Utilitte
Much I\/Io_re...

Editorial

Welcome to the second issue of PovZine.

The first issue has been received well by the
PovRay community. I've received over a
hundred email messages the last couple of
months about PovZine. I've had lots of
suggestions and encouragement. In general,
folks seems to have really liked the content
and the number of images included in the
first issue.

The Mar/Apr 95 issue is truly a
collaboration of the PovRay community. The
cover is by Steve Perrigo. There are articles
by Steve, Perrigo, Harry Rowe, Robert A.
Mickelsen, and yours truly. It is my hope
that this level of contribution will continue
in upcoming issues.

However, there is one topic that I've gotten
so much email about that I feel I need to
address here. That is the distribution format
for PovZine.

I've had folks ask why I don't have a Amiga
version, a Mac version, HT'ML version, a MS-
Windows help version, a PovHelp version, a
PostScript version, a text version, and an
Adobe Acrobat version. ['ve had folks ask for
a W4W version, a WordPerfect version, and
several other word processor or DTP
program for various system. It seems that
everyone wants FovZine in their own unique
format.

I can hardly blame you for wanting PovZine

in a form that is convenient for you. It's a
reasonable request that I wish I could
accommodate. However, I'm just one person
with limited resources. I'm doing this as a
service to the PovRay community. I'm not
making any money on this, so can't afford to
invest much in tools. I selected Common
Ground because it's cheap (~$70 for the
distiller) and it allows me to target IBM PC,
Mac, and Unix systems. It seemed like a
good compromise between accessablity
across platforms and my development effort.

As FovZine gets more established, I would like
to add support for additional formats. But for
the moment, I would like to focus on getting
PovZine established and developing a high
quality for both the content and form of
PovZine.

I believe you will find this issue
considerably better than the first issue. I'm
extremely happy to have had several great
articles contributed to this issue. I would
also like to remind you that FPovZine needs
your contribution of articles, tips, and
suggestions. Please help me to make this a
resource that you look forward to receiving
every other month.

keithr@hevanet.com
m

About the Cover

The cover is by Steve Perrigo. A description of how the image was created is found in his
article Creating A Cross-Eyed Stereogram which starts on page 12. Steve can be contacted at
sperrigo@nwlink.com or at 70244,2773 on CompuServe.

FPov/Zine

March/April 1995
Yolume 1, lssue 2

Mission
Statement

PovZine exists to serve the
POVRay user community by
providing useful POVRay
related information in a way
that is friendly and
[hopefully] entertaining.

This magazine is intended to
be freely available to all
POVRay users.

Information

PovZine is published 6 times
a year by Keith Rule. It is
available on the anonymous
ftp site "ftp.povray.org"
under the directory
pub/povray/ezine.

The contents of PovZine are
© Copyright 1995 by Keith
Rule, all rights are reserved.
This Common Ground
electronic version may be
freely distributed on
Internet, on-line services,
and BBS's. All other
distribution approved by
Keith Rule.

Submissions

PovZine is looking for
unsolicited articles, art,
questions, etc. Please email
information about your

article, art, or your questions,

to keithr@hevanet.com. =

Features
4 Modeling with MORAY
The first of several articles by Robert A. Mickelsen.
9 3D Stereo Pairs with PovRay
Explains how to create and view stereo pairs in PovRay.
12 Creating A Cross-Eyed Stereogram
Tired of the "mall stereo images", try these for a fun change.
14 Random Dot Stereograms
A step-by-step explanation of how create stereogram images,
just like the ones you see in the mall.
16 Running PovRay under Windows 3.1
Windows & PovRay!? Believe it or not they work well together.
18 Raytracer Resource List: Part 1
A survey of many of the available tools for Polyray and
PovRay.
25 Art Gallery
Dec 94, and January 95 raytraced image of the month.
27 Tips & Tricks
29 Letters
30 Internet Resources

Interesting stops on the information superhighway.

Modeling with MORAY - Tutorial 1
Using 'Dummy' Objects

By Robert A. Mickelsen

When the first raytracers were written, they
were nearly all text-based. Image makers had
to visualize the scene elements and, through
a series of trial and error test traces, fine tune
the objects, textures, and lighting. This is
fine if you are fluent in the particular
language the raytracer uses, but it is
extremely intimidating to newcomers faced
with the task of learning a language that
seems nearly as

daunting as C. | oF
Then along
came the first
modelers. The
earliest ones
were buggy and
lacked many of
the features that
make programs
like POV-Ray
and Polyray so
powerful. As
time passed,
subsequent
releases cleared
up the bugs and
added the
features. Today,
there are several excellent modelers that
make scene design, complex object creation,
and even texture design much easier by
introducing a visual interface. My favorite
modeler (and the one about which I will be
writing about) is SoftTronic's MORAY
written by Lutz Kretzschmar.

Inexpensive shareware, MORAY is still an
extremely powerful modeler. It has several
features that set it apart from other would-be

competitors. You would think that drag-and-
drop transformations would be standard in
any modeler, but it is a feature that is so far
unique to MORAY among shareware and
freeware modelers. Scaling, rotating, and
translating can all be accomplished either by
simply dragging with the mouse, or by
numerical entry. Changes to simple objects
are represented on screen in real time, while
changes to
more

==ls=Es complex

5.000
1000

redraws.

30.000

0000
0.000
0.000

THHNS CLE
53760

~#5.609
10.% 76

CREATE
EDIT
COPY
DELETE
SELECT
CAHERAS
TEXTURES

FILES

OFTIONE

107 32K
a8 [0X)Y

16 [0%)E

objects are
represented
by a box in
real time.
Screen
redraws still
occur in all
active
screens but,
if redraw
time is
getting long
due to
complexity,
screens can
be turned off
to hasten

The most powerful feature of MORAY is the
object browse tree. This feature gives you a
graphical representation of the hierarchy of
objects present in your scene. It clearly
shows what the edit screen cannot, the
parent and child relationship between
objects that make up groups and CSG
objects. Where these object relationships are
apparent in the text file, they are invisible in

4

the wireframe view. The browse tree solves
this problem in a very efficient manner. Not
only can you view your objects, but you can
select them for further transformations or
other editing simply by clicking on them.

In this installment, I want to talk about using
MORAY to make a scene with an object
created in another program. Since there is no
POV2MDL converter (actually, there is, but
it is still in beta and lacks many features),
you cannot 'import' an object into MORAY.
But that should not prevent you from using
the modeler to place the objects in the scene,
and to do the other modeling involved. What
we will do is to create several 'dummy’
objects to take the place of the object we
want to import.

Let's make a scene using an object created in
Andrew Rowbottom's program called FORM.
The data for this object is available on
Compuserve in the GRAPHDEV forum in the
POV Modelers Library. The filename is
ammont.zip. Download this file and unzip it
before continuing this tutorial. The
unzipped file should be 'ammonit.pov’.

I suggest rendering this file before
continuing to see what we will be placing in
the final scene file. You will see that the
object is an ammonite-type thingie with a

nice stonel0 texture. We like the way this
one looks and want it to look just like this in
the scene file, but we also want four
companion ammonites in other positions
and rotations to keep this one company. If
we were to try and accomplish this using
text only, it would mean numerous trial and
error renderings just to get the positions of
the ammonites correct relative to the camera
as well as the positions of other objects in
the scene. MORAY makes this a much easier
task.

1. Start MORAY and click on 'files', 'new’,
and 'delete scene from memory?', 'yes'.

2. Create a camera, select it (shift-drag a
rectangle over any portion of the camera),
and enter the following coordinates.
(These coordinates are taken from the
ammonit.pov file.)

location: <40, -80, 20>
// swap z and y coordinates
// right handed system

Accept the defaults for everything else for
now.

3. Create a point light source and enter the
following coordinates, also taken from
ammonit.pov:

location : <100, -300, 200>

// z and y are swapped accept
// the defaults for everything
// else.

4. From the file menu, click on the name bar
and name your new file scene01.mdl.
Click on 'save', and then 'done'.

5. Create a plane and name it 'surfacel'.
Click on 'mew' in the texture list box, and
then 'create'. Select 'opaque’ and name it
'surfacetex1'. Click on 'done' and then
play with the color sliders until you get a
kind of sandy beige color... like desert
sand. (I used rgh <.7647, .6549, .5451>.)
Set phong and phongsize value to '0' and
click on done. Back in the texture list

box, click on 'surfacetex1', 'done', and
again 'done' to return to the main edit
screen. Click on USCL and enter '1000' in
any of the boxes to scale the plane up
*1000. (We do this because the wireframe
representation of a plane is too small in
relation to the other objects we plan to
put in the scene. We will delete the scale
factor from the plane later.)

. Create a cube and name it 'dummy1".
Click on 'new' in the texture list box and,
using the same procedure as before, make
an opaque texture named 'dummytex’' and
accept the defaults. Click on 'done’ and
then on 'dummytex' in the texture list box
before returning to the main screen. (The
only reason to select a texture is because
MORAY will not export to POV unless
every object has a texture.) Universal
Scale (USCL) the cube *6. This cube will
be our dummy object and will represent
the ammonite we will be substituting
later. Except for the scaling, we want to
leave this cube untransformed because
we want the first ammonite that we will
place in the scene to look like the
ammonite in ammonit.pov.

. With the first dummy cube still selected,
copy it. Don't bother with the
transformations in the copy object
dialogue box. If we could figure out this
stuff in our heads we wouldn't need a
modeler would we? Click on 'OK'". From
the main screen, click on 'select'. From
the browse tree, click on 'dummy?2', and
right mouse-click to get back to the main
screen. Zoom out (alt-drag toward you) in
the TOP view so you can see the objects
and camera. Make sure the translate
button is pushed, and drag the cube to
the upper left. I prefer to watch the 3D
screen while I do this, even though I am
working in the TOP view. Then, using the
same method in the other views, adjust
the position until the cube is right where

10.

you want it to be. Fiddle around with the
rotation to get a slightly different position
than the original. These are the
transformations I used:

rotate <-340, -4.519, -16.562>
translate <-70.842, 91.620, 7.122>

Reselect the original cube and, using the
same method as above, make three more
copies and scatter them around the screen
as you want, varying their rotations and
distance from the camera. These are the
positions and rotations I used:

dummy3: rotate <-18.434, 0, -67.19>
translate <-1.954, 57.029, -15.476>

dummy4: rotate <337.329, 0, 40.643>
translate <-12.623, 96.294, 8.216>

dummy5: rotate <19.778, -25.938, -89.972>

translate <-42,759, 30.655, -15.122>

Now we notice that the plane is
intersecting a couple of the cubes. This is
no good, so select the plane and translate
it -35 in the z axis. This should place it
below all of the cubes.

We have now placed all of our dummy
objects. Just for fun, let's make a couple of
pyramids to go in our desert scene. Create
a new cube, name it 'Pyramid1’, assign it
'surfacetex1' as a texture, and scale it up
(USCL) *100. Then, rotate it so that one
corner sticks upward above the plane
from the corners to the point. It should
look like a pyramid above the plane.
Then, drag your pyramid +y until it is an
appropriate distance away. I used the
following values:

rotate <-317.549, 36.264, —-98.848>
translate <-666.859, 1551.332, -98.271>

Copy this cube and apply the following
transformations:

scale (USCL) *120

rotate <-315.762, 36.264, -0.081>
translate <-1017.13, 1241.683, -
113.427>

11. At this point, we decide we are not happy
with the camera position so we select it
and drag it down and away a little bit.
The resulting values are: <49, -86, 10.5>.
Now dummy2 and dummy4 are a little
too low so select them and change their
translation z value as follows: dummy1
z=14.881; dummy2 z=16.666. Click on
file', 'save', 'export to POV', and then
render your file. You should have a beige
plane, two pyramids, and five cubes in
various positions. Boring, eh? Not for
long! <G>

12.Copy ammonit.pov into your scene
directory if it is not already there. You
will have to edit the file to comment out
the camera, light, and the standard
includes at the beginning. Go to the end
of the file and add the line: '#declare
Ammonite=' immediately before the final
FormObject block. In the FormObject
block, reduce scale from 100 to 50.
Immediately after that line, add the
following transformations:

rotate <90, 0, 0>
scale <1, -1, 1>

These transformations effectively
'convert' the ammonite object from left-
handed coordinates to right-handed
coordinates. (See POVFAQ.DOC for
details)

13.Now, make the following changes to
scene0l.pov:

a. Add '#include "stones.inc" ' to the
standard includes at the beginning of
the file.

b. Add '#include "ammonit.pov" ' as the
first line under the OBJECTS header.

c. Delete the first six lines of each
'dummy’ block and replace it with the
Ammonite like this:

Before After

box{ //dummy* object {Ammonite
<-1, -1, -1>, <1, 1, 1> rotate <x, vy, z>
texture { translate <x, y, z>
dummytex }
}
scale <6.000, 6.000,
6.000>
rotate <x, vy, z>
translate <x, vy, z>

}

Now try and render this scene again. You
will notice that the ammonites have replaced
the cubes, but have retained the
transformations you modeled in MORAY
using the cubes. This is much more
interesting, isn't it? (If you haven't figured it
out by now, we are not going back to
MORAY. Everything else we need to do is
most easily done by editing the .inc and .pov
files by hand. Modelers are good for
modeling, but are not well suited to the fine-
tuning stage of scene development.)

But the scene still needs something. The
plane is too smooth and featureless so let's
add some ripples for effect. In the
scene01l.inc file, add the following normal
statement to the 'surfacetex1' texture block:

normal {
ripples 0.35
frequency 100
turbulence .25
scale 1000
// this is needed only if you
// remove the scale *1000 of
// the plane
} // created in MORAY

The Pyramids could use some surface
texture as well. They look too flat. But we
gave the pyramids the same texture as the
plane, 'surfacetex1'! No problem. Just use
your text editor to copy surfacetex1 and
rename it 'pyramidtex'. Replace the ripples
with the following bumps normal: normal
{bumps 1 scale .01}. Now, return to
scene01.pov and change the texture name in
the pyramid blocks to 'pyramidtex.’

normal { bumps 1 scale .01 }

We also need some sort of sky. We don't
want to use any kind of standard 'cloud'
texture. I think a simple gradient would be
best, but how do we do that? We also want to
create the illusion of distance for the
pyramids and fog is best for that. Maybe we
can combine the two effects to get what we
want for both features. Add the following to
the end of the scene01.pov file:

plane {z,150 //sky plane
pigment {color Blue}
finish {ambient 1 diffuse 0}

}

fog {
color rgb <.765, .655, .545>
//the 'sand' color
distance 1000

}
There is one last change to be made. With
the sky plane set at z=150, the light source
must be lowered from 200 to 145.

Now render your scene. Ahhhh... that's
better! It is not so boring anymore is it?

That's it for today, campers! I hope you had
fun and maybe learned something about
what modelers can and cannot do. In the
next issue of FovZine, I will be talking about
the dreaded bezier patch and how to do the
impossible with it!

Until then... keep tracing!

Classifieds

Classifieds are available to anyone who
would like to advertise a PovRay related
product or service. Please send text of your
classified to keithr@hevanet.com.

Raytech BBS is the UK's specialist
independent raytracing support service and
offers free public access. Set your comms to
8N1 and your terminal emulation to ANSI
and dial +44 1862 83 2020 and see why we
have 4,500 registered users making 1,000
calls each week. Email facilities for all users.
PCGnet. Dgnet. 24net. Internet News. Moray
and Vivid registrations. 3D Artist magazine
subscriptions. Waite Group Books held in
stock.

Fargo Primera Dye Sublimation Printer for
IBM PC. Used for about one year. In great
shape. Includes dye sublimation drivers,
standard 3 color ribbon and some paper.
Price $500.00 plus shipping. Contact:
keithr@hevanet.com.

Micro System Options: 3d Graphic Tools
3.1.1 Library and source - Professional
C/C++ developers edition for MS-Windows.
It's fast and includes source code.

Paid $300, will sell for $150. Contact:
keithr@hevanet.com.

Did You Know?

Did you know that you can use files from
version 1.0 of PovRay directly in PovRay
V2.x without modification?

All you need to do is use the +MV1.0 flag on
the command line when invoking PovRay.
n

Windows World BBS
(513) 866 - 8181 V.34
Dayton, OH, USA
Profiled in the January 1995 issue of
Boardwatch Magazine
Specializing in DOS and Windows based ray
tracing files and 1 gig of Windows CICA
programs
Your host, Harry L. Rowe, cordially invites you
to call. Free access of 40 minutes/day and 3 meg
downloading on your first call. People who
contribute files get greater access. The BBS
requires an Excalibur ™ Windows client
program which can be freely downloaded.

email:
harry.rowe@wedowind.lexis-nexis.com or
ac401@dayton.wright.edu

3D Stereo Pairs with
PovRay

By Keith Rule

I discovered PovRay and 3D cameras both
about 2 years ago. I was surprised at how
many 3D cameras existed along with the
accessories required to mount and view
stereo images. I was even more surprised to
discover how well these two hobbies go
together.

After gaining experience with both stereo

cameras and PovRay, I've discovered that

there were three key areas that I needed to
learn about to create raytraced 3D images.
These areas were:

Composition
3D Camera Techniques
Mounting & Viewing

Composition

There are only a few fixed rules in 3D image
composition. Here are some rules from a
1950's era ViewMaster personal camera users

" THIS COMPOSE YOUR
i FICTURE CAREFULLY

Keep the picture simple.
'h Do not cenfer your subject.

HOTh
THISF B

Watch your backgrounds.

HOT
THIS

Maoke action ond lines
lead inta the picture.

HOT
THIS

THIS

Do not emputate your
friends.

manual. Following these rules is generally

good advice even for raytraced images.
However, there are no fixed rules where
composition and art are concerned.

3D Camera Techniques

Precise camera alignment is key to a 3D
stereo image that is comfortable to view. The
following items are key to making an easy
viewing 3D image.

Vertical Alignment - The same points
in the two stereo images must be on
the same horizontal line. If there is a
perceptible difference there will be
some very unpleasant eye strain for
the viewer. For example, if you have a
visible horizon they should line up on
both images.

Camera Separation - This is key to
getting a natural feeling of "depth" into
an image. There is no fixed distance
between human eyes, but you can
assume that it is around 2". If you're
are creating a 3D image to scale, then
your camera separation should be
close to that of the human eye. If you
have a larger separation than that you
get a hyperstereo effect.

Hyperstereo in 3D stereo photographs
can be used to give addition depth to
landscapes (such as the Grand
Canyon). ViewMaster slides of
landscapes are typically a little bit
hyperstereo. However, if there are
other objects that are familiar in the
scene, such as a house or a car, they
may look like a doll house or toy car.
This effect of hyperstereo needs to be
considered in raytraced images too.
Try to keep the camera separation
close to the scale you'd expect in the
real world.

For raytracing applications where you
don't have any specific scale, using a
30:1 ratio of your main subject to
camera separation

The following image is the result of
combining these two images into one stereo
image.

usually give very
satisfactory results.

Let's use these rules to
modify the camera in the
PovRay scene file
basicvue.pov. We will
assume that the original
view is the left image of the
stereo pair. This scene's
subject is a sphere located
at <0, 3, 0> with a radius of
3. The camera definition for

basicvue.pov in stereo

this scene is:

camera {
location <0, 3,-10>
direction <0, O, 1>
up <0, 1, 0>
right <4/3, 0, 0>
look at <0, 2, 0>
}

Notice that Y is the vertical axis, X is the
horizontal axis, and Z gives the depth. To
create the right image we need to move the
camera to the right using the 30:1 ratio. The
nearest point of the sphere is -3 on the Z
axis. This means that its distance is 7 units
away from our camera. This 30:1 ratio means
that we need to move our camera to the right
1 unit for every 30 units of distance the
nearest edge of the object is to our camera.
So in this case the formula o1d_x +
(distance/30) will calculate the new
position for the camera along the x axis. So
when we substitute this formula into the x
position of camera location statement we get
the following:

location < 0+47/30, 3, -10>

or

location <0.23, 3, -10>.

The two PovRay files were rendered and
then pasted together using a paint program
(Fauve Matisse).

It's easy to see that creating 3D stereo images
is very straight forward. The technique used
for creating a stereo pair for a simple image
or a complicated image is exactly the same.

Mounting & Viewing 3D
Images

Viewing an image is a bit more challenging.
There are several possibilities for viewing
images. I will go through three of the many
possibilities. These are:

Free-viewing - which similar to
viewing a stereogram.

Mounting & Viewing Slides - This
uses standard, readily available Realist
viewers and slide mounts.

Mounting & Viewing Printed Images -
This uses viewers such as the one
available with the Loreo camera to
view stereo pairs.

10

Free-viewing

Free viewing has two advantages over the
other viewing methods.

1. It doesn't require any special
equipment.
2. It's always available.

The downside is that some people have
trouble learning to free-view. Many who can
free view initially complain of eye-fatigue
and headaches. My experience is that it is
easy to learn, and I've had little or no
problems with eye-fatigue and headaches. Of
course, your mileage may vary.

I free-view by looking at the stereopair. I
then relax my eyes so that they go out of
focus. I slowly refocus while trying to keep 3
images visible. The middle image is the one
which will pop out into a 3D image. This
may take some practice. I remember sitting
and trying this for 10-20 minutes before I
could do it the first time. So relax and give it
a few tries. This technique works well on a
computer screen, or printed page.

Mounting & Viewing Slides

Mounting slides requires considerably more
work than just free viewing an image on the
screen. You will need to photograph your
images from your computer screen while
maintaining careful vertical alignment.
Alternately, you could take your images to a
service bureau and have them transferred to
slide. The same mounting techniques apply
regardless of how you get the slides.

The most popular format for 3D slides is
called the Realist format. This is the format
that the 1940-1950's Realist camera used.
Slide mounts and viewers for this format are
available from Reel 3-D Enterprises, Inc.
[(213) 837-2368].

A Shde cutter, Reahsf Vlewer and. iy
half-frame slide mounts. Sl

This simplest way to create a Realist
compatible slide is to place the two images
side-by-side on your computer screen and
photograph the screen in a darkened room
with a 35mm camera on a tripod. You want
to make sure your shutter speed equal to or
slower than the time it takes to update your
monitor screen. Typically a 30th of a second
or slower is adequate. Make sure your
stereoimages are square and fill your
viewfinder.

Carefully remove the slide from the mount.
Cut the slide in half. Mount these slide
halves in a half-frame cardboard slip-in
mounts (Reel 3-D stock No. 4716).

Realist slide viewers are still available,
consult Reel 3-D for current available
models.

Mounting & Viewing Printed Images

I own a Loreo stereo camera. This camera
takes two half frame images on a single
35mm frame. When these images are printed,
both images are placed on a single print.
This single photograph is placed into the
Loreo viewer for viewing.

Using the half-frame technique defined for
the Realist slides above also works for prints.
Simply use negative film rather than slide
file. Print the image normally, and then
place the image in your Loreo (or
compatible) viewer. This works quite nicely.
n

11

Creating A Cross-Eyed

Stereogram
By Steve Perrigo

Cross-eyed stereograms differ from the “mall
stereo images” in that there isn’t any hidden
image in them (they’re kind of WYSIWYG),
the textures take on additional sharpness
when viewed in 3D, and the objects can have
a real feel of depth when properly viewed.
They’re actually quite easy to view. All you
need to do is cross your eyes. If you think
you can’t do that - think again. You're
crossing your eyes now if you're reading this
text with two eyes. The secret of cross-eyed
viewing is to converge your eyes in front of
the focal plane while focusing behind the
convergence point. This allows adjacent
images to overlap, giving the illusion of
stereoscopic (3D) sight.

Creating cross-eyed stereograms in POV-Ray
is actually quite easy. A cross-eyed
stereogram can consist of a pair of objects or
a whole series of objects lined up (as in
ICANCU2.GIF). Creating these objects with
POV-Ray doesn’t even require placing
objects at meticulously calculated angles
either. All of the work is in the placement of
the camera, light and the objects. Start with
a simple scene:

1. Define an object, such a sphere or a box
of two units in size located at the origin
and apply a texture to it.

2. Make a copies of the object of it at 2.5
units in the +X and -X directions.

3. Place a camera about 15 units away along
the -Z axis, pointing at the origin.

4. Place a light source AT THE CAMERA
LOCATION.

5. Render away, and voila - your first cross-
eyed 3D image

#include “colors.inc”

#include “textures.inc”

#ideclare RedBall = {
sphere <0,0,0>,2
texture <Red Marble>

}

camera {
location <0,0,-15>
look at <0,0,0>

}

light source { <0,0,-15>
color White}

object { RedBall

translate <2.5,0,0> }
object { RedBall

translate <-2.5,0,0> }

The scene in ICANCU2.GIF was created by
placing rows of eyeballs with a diameter of
about 0.8 unit at a distance normal to and
about 20 units away from the camera. The
tiled plane in the background is just behind
the eyes. The “apparent” location of the
tiled plane can be placed at any distance in
front or behind the rows of eyes by varying
the distance between the repetition of the
seamless tiles. The final, and most
important secret for creating these images is
the placement of the lights. Shadows give
visual cues regarding the depth and
placement of objects. Shadows in this type
of cross-eyed stereogram give conflicting
information to your eye. To eliminate
shadows, just place the single light source at
the precise position of the camera.. Cross-

12

=| Fauve Matisse

File Edit Object Image View Window Help

Tools
b Y ' \

| m | Float || Marquee | |D0wn| |N0rmal |£| +[[+]100 | T | Clear I Undol
‘ - J 3 E B

RSP

Ve

P~ |

+]

Wat 33

” Ayailable Memary: 9765 MEB

eyed stereograms can be created with
multiple light sources and shadows - but that
requires a different technique.

For a real strange effect - view this image
using the divergent viewing technique
common to RDS images. The 3D effect will
be reversed, with the green plane in the
foreground and the concave eye shells
pointing away from you.

The IRIS and the Eyeball

Creating the iris of this eyeball was
especially interesting. The iris is actually a
raytraced image that was combined with
hand-draw artwork and then used as an
imagemap. The green iris part of the eyeball
was created by rendering an image of looking
down a long cone (on the inside -- looking
toward the apex) with several light sources
situated along the line of sight - in front of
the camera. The cone was textured with a
heavily modified Cork texture. The cone
image was then post-processed with a
special gradient transformation in Fauve
Matisse using a plug-in from Kai’s Power
Tools.

The imagemap for the eyeball was created in
Fauve Matisse. I started with a yellowish-
white background and then hand-painted the
blood vessels. The original imagemap has
many more veins in it -- but they tended to
disappear with antialiasing. Once I had a
nice bloody eye <ggg>, Iclipped the iris
from my cone render, pasted it in, and
smudged the edges to the white of the eye.
Then, the center of the eye was filled in with
a black circle. The final trick to creating the
imagemap of the eye was to stretch it
vertically, so that when applied to a sphere,
the features of the eye would be round once
again.

Finally, the creation of the eyeball was
completed by placing the imagemap onto a
sphere with one side truncated where the
iris would lie. Then, the whole eyeball was
“encased” in another larger sphere of glass
with a slightly bumpy and shiny surface. =

You can contact Steve at sperrigo@nwlink.com
or at 70244,2773 on CompuServe.

13

Creating Random Dot
Stereograms with
PovRay

By Keith Rule

It's hard to walk through a mall or bookstore
these days without seeing a book or poster of
3D stereograms. These images look very
impressive, but are actually very easy to
create.

There are virtually dozens of programs
available for the IBM PC and other platforms
that can create Stereograms. All of these
programs have on thing in common, they
need a depthmap to create a 3D image.

A depthmap is simply a grayscale image
where the nearest points of the scene are
lighter than the furthest points. Creating a
depthmap of an image is very easy with
PovRay.

For this article I will use Wevt2pov to create
a PovRay image, then replace the default
textures in the PovRay file with one that will
create a depthmap. Then I will use that
depthmap image to create a random dot
stereogram using a program distributed with

Kai Power Tools called "3D Stereo Noise'".

= WeviZpoy - DOLPHINS.RAW [-]
File Edit ¥iew Object Backgrounds Help

el &E] @]] o] (2] IR

Feach I MU |

First select a 3D model with Wevt2pov. I like
dolphins, so I will import a dolphin model.

That image is saved as a PovRay file using
the File | Save As|PovRay V2.2 (*.pov) menu
selection. Name the file dolp.pov. Now
render the file with PovRay using the
command:

povray +H300 +W400 +V +Idolp.pov +0dolp.tga

Here is what the rendered scene looks like.

This scene looks good to me. Now we need
to modify the PovRay file to allow us to
create our depthmap image.

PovRay files are just ASCII text files that
contain a description of the scene being

rendered. The following text is from the
dolp.pov file:

light source {

<0, 0, —-967.938171> color White}
light source {

<0, 2419.845428, 0> color White}

// Object converted to POVRay V2.2 by

// WCVT2POV V2.5

#declare DolphOl = texture {pigment
{color Red} finish {Shiny}}

#declare dolph02 = texture {pigment
{color Red} finish {Shiny}}

#declare dolph03 = texture {pigment
{color Red} finish {Shiny}}

// This object has the following minimum
// and maximum values:

// xmin=-318.371287, xmax=372.306823

// ymin=-373.515331, ymax=373.515331

// zmin=-268.065488, zmax=332.034750

14

The key thing to note with this PovRay file is
that the Y axis is the vertical axis, the X axis
is the horizontal axis, and the Z axis gives
the the depth. To make our depthmap we
must delete the lights and existing textures
and replace them with a texture that moves
from White to Black along the Z axis.

To begin, delete the light sources, and the
textures Dolph0l, dolph02, and dolphO03.
Then remove all occurrences
texture{_DolphOl},texture{_dolphOZ},and
texture{ dolph03} in each of the objects[ihe
occurance of each texture will be found at
the end of each object definition].

Now add the following texture near the top
of the file:

#declare DepthMapTexture = texture ({
pigment {
gradient =z
color map {
[0.0 color White]
[1.0 color Black]
}

}
finish {ambient 1.0 diffuse 0.0}

}

This texture simply varies the color from
White to Black along the z axis. The color
gradient by default starts at 0.0 on the z axis
with the color White and transitions to black
by 1.0 on the z axis.

Notice that the file contains the minimum
and maximum values of each of the axis of
the dolphin model. This will be very helpful
to us now. Now go to the very end of the file.
You will see two closing curly braces:
Replace them with:

}
texture {
DepthMapTexture
scale <1, 1, 600>
translate <0, 0, -268.065488>

}

The scale value is simply the absolute value
of zmin - zmax. This allows the grayscale

image to transition from White to Black in
the length of the object. The translate value
is simply zmin, this moves the starting point
of the White color to the beginning of the
dolphin object.

When this file is rendered, the following
image is the result. This file is our
depthmap.

Now all that is required is to put the file
through one of the many programs that
creates random dot stereograms. For this
example I will use the "3D Stereo Noise"
filter that came with Kai Power Tools. The
resultant image looks like this

0 e Ty

This short example should help you use
nearly any stereogram generation software.
The principles are the exactly the same.

15

Running POV-Ray

under Windows 3.1
By Harry L. Rowe

Yes, I know! Running POV-Ray under
Windows is an oxymoron. However, if you
are like me, your new system came with
Windows 3.1 or Windows For Workgroups
3.11 preinstalled. Perhaps that is the
operating system that you use at work? To
allow you to use your system while
rendering a large scene that could take hours
or even days, you can set it up to run in the
background in a “DOS box.” Does the scene
render more slowly? Absolutely! Ihave
seen a 50% decrease in speed on a 486DX33
versus running under straight DOS 6.20.
Unless you have a deadline to meet, so what!

I would like to show you the method I use
and it works great. You must know that
under this method you cannot watch the
scene graphically build as it renders. This
only makes sense because the video cannot
do two things at once.

I do not use the OFFICIAL POV-Ray DOS
compile. Instead, I use POVFAST which is a
Watcom compile done by A. Haritsis
(ah@doc.ic.ac.uk). Of course, you could use
the official POV-Ray version or other
“souped-up” compiles. Look for povfast.zip.
My BBS has it along with ftp.povray.org and
Compuserve GRAPHDEV. It uses the
Windows swap file for virtual memory for
those huge scenes we create or run across.
Under many scenes I have measured a 23%
speed increase.

1. Make sure povray.exe is installed in a
directory of your choosing along with the
necessary POV-Ray include files. As an
example:

c:\pov and c:\pov\include.

Also make sure dos4gw.exe is in the same
directory with povray.exe. This is
Relational’s 32 bit DOS extender. It comes
with POVFAST.

2. Now you need to make a Program
Information File (PIF). On your desktop
under the Main group you should find the
PIF Editor. After you fire it up, enter the
necessary information. Here is a copy of
mine that you can use.

= PIF Editor - POV.PIF
File Mode Help

Program Filename: | |
Window Title: |POV-RAY v2.2 |

DOptional Parameters: | |
Start-up Directory: |[Z:'\Pl]\l' |
Yideo Memory: #® Text) Low Graphics] High Graphics

Memory Requrements: KB Required

KB Desired

EMS Memory: KB Required D KB Limit
HMS Memory: KB Reguired [2048 | KB Limit D

Ezecution: [<] Background

O Exclusive

Display Usage: { Full Screen
] Windowed
| Cloze Window on Exit

|Press F1 for Help an FProgram Filename.

Notice that Video Memory: text is checked
and I told Windows to give POV-Ray at least
2 megabytes of XMS (extended) memory. No
need to enter a limit. Windows will only use
what is available anyway. Background and
Windowed are checked. Close Window on
Exit is a personal choice. Do not worry
about Advanced settings, the defaults are
fine. You must save it as POV.PIF to your
Windows directory.

3. We could set up a batch file, which is
useful for running several scenes, or we
could have entered a ? mark in the Optional
Parameters: field. This would result in a
dialog box popping up to enter POV-Ray
command line parameters when you run
povray.exe. This is tedious. WhatI useisa
Windows front end program to enter the
switches. There are a few available but I use

16

Bob’s POV-Ray Front End. You can find it
on my BBS or Compuserve GRAPHDEV
listed as bpfe10.zip. I do not know if it is at
ftp.povray.org. Best of all, it is Freeware!

4. Unzip the archive and you can give it it’s
own directory. Isimply dropped mine in
the same directory with povray.exe. Next,
place it in your appropriate program group
by creating a new program item. For
Command Line: I entered
C:\POV\BPOVFE.EXE and for Working

Directory: I entered C:\POV
Ray Tracing ME

B

Baob's Front
End

& &5 ® 3

WEVTZPOW Paint Shop Pro Moray +1.53 PO Help

Here is what the program looks like after you

= Bob's POV-Ray Front End [~ |

Input File__ | [C:\POVVF14.POV

Output File._ I | CAPOVADATA TGA

| "‘Jersiun Compatability

icon. You can then get back to some serious
work such as playing The Incredible Toon
Machine or Myst :-).

Harry Rowe is the sysop of Windows World
BBS (513) 866 - 8181. His email address is
harry.rowe@wedowind.lexis-nexis.com
(primary checked daily) OR
ac401@dayton.wright.edu (FreeNet address
checked every few days).

n

@10 20

Library Path: |E:'\Pl]‘lnl"\INELUDE

™ Anti-aliasing
| Active

Tolorence level:
B4 Use anti-aliaze jitter

| Pause and wait for keypresz after lracing image.
| Continue an aborted partial image
[Allow abort with keyppress.

| Use ammation clock vanable =

=

Usze n*n ray for anti-aliasing. n= Symbol table size:|1000
[Display Dutput
E Dizplay verboze image stats while rendenng. Output file format: |TAHEA IEI
] Dizplay image graphically while rendering Buffer zize [kilobytes]: (512
Dizplay type: |Autudetect [SIVGA type |£I Image quality: |EI higheszt quality |£I
[Image size — | Hender Partial Image Bounding Slabs
640x480 L] Active] Dizable
Custom: Start End Use bounding slabs if more
Width=[| s than objects in
Height= I:I Column: SCENe.
| Render! | | Help... | Exit! | | About... |

double click the icon:

5. Enter the appropriate information and
once POV-Ray starts you can immediately
exit Bob’s and minimize povray.exe to an

17

Polyray and POV-Ray
Resource List For

DOS and Windowsm
Platforms: Part 1

By Harry Rowe

The Ray Tracers

Polyray

Alexander (XANDER) Enzmann’s Ray
Tracer. Shareware $35.00. DOS based only
and source is not available. It has powerful

math functions and great animation support.

Harry’s Note: I am a registered owner.

%8 Polyray v1.7 Executable (coprocessor)
(ply386.zip 217,074 bytes)

> Polyray v1.7 Executable (
plyexe.zip (181,794 bytes)
Polyray v1.7 executable (no

coprocessor)

coprocessor)
s Polyray v1.7 Data files
plydat.zip (280,067 bytes)
s Polyray v1.7 Documentation
plydoc.zip (74,483 bytes)

=
€7

Polyray v1.7 Utility programs
plyutl.zip (78,518 bytes)

s POV-Ray v2.2 Documentation
povdoc2.zip (200,565 bytes)

PovRay

Persistance of Vision Raytracer. PovRay is
Copyrighted freeware.

e
® POV-Ray v2.2 DOS Executable (Official

Distribution)
povibm22.zip (252,830 bytes)

POV-Ray v2.0 Scene Files
povscn2.zip (499,737 bytes)

POV-Ray C Source Code for All
Platforms

povscr22.zip (424,153 bytes)

Feel free to explore and hack the source
code. Just read the POV-Ray legal
documentation about distribution.

Pentium Optimized POV 2.2 Executable
(Unofficial)

pentpov.zip (306,757 bytes)
pentpov.exe is a Pentium optimised
version of povray 2.2, compiled using
the Watcom 9.5 compiler. I've modified
the source to only check for keypress at
the end of every line, which saves a few
seconds - it effectively means there is
no difference in speed between the +x
and -x options, and gives the luxury of
being able to abort while running full
speed. Harry’s Note: This executable
also runs fine on a 486.

Windows NT port of POV-Ray v2.2
Raytracer (Unofficial)
pov22-nt.zip (164,118 bytes)

Windows NT console mode POV 2.2
Executable (Unoffical)

povnt.zip (131,780 bytes)

Windows NT console mode, POV-Ray
2.2 executable, Optimized for Pentium.
Built with MS Visual C++ 2.0. P.S. Dan
Goldwater did the hard stuff. Derek W.
Taylor, taylordw@sage.inel.gov.

POV-Ray v2.2 Executable (Unofficial)
povtfast.zip (252,690 bytes)

Watcom COMPILE. Harry’s Note: On
average, | have found this executable to
be ~23% faster than the official POV-

18

Ray compile. It is the executable I
normally use,

POV-Ray 2.2 Executable (Unofficial)
ftpov2.zip (186,707 bytes)
FasterThanPOV.EXE Ver2.0. A
modified and speed-up version of POV-
Ray 2.2. Typical 2-3x faster, sometimes
20x !!! This archive contains a 32bit
executable for MS-DOS. It was
compiled using DJGPP 1.11 and needs a
386/387, 486 or Pentium. Harry’s Note:
If memory serves, this compile has
implemented Eric Haine’s Light Buffer
code. It also uses non-standard
command line switches, so it will not
work with current front ends.

Converter Programs

%> Converts 3DS to POV, Vivid or Polyray
3dspov18.zip (131,714 bytes)
3DS2POV v1.8. Converts 3D Studio
.3DS files to POV-Ray 1.0/2.0, Vivid, or
Polyray raytracer formats. Supports
animation. Now converts basic material
properties (colour, ambient, diffuse,
reflection, and transparency).

IAES

> Converts USGS DEM files to .TGA
dosdem.zip (2,849,322 bytes)
This is a program to convert U.S.
Geological Survey DEM data files to
.TGA files for use with POVRAY.
Harry’s Note: Useful for absolutely
realistic height fields to build terrains
for use with ray tracers. Do plan on
having enough memory. USGS DEM
files are 9 meg in size.

8 V1.06 AutoCAD DXF file to POV File
Converter
dxf2pv16.zip (27,723 bytes)

%8 dxfov -- strip 3d faces out of a .dfx file
dxf2raw2.zip (23,325 bytes)

Moray to Polyray file converter
mryply.zip (40,638 bytes)

Moray -> Polyray converter v1.0 by
Alexander Enzmann, 4 August 1994.
This program converts the .MDL files
created by Moray v1.3 and v1.5 into
scene files that can be rendered by
Polyray (either v1.6a or v1.7). The
program Moray is a Shareware graphical
modeller originally created to produce
scene files for the POV-Ray raytracer.
Future versions of Moray will directly
support Polyray, but in the interim this
program can be used for building
scenes.

Converts OBJ files to 3D-Studio ASCII
Files
obj2asc.zip (26,349 bytes)

Polygon to Triangle Converter by Steve
Anger

poly2tri.zip (24,280 bytes)

This program is commited to the public
domain. Feel free to use all or part of
this code in your own programs. This is
a utility that breaks polygon shapes
down into individual triangles. The
polygons are assumed to be planar
however the program should be able to
tolerate slightly non-planar shapes.

Converts RAW Data File to Polyray
Format

raw2ply.zip (13,865 bytes)

This program will take a file of RAW
triangle data and convert it into a
PolyRay include file.

Raw to 3D Studio Converter v1.1 by
Steve Anger

raw3ds11.zip (51,873 bytes)

Raw23DS is a utility to convert lists of
triangle coordinates in raw ASCII text
format to 3DS ASCII save files which
can be loaded directly into 3D Studio.

RAW to POV v1.8 for POV, Vivid,
Polyray

rawpov18.zip (121,385 bytes)
RAW2POV v1.8. Converts lists of
triangle coords in RAW ascii format to

19

POV-Ray 1.0/2.0, Vivid, or Polyray
raytracer formats. Adjustable levels of
smoothing can be applied to the triangle
surfaces.

Rob's Triangle Smoother for Windows
rtswin.zip (11,510 bytes)

RTSWIN converts raw data files as
output by POVCAD (and other
programs) into smooth ray-traceable
objects for POV 1, POV 2, and Polyray.
RTSWIN is sort of a post-release
extension of POVCAD 4. You don't
need to have POVCAD 4 to get RTSWIN
to work, but you'll need the files.

POV Surface Normal Calculator
smooth50.zip (195,601 bytes)
SMOOTH v5.0 - Raw Triangle Utility.
Calculates surface normals for raw
triangle data and creates a variety of
output formats. Fully supports POV
v1.0 & v2.0 with limited support for
MTV (NFF), Vivid 1.0/2.0, Polyray 1.6,
DKBTrace, POV 0.5, Rayce 2.7, CTDS
3.0, Rtrace 8.30 (SCN) and Rayshade.
Includes a center utility that centers
triangle data about the point 0,0,0, a
scale utility that scales triangle data on
any axis, a utility to extract triangle
points from scene files, and a preview
mode to view triangle files. (Freeware)

Convert TDDD, Imagine or QuickSilver
to 3DS

tdd2asc.zip (148,435 bytes)

TDD2ASC will convert a TDDD,
Imagine or Quick Silver object to a 3D
Studio ASCII file (for importing).

& Converts TDDD to Other Formats

2ddd2ray.zip (77,342 bytes)

Turns an Existing .TGA File into a POV
Array

tgadot.zip (16,051 bytes)

TGADQT is a utility to turn an existing
.tga file into an array of POV objects.

An object will be created for every pixel
in the scene, each with a colour

depending on the corresponding pixel
in the .tga file.

View Point object to RAW converter
vp2raw.zip (34,250 bytes)

Save 3D Models to Various Formats
wc2pov25.zip (530,231 bytes)
This program allows 3d models to be
read, viewed, modified, and saved in
several different formats:
RAW - RAW 3d file, (Both import
and export)
NFF - Neutral file format as define
by Eric Haines (Both import and
export)
TPO - TPoly files (Both import and
export)
OBJ - Wavefront 3d objects (Both
import and export)
GEO - AOFF files (Both import and
export)
DXF - A 3d subset (Both import and
export)
POV - POVRay V2.x (Export only)
3DS - 3D studio support - added for
this version.
Harry’s Note: I LOVE this program. Get
It! Written by Keith D. Rule, the editor of
PovZine. Keith is working on version
3.0. FREEWARE !

GUI Front-ends

Bob's POV-Ray v1.0/2.0 Front End
bpfe10.zip (75,543 bytes)

Bob's POV-Ray Front End, BPOVFE,
provides a Windows point and click
interface for specifying command line
options for the Persistence of Vision
Raytracer, POV-Ray. This program is
freeware. Requires Windows and POV-
Ray. From Bob's Software. Written by
Bob Hayes. Version 1.0, January 15,
1994.

Simple Windows 3.1 POV launcher
launch.zip (9,096 bytes)

20

POV-Launch (Povlaun.exe) is a simple
Windows 3.1 launcher for the
Persistence of Vision raytracing
program. It lets you select a .POV input
file using a Windows 3.1 "open file"
common dialog, and then runs
Povray.exe.

POV Assistant Windows Front-End for
POV 2.2

povass.zip (163,979 bytes)

Requires vbrun300.dll

POV COMMANDER (ver 1.3) for POV
2.0

povcom.zip (177,682 bytes)

This program is designed to make the
use of the POV raytracing program
easier. The documentation assumes that
you have a basic knowledge of how
either POV 1.0 or 2.0 works. POV
Commander also allows you to assign
other programs, 3D modellers, and ray-
tracing utilities to User Configurable
buttons - and the ability to run all of
these and POV with a click of the
mouse.

& POV-RAY DOS Front End for POV 2.0

povctrl.zip(67,818 bytes)

POVMenu v2.1, 11/29/93
povmnu22.zip (182,054 bytes)
POVMenu v2.2 - Completly rewritten
from scratch in Visual Basic For DOS.
A project orented user interface for The
Persistence Of Vision Raytracer (POV-
Ray v2.0). Features include: Unlimited
number of projects, clone from an
existing project, calls editor with
include file(s) loaded, support for 4
convert-to-GIF methods. ALL
command line parameters for POV-Ray
supported, render to screen, file, or
both, online HyperText help, 6 user
definable 'buttons’, total control of all
render options, configuration saved for
EACH project, POVMenu is FreeWare!,
and MANY MORE FEATURES. Mouse

recomended. POVMenu can help you
come up to speed with POV-Ray very
quickly.

& POVPANEL 2.0 -- A Control Panel for

POV 2.0
povpan.zip (140,294 bytes)

& PovShell FAQ (povshe.zip 3,293 bytes)

This is a summary of Frequently Asked
Question on PovShell, the Development
Environment to the POV-Raytracer. It
also contains lists of bugs and new
features coming. Written and uploaded
by the author of PovShell, Andreas
Peetz.

POVSHELL v3.0 Front End for POV 2.2
povshe30.zip (199,108 bytes)
POVSHELL is a user-friendly easy-to-
use interface to POV-Ray. With
POVSHELL you can: a) load and edit
one or more POV-files. b) set all
raytrace-parameters via pulldown-
menus and option-windows. c) and
finally call POV-Ray to trace the scene-
file you are currently editing with the
parameters you have set.

Windows Front-end for Running
Polyray v1.7
pw1l7c.zip (137,361 bytes)

Modellers

Grand Unified Modeller v0.91, File 1 of 5
gumO091ex.zip (534,194 bytes)

GUM, the interactive 3D modeller for
Windows your 486 was waiting for.
Supports POV, Polyray and Rayce.
Features: Solid Evaluation, Trimmed
surfaces, realtime pan and zoom, 3D
direct manipulation. Written by Lex van
der Sluijs.

Grand Unified Modeller v0.91, File 2 of 5
gum09dl.zip (96,722 bytes)

Grand Unified Modeller v0.91, File 3 of 5
gum091dm.zip (311,102 bytes)

21

no artificial limits as far as memory is

uuuuuuu Grand Unified Modeller v0.91, File 4 of 5 concerned, but you will be nagged to

gum091hq.zip (431,241 bytes)

R register if you use the program

Grand Unified Modeller v0.91, File 5 of 5 extensively. This version writes
gumO091in.zip (3,788 bytes) encrypted MDL files. The registered

“l version can read encrypted and normal

#ems MicroLathe Version 1.5.1 for Windows

lathe151.zip (90,360 bytes)

MicroLathe is an easy to use modeling
tool for Windows 3.1 that allows you to
create three dimensional objects using
the metaphor of the carpenter's lathe.

Midnight Modeller v2.0 beta for POV-
Ray 2.x

mnm2be.zip (493,826 bytes)

MNM is one of the most powerful
modelers for POV to date, if not the
most powerful! MNM features very
complex surface creation commands,
and Point TOOLS only found in high
end CAD programs costing $1,000+.
Harry’s Note: If you have QEMM 7.5
installed, make sure to turn off the
DPMI host. With thanks from Dan
Farmer!

Driver to allow MNM v2.0 beta to Run
in a DOS Box

mnmwin.zip (7,992 bytes)

If you need run MNM v2.0 from a
Windows 3.x DOS box, you must have
WINDPMI.386 installed. This file
provides uncommitted memory support
and some floating-point support.

WinModel v0.2 POV modeller by Pete
Goodwin
model2.zip (215,333 bytes)

Moray v1.53 Protected Mode
Shareware Version

mray.zip (550,010 bytes)

This is an interim version that is a
protected-mode, non-FPU version. After
the flood of complaints and problems
the real-mode, FPU shareware version
was causing and after finding a couple
of bugs that it had, I've decided to
release this maintenance version. It has

files and writes unencrypted MDL files.
Harry’s Note: I am a registered owner.

ProtoCAD 3D v2.00 Modeller for POV 2.2
pc3d2b.zip (341,255 bytes)

ProtoCAD 3D v2.00 <ASP> - New! Fast
3D CAD/Rendering program from
TRIUS, Inc. Ultrafast Z-buffer
technology combined with camera
positioning produces amazing
renderings. In combination with
StarFlic, can produce flic file
animations. True Vision TGA output.
Trackball interface for camera
positioning. DXF Import/Export. From
TRIUS, Inc. $59.00 (+s&h). Harry’s Note:
This program only outputs a POV 1.0
scene file and provides only default
colors. You cannot change POV
specific items within ProtoCAD such as
textures and lighting.

v0.99 PoVSB Pov Modeller For
Windows

psb99_16.zip (721,651 bytes)

16 bit executable for Windows 3.1 and
WFWG 3.11

v0.99 PoVSB Pov Modeller For
Windows

psb99_32.zip (478,580 bytes)

32 bit executable for Windows NT and
Windows/WFWG 3.11 with Win32s
extenstions

PV3D Modeler v2.0 for POV-Ray 2.0

and Vivid 2.0

pv3dv2.zip (371,189 bytes)

PV3D modeler Version V2.00 For

POVRAY 2.0 and VIVID 2.00 Graphics

interface (GUI) with mouse. Many

function are modified since the last

V1.00 version !!! Include : 3D animation

function 3D visualisation with camera /
22

look_at . Vectoriel object structure.
XMS Support POV primitives support,
Blob structure Height Field Shape,
Mapping Texture Bumpping Function ,
GIF viewer VIVID 2.00 primitives
support External Textures Library
(POV/VIVID) Dynamic Rotate Move
Scale (R-M-S) NEW! Support Groupe
and Object Library CSG, Constructive
Solide Geometry Direct generation of
POV-RAY 2.0 files Direct generation of
VIVID 2.0 files And more.and more ...,
Splines, ... Smooth and Patch TXT
shapes POV / VIVID Freeware
Unregistered Version.

PV3D v2.0 Light Primitive Update
pv3d_a.zip (7,839 bytes)

For PV3D V 2.0 (SDF-SHA files).

Light Source and Area_Light Primitive.
Freeware Unregistered Version

PV3D modeler Update File V2.10
pvupv210.zip (125,992 bytes)

POVCAD v4.01 modeller for POV and
Polyray

pvcwn401.zip (360,626 bytes)
Shareware $35.00 registration. By
Alfonso Hermida and Robert McGregor.
Requires VBRUN300.DLL

Create 3D swept objects for POV-Ray
and VIVID 2

rayl21.zip (77,360 bytes)

RayLathe is a text based tool that allows
you to create three dimensional objects
using the metaphor of the machinist's
lathe. Objects can be created for
POVRAY 1.0/2.0 & Vivid 2.0 ray tracing
programs. Also .RAW output to many
other tracers. uLathe (lathe151.zip) is an
excellent front end to RayLathe. Bug fix
release. Author: Ken Koehler v2.10

Text and Font Utilities

%8 Converts .FNT & .Set into .INC files

fnt2pov2.zip (3,600 bytes)
BASIC source, no executable.

& Converts .FNT & .Set into .INC files

Fnt2povt.zip, (59,251 bytes)
Includes the .FNT and .SET fonts

& Character set made of tubes for POV 2.2

font.zip (7,020 bytes)

This is an include file for POV ver 2.2
that defines characters for use in POV.
The characters are tubes instead of
boxes like the ones included with
POVRay. Characters can be easily
resized. Includes pov source to render.
By Michael Hartman.

Creates 3D fonts for POV and RAW
Format
font3d11.zip (174,146 bytes)
Font3D is a utility for the creation of a
three-dimensional character
descriptions in a variety of formats
including:

POV-Ray triangles

POV-Ray smooth_triangles

RAW triangles
Any typeface can be used for which you
have a TrueType font file description
(*.TTF), and there are a number of other
options available for fine-tuning the
program's output.

Win TTF's to POV shapes Fonts
fs11r2.zip (116,187 bytes)

FS Fonts & bitmaps to shapes for POV.
FS is a font & bitmap conversion
program. Specifically, it converts MS-
Windows fonts & bitmaps into a format
compatible with the Persistence of
Vision (POV) ray tracing program. FS is
shareware and unregistered versions
have a couple of minor limitations.

Create text objects for POV 2.0
gfont10.zip (83,125 bytes)

This is a simple utility to create text
objects for POV. Requires MS-DOS and
POV 2.0.

23

StringPV v1.0, Requires Font3d11.zip
to Run

stringpv.zip (82,215 bytes)

By John Lagerquist, January 13, 1995,
StringPV generates a POV include file
for a given text string. This program
requires Todd Prater's Font3D program

91 INC files of different fonts for POV-
Ray v2.0
tms_rom2.zip (319,605 bytes)

i Converts TT Fonts to 3D Obijects,
Vowels Crippled

tt2obt.zip (57,045 bytes)

This Windows 3.1 software converts
TT-fonts to 3d objects including all
sorts of bevel generation. You can
convert single characters, the whole
character-set or compose text strings as
3d object. This version is just a demo.
The software works like the full version,
but it will not convert any vowels.

Creates 3D fonts for VIVID/Poly/POV
vvfont18.zip (36,443 bytes)

VVFont reads Borland's chr stroke fonts
and writes scripts for Stephen Coy's
Vivid, Alexander Enzmann's Polyray,
and Persistence of Vision. VVFont
creates a file with fonts changed into
raytrace primitives. Fonts are created
with the width along the X-axis and the
height along the Y-axis. Output is
created in 2 basic styles--Round and
Square. Square letters with no depth
make Flat letters. Square letters with
different top and bottom radii (radii are
used because the ends of the strokes are
cones and rings) make Tapered letters.

Convert VVFONT Output to CTDS
Output
v2c.zip (10,939 bytes)

Harry Rowe runs the Windows World BBS
which specializes in DOS and Windows
based raytracing files. Harry can be reached
at harry.rowe@wedowind.lexis-nexis.com,

or ac401@dayton.wright.edu. His BBS may
be reached at (513) 866 - 8181.
n

How to Find these Resources

Now that you've read about these tools, you
may wonder how you can find them yourself.
Here are several ways to find PovRay related
tools.

Internet
Mosaic/NetScape

Try the URL ftp://ftp.povray.org/pub/povray.
You will find several subdirectories. The
most fruitful will probably be the utilities
subdirectory. You should also check out
some of the Web pages described on page 30.

Archie

If you know the name of the tool but don't
know where to find it, then archie is a good
place to start. If you don't know what archie
is I would recommend getting the book
"Internet Starter Kit", by Engst, Low, and
Simon, ISBN: 1-56830-094-8.

ftp

If you don't have access to Mosiac or
NetScape you can use ftp. The anonymous ftp
site ftp.povray.org contains many PovRay
related files.

Online Services

There are several BBS systems that specialize
in raytracing. Look in the classified section of
this issue for references to two of them. Harry
is the sysop for the Windows World BBS.

CompuServer's Graphic Developer's Forum
(Go GRAPHDEV).
n

24

Art Gallery

Winner of the Dec 94
Raytracing Contest.

This image has been produced for the
competition which has "games" as a theme.
Instead of using a standard subject like a
pool-table or a chessboard, I wanted to make
something different. The result is something
that is hard for some people to understand at
first. It represents a submarine-race in the
near future. The image showed here is a
picture of the start of the race. There are
three sub's of the formula 2000 class visible
as are some camera-droids.

On the background there are some parts of
an underwater base visible. Also there is a
flag which represents the start of this
endurance race.

The tools I used to create this image are:
GUM (0.89 registered version, you should
all buy it, it's great, it's fantastic, it's

brilliant, it's even better, it's getting better
than 3D-STUDIO and Lex(the creator of
GUM) is a friend of mine.

Polyray 1.7, which I used for raytracing.
It's a very fast raytracer, but has some
problems with Unions.

The whole project took me about a month
modeling time and rendering-time. The final
image at 1200*900 took 3 hours on a dx2-50.
The scene is big, the biggest I ever created.
That's why I didn't raytrace the picture in
one go. I traced the picture with one
submarine and used this as a background for
another scene with just one submarine and
repeated this again.

This was done to keep the tracing time
manageable in case something went wrong.
The lights were a different story altogether. I
tried to make them glow like they do now,
using the formulas in the polyray example
file "spot1.pi" but that took ages to raytrace.
So the only solution was to use aldus
photostyler and airbrush them by hand. I'm
still trying to do it the right way, but it's
difficult because the lights don't have
ranges(like in 3d-studio) and keep shining
on and on. The result of this is that
everything makes shadows and is bright as
the sun.

My address is :
wluyken@stud.io.tudelft.nl
Kloosterkade 208

2628 JJ Delft

The Netherlands

25

Winner Jan. 95
Raytracing Contest

Erector Set Crane

Mark Vernon
mvernon@metronet.com

This 640 X 480 32-bit rendering of a Crane
made from erector set parts was created
using PovRay 2.2 on a Mac Il ci with an
Applied Engineering Transwarp 40 MHz
68040 Accelerator and 20 Mb Ram. All
calculations and coding were done by hand.

In trying to come up with an image for the
January competition, a friend suggested
doing something with an erector set. This
sounded great but I wasn't sure if I could
render the girder, pulleys, brackets, support
members, screws, nuts, etc. necessary to
build an object, but I could feel 'the
challenge'. I picked up the gauntlet and tried
to create a girder. Having accomplished that,
I was off and shortly after that, the idea of a
crane hit me.

Since this is, for all practical purposes, my
first full-fledged rendering from start to
finish, I must say that I learned a lot about

memory and time efficient coding while
doing this. I initially used a hand made bi-
cubic patch for the rib on each side of the
girder, but found out quickly how memory
hungry bi-cubic patches are. I realized that I
could difference a slightly smaller cylinder
from a bigger cylinder (creating a hollow
pipe) and then clip 1/2 of it to produce the
same rib that the bi-cubic patch had. It
reduced my memory by over 1/3 and
significantly sped up the trace time.

Unfortunately it still grew to where 20 MB of
ram was not enough. I rewrote the girder
code so that instead of creating a box with a
hole differenced out and then instantiating
that many times with an offset, I created 1
long box and differenced out all of the holes
as one, then added the side ribs as long ones
rather than short ones on each instantiated
piece. This reduced my memory requirement
by almost 6 MB. Another trick that was
recommended by a friend is when you need
to difference out a round hole, use a cylinder
rather than a sphere because a cylinder's
radius is defined as the square root of the
sum of the squares of 2 dimensions and a
sphere is of 3 dimensions. This saves on
additional math and rendering time.

I think that during the coarse of this project,
I have now read 'Ray Tracing Creations' (by
Drew Wells and Chris Young) as well as the
PovRay docs all the way through several
times.

I have included the scene files [See the
anonymous ftp site ftp.povray.org for these
files - KR]. Any recommendations or
constructive criticisms for memory (it takes
about 14Mb to render) and coding efficiency
would be welcome.

Enjoy!

Mark Vernon

26

Tip@ & Tricks

Q Has anyone been able to program a

succesful grid texture in POV? I've tried
making a two layered texture, using
marble without any turbulence and
making one layer black with a touch of
red (.99) and the second layer clear with a
touch of red. Unfortunatly I can't seem to
get it right. any ideas? - HB

I've used layered gradients to do it. You
don't say what it is about it that you "can't
seem to get right". Essentially (without
testing), you'd do something like this -
Dan Farmer.

#include "colors.inc"
#include "textures.inc"

#declare Wireframe =
texture {
pigment {
gradient x
color map {
[0.1 color Red]
[0.1 color Clear]

}
}
texture {
pigment {
gradient y
color map {
[0.1 color Red]
[0.1 color Clear]

}
}
texture {
pigment {
gradient z
color map {
[0.1 color Red]
[0.1 color Clear]

}
sphere {<0,0,0>, 10 texture{Wireframe}}

camera {
location <0, 1, 25>
right 4/3*x
direction z

up y
look at <0, 1, 0>

Q How do you make a visible spotlight

A

beam?

// POV-Ray 2.2 scene file
// by Kari Kivisalo kkivisal@vipunen.hut.fi
// Demonstrates use of a radial texture to
// make a spotlight beam

#include "colors.inc"
background { color Grayl5 }

camera {
location <0, 3, -7>
direction z*1.3
up y
right x*1.33
look at <0, 1, 0>
}

//Color of spotlight
#declare cos=color rgbf<l,1,1,0.6>

//Radius of spotlight
#declare ros=1

//Corresponding value in color map
#declare rcm=ros/360

//Fall off angle of spotlight
#declare fos=25

//Corresponding value in color map
#declare focm=fos/360

#declare beam =
plane{y, 0
texture{
pigment {
radial
color map({

[0.00 color Clear]
0.5-focm color Clear]
0.5-rcm color cos]
0.50 color cos]
0.5+rcm color cos]
0.5+focm color Clear]
1.00 color Clear]

}
}
finish{ambient 1 diffuse 0}
}
rotate<-90,0,90>
}

#declare spot=
union({
object{beam}
light source { <0, 0, 0> color cos
spotlight
point_at <0, -1, 0>
tightness 0
radius ros

27

falloff fos
}
no_shadow

}

object{
spot translate <0, 4, 0>
rotate < 15, 0,-20>

}

object{
spot rotate x*10 translate<O, 4, 0>
rotate <-40, 0, 30>

}

plane { y, O
texture {
pigment {
checker color Red color White}
finish { diffuse 0.75 ambient 0.25 }
}
}

sphere{<0,0.5,0>,0.5
pigment{color rgb<l,1,1>}
finish{diffuse 0.8 phong 1}
}

How can I speed up the rendering of my
image?

If you have access to more than one PC
(perhaps at work) and need to render a
complex picture or one that will take a lot
of time then you need GLUETGA.EXE
written by Aaron A. Collins.

GLUETGA joins partially rendered TGA
files into one TGA file. POVRAY can be
instructed to produce a partial TGA file (a
horizontal strip) by using the +s and +e
switches.

For example, to render a picture on 4
machines run the following commands
(one on each PC):

povray -imyscene.pov +e0.25 +otl.tga

povray -imyscene.pov +s0.25 +e0.50 +ot2.tga
povray -imyscene.pov +s0.50 +e0.75 +ot3.tga
povray -imyscene.pov +s0.75 +ot4d.tga

and then after moving the t?.tga files into
one place the following command glues
them together:

gluetga myscene tl t2 t3 t4

GLUETGA.ZIP is available from
ftp.povray.org in /pub/povray/utilities

Chris Hart

I'm trying to render my first PovRay
image and PovRay can't find the files
colors.inc and textures.inc. Where can I
download them?

This is a common problem for beginning
PovRay users. The include files for
PovRay are found in the PovRay
distribution in the file povdoc. zip.

The PovRay documentation suggest a
directory structure as follows:

[C:]povray —— include

——— demo

— scenes

L util

When you unzip the PovRay distribution
files be sure you are at the toplevel of the
directory structure and use the following
COHHnandjpkunzip -d povdoc.zip.ThiS
will assure that the include subdirectory
is properly created when the files are
unzipped.

u

28

| etters

PovRay Wishlist

The POV team has stated that they are no
longer accepting suggestions for the next
release, but please keep sending your ideas.
New features have a better chance of being
implemented if they have already been
coded, and programmers (hopefully) look at
the list.

Features already guaranteed to be in the next
release have been removed from the list. If
you would like a list of features scheduled
for the next release of POV-Ray, send mail to
the address below.

Current Wishlist features (01/15/95)

Additional sphere image maps / Riemann
sphere maps. Example:
All image borders meet at one point or
pole or all image borders aligned along
equator.

Starfield backgrounds / textures, optimized

for single pixel emulation. Example:
texture { starfield <density> }

Wireframe / hidden line previews. Example:
command line +q0 (quality zero)

Lensflare calculations. Example:
camera { flare <amount> }

Additional graphic output formats
Example:
ppm output +£fp

User defined textures via mathematical
expressions. Example:

texture {
pigment math
sqrt (Px*Px+Py*Py+Pz*Pz)
—colormap- }

Texture maps. Example:

texture map {
[0 1 texture White Marble
texture Jade] }

Irregular tile patterns for masonry. Example:

texture { masonry {
texture Granite
masonry2
texture Jade ... } }

Function to return y vector at given point of
a height field. Example:

height function ({
<x,z> file type "filename" }

If you have a suggestion or feature you wish
added to this list please feel free to send it to
janderson@comnet.usc.vcu.edu. He is the
keeper of the 'official' wishlist. - KR

PovZine Download Size

You should release a TEXT only version for
those who might not want to download a
large file. The postscript format is alright
and the content is great. But think of those
who have slow connections and those who
have no way of viewing post script. I hope
my input helps you and good luck with
further releases. - Arthur Phan

Thanks for the suggestion. As you've
probably noticed, PovZine isn't exactly
getting smaller. I will starting releasing a text
version with this issue. - KR

u

29

Internet Kesources

3D graphic links by others
http://www.jyu.fi/~kuru/sirds/others.html

Links to 3d images, SIRDS info, and
technical papers. This is definitely a good
starting point for browsing the web.

Eric G. Suchanek

http://info.acm.org/~esuchanek/homepage.html

If you're interested in using PovRay to
visualize molecules then this is the home
page for you.

sTaTiC DeSiGnS

http://192.96.7.160/~kon/index.html

A funky hompages with links to lots of
graphics related stuff, including PovRay
images.

Directory of /pub/povray
ftp://ftp.povray.org/pub/povray/

The base directory of ftp.povray.org. A great
place to download just about any PovRay
related thing. Lots of software, and images.

LEGO CAD

http://www.rahul.net/gyugyi/legocad/legocad.h
tml

If you have fond childhood memorys of the
those little building blocks, then check this
out.

The Ray Tracing Home Page

http://www.cm.cf.ac.uk:/Ray.Tracing/

The title says it all.

Conferences & Workshops: SIGGRAPH 95

http://www.siggraph.org/conferences/siggraph9
5/siggraph95.html

If you are interested in the technical aspects
of computer graphics then SIGGRAPH is the
social event of the year.

Computer Graphics FUNdamentals

http://www.hp.com/mhm/CompGrfxFUNdamentals/Co
mpGrfxFUNdamentals.html

A tongue-in-cheek explanation of computer
graphics.

Stefan Maes WWW Homepage

http://www.uia.ac.be/u/maes/index.html

If you like raytracing, or DOOM check this
out.

3dviewer

http://www.render.com/oneday/viewer/

If you'd like a free 3ds viewer, check this
out.

3ds

http://www.render.com/oneday/viewer/objects/3
ds.html

Need some 3ds models? Then browse this
page.

POV-Ray CDROM

http://www.cdrom.com/titles/pov.html

Everyone's been talking about it. Here's
where to get first hand info. =

30

	Cover
	Editorial
	TOC
	Modeling with MORAY
	3D Stereo Pairs
	Creating A Cross-Eyed Stereogram
	Creating Random Dot Stereograms
	Running PovRay under Windows 3.1
	Resource List: Part 1
	Art Gallery
	Tips & Tricks
	Letters
	Internet Resources

