

WebObjects

“This year’s Software Product of the Year is
Apple Computer’s WebObjects 4.0…Along

with substantial power and flexibility,
WebObjects brings an ease of development

rarely seen in industrial-strength
development environments.”

WebObjects
Debugging
Techniques
Mai Nguyen,
Developer Support
Bob Frank,
Consulting Engineer
Steve Hayman,
Systems Engineer

Debugging Road Map
• Proactive Debugging

(Don’t write bugs—doh!)
• Deep in the Trenches

(OK, well now what?)
• Debugging Contest
• Q & A

Avoid Bugs,
Be Proactive!

• Would you rather:
• Write new code?

• Fix 9-month old code?

• Use standard coding conventions
• Compile frequently
• Use SCM

Coding Conventions
• Capitalization

classes: MyClass (ex. NSObject, WOComponent)
methods: myMethod (ex. [localObject aMessage],

 [NSString stringWithFormat: @"Hi there world"])

Java method: localObject.aMessage();
iVars: myAttribute, myVariable

Coding Conventions
• Return values!
• Make it hard to ignore error conditions—

use Exceptions (e.g., next slide)
• Don’t combine error conditions with

return values

Use Exceptions
• In Objective-C:

 NS_DURING
 [editingContext saveChanges];
 NS_HANDLER
 [NSException raise: NSGenericException
 withFormat: @”Debug info: %@", [iVar

method]];
 NS_ENDHANDLER

• In Java:
 try {
 // Save all changes in your object graph into the

database
 editingContext.saveChanges();
 }
 catch (Throwable exception) {
 // go to a new error page or handle exception
 }

Compile Frequently
• Catches typos and lazy syntax errors
• Use warnings—try to compile your projects

without any warnings
• Use_debug libraries

A Warning
 { int x;
 switch (y) {
 case 1: x = 1; break;
 case 2: x = 4; break;
 case 3: x = 5; }
 foo (x);
 }

warning: `x' might be used uninitialized in this function

• Uninitalized variables
• Also always use a “default” case
• = vs. ==

Using #warning
• It is a pre-processor command that will

produce warning messages
• Use it to flag incomplete methods / classes

/ categories, if you are:
• waiting on other code
• waiting on application specifications

• Don’t use, if you can write the code
• Make sure that whatever is incomplete will

not cause any bugs

Use SCM!
• CVS (Optimistic locking)
• PVCS, VSS (MS) (Pessimistic locking)
• VSS (MetroWerks), VooDoo (unknown

locking strategies)

General Advice
• If it just stops working, what was the last

thing you changed?
• When debugging, don’t worry about

performance…too much
• If your program doesn’t run, then its

performance sucks
• Less code is usually (better) code

More Naming Issues
• Know the key/value coding protocol!
• Standard accessor methods:

setIVarName / getIVarName / iVarName

Spelling Issues
• Misspelled method names—

They Won’t Be Called!
• Misspelled keys in the key/value coding

protocol—Raises Exceptions!

A Very Few
Pointer Issues

• Adding nil to an array
• Inserting nil into a dictionary
• Creating a variable without allocating any

memory (a classic)
• Trying to dereference a nil pointer

Super and id
• Overriding a method without calling super
• Avoid using “type” id
• Why?

• Makes code more readable
• Gives the compiler hints and allows better

type checking at compile time
• Why not?

• rapid proto-typing
• temporary and throw-away variables

Misunderstanding WebObject’s
Framework Control Flow

• Understand the Request-Response loop
• awake vs. appendToResponse

Deep in the Trenches
• Prepare for debugging
• Tips for debugging WebObjects
• Tips for debugging EOF
• How about Java Web Apps?

Prepare for Debugging
• Use Project Builder to build your

applications with the debug target
• To debug java applications, you also need

to add in your Makefile.preamble:

OTHER_JAVATOOLS_FLAG = -g

or
OTHER_JAVAC_FLAGS = -g

Avoid Runtime Confusion

• Multiple projects with the same name
• Understand NSProjectSearchPath

• Multiple build target binaries
• You must rebuild/restart your apps for

changes in EOModel files, or code
• If you touch a .h file, you must touch

the .m file to pick up the changes

Gdb or jdb?
• Project Builder lets you switch between

debuggers gdb and jdb
• Limitation: no mixed stack trace

• Know differences between gdb and jdb:
• You can’t execute methods in jdb
• Gdb stops all threads until you

continue, jdb continues to give
processor time to other threads

Gdb or jdb? (Cont.)
• Store often used gdb commands in a

startup file (see sample gdb.ini for NT)

Demo
Project Builder,
gdb, jdb, Debug in
Mixed Language Environment

Session
Code

Application
Code

Componen
t

Code

Components of a
Web Application (1)

• WebObjects dependencies

Componen
t

Bindings
(HTML

and WOD)

Components of a
Web Application (2)

• EOF Dependencies

EO Class
Code

WebObject
s Code

and
Bindings

EO Model Database
Schema

Tips on Debugging
WebObjects

• Use environment variables
• WODebuggingEnabled

• Use tracing methods
• WebScript, Objective C, Java

• Debug with or without the server
• Direct Connect mode

Test with Different
Web Browsers

• Your app can behave differently in
different browsers

• View HTML source with the browser
• Turn Java Console on with the browser

Common WebObjects
Binding Pitfalls

• Review the bindings of your components
when encountering exceptions

• Binding can be missing or have the
wrong value

• Common bug: Use a literal value like
“lastName” (quotes included) instead of a
key name like lastName (no quotes)

WebObjects
and HTML Pitfalls

• Multiple submit buttons must have
multipleSubmit binding set to 1

• Locate nesting problems by viewing HTML
source with WebObjects Builder

Tips on Debugging EOF
• Some useful environment variables:

• EOAdaptorDebugEnabled
• Logs connection attempts, all transaction

activity, SQL statements.

• EOFDebugEditingContext
• EOF Control layer will log everytime an

object is changed

• EOFDebugUndo
• Logs each time something is

pushed/popped from the undo list

Tips on Debugging EOF
• Check your model file with EOModeler

Consistency Check
• When seeing problems with the database

• Use delegate methods or
• Use posers/categories (Objective C) to

help debugging

Use Delegate Methods
• To check the control flow

• willDoSomeAction, didDoSomeAction
• editingContextWillSaveChanges,

• To handle error situations
• databaseContext:failedToFetchObject:globalI

D:

Use Categories or
Posers (Objective C)

• To add custom behavior for debugging

Finding Leaks
• Use ObjectAlloc
• Use MallocDebug

(only on Mac OS X server)

Demo
Exceptions and
Error Messages:
How to Read Exceptions

Throwable

Java and Apple
Exception Classes

Error Exception Runtime
Exception

NSException
EOValidation
Exception

More on Exceptions
• Use gdb to break on [NSException raise]
• Study the stack trace leading to the raise
• Invoke getStackTrace() on NSException to

print Java stack trace

Freed Objects Exception
• Use NSZombieEnabled (more in

NSDebug.h)
• Set the flag inside your app, or inside gdb,

or as an environment variable

Debugging WO
Java Applications

• Incorrect CLASSPATH can make app fail
• Use OTHER_CLASSPATH and

NSJavaUserPath to properly locate
class files

• Look at default settings in JavaConfig.plist
in $NEXT_ROOT/Library/Java

Debugging WO
Java Applications (Cont.)

• Java StackOverflowError or
OutOfMemoryError:

• Modify the Java VM settings

• Potential memory leaks:
• Avoid static or global references

• Beware of Java inner classes

Debugging WO
Java Applications (Cont.)

• Use OptimizeIt to profile trouble spots
• Can download a demo version at

http://www.optimizeit.com

Other Resources
• WO Support home page

• http://www.apple.com/support/webobjects
• Provide links to various helpful TIL articles and

Tech Exchange

• Public mailing lists
(eof, wof from the Omnigroup)

• AES Support
• How to report a bug with WebRadar

Hall B
Wed., 4:00pm

Hall B
Wed., 4:00pm

Fine-Tuning the
Performance of
WebObjects

Hall B
Thur., 9:00am

Hall B
Thur., 9:00am

Hall B
Thur., 10:15am

Hall B
Thur., 10:15am

Hall B
Thur., 4:00pm

Hall B
Thur., 4:00pm

Complex WebObjects
Application Design

WebObjects:
Tips from the Experts

Advanced HTML/DHTML/
JavaScript Tips and Tricks

WebObjects Sessions

Don’t Miss
Hall A1

Thur., 2:30pm
Hall A1

Thur., 2:30pm

Hall A1
Thur., 4:00pm

Hall A1
Thur., 4:00pm

Apple Development
Tools for Mac OS X

Using Project Builder
for Mac OS X

Debugging
Contest

Q&A

Think different.™


BONUS SLIDES
• Parental Advice

Parental Advice* (1)
• Never assume something is too simple to

be wrong—don’t start with complex
explanations

• When a hunch and a fact collide, the
fact wins

* Thanks to Julie Zelenski for this Parental
Advice from her presentation, “The Zen of
Debugging”

Parental Advice (2)
• Be systematic
• Be persistent
• Don’t panic!
• Do not change your code haphazardly

trying to track down a bug
• Look for one bug at a time

Parental Advice (3)
• If your code was working a minute ago,

but now it doesn’t—what was the last thing
you changed?

• Be critical of your beliefs about your own
code—it’s usually impossible to see a bug
in a method when your gut says that
method is innocent

Parental Advice (4)
• Debugging depends on an objective and

reasoned approach; late nights and long
hours erode this ability—you’ll debug
much better on some sleep

• And, you’ll code much better with sleep

Sample gdb
Initialization File

set signal-exception 4
 handle SIGWINCH nostop ignore noprint
 define reason

po [*((id *)($fp + 8)) reason]
end
document reason
Print the reason for an NSException.
When a program is inside of the method -[NSException raise], this
command prints out a textual reason for the exception.
end
define self
p/x *((id *)($fp + 8))
end

Sample gdb
Initialization File (Cont.)

document self
Determines self for the current stack frame.
end
define po-self
po *((id *)($fp + 8))
end
document po-self
Prints out (sends -description to) self.
end
define self-class
po NSStringFromClass((*((id *)($fp + 8))->isa))
end
document self-class
Displays the name of self's class.
end

Sample gdb
Initialization File (Cont.)

document arg
Displays an argument for the current stack frame.
Takes a single parameter. Argument zero is the selector
(which isn’t very interesting). Argument one is the first
actual argument.
end
define po-arg
po *((id *)($fp + 4 * ($arg0 + 3)))
end
document po-arg
Sends printForDebugger to an argument of the stack frame.
Like arg, the zero argument is the selector (don’t do this).
Argument one is the first actual argument.
end
define super-class
po NSStringFromClass((*((id *)($fp + 8))->isa)->super_class)
end
document super-class
Displays the name of self’s super class.
end

