
Mac OS 8 Transitional App 1996 WWDC

Mac OS 8 Transitional Application

This paper describes a Mac OS 8 Transitional Application.

1.0 Definition

A Mac OS 8 Transitional Application is a well-written application that
explicitly takes advantage of Mac OS 8 technologies. It comes in two
flavors: binary compatible with System 7.x and source compatible with
System 7.x

In this paper, it is assumed that both types of transitional applications
comply with the guidelines presented in the accompanying document,
Mac OS 8 Compatible Application, and, are thus, Mac OS 8 Compatible.

Furthermore, it is also assumed that developers considering this type of
application are primarily concerned with preserving an existing source
base and/or producing one binary that runs on System 7.x and Mac OS 8.

If you are not concerned with binary or source compatibility (i.e you are
starting from scratch), see the Mac OS 8 Only Application document.

Binary Compatible This type of application carefully checks its runtime environment for the
availability of Mac OS 8 features. When the Mac OS 8 feature is not
available, it falls back on System 7.x or disables the feature.

Source Compatible This type of application is a Mac OS 8-Only binary which is built from a
shared System 7.x - Mac OS 8 source base. This type of application does
not have to dynamically check its runtime environment with the exception
of truly optional features. It can assume Mac OS 8 features because it was
explicitly built for Mac OS 8.

Mac OS 8 Transitional App WWDC 1996

Mac OS 8 Transitional App WWDC 1996

1.1 Binary Compatible

This type of application must not call any Mac OS 8 services on System
7.x. It is the responsibility of the application to check what features are
available at runtime.

Service Attribute
Function

The service attribute function is a new mechanism in Mac OS 8 which
replaces one aspect of Gestalt -- finding out if particular features of a given
technology are available. By convention, all Apple supplied technologies
(and libraries) will have a well known service attribute function.

1.1.1 Dynamic Feature Determination

In Mac OS 8, applications can use a combination of CFM weak-linking
and the service attribute function to determine the availability of features.
By weak-linking against a well-known symbol (the service attribute
function) to see if it has been resolved, the application can determine if the
general service is available. By calling the service attribute function, it can
further determine what specific features are available from this service. The
following sample code demonstrates both mechanisms:

// GetMyEnvironment sets the gFMStatus global
// variable to one of the following values:
//
// kFMNotAvailable - Feature Mgr is not present.
// kFMWithoutSOM - Feature Mgr is present but
// it does not support SOM-based extensions.
// kFMWithSOM - Feature Mgr is present and it does
// support SOM-based extensions.

enum FMStatus {
 kFMNotAvailable,
 kFMWithoutSOM,
 kFMWithSOM
};

FMStatus gFMStatus = kFMNotAvailable;

void GetMyEnvironment(void)
{
 // weak-link check: see if symbol is resolved

Mac OS 8 Transitional App WWDC 1996

Mac OS 8 Transitional App WWDC 1996

 if (&FeatureMgrLibrary != kUnresolvedSymbolAddr)
 {
 gFMStatus = kFMWithoutSOM;

 // call service attribute function to see
 // if service and/or feature is available
 if (FeatureMgrLibrary(kFMSupportsSOM))
 gFMStatus = kFMWithSOM;
 }
}

1.1.2 Temporary Solution

The abovementioned dynamic checking mechanism is not generally
available in the Mac OS 8 Developers Release: Compatibility Edition
release. This mechanism is planned to be fully available in the subsequent
developer release. The following mechanism is being provided as a
temporary workaround to assist development only.

TEMPORARY SOLUTION FOR Mac OS 8 Developers Release:
Compatibility Edition

Call Gestalt and check the System Version. If it is not at least 8.0, then the
application must fall back on System 7.x.

A temporary alternative to dynamic feature determination:

void GetMyEnvironment(void)
{
 ...
 Gestalt(gestaltSystemVersion, &sysVersion);
 if (sysVersion < 0x800)
 gFMStatus = kFMNotAvailable;
 else
 // initially assume SOM is not available
 gFMStatus = kFMWithoutSOM;
 ...
 ...
}

Mac OS 8 Transitional App WWDC 1996

Mac OS 8 Transitional App WWDC 1996

1.2 Source-Code Compatible

This type of application has at its disposal all of the preferred technologies
available in System 7.x and Mac OS 8.

1.3 Transitional Technologies

Not all technologies are adoptable in a manner which does not impact a
System 7.x source-code base. Some new Mac OS 8 technologies can be
adopted in a stand-alone fashion with minimal impact on a preexisting code
base. Some, however, depend on other new technologies, requiring more
work and understanding to adopt in a preexisting code base. There are also
some technologies which require a fundamentally different programming
model -- these require significant restructuring of a preexisting code base.

Developer
Assumptions

The basic assumption about both kinds of Transitional Applications is that
the developer:

1. Would like to take advantage of some Mac OS 8 specific features.

2. Can not make pervasive changes to the source base at this time.

3. Generally, the more impact the change has on the source base the less
likely it is to be considered.

Technology List The following technologies “fit in” to the assumptions listed above:

1. Tasking

2. Timing Services

3. Synchronization Services

4. File Manager

5. Memory Performance Improvement

1.3.1 Tasking

Tasks are a fundamental building-block for Mac OS 8. Developers can take
advantage of tasking for computation, file system calls, networking and
general I/O. By following some guidelines, a System 7.x structured
application can be adopted to use tasking in a straightforward manner.

Mac OS 8 Transitional App WWDC 1996

Mac OS 8 Transitional App WWDC 1996

Benefits Simpler programming model for computation. Better perceived
performance due to responsive user interface. Infrastructure for other
Mac OS 8 transitional technologies. In addition, tasking allows parallel
execution on multiprocessor systems.

Limitations Tasking is not really very useful without some form of communications. At
the very least, the creator of the task typically wants to know when the task
is done. There are many technologies which facilitate communications
under Mac OS 8. The guidelines and sample-code below describe some of
the possible choices for communications and the impact to a System 7.x
source code base.

Fortunately, the System 7.x API WakeupProcess allows a task to
“communicate” with a cooperative task with very little modification to the
traditional System 7.x event-loop.

Adoption Choices 1. WakeupProcess allows a task to unblock a cooperative task (the
cooperative task will receive a NULL event as a result). The
cooperative task could then inspect a shared global or a kernel
synchronization primitive (a kernel EventGroupID, or a
KernelQueueID) which indicated that the task has done some work.

2. WakeupProcess can be used with kernel synchronization services
(e.g. Event Groups, etc.) to convey more information about why the
cooperative task was unblocked. The cooperative task, in its nullEvent
handling, could inspect the Event Group to determine what work was
accomplished.

3. Apple Events allow the caller to unblock the cooperative task and send
information (presumably the work the task accomplished) at the same
time.

Sample Code The following sample code demonstrates how a System 7.x structured
application could use tasking and WakeupProcess():

GetCurrentProcess(&myparameters.psn);
myparameters.pi_result = 0;

WaitNextEvent(...);

switch (event.what) {
 case kHighLevelEvent:

Mac OS 8 Transitional App WWDC 1996

Mac OS 8 Transitional App WWDC 1996

 AEProcessAppleEvent(&event);
 break;

 case nullEvent:
 // check to see if my task is done
 if (myparameters.pi_result)
 displayPI();
 break;
}

OSErr ComputePIHandler(const AppleEvent *theAE,
 AppleEvent *reply,

 UInt32 handlerRefcon)
{
 // do some stuff with the Apple Event
 .
 .
#if BUILDING_FOR_SYSTEM7
 doPIcalculation();
#else
 // this call returns immediately; the
 // computation occurs concurrently with
 // the main task
 CreateTask(’pi ’,
 CurrentKernelProcessID,

 (TaskProc) &computePI,
 &myparameters,

 NULL, // stackBase (default)
 NULL, // stackSize (default)
 NULL, // KernelNotification
 NULL, // TaskOptions
 NULL); // TaskID

#endif
 .
 .
 return(noErr);
}

OSStatus computePI(void *param)
{
 UInt32 result = 0;

 // do the computation
 result = doPIcalculation();

Mac OS 8 Transitional App WWDC 1996

Mac OS 8 Transitional App WWDC 1996

 // store the results
 ((struct myparms *)param)->pi_result = result;

 // wakeup application task with NULL event
 WakeUpProcess(&((struct myparms *)param)->psn);

 // returning will terminate task
 return(noErr);
}

1.3.2 Timing Services

 Benefits Mac OS 8 Timing services provide truly drift-free timing and necessary
alternatives to spin looping in tasks.

Limitations Several Mac OS 8 Timing Services (e.g. DelayFor, UpTime), were
introduced in System 7.5.1 for PCI drivers. In Mac OS 8, they are available
for all software.

Adoption Choices 1. DelayFor can be used to directly replace any explicitly coded delay
or spin loop.

2. DelayUntil can be used to provide drift-free timing.

Sample Code The following sample code shows how a function that's called from the
main event loop of a System 7.x application and a preemptive task in a
Mac OS 8 application can delay 100 milliseconds between iterations. In the
System 7 version, the function just returns, expecting to be called from the
main event loop repeatedly until time for another iteration. In the
Mac OS 8 version, a DelayUntil is used between iterations, causing the
task to block until time for the next iteration (instead of polling, as in the
System 7 version). Note that the timing in both cases is drift-free.

#if BUILDING_FOR_SYSTEM7

 static UnsignedWide lastTime = {0, 0};
 UnsignedWide currentTime;

Mac OS 8 Transitional App WWDC 1996

Mac OS 8 Transitional App WWDC 1996

 Microseconds(¤tTime);

 if (U64Compare(U64Subtract(
 currentTime,lastTime),
 100000)) > 0)
 {
 DoTheWork();

 lastTime = currentTime;

 }

#else

 AbsoluteTime nextTime;

 UpTime(&nextTime);

 while (1) {

 DoTheWork();

 nextTime = U64Add(nextTime,
 DurationToAbsolute(100 *
 kDurationMillisecond));
 DelayUntil (&nextTime);

 }

#endif

1.3.3 Synchronization Services

Benefits Synchronization services provide a way to signal that an event has occurred
or to synchronize access to data shared by one or more tasks. If you don't
create any additional tasks (“Tasking”, section 1.3.1.), you don't need these
services. If two tasks update even a single shared word, you need to use
synchronization.

For example, two different tasks execute the statement "counter +=
1" simultaneously will produce incorrect results because of preemptive
scheduling. This C statement could be compiled as three instructions:

1. load the value of counter into a register

2. increment the register

3. store the result back into counter.

Mac OS 8 Transitional App WWDC 1996

Mac OS 8 Transitional App WWDC 1996

If counter starts with value 0, and task A executes instructions 1, 2, 3
and then task B executes instructions 1, 2, 3, then counter ends with a
value of 2. If counter starts with a value of 0 and task A executes
instructions 1 and 2, then task B executes instructions 1, 2, and 3, then
task A executes instruction 3, then counter ends with the value of 1.
However, If both tasks use the IncrementAtomic call, correct results
are guaranteed.

Limitations The association of a synchronization service with the data it protects
is up to you; the services don't enforce it. If a particular data
structure is protected by a lock, nothing prevents you from modifying the
data structure without first acquiring the lock — if you do that, the
data structure will (probably) become corrupt.

You should avoid calling any of the blocking operations such as
BeginLockedSection or BeginWriteLockedSection from your
cooperative task. These calls can block for an arbitrary amount of time
(until the task holding the lock releases it), and all user interaction is
suspended during that time. If the task holding the lock has a bug and
never releases it, the user interface will be completely hung unless the user
aborts the currently running application. Instead, use the normal
WaitNextEvent call to block your main task and use the
WakeupProcess call from another task to wake up your cooperative
task. The cooperative task can then use a non blocking call to check for
availability of the lock or completion of the synchronized operation.

Adoption Choices If you need to synchronize access to shared data or signal completion of
events between tasks, you may not need to use synchronization services at
all. Both Apple Events and the WakeupProcess call are available in both
System 7 and Mac OS 8. Apple Events may be sent or received from any
task, while WakeupProcess may be called from any task to wake up a
cooperative task.

There are several sets of synchronization services, but they fall into
three groups:

1. Atomic operations (such as CompareAndSwapAligned,
IncrementAtomicAligned, and BitXorAtomicAligned).
These perform an arithmetic or logical operation on a single word of
memory atomically. They are very fast and never block, so they are safe
to use from cooperative tasks as well as additional tasks. (Note: For
compatibility with System 7.5.1 drivers, there are also versions of these

Mac OS 8 Transitional App WWDC 1996

Mac OS 8 Transitional App WWDC 1996

routines that operate on non-aligned data. These routines are much less
efficient and should be avoided. All stack, heap, and static variables are
aligned by default in Mac OS 8). Under System 7, these can be
replaced with normal non-atomic operations.

2. Simple locks, read/write locks, and counting semaphores. You can
use these in the usual way in preemptive tasks: acquire the lock, access
the shared data, release the lock. If one task attempts to acquire the lock
while another task holds it, the first task will block until the lock is
available. Non-blocking variations of some of these calls are available;
the non-blocking versions are safe to call from a cooperative task (but
of course you must be prepared to deal with the possibility that you
didn't get the lock). Under System 7, where the data is being accessed
sequentially instead of being shared with multiple preemptively
scheduled tasks, these calls can be omitted.

3. Event flags. These are used to signal the occurrence of one or more
events. They are roughly analogous to WakeupProcess, but they can
be used by any task to wake up a preemptive task (cooperative tasks
should never block waiting for an event flag for the same reason that a
cooperative task should never block waiting for a lock). Under System
7, these calls should be omitted.

Sample Code
// This routine can be called once to process all the chunks of data
// sequentially (on System 7) or from any number of tasks simultaneously
// to process chunks in parallel (on Mac OS 8). The variable
// "gChunkCount" is a global SInt32 that's initialized to zero.
// Each task will process chunks until all the chunks have been processed,
// and then SafeProcessChunks will exit. If multiple tasks are executing
//SafeProcessChunks, some will process some chunks, and some will
// process others. On a multiprocessor system, they could be processing
// chunks at the same time. The actual chunks of data aren't shown, but it's
// assumed they don't overlap and so no synchronization is needed for the
// chunk data itself.

#if BUILDING_FOR_SYSTEM7
 #define IncrementAtomicAligned(s) (*s)++
#endif

void SafeProcessChunks() {

Mac OS 8 Transitional App WWDC 1996

Mac OS 8 Transitional App WWDC 1996

 SInt32 chunkToProcess;

 while ((chunkToProcess =
 IncrementAtomicAligned (&gChunkCount))
 < kChunkCount)
 ProcessOneChunk(chunkToProcess);
 }

// The following code shows a function accessing a data structure. Under
// System 7, this function can only be called sequentially, from the main
// event loop. Under Mac OS 8, this function can be called from several
// preemptive tasks simultaneously, so the data structure must be protected
// by a lock. It's assumed that the lock has been initialized elsewhere.

struct MyStruct {
#if BUILDING_FOR_SYSTEM8
 Lock theLock;
#endif

 }
typedef struct MyStruct MyStruct;

OSErr SafeUpdateMyStruct(MyStruct s) {
#if BUILDING_FOR_SYSTEM8
 if (BeginLockedSection(s.theLock) != noErr)
 return kInternalError; // structure corrupted
#endif
 UpdateMyStruct(s);
#if BUILDING_FOR_SYSTEM8
 if (EndLockedSection(s.theLock) != noErr)
 return kInternalError; // structure corrupted
#endif
 }

1.3.4 File Manager

Benefits The File Manager has been completely rewritten for Mac OS 8. New
features include object iteration, notification, and memory-mapped file
access. Those applications which desire maximum performance should
transition from the System 7.x calls to the new APIs.

Mac OS 8 Transitional App WWDC 1996

Mac OS 8 Transitional App WWDC 1996

Limitations The Mac OS 8 File Manager uses a new data type, FSObjectRef, to refer
to file system objects. The Mac OS 8 File Manager provides a call,
FSSpecGetFSObjectRef, to convert a System 7.x FSSpec to a
Mac OS 8 FSObjectRef. FSSpecGetFSObjectRef, however,
requires that the passed FSSpec be well-formed; that is, that it contain no
empty fields, no working directories, and no partial or full path names.
Applications wishing to use FSSpecGetFSObjectRef should call
FSMakeFSSpec to create well-formed FSSpecs prior to calling
FSSpecGetFSObjectRef.

While FSSpecs can be readily translated to FSObjectRefs, other data
types cannot necessarily be shared or translated between the two API's. For
example, a file which has been opened with FSpOpenDF, a System 7.x API
call, cannot be read using FSStreamSimpleRead, a Mac OS 8 API call,
because the open file reference data types are different and no translation
facilities are provided.

The System 7.x compatibility API is only available to cooperative tasks, so
those applications wishing to take advantage of tasking (“Tasking”, section
1.3.1.) for file operations will need to use the new Mac OS 8 File Manager
APIs.

Adoption
Guidelines

There is no requirement that an application entirely adopt the Mac OS 8
File Manager. The best places to adopt the new Mac OS 8 File Manager
without pervasive source code changes are those areas where File Manager
use is relatively contained. Examples include completely reading/writing a
document from/to disk, iterating through a folder, and searching. Those
applications which maintain open files across several subroutine calls will
require more fundamental changes because of the data type discrepancy
issue previously mentioned in the Limitations section.

Many of the System 7.x API calls have direct equivalents in the Mac OS 8
File Manager. These simplified calls, located in FileManager.h, have been
separated from the full Mac OS 8 File Manager implementation to give
developers a starting point for converting their applications. Long-time
developers of System 7.x will recognize the similarity of these calls to the
System 7.x FSp(ec) API set.

Sample Code The following code demonstrates how a document might be saved to disk
using the new Mac OS 8 File Manager. This code assumes a rather
simplistic saving model (open, write, close), but it is, after all, sample code.
This code, with the proper addition of data synchronization, could be used
from a preemptive task to save a document to disk while the cooperative

Mac OS 8 Transitional App WWDC 1996

Mac OS 8 Transitional App WWDC 1996

task is otherwise engaged. See the Tasking description in 1.3.1 for more
details.

// It is assumed that the file fileSpec exists
OSStatus SaveDocument(const FSSpec *fileSpec,
LogicalAddress data, ByteCount dataSize)
{
 OSStatus status;
 FSObjectRef fileRef;

 // Convert the FSSpec to an FSObjectRef

 status = FSSpecGetFSObjectRef(fileSpec,
 &fileRef);
 if(status == noErr)
 {
 FSStreamObjID fileStream;

 // FSStreamOpen opes the file for exclusive
 // read/write access
 // Use FSStreamOpenWithConstraints() to
 // specify different access permissions.

 status = FSStreamOpen(fileRef, kFSDataFork,
 fileStream);
 if(status == noErr)
 {
 FSOffset eof64;

 // The Mac OS 8 File Manager uses 64-bit
 // data types for files sizes and offsets.
 eof64.hi = eof64.lo = 0;

 // Clear the file of any existing data
 status = FSStreamSetAbsoluteEOF(
 fileStream,
 &eof);
 if(status == noErr)
 {
 FSForkPositionDescriptor writePos;
 ByteCount actualBytesWritten;
 FSOffset currentMark;

Mac OS 8 Transitional App WWDC 1996

Mac OS 8 Transitional App WWDC 1996

 writePos.positionOffset = 0;
 writePos.positionMode= kFSFromStart;

 // Write out our data. Note that the
 // last two arguments, like most
 // Mac OS 8 File Manager outputs, are
 // optional

 status = FSStreamSimpleWrite(
 fileStream,
 dataSize,
 data,
 &writePos,
 &actualBytesWritten,
 ¤tMark);
 }
 (void) FSStreamClose(fileStream);

 }

 // All FSObjectRefs returned by the File
 // Manager need to be disposed of. Note that
 // this does _not_ delete the object on the
 // disk.

 (void) FSObjectRefDispose(fileRef);
 }

 return(status);

}

The following code demonstrates how a use an iterator to “walk” a folder
and it's contained folders and tabulate the total sizes of all enclosed files.

OSStatus SumFileSizes(const FSSpec *folderSpec,
 FSSize *totalFilesSize)
{
 OSStatus status;
 FSObjectRef folderRef;

Mac OS 8 Transitional App WWDC 1996

Mac OS 8 Transitional App WWDC 1996

 totalFilesSize->hi = totalFilesSize->lo = 0;
 status = FSSpecGetFSObjectRef(folderSpec,
 &folderRef);
 if(status == noErr)
 {
 FSObjectIteratorObjID iterator;

 // Create an iterator which returns only
 // file objects and will automatically
 // traverse contained folders.
 status = FSObjectIteratorCreate(folderRef,
 kFSIncludeFiles |
 kFSTraverseEmbeddedContainers,
 &iterator);
 if(status == noErr)
 {
 while(status == noErr)
 {
 FSObjectInformation objectInfo;

 // Iterate to the next file and get
 // aggregate property information.
 // The last two parameters to
 // FSObjectIterateOnce() are pointers
 // to the name and object ref for the
 // file, neither of which are
 // needed for this exercise.

 status = FSObjectIterateOnce(
 iterator,
 kFSInfoCurrentReleasedVersion,
 &objectInfo, NULL, NULL);
 if(status == noErr)
 {
 FSSize fileSize;

 fileSize = S64Add(
 objectInfo.info.fileInfo.dataForkSize,
 objectInfo.info.fileInfo.resourceForkSize);

 *totalFilesSize = S64Add(
 *totalFilesSize,

Mac OS 8 Transitional App WWDC 1996

Mac OS 8 Transitional App WWDC 1996

 fileSize);
 }
 }

 // E_EndOfIteration is an exception
 // returned when an iterator has
 // finished iterating with a folder.
 // This is similar to indexed
 // PBGetCatInfo() calls returning
 // fnfErr at the end of a folder.

 if(status == E_EndOfIteration)
 status == noErr;

 (void) FSObjectIteratorDispose(iterator);
 }

 // All FSObjectRefs returned by the File
 // Manager need to be disposed of. Note that
 // this does _not_ delete the object on the
 // disk.

 (void) FSObjectRefDispose(folderRef);
 }

 return(status);
}

1.3.5 Memory Performance Improvement

The current Memory Manager data structures rely on handles to achieve
efficiency in using the available memory, but at the cost of slower speeds.
The Transitional Memory API, on the other hand, is designed for high
performance on a virtual memory system, potentially at the risk of less
space efficiency. The Transitional Memory API allows your application to
continue using the familiar Memory Manager API (i.e. NewHandle,
NewPtr, etc), but with a faster implementation.

Note: The Transitional Memory API is a subset of the Memory Mgr API
and is not binary compatible with System 7.x. This transitional technology
is not appropriate for binary-compatible applications that do dynamic
feature checking.

Mac OS 8 Transitional App WWDC 1996

Mac OS 8 Transitional App WWDC 1996

Benefits Your application will gain speed in its memory allocations.

Limitations For compatibility reasons, the System Heap is always a traditional Memory
Manager heap. Because there is not a perfect translation between the
current data structures and the new data structures, there are some Memory
Manager calls that are not supported, and should be removed from your
code. These include:

• InitZone
• GetApplLimit
• SetApplLimit
• MaxApplZone
• MoreMasters
• HandleZone
• PtrZone
• FreeMem
• MaxMem
• CompactMem
• ReserveMem
• PurgeMem
• SetGrowZone
• GZSaveHnd
• PurgeProcs
• MoveHHi
• HLockHi
• MaxBlock
• PurgeSpace
• SetApplBase
• InitApplZone

These calls are No-ops (therefore, can be safely left in your code),

• HLock
• HUnlock
• HPurge
• HNoPurge
• HSetRBit
• HClrRBit
• HGetState (returns 0)
• HSetState

Mac OS 8 Transitional App WWDC 1996

Mac OS 8 Transitional App WWDC 1996

These calls access the system or temp mem heap, and are therefore not part
of the Transitional Memory API. Your application can still use these calls,
but they will not get the benefits of the Transitional Memory API.

• NewHandleSys
• NewHandleSysClear
• NewEmptyHandleSys
• NewPtrSys
• NewPtrSysClear
• MaxBlockSys
• TempNewHandle
• TempMaxMem
• TempFreeMem
• ReallocateHandleSys

Note: The Transitional Memory API data structures are completely
different from the Memory Manager data structures. Your code MUST
NOT depend on any of them.

The following two calls are supported in the Transitional Memory Manger
API, but behave slightly differently than their Memory Manager
counterparts:

SetPtrSize: this call does not necessarily just expand the data block in
place. You will probably get a different pointer returned from this call.

SetHandleSize: This is the only call that can move a handle data block.
Since there is no concept of a lock bit, be careful of dangling pointers when
using this call.

Adoption
Guidelines

TEMPORARY SOLUTION FOR Mac OS 8 Developers Release:
Compatibility Edition

Specifying that your application uses the Transitional Memory Manager
API is accomplished by using a bit in the ’SIZE’ resource:

The Transitional Memory Manager uses one of the bits in the ’SIZE’
resource to determine if your application requires the traditional Memory
Manager API vs the Transitional API. Set bit #2 (i.e. mask of 0x00000002)
if your application uses the Transitional Memory Manager API. Note: in
Types.r this bit is still “reserved”.

Note: This is a workaround for Mac OS 8 Developers Release:
Compatibility Edition only. Since adopting this technology is not binary

Mac OS 8 Transitional App WWDC 1996

Mac OS 8 Transitional App WWDC 1996

compatible with System 7.x, it is very likely that this type of application
will have its own unique file type to designate it as such.

1.3.6 Navigation Services

Navigation Services replaces the traditional Standard File dialogs with a
greatly improved user experience. The view presented is identical to that of
the Finder, allowing users to more easily make the connection between files
in the Finder and files in Open and Save dialogs. Searching and history
mechanisms are also directly integrated for ease of navigation.

Navigation Services presents a standard dialog for confirmation of saving
changes. Apple has long provided guidelines for these dialogs, but not a
procedure for the dialog.

Both dialog versions and a stand-alone panel are provided.

Benefits Significant user benefit is provided by adoption of Navigation Services due
to its improved user interface. Since most features which have required
dialog customization in the past are built in to Navigation Services, there is
less need for the developer to customize, and less confusion for the user
resulting from different dialog appearances in different applications.

The NavAskSaveChanges procedure removes the need to implement this
dialog yourself.

Because of the NavigationPanel HIObject, it is possible to embed file
system browsers in any kind of window or dialog. The methods of
NavigationPanel may be overridden to modify or restrict its behavior as
desired.

Limitations Navigation Services in its current incarnation is not generalizable to the
point of adding new columns or browsing data spaces outside the file
system. This is a possible future direction. Navigation Services procedures
use Apple Event descriptors to allow for later generalization.

Adoption
Guidelines

Transitional applications can retain their current Standard File code bases
and switch to Navigation Services when a run-time check indicates that it is
present. Transitional applications should weak-link to the Navigation code
fragment and test for the presence of its entry points.

Mac OS 8 Transitional App WWDC 1996

Mac OS 8 Transitional App WWDC 1996

Developers should customize as little as possible, in order to enhance the
consistency of the user interface. Apple's technical support receives many
questions relating to Standard File dialogs and it is likely that yours does as
well. These support costs can be reduced by removing customizations
which do not add sufficient user benefit to justify their support cost.

Sample Code The following 3 samples demonstrate how a System 7.x structured
application could use Navigation Services with a runtime check :

// Opening a File
// To let the user select a file to open,
// use the NavGetObject() routine:

OSErr err;
NavReplyRecord reply;
NavDialogOptions options;
NavTypeList types;

// default position
SetPt(&options.location, -1, -1);
GetIndTextObject(&options.defaultButtonLabel,
 kMyTextObjectListID,
 kMyOpenButtonLabelIndex);
GetIndTextObject(&options.banner,
 kMyTextObjectListID,
 kMyOpenBannerIndex);

options.customPanel = NULL; // for no customization
types[0] = typeFSS; // return only FSSpecs
types[1] = 0;

err = NavGetObject(NULL, // no default object
&reply,
&options,
kMyOpenResourceID,
types,
NULL, // no object filter
NULL, // no event procedure
NULL); // no context pointer

if (err == noErr)
{

Mac OS 8 Transitional App WWDC 1996

Mac OS 8 Transitional App WWDC 1996

 FSSpec target;
 AEDesc fileDesc;
 err = AECoerceDesc(&reply.selection, typeFSS,
 &fileDesc);
 if (err == noErr)
 {
 err = AEGetDescData(&fileDesc, NULL, &target,
 sizeof(FSSpec), NULL);
 AEDisposeDesc(&fileDesc);
 if (err == noErr)
 MyOpenFile(&target);
 }
}

// Saving a File
// To allow the user to select a location in which
// to save a file, call NavPutObject(). The setup
// code is similar to that for NavGetObject().

// The first parameter (fileToSave) is an AEDesc
// which specifies the file to be saved; it may be
// NULL for a first-time save, but the normal case
// in Mac OS 8 is that the file already exists.

err = NavPutObject(fileToSave,
 &reply,
 &options,
 NULL, // no event procedure
 NULL); // no context pointer

if (err == noErr)
{
 FSSpec target;
 AEDesc fileDesc;
 err = AECoerceDesc(&reply.selection, typeFSS,
 &fileDesc);
 if (err == noErr)
 {
 err = AEGetDescData(&fileDesc, NULL, &target,
 sizeof(FSSpec), NULL);
 AEDisposeDesc(&fileDesc);
 if (err == noErr)

Mac OS 8 Transitional App WWDC 1996

Mac OS 8 Transitional App WWDC 1996

 MySaveFile(fileToSave, &target);
 }
}

// Confirming Changes
// To ask the user whether to save changes to a
// document when it is closed or the application
// is quit, you can use the NavAskSaveChanges()
// procedure.

NavAskSaveChangesResult reply;
Point location;

SetPt(&location, -1, -1);

// applicationName & documentName are text objects
err = NavAskSaveChanges(applicationName,
 documentName,
 kNavSaveChangesClosingDocument,
 &reply,
 location,
 NULL, // no event procedure
 0); // no context pointer

if (err == noErr)
{
 switch (reply)
 {

 case askSaveChangesSave:
 MySaveFile(fileToSave);
 MyCloseFile(fileToSave);
 break;
 case askSaveChangesCancel:
 // don't do anything to the document
 break;
 case askSaveChangesDontSave:
 MyCloseFile(fileToSave);
 break;
 }
}

Mac OS 8 Transitional App WWDC 1996

Mac OS 8 Transitional App WWDC 1996

1.3.7 Appearances

The Appearance Manager provides services which enable customization of
the Mac OS 8 system user interface. Developers can use the Appearance
Manager to make their applications adopt a compatible appearance under
different system user interface themes.

Some applications provide their own non-Macintosh "environment", such
as some games and multimedia programs which take over the screen
completely. These applications don't necessarily need to use the
Appearance Manager. Such applications need only worry about UI pieces
they bring up through the toolbox, such as dialogs and menus.

Benefits By using the Appearance Manager, you can tailor your application to
coordinate with the current system appearance. As we move to more
variations of the user interface, applications which fail to use the
Appearance Manager will be very obvious to the user, since their color and
pattern choices will not match the current system theme. For example, most
System 7.x applications with custom MDEFs and WDEFs will display
menus with white background and black text, and System 7-style
rectangular windows, while the rest of the world will have colored menus
and non-square windows. By utilizing the Appearance Manager, you can
help your application blend into the new world, which will get you noticed
by your customers as a more "modern" application.

Limitations The Appearance Manager cannot provide geometry information for use by
custom definition procedures - it can only provide color and pattern
support. Your application may still have different shaped windows or
menus than the system if you use custom definition procs. You can
however minimize the differences in color using the Appearance Manager
calls. Once again, it is best to use standard defprocs whenever possible to
ensure your application will have the same appearance as the system.

Adoption Choices Every application which uses standard windows, menus or controls will
receive some level of Appearance Manager support without modification.
Beyond that, there are three main areas where you can add Appearance
Manager support to your existing System 7 application:

• Outside of your application window content area, which includes any
custom definition procedures (MDEFs, WDEFs, CDEFs, MBDFs.

• Within dialogs, wherever you might now have user items to draw
grouping rectangles, default button rings or custom popup menu items.

Mac OS 8 Transitional App WWDC 1996

Mac OS 8 Transitional App WWDC 1996

• Within your application content area itself, if you use window headers,
status areas, rulers, and palettes or if you wish to have document
content mimic system appearance.

The implementation cost associated with these options varies widely. Each
of these options is discussed in more detail below. For the typical
application which just wants to use system colors and patterns or draw
dialog groups, you should only have to make a few simple calls.

NOTE : If you must ship a hard-coded visual appearance and don't want to
transition to adopting the Appearance Manager yet, use the guidelines
defined in the Apple Gray-Scale Appearance document provided on the
WWDC ’96 CD. Doing so will make your application compatible with the
standard Mac OS 8 appearance. While your interface will not adapt
automatically to other themes, the gray levels used in the default
appearance will blend in well with most other themes because they lack
strong colors which might clash. In general, you should avoid the use of
strong colors in your interface, except where relevant to the content such as
in games or graphics programs. Doing so will help prevent palette clashes
with more colorful system themes in the future.

The range of adoption choices to transition to the Appearance Manager
includes :

1. Do Nothing.
If you use only standard definition procedures (no custom MDEFs,
WDEFs, CDEFs, MBDFs), your application will automatically inherit
the correct system appearance under Mac OS 8. If you do have custom
defprocs and do nothing, they will not adopt the current system
appearance automatically, and may not look good with some themes.

2. Update your custom definition procedures.
Applications which do use custom definition procs (MDEFs, WDEFs,
CDEFs or MBDFs) may use the Appearance Manager color and pattern
query functions to modify their behavior so they appear more standard.
For example, you can modify your custom MDEFs to use the current
menu background pattern and text color from the Appearance Manager,
instead of white backgrounds and black text when running under
Mac OS 8.

3. Update your application's dialog window items.
If you use a dialog useritem to draw dialog group rectangles, you
may use the Appearance Manager DrawThemePrimaryGroup and

Mac OS 8 Transitional App WWDC 1996

Mac OS 8 Transitional App WWDC 1996

DrawThemeSecondaryGroup primitives to draw these groups with
the current system appearance when Mac OS 8 is present.
DrawThemePrimaryGroup is intended for top level grouping and
may surround other sub-groups. Sub-groups should be drawn with
DrawThemeSecondaryGroup.

If you use a dialog useritem to draw separator lines in your dialog, you
may use the DrawThemeSeparator primitive, rather than drawing a
gray line.

If you use lists, you may use the DrawThemeListBoxFrame primitive
to frame them, rather than simply using FrameRect.

You can draw or erase keyboard focus rings for your text boxes, list boxes
and selection areas using DrawThemeTextBoxFocus,
DrawThemeListBoxFocus and DrawThemeGenericFocus
respectively. Pass isActive of true to draw the focus and false to erase
it.

Do not assume the background pattern of your dialogs is white. It will not
always be. If you have a useritem which does an erase when it really
wants pixels to explicitly go to white, you should explicitly set the pen
color to white and do a fill or paint operation. Likewise, don't erase to the
background pattern by painting with white. You may end up with a white
blotch in the middle of your dialog.

If you have PICTs which appear in dialogs, you should note that they will
sometimes appear against a non-white background. If you wish your pict
to appear correctly against a color dialog background, you should either
use a paint program which can generate PICTs with lassoed areas or use a
program like PictDetective to decode your pict and rebuild it with no
background fill opcode. Alternatively, if you do wish your PICT to have a
square white background, use a dark border pixel around the PICT so that
the white background appears intentional, not like a white blotch in the
dialog behind the PICT.

4.Adapt your document content areas to blend with the system.
If you have areas of your contentRgn where you wish to coordinate with
the system patterns and colors, you may use the query functions
GetThemeColor and GetThemePixPat to do so. For example, an
application which provides a ruler could fill its area with the window
header background pattern instead of white or gray.

Mac OS 8 Transitional App WWDC 1996

Mac OS 8 Transitional App WWDC 1996

If your application uses a window header, you may use the
DrawThemeWindowHeader primitive to draw it. This will coordinate
your window header with the current Finder window header area (where #
items and disk space appear).

If you provide a status area adjacent to the scrollbars in your document
windows, you may use the DrawThemePlacard primitive to draw the
background of this area.

1.4 How To Build a Mac OS 8 Transitional Application

A Mac OS 8 Transitional Application requires the interfaces and libraries
on the Mac OS 8 Developers Release: Compatibility Edition CD. This
release will provide helpful feedback while you are compiling, linking and
running your application.

Interfaces The Mac OS 8 version of the interfaces, like all Apple interfaces, are
universal to all Apple software. These are the interfaces that Apple
engineers use to write their software. The Mac OS 8 Developers Release:
Compatibility Edition CD will include the latest version of our interfaces.

Libraries In addition to the interfaces on the CD, we will include stub libraries on the
CD to link your application against. These libraries correspond to the
different types of products you might build. They allow you to link against
one library without having to know what specific library the service (and
symbol) in question came from.

Compiling Your
Application

To link a Mac OS 8 Transitional application, use the
BUILDING_FOR_SYSTEM7_AND_SYSTEM8 compiler flag to indicate to
the system that you are building an application which runs on both System
7.x and Mac OS 8. Compiling with this build flag ensure that you are not
using System7 only interfaces.

Linking Your
Application

To link a Mac OS 8 Transitional application, use the
AppSystem7orMacOS8.stubs library in your development
environment.

Mac OS 8 Transitional App WWDC 1996

Mac OS 8 Transitional App WWDC 1996

Running Your
Application

When running your application against the debug version of the system
release (on the Mac OS 8 Developers Release: Compatibility Edition),
you may also encounter debugger breaks which detect unsupported or
discouraged use patterns. This will help you determine how well your
application will run.

Mac OS 8 Transitional App WWDC 1996

Mac OS 8 Transitional App WWDC 1996

