

WebObjects

“This year’s Software Product of the Year is
Apple Computer’s WebObjects 4.0…Along

with substantial power and flexibility,
WebObjects brings an ease of development

rarely seen in industrial-strength
development environments.”

EOModeler

David Scheck
and Nader Nafissi
Senior Systems Engineers

Agenda
• The Problem/The Solution (EOF)
• EOModeler Features
• Entities
• Attributes
• Relationships
• Fetch Specifications
• Interacting with DBMS
• Advanced Features
• Extending EOModeler

The Problem

“It is easy to lose the benefits of
Objects when accessing

relational databases.”

Database Perspective
Client

clientId
521
522

last
Jones
Smith

birth empId
4/30/69
3/7/75

42
45

Purchase
purchaseId

1556
1594

prodId
630
720

clientId
521
521

SalesPerson
empId

42
43

name
Don Ber

Ric Vee

Object Perspective
A

rr
ay

Client Sales
Person

Purchase Purchase Purchase

Goals
• Work with business objects, not rows

and columns
• Automatic synching of rows and objects
• Keep objects free of database access

plumbing code
• Can relate objects between different

databases
• No code generation for database access

Goals (Cont.)
• Not SQL centric—reusable qualifiers and

sort orders
• Portable across different database vendors
• Configurable parameters for optimizing

performance
• Hooks everywhere for special cases
• Graphical tools for modeling

The Solution: EOF
• EOF is a collection of classes and tools

that allow you to get your enterprise
objects into and out of a relational
database

• EOF allows you to keep your objects free
of information about the database

• Basically, EOF maps instances of an object
class into rows of a database table

EOF: Key Features
• Uniques rows into business objects
• Saves row snapshot for locking

and caching
• Provides relationship traversal with faults
• Many-to-Many table hiding
• Remembers changes and provides undo

EOF: Key Features (Cont.)
• Generates appropriate SQL at runtime
• Uses open adaptor design to support

different data sources using their native
client libraries (Not just odbc/jdbc)

• EOF aware tools to model and use
business objects

EOModel = Mapping

Client

EOModel
Client

clientId
521
522

last
Jones
Smith

birth empId
4/30/69
3/7/75

42
45

Modeler Features
• Reverse engineer model from database
• Generate and execute SQL to create

database
• Switch model to different database
• Add Entities, Attributes, Relationships,

FetchSpecifications, Store Procedures
• Flattening attributes and relationships
• Defining Entity inheritance

Modeler Features (Cont.)
• Defining Entity object class
• Generating class sub files in Java or ObjC
• Generating Java Client sub files
• Defining referential integrity rules
• User defined data on all model objects
• EOModel prototypes
• Creating EOModeler bundle extensions

Creating a New Model
• Select database adaptor
• Connect to database
• Answer Questions

• Primary Keys

• Referential Integrity

• Stored Procedures

• Object class for row

What Is an Entity?
• Maps a table to an object
• Contains attributes (columns)
• Can have relationships to other entities
• Can have predefined fetch specifications
• Can have stored procedure call mappings

Entity Options
• Object server and java client class name
• Primary keys, locking keys, class props
• Is abstract and is read only
• Cache in memory
• Batch faulting size
• External query
• Limiting qualifier

What Is an Attribute?
• Defines a mapping to a data element
• Can be column or derived
• Can be flattened from a relationship

Attribute Options
• Is primary key, used for locking,

class property
• Is read only
• Allows NULL value
• Specifies external datatype
• Specifies value class
• Can use attribute prototypes

• Defines a mapping between two Entities
• Can be either toOne or toMany
• Can be defined across model files (dbs)
• Can be used to hide Many-to-Many tables

What Is a Relationship?

Relationship Options
• toMany batch faulting size
• Referential Integrity rules

• Owns Destination

• Propagate primary key

• Delete Rules (Cascade, Nullify, Deny, None)

• Is optional

App Demo
• New db wizard app (Employees entity)

• Selected Record/Matching Record
• FirstName,LastName,mailStop,email
• lastName
• FirstName,LastName

• Compile and Run it
• Add firstName to hyperlink
• Add toJobTitle.jobTitleShortName

App Demo (Cont.)
• Add departments picklist to qualifier

• Add WOPopUpButton
• Drag Department entity from EOM
• Add department variable (dept)

• Bind popup
• list=deptDG.allObjects
• item=dept
• displayString=dept.departmentName
• selection=empDG.queryMatch.toDepartment
• noSelectionString=“No Choice”

• Show generated SQL (no batch faulting)

SQL Output
• SELECT t0.department_Id, t0.department_Name,

t0.department_Short_Name, t0.internal_Code FROM Department t0"
• SELECT t0.department_Id, t0.email, t0.employee_Id, t0.employee_Status_Id,

t0.first_Name, t0.job_Title_Id, t0.last_Name, t0.mail_Stop, t0.manager_Id,
t0.office_Phone, t0.other_Phone, t0.site_Id FROM Employee t0 ORDER BY
t0.last_Name asc, t0.first_Name asc

Notice that each job title is fetched separately, no batch faulting set
• SELECT t0.internal_Code, t0.job_Title_Id, t0.job_Title_Name,

t0.job_Title_Short_Name FROM Job_Title t0 WHERE t0.job_Title_Id =
:job_Title_Id0 " withBindings:{job_Title_Id0 = 2; }

• SELECT t0.internal_Code, t0.job_Title_Id, t0.job_Title_Name,
t0.job_Title_Short_Name FROM Job_Title t0 WHERE t0.job_Title_Id =
:job_Title_Id0 " withBindings:{job_Title_Id0 = 1; }

• SELECT t0.internal_Code, t0.job_Title_Id, t0.job_Title_Name,
t0.job_Title_Short_Name FROM Job_Title t0 WHERE t0.job_Title_Id =
:job_Title_Id0 " withBindings:{job_Title_Id0 = 4; }

What Is a FetchSpec?
• Describes a fetch

• Entity to fetch

• Qualifiers to apply

• Sort Orderings to apply

• Distinct, FetchLimits, CustomRawSQL

• Hints: Prefetch Relationships, etc

• Predefined fetchspec defined in model

Why Create FetchSpecs?
• Predefined FetchSpecs can be assigned to

WODisplayGroups or accessed in code
• WODisplayGroup’s query match bindings

are always AND’d together
• Predefined FetchSpecs can be complex;

Subsitition variables are in Display
Group’s query bindings

Creating a FetchSpec
• Create new fetchSpec
• Define qualifiers with substitution vars
• Setup sort ordering
• Options

• Prefetch relationships

• Distinct, Fetch Limits, Locking, etc

• Raw rows, Custom SQL

Demo: FetchSpec
• firstNameOrLastNameNotInDept

• Qualifier
• firstName like $firstName
• lastName like $lastName
• AND
• NOT toDepartment = $deptObject

• Sort Orderings
• firstName, LastName

Demo: FetchSpec
• Bring up the WODisplayGroup inspector
• Select our fetchSpec in the popup
• Bind display group query bindings

• firstName to First Name text field

• lastName to Last Name text field
• deptObject to Dept popup selection

• Compile and Run

SQL Output
Notice the complex qualifier for :

FirstName = Da*
LastName = Sc*
Not In Department = Engineering Technical Support

SELECT t0.department_Id, t0.email, t0.employee_Id,
t0.employee_Status_Id, t0.first_Name, t0.job_Title_Id,
t0.last_Name, t0.mail_Stop, t0.manager_Id, t0.office_Phone,
t0.other_Phone, t0.site_Id FROM Employee t0 WHERE (not
(t0.department_Id = :department_Id0) AND (t0.first_Name
like :first_Name1 ESCAPE '\' OR t0.last_Name like
:last_Name2 ESCAPE '\')) ORDER BY t0.last_Name asc,
t0.first_Name asc"
withBindings:{department_Id0 = 2; first_Name1 = "Da%";
last_Name2 = "Sc%"

Interacting with DBMS
• Import/Export of data
• Stored procedure support
• Generate SQL to create database schema
• Switching between databases

Advanced Features
• Entity Inheritance
• Cross model/dbms relationships
• Generating class stub files (Objc, Java)
• Client side Java
• User Info Dictionary on model objects
• Attribute Prototypes
• Overriding defaults

Entity Inheritance
• Different than EO inheritance
• Vertical Mapping

• Storage directly reflects the class hierarchy
• Least efficient approach

• Horizontal Mapping
• Does not need to join to resolve relationships
• Altering the root is painful

• Single Table Mapping
• Fastest approach
• Requires having lots of NULLs in DBMS

• A subclass can be
added at any time
without modifying the
Person table

• Vertical mapping is the
least efficient of all of
the approaches

• Every layer of the class
hierarchy requires a
join to resolve the
relationships

Vertical Mapping

Horizontal Mapping
•A subclass can be

added at any time
without modifying
other tables

•Works well for deep
class hierarchies, as
long as the fetch
occurs against the
leaves of the class
hierarchy

•This approach is faster
than the other two
methods for deep fetches

•Unlike vertical or
horizontal mapping, you
can retrieve superclass
objects with a single
fetch, without
performing joins

• Adding a subclass or
modifying the superclass
requires changes to just
one table

Single Table Mapping

Inheritance at a Glance

• In Java you can not have a to-one relationship to
an ambiguous to-one relationship, unless you
implement a workaround

• Ambiguous to-one relationships are not possible
in Java because of strong typing in the language

Vertical Mapping
Horizontal Mapping

Single Table Mapping

Fetches from Leaves Fetches from Root

1 fetch using join
1 fetch
1 fetch

n fetches using join
n fetches
1 fetch

In the table,
“n” represents the number of entities involved in a deep fetch

Joining Models/dbms
• Finds all models using PB.project
• Creates EOModelGroup containing

• All models in Resources

• All models in Frameworks

• Relationship inspector shows all known
models in popup list

Extending App Demo
• Close EOMWWDC model
• Add EOMWWDCSite model to project
• Open both models
• Show site table in data browser
• Add relationship from Employee to Site
• Add toSite.siteName in GUI
• Add batch fault size 20 to Site Entity

Extend App Demo (Cont.)
• Flatten Many-to-Many relationship

Employees.toGeographies

• Drag in Geography entity for new DG
• Add WOToManyRelationship

dataSource = geographyDisplayGroup.dataSource
destinationDisplayKey = "geographyName”
relationshipKey = "toGeographies”
sourceEntityName = "Employee”
sourceObject = employeeDisplayGroup.selectedObject

Extend App Demo (Cont.)
• Create custom Employee class
• Add fullName method

public String fullName() {
return firstName()+” “+ lastName();

}

• Replace fullName and lastName with
fullName (Notice, WOB picks up the new method
immediately)

• Notice Batch Faulting, show SQL

SQL Output
Notice the batch fault size of 20 being fired

SELECT t0.ADDRESS1, t0.ADDRESS2, t0.CITY,
t0.COUNTRY, t0.FAXPHONE, t0.INTERNALCODE,
t0.OFFICEPHONE, t0.POSTALCODE, t0.REGION, t0.SITEID,
t0.SITENAME FROM SITE t0 WHERE (t0.SITEID = ? OR
t0.SITEID = ? OR t0.SITEID = ? OR t0.SITEID = ? OR
t0.SITEID = ? OR t0.SITEID = ? OR t0.SITEID = ? OR
t0.SITEID = ? OR t0.SITEID = ? OR t0.SITEID = ? OR
t0.SITEID = ? OR t0.SITEID = ? OR t0.SITEID = ? OR
t0.SITEID = ? OR t0.SITEID = ? OR t0.SITEID = ? OR
t0.SITEID = ? OR t0.SITEID = ? OR t0.SITEID = ? OR
t0.SITEID = ?)"
withBindings:(1:28(siteid), 2:22(siteid), 3:21(siteid),
4:38(siteid), 5:83(siteid), 6:42(siteid), 7:84(siteid),
8:86(siteid), 9:40(siteid), 10:19(siteid), 11:43(siteid),
12:39(siteid), 13:13(siteid), 14:72(siteid), 15:88(siteid),
16:9(siteid), 17:14(siteid), 18:44(siteid), 19:6(siteid),
20:81(siteid))

Overriding Defaults
defaults write NSGlobalDomain

EOAdaptorDebugEnabled YES

defaults write NSGlobalDomain
EOOracleTableNamesSQL “SELECT TABLE_NAME
FROM USER_TABLES ORDER BY TABLE_NAME”

defaults write NSGlobalDomain
EOSybaseTableNamesSQL “select name from
sysobjects where type = 'U' or type = 'V'”

defaults write EOModeler
SkipBeautifyNamesOnModelCreation YES

Extending EOModeler
• EOModeler.framework
• Example Bundles

• /Developer/Examples/EnterpriseObjects
/AppKit/ModelerBundle

• PDF Reporting

• OracleBeautifier

• Direct To Web Launcher

Demo
Example Bundles

Summary
• Fetched objects from two dbms
• Related objects in object graph
• Added popup list to qualifier
• Qualified on predefined fetchSpec
• Flattened Many-to-Many
• Create custom business object
• Without really writing any code!

Hall B
Wed., 10:15am

Hall B
Wed., 10:15am

Deploying WebObjects

Hall B
Wed., 1:00pm

Hall B
Wed., 1:00pm

Generating Reports in
WebObjects Apps

WebObjects Sessions

Hall B
Wed., 2:30pm

Hall B
Wed., 2:30pm

Debugging Techniques
in WebObjects

Hall B
Wed., 4:00pm

Hall B
Wed., 4:00pm

Fine-Tuning the
Performance of WebObjects

Hall B
Thur., 9:00am

Hall B
Thur., 9:00am

Hall B
Thur., 10:15am

Hall B
Thur., 10:15am

Hall B
Thur., 4:00pm

Hall B
Thur., 4:00pm

Complex WebObjects
Application Design

WebObjects:
Tips from the Experts

Advanced HTML/DHTML/
JavaScript Tips and Tricks

WebObjects Sessions

Think different.™


