

HLTB:
Carbon Events
Ed Voas
Manager, Tech Lead, Jedi
High Level Toolbox

Carbon Events
• New underlying event system
• Classic routines (WNE) are built on top
• Exposes new way of receiving events

Why a New Model?
• Greatly simplifies writing applications
• Provides default behaviors
• Unification of different messaging models
• Better support for plug-ins
• API encourages performance

Classic Model
• App calls WaitNextEvent/GetNextEvent
• Decides what to do with the event
• Receives null events to do idle processing
• You write the same code many times

Carbon Model
• App calls RunApplicationEventLoop
• Events are dispatched directly to objects
• Timers enable idle processing
• You write no boilerplate code!

Carbon Event Basics
• Events are opaque—EventRefs
• Events can be posted or sent directly

to an object
• Events can be requests or notifications
• Not cross-process
• Lightweight

Mouse Events
• Multiple-click detection is free
• Mouse moved events are always sent
• Multi-button mouse support

Keyboard Events
• High-level: Text Input events

• Supports Unicode
• Helps unify paste and key filtering

• Low-level: KeyUp/KeyDown events
• Key Modifiers Changed event

Toolbox Object Events
• Events for Window, Controls, Menus
• Many are defined now, more to come
• Examples

• kEventWindowMoved
• kEventControlHit

Event Evolution
• Events go from low-level to high-level

in meaning
• Listening to higher level events

means less work

Click

Zoom Box Hit

Window Zoom

Window Zoomed

Event Evolution

Processing Events
• High-Level

• RunApplicationEventLoop
• QuitApplicationEventLoop

• Low-Level (no dispatching)
• BlockUntilNextEvent
• BlockUntilNextEventMatchingList

Idle Processing—Timers
• Replacement for null events
• Can be periodic or one-shot
• Finer granularity when running

on Mac OS X
• Allows you to decentralize idle processing
• Work with WaitNextEvent
• Called even when mouse is down

Event Loop Observers
• Watch for events outside of event loop
• Perform operations at certain times

Event Handlers
• Attached to Toolbox Objects
• Handlers are stacked
• Events propagate through stacks,

then up the container hierarchy
• Allows overriding
• You can call through to the next handler

Toolbox
Handler

Client
Handler

Result

Object
Handler

Event

Stack ’Em Up

Application

Window Window

Contro
l

Contro
l

Control Control

Control

Container Hierarchy

Handle With Care
• If you don’t understand an event,

propagate it
• Don’t assume the Toolbox will never

use an event
• Make sure your handlers are reentrant

User Focus
• Can be a window and/or a control
• Keyboard input is automatically sent

to the current user focus
• Normally managed by the toolbox
• Supports Validation

HICommands
• Expanded version of Menu Command IDs
• Predefined commands, such as quit
• Always sent to command chain
• Normally sent via command events

main ()
{

InstallStandardMenuBar();

CreateNewWindow(…);

RunApplicationEventLoop();
}

A Minimal Application

Demo
Guy Fullerton
Resident of Tatooine
Rebel Scum

What Dialog Manager?
• Obsolete with new event functionality
• Can specify Default/Cancel for a window
• Control IDs
• Control persistence
• Window modality without ModalDialog

Performance Tips
• Avoid Button, StillDown,

and WaitMouseUp
• Use TrackMouseLocation or

TrackMouseRegion
• Avoid GetKeys/EventAvail in tight loops

• Use ModifiersChanged event

Why Adopt?
• Maximum Functionality
• Minimum Code
• New Event Model = the Future
• Get new Toolbox features for free
• Gradual adoption path

Things You Can Do
• Check out CarbonEvents.h on the

Mac OS X Developer Preview CD
• Start moving null event processing

to use timers
• Give us lots of feedback!

• toolbox@apple.com
• Feedback session later today

Q&A

Think different.™


