

CoreFoundation
Overview
Ali Ozer and Chris Kane
Application Frameworks
Engineering

Overview
• What is CoreFoundation?
• Main features of CoreFoundation
• Various paradigms in CoreFoundation

What Is
CoreFoundation?

• A new set of C APIs in Mac OS X and 8
• Substrate for the implementation of

Carbon and Cocoa toolkits
• Also known as “CF”

Where CF Fits

Operating System

Carbon

Classic

Cocoa

Graphics

Core Foundation

Design Goals of CF
• Act as common substrate

beneath Carbon, Classic, and Cocoa
• High performance
• Portability
• Consistency in API and semantics
• Use some object-oriented paradigms

However…
• Not meant to be extensible by developers
• Not complete object-oriented experience

• No inheritance, limited polymorphism

• Not protective
• Production binary does exactly

what you tell it to do
• Debug library has assertions

and checking

Where Is CF Available?
• Mac OS X
• Sonata via CarbonLib
• Mac OS 8 via CarbonLib

Why Should You Use It?
• Access to new functionality
• Common low level abstractions
• Internationalization of Carbon apps
• Platform independence

Main Features

Main Features
• Strings and character sets
• Collections and other data types
• Property lists
• Preferences
• XML parsing
• URLs

CFString
• Conceptually an array of Unicode characters
• Goals

• Elevate strings to a new level of abstraction
• Make internationalization easy
• Assure high performance
• Become the way to communicate

strings in APIs
• Provide convenient and efficient bridging

to C and Pascal string APIs

CFString
• Rich functionality

• Many creation functions
• Encoding conversion
• Comparison, find
• Explode, combine
• Format, parse

CFString
• Some basic creation and access functions

• “Constant” strings

CFStringCreateWithCharacters (allocator, buffer, length)

CFStringCreateWithPascalString (allocator, pStr, encoding)

CFStringGetLength (str)

CFStringGetCharacterAtIndex (str, index)

CFStringGetCharacters (str, range, buffer)

CFStringGetPascalString (str, buffer, size, encoding)

CFSTR(“Hello World”)

CFString
• Can provide hints for not

copying contents
CFStringCreateWithPascalStringNoCopy (allocator,

pStr, encoding, contentsAllocator)

• This might copy
CFStringGetPascalStringPtr (str, encoding)

• This might return NULL

• Other, more sophisticated and predictable
“no copy” functionality also available

CFString
• Provides powerful editing capabilities

CFStringAppend (str, appendedStr)

CFStringReplace (str, range, replaceStr)

CFStringTrim (str, trimStr)

CFString
• Sample CFString usage in Carbon Toolbox

• Today
void SetWTitle (WindowPtr, ConstStr255Param)
void GetWTitle (WindowPtr, Str255)

• To be added (exact names TBD)
void SetWTitleCFString (WindowPtr,CFStringRef)
CFStringRef GetWTitleCFString (WindowPtr)

CFCharacterSet
• Set of Unicode characters
• Functions to add and remove characters,

test for presence, evaluate union and
intersection

• Many predefined sets
• kCFCharacterSetWhitespace
• kCFCharacterSetAlphaNumeric
• kCFCharacterSetPunctuation

Collections
• Containers for pointer-sized values

• CFArray
• Compact, ordered vector

• CFDictionary
• Mapping from unique keys to values

• CFSet
• Unordered unique set of values

• CFBag
• Unordered non-unique set of values

Collections
• Other collections

(implemented in future release)
• CFBitVector
• CFBinaryHeap
• CFTree

Collections
• Callbacks configure behavior
• Default sets of callbacks provided for

putting CF Types in collections
• Allocators allow memory usage

to be controlled

CFArray Example
CFArrayRef array =

CFArrayCreateMutab le(NULL, 0,
&kCFTypeArrayCallBacks);

CFStringRef value = CFSTR(“Apple”);
CFArrayApp end(array, value);
count = C FArrayGetCount(array);
/* count is now one */

CFDictionary Example
CFDictionaryRef dict =

CFDictionaryCreateMutable(NU LL, 0,
&kCFTypeDictionaryKeyCallBacks,
&kCFTypeDictionaryValueCallBacks);

CFStringRef key = CFSTR(“Name”);
CFStringRef value = CFSTR(“Apple”);
CFDictionarySetValue(dict, key, value);
count = C FDictionaryGetCoun t(dict);
/* count is now one */

Other Data Types
• CFData

• A sequence or chunk of bytes

• CFDate, CFTimeZone
• Time and date facilities

• CFNumber, CFBoolean
• Wrappers for property lists

Property Lists
• A tree of instances of these CF Types:

• CFArray, CFDictionary, CFData,
CFString, CFDate, CFNumber,
and CFBoolean

• Have a flattened XML representation
• Can convert to and from a CFData

• Not a graph, and does not contain
instances of other types

Property Lists
• Property lists are used for…

• Configuration files
• Applications, plug-ins,

system parameters

• Storage for user preferences
and settings

Preferences
• Save and retrieve preference settings
• Stored per user, per host, and

per application
• Any property list CF Type can be

used as value
• User preferences stored as XML

Preferences
• API Sample

• Primitive
CFPreferencesSetValue (key, value, app Name,

user, host)

• Convenience
CFPreferencesSetAppValue (key, value)

• Use “App” Preferences API
whenever possible

XML Parsing
• Configurable XML parser
• Both simple API and low-level, more

powerful API
• Simple API parses to and from a CFTree
• Low-level API allows for precise control

via callbacks

• Available in Developer Preview 2

URLs
• Uniform way to represent “things”
• Like CFStrings, work with

Unicode characters
• Used throughout APIs where files

are referred to
• Future plug-in API will allow adding

support for new URL schemes

Other CF Features
• CFBundle

• Represents an executable package

• CFPlugIn
• Abstraction for plug-ins

• CFNotificationCenter
• Cross-process notifications

• CFRunLoop
• Input and event handling

Paradigms

CF Paradigms
• Consistency conventions
• Object-orientation
• Flavors of CF Types
• Callbacks
• Memory ownership
• Memory allocation
• Thread-safety

Consistency
Conventions

• For consistency, naming conventions
• “CF” prefix, “kCF” prefix for constants
• These prefixes, and with leading

underbars, are reserved by Apple
• Symbols starting with underbar are

private to Apple, and must not be used!

Consistency
Conventions

• More naming conventions
• Opaque CF Types have “Ref” suffix,

and are not used as pointers
typedef struct __CFFoo * CFFooRef ;
CFFooRef myFoo;

• Functions: type name, then operation
• CFArraySort
• CFStringGetLength
• CFDataGetBytes

Consistency
Conventions

• More naming conventions
• First argument usually instance:

CFArraySort (CFArray Ref array, …)
CFStringGetLength (CFStringRef str)
CFDataGetBytes (CFDataRef data, ...)

• Verbs have consistent meanings
• Like add, replace, get, set, remove…

Consistency
Conventions

• Arguments tend to fall into
predictable patterns

• Allocator arguments are always first
• “Out” parameters tend to be at the end

• Memory ownership has naming conventions
• When you know the conventions,

the API is predictable

Object-Orientation
• Encapsulation, or opaque types,

is used heavily
• No CF Types have public data members
• All CF Type instances can be used in the

polymorphic functions
• CFRetain(), CFRelease(),

CFGetRetainCount(), CFEqual(),
CFHash(), CFCopyDescription(),
CFGetAllocator()

Three CF Type Flavors
• Immutable: Contents fixed, size fixed
• Fixed-size: Contents changeable,

maximum size is fixed
• Mutable: Contents changeable,

size is dynamic

Three Flavors
• Some CF Types come in all three flavors

• CFString, CFArray, CFDictionary,
CFData…

• Some CF Types have only one flavor
• Immutable: CFDate, CFNumber
• Mutable or Fixed-Size: CFBinaryHeap
• Mutable: CFTree

Callbacks
• Callback functions are used heavily
• Allow for parameterization of types

and operations
• Callout when a value is added to

or removed from a collection
• Callout when something happens

to an instance
• Comparison function used for sorting

Memory Ownership
• Reference counting used to manage

memory ownership
• CFRetain(value) and CFRelease(value)

work on any CF Type instance

• Must release a reference you receive,
at some point

• You can create a reference by retaining

Memory Ownership
• The verb in the function name indicates

how memory is being returned
• “Get”: value returned without reference
• “Copy”: value returned with reference
• “Create”: value returned with reference

• “Create” functions take an allocator
argument, “Copy” functions do not

Memory Allocation
• CFAllocator CF Type to encapsulate memory

allocation functionality
• Allocators used by CF to allocate memory
• Custom allocators can be created
• There is a default, per-thread allocator

• Specified with “NULL” as an
allocator argument

• Previous default allocator should be saved
and restored if you change it

Thread-safety
• Simple, basic things are not thread-safe

• Collections, strings, dates…
• Immutable instances are

thread-safe automatically

• More complex services are thread-safe
• Preferences, input handling facilities…

• Internal global data is always thread-safe
• Reference-counting system is thread-safe

Wrap-Up
• To recap:

• A new set of C APIs in Mac OS X and 8
• Substrate for implementation of

many things
• Use it when you need or want access to

the new functionality or where other
APIs use CF types

• See release notes and examples on system

Hall A1
Fri., 4:00pm

Hall A1
Fri., 4:00pm

Hall C
Fri., 9:00am

Hall C
Fri., 9:00am

Hall B
Fri., 9:00am

Hall B
Fri., 9:00am

CoreFoundation: Plug-Ins
A CF-based plug-in model

Carbon Overview (Repeat)
What is Carbon up to?

Intro to the Cocoa
(Yellow) Framework
What is Cocoa?

Other Sessions

Q&A

Think different.™


