

Extending
AppleScript
Jason Yeo
AppleScript
Technology Manager

Extending
AppleScript
Christopher Nebel
AppleScript Engineering
Andy Bachorski
AppleScript Guru

What’s in This Session
• Native Scripting Additions
• Unit Types
• Attaching and Embedding Scripts

Scripting Additions
Surgeon General’s Warning:

Scripting additions cannot implement the
object model, execute inside other
applications, and override application
terminology. Improperly written additions
can cause system instability and general
consternation.

A Brief History
• 1.0–1.1.2: 68K code resources
• 1.3 (Mac OS 8.5): native shared library or

accelerated code resources
• 1.3.7 (Mac OS 8.6): native shared library

designed correctly!

Native Additions in 8.6
• Additions are just shared libraries with a

terminology resource—no extra baggage
• AppleScript prepares and releases your

addition’s code fragment
• No AppleScript overhead
• Added bonus—code sharing!

Initialization
• Install your handlers here!
• You can be smart: install different routines

depending on context
• If you fail, undo everything you did
• Be careful about what you link to—you

will be loaded at system startup time!

Initialization
static AEEventHandlerUPP myHandlerUPP;

OSErr MyFragInit(const CFragInitBlock *initBlock)
{

myHandlerUPP = NewAEEventHandlerUPP(MyHandler);
AEInstallEventHandler (‘blah’, ‘zoot’, myHandlerUPP,

myRefcon, true);
…any other initialization you need…
if (err != noErr) {

AERemoveEventHandler (‘blah’, ‘zoot’,
myHandlerUPP, true);

}
return err;

}

Initialization—Linking
pascal OSErr CountVoices(short *numVoices)
{

typedef OSErr (*CountVoicesPtr)(short *);

static Boolean attempted = false;
static CountVoicesPtr fn = NULL;

if (!attempted) {
fn = (CountVoicesPtr) Bind("\pSpeechLib",

"\pCountVoices");
attempted = true;

}
return fn ? (*fn)(numVoices) : paramErr;

}

Ptr Bind(ConstStr63Param library, ConstStr255Param symbol)
{

OSErr err;
CFragConnectionID connectionID;
Ptr addr;

// Must bind symbol in the system context!
THz savedZone;
savedZone = LMGetTheZone();
SetZone(LMGetSysZone());

err = GetSharedLibrary(library, kPowerPCCFragArch, kFindCFrag ,
&connectionID, NULL, NULL);

/* If we couldn't find it, load it. */
if (err == cfragNoLibraryErr || err == cfragLibConnErr)

err = GetSharedLibrary(library, kPowerPCCFragArch,
kLoadCFrag , &connectionID, NULL, NULL);

…next slide, please…

Bind, continued…

if (err == noErr) {
CFragSymbolClass symClass;

FindSymbol(connectionID, symbolName, &addr, &symClass);
}

SetZone(savedZone);
return addr;

}

UInt32 gAdditionReferenceCount = 0;

OSErr MyEventHandler(…)
{

gAdditionReferenceCount++;

…do your thing…

gAdditionReferenceCount--;

return err;
}

Runtime
• Just one extra thing: keep a use count

Termination
• Remove your handlers using

AERemoveEventHandler or
AERemoveCoercionHandler

• Pass your routine’s UPP—uninstall only
your handler, not somebody else’s!

Termination

static AEEventHandlerUPP myHandlerUPP;

void MyFragTerm()
{

AERemoveEventHandler(‘blah’, ‘zoot’,
myHandlerUPP , true);

}

FSSpec myFSS;

OSErr MyFragInit(const CFragInitBlock *initBlock)
{

myFSS = *initBlock->fragLocator.u.onDisk.fileSpec;

…install handlers, etc…
}

Standing on Your Own
• Open your own resource fork

extern FSSpec myFSS;

pascal OSErr MyAppleEventHandler(...)
{

SInt16 savedResFile, myRefNum;

savedResFile = CurResFile()
myRefNum = FSpOpenResFile (&myFSS, fsRdPerm);
…do that voodoo that you do so well…
CloseResFile(myRefNum);
UseResFile(savedResFile);
return result;

}

Standing on Your Own
• Open your own resource fork

Boolean IsRemoteEvent(const AppleEvent *theEvent)
{

OSErr err; DescType typeCode;
SInt16 eventSource; Size actualSize;

err = AEGetAttributePtr(theEvent, keyEventSourceAttr ,
typeShortInteger, &typeCode, &eventSource,
sizeof(eventSource), &actualSize);

return (err == noErr &&
 eventSource == kAERemoteProcess);

}

Standing on Your Own
• Check for remote events

Carbon
• Mac OS 8 additions can’t link to Carbon

• Carbon not available at system startup

• You can be called from non-Carbon apps

• Mac OS X additions must use Carbon
• See Session 157:

“AppleScript, Mac OS X, and Carbon”

Unit Types
• What They Are
• How They Can Be Used
• Adding New Unit Types

What Are Unit Types
• Real number values (doubles) with

associated type information

What Are Unit Types
• Real number values (doubles) with

associated type information
• Families of unit types with common

base type

What Are Unit Types
• Real number values (doubles) with

associated type information
• Families of unit types with common

base type
• Coercions from one type to another

within a family

Base Unit Types
• Meters
• Square meters
• Cubic meters
• Liters
• Kilograms
• Degrees Celsius

Unit Type Families
• Meters
• Metres
• Inches
• Feet
• Yards

• Miles
• Kilometres
• Kilometers
• Centimetres
• Centimeters

set x to 10 as inches
--> inches 10

Using Unit Types
• Assigning unit values

set x to 10 as inches
--> inches 10

• Converting between unit types
set y to x as centimeters

 --> centimeters 25.4

Using Unit Types
• Assigning unit values

Adding New Unit Types
• Extend an existing family
• Add a new family of types
• Usually implemented as scripting addition
• Can be installed from an application

• Should be installed as system hander

• Must be removed when app quits

Extending a Unit Family
• Define four coercion handlers for the

unit to be added
• typeWildCard to unitType

• unitType to typeWildCard

• unitType to baseType

• baseType to unitType

Adding a New
Unit Family

• Define two coercion handlers for the base
unit type

• typeWildCard to baseType

• baseType to typeWildCard

• Define other unit types for the family

typeWildCard
to unitType

pascal OSErr WildToType(…)
{

switch (fromType)
{ // For intrinsic types, first coerce to a double

case typeInteger: case typeChar: case typeFloat:
err = AECoercePtr(fromType, dataPtr, dataSize,

typeFloat, result);
// Then change to the unitType type
if (err == noErr) result->descriptorType = toType;

break;
…

typeWildCard to
unitType

// For other types, first try to coerce to base unit,
default:

err = ConvertWildToBase(fromType, dataPtr, &baseDesc);
// then to the unitType type
if (err == noErr) {

err = ConvertBaseToType(baseDesc, toType, result);
AEDisposeDesc(&baseDesc);

}
if (err != noErr) err = errAECoercionFail;
break;

}

Key Points
• Base types know nothing about

derived types
• Coercing to types other than intrinsic

types involve an intermediate coercion
to the base type

• Handle coercion to typeObjectSpecifier
so you can be displayed in the Result and
Log windows

Attaching and
Embedding Scripts

• Scripts menu

Attaching and
Embedding Scripts

• Scripts menu
• Attachability: attaching scripts to existing

commands

Attaching and
Embedding Scripts

• Scripts menu
• Attachability: attaching scripts to existing

commands
• Tinkerability: replace existing commands

with scripts

Attaching and
Embedding Scripts

• Scripts menu
• Attachability: attaching scripts to existing

commands
• Tinkerability: replace existing commands

with scripts
• Embedding: attach scripts to documents

or other objects

Executing Scripts
• Open connection to scripting component
• Load and prepare the script for execution
• Execute the script
• Retrieve any results and deal with errors
• Save changes to the script

Open Connection to
Scripting Component

• Generic or specific
• Resulting component instance used for all

other OSA calls

Load and Prepare
the Script

• Scripts typically stored as resources of
type ‘scpt’

• Load the script resource
• Call OSALoad to prepare the script

for execution

Execute the Script
• OSAExecute
• OSADoScript
• OSAExecuteEvent
• OSADoEvent

OSAExecute
• Simplest way to execute a script
• Executes a compiled script
• Call the script’s run handler
• Returns a scriptID containing any results

OSADoScript
• Compiles and executes source text rather
• Call the script’s run handler
• Returns textual representation of

any results

OSAExecuteEvent
• Executes a compiled script
• Tries to handle the input Apple event
• Returns a scriptID containing any results

OSADoEvent
• Executes a compiled script
• Tries to handle the input Apple event
• Returns a reply event
• Most closely matches application supplied

handler functionality

Other Methods
• OSALoadExecute
• OSACompileExecute

Retrieving Results
• Call OSADisplay to convert a scriptID

to text
• Use returned text
• Extract directly from reply event

Saving Script Changes
• Execution can cause script context

to change
• Call OSAGetScriptInfo to see if script

has changed
• Call OSAStore to convert script to

an AEDesc
• Replace original script resource

with contents of the dataHandle

Other Consideration
• Call OSASetActiveProc to install an active

function
• Call OSASetSendProc to install a send

function
• Pass an idle function, and optionally

a reply filter, in your send function

Key Points
• Allows customers to:

• Add new functionality

• Augment or change existing
functionality

• Automate repetitive tasks

Other Resources
• Inside Macintosh: Interapplication

Communications
• AppleScript SDK: Sample code for

working with Apple events and
AppleScript, available in developer
section of Apple ftp site

Hall C
Thur., 4:00pm

Hall C
Thur., 4:00pm

Hall C
Thur., 5:30pm

Hall C
Thur., 5:30pm

AppleScript
Feedback Forum
For interactive feedback and
discussion with the team

AppleScript
Birds of a Feather
For community-building with
other developers

Roadmap

AppleScript Kitchens
London, U.K.:
June 15 through 17, 1999

Cupertino, CA:
August 17 through 19, 1999

For more information:
Email Jason Yeo at jason@apple.com

Think different.™


