
DGTL
Dave G’s TimeLine System 0.95
for POV-Ray 3.0

David Govoni
david.govoni@sympatico.ca
www.geocities.com/SiliconValley/Vista/3378

A system for the easy creation of a
TimeLine within POV-Ray animations
without external programs or
multiple source files.

Table of Contents

Introduction and Overview. 1
What Does It Do?. 1
Who's It For?. 1

Tutorial . 3
Scene 1 - A Simple Animation. 3
Scene 2 - Accessing The Master Clock. 6
Scene 3 - I Didn’t Do It, I Was Framed. 8
In Conclusion?. 9

Reference. 10
User Assigned Variables. 10
Returned Variables. 11

Hints and Tricks. 14
Spread Out The Animation. 14
Animate Across Segments. 14
Declare Your Segments!. 15
More Hints? . 17

Dave G's TimeLine System 0.95 March 1997

Page 1

Introduction and Overview

Welcome to Dave G's TimeLine System (DGTL). DGTL is an include file for POV-Ray which
allows for an animation TimeLine within a single POV render. Since it is not a separate program,
or a stand alone executable, it should be portable across all POV-Ray platforms.

While I attempt to explain DGTL here, it is much easier to work through the tutorial (or at least
follow along) so I can introduce the features of the system one at a time.

What Does It Do?

In a nutshell, DGTL breaks an animation into smaller chunks. Each chunk, or segment, is
assigned a duration. The segments are proportional to each other. A segment with twice the
duration will get twice as many frames in the final render. And the TimeLine scales as you
increase the number of frames you render with POV-Ray. If you render the file with twice as
many frames each segment takes twice as long as it did previously.

A TimeLine is made of up to 99 segments. As POV-Ray renders individual frames of the final
render it determines which segment each frame is in. It also determines how far through the
current segment the current frame is. Within each segment you can animate as you normally
would within an entire POV-Ray animation. This allows you to break a longer animation into
manageable chunks automatically.

In a simple POV-Ray animation you utilize the clock variable to determine how far through the
animation you are. You can then do almost anything to the scene as the value of clock changes
from 0 to 1. With DGTL you are told which segment the animation is currently in, as well as
being told how far through the current segment you are. The DGTLCurrent_Segment variable
returns the number of the current segment (from 1 to 99). You end up using a
DGTLSegment_Clock variable, which varies from 0 to 1 within each segment, to animate
within a particular segment.

Who's It For?

Like all of the files in the Dave G's series it is meant for anybody creating pov files. I myself use
it to 'hand roll' scenes in my favourite text editor. I manually type the DGTL commands into the
pov file and POV-Ray and DGTL do the work of segmenting my animation.

Dave G's TimeLine System 0.95 March 1997

Page 2

However it is also meant for programs that automatically generate pov files. Usually these are
scene builders and modellers. The modeller can let the user define the animation in the scene
building program and then translate that into commands in a single pov file with the DGTL
commands embedded. POV-Ray will render the scene properly, independent of the number of
frames rendered. That way modellers can create complex animations without creating a single
pov file for every resulting frame.

This could make it easy for any modeller to add animation capabilities. And this is the capability
most often on the wish list of the people creating scene builders. The Dave G’s series also allows
for paths, curves, and particles to be included within a single pov file (see the other
documentation).

This also explains why there are up to 99 segments in a TimeLine. For most of us working with
'hand rolled' pov files dealing with 99 segments may seem slightly absurd. But for a scene
builder doing it automatically it can be very simple to use them all.

Dave G's TimeLine System 0.95 March 1997

Page 3

Tutorial

Scene 1 - A Simple Animation

The easiest way to see DGTL in action is to enter a scene. So type the following into a new pov
file (Or load TL01.POV).

#include "colors.inc"

camera { location <0, 3, -6> look_at <0, 0, 0> }

light_source { <20, 20, -20> color White }

plane { y, 0 pigment { checker color White color Black } }

#declare DGTLSegment01 = 1
#declare DGTLSegment02 = 1
#declare DGTLSegment03 = 1
#declare DGTLSegment04 = 1

#include "DGTL.INC"

#switch (DGTLCurrent_Segment)
#case (1)

sphere { <-2,0.5,-1>, 0.5 pigment { color Green } }
#break
#case (2)

sphere { <-1,0.5,-1>, 0.5 pigment { color Blue } }
#break
#case (3)

sphere { <1,0.5,-1>, 0.5 pigment { color Red } }
#break
#case (4)

sphere { <2,0.5,-1>, 0.5 pigment { color Brown } }
#break
#else

sphere { <0,1,-1>, 1 pigment { color White } }
#end

The file starts by including $colors.inc# and setting up a camera, a light, and a checkerboard
plane to stage the action. Then there are a few declares. DGTLSegment01 is assigned a value of
1. This is the duration the animation will spend in segment 1. DGTLSegment02 is assigned the
length of time the animation will spend in segment 2. And so on....

Dave G's TimeLine System 0.95 March 1997

Page 4

How many frames will segment 1 last in the final animation? It depends on two things.

First, it depends on the total duration of time spent in all segments. Since there are four segments
(01, 02, 03, 04) and they are each given a value of 1, the total duration is 4. Therefore one quarter
of the total frames will be spent in each segment.

The number of frames spent in segment 1 depends on the number of frames you render. If you
render this file with 16 frames then segment 1 will last 4 frames. If you render 1000 frames then
segment 1 will last 250 frames.

In this file four segments are declared. You can declare the time for up to 99 segments. Any
segment you do not declare will automatically set themselves to a length of 0.

After you declare all segments you want to be in the animation you include the DGTL.INC file.
Then DGTL takes over and calculates which segment the current frame is being rendered is
within, and how far through that segment the animation has progressed.

Just after the DGTL.INC file is included this information is used to animate the scene. A switch-
case statement is used to alter the scene depending on which segment is current.

If you render the file with POV-Ray and generate a number of frames using the animation feature
and then watch the result. You should see four spheres appear, one at a time, from left to right.
Each having a different colour. From Green to Blue to Red to Brown.

If you look at the resulting frames you will notice that the animation progresses from segment 1
to segment 2 and then 3 and finally 4. Each of the four spheres appear in order. Just as you might
suspect. Two things to notice. In the switch statement the else is used to show a white sphere
during all other segments. Since it never appears we know the timeline progressed only through
the first 4 segments.

If you alter the scene so the four declarations read:

#declare DGTLSegment04 = 0.5
#declare DGTLSegment02 = 0.5
#declare DGTLSegment03 = 0.5
#declare DGTLSegment01 = 0.5

And re-render the file the four spheres will change appear in the correct order. You can declare
the duration of the segments in any order, they will still occur in numerical order. First segment
1, then segment 2, and so on. And, even though the durations are set to 0.5 instead of 1, the file
will render identically. Each segment still takes up a quarter of the total number of frames.

Dave G's TimeLine System 0.95 March 1997

Page 5

If you alter the scene so the declarations read:

#declare DGTLSegment99 = 1
#declare DGTLSegment01 = 1
#declare DGTLSegment02 = 1
#declare DGTLSegment03 = 1

And look at the results (forgive me for not typing ‘and then re-render the animation’) you will
see the first three spheres appear on queue and then the white sphere will appear as segment99
occurs right after segment 3.

While there are 99 segments available for your TimeLine, all segments default to a duration of 0
unless you specifically declare them otherwise. Therefore segments 4 through 98 have no
duration and do not take up any frames during the render.

So far all is working as you might expect. So now, change the four lines again to:

#declare DGTLSegment01 = 1
#declare DGTLSegment02 = 2
#declare DGTLSegment03 = 3
#declare DGTLSegment04 = 4

In this case the total length of time for all the segments is 10 units (I sometimes refer to it as
seconds, but there is no direct connection to playback speed. There is only a connection to the
proportion of rendered frames). Segment 1 will last for one tenth of the entire animation.
Segment 2 will last the next two tenths, segment 3 for 4 tenths, and segment 4 for four tenths
(two fifths).

If you render this for only a few frames (ten or so) it can be difficult to notice the true
proportions, but as the number of frames increase the proportions become more and more
obvious. Either way DGTL will space out the frames as best as it can.

For the next change, imagine you are working on a large multi-segment animation. Imagine it all
works, except for the third segment. You want to concentrate on only the third segment. So
change the lines to read:

#declare DGTLSegment01 = 0
#declare DGTLSegment02 = 0
#declare DGTLSegment03 = 3
#declare DGTLSegment04 = 0

Now the scene renders with only the third segment active. Every frame you render happens
during the third segment. This is the perfect way to work on only part of your animation.

Dave G's TimeLine System 0.95 March 1997

Page 6

Scene 2 - Accessing The Master Clock

Enter the following scene, or load TL02.POV.

#include "colors.inc"

camera { location <0, 3, -6> look_at <0, 0, 0> }

light_source { <20, 20, -20> color White }

plane { y, 0 pigment { checker color White color Black } }

#declare DGTLSegment01 = 1
#declare DGTLSegment02 = 2
#declare DGTLSegment03 = 2
#declare DGTLSegment04 = 2

#include "DGTL.INC"

#declare Count = int(DGTLMaster_Clock)

#declare Looper = 0
#while (Looper <= Count)

sphere { <(Looper - 3),0.5,1>, 0.5 pigment { color Red } }
#declare Looper = Looper + 1

#end

If you run this scene you will see the spheres appear from left to right as the animation continues.
Each sphere appears as the DGTLMaster_Clock variable grows.

In a pov file the clock variable ranges from 0 to 1. This is provided by POV-Ray. If you set up a
TimeLine the DGTLMaster_Clock variable ranges from 0 to the total length of all the segments
in the file. In this case the four segments add up to 7. Therefore the DGTLMaster_Clock variable
ranges from 0 to 7. Notice how the loop works though. The loop will display one sphere even if
the Count variable is 0. That is why there is always a sphere in the image. Also, if you render this
using the Cyclical Animation Option you will end up with 7 spheres. If you don’t use this option
you will end up with 8.

This has many possible uses. Add the following to the bottom of the file and render it again. (Or
load TL02B.POV)

Dave G's TimeLine System 0.95 March 1997

Page 7

cone {
<-1, 0, 0>, 0.3
< 1, 0, 0>, 0.3
pigment { color Green }
rotate <0,(180 * DGTLMaster_Clock),0>
translate <0,2,1>

}

The new cone will rotate every 2 DGTLMaster_Clock values. This cone will rotate during all
segments of the TimeLine. In this case the cone rotates three and a half times during the
animation. If you modify the declarations to:

#declare DGTLSegment01 = 0.5
#declare DGTLSegment02 = 2
#declare DGTLSegment03 = 2
#declare DGTLSegment04 = 3.5

Then the cone will rotate four times during the animation. So it is dependent on the total duration
of all segments.

However if you just change the segment durations to:

#declare DGTLSegment01 = 0
#declare DGTLSegment02 = 0
#declare DGTLSegment03 = 2
#declare DGTLSegment04 = 0

Then the cone will rotate the correct number of times during segment 03. It will rotate once. Just
as it would during segment 03 during the entire animation. (However it may not start in the
proper point along its rotation. In this case it would normally be one quarter the way around its
second trip to start the third segment. But without the previous durations it will start segment 3 in
its original orientation.

DGTLMaster_Clock is given to allow continuous events to occur throughout an animation.

If you need to know more about the new duration of the animation DGTL also provides several
other variables.

DGTLTotal_Time is the duration of all segments
DGTLTime_To_Go is the duration still to be covered in the animation

NOTE: Yes, I know that given the clock and the DGTLTotal_Time variables you can calculate
the other yourself. However its easy for me to have DGTL calculate them for you.

Dave G's TimeLine System 0.95 March 1997

Page 8

Scene 3 - I Didn’t Do It, I Was Framed

There is one other feature that DGTL provides. To see it in action enter the following into a new
file (TL03.POV).
#include "colors.inc"

camera { location <0, 3, -6> look_at <0, 2, 0> }

light_source { <20, 20, -20> color White }

plane { y, 0 pigment { color Gray50 } }

#declare DGTLSegment01 = 1
#declare DGTLSegment02 = 1
#declare DGTLSegment03 = 1
#declare DGTLSegment04 = 1
#declare DGTLFrames_Per = 10

#include "DGTL.INC"

text {
ttf "TIMROM.TTF", " Total Frames", 0.2, 0
translate <-4,1,1>
pigment { color Green }

}
text {

ttf "TIMROM.TTF", str(DGTLFrames,0,1), 0.2, 0
translate <2.5,1,1>
pigment { color Red }

}

text {
ttf "TIMROM.TTF", "Current Frame", 0.2, 0
translate <-4,2.5,1>
pigment { color Green }

}

text {
ttf "TIMROM.TTF", str(DGTLCurrent_Frame,0,1), 0.2, 0
translate <2.5,2.5,1>
pigment { color Red }

}

I hope the results easy to understand. DGTLFrames_Per is simply multiplied by the total
duration of the animation and DGTLFrames returns the total number of ‘frames’ in the animation

Dave G's TimeLine System 0.95 March 1997

Page 9

and DGTLCurrent_Frame returns the current ‘frame’ value. Notice that the
DGTLCurrent_Frame value ranges from 0 to the DGTLFrames value.

HOWEVER - This value does not tell you which frame POV-Ray is rendering. In this example
the DGTLFrames value will always be 40. It doesn’t matter if POV-Ray renders 10 or 10,000
frames.

I put this in for several reasons. First it gives a simple counting device throughout the animation.
This can be used for whatever purpose you can dream up. Unlike the DGTLMaster_Clock
variable it only has integer values, no decimal fractions.

Second if you know that eventually you are going to render the animation for broadcast of some
sort then you can treat the duration of each segment as being seconds and then use the
DGTLFrames_Per to give you an accurate internal frame counter. Again, if you render the
animation without a matching value for frames being given to POV-Ray then the
DGTLCurrent_Frame will not match the actual frame number.

Lastly, I left this in so that frames could be grabbed from another source and used as animated
image maps. For example, if you want another animation loaded into POV-Ray on a rendered
television set, then you can use DGTLCurrent_Frame to help you load the correct television
frame as an image map. So far I haven’t had the time to attempt this trick. But as far as I can tell
POV-Ray has all the necessary functions.

In Conclusion?

I hope this short tutorial has not left you completely confused.

DGTL is meant to take a single POV rendered animation and simply break it into numerous
chunks. Each of which can be animated and dealt with separately.

You can use the DGTLSegment_Clock, DGTLMaster_Clock, DGTLCurrent_Segment, and the
pov clock variable together to render very complicated animations.

Anything you can animate within a full POV-Ray animation (textures, lights, objects, scaling,
rotations, translations,...) can be animated with a DGTL segment.

From now on its up to you.

Good Luck rendering!!

Dave G's TimeLine System 0.95 March 1997

Page 10

Reference

A little note about the variables used by DGTL. All start with DGTL and then have properly
capitalized names. This may seem like extra typing but it was done to avoid conflict with other
POV-Ray files and objects.

All variable names in the Dave G’s series start with $DG# and then more letters to indicate which
part of the Dave G’s System it is part of. All internal variables in these files follow this format as
well.

Unless you happened to name your variables with these letters (which I hope is highly unlikely)
there should be no conflict between the Dave G’s series and any other POV-Ray files.

User Assigned Variables

DGTLSegmentxx - float

There are 99 DGTLSegmentxx variables. Ranging from DGTLSegment01 through
DGTLSegment99. If you declare one of them, and assign a float value, before you
include $DGTL.INC# then the appropriate animation segment is assigned a duration.

To create a two segment animation with a duration of 4 for the first segment and a
duration of 50 for the second you simply declare:

#declare DGTLSegment01 = 4
#declare DGTLSegment02 = 50

Segments do not have to be declared in order. DGTL will run the animation in numerical
order, by segment number, regardless of the order they are declared. You may enter
negative values, but DGTL will convert them into positive numbers automatically (sorry,
no negative times here).

Segments do not have to be declared. If segments are not declared (segments 3 through
99 in the above example) the segments are automatically assigned a duration of 0.

If you do not declare any segments DGTL will assign a duration of 1 to segment 1,
resulting in an animation with a total duration of 1.

Dave G's TimeLine System 0.95 March 1997

Page 11

DGTLFrames_Per - float

This variable is used by DGTL to calculate the total number of ‘frames’ in the animation.
The resulting ‘frames’ values have no direct connection to the number of frames rendered
by POV-Ray. Instead the returned values can be used as a counter throughout the entire
animation.

Returned Variables

After you include DGTL it returns the results of its calculations in these varaibles.

DGTLTotal_Time - float

This is the total of all durations declared for all the segments in the animation. It is simply
a total of all the DGSegmentXX variables.

DGTLMaster_Clock - float

This is the portion of the total duration that has passed in the animation before the
currently rendered frame. If DGTLTotal_Time is 10 and POV-Ray is one quarter through
the animation then DGTLMaster_Clock will be 2.5. (Yes this does depend on the
Cyclical Animation option of POV-Ray).

Usually this is used to animate items that repeat throughout the entire animation.

A suggestion? You could use it to advance a clock during an animation. Digital or
Analog, whatever you can construct.

DGTLCurrent_Segment - float

This gives the value of the segment of the currently rendering frame. It can be used in any
numeric construct (#switch or #if, for example) to break apart the action with a single pov
file.

Dave G's TimeLine System 0.95 March 1997

Page 12

DGTLSegment_Clock - float

POV-Ray provides a clock variable that ranges from 0 to 1 across an entire animation.
DGTLSegment_Clock ranges from 0 to 1 across all the frames that appear in the current
segment. If segment 02 appears for 25 frames then DGTLSegment_Clock will increase
towards 1 through those 25 frames.

Note: There is no guarantee that it will start at 0 or end at 1 exactly. The first frame of a
segment may appear a small fraction into the segment, and the value of
DGTLSegment_Clock would be greater than 0.

DGTLSegment_Duration - float

This is the duration of the current segment. If POV-Ray is currently rendering a frame
that occurs within segment 4 then this will have the same value as DGTLSegment04.

DGTLSegment_Start - float

This gives the duration of the animation before the current segment occurred. Given the
following:

#declare DGTLSegment01 = 1
#declare DGTLSegment02 = 2
#declare DGTLSegment03 = 3

If we are currently rendering a frame within segment 3 then DGTLSegment_Start will
equal 3.

DGTLSegment_End - float

This gives the duration through the animation when the current segment is finished. It is
simply DGTLSegment_Start added to DGTLSegment_Duration. It is provided for
convenience.

Dave G's TimeLine System 0.95 March 1997

Page 13

DGTLTime_Before_xx - float

This returns the total duration in the animation before segment xx.

If segment 05 is the first segment in the animation and it has a duration of 19 then,

DGTLTime_Before_01 = 0
DGTLTime_Before_02 = 0
DGTLTime_Before_03 = 0
DGTLTime_Before_04 = 0
DGTLTime_Before_05 = 0
DGTLTime_Before_06 = 19

would be the resulting values.

DGTLTime_To_Go - float

This is simply the duration left to go in the entire animation. It is the same as:

DGTLTotal_Time - DGTLMaster_Clock

and is calculated for convenience

DGTLFrames - float

This returns the total number of ‘frames’ in the current animation. See the tutorial section
for a discussion of ‘DGTLFrames’ versus the number of frames actually being rendered
by POV-Ray.

DGTLCurrent_Frame - float

This returns the current ‘frame’ number. This is based on the total time of the animation
and the number of ‘frames_per’ unit duration. This is not based on the number of frames
rendered by POV-Ray.

Dave G's TimeLine System 0.95 March 1997

Page 14

Hints and Tricks

Spread Out The Animation

While I assume that I’ll never make mistakes, it’s been known to happen. Specifically I’ve been
known to create an animation and then want to add a segment to the middle. Either to space out,
or add to the action.

If I’ve hard coded the animation with sequential segments (01, 02, 03, 04, 05) I’m not able to add
a segment between any two.

So I’ve borrowed a technique from the days when I was entering basic programs into an old 6502
machine (has anybody out there ever heard of an Acorn Atom?). I simply skip a few segments
between each part of the action when I first create it (05, 10, 15, 20, 25). Then if I have to enter a
new segment I have a few slots left over. I can easily create a new segment at number 7.

DGTL will simply treat all the intervening segments as having zero length. You don’t have to set
them to zero length. In fact all the segments you don’t specify are set to zero length. (In the
above example 26 through 99 are set to zero).

Animate Across Segments

Occasionally you may want an action to cover multiple segments. You may want an action to
start at the beginning of segment 3 and run through until the end of segment 5. This is possible,
but you have to do some math yourself. To accomplish this you could do the following:

Dave G's TimeLine System 0.95 March 1997

Page 15

#if ((DGTLCurrent_Segment >= 3) & (DGTLCurrent_Segment <= 5))
 // Animate across these segments
 #declare NewTotalTime = DGTLSegment03 + DGTLSegment04 + DGTLSegment05
 #switch (DGTLCurrent_Segment)
 #case (3)
 #NewClock = (DGTLSegment_Clock * DGTLSegment03)
 #NewClock = NewClock / NewTotalTime
 #break
 #case (4)
 #NewClock = DGTLSegment03 + (DGTLSegment04 * DGTLSegment_Clock)
 #NewClock = NewClock / NewTotalTime
 #break
 #else
 #NewClock=DGTLSegment04+DGTLSegment03+(DGTLSegment04* DGTLSegment_Clock)
 #NewClock = NewClock / NewTotalTime
 #end
 //animate using NewClock as the clock value between Segment03 and Segment05
#end

So, while you have to do a bit of work to create a multiple segment clock value you can then
easily animate using the new clock value.

You can also write more complicated statements. If you wanted to figure out the math it would
be possible to animate from 2 seconds into segment 3 until 4 seconds before the end of segment
5. It would just be a matter of building the correct math to figure out the new clock value.

Declare Your Segments!

This trick is mainly for very complicated scene files. If you intend to construct a file that is very
complicated, or includes many inc files with additional objects and animation then declaring
names for segment numbers can make a great deal of sense. For example:

In MYFILE.POV
#declare MonsterStand = 5 // Segment with a Standing Monster
#declare MonsterFalling = 6 // Segment with a Falling Monster
#declare MonsterDown = 7 // Segment with a Grounded Monster

Dave G's TimeLine System 0.95 March 1997

Page 16

In MONSTER.INC
#switch (DGTLCurrent_Segment)
 #case (MonsterStand)
 // show the monster standing

 #break
 #case (MonsterFalling)
 // make the monster fall during this segment

 #break
 #case (MonsterDown)
 // show the monster on the ground

 #break
 #else
 // ignore all other values
#end

This way you can change the segments in which the monster appears, falls, and rests on the
ground by simply altering the declares in your master pov file.

Another variation allows for more control within the master file:

#declare MnstrStanding = 3 // When the monster starts standing
#declare MnstrFalling = 6 // When the monster starts falling
#declare MnstrGrounded = 10 // When the monster ends up on the ground
#declare MnstrDpears = 12 // When the monster dissappears

#declare MnstrStand = false
#declare MnstrFall = false
#declare MnstrDown = false

#if ((DGTLCurrent_Segment>=MnstrStanding)&(DGTLCurrent_Segment<MnstrFalling))
 #declare MnstrStand = true
#end
#if ((DGTLCurrent_Segment>=MnstrFalling)&(DGTLCurrent_Segment<MnstrGrounded))
 #declare MnstrFall = true
#end
#if ((DGTLCurrent_Segment>=MnstrGrounded)&(DGTLCurrent_Segment<MnstrDpears))
 #declare MnstrDown = true
#end

The internals of the MONSTER.INC file are left for you to figure out.

Declaring segment names is the easiest way to incorporate action from included files. This way
the included files can also be re-used in other scenes. And when they are re-used it is easy to
specify new segments for the animation to take place.

Dave G's TimeLine System 0.95 March 1997

Page 17

More Hints?

A simple thought to help you create more complicated animations. You can treat every segment
as an individual POV-Ray animation. Any, or all, tricks to make an animation using a single
clock can work within a single segment. If you look at the Hints and Tricks section of Dave G’s
Bezier Curve System you will find a number of ways of using curves to generate animation that
accelerates and decelerates. All these techniques can be used within a single segment of the
TimeLine (or as seen above - across multiple segments). So you can use other tools and
techniques to enhance your animation.

And I’m always interested in hearing about more hints and uses of DGTL. If you come up with
any interesting techniques or ideas please let me know!

