


I/O Drivers—
Mac OS X
Dean Reece
I/O Kit Team Manager



Classic Cocoa/
Java BSD

Common Services

Core OS

Carbon

Mac OS X Architecture



Core OS and Mac OS X
Application

Environments
Application

Environments

Core OSCore OS

Classic Carbon Cocoa/
Java BSD

POSIX

Mach 3.0

Common Services

Drivers
I/OKit

Skt Layer
Atalk IP

File
System



Core OS and Mac OS X
Application

Environments
Application

Environments

Core OSCore OS

POSIX

Mach 3.0

Skt Layer
Atalk

Carbon Cocoa/
Java

Common Services

BSD

Drivers
I/OKit

IP

Classic

File
System



Everything needed to 
develop and use Kernel Extensions

What Is I/O Kit?

• A set of SDKs
• A set of libraries
• Common services



I/O Kit Design Goals

• Protected Address Space
• Multiple Threads
• Preemptive Scheduling
• SMP Efficient

I/O Kit is intended to make it as easy 
as possible to develop Mac OS X drivers



I/O Kit Lineage
• Derived from NeXT’s DriverKit
• DriverKit treated as a prototype
• Added IORegistry and IOCatalog

• Plug-n-Play/Hot Swap
• Power Management
• Better App-to-Driver interaction

• Added Several New Technologies
• Added support for some NDRVs



Objective C to C++
• Full C++ difficult in kernel environment
• Embedded C++ offers the right

tradeoffs
• Strict subset of C++
• Single inheritance only
• No templates, static objects, RTTI…

• Embedded C++ web site:
http://www.caravan.net/ec2plus/index.html



Kernel Extensions
• Package new functionality for

Mac OS X kernel
• Filesystem Plugins
• Network Implants
• I/O Kit Drivers and Families

• Familiar user experience
• Live in the System folder
• Optional “double click” action



Kernel Extensions
• Type and Creator are “kext”
• Optional Icon
• “Driver” is contained in App package

• Property List—serves as Table of Contents
• Relocs—Relocatable code fragment(s)
• Optional UI Elements—about box, help,

…



Kernel Extension Manager
• (Un)Loads Kernel Extensions as needed
• Apps can register new extensions

at runtime
• Can have extensions associated with single apps
• No need to reboot after installing new software

• Default app for kext type files
• Can handle “double click” action
• Can Auto-update extensions
• Can show user which extensions are being used



I/O Kit Architecture
• Object-oriented
• Two primary classes

• IOObject
• IOService

• All drivers inherit from IOService
• IORegistry tracks IOService objects



I/O Kit Infrastructure
• Always available in kernel
• Services needed by all drivers

• Kernel Extension Manager
• IORegistry and User-Client access
• Memory Management
• Interrupt Management and Timer Support
• Thread Management and Synchronization
• Common classes



PCI Network ATA/PI Video

USB FireWire SCSI Graphics

ADB Serial Mass Storage Human Interface

I/O Kit Families
• Families build on the I/O Kit

Infrastructure
• Each interface or protocol gets a family



I/O Kit Families
• A Family includes everything needed to

develop for a single interface or protocol:
Classes, Headers, Consts, Structs, Enums, Libraries…

• Families built into kernel now, will be
loadable Kernel Extensions later



I/O Kit Families

Mac OS X Kernel and Core Services

I/O Kit Infrastructure

SCSI Family

HFS+
Filesystem

(Plugin)

SCSI Bus
Driver

Storage Family

SCSI Disk
Driver

• I/O Kit builds on Mac OS X Core Services
• Families build on I/O Kit Infrastructure
• Drivers build on I/O Kit Families

• I/O Kit builds on Mac OS X Core Services
• Families build on I/O Kit Infrastructure
• Drivers build on I/O Kit Families

Filesystem



I/O Kit
Direct
Drivers
Godfrey van der Linden
I/O Kit Team Tech Lead



Why Direct Drivers
• Efficient, robust direct drivers are difficult

to write
• I /O Kit is designed to make it easier without

sacrificing flexibility and power
• Direct Drivers support is only small part of

I/O Kit



Easiest Solution
• Mac OS 8 Drivers
• We have done a lot of research into

supporting old drivers
• Unfortunately no efficient general solution

was found
• Mac OS 8 and Mac OS X have fundamentally

different operating systems



Traditional Unix Drivers
• Traditional upper/lower drivers
• Complex operating system interactions

to prevent clobbering data
• Almost unimplementable on

multi-processors



I/O Kit Drivers
• Object-oriented
• Single-threaded
• Easy VM model
• And a real helpful extra



Object Oriented
• Models most common types of direct

drivers, in other words a HAL
• The family classes interact with the OS
• Object-oriented solutions are flexible and

easy to extend



Single Threaded
• Threading makes multiprocessor

support a ‘gimme’
• Each piece of hardware has its

own thread
• Usually no primary interrupts



Simple VM Model
• Mac OS X Kernel deals with the VM issues
• Uses simple prepare/cleanup I/O style
• Some complexity if writing a family



I/O Kit Open Source
• We expect to be opening the

I/O Kit source
• No more worries about code disappearing

into a poorly documented library
• The I/O Team will also be responsive to

fixes and suggestions



Roadmap
Hall A1

Fri., 2:30pm
Hall A1

Fri., 2:30pm

Hall A2
Fri., 9:00am

Hall A2
Fri., 9:00am

Hall B
Fri., 4:00pm

Hall B
Fri., 4:00pm

Mac OS X
File System

Mac OS X
Networking Overview

Mac OS X—Core OS
Feedback Forum



Q&A



Think different.™





