

WebObjects

“This year’s Software Product of the Year is
Apple Computer’s WebObjects 4.0…Along

with substantial power and flexibility,
WebObjects brings an ease of development

rarely seen in industrial-strength
development environments.”

Fine-Tuning the
Performance
of WebObjects
Applications
Dave Neumann
Consulting Engineer
Anand Sundaram
RSW Software

Fine-Tuning the
Performance
of WebObjects
Applications
Bruce Arthur
Manager, Enterprise Objects
Mai Nguyen
Developer Support

Agenda
• Measurement
• Performance Tips
• System Performance with RSW
• Q&A

Where Is the Pain?
• I/O and processing between database

and application
• WOF Request/Response handling
• Your custom actions
• I/O between browser, web server, and

application

Measure First
• System granularity

• Use WOPlayback and Professional Tools
like RSW e-Load

• Page granularity
• WOStats page

• Sub-page granularity
• WOAssociationTiming

Measure First
• Memory

• ObjectAlloc and OptimizeIt

• SQL
• EOAdaptor Hooks

• DB Server features

Demo
First Glimpse: RSW, WOStats,
WOAssociationTiming,
ObjectAlloc

Database I/O

Optimize Your DB I/O (1)
• What are you fetching?

• Use EOAdaptorDebugEnabled = YES to
view SQL statements

• Determine if performance problem is
during fetching or saving by studying
the SQL

• Maybe you can fetch fewer rows?
• Set a Fetch limit for each fetch or

application wide

Optimize Your DB I/O (2)
• Maybe you can avoid I/O completely?

• Take advantage of relationships in your
EOModel and object uniquing

• Fetch once, and filter; take advantage of
in-memory sorting

• Share display groups in session instead
of per page; reuse filters and sorts

• Use PK blocks
• Implement a result-set cache (large DBs

but slowly changing data)

Optimize Your DB I/O (2)
• Hooks for result-set caching:

• Make yourself the EODatabaseContext
delegate

• Implement:
databaseContextShouldFetchObjects()
[for using cache instead of DB]

• And: databaseContextDidFetchObjects()

[for setting cache after a DB fetch]
• Use a description of the fetchSpec

as your key

Prefetching; Batch Faulting
• User access patterns

• Faults are efficient (you don’t fetch
what you don’t need; next accesses
cached)—[The drill-down pattern]

• Faults are expensive (DB round trip);
use prefetching instead to avoid
them—[The reporting pattern]

• If the usage pattern is not clear, use batch
faulting

Demo
Impact of Prefetching
Setting Prefetching in
EOModeler
Setting Up Batch Faulting in
E OModeler

Raw Row Fetching
• Use raw rows for extremely large

fetches—examples:
• Fetch a slimmed down version of

the row
• Simply take advantage of the faster fetch
• Fetch data that need no relationships

and no logic

• EOF provides API to easily convert raw
rows into Enterprise Objects
[objectFromRawRow in EOUtilities]

Page
Processing

Getting After the Pages…
• Look for expensive processing you can do

once instead of over and over
• Can you put it in a constructor instead

of awake?

• Change usage patterns
• Drill-down instead of all-at-once

reporting

Synching the
State Yourself

• Avoid synching overhead in your
subcomponents

• Use synchronizesVariablesWithBindings

to control push and pulling values
• valueForBinding()
• setValueForBinding()
• hasBinding()

Compile Your Most
Complex Pages

• Objective-C/Java is faster than WebScript
• If you do have a scripted page, do as

much in the .wod as possible to minimize
script execution requirements (you are
using more native WOF code this way)

• In Java apps, consider compiling your
EO’s in ObjC and creating Java wrappers
from them

Some Tips
• NSString stringWithFormat: very slow

(stringByAppendingString about 10x faster)
• Formatters—reuse them; don’t re-create
• Use threads carefully

• For HTTP File Upload or to generate
images on the fly

• Know your app and its usage pattern
before applying threads!

Demo
WOAssociation Timing
for Detailed Page Analysis

Can’t Make It Any Faster?
• Punt!

• Use WOLongResponsePage to give the
user immediate feedback

Demo
WOLongResponsePage
Example

Footprint

Leaks (1)
• Use the WOStats and System testers like

RSW to track your application’s image size
• Use OptimizeIt to find Java static

references
• Use ObjectAlloc to visually inspect

memory consumption
• Avoid cycles across the Java bridge

Demo
ObjectAlloc

Leaks (2)
• Leaks that aren’t

• Use WOWorkerThreadCount and
WOGarbageCollectionRepeatCount
to loop collection during session
deallocation

• Use WOGarbageCollectionPeriod to
force GC on every ‘n’ requests

• In Objective-C implement dealloc—use
nested autorelease pools

System
Performance

The Big Picture
• Plumbing
• WOAdaptor flavor
• Web server
• Browser to web server
• Performance viewed from the

web browser

Load Testing
WebObjects
Applications
Anand Sundaram
Director of Product
Management and Founder
RSW Software

Agenda
• Web Testing Challenges
• Goals of Load/Scalability Testing
• Overall Load Test Methodology
• Phases of Load Testing
• About RSW Software
• e-LOAD Demonstration

• Web applications can be very complex
• Multi-tier, multi-technology, e.g., HTML,

CORBA, Java, RDBMS…

• Applications must scale to
hundreds/thousands of users overnight

• Applications are a moving target

Increased risk and a need to test early and often

Challenge of Testing
Web Applications

Goals of
Load/Scalability Testing

• Ensure that application will perform well
and degrade gracefully under anticipated
traffic/heavy load

• Determine the “Magic Number” of
concurrent users

• Ensure that application will not crash
under peak loads

• Understand best ways to scale
hardware/software as traffic grows

Overall Load Testing
Methodology

1. Record several typical user transactions
2. Create multiple “scenarios” that

represent typical and worst-case
application usage

3. Ramp up # virtual users with typical
think times until “magic number” is
determined

Overall Load Testing
Methodology (Cont.)

4. Ramp up virtual users with no delays to
determine robustness of application

5. Examine graphs, reports, page times,
and system monitors to identify
bottlenecks

6. Modify system to remove bottleneck
7. Repeat tests to determine impact of

changes to system

Key Phases
of Load Testing
Architecture
Validation

Performance
Benchmarking

Performance
Regression

Acceptance
and Scalability

Fine-Tuning

24x7 Performance
Monitoring

Application Prototyping Application Development and Testing Application Deployment

Development QA Operations

P1 P2 P3 αααα1 αααα2 αααα3 §1 §2 G.A.

e-TESTER

Functional and
Regression Testing

e-MONITOR

24x7 Monitoring

e-LOAD

Load Testing

e-TEST Suitee-TEST Suitee-TEST Suite

About RSW Software
• Founded in 1996 by 3 ASQ veterans, and

became a business unit of Teradyne in
November, 1997

• 100% focused on Web application testing
solutions

• Products:

Hall B
Thur., 9:00am

Hall B
Thur., 9:00am

Hall B
Thur., 10:15am

Hall B
Thur., 10:15am

Hall B
Thur., 4:00pm

Hall B
Thur., 4:00pm

Complex WebObjects
Application Design

WebObjects:
Tips from the Experts

Advanced HTML/DHTML/
JavaScript Tips and Tricks

WebObjects Sessions

Think different.™


