Mac OS 8 Transitional Application

This paper describes aMac OS 8 Transitional Application.

1.0 Definition

Binary Compatible

Source Compatible

A Mac OS 8 Transitional Application is awell-written application that
explicitly takes advantage of Mac OS 8 technologies. It comesin two
flavors: binary compatible with System 7.x and source compatible with
System 7.x

In this paper, it is assumed that both types of transitional applications
comply with the guidelines presented in the accompanying document,
Mac OS 8 Compatible Application, and, are thus, Mac OS 8 Compatible.

Furthermore, it is also assumed that devel opers considering this type of
application are primarily concerned with preserving an existing source
base and/or producing one binary that runs on System 7.x and Mac OS 8.

If you are not concerned with binary or source compatibility (i.e you are
starting from scratch), see the Mac OS 8 Only Application document.

This type of application carefully checks its runtime environment for the
availability of Mac OS 8 features. When the Mac OS 8 feature is not
available, it falls back on System 7.x or disables the feature.

This type of application isaMac OS 8-Only binary which is built from a
shared System 7.x - Mac OS 8 source base. Thistype of application does
not have to dynamically check its runtime environment with the exception
of truly optional features. It can assume Mac OS 8 features because it was
explicitly built for Mac OS 8.

Mac OS 8 Transitional App

1996 WWDC

Mac OS 8 Transitional App

WWDC 1996

11 Binary Compatible

Service Attribute
Function

This type of application must not call any Mac OS 8 services on System
7.X. Itisthe responsibility of the application to check what features are
available at runtime.

The service attribute function is a new mechanism in Mac OS 8 which
replaces one aspect of Gestalt -- finding out if particular features of agiven
technology are available. By convention, all Apple supplied technologies
(and libraries) will have awell known service attribute function.

111 Dynamic Feature Determination

In Mac OS 8, applications can use a combination of CFM weak-linking
and the service attribute function to determine the availability of features.
By wesak-linking against a well-known symbol (the service attribute
function) to seeif it has been resolved, the application can determineif the
genera serviceisavailable. By calling the service attribute function, it can
further determine what specific features are available fromthisservice. The
following sample code demonstrates both mechanisms:

/'l Get WVEnvironnent sets the gFMstatus gl obal
/'l variable to one of the follow ng val ues:

/1

/'l kFMNot Avai | abl e - Feature Mygr is not present.
/'l kFMW t hout SOM- Feature Mygr is present but

Il It does not support SOM based extensions.
/'l kFMNthSOM- Feature Mgr is present and it does
Il support SOMW based ext ensi ons.

enum FMSt at us {
kFMNot Avai | abl e,
KFMA t hout SOM
kFMA t hSOM

b

FMSt at us gFMst at us = kFMNot Avai | abl e;
voi d Get MyEnvironnent (void)

{

/'l weak-link check: see if synbol is resolved

Mac OS 8 Transitional App

WWDC 1996

Mac OS 8 Transitional App

WWDC 1996

i f (&FeatureMyrLibrary !'= kUnresol vedSynbol Addr)

{
gFMst at us = kFMW t hout SOM

/1l call service attribute function to see

/[l if service and/or feature is avail able

i f (FeatureMyrLibrary(kFMSupportsSQOM)
gFMsSt at us = KFMW t hSOM

112 Temporary Solution

The abovementioned dynamic checking mechanism is not generally
available in the Mac OS 8 Developers Release: Compatibility Edition
release. This mechanism is planned to be fully available in the subsequent
devel oper release. The following mechanism is being provided as a
temporary workaround to assist development only.

TEMPORARY SOLUTION FOR Mac OS 8 Developer s Release:
Compatibility Edition

Call Gestalt and check the System Version. If itisnot at least 8.0, then the
application must fall back on System 7.x.

A temporary aternative to dynamic feature determination:

voi d Get MyEnvi r onnent (voi d)

{
Gestal t (gestal t Syst enVer si on, &sysVersion);
i f (sysVersion < 0x800)
gFMSt at us = kFMNot Avai | abl e;
el se
/1 initially assune SOMis not avail able
gFMSt at us = KFMW t hout SOM
}

Mac OS 8 Transitional App

WWDC 1996

Mac OS 8 Transitional App WWDC 1996

12 Source-Code Compatible

Thistype of application has at its disposal all of the preferred technologies
available in System 7.x and Mac OS 8.

13 Transitional Technologies

Not al technologies are adoptable in a manner which does not impact a
System 7.x source-code base. Some new Mac OS 8 technologies can be
adopted in a stand-al one fashion with minimal impact on a preexisting code
base. Some, however, depend on other new technologies, requiring more
work and understanding to adopt in a preexisting code base. There are al'so
some technol ogies which require afundamentally different programming
model -- these require significant restructuring of a preexisting code base.

Developer The basic assumption about both kinds of Transitional Applicationsis that
Assumptions the developer:

1. Would like to take advantage of some Mac OS 8 specific features.
2. Can not make pervasive changes to the source base at thistime.

3. Generaly, the more impact the change has on the source base the less
likely it isto be considered.

Technology List The following technologies “fit in” to the assumptions listed above:
Tasking

Timing Services

Synchronization Services

File Manager

Memory Performance Improvement

a > w DN oPE

131 Tasking

Tasks are afundamental building-block for Mac OS 8. Devel opers can take
advantage of tasking for computation, file system calls, networking and
genera 1/0. By following some guidelines, a System 7.x structured
application can be adopted to use tasking in a straightforward manner.

Mac OS 8 Transitional App WWDC 1996

Mac OS 8 Transitional App

WWDC 1996

Benefits

Limitations

Adoption Choices

Sample Code

Simpler programming model for computation. Better perceived
performance due to responsive user interface. Infrastructure for other
Mac OS 8 transitional technologies. In addition, tasking alows parallel
execution on multiprocessor systems.

Tasking isnot really very useful without some form of communications. At
the very least, the creator of the task typically wantsto know when the task
is done. There are many technol ogies which facilitate communications
under Mac OS 8. The guidelines and sample-code below describe some of
the possible choices for communications and the impact to a System 7.x
source code base.

Fortunately, the System 7.x APl WakeupPr ocessallows atask to
“communicate” with a cooperative task with very little modification to the
traditional System 7.x event-loop.

1. WakeupPr ocessalowsatask to unblock a cooperative task (the
cooperative task will receiveaNULL event asaresult). The
cooperative task could then inspect a shared global or akernel
synchronization primitive (akernel Event G- oupl Dor a
Ker nel Queuel D which indicated that the task has done some work.

2. WakeupPr ocess can be used with kernel synchronization services
(e.g. Event Groups, €etc.) to convey more information about why the
cooperative task was unblocked. The cooperative task, in its null Event
handling, could inspect the Event Group to determine what work was
accomplished.

3. Apple Eventsallow the caller to unblock the cooperative task and send
information (presumably the work the task accomplished) at the same
time.

The following sample code demonstrates how a System 7.x structured
application could use tasking and WVakeupPr ocess():

Get Current Process(&mypar anet ers. psn);
nmypar aneters. pi _result = O;

Wai t Next Event (...);

switch (event.what) {
case kHi ghLevel Event:

Mac OS 8 Transitional App

WWDC 1996

Mac OS 8 Transitional App WWDC 1996

AEPr ocessAppl eEvent (&event) ;
br eak;

case nul | Event:
/'l check to see if ny task is done
i f (myparanmeters.pi_result)

di spl ayPI () ;
br eak;
}
OSErr Conput ePl Handl er (const Appl eEvent *t heAE,
Appl eEvent Teply,
Ul nt 32 handl er Ref con)
{

/1 do sonme stuff with the Apple Event

#i f BU LDl NG_FOR_SYSTEM/
doPI cal cul ati on();
#el se
/1 this call returns imrediately; the
/'l conputation occurs concurrently wth
/1 the main task
CreateTask ' ' pi 7,
Cur r ent Ker nel Processl D,
(TaskProc) &conputePl,
&nypar aneters,
NULL, /'l stackBase (default)
NULL, /'l stackSize (default)
NULL, /'l Kernel Notification
NULL, /| TaskOpti ons
NULL); // TasklID
#endi f

return(nokrr);

}

OSSt at us conput ePl (voi d *par am

{
Unt32 result = 0O;

/'l do the conputation
result = doPlcal cul ation();

Mac OS 8 Transitional App WWDC 1996

Mac OS 8 Transitional App

WWDC 1996

/|l store the results
((struct nyparns *)param->pi _result = result;

/'l wakeup application task with NULL event
WakeUpProcess(& (struct nyparns *)paran)->psn);

/1l returning will term nate task
return(nokrr);

132 Timing Services

Benefits

Limitations

Adoption Choices

Sample Code

Mac OS 8 Timing services provide truly drift-free timing and necessary
alternatives to spin looping in tasks.

Severa Mac OS 8 Timing Services (e.g. Del ayFor, UpTi ng, were
introduced in System 7.5.1 for PCI drivers. In Mac OS 8, they are available
for all software.

1. Del ayFor can be used to directly replace any explicitly coded delay
or spin loop.

2. Del ayUnti | can be used to provide drift-free timing.

The following sample code shows how afunction that's called from the
main event loop of a System 7.x application and a preemptivetask in a
Mac OS 8 application can delay 100 milliseconds between iterations. In the
System 7 version, the function just returns, expecting to be called from the
main event loop repeatedly until time for another iteration. In the

Mac OS 8 version, aDel ayUnt i | isused between iterations, causing the
task to block until time for the next iteration (instead of polling, asin the
System 7 version). Note that the timing in both cases is drift-free.

f BU LDl NG FOR_SYSTEM?

static UnsignedWde lastTime = {0, O0};
Unsi gnedW de current Ti ne;

Mac OS 8 Transitional App

WWDC 1996

Mac OS 8 Transitional App WWDC 1996

M croseconds(¤t Ti ne) ;

i f (U64Conpar e(U64Subt ract (
current Ti me, | ast Ti ne),
100000)) > 0)

{
DoTheWsr k() ;
|astTine = currentTi ne;
}
#el se

Absol ut eTi me next Ti ne;
UpTi me(&next Ti nme) ;
while (1) {

DoTheWsr k() ;

next Ti me = U64Add(next Ti ne,
Dur ati onToAbsol ute(100 *
kDurationM I |isecond));
Del ayUntil (&nextTine);

}
#endi f

133 Synchronization Services

Benefits Synchronization services provide away to signal that an event has occurred
or to synchronize access to data shared by one or more tasks. If you don't
create any additional tasks (“ Tasking”, section 1.3.1.), you don't need these
services. If two tasks update even a single shared word, you need to use
synchronization.

For example, two different tasks execute the statement "count er +=
1" simultaneously will produce incorrect results because of preemptive
scheduling. This C statement could be compiled as three instructions:

1. load the value of counter into aregister
2. increment the register
3. storethe result back into counter.

Mac OS 8 Transitional App WWDC 1996

Mac OS 8 Transitional App

WWDC 1996

Limitations

Adoption Choices

If counter starts with value O, and task A executes instructions 1, 2, 3
and then task B executes instructions 1, 2, 3, then counter ends with a
value of 2. If counter starts with avalue of 0 and task A executes
instructions 1 and 2, then task B executes instructions 1, 2, and 3, then
task A executes instruction 3, then counter ends with the value of 1.
However, If both tasksusethel ncr ement At om ccall, correct results
are guaranteed.

The association of a synchronization service with the dataiit protects
isup to you; the services don't enforce it. If aparticular data

structure is protected by alock, nothing prevents you from modifying the
data structure without first acquiring the lock — if you do that, the

data structure will (probably) become corrupt.

Y ou should avoid calling any of the blocking operations such as

Begi nLockedSect i onor Begi nWit eLockedSect i onfrom your
cooperative task. These calls can block for an arbitrary amount of time
(until thetask holding the lock releasesit), and all user interaction is
suspended during that time. If the task holding the lock has a bug and
never releasesit, the user interface will be completely hung unless the user
aborts the currently running application. Instead, use the normal

Wai t Next Event call to block your main task and use the

WakeupPr ocesscall from another task to wake up your cooperative
task. The cooperative task can then use anon blocking call to check for
availability of the lock or completion of the synchronized operation.

If you need to synchronize access to shared data or signal completion of
events between tasks, you may not need to use synchronization services at
all. Both Apple Eventsand theVWakeupPr ocesscall areavailablein both
System 7 and Mac OS 8. Apple Events may be sent or received from any
task, while WakeupPr ocessmay be called from any task to wake up a
cooperative task.

There are several sets of synchronization services, but they fall into
three groups:

1. Atomic operations (such as Conpar eAndSwapAl i gned
I ncr enent At om cAl i gnedand Bi t Xor At om cAl i gned).
These perform an arithmetic or logical operation on a single word of
memory atomically. They arevery fast and never block, so they are safe
to use from cooperative tasks as well as additional tasks. (Note: For
compatibility with System 7.5.1 drivers, there are also versions of these

Mac OS 8 Transitional App

WWDC 1996

Mac OS 8 Transitional App

WWDC 1996

Sample Code

routines that operate on non-aligned data. These routines are much less
efficient and should be avoided. All stack, heap, and static variables are
aligned by default in Mac OS 8). Under System 7, these can be
replaced with normal non-atomic operations.

2. Simplelocks, read/write locks, and counting semaphores. You can
use these in the usual way in preemptive tasks. acquire the lock, access
the shared data, release the lock. If onetask attempts to acquire the lock
while another task holdsit, the first task will block until the lock is
available. Non-blocking variations of some of these calls are available;
the non-blocking versions are safe to call from a cooperative task (but
of course you must be prepared to deal with the possibility that you
didn't get the lock). Under System 7, where the data is being accessed
sequentially instead of being shared with multiple preemptively
scheduled tasks, these calls can be omitted.

3. Event flags. These are used to signal the occurrence of one or more
events. They are roughly analogousto WakeupPr ocess, but they can
be used by any task to wake up a preemptive task (cooperative tasks
should never block waiting for an event flag for the same reason that a
cooperative task should never block waiting for alock). Under System
7, these calls should be omitted.

Il This routine can be called once to process al the chunks of data

/I sequentially (on System 7) or from any number of tasks simultaneously
/I to process chunksin parallel (on Mac OS 8). The variable

/1 "'gChunkCount" isaglobal SInt32 that'sinitialized to zero.

/I Each task will process chunks until all the chunks have been processed,
Il and then SafeProcessChunks will exit. If multiple tasks are executing
//SafeProcessChunks, some will process some chunks, and some will

/I process others. On a multiprocessor system, they could be processing

/I chunks at the same time. The actual chunks of data aren't shown, but it's
/I assumed they don't overlap and so no synchronization is needed for the
I/ chunk data itself.

#i f BU LDl NG _FOR_SYSTEM/
#define I ncrenent At om cAligned(s) (*s)++
#endi f

voi d Saf eProcessChunks() {

Mac OS 8 Transitional App

WWDC 1996

Mac OS 8 Transitional App WWDC 1996

Sl nt 32 chunkToPr ocess;

whil e ((chunkToProcess =
I ncrenment At om cAl i gned (&gChunkCount))
< kChunkCount)
ProcessOneChunk(chunkToPr ocess) ;

}

Il The following code shows a function accessing a data structure. Under
Il System 7, this function can only be called sequentially, from the main
/I event loop. Under Mac OS 8, this function can be called from several

Il preemptive tasks simultaneously, so the data structure must be protected
/Il by alock. It's assumed that the lock has been initialized el sewhere.

struct MyStruct {

#i f BU LDI NG_FOR _SYSTEMB
Lock t heLock;

#endi f

typedef struct MyStruct MyStruct;

OSErr Saf eUpdat eMyStruct (MyStruct s) {
#i f BU LD NG FOR SYSTEMB
i f (Begi nLockedSection(s.theLock) != noErr)
return klnternal Error; // structure corrupted
#endi f
Updat eMyStruct (s);
#i f BU LDl NG_FOR_SYSTEMB

I f (EndLockedSection(s.theLock) != noErr)
return kKlnternal Error; // structure corrupted
#endi f
}
134 File Manager
Benefits The File Manager has been completely rewritten for Mac OS 8. New

features include object iteration, notification, and memory-mapped file
access. Those applications which desire maximum performance should
transition from the System 7.x calls to the new APIs.

Mac OS 8 Transitional App WWDC 1996

Mac OS 8 Transitional App

WWDC 1996

Limitations

Adoption
Guidelines

Sample Code

The Mac OS 8 File Manager uses anew datatype, FSQbj ect Ref, torefer
to file system objects. The Mac OS 8 File Manager providesacall,
FSSpecGet FSOhj ect Ref, to convert a System 7.x FSSpec to a

Mac OS 8 FSObj ect Ref. FSSpecCGet FShj ect Ref, however,
requires that the passed FSSpec be well-formed; that is, that it contain no
empty fields, no working directories, and no partial or full path names.
Applications wishing to use FSSpec Get FSObj ect Ref should call
FSMakeFSSpecto create well-formed FSSpecs prior to calling
FSSpecGet FSOhj ect Ref.

While FSSpecs can be readily translated to FSObj ect Ref s, other data
types cannot necessarily be shared or translated between thetwo API's. For
exampl e, afilewhich has been opened with FSpQpenDF, aSystem 7.x API
call, cannot beread using FSSt r eantSi npl eRead aMac OS8 API call,
because the open file reference data types are different and no trandation
facilities are provided.

The System 7.x compatibility API isonly available to cooperative tasks, so
those applications wishing to take advantage of tasking (“ Tasking”, section
1.3.1.) for file operations will need to use the new Mac OS 8 File Manager
APIs.

There is no requirement that an application entirely adopt the Mac OS 8
File Manager. The best places to adopt the new Mac OS 8 File Manager
without pervasive source code changes are those areas where File Manager
useisrelatively contained. Examplesinclude completely reading/writing a
document from/to disk, iterating through afolder, and searching. Those
applications which maintain open files across several subroutine calls will
require more fundamental changes because of the data type discrepancy
issue previously mentioned in the Limitations section.

Many of the System 7.x API calls have direct equivaentsin the Mac OS 8
File Manager. These smplified cals, located in FileManager.h, have been
separated from the full Mac OS 8 File Manager implementation to give
developers a starting point for converting their applications. Long-time
developers of System 7.x will recognize the similarity of these callsto the
System 7.x FSp(ec) APl set.

The following code demonstrates how a document might be saved to disk
using the new Mac OS 8 File Manager. This code assumes a rather
simplistic saving model (open, write, close), but it is, after al, sample code.
This code, with the proper addition of data synchronization, could be used
from a preemptive task to save a document to disk while the cooperative

Mac OS 8 Transitional App

WWDC 1996

Mac OS 8 Transitional App

WWDC 1996

task is otherwise engaged. See the Tasking description in 1.3.1 for more

is assuned that the file fileSpec exists

CSSt at us SaveDocunent (const FSSpec *fil eSpec,
Logi cal Address data, ByteCount dataSize)

OSSt at us st at us;
FSObj ect Ref fil eRef;

/'l Convert the FSSpec to an FSObj ect Ref

status = FSSpecGet FSObj ect Ref (fil eSpec,
& il eRef);

I f(status == noErr)

{

FSStreanmOoj | Dfi | eStream

/'l FSStreanOpen opes the file for exclusive
/'l read/wite access

/'l Use FSStreanOpenWthConstraints() to

/'l specify different access perm ssions.

status = FSStreanOpen(fil eRef, kFSDat aFork,
fileStream);
if(status == noErr)
{
FSOf f set eof 64;

/'l The Mac OS 8 Fil e Manager uses 64-bit
/'l data types for files sizes and of fsets.
eof 64. hi = eof64.10 = 0O;

/Il Clear the file of any existing data
status = FSStreantet Absol ut eEOF(
fileStream
&eof);
I f(status == noErr)
{
FSFor kPosi ti onDescri pt or wri t ePos;
Byt eCount actual BytesWitten;
FSOf f set current Mar k;

Mac OS 8 Transitional App

WWDC 1996

Mac OS 8 Transitional App

WWDC 1996

writePos. positionOfset = 0;
writ ePos. positi onMbdes kFSFronttart ;

/'l Wite out our data. Note that the
/1 last two argunents, |ike nost

/1 Mac OS 8 Fil e Manager outputs, are
/'l optional

status = FSStreanti npl eWite(
fileStream
dat aSi ze,
dat a,
&wri t ePos,
&act ual BytesWitten,
¤t Mark);

}
(void) FSStreanC ose(fileStream);

/1 Al FSObjectRefs returned by the File

/1 Manager need to be disposed of. Note that
/'l this does _not_ delete the object on the
/1 disk.

(voi d) FSObj ect Ref Di spose(fil eRef);
}

return(status);

The following code demonstrates how a use an iterator to “walk” afolder
and it's contained folders and tabulate the total sizes of all enclosed files.

OSSt at us Sunti | eSi zes(const FSSpec *fol der Spec,

FSSi ze *total Fil esSi ze)

OSSt at us st at us;
FSObj ect Ref f ol der Ref;

Mac OS 8 Transitional App

WWDC 1996

Mac OS 8 Transitional App

WWDC 1996

total Fil esSize->hi = total FilesSize->lo0 = 0;
status = FSSpecCet FSObj ect Ref (f ol der Spec,
&f ol der Ref);
i f(status == noErr)
{
FSObj ectlterat or Cbj I Diterator

/'l Create an iterator which returns only
/1 file objects and will automatically
/'l traverse contained fol ders.
status = FSQbj ectlteratorCreate(folderRef,
KFSI ncl udeFi | es |
kFSTr aver seEnbeddedCont ai ner s,
& terator);

i f(status == noErr)

{
whil e(status == noErr)
{

FSObj ect | nf or mat i onobj ect | nf o;

/Il Iterate to the next file and get
/| aggregate property information.

/'l The last two paraneters to

/'l FSChjectlterateOnce() are pointers
/1l to the name and object ref for the
/1l file, neither of which are

/'l needed for this exercise.

status = FSObj ectlterateOnce(
iterator,
kFSI nf oCur r ent Rel easedVer si on
&obj ect I nfo, NULL, NULL);
i f(status == noErr)
{
FSSi ze fileSi ze;

fileSize = S64Add(
objectInfo.info.filelnfo.dataForkSi ze,
objectlInfo.info.filelnfo.resourceForkSize);

*total Fil esSi ze = S64Add(
*total Fil esSi ze,

Mac OS 8 Transitional App

WWDC 1996

Mac OS 8 Transitional App

WWDC 1996

fileSize);
}
}

/1 E EndOlteration is an exception
/'l returned when an iterator has

/1 finished iterating with a fol der.
/1 This is simlar to indexed

/'l PBGetCatlnfo() calls returning
/'l fnfErr at the end of a fol der.

1 f(status == E EndOf Iteration)
status == noErr;

(void) FSQojectlteratorD spose(iterator);
}

/1 Al FSCbjectRefs returned by the File

/'l Manager need to be disposed of. Note that
/'l this does not_delete the object on the
/1 disk.

(voi d) FSObj ect Ref Di spose(fol derRef);
}

return(status);

135 Memory Performance Improvement

The current Memory Manager data structures rely on handles to achieve
efficiency in using the available memory, but at the cost of slower speeds.
The Transitional Memory API, on the other hand, is designed for high
performance on avirtual memory system, potentially at the risk of less
space efficiency. The Transitional Memory API allows your application to
continue using the familiar Memory Manager API (i.e. NewHandle,
NewPtr, etc), but with afaster implementation.

Note: The Transitional Memory API is asubset of the Memory Mgr AP
and is not binary compatible with System 7.x. This transitional technology
isnot appropriate for binary-compatible applications that do dynamic
feature checking.

Mac OS 8 Transitional App

WWDC 1996

Mac OS 8 Transitional App

WWDC 1996

Benefits

Limitations

Y our application will gain speed in its memory alocations.

For compatibility reasons, the System Heap isalways atraditional Memory
Manager heap. Because thereis not a perfect translation between the
current data structures and the new data structures, there are some Memory
Manager callsthat are not supported, and should be removed from your
code. Theseinclude:

| ni t Zone

Get Appl Lim t
Set Appl Lim t
MaxAppl Zone
Mor eMast er s
Handl eZone
Ptr Zone
FreeMem
MaxMem
Conpact Mem
ReserveMem
Pur geMem
Set G owZone
&ZSavehHnd
Pur gePr ocs
MoveHH
HLockHi

Max Bl ock

Pur geSpace
Set Appl Base
I ni t Appl Zone

These calls are No-ops (therefore, can be safely left in your code),

HLock
HUNnI ock
HPur ge
HNoPur ge
HSet RBi t
HCl r RBi t

HGet State (returns 0)

HSet St at e

Mac OS 8 Transitional App

WWDC 1996

Mac OS 8 Transitional App

WWDC 1996

Adoption
Guidelines

These calls access the system or temp mem heap, and are therefore not part
of the Transitional Memory API. Your application can still use these calls,
but they will not get the benefits of the Transitional Memory API.

 NewHandl eSys

« NewHandl| eSysd ear

¢ NewEnpt yHandl eSys

« NewPtrSys

e NewpPtrSysd ear

« MaxBl ockSys

e TenpNewHandl e

« TenpMaxMem
 TenpFreeMem

« Real | ocat eHandl eSys

Note: The Transitional Memory API data structures are completely
different from the Memory Manager data structures. Y our code MUST
NOT depend on any of them.

The following two calls are supported in the Transitional Memory Manger
AP, but behave dightly differently than their Memory Manager
counterparts:

SetPtr Size: this call does not necessarily just expand the data block in
place. You will probably get adifferent pointer returned from this call.

SetHandleSize: Thisisthe only call that can move a handle data block.
Since there is no concept of alock bit, be careful of dangling pointers when
using this call.

TEMPORARY SOLUTION FOR Mac OS 8 Developer s Release:
Compatibility Edition

Specifying that your application uses the Transitional Memory Manager
APl isaccomplished by using abit inthe’ SIZE’ resource:

The Transitional Memory Manager uses one of the bitsin the’ SIZE’
resource to determine if your application requires the traditional Memory
Manager API vsthe Transitional API. Set bit #2 (i.e. mask of 0x00000002)
if your application uses the Transitional Memory Manager API. Note: in
Typesr thisbit is still “reserved”.

Note: Thisisaworkaround for Mac OS 8 Developer s Release:
Compatibility Edition only. Since adopting this technology is not binary

Mac OS 8 Transitional App

WWDC 1996

Mac OS 8 Transitional App

WWDC 1996

compatible with System 7.x, it is very likely that this type of application
will have its own unique file type to designate it as such.

136 Navigation Services

Benefits

Limitations

Adoption
Guidelines

Navigation Services replaces the traditional Standard File dialogs with a
greatly improved user experience. The view presented isidentical to that of
the Finder, allowing usersto more easily make the connection between files
in the Finder and filesin Open and Save dialogs. Searching and history
mechanisms are also directly integrated for ease of navigation.

Navigation Services presents a standard dialog for confirmation of saving
changes. Apple haslong provided guidelines for these dialogs, but not a
procedure for the dialog.

Both dialog versions and a stand-alone panel are provided.

Significant user benefit is provided by adoption of Navigation Services due
to itsimproved user interface. Since most features which have required
dialog customization in the past are built in to Navigation Services, thereis
less need for the developer to customize, and less confusion for the user
resulting from different dialog appearances in different applications.

The NavAskSaveChanges procedure removes the need to implement this
dialog yourself.

Because of the NavigationPanel HIObject, it is possible to embed file
system browsersin any kind of window or dialog. The methods of
NavigationPanel may be overridden to modify or restrict its behavior as
desired.

Navigation Servicesin its current incarnation is not generalizable to the
point of adding new columns or browsing data spaces outside the file
system. Thisis apossible future direction. Navigation Services procedures
use Apple Event descriptorsto allow for later generalization.

Transitional applications can retain their current Standard File code bases
and switch to Navigation Serviceswhen arun-time check indicatesthat it is
present. Transitional applications should weak-link to the Navigation code
fragment and test for the presence of its entry points.

Mac OS 8 Transitional App

WWDC 1996

Mac OS 8 Transitional App

WWDC 1996

Sample Code

Developers should customize as little as possible, in order to enhance the
consistency of the user interface. Apple's technical support receives many
guestionsrelating to Standard Filedialogsand it islikely that yours does as
well. These support costs can be reduced by removing customizations
which do not add sufficient user benefit to justify their support cost.

The following 3 samples demonstrate how a System 7.x structured
application could use Navigation Services with aruntime check :

/'l Opening a File
/1l To let the user select a file to open,
/1 use the NavCGet Object() routine:

CSErr err;

NavRepl yRecord reply;
NavDi al ogOpti ons options;
NavTypelLi st types;

/'l default position

Set Pt (&options.|location, -1, -1);

Get I ndText Obj ect (&opti ons. def aul t But t onLabel ,
kMyText Qbj ect Li st 1 D,
kMyOpenBut t onLabel | ndex) ;

Get I ndText Obj ect (&opt i ons. banner,
kMyText Qbj ect Li st 1 D,
kMyOpenBanner | ndex) ;

opti ons. cust omPanel = NULL; // for no custom zation
types[0] = typeFSS; [l return only FSSpecs
types[1] = O;
err = NavGet Obj ect (NULL, /'l no default object
&reply,
&opti ons,
kMyOpenResour cel D,
types,
NULL, /1 no object filter
NULL, /'l no event procedure
NULL) ; /'l no context pointer
if (err == noErr)
{
Mac OS 8 Transitional App WWDC 1996

Mac OS 8 Transitional App

WWDC 1996

FSSpec target;
AEDesc fil eDesc;
err = AECoerceDesc(& eply. sel ection, typeFSS,
&f il eDesc);
if (err == noErr)
{
err = AECet DescData(&fil eDesc, NULL, &target,
si zeof (FSSpec), NULL);
AEDI sposeDesc(&fi | eDesc);
if (err == noErr)
MyQpenFi | e(& arget) ;

/1
/1
11
/1

11
/1
/1
11

err

Saving a File

To allow the user to select a location in which
to save a file, call NavPutQbject(). The setup
code is simlar to that for NavGet Qbject().

The first paranmeter (fileToSave) is an AEDesc
whi ch specifies the file to be saved; it may be
NULL for a first-tine save, but the nornmal case
in Mac OS 8 is that the file already exists.

= NavPut Cbj ect (fi |l eToSave,
&reply,
&opti ons,
NULL, /'l no event procedure
NULL) ; /'l no context pointer

if (err == noErr)

{

FSSpec target;
AEDesc fil eDesc;
err = AECoer ceDesc(&reply.selection, typeFSS,
&f il eDesc);
if (err == noErr)
{
err = AECet DescData(&fil eDesc, NULL, &target,
si zeof (FSSpec), NULL);
AEDI sposeDesc(&fil eDesc);
if (err == noErr)

Mac OS 8 Transitional App

WWDC 1996

Mac OS 8 Transitional App

WWDC 1996

MySaveFi |l e(fil eToSave, &target);

/'l Confirm ng Changes

/'l To ask the user whether to save changes to a
/'l docunment when it is closed or the application
/1l is quit, you can use the NavAskSaveChanges()

/'l procedure.

NavAskSaveChangesResul t reply;
Poi nt | ocati on;

Set Pt (& ocation, -1, -1);

/'l applicationName & docunment Nane are text objects
err = NavAskSaveChanges(appl i cati onNane,

documnent Narne,

kNav SaveChangesC osi ngDocunent ,

&reply,
| ocati on,
NULL, /'l no event procedure
0); /'l no context pointer
if (err == noErr)
{
switch (reply)
{
case askSaveChangesSave:
MySaveFi |l e(fil eToSave) ;
MyCl oseFil e(fil eToSave);
br eak;
case askSaveChangesCancel :
/1 don't do anything to the docunent
br eak;
case askSaveChangesDont Save:
MyCl oseFil e(fil eToSave);
br eak;
}

Mac OS 8 Transitional App

WWDC 1996

Mac OS 8 Transitional App

WWDC 1996

137 Appearances

Benefits

Limitations

Adoption Choices

The Appearance Manager provides services which enable customization of
the Mac OS 8 system user interface. Developers can use the Appearance
Manager to make their applications adopt a compatible appearance under
different system user interface themes.

Some applications provide their own non-Macintosh "environment”, such
as some games and multimedia programs which take over the screen
completely. These applications don't necessarily need to use the
Appearance Manager. Such applications need only worry about Ul pieces
they bring up through the toolbox, such as dialogs and menus.

By using the Appearance Manager, you can tailor your application to
coordinate with the current system appearance. Aswe move to more
variations of the user interface, applications which fail to use the
Appearance Manager will be very obviousto the user, sincetheir color and
pattern choices will not match the current system theme. For example, most
System 7.x applications with custom MDEFs and WDEFs will display
menus with white background and black text, and System 7-style
rectangular windows, while the rest of the world will have colored menus
and non-square windows. By utilizing the Appearance Manager, you can
help your application blend into the new world, which will get you noticed
by your customers as a more "modern” application.

The Appearance Manager cannot provide geometry information for use by
custom definition procedures - it can only provide color and pattern
support. Your application may still have different shaped windows or
menus than the system if you use custom definition procs. You can
however minimize the differences in color using the Appearance Manager
calls. Onceagain, it is best to use standard defprocs whenever possible to
ensure your application will have the same appearance as the system.

Every application which uses standard windows, menus or controls will
receive some level of Appearance Manager support without modification.
Beyond that, there are three main areas where you can add Appearance
Manager support to your existing System 7 application:

e Outside of your application window content area, which includes any
custom definition procedures (MDEFs, WDEFs, CDEFs, MBDFs.

« Within dialogs, wherever you might now have user itemsto draw
grouping rectangles, default button rings or custom popup menu items.

Mac OS 8 Transitional App

WWDC 1996

Mac OS 8 Transitional App

WWDC 1996

« Within your application content areaitself, if you use window headers,
status areas, rulers, and palettes or if you wish to have document
content mimic system appearance.

The implementation cost associated with these options varieswidely. Each
of these optionsis discussed in more detail below. For the typical
application which just wants to use system colors and patterns or draw
dialog groups, you should only have to make afew simple calls.

NOTE : If you must ship a hard-coded visual appearance and don't want to
transition to adopting the Appearance Manager yet, use the guidelines
defined in the Apple Gray-Scale Appearance document provided on the
WWDC 96 CD. Doing so will make your application compatible with the
standard Mac OS 8 appearance. While your interface will not adapt
automatically to other themes, the gray levels used in the default
appearance will blend in well with most other themes because they lack
strong colors which might clash. In general, you should avoid the use of
strong colorsin your interface, except where relevant to the content such as
in games or graphics programs. Doing so will help prevent palette clashes
with more colorful system themesin the future.

The range of adoption choices to transition to the Appearance Manager
includes:

1. Do Nothing.
If you use only standard definition procedures (no custom MDEFs,
WDEFs, CDEFs, MBDFs), your application will automatically inherit
the correct system appearance under Mac OS 8. If you do have custom
defprocs and do nothing, they will not adopt the current system
appearance automatically, and may not look good with some themes.

2. Update your custom definition procedures.
Applications which do use custom definition procs (MDEFs, WDEFs,
CDEFsor MBDFs) may use the Appearance Manager color and pattern
query functionsto modify their behavior so they appear more standard.
For example, you can modify your custom MDEFs to use the current
menu background pattern and text color from the A ppearance Manager,
instead of white backgrounds and black text when running under
Mac OS 8.

3. Update your application's dialog window items.
If youuseadialoguseri t emto draw dialog group rectangles, you
may use the Appearance Manager Dr awThenePr i mar yG oupand

Mac OS 8 Transitional App

WWDC 1996

Mac OS 8 Transitional App

WWDC 1996

Dr awThenmeSecondar yG oupprimitives to draw these groups with
the current system appearance when Mac OS 8 is present.

Dr awThenePr i mar yG oupisintended for top level grouping and
may surround other sub-groups. Sub-groups should be drawn with

Dr awThenmeSecondar yG oup

If youuseadialog useri t emto draw separator linesin your dialog, you
may use the Dr awTheneSepar at or primitive, rather than drawing a

gray line.

If you use lists, you may use the Dr awTheneLi st BoxFr ameprimitive
to frame them, rather than simply using Fr aneRect.

Y ou can draw or erase keyboard focus rings for your text boxes, list boxes
and selection areas using Dr awTheneText BoxFocus

Dr awTheneLi st BoxFocusand Dr awThenmeCGener i cFocus
respectively. Passi sAct i ve of trueto draw the focus and false to erase
it.

Do not assume the background pattern of your dialogsiswhite. It will not
awaysbe. If you haveauseri t emwhich does an erase when it really
wants pixels to explicitly go to white, you should explicitly set the pen
color to white and do afill or paint operation. Likewise, don't erase to the
background pattern by painting with white. Y ou may end up with awhite
blotch in the middle of your dialog.

If you have PICTs which appear in dialogs, you should note that they will
sometimes appear against a non-white background. 1f you wish your pict
to appear correctly against a color dialog background, you should either
use a paint program which can generate PICTs with lassoed areas or use a
program like PictDetective to decode your pict and rebuild it with no
background fill opcode. Alternatively, if you do wish your PICT to have a
square white background, use a dark border pixel around the PICT so that
the white background appears intentional, not like awhite blotch in the
dialog behind the PICT.

4.Adapt your document content areas to blend with the system.

If you have areas of your cont ent Rgnwhere you wish to coordinate with
the system patterns and colors, you may use the query functions

Get ThenmeCol or and Get ThenePi xPat to do so. For example, an
application which provides aruler could fill its area with the window
header background pattern instead of white or gray.

Mac OS 8 Transitional App

WWDC 1996

Mac OS 8 Transitional App WWDC 1996

If your application uses awindow header, you may use the

Dr awThenmeW ndowHeader primitive to draw it. Thiswill coordinate
your window header with the current Finder window header area (where #
items and disk space appear).

If you provide a status area adjacent to the scrollbars in your document
windows, you may use the Dr awThenePl acar dprimitive to draw the
background of this area.

14 How To Build a Mac OS 8 Transitional Application

A Mac OS 8 Transitional Application requires the interfaces and libraries
on the Mac OS 8 Developer s Release: Compatibility Edition CD. This
release will provide helpful feedback while you are compiling, linking and
running your application.

Interfaces The Mac OS 8 version of the interfaces, like all Appleinterfaces, are
universal to all Apple software. These are the interfaces that Apple
engineers use to write their software. TheMac OS 8 Developer s Release:
Compatibility Edition CD will include the latest version of our interfaces.

Libraries In addition to the interfaces on the CD, we will include stub libraries on the
CD to link your application against. These libraries correspond to the
different types of products you might build. They allow you to link against
one library without having to know what specific library the service (and
symbol) in question came from.

Compiling Your Tolink aMac OS 8 Transitional application, use the

Application BUI LDI NG_FOR_SYSTEM/_AND_SYSTEMEompiler flag to indicate to
the system that you are building an application which runs on both System
7.x and Mac OS 8. Compiling with this build flag ensure that you are not
using System?7 only interfaces.

Linking Your Tolink aMac OS 8 Transitional application, use the
Application AppSyst en7or MacCOS8. st ubs library in your development
environment.

Mac OS 8 Transitional App WWDC 1996

Mac OS 8 Transitional App

WWDC 1996

Running Your
Application

When running your application against the debug version of the system
release (on the Mac OS 8 Developer s Release: Compatibility Edition),
you may also encounter debugger breaks which detect unsupported or
discouraged use patterns. Thiswill help you determine how well your
application will run.

Mac OS 8 Transitional App

WWDC 1996

Mac OS 8 Transitional App

WWDC 1996

Mac OS 8 Transitional App

WWDC 1996

