Mac OS 8 Only Application

This paper describes aMac OS 8 Only Application.

1.0 Definition

A Mac OS 8 Only Application isa new application type that explicitly
takes advantage of Mac OS 8 technologies. It only uses preferred
Mac OS 8 technologies (APISs).

This paper describes two distinct types of Mac OS 8 Only applications:

1. User Interface Application
2. Server programs

If you are concerned with binary or source compatibility (i.e you are
starting from a System 7.x source base), see the Mac OS 8 Transitional
Application document and/or the Mac OS 8 Compatible Application
document.

11 User Interface Application

The User Interface Application is a classification of application which has
windows, menus, dialogs, controls, etc. It often is document-centric and
supports multiple windows. Most mainstream productivity applicationsfall
into this category.

Two magjor technologies, Events and HI Obj ect s, which have a profound
affect on User Interface applications have changed in Mac OS 8.

Mac OS 8 Only Application

1996 WWDC

Mac OS 8 Only Application

WWDC 1996

111 Events

Overview

The code of a User Interface application is a collection of routines. In a
Mac OS 8 application, these routines can be reached by Apple Event and
SOM dispatching in addition to the traditional bindings provided by a
compiler and linker. In Mac OS 8, Apple Event dispatching isthe principle
“plumbing” for connecting “black boxes’ of routinestogether. Aninterface
file (for example, HIWindows.idl, HILists.idl, or HIDiaogs.idl) often
represents a“black box” or component.

InaMac OS 8 application, Apple Events are used for virtually al
communication between the operating system components and the
application. Apple Events are used to communicate low-level information,
such as key presses and mouse movement, subsuming the role that |ow-
level events played in System 7. Apple Events also continue to be used for
higher-level semantic events, such as Open Document, Print, and Quit.

If unhandled by the application, low-level events are typically handled by
various Mac OS 8 components that increase the meaning of the event by
adding, refining, or otherwise transforming the information. Each
component then produces an event with higher semantic meaning, whichis
handled by another component.

The developer of aMac OS 8 application is often concerned with the point
in each “event transformation pipeline” at which the application wants to
tap in, with Apple Event handlers, to receive information. Generaly, the
further down the pipeline, the more the operating system is doing for the
application.

In the simplest terms, aMac OS 8 Only Application:

e Creates one or more Apple Event Handler Tables using
AENewHand| er Tabl €),

« Instalsone or more Apple Event Handlers into each table using
AEl nst al | Handl er(),

» Associates the table with an Apple Event Dispatcher using
AEPushDi spat cher Handl er Tabl €),

« If debugging, sets breakpointsin the handlersinstalled in the tables as
needed,

« and gives control “forever” to the Apple Event Dispatcher using
AERecei ve().

Mac OS 8 Only Application WWDC 1996

Mac OS 8 Only Application

WWDC 1996

Application
Startup

A Mac OS 8 application does not have an event loop in the traditional
System 7 sense. Rather, after installing an initial set of process-wide Apple
Event handlers, the application makes asingle call to the AEReceive
function, which retains control until an Apple Event handler returns a
specia error code, errAEReceiveTerminate. Typically the application’s
Quit handler will return thiserror code. Inside AEReceive, the Apple Event
manager uses Mac OS 8 microkernel servicesto yield processor time until
an event is available for the application. A simple Mac OS 8 application’s
startup code and Quit handler might look like this:

mai n()

{
AEHandl| er Tabl eRef processTabl e;
I nitFonts();
InitCursor();

AENewHand!| er Tabl e(&r ocessTabl e, 0);
AEIl nst al | Handl er (pr ocessTabl e,
kCor eEvent d ass,
KAEQui t Appl i cati on,
Handl eQui t
0);
AEPushDi spat cher Handl er Tabl e(
AECet Def aul t Di spat cher (),
processTabl e) ;

Creat eMenus();

AERecei ve(AEGet Def aul t Di spat cher (),
kAERecei veFor ever) ;

return O;

}

OSSt at us Handl eQui t (const Appl eEvent *event,
Appl eEvent *reply, void *refCon,
AEHandl| er Tabl eRef tabl e)

return err AERecei veTer m nat e;

Mac OS 8 Only Application

WWDC 1996

Mac OS 8 Only Application

WWDC 1996

The application first initializes the Font Manager and the system cursor.
Note that a Mac OS 8 application no longer needsto call any of the
other system initialization routines (I ni t Graf, | ni t W ndows,

I ni t Menus, TEInit,orlnitD al ogs). The QuickDraw shared
library now exportsa QDA obal s data structure for use by the current
process, and InitGraf is called automatically for you by the system to
initialize that structure; you do not need to define your own

QDA obal s. The other Toolbox initialization routines are only
provided for backwards compatibility with System 7 applications.
Next, the application creates an AEHand| er Tabl e anew datatype
supported by the Mac OS 8 Apple Event Manager. System 7 also
supported handler tables, but only in alimited, implicit fashion; there
was only one handler table for the entire process, which the System 7
API AEl nst al | Event Handl er modified. The Mac OS 8 Apple
Event Manager supports multiple handler tables, which may be stacked
or removed in LIFO order on an Apple Event dispatcher. The Apple
Event dispatcher is anew structure that serves as an event target; there
isadefault dispatcher created automatically for each process, and an
application may create additional dispatchers. When processing an
Apple Event, the Apple Event Manager scans the stack of handlers on
the process dispatcher, looking for the first table that contains a
matching handler; that handler is then invoked with the event. (See the
document Apple Eventsin Mac OS8 for more information.)

After creating a handler table, the application installs a Quit handler
and pushes the handler table onto the process dispatcher. This ensures
that any Quit events received by the process will be sent to the
application’s handler.

Next, the application creates its menus. Menus are discussed in more
detail below, in the section on HI Qbj ect s.

Finally, the application callsAERecei ve, specifying that the Apple
Event Manager should look for events on the process dispatcher, and
that it should continue looking for events forever until ahandler returns
err AERecei veTer m nat e lt'salso possibleto tell AERecei veto
return after receiving just the next event.

To construct its menus, windows, and other user interface elements, a
Mac OS 8 application usesthe Hl Cbj ect sclasslibrary. H Cbj ect sare
discussed next.

Mac OS 8 Only Application

WWDC 1996

Mac OS 8 Only Application

WWDC 1996

112 HIObjects

The Hl Obj ect sclasslibrary isanew object-oriented human interface

toolkit provided by Mac OS 8. It entirely replaces the System 7 Window,
Control, Dialog, Menu, and List Managers; a Mac OS 8 application will

not use any of those managers at all.

The Hl Qbj ect s classlibrary isimplemented using SOMODbjects for
Mac OS 8, the Macintosh implementation of IBM’s System Object Model.
SOM allows Appleto present a consistent, object-oriented programming
model for all user interface elements, making it easier for application
developersto learn and use the programming interfaces. It also allows
Appleto modify and enhance the HI Cbj ect s classlibrary in the future
without breaking existing clients, unlike the System 7 Toolbox APIs, in
which Apple was severely limited in the changes that could be made
without compromising backwards compatibility. SOM is also designed to
be language-independent, so the HI Cbj ect s class library may be used
from both C and C++.

The Hl Obj ect s classlibrary is so named because most classesin it
descend from asingle root class, HI Cbj ect. The descendants of

HI Obj ect are H W ndowand HI Panel . H W ndows replace the
System 7 Window manager; they serve as containers for Hl Panel s.
HI Panel s and their descendants provide the actual user interface
elements: all of the standard System 7 controls, a new set of controls
provided in Mac OS 8, static items such as text captions and pictures,
menus, lists, edit fields, and so on.

It’simportant to note that HI Cbj ect s are not an application framework,
and are not meant to replace Apple or third-party application frameworks.
An application framework typically provides a default implementation of
an event loop, document support, a z-ordered and clipped view system for
subdividing window content, and many other higher-level features. The

HI Obj ect s classlibrary provides none of these features; it is strictly a
user-interface toolkit that may be used by applications or by frameworks to
build higher-level components and structures.

A Mac OS 8 application written in C might create an HIWindow like this:

static void Creat eSanpl eW ndow Envi ronnment * ev,
Rect * bounds,
ResID titlel DD
const StringPtr text,
AEHandl| er Tabl eRef w ndowTabl e)

Mac OS 8 Only Application

WWDC 1996

Mac OS 8 Only Application

WWDC 1996

}

H W ndow* newW ndow,
Ref Label | abel ={kHel | oCreator, kDocunentl D};

newwW ndow = H W ndowNew() ;
_I'ni t Wndow newW ndow, ev,
&l abel
bounds,
kHI W ndowNor mal Cl ass,
kH W ndowDocunent Vari ant ,
kHI W ndowSt andar dDocunent At tri but es
| kH W ndowQui t OnCl ose,
(HI Root Panel *) kH W ndowDef aul t Root Panel ,
(H W ndow*) kHI First W ndowO C ass) ;
MyPushW ndowEvent Tabl e(newW ndow, ev,
wi ndowTabl e) ;
Set Hl Qoj ect Text Ti t| e(newW ndow,
ev, titlelD);
AddCol | ectionlten
_CGet Col | ecti on(newwW ndow, ev),
" TEXT',
0,
StrLength(text) + 1,
text);
_Show(newW ndow, ev);

static void MyPushW ndowkvent Tabl e(H W ndow*
wi ndow, Environnent* ev, AEHandl er Tabl eRef
sour ceTabl e)

{

AEDI spat cher Ref di spat cher;
AEHandl| er Tabl eRef t enpTabl €;

di spat cher = _Get Event Di spat cher (W ndow,
ev);
AEShar eHand| er Tabl e(sour ceTabl e,
(voi d*) w ndow,

& enpTabl e) ;
AEPushDi spat cher Handl er Tabl e(di spat cher,
tenpTabl e) ;

Mac OS 8 Only Application

WWDC 1996

Mac OS 8 Only Application

WWDC 1996

Because this sampleiswritten in C, the application uses the
HIWindowNew() function to allocate memory for the window. An
application written in C++ could simply say “new H W ndow.
After allocating the window, the application calls the window’s
I ni t W ndowmethodtoinitializeit. All Hl Qbj ect s shareacommon
two-step initialization; first, the object is allocated; second, the objectis
initialized. No Hl Qbj ect may be used before it isinitialized. In this
sample, the application specifies that:

« this window should go in the normal document layer of windows

(kHI W ndowNor mal Cl as9

« its appearance should be that of a document

(kHI W ndowDocunent Var i ant)

« it has a standard set of attributes, including close, zoom, collapse,

and grow boxes, and that it automatically sends a Quit Apple Event

when closed (kHI W ndowSt andar dDocunent At t ri but eg

kHI W ndowQui t OnCl os¢

« it should receive a default root panel automatically to hold any

HIPanels that may be placed into the window

(kHI W ndowDef aul t Root Panel)

« it should be positioned at the front of the window z-order

(kHI Fi r st W ndowOf Cl as9

Asdescribed in the Events discussion above, each process hasan Apple
Event dispatcher associated with it. Each window also has an Apple
Event dispatcher associated with it, and Mac OS 8 automatically sends
apredefined set of eventsto awindow as necessary. When a window
needs to be updated, for example, its dispatcher will receive an update
Apple Event. In this example, the application has created an Apple
Event handler table that will be used by each of its windows. After
creating the window, the application uses its own utility routine

My PushW ndowEvent Tabl eto clone the handler table and then
push the cloned reference onto the window’ s dispatcher.

After installing the event handler table, the application uses the

Set HI Obj ect Text Ti t | eroutine to set thetitle of the window. The
source code for thisroutine is provided on the WWDC 96 CD in the
HelloWorldC sample application

Next, the application associates some window-specific data with the
window using the window’ s collection. The Collection Manager,
originally provided with QuickDraw GX, isused by theHI Obj ect s
class library to provide each HIObject with an extensible collection of
application-specific data.

Finally, sinceal HI Obj ect s areinvisible when initialy created, the
application shows the window.

Mac OS 8 Only Application

WWDC 1996

Mac OS 8 Only Application

WWDC 1996

To create some ssimple menus, A Mac OS 8 Application might use the
following code:

static void CreateMenus(Environment* ev)

{

H Menu* r oot Menu;
H Menu* scrat chMenu;
HI St at eChangeCal | backRef scr at chRef ;

/'l menu bar

root Menu = H MenuNew() ;

_I'ni t Menu(root Menu, ev, NULL);

_Addl tens(root Menu, ev, kHI Firstlitem 2);

/'l Apple nmenu
scratchMenu = H MenuNew() ;
_InitMenu(scratchMenu, ev, NULL);
_Addl t ens(scrat chMenu, ev,
kKHIFirstlitem 1);

_AddSt at eChangeCal | back(scrat chMenu, ev,
(HI St at eChangeCal | backProcPtr) MenuChanged,

&scr at chRef) ;
Set Hl Obj ect Text Tit| e(scrat chMenu,

ev, kAppleTitlelD);
Set upMenul t en(scr at chMenu, ev, 0,

kAboutltem D, 0, kAboutlD);
_SetltentChild(root Menu, ev,
0, scratchMenu);

/'l File menu
scratchMenu = H MenuNew() ;
_InitMenu(scratchMenu, ev, NULL);
_Addl tens(scrat chMenu, ev,

kKHIFirstltem 1);
_AddsSt at eChangeCal | back(scrat chMenu, ev,
(HI St at eChangeCal | backProcPtr) MenuChanged,

&scrat chRef) ;
Set Hl Obj ect Text Tit| e(scrat chMenu,
ev, kFileTitlelD);

Set upMenul t en(scr at chMenu, ev, 0,

kQuitltem D, 'Q, kQitlID);

Mac OS 8 Only Application

WWDC 1996

Mac OS 8 Only Application

WWDC 1996

_SetltentChil d(root Menu, ev, 1,
scrat chMenu) ;

_Set Root Hl Menu(ev, rootMenu);
_Show(r oot Menu, ev);
_Draw(root Menu, ev, NULL, NULL);

Inthe HI Obj ect s classlibrary, the System 7 menu bar has been
replaced by the concept of aroot menu which contains other menus.
The root menu is special inthat it is drawn in the menu bar area of the
screen; however, in other respectsit is exactly the same as any other
menu. The application thereforefirst creates and initializes aroot menu,
and adds two empty itemsto it to hold the Apple and File menus.
Next, the application creates the Apple menu. It adds one empty to the
menu, to hold the About menu item, and then calls the

Set upMenul t emutility routine to set the contents of that item. The
application also attaches a state-changed callback to the menu. Each

HI Obj ect hasassociated with it alist of state-changed callback
functions that are called under predefined circumstances when part of
the object’ s state changes. A menu, for example, callsits state-changed
callbacks when a selection is made from the menu. The application’s
state-changed callback is shown below.

After creating the Apple menu, the application creates the File menu in
the same way, and then sets its root menu as the root menu known to
the Hl Obj ect s classlibrary. Finally it shows and draws the root
menul.

static void SetupMenulten(H Menu* nenu,

Envi ronment * ev,

H ltenml ndex item
Resl D text!1 D,

U nt 16 accel erat or,
OSType code)

Ref Label | abel ;

| abel . creator = kHel | oCreator;
| abel .id = code;

Mac OS 8 Only Application

WWDC 1996

Mac OS 8 Only Application

WWDC 1996

Set Li st | tenlext | mage(nmenu, ev, item
textID);
I f (accelerator = 0)
{
_SetltemAccel erat or (nenu, ev,
item kHI Accel er at or Conmand,
accel erator);

}
_SetltenRef Label (nmenu, ev, item &l abel);

The application uses the Set upMenul t emutility function to prepare
itsmenu items. Set upMenul t ermmusesthe

Set Li st |t eniText | mageroutine to load the text of the menu item
from a TextObject resource and install it into the menu title. The source
code for thisroutine is provided on the WWDC '96 CD in the
HelloWorldC sample application. Set upMenul t enmelso sets the

Ref Label of the menuitem. A Ref Label isastructure used by
Mac OS 8 that contains two OSTypes. It isused as an identifier for a
particular part of the system. The Hl Cbj ect s class library provides
spacefor aRef Label for each Hl Obj ect and for eachitemin a
menu or list. In this case, the application isusing the Ref Label onthe
menu item to uniquely identify which item was selected in its state-
changed callback:

static void MenuChanged(Envi ronnment* ev,

HI St at eChangeCodeCr eat or creat or,
HI St at eChangeCode what Happened,
HI Cbj ect* obj ect)

Ref Label | abel ;

if (creator != kH Object Appl eCreator ||
what Happened ! = kHI St at eChangel t enSel ect ed)
return;

_Cet |l tenRef Label ((H Menu*) object, ev,
_Cet Sel ectedl ten((H Menu*) object,
ev),
&l abel) ;

Mac OS 8 Only Application

WWDC 1996

Mac OS 8 Only Application

WWDC 1996

switch (Il abel.id)
{
case kAboutl D:
ShowAbout (ev) ;
br eak;

case kQitlD:
SendQuit(true);
br eak;

def aul t:
br eak;

« A state-changed callback receives two OSTypes classifying what
happened: a creator code indicating the owner of the code, and a
specific constant for each kind of state change. All state-changed codes
produced by the Hl Obj ect s classlibrary use
kHI Qbj ect Appl eCr eat or asthe creator code. In its state-changed
callback, the application determines which menu item was selected by
looking at theitem’sRef Label . It then dispatches to the correct
handler for that item.

This overview only describes afew areas of the Hl Qbj ect s classlibrary.
For amore complete discussion, see the document Human Interface
Toolbox, particularly chapter 1, “Introduction to the Mac OS 8 Toolbox.”

1.2

Utility Applications

Utility applications are a class of User Interface applications that are not
document-centric, but do make use of the user interface and do interact

with the user.

Mac OS 8 will enable these types of applications by allowing the
application to control several aspects of the user interface:

Mac OS 8 Only Application

WWDC 1996

Mac OS 8 Only Application WWDC 1996

1. MenuBar - Mac OS 8 Only utility applications determine if and when
the MenuBar should be displayed. The system will not assume that the
MenuBar must be available.

2. ProcessMenu - Mac OS 8 Only utility applications determine if and
when their process name should appear in the Process Menu. Coupled
with the MenuBar control (above), the utility application can be user-
accessible and controllable during part of itslifetime, and “invisible’
during others.

3. User Input Focus- Mac OS 8 Only utility applications will be able to
acquire and release the User Input focus. This alows the utility
application to receive user input events (e.g. keyboard and mouse
events) even when it is not the foreground process.

13 Factored Applications

Factored applications are a class of User Interface applications that are
structured in such away as to maximize user interface response and
perceived performance. In addition, factored applications will typically
make better use of the system by maximizing the advantages of preemptive

multi-tasking.
Factoring Your The idea of factoring your application into auser interface (“front half”)
App in System 7.x part and the response (“engine”) part is not new to Mac OS 8. Applications

that are scriptable and recordable are already factored to a degree.
Mac OS 8 allows you to take a System 7 factored application and factor it
further into separate preemptive tasks.

Mac OS 8 provides preemptive tasking, synchronization services and a
reentrant Apple Event Manager. With these services, you can further
separate your application into functional categories. In this scenario, you
could send all computationsto the computational task, the file system work
to the filesystem task, etc.

If more fine-grained concurrency is desired, you can even consider atask
oriented division where the "back-end" work associated with the user
command is accomplished by atask. In this scenario, the task could be
created dynamically to act upon the user’s command. When the work
associated with this command is done, the task could terminate. Another
aternativeisto have a"pool" of tasks waiting to act on the next user
command.

Mac OS 8 Only Application WWDC 1996

Mac OS 8 Only Application

WWDC 1996

14 How To Build a Mac OS 8 Only User Interface

Application

Interfaces

Libraries

Compiling Your

Application

Linking Your
Application

Running Your
Application

A Mac OS 8 Only application requires the interfaces and libraries on the
Mac OS 8 Developer s Release: Compatibility Edition CD. Thisrelease
will provide hel pful feedback while you are compiling, linking and running
your application.

The Mac OS 8 version of the interfaces, like all Apple interfaces, are
universal to all Apple software. These are the interfaces that Apple
engineers use to write their software. The Mac OS 8 Developer s Release:
Compatibility Edition CD will include the latest version of our interfaces.

In addition to the interfaces on the CD, we will include stub libraries on the
CD to link your application against. These libraries correspond to the
different types of products you might build. They allow you to link against
one library without having to know what specific library the service (and
symbol) in question came from.

Tolink aMac OS 8 Only application, usethe BUI LDI NG_FOR_SYSTEMB
compiler flag to indicate to the system that you are building an application
which only runs on Mac OS 8.

Tolink aMac OS 8 Only application, use the AppMac OS8. st ubs
library in your development environment. Linking against this library
ensures that you will not import facilities which are deprecated. The

Mac OS 8 Only application does not link against InterfaceLib. It only links
against libraries that are needed, and only requires these libraries and their
dependent libraries at runtime. This allows Mac OS 8 Only applications
which uses fewer system services to consume fewer system resources.

When running your application against the debug version of the system
release (on the Mac OS 8 Developer s Release: Compatibility Edition),
you may encounter debugger breaks which detect unsupported or
discouraged usage patterns. Thiswill help you determine how well your
application will run.

Mac OS 8 Only Application

WWDC 1996

Mac OS 8 Only Application WWDC 1996

21 Server Programs

Mac OS 8 provides the foundation for a new Application Model, the
Server. Servers are defined to be preemptive, faceless applications running
in their own address space which are independent of the Macintosh
Toolbox environment.

What should be written as a Server? Applications that:

« Arevery performance sensitive

« Require afully preemptive run-time environment

» Requirethe full protection of their own address space

« May need to run independent of an Application invocation

« May need to remain running across a Toolbox Restart

« Typically service multiple clients (applications & /or machines)
« Typicaly have no (or little) user interface

Examples of typical Server modeled Applicationsinclude: databases, mail
handling, backup systems, ray-trace engines, personal information
management systems, font Servers, etc. The closest thing (in principle) to
Mac OS 8 Serversin System 7.x are facel ess background applications. In
addition, some existing System 7.x Extensions (INITs), Drivers (DRVRS)
and Time Manager tasks are perfect candidates for re-writing as Mac OS 8
Servers.

Servers can be designed using avariety of Mac OS 8 System Services. The
choice of which combination of servicesto use depends on what the Server
istrying to do and what environment it requires.

211 Tasking Models

One of thefirst design choices one must make when writing a Server is
whether the Server program uses one or multiple tasks.

Choosing how tasks are used to implement the Server determines the load
handling characteristics and efficiency of that service. There are several
basic options with many hybrids possible. The tasking options chosen will
determine the requirements for synchronization (locking), request
completion notification (async, sync), request dispatch, and protocol.

Single, The simplest task structure is a single task that handles one request at a
Synchronous Task time. No locking is needed and all requests are made synchronously. The

Mac OS 8 Only Application WWDC 1996

Mac OS 8 Only Application

WWDC 1996

Single,
Asynchronous
Task

Multi-Task
Servers

Functional Multi-
Tasking

request dispatch is usually a FIFO and the client/Server protocol cannot
support any circular dependencies. In this case, the Server cannot make a
request that will result in another request to itself (since the Server makes
all requests synchronously, it would end up waiting for arequest to itself to
complete — arequest that it would never receive).

The main benefits of this tasking structure are simplicity and low system
utilization. The downside is alack of scalability in request handling. Since
only one request is handled at atime, no parallelism is possible. However,
if thisisan occasionally used or stand-alone service with minimal
performance requirements, then this task structure is a good choice.

This simple tasking model is probably a good choice for prototyping a
Server program. Some services have no need of more than one task.

A variation on a single task structure uses asynchronous requests to
implement parallelism within one task. A new request can be processed
while waiting asynchronously for previous request processing to complete.
Thistechnique will only achieve parallelism if the service implements or
uses 10 bound processing (or other non-compute bound processing). This
single task, asynchronous programming model generally useslessin terms
of system resources than a multi-tasking model.

Some algorithms are simpler to implement in an asynchronous manner,
others are more complex. For example, afile copy loop can be written very
efficiently using asynchronous 10 requests, whereas a multi-tasked version
using synchronous | O requests would require alocking structure to manage
access to shared buffers. On the other hand, if multiple layers of software
are used to implement the service and the layers each independently make
IO requests, then synchronous programming is much simpler because it
allows straightforward exposition of the algorithm in each layer without the
need for complex state machines.

There are many reasons why one might want to use multiple tasksin a
Server (ak.a “threading” a Server). Two common reasons are complexity
and performance.

Functional tasking uses atask for each functional component of a Server.
For example, if a Server uses both a network connection and the local file
system, one task would handle the network and another would perform the

Mac OS 8 Only Application

WWDC 1996

Mac OS 8 Only Application

WWDC 1996

Load Balance
Multi-Tasking

212 Transport

Open Transport

Apple Events

file10. When the processing requirements are non-uniform for all the types
of requests a Functional Multi-Tasking model can work quite well.

Using multiple tasks for different areas of functionality can reduce
complexity when the state associated with afunctional component is solely
managed by the task that services that component.

With Load Balance Multi-Tasking, every task can handle any request.
Requests are distributed among a pool of tasks in order to balance load
across the available system resources.

There are several possible algorithms for distributing requests among the
various tasks. For example, if the protocol is connection oriented, then a
task can be alocated for each connection. This preserves request order per
connection and can greatly ssmplify synchronization and error recovery
mechanisms.

The primary reason for using multiple-tasks in this manner isto maximize
execution overlap. Generally, thiswill result in better performance.

Another design choice for Server writersiswhich transport to use.
Mac OS 8 supports three different types of transports for Server programs:
Open Transport, Apple Events and Microkernel Messaging.

Open Transport is Apple solution to transport-independent network. Open
Transport based servers do not need to know what protocol they are using,
and can provide a service over multiple network protocols (e.g. TCP/IP,
AppleTak, XNS,.etc.). Most network based services, such as FileShare
servers and Web servers, should use Open Transport.

Open Transport based servers may also use Apple Events or Microkernel
Messaging to receive local (non-network) requests.

For more information on Open Transport, seelnside Macintosh: Open
Transport.

Apple Events allow a Server to be both transport independent and network
independent. Servers based on Apple Events do not need to know that their
clients are local or remote.

Mac OS 8 Only Application

WWDC 1996

Mac OS 8 Only Application

WWDC 1996

Sample Code

In addition, Apple Events provides arobust and high-performing data-
model which deals with complex data types which do not lend themselves
to Microkernel Messaging.

Apple Events are much more central to the programming model in
Mac OS 8. See “Events’ on page 38.

The following codeistypical of an Apple Event based Server program
(with error recover code removed for clarity):

OSStatus initialize(ServerlD serverlD)
{
OSSt at us st at us;
AEDI spat cher Ref nyRef;
Ker nel Processl D nyProcess =
Cur rent Ker nel Processl|) ;

myRef = AEGCet Def aul t Di spat cher();

/1 turn ny default AED spatcherRef into a
/'l gl obal AED spatcherl D
status = AECet Event Di spat cher | D(nyRef,
&QAEDI spat cher | D);

/'l Create gSel f Address
status = AECreat eDesc(typeKernel Processl| D,
&myProcess,
si zeof (Ker nel Processl D),
&gSel f Addr ess) ;

AECr eat eAppl eEvent (
kSi npl eAESer ver C ass,
kCl i ent Event | D,
&gSel f Addr ess,
kAut oGener at eRet ur nl D,
0,
&gaevt) ;

AECr eat eAppl eEvent (
kSi npl eAESer ver O ass,
kTi ner | D,
&gSel f Addr ess,
kAut oGener at eRet ur nl D,
0,

stat us

status

Mac OS 8 Only Application

WWDC 1996

Mac OS 8 Only Application

WWDC 1996

&gTi mer Appl eEvent) ;

status = AECreateNotifier(&gTi mer Appl eEvent,
&gTi mer Noti fication);
status = initializeTinmer();

/'l et Server Mgr know that the server is up
/'l and ready to take requests
Il (pass in AEDi sptcherID to Server Myr for
Il client | ookup via ServerLookup())
status = Server Created(serverlD,

gAED spatcherlID);
return(nokrr);

The initialize routine does the work necessary to get the server ready to
receive requests from aclient (e.g. an application). While the actual
initialization will vary from Server to Server, al Apple Event based Servers
must call Ser ver Cr eat edpassing theser ver | Dthat they were passed
in their main entry point, and the AEDi spat cher | Dthat they are
"listening" to.

Here' s a short description of the code above:

AECGet Event Di spat cher | Dscalled to turn the

AEDI spat cher Ref (whichisonly validinthecontextinwhichitis
returned) into a system-unique address, aAEDI spat cher | D

Next, AECr eat eDesciscalled to create an address descriptor for use
in subsequent AECr eat e Appl eEvent cals.

The next two AECr eat eAppl eEvent callsare done at initialization
time as an optimization. Since these events are reused, the are all ocated
at initialization time and not disposed. The usethegSel f Addr essto
addressthe Appl eEvent s.

Thecall to AECr eat eNot i fi erisusedtoturna

Ker nel Noti fi cati oninto an Appl eEvent . Many microkernel,
10, and Filesystem asynchronous callsuse Ker nel Not i fi cati on
to inform the caller of the completion of the call. The converts this
notification into an Appl eEvent based notification.

Thei ni ti al i zeTi mer routineis an example of how to use the
microkernel Set Ti nmer call with AppleEvents (see description below).

Mac OS 8 Only Application

WWDC 1996

Mac OS 8 Only Application

WWDC 1996

e Finaly, Server Cr eat ediscaled. Theser ver | Dthat is passed
into main must be passed back to the Server Mgr along with the
AEDI spat cher | Dthat clients should use to communicate with the
Server.

The following code shows thei ni ti al i zeTi mer routine mentioned
above:

CSStatus initializeTinmer()

{
CSSt at us st at us;
Absol ut eTi me expi rationTi ne;
/'l set expiration tinme to 3 seconds in the
/'l future
expirationTi me = AddDur ati onToAbsol ut e(
3 * kDurationSecond,
UpTi me()) ;
status = Set Ti ner (&expirationTi ne,
&gTi mer Noti fication,
kNi | Opti ons,
NULL) ;
return(status);
}

The above code initializesatime (Absol ut eTi ne) and callsthe
microkernel call SetTimer. This call notifies the caller according to the
microkernel notification record it is passed when the time it is passed has
expired. In this case, the notification record (Ker nel Noti fi cati on
has already been initialized by the AECr eat eNot i f i er call.

The following code shows a simple "main” routine of an AppleEvent
server:

OSSt at us Server Main (Server| D serverl D)

{
OSSt at us st at us;

AEHandl| er Tabl eRef handl ert abl er ef;
DebugStr ("\ pSi npl eAEServer main()...");

/] initialization code

Mac OS 8 Only Application

WWDC 1996

Mac OS 8 Only Application WWDC 1996

status = initialize(serverlD);

/1l install ny handlers

status = AECGet D spat cher TopHandl er Tabl e(
AEGCet Def aul t Di spat cher (),
&handl ert abl eref);

AEl nst al | Handl er (handl ert abl er ef,
kSi npl eAESer ver O ass,
kTi ner | D,
Handl eTi mer Event ,
NULL) ;

status

AEl nst al | Handl er (handl ert abl er ef,
kSi npl eAESer ver O ass,
kd i ent Event | D,
Handl eM/Event ,
NULL) ;

status

/'l main event | oop
status = AERecei ve(AEGet Def aul t Di spat cher (),
kAERecei veFor ever) ;

return (status);

Microkernel Microkernel Messaging.
Messaging

213 Macintosh Toolbox Usage by Servers

Mac OS 8 Servers are defined to be preemptive, faceless, applications
which run completely independently of the Macintosh Toolbox
environment. They are developed using the Mac OS 8 Only environment.
As such, there are some typical Toolbox usage scenarios which would not
be implemented the same way when developing a Server.

Some typical Toolbox usages and their replacement recommendations
follow.

Mac OS 8 Only Application WWDC 1996

Mac OS 8 Only Application

WWDC 1996

Graphics

Dialogs, Alerts,
Menus, Controls,
Windows, etc.

Events

Resources

Memory

Files

Notification
Manager

Translation
Manager

Component
Manager

No direct accessto the screen is permitted for Servers. Off-screen
rendering using the QuickDraw GX and QuickDraw 3D graphics systems
is supported and a rendered image may be passed back to afacefull client
for drawing to the screen.

The HI Toolbox cannot be used by Servers. All HI interaction will need to
occur viaan Application frontend communicated to via Apple Events or
microkernel messaging. User interface for Servers should be minimized
and eliminated where possible.

The Event Mgr is not available to Servers. Only Apple Events may be
received, and the Mac OS 8 Apple Event dispatchers are the preferred
means to receive them.

The Resource Manager is not available to Servers. Resources can only be
read or written implicitly through other Apple provided services (e.g.
Preferences Mgr) that make use of resources.

The Memory Manager is not available to Servers. Memory should be
allocated using Dynamic Storage Allocation Services and memory
allocators.

The System 7 Files APl is not available to Servers. The File Manager API
should be used instead.

The Notification Manager is available to Servers. User-visible notification
may also be done via afront-end application communicated to via Apple
Events.

The Tranglation Manager is available to Servers.

The Component Manager is not available to Servers. Plug-in mechanisms
should be implemented using either SOM or CFM directly.

Mac OS 8 Only Application

WWDC 1996

Mac OS 8 Only Application

WWDC 1996

Networking

Preferences and
Configuration
Files

System Logging
Services

Servers should use the following APIs to access the network.

* Open Transport
« Apple Events

Servers should use the Preferences Manager to maintain all configuration
information. Ul for configuration should be provided via an administrative
application.

The System Logging Service provides a centralized logging service for
errors and informational messages. The Server implementor should attempt
to put enough information in the log to make diagnosis of problems easy
but not so much information that figuring out what is relevant is difficult.
To avoid annoying the user, the log should be used in preference to the
notification mechanism. In addition, alog message should always be
generated before sending a notification to the user.

Servers should not create their own status log files. Cleanup and rotation of
lots of log filesis difficult and complicates Server upgrade.

22 How To Build a Mac OS 8 Only Server Program

Interfaces

Libraries

A Mac OS 8 Only Server requires the interfaces and libraries on the

Mac OS 8 Developer s Release: Compatibility Edition CD. Thisrelease
will provide helpful feedback while you are compiling, linking and running
your Server.

The Mac OS 8 version of the interfaces, like all Appleinterfaces, are
universal to all Apple software. These are the interfaces that Apple
engineers use to write their software. The Mac OS 8 Developers Release:
Compatibility Edition CD will include the latest version of our interfaces.

In addition to the interfaces on the CD, we will include stub libraries on the
CD tolink your Server against. These libraries correspond to the different
types of products you might build. They allow you to link against one

Mac OS 8 Only Application WWDC 1996

Mac OS 8 Only Application

WWDC 1996

Compiling Your
Server

Linking Your
Server

Running Your
Server

library without having to know what specific library the service (and
symbol) in question came from.

To link your Server, usethe BUILDING_PREEMPTIVE_CODE
compiler flag to indicate to the system that you are building an Server
which only runs on Mac OS 8.

Tolink aMac OS 8 Only server, usethe Ser ver . st ubs library in your
devel opment environment. Linking against this library ensures that you
will not import facilitieswhich are deprecated. Server programs do not link
against InterfaceLib. Aswith Mac OS 8 Only applications, Servers only
link against libraries that are needed, and only requires these libraries and
their dependent libraries at runtime. This alows Servers which uses fewer
system services to consume fewer system resources.

When running your Server against the debug version of the system release
(onthe Mac OS 8 Developer s Release: Compatibility Edition), you may
encounter debugger breaks which detect unsupported or discouraged usage
patterns. Thiswill help you determine how well your Server will run.

To facilitate development, you can place your Server in the “Mac OS
Folder:Server Libraries’ folder and it will be automatically launched each
time the system is restarted.

Mac OS 8 Only Application

WWDC 1996

Mac OS 8 Only Application

WWDC 1996

Mac OS 8 Only Application

WWDC 1996

