91

ionintr, 220

ionsrq, 87, 129, 186, 192, 220

iopen, 57

iprintf, 63, 71, 129, 185

ipromptf, 63, 71, 185

iread, 82, 108, 114, 119, 129, 191,
215

ireadstb, 108, 119, 130, 185

iscanf, 63, 71, 129, 185

iserialctrl, 192

iserialmclctrl, 193

iseriamclstat, 193

iseridstat, 193

isetbuf, 70, 71

isetintr, 87

isetlockwait, 98

isetsth, 119

isetubuf, 70, 71

itermchr, 129

itrigger, 108, 114, 129, 185, 191

iunlock, 97

ivprint, 72

ivprintf, 81

ivscanf, 72, 81

iwaithdlr, 88

iwrite, 82, 108, 114, 119, 129, 191,
215

ixtrig, 114, 129, 191

LAN specific, 230

non-formatted 1/0, 82

RS-232 specific, 198

serial specific, 198

VX1 specific, 180

Gateways, LAN Sessions, 210
GET, 114

Getting Started, 26

GPIB, 319

active controller, 108, 313

ATN (Attention) line
control, 311

bus address, 314, 317

buslines, 314

bus status example, 115

byte order of data, 437

change bus address, 312

commander sessions, 118

device sessions, 106

functions, see igpib*

interface sessions, 113

interface status, 313

interrupts, 108, 423, 424

lines
active controller, 314
ATN (Attention), 314
DAV (DataValid), 314
EOI (END or Identify), 314
IFC (Interface Clear), 314
listener, 314
LLO (Local Lockout), 314
NDAC (Not Data Accepted),

314
NRFD (Not Ready for Data),
314

REM (Remote), 314

520

REN (Remote Enable), 314
SRQ (Service Request), 314
talker, 314

listener, 313

local lockout, 316

not data accepted (NDAC), 313

paralel poll, 318, 320

pass control, 317

remote enable, 314, 321

remote mode, 313, 394

send commands, 322

service requests (SRQ), 313

SICL functions, GPIB specific, 124

status, 313

system controller, 313

t1 delay, 315, 323

talker, 313

triggers, 441, 470

GPIO

auto-handshake, 325

auto-handshake status, 334

auxiliary control lines, 325

control lines, 326

control lines status, 333

datawidth, 329, 330

data-in clocking, 328

data-in line status, 333

data-out lines, 326

E2074/5 enhanced mode status, 334

END pattern matching, 326, 334

errors, 244

externa interrupt request (EIR)
status, 333

functions, seeigpio*

handshake status, 333

interface control, 324

interface line polarity, 327

interface sessions, 128

interface status, 333

interrupts, 130, 423, 424, 426

PCTL delay value, 327

peripheral control (PCTL) line, 326

peripheral status (PSTS) line, 325,
333, 334

service requests (SRQs), 129

H

SICL functions, GPIO specific, 137
status, 332

status lines, 334

triggers, 441, 470

troubleshooting problems, 244

Handler Declarations

for 16-bit in C applications, 92
in C applications, 85, 87, 91

in Visual BASIC applications, 95
QuickWin, 86, 92
SICLCALLBACK, 85, 92

Handlers

enable asynchronous event handlers,
338

error, 356

error handler setting, 305

interrupt, 360

interrupt handler address, 306

remove interrupt handler, 361

remove SRQ handler, 363

service request (SRQ), 363

SRQ handler address, 307

timeout, 465

wait for, 465

Header File, sicl.h, 41
Hostname, LAN, 211
HP-1B

active controller, 108

bus status example, 115

commander sessions, 118

device sessions, 106

interface sessions, 113

interrupts, 108

SICL functions, HP-IB specific, 124

HP-IB, See GPIB

I/O Config Utility, 58, 476, 477
| ERR NOLOCK, 97

| ORDER BE, 437

| ORDER _LE, 437

iabort, 276

521

ibblockcopy, 277

iblockcopy, 277

iblockmovex, 279

ibpeek, 294, 367

ibpoke, 294, 370

ibpopfifo, 374

ibpushfifo, 389

icauseerr, 281

iclear, 108, 114, 129, 168, 171, 185,

191, 220, 282, 411

iclose, 57, 283

Identifier, Session, 57

iderefptr, 284

IDN Example Program (C)C Language
IDN program example, 27

idrvrversion, 215

|EEE-488, See GPIB

IFC, 114

IFC, See GPIB lines

iflush, 71, 81, 285, 289

ifread, 63, 72, 81, 287
termination character, 439

ifread|, 71

ifwrite, 63, 71, 72, 81, 289

igetaddr, 291

igetdata, 292

igetdevaddr, 293

igeterrorno, 294

igeterrstr, 296

igetgatewaytype, 297

igetintfsess, 298

igetintftype, 299

igetlockwait, 300

igetlu, 301

igetluinfo, 220, 302

igetlulist, 304

igetonerror, 305

igetonintr, 306

igetonsrq, 307

igetsesstype, 308

igettermchr, 309

igettimeout, 310

igpibatnctl, 311

igpibbusaddr, 312

igpibbusstatus, 313

igpibgettldelay, 315
igpibllo, 316
igpibpassctl, 317
igpibppoll, 318
igpibppollconfig, 319
igpibppollresp, 320
igpibrenctl, 321
igpibsendemd, 322, 441
igpibsettldelay, 323
igpioctrl, 324
ihint, 335
iintroff, 88, 337
iintron, 88, 338
ilangettimeout, 224, 339
ilantimeout, 224, 340
ilblockcopy, 277
ilocal, 344
ilock, 97, 345
ilpeek, 294, 367
ilpoke, 294, 370
ilpopfifo, 374
ilpushfifo, 389
imap, 153, 294, 348
imapinfo, 350, 353, 354
imapx, 351
INST Session |dentifier, 57
integer Session Identifier, 57
Interface
address, 301
clear, 282
close, 283
get type of, 299
interrupts, 424
lock, 346
logical unit (lu) information, 302
logical unit (lu) list, 304
seria status, 414
session, 298, 364, 365
set up seria characteristics, 408
unlock, 443
Interface Sessions, 60
addressing, 60
GPIB, 113
GPIO, 128
HP-IB, 113

522

LAN, 219
paralel, 128
RS-232, 190
serial, 190
VXI, 141
VX1 addressing, 158
VX1 example, 160
Interrupt Handlersin C Applications,
85, 87
Interrupts
commander-specific, 425, 427, 429,
431
data transfer, 336
device-specific, 424, 426, 427, 429
enable and disable, 423
GPIB, 108, 424
GPIO, 130, 426
handler, 360
handler address, 306
HP-1B, 108
interface-specific, 425, 427, 428, 430
I-SCPI, 169
multiple threads, 466
nesting, 338
RS-232, 186, 192
serial, 186, 192
serial (RS-232), 427
set for commander session, 424
set for device session, 423
set for interface session, 424
VME, 165
VXI, 176, 429
ionerror, 91, 356
ionintr, 87, 220, 360
ionsrq, 87, 129, 186, 192, 220, 363
iopen, 57, 291, 294, 364
IP Address, LAN, 211
ipeek, 156, 164, 367
ipeek16x, 368
ipeek32x, 368
ipeek8x, 368
ipoke, 156, 164, 370
ipokel6x, 372
ipoke32x, 372
ipoke8x, 372

ipopfifo, 374
iprintf, 63, 71, 129, 185, 289, 294, 376
iprompt, 71
ipromptf, 63, 185, 294, 387
ipushfifo, 389
iread, 82, 108, 114, 119, 129, 168, 171,
191, 215, 288, 391
termination character, 439
ireadstb, 108, 119, 130, 168, 185, 393
iremote, 394
iscanf, 63, 71, 129, 185, 287, 294, 395
notes on using, 396
using with itermchr, 396
|-SCPI
addressing rules, 149
communicating, 142
defining a driver, 150
defining an instrument, 150
drivers, 151
interrupts, 169
programming, 151
programming example, 152
service request, 169
SICL function support, 168
iserialbreak, 407
iseridctrl, 192, 408
iseriamclctrl, 193, 412
iseridmclstat, 193, 413
iserialstat, 193, 414
isetbuf, 70, 71, 420
isetdata, 292, 422
isetintr, 87, 423
isetlockwait, 98, 346, 432
isetstb, 119, 433
isetubuf, 70, 71, 434
isprintf, 294, 376
isscanf, 294, 395
isvprintf, 294, 376
isvscanf, 294, 395
itermchr, 129, 288, 392, 439
using with iscanf, 396
itimeout, 440
itrigger, 108, 114, 129, 168, 185, 191,
441
iunlock, 97, 443

523

iunmap, 156, 165, 350, 353, 444

iversion, 448

ivprintf, 72, 81, 294, 376
restrictions with Visual BASIC, 377

ivpromptf, 294, 387

ivscanf, 72, 81, 294, 395
restrictions with Visual BASIC, 397

ivxibusstatus, 449

ivxigettrigroute, 452

ivxirminfo, 453

ivxiservants, 456

ivxitrigoff, 457

ivxitrigon, 459

ivxitrigroute, 442, 461, 471

ivxiwaitnormop, 463

ivxiws, 464

iwaithdlr, 88, 465

iwblockcopy, 277

iwpeek, 294, 367

iwpoke, 294, 370

iwpopfifo, 374

iwpushfifo, 389

iwrite, 82, 108, 114, 119, 129, 168,

171, 191, 215, 289, 467
ixtrig, 114, 129, 191, 441, 442, 469

L

LAN
addressing interface session, 219
addressing LAN-gatewayed sessions,

210

client/server, 204
communications sessions, 210
configuration, 209
errors, 247
get gateway type, 297
hostname, 211
ilangettimeout function, 224
ilantimeout function, 224
interface lock not supported, 345
interface sessions, 219
IP address, 211
locks and muiltiple threads, 221
multiple threads and locks, 221
networking protocols, 207

overview, 204

performance, 209

servers, 208

set timeout, 340

SICL functions, LAN specific, 213,

230

SICL LAN Protocol, 207

software architectur, 206

starting or stopping server, 202

TCP/IP Instrument Protocol, 207,

213

threads with LAN client, 208

timeout value, 339

timeouts, 223

timeouts with multiple threads, 342

troubleshooting problems, 247
LAN Client

definition, 204

errors, 247, 250

LAN-gatewayed sessions, 210

threads used with, 208

troubleshooting problems, 247, 250
LAN Interface Sessions

iclear, 220

igetluinfo, 220

ionintr, 220

ionsrg, 220
LAN Server

definition, 204

description of, 208

errors, 247, 252

LAN-gatewayed sessions, 210

starting or stopping, 202

troubleshooting problems, 247, 252
LAN-gatewayed Sessions, 210

example (C, 216

example (Visual BASIC), 217

idrvrversion, 215

iread, 215

iwrite, 215
LAN-to-Instrument Gateway, 205
Libraries

linking to C for 16-hit, 44

linking to C for 32-hit, 43
Linking in C for 16-bit, 47

524

Linking to SICL Libraries
C for 16-bit, 44
C for 32-hit, 43
Listener, GPIB, 313
Little-endian Byte Order, 436
LLO, See GPIB lines
Loading Visual BASIC applications, 49
Local Lockout, GPIB, 314, 316
Loca Mode, 344
Location of SICL Files
in Windows 95, 475
Lock, 345
commander, 346
device, 346
hangs due to, 346
interface, 346
nesting, 346, 443
unlock, 443
wait status, 432
Locks
actions, 98
examples, 99
in amulti-user environment, 98
multiple threads over LAN, 221
using, 97
Lockwait Flag Status, 300
Logging Messages
in Windows 95, 90
in Windows NT, 90
Logical Unit, 58, 60
address, 301
information, 302
list, 304

M

Map
memory, 348, 351
Mapping Memory
32-bit access, 154
register-based devices, 153
VME, 162
VME devices, 166
Memory
get hardware contraint information,
354

hardware constraints, 350, 353
map, 348, 351
read, 367, 368
unmap, 444
write, 370, 372
Memory 1/0O Performance with VX1,
172
Memory Modelsfor 16-bit, 42, 47
Memory Space, Mapping, 156, 165
Message Logging
in Windows 95, 90
in Windows NT, 90
Message Viewer in Windows 95, 90
Message-based Devices, 142, 168
communicating, 143
programming example, 146
Modem Control Lines, 412
Move data, Data, move, 279
Multiple Communications Sessions, 57
MXI, 451

N

NDAC, See GPIB
Nested 1/0, Avoiding, 51
Nesting

interrupts, 338

locks, 346, 443
Networking Protocols, 207
Networking, see LAN
Non-Formatted I/O

description, 62

examples, 82

functions, 82

mixing with formatted 1/0, 82
Normal Operation (VXI), 463
NRFD, See GPIB lines

O

Oscilloscope Example Program
inC, 257
in Visual BASIC, 267

P
Parallel

525

interface sessions, 128
interrupts, 130
service requests (SRQs), 129

SICL functions, parallel specific, 137

paralel poll, 319
Parallel Poll, GPIB, 318, 319, 320
Parity, 408
Pass Control, GPIB, 317
Performance

with LAN, 209

with VXI, 172
Polling, 336
Porting to SICL, 480
Porting to Visual BASIC 4.0, 486
Precision

in C applications, 65

in Visual BASIC applications, 75
Preference for Data Transfer, 335
Primary Address, 144, 148
Problems, Troubleshooting

for GPIO, 244

for LAN (client and server), 247

for LAN client, 250

for LAN server, 252

for RS-232, 243

in Windows 95, 237, 238

in Windows NT, 242
Programming to Registers, 153
Protocols, Networking, 207

Q

QuickWin Programs, Handler
Declarationsin, 86, 92

R

Raw 1/0, 82

Read
buffered data, 287
formatted data, 387, 395
memory, 367, 368
unformatted data, 391

Register Programming, 153, 156, 164

example, 156
I-SCPI, 151

Register-based Devices, 142, 170
communicating, 147
mapping memory space, 153
REM, See GPIB lines
Remote Enable, 314
Remote Enable, GPIB, 321
Remote Mode, 314, 394
Remote Mode, GPIB, 313
Removing SICL from a System, 474
REN, See GPIB lines
Resource Manager (VXI), 453
Resources, Declaring VME, 162
RS-232
device sessions, 184
errors, 243
interface sessions, 190
interrupts, 186, 192
service regquests (SRQs), 192
SICL functions, RS-232 specific, 198
troubleshooting problems, 243
RS-232, see Serid
Running Visual BASIC applications, 49

S

SCOPE Example Program
inC, 257
in Visual BASIC, 267
SCPI, 142
Send Commands, GPIB, 322
Serid
baud rate, 408
device sessions, 184
END Indicator for read, 409
END Indicator for write, 411
errors, 243
flow control, 409
functions, seeiserial*
interface sessions, 190
interface status, 414
interrupts, 186, 192, 424, 427
modem control lines, setting, 412
modem control lines, status, 413
parity, 408
resetting interface, 411
sending BREAK, 407

526

service requests (SRQs), 192
set up interface, 408
SICL functions, serial specific, 198
stop bits, 409
triggers, 441, 470
troubleshooting problems, 243
Servant Area (VXI), 449
Servants (VXI), 456
Servers, LAN, 208
Service Request, |-SCPI, 169
Service Requests (SRQs), 307, 313
handlers, 363
Session
close, 283
commander, 365
data structure, 292, 422
device, 364, 365
get address of, 291
get type, 308
interface, 364, 365
open, 364
Sessions
addressing V XI interfaces, 158
addressing V XI message-based
devices, 144
addressing V X| register-based
devices, 148
commander, 61
creating, 57
device, 58
GPIB commander, 118
GPIB device, 106
GPIB interface, 113
GPIO interface, 128
HP-IB commander, 118
HP-IB device, 106
HP-IB interface, 113
identifier, 57
interface, 60
LAN, 210
LAN interface, 219
LAN-gatewayed sessions, 210
paralel interface, 128
RS-232 device, 184
RS-232 interface, 190

serial device, 184
serial interface, 190
VXI device, 141
VXI interface, 141
V XICommunications Sessions
VXIVXI
communication ses
sions, 141
SICL LAN Networking Protocol, 207
SICL, Removing from a System, 474
SICL.BAS Declaration File, 41
sicl.h Header File, 41
SICL4.BAS Declaration File, 41
SICLCALLBACK, 85, 92
siclcleanup (16-bit Visual BASIC
applications), 53
_siclcleanup (C), 472
siclcleanup (Visual BASIC), 472
SRQ Handlersin C Applications, 85,
87
SRQ, See Service Requests
Starting or Stopping the LAN Server,
202
Status
GPIB, 313
lock wait, 432
of lockwait flag, 300
VXI bus, 449
Status Byte, 393
set, 433
Stop Bits, 409
Symbolic Name, 58, 60, 158
System Controller, GPIB, 313

T

T1 Delay, GPIB, 315, 323

Taker, GPIB, 313

TCP/IP Instrument Networking

Protocol, 207, 213

Termination Character, 288, 392, 439
get, 309

Threads
error handling, 356
errors, 281, 295

527

interrupt handling, 466
LAN timeout, 342
Threads in 32-bit, 50, 85, 208, 221 \V}
Timeouts, 465 Version, of SICL Software, 448
get current value, 310 Visual BASIC
set wait time, 440 Isgst icti ing ivorintf. 377
Timeouts with LAN, 223 restrictions using rvprintf,
restrictions using ivscanf, 397
Transfer Blocks, 277 .
Visual BASIC Language
from FIFO, 374 licati | for 16-bit. 53
to FIFO, 389 application cleanup for 16-hit,
error handler example, 96

Message Viewer in Windows 95, 90

Triggers

get VXI trigger information, 452
GPIB, 470

GPIO, 470

send, 441

send extended trigger, 469
seria (RS-232), 470

VXI, 471

VXI lines status, 449

VXI, assert, 459

VX1, de-assert, 457

VXI, route lines, 461
Troubleshooting Errors

for GPIO, 244

for LAN, 247

for LAN client, 250

for LAN server, 252

for RS-232, 243

in WIN16 on Windows 95, 238
in Windows 95, 237

in Windows NT, 242

Unformatted Data
read, 391
write, 467

Unlock

device, 443
interface, 443
nesting, 443
Unmap Memory, 444

Unmapping Memory Space, 156, 165
Utilities
Event Viewer in Windows NT, 90

I/O Config, 476, 477

error handlers, 95
formatted I/O, 72
formatted I/O example, 78
GPIB device session example, 111
GPIB interface session example, 117
GPIO interface session example, 133
HP-1B device session example, 111
HP-1B interface session example, 117
loading applications, 49
locking example, 100
non-formatted 1/0 example, 84
porting to version 4.0, 486
RS-232 device session example, 189
RS-232 interface session example,
196
running applications, 49
serial device session example, 189
seria interface session example, 196
siclcleanup for 16-hit, 53
VME
access modes, 164
communicating with devices, 161
declaring resources, 162
devices, example of programming,
166
example program, 166
interrupts, 165
interrupts example, 178
mapping memory, 162
VXI
addressing interfaces sessions, 158
addressing message-based device
sessions, 144
addressing register-based device
sessions, 148

528

bus status, 449

command module, 142, 147
commands, word-serial, 168
C-SCPI, 147

device sessions, 141
information structure, 453
interface sessions, 141
interrupts, 176, 429

I-SCPI, 147

I-SCPI programming example, 152
mapping memory space, 153

message-based device example, 146

message-based devices, 142, 168
message-based programming
example, 146
normal operation, 463
performance, 172
register programming, 153
register programming example, 156
register-based devices, 142, 170
resource manager, 453
send word-serial commands, 464
servant area, 449
servants, list of, 456
SICL functions, 180
trigger lines, 449
trigger, assert, 459
trigger, de-assert, 457
trigger, route lines, 461
triggers, 442, 471
VME devices, 161
VXI Device Sessions
example, 146, 152, 156
iclear, 168
ionsrg, 168
iread, 168
ireadstb, 168
itrigger, 168
iwrite, 168
VXI Interface Sessions
example, 160
iclear, 171
iread, 171
iwrite, 171
VXI, get trigger information, 452

vxiinfo Structure, 453

W
Wait

for handlers, 465
for normal V XI operation, 463

Wait for Handlers, 88

Wait, lock status, 432
WIN16 SICL Clean up, 472
Windows 95

_siclcleanup for 16-bit C
applications, 52

building 16-bit C applications, 44

building 16-bit DLLsin C, 44

building 32-bit C applications, 43

building 32-bit DLLsin C, 43

cleanup for 16-hit C applications, 52

cleanup in 16-bit Visual BASIC
applications, 53

compiling for 16-bit C applications,
47

compiling for 32-bit C applications,
45

error handlers for 32-bit, 50

error handlersin C applications, 91,
92

error handlersin Visual BASIC
applications, 95

error messages, 90

errors, 237

errorsin WIN16, 238

interrupt handlersin C applications,
85

LAN client and threads, 208

linking for 16-bit C applications, 47

linking to other libraries, 43

linking to SICL libraries for 16-hit C
applications, 44

linking to SICL libraries for 32-bit C
applications, 43

loading 16-bit Visual BASIC
applications, 49

memory models for 16-hit, 42

memory models for 16-bit C
applications, 47

529

message logging, 90

Message Viewer utility, 90

nested I/O in 16-bit, avoiding, 51

registry, SICL key in, 476

running 16-bit Visual BASIC
applications, 49

SICL configuration information, 476

SICL filelocation, 475

SICL key inregistry, 476

siclcleanup for 16-bit Visual BASIC
applications, 53

SRQ handlersin C applications, 85

starting or stopping LAN server, 202

threads in 32-hit, 50, 208, 221

troubleshooting, 237

troubleshooting in WIN16, 238

Windows NT

building C applications, 43

building DLLsin C, 43

compiling, 45

error handlers, 50, 91

error handlersin Visual BASIC
applications, 95

error messages, 90

errors, 242

Event Viewer utility, 90

LAN client and threads, 208

linking to other libraries, 43

linking to SICL librariesfor C
applications, 43

loading 16-bit Visual BASIC
applications, 49

message logging, 90

registry, SICL keysin, 477

running 16-bit Visual BASIC
applications, 49

SICL configuration information, 477

SICL file locationLocation of SICL
Files

in Windows NT, 477

SICL keysinregistry, 477

starting or stopping LAN server, 202

threads, 50, 221

threads in 32-bit, 208

troubleshooting, 242

Word-seriad Commands (VX1), 464
Write
buffered data, 289
formatted data, 376, 387
memory, 370, 372
unformatted data, 467

530

	Contents
	1 Introduction
	HP SICL Overview
	Other Documentation

	2 Getting Started with HP SICL
	Getting Started Using C

	3 Building an HP SICL Application
	Including the HP SICL Declaration File
	Memory Models for 16-bit Windows�Applications
	Libraries for C Applications and DLLs
	Compiling and Linking C Applications
	Loading and Running Visual BASIC Applications
	Thread Support for 32-bit Windows Applications
	Avoiding Nested I/O in 16-bit Windows Applications
	Application Cleanup

	4 Programming with HP SICL
	Opening a Communications Session
	Sending I/O Commands
	Handling Asynchronous Events in C�Applications
	Logging HP SICL Error Messages
	Using Error Handlers
	Using Locks

	5 Using HP SICL with HP-IB
	Creating a Communications Session with HP-IB
	Communicating with HP-IB Devices
	Communicating with HP-IB Interfaces
	Communicating with HP-IB Commanders
	Writing HP-IB Interrupt Handlers
	Summary of HP-IB Specific Functions

	6 Using HP SICL with GPIO
	Creating a Communications Session with GPIO
	Communicating with GPIO Interfaces
	Summary of GPIO Specific Functions

	7 Using HP SICL with VXI
	Creating a Communications Session with VXI
	Communicating with VXI Devices
	Communicating with VXI Interfaces
	Communicating with VME Devices
	Looking at HP SICL Function Support with VXI
	Considering VXI Backplane Memory I/O Performance
	Using VXI Specific Interrupts
	Summary of VXI Specific Functions

	8 Using HP SICL with RS-232
	Creating a Communications Session with RS-232
	Communicating with RS-232 Devices
	Communicating with RS-232 Interfaces
	Summary of RS-232 Specific Functions

	9 Using HP SICL with LAN
	Overview of LAN with HP SICL
	Considering LAN Configuration and Performance
	Communicating with LAN Devices
	Using Locks and Multiple Threads over LAN
	Using Timeouts with LAN
	Summary of LAN Specific Functions

	10 Troubleshooting Your HP SICL Program
	HP SICL Error Codes
	Common Problems with Windows 95
	Common Problems with WIN16 Programs on Windows 95 and Windows 3.1
	Common Problems with Windows 3.1
	Common Problems with Windows NT
	Common Problems with RS-232
	Common Problems with GPIO
	Common Problems with HP SICL over LAN (Client and Server)

	11 More HP SICL Example Programs
	Example C Program for Oscillosopes
	Example Visual BASIC Program for Oscillosopes

	12 HP SICL Language Reference
	IABORT
	IBLOCKCOPY
	IBLOCKMOVEX
	ICAUSEERR
	ICLEAR
	ICLOSE
	IDEREFPTR
	IFLUSH
	IFREAD
	IFWRITE
	IGETADDR
	IGETDATA
	IGETDEVADDR
	IGETERRNO
	IGETERRSTR
	IGETGATEWAYTYPE
	IGETINTFSESS
	IGETINTFTYPE
	IGETLOCKWAIT
	IGETLU
	IGETLUINFO
	IGETLULIST
	IGETONERROR
	IGETONINTR
	IGETONSRQ
	IGETSESSTYPE
	IGETTERMCHR
	IGETTIMEOUT
	IGPIBATNCTL
	IGPIBBUSADDR
	IGPIBBUSSTATUS
	IGPIBGETT1DELAY
	IGPIBLLO
	IGPIBPASSCTL
	IGPIBPPOLL
	IGPIBPPOLLCONFIG
	IGPIBPPOLLRESP
	IGPIBRENCTL
	IGPIBSENDCMD
	IGPIBSETT1DELAY
	IGPIOCTRL
	IGPIOGETWIDTH
	IGPIOSETWIDTH
	IGPIOSTAT
	IHINT
	IINTROFF
	IINTRON
	ILANGETTIMEOUT
	ILANTIMEOUT
	ILOCAL
	ILOCK
	IMAP
	IMAPX
	IMAPINFO
	IONERROR
	IONINTR
	IONSRQ
	IOPEN
	IPEEK
	IPEEKX8, IPEEKX16, IPEEKX32
	IPOKE
	IPOKEX8, IPOKEX16, IPOKEX32
	IPOPFIFO
	IPRINTF
	IPROMPTF
	IPUSHFIFO
	IREAD
	IREADSTB
	IREMOTE
	ISCANF
	ISERIALBREAK
	ISERIALCTRL
	ISERIALMCLCTRL
	ISERIALMCLSTAT
	ISERIALSTAT
	ISETBUF
	ISETDATA
	ISETINTR
	ISETLOCKWAIT
	ISETSTB
	ISETUBUF
	ISWAP
	ITERMCHR
	ITIMEOUT
	ITRIGGER
	IUNLOCK
	IUNMAP
	IUNMAPX
	IVERSION
	IVXIBUSSTATUS
	IVXIGETTRIGROUTE
	IVXIRMINFO
	IVXISERVANTS
	IVXITRIGOFF
	IVXITRIGON
	IVXITRIGROUTE
	IVXIWAITNORMOP
	IVXIWS
	IWAITHDLR
	IWRITE
	IXTRIG
	_SICLCLEANUP

	A HP SICL System Information
	Windows 95
	Windows NT
	Windows 3.1

	B Porting from the HP�82335�Command�Library
	C Porting to Visual BASIC 4.0
	D HP SICL Error Codes
	E HP SICL Function Summary
	F RS-232 Cables
	Glossary
	Index

