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About the CoverAbout the CoverAbout the CoverAbout the CoverAbout the Cover
Cover image copyright 1992 The VALIS Group, RenderMan image created by The VALIS Group,
reprinted from Graphics Gems III,  edited by David Kirk,  copyright 1992 Academic Press, Inc. All
rights reserved.

  This cover image evolved out of a team effort between The VALIS Group,  Andrew Glassner,
Academic Press,  and the generous cooperation and sponsorship of the folks at Pixar.  Special thanks
go to Tony Apodaca at Pixar for post-processing the gems in this picture using advanced Render-
Man techniques.  The entire cover image was created using RenderMan from Pixar.

 We saw the Graphics Gems III cover as both an aesthetic challenge and an opportunity to
demonstrate the kind of images that can be rendered with VALIS’ products and Pixar ’s RenderMan.

 Given the time constraints, all of the geometry had to be kept as simple as possible so as not to
require any complex and lengthy modeling efforts.  Since RenderMan works best when the geometric
entities used in a 3-D scene are described by high order surfaces, most of the objects consisted of
surfaces made up of quadric primitives and bicubic patches.   Andrew’s gem data and the Archimedean
solids from the VALIS Prime RIBTM library are-the only polygonal objects in the picture.

  Once all of the objects were defined,  we used Pixar ’s ShowplaceTM,  a 3-D scene arranging
application on the Mac, to position the objects and compose the scene.  Showplace also allowed us to
position the camera and the standard light sources as well as attach shaders to the objects

In RenderMan, shaders literally endow everything in the image with their own characteristic
appearances,  from the lights and the objects to the atmosphere.  The shaders themselves are
procedural descriptions of a material or other phenomenon written in the RenderMan Shading
Language.  We did not use any scanned textures or 2-D paint retouching software to produce
this picture.

Where appropriate, we used existing shaders on the surfaces of objects in this picture, taken from
our commercially available VG ShadersTM + VG LooksTM libraries.  For example,we used Hewn Stone
Masonry (Volume 3) to create the temple wall and well;  Stone Aggregate (Volume 3) for the
jungle-floor, and polished metal (Volume 2) for the gold dish.  In addition to these and other existing
shaders, several new shaders were created for this image.  The custom shaders include those for the
banana leaves, the steamy jungle atmosphere, the well vapor, and the forest canopy dappled lighting
effect.

Shaders also allowed us to do more with the surfaces than merely effect the way they are colored.
In RenderMan,  shaders can transform simple surfaces into more complex forms by moving the
surface geometry to add dimension and realistic detail.  Using shaders we turned a cylinder into a
stone well, spheres into boulders and rocks,  and a flat horizontal plane into a jungle floor made up of
stones and pebbles.

Similarly,  we altered the surface opacity to create holes in surfaces.  In this instance, we produced
the ragged edges of the banana leaves and the well vapor by applying our custom RenderMan,
shaders to flat pieces of geometry before rendering with PhotoRealistic RenderMan.

Initially,  this image was composed at a screen resolution of 450 × 600 pixels on a MacIIfx using
Showplace.   Rendering was done transparently over the network on a Unix workstation using Pixar’s
NetRenderManTM.  This configuration afforded us the convenience and flexibility of using a Mac for
design and a workstation for quick rendering and preview during the picture-making process.

Once the design was complete,  the final version of the image was rendered at 2250 × 3000 pixel
resolution.  The final rendering of this image was done on a 486 PC/DOS machine with Truevision’s
RenderPakTM and Horizon860TM card containing 32 MBytes of RAM.

During the rendering process,  RenderMan separates shadows into a temporary file called a
shadow map.  The 2k × 2k shadow map for this image was rendered in less than an hour.  However,
using shaders to alter the surface geometry increases rendering time and memory requirements
dramatically.  As a result,  we had to divide the image into 64 separate pieces and render each one
individually.  The total rendering time for all 64 pieces was 41.7 hours.  Once these were computed,
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the TIFF tools from Pixar ’s RenderMan ToolkitTM were used to join the pieces together into a single,
33 MByte image file.

When the image was ready for output to film,  we transferred the image file to a removable
cartridge and sent it to a local output service.  They output the electronic file onto 4 × 5 Ecktachrome
color film and had it developed.  The transparency was then sent to Academic Press in Cambridge,
Massachusetts where they added the title and other elements to the final (over and had everything
scanned and turned into four-color separations which were then supplied to their printer.

We hope you like this image.  Producing it was fun and educational.  As you might guess, many
“graphic gems” were employed in the software used to produce this picture.

Mitch Prater, Senior Partner
Dr. Bill Kolomyjec, Senior Partner
RoseAnn Alspektor, Senior Partner
The VALIS Group
Pt. Richmond, CA
March, 1992

ABOUT THE COVER
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FFFFFOREWORDOREWORDOREWORDOREWORDOREWORD
by Andrew Glassner

Welcome to Graphics Gems III, an entirely new collection of tips, techniques, and
algorithms for the practicing computer graphics programmer. Many ideas that were once
passed on through personal contacts or chance conversations can now be found here,
clearly explained and demonstrated. Many are illustrated with accompanying source
code.

It is particularly pleasant for me to see new volumes of Gems, since each is something
of a surprise. The original volume was meant to be a self-contained collection. At the last
moment we included a card with contributor ’s information in case there might be enough
interest to someday prepare a second edition. When the first volume was finished and at
the printer ’s, I returned to my research in rendering, modeling and animation techniques.

As with the first volume, I was surprised by the quantity and quality of the contributions
that came flowing in. We realized there was a demand,a need for an entirely new second
volume, and Graphics Gems II was born. The same cycle has now repeated itself again,
and we have happily arrived at the creation of a third collection of useful graphics tools.

Since the first volume of Graphics Gems was published, I have spoken to many readers
and discovered that these books have helped people learn graphics by starting with
working codes and just exploring intuitively. I didn’t expect people to play with the codes
so freely, but I think I now see why this helps. It is often exciting to start learning a new
medium by simply messing around in it, and understanding how it flows. My piano teacher
encourages new students to begin by spending time playing freely at the keyboard: keep a
few scales or chord progressions in mind, but otherwise explore the spaces of melody,
harmony, and rhythm. When I started to learn new mediums in art classes, I often spent
time simply playing with the medium: squishing clay into odd shapes or brushing paint on
paper in free and unplanned motions. Of course one often moves on to develop control
and technique in order to communicate one’s message better, hut much creativity springs
from such uncontrolled and spirited play.

It is difficult for the novice to play at programming. There is little room for simple
expression or error. A simple program does not communicate with the same range and
strength as a masterfully simple line drawing or haunting melody. A programmer cannot
hit a few wrong notes, or tolerate an undesired ripple in a line. If the syntax isn’t right, the
program won’t compile; if the semantics aren’t right, the program won’t do anything
interesting. There are exceptions to the latter statement, but they are notable because of
their rarity. If you’re going to write a program to accomplish a task, you’ve got to do some
things completely right, and everything else almost perfectly. That can be an intimidating
realization particularly for the beginner: if a newly constructed program doesn’t work, the
problem could be in a million places, anywhere from the architecture to data structures,
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algorithms, or coding errors. The chance to start with something that already works
removes the barrier to exploration: your program already works. If you want to change it,
you can, and you will discover which new ideas work and which ones don’t.

I believe that the success of the Graphics Gems series demonstrates something very
positive about our research and practice communities. The modern view of science is an
aggregate of many factors, but one popular myth depicts the researcher as a dispassionate
observer who seeks evidence for some ultimate truth. The classical model is that this
objective researcher piles one recorded fact upon another, continuously improving an
underlying theoretical basis. This model has been eroded in recent years, but it remains
potent in many engineering and scientific texts and curricula. The practical application of
computer graphics is sometimes compared to a similarly theoretical commercial industry:
trade secrets abound, and anything an engineer learns remains proprietary to the firm for
as long as possible, to capitalize on the advantage. I do not believe that either of these
attitudes are accurate or fruitful in the long run. Most researchers are biased. They believe
something is true, from either experience or intuition, and seek support and verification
for that truth. Sometimes there are surprises along the way, but one does not simply
juggle symbols at random and hope to find a meaningful equation or program. It is our
experience and insight that guide the search for new learning and limited truths, or the
clear demonstration of errors of the guiding principle. I hail these prejudices, because
they form our core beliefs, and allow us to choose and judge our work. There are an
infinite number of interesting problems, and many ways to solve each one. Our biases help
us pick useful problems to solve, and to judge the quality and elegance of the solution. By
explicitly stating our beliefs, we are better able to understand them, emphasizing some
and expunging others, and improve. Programmers of graphics software know that the
whole is much more than the sum of the parts. A snippet of geometry can make a complex
algorithm simple, or the correct, stable analytical solution can replace an expensive
numerical approximation. Like an orchestral arranger, the software engineer weaves
together the strengths and weaknesses of the tools available to make a new program that
is more powerful than any component

When we share our components, we all benefit. Two products may share some basic
algorithms, but that alone hardly makes them comparable. The fact that so many people
have contributed to Gems shows that we are not afraid to demonstrate our preferences
for what is interesting and what is not, what is good and what is bad, and what is
appropriate to share with colleagues.

I believe that the Graphics Gems series demonstrates some of the best qualities in the
traditional models of the researcher and engineer. Gems are written by programmers who
work in the field who are motivated by the opportunity to share some interesting or useful
technique with their colleagues. Thus we avoid reinventing the wheel, and by sharing this
information, we help each other move towards a common goal of amassing a body of
useful techniques to be shared throughout the community.

I believe computer graphics has the potential to go beyond its current preoccupation
with photorealism and simple surfaces and expand into a new creative medium. The
materials from which we will shape this new medium are algorithms. As our mastery of
algorithms grows, so will our ability to imagine new applications and make them real,
enabling new forms of creative expression. I hope that the algorithms in this book will
help each of us move closer to that goal.
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This volume attempts to continue along the path blazed by the first two
volumes of this series, capturing the spirit of the creative graphics
programmer. Each of the Gems represents a carefully crafted technique
or idea that has proven useful for the respective author. These contribu-
tors have graciously allowed these ideas to be shared with you. The
resulting collection of ideas, tricks, techniques, and tools is a rough
sketch of the character of the entire graphics field. It represents the
diversity of the field, containing a wide variety of approaches to solving
problems, large and small. As such, it “takes the pulse” of the graphics
community, and presents you with ideas that a wide variety of individuals
find interesting, useful, and important. I hope that you will find them so as
well.

This book can be used in many ways. It can be used as a reference, to
find the solution to a specific problem that confronts you. If you are
addressing the same problem as one discussed in a particular Gem,
you’re more than halfway to a solution, particularly if that Gem provides
C or C + + code. Many of the ideas in this volume can also be used as a
starting point for new work, providing a fresh point of view. However you
choose to use this volume, there are many ideas contained herein.

This volume retains the overall structure and organization, mathemati-
cal notation, and style of pseudo-code as in the first and second volumes.
Some of the individual chapter names have been changed to allow a
partitioning that is more appropriate for the current crop of Gems. Every
attempt has been made to group similar Gems in the same chapter. Many
of the chapter headings appeared in the first two volumes, although some
are new. Ray tracing and radiosity have been combined into one chapter,
since many of the gems are applicable to either technique. Also, a chapter
more generally titled “Rendering” has been added, which contains many
algorithms that are applicable to a variety of techniques for making
pictures.

As in the second volume, we have taken some of the important sections
from the first volume and included them verbatim. These sections
are entitled “Mathematical Notation,” “Pseudo-Code,” and the listings,
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“Graphics Gems C Header File,” and “2-D and 3-D Vector Library,” the
last of which was revised in volume two of Graphics Gems.

At the end of most Gems, there are references to similar Gems whether
in this volume or the previous ones, identified by volume and page
number. This should be helpful in providing background for the Gems,
although most of them stand quite well on their own. The only back-
ground assumed in most cases is a general knowledge of computer
graphics, plus a small amount of skill in mathematics.

The C programming language has been used for most of the program
listings in the Appendix, although several of the Gems have C+ +
implementations. Both languages are widely used, and the choice of
which language to use was left to the individual authors. As in the first
two volumes, all of the C and C + + code in this book is in the public
domain, and is yours to study, modify, and use. As of this writing, all of
the code l istings are available via anonymous ftp transfer from the
machines ‘weedeater.math.yale.edu’ (internet address 128.36.23.17), and
‘princeton.edu’ (internet address 128.112.128.1). ‘princeton.edu’ is the
preferred site. When you connect to either of these machines using ftp,
log in as ‘anonymous’ giving your full e-mail address as the password.
Then use the ‘cd’ command to move to the directory ‘pub/Graphics-
Gems’ on ‘weedeater ’, or the directory ‘pub/Graphics/GraphicsGems’
on ’ princeton’. Code for Graphics Gems I, II, and III  is kept in
directories named ‘Gems’, ‘Gemsll ’, and ‘Gemsll l ’ ,  respectively. Down-
load and read the file called ‘README’ to learn about where the code is
kept, and how to report bugs. In addition to the anonymous ftp site, the
source listings of the gems are available on the enclosed diskette in either
IBM PC format or Apple Macintosh format.

Finally, I’d like to thank all of the people who have helped along the
way to make this volume possible. First and foremost, I’d like to thank
Andrew Glassner for seeing the need for this type of book and starting the
series, and to Jim Arvo for providing the next link in the chain. I’d also
like to thank all of the contributors, who really comprise the heart of the
book. Certainly, without their cleverness and init iative, this book would
not exist. I owe Jenifer Swetland and her assistant Lynne Gagnon a great
deal for their magical abilities applied toward making the whole produc-
tion process go smoothly. Special thanks go to my diligent and thoughtful
reviewers—Terry Lindgren, Jim Arvo, Andrew Glassner, Eric Haines,
Douglas Voorhies, Devendra Kalra, Ronen Barzel and John Snyder. With-
out their carefully rendered opinions, my job would have been a lot
harder. Finally, thank you to Craig Kolb for providing a safe place to keep
the public domain C code.
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MATHEMATICAL NOTATION

MMMMMATHEMATICALATHEMATICALATHEMATICALATHEMATICALATHEMATICALNNNNNOTATIONOTATIONOTATIONOTATIONOTATION
Geometric ObjectsGeometric ObjectsGeometric ObjectsGeometric ObjectsGeometric Objects
0 the number 0, the zero vector, the point (0, 0), the

point (0, 0, 0)
a, b, c the real numbers (lower–case italics)
P, Q points (upper-case italics)
l, m lines (lower-case bold)
A, B vectors (upper-case bold)(components Ai)
M matrix (upper-case bold)
θ, ϕ angles (lower-case greek)

Derived ObjectsDerived ObjectsDerived ObjectsDerived ObjectsDerived Objects
A⊥ the vector perpendicular to A (valid only in 2D, where

A⊥  = (−Ay, Ax)
M-1 the inverse of matrix M
MT the transpose of matrix M

M* the adjoint of matrix M
    

M−1 = M∗

det M( )






|M| determinant of M
det(M) same as above
Mi,j element from row i, column j of matrix M (top-left is

(0, 0)
Mi, all of row i of matrix M
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MATHEMATICAL NOTATION
M ,j all of column j of Matrix
∆ ABC triangle formed by points A, B, C
∠ ABC angle formed by points A, B, C with vertex at B

Basic OperatorsBasic OperatorsBasic OperatorsBasic OperatorsBasic Operators
    + ,  − ,  /,  ∗ standard math operators
⋅ the dot (or inner or scalar) product
× the cross (or outer or vector) product

Basic Expressions and FunctionsBasic Expressions and FunctionsBasic Expressions and FunctionsBasic Expressions and FunctionsBasic Expressions and Functions
  x  floor of x (largest integer not greater than x)

  x  ceiling of x (smallest integer not smaller than x)
a|b modulo arithmetic; remainder of a ÷ b
a mod b same as above

  Bi
n t( ) Bernstein polynomial = 

    

n
i







ti 1 − t( )n− i ,  i = 0Ln

  

n
i





 binomial coefficient 

  
n!

n− i( )!i!
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PPPPPSEUDO-CODESEUDO-CODESEUDO-CODESEUDO-CODESEUDO-CODE

Declarations (not required)Declarations (not required)Declarations (not required)Declarations (not required)Declarations (not required)
name: TYPE ← initialValue;
examples:
π :real ← 3.14159;
v: array [0..3] of integer ← [0, 1, 2, 3];

Primitive Data TypesPrimitive Data TypesPrimitive Data TypesPrimitive Data TypesPrimitive Data Types
array [lowerBound..upperBound] of TYPE;
boolean
char
integer
real
double
point
vector

matrix3
     equivalent to:
    matrix3: record [array [0..2] of array [0..2] of real;];
     example: m:Matrix3 ← [[1.0, 2.0, 3.0], [4.0, 5.0, 6.0], [7.0, 8.0, 9.0]];
    m[2][1] is 8.0
    m[0][2]← 3.3; assigns 3.3 to upper-right corner of matrix
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matrix4
equivalent to:
matrix4: record [array [0..3] of array [0..3] of real;];
example: m: Matrix4 ← [

  [1.0, 2.0, 3.0, 4.0],
  [5.0, 6.0, 7.0, 8.0],
  [9.0, 10.0, 11.0, 12.0],
  [13.0, 14.0, 15.0, 16.0]];

m[3][1] is 14.0
m[0][3] ← 3.3; assigns 3.3 to upper-right corner of matrix

Records (Structures)Records (Structures)Records (Structures)Records (Structures)Records (Structures)
Record definition:
Box: record [

left, right, top, bottom: integer;
];

newBox: Box ← new[Box];
   dynamically allocate a new instance of Box and return a pointer to it

newBox.left ←10;
   this same notation is appropriate whether newBox is a pointer or
   structure

ArraysArraysArraysArraysArrays
v: array [0..3] of integer ← [0, 1, 2, 3]; v is a four-element array of integers

v[2] ← 5;         assign to third element of v

CommentsCommentsCommentsCommentsComments
A comment may appear anywhere–it is indicated by italics
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BlocksBlocksBlocksBlocksBlocks
begin

Statement;
Statement;
  L
end;

Conditionals and SelectionsConditionals and SelectionsConditionals and SelectionsConditionals and SelectionsConditionals and Selections
if Test

then Statement;
[else Statement]; else clause is optional

result = select Item from
instance: Statement;
endcase: Statement;

Flow ControlFlow ControlFlow ControlFlow ControlFlow Control
for ControlVariable: Type ← InitialExpr, NextExpr do

Statement;
endloop;

until Test do
Statement;
endloop;

while Test do
Statement;
endloop;

loop; go directly to the next endloop

exit; go directly to the first statement after the next endloop

return[value] return value as the result of this function call
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Logical ConnectivesLogical ConnectivesLogical ConnectivesLogical ConnectivesLogical Connectives
or, and, not, xor

Bitwise OperatorsBitwise OperatorsBitwise OperatorsBitwise OperatorsBitwise Operators
bit-or, bit-and, bit-xor

RelationsRelationsRelationsRelationsRelations
=, ≠, >, ≥, <, ≤

Assignment SymbolAssignment SymbolAssignment SymbolAssignment SymbolAssignment Symbol
←
(note: the test for equality is = )

Available FunctionsAvailable FunctionsAvailable FunctionsAvailable FunctionsAvailable Functions
These functions are defined on all data types

min(a, b) returns minimum of a and b
max(a, b) returns maximum of a and b
abs(a) returns absolute value of a
sin(x) sin(x)
cos(x) cos(x)
tan(x) tan(x)
arctan(y) arctan(y)
arctan2(y, x) arctan(y/x), defined for all values of x and y
arcsin(y) arcsin(y)
arccos(y) arccos(y)
rshift(x, b) shift x right b bits
lshift(x, b) shift x left b bits
swap(a, b) swap a and b
lerp(α, l, h) linear interpolation: ((1 – α)*l) + (α*h) = l + (α(h – l))
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clamp(v, l, h) return l if v < l, else h if v > h, else v: min(h,max(l,v))

floor(x) or  x  round x towards 0 to first integer

ceiling(x) or  x  round x away from 0 to first integer
round(x) round x to nearest integer, if frac(x) = .5, round  towards

0
frac(x) fractional part of x
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IMAGE PROCESSINGIMAGE PROCESSINGIMAGE PROCESSINGIMAGE PROCESSINGIMAGE PROCESSING

All of the Gems in this section involve operations performed on images,
or two-dimensional arrays of pixels. Often, a graphics programmer may
want to change the size, the colors, or other features in an image. The
first three Gems describe techniques for stretching or scaling images in
various contexts. The first Gem emphasizes speed, while the next two
emphasize quality. The fourth Gem describes a method for displaying a
full color image using a reduced set of colors.

In some cases, it is useful to combine features from several images. The
seventh Gem applies the now-familiar algebra of image composition to
black and white bitmaps, or l-bit images. The eighth Gem discusses how
to blur two images selectively while combining them in order to simulate
camera aperture depth-of-field effects.

Sometimes the desired result is not another image but, in fact, an
alternative representation of some of the features in the image. The fifth,
sixth, and ninth Gems describe techniques for extracting region boundary
information from images.
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I.1 FAST BITMAP STRETCHINGIIIII.1.1.1.1.1
FFFFFAST BITMAP STRETCHINGAST BITMAP STRETCHINGAST BITMAP STRETCHINGAST BITMAP STRETCHINGAST BITMAP STRETCHING

Tomas MöllerLund Institute of TechnologyHoganas, Sweden

IntroductionIntroductionIntroductionIntroductionIntroduction
Presented here is an integer algorithm for stretching arbitrary horizontal
or vertical lines of a bitmap onto any other arbitrary line. The algorithm
can be used in drawing and painting programs where near real-time or
real-time performance is required. Examples of application areas are
enlarging and diminishing rectangular areas of bitmaps and wrapping
rectangular areas onto, for example, circular areas.

The AlgorithmThe AlgorithmThe AlgorithmThe AlgorithmThe Algorithm
The routine itself is very simple, and most computer-graphics program-
mers are probably familiar with the Bresenham line drawing algorithm
(1965) that it is based upon. In fact, it could be based on any line-drawing
algorithm; however, Bresenham was chosen, as it is integer-based and
very widespread within the computer graphics community. For those of
you who are not familiar with the Bresenham algorithm, pseudo-code
follows for line drawing in the first octant.

procedure Line(x1, y1, x2, y2)
;draw a line from (x1, y1) to (x2, y2) in first octant
;all variables are integer
begin

dx ← x2 – x1
dy ← y2 – y1
e ← 2*dy – dx
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for i ← 1, i < = dx, i ← i + 1 do

WritePixel(x1, y1) ;display pixel at (x1, y1)
while e > = 0 do

y1 ← y1 + 1
e ← e – 2*dx

endloop
x1 ← x1 + 1
e ← e + 2*dy

endloop
end Line;

The pseudo-code above works for the second octant as well, but in that
case the lines will not be continuous, since x1 always is incremented by
1. This suits the algorithm very well.

Let us go back to the explanation of the stretching algorithm. Instead
of interpreting x1 and y1 as a pair of coordinates on a 2-D line, they
must be interpreted as 1-D coordinates. dx must be interpreted as the
length of the destination line, and dy as the length of the source line.
Using these interpretations, x1 will be the coordinate on the destination
line and y1 the coordinate on the source line. For each pixel on the
destination line, a pixel is selected from the source line. These pixels are
selected in a uniform way. See Fig. 1.

If dx is greater than dy, then the destination line is longer than the
source line. Therefore, the source line will be enlarged when plotted on
the destination line. On the other hand, if dy is greater than dx, then the

Figure 1.
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source line will be diminished. If dx is equal to dy, the algorithm will
yield the same sort of line as the source. Here follows the complete
stretcher-algorithm in pseudo-code, rewritten to be able to handle lines
where x2 < x1 and y2 < y1.

procedure Stretch(x1, y1, x2, y2, yr, yw)
;stretches a source line(y1 to y2) onto the destination line
;(x1 to x2). Both source & destination lines are horizontal
;yr = horizontal line to read pixels from
;yw = horizontal line to write pixels to
;ReadPixel(x, y) returns the color of the pixel at (x, y)
;WritePixel(x, y) writes a pixel at (x, y) with current color
;SetColor(Color) sets the current writing color to Color
begin

dx ← abs(x2 – x1)
dy ← abs(y2 – y1)
sx ← sign(x2 – x1)
sy ← sign(y2 – y1)
e ← 2*dy – dx
dx2 ← 2*dx
dy ← 2*dy
for i ← 0, i < = dx, i ← i + 1 do

color ← ReadPixel(yl, yr)
SetColor(color)
WritePixel(x1, yw);
while e > = 0 do

y1 ← y1 + sy
e ← e – dx2

endloop
x1 ← x1 + sx
e ← e + dy

endloop
end Stretch;
function sign(n):integer;
begin

if x > 0 return 1
else return – 1

end sign;
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The sign function does not need to return zero if x is equal to zero,
because then either dx or dy is equal to zero, which means a line with a
length equal to 1. Since this algorithm only uses integer arithmetic and
does not use multiplications or divisions, it is very efficient and fast.

Another interesting thing about this little program is that it can be used
to generate several different shapes of bitmaps. Here follows a list of
some things it can be used to render.

Some Projects Using the Bitmap StretcherSome Projects Using the Bitmap StretcherSome Projects Using the Bitmap StretcherSome Projects Using the Bitmap StretcherSome Projects Using the Bitmap Stretcher
• Rectangular pictures wrapped onto circular or elliptical areas. See

source code in appendix for wrapping onto circles.

• Enlarging and diminishing rectangular parts of bitmaps. See source
code in appendix.

• Wrapping rectangular parts of bitmaps around parallel trapeziums. For
example, a rectangle that is rotated around the x- or y-axis, and then
perspective-transformed, can be used as the destination shape.

Further WorkFurther WorkFurther WorkFurther WorkFurther Work
To improve the algorithm, perhaps an anti-aliasing routine could be
added.

See also G1, 147; G1, 166; G3, A.2.
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I.2I.2I.2I.2I.2
GENERAL FILTERED IMAGEGENERAL FILTERED IMAGEGENERAL FILTERED IMAGEGENERAL FILTERED IMAGEGENERAL FILTERED IMAGE RESCALING RESCALING RESCALING RESCALING RESCALING

Dale SchumacherSt. Paul, Minnesota

A raster image can be considered a rectangular grid of samples of a
continuous 2-D function f(x, y). These samples are assumed to be the
exact value of the continuous function at the given sample point. The
ideal procedure for rescaling a raster image involves reconstructing the
original continuous function and then resampling that function at a
different rate (Pratt, 1991; Foley et al., 1990). Sampling at a higher rate
(samples closer together) generates more samples, and thus a larger
image. Sampling at a lower rate (samples farther apart) generates fewer
samples, and thus a smaller image. Fortunately, we don’t really have
to reconstruct the entire continuous function, but merely determine
the value of the reconstructed function at the points that corres-
pond to the new samples, a much easier task (Smith, 1981). With
careful choice of filters, this resampling process can be carried out in
two passes, stretching or shrinking the image first horizontally and then
vertically (or vice versa) with potentially different scale factors. The two-
pass approach has a significantly lower run-time cost, O(image_width
*image_height*(filter_width + filter_height)), than straightforward
2-D filtering, O(image_width*image_height*filter_width*filter_height).

The process of making an image larger is known by many names,
including magnification, stretching, scaling up, interpolation, and upsam-
pling. I will refer to this process as magnification. The process of making
an image smaller is also known by many names, including minification,
shrinking, scaling down, decimation, and downsampling. I will refer to
this process as minification. The processes will be explained in one
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Figure 1.

dimension rather than two, since the scaling is carried out in each axis
independently.

In magnification, we determine the contribution each source pixel
makes to each destination pixel by application of a filter function.
Sampling theory states that the sinc function, f(x) = sin(πx)/πx, is
ideal for reconstruction; however, we have a finite sample set and need a
filter with a finite support (that is, the area over which the filter is
nonzero). The filter I use in this example is a cubic function, f(x) =
2|x|3 – 3 |x |2 + 1, from –1 to +1, which covers a unit volume at each
sample when applied separably. Figure 1 compares these filter functions.
The design of resampling filters is a source of endless debate and is
beyond the scope of this gem, but is discussed in many other works
(Pratt, 1991; Turkowski, 1990; Mitchell, 1988; Smith, 1982; Oppenheim
and Schafer, 1975; Rabiner and Gold, 1975). To apply the filter, we place
a copy of our filter function centered around each source pixel, and
scaled to the height of that pixel. For each destination pixel, we compute
the corresponding location in the source image. We sum the values of the
weighted filter functions at this point to determine the value of our
destination pixel. Figure 2 illustrates this process.

In minification, the process is similar, but not identical, since we must
be concerned with frequency aliasing. Sampling theory defines the Nyquist
frequency as the sampling rate that will correctly capture all frequency
components in our continuous source signal. The Nyquist frequency is
twice the frequency of the highest-frequency component in our source
signal. Any frequency component that is higher than half the sampling
rate will be sampled incorrectly and will be aliased to a lower frequency.
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Input Samples

Output Samples

Figure 2.

Therefore, a reconstructed signal will contain only frequency components
of half the sampling rate or less. During magnification, we are stretching
our reconstructed signal, lowering its component frequencies. However,
during minification, we are shrinking our reconstructed signal, raising its
component frequencies, and possibly exceeding the Nyquist frequency of
our new sampling rate. To create proper samples, we must eliminate all
frequency components above the resampling Nyquist frequency. This can
be accomplished by stretching the filter function by the image reduction
factor. Also, since the filters at each source pixel are wider, the sums will



11

I.2 GENERAL FILTERED IMAGE RESCALING

GRAPHIC GEMS III Edited by DAVID KIRK 11

Input Samples

Output Samples

Figure 3.

be proportionally greater and should be divided by the same factor to
compensate. Figure 3 illustrates this process.

So far we have only considered the one-dimensional case. We extend
this to the two-dimensional case of a typical raster image by scaling first
horizontally and then vertically. The further optimization of scaling the
smallest destination axis first will not be illustrated here. The filtering
operation can lead to a significant number of computations, so we
precalculate as much as possible. The scaling process for each row (or
column) is identical. The placement and area of the filters is fixed; thus,
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we can precalculate the contributors to each destination pixel and the
corresponding filter weight. The pseudo-code for calculating the contribu-
tors to a destination pixel is as follows:

calculate_contributions(destination);
begin

scale ← dst_size/src_size;
center ← destination/scale;
if (scale < 1.0) then begin

width ← filter_width/scale;
fscale ← 1.0/scale;

else
width ← filter_width;
fscale ← 1.0;

end;
left ← floor(center – width);
right ← ceiling(center + width);
for source ← left, source = source + 1, source ≤ right do

weight ← filter((center – source)/fscale)/fscale;
add_contributor(destination, source, weight);
endloop;

end;

After the contributions have been calculated, all the rows (or columns) of
the destination image can be processed using the same precalculated
filter values. The following pseudo-code shows the application of these
values to scale a single destination row.

scale_row(destination_row, source_row)
begin

for i ← 0, i ← i + 1, i < dst_size do
v ← 0;
for j ← 0, j ← j + 1, j < contributors[i] do

s ← contributor[i][j];
w ← weight_value[i][j];
v ← v  + (source_row[s]*w);

endloop;
destination_row[i] ← v;

end;
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Figure 4.

Figure 5.
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Figure 6.

Figure 7.
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Figure 8.

The same process is then applied to the columns of the image—first
precalculating the filter contributions according to the vertical scale
factor (which may be different than the horizontal), and then processing
columns from the intermediate (horizontally scaled) image to the final
destination image.

In the source code provided in the Appendix, a number of filter
functions are given, and new functions may be easily added. The zoom()
function takes the name of the desired filter and the filter support as
parameters. Figures 4 through 8 show the effect of various filters on a
sample image, along with the impulse response graphs for each filter
function.

The sample images have been scaled up by a factor of 12 in both
directions. Figure 4 shows a box filter, which is equivalent to direct
replication of pixel values, as it shows considerable tiling or “jaggies.”
Figure 5 shows the triangle or Bartlett filter, a considerable improvement
over the box, still computationally simple, but there are still sharp
transition lines. Figure 6 shows a cubic B-spline, which creates no sharp
transitions, but its width causes excessive blurring. The triangle and
B-spline functions are computed by convolving the box filter with itself
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one and three times, respectively. Figure 7 shows the Lanczos3 filter, a
sinc function damped to zero outside the –3 to +3 range, which shows
the excessive “ringing” effect that occurs with the full sinc function.
Figure 8 shows the Mitchell filter (B =   13 , C =   13 ), a cubic function with
no sharp transition, and a good compromise between “ringing” and
“blurring” effects.

See also G1, 147; G1, 166; G3, A.1.
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1.3 OPTIMIZATION OF BITMAP SCALING OPERATIONSI.3I.3I.3I.3I.3
OPTIMIZATION OF BITMAPOPTIMIZATION OF BITMAPOPTIMIZATION OF BITMAPOPTIMIZATION OF BITMAPOPTIMIZATION OF BITMAPSCALING OPERATIONSSCALING OPERATIONSSCALING OPERATIONSSCALING OPERATIONSSCALING OPERATIONS

Dale SchumacherSt. Paul Minnesota

This gem describes a series of optimizations for bitmap scaling opera-
tions. Instead of giving general scaling algorithms, we take advantage of
several application-specific constraints that allow significant reductions in
execution time: single-bit per pixel images, known source and destination
bitmap sizes, and bit-packed horizontal raster storage and display for-
mats. The example application is the display of fax bitmap images on
typical video monitors.

We first assume that we have the source FAX in memory, uncom-
pressed, stored as 8-bit bytes, with the high-order bit of each byte
representing the leftmost pixel in a group of eight along a horizontal row.
Further, we assume, in choosing our example scale factors, that the
resolution of the source FAX is 200 dots-per-inch, in both directions. If
the data is in the often-used 200 × 100 dpi format, we can make it
200 × 200 dpi by replicating each scanline, a task we can often handle in
the decompression phase. Initially we will assume that the data is stored
with the bit values for white and black matching those used by the
display. A good method of inverting the meaning of 0 and 1 bits will be
discussed later. Finally, we assume that the destination bitmap will have
the same format as the source.

Since our example image resolution is higher than your typical video
monitor, we will only be considering the case of reducing the image,
rather than enlarging it. Also, for reasons which will soon be apparent, we
work in eights for scale factors,   

7
8  = 87.5%,   

6
8  = 75%,   

5
8  = 62.5%,   

4
8  = 50%,

  
3
8  = 37.5%,   

2
8  = 25%. The general algorithm works as follows. Take a

single scanline from the source image. For each byte, use the byte value
as an index into a lookup table that gives the reduced bits for a given
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input byte. Shift the derived output bits into an accumulator. The number
of bits added to the accumulator for each input byte is based on the scale
factor (e.g., if we are reducing to   

5
8  scale, we generate five bits output for

each eight bits input). When the accumulator has at least eight bits in it, we
remove the leftmost eight bits from the accumulator and write them as an
output byte into the destination scanline. Any bits remaining at the end of
the scanline are shifted into position and flushed out. Many source
scanlines can be skipped entirely, again based on the scale factor (e.g., at   

5
8

scale we only process five out of every eight scanlines, skipping three).
Now that the basic algorithm is understood, we can discuss some useful

variations and improvements on the process. The heart of the algorithm is
the reduction lookup table. If we need to reverse black and white in the
final image, one way to do it is to invert the bits stored in the lookup
table. Then, instead of 00000000b mapping to 00000b it would map to
11111b. This essentially gives us photometric inversion for free during
rescaling. Similarly, we can solve another problem, again for free, by
careful creation of the lookup table. if we reduce to   

3
8  scale, we would be

seeking three out of each eight bits to output. The simplistic way to do
this is shown in Fig. 1a. A better way is to simulate a form of filtering or

  (a) (b)

Figure 1.
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weighted averaging over the source bits, as shown in Fig. 1b. Since the
lookup table can be created at compile-time, the computational cost to
create the table using a more complex algorithm is irrelevant to run-time
performance. To do proper filtered scaling, we should really be applying
the filter across adjacent scanlines, and across byte boundaries as well.
Since those operations would carry a high run-time cost, and applying
filtering in the limited way that we can show an improvement without
additional cost, we do what is cheap. It is better to use filtering, even
within these restrictions, than to directly subsample the input as in
Fig. 1a.

Any kind of transfer function you’d like can be applied in the same way,
within the limitations of an 8-bit span and only black and white as input
values. You can even do things like reverse the order of the bits, which
can be used in conjunction with a different storage order to either flip the
image left-to-right, or rotate it 180 degrees (in case someone fed the
image into the scanner upside-down). Expanding the table to 16 bits,
which takes 128Kb of memory rather than the 256b used by the 8-bit
table, gives even more flexibility. With 16 bits you have a wider span to
work with, and can select scale factors in sixteenths rather than eighths,
which may allow a better match to your video display size. These
techniques, and the sample code given in the appendix, are simply
building blocks. Examine the constraints of your own application to find
more ways to apply these principles and improve the performance of your
code.

See also G1, 147; G1, 166; G2, 57; G2, 84.
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A SIMPLE COLOR REDUCTIONA SIMPLE COLOR REDUCTIONA SIMPLE COLOR REDUCTIONA SIMPLE COLOR REDUCTIONA SIMPLE COLOR REDUCTIONFILTERFILTERFILTERFILTERFILTER

Dennis BraggGraphics Software Inc.Bullard, Texas

IntroductionIntroductionIntroductionIntroductionIntroduction
A simple filter is presented that reduces a 24-bit color raster image to 15
significant bits and eliminates the problem of visible color stepping. The
resulting image can be displayed directly on a 16-bit frame buffer or used
as the input to a color quantization method for further reduction in the
number of colors in the image.

Raster images are often stored as an array of 24-bit pixels with 8 bits
allocated to each red, green, or blue (RGB) component. Each RGB
component holds one of 256 possible intensity levels. Plate 1 (see color
insert) is a 24-bit image that uses 2215 different colors. Note the smooth
continuous shading of the colored balls.

Unfortunately, frame buffers that can display 24-bit color images are
not always readily available. Color displays that use 8-bit pixels as
indexes to a 256-color color map are widely used. A color quantization
method (Gervautz and Purgathofer, 1990) is often employed to reduce
the number of colors used in a 24-bit image so it can be accurately
displayed on an 8-bit device.

Frame buffers that can display 16 bits of color per pixel (five bits per
RGB component plus an attribute bit) are also becoming more affordable.
The typical solution for displaying a 24-bit image on a 16-bit frame buffer
is to mask off the three least significant bits of each RGB component This
method reduces the 256 intensity levels available for each color to only
32 levels.

A problem that occurs in color-reducing smooth shaded images is color
stepping. A region whose intensity varies continuously from dark to light
in the original 24-bit image will often exhibit noticeable intensity level
steps when displayed on a 16- or 8-bit frame buffer. In Plate 2 (see color
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insert) the image of Plate 1 has been reduced to 256 colors using the
color quantization method of Gervautz and Purgathofer. Note the color
stepping on the balls due to the limited number of colors available.

This gem solves the color stepping problem by varying the intensity
level of each pixel’s RGB components by a weighted random amount. The
amount of variance is weighted in such a way that the average of any
local region of pixels in the resulting image is very close to the actual
24-bit color of the source image.

The resulting image contains 15 significant bits of color per pixel, five
bits for each RGB component. The image can be displayed directly on a
16-bit frame buffer or used as the input for a color quantization method
to further reduce the number of colors. The resulting image has a
somewhat “grainy” appearance, but is much less objectionable than
visible color stepping.

The FilterThe FilterThe FilterThe FilterThe Filter
The filter considers each pixel’s RGB component separately. The 256
intensity levels of a component are divided into 32 equal regions. Each
region covers eight intensity levels. The first region has an intensity level
of zero, the next region has an intensity of eight, and so on.

The intensity of the RGB component will be set to one of these regions.
If the component is set to the nearest intensity level, the resulting image
would still exhibit color stepping. Instead, the remainder of the intensity
divided by 8 (or modulus) is determined. This gives a number ranging
from 0 to 7. A random number in the range of 0 to 8 is generated and
compared to the remainder. If the remainder is less than or equal to the
random number, the component intensity is increased by 8. This has the
effect of varying the component in a manner that is random, yet weighted
toward the nearest intensity level.

Next, some random noise is added to the component intensity based on
a user-supplied noise level. The addition of the noise eliminates any
remnants of color stepping that might otherwise be noticeable. Finally,
the lower three bits of the component are masked off, reducing the
number of significant bits per pixel to 15.

The process produces RGB components that are significantly different
from the original 24-bit components. However, the average intensity of
the pixel components in any local area of the image is very close to the
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average intensity of the original image. In Plate 3 (see color insert), the
original 24-bit image was first processed by the filter, then reduced to
eight bits per pixel by the same method used in Fig. 2.

ImplementationImplementationImplementationImplementationImplementation
The filter is implemented with the function rgbvary(). The function re-
quires four arguments: a three-character array of RGB components of the
pixel to be processed (rgb), an integer specifying the desired noise level
(noise_level), and the x and y location of the pixel (x and y).

The function returns the modified RGB components in the source rgb
array. The noise level can vary from zero (no noise) to 8 (loud!). A noise
level of 2 has worked well in practice.

The x and y location of the pixel is used by two macros (jitterx and
jittery) which generate the random numbers. The jitter macros are based
on the jitter function found in GRAPHICS GEMS (Cychosz, 1990). The
advantage of using jitter is that it always varies a pixel at a particular x, y
location by the same magnitude. This is important when one is color-
reducing several frames of an animation. Using a standard random num-
ber generator will cause a “snowy” effect as the animation is played. The
jitter function eliminates this problem.

The function jitter_init() must be called before any calls to rgbvary() to
initialize the look-up tables used by the jitter macros. This procedure uses
the standard C function rand() to fill out the tables.

SummarySummarySummarySummarySummary
A filter is presented to reduce a 24-bit image into 15 significant bits per
pixel. The procedure eliminates the problem of color stepping at the
expense of a slightly grainy appearance. The resulting image can be
displayed directly on 16-bit frame buffers or used as input to a color
quantization method for further color reduction.

See also G1, 233; G1, 287; G1, 448; G2, 126.



1.4 Plate 1. Original 24-bit color image. 1.4 Plate 2. 256 color image after standard
color quantization.

1.4 Plate 3. 256 color image after process-
ing with rgbvary() and standard color quan-
tization.
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Doug Moore and Joe Warren Rice UniversityHouston, Texas

ProblemProblemProblemProblemProblem
Data in many fields, including medical imaging, seismology and meteorol-
ogy, arrive as a set of measurements taken over the vertices of a large
cubic grid. Techniques for producing a visual representation from a cube
of data are important in these fields. Many common visualization tech-
niques treat the data values as sample function values of a continuous
function F, and generate, for some c, a piecewise planar approximation
to F(x, y, z) = c, an isocontour of the function. One of the original
Graphics Gems, “Defining Surfaces from Sampled Data,” surveys several
of the best-known techniques for generating isocontours from a data cube
(Hall, 1990).

In this gem, we present an enhancement to all techniques of that type.
The enhancement reduces the number of elements of any isocontour
approximation and improves the shape of the elements as well. The first
improvement typically reduces the size of a representation by about 50%,
permitting faster redisplay and reducing memory requirements. The sec-
ond results in better-quality pictures by avoiding the narrow elements that
cause undesirable shading artifacts in many lighting models.

Cube-Based ContouringCube-Based ContouringCube-Based ContouringCube-Based ContouringCube-Based Contouring
Several authors have suggested roughly similar methods that create
isocontours for visualization from a cubic data grid. These methods
process the data separately on each cube, and use linear interpolation
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along the edges of a cube to compute a collection of points lying on the
isocontour. In the Marching Cubes algorithm of Lorenson and Cline
(Lorenson and Cline, 1987), these intersections are connected to form
edges and triangles using a table lookup based on the signs of the values
F(x, y, z) – c at the vertices of the defining cube.

Unfortunately, that method does not guarantee a continuous contour,
since adjacent cubes that share a face with mixed signs may be divided
differently (Durst, 1988). Others have suggested an alternative method
that disambiguates that case by sampling the function at the center of the
ambiguous face (Wyvil et al., 1986). We call methods like these, that
compute the vertices of the resulting contour using linear interpolation
along edges of the cubic mesh, edge-based interpolation methods.

Another problem with edge-based interpolation methods is that the
surface meshes they produce can be highly irregular, even for simple
trivariate data. These irregularities consist of tiny triangles, produced
when the contour passes near a vertex of the cubic mesh, and narrow
triangles, produced when the contour passes near an edge of the mesh. In
our experience, such triangles can account for up to 50% of the triangles
in some surface meshes. These badly shaped elements often degrade the
performance of rendering algorithms and finite element analysis applied
to the mesh while contributing little to the overall accuracy of the
approximation.

Compact CubesCompact CubesCompact CubesCompact CubesCompact Cubes
The contribution of this gem is a general technique for eliminating the
problem of nearly degenerate triangles from edge-based interpolation.
The idea behind the technique is simple: When a vertex of the mesh lies
near the surface, “bend” the mesh a little so that the vertex lies on the
surface. The small triangles collapse into points, the narrow ones collapse
into edges, and only big, well-shaped triangles are left. The rest of the
gem outlines an implementation of this idea; a more detailed explanation
is available (Moore and Warren, 1991).

Apply any edge-based interpolation algorithm to the data cube, and in
the process, record for each vertex generated along an edge of a cube the
point of the cubic grid nearer that vertex. We call that vertex a satellite
of its nearest gridpoint. If the vertex lies at the midpoint of an edge,
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Figure 1. 2D case table for Compact Cubes.

Figure 2. A 2-D example of Compact Cubes.
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either endpoint of the edge may be used, as long as all other cubes
sharing the edge use the same endpoint. When this phase of the algorithm
has completed, you have a triangulation S of the isocontour and a grid
point nearest each vertex of the triangulation.

To produce a new, smaller approximation to the isocontour, apply the
following procedure:

for each triangle T in S do
if the vertices of T are satellites of distinct gridpoints

then produce a triangle connecting the gridpoints;
else T collapses to a vertex or edge so ignore it;

endloop;
for each gridpoint g of the new triangulation do

displace g to the average position of its satellites;
endloop;

The first step of the method defines the topology of a new mesh
connecting points of the cubic grid. All the satellites in S of a particular

Figure 3. Two approximations to a sphere.
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gridpoint are coalesced into a single vertex in the resulting mesh. Thus,
small triangles that result when a gridpoint is “chopped off” are col-
lapsed to the gridpoint. Narrow triangles produced when two vertices are
very near the same gridpoint are collapsed to make the triangle an edge.
Figure 1 illustrates this in two dimensions. This perspective shows that if
the original surface mesh is continuous, then the mesh produced in the
first step of the algorithm must also be continuous.

In the second step, the vertices of the gridded mesh are displaced to lie
on or near the original isocontour. Since each new vertex position is
chosen to be at the average position of a small cluster of points lying on
the original contour, the new approximation usually diverges only slightly
from the original contour.

Figure 2 illustrates this method applied to a two-dimensional mesh. The
upper portion illustrates the result of the first step. The lower portion
illustrates the output of the second step. The short edges in the upper

Figure 4. Two approximations to the head of a femur.
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portion of the figure have been collapsed to form vertices in the lower
portion.

In practice, the method works quite well, reducing the number of
triangles by 40% to 60%. Figure 3 shows a sphere generated by Marching
Cubes (A) and the same sphere after the application of Compact Cubes
(B). Figure 4 shows a human femur, originally presented as CT data, as
contoured by Marching Cubes (A) and by Compact Cubes (B). In each
example, the number of triangles is reduced by using Compact Cubes,
and the shape of the remaining triangles is measurably improved.

As described here, the contours produced by Compact Cubes may have
several undesirable features. First, the boundary of the final contour may
not lie on the boundary of the defining cubic mesh. Second, two disjoint
sheets of the contour passing near a common gridpoint may be fused at
that gridpoint. Moore and Warren (1991) describe simple modifications to
Compact Cubes that solve each of these problems.

See also G1, 552; G1, 558; G2, 202.
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Tim FeldmanIsland Graphics CorporationSan Rafael, California

This gem presents an algorithm that follows the edge of a contour in an
array of sampled data. It uses Freeman chain encoding to produce a list
of vectors that describes the outline of the contour.

Say that you have a terrain map that has been sampled or “digitized”
into a rectangular array of gray-scale pixels. Different pixel values corre-
spond to different terrain elevations. This algorithm could be used in
producing a “topographic map” that showed the terrain elevations as
contour lines. An example program (contour.c) that follows one contour
is given in the Appendix.

The algorithm is capable of handling contours containing a single
sample point, contours surrounding regions of a different elevation,
contours that do not form closed curves, and contours that form curves
that cross themselves, forming loops. In all cases, it follows the outermost
edge of the contour. Given an initial point in an elevation contour in the
array, the algorithm finds the edge of the contour. Then it follows the
edge in a clockwise direction until it returns to its starting point. Along
the way, it describes the path that it follows, using “direction vectors.”
Each direction vector describes the direction from a pixel on the path to
the next pixel on the path. All of the pixels on the path are immediate
neighbors. Thus, the vectors may be thought of as the direction part of a
traditional two-dimensional vector, with the length part always equal to
one pixel. A list of such vectors is known as a “Freeman chain,” after
Herbert Freeman, its originator (Freeman, 1961). Figure 1 shows the
values defining the eight possible directions from a pixel on the path to
its neighbors. The pixel array used in this example is in Fig. 2a; Fig. 2b
shows the output of the example program. The algorithm found and
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Figure 1. Direction vectors from a sample P to its eight neighbors.

followed the edge of the contour with elevation = 200, starting at the
sample at x = 3, y = 2.

The heart of the algorithm lies in knowing how to pick a neighbor in
such a way that a clockwise path around the contour is followed. Examine
Fig. 2a, and imagine that you are walking around the edge of the contour
with elevation = 200, starting from the sample at x = 1, y = 2. In order
to move clockwise around the contour, your first move should be to the
sample at x = 1, y = 3. You are walking on the very edge of your
contour; to your left is the dangerous cliff that drops down to a lower
elevation. As you follow the contour, note that your heading varies, but
that the cliff is always to your left. In choosing your next step, you always
try to move ahead and to your left, while not stepping off of the cliff. If
you cannot move ahead and to your left, you try a little clockwise of that
direction: straight ahead. If that doesn’t work, you try a little clockwise of
that: ahead and to your right, and so on. If you find yourself on a
promontory, your clockwise looking-ahead will cause you to turn around
and retrace part of your path. Eventually, you will travel completely
around the contour and back to your starting point.

The algorithm works the same way. The build() procedure builds a
Freeman chain of the directions taken in moving around the contour ’s
edge. build() calls the neighbor() procedure to get the next neighbor
on the path. neighbor() in turn calls probe() in looking for that
neighbor. The lowest-level procedure is in_cont(), which simply tests
whether a given sample is in the contour or not. Note that the entire array
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7 0 100 100 100 100 100 200 200

6 100 100 100 100 100 200 200 100

5 100 200 200 200 200 200 200 100

4 100 200 255 200 200 100 100 100

3 100 200 250 250 250 200 100 100

2 100 200 200 200 200 100 100 100

1 100 100 200 200 200 200 200 100

0 100 100 100 100 100 100 100 100
y
   x   0     1 2 3 4 5 6 7

(a)

2␣2␣2␣0␣0␣0␣1␣1␣0␣5␣6␣4␣5␣7␣7␣0␣4␣4␣4␣4␣3

(b)

Figure 2. a) Example sampled elevation data. b) The 22 example vectors outlining the
contour with elevation = 200.

of sampled data need not fit into memory at once; in_cont() may be
modified to access offline storage randomly, if need be.

The last_dir variable in neighbor() maintains neighbor()’s  sense of
direction. Examine Fig. 3 to see how the neighbor() procedure imple-
ments the step described above as “try to move ahead and to your left.”
Say that you arrived at sample P from sample A. Then last_dir is 2, and
sample C is always outside of the contour, so the first neighbor to probe
is D. The direction from P to D is 3; new_dir ← last_dir + 1.
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B

D

P

Figure 3. Moving to sample D from P, via A or B.

Now say that you arrived at P from B. last_dir is 1, C is still outside
of the contour, and D is still the first neighbor to probe. The direction
from P to D is still 3; new_dir ← last_dir + 2.

Note that the cases of arriving at P with last_dir equal to 0, 2, 4, or 6
are all congruent (they are simply rotated by 90 degrees). Similarly, the
cases for last_dir equal to 1, 3, 5, and 7 are all congruent. Therefore, the
simple rule that neighbor() uses is to set new_dir to last_dir plus 1 if
last_dir is even, or plus 2 if last_dir is odd. new_dir must be kept in
the range of 0 through 7, of course, so the addition is modulo 8.

The only remaining subtlety is how to choose the first move properly,
so as to start off around the contour in a clockwise direction. This is
easily accomplished: The algorithm, when given a start point anywhere in
the contour, moves left across the contour until it encounters the edge.
This assures that the path begins on the edge. It also assures that the
initial arrangement is as shown in Fig. 3: The path begins at a sample P
such that the neighbor at C is not in the contour and such that the value
of new_dir should be 3. This implies that the initial value of last_dir
should be 1. The algorithm sets it up in the build() procedure.

The example program was written to demonstrate the idea behind
Freeman chains, but it is not storage-efficient. Each member in its linked
list takes up an integer and a pointer. But as Freeman pointed out in his
original work, only three bits are needed to encode each direction vector.
An implementation using three bits would use a large block of memory
instead of a linked list, and would have procedures for packing the chain
of direction vectors into the block, and for extracting them in sequence.

C

A



33GRAPHICS GEMS III Edited by DAVID KIRK 33

I.6 GENERATING ISOVALUE CONTOURS FROM A PIXMAP
In order to determine how much memory should be allocated for the
block holding all of the direction vectors in a contour, a simplified version
of the contour-following algorithm would be used. It would follow the
contour and count the number of direction vectors needed to describe
the complete path, but it would not store the direction vectors. Once the
number of vectors was determined, the memory would be allocated, and
the main algorithm would be called to retrace the contour and pack the
direction vectors into the memory block.

The preceding approach is more efficient than the example program,
but it trades speed for memory space. There is a third approach that still
allows the contours to have arbitrary lengths, yet uses memory space
efficiently while keeping good speed. It does this by eliminating the
pre-scanning step. This is an important consideration for implementations
with large data sets, or with data sets that are not held in memory. The
approach is to use a simple linked list, as does the example program.
However, each member of the list would have a block of allocated
memory, instead of an integer. The block would hold many direction
vectors, each packed into three bits. Additional blocks of data would be
allocated and linked into the list as needed, as the contour was followed.
Procedures would be needed for packing and extracting the vectors, and
additional housekeeping information would have to be maintained in
order to keep everything under control. This technique uses a little space
for the pointers in the linked list, but is still much more memory-efficient
than the example program. The trade-off with this approach is one that is
usually encountered in practical programming: Program complexity would
be increased in order to save storage space while maintaining speed.

Finally, some implementations may not need to hold the representation
of the contour in memory at all; they may simply write the direction
vectors to a sequential-access disk file or to some output device or
concurrent process. In that case, the build() procedure of the example
program would be modified.

See also G3, A.5.
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David Salesin Ronen BarzelCornell University and California Institute of TechnologyIthaca, New York Pasadena, California

IntroductionIntroductionIntroductionIntroductionIntroduction
A typical bitmap encodes pixels that are black and white. Adding an
auxiliary bitmap allows us to represent pixels that are transparent as well.
This two-bit representation is useful for black-and-white images that are
nonrectangular or that have holes. It also leads to a richer set of
operations for combining bitmaps. We encode the three possible pixel
values by the Boolean pair (α, β) as follows:

α β Meaning
1 0 Black
1 1 White
0 0 Transparent
0 1 Undefined

Compositing BitmapsCompositing BitmapsCompositing BitmapsCompositing BitmapsCompositing Bitmaps
We can combine two pixels P = (Pα, Pβ) and Q = (Qα, Qβ) into a new
pixel R = (Rα, Rβ) using the compositing operation R ← P op Q, as
summarized in Table I.

This table is a simplification of the full-color compositing algebra
(Porter and Duff, 1984) to a two-bit domain (Salesin and Barzel, 1986).
Note that the equations for Rα and Rβ in the table are now Boolean
formulas: AND is written as multiplication, OR as addition, and XOR
as ⊕. The Boolean operations can be executed for an entire bitmap at
once using a sequence of standard ” bitblt” operations. The total number
of bitblts required ranges from two to four, depending on the operation.
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Operation Figure Rα Rβ Description

clear 0 0 Result is transparent

P Pα Pβ P only

Q Qα Qβ Q only

P over Q Pα + Qα Pβ + PαQβ P occludes background Q

P in Q PαQα QαPβ

Qα acts as a matte for P:
P shows only where Q is opaque

P out Q PαQα QαPβ

Qα acts as a matte for P:
P shows only where Q is transparent

P atop Q Qα QαPβ + PαQβ

(P in Q) < (Q out P);
Q is both background and matte for P

P xor Q Pα % Qα QαPβ + PαQβ

(P out Q) < (Q out P);
P and Q mutually exclude each other

Table 1. Bitmap Compositing Operations

The figures in the table depict the effects of the operations on two
sample bitmaps P and Q. In these figures, a grey tone is used to denote
areas of transparency in the result.

The over operator is useful for placing a nonrectangular black-and-
white bitmap on top of an existing image—it is ideal for drawing cursors.
The in and out operators allow one bitmap to act as a matte for another
—for example, if P is a ” brick” texture and Q a ” building,” then P in Q
tiles the building with bricks. The atop operator is useful if one bitmap
should act as both a matte and background for the other—for example, it
allows a small piece of texture to be painted onto an existing bitmap
incrementally.

See also G1, 210.
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Cary ScofieldHewlett-Packard CompanyChelmsford, Massachusetts

IntroductionIntroductionIntroductionIntroductionIntroduction
Depth of field is defined to be the area enveloping the focal plane in an
optical lens system within which objects retain a definitive focal quality.
Photographers and cinematographers have long used this aspect of the
camera’s lens and aperture to direct the viewer ’s attention to a particular
part of the image, away from the areas outside the field of interest.
Because of this, it can be advantageous for a computer animation system
to include depth-of-field effects in its repertoire.

This gem describes a 2 1
2
-D depth-of-field algorithm for simulating

change-of-focus in computer-generated animation. This particular algo-
rithm is virtually independent of any hidden-surface removal technique.
We stratify a 3-D scene by depth into nonintersecting groups of objects
that are rendered independently. The resulting images are filtered to
simulate depth of field and then recombined into a single image via a
compositing post-process. When gradually changing filters are applied to
successive frames of an animation sequence, the effect is to pull the
viewer’s attention from one depth-plane of the scene to another.

Related WorkRelated WorkRelated WorkRelated WorkRelated Work
Previous attempts at simulating depth-of-field involved the use of a
pinhole camera model (Potmesil and Chakravarty, 1982). However, that
algorithm did not account for the fact that the surface of a lens provides a
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continuum of different views of the environment. Distribution ray tracing
(Cook et al., 1984) overcomes this deficiency but embeds the technique
in the rendering process. Our algorithm can be considered a compromise
between these two methods: While we do not integrate shading with
depth of field, we do combine surface visibility with depth of field in a
restricted way.

The AlgorithmThe AlgorithmThe AlgorithmThe AlgorithmThe Algorithm
Our approach is essentially a three-stage process:

1. Hidden-surface removal stage: In this first stage, one can either
manually or automatically stratify or cluster objects into foreground and
background groupings. Each cluster or grouping is rendered separately
into its own image with an opacity mask in the alpha channel of each
pixel (see Plate 1, color insert). This opacity mask ultimately comes into
play during the third stage but it can be modified during the second stage.

2. Filter post-processing stage: This stage uses a convolution mask
similar to an exponential low-pass filter to blur the various images to
simulate depth-of-field effects. Since our algorithm is unrelated to the
focal length of the simulated lens, this allows us to freely manipulate the
level of blurriness in an image. However, it is our intent to create a
realistic effect, so we choose the level of blurriness carefully. Care also
has to be exercised to avoid “vignetting” (Perlin, 1985), a phenomenon
that occurs if the filtering algorithm does not compensate for the fact that
the areas outside the image boundaries are unknown. This is done by
recalculating the weighted filter whenever any portion of the convolution
mask is clipped by the image boundary.

3. Compositing stage: Finally, in this stage we follow the algorithms
established by Porter and Duff (1984), Duff (1985), and Max and Lerner
(1985). The importance of the opacity mask in the first stage comes into
play here because it allows us to avoid aliasing artifacts when matting the
foreground images onto the background images.
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As stated in the introduction, cinematographers have long used change-
of-focus to push or pull the viewer’s attention from one part of a scene to
another (for example, from the foreground to the background). This
“focusing” is a consequence of unfiltered foreground objects (which are
“in focus”) matted on top of a blurred background (which is “beyond”
the focal plane). So, pulling the viewer ’s attention from the foreground
to the background amounts to incrementally translating the “focal plane”
of the lens along the optical axis from the foreground to the background
over a series of frames. Since we do not use a lens-and-aperture camera
model, we must modify the shape of the blur filter from frame to frame.
Given that the number of frames over which the change-of-focus simula-
tion will take place is known a priori , we can easily perform an
interpolation of the filter ’s “blurriness” ranging from a small value up to
a magnitude that gives us the desired maximum degree of image blurri-
ness. This is done for the foreground objects. For the corresponding
background images, we use the same series of interpolated values, only in
reverse order. When the filtering process is complete, the two separate
streams of foreground and background images are then matted together
in the last stage of the process to form the final image frames for filming.
Plates 2, 3, and 4 (see color insert) are examples of the first, middle, and
last frames, respectively, of an animation sequence resulting from this
process. As a side note, the results achieved with this process are very
similar to results achieved with multiplane camera systems occasionally
used in cel animation (Thomas and Johnston, 198l).

Acknowledgment and Historical NoteAcknowledgment and Historical NoteAcknowledgment and Historical NoteAcknowledgment and Historical NoteAcknowledgment and Historical Note
This gem is a condensation of a much more detailed, but never-published,
paper written several years ago in collaboration with James Alvo. As an
historical note, the change-of-focus simulation described in this gem was
used in the first of the two Apollo Computer ray-traced animation firms
(i.e., “Quest”).



1.8 Plate 1. A cluster of objects from a scene
rendered by themselves.

1.8 Plate 2. Composited image of fore-
ground and background objects. Foreground
is “in focus.”

1.8 Plate 3. Composited image. Foreground
and background objects are blurred.

1.8 Plate 4. Composite image. Last frame
of animation sequence, with background
objects “in focus.”
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I.9 A FAST BOUNDARY GENERATOR FOR COMPOSITED REGIONSI.9I.9I.9I.9I.9A FAST BOUNDARYA FAST BOUNDARYA FAST BOUNDARYA FAST BOUNDARYA FAST BOUNDARYGENERATOR FORGENERATOR FORGENERATOR FORGENERATOR FORGENERATOR FORCOMPOSITED REGIONSCOMPOSITED REGIONSCOMPOSITED REGIONSCOMPOSITED REGIONSCOMPOSITED REGIONS
Eric FurmanGeneral Dynamics, Electronics DivisionSan Diego, California

ProblemProblemProblemProblemProblem
Finding the outline of multiple areas defined by closed boundaries is a
common problem for a number of applications in computer graphics.
Two-dimensional coverage for a group of radar sites can be determined
by finding the envelope of a set of circles, as shown in Fig. 1. The outline
for some set of zoning areas in land use and urban planning is another
example. In general, applications of this kind are visualizing unions-of-
interest areas. An algorithm is needed to find the composite boundary or
envelope of these regions. In other words, we desire to display the outline
of a group of two-dimensional regions. Each region is a closed boundary
in two dimensions. Common regional primitives are circles, polygons, and
ellipses, but any other closed-region outline will work equally well with
the technique described. In this gem, we will use the circle as our basic
example region. Figures 1 through 3 show the steps of this algorithm.
The outline of the circle set has many short connected arcs or scallops.

Other MethodsOther MethodsOther MethodsOther MethodsOther Methods
Several solutions to the multiple-radar-sites problem have taken a direct

analytical approach. They work through a list of radar range circles,
creating a set of arcs by intersecting each new circle with a set of arcs
generated from previous intersections (Bowyer and Woodwark, 1983).
Nonintersecting circles must be carried along and intersected with each
new circle. Interior/exterior tests are done for each new circle, and the
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Figure 1. A set of circles shown in a frame buffer.

Figure 2. The circles of Fig. 1 after filling.
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Figure 3. Scallops. The envelope of Fig. 1 circles.

arc set is modified to remove some arc segments and add the new arc.
Unfortunately, as the list of circles grows longer, the time to generate the
boundary increases with the square of the number of circles. Several
improvements have been implemented, such as discarding circles totally
contained within other circles and using bounding box tests to limit the
number of more costly circle/arc intersection tests.

This direct analytical approach is desirable for creating region-boundary
data sets at a resolution much higher than a typical frame buffer can
display. However, visualizing the envelope of a set of regions can be done
much more quickly.

Fast Boundary GenerationFast Boundary GenerationFast Boundary GenerationFast Boundary GenerationFast Boundary Generation
A fast method to generate the boundary for a group of regions blends
techniques from computer graphics and image processing. This algorithm
consists of two basic steps in the finite resolution of a frame buffer. First,
for each closed primitive, draw the region filled and clipped to the frame
buffer limits. Even though we wish to display only the envelope of many
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closed objects, we both draw and fill each object. Often the drawing and
filling can be done in the same step through careful algorithm construc-
tion. Second, apply an erosion operator over the full frame buffer to
remove all filled interior points. Without filled objects, erosion will not
reduce them to their composite boundary. This process is shown in Figs.
1-3, with each circle being independently drawn and filled.

The time for this algorithm’s execution is the drawing and filling time
for all regions plus the time for a single-pass erosion operation. In our
example, this is the time needed to draw/fill all the circles plus the time
required to erode them. When one is drawing the individual overlapping
objects, it appears some time can be saved by not filling pixels previously
filled by another region. Unfortunately, testing to determine if an area has
already been filled often takes longer than just writing the data to the
frame buffer. The time required grows linearly with the area of all regions
filled, for a considerable improvement over the squares growth rate of
direct analytical methods.

The example C code in Appendix II to generate filled circles alters the
usual midpoint circle-generating algorithm given in computer graphics
texts to create filled circles (Foley et al., 1990). Circles are filled by
calling the raster_fill function from a direct implementation of the mid-
point circle-generating algorithm using second-order partial differences in
the fill_circle function.

Erosion of the filled regions to their boundary outline looks at each
pixel and its nearest four connected neighbors in the frame buffer. A filled
pixel value or color will be erased to the erosion value only when all of its
four connected neighbor pixels are also filled with the same value.
Erosion to the background value will leave just the boundary pixels drawn
in the original fill color. However, eroding to a different color will leave
the outline in the original fill value and refill the interior with the new
erosion value. Three raster buffers are used for this testing process to
avoid replacing pixels in the frame buffer later needed for evaluating
other pixels or requiring rendering from one frame buffer to another. In
the C code of Appendix II, the raster buffers add a one-pixel border to the
frame buffer. Filling this border with the object’s original pixel-fill value
will leave an open edge where the boundary is clipped at the frame
buffer ’s edge. When the border is set to the background value (zero in the
code), a closed edged envelope is drawn where frame-edge clipping
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occurs. This process is a fairly simple application of image processing's
binary edge detection (Gonzalez and Wintz, 1987) to computer graphics.

ConsiderationsConsiderationsConsiderationsConsiderationsConsiderations
Although this technique is simple and rapid, like most frame buffer algorithms,
it is only accurate to the nearest pixel. The analytical solution's accuracy
will be limited by the arithmetic precision used in its calcula-tion.

For circles, a small speed improvement can be made by generating a
table of raster span widths for a fixed circle. The diameter should be at
least twice the width of the frame buffer's largest dimension to stay within
the Nyquist interval. The table can then be used for proportional span-
width lookups of any desired circle size. A table lookup eliminates further
circle generation, but one must still do the clipping and filling operations.
Similar tabling benefits may be gained for any directly scalable and unrotated
region.

To assist the user in verifying the functions proper implementation, the
C code includes a simple program to test the filling and eroding routines.
A tiny pseudo-frame buffer is used with the upper left corner displayed in
ASCII using simple “printf” statements.
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The computer graphics field is mined with complicated mathematics, and
graphics programs are often filled with computation-intensive operations.
Techniques and tricks for simplified calculations or useful approxima-
tions are always welcome. This section contains Gems that add to the bag
of tricks for those programmers who like to “sweat the details.”

The first Gem describes a fast approximation to the IEEE standard
square root operation, and improves upon a technique presented in a
previous Gem. The second Gem describes a wrapper to place around the
commonly known UNIX(tm) memory allocator “malloc()” in order to
improve its usefulness and predictability. The third Gem explains how to
think of 3-D rotations being controlled by a track ball, and provides the
group theory mathematics behind it. The fourth Gem gives a brief
introduction to interval arithmetic and how to use it in computer graph-
ics.

The fifth Gem discusses efficiency issues related to the often-used
techniques of cyclic permutations of two, three, or more numbers. The
sixth Gem discusses how to select colors for highlighting or selecting of
image features, and presents an analogy to the space of Rubik’s cube! The
seventh Gem deals with producing sets of random points with various
distributions, uniform and otherwise. These techniques can be quite
useful for distribution ray tracing and other Monte Carlo methods. The
last two Gems take some concepts that are often used in two and three
dimensions and extend them to higher dimensional spaces.
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IEEE IEEE IEEE IEEE IEEE FAST SQUARE ROOTFAST SQUARE ROOTFAST SQUARE ROOTFAST SQUARE ROOTFAST SQUARE ROOT

Steve HillUniversity of KentCanterbury, Kent, United Kingdom

This gem is a reimplementation of the fast square root algorithm pre-
sented by Paul Lalonde and Robert Dawson in Graphics Gems I. Refer to
this for further details of the operation of the routines.

In my implementation, I have added an extra routine that allows the
table of square roots to be dumped as C source. This file can be
separately compiled to eliminate the necessity to create the table at
run-time.

The new routine uses IEEE double-precision floating-point format. I
have included a number of useful #defines to make the pr ogram more
accessible. Note that on some architectures the order of the words is
reversed. The constant MOST_SIG_OFFSET can be set to either one or
zero to allow for this fact.

The table size can be adjusted by changing the constant SQRT_TAB_
SIZE. It must be a power of four. The constant MANT_SHIFTS has to be
adjusted accordingly—if you quadruple the table size, then subtract two
from 3MANT_SHIFTS.

See also G1, 403; G1, 424; G2, 387.
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Steve HillUniversity of KentCanterbury, Kent, United Kingdom

This Gem describes a simple memory allocation package which can be
used in place of the traditional malloc() library function. The package
maintains a linked list of memory blocks from which memory is allocated
in a sequential fashion. If a block is exhausted, then memory is allocated
from the next block. In the case that the next block is NULL, a new block
is allocated using malloc().

We call the list of memory blocks a pool. A pool may be freed in its
entirety, or may be reset. In the former case, the library function free() is
used to return all the memory allocated for the pool to the system. In the
latter case, no memory is freed, but the high-water mark of the pool is
reset. This allows all the data allocated in the pool to be discarded in one
operation with virtually no overhead. The memory in the pool is then
ready for reuse and will not have to be re-allocated.

The package allows the programmer to create multiple pools, and to
switch between them.

Some advantages of this scheme are:

• Memory allocation is fast.

• Data is likely to have greater locality.

• We no longer require a free routine for each data structure.

• Resetting the pool is extremely simple. This might replace many calls
to the free() library routine.

• Space leaks are less likely.
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The principal disadvantage is:

• Individual structures cannot be freed. This might lead to greater
program residency.

The package has been used successfully in a ray tracing program. Two
pools were used. The first pool holds the permanent data created whilst
reading the model file. The second pool is for ephemeral data created
during the rendering process. This pool is reset after each pixel has been
calculated.

Incorporation of the package had three significant effects. Firstly, the
program ran faster. The speed-up was not spectacular, but the program
spends most of its time calculating intersections, not allocating memory.
Secondly, the code for many operations became simpler. This was due to
the elimination of calls to free memory. Finally, all space leaks were
eradicated. The program had been worked on by a number of people, and
in some cases calls to the appropriate memory de-allocation functions
had been forgotten. Using the package eliminated the need for these calls;
hence, the space leaks were also eliminated.

II.2 A SIMPLE FAST MEMORY ALLOCATOR
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THE ROLLING BALLTHE ROLLING BALLTHE ROLLING BALLTHE ROLLING BALLTHE ROLLING BALL

Andrew J. HansonIndiana UniversityBloomington, Indiana

Interactive graphics systems often need techniques that allow the user to
rotate graphical objects freely in three-dimensional space using com-
monly available two-dimensional input devices such as a mouse. Achiev-
ing this goal is hampered by the fact that there is no single natural
mapping from the two parameters of the input device to the three-param-
eter space of orientations.

Here we introduce the rolling-ball method for mouse-driven three-
dimensional orientation control, along with some of its interesting exten-
sions to other scientific visualization problems. This technique exploits a
continuous two-dimensional motion (modeled after that of a ball rolling
without slipping on a flat table) to reach any arbitrary three-dimensional
orientation. Unlike a variety of other methods, the rolling-ball approach
has only a single state and is completely context-free: One can turn off
the mouse cursor and ignore the history or evolving state of the motion,
and yet still know exactly what the effect of the next incremental mouse
motion will be. For applications that benefit from the impression of direct
manipulation, this property is very attractive.

It is clear that a mouse can control rotations about two axes (the x and
y directions in Fig. 1). Surprisingly, the rolling ball also naturally includes
the capability of inducing clockwise and counterclockwise rotations with
respect to the screen perpendicular (the z axis in Fig. 1). According to a
fundamental but counterintuitive property of the group theory of spatial
rotations, moving a rolling-ball controller in small clockwise circles must
produce small counterclockwise rotations of the ball, and vice versa.
This explains why an apparently impossible third degree of rotational
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Figure 1. The two basic techniques used in the rolling-ball algorithm to carry out
arbitrary spatial rotations of a graphics object. a) Moving the hand with the mouse in the
direction indicated by the black arrow causes the object to rotate about the axis     

r
n  lying in

the screen plane, i.e., to rotate the equator in the direction of the hollow arrow. b) Moving
the hand in small circles causes the object to rotate about the normal to the screen plane
in the direction opposite to the hand motion, again rotating the equator in the direction of
the hollow arrow.

freedom can indeed be generated using a context-free two-degree-of-free-
dom input device.

The mathematical form of the rolling-ball algorithm given below is in
fact included as a part of one of the algorithms studied in the extensive
investigation of orientation-control methods by Chen et al. (1988); our
approach exploits and extends the properties of the algorithm in ways
that were not treated by Chen et al. (1988). The rolling ball should be
understood as a novel, context-free method for taking advantage of a
known rotation algorithm that is typically used in a context-dependent
fashion.

The following treatment consists of two main parts. The first tells how
to use the rolling-ball method for three-dimensional orientation control
and how to implement it in an interactive graphics system. The second
part describes how the rolling ball approach can be extended to other
groups of transformations that are extremely important in scientific
visualization; the rolling-ball method is then seen to be a fascinating tool
in its own right for visualizing the properties of transformation groups.

II.3 THE ROLLING BALL
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The Rolling-Ball AlgorithmThe Rolling-Ball AlgorithmThe Rolling-Ball AlgorithmThe Rolling-Ball AlgorithmThe Rolling-Ball Algorithm
Using the Method
To understand the basic principle of the method, consider a ball lying on
a table beneath the horizontal palm of your hand.

Rotations of the ball about any single axis parallel to the table top are
executed by moving the hand horizontally in the direction perpendicular
to the axis, thus rolling the ball about that axis. Observe that no single
motion of this class produces rotations about the vertical axis, the axis
perpendicular to the palm of the hand.

However, if you place your hand flat on top of a ball and move your
hand in small horizontal circles, the ball will actually rotate about the
vertical axis in the opposite direction.

The rolling-ball algorithm for controlling spatial orientation is imple-
mented simply by treating the orientation of the graphical object to be
rotated as the orientation of the ball itself, while using the mouse (or
similar two-dimensional input device) to emulate the actions of the palm
of the hand.

By executing the indicated motions of the mouse (or hand), one can use
the rolling-ball algorithm to achieve the following effects on a displayed
graphical object:

• Rotation about a horizontal screen line, or the x-axis, is carried out
by moving the mouse forward or backward relative to the viewer.

• Rotation about a vertical screen line, or the y-axis, is carried out by
moving the mouse to the left or right.

• Rotation about a diagonal line lying in the screen plane, whose
direction we denote by the vector     

r
n, is carried out by moving the

mouse perpendicular to     
r
n, as though the palm were rotating a cylinder

or ball about the axis     
r
n.

• Small clockwise rotations about the perpendicular to the screen, or
the z-axis, are carried out by moving the mouse in small, counter-
clockwise circles. More pronounced rotations are achieved by using
larger circular motions.

II.3 THE ROLLING BALL
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• Small counterclockwise rotations about the perpendicular to the
screen are carried out by moving the mouse in small, clockwise
circles.

• Large rotations about the perpendicular to the screen are carried
out by rotating the object 90° in any direction, rotating the desired
amount about the original screen-perpendicular axis (which now lies
in the screen plane), and then rotating 90° back to restore the
orientation of the original screen-perpendicular axis. This action is
essentially a large oblong motion, contrasting with the small circular
motions used for small rotations about the screen-perpendicular.

The two most basic actions, rotation about an axis     
r
n in the screen plane

and rotation about the screen-perpendicular axis, are summarized in
Fig. 1.

The position of the input-device cursor is irrelevant for the rolling-ball
algorithm, and it is normally made invisible to the user during rotation
operations. Only the difference between the previous and current device
position is needed by the computation, so it is often desirable to warp the
mouse to the center of the screen after each motion to prevent it from
leaving the interactive window. Thus the method is truly context-free and
is well-suited to user interfaces that emphasize direct manipulation.

ImplementationImplementationImplementationImplementationImplementation
The rolling-ball algorithm is implemented by taking a given incremental
input-device motion to define a vector with components (dx, dy) in a
right-handed screen coordinate system. The right-handed axis of rotation
    
r
n is then defined as the following unit vector lying in the screen plane and
oriented perpendicular to the input-device motion:

    
nx  =  

– dy
dr ,

    
ny  =  

+ dx
dr ,     nz  =  0, (1)

where we define the input-device displacement dr = (dx2 + dy2)1/2.
Next, we introduce the single free parameter of the algorithm, the

effective rolling ball radius R, which determines the sensitivity of the
rotation angle to the displacement dr; if dr is a few pixels, a value of R
around 100 is appropriate. We choose the rotation angle to be θ =

II.3 THE ROLLING BALL
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arctan(dr/R) ≈ (dr/R), so that

    
cosθ  =  R

R2  +  dr2( )1/2 ,

    
sinθ  =  

dr
R2  +  dr 2( )1/2 . (2)

The general form of the matrix for a rotation by an angle θ about the axis
    
r
n, where     

r
n  ⋅     

r
n  = 1, is (see, for example, “Matrix Techniques” by M.

Pique in Graphics Gems I, p. 446 [Glassner, 1990]):

    

cosθ  +  nx( )2 1 –  cosθ( ) nynx 1 –  cosθ( )  –  nz sinθ nxnz 1 –  cosθ( )  +  ny sinθ

nynx 1 –  cosθ( )  +  nz sinθ cosθ  +  ny( )2
1 –  cosθ( ) nynz 1 –  cosθ( )  –  nx sinθ

nznx 1 –  cosθ( )  –  ny sinθ nzny 1 –  cosθ( )  +  nx sinθ cosθ  +  nz( )2 1 –  cosθ( )
.

(3)

When we substitute into Eq. (3) the values of     
r
n from Eq. (1), we get the

rolling-ball rotation matrix

    

cosθ  +  dy / dr( )2
1 –  cosθ( ) – dx / dr( ) dy / dr( ) 1 –  cosθ( )  + dx / dr( )  sinθ

– dx / dr( ) dy / dr( ) 1 –  cosθ( )  cosθ  +  dy / dr( )2
1 –  cosθ( ) + dy / dr( )  sinθ

– dx / dr( )  sinθ – dy / dr( )  sinθ cosθ  

,

(4)

where the values of the trigonometric functions are given by Eq. (2).
We observe the following:

• All vectors must be translated to the desired center of rotation before
applying Eq. (4).

• The rotation must be performed in a single step as shown in Eq. (4).
Carrying out the rotation as a sequence, e.g., first about the x-axis and
then about the y-axis, will give a completely different result (although,
for subtle reasons, the difference may be nearly unobservable).

II.3 THE ROLLING BALL
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• Changing the overall sign of     
r
n  produces a rotation of the viewpoint

around the object instead of a rotation of the object within the view.
Small clockwise hand motions will produce small clockwise rotations
of the viewpoint, but an object at the center of the view will continue
to rotate counterclockwise. This phenomenon derives from a sign
difference in the group-theoretical description of body-fixed rotations
versus space-fixed rotations (Whittaker, 1944).

Extensions of Extensions of Extensions of Extensions of Extensions of the Rolling-Ball Methodthe Rolling-Ball Methodthe Rolling-Ball Methodthe Rolling-Ball Methodthe Rolling-Ball Method
When we analyze the group-theoretical context of the rolling-ball method,
a variety of related applications immediately suggest themselves. Here we
summarize the basic group theory involved for ordinary rotations, as well
as several extensions that are straightforward to implement. These tech-
niques are useful for a number of scientific visualization applications,
including building intuition about groups in general. The reader who has
no interest in group theory but just wants to know how to implement and
use the algorithm need not read further.

Group Theory of Infinitesimal Rotations
The underlying group theory (Edmonds, 1957) involved in the behavior of
the rolling ball can be summarized as follows: If we define Li, i = {x, y, z},
to be the infinitesimal generators of the rotation group O(3) with a
right-handed convention for positive rotations, then we have the commu-
tation relations

[Ly, Lz] = –Lx, (5)

[Lz, Lx] = –Ly, (6)

[Lx, Ly] = –Lz, (7)

where we used the definition [A, B] = AB – BA. These infinitesimal
generators can be represented as matrices or as differential operators of

II.3 THE ROLLING BALL
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the form

    
Lx  =  y

∂
∂z

 –  z
∂
∂y

and its cyclic permutations. The minus sign in Eqs. (5–7) is not arbitrary,
but is determined by our convention that Li rotate a vector about the ith
axis using the right-hand rule. This minus sign is directly responsible for
the observed counterrotation and is an inevitable consequence of the
properties of the rotation group.

Quaternion rotations, 2 Quaternion rotations, 2 Quaternion rotations, 2 Quaternion rotations, 2 Quaternion rotations, 2 ×     2 Matrices, and 2 Matrices, and 2 Matrices, and 2 Matrices, and 2 Matrices, and SUSUSUSUSU(2) Spinors(2) Spinors(2) Spinors(2) Spinors(2) Spinors
The rolling-ball transformation works to define quaternion rotations (see,
for example, Shoemake, 1985, or “Using Quaternions” by P.-G. Maillot in
Graphics Gems I, p. 498 [Glassner, 1990]) even more naturally than
ordinary spatial rotations. This follows from the fact that the quaternion
formulation is equivalent to the more standard 2 × 2 matrix notation for
the group SU(2), which is the double covering of the usual rotation group
O(3) (Edmonds, 1957). (Even though these two groups correspond to
entirely different topological spaces, their infinitesimal properties ex-
ploited by the rolling ball are identical.)

To carry out SU(2) rotations using the rolling ball, we replace Eq. (3)
by

U = 
      
I2 cos θ

2  −  i
r
n  ⋅  

r
σ  sin θ

2 ,   ␣ ␣ ␣(8)

where I2 is the 2 × 2 unit matrix, and   
r
σ  denotes the 2 × 2 matrix basis

for SU(2) obeying the cyclic relations sx
2 = 1, s xs y = is z.  This is equiva-

lent to a quaternion-based transformation with (c, u) = (cos(θ/2),
    
r
n  sin (θ/2)). Note how much more simply Eq. (8) incorporates the funda-
mental parameters of the rolling ball than the full matrix, Eq. (3).

Changing the overall sign of     
r
n produces a rotation of the viewpoint

around the object instead of a rotation of the object within the view.
The elements of the matrix Eq. (8) may be used to compute an ordinary

vector rotation matrix from Eq. (3) as desired, and may also be used
directly as 2 × 2 matrices to rotate spinors (Edmonds, 1957), which are
the most fundamental objects upon which the rotation group can act.

II.3 THE ROLLING BALL
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Four Euclidean DimensionsFour Euclidean DimensionsFour Euclidean DimensionsFour Euclidean DimensionsFour Euclidean Dimensions
In four Euclidean dimensions, there are six degrees of rotational freedom
from the group O(4) instead of the three that are present in three-dimen-
sional space due to O(3).

The six O(4) rotation operators Lµν, µ , ν = {1, 2, 3, 4}, Lµv = –Lµv,
can be decomposed into O(3) × O(3) by defining the following combina-
tions:

      
Li

±  =  1
2

1
2 e ijkLjk  ±  L4i( ).  (9)

Here     e ijk  is the totally antisymmetric tensor in three dimensions, and we
use the convention that repeated roman indices are summed from 1 to 3.
Each of these combinations obeys independent 0(3) commutation rela-
tions,

   
        Li

± ,  Lj
±[ ]  =  − e ijkLk

± ,      Li
± ,  Lj

m[ ]  =  0,  ␣ ␣(10)

and therefore can be controlled separately using the O(3) rolling-ball
algorithm. The rotation generated in this way can be written as

  ␣  (11)

where

      

r
n  ⋅  

r
L ±  =  

0 −nz ny mnx

nz 0 −nx mny

−ny nx 0 mnz

±nx ±ny ±nz 0

,

and the unit vector     
r
n would normally be defined by Eq. (1). Thus, we can

manipulate all the degrees of freedom of four-dimensional orientation
by using two copies of the rolling ball, one for   Li

+  and one for   Li
− .

An alternative technique, which applies also to rotations in N-dimen-
sional Euclidean space, is to break up the group O(4) (or O(N) in N

II.3 THE ROLLING BALL

      R
±  =  I4 cosθ  +  

r
n  ⋅  

r
L ± sinθ ,
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dimensions) into O(3) subgroups and treat each as an independent
rolling-ball transformation.

Lorentz TransformationsLorentz TransformationsLorentz TransformationsLorentz TransformationsLorentz Transformations
Physical systems at very high velocities must be studied using Lorentz
transformations of spacetime, rather than Euclidean rotations. Lorentz
transformations mix space and time together and preserve a Minkowski-
space quadratic form that has one negative component. Pure velocity
changes, or “boosts,” are similar in form to rotations with hyperbolic
functions replacing trigonometric ones. A boost to a frame with velocity

    
r
v  = ˆv tanh ξ transforms the vector       

r
x ,  t( )  by the matrix

    

δ ij  +  υ̂iυ̂ j cosh ξ  −  1( ) υ̂ j sinh ξ
υ̂i sinh ξ cosh ξ

.   ␣(12)

To implement O(2, 1) Lorentz transformations, which preserve the form
diag(1, 1, −1), we interpret mouse motions as small velocity changes
of a “Lorentz rolling ball” in the direction the mouse is moving. (We
could also study the transformation group O(3, 1) of physical spacetime;
unfortunately, the analogy of the argument leading to Eq. (10) requires
the introduction of complex vectors.)

The infinitesimal generators of O(2, 1) transformations are the boost
operators

    
Bx  =  t ∂

∂x  +  x ∂
∂t ,     By  =  t ∂

∂y  +  y ∂
∂t ,

and the operator

    
L  =  x ∂

∂y  −  y ∂
∂x

producing rotations in the x-y plane. The boost operators transform
under rotations as ordinary vectors, [L, Bx]  = −By,  [L, By] = +Bx,
while their mutual commutation produces a rotation with the opposite
sign compared to the analogous O(3) operators, [Bx, By] = +L.

II.3 THE ROLLING BALL
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We relate the mouse input to the O(2, 1) transformation Eq. (12) by
replacing Eq. (1) by

    
υ̂x  =  +dx

dr ,      υ̂y  =  
+dy
dr ,   (13)

and choosing the boost parameter to be ξ = tanh–1 (dr/s) ≈ (dr/s),
where’s is a suitable scaling factor that ensures (dr/s) < 1.

We then find that moving the input device in small clockwise circles
produces a rotation of the spatial part of the coordinate frame in the
clockwise direction, which is the opposite of the result for standard O(3)
rotations! This effect, known as the Thomas Precession, makes the
rolling-ball technique a very natural one for Lorentz transformations.

SummarySummarySummarySummarySummary
In summary, the rolling-ball technique provides an approach to control-
ling three degrees of rotational freedom in interactive graphics systems
with two-dimensional input devices that does not depend on the state,
position, or history of the input device. Because of the algorithm’s rich
group-theoretical origins, a number of related scientific visualization
applications naturally present themselves. Becoming fluent with the tech-
nique requires some effort on the part of the user. But, once mastered,
this method provides context-free, exploratory orientation adjustment
that strongly supports the feeling of direct manipulation.
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II.4II.4II.4II.4II.4
INTERVAL ARITHMETICINTERVAL ARITHMETICINTERVAL ARITHMETICINTERVAL ARITHMETICINTERVAL ARITHMETIC

Jon RokneThe University of CalgaryCalgary, Alberta, Canada

In computer graphics the problem of discretization occurs in two different
areas:

• The final output from a computation is a two-dimensional picture that
is displayed or printed using devices with finite resolution, causing
undesirable effects such as aliasing.

• The computations required to determine positions, intensities, and
colors take place either in general-purpose computing devices or in
special-purpose graphics computers. In either case the fundamental
method for storing real numbers is the so-called floating-point repre-
sentation. This representation allocates a fixed number of binary digits
for storing a floating-point number that can be an input or output
quantity or the result of an intermediate calculation.

We will discuss a tool, interval analysis, that uses guaranteed upper and
lower bounds for the estimation and control of numerical errors that can
occur during numerical calculations in particular those occurring in
computer graphics problems. Interval arithmetic is an extensive subject,
and we only touch upon some of the basic ideas. We do, however, note
that interval arithmetics and analysis has led to the development of new
techniques based on inclusion and contraction that are appropriate tech-
niques for some problems in computer graphics.

We first give an example of a problem that may occur in a graphics
application. A primitive routine may consist of determining whether two
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lines (for simplicity in E2) are parallel or not (that is, do they have a finite
intersection or not). If they intersect, compute the point of intersection.
Let the lines be

0.000100x + 1.00y = 1.00, (1)

1.00x + 1.00y = 2.00, (2)

and assume the arithmetic is a three-digit rounded arithmetic. The true
solution rounded to five digits is x = 1.0001 and y = 0.99990, whereas
the three-digit arithmetic gives y = 1.00, x = 0.00 using the procedure
described in Forsythe and Moler (1967). Other erroneous results are
obtained in this text as well, using different arrangements of the sequence
of calculations. From this example it is seen that such calculations can
have large errors such that an intersection that was supposed to be within
a region may actually be calculated to be on the outside of the region.

Another example is region-filling, where the connectedness of the
region depends on a calculation that can be fraught with errors in the
same manner as the intersection calculation.

Such errors are difficult to guard against, and eventually they will
generate artifacts in computer-generated scenes that are undesirable and
difficult to track down and rectify in large programs.

A number of these errors can be controlled automatically using interval
arithmetic. It enables a program to give one of three answers for an item
p and a set P.

1. p is definitely in P.

2. p is definitely not in P.

3. Within the computations performed and the precision available it is
not possible to tell whether p [ P or p Ó P, that is, the result is
uncertain.

In terms of the preceding examples, we would be able to state that lines
intersect, that they do not intersect, or that it is uncertain whether they
intersect or not. Similarly, we can state that a domain is connected, that it
is not connected, or that it is uncertain whether the domain is connected

II.4 INTERVAL ARITHMETIC
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or not. In each such case decision procedures can be built in to the
program to deal with the three cases.

Interval arithmetic has a long history; however, its modern use origi-
nated with the publication of the book Interval Analysis by Moore
(1966). Subsequently, a large number of publications have been devoted
to the subject. Bibliographies were published by Garloff (1985, 1987), a
number of conferences have been held, and recently a new Soviet journal,
Interval Computations (Institute for New Technologies, 1991), has been
started that is entirely devoted to interval analysis.

Interval arithmetic is defined as follows: Let I = {A: A = [a, b], a ⋅ b
[ R} be the set of real compact intervals and let A, B [ I. Then the
interval arithmetic operations are defined by

A ∗ B = {α ∗ β : α [ A, β [ B},

where ∗ [ {+, –, ⋅ , /}  (note that / is undefined when 0 [ B), that is,
the interval result of A ∗  B contains all possible point results α  ∗  β  where
α and β are real numbers such that␣ α [ A and β  [ B and ∗  is one of the
basic arithmetic operations.

This definition is motivated by the following argument. We are given
two intervals A and B and we know that they contain exact values x and
y, respectively. Then the definition guarantees that x ∗ y [ A ∗ B for any
of the operations given above even though we do not know the exact
values of x and y.

This definition is not very convenient in practical calculations. Letting
A = [a, b] and B = [c, d], it can be shown that it is equivalent to

[a, b] + [c, d] = [a + c, b + d],

[a, b] – [c, d] = [a – d, b – c],

[a, b] ⋅ [c, d] = [min(ac, ad, bc, bd), max(ac, ad, bc, bd)],

[a, b]/[c, d] = [a, b] [1/d, 1/c] if 0 ~ [c, d], (3)

which means that each interval operation ∗ [ {+, –, ⋅ , /} is reduced to
real operations and comparisons.

II.4 INTERVAL ARITHMETIC
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One very important property of interval arithmetic is that

A, B, C, D [  A ⊆  B, C ⊆ ␣D, ⇒  A␣ ∗ ␣C␣ ⊆ ␣B␣ ∗ ␣D

for ∗ [ {+, –, ⋅ , /} (4)

if the operations are defined. In other words, if A and C are subsets of B
and D, respectively, then A ∗  C is a subset of B ∗  D for any of the basic
arithmetic operations. Therefore, errors introduced at any stage of the
computations, such as floating-point errors or input errors, can be ac-
counted for. Because of the importance of Eq. (4), it has been called the
inclusion isotony of interval operations.

One consequence of this is that any programmable real calculation can
be embedded in interval calculations using the natural correspondence
between operations so that if x [ X [ I, then f(x) [ f(X), where f(X)
is interpreted as the calculation of f(.x) with x replaced by X and the
operations replaced by interval operations.

Another important principle of interval arithmetic is that it can be
implemented on a floating-point computer such that the resulting interval
contains the result of the real interval computations using Eqs. (3) and
directed rounding. Several software systems are available for this pur-
pose, such as PASCAL-SC (Bohlender et al., 1981). The implementation
only has to take care that each calculation of interval endpoints is
rounded outwards from the interior of the intervals.

Interval arithmetic has some drawbacks as well:

• Subtraction and division are not the inverse operations of addition and
multiplication.

• The distributive law does not hold. Only a subdistributive law A(B +
C) # AB + AC, A, B, C [ I, is valid.

• The interval arithmetic operations are more time-consuming than the
corresponding real operations roughly by a factor of 3 (although
interval arithmetic implementations of some problems may run faster
than the corresponding real versions; see Suffern and Fackerell, 1991).

As a simple example of the use of interval computations, we consider
the intersecting lines problem given above using three-digit interval

II.4 INTERVAL ARITHMETIC
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arithmetic. Using Cramer ’s rule, we get

    
x  =  

1.00 0.000100
2.00 1.00

  
0.000100 1.00

1.00 1.00

and

    
y  =  

0.000100 1.00
1.00 2.00

  
0.000100 1.00

1.00 1.00
.

Using interval arithmetic we obtain

x [ X = [0.980, 1.03]

and

y [ Y = [0.989, 1.02],

which in each case contains the exact solution. This calculation corre-
sponds to a more stable calculation in real arithmetic than the one quoted
from Forsythe and Moler (1967). If that particular sequence of calcula-
tions were performed in interval arithmetic, then the interval would be
larger, but in all cases we have that the exact result is contained in the
resulting intervals.

One interesting feature of interval arithmetic is that it can be used to
develop new algorithms that are not simply extensions of algorithms in
real arithmetic. One example of this is the interval Newton method first
developed by Moore (1966). Let F(x) be given and suppose that we want
to find the points ξ  where F( ξ ) = 0 in a given interval X0. Then the
interval Newton method is defined to be the iteration

Xn + 1 = m(Xn) – F(Xn)/F′(m(Xn)), n = 0, 1, . . . ,

where m([a; b]) = ((a + b)/2 and F′(X) is the interval evaluation of the
derivative of F. The method has some interesting properties.

1. If a zero, ξ , of F exists in X0, then ξ  [ ␣ Xn for all n; see Moore
(1966). This means that all the zeros in the initial X0 are retained in
subsequent intervals.

2. If Xn, is empty for some n, then F has no zeros in X (Moore, 1966).

II.4 INTERVAL ARITHMETIC
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Further properties of interval iterations for the solution of equations can
be found, for example, in Neumaier (1990).

This method can be applied in computer graphics in ray-tracing. The
intersection calculation between an implicit surface and a ray results in a
problem of finding either one (the smallest) root or all the roots of a
function F(x) = 0 (see Hanrahan, 1989). With the use of interval arith-
metic techniques, the result can be guaranteed to be contained in the
resulting intervals, avoiding anomalies in the rendering process (see Kalra
and Barr, 1989, for a discussion of the problem).

Further discussions on the use of interval arithmetic for implicit sur-
face rendering, in contouring algorithms, and in planarity estimation is
found in Mudur and Koparkar (1984) and Suffern and Fackerell (1991),
where it is combined with subdivision techniques in order to improve the
results.

See also G2, 394.
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II.5II.5II.5II.5II.5
FFFFFAST GENERATION OF CYCLICAST GENERATION OF CYCLICAST GENERATION OF CYCLICAST GENERATION OF CYCLICAST GENERATION OF CYCLICSSSSSEQUENCESEQUENCESEQUENCESEQUENCESEQUENCES

Alan W. PaethNeuralWare IncorporatedPittsburgh, Pennsylvania

Free-running inner-loops often require a sequence of values or conditions
that repeat every N steps. For instance, a technique for high-speed
Z-buffer drawing (Booth et al., 1986) must perform buffer swapping and
housekeeping in cycles of three. When N is not a power of two, direct
examination of a register ’s low order bits may not be used to form a
count modulo N. Similarly, a fast 2-D N-gon generator requires the cyclic
production of a sequence of N values, with vertex N identical to vertex
zero. This Gem considers compact methods for N < 8 that use neither
more than three machine instructions nor three registers. No conditional
logic is employed, making the techniques well-suited to hand coding.

N = 2 N = 2 N = 2 N = 2 N = 2 (Review)(Review)(Review)(Review)(Review)
The familiar two-fold “toggle” alternates between true and false:

condition := not(condition); True in alternating cases
if (condition) . . . (2.1)

Similarly, a two-fold “cycle” of values is a simple alternation. When both
values are predeterminated, one instruction and one integer register
suffice:

register a := v1; initialize
constant c := v1 + v2;

repeat cycle
a := a – c; a:[v1 v2␣ ⋅ ⋅ ⋅ ] (2.2)
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For instance, Wirth (1973) speeds a prime number sieve by using (2.2) to
generate the sequence [2 4 2 4 ⋅ ⋅ ⋅] of distances between successive
odd integers not divisible by three (Knuth, 1981). Rewriting the arith-
metic of (2.2) with logical xor operations yields a well-known, patented
method for inverting a frame-buffer ’s pixels in alternating fashion. In
arithmetic form, a pixel inversion scheme well-suited to greyscale frame
buffers is rederived (Newman and Sproull, 1979).

Most generally, the cyclic sequence is specified only at run time. For
N = 2, cycling is swapping, easily accomplished in three arithmetic or
logical operations without resort to a third holding register, as described
in previous Gems by Paeth (1990) and Wyvill (1990), respectively.

N = 3 N = 3 N = 3 N = 3 N = 3 (Extension)(Extension)(Extension)(Extension)(Extension)
The pairwise swapping technique does not extend gracefully: Cyclic
permutation of the sequence [a, b, c] by exchanging (for example) ele-
ments at locations (1, 2) and (2, 3) costs six instructions and three
registers. A first-principles cyclic brigade method requires N + 1 regis-
ters and N + 1 assignments. Though straightforward, the latter still
exceeds both the instruction and register limits set forth in the preface:

r1 := r1 xor r2; r2 := r2 xor r1; rx := r1; r1 := r2;
r1 := r1 xor r2; r2 := r2 xor r3; <versus> r2 := r3; r3 := rx;
r3 := r3 xor r2; r2 := r2 xor r3 (3.1)

Often, as in (2.1), values are required only to trigger a 1-in-N event. For
N = 3, two registers and two lines suffice. Each register instruction is of
the compact, two-op form << rx = rx op ry >>:

register r1 := 0; Three fold trigger
register r2 := 1;
repeat cycle:

r1 := r1 xor r2; r1: [1 1 0 ⋅ ⋅ ⋅]
r2 := r2 xor r1; r2: [0 1 1 ⋅ ⋅ ⋅]

This produces the tertiary (r1, r2) column set shown. The trigger occurs
when a register is zero. Testing on r2 streamlines the operation under the

II.5 FAST GENERATION OF CYCLIC SEQUENCES
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II.5 FAST GENERATION OF CYCLIC SEQUENCES

tuted. The three phase-distinct 1-in-3 tests may be done concurrently,
forming a cyclic switch:

if r = 0 then . . . 1-in-3, phase =␣0
if rl = r2 then . . . 1-in-3, phase =␣1
if rl = 0 then  . . . 1-in-3, phase =␣2 (3.2b)

The conditions and related blocks may be embedded among the xor
operations to take advantage of implicit condition code sensing. That is,
the two xor lines that implicitly define the modulo three counter need not
be adjacent.

Cyclic permutation of three variables in three registers can be done in
the minimum number of instructions (three). The derivation is not obvi-
ous and relates the threefold arithmetic case described later.

register int a = c1; Three fold cycle
register int b = c1 xor c2;
constant int c = c1 xor c2 xor c3;

repeat cycle:
a = a xor b; a: [c1 c2 c3  L]
b = b xor c;
b = b xor a; (3.3)

The use of logical xor is valuable as the elements may be a mixed
sequence of integers, pointers and floats; arithmetic operations would not
permit this. Note that the last two lines both update the value in b, while
register c is never written. This suggests the alternate line:

b := b xor (a xor c); ␣(3.3b)

in which c is equated to a predetermined compile time constant. How-
ever, the value must typically occupy a third register at run time. (See the
C-code for a two register variant which produces the cycle [1, 2, 3].)

column other than the third in the initialization of (r1, r2). Triggering
2-in-3 times defines the complementary set: a test for nonzero is substi-

assumption that hardware condition codes are set by the preceeding
logical operations. The phase of the test may be adjusted by substituting a
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When mere triggering is required, fixing c = 0 elides the middle line of
the cycle, reconstructing the N = 3 triggering case. Alternately, the two
lines may be regarded as the first two of three lines of the familiar xor
swap code. Because the final line of the latter matches the first, three
passes through the two-line xor code produce the same sequential action
on the two registers as do two passes through the three-line code (this is
suggested in Eq.(3.1a) by the grouping of instructions). Both define a
restoring double swap: the identity operation on two elements in no less
than six steps. Thus, the two-line code forms cycles of length three while
generating the sequence [r1, r1 ⊕ r2, r2].

N =3, 4, 6N =3, 4, 6N =3, 4, 6N =3, 4, 6N =3, 4, 6
Remarkably, cycles of length up to N␣= ␣6 require only two registers.
Clearly, there is insufficient storage for swapping of all elements, else a
cyclic brigade of N + 1 registers and N + 1 assignments would suffice.
Instead, the goal is to derive a set of values (on one or both registers) in
which all generated values are distinct. Thus, the registers must “count,”
and rival first-principles code such as a quick hexagon-drawing routine:

Xval =␣X_Value_Table[(i := (i + 1 mod 6))];
Yval = Y_Value_Table[i];

Here the modulus is a major expense: its cost is on par with integer
division. The other first-principles method uses conditional logic to restart
a decrementing counter, giving a large branch penalty on modern
pipelined hardware, made worse by small N.

As will be seen in (6.2), vertex production of 2-D hexagons may use
this sixfold cycle:

register x = y = 1;
repeat

Xval = X_coord[x := x  +  y];
Yval = Y_coord[y := y + not(x)];

where not(x) is bit inversion, i.e., not(x) = x xor (–1) under two
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complement hardware. Arrays of length seven are required having suit-
able offsets, as seen in the companion C code.

N = 6 DerivationN = 6 DerivationN = 6 DerivationN = 6 DerivationN = 6 Derivation
Nonuniform rotation may be modeled by functional composition. That is,
F(F. . .(F([x])). . .) = [x] in no less than N steps. For instance, the
linear fractional function F(x) ␣= ␣ [2x ␣ – ␣ ␣ l]/[ x + 1]  yields F6(x) = x
(Yale, 1975). Such forms may be equated directly to the algebra of 2 × 2
matrices (Birkhoff and MacLane, 1965); the former are treated preferen-
tially for ease of derivation.

The values of two registers may be represented by a point [x, y] on an
integer lattice, one coordinate per register. Treated as a (column) vector
v, the function F is a 2 × 2 matrix of which premultiplies v. For a given
N, F must be determined such that FNv = I. When F is a shear matrix
rotation may be achieved in three shears (Paeth, 1986), requiring only
one assignment statement per shear (p. ␣182). When the off-diagonal
matrix element is {±1}, no multiplication occurs and one machine in-
struction suffices. All-rational forms also yield rotation, but the sets of
circumferential points are not roots of unity (vertices of an N-gon
inscribed in a unit circle on the complex Cartesian plane). The one
solution is for fourfold rotation. That decomposition is:

  

0 −1
1 0









  =  

1 1
0 1









  

1 0
−1 1









  

1 1
0 1









.

Regrouping of the first and third matrix (p. ␣192) allows a two-line
rotation, useful on machines that provide an implicit multiplication by
two:

x := x + y;  x := x + (2*y);
y := y␣–␣x;    <or>   y := y␣–␣x;
x := x + y; (4.1)

This sequential form is slightly more expensive than the compact {x =
–y , y ␣= ␣ x} form made possible when simultaneous reassignment of
register values is possible, as in hardware. Rotations of three and six may
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be formed by finding the eigenvalues of the product of an X and Y shear
in symbolic form and equating them with the roots of unity, thus deter-
mining the values of the two off-axis elements. In its most compact form,
this yields the quadratic equation 

    
z  =  1

2
m  ±  m2  −  4( ) , which can rep-

resent roots of unity zN = ␣ 1 for N = {1, ␣2, ␣3, ␣4, ␣6}, with the respective
values m = {2,␣–2,␣–l,␣0,␣1}. Solution using MAPLE on the matrix equa-
tion (XY)N = I with symbolic matrix elements does not reveal real-valued,
integral forms markedly distinct from this general solution:

      

1 0
m m 2 ±1









  

±1 1
0 1









  =  

±1 1
±m − 2 m m 1

















N

=  
1 0
0 1









,

(m,␣N ) = {(–1,␣3),␣(0,␣4),␣(1,␣6)}

Both three-␣and sixfold rotation using unit elements are thus possible.
These are unexpected, given the irrationality of cos 60°. The distortion of
the simplified two-shear rotational form has become a virtue in fixing
vertices to integral locations. Note that the three nontrivial solutions for
N = (3, 4, 6} enumerate the set of N-gons that tile the plane (Figs. 1a,
1b).

An automated examination of all three-instruction, three-register shears
having small multipliers was conducted. No solutions for new N were
found, and most forms were not markedly distinct. The two-register

Figure 1.
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N = 3 form was rewritten using xor, leading to (3.3). The N = 6 two-reg-
ister form was seen to accommodate one additional constant, which
offsets the hexagon in x, illustrated in Fig. 1b and presented algebraically
below:

a := a␣+␣b; a: [a a␣+ b b␣+␣c −a␣+␣2c 2c − ␣a ␣ − ␣b c␣ − ␣b ]
b␣:= b − ␣a ␣+␣c; b: [b c␣ − ␣a c − ␣a ␣ − ␣b −b a␣ − ␣c     a␣+␣b − ␣c]

(6.1)

When c = 0, the values in register a lag those in b by two steps, suggestive
of a (cos t, sin t) generator, except the 90° quadrature becomes a 120° phase
offset. With c ≠ 0 the generation of a sequence of distinct values is achieved,
meeting the original goal. Setting c = –1 allows the implicit formation of
the –(a ␣+␣1) term using the logical ones complement (Paeth and Schilling,
1991), giving:

a␣=␣b␣= 1; six-fold fixed-ualue cycle
repeat

a := a + b; a:[1  2  0 ␣-3 -4 -2]
b := b + not(a); b:[1 -2 -3 -1 ␣ 2  3] (6.2)

in which the c offset displaces the hexagon’s center laterally, removing
symmetry of central inversion. This helps achieve distinct values. With
a > 0, b > 0 and 2c > a + b, the sequence in a is always positive.

N = 6 (Triggering)N = 6 (Triggering)N = 6 (Triggering)N = 6 (Triggering)N = 6 (Triggering)
Arbitrary triggering is possible using the sixfold form. The distinct values
of the preceding algorithm allow concurrent 1-in-N triggers having any
phase offset. However, 2-in-N and 3-in-N forms with nonadjacent triggers
present greater difficulty: They may not be created by replacing equality
test with an inequality. This is a consequence of the figures’ convexity: In
geometric terms, a test such as y > 4 represents a horizontal half-space
of values. Intersection of the polygon by the plane splits it into two
distinct boundary sets of conterminous vertices. The goal is a simple
trigger that does not resort to intra-register bit testing as in the compan-
ion Gem cited above.

Six states allow 64 trigger patterns, in which a “*” (“.”) in the ith
place represents a (dis)arming of the trigger for the ith state. Elimination
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of complementary patterns halves this number. Patterns containing repet-
itive triggers such as “***...” and “*.*.*.” may be decomposed into
super or subcycles and are eliminated. Left are three prototypical pat-
terns, having one, two, or three bits set. Testing uses the sixfold rotation
variant in (6.2) with implicit (c = –1) and starting values a = b = 0:

a: 0 0 –1 –2 –2 –1
b: 0 –1 –1 0 +1 +1

a = 0 AND b = 0: ∗ ⋅ ⋅ ⋅ ⋅ ⋅
a = 0: ∗ ⋅ ∗ ⋅ ⋅ ⋅

a = 0 OR b = 0: ∗ ∗ ⋅ ∗ ⋅ ⋅ (6.3)

The widespread use of xor suggests methods similar to pseudo-random
number (RPN) generation on the field of integers mod 1 (see Morton,
1990). The traditional shift and carry-test logic hardware may be “wired”
directly into three xor register instructions having a permuting form,
giving

repeat cycle by seven
  b := b xor a;
  c := c␣ xor␣ b;
  a := a␣ xor␣ c;

This yields the table of values listed below.

A B C

a b c
a ⊕ b b ⊕ c a ⊕ b ⊕ c
a ⊕ c a b
c a ⊕ b b ⊕ c (7.1)
a ⊕ b ⊕ c a ⊕ c a
b c a ⊕ b
b ⊕ c a ⊕ b ⊕ c a ⊕ c
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Here column A leads B by two steps, likewise B ahead of C, but C leads
A by three steps. Each column takes on all N␣ –␣1 possible arrangements
of xor among the three variables, omitting the forbidden zero state. This
does not restrict the periodic production of zero elements, formed either
by setting any (but not all) of {a, b, c} to zero, or by equating initial values
in two registers, since M xor M = 0.

Use of four registers (r ␣= ␣4) suggests 2 4 –␣1 = 15 states. Since r is
even, N is composite with factors (22␣+ ␣1)(2 2␣ – ␣1). This reveals the
subcycle for N␣ =␣5, rounding out the table for small N. However, this
method shows only a marginal gain over the brigade method (five vari-
ables, one temporary register, six assignments) and was not explored. For
those inclined to large N, factors may be used to compose larger cycles:
concurrent loops of relatively prime length resynchronize after a number
of steps equal to the product (the GCM) of their lengths.

For the last single-digit value, N␣=␣9 remains difficult as it is neither
prime nor a square-free composite. The next primes at (11, 13) are not of
the 2m ␣– ␣1 Mersenne form. By Fermat’s theorem, they (and any prime p)
are factors of 2p – 1, here 210␣– ␣1 and 2 12␣ – ␣1. Since this implies that
the number of registers grows at least linearly with the cycle length for
xor methods, the brigade method wins by virtue of simplicity. Although
the practical limit of all methods explored thus far is N < 8, more exotic
and convoluted methods are possible and may be examined through
brute-force means. One is presented below.

N = 24N = 24N = 24N = 24N = 24
As a last example, the code

  register a = 4;
  register b = 3;
  repeat

a := a− b;
a := a bit-and  15; explicit limit on register a
b := b xor a; (24.1)

offers a method of cycling modulo 24. Limiting the domain of register a
to 16 values necessarily introduces value multiplicity. The initial values
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chosen confine both a and b to the domain [1..15] and further insures that
they are never simultaneously equal.

This code’s value is in forming parallel 24:1, 12:1, 8:1, and 6:1 rate
division using the conditional tests (b = 1), (a = 4), (b = 7) and (b = 12),
respectively. These tests are chosen so at most one is true at any step,
allowing rate multiplication (up to 10-in-24) by combining the {1, 2, 3, 4}
-in-24 tests by oring of the triggering bits. Note that only the 3-in-24 rate
shows slight nonuniformity:

a: 1 15 2 3 7 12 5 3 2 15 3 4 9 7 2 11 15 12 13 1 12 7 11 4
b: 2 13 15 12 11 7 2 1 3 12 15 11 2 5 7 12 3 15 2 9 11 12 7 3

b␣=␣1: ∗
a␣=␣4: ∗ ∗
b␣=␣7: ∗ ∗ ∗

b␣=␣12: ∗ ∗ ∗ ∗

SummarySummarySummarySummarySummary
Methods for cyclic production of both arbitrary values and of Boolean
states has been presented. Cases N = {2, 3, 4, 6, 7} were treated in detail.
The extensive C-code variants provided in the appendices make a useful
set of additions to the graphics programmer ’s bag of tricks.

See also G1, 436.

..
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II.6II.6II.6II.6II.6
AAAAA GENERIC PIXEL SELECTION GENERIC PIXEL SELECTION GENERIC PIXEL SELECTION GENERIC PIXEL SELECTION GENERIC PIXEL SELECTIONMMMMMECHANISMECHANISMECHANISMECHANISMECHANISM

Alan W. PaethNeuralWare Inc.,Pittsburgh, Pennsylvania

Reversing the colors of a frame buffer ’s pixels is a common way to
highlight a region. A useful reversal function provides color pairs that are
visually distinct. On newer hardware, lookup tables (which map a pixel’s
appearance) are keyed by window, introducing spatial dependence. This
burdens the design of a “best” function. This gem offers a simple
a priori solution that guarantees visually distinct color pairs, though
their eventual appearance remains unknown to the algorithm. Typical use
is in creating screen-wide, window-invariant tools, such as system cursors
or selection rectangles for display “snapshots.”

A useful reversing function F on pixel p satisfies two algebraic criteria:
F(F( p)) = p and F(p) µ  p. The first assures that the function is its own
inverse. The second is crucial in guaranteeing that the two elements in
any color pair are “not nearly equal,” leaving them visually distinct. For
one-bit pixels, complementation (bit toggle) is the obvious solution. At
higher precision, the (ones) complement of all bits becomes an arithmetic
operation: F(p) = not(p) = –1 – p under two’s complement arithmetic
(Paeth, 1991). This has been generalized (Newman and Sproull, 1979) for
o ≤ c < 1 as Fc(p) = frac(c – p). This fails the second criterion: For
parameter c a pixel of value c/2 maps onto itself. Geometrically, the unit
interval has been displayed (by c) and mirrored onto the original interval,
thereby introducing a stationary point.

The solution used in the Palette system (Higgins and Booth, 1986)
returns to logical operations. Given a binary integer that defines discrete
positions along an interval, bit complementation of merely the uppermost
bit swaps the interval’s lower and upper halves without any mirroring.
The pixels in any color pair are now displaced by half the interval
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distance, guaranteeing distinct colors. In the case of color-mapped pixels
(which serve as indices), elements in a pair are far removed in the domain
of the mapping function, yielding colors likewise removed in the range
should the color map define a monotonic function—a common case.
Certain nonlinear non-Cartesian color maps (Paeth, 1991) also work well
under this function and support a simple geometric interpretation.

The generic function may now be constructed by making simple as-
sumptions. The pixel precisions of monochromatic channels on typical
framebuffers are one, four, or eight bits. The operation

macro bwpixflip(x) x:= x bit-xor 133 hex 85

complements the topmost bit in all cases without knowledge of the
precision in use. When the underlying pixel is of lower precision, toggling
the higher-order bits is of no consequence or is squelched by action of a
hardware write mask. Conversely, operation upon a high precision, pixel
will complement additional low-precision bits, but these are sufficiently
removed to be of much consequence.

For RGB pixels, three copies of hexadecimal 85 assures operation on
three adjacent channels. This also introduces a toggle at bit 12, a further
benefit on hardware providing extended monochromatic precision or
color table indexing. The generic color reverse function is

macro pixelflip(x) x := x bit-xor 8750469    hex 858585

Threefold use of the operation swaps halves of the unit interval along
each color axis. Geometrically, this represents a shuffling of eight sub-
cubes within the unit color cube about the central point ( 1

2

1

2

1

2
) of midlevel

gray. In non-Rubik fashion, the orientation of each cubelet is preserved
(fig. 1a). In the first-principles “xor – 1” case (not shown) an additional
central inversion of the eight cubelets inverts the entire solid
and the undesirable stationary point is reintroduced at the mid-gray position.

Finally, it is often advantageous to leave the blue channel uncomple-
mented. When blue occupies the uppermost pixel bits (as on the
Adage/Ikonas or SGI/Iris), complementation of the lower 16 bits defin-
ing the red and green channels still occurs; all monochromatic and
lookup cases (in which pixel precision never exceeds 16 bits) are also
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Figure 1

covered implicitly. The alternate generic macro is

macro pixelflip2(x) x := x bit-xor 34181 hex 8585

For 24-bit color, preservation of blue means that subcubes no longer
swap through central inversion (Fig. la), but are instead rotated a
half-turn about the blue axis in “Ferris-wheel” fashion (lb). This creates
a pair of opponent colors (red, green) for which the human visual system
is highly responsive, plus pairs (blue, white), (cyan, magenta) and (yellow,
black). The alternate macro supports the use of short, 16-bit integers in
the reversal.

See also G1, 215; G1, 219; G1, 233; G1, 249.
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NNNNNONUNIFORM RANDOMONUNIFORM RANDOMONUNIFORM RANDOMONUNIFORM RANDOMONUNIFORM RANDOMPPPPPOINT SETS VIA WARPINGOINT SETS VIA WARPINGOINT SETS VIA WARPINGOINT SETS VIA WARPINGOINT SETS VIA WARPING
Peter ShirleyIndiana UniversityBloomington, Indiana

We often want to generate sets of random or pseudorandom points on the
unit square for applications such as distribution ray tracing. There are
several methods for doing this, such as jittering and Poisson disk sam-
pling. These methods give us a set of N reasonably equidistributed points
on the unit square: (u1, v1) through (uN, vN).

Sometimes, our sampling space may not be square (e.g., a circular lens)
or may not be uniform (e.g., a filter function centered on a pixel). It would
be nice if we could write a mathematical transformation that would take
our equidistributed points (ui, vi) as input, and output a set of points in
our desired sampling space with our desired density. For example, to
sample a camera lens, the transformation would take (ui, vi) and output
(ri, θi) such that the new points were approximately equidistributed on
the disk of the lens.

It turns out that such transformation functions are well known in the
field of Monte Carlo integration. A table of several transformations useful
for computer graphics is given in Table I. The method for generating such
transformations is discussed for the rest of this article. Note that several
of these transformations can be simplified for simple densities. For
example, to generate directions with a cosine distribution, use the Phong
density with n = 1. To generate points on the unit hemisphere, use the
sector on the unit sphere density with θ1, = 0, θ2 = π/2, φ1 = 0, and
φ2= π.

For Monte Carlo methods we must often generate random points
according to some probability density function, or random rays according
to a directional probability density. In this section a method for one and
two dimensional random variables is described. The discussion closely
follows that of Shreider (1966).

II.7
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II.7 NONUNIFORM RANDOM POINTS VIA WARPING
Table 1. Some Useful Transformation.a.

aThe symbols u, v, and w  represent instances of uniformly distributed random variables ranging over [0, 1].

If the density is a one-dimensional f(x) defined over the interval
x ∈ [a,b], then we can generate random numbers α i  that have density f
from a set of uniform random numbers   ξ i , where   ξ i  ∈ [0,1]. To do this
we need the probability distribution function F(x):

F(x) =   a

x

∫ f(x′)dµ(x′). (1)

Target Space Density Domain Transformation
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To get α i we simply transform ξi:

                               α i  = F–1(xi),

where F–1 is the inverse of F. If F is not analytically invertible, then
numerical methods will suffice because an inverse exists for all valid
probability distribution functions.

If we have a two-dimensional density (x, y) defined on [a, b: c, d], then
we need the two-dimensional distribution function:

F(x, y) =   a

x

∫c

y

∫  f(x′, y′) dµ(x′, y′). (3)

We first choose an xi using the marginal distribution F(x, d), and then
choose yi according to F(xi,y)/F(xi,d) .  If F(x,y)  is  separable (ex-
pressable as g(x)h(y)), then the one-dimensional techniques can be used
on each dimension.

As an example, to choose reflected ray directions for zonal calculations
or distributed ray tracing, we can think of the problem as choosing points
on the unit sphere or hemisphere (since each ray direction can be
expressed as a point on the sphere). For example, suppose that we want
to choose rays according to the density

    
p(θ ,  φ )  =  n  +  1

2π
 cosn θ ,

where n is a Phong-like exponent; θ is the angle from the surface normal
and θ [ [0, π/2] (is on the upper hemisphere); and φ is the azimuthal
angle (φ [ [0, 2π]). The distribution function is

P(θ, φ) =   0

θ

∫0

φ

∫ p(θ′, φ′)sinθ′ dθ′ dφ′. (5)

The sin θ′ term arises because dω = sin θ dθ dφ on the sphere. When
the marginal densities are found, p (as expected) is separable, and we
find that a (r1, r2) pair of uniform random numbers can be transformed to
a direction by

(θ, φ) = (arccos((1 – r1)
1/(n + 1)), 2πr2). (6)

(4)
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Typically, we want a directional (θ, φ) pair to be with respect tosomeunit
vector y (as opposed to the z axis). To do this we can first convert the
angles to a unit vector a:

a = (cos φ sin θ ,sin φ sin θ, cos θ).

We can then transform a to be an a′ with respect to ψ by multiplying a
by a rotation matrix R (a′ = Ra). This rotation matrix is simple to write
down:

    

R =
ux vx wx

uy vy wy

uz vz wz














,

where u = (ux, uy, uz), v = (vx, vy, vz), w = (wx, wy, wz), form a basis
(an orthonormal set of unit vectors where u = v × w, v = w × u, and
w = u × v) with the constraint that w is aligned with ψ:

    
w = ψ

ψ
.

To get u and v, we need to find a vector t that is not colinear with w. To
do this simply set t equal to w and change the smallest magnitude
component of t to one. The u and v follow easily:

    
u  =  t  ×  w

t  ×  w
, v

    v  =  w  ×  u.

This family of techniques is very useful for many sampling applications.
Unfortunately, some sampling spaces (e.g., the surface of a dodecahe-
dron) are not naturally dealt with using the methods in this gem. Special
purpose or, as a last resort, rejection techniques are then called for.

See also G1, 438.
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 II.8 II.8 II.8 II.8 II.8
CCCCCROSS PRODUCTROSS PRODUCTROSS PRODUCTROSS PRODUCTROSS PRODUCT IN  IN  IN  IN  IN FOURFOURFOURFOURFOURDDDDDIMENSIONS AND BEYONDIMENSIONS AND BEYONDIMENSIONS AND BEYONDIMENSIONS AND BEYONDIMENSIONS AND BEYOND

Ronald N. GoldmanRice UniversityHouston, Texas

IntroductionIntroductionIntroductionIntroductionIntroduction
Cross product is one of the gods’ great gifts to mankind. It has many
applications in mathematics, physics, engineering, and, of course, com-
puter graphics. Normal vectors, rotations, curl, angular momentum,
torque, and magnetic fields all make use of the cross product.

Given two linearly independent vectors u and v in three dimensions,
their cross product is the vector u × v perpendicular to the plane of u
and v, oriented according to the right-hand rule, with length equal to
|u||v| sin Θ , where Θ  is the angle between u and v. In rectangular
coordinates, the cross product can be computed from the simple determi-
nant formula

      

u  ×  v  =  
i j k

u1 u2 u3

v1 v2 v3

.

Equivalently,

u × v = (u2v3 – u3v2, u3v1 – u1v3, u1v2, – u2v1).

At first glance, cross product seems to be an artifact of three dimen-
sions. In three dimensions the normal direction to the plane determined
by two vectors is unique up to sign, but in four dimensions there are a
whole plane of vectors normal to any given plane. Thus, it is unclear how
to define the cross product of two vectors in four dimensions. What then
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is the analogue of the cross product in four dimensions and beyond? The
goal of this gem is to answer this question.

Tensor ProductTensor ProductTensor ProductTensor ProductTensor Product
There is a way to look at the cross product that is more instructive than
the standard definition and that generalizes readily to four dimensions
and beyond. To understand this approach, we need to begin with the
notion of the tensor product of two vectors u, v.

The tensor product u ⊗ v is defined to be the square matrix

u ⊗ v = u t ∗  v,

where the superscript t denotes transpose and ∗ denotes matrix multipli-
cation. Equivalently,

(u ⊗ v)ij = (ui,vj).

Notice that for any vector w,

w (u ⊗ v) = (w ⋅ u)v.

Thus, the tensor product is closely related to the dot product.
Like dot product, the tensor product makes sense for two vectors of
arbitrary dimension. Indeed, the tensor product shares many of the
algebraic properties of the dot product. However, unlike the dot product,

u ⊗ v ≠ v ⊗ u     because ui vj ≠ uj vi .

Applications of the tensor product of two vectors to computer graphics
are given in Goldman (1990, 1991).

Wedge ProductWedge ProductWedge ProductWedge ProductWedge Product
The wedge product of two vectors u and v measures the noncommutativ-
ity of their tensor product. Thus, the wedge product u ∧  v is the square

the tensor product is not communative. That is, in general,

II.8 CROSS PRODUCT IN FOUR DIMENSIONS AND BEYOND
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matrix defined by

u ‘ v = u ⊗ v – v ⊗ u.

Equivalently,

(u ‘ v)ij = (uivj  – ujvi).

Like the tensor product, the wedge product is defined for two vectors
of arbitrary dimension. Notice, too, that the wedge product shares many
properties with the cross product. For example, it is easy to verify
directly from the definition of the wedge product as the difference of two
tensor products that:

u ‘ u = 0,

u ‘ v = – v ‘ u (anticommutative),

u ∗  (v ‘ w) ≠ (u ‘ v) ∗  wt (nonassociative),

u ‘ cv = c(u ‘ v) = (cu) ‘ v,

u ‘ (v + w) = u ‘ v + u ‘ w (distributive),

u ∗  (v ‘ w) + v ∗(w ‘ u) + w ∗  (u ‘ v) = 0 (Jacobi identity),

r ∗  (u ‘ v) ∗  st = (r ⋅ u)(s ⋅ v) – (r ⋅ v)(s ⋅ u) (Lagrange identity).

The wedge product also shares some other important properties with
the cross product. The defining characteristics of the cross product are
captured by the formulas

u ⋅ (u × v) = v ⋅ (u × v) = 0,

|u × v| = |u|2|v|2 sin2 Θ.

By the Lagrange identity, the wedge product satisfies the analogous
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identities:

u ∗  (u ‘ v) ∗  ut  = v ∗  (u ‘ v) ∗  vt = 0,

u ∗  (u ‘ v) ∗  vt = (u ⋅ u)(v ⋅ v) – (u ⋅ v)2 = |u|2|v|2 sin2 Θ.

A variant of the last identity can be generated by defining the norm of a
matrix M to be

    
M 2 = 1

2 (Mij )
2

ij
∑


.

Then by direct computation it is easy to verify that

|u ‘ v|2 = (u ⋅ u)(v ⋅ v) – (u ⋅ v)2 = |u|2|v|2 sin2 Θ.

In addition, the cross product identity

(u × v) × w = (w ⋅ u)v – (w ⋅ v)u

has the wedge product analogue

w ⋅ (u ‘ v) = (w ⋅ u)v – (w ⋅ v)u. (1)

The cross product can be used to test for vectors perpendicular to the
plane of u and v because

w × (u × v) = 0 ⇔ w ⊥ u,v.

Similarly, the wedge product recognizes vectors perpendicular to the
plane determined by u and v because by (1),

w ∗  (u ‘ v) = 0 ⇔ (w ⋅  u) = (w ⋅  v) = 0 ⇔ w ⊥ u, v.

Moreover, in three dimensions,

    

u ∧ v =
0 u1v2 – u2v1 u1v3 – u3v1

u2v1 – u1v2 0 u2v3 – u3v2

u3v1 – u1v3 u3v2 – u2v3 0
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Thus, in three dimensions the entries of the wedge product matrix u ‘ v
are, up to sign, the same as the components of the cross product vector
u × v. This observation explains why wedge product and cross product
share so many algebraic properties.

In three dimensions we are really very lucky. The matrix u ‘ v is
antisymmetric so, up to sign, it has only three unique entries. This
property allows us to identify the matrix u ‘ v with the vector u × v.
Nevertheless, there is something very peculiar about the vector u × v. If
u and v are orthogonal unit vectors, then the vectors u, v, u × v form a
right-handed coordinate system. But if M is the linear transformation that
mirrors vectors in the u, v plane, then {u ⋅ M, v ⋅ M, (u × v) ⋅ M} =
{u, v, – u × v} forms a left-handed coordinate system. Thus, (u ⋅ M) ×
(v ⋅ M) ≠ (u × v) ⋅ M, so u × v does not really transform as a vector.
This anomaly should alert us to the fact that cross product is not really a
true vector. In fact, cross product transforms more like a tensor than a
vector.

In higher dimensions we are not nearly so lucky. For example, in four
dimensions the antisymmetric matrix u ‘ v has, up to sign, six, not four,
distinct entries. Thus, the matrix u ‘ v cannot be identified with a
four-dimensional vector. In n dimensions, the antisymmetric matrix u ‘ v
has n(n – 1)/2 unique entries. But n(n – 1)/2 ≠ n unless n = 0,3.
Thus, only in three dimensions can we identify the wedge product of two
vectors with a vector of the same dimension. In general, the wedge
product is an antisymmetric 2-tensor. This antisymmetric tensor shares
many of the important algebraic properties of the cross product, and thus
it is a natural generalization of the cross product to four dimensions and
beyond.
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II.9
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Didier Badouel and Charles A. WüthrichUniversity of TorontoToronto, Ontario, Canada

In the early days of Computer Graphics, straight line rasterization was
developed to render segments onto the raster plane. Later, three-dimen-
sional segment discretization had to be developed to keep track of the
path of a ray in the object space. These algorithms generate a connected
sequence that represents the segment in the discrete space; moreover,
they define a path in which the directions are uniformly distributed. An
extension to higher-dimensional spaces is suited for applications ranging
from line generation in a time–space coordinate system to the incremen-
tal generation of a discrete simultaneous linear interpolation of any
number of variables.

This gem presents an algorithm that generates a face-connected line
segment in discrete n-dimensional spaces. In two dimensions, the algo-
rithm introduced below coincides with any classical 4-connected straight
line drawing algorithm. Among all discrete segments joining two points,
this algorithm produces one in which the directions are uniformly dis-
tributed. A definition of uniform distribution is given below.

Consider an n-dimensional lattice, or hyperlattice, i.e., the set of all
points P = (p0, p1, . . . , pn – 1) of Zn: Neighbourhood relations can be
defined between the Voronoi hypervroxel associated with each point of
the hyperlattice. In fact, only voxels having a hyperface in common, i.e.,
corresponding to hyperlattice points having n – 1 coordinates in com-
mon, will be considered here as neighbours. In a two-dimensional lattice,
such neighbourhood relation is the well-known 4-connection, while in the
three-dimensional space it leads to 6-connection. The neighbourhood
relations among the hyperlattice points introduce a rasterization proce-
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dure for curves into the hyperlattice: A rasterization of a curve is in fact a
path of neighbouring lattice points.

Consider two hyperlattice points P = (p0, p1, . . . , pn – 1)  and Q  =
(q0, q1, . . . , qn – 1) .  Let ni = |qi – pi|  Then a face-connected shortest
path between P and Q requires m = Σni steps. The hyperline points are
the points of coordinates xi = (qi – pi,)t + pi, with t [ [0, 1]. The pa-
rameter t introduces an ordering on the points of the straight line.
Consider the straight line points     Pi , hi

 obtained for t = hi/ni, where
hj = 1, . . ., ni, and order them in increasing order of their corresponding
parameter value. Whenever an ambiguity occurs, and two parameter
values hj/ni and hj/nj coincide, an arbitrary order has to be chosen. In
other words, the segment PQ is subdivided into ni parts for each
dimension i, and the points obtained on the straight line segment are
ordered by increasing values of the parameter t. When two subdivision
points coincide, the one corresponding to the smaller dimension is
considered to precede the other one.

The resulting set is a finite ordered set of the segment points     Pi,hi ,
which can be renamed as A0, A1, . . ., Am – 1 Consider the finite path built
by taking the sequence of directions {ak)k = 0, . . . , m – 1,  such that each
direction ak corresponds to the point Ak =     Pak ,l , for some l. Such a path
is said to be uniformly distributed with respect to the directions that
constitute it. It is clear that in such a path the occurrences of the different
directions that have to appear in it are as evenly spaced as possible in the
chain. Moreover, if we follow the previously defined path from the point
P, the point Q shall be reached.

Whenever the hyperface-connected rasterization onto the n-dimen-
sional hyperlattice of a straight line segment joining two hyperlattice
points is computed, the result is a hyperface-connected path joining the
two points. This path is uniformly distributed among all directions. A
simplified version of the routing algorithm can be therefore summarized
as follows. For each direction i, an integer counter di is used. In order to
generate the straight line between the two points P and Q, the values of
ni are computed. Their least common multiple l = LCM( ni) is evaluated,1

and the values of n′′i = l/ni are computed. To obtain only integer

1In fact, either a low-complexity method in O(n log k) based on a table lookup or
a simple common multiple can be used here.

II.9 FACE–CONNECTED LINE SEGMENT GENERATION IN AN n – DIMENSIONAL SPACE
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computations, the values of n′i, = 2n′′i are used. The cells di are initial-
ized to the value n′i/2. This initialization has to be made, otherwise the
path generated corresponds to another rasterization scheme. At each
step, n′i is added to the di with the smallest value, and the ith signed
direction is generated. The generation procedure is repeated until all di

have reached the value 2l + n′′i. which is equivalent to ∀ i, di ≥ 2l.

II.9 FACE–CONNECTED LINE SEGMENT GENERATION IN AN n – DIMENSIONAL SPACE
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Most of the Gems in this section are concerned with transformations: how
to compose, decompose, and manipulate them. The first Gem describes
how to interpolate between two orientations using the quaternion repre-
sentation, and adds the wrinkle of extra spins at the end of the interpola-
tion. The fifth Gem is a useful companion to the first, in that it discusses
issues relating to the choice of transformations upon which the interpola-
tion occurs. The seventh Gem describes an alternative technique for
interpolation, using Bézier curves.

The second and third Gems discuss how to decompose complex trans-
formations into simpler components. The fourth and sixth Gems in this
section describe two complementary techniques for producing rotations
that are random in some sense, and are uniformly distributed in direction.
These Gems are an improvement on a previous Gem.

The final Gem in this section is a solicited contribution that provides
useful information for those interested in physically based modeling. This
Gem provides closed form expressions for volume and mass properties
for superquadric ellipsoids and toroids, and discusses the calculation and
use of the inertia tensor.
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III.1 QUATERNION INTERPOLATION WITH EXTRA SPINSIII.1III.1III.1III.1III.1QUATERNIONQUATERNIONQUATERNIONQUATERNIONQUATERNIONINTERPOLATIONINTERPOLATIONINTERPOLATIONINTERPOLATIONINTERPOLATIONWITH EXTRA SPINSWITH EXTRA SPINSWITH EXTRA SPINSWITH EXTRA SPINSWITH EXTRA SPINS
Jack MorrisonDigital InsightEvergreen, Colorado

Quaternions are handy for representing the orientation or rotation of a
3-D object (Shoemake, 1985). The “Slerp” operation (spherical linear
interpolation) interpolates between two quaternions at a constant speed,
using the most direct rotational path between the orientations. An anima-
tor may, however, want the interpolation to provide extra spins along the
same path (complete revolutions about the same axis—see Fig. 1). This
Gem gives a simple formula for doing this, derived with the help of Steven
Gabriel.

Given two unit quaternions A and B, and an interpolation parameter α
ranging from 0 to 1, the basic Slerp equation is

Slerp(A, B; α) = A(A-1 B)α.

An easier-to-implement equation uses the angle θ between the quater-
nions:

θ = acos(A ⋅ B),

Slerp(A, B; α) = 
  
sin (θ - αθ)

sin θ A + 
  
sin (αθ) 

sin θ B.

To include k additional spins, determine

   φ = θ + kπ,
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Figure 1.  Slerp (A, B) with k additional spins.

then

Slerp(A,B,k;α) = 
  
sin (θ – αφ)

sin θ A + 
  
sin (αφ)

sin θ B.

Figure 1 shows the effect of k, viewing orientations A and B along the
rotation axis. For k = 0, f equals q, the equation reduces to the original
form, and the interpolation follows the shortest circular path from A to B.
For k = + 1, one full additional rotation is generated as a goes from 0 to
1. For k = – 1, the interpolation goes the “long” way around.

The C implementation first checks if A and B are on opposite hemi-
spheres (cos θ < 0). If so, the interpolation is modified to use the nega-
tion of B (which represents the same orientation as B itself), to ensure
that the shortest rotation path is taken. It also checks whether A and B
are the same, so that sin θ = 0, and no axis is defined for spinning. If A
and B represent orientations 180 degrees apart, all rotation paths are the
same length, but the quaternions still define an axis for spinning. Note
that for a given A, B, and k, the quantities θ, φ, and sin θ could be
computed once outside the interpolation loop for efficiency.

See also G1, 498.
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III.2 DECOMPOSING PROJECTIVE TRANSFORMATIONSIII.2III.2III.2III.2III.2
DECOMPOSING PROJECTIVEDECOMPOSING PROJECTIVEDECOMPOSING PROJECTIVEDECOMPOSING PROJECTIVEDECOMPOSING PROJECTIVETRANSFORMATIONSTRANSFORMATIONSTRANSFORMATIONSTRANSFORMATIONSTRANSFORMATIONS

Ronald N GoldmanRice UniversityHouston, Texas
IntroductionIntroductionIntroductionIntroductionIntroduction
In another Gem (III.3) we show how to decompose linear and affine
transformations of three-dimensional space into the products of scale,
shears, rotations, translations, and projections. The goal of this gem is to
demonstrate how to decompose an arbitrary projective transformation of
three-dimensional space into simple, geometrically meaningful factors.
For an alternative approach, see Thomas (1991).

Let us begin by recalling the difference between linear, affine, and
projective transformations. Consider a point P with coordinates (x, y, z),
and let Pnew with coordinates (xnew, ynew, znew) denote the new trans-
formed point. Formulas that express the new coordinates xnew, ynew, znew
in terms of the original coordinates x, y, z are given by the following
equations:

Linear: xnew = ax + by + cz,
Affine: xnew = ax + by + cz + d,
Projective: xnew = (ax + by + cz + d)/(αx + βy + γz + δ),

with analogous formulas for ynew and znew. Remember, too, that for
projective transformations, the denominators of xnew, ynew, znew are iden-
tical.

Linear transformations are usually represented by 3 X 3 matrices L.
A point P = (x, y, z) transforms according to the formula

Pnew = P ∗ L,
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where ∗ denotes matrix multiplication. Similarly, affine transformations
are represented by 4 × 3 matrices

  A = 
  

 L 
 T .

Here the upper 3 × 3 submatrix L represents a linear transformation and
the last row T represents a translation. Let P* = (P, 1). Then a point P
transforms according to the formula

   Pnew = P* *A = P * L + T

Projective transformations can be represented by 4 × 4 matrices

M = 
    

 L    N 
t 

 T     d ,

where the upper 3 × 3 submatrix L represents a linear transformation,
the vector T represents a translation, and the column (N d) t (the
superscript t denotes transpose) represents the projection. A homoge-
neous point P* = (P, 1) transforms according to the formula

P*new = P* * M = (P* * A)/(P ⋅ N + d) = (P * L + T)/(P ⋅ N + d ),

where by convention (x, y, z, w) = (x/w, y/w, z/w). That is, by con-
vention, after performing the matrix multiplication, we divide by the
homogeneous coordinate wnew to recover the actual point. Projective
transformations are very important in computer graphics because per-
spective is a projective transformation (Goldman, 1990).

First Decomposition Algorithm—Perspective inFirst Decomposition Algorithm—Perspective inFirst Decomposition Algorithm—Perspective inFirst Decomposition Algorithm—Perspective inFirst Decomposition Algorithm—Perspective inFour DimensionsFour DimensionsFour DimensionsFour DimensionsFour Dimensions
The standard way to factor any projective transformation of three-dimen-
sional space is first to embed three-space into four-space, next to apply
the 4 × 4 matrix M as a linear transformation in four-space, then to
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apply a perspective projection of four-space with the eye point at the
origin and the perspective hyperplane at w = 1, and finally to project
from four-space back to three-space by identifying the four-dimensional
hyperplane w = 1 with standard three-dimensional space. That is, we
map

R3 → R4 → R4 → R3

by sending

P → P* = (P, 1) → Q* = (Q, 1) = (P, 1) * M * G → Q,

where G is the perspective transformation of R4 from the origin into the
hyperplane w = 1.

From the point of view of computer graphics and geometric modeling,
this decomposition is not very satisfactory. To complete this decom-
position, we would need to factor an arbitrary transformation M of
four-dimensional space into simple, geometrically meaningful, four-
dimensional transformations. While it is possible to do so, this violates
the spirit of what we are trying to accomplish. In computer graphics and
geometric modeling, we generally apply modeling transformations to
position an object in space, and then apply a perspective projection to
position the object on the screen for viewing. All these transformations
occur in three dimensions so we should never really need to discuss
transformations of higher-dimensional space. It is these three-dimen-
sional transformations that we would like to recapture in our decomposi-
tion of an arbitrary projective transformation.

Second Decomposition AlgorithmSecond Decomposition AlgorithmSecond Decomposition AlgorithmSecond Decomposition AlgorithmSecond Decomposition AlgorithmAffine Affine Affine Affine Affine ***** Projective Projective Projective Projective Projective
To obtain a better decomposition, we can factor any projective transfor-
mation by using the product formula

   
    

 L    N 
t 

 T     d  = 
  

 L     0 
 T     1  * 

    

 I          Ω t 
 0    d – T * Ω t ,
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where L * Ωt = Nt This factoring certainly works when L is nonsingular,
since then we can simply take Ω = N*(L-1)t, but it also works even if L
is singular provided only that N is in the image of Lt. Now the first factor
is simply the affine transformation given by the linear transformation L
followed by the translation T, and the second factor is a pure projective
transformation. We know from Gem III.3 how to factor any affine trans-
formation of three-dimensional space into simple, geometrically meaning-
ful factors. Thus, if N is in the image of Lt, we can use this product
formula to decompose a projective transformation into simple, geometri-
cally meaningful factors, followed by a pure projective transformation.

What is the effect of the pure projective transformation? Consider the
pure projective transformation matrix

   M* = 
    

 I     Ω t 
 0     d * .

By convention, M* transforms a point according to the formula

Pnew = P/(P ⋅ Ω + d*).

Thus, any point P satisfying the equation

         P ⋅ Ω + d* = 1

is left invariant by the transformation M*. But this equation is linear, so
it defines a plane. Thus, the projective transformation M* leaves a plane
of points unmoved. Moreover, if S is the plane defined by the linear
equation

   P ⋅ Ω + d* = 0,

then M* maps S to infinity. Finally, for an arbitrary point P

(P ⋅ Ω + d *) = signed distance to the plane S.

Thus, the pure projective transformation M* maps planes at a fixed



GRAPHICS GEMS III Edited by DAVID KIRK 102

III.2 DECOMPOSING PROJECTIVE TRANSFORMATIONS
distance from S into other planes at a new fixed distance from S. Note,
too, that the plane at infinity (w = 0) is mapped to a finite plane.

From the perspective of computer graphics and geometric modeling,
this decomposition of an arbitrary projective transformation into the
product of a purely affine and a purely projective transformation is still
not entirely satisfactory. In computer graphics, affine modeling transfor-
mations are usually followed by perspective projections. Thus, we would
like, whenever possible, to factor a projective transformation into the
product of an affine transformation and a perspective projection.

In one special case we do actually achieve this goal. Observe that if
d* = 0, then Pnew ⋅ Ω = 1. Thus, Pnew always lies on the invariant plane
of M*. In this case, M* is actually a perspective projection with the
eyepoint at the origin and the perspective plane given by the linear
equation P ⋅ Ω = l. Thus, if Nt = L * Ωt (that is, if N is in the image of
Lt, e.g., L is nonsingular) and d = * Ω t, then our product formula
actually give us the decomposition that we desire, since the second factor
is a perspective projection. More generally, we need to decide when a
projective transformation M has a perspective factor M*. One hint we
can apply here is that if d* = 0, then Det(M*) = 0.

Third Decomposition Algorithm—Third Decomposition Algorithm—Third Decomposition Algorithm—Third Decomposition Algorithm—Third Decomposition Algorithm—Perspective Perspective Perspective Perspective Perspective ***** Affine Affine Affine Affine Affine
If a projective transformation has a perspective factor, then it must be a
singular matrix. This is easy to see because every perspective transforma-
tion M has an eyepoint E that is mapped to a singularity—that is, to the
point with homogeneous coordinates (0, 0, 0, 0). Thus,

E * M = 0,

so the eyepoint E is an eigenvector of the matrix M corresponding to the
eigenvalue 0. Thus, M must be singular. We shall show that if L is
nonsingular, then the converse is also true. That is, if M is a singular
4 × 4 matrix whose upper 3 × 3 submatrix L is nonsingular, then M can
be factored into the product of a perspective projection and an affine
transformation.
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Suppose, then, that we have a singular 4 × 4 matrix

    M = 
    

 L     N t 
 T      d  

representing a projective transformation, and that the linear transforma-
tion L is nonsingular. Since M is singular, Det(M) = 0. Therefore, one
of its eigenvalues is 0. Let E be a nonzero eigenvector corresponding to
the eigenvalue 0. Since L is nonsingular, E cannot lie at infinity—that is,
E ≠ (e1, e2, e3, 0)—otherwise, L would also have a nonzero eigenvector
corresponding to the eigenvalue 0. We will use E as the eyepoint of the
perspective projection.

To complete the definition of the perspective transformation, we also
need the perspective plane. Recall that by convention a point P is
mapped by the projective transformation M to the point

 Pnew = (P * L + T)/(P ⋅ N + d).

Thus, points on the plane S defined by the linear equation

    P ⋅ N + d = 1

are not affected by the projective part of the transformation. Let R be the
perspective projection defined by the eyepoint E and the perspective
plane S, and let A be the affine transformation defined by the linear
transformation L and the translation T. Then we shall show that

M = R * A.

We can verify that this equation is valid by checking that it holds for all
points. If P is in S, then P * R = P and P ⋅ N + d = 1, so

P * M = (P * L + T) = P * A = P * (R * A).

If P is not in S, then the line from the eyepoint E to the point P
intersects the plane S in a unique point Q so

  P = λQ + (1 – λ)E.
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Therefore, because E is an eigenvector of M corresponding to the
eigenvalue 0,

 P* * M = {λQ* + (1 – λ)E*} * M

= λ(Q* * M)

= λ(Q * L + T)/λ(Q ⋅ N + d)

= (Q * L + T)

= Q* * A

= P* * (R * A)

The last equality holds because P lies on the line joining Q and E.
Therefore, the perspective projection R maps P* to Q*.

Thus, we have succeeded in factoring a singular projective transforma-
tion M into the product of a perspective transformation R and an affine
transformation A. The matrix for the perspective transformation R can
be found explicitly from the eyepoint E and the plane S by the methods
described in Goldman (1990), and the affine transformation A can be
factored further into simple, geometrically meaningful, factors by the
techniques described in Gem 3.3. Thus, we have succeeded in decom-
posing a singular projective transformation into simple, geometrically
meaningful factors.

Still, this factoring is not quite satisfactory, since in geometric model-
ing the perspective transformation comes last rather than first. Therefore,
let us try to reverse the order of our factors.

Fourth Decomposition Algorithm—Fourth Decomposition Algorithm—Fourth Decomposition Algorithm—Fourth Decomposition Algorithm—Fourth Decomposition Algorithm—Affine Affine Affine Affine Affine ***** Perspective Perspective Perspective Perspective Perspective
Consider again a singular 4 × 4 matrix

   M = 
    

 L      N t

 T       d  
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representing a projective transformation where the linear transformation
L is nonsingular. Again, let E be a nonzero eigenvector of M correspond-
ing to the eigenvalue 0, and let S be the plane defined by the linear
equation

 P ⋅ N + d = 1.

Furthermore, let A be the affine transformation defined by the linear
transformation L and the translation T, and let R be the perspective
projection defined by the eyepoint A(E) and the perspective plane A(S).
We shall show that

   M = A * R.

Before we proceed, notice that for the perspective transformation R to
be well defined, the perspective plane A(S) cannot collapse to a line or a
point and the eyepoint A(E) cannot lie in the perspective plane A(S).
This will certainly be true if A, or equivalently L, is nonsingular, as is
generally the case in computer graphics and geometric modeling applica-
tions. Recall, too, that we need this assumption anyway to insure that the
eyepoint A(E) does not lie at infinity.

We can verify that this new factoring of M is valid by again checking
that it holds for all points. If P is in S, then P ⋅ N + d = 1, so

P * M = (P * L + T) = P * A =P * A * R,

where the last equality holds because R is invariant on A(S). On the
other hand, if P is not in S, then the line joining the point E to the point
P intersects the plane S in a unique point Q so

P = λQ + (1 – λ)E.

Therefore, because E is an eigenvector of M corresponding to the
eigenvalue 0,

P* * M = {λQ* + (1 – λ)E*} * M
   = λ(Q* * M)
   = λ(Q * L + T)/λ(Q ⋅ N + d)
   = (Q * L + T)
   = Q* * A
   = P* * (A * R).
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The last equality holds because P lies on the line joining Q and E, so
A(P*) lies on the line joining A(Q*) and A(E*). Therefore, the perspec-
tive projection R maps A(P*) to A(Q*).

SummarySummarySummarySummarySummary
To summarize: We have four ways of decomposing a projective transfor-
mation

M = 
    

 L      N t

 T       d  .

1. M = M * G: as the product of a linear transformation M of four-
dimensional space and a perspective transformation G from the
origin into the hyperplane w = 1.

2.  
    

 L      N t

 T       d   = 
    

 L      0

 T      1  * 
    

 I           Ωt

 0    d –  T ⋅  Ωt ,

where L * Ωt = Nt: as the product of an affine transformation and a
pure projective transformation. This works provided N is in the
image of Lt. In particular, this decomposition is valid when L is
nonsingular. Moreover, if d = 1 * Ωt, then the second factor is the
perspective projection from the origin to the plane P ⋅ Ω = l.

3. M = R * A: as the product of a perspective projection R followed by
an affine transformation A. Here R is the perspective projection
defined by the eyepoint E, where E is a nonzero eigenvector of M
corresponding to the eigenvalue 0, and the perspective plane S
consisting of points P that satisfy the linear equation P ⋅ N + d = 1,
and A is the affine transformation defined by the linear transforma-
tion L and the translation T. This decomposition is valid whenever
the matrix M is singular and the matrix L is nonsingular—that is,
whenever Det(M) = 0 and Det(L) ≠ 0.

4. M = A * R: as the product of an affine transformation A followed by
a perspective projection R. Here A is the affine transformation
defined by the linear transformation L and the translation T, and R
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is the perspective transformation defined by the eyepoint A(E),
where E is a nonzero eigenvector of M corresponding to the eigen-
value 0, and the perspective plane A(S), where S is the plane of
points P that satisfy the linear equation P ⋅ N + d = 1. This decom-
position is valid whenever the matrix M is singular, the plane A(S)
does not collapse to a line or a point, and the point A(E) does not lie
in the plane A(S) or at infinity. In particular, this works whenever
Det(M) = 0 and Det(L) ≠ 0.

This last case is the standard case in computer graphics and geometric
modeling. Thus, in the standard case we can decompose a projective
transformation into the product of a non-singular affine transformation
followed by a perspective projection. By Gem III.3, we can further factor
the affine transformation into the product of three scales, two shears, one
rotation, and one translation.

Although we have succeeded in factoring an arbitrary, singular, projec-
tive transformation, notice again that this decomposition is not unique
since the factoring of the affine transformation is itself not unique.
Nevertheless these factoring procedures are still useful because they
allow us to decompose singular projective transformations into simple,
geometrically meaningful factors.

See also G2, 319; G2, 320; G3, C.3.
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III.3 DECOMPOSING LINEAR AND AFFINE TRANSFORMATIONSIII.3III.3III.3III.3III.3
DECOMPOSING LINEAR ANDDECOMPOSING LINEAR ANDDECOMPOSING LINEAR ANDDECOMPOSING LINEAR ANDDECOMPOSING LINEAR ANDAFFINE TRANSFORMATIONSAFFINE TRANSFORMATIONSAFFINE TRANSFORMATIONSAFFINE TRANSFORMATIONSAFFINE TRANSFORMATIONS

  Ronald N. Goldman Rice UniversityHouston, Texas
GoalGoalGoalGoalGoal
Every nonsingular linear transformation of three-dimensional space is the
product of three scales, two shears, and one rotation. The goal of this
Gem is to show how to decompose any arbitrary, singular or nonsingular,
linear or affine transformation of three-dimensional space into simple,
geometrically meaningful, factors. For an alternative approach to similar
problems (see Thomas, 1991).

Nonsingular Linear TransformationsNonsingular Linear TransformationsNonsingular Linear TransformationsNonsingular Linear TransformationsNonsingular Linear Transformations
Linear transformations of three-dimensional space are generally repre-
sented by 3 × 3 matrices. To decompose an arbitrary nonsingular linear
transformation, consider, then, an arbitrary nonsingular 3 × 3 matrix L.
We shall show that L can be factored into the product of three scales,
two shears, and one rotation matrix.

Let the rows of L be given by the vectors u, v, w. Since the matrix L is
nonsingular, the vectors u, v, w are linearly independent. Therefore,
using the Gram-Schmidt orthogonalization procedure, we can generate 3
orthonormal vectors u*, v*, w* by setting

u* = u/   u ,

v* = (v – (v ⋅ u*)u*)/
    
 v –  (v ⋅  u*)u*  ,

w* = (w – (w ⋅ u*)u* – (w ⋅ v*)v*)/
    
 w –  (w ⋅  u*)u*  –  (w ⋅  v*)v*  .
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This orthogonalization procedure can be used to decompose the matrix L
into the desired factors.

Begin with the rotation. By construction, the matrix R whose rows are
u*, v*, w* is an orthogonal matrix. If Det(R) = –1, replace w* by –w*.
Then R is the rotation matrix we seek. Using the results in Goldman
(1991a), we can, if we like, retrieve the rotation axis and angle from the
matrix R.

The three scaling transformations are also easy to find. Let

sl =    u ,

s2 = 
    
 v –  (v ⋅  u*)u*  ,

s3 = 
    
 w –  (w ⋅  u*)u*  –  (w ⋅  v*)v*  .

That is, sl, s2, s3 are the lengths of u*, v*, w* before they are normal-
ized. Now let S be the matrix with sl, s2, s3 along the diagonal and with
zeroes everywhere else. The matrix S represents the three independent
scaling transformations that scale by sl along the x-axis, s2 along the
y-axis, and s3 along the z-axis. (If Det(R) was originally –1, then
replace s3 by –s3. In effect, this mirrors points in the xy-plane.)

Before we can introduce the two shears, we need to recall notation for
the identity matrix and the tensor product of two vectors.

Identity:

    I = 

  

 1   0   0 
 0   1   0 
 0   0   1

.

Tensor Product:

ν⊗ ω  = 

  

 ν1ω1   ν1ω2   ν1ω3 
 ν2ω1   ν2ω2   ν2ω3 
 ν3ω1   ν3ω2   ν3ω3

 = 

  

 ν1 
 ν2 
 ν3

 *    ω1ω2ω3  = νt*ω .

Here * denotes matrix multiplication and the superscript t denotes
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transpose. Observe that for all vectors µ

 µ ⋅ I = µ,

µ * (ν⊗ ω ) = (µ ⋅ ν)ω .

Now we are ready to define the two shears. Recall from Goldman
(199lb) that a shear H is defined in terms of a unit vector v normal to a
plane Q, a unit vector ω  in the plane Q, and an angle φ by setting

  H = I + tanφ(ν⊗ ω ).

Let H1 be the shear defined by unit normal ν*, the unit vector u*, and
the angle θ by setting

 H1 = I + tanθ(v*⊗ ω *),

tanθ = v ⋅ u*/s2.

Similarly, let H2 be the shear defined by unit normal w*, the unit vector
r*, and the angle ψ by setting

H2 = I + tanψ(w*⊗ r*),

 tanψ = SQRT{(w ⋅ u*)2 + (w ⋅ v*)2}/s3,

 r* = {(w ⋅ u*)u* + (w ⋅ v*)v*}/s3tanψ

Then it is easy to verify that

u* * H1 = u*,    v* * H1 = v* + (v ⋅ u*/s2)u*,    w* * H1 = w*,

u* * H2 = u*,    v* * H2 = v*,

w* * H2 = w* + {(w ⋅ u*)u* + (w ⋅ v*)v*}/s3.

  Finally, we shall show that

 L = S * R * H1 * H2.
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Since the transformation L is linear, we need only check that both sides
give the same result on the canonical basis i, j, k. By construction we
know that

i * L = u,     j * L = v,     k * L = w,

so we need to verify that we get the same results for the right-hand side.
Let us check.

First,
i * S * R * H1 * H2 = (s1)i * R * H1 * H2

= (s1)u* * H1 * H2

= u.

since by construction the two shears H1 and H2 do not affect u*.
Next,

 j * S * R * H1 * H2 = (s2)j * R * H1 * H2

= (s2)v* * H1 * H2

= {s2v* + (v ⋅ u*)u*} * H2

= s2v* + (v ⋅ u*)u*

= v.

Finally,
k * S * R * H1 * H2 = (s3)k * R * H1 * H2

= (s3)w* * H1 * H2

= (s3)w* * H2

= s3w* + (w ⋅ u*)u* + (w ⋅ v*)v*

= w.
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Although we have succeeded in factoring an arbitrary nonsingular

linear transformation, notice that this decomposition is not unique. In-
deed, the Gram-Schmidt orthogonalization procedure depends upon the
ordering of the vectors to which it is applied. We could, for example,
have applied the Gram-Schmidt procedure to the vectors in the order
w, u, v instead of u, v, w. We would then have retrieved a different
decomposition of the same matrix. Nevertheless, this procedure is still of
some value since it allows us to decompose an arbitrary nonsingular
linear transformation into simple, geometrically meaningful factors.

Singular Linear TransformationsSingular Linear TransformationsSingular Linear TransformationsSingular Linear TransformationsSingular Linear Transformations
Now let L be an arbitrary singular 3 × 3 matrix. There are three cases to
consider, depending on the rank of L. If rank(L) = 0, there is nothing to
do since L simply maps all vectors into the zero vector. The case
rank(L) = 1 is also essentially trivial, since all vectors are simply appro-
priately scaled and then projected onto a single fixed vector. Therefore,
we shall concentrate on the case where rank(L) = 2.

We will show that when rank(L) = 2, we still need one rotation, but we
require only two scales, one shear, and one parallel projection. Thus, the
number of scales is reduced by one and a shear is replaced by a parallel
projection. Moreover, we shall shovv that the parallel projection can be
replaced by a shear followed by an orthogonal projection.

Again, let the rows of L be given by the vectors u, v, w. Since the
matrix L is singular, the row vectors u, v, w are linearly dependent, but
since rank(L) = 2, two rows of L are linearly independent. For simplicity
and without loss of generality, we will assume that u and v are linearly
independent.

Modifying the Gram-Schmidt orthogonalization procedure, we can
generate three orthonormal vectors u*, v*, w* by setting

u* = u/     u ,

v* = (v – (v ⋅ u* )u* )/
    
 v –  (v ⋅  u*)u*  ,

w* = u* × v*.
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This orthogonalization procedure can again be used to decompose the
matrix L into the desired factors.

By construction, the matrix R whose rows are u*, v*, w* is an orthog-
onal matrix and Det(R) = 1. The matrix R is the rotation matrix that we
seek. We can recover the axis and angle of rotation from the matrix R
using the techniques described in Goldman (199la).

The two scaling transformations are also easy to find. Let

s1 =      u ,

s2 = 
    
 v –  (v ⋅  u*)u*  .

Note that s1, s2 are, respectively, the lengths of u*, v* before they are
normalized. Now let S be the matrix with s1, s2, 1 along the diagonal and
with zeroes everywhere else. The matrix S represents the two indepen-
dent scaling transformations that scale by s1 along the x-axis and s2
along the y-axis.

The shear H is the same as the first of the two shears that we used to
decompose a nonsingular linear transformation. Using the notation for
the identity matrix and the tensor product of two vectors that we estab-
lished above,

  H = I + tanθ(v* ⊗ u *),

     tanθ = v ⋅ u*/s2.

Thus, H is the shear defined by the unit normal vector v*, the unit vector
u*, and the angle θ. Again, it is easy to verify that

 u* * H = u*,     v* * H = v* + (v ⋅ u*/s2)u*,     w* * H = w*.

Last, we define the parallel projection P to be projection into the
u*v*-plane parallel to the vector(w* – w). According to Goldman(1990),
the matrix P is given by

    P = I – w* ⊗ ( w * – w).

Notice that if w = 0, this parallel projection reduces to orthogonal
projection into the u*v*-plane (Goldman, 1990). In any event, it is easy
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to verify that

u* * P = u*,      v* * P = v*,      w* * P = w.

Finally, let us show that

  L = S * R * H * P

by checking that both sides give the same result on the canonical basis
i, j, k. By construction we know that

  i * L = u,      j * L = v,      k * L = w,

so we need to verify that we get the same results for the right-hand side.
Let us check.

First,

i * S * R * H * P = (s1)i * R * H * P

    = (s1)u* * H * P

    = s1u*

    = u,

since by construction the two linear transformations H and P do not
affect u*.

Next,

j * S * R * H * P = (s2)j * R * H * P

    = (s2)v* * H * P

    = {s2v* + (v ⋅ u*)u*} * P

    = s2v* + (v ⋅ u*)u*

    = v.
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Finally,

 k * S * R * H * P = k * R * H * P
= w* * H * P
= w* * P
= w.

By the way, every parallel projection can be written as the product of a
shear followed by an orthogonal projection. To see this, recall that a
projection P parallel to the vector ω into the plane with normal vector n
is given by Goldman (1990):

    P = I – (n ⊗ ω)/n ⋅ ω.

Consider the orthogonal projection O into the plane perpendicular to the
unit vector n (Goldman, 1990),

  O = I – (n ⊗ n),

and the shear K defined by the unit normal vector n, the unit vector

ν = (n – ω/ω ⋅ n)/
    
 n –  ω /ω ⋅  n , and the angle θ given by tanθ =

    
 n –  ω /ω ⋅  n :

K = I + tanθ(n ⊗ ν).

Since ν ⋅ n = 0, it follows that (n ⊗ ν) * (n ⊗ n) = (ν ⋅ n)(n ⊗ n) = 0.
Therefore,

  I – (n ⊗ ω)/n ⋅ ω = {I + tanθ(n ⊗ ν)} * {I – (n ⊗ n)},

or, equivalently,
P = K * O

In our case ω = w* – w, n = w*, and ν = w. Thus, we have shown
that when rank(L) = 2, we can factor L into the product of two scales
one rotation, two shears, and one orthogonal projection. This decomposi-
tion is the same as in the nonsingular case, except that the number of
scales is reduced by one and the standard nonsingular factors—scales,
rotation, and shears—are followed by an orthogonal projection.
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Notice again that this decomposition is not unique. Indeed, the modi-

fied Gram-Schmidt orthogonalization procedure also depends upon the
ordering of the vectors to which it is applied. We could, for example,
have applied the Gram-Schmidt procedures to the vectors in the order
v, u instead of u, v. We would then have retrieved a different decomposi-
tion of the same matrix. Nevertheless, this procedure is still of some
value since it allows us to decompose an arbitrary singular linear transforma-
tion into simple, geometrically meaningful factors.

Affine TransformationsAffine TransformationsAffine TransformationsAffine TransformationsAffine Transformations
Finally, recall that every affine transformation A is simply a linear

transformation L followed by a translation T . If the affine transformation
is represented by a 4 × 3 matrix

 A = 
    

 L
 T 

,

then the upper 3 × 3 submatrix L represents the linear transformation
and the fourth row T represents the translation vector. Thus, to decom-
pose an arbitrary affine transformation into simpler, geometrically mean-
ingful factors, simply factor the associated linear transformation L and
append the translation T. Thus, every nonsingular affine transformation
of three-dimensional space can be factored into the product of three
scales, two shears, one rotation, and one translation. Similarly, every
singular affine transformation of three-dimensional space can be factored
into the product of two scales, two shears, one rotation, one orthogonal
projection, and one translation. Again, these decompositions are not
unique, since the decompositions  of the associated linear transformations
are not unique. Nevertheless, these procedures are still of some value
since they allow us to decompose arbitrary affine transformations into
simple, geometrically meaningful factors.

See also G2, 319; G2, 320; G3, C.2.
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FAST RANDOM ROTATIONFAST RANDOM ROTATIONFAST RANDOM ROTATIONFAST RANDOM ROTATIONFAST RANDOM ROTATIONMATRICESMATRICESMATRICESMATRICESMATRICES

James ArvoCornell UniversityIthaca, New York

In a previous Gem (Arvo, 1991), I described a method for generating
random rotation matrices based on random unit quaternions. As Ken
Shoemake points out in his Gem (III.6) that algorithm was flawed in that it
did not generate uniformly distributed rotation matrices. For a method
based on quaternions that corrects this defect see his algorithm. In this
Gem I describe a completely different approach to solving the same
problem that has the additional benefit of being slightly faster than the
previous method. The approach is based on the following fact:

To generate uniformly distributed random rotations of a unit sphere, first
perform a random rotation about the vertical axis, then rotate the north
pole to a random position.

The first step of this prescription is trivial. Given a random number, x1,
between 0 and 1. the matrix R does the trick:

R = 

    

 cos(2πx1 )    sin(2πx1 )    0 
 – sin(2πx1 )  cos(2πx1 )    0 
         0                 0            1

















.      (1)

Here we are assuming that the z-axis is the vertical axis, so the “north
pole” will be the point z = (0, 0, 1). The second operation is not quite so
obvious, but fortunately it can be carried out quite efficiently. Observe
that we can take the point z to any other point p on the sphere via a
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reflection through the plane orthogonal to the line   zp  and containing the
origin. Such a reflection is given by the Householder matrix

    H = I – 2vvT,     (2)

where v is a unit vector parallel to   zp  (see, for instance, Golub and Van
Loan, 1985). To turn this into a rotation we need only apply one more
reflection (making the determinant positive). A convenient reflection for
this purpose is reflection through the origin—that is, scaling by –1.
Thus, the final rotation matrix can be expressed as the product

M = –HR,     (3)

where R is the simple rotation in Eq. (1). The rotation matrix M will be
uniformly distributed within SO(3), the set of all rotations in three-space,
if H takes the north pole to every point on the sphere with equal
probability density. This will hold if the image of z under the random
reflection is such that both its azimuth angle and the cosine of its
elevation angle are uniformly distributed. The matrix H in Eq. (2) will
satisfy these requirements if we let

 v = 

    

 cos(2πx2 ) x3

 sin(2πx2 ) x3  

1 –  x3



















,     (4)

where x2 and x3 are two independent uniform random variables in [0,1].
To show this we need only compute p = Hz and verify that p is
distributed appropriately. Using the preceding definition of v, we have

p = z – 2vvTz = 

    

 – 2cos(2πx2 ) x3 (1 –  x3 )

 – 2sin(2πx2 ) x3 (1 –  x3 )   

                  2x3   –  1



















.               (5)

Because the third component of p is the cosine of its elevation angle, we
see immediately that it is uniformly distributed over [–1, 1], as required.
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Figure 1. An efficient procedure for creating random 3 × 3 rotation matrices.

Similarly, from its first two components we see that the azimuth angle of
p is 2πx2, which is uniformly distributed over [0, 2π].

The complete algorithm combining the reflection and simple rotation is
shown in Fig. 1, and an optimized version in C appears in the appendix.
Procedure “random_rotation” requires three uniformly distributed ran-
dom numbers between 0 and 1. Supplying these values as arguments has
several advantages. First, the procedure can be used in conjunction with
your favorite pseudorandom number generator, and there are a great
many to choose from. Secondly, if we obtain the three random numbers
by stratified or jittered sampling of the unit cube, the resulting rotation
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Figure 2.

matrices will inherit the benefits—namely, less clumping. Finally, if we
restrict the range of the random input variables (while maintaining their
uniformity), we can generate uniformly distributed perturbations or
“wobbles” within given limits.

Figure 2a shows the result of applying 1,000 random rotations to a
sphere with an arrow painted at one pole. The resulting pattern looks
much the same from any vantage point, providing visual confirmation of
uniformity. Figure 2b was generated by restricting x1 and x3 to the
range [0, 0.1].

See also G2, 355; G3, C.6.
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III.5III.5III.5III.5III.5ISSUES AND TECHNIQUESISSUES AND TECHNIQUESISSUES AND TECHNIQUESISSUES AND TECHNIQUESISSUES AND TECHNIQUESFOR KEYFRAMINGFOR KEYFRAMINGFOR KEYFRAMINGFOR KEYFRAMINGFOR KEYFRAMINGTRANSFORMATIONSTRANSFORMATIONSTRANSFORMATIONSTRANSFORMATIONSTRANSFORMATIONS
Paul DanaShadow GraphicsMadison, Alabama

IntroductionIntroductionIntroductionIntroductionIntroduction
Spencer, (1991) explains how to express a matrix as a set of parameters,
called an unmatrix. In Spencer’s unmatrix, each parameter is a single
value that can be interpolated using linear interpolation or piecewise
splining techniques. When simple interpolation is used to calculate trans-
formations between samples, unnatural motion can occur.

This Gem shows how to interpolate motion naturally between two
sample matrices for use in motion control or key-framing applications.
This technique was used to create the key frame animation system
described in Dana (1991).

Interpolating in Logarithmic SpaceInterpolating in Logarithmic SpaceInterpolating in Logarithmic SpaceInterpolating in Logarithmic SpaceInterpolating in Logarithmic Space
Unnatural or accelerated motion occurs when scaling parameters are
interpolated in a straightforward way. A simple interpolation, halfway
between a scaling parameter of 0.50 and 2.0, produces a value of 1.25
when the visually expected value would be 1.0.

A solution to this problem is to interpolate the logarithm of the scaling
parameter.



III.5 ISSUES AND TECHNIQUES FOR KEYFRAMING TRANSFORMATIONS

GRAPHICS GEMS III Edited by DAVID KIRK 122

Relative MotionRelative MotionRelative MotionRelative MotionRelative Motion
The most natural motion from one sample transformation to another is
the one that takes the shortest apparent path. When rotation parameters
are interpolated, sometimes the shortest path may cross the zero degree
mark. For example, the shortest path between 10 degrees and 350
degrees is –20 degrees, not +340 degrees.

A second rotation problem occurs when you want an object to appear
to rotate relative to its own oriental ion instead of relative to its current
orientation in the 3-D universe.

To get the desired transformation and to solve both the zero mark
problem and the axis problem:

1. Express the motion between two samples relative to the first sam-
ple, prior to interpolation.

2. Calculate the interpolation using an identity transformation and the
difference between the two samples.

3. Concatenate the interpolated transformation to the first sample.

This solves the zero mark problem because the rotational values of an
identity transformation are all zero. It also solves the axis problem by
expressing a segment of motion relative to the segment’s first sample.

Linear vs. Splined InterpolationLinear vs. Splined InterpolationLinear vs. Splined InterpolationLinear vs. Splined InterpolationLinear vs. Splined Interpolation
Although it might seem best to use a splining technique to interpolate all
the parameters of an unmatrix, experience has shown that ordinary linear
interpolation is best for the scaling, shearing, rotation, and perspective
parameters, and splined interpolation is best for the translation parame-
ters.
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Subdividing MotionSubdividing MotionSubdividing MotionSubdividing MotionSubdividing Motion
For a motion to have constant speed between two samples, the motion
must be subdivided into intervals of equal length in space, not just
duration in time. When using splined interpolation to interpolate transla-
tion parameters, the spline type must allow for even subdivision along the
length of a piece. A spline, such as a Cardinal spline, should be used.

See also G3, C.7.
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UNIFORM RANDOMUNIFORM RANDOMUNIFORM RANDOMUNIFORM RANDOMUNIFORM RANDOMROTATIONSROTATIONSROTATIONSROTATIONSROTATIONS

Ken ShoemakeOtter EnterprisesPalo Alto, California

BackgroundBackgroundBackgroundBackgroundBackground
A previous Graphics Gem (Arvo, 1991) presented an algorithm for gener-
ating random rotations, in both quaternion and matrix form. It takes as
input three uniform deviates and efficiently computes a random rotation
with a uniformly distributed axis and a uniformly distributed angle. The
purpose of the present gem is to demonstrate that, surprisingly, that
algorithm does not generate a uniformly distributed rotation, and to give
two simple algorithms that do.

How can the distribution of the axis and angle be uniform, and yet the
distribution of the rotations not be? To answer that question requires, first
of all, a definition of uniformity. Since rotations form a group, an
approach that is both standard and intuitively satisfying uses “Haar
measure” as follows: If X is a random rotation with uniform distribution,
then for any fixed but arbitrary rotation R, RX and XR have the same
distribution as X. A rough physical analogy is the testing of a bicycle
wheel for balance by spinning it and looking for wobbles, or dragging a
flat edge across freshly poured cement to smooth it.

Planar RotationsPlanar RotationsPlanar RotationsPlanar RotationsPlanar Rotations
Before examining the implications of this definition for spatial rotations,
let us first examine its application to the simpler case of planar rotations,
where we can use both our eyes and our intuition. A planar rotation can
be represented in several ways, for example as an angle between 0 and
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2π, as a unit complex number x + iy = cosθ + isinθ, and as a matrix

   
    

     x        y  

 – y        x  








  = 

    

     cosθ        sinθ  

 – sinθ        cosθ  






Planar rotations combine by summing their angles modulo 2π, so one
way to generate a uniform planar rotation is to generate a uniform angle.
Combination of X with R merely slides the angle around. Since this
leaves the distribution unchanged, it is uniform. A more geometrical
interpretation of this problem is that we want to generate points uni-
formly distributed on the unit circle x2 + y2 = 1, with probability pro-
portional to arc length. Note that the average magnitude of x will be 1/π
times the integral of 2 cosθ from 0 to π/2, namely 2/π ≈ 0.6366. This
computation is merely “summing”—integrating—the x values of all the
points on the right half of the circle and dividing by the “number of
points” used—the arc length of that half of the circle. Here and subse-
quently we take advantage of circle (later, sphere) and sinusoid symme-
tries when computing magnitudes. Now suppose a rotation is generated
by choosing a uniformly distributed x between –1 and +1, with y

Figure 1. Haar test reveals distribution lumps.
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computed as ± 1 –  x 2  (either sign being equally likely). For this
distribution the average magnitude of x will be   

1
2

, and so it cannot give
uniformly distributed rotations.

Uniform Spherical DistributionUniform Spherical DistributionUniform Spherical DistributionUniform Spherical DistributionUniform Spherical Distribution
Shortly, we are going to want to know about points uniformly distributed
on a sphere, and on a hypersphere. The sphere case is easier to visualize,
and has a surprising result: Each coordinate of a point uniformly dis-
tributed on a sphere is uniformly distributed! Thus, for example, the
average magnitude of the x coordinate is   

1
2
. A uniformly distributed point

can be generated by choosing z uniformly distributed on –1 to +1, and
x and y uniformly distributed on a circle of radius     1 –  z2 , a fact
exploited in Arvo’s algorithm (Arvo, 1991).

To derive the x distribution and average magnitude, we integrate
circular slices. Since the sphere is symmetrical, and only positive x
values lie in the right hemisphere, we will confine our attention there.

Figure 2. Density and average of x for planar rotation.
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Calculation will be simpler if the variable of integration is θ, with
x = sinθ; then the radius of the circular slice at x will be cosθ, and its
perimeter length 2π cosθ. The area of the hemisphere is, of course, just
the integral of the perimeters for θ from 0 to π/2, which is 2π. For the
circle, the integral for average magnitude weighted each x value by 2,
since the one-dimensional slices gave exactly two points. Now the weight
for x = sinθ will be 2π cosθ, because of the circular slice. (There, x
was cosθ; here, sinθ.) So the average magnitude is

 
  

1
2π 0

π/2

∫ –2π cos θ sinθ dθ = 
  

1
2

.

To find the probability of a value being between 0 and x, we simply
integrate the circular slices from 0 to arcsin x, giving

   
    

1
2π 0

arcsin x

∫ –2π cosθ dθ = x.

This shows that the coordinate distributions are uniform (though not
independently so!) for points uniformly distributed on a sphere.

Figure 3. Sphere distribution integral.
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Spatial RotationsSpatial RotationsSpatial RotationsSpatial RotationsSpatial Rotations
With these warm-up exercises behind us, we are ready to tackle spatial
rotations. Once again there are several possible representations, including
Euler angles (θx, θy, θz), unit quaternions w + iv + jx + kz (Shoemake,
1985, 1989), and 3 × 3 matrices

 

    

 1 –  2(y 2  +  z2 )       2xy –  2wz          2xz +  2wy 

    2xy +  2wz        1 –  2(x 2  +  z2 )     2yz –  2wx

    2xz –  2wy             2yz +  2wx      1 –  2(x 2  +  y 2 ) 























.

In this case, unit quaternions are the best representation, and the geomet-
ric problem turns out to be one of generating a point uniformly dis-
tributed on a sphere in four dimensions, the quaternion unit sphere
x2 + y2 + z2 + w2 = 1. Composition of a random rotation X with a
given rotation R is given by multiplication of the corresponding unit
quaternions, qR ♦ qX Multiplication turns (and/or reflects) the hyper-
sphere, just as two-dimensional rotation composition turns the unit circle.
Nonuniformity in the distribution of qX values on the hypersphere shows
up as a change—violating the Haar criterion—when it is turned by
composition with some qR. Turns around any four-dimensional axis are
possible (Shoemake, 1991), so there are no “dead spots” where nonuni-
formity can hide (except equivalence of q and –q, but we avoid that
loophole by dealing with magnitudes). So only uniformly distributed unit
quaternions correspond to uniformly distributed rotations.

Angles Not UniformAngles Not UniformAngles Not UniformAngles Not UniformAngles Not Uniform
The average magnitude of, say, the w component can be computed in
perfect analogy to the spherical case. There, the average x magnitude
was obtained by integrating over a hemisphere (to give only positive
values) and dividing by the associated area. Here, we integrate over half
the hypersphere, and divide by the corresponding hypersurface measure.
There, a circle of radius cosθ contributed to each x value of sinθ; here,
a complete three-dimensional sphere of radius cosθ contributes to the w
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value of sinθ. The area of a radius r sphere is 4πr2, while that of a unit
hypersphere is 2π2. Thus, the average magnitude of w for uniformly
distributed unit quaternions is given by

 
  

1
π2

0

π/2

∫ 4π cos2θ sinθ dθ = 
  

4
3π

 ≈ 0.4244.

We are now in a position to prove that a uniformly distributed spatial
rotation does not have a uniformly distributed angle. For a unit quater-
nion, the w component is the cosine of half the angle of rotation. When
the angle is uniformly distributed between 0 and 2π, the average magni-
tude of w will be 2/π ≈ 0.6366, which exceeds the correct value for a
uniform rotation by a factor of   

3
2 . Thus, the algorithm in Arvo (1991)

cannot generate a uniformly distributed rotation, as claimed.

Uniform Rotations from GaussiansUniform Rotations from GaussiansUniform Rotations from GaussiansUniform Rotations from GaussiansUniform Rotations from Gaussians
Fortunately, it is easy to generate random unit quaternions—and hence
rotations—with the correct distribution. Assign to the components of a
quaternion the values of four Gaussian distributed independent random
variables with mean 0 and any common standard deviation—say, 1. Then
the quaternion itself will be Gaussian distributed in four-dimensional
space (because of the separability of Gaussians) and can be normalized to
give a uniformly distributed unit quaternion (because of the spatial
symmetry of Gaussians). Pairs of independent variables with Gaussian
distribution can easily be generated using the polar, or Box–Muller,
method, which transforms a point uniformly distributed within the unit
disk. The Gaussian generation can be folded into the unit quaternion
generation to give an efficient algorithm (Knuth, 1981, p. 130).

Subgroup AlgorithmSubgroup AlgorithmSubgroup AlgorithmSubgroup AlgorithmSubgroup Algorithm
There is, however, a better way to generate uniform random rotations, an
approach that generalizes efficiently to any number of dimensions, and to
groups other than rotations. In our case, it reduces to the following
simple prescription. Let X0, X1, and X2 be three independent random
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variables that are uniformly distributed between 0 and 1. Compute two
uniformly distributed angles, θ1 = 2πX1 and θ2 = 2πX2, and their sines
and cosines, sl, cl, s2, c2. Also compute rl =      1 –  X0  and r2 =      X0 .
Then return the unit quaternion with components [slr l, c lrl, s2r2, c2r2].

Before comparing the computed distribution with the correct distribu-
tion, let us look at how this code can be derived from first principles. As
we saw earlier, a uniform plane rotation is easily obtained from a uniform
angle between 0 and 2π. Plane rotations form a subgroup of the group
of rotations in space, namely rotations around the z axis. The cosets of
this subgroup are represented by the rotations pointing the z axis in
different directions. By multiplying a uniformly distributed element from
the subgroup with a uniformly distributed coset representative, the sub-
group algorithm generates a uniformly distributed element of the com-
plete group, as explained below.

To better understand the subgroup algorithm, consider a simpler exam-
ple. The six permutations of a triangle’s vertices form a group. Reversing
the triangle generates a two-permutation subgroup (1, 2, 3) and (3, 2, 1),
for which there are three cosets, {(1,2,3), (3,2,1)}, {(2,3,1), (1,3,2)},
and {(3, 1, 2), (2, 1, 3)}, each closed under composition with the subgroup
permutations. Uniformly choose one of the cosets; then the combination
of a permutation from that coset with a uniformly chosen permutation
from the subgroup will be uniform over the whole group. Further exam-
ples are given in Diaconis and Shahshahani (1986).

In terms of quaternions, a rotation around z has the form [0, 0, s, c],
while a rotation pointing z in an arbitrary direction has the form

Figure 4. Cosets in dihedral group.
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[x, y, 0, w]. If the direction is to be uniformly distributed, w must be
distributed as the square root of a uniform distribution, and x and y
must be a uniform plane rotation times      1 –  w 2 . The square root is
necessary because the rotated z value should be uniform for a point
uniformly distributed on a sphere. (Remember?) The z value comes out
to be 2w2 – 1; substituting w =      X0  gives 2X0 – 1, a uniform deviate
between –1 and +1, as required. The product of the z placement with
the z rotation is [cx + sy, –sx + cy, sw, cw], which is just one step
away from the final code. We know, since this should give points uni-
formly distributed on a hypersphere, that all components have the same
kind of distribution. In particular, the first two components are the
product of two uniform plane rotations times a magnitude of      1 –  X0 ,
which can be reduced to a single plane rotation of the correct magnitude,
like the last two components. The result is the code stated.

Distribution CheckDistribution CheckDistribution CheckDistribution CheckDistribution Check
Ignoring the derivation, what is the distribution of a component, say,

     X0  sin(2πX2)? The average magnitude can be computed by integrating
square root from 0 to 1, and 1/π times the sine from 0 to π; taking their
product gives the expected value 4/3π. That this is correct is necessary
but not sufficient to show that the distribution is correct, so we press on.
The probability that the magnitude of a component is less than or equal
to x should be 2/π (x     1 –  x 2  + arcsin x), a value obtained from

    
1

π2
0

arcsin x

∫ –4π cos2θ dθ,

much as in the spherical case. Obtaining the computed probability is
harder. For a uniform distribution, the probability of obtaining a value
less than or equal to x is F(x) = x; for an invertible function g(x) of a
uniform distribution, the probability is F(x) = g–1(x). Thus, for      X0  we
have F(x)  = x2, while for sinπ/2 X2 (with the range restricted for
invertibility and magnitude) we have F(x) = 2/π arcsin x. The density at
x of this latter distribution is the derivative there, 2/π 1/     1 –  x 2 . Now
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the distribution of the product can be obtained. When the sine term has
the value s, the only way to get a product less than or equal to x is for
the square root term to be less than or equal to x/s, which—since the
square root is at most 1—has probability (Min(x/s,1))2. Weighting each
s value by its density, and integrating over all s, we have

    

2
π0

1

∫
1

 1 –  s2 (Min(x/s,1))2 ds

= 
    

2
πx

1

∫
1

 1 –  s2 (x/s)2 ds + 
    

2
π0

x

∫
1

 1 –  s2  ds

= 
    
2
π (x  1 –  x 2  + arcsin x),

as required.

AcknowledgmentsAcknowledgmentsAcknowledgmentsAcknowledgmentsAcknowledgments
Thanks to James Arvo for his questions and suggestions; this Gem is
better as a result.

See also G2, 355; G3, C.4.
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INTERPOLATION USINGINTERPOLATION USINGINTERPOLATION USINGINTERPOLATION USINGINTERPOLATION USINGBÉZIER CURVESBÉZIER CURVESBÉZIER CURVESBÉZIER CURVESBÉZIER CURVES
Gershon ElberComputer Science DepartmentUniversity of Utah

IntroductionIntroductionIntroductionIntroductionIntroduction
The Bézier representation (Eq. (1)) is well known and frequently used for
CAD applications as it possesses extremely useful properties:

B(t) = 
    

PiBi
k (t)

i = 0

k

∑ ,
    
Bi

k (t) =  
k

i






 t i (1 –  t)k – i .     (1)

Bézier curves are easy to evaluate, derive, and subdivide and are
unimodal for t ∈ [0, . . . , 1]. This representation possesses important
properties such as control polygon convex hull curve bounding, intuitive
curve shape control using control points, and the variation diminishing
property. All in all, the Bézier representation is a very useful tool for CAD
applications.

A Bézier curve only approximates the shape of its control polygon. If
an interpolation scheme is required, this representation cannot usually be
used. It may be desired to find the Bézier curve that interpolates a set of
points. This will enable the use of the simple and elegant evaluation
algorithms (Goldman, 1990) of the Bézier representation with its useful
properties.

In this Gem we will present a simple way to find the Bézier curve that
interpolates a given set of points.
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CURVESNumeric SolutionNumeric SolutionNumeric SolutionNumeric SolutionNumeric Solution
When one attempts to solve the interpolation problem for Bézier curves, a
set of linear equations may be defined and solved. Let B(t) be the Bézier
curve interpolating the point set I  = (T,V) = (ti, Vi), i = 0, . . . , k, t, ≠
tj, ∀ i ≠ j:

B(ti) = Vi,  i = 0, . . . , k     (2)

A one-dimensional Bézier curve of degree k has k + 1 degrees of
freedom—its coefficients or control points. Therefore, given a set of
k + 1 points to interpolate, a Bézier curve of at least degree k is required
to ensure that solution exists.

A linear system of k + 1 equations is defined for the k + 1 Bézier
control polygon points, P = Pi, i = 0, . . . , k, as the unknowns:

      

 B0 
k (t0 )     B1 

k (t0 )     L     Bk 
k (t0 ) 

 B0 
k (t1 )     B1 
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




    (3)

and given input I  one can numerically solve and find P. Note that Vi

(and Pi) may be vectors in which the linear system should be solved
coordinatewise. Let M be the B’s square matrix of Eq. (3). As almost all

    Bi 
k (tj) ≠ 0 in M, the solution to Eq. (3) is of the order O(k3) or quite

expensive. In the next section we present a way to perform this task
without the need to solve such a linear system each time.

Symbolic SolutionSymbolic SolutionSymbolic SolutionSymbolic SolutionSymbolic Solution
While the numeric technique described in the preceding section is gen-
eral, one can alleviate the need to solve the linear system each time by
posing one more constraint on the problem. Let I  = ((i/k), Vi), i =
0, . . . , k, be the set of points to interpolate. In other words, the parameter
value interpolating Vi is not free any more, but equal to i/k. One only
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CURVESneeds to specify V or I = (V) = (Vi), i = 0, . . . , k, as now the ti s are in
fixed and equally spaced positions.

    Bi 
k (t) maximum is at i/k. Therefore, Pi is most influenced from Vi,

which is usually more intuitive. However, any fixed and distinguished set
of k + 1 parameter values may be used in a similar way.

Updating Eq. (3) and using this new constraint, we get
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.     (4)

Interestingly enough, M in Eq. (4) is independent of I. In other
words, one can solve this system (invert M) without knowing anything
about the input set I ! Given a set of points, I, the control polygon of
the Bézier curve interpolating I is

P = M–1 V,     (5)

where M–1 is M inverse.
By picking i/k as the parameters at which the Bézier curve is interpo-

lating the input data, all the terms in M, Mji, are of the form

Mji =     Bi 
k

  

j
k









  = 

  

k
i






     
1 –  

j
k





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k – i j
k







i

= 
    

k!(k –  j)k – i j i

i!(k –  i)!k k
    (6)

or the term in Eq. (6) and therefore all the terms in M and M–1 may be
expressed as rational integers exactly.
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The C program provided uses the symbolic solution for M–1 for Bézier
curves from order 2 (linear) to 9. A long rational integer (32 bits) is used
to hold the exact symbolic solution (Reduce, 1987). The zero element of
each row holds the line common denominator for the rest of the line
numerators. Most of the implementation is, in fact, the symbolic solution
represented as rational values. The following routines simply multiply this
matrix solution by the given V input set to find the control polygon point
set, P.

See also G1, 75; G3, C.4.
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RIGID PHYSICALLY BASEDRIGID PHYSICALLY BASEDRIGID PHYSICALLY BASEDRIGID PHYSICALLY BASEDRIGID PHYSICALLY BASEDSUPERQUADRICSSUPERQUADRICSSUPERQUADRICSSUPERQUADRICSSUPERQUADRICS

A. H. BarrCalifornia Institute of TechnologyPasadena, California
IntroductionIntroductionIntroductionIntroductionIntroduction
Superquadric ellipsoids and toroids are recent geometric shapes, useful
for computer graphics modeling. In this article, we provide equations
needed to calculate the motion of these shapes in rigid physically based
modeling: We present closed-form algebraic expressions for the volume,
center of mass, and rotational inertia tensor for (constant density) su-
perquadric shapes. We do not cover nonrigid physically based motion. In
the appendices, we briefly review superquadrics, the equations of rigid
body motion of Newtonian physics, and ancillary mathematical definitions
and derivations.

Review of SuperquadricsReview of SuperquadricsReview of SuperquadricsReview of SuperquadricsReview of Superquadrics
Superquadrics (Barr, 1981) are three-dimensional extensions of Piet
Hein’s two-dimensional superellipses (Faux and Pratt, 1979). They allow
us to easily represent rounded, square, cylindrical, pinched, and toroidal
shapes with relatively simple equations. The superquadric parametric
surface function is a profile surface based on trigonometric functions
raised to exponents (which retain the appropriate plus or minus sign in
their octant).

There are six shape parameters of the superquadrics:

• the roundness/squareness shape parameter in the north-south direc-
tion is “n”
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Figure 1. Examples of superquadric ellipsoids. From left to right, we produce a sphere,
a pyramid, a cylindroid, and a cuboid. The north-south parameters, respectively, are 1.0,
1.8, 0.2, 0.2, and the east-west parameters are 1.0, 0.6, 1.0, and 0.2.

• the east–west roundness/squareness parameter is “e”

• a1, a2, and a3 are length, width, and depth parameters

• for toroids, ”α” is a “hole diameter” parameter and should be greater
than one, to avoid self-intersection.

Equations reviewing the geometric properties of superquadrics are
found in Appendix A.

Rigid Physically Based Superquadric QuantitiesRigid Physically Based Superquadric QuantitiesRigid Physically Based Superquadric QuantitiesRigid Physically Based Superquadric QuantitiesRigid Physically Based Superquadric Quantities
We need several quantities to calculate physically based computer graph-
ics motions of rigid bodies. Specifically, we need to know

1. the position xC of the center of mass of the object,

2. the net mass M of the bodies, and

3. the rotational inertia tensor,   I , of the body.

We use these quantities in the equations of rigid body motion, which
we review briefly in Appendix B. We use notation similar to that of Barzel
and Barr (1988) and refer the reader to that article and to Barzel (1992)
for a description of rigid body motion and methods to calculate dynamic
constraints on rigid bodies. We refer to Barr (1984), Terzopoulis et al.
(1987), and Pentland and Williams (1989) for different types of nonrigid
motion.
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Figure 2. Examples of superquadric toroids. From left to right, we produce a round
torus, a “pineapple-slice” toroid, and a square toroid. The north-south parameters,
respectively, are 1.0, 0.2, 0.2, and the east-west parameters are 1.0, 1.0, and 0.2. The
hole parameter, α, is 2.

Center of MassCenter of MassCenter of MassCenter of MassCenter of Mass
For the canonical superquadrics described in Appendix A, the position of
the center of mass is at the origin:

    xC =  0.

Of course, when we calculate a new center of mass of the object from
the equations of rigid body motion, we need to translate the superquadric
to the new position.

Volume, Density, and MassVolume, Density, and MassVolume, Density, and MassVolume, Density, and MassVolume, Density, and Mass
There are a number of ways to specify volume, density, and mass. In this
article, we let the terms ρ and M be the density and mass of the
superquadric object (ellipsoid or toroid). The user first chooses the
substance of the object (say steel or wood), which determines ρ, its
density. Then the mass of the object is determined from the object’s
volume.1

We let VE signify the volume of the superquadric ellipsoids, and VT the
volume of the toroids (V without either subscript can signify the volume
of either shape). We express the volume formula in terms of beta
functions, β(m, n). Methods for computing β(m, n) are shown in Ap-
pendix C. Appendix D provides a sketch of the derivation of the volume
and inertia tensor formulas.

1This is the recommended approach. Of course, we could also choose the mass first,
without choosing a “real” material. Then the density would be the derived quantity,
instead of the mass.
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Volume, Superquadric Ellipsoids
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Volume, Superquadric Toroids
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Mass, Ellipsoid or Toroid
The mass M is expressed in terms of the volume V and density ρ.
ρ = substance density, M = ρV, where V is the volume of either ellipsoid
or toroid.

Inertia TensorInertia TensorInertia TensorInertia TensorInertia Tensor
The formulas for the inertia tensor are the primary results of this paper.
We let   I E be the inertia tensor of the superquadric ellipsoids, and   I T the
inertia tensor of the toroids.

Inertia Tensor, Superquadric Ellipsoid
In body coordinates, the components of the inertia tensor are constant.
The off-diagonal components are zero, due to symmetry arguments:

    I E
body  =  ρE
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In Appendix D, we show the derivation of i1E, i2E, and i3E, along with

the volume, V.

Inertia Tensor, Superquadric Toroid
Likewise, the components of the toroid inertia tensor are constant in body
coordinates.

       I T
body  =  ρT
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0 i1T + i3T 0
0 0 i1T + i2T
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In Appendix D, we show the derivation of i1T, i2T, and i3T, along with
the volume, V.

Examples of the Volume and Inertia TensorsExamples of the Volume and Inertia TensorsExamples of the Volume and Inertia TensorsExamples of the Volume and Inertia TensorsExamples of the Volume and Inertia Tensors
For some values of n and e, the superquadric inertia tensor is particu-
larly simple and can be compared to known inertia tensors of spheres,
ellipsoids, blocks, and cones. Note that the values of a1, a2, and a3 are
the principal radii of the shapes (not the diameters!).

Superquadric Ellipsoid Examples
We present the volume and nonzero components of the inertia tensors for
particular superquadric ellipsoids. The reader can compare the results of
their numerical computations to these formulas, for verification purposes.
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Toroid Examples
We provide similar test cases for the superquadric toroids.
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Obtaining the Tensors and Their Inverses in WorldObtaining the Tensors and Their Inverses in WorldObtaining the Tensors and Their Inverses in WorldObtaining the Tensors and Their Inverses in WorldObtaining the Tensors and Their Inverses in WorldCoordinatesCoordinatesCoordinatesCoordinatesCoordinates
To obtain the components of the inertia tensor in world coordinates, we
use the same 3 × 3 rotation matrix   R  that rotates the body vectors into
world coordinates.

The inertia tensor in world coordinates is given by

    (I world )ij  = 
    k =1

3

∑ RikRjl (I body )kl

l =1

3

∑ .

The components of the inverse matrix of the inertia tensor in world
coordinates are given by

     (I world )–1( )ij  = 
      k =1

3

∑ RikRjl (I body )–1( )kl
l =1

3

∑ .

Note that in the body coordinate system, the components of the
matrices are constant and only need to be computed once (and that in
world coordinates the components change as a function of time).

ConclusionConclusionConclusionConclusionConclusion
By applying the results of the preceding sections in the context of
Appendix B, the reader is able to add superquadric shapes to a previously
written physically based computer graphics modeling package.

AcknowledgmentAcknowledgmentAcknowledgmentAcknowledgmentAcknowledgment
I would like to thank Dr. John Snyder for alternate numerical computa-
tions used to double-check the closed-form equations for volume and
inertia tensor.
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Appendix A: Review of Superquadric GeometricAppendix A: Review of Superquadric GeometricAppendix A: Review of Superquadric GeometricAppendix A: Review of Superquadric GeometricAppendix A: Review of Superquadric GeometricQuantitiesQuantitiesQuantitiesQuantitiesQuantities
Superquadrics have an unusual property: They have closed-form alge-
braic expressions for their most important geometric features. This
closed-form property makes them easier to use and more appropriate for
computer graphics applications. Thus, like spheres, they have

1. a relatively simple parametric form of their surface,

2. an implicit function to test if a given 3-D point is inside or outside of
the shape, and

3. simple expressions for their normal vectors.

Parametric Surface FunctionsParametric Surface FunctionsParametric Surface FunctionsParametric Surface FunctionsParametric Surface Functions
We need three functions, c(w, m), s(w, m), and cT(w, m, α) to calculate
the parametric surface for superquadric ellipsoids and toroids:

c(w, m) = sgn(cos(w))     cos(w)  m ,

   cT(w, m, α) = α + c(w,m),    α > 1,

     s(w, m) = sgn(sin(w))     sin(w)  m .

For us,

   sgn(x) = 

    

–1,   x < 0
0,   x = 0
1,   x > 0






.

Also, note that cT(w, m, α) is always greater than zero (to avoid
self-intersection).
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Superquadric Ellipsoid
(Surface parameters u and v; dimensions: a1, a2, a3; roundness/square-
ness shape parameters: n, e.)

x(u, v) = a1c(v, n)c(u, e),

y(u, v) = a2c(v, n)s(u, e),

z(u, v) = a3s(v, n),

   –π/2 ≤ v ≤ π/2,   –π ≤ u < π.

See Figs. 1 and 3.

Superquadric Toroid
(Surface parameters u and v; dimension parameters: a1, a2, a3; hole
diameter parameter: α,  α  > 1; roundness/squareness shape parameters:
n, e . )

    x(u, v) = a1cT(v, n, α )c(u, e),

    y(u, v) = a2cT(v, n, α )s(u, e),

    z(u, v) = a3s(v, n),

 –π ≤ v < π,  –π ≤ u < π.

Note that unlike the ellipsoids, the v parameter for the toroids goes
completely around a circle, from –π to π, instead of only halfway
around.

See Figs. 2 and 4.

“Inside-Outside” Function“Inside-Outside” Function“Inside-Outside” Function“Inside-Outside” Function“Inside-Outside” Function
If f(x, y, z) < 0 we are inside the object; if f(x, y, z) = 0 we are on the
object, while if f(x, y, z) > 0 we are outside the object.
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“Inside-Outside” Function of Superquadric Ellipsoids

   f(x, y, z) = 
    

x / a1

2/e + y / a2

2/e( )e/n

+  z / a3

2/n – 1

“Inside-Outside” Function of Superquadric Toroids
  f(x, y, z) = 

    
 x / a1

2/e + y / a2

2/e( )e/2

– α 
2/n

+  z / a3

2/n – 1.

Normal VectorsNormal VectorsNormal VectorsNormal VectorsNormal Vectors
As the reader is aware of, normal vectors are used in computer graphics
shading operations. To obtain unit normal vectors, you need to divide by
the magnitude of the normal vectors in the following equations:

Normal Vectors, Superquadric Ellipsoids and Toroids, Parametric Form
N1(u, v) = 

    

1
a1

c(v, 2 – n)c(u, 2 – e),

N2(u, v) = 
    

1
a2

c(v, 2 – n)s(u, 2 – e),

N3(u, v) = 
    

1
a3

s(v, 2 – n).

Normal Vectors, Superquadric Ellipsoids and Toroids, Implicit Form
 N1 = 

    

∂f (x, y , z)
∂x

,

 N2 = 
    

∂f (x, y , z)
∂y

,

 N3 = 
    

∂f (x, y , z)
∂z

.
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Appendix B: Some Equations of Rigid-Body MotionAppendix B: Some Equations of Rigid-Body MotionAppendix B: Some Equations of Rigid-Body MotionAppendix B: Some Equations of Rigid-Body MotionAppendix B: Some Equations of Rigid-Body Motion
Although we cannot provide a complete description of rigid-body motion
within the scope of this article, we can review parts of it briefly.

The main purpose of the rotational inertia tensor   I  is to allow us to
convert between angular momentum   L  and angular velocity ω . The
rotational inertia matrix times the angular velocity is the angular momen-
tum. It is very similar to the conversion between linear momentum   P  and
linear velocity   v . The mass (linear inertia) M times the velocity is the
linear momentum   P .

There are several types of equations that rigid-body motion utilizes:

Differential equations:

  x' =  v,

    
q'

i
 =  

1
2

–ω ⋅  r

sω +  ω ×  r






  P' =  F,

    L' =  T ;

Initial conditions:

    x(0) =  x0 ,

    q(0) =  q
0
,

    P(0) =  Mv0 ,

    L(0) =  I world ω 0 ;
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Auxiliary equations:

    
v =  P

M ,

    ω =  I world( )—1
L,

  

R =  

1– 2q̂
2
2 – 2q̂

3
2 2q̂

1
q̂

2
– 2q̂

0
q̂

3
2q̂

1
q̂

3
+ 2q̂

2
q̂

3

2q̂
1
q̂

2
+ 2q̂

0
q̂

3
1– 2q̂

1
2 – 2q̂

3
2 2q̂

2
q̂

3
– 2q̂

0
q̂

1

2q̂
1
q̂

3
– 2q̂

0
q̂

1
2q̂

2
q̂

3
+ 2q̂

0
q̂

1
1– 2q̂

1
2 – 2q̂

2
2

















s = scalar part of quaternion

r = vector part of quaternion

where
  x  is a three-by-one vector for the position of the center of mass of the

object, for us to translate our object by;

  R  is a right-handed three-by-three rotation matrix that rotates the
object;

  P  is the linear momentum of the object (a three-by-one vector);
  L  is the angular momentum of the object (three-by-one vector);
  F  is the net force acting on the object’s center of mass (a three-by-one

vector);
  T  is the net torque acting around the object’s center of mass (a

three-by-one vector);
  v  is the linear velocity of the object (a three-by-one vector);
ω  is the angular velocity of the object (a three-by-one vector);
M is the mass of the object;

    I
world  is a three-by-three matrix for the rotational inertia tensor of the

object in world coordinates (see the section in the text on the inertia
tensor);

and   q̂ =  q /  q ⋅  q
Please see Goldstein (1980) for additional details.
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Appendix C: How to Compute Appendix C: How to Compute Appendix C: How to Compute Appendix C: How to Compute Appendix C: How to Compute β(((((mmmmm, ,  ,  ,  ,  nnnnn), and ), and ), and ), and ), and Γ(((((nnnnn)))))
Integral Form of the Beta FunctionIntegral Form of the Beta FunctionIntegral Form of the Beta FunctionIntegral Form of the Beta FunctionIntegral Form of the Beta Function
The β function is defined via the integral

  
    

 tn–1

0

1

∫ (1 –  t)m–1 dt =  β(m,  n).

The parameters m and n are nonnegative real numbers.
The volume and inertia tensor derivation is based on the following

integral, where we transform the preceding definition. We let t = sin2(x)
and divide both sides by 2:

 
    

    cos2n–1

0

π/2

∫ (x)sin2m–1(x)dx =  
1
2β(m,  n).

Thus, we can evaluate any definite integral with an integrand consisting
of sin and cos raised to (non-integer) powers (if we can coerce it into
having limits from zero to π/2). This is the heart of the derivation shown
in Appendix D.

How to Compute How to Compute How to Compute How to Compute How to Compute β(n(n(n(n(n, ,  ,  ,  ,  m)m)m)m)m)
When we wish to compute the value of the beta function, we take the
ratio of numerically computed gamma functions:

 
    
β (m,  n) =  Γ(m)Γ(n)

Γ(m +  n).

How to Numerically Compute How to Numerically Compute How to Numerically Compute How to Numerically Compute How to Numerically Compute Γ(x)(x)(x)(x)(x)
The Γ function is a continuum form of the factorial function (with its
argument shifted by 1). For all real x > 0 (integer or not),

       Γ(x +  1) =  xΓ(x).
When x is a positive integer,

         Γ(x +  1) =  x!.
Also,

         Γ(1/ 2) =  π 1/ 2 .
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Based on a continued fraction formulation found in Abremowitz and

Stegun (1970) we provide a method to compute Γ(x).
Let

γ0 = 1/12,

γ1 = 1/30,

γ2 = 53/210,

γ3 = 195/371,

γ4 = 22,999/22,737,

γ5 = 29,944,523/19,733,142,

γ6 = 109,535,241,009/48,264,275,462,

  
    
G(x) =  

1
2

log(2π ) –  x +   x –  
1
2





 log(x)

     
    
+ γ 0 / (x +  γ 1 / (x +  γ 2 / (x +  γ 3 / (x +  γ 4 / (x +  γ 5 / (x +  γ 6 / x)))))),

     Γ(x) =  exp G(x +  5)[ ]/(x(x +  1)(x +  2)(x +  3)(x +  4)).

Appendix D: Sketch of Derivation of SuperquadricAppendix D: Sketch of Derivation of SuperquadricAppendix D: Sketch of Derivation of SuperquadricAppendix D: Sketch of Derivation of SuperquadricAppendix D: Sketch of Derivation of SuperquadricVolume, Mass, and Inertia TensorVolume, Mass, and Inertia TensorVolume, Mass, and Inertia TensorVolume, Mass, and Inertia TensorVolume, Mass, and Inertia Tensor
The volume V of an object is given by

    
V =         1 dxdydz.

region∫∫∫
The mass M of an object is given by

 
    
M =         ρ(x,  y,  z) dxdydz,

region∫∫∫
where ρ(x, y, z) is the density of the objects.
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The rotational inertia tensor   I  of an object is given by the following

expression:

    I  = 

    

ρ(x,  y,  z)
y2 + z 2 –(xy) –(xz)

–(xy) x 2 + z 2 –(yz)

–(xz) –(yz) x 2 + y2















 dxdydz.
region∫∫∫

For constant density, by symmetry, we can determine that the off-
diagonal terms are zero for the rotational inertia tensor of a superquadric
in its home coordinate system. We can integrate x2, y2, and z2, and then
combine them additively to get the diagonal terms. We will also need to
integrate “1” to get the volume.

If the density were not constant, but instead were a function ρ(r, u, v)
expressed in terms of sin and cos, and integer powers of r, the derivation
would be similar to what follows, except we would need to compute seven
quantities instead of four (six quantities from the three-by-three matrix,
and the mass integral). The eight different pieces would need to be
computed separately.

For constant density, however, it is sufficient to compute four quanti-
ties involving 1, x2, y2, and z2, which we combine to get the volume,
mass, and inertia tensor as shown in the section entitled “Inertia Tensor,
Superquadric Ellipsoid.”

Let

    

I E  ≡  

ρVE

i1E

i2E

i3E



















 =  ρ

1

x 2

y 2

z2



















 dxdydz.
region∫∫∫

We will provide a superquadric coordinate system for the ellipsoids and
the toroids, as radial “shells” to perform the integration. The shells are
parameterized by “r” for radius and u and v for the surface. To change
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the coordinates from x, y, z to u, v, r, we need to compute the determi-
nant of the Jacobian matrix   J  (which we will describe shortly):

    

iE  =  ρ
umin

umax∫vmin

vmax∫rmin

rmax∫

1

x 2

y 2

z2



















 det J du dv dr.

Superquadric EllipsoidsSuperquadric EllipsoidsSuperquadric EllipsoidsSuperquadric EllipsoidsSuperquadric Ellipsoids
For the superquadric ellipsoids, the eight shells are centered at the origin,
parameterized by “r” for radius. In each octant of the x, y, z coordinate
system, the superquadric shape is expressed via

x(u, v) = ±  ra1 cos(u)e cos(v)n,

y(u, v) = ±  ra2 cos(v)n sin(u)e,

z(u, v) = ±  ra3 sin(v)n,

    0 ≤ r ≤ 1,   0 ≤ v ≤ π/2,   0 ≤ u ≤ π/2.

Since the density is the same in each octant, we compute the integral in
the first octant (where the signs are all positive) and multiply by eight. We
need to compute the Jacobian determinant, multiply out x2, y2, and z2

in terms of sin and cos, and then simplify using β( ) functions. Our

Figure 5. The eight octants for the superquadric ellipsoid. We integrate from the origin,
where r = 0, to the surface, where r = 1.
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integration limits are from 0 to 1 for r, to get all of the “shells,” and from
0 to π/2 for the surface parameters:

    

iE  =  8ρ
0

π/2

∫0

π/2

∫0

1

∫
1

x2

y2

z2



















 det J dudvdr.

The Jacobian matrix is given by

  
    

J =  

∂x / ∂u ∂x / ∂v ∂x / ∂r

∂y / ∂u ∂y / ∂v ∂y / ∂r

∂z / ∂u ∂z / ∂v ∂z / ∂r














.

I will spare the reader the expression for the matrix itself, but provide
the expression for the determinant of the matrix. Symbolic derivatives
can be computed using a symbolic manipulation program such as Mathe-
matica (Wolfram, 1991). The determinant in the first octant is given by

det J = a1a2a3enr2 cos(u)–1 + e cos(v)–1 + 2n sin(u)–1 + e sin(v)–1 + n.

Introducing the determinant into our equation for     iE  and expanding,
we obtain

    

iE =  8ρ 0

π/2
∫0

π/2
∫0

1
∫

a1a2a3enr2 cos(u)–1+e cos(v)–1+2n sin(u)–1+e sin(v)–1+n

a1
3a2a3enr4 cos(u)–1+3e cos(v)–1+4n sin(u)–1+e sin(v)–1+n

a1a2
3a3enr4 cos(u)–1+e cos(v)–1+4n sin(u)–1+3e sin(v)–1+n

a1a2a3
3enr4 cos(u)–1+e cos(v)–1+2n sin(u)–1+e sin(v)–1+3n

















 dudv dr.
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Note that we have cosine and sine functions in the form mentioned in

Appendix C. We can simplify the integral with respect to u using β( )
functions. Thus,

    

iE  =  4ρ
0

π/2

∫0

1

∫

a1 a2 a3enr 2 cos(v)–1+2n sin(v)–1+n β
e
2

,  
e
2







a1
3 a2 a3enr 4 cos(v)–1+4n sin(v)–1+n β

3e
2

,  
e
2







a1 a2
3a3enr 4 cos(v)–1+4n sin(v)–1+n β

e
2

,  
3e
2







a1 a2 a3
3enr 4 cos(v)–1+2n sin(v)–1+3n β

e
2

,  
e
2





































 dvdr.

We also note that we can simplify the integral with respect to v using β( )
functions, so

 

    

iE  =  2ρ
0

1

∫

a1a2a3enr2β e
2 ,  e

2




β n,  n

2






a1
3a2a3enr 4β 3e

2 ,  e
2





β 2n,  n

2






a1a2
3a3enr 4β e

2 ,  3e
2





β 2n,  n

2






a1a2a3
3enr 4β e

2 ,  e
2





β n,  3n

2
































 dr.

Finally, we note that we can easily simplify the integral of rn with
respect to r:

 

    

iE  =  ρ

2
3 a1a2a3enβ e

2 ,  e
2





β n,  n

2






2
5 a1

3a2a3enβ 3e
2 ,  e

2




β 2n,  n

2






2
5 a1a2

3a3enβ e
2 ,  3e

2




β 2n,  n

2






2
5 a1a2a3

3enβ e
2 ,  e

2




β n,  3n

2
































 .
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Then the four components of     iE  (in other words ρVE , i1E , i2E , and i3E)

are used to produce the volume and inertia tensor of the superquadric
ellipsoids, as shown in the section entitled “Inertia Tensor, Superquadric
Ellipsoid.”

Superquadric ToroidsSuperquadric ToroidsSuperquadric ToroidsSuperquadric ToroidsSuperquadric Toroids
The toroids are broken down similarly, into eight “outer” pieces and
eight “inner” pieces. In the first octant, the outer piece is given by

    

xouter  =  a1 cos(u)e α +  r cos(v)n( ),

youter  =  a2 sin(u)e α +  r cos(v)n( ),

zouter  =  a3 r sin(v)n .

The inner piece is given by

    

xinner  =  a1 cos(u)e α –  r cos(v)n( ),

yinner  =  a2  sin(u)e α –  r cos(v)n( ),

zinner  =  a3  r sin(v)n .

(a) (b)

Figure 6 (a) The eight octants for the outer part of the superquadric toroid. We
integrate from the torus centerline (not shown) where r = 0 outwards to the surface,
where r = 1. (b) The eight octants for the inner part of the superquadric toroid. We
integrate from the torus centerline (not shown) where r = 0 inward to the surface, where
r = 1.
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where

  0 ≤ r ≤ 1,    0 ≤ v ≤ π/2,    0 ≤ u ≤ π/2.

We separately compute the Jacobian matrix, but we need to take the
appropriate sign of the determinant of the outer and inner equations:

   
    

det Jouter  =  a1a2a3enr cos(u)–1+e  cos(v)–1+n  α +  r cos(v)n( )sin(u)–1+e sin(v)–1+n  ,

 det Jinner  =  – a1a2a3enr cos(u)–1+e  cos(v)–1+n  α –  r cos(v)n( )sin(u)–1+e sin(v)–1+n  .

We need to correctly combine the outer and inner parts into one
integral, to obtain the expression for the four terms used in the expres-
sion for the inertia tensor of a superquadric toroid. Since the “inner”
Jacobian matrix has the opposite handedness from the outer one, we
need to change the sign on the determinant to maintain continuity at the
common boundary between the two representations.

Thus, we let

 

    

iT  =  8ρ

1

xouter
2

youter
2

zouter
2



















0

π / 2

∫0

π / 2

∫0

1

∫   det Jouter  +  

1

xinner
2

yinner
2

zinner
2



















 (–det J inner )dudvdr.

As before,

    

iT  ≡  

ρVT

i1T

i2T

i3T



















 .
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The preceding integral expands to

    

iT = 8ρ

2a1a2a3αenr cos(u)e–1 cos(v)n–1 sin(u)e–1 sin(v)n–1

2a1
3a2a3αenr cos(u)3e–1 cos(v)n–1 α 2 + 3r2cos(v)2n( )sin(u)e–1 sin(v)n–1

2a1a2
3a3αenr cos(u)e–1 cos(v)n–1 α 2 + 3r2cos(v)2n( )sin(u)3e–1 sin(v)n–1

2a1a2a3
3αenr3 cos(u)e–1 cos(v)n–1 sin(u)e–1 sin(v)3n–1

















0

π/2

∫0

π/2

∫0

1

∫ du dv

and simplifies into β( ) functions

  

    

iT  =  ρ 

2a1a2a3αenβ e
2 ,  e

2




β n

2 ,  n
2







2a1
3a2a3α 3enβ 3e

2 ,  e
2





β n

2 ,  n
2





  +  3a1

3a2a3αenβ 3e
2 ,  e

2




β 3n

2 ,  n
2







2a1a2
3a3α 3enβ e

2 ,  3e
2





β n

2 ,  n
2





  +  3a1a2

3a3αenβ e
2 ,  3e

2




β 3n

2 ,  n
2







a1a2a3
3αenβ e

2 ,  e
2





β n

2 ,  3n
2

































.

Then the four components of     iT  (in other words ρVT, i1T, i2T, and i3T)
are used to produce the volume and inertia tensor of the toroids.
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IVIVIVIVIV
2-D 2-D 2-D 2-D 2-D GEOMETRY ANDGEOMETRY ANDGEOMETRY ANDGEOMETRY ANDGEOMETRY ANDAAAAALGORITHMSLGORITHMSLGORITHMSLGORITHMSLGORITHMS

Two-dimensional geometry is an important part of computer graphics.
Figure-making, layout of geometric figures on a sheet, and projective
geometry are examples of common applications. The Gems in this section
focus on techniques for making pictures from two-dimensional entities.

The first, third, and fifth Gems deal with methods of drawing various
two-dimensional curves. The first Gem describes how to draw elliptical
arcs. The third Gem discusses an efficient technique for circle clipping.
The fifth Gem provides a recipe for generating circular arc fillets between
two lines.

The second Gem describes techniques for producing well organized
figures, helping with the related problems of where to place items and
how to connect them.

The fourth, sixth, and seventh Gems present clever improvements upon
previous Gems. The fourth and sixth Gems discuss efficient computation
of the intersection between two lines, while the seventh Gem discusses
the construction of circles tangent to other figures, and related problems.
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Jerry Van Aken and Ray SimarTexas InstrumentsHouston, Texas

Sometimes an arc of a circle or of an ellipse is a better choice than a
cubic spline for representing a particular curved shape. Because circles
and ellipses are inherently simpler curves than cubics, the algorithms for
generating them should also be simpler. This is chiefly why conic splines
are popular in applications such as the generation of font outlines, where
drawing speed is of critical importance.

This note describes an algorithm for generating points along an ellipti-
cal arc. The points are separated by a fixed angular increment specified in
radians of elliptical arc. The algorithm is based on a parametric represen-
tation of the ellipse. It is particularly inexpensive in terms of the amount
of computation required. Only a few integer (or fixed-point) shifts, addi-
tions, and subtractions are needed to generate each point—without
compromising accuracy.

The AlgorithmThe AlgorithmThe AlgorithmThe AlgorithmThe Algorithm
The QtrElips function in Fig. 1 is a version of the algorithm that uses
floating-point operations. An integer-only version is presented later. The
first six arguments to the function are the x and y coordinates of the
vertices P, Q, and K of a control polygon (a triangle) that defines the
curve. The arc beings at P, ends at Q, and is completely contained within
the triangle formed by the three points. The last argument, ∆t, specifies
the (approximate) angular increment in radians between successive points
plotted along the curve. This argument is a fractional value in the range
1 ≥ ∆t > 0.
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procedure  QtrElips (xP ,yP ,xQ ,yQ ,xK ,yK , ∆t :  real)

xJ ,y J ,ux ,vx ,uy ,vy  :  real ;

i,  n,  x,  y :  integer :
begin

      vx ← xK − xQ :

      ux ← xK − xP :
      vy ← yK − yQ :

      uy ← yK − yP :

      x J ← xP − vx :

      y J ← yP − vy :

      ux ← ux 1— 1
4 ∆t2 — 1

2 vx∆t ;

      uy ← uy 1— 1
4 ∆t2 — 1

2 vy∆t ;

      n ← 1
2 π / ∆t   :

      for i ← 0 to n do

            DrawPoint (x ← round(vx + xJ ),   y ← round(vy + yJ )) ;

            ux ← ux − vx∆t ;
            vx ← vx − ux∆t ;
            uy ← uy − vy∆t ;

            vy ← vy − uy∆t ;

            endloop

end

Figure 1. Quarter ellipse algorithm.

The QtrElips function was used to draw the curve shown in Fig. 2.
Also shown is the control polygon that defines the arc. The arc is tangent
to the sides of the control polygon at vertices P and Q. The arc is an
affine transformation of a quarter circle; it spans π/2 radians of elliptical
arc. We can refer to this curve as a quarter ellipse. (If you alter the
function to assign to variable n the value 2π/∆t, it will draw the entire
ellipse.)

The function in Fig. 1 represents the arc as a series of     n =  1 +  1
2 π / ∆t 

individual pixels. The smaller ∆t is, the more pixels are drawn. Each call
to DrawPoint turns on the pixel at the specified integer screen coordi-
nates, x and y. The algorithm’s inner loop calculates the coordinates of
each point on the arc to floating-point precision, but calls the round
function to round off to the nearest integer pixel coordinates. The ellipse
is centered at coordinates (xJ,yJ). Variables ux and vz are used to



GRAPHICS GEMS III Edited by DAVID KIRK 166

IV.1 A PARAMETRIC ELLIPTICAL ARC ALGORITHM

Figure 2 An elliptical arc and its control polygon.

generate the displacement in x of each point from the center; uy and vy

generate the corresponding y displacement.
The algorithm in Fig. 1 is based on the principle illustrated in Fig. 3: an

ellipse is formed by two mutually perpendicular sinusoidal oscillations
moving at the same frequency. This is referred to as a Lissajous figure
after the 19th-century French physicist. The bottom sinusoid in Fig. 3
generates the ellipse’s x coordinates, and the sinusoid on the right
generates the y coordinates.

The origin-centered ellipse in Fig. 3 is represented by the following
parametric equations:

 x(t) = X sin(t + φx),

 y(t) = Y sin(t + φy).     (1)

Figure 3. An ellipse and its two generating sinusoids.
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The shape of the ellipse is determined by the phase and amplitude
relationships of the two sinusoids, where X and Y are the amplitudes,
and φx and φy are the phase angles. The full ellipse is formed as
independent parameter t increases from 0 to 2π radians.

Digital Generation of SinusoidsDigital Generation of SinusoidsDigital Generation of SinusoidsDigital Generation of SinusoidsDigital Generation of Sinusoids
Explicitly calculating the sine and cosine terms in Eq. (1) could be quite
time-consuming. As an alternative, consider this highly efficient but some-
what inaccurate method for approximating sinusoids:

      xn = xn−1 − yn−1∆t,

      yn = yn−1 + xn∆t.     (2)

The circle algorithm based on Eq. (2) is well known and has been
described many times in the literature—refer to Cohen (1969), Newman
and Sproull (1979), Blinn (1987), and Paeth (1990). Given the coordi-
nates (xn−1, yn−1) of a point on a circle (actually, an ellipse that approxi-
mates a circle), these expressions calculate a new point (xn, yn) that is
also on the (approximate) circle. Beginning at initial coordinates (x0, y0),
these equations are evaluated iteratively to generate a series of points
that lie roughly along a circular arc. Successive values of xn and yn

approximate two sinusoids that have a relative phase difference of π/2.
Note that the xn value computed in the first equation above appears on
the right-hand side of the second equation.

Parameter ∆t in Eq. (2) is approximately the angular increment in
radians between successive points. The range is 0 < ∆t ≤ 1. The accu-
racy improves as ∆t is made smaller, which also has the effect of spacing
the points more closely together.

Equations (2) are an approximation to the ideal rotation

   xn = xn−1cos∆t − yn−1sin∆t,

   yn = xn−1sin∆t + yn−1cos∆t.

The full circle is generated as n increases from 0 to     2π / ∆t  . In terms of
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initial coordinates (x0, y0), the effect of n such iterations can be repre-
sented as

    xn = x0 cos n∆t − y0 sin n∆t,

    yn = x0 sin n∆t + y0 cos n∆t.

If we had similar expressions for the effect of n iterations of Eq. (2), we
could analyze the error in the approximation and try to compensate for it.

In fact, the result of n iterations of the approximate rotation expressed
in Eq. (2) can be shown to be

(3)

Whereas ∆t is the approximate angular increment, the precise increment
in the equations above is a = 2 arcsin(∆t/2) radians. For the sake of
brevity, the proof of this result is not presented here. The interested
reader is referred to the detailed derivation in an earlier (1988) paper by
the authors.

Relating ∆t to the exact angular increment, α, are the equivalent
expressions

      

sin
α
2

 =  
∆t
2

,

cos
α
2

 =  1 –  1
4 ∆t 2 .

Observe that if α represents the length of an arc on the unit circle, ∆t
represents the length of the corresponding chord. Accordingly, as ∆t

∆

    

yn  =  
xo  −  ∆t

2 y0

1 −  1
4 ∆t2















 sin nα  +  y0 cos nα

      

xn =  x0cos nα –  
y0 –  ∆t

2 x0

1 –  1
4 ∆t2















 sin nα,
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grows smaller, the approximation α ≈ ∆t improves. For the special case
∆t = 1, angle α is precisely π/3 radians.

Based on Eq. (3), the error in the equation for either xn or yn can be
canceled out merely by altering the initial value y0 or x0, respectively.
For instance, define

   
      
χ 0  =  x0 1 –  1

4 ∆t 2  +  
∆t
2

y0 .     (4)

Replacing all instances of x0 with χ
0 in Eq. (3) yields an exact means of

calculating yn:

       

xn =  x0 1 –  1
4 ∆t2  –  ∆t

2 y0




  cos nα –  y0 1 –  1

4 ∆t2  –  ∆t
2 x0





  sin nα,

yn =  x0 sin nα +  y0 cos nα. (5)

The significance of this result is that each of the two sinusoids that
generate the ellipse in Fig. 3 can be calculated precisely by means of the
simple iteration represented by Eq. (2). (A separate copy of the iteration
formulas is needed for each of the two dimensions; were the arc three-
dimensional, then three copies would be needed.) The error in the
approximation can be entirely eliminated by modifying only the initial
values. The inner loop calculation itself remains unmodified (and the
determinant of the corresponding rotation matrix remains precisely unity).

Conjugate DiametersConjugate DiametersConjugate DiametersConjugate DiametersConjugate Diameters
Equation (1) can be restated in a form similar to that of the expression for
yn in Eq. (5):

     x(t) = XP cos t + XQ sin t,

     y(t) = YP cos t + YQ sin t.     (6)
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The parameters in Eq. (l) are related by the formulas

 
      

  X =  XP
2  +  XQ

2 ,            Y =  YP
2  +  YQ

2 ,

φx  =  arctan
XQ

XP
,             φy  =  arctan

YQ

YP
.

This parameterization is described by Tran-Thong (1983), Bagby (1984),
and Foley et al. (1990). For the origin-centered ellipse in Fig. 3, the
geometric interpretation of Eq. (6) is that the point on the ellipse
corresponding to t = 0 is at P = (XP, YP); the point corresponding to
t = π/2 is at Q = (XQ, YQ). Over the interval from 0 to π/2, the arc is a
blend of P and Q, with the respective contributions at each point
determined by the cosine and sine functions. The two diameters formed
by extending lines from points P and Q through the center to the other
side of the ellipse are referred to as conjugate diameters of the ellipse,
as described by Tran-Thong (1983) and Bagby (1984). In the proposed
CGI standard, the elliptical arc primitive is specified in terms of conjugate
diameters.

Figure 4 shows that defining an ellipse in terms of its conjugate
diameters is equivalent to defining the ellipse in terms of an enclosing
parallelogram. The ellipse inscribed in the parallelogram is an affine
transformation of a unit circle inscribed in a square. The circle touches
the square at the midpoint of each side, and the dotted lines shown
connecting the midpoints of opposing sides are perpendicular diameters
of the circle. The same affine transformation that transforms the circle
into an ellipse also transforms the enclosing square into a parallelogram.

Figure 4. Affine transformation of a unit circle inscribed in a square into an ellipse
inscribed in a parallelogram.
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The ellipse's two conjugate diameters, shown as dotted lines, are no
longer perpendicular, but still connect the midpoints of opposing sides,
and remain parallel to and equal in length to the other two sides of the
parallelogram. The diameters divide the larger parallelogram into four
smaller ones, each of which contains one-quarter of the ellipse. One of
the smaller parallelograms in Fig. 4 appears in Fig. 3 as well.

A conic spline is most conveniently described in terms of its control
polygon (a triangle), as shown in Fig. 2. This polygon corresponds in Fig.
3 to the triangle defined by points P, Q, and K. These points also define a
parallelogram, for which ellipse center point J is the fourth vertex. Given
three vertices P, Q , and K of a parallelogram, the coordinates of the
fourth vertex, J, can be calculated as

 XJ = XP + XQ − XK,

 YJ = YP + YQ − YK.

The center is translated to the origin in order to use Eq. (6) to generate
the ellipse.

Simplifying the ComputationsSimplifying the ComputationsSimplifying the ComputationsSimplifying the ComputationsSimplifying the Computations
An efficient version of the elliptical arc algorithm written in the C
language appears as the qtr_elips  function in the Appendix. This func-
tion is similar in form to the listing in Fig. 1, but all floating-point
calculations have been replaced by integer(or fixed-point) calculations. A
fixed-point value is represented as a 32-bit number with 16 bits of
fraction that lie to the right of the binary point.

On machines for which multiplications are more lengthy operations
than shifts, the inner-loop evaluation of Eq. (2) can be sped up by forcing
angular increment ∆t to be an integral power of 2. Newman and Sproull
(1979) suggest that this method be used to speed up the circle algorithm.
If ∆t = 1/2m, where m  ≥ 0, Eq. (2) translates to the following two
statements in C:

x − = y >> m;
y + + x >> M;

Variables x and y are fixed-point values, and m is an integer.
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Similarly, the calculation of χ

0 in Eq. (4) can be sped up. Expanding
the square root calculation in a Taylor series yields

      
 χ 0  =  x0 1 –  

1
8

∆t 2  –  
1

128
∆t 4  –  

1
1024

∆t6  –  
1

16384
∆t8  –  .  .  .



  +  

∆t
2

y0 .

Assuming again that ∆t = 1/2m and that variables x and y have been
assigned the coordinates of the initial point on a circle, the following
statements in C perform the modification of the initial x value:

  x − = (w = x >> (2*m + 3)); /* cancel 2nd-order error */
  x − = (w = w >> (2*m + 4)); /* cancel 4th-order error */
  x − = w >> (2*m + 3); /* cancel 6th-order error */
  x +  = y >> (m+ 1); /* cancel lst-order error */

Fixed-point variable w is a temporary. Note that this code does not
include cancellation of the eighth-order error term. The decision not to
include this term is somewhat arbitrary, and the code necessary to cancel
higher-order terms can easily be added if additional precision is required.
With the code as given above, the worst-case error occurs for m = 0, for
which the error in the calculation of χ

0 is approximately (5/16384)x0;
the full magnitude of this error propagates into y, which represents the
sinusoid.

The x and y variables in the code above correspond to the coordinates
generated by the circle algorithm—not the ellipse algorithm. The ellipse
algorithm requires two sinusoids, and a separate instance of the circle
algorithm is needed to generate each sinusoid. To help distinguish circle
coordinates from ellipse coordinates, the names of circle coordinates x
and y have been changed in the qtr_elips function to u and v. Variables
ux and vx are the coordinates of the circle that generates the ellipse’s x
coordinates; uy and vy are the coordinates of the circle that generates
the ellipse’s y coordinates.

See also G1, 57.
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IntroductionIntroductionIntroductionIntroductionIntroduction
Many editing processes (electric and electronic drawing, representation of
numerical algorithms and flowcharts, etc.) need to connect two objects
using a path of orthogonal segments rather than a straight line (which
would make the picture hard to interpret, see Fig. 1).

A simple way to create this path is to draw it point by point and store
each point’s coordinate value in the picture data base.

This method, although simple, has the main drawback of keeping the
user ’s attention on the physical path rather than on the logical one (one
object connected to another), reducing the overall productivity.

A better solution is to user-specify only the path endpoints and let the
system compute it.

This Gem presents a simple algorithm for computing the minimal
orthogonal path connecting two objects. Only the endpoint’s coordinates,
the start-point outward direction, and the end-point inward direction are
required.

Terms and DefinitionsTerms and DefinitionsTerms and DefinitionsTerms and DefinitionsTerms and Definitions
Hereinafter we call object the bounding box surrounding the real object
and pads the connecting points (see Fig. 2).

Each pad can be In or Out, according to data flow direction (e.g., the
data flow is entering the object or is leaving it), and its direction will be
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Figure 1. Orthogonal versus straight connections.

Figure 2. Objects and pads.

UP, DOWN, LEFT, or RIGHT according to the pad position in the
object (see Fig. 3).

A minimal orthogonal path between two objects is the simplest orthog-
onal-segments path not crossing the objects, starting from an Out pad and
ending at an In pad.

Translate and Rotate AlgorithmTranslate and Rotate AlgorithmTranslate and Rotate AlgorithmTranslate and Rotate AlgorithmTranslate and Rotate Algorithm
When connecting two objects with a minimal orthogonal path, we can see
a rotation symmetry, so that the path shape depends solely on the relative
position of the Out and In pads (rotation invariance property, see Fig. 4).
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Figure 3. Pad characteristics.

Figure 4. Rotation invariance of path shape.

Figure 5. Translate and rotate.
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Figure 6. Transformations table.

Now if we first translate the origin of the coordinate system in the Out
pad position and then rotate it so that the y axis will have the same
direction as the pad (see Fig. 5), the problem is reduced to the computa-
tion of the minimal orthogonal path connecting an UP Out pad positioned
at the axis origin with an In pad.

The direct and inverse transformations relative to the Out pad direction
as well as the new In pad direction are shown in Fig. 6, with the Out pad
direction in the first column, the corresponding rotation angles in the
second, the direct and inverse transformation formulas in the third and
fourth, respectively, and the In pad direction transformation rules in the
last column.

In this situation the paths connecting all In pads are reduced to one of
21 possibilities, depending on the pad’s direction. These connections (see
Fig. 7) can be easily derived from the In pad direction, from its position
relative to the starting object upper edge and relative to the four vertical
areas limited by the lines passing on the object left and right edges, and
over the Out pad. Figure 7 shows the starting object areas (T, B, and
1, 2, 3, 4) and the decision tree that brings to the 21 path shapes,
switching first on the In pad direction and then on the In pad position.

The lines passing over the pad and over the object upper edge divide
the plane in regions having symmetrical shape properties, so that the 21

    

    start         rot.       ′P =  P ⋅  T  ⋅  R       P = ′P  ⋅  R−1  ⋅  T −1           end

UP                  0°          ′x = x − x0

′y = y − y0

                
x = ′x + x0

y = ′y + y0

           

UP ⇒ UP
RIGHT ⇒ RIGHT
LEFT ⇒ LEFT
DOWN ⇒ DOWN

RIGHT         90°         ′x = − y − y0( )
′y = x − x0

           
x = ′y + x0

y = ′x + y0

           

UP ⇒ LEFT
RIGHT ⇒ UP
LEFT ⇒ DOWN
DOWN ⇒ RIGHT

DOWN       180°         ′x = − x − x0( )
′y = − y − y0( )            

x = − ′x + x0

y = − ′y + y0

        

UP ⇒ DOWN
RIGHT ⇒ LEFT
LEFT ⇒ RIGHT
DOWN ⇒ UP

LEFT           270°         ′x = y − y0

′y = − x − x0( )            
x = − ′y + x0

y = ′x + y0

        

UP ⇒ RIGHT
RIGHT ⇒ DOWN
LEFT ⇒ UP
DOWN ⇒ LEFT
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Figure 8. Reduced decision tree.

function sign

3PR -

4PRU -

4PRD -

5PRT -1/1

5PRB -1/1

6PR -1/1

T
1 2 3 4

B

smax

T
1 2 3 4

B

smax

In pad directions
U: UP
R: RIGHT
D: DOWN
L: LEFT

U R D L

1 2 3 4 T B T B T B

T B T B 12 34 1 234 12 34 1 2 3 4 34 12 4 123

U R D L

14 23 T B T B T B

12 34 12 34

4PRU 6PR(+1) 3PR 5PRT(+1) 5PRB(+1) 4PRD 6PR(-1) 5PRT(-1) 3PR 5PRB(-1)
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paths can be generated using only six functions, grouping them by
number of points and shape similarity (see Fig. 8).

At this point the computing algorithm can easily be derived:

Pad: record [
position: point;
direction: integer;

]
p: array [0..5] of point;
inPad, outPad: Pad;

DirectTransform(outPad.direction, inPad);
select inPad.direction from

UP: if In pad is out of left and right edges
then 4PU (inPad.position, p);
else 6P(+1 inPad.position, p);

RIGHT: if In pad is under the upper edge
then 5PB(+1, inPad.position, p);
else if In pad is on left side of outPad
then 3P(inPad.position, p);
else 5PT(+1, inPad.position, p);

DOWN: if In pad is over the upper edge
then 4PD(inPad.position, p);
else 6P(−1, inPad.position, p);

LEFT: if In pad is under the upper edge
then 5P(−1, inPad.position, p);
else if In pad is on left side of outPad

then 5PT(−1, inPad.position, p);
else 3P(inPad.position, p);

InverseTransform(outPad.direction, p);

where DirectTransform( ) transform; the In pad position according to the
Out pad direction using the Fig. 6 transformation rules; InverseTransform( )
transforms the path points p[ ] using the inverse transformation rule of
Fig. 6 selected by the original (untransformed) Out pad direction; the six
shape functions compute the path points p[ ] according to the possible
sign and to the transformed In pad direction.
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For the implementation of the six shape functions, see the C code at

the end of this book.

Overcrossing CorrectionOvercrossing CorrectionOvercrossing CorrectionOvercrossing CorrectionOvercrossing Correction
In some situations the computed path can overcross one of the two
connected objects (see Fig. 9a).

The problem can be solved in two ways. The first and simplest method
is to draw the path first and the two objects after, so that the overcrossing
segment will be hidden (see Fig. 9b). This is a good solution for simple
drawings with no more than a few dozen objects (or in a very fast
computing system).

The second way requires moving the path segment out of the crossed
object. Figure 10 shows some of the paths involved in this situation (the
others being symmetrical).

From this figure it is possible to derive the correcting algorithm:

search the segment to be moved;
if next segment != last segment or

previous segment direction != next segment direction
then move toward previous segment direction;
else move against previous segment direction;

The implementation of the correcting algorithm requires a line-box
crossing test in order to find the segment to be moved. This test can
easily be derived from any known line clipping algorithm, as shown in the
C code listing.

Figure 9. Simple solution of overcrossing problem: connect & redraw.
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Figure 10. Overcrossing problem: paths correction.

Figure 11. IRIS DSP patch editor.
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Conclusions and AcknowledgmentsConclusions and AcknowledgmentsConclusions and AcknowledgmentsConclusions and AcknowledgmentsConclusions and Acknowledgments
The technique here outlined is a powerful tool in the repertoire of 2-D
drawing systems, computing a simple minimal orthogonal path between
two objects in a 2-D drawing on the basis of the connection endpoints
only. The method is fast enough to be implemented even in a small
computer system and does not require complex or large data structures.

In our Musical Audio Research Station, this technique is used for the
editor of realtime audio algorithms (see Fig. 11). The editor can manage
about a thousand objects with 3 ÷  16 pads each, and the user can move
an object and its connections with realtime visual cues.

I would like to thank my colleagues Fabio Armani, Emmanuel Favreau,
and Vincenzo Maggi for their help, and in addition, Fabio Armani for
having developed the first implementation of the algorithm.
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ALGORITHM IV.3IV.3IV.3IV.3IV.3

AAAAA FAST CIRCLE CLIPPING FAST CIRCLE CLIPPING FAST CIRCLE CLIPPING FAST CIRCLE CLIPPING FAST CIRCLE CLIPPINGAAAAALGORITHMLGORITHMLGORITHMLGORITHMLGORITHM
Raman V. SrinivasanSDRCMilford, Ohio

IntroductionIntroductionIntroductionIntroductionIntroduction
Clipping a circle to a rectangular region potentially results in four circular
arc segments. The algorithm described here uses a parametric approach.
A circle may be represented parametrically as

  x = xc + R cos(θ),

  y = yc + R sin(θ),

where (x,y) is a point on the circle, (xc, yc) is the center, R is the
radius, and θ, the parameter, is the angle measured counterclockwise
from the x-axis to the radius vector at (x, y). For a complete circlc θ
goes from 0° to 360°. Circular arcs are typically defined by start and end
θ values in addition to the center and radius. The following algorithm
basically involves analytically determining the start and end parameter
values for each clipped segment (arc), and then culling these segments
out of the circle.

AlgorithmAlgorithmAlgorithmAlgorithmAlgorithm
First, a trivial rejection test is carried out using the bounding square of
the circle as follows (Num_Segments is the number of resulting arcs after
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ALGORITHMclipping):

if Xc + R < Left_Bound or Xc − R > Right_Bound or
Yc + R < Low_Bound or Yc − R > Up_Bound
then

Num_Segments ← 0;
return;

If the circle is not trivially rejected, parameter values are computed for
the intersection points of the circle and clip boundaries. Only those clip
boundaries that are crossed by the circle are considered. If none of the
boundaries is crossed—that is, there are no clipped segments—the entire
circle is inside the clip boundary and no further processing is required.
However, if there are boundaries that are crossed, then for each such
boundary the start and end angular parameters of the clipped arc are
recorded. Care should be taken here to ensure that the angles lie in the
range 0° to 360°. Hence, if the circle is clipped against the right bound-

Figure 1.

Half-intersection angles

α = arccos (Right_Bound - Xc)/R
β = arccos (Up_Bound - Yc)/R
γ = arccos (Xc - Left_Bound)/R
δ = arccos (Yc - Low_Bound)/R
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ALGORITHMary, the clipped portion is stored as two arcs, 0° to α° and (360 − α)° to
360°, where α is one half the angle subtended by the clipped portion at
the center. Refer to Fig. 1 for half-intersection angle computations. This
process follows in pseudo-code for the right and upper clip boundaries.
Note that with each intersection a type field is used to indicate if it is the
start or end of a segment.

n ← 0; // number of intersections
if Xc + R > Right_Bound then
begin

Compute α;
n ← n + 1; Intersection[n].Angle ← 0; Intersection[n].Type ← START;
n ← n + 1; Intersection[n].Angle ← α; Intersection[n].Type ← END;
n ← n + 1; Intersection[n].Angle ← 360 − α; Intersection[n].Type ←
START;
n ← n + 1; Intersection[n].Angle ← 360; Intersection[n].Type ← END;
end;

if Yc + R > Up_Bound then
begin

Compute β;
if (90 − β) < 0 then
begin

n ← n + 1; Intersection[n].Angle ← 360 + (90 — β);
Intersection[n].Type ← START;
n ← n + 1; Intersection[n].Angle ← 360; Intersection[n].Type ←
END;
n ← n + 1; Intersection[n].Angle ← 0; Intersection[n].Type ←
START;
end;
else
begin

n ← n + 1; Intersection[n].Angle ← 90 — β;
Intersection[n].Type ← START;
end;

n ← n + l; Intersection[n].Angle ← 90 + β; Intersection[n].Type ←
END
end;
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ALGORITHMThe left and lower bounds are similarly processed.

if n = 0 then // there are no intersections ⇒ nothing is clipped
begin
Num_Segments ← 1; Visible_Segment[1].Start ← 0; Visible_
Segment[l].End ← 360;
return;
end;

If there is one or more clipped segments (n > 0), the visible segments are
extracted by culling out the clipped portions. First, all the intersections
are sorted in increasing order of the angle parameter. Since it is possible
that two clipped portions may overlap (see Fig. 2), an overlap index is
maintained, such that during traversal of the sorted list, this index is
incremented on encountering a crossing type of START and decremented
on a crossing type of END. A value of zero for the overlap index denotes
that we are entering a visible segment of the circle and must be added to
the list of visible segments. The pseudo-code that follows performs these
tasks.

Figure 2.
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ALGORITHM Sort Intersection array in increasing order of angles;

Num_Segments ← 0; Overlap ← 0; prev ← 0;
for i ← 1, n do
begin

if Overlap = 0 then
if Intersection[i].Angle > prev then
begin

Num_Segments ← Num_Segments + 1;
Visible_Segment[Num_Segments].Start ← prev;
Visible_Segment[Num_Segments].End ←
Intersection[i].Angle;
end;

if Intersection[i].Type = START then
Overlap ← Overlap + 1;
else

Overlap ← Overlap — l;
prev ← Intersection[i].Angle;
end;

if prev < 360 then
begin

Num_Segments ← Num_Segments + 1;
Visible_Segment[Num_Segnlents].Start ← prev;
Visible_Segment[Num_Segments].End ← Intersection[i].Angle;
end;

The worst case occurs when all four clip boundaries (or their extensions)
are crossed and the center of the circle is either above the upper bound
or below the lower bound. The total number of intersections is 12,
including the ones added due to 90 − β going below 0° or 270 + δ
exceeding 360°. The computational effort required for this case is four
divisions, four cosine inverse computations and 39 comparisons (not
including sorting).

NotesNotesNotesNotesNotes
The speed of this algorithm was found to be satisfactory for circle
rubber-banding and dragging applications where response time is critical.

n

i
b
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ALGORITHMThe algorithm is efficient since, in addition to a trivial rejection test, it
detects clip boundaries that are crossed prior to performing any computa-
tion.

Since this algorithm operates in the parameter space of the circle as
opposed to a scan converted or image space, it is well suited to vector
devices such as plotters. The accuracy of the intersection calculations are
limited only by the precision of the cosine inverse computation.

See also G1, 51.
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Clifford A. Shaffer and Charles D. FeustelVirginia TechBlacksburg, Virginia

In Graphics Gems II, Mukesh Prasad (1991) presents an efficient algo-
rithm for determining the intersection point for two line segments in 2-D.
His approach has the additional benefit that it can easily be modified to
use purely integer arithmetic. However, the resulting intersection point is
represented by coordinates using either floating-point or fixed-precision
integers. Such implementations have major shortcomings with respect to
numeric stability of the operation (see Hoffman, 1989, for a detailed
discussion of the potential pitfalls and several suggested solutions).
Either the intersection point must be represented using increased preci-
sion, or else the intersection point may be only an approximation to the
true intersection point. Reduced accuracy leads to topological inconsis-
tencies such as query points that are determined to fall within each of a
pair of input polygons, but not within their intersection. A series of
cascaded intersections (e.g., the intersection of polygons A and B inter-
sected with C, intersected with D, . . .; alternatively a series of generalized
clip operations on a set of line segments) further increases these prob-
lems, since either the accuracy becomes arbitrarily small, or the precision
required to represent a vertex becomes unbounded.

We present a technique for exact representation of the intersections
between line segments in 2-D with vertices of a fixed input resolution. In
particular, we show how to represent a clipped line segment using
bounded rational arithmetic, provided that both the clipping and clipped
segments are defined by endpoints measured to fixed precision. This
method allows a line segment to be clipped an arbitrary number of times
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without increasing storage requirements, yet yielding the correct result.
Equivalently, we recognize that the output from a series of polygon
intersection operations must be composed of pieces of the line segments
that make up the input polygons. By keeping track of the necessary input
line segments (in their original form) along with descriptions of intersec-
tion points along these line segments in parametric form, we get exact
computations using only about three times the storage needed by tradi-
tional methods. In addition, we must be able to calculate intermediate
results for n-bit input points to a resolution of 4n + 4 bits in order to
compare parameters. Alternatively, the use of floating-point values to
store the parameters, while not guaranteeing correct results, will give
better accuracy than simply representing the intersection with floating-
point values. Our method is simple to implement and quite efficient.

We restrict input vertex values to be fixed-precision numbers in the
range −16,383 to 16,383—i.e., 14 value bits and one sign bit. The
stored precision could be greater if necessary, but by selecting 15-bit
precision we simplify the implementation of our rational arithmetic ap-
proach.

A line subsegment is some portion of a line segment that is repre-
sented by (i) two endpoints with integer coordinates whose precision is
15 bits and (ii) two parameter values. The line segment specified by the
vertex points will be referred to as the a priori line segment. The
parameter values specify the extent of the line subsegment after clipping.
These parameters represent positions some fraction of the distance from
the first to the second a priori vertex points. Initially, input line seg-
ments are typically complete a priori line segments. Thus, the parameter
values of such subsegments will be 0 and 1 (specifying the beginning and
the end of the a priori line segment, respectively). In addition, a
direction flag can be used to indicate whether this particular line subseg-
ment goes from vertex 1 to vertex 2, or vice versa. This would allow for
sharing of a priori line segment objects among a set of polygons.

We store parameters as two 32-bit quantities, representing the numera-
tor and denominator of the parameter. The denominator will always be
positive. Methods storing only the endpoints and a direction bit require
4n + 1 bits to represent a line segment. Our method requires 4n + 1 +
8(n + 1) bits to store the endpoints, parameters and direction flag. In
practice, assuming coordinates require 2 bytes and parameters require 4
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bytes, the parameters require 16 bytes per line segment beyond the 8
bytes plus one bit required to store endpoints and direction flag.

The parameter value for the intersection point between two line sub-
segments is calculated by computing the intersection of the a priori line
segments (taken from the structure definitions of the subsegments), and
then checking that the intersection actually occurs within the subseg-
ments. The intersection routine returns 0 if there is no intersection, 1 if
the line segments intersect in a point, and 2 if they are collinear. A
structure is also returned that describes the intersection location by its
parameter values along each of the two intersecting a priori line seg-
ments, and information about the direction of crossing for each parame-
ter—i.e, whether the line intersection is going from in to out, or out to in.

The intersection calculation we use is similar to that suggested by
Prasad, although somewhat more efficient. First we check bounding
boxes for a quick nonintersection test. Assuming the bounding boxes
intersect, we generate the equation for the infinite line from the endpoints
for one a priori line segment. Substituting the two endpoints from the
other line into this equation results in two values, each of which is
negative, positive, or zero. If the signs of the two values are the same,
then the two lines do not intersect (i.e., both endpoints of the second line
are to one side of the first line). If the signs are different, then we repeat
the process with the roles of the two lines reversed. If the result of this
second test gives two values with different signs, then we know that there
is an intersection between the a priori line segments. This is stronger
than saying that the a priori lines extended to infinity intersect.

We use the line equation

(X − X1)(Y2 − Y1) − (Y − Y1)(X2 − X1)2

when substituting point (X, Y) into the line with endpoints (X1, Y1) to
(X2, Y2). If the result is positive, (X, Y) is to the right of the line segment;
if the result is negative, (X, Y) is to the left; and if the result is zero,
(X, Y) is on the line. We evaluate this equation four times, first substitut-
ing the endpoints of line segment Q into the equation for line segment P,
then substituting the endpoints of line segment P into the equation for
line segment Q. This is done to calculate the four quantities a, b, c, and
d, defined as follows:
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a = (Q1x − P1x)(P2y − P1y) − (Q1y − P1y)(P2x − P1x),

b = (Q2x − P1x)(P2y − P1y) − (Q2y − P1y)(P2x − P1x),

c = (P1x − Q1x)(Q2y − Q1y) − (P1y − Q1y)(Q2x − Q1x),

d = (P2x − Q1x)(Q2y − Q1y) − (P2y − Q1y)(Q2x − Q1x).

Once we know that there is a proper intersection between the two
a priori line segments, we must calculate the two intersection parame-
ters, each defined by their numerator and denominator. To do this, we
need to solve the following vector equation for parametric variables s
and t:

   (1 − t)P1 + tP2 = (1 − s)Q1 + SQ2 ,

which can be rewritten as

   t(P2 − P1) + s(Q1 − Q2) = Q1 − P1 .

We solve this equation by calculating three determinants. We define
s = sdet/det and t = tdet/det, where det, sdet, and tdet are defined as

 det = (P2x − P1x) (Q1y − Q2y) − (P2y − P1y) (Q1x − Q2x),

sdet = (P2x − P1x) (Q1y − P1y) − (P2y − P1y) (Q1x − P1x),

tdet = (Q1x − P1x)(Q1y − Q2y) − (Q1y − P1y)(Q1x − Q2x).

By suitable rearrangement, we find that det = a − b, sdet = a and
tdet = −c. Thus, our work to check if there is a proper intersection
between the two line segments by substituting the endpoints into line
equations provides most of the calculation required to determine the
parameters of the insertion point. Each parameter (s and t) is actually
stored as the numerator and denominator of a fraction. It should be easy
to see from the preceding equations that if the initial endpoints for lines
P and Q require n bits for their representation, than these numerators
and denominators will each require at most 2n + 2 bits.
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Given the parameter definition or an intersection point, cascaded

clipping operations are supported by the ability to calculate the relative
position of two such intersection points along a line segment. In other
words, we must determine if one intersection point is to the left or to the
right of another intersection point along the line segment. This calcula-
tion is straightforward since it is equivalent to deciding which of the
iractions N1/D1 and N2/D2 is greater by comparing the two products
N1 * D2 and N2 * D1. This requires a (temporary) further doubling of the
resolution, to 4n + 4 bits. The intermediate calculations for comparing
the magnitude of the parameters require multiplication of two 32-bit
quantities, which can easily be done in software if 64-bit integers are not
provided by the compiler (such a routine is provided in our C code). We
note, however, that floating-point division can almost always be substi-
tuted. Only in the rare case where the two resulting floating-point num-
bers are equal must double-precision integers be used.

Another useful function is one that determines whether a point falls to
the left or right of a line. Our C code contains the function SideOfPoint,
which takes a point defined as a parameter along an a priori line
segment, and a second a priori line segment that defines the line to he
tested. The function substitutes the parameterized definition of the point
into the line equation. By suitable rewriting of this expression, we can
cast it as a comparison of two fractions, each with (2n + 2)-bit numerat-
ors and denominators.

We performed an experiment to compare the time required for our
exact intersection representation against the implementation of Prasad.
For testing, our code was slightly modified to return the (approximated)
intersection point; both our version and Prasad's version were coded to
use only integer arithmetic. On both a M68000 machine and a MIPS 3000
machine, our point intersection algorithm required only   

3
4  the time

required by Prasad’s algorithm. Thus, we conclude that little or no time
penalty will result from using our exact arithmetic approach.

See also G2, 7; G3, D.6.
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Robert D. MillerEast Lansing, Michigan

ProblemProblemProblemProblemProblem
Given two lines, l1     (p1p2 )  and l2     (p3p4 )p and a radius, r, construct a
circular arc fillet that joins both lines. This algorithm finds the beginning
angle and the angle subtended by the arc and the direction in which to
draw the arc. New beginning and ending points of the lines will be
computed so they will smoothly join the arc.

MethodMethodMethodMethodMethod
1. Find the equation in the form ax + by + c = 0 for each line, as

shown in the following pseudo-code procedure LineCoef. The center of
the constructed arc, Pc, must lie at a distance r from both lines.

Determine the signed distance d1 from l1 to the midpoint of l2 and d2
from l2 to the midpoint of l1. The midpoints are used because, in
practice, one point may be common to both lines. The signs of d1 and d2
determine on which sides of the respective lines the arc center pc resides.
The signed distances are computed in the procedure LineToPoint. (See
Fig. 1.)

2. Find l′1||l1 at d1 and l′2||l2 at d2. The center of the required arc pc

lies at the intersection of l′1 and l′2.

3. Compute the beginning and ending points, q1 and q2, on the arc.
The procedure PointPerp finds the points q1 so     q1pc ⊥l1 and q2 so

    q2pc ⊥l2.
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Figure 1. Joining two lines with a circular arc fillet.

4. Find the starting angle, s (with respect to the x-axis). Angle s =
tan—1

    (q1pc ). The two-argument arctangent is used to uniquely determine
a in the range 0 ≤ s < 2π. Apply the vector dot product to the directed
line segments q1 pc and q2 pc to find the angle a subtended by the arc
from pc.

5. Use the sign of the vector cross product to determine the direction
in which to draw the arc q1 q2.

6. The line may be extended or clipped at points q1  and q2 so the end
points of the line nearest the point of intersection of l1  and l2 will
coincide with the end points of the arc. The fillet will result from drawing
a line from p1 to q1 , the arc from q1  to q2, and then the line from q2
to p4.

The accompanying cuboid “gem” (Fig. 2) has its corners rounded by
this algorithm.

π/2: real ← 1.5707963267949;
π: real ← 3.14159265358979;
3π/2: real ← 4.71238898038469;
2π: real ← 6.28318530717959;

p1, p2, p3, p4, v1, v2: point;
r, xx, yy, sa, a: real;

function arctan2(y, x: real): real;
Two argument arc tangent. 0 < = arctan2 < 2π.
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Figure 2.

r; real;
begin

if abs(y) < abs(x) then
if x ≠ 0 then
begin r ← arctan(y/x);

if x < 0 then r ← r + π
else if y < 0 then r ← 2π + r;

end
else

else
if y ≠ 0 then

begin
r ← arctan(x/y);
if y > 0 then r ← π/2 − r
else r ← 3π/2 − r;

end
else r ← π/2;

arctan2 ← r;
endproc arctan2.

function cross2(v1, v2: point): real;
begin

cross2 ← v1.x*v2.y − v2.x*v1.y;
endproc cross2.

function dot2(v1, v2: point): real;
d: real;
begin
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d ← sqrt((v1.x2 + vl.y2)*(v2.x2 + v2.y2));
if d ≠ 0 then dot2 ← arccos((v1.x*v2.x + v1.y*v2.y)/d);
else dot2 ← 0;

endproc dot2.

procedure DrawArc(xc, yc, r, startangle, a: real);
Draw circular arc in one degree increments
Center is xc, yc with radius r, beginning at startangle,
through angle a. If a < 0, the arc is drawn clockwise.
sindt: real ← 0.017452406; sin 1°
cosdt: real ← 0 999847695; cos 1°
a,x,y,xt,yt,sr: real;
k: integer;
begin

a ← startangle:
x ← r*cos(a); y ← r*sin(a);
MoveTo(xc + x, yc + y);
if a ≥ 0 then sr ← sindt else sr ← −sindt;
for k ← 1 to trunc(abs(a)) do

begin
x ← x*cosdt − y*sr;
y ← x*sr + y*cosdt;
LineTo(xc + x, yc + y);
end

endproc DrawArc.

procedure LineCoef(var a, b, c: real; p1, p2 point);
Returns a, b, c in ax + by + c = 0 :for line p1, p2.
begin

c ← (p2 x*p1.y) − (p1.x*p2.y);
a ← p2.y − p1.y;
b ← pl.x − p2.x;

end;
endproc LineCoef.

function LineToPoint(a, b, c real; p: point):real;
Returns signed distance from line ax + by + c = 0 to point p.
d, lp: real;

begin
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d ←   a2 + b2 ;
if d = 0 then lp ← 0
else lp ← (a*p.x + b*p.y + c)/d;
LineToPoint ← lp;

end;
endproc LineToPoint.

procedure PointPerp(var x, y: real; a, b, c: real; point);
Given line l = ax + by + c = 0 and point p,
compute x, y so p(x, y) is ⊥ to l.
d, cp, t, u: real;
begin

x ← 0; y ← 0; d ← a2 + b2; cp ← a*p.y − b*p.x;
if d ≠ 0 then

begin
x ← (−a*c − b*cp)/d;
y ← (a*cp − b*c)/d;
end;

endproc PointPerp.

procedure Fillet(var p1, p2, p3, p4:point; r: real;
var xc, yc, pa, aa: real);

Compute a circular arc fillet between lines l1 (p1 to p2)
and l2 (p3 to p4) with radius r. The arc center is xc, yc.

a1, b1, c1, a2, b2, c2, c1p, c2p: real;
d1, d2, xa, xb, ya, yb, d, rr: real;
mp, pc: point;
label XIT;
begin

LineCoef(a1, b1, c1, p1, p2);
LineCoef(a2, b2, c2, p3, p4);

if (a1*b2) = (a2*b1) then goto XIT; Parallel lines

mp.x ← (p3.x + p4.x)/2; Find midpoint of p3 p4
mp.y ← (p3.y + p4.y)/2;
d1 ← LineToPoint(a1,b1,c1,mp); Find D = distance p1 p2

to midpoint p3 p4
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if d1 = 0 then goto XIT;

mp.x ← (p1.x + p2.x)/2; Find midpoint p1 p2
mp.y ← (p1.y + p2.y)/2;
d2 ← LineToPoint(a2, b2, c2, mp); Repeat for second line.
if d2 = 0 then goto XIT;

rr ← r;
if d1 ≤ 0 then rr ← −rr;
c1p ← c1-rr*  a12 + b12 ; construct line ∏ to l at d.
rr ← r; if d1 < = 0 then rr ← −rr;

c2p ← c2 − rr*  a22 + b22 ;

d ← al*b2 − a2*b1; Intersect constructed lines to
pc.x ← (c2p*b1 − c1p*b2)/d; find center of circular arc.
pc.y ← (c1p*a2 − c2p*a1)/d;
PointPerp(xa, ya, a1, b1, c1, pc); Clip l1 at (xa, ya) if needed.
PointPerp(xb, yb, a2, b2, c2, pc); Clip l2 at (xb, yb) if needed.
p2.x ← xa; p2.y ← ya; p3.x ← xb; p3.y ← yb;

v1.x ← xa − pc.x; v1.y ← ya − pc.y; Find angle wrt. x-axis
from arc center, (xc, yc)

v2.x ← xb − pc.x; v2.y ← yb − pc.y;

pa ← arctan2(v1.y, v1.x);
aa ← dot2(v1, v2); Find angle arc subtends.
if cross2(v1, v2) < 0 then aa ← −aa; Direction to draw arc.

XIT:
endproc Fillet.

begin Main program
MoveTo(p1.x, p1.y);
LineTo(p2.x, p2.y);
DrawArc(xc, yc, r, sa, a);
MoveTo(p3.x, p3.y);
LineTo(p4.x, p4.y);

end.

See also G1, 107
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Franklin AntonioQUALCOMM, IncorporatedDel Mar, California

ProblemProblemProblemProblemProblem
Given two line segments in 2-D space, rapidly determine whether they
intersect or not, and determine the point of intersection.

Rapid calculation of line segment intersections is important because
this function is often a primitive called many thousands of times in the
inner loops of other algorithms. An algorithm is presented here that uses
approximately half as many operations as the intersection algorithm
presented in Graphic Gems II (Prasad, 1991) and has tested faster on a
variety of computers.

AlgorithmAlgorithmAlgorithmAlgorithmAlgorithm
To develop the algorithm, it is convenient to use vector representation.
Consider line segment L12 defined by two endpoints P1 and P2, and
L34 defined by endpoints P3 and P4, as shown in Fig. 1.

Represent each point as a 2-D vector, i.e., P1 = (x1, y1), etc. Then a
point P anywhere on the line L12 can be represented parametrically by a
linear combination of P1 and P2 as follows, where α is in the interval
[0, 1] when representing a point on the line segment L12:

P = αP1 + (1 − α)P2.     (1)

This can be rewritten in a more convenient form:

P = P1 + α(P2 − P1)     (2)



GRAPHICS GEMS III Edited by DAVID KIRK 200

IV.6 FASTER LINE SEGMENT INTERSECTION

Figure 1.

In particular, we can locate the intersection point P* by computing α
and β by solution of the following linear system of equations. If the
resulting a and b are in the interval [0, 1], then the line segments L12
and L34 intersect.

P* = P1 + α(P2 − P1),    (3a)

P* = P3 + β(P4 − P3),    (3b)

Subtracting these equations yields

0 = (P1 − P3) + α(P2 − P1) + β(P3 − P4) (4)

Giving names to some intermediate values makes the equations easier to
read:

A = P2 − P1

B = P3 − P4

C = P1 − P3     (5)

The solution of (4) for α and β is now

  (6a)

  (6b)

    
α =

ByCx − BxCy
AyBx − AxBy

,

    
β =

AxCy − AyCx
AyBx − AxBy

.
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Noting that the denominators of these expressions are the same, comput-
ing (5) and (6) requires nine adds and six multiplies in the worst case.
(Prasad, 1991, required 14 adds and 12 multiplies in the worst case.) We
avoid the division operation because we don’t need α and β explicitly; we
only need test them against the range [0, 1]. This is a little tricky, because
the denominator may be either positive or negative. The division-avoiding
test works like this:

if denominator > 0
then if numerator < 0 or numerator > denominator

then segments do not intersect
else if numerator > 0 or numerator < denominator

then segments do not intersect

Also note that (6a) can be computed and tested prior to computing (6b).
If α is outside of [0, 1], there is no need to compute (6b). Finally, note
that the case where denominator = 0 corresponds to collinear line seg-
ments.

Timing Measurements/Further OptimizationsTiming Measurements/Further OptimizationsTiming Measurements/Further OptimizationsTiming Measurements/Further OptimizationsTiming Measurements/Further Optimizations
The algorithm above was timed against Prasad (1991), using random
data, on a variety of computers (both RISCs and CISCs). It was found to
execute 40% faster than Prasad’s intersection test.

Because some tests can be performed on the numerator of (6a) and
(6b) after knowing only the sign of the denominator, but without knowl-
edge of its value, it is tempting to use a form of the fast-sign-of-cross-
product algorithm (Ritter, 1991) on the denominator, after which the
numerator can be tested against zero, eliminating some cases prior to
any multiplications. In practice, this was found to slow the algorithm, as
in this arrangement of the intersection algorithm the tests in question did
not eliminate a large enough fraction of the test cases to pay back for the
execution time of the many sign tests in Ritter's algorithm.

An additional speed increase was gained by testing to see if the
bounding boxes of the two line segments intersect before testing whether
the line segments intersect. This decreases the number of arithmetic
operations when the boxes do not intersect, but involves an additional
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overhead of several comparisons in every case. Therefore, there is a risk
that this might actually slow down the average performance of the
algorithm. However, the bounding box test was found to generate an
additional 20% speed improvement, which was surprisingly consistent
across different types of computer. Therefore, the C implementation
includes a bounding box test.

Implementation NotesImplementation NotesImplementation NotesImplementation NotesImplementation Notes
The C implementation includes calculation of the intersection point
coordinates in the case where the segments are found to intersect. This is
accomplished via Eq. (3a).

The C implementation follows the same calling conventions as Prasad
(1991) and produces identical results.

The C implementation uses integer arithmetic. Therefore, as Prasad
warns, care should be taken to avoid overflow. Calculation of the intersec-
tion point involves operations that are cubic in the input coordinates, so
limitation to input coordinates in the range [0, 1023], or other similar-sized
range, will avoid overflow on 32-bit computers. When line segments do
not intersect, input coordinates in the range [0,16383] can be handled.

See also G2, 7; G3, D.4.
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Constantin A. SeviciGTSChelmsford, Massachusetts

The classical problem of Apollonius is to find a circle that is tangent to
three given circles. In Graphics Gems (Rokne, 1991) a solution to this
problem is given using bilinear transformations of the complex plane.
Here we give a computationally simpler solution to two generalizations of
this problem.

1. Find the circle that intersects three other circles at given angles.

2. Find the circle with a given radius that intersects two other circles at
given angles.

Given two circles with r, ri as radii, d the distance between the centers
and θi their intersection angle, then the law of cosines in Fig. 1 gives

    d2 = r2 +     ri
2

 − 2rricos(θi).

To solve the two general Apollonius problems, we will transform the
preceding relation into a nearly linear equation between the coefficients
of analytic equation of the two circles. Consider the analytic equation

  α(x2 + y2) + βx + γy + δ = 0

If α = 0, this equation represents a line.
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Figure 1.

If α ≠ 0, we can rewrite it as

If β2 + γ 2 – 4αδ > 0, the preceding equation represents a circle with

center =  and  radius =

If β2 + γ 2 – 4αδ = 0, the equation represents the point

Now assume that the equations of the two circles in Fig. 1 are

α(x2 + y2) + βx + γy + δ = 0,

   αi(x2 + y2) + bix + ciy + di = 0,

  
− β

2α
,

γ
2α





   

β 2 + γ 2 − 4αδ
2α

.

  
− β

2α
, − γ

2α




 .

    
x + β

2α






2

+ y + γ
2α







2

= β 2 + γ 2 − 4αδ
4α 2

.
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and let us introduce the notation

Substituting the coordinates of the centers in the formula for the distance
between points and using the values of radii given earlier, we get

 
    

bi

2ai
,  —

β
2α







2

 +  
ci

2ai
 +  

γ
2α







2

 =  
ei

2

4ai
2  +  ε 2

4α 2  —  2
ei ε

4aiα
cos(θ i )  .

Algebraic simplification of the preceding equation gives

2diα − biβ − ciγ + 2aiδ + eicos(θi)ε = 0.

Although this equation was derived assuming two circles, one can
easily see that it remains valid for lines and points. Henceforth, when we
refer to circles we also include the degenerate cases of points and lines.

For the first Apollonius problem, we write the preceding equation for
i = 0, 1, 2 and recall the definition of ε, and we get

 2d0α − b0β − c0γ + 2a0δ + e0cos(θ0)ε = 0,

 2d1α − b1β − c1γ + 2a1δ + e1cos(θ1)ε = 0,

 2d2α − b2β − c2γ + 2a2δ + e2cos(θ2)ε = 0,

ε 2 = β 2 + γ 2 − 4αδ.

To get the third equation for the second Apollonius problem, recall that

    
r =  

β 2  +  γ 2  –  4αδ
2α

 =  
ε

2α
 .

    ei = bi
2 + ci

2 − 4aidi ,       ε = β 2 + γ 2 − 4αδ .

−−
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Thus, we can write the third equation as

2αr − ε  = 0.

If r > 1 (for example, for a line r = ∞), then if we define k = 1/r, we
can replace the third equation with

2α − kε = 0.

We have reduced both problems to the solution of the nearly linear
system of equations

 m00α + m01β  + m02γ  + m03δ + m04ε = 0,

 m10α + m11β  + m12γ  + m13δ + m14ε = 0,

 m20α + m21β  + m22γ  + m23δ + m24ε = 0,

  ε 2 = β 2 + γ 2 − 4αδ.

To solve this nonlinear system of equations, first we find the general
solution of the linear subsystem, and then, using that, we can solve the
nonlinear equation.

For circles in general position, the rank of the preceding linear subsys-
tem is 3, and from linear algebra we get the solution of the linear
subsystem in the form

     α = f00u + f01v,

     β = f10u + f11v,

     γ = f20u + f21v,

     δ = f30u + f31v,

     ε = f40u + f41v.

where u and v are arbitrary real numbers.



GRAPHICS GEMS III Edited by DAVID KIRK 207

IV.7 SOLVING THE PROBLEM OF APOLLONIUS
Substituting in ε 2 = β 2  + γ 2  − 4αδ, we get

(f40u + f41v)2 − (f10u + f11v) − (f20u + f21v)2

  + 4(f00u + f01v)(f30u + f31v) = 0.

Expanding and rearranging terms the preceding equation can be written
as

   A00u
2 + A01uv + A11v

2 = 0.

Since only the relative ratio of u and v is relevant, one can set either to 1
and solve for the other value. We can avoid handling too many special
cases by setting u = cos(φ), v = sin(φ), and solving the resulting
trigonometric equation. The classical Apollonius problem is a special case
of the first problem with θi = 0, π for i = 0, 1, 2. In general, we get eight
solutions for the first problem and four solutions for the second problem.

When the rank of the linear subsystem is 2, the circles are in a special
position (for example, two of them are coincident). From linear algebra,
we get

α = f00u + f01v + f02w,

β = f10u + f11v + f12w, ,

γ = f20u + f21v +f22w,

δ = f30u + f31v + f32w,

ε  = f40u + f41v + f42w,

where u, v, and w are arbitrary real numbers.
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Substituting in ε 2 = β 2 + γ 2 − 4αδ, we get

(f40u + f41v + f42w)2 −  (f10u +f11v + f12w)2

− (f20u + f21v + f22w)2

+ 4(f00u + f01v + f02w)(f30u + f31v + f32w) = 0

Expanding and rearranging terms, we can write the preceding equation as

  A00u
2 + A11v

2 + A22w
2 +A01uv +A02uw +A12vw = 0,

which is the homogeneous equation of a plane conic. It is known that if a
conic has a real point, then it has infinitely many, and all these points can
be rationally parameterized with a degree 2 function in two parameters s
and t. This parametrization can be obtained by stereographic projection
of the conic from the known point to any line not passing through this
point. Since α, β , γ , δ, ε  depend linearly on u, v, w, it follows that
α, β , γ , δ, ε  depend quadratically on s and t. Thus, we can find a repre-
sentation of the form

α = g00s
2 + g01st + g02t

2,

β = g10s
2 + g11st + g12t

2,

γ = g20s
2 + g21st + g22t

2,

δ = g30s
2 + g31st + g32t

2

ε  = g40s
2 + g41st + g42t

2.

If we recall that

we get the following result.
  
center = − β

2α
, − γ

2α




     and        radius = ε

2α
,
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In the case of rank 2, there are infinitely many solutions. The coordi-

nates of the center and the value of the radius are rational homogeneous
functions of degree 2 in two parameters.

Since a rational curve of degree two is conic, we get as a special case
that the center of all circles tangent to two circles describes a conic.

The case when the linear subsystem is of rank 1 is handled in a similar
manner.

As a final note, the technique presented above can be used to solve
analogous problems in higher dimensions. For example, one can find the
spheres that intersect four other spheres at given angles. In particular,
one can find the sphere tangent to three spheres and orthogonal to a
plane. This can be used to find the circle tangent to three given circles
that are coplanar without having to transform the coordinates.

A C implementation of the algorithm is straightforward; one needs a
routine that solves a linear homogeneous system.

See also G2,19
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3-D 3-D 3-D 3-D 3-D GEOMETRY ANDGEOMETRY ANDGEOMETRY ANDGEOMETRY ANDGEOMETRY ANDAAAAALGORITHMSLGORITHMSLGORITHMSLGORITHMSLGORITHMS

The heart and soul of realistic computer graphics simulation is the
manipulation of three-dimensional geometry. Although rendering pro-
vides the “skin” of computer graphics, the meat and bones are provided
by the geometry. This section contains a variety of tools for manipulating
three-dimensional geometry, ranging from clever tricks to more substan-
tial algorithms.

The first Gem improves on a few previous Gems which discussed the
manipulation of triangles. The third Gem provides a simple improvement
to a well-known technique for calculating distances. The fifth Gem out-
lines Newell’s method for computing the plane equation of a polygon. The
method is particularly interesting in the way that it handles nonplanar
polygons.

Several of the Gems provide nice building blocks for popular algo-
rithms. The second Gem describes how to subdivide a convex polygon
based on its intersection with a plane. This tool could be used as part of a
binary space partitioning algorithm, which is described in the next sec-
tion. The fourth Gem describes how to combine polygons that are very
nearly planar, which often are produced accidentally when subdividing
planar polygons, due to roundoff errors. The sixth and seventh Gems
discuss efficient recipes for calculating intersections between planes, and
between triangles and cubes. The triangle-cube intersection test is very
useful for spatial subdivision algorithms such as octree encoding. The
eighth Gem provides an efficient hierarchical technique for overlap test-
ing, which is an important first step in intersection testing.

VVVVV
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The ninth and tenth Gems are related in that they both discuss the
manipulation of simplexes and related figures in three and more dimen-
sions. The eleventh Gem discusses how to convert Bézier triangles into a
more tractable representation, rectangular patches. The last Gem in this
section discusses how to sample a three-dimensional curve for a two-
dimensional drawing.
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TTTTTRIANGLES REVISITEDRIANGLES REVISITEDRIANGLES REVISITEDRIANGLES REVISITEDRIANGLES REVISITED

Fernando J. López-LópezSouthwestern CollegeChula Vista, California

In the book Graphics Gems I, in the chapter entitled ”Triangles”
(Goldman, 1990), the author gives closed-form expressions for important
points and parameters in a triangle, such as the perimeter, the area, the
center of gravity, the orthocenter, and the centers and radii of the
circumcircle and the incircle.

These formulae can be written as vector expressions in a more succinct
and useful form, more adaptable to programming. In what follows I have
departed somewhat from the nomenclature used by Goldman: I denote
vectors with an arrow, and scalars without the arrow. I have also added
the positions and radii of the Feuerbach or nine-point circle and the
excircles.

Let the triangle be given by the position vectors       
r
z1,  

r
z2,  

r
z3.

Define the sides of the triangle as vectors       
r
a ,  

r
b ,  

r
c ,  such that

          
r
a +  

r
b +  

r
c =  0.

Namely,

      
r
a =

r
z2 −

r
z3,

      
r
b =

r
z3 −

r
z1,

      
r
c =

r
z1 −

r
z2.
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We now compute their magnitudes a, b, c, and the quantities

where ⋅ represents the dot product.
We have also obtained the angles of the triangle, with the usual

convention that angle A is opposite to side a, etc.
We also need

  e1 = d2d3,

  e2 = d3d1

  e3 = d1d2

   e = e1 + e2 + e3.
We now define

    2s = a + b + c,

which is the perimeter of the triangle.
Also,

      2∆ =  
r
z1 ×  

r
z2 +  

r
z2 ×  

r
z3 +  

r
z3 ×  

r
z1  →  area =  ∆ ,

where ×  represents the cross product, vertical bars denote the magni-
tude of the vector, and ∆ is the area of the triangle.

From these definitions and results we can successively compute the
following: The position of the center of gravity, i.e., the concurrence of
the medians, as,

          
r
zG =  

r
z1 +  

r
z2 +  

r
z3( )/ 3.

      d1 = −
r
b ⋅

r
c → cos A = d1/ bc,

      d2 = −
r
c ⋅

r
a → cosB = d2 / ca,

      d3 = −
r
a ⋅

r
b → cosC = d3 / ab,
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The position of the orthocenter, i.e., the concurrence of the altitudes,

as,

   
      
r
zH =  e1

r
z1 +  e2

r
z2 +  e3

r
z3

e .

The position of the circumcenter, i.e., the concurrence of the perpen-
dicular bisectors to the sides, and the radius of the circumcircle, i.e., the
circle that passes through the three vertices, are given by

  
      
r
zC =  3

r
zG —  

r
zH

2 ,        RC =  1
2  a2  +  b2  +  c2

e  .

The position of the incenter, i.e., the concurrence of the angle bisec-
tors, and the radius of the incircle, i.e., the circle inscribed in the triangle,
tangent to the three sides, are

      
r
zI =  a

r
z1 +  b

r
z2 +  c

r
z3

2s ,        rI =  ∆
s .

The positions of the excenters, and the radii of the excircles, i.e., the
circles tangent to one side of the triangle and to the extensions of the
other two sides, are given by

      
r
z I c = s

r
z I− c

r
z3

s − c
,       r I c = ∆

s − c
;

      
r
z Ib = s

r
z I− b

r
z2

s − b
,       r Ib = ∆

s − b
;

      
r
z I a = s

r
z I− a

r
z1

s − a
,       r I a = ∆

s − a
;
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And the center and radius of the Feuerbach circle (nine-point circle),

i.e., the circle that passes through the three feet of the altitudes and the
middle points of the sides, are

          
r
zF =  

r
zC +  

r
zH( )/ 2,        RF =  RC / 2 .

The Feuerbach circle is tangent to the incircle and to the three excir-
cles. For the properties of these points and circles, see, for example,
Coxeter (1969), pp. 10–20.

See also G1, 20; G1, 297.
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Norman ChinColumbia UniversityNew York, New York

IntroductionIntroductionIntroductionIntroductionIntroduction
Partitioning 3-D polygons is required by various graphics algorithms
as a preprocessing step, such as in the radiosity method (Cohen and
Greenberg, 1985) and in the BSP tree visible-surface algorithm (Fuchs et
al., 1980).

Since the implementation of many applications is simplified by dealing
with only convex polygons, this Gem describes how to partition planar
convex polygons by an arbitrary plane in three-space. This is basically
one pass of the Sutherland-Hodgman (Sutherland and Hodgman, 1974)
polygon clipper, but optimized for clipping convex polygons.

The input polygon is represented as a linked list with both portions
returned after partitioning. This differs from Heckbert’s Gem (Heckbert,
1990) in three ways, in that his input polygon is stored as an array, with
only the inside portion returned, after being clipped by an axis-aligned
plane.

At most, two vertices need be inserted into both pieces after splitting.
This is easy to code in array form but requires block copies of overlap-
ping regions. In linked list form, manipulating a few pointers is tedious to
code but is usually faster than block copies. This latter representation is
very well suited for algorithms that require lots of splitting and that
output variable-length polygonal fragments, such as in Thibault and
Naylor (1987) and Chin and Feiner (1989).
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InputInputInputInputInput
The inputs are the coefficients of the partitioning plane’s plane equation
and the polygon to be partitioned in linked list format. Collinear vertices
are allowed. The last vertex must be a duplicate of the first vertex, since
we are processing edges. (That is, a square has five vertices instead of
four.) Other than this last vertex, coincident vertices are not allowed.

OutputOutputOutputOutputOutput
The input polygon is divided into its negative and positive fragments, if
any, with respect to the partitioning plane. Either fragment may still
contain collinear vertices. Newly generated intersection vertices coinci-
dent with existing vertices are deleted. The last vertex is, as always, a
duplicate of the first. Note that if the output polygon is embedded in the
partitioning plane, there will be no negative and positive fragments.

Algorithm OverviewAlgorithm OverviewAlgorithm OverviewAlgorithm OverviewAlgorithm Overview
There are four basic steps to the algorithm:

• vertex classification to see which half-space they lie in with respect to
the partitioning plane

• intersection detection
• intersection computation
• polygon splitting, including updating pointers

ProcedureProcedureProcedureProcedureProcedure
By plugging the coordinates of a vertex into the partitioning plane’s plane
equation in the form Ax + By + Cz + D = signed distance from plane, a
vertex can be classified as to whether it’s on the negative or positive side
or embedded in the plane. All that is needed is the sign. Because of
round-off errors, the plane must be assigned a small ”thickness” to
determine if the vertex is on the plane.
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Table 1

c(V1) c(V2)
1   0   0
2 – –
3 + +
4 – +
5 + –
6 0 –
7 0 +
8 + 0
9 – 0

Only edges with ends having opposite signs are guaranteed to intersect
the plane. Let V1 be the vertex at the start of an edge and let V2 be the
vertex at the end of the edge. When these two vertices are classified,
c(V1) and c(V2), there are nine possibilities, as shown in Table I.

In cases 1, 2, and 3, the edge is embedded in the plane, on the
negative, and on the positive side of the plane, respectively, so there is no
intersection.

In cases 4 and 5, the edge lies on both sides, so there is an intersection.
In case 6, the edge is touching the plane at its start vertex, V1. In order

for an intersection to exist, a transition from positive to zero (case 8c)
must have occurred just previously. In fact, by checking for case 8c or 9b
(described below and in Table II), case 6 is taken care of as a result.
Likewise, case 7 can be ignored, since checking for case 8b or 9c will
handle it. Intersections through vertices are counted once, not twice.

In case 8 and 9, the edge is touching the plane at its ending vertex, V2.
To determine if there is an intersection, we need to know the classifica-
tion of the next vertex, V3. Recall that coincident vertices are not
allowed, so V2 is not equal to V3. This results in the following cases, as
shown in Table II.

In cases 8a and 9a, V3 lies on the plane. It appears that we may
have to continually lookahead until we find a nonzero sign to determine if
the polygon eventually crosses the plane. However, vertex sequences,
”+00−” and ”−00+” cannot occur since we are dealing with convex
polygons, so there is no intersection.

In cases 8b and 9b, both V1 and V3 are on one side of the plane so
there is no intersection.
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Table 2

c(V1) c(V2) c(V3)

8a + 0 0
8b + 0 +
8c + 0 –
9a – 0 0
9b – 0 –
9c – 0 +

In cases 8c and 9c, there is a sign change resulting in an intersection at
V2.

Computing the actual intersection coordinate of an edge and a plane is
very similiar to computing the intersection of a ray and a plane and is
discussed in other texts (Glassner et al., 1989, and Foley et al., 1990).

After both intersections vertices are found, the vertex lists are adjusted
in both split polygons and returned to the caller.

Depending upon the application, when the resulting split polygons are
too small to be further processed, it may be best to ignore them. A good
heuristic to determine “smallness” is to check their areas.

EnhancementsEnhancementsEnhancementsEnhancementsEnhancements
Suggested enhancements include maintaining a winged-edge data struc-
ture (Baumgart, 1975) after partitioning, storing each unique vertex once
instead of multiple times, and flagging an edge if it was introduced via
partitioning.
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Príamos GeorgiadesCrystalGraphics, Inc.Santa Clara, California

The standard way of obtaining the shortest (Euclidean) distance from a
point P to a plane J is finding the orthogonal projection Q of P onto J,
so that the distance is the length of the vector P − Q. This involves
computing a square root (Glassner, 1990). Furthermore, if the application
requires ordering a set of points with respect to their distance from J, it is
necessary to know on which side of the plane the points lie. This would
require another dot product operation. This gem yields the signed dis-
tance from P to J with a single dot product and an addition. It assumes
that the plane equation is represented by its unit normal, JN, and a scalar
Jd such that for any point R on the plane, JN ⋅ R + Jd = 0. In most
applications, it will become necessary to normalize the plane normal at
one instance or another, so it is expected that all plane normals are thus
maintained. It is a one-time square-root and division operation that will
eliminate the need to evaluate a square root each time a distance from
this plane is sought.

The intuition behind this is that since the line connecting P to its
projection Q on the plane is collinear to JN, its length can be measured
as a scalar multiple of JN. Assuming that the length of JN is known to be
1, that scalar value is the wanted distance from the plane.

The derivation has as follows: Let d = |P − Q|, and express P using
the parametric equation of the line through Q normal to J. Let N = JN.
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Then P = dN + Q, or

    Px = dNx + Qx ,

    Py = dNy + Qy ,

    Pz = dNz + Qz .

Multiply each equation by the respective coordinate of N and add.

But N ⋅ N = 1 by assumption, and N ⋅ Q = −Jd from the plane equa-
tion. Hence d = N ⋅ P + Jd , or in Gems’ notation

   d ← JN ⋅ P + Jd

Note that, if d is positive, then P lies on the same side of J as its normal,
if it’s negative it lies on the back side, and if zero (or within some
epsilon-small value) it lies on the plane. Moreover, the projection Q of P
onto J can now be obtained from the parametric equation of the line with
the computed d.

See also G1, 297.

    Nx Px = dNx
2 + NxQx

    Ny Py = dNy
2 + NyQy

    

NzPz = dNz
2 + NzQz

N ⋅ P = dN ⋅ N + N ⋅Q
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V.4 GROUPING NEARLY COPLANAR POLYGONSV.4V.4V.4V.4V.4GGGGGROUPING NEARLY COPLANARROUPING NEARLY COPLANARROUPING NEARLY COPLANARROUPING NEARLY COPLANARROUPING NEARLY COPLANARPPPPPOLYGONS INTOOLYGONS INTOOLYGONS INTOOLYGONS INTOOLYGONS INTOCCCCCOPLANAR SETSOPLANAR SETSOPLANAR SETSOPLANAR SETSOPLANAR SETS
David Salesin and Filippo TampieriCornell UniversityIthaca, New York

IntroductionIntroductionIntroductionIntroductionIntroduction
The propagation of errors in geometric algorithms is a very tricky prob-
lem: Small arithmetic errors in the computations may lead not only to
errors in the numerical results, such as the coordinates of vertices and
edges, but also to inconsistencies in the combinatorial results, such as
the vertex and edge adjacencies in the topological description of an
object. Inconsistencies can be a more serious problem than numerical
errors, as they can lead to infinite loops or a program that “bombs out”
on certain inputs.

For example, most polyhedral modelers that accommodate coplanar
faces correctly handle polygons that are really coplanar or that meet at
large angles, but may fail on polygons that meet at nonzero angles that
are sufficiently small (Segal, 1990).

We present here a very simple, reliable technique for grouping poly-
gons into coplanar sets, so that

• no two sets meet at an angle smaller than e; and

• no polygon’s normal or position is perturbed by more than a small,
fixed δ (related to e).

(The desired tolerance e is arbitrary, and can be chosen according to the
application.)
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ApplicationsApplicationsApplicationsApplicationsApplications
The ability to group nearly coplanar polygons into coplanar sets has a
wide variety of applications in computer graphics:

Solid modeling. Overlapping, nearly coplanar polygons can lead to
inconsistencies between the numerical and combinatorial data maintained
by solid modelers based on boundary representations. For example,
because of numerical inaccuracies the computed intersection of two
overlapping faces may actually lie outside of each of these faces, leading
to an inconsistency. By recognizing and explicitly merging nearly co-
planar faces, a solid modeler can get around these problems.

BSP trees. A binary space partitioning tree is a partition of space used
to impose an ordering over a set of polygons. The supporting plane p of
one polygon is chosen as the root of the tree, and the other polygons are
classified as lying either in front of p, behind p, or on p. If a polygon
cannot be classified, it is split along p, and the resulting fragments are
classified independently. Failing to classify nearly coplanar polygons in
the same set results in a larger tree and may also cause many polygons to
be unnecessarily split, thus adversely affecting performance. Applying our
technique to BSP trees would benefit a wide range of applications,
including visible surface determination (Fuchs et al., 1980), shadow
generation (Chin and Feiner, 1989), radiosity computations (Campbell
and Fussel, 1990), and CSG operations (Naylor et al, 1990).

Lighting computations. Rendering a set of nearly coplanar polygons
as independent surfaces may result in Mach bands or other annoying
artifacts in the final image. The problem arises when numerical errors
creep into the surface normal computations of polygons that are sup-
posed to be coplanar. If nearly coplanar polygons are grouped back into
coplanar sets, these artifacts can be avoided.
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Radiosity. Current radiosity systems mesh every input polygon into a

set of patches, solve for the radiosities at the vertices of these patches,
and then display the results using linear interpolation. If the boundary
vertices of the meshes of neighboring coplanar patches are not aligned,
shading discontinuities and cracks between polygons may result (Baum
et al., 1991; Haines, 1991). Assembling coplanar polygons into surfaces
and maintaining connectivity information across these polygons during
meshing allows these problems to be avoided.

Texture mapping. Consider the problem of applying a 2-D texture
map to a surface represented by a polygonal mesh. Simply texture-map-
ping each polygon separately would result in discontinuities of the tex-
ture across polygon boundaries. In the case of planar surfaces, this
problem is easily solved by adopting a (u, v) reference system local to the
surface and assigning (u, v) coordinates to every vertex in the polygonal
mesh. If the input to the renderer is a simple stream of polygons, it is
then necessary to first group these polygons into coplanar sets.

DerivationDerivationDerivationDerivationDerivation
We derive our technique from a more general method for sorting a
collection of numbers approximately.

First, we need a precise way of describing a set of elements that is only
“approximately” sorted:

Definition. Given a set of real numbers S = {s1, s2, . . . , sn}, we will
say that S is δ-sorted if si ≤ sj + δ for all 1 ≤ i < j ≤ n.

Suppose now that we are given a subroutine Increasing(a, b, e) that is
guaranteed to return TRUE if a < b − e and FALSE if b < a − e, but may
also return a third value UNKNOWN if |a − b| ≤ e.

We would like to find a way of using O(n log n) calls to the Increas-
ing routine in order to arrive at a δ-sorted list, where δ is related to e in
some reasonable way.
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In order to accomplish this task, we introduce the following data

structure, called a representative tree:

type RepresentativeTree = record
representative: Element
bucket: set of Element
left, right: pointer to RepresentativeTree

end record

The idea of the tree is to keep a single “representative” element at each
node, along with a “bucket” of elements that are within a given tolerance
e of the representative. We build the tree, one element at a time, using the
following procedure:

procedure InsertElement takes
tree: pointer to RepresentativeTree
x: Element
e: Tolerance

begin
if tree = NIL then

tree ← alloc RepresentativeTree[x, φ, NIL, NIL]
else

case Increasing(x,tree.representative, e) of
TRUE: InsertElement(tree.left, x, e)
FALSE: InsertElement(tree.right, x, e)
UNKNOWN: tree.bucket ← tree.bucket < {x}

end case
end if

end

The InsertElement routine works by comparing a new element x against
the representative element y at the root of the tree. If x < y − e, we
recurse on the left subtree; otherwise, if y < x − e, we recurse on the
right subtree. Finally, if |x − y| ≤ e, then we merely insert x into a
bucket associated with y, where it can take part in no further compar-
isons.



GRAPHICS GEMS III Edited by DAVID KIRK 229

V.4 GROUPING NEARLY COPLANAR POLYGONS
After all the points have been inserted in the tree, the approximately

sorted list is produced by traversing the tree in order, and outputting each
node’s representative element, along with all the elements stored in its
bucket, as the node is traversed.

It is not difficult to show that this algorithm uses O(n log n) compar-
isons to produce a list that is always 2e-sorted (Salesin, 1991).

Comparing Two PlanesComparing Two PlanesComparing Two PlanesComparing Two PlanesComparing Two Planes
It remains only to define the comparison function Increasing for two
planes. We will store each plane ax + by + cz + d = 0 in the following
data structure:

type Plane = record
N: Vector
d: real

end record

where N = (a, b, c) is the plane’s unit normal, and d describes the
distance between two parallel planes. Newell’s method can be used
to compute the normalized plane equations of the input polygons
(Sutherland et al., 1974; Tampieri, 1992).

For the Increasing function we use a sort of lexicographic comparison
between the two planes, testing the angle between the planes first, and, if
the angle is near zero, testing the distance between the planes second:

procedure Increasing takes
P, Q: Plane
e.cosangle, e.distance: real

returns

cmp: {TRUE, FALSE, UNKNOWN}
begin

c ← P.N ⋅ Q.N
if c < −e.cosangle then

return TRUE
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else if c > e.cosangle then

return FALSE
else

d ← P.d − Q.d
if d < −e.distance then

return TRUE
else if d > e.distance then

return FALSE
else

return UNKNOWN
end if

end if
end

Here, two planes P and Q  are considered to be nearly “coplanar” if the
angle between their normals is no greater than cos−1(e.cosangle), and if
their relative distance is within e.distance .

See also G3, E.5.
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Filippo TampieriCornell UniversityIthaca, New York

Here is a numerically robust way of computing the plane equation of
an arbitrary 3-D polygon. This technique, first suggested by Newell
(Sutherland et al., 1974), works for concave polygons and polygons
containing collinear vertices, as well as for nonplanar polygons, e.g.,
polygons resulting from perturbed vertex locations. In the last case,
Newell’s method computes a “best-fit” plane.

Newell’s MethodNewell’s MethodNewell’s MethodNewell’s MethodNewell’s Method
It can be shown that the areas of the projections of a polygon onto the
Cartesian planes, xy, yz, and zx, are proportional to the coefficients of
the normal vector to the polygon. Newell’s method computes each one of
these projected areas as the sum of the “signed” areas of the trapezoidal
regions enclosed between each polygon edge and its projection onto one
of the Cartesian axes.

Let the n vertices of a polygon p be denoted by V1, V2, . . . , Vn, where
Vi = (xi, Yi, zi), i = 1, 2, . . . , n. The plane equation ax + by + cz + d =
0 can be expressed as

 (X − P) ⋅ N = 0,     (1)

where X = (x, y, z), N = (a, b, c) is the normal to the plane, and P is an
arbitrary reference point on the plane. The coefficients a, b, and c are
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given by

    

a =  (yi —  yi⊕1)(zi +  zi⊕1),
i=1

n

∑

b =  (zi —  zi⊕1)(xi +  xi⊕1),
i=1

n

∑

c =  (xi —  xi⊕1)(yi +  yi⊕1),
i=1

n

∑

where ⊕ represents addition modulo n.
The coefficient d is computed from Eq. (1) as

d = −P ⋅ N,     (2)

where P is the arithmetic average of all the vertices of the polygon:

    
P =  1

n
Vi .

i=1

n

∑ (3)

It is often useful to “normalize” the plane equation so that N = (a, b, c)
is a unit vector. This is done simply by dividing each coefficient of the
plane equation by (a2 + b2 + c2)1/2.

Newell’s method may seem inefficient for planar polygons, since it uses
all the vertices of a polygon when, in fact, only three points are needed to
define a plane. It should be noted, though, that for arbitrary planar
polygons, these three points must be chosen very carefully:

1. Three points uniquely define a plane if and only if they are not
collinear; and

2. if the three points are chosen around a “concave” corner, the normal
of the resulting plane will point in the direction opposite to the
expected one.

Checking for these properties would reduce the efficiency of the three-
point method as well as making its coding rather inelegant. A good
strategy may be that of using the three-point method for polygons that
are already known to be planar and strictly convex (no collinear vertices,)
and using Newell’s method for the rest.

See also G3, E, 4.
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PPPPPLANE-TO-PLANELANE-TO-PLANELANE-TO-PLANELANE-TO-PLANELANE-TO-PLANEIIIIINTERSECTIONNTERSECTIONNTERSECTIONNTERSECTIONNTERSECTION

Príamos GeorgiadesCrystalGraphics, Inc.Santa Clara, California

This is an algorithm for computing the parametric equation of the line of
intersection between two planes. It’s a basic, useful and efficient function
with broad applications in 3-D graphics. Let planes I and J have normals
M = IN and N = JN, respectively, such that for any point Q on either
plane, IN ⋅ Q + Id = 0 and JN ⋅ Q + Jd = 0. The task at hand is to com-
pute a vector L and a point P such that for any Q ∈ I > J, Q = tL + P.

The direction vector L of the line is found easily as the unit cross-prod-
uct of the normals of the two planes. This follows from the observation
that it must be perpendicular to both normals M and N, and that the
vector M × N does exactly that (M × N ⋅ N = M × N ⋅ M = 0). Mathe-
matically, since the solution space of the two equations is one-dimen-
sional, it must be that L is collinear to M × N. If M and N are linearly
dependent, then the planes do not intersect.

Picking the point P on the line is just as easy. Since there are only two
constraints P must satisfy (the two plane equations), a third constraint
must be added. The simplest thing to do is set one of its coordinates to
zero (so that it lies on a coordinate plane) and solve the two equations for
the remaining two coordinates. In order to avoid numerical error in the
derivation that follows, choose P on the coordinate plane to which L is
nearest to normal. In other words, set to zero the coordinate of P
corresponding to the coordinate of L of greatest magnitude.
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Figure 1. Plane-to-plane intersection.

Let w be the coordinate of maximal magnitude, and u and v the other
two, such that {u, v, w} is an ordered permutation of {x, y, z}. Then

 
    

M ⋅  P +  Id =  0
N ⋅  P +  Jd =  0

Pw =  0
 ⇒       

    

MuPu +  MvPv =  -  Id

NuPu +  NvPv =  -  Jd

⇒   

    

Pu =  MvJd -  NvId

MuNv +  MvNu

Pv =  NuId -  MuJd

MuNv +  MvNu
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Note that (M × N)w = MuNv, + MvNu. Since this is the denominator, it
should not be near zero. This is why w is set to be the largest coordinate
of L. Now the assignments can be made in this order:

    

L ←  M ×  N ,

Pu ←  
Mv Jd  —  NvId

Lw

,

Pv ←  
NuId  —  Mu Jd

Lw

,

Pw ←  0,

L ←  L
L

.

See also G91, 305; G3, E.4.

−

−
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TTTTTRIANGLE–CUBE INTERSECTIONRIANGLE–CUBE INTERSECTIONRIANGLE–CUBE INTERSECTIONRIANGLE–CUBE INTERSECTIONRIANGLE–CUBE INTERSECTION

Douglas VoorhiesSilicon Graphics Inc.Mountain View, California

3-D triangles must occasionally be tested for intersection with axis-aligned
cubes, most commonly when the cubes subdivide space in some classifi-
cation scheme such as octrees. The conventional approach, successive
polygon clipping by six cube-face half-spaces, is computationally expen-
sive since it determines the actual polygonal intersection. This is not
usually required when triangles are only being organized into cubic
regions; in such cases, all that is needed is a yes-or-no detection of
whether they touch.

This gem describes an algorithm that exploits simple tests to give quick
answers much of the time and to minimize the work done in harder cases.
There are three parts to the algorithm. First, we use three quick trivial-
accept, trivial-reject tests to eliminate easy cases. Second, we detect
triangle edges penetrating any face of the cube, and third, we detect cube
corners poking through the interior of the triangle.

Testing the triangle vertices against the face-planes (the common
bounding-box test) is done first. Finding any vertex inside the unit cube
permits a trivial acceptance. On the other hand, if all vertices are outside
the same face-plane, then we have a trivial rejection. A second simple test
compares the vertices against the 12 planes that touch the 12 cube edges
and are at 45° to their edge’s adjacent faces. Although the enclosed
volume is a rhombic dodecahedron, the comparisons are easy. Every
pairing of coordinate components are simply added or subtracted and
then compared with 1.0, for example −X − Z > 1.0. And a third test
compares the triangle vertices against the eight planes that pass through
one of the eight cube corners and are perpendicular to the corresponding
cube diagonal, enclosing an octahedron. Here again, the math is simple,



GRAPHICS GEMS III Edited by DAVID KIRK 237

V.7 TRIANGLE–CUBE INTERSECTION
such as X − Y + Z > 1.5. If all three vertices are outside of the same
edge or corner plane, the triangle can be trivially rejected. Although the
third test rejects triangles only rarely, those it does catch are nasty cases
that would have otherwise required the full algorithm to assess.

If a triangle has survived these trivial accept/reject tests, we can
handle the two major interesting cases. Testing triangle sides to see if
they penetrate the cube consists of finding the intersection of a line
segment and a plane, followed by detecting whether that intersection
point lies within a cube face. The planes are, of course, the six face-planes
of the cube, and by using the results of the initial trivial accept/reject
tests, only those triangle edges that span particular face-planes need be
investigated. First, a parametric line segment equation αP1 + (1 − α)P2
is solved for a particular face plane (X, Y, or Z being equal to ±0.5 or
−0.5), and then the resulting point is compared with ±0.5 for the other
two coordinates. A minimum of four and a maximum of 12 tests will be
needed.

If no triangle edge penetrates the cube, the triangle and cube may still
intersect if one or more cube corners poke through the interior of the
triangle. To test for this, we find the intersection of the four cube
diagonals and the plane of the triangle. If any of the intersection points lie
inside the triangle, then the triangle intersects the cube. The plane of a
triangle can be described as AX + BY + CZ + D = 0, where A, B, C is
the plane normal vector (which can be obtained by the cross product of
any two triangle side vectors). Cube diagonal lines can be described by
X = ±Y = ±Z. Solving the plane equation for the X = Y = Z diagonal,
for example, gives −D/(A + B + C) as a metric of the distance from
cube center down the diagonal to the plane, where values −0.5 . . . +0.5
imply the unit cube interior. If the intersection point is not in this range,
then this diagonal does not need to be pursued further.

If the cube diagonal does intersect the plane of the triangle at a point
inside the cube, then the cube/triangle problem reduces to a coplanar-
point/triangle intersection test. First, a triangle bounding box test is used
to trivially reject points far from the triangle. Then we use cross products.
As you walk around the edges of a triangle clockwise, only the interior
points are to the right of your path at all times. Similarly, a counterclock-
wise walk keeps the interior to your left. The cross product of two vectors
is a third vector whose component signs reveal whether one vector is to
the right or left of the other. Thus, by taking a cross product at each
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Figure 1. Experiences of random triangles within a + 2.0 volume potentially intersecting
a centered axis-aligned unit cube.
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vertex, we can ascertain from its component signs whether the intersec-
tion point lies to the left or right of each edge (from that vertex to the
next). Only intersection points inside the triangle will have cross-product
component signs that imply either left/left/left or right/right/right.
(The vertex sequence is arbitrary; it is lucky that we need not discern
clockwise from counterclockwise, since only interior points are on the
same side of all three edges.)

The effectiveness of these individual tests varies with the relative size of
the cube and the triangle. Small cubes that intersect large triangles
usually touch the triangle’s interior. Conversely, large cubes allow easy
trivial acceptance of most intersecting small triangles. If they are of
roughly similar size, then all stages of the algorithm participate. For
example, if the triangles have vertices chosen at random within a cubic
volume linearly four times larger than the cube, roughly half can be
shown to intersect a unit cube placed at the volume’s center. Using this
test case reveals aspects of the algorithm’s behavior. Figure 1 shows the
percentage of triangles handled by each stage of the algorithm in this
particular example.

See also G2, 219.
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Len Wanger and Mike FuscoSimGraphics EngineeringSouth Pasadena, Califonia

The detection of overlapping extents is a common technique used in
operations such as clipping, hidden surface removal, and collision detec-
tion. Efficient determination of overlapping extents allows rejection of
objects that do not overlap without resorting to computationally expen-
sive intersection testing.

A naive O(n2) implementation of extent testing checks each extent
against all others. By sorting the extents on each dimension, the runtime
characteristics can be reduced to O(n log n); however, if care is not
taken, a large amount of time is spent on linear searches among the list of
extents. With a little ingenuity these linear searches can be eliminated.
This gem presents a C++ class for performing efficient detection of
overlapping extents.

Using the ClassUsing the ClassUsing the ClassUsing the ClassUsing the Class
The ExtHit class has four external methods:

ExtHit (size)—This method creates an instance of the class. The size
argument specifies the maximum number of extents that can be tested for
overlap with this instance of the class.

~ ExtHit( )—This method destroys the instance of the class.
Boolean add(extent, obj)—Adds an extent to be tested for extent

overlaps. The obj argument specifies the object that the extent is associ-
ated with and is passed to the user-supplied overlap function when the
object is involved in an extent overlap.
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test(func, data)—This method performs the actual overlap checking.

The func argument specifies the user-supplied function to be called for
each pair of overlapping objects; the data argument specifies user-sup-
plied data to be passed as an argument to func.

Using the ExtHit class is simple. After creating an instance of the class,
add all of the extents to be tested by using the add method. Once all of
the extents have been added testing is performed with a single call to the
test method. The test method will call the user supplied overlap function
for every pair of extents that overlap.

ImplementationImplementationImplementationImplementationImplementation
Three accelerations are used to speed up the extent overlap checking:

1. Overlap checking is performed on one dimension at a time, and only
those extents that overlapped in all of the previous dimensions are
tested for any dimension. An overlap table is kept to register which
extents overlapped in the previous dimensions.

2. The extent values for each dimension are sorted when testing for
overlap. Both the minimum and maximum extent values are placed
on the overlap list, which is then sorted. Two extents overlap in a
dimension if the minimum extent value of one extent is between the
minimum and maximum extent values of the other extent in the
overlap list. This property is used to find all of the extent intersec-
tions in the overlap list. During traversal of the overlap list, any
extent whose minimum extent value has been passed, and whose
maximum value has not, is said to be open and is placed on the open
list. When the minimum extent value for an extent is passed, the
entries in the overlap table for the intersections of the extent and
every extent currently on the open list are marked. The extent is
removed from the open list when the maximum extent value is
passed.

3. Only those extents that were involved in overlaps in the previous
dimensions are tested for any dimension. Extents that are involved in
an overlap are said to be active and are kept on the active list. Only
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placing active extents on the overlap list has the effect of reducing
the number of extents tested for any dimension.

Pseudo-codePseudo-codePseudo-codePseudo-codePseudo-code
The actual extent overlap testing is applied in the test method. The
pseudo-code for the test method is as follows:

function test
  begin
    for dimension ← 0 to num_dimensions-1 do
      begin
        for each active extent
          begin
            add the minimum and maximum extent values to the overlap
            list
          endloop;

        sort the overlap list by extent value
        call subtest
      endloop;
    end;

function subtest
  begin
    for each extent value in the overlap list
      begin
        rec ← the extent associated with the extent value

        if rec is not on the open list then
          for each extent on the open list
            begin
              if rec overlapped with the extent from the open list in the
              previous dimension then
                if this is the highest dimension being tested then
                  begin this means the extents overlap
                    call the user supplied overlap function
                  end
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          else
            begin
              Set the overlap table entry for rec and the extent from
              the open list
              Mark both rec and the extent from the open list as
              active
            end
        add rec to the open list
    endloop
    else
      begin
        remove rec from the open list
        if rec is not marked as active then
          begin
              remove rec from the active list
          end
      end
  endloop;
end;

See also G1, 395.
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Doug MooreRice UniversityHouston, Texas

ProblemProblemProblemProblemProblem
The most popular primitive shapes in graphics and geometric computa-
tion are the boxes (segment, square, cube, tesseract, . . . ) and the sim-
plices (segment, triangle, tetrahedron, 5-cell, . . . ). Boxes fit together
nicely in grids, which makes referring to a box by a set of coordinates
easy. Boxes can be subdivided into smaller boxes, and quadtrees built
from hierarchies of large and small boxes. On the other hand, simplices
are ideal for rendering and shading algorithms, like Gouraud shading,
based on linear interpolation. However, the way simplices fit together and
break apart is not so obvious, so they are used less frequently than boxes
in many geometric applications.

For example, it is not well known that simplices can be divided into
subsimplices just as boxes can be divided into subboxes. This Gem
presents two methods for dividing an n-simplex into 2” simplices and
discusses some applications of the subdivision of simplices.

Recursively Subdividing SimplicesRecursively Subdividing SimplicesRecursively Subdividing SimplicesRecursively Subdividing SimplicesRecursively Subdividing Simplices
The generalization of a triangle or tetrahedron to any dimension is a
simplex, defined as the convex hull of an affinely independent point set.
The structure of a simplex is such that any pair of its vertices form an
edge, any three of its vertices form a face, any four of its vertices form a
cell, and so on. A simplex is the simplest kind of polytope.

An n-simplex with vertices {v0, . . ., vn} can be subdivided into 2n

smaller n-simplices by a simple recursive procedure. A hyperplane cut-
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ting through the midpoint of edge     v0vn  and through all the other vertices
divides the simplex into two simplices. Split these new simplices by
cutting through the midpoint of edge     v0vn –  1

 and the midpoint of edge

    v1vn ; that cuts one edge on each of the smaller simplices. Proceed at step
k by cutting edge     vivi + n -  k( )  +  1

 for all i, and each step cuts one edge per
simplex and doubles the number of simplices. The result of the nth step
is the recursive decomposition of the simplex. Figure 1 illustrates this
process for a tetrahedron.

If, for all i, vi is the point whose first i coordinates are ones and whose
other coordinates are zeros, the simplex is called a Kuhn simplex, the
natural generalization of a right isosceles triangle to higher dimensions.
Generally, the subsimplices that result from recursive subdivision are of
several different shapes, but a Kuhn simplex is recursively subdivided
only into smaller Kuhn simplices.

Figure 1. Phases of recursive subdivision.
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Figure 2. Recursive subdivision.

The treelike diagram of Fig. 2 provides another way of viewing the
recursive decomposition of a tetrahedron. Let the pair (i, i) represent
vertex vi of the tetrahedron and let (i, j) represent the midpoint of edge

  vivj  of the original tetrahedron. With that understanding, each path from
the bottom of the diagram to the top represents a set of vertices that
define a simplex of the recursive subdivision. To generate just the kth
simplex of the decomposition, start at the node labeled (b(k), b(k)),
where b(k) denotes the number of 1 bits in the binary representation of
k. Starting with the ones digit, traverse a path from the bottom of the
diagram to the top, turning right with every 0 bit and left with every 1 bit.
The vertices encountered in that traversal are the vertices of the kth
subsimplex. The diagram highlights the traversal for the fourth subsim-
plex of the recursive subdivision, and that subsimplex has a bold outline
in the accompanying illustration.

Symmetrically Subdividing SimplicesSymmetrically Subdividing SimplicesSymmetrically Subdividing SimplicesSymmetrically Subdividing SimplicesSymmetrically Subdividing Simplices
When applied to a triangle, recursive subdivision does not yield the usual
“corner-chopped” decomposition of the triangle into four subtriangles. A
subdivision technique that does have that property for general simplices
is the symmetric subdivision method. The symmetric subdivision method
can best be understood by considering the Kuhn triangulation of boxes. A
unit n-box can be divided into several n-simplices by considering every
possible ordering of the coordinate axes. For each permutation p of the

2

1

3
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integers 1 to n, there is a region of the box for which 0 ≤ xp(1) < xp(2) ≤
. . . < xp(n) < 1. Altogether, there are n! of these regions, each traced out
by a set of edges on the boundary of the box that begins at the origin,
then moves in the xp(1) direction, then in the xp(2) direction, and so on,
ending at the point with all 1 coordinates. Each of these paths includes
n + 1 vertices that define a Kuhn simplex, and the set of all those
simplices defines the Kuhn triangulation of the box.

The Kuhn triangulation of a box is not unique; it depends on the choice
of a diagonal of the box that is an edge of every Kuhn simplex of the
triangulation. By triangulating a box, and at the same time triangulating
the 2n half-size subboxes of the box along diagonals parallel to the
original, two sets of Kuhn simplices are created. Each large Kuhn simplex
contains exactly 2n of the smaller Kuhn simplices. Figure 3 illustrates this
set of decompositions for cubes and tetrahedra.

Figure 3. Symmetric subdivision from box subdivision.
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Figure 4. Symmetric subdivision.

Symmetric subdivision can also be understood by the diagram in the
left half of Fig. 4. To generate the kth subsimplex of the symmetric
subdivision, start at the node labeled (0, b(k)), and starting with the ones
digit, traverse a path from the left side of the diagram to the right, turning
up with every 0 bit and down with every 1 bit. The vertices encountered
in that traversal are the vertices of the kth subsimplex. The figure
highlights the traversal for the fourth subsimplex of the symmetric
subdivision. The right half of the figure illustrates the symmetric subdivi-
sion of a tetrahedron, with the fourth subsimplex outlined in bold.

Although most simplices, when subdivided symmetrically, yield subsimp-
lices of several different shapes, there is an infinite family of simplices
for which the subsimplices have the same shape as the parent simplex.
These are the Kuhn n-simplices compressed or elongated along the
direction from v0 to vn. Compressing by a factor of 1/    1 +  n  yields the
most nearly regular simplices in this family.

ApplicationsApplicationsApplicationsApplicationsApplications
A subdivision scheme for simplices leads to alternate, simplicial forms of
all the familiar concepts that arise from box subdivision. For example,
simplicial quadtrees have the same advantages as the more usual box-
based quadtrees, but also greater flexibility. A tree of tetrahedra can be
refined by selecting a leaf of the tree and subdividing it, where any points
along the edges, not just midpoints of edges, are used to divide the leaf.
As a result, simplicial quadtrees can produce object descriptions without
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Figure 5. Simplicial decomposition of closed curve.

the jagged boundaries that characterize objects described with usual
quadtrees. In three dimensions and higher, the same flexibility is possible
in box-based trees only if the boxes are permitted to warp to produce
curved faces. For example, Fig. 5 illustrates how a uniform simplicial
quadtree can nearly approximate a closed curve.

Simplicial quadtrees are convenient tools in systems that manipulate
multivariate Bernstein polynomials of fixed degree. Such polynomials are
naturally defined by a set of coefficients over a domain simplex. Polygo-
nalizers for algebraic surfaces and systems for modeling with trivariate
freeform deformations are more naturally based around simplicial
quadtrees than box-based trees.

See also G3, E.10.
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UUUUUNDERSTANDING SIMPLOIDSNDERSTANDING SIMPLOIDSNDERSTANDING SIMPLOIDSNDERSTANDING SIMPLOIDSNDERSTANDING SIMPLOIDS

Doug MooreRice UniversityHouston, Texas

ProblemProblemProblemProblemProblem
The set of shapes called simploids includes both the simplices (triangle,
tetrahedra, . . . ) and the boxes (square, cube, . . . ) as special cases. Sim-
ploids are surprisingly easy to compute with, because they have a simple
structure. This Gem describes simploids and several ways to break them
apart. In particular, we present algorithms for splitting a simploid into a
collection of simplices and splitting a simplex into a pair of simploids on
opposite sides of a plane.

SimploidsSimploidsSimploidsSimploidsSimploids
The product of two polytopes P1 and P2 is the polytope obtained by
replacing each vertex v of P1 by a copy of P2, denoted c(v), and each
edge (v, w) of P1 by the set of edges between corresponding vertices in
c(v) and c(w). The polytopes P1 and P2 are called factors of the
product. The dimension of the product of polytopes is the sum of the
dimensions of the factors. For example, the product of two one-dimens-
ional segments is a two-dimensional rectangle. The product of a
two-dimensional polygon with a one-dimensional segment is a three-
dimensional right polygonal prism. Figure 1 depicts the product of two
triangles, a four-dimensional figure.

Expressed as coordinates, the vertices of the product are formed by
concatenating coordinates of the factors. For an n1 dimensional polytope
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Figure 1. The product of two triangles.

with m1 vertices {v11, v12, . . . , v1m1} and an n2 dimensional polytope with
m2 vertices {v21, v22, . . . , v2m2}, their product is the n1 + n2 dimensional
polytope with m1m2 vertices (v1iv2i), where coordinates of vertices of
the factors are concatenated to form vertices of their product. A pair of
vertices (v1i1

v2i2
) and (v1j1

v2j2
) in the product is connected by an edge if

either i1 = j1, or i2 = j2.
A polytope in n dimensions can be the product of up to n lower-

dimensional polytopes. For example, a cube is the product of three
intervals. In a general polytope that is the product of r ≤ n polytopes in
which the kth factor polytope has mk vertices, there are m1m2 . . . mr.
vertices. Vertices v1i1

v2i2
 . . . vri, and v1j1

v2j2
 . . . vrjr

, are adjacent in the
product exactly when ik = jk for all but one value of k.

A simploid is a polytope isomorphic to a product of simplices. That is,
the vertices of a product of simplices can be moved around a bit, and the
result is still a simploid if all the faces remain flat and the incidence of
vertices, edges, and faces does not change. In three dimensions, there are
three kinds of simploids, the (3)-simploids (tetrahedra), the (2,1)-sim-
ploids (triangular prisms), and the (1,1,1) simploids (parallelepipeds).
Although a simploid is not necessarily a product, the structure is the
same. Thus, algorithms for manipulating products of simplices, which
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often work by operating separately on the separate factors, are easily
converted to algorithms for working on general simploids.

Because simploids are products of simplices, they can be subdivided
into smaller simploids. For example, if each of the three interval factors
of a cube is subdivided, the cube is subdivided into eight subcubes. In
general, subdividing each of the factors of a simploid produces 2n smaller
simploids of the same kind, where n is the dimension of the simploid.

Simploids to SimplicesSimploids to SimplicesSimploids to SimplicesSimploids to SimplicesSimploids to Simplices
There is a well-known method for dividing boxes into simplices called
Kuhn’s triangulation (Kuhn, 1960), described in the Gem “Subdividing
Simplices.” This method was generalized by W. Dahmen and C. Micchelli
to divide arbitrary simploids into simplices (Dahmen and Micchelli, 1982).
Order the vertices in each of the factor simplices of the simploid, so that
each vertex but one in the simplex has a uniquely specified successor. A
vertex w of the simploid is a successor of vertex v if it is adjacent to v
and in the single factor where the two differ, w is a successor of v. Under
this definition, the simploid vertex that is the product of all first simplex
vertices is the successor of no vertex; we call it the initial vertex of the
simploid. The simploid vertex that is the product of all last simplex

Figure 2. Edge orientation in a product of triangles.
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Figure 3. Decomposing a simploid into simplices.

vertices has no successors, and is called the terminal vertex of the
simploid.

Each path from the initial vertex to the terminal vertex of the simploid
that passes from a vertex to one of its successors at every step along the
path traces out the vertices of a simplex, and those simplices taken
together fill the volume of the simploid. Figure 2 illustrates the orienta-
tion of paths in the product of triangles. Figure 3 illustrates triangulations
of a cube and a triangular prism, where the numeric labels in the figure
represent orderings of the factor simplices.

Splitting Simplices into SimploidsSplitting Simplices into SimploidsSplitting Simplices into SimploidsSplitting Simplices into SimploidsSplitting Simplices into Simploids
A fundamental operation in constructive solid geometry is computing the
intersection of two objects. When the objects are polytopes, the problem
can be broken down further into many applications of a simplex/half-
space intersection algorithm. Fortunately, such intersections have a struc-
ture that is easy to exploit algorithmically.

When a hyperplane cuts an n-simplex, it separates the n + 1 vertices
of the simplex into two sets, with s vertices of the simplex on one side of
the plane and n + 1 − s on the other. The intersection of the simplex
with a plane is an (s − 1, n − s)-simploid. The volume of the simplex is
divided into an (s, n − s)-simploid that contains the intersection and the
s vertices on one side of the plane, and an (s − 1, n + 1 − s)-simploid
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Figure 4. A tetrahedron splits into simploids two ways.

that contains the intersection and the other vertices of the simplex.
Figure 4 illustrates the two interesting ways in which a tetrahedron can be
cut by a plane into simploids.

In an application that works primarily with simplices, the simploid is a
helpful intermediate step; the simploid can be decomposed into simplices
immediately. On the other hand, an application that manipulates Sim-
ploids can cut a simploid by a plane by first decomposing the simploid
into simplices, then cutting the simplices into simploids. In either case,
the ability to understand the relationship between simplices and simploids
makes more general object-intersection algorithms possible.

An example motivated my dissection of simploids. Suppose that a
region of space is filled with several layers of materials of different
densities. That is, there is a 12-inch layer of sand, below that five inches
of lead, and below that 24 inches of concrete. Given a tetrahedron
spanning several of the layers, how do you compute the weight of the
material enclosed by the tetrahedron? Only by calculating the volume of
the intersection of the tetrahedron with each layer.

The intersection of a tetrahedron with a layer can be complex. For
example, if two vertices lie within the lead layer, and one each is above
and below that layer, the intersection is a complex polyhedron with
three-, four-, and five-sided pieces. It can be broken into five tetrahedra,
but the technique is neither obvious nor easy to implement. However, that
volume can be more easily computed as the volume of the entire tetrahe-
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dron, reduced by the volumes of the two tetrahedra lying above and
below the lead layer. By understanding that a single plane cuts the
tetrahedron into simploids, all such volumes can be computed easily as
sums and differences of simploid volumes, and simploid volumes are
easily computed by summing the volumes of simplices.

See also G3, E.9.
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 Dani Lischinski Cornell  University Ithaca, New York

Bézier triangles and rectangular Bézier patches are both commonly used
for representing curved surfaces, but various software products often
support only one or the other. This Gem describes a very simple way to
convert triangular Bézier surface patches into rectangular ones. Two
possible applications are

• ray-tracing triangular patches with a ray-tracer that supports only
rectangular patches, and

• displaying triangular patches on graphics hardware that supports only
rectangular patches.

We will describe how to convert quadratic and cubic triangles into
biquadratic and bicubic rectangular patches, but the same principles can
be used to derive a conversion for higher orders as well. We give only a
terse definition for Bézier triangles and Bézier rectangular patches; an
excellent comprehensive reference is Farin (1990).

The conversion of rectangular patches into triangles is not given here.
It is a bit more involved, since, in general, one needs two triangles of
higher degree in order to represent exactly a single rectangular patch.

Converting Quadratic TrianglesConverting Quadratic TrianglesConverting Quadratic TrianglesConverting Quadratic TrianglesConverting Quadratic Triangles
A Bézier triangle of degree n is essentially a mapping T(u, v) from a unit
triangle ((0, 0), (1, 0), (0, 1)) into E3. It is defined by a set of control
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points bijk∈E3 as

   
      
T(u,  v) =  bijk

n!
i ! j !k !∑ uivjwk ,

where w = 1 − u − v, and the summation is over all i, j, k ≥ 0 such
that i + j + k = n. In the quadratic case this simplifies to

T(u, v) = b002w
2 + 2b101uw + b200u

2

+ 2b011vw + 2b110uv + b020v
2     (1)

(see Fig. 1a).
A rectangular Bézier patch is a mapping R(s, t) from a unit square

[0, 1] × [0, 1] into E3, defined by a set of control points p ij ∈E3 as

      
R(s,  t) =  pij

m!n!
i ! j !(m –  i)!(n –  j)!j = 0

n

∑
i = 0

m

∑  sit j (1 –  s)m –  i (1 –  t)n –  j ,

where m and n are the degrees of the patch in s and t, respectively. In
the biquadratic case this simplifies to

R(s, t) = (p00(1 − s)2 + 2p01s(1 − s) + p02s
2)(1 − t)2

+ (p10(1 − s)2 + 2p11s(1 − s) + p12s
2)2t(1 − t)

+ (p20(1 − s)2 + 2p21s(1 − s) + p22s
2)t2     (2)

(see Fig. 1b).
Given the six control points b ijk that define the quadratic triangle

T(u, v), we need to find a 3 × 3 array of control points Pij that define the
biquadratic rectangular patch R(s, t), such that both define the same
surface in E3. Note that we have two different parametric domains here.
To identify the two, we can “shrink” the top edge of the unit square onto
the top vertex of the unit triangle by defining the following mapping
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Figure 1. (a) The parametric domain and the six control points defining a quadratic
Bézier triangle. (b) The parametric domain and the nine control points defining a
biquadratic Bézier patch.

between them:

(u, v) = (s(1− t), t). (3)

Thus, our goal is to find the points pij such that R(s, t) = T(s(1 − t), t)
for all (s, t) in the unit square.

The points b002, b101, and b200 are the Bézier control points that define
a quadratic boundary curve. Since p00, p01, and p02 must define the same
curve, they should be equal to b002, b101, and b200 respectively. From the
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same argument it follows that the other “boundary” points are also equal
in both representations. Note that both p20 and p22 are equal to b020. By
setting p21 to b020 as well, we will create a degenerate rectangular patch,
which will have the required triangular shape. Thus, so far we have

 p00 ← b002,

 p01 ← b101,

 p02 ← b200,

 p10 ← b011,

 p12 ← b110,

                 p20, p2l, p22 ← b020.

Now it only remains to obtain a value for the interior control point p11.
Since by (3) the point (s, t) =     

1
2 ,  1

2( )  in the unit square corresponds to the
point (u, v) =     

1
4 ,  1

2( ) in the unit triangle, we have the equation

       T
1
4 ,  1

2( ) =  R 1
2 ,  1

2( ).

Substituting in the patch definitions (1) and (2), we get

      

b002

16
 +  

b101

8
 +  

b200

16
 +  

b011

4
 +  

b110

4
 +  

b020

4

       =  
p00

16
 +  

p01

8
 +  

p02

16
 +  

p10

8
 +  

p11

4
 +  

p12

8
 +  

p20

16
 +  

p21

8
 +  

p22

16
,

and using the identities already derived, we obtain the solution

 p11 ← (b011 + b110)/2.

Converting Cubic TrianglesConverting Cubic TrianglesConverting Cubic TrianglesConverting Cubic TrianglesConverting Cubic Triangles
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A triangular cubic Bézier patch is specified by 10 control points bijk (see
Fig. 2). Given these points, we need to find a 4 × 4 array of control
points pij for the rectangular bicubic patch.

Similarly to the quadratic case, the “boundary” control points are the
same in both representations:

 p00 ← b003,

 p01 ← b102,

 p02 ← b201,

 p03 ← b300,

 p10 ← b012,

 p13 ← b210,

 p20 ← b021,

 p23 ← b120,

            p30, p31, p32, p33 ← b030.

Figure 2. Control points defining a cubic Bézier triangle (left) and a bicubic Bézier patch
(right)
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We are left with the four interior points p11, p12, p21, p22 Their values can
be obtained by solving the four simultaneous linear equations

   

    

T 2
9 ,  1

3( ) =  R 1
3 ,  1

3( ),
T 4

9 ,  1
3( ) =  R 2

3 ,  1
3( ),

T 1
9 ,  2

3( ) =  R 1
3 ,  2

3( ),
T 2

9 ,  2
3( ) =  R 2

3 ,  2
3( ),

which yields the solution

p11 ← (b012 + 2b111)/3,

p12 ← (2b111 + b210)/3,

p21 ← (2b021 + b120)/3,

p22 ← (b021 + 2b120)/3.

See also G1, 75.
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Terence Lindgren, Juan Sanchez, and Jim HallPrime/ComputervisionBedford, Massachusetts

The parametric curve is a widely used primitive in computer graphics. In
this gem we will consider the problem of finding a suitable polyline
representation for the curve. For our purposes we will consider a curve to
be any C2 function, F, mapping an interval [a, b] into three-space. From
the display perspective, the most important aspect of the final rendering
is how the curve looks on the screen. Do the pixels that were selected to
represent the curve look “G1 continuous”?

Basically, there are two approaches to rendering curves. One approach
is to render the curve pixel by pixel. While this approach inherently
“looks good,” it is neither speedy nor the method of choice by most of
today’s graphics platforms. A second alternative is the one taken most
frequently. The curve is converted into a polyline, and the polyline is
rendered on the screen. While this approach results in fine performance,
it forces the renderer to take great care in deciding which polyline to
choose to represent the curve. A moment’s reflection is all that is needed
to see that if the polyline is always less than 1/2 pixels away from the
true curve, the image will be the best achievable.

A common algorithm for generating a polyline close to a curve is to
calculate the maximum distance from the curve to the line joining the
endpoints of the curve. This distance is called the chordal deviation of
the curve from the line segment. If the deviation is small enough, then the
line may represent the curve; otherwise, the curve is subdivided into two
halves. Each half is subjected to the same chordal deviation analysis. This
procedure will generate line segments that are easily constructed into a
polyline. However, this recursive generation of the line segments is slow.
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Figure 1.

Moreover, it can demand space, which is often a critical resource in
graphics renderers.

Another approach, which avoids these problems, is to determine global
parameter spaces δ to use in sampling the curve. The curve is then
evaluated at points δ apart and a polyline is generated. This δ is chosen
so that the maximal chordal deviation between the curve in the interval
[t,t + δ] and the line segment joining F[t] and F[t + δ] is less than some
specified ε (1/2 pixels, for example). (See Fig. 1.) While this approach
yields good rendering speeds, the calculation of a suitable δ is a compli-
cated undertaking. We will present a heuristic algorithm that significantly
reduces the complexities.

To understand the difficulties a bit better, let’s examine the chordal
deviation function, CD, of the curve F: [a, b] → R3 with respect to the
line segment joining F[a] and F[b]. Let ( , ) be the inner product
defined on R3, and | | be the corresponding norm operator. Let P =
F[t] − F[a] and Q = F[b] − F[a], then CD is defined as

    CD[t] =  P —  (P,Q) / (Q,Q)( ) ∗  Q .

The important result is an upper bound on the maximum value of CD,
CD[max]:

 |CD[max]| ≤ _|max CD′′|∗(b – a)2+/8     (1)

where max CD′′ is the maximum value of CD” on [a, b]. The interested
reader may derive this bound by noting that if F is C2, then CD is also
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C2, CD[a] = CD[b] = 0, (CD[max], CD′[max]) = 0, and for each t in
[a, b], there is an s in [a, b] such that

CD[t] = CD[max] + CD′[max]*(t − max) + CD′′[s]((t − max)2)/2.

Unfortunately, this theoretical bound is difficult to use in practice.
There are two reasons for this. First, even though max CD′′ is a simple
function of max F”, max F” may be a very difficult quantity to capture.
This is especially true when the degree of F is greater than 3 or F is a
rational function. Secondly, the derivation of (1) includes three inequali-
ties, so even when we are able to calculate max CD′′, our bound is likely
to be too large. This results in polylines with many more segments than
are needed to represent the curve.

Our solution involves using the theoretical bound as a way of under-
standing how the maximum chordal deviation converges to 0 as we
approximate the curve with line segments whose endpoints are F[a +
m*δ] and F[a + (m + 1)*δ] for δ = (b − a)/N and m = 0 · · · N − 1,
as N goes to infinity.

Our technique is to sample the curve at the points a + m*(b − a)/P
for some even integer P and for m = 0 · · · P. Then for all m = 1  · · ·  P
− 1, we calculate the chordal deviation of point F[a + m*(b − a)/P]
from the line segment joining F[a + (m − 1)*(b − a)/P] and F[a +
(m + 1)*(b − a)/P]. We define α as the maximum of these deviations.

Our goal is to find the N that will ensure that the maximum deviation
is within a tolerance of a given ε. First, as a heuristic we assume that α
actually is the maximum chordal deviation the interval [a, b] for δ =
|b − a|/P. Our next step sets up the inequality

    
max CD” * (b –  a)/ N( )2( )/ 8( ) max CD” * (b –  a)/ P / 2( )2( )/ 8( ) ≤  ε / α

from which we obtain

  
    

    (P / 2N )2  ≤  ε / α,         and

P / 2 ∗  α / ε ≤  N.  
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V.12 CURVE TESSELLATION CRITERIA THROUGH SAMPLING
We have found letting N =     P / 2 ∗  α / ε  to be an enticing choice. The

result will be scaled if there is a change either in view state or a change in
ε. In the former case we multiply N by   norm  of the viewing transforma-
tion, and in the latter case we multiply N by     ε / εnew . It is true that
scaling the calculations will introduce an inequality that may cause an
overestimation of the number of segments in the polyline. However, we
could always easily recalculate N. Also, the technique helps the problem
of high degree and rationality. While we are quite pleased with the
behavior of this algorithm, we do recognize that increasingly poorly
parameterized curves will require increasingly larger sets of sample
points to generate a meaningful δ. We also recognize that for curves with
widely varying curvature, our approach will demand many samples in
regions of the domain that did not need them, or will require an interval
analysis to keep the number of evaluations small. Nonetheless, we have
seen that setting P = 2(degree + 1) generates good polyline approxima-
tions to the reasonable curves prevalent in CAD/CAM applications.

See also G1,64.
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RRRRRAY TRACING ANDAY TRACING ANDAY TRACING ANDAY TRACING ANDAY TRACING ANDRRRRRADIOSITYADIOSITYADIOSITYADIOSITYADIOSITY

Ray tracing and radiosity used to be fiercely competitive factions in the
quest for ever more realistic rendering techniques. Now, they are often
used together to produce images that are more compelling than those
produced by either technique alone. Many wonderful images are created
by hybrid algorithms which mix and match features from both ray tracing
and radiosity. So, the Gems in this section are applicable to ray tracing,
radiosity, or, in some cases, both!

The first Gem describes the well-known binary space partitioning algo-
rithm very clearly and provides an efficient implementation. The second
Gem describes the mathematics of intersecting a ray with a quadric
surface.

For the efficiency-minded, there are three Gems that are intended to
accelerate the process of tracing rays. The third Gem describes a con-
struct known as “residency” masks to encode object position, which
should be quite effective for accelerating ray tracing of simple scenes.
The fifth Gem provides rectangular bounding volumes for some com-
monly used primitives, and the sixth Gem describes a technique for
generating a bounding volume for an arbitrary set of points.

The fourth Gem describes an interesting viewing projection for render-
ing panoramic wide angle views. This Gem also provides an interesting
discussion of the relation between computer graphics projections and
those used by cartographers. The seventh Gem discusses the calculation
of physically correct lighting for distribution ray tracing.

The last four Gems are oriented more toward the radiosity side of the
fence. The eighth Gem describes how to project a triangle onto the face

VIVIVIVIVI
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of a hemisphere. The ninth Gem describes a radiosity formulation that
uses vertex-to-vertex form factors. This Gem also suggests that the
polygon rendering hardware present in many graphics workstations can
be used to accelerate this operation. The tenth Gem is an implementation
tip for a previous Gem, concerning the cubic tetrahedral radiosity algo-
rithm, an alternative to the hemicube technique. The final Gem discusses
the accurate computation of area-to-area form factors.
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VI.1 RAY TRACING WITH THE BSP TREEVI.1VI.1VI.1VI.1VI.1RRRRRAY TRACING WITH THE BSPAY TRACING WITH THE BSPAY TRACING WITH THE BSPAY TRACING WITH THE BSPAY TRACING WITH THE BSPTTTTTREEREEREEREEREE
Kelvin Sung                        Peter ShirleyUniversity of Illinois    and    Indiana University Urbana, Illinois               Bloomington, Indiana

IntroductionIntroductionIntroductionIntroductionIntroduction
In order to speed up the intersection calculation in ray tracing programs,
people have implemented divide-and-conquer strategies such as hierar-
chical bounding volumes and octrees. Uniform subdivision (essentially a
three-dimensional binsort) has also been used to speed up this calcula-
tion.

Uniform subdivision is undesirable for applications where the objects
may be unevenly distributed in space. This is because the amount of
memory needed for uniform subdivision is proportional to the highest
density of objects, rather than the total number. Hierarchical bounding
volumes can be difficult to implement effectively, but can be used to good
effect (Kay and Kajiya, 1986). Hierarchical space subdivision techniques
do not suffer the memory problems of uniform subdivision and are also
relatively easy to implement. In this Gem, we discuss what we think is the
best overall hierarchical subdivision technique currently known.

It is often believed that adaptive spatial subdivision approaches to
accelerating the tracing of a ray are messy and hard to implement. In our
experience with different spatial structures and traversal algorithms, we
have found this view to be untrue. It is straightforward to implement the
Linear Time Tree Walking algorithm, as proposed by Arvo (1988), on a
Binary Space Partitioning (BSP) tree. The resulting system outperforms
all of the spatial subdivision approaches we have experienced.

We have implemented and compared the performance of several traver-
sal algorithms on an octree (Glassner, 1984; Arvo, 1988; Sung, 1991) and
on a BSP tree (Kaplan, 1985; Arvo, 1988). In order to obtain meaningful
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comparisons, we have kept the rest of our ray tracing system unchanged
while replacing the spatial structure building and traversal components
for each of these methods. Our experience shows that the Linear Time
Tree Walking method (Arvo, 1988) is consistently at least 10% faster than
the rest and is usually better than that. We have observed that implement-
ing the tree walking algorithm on a BSP tree and on an octree results in
similar performance, but that the implementation is more straightforward
on a BSP tree. Finally, it should be pointed out that the recursive
traversal algorithm introduced independently by Jansen (1986) is a
different implementation of the same tree walking idea.

There are two basic modules in a BSP tree intersection code. The first
module builds the tree by recursively cutting the bounding box of all
objects along a median spatial plane. The second module tracks a ray
through the leaf nodes of the BSP tree checking for intersections.

The BSP tree is built by InitBinTree() and Subdivide(), RayTreeIn-
tersect() is the actual tree walking traversal of the BSP tree following a
ray. These are the key functions necessary to implement the algorithm.
Subdivide( ) builds the BSP tree by subdividing along the midpoint of the
current node’s bounding volume.

Subdivide (Current Node, CurrentTree Depth, CurrentSubdividingAxis)
if ((CurrentNode contains too many primitives) and (CurrentTreeDepth
is not too deep)) then

begin
Children of CurrentNode ← CurrentNode’s Bounding Volume
/*Note that child[0].max.DividingAxis and
Child[1].min.DividingAxis are always equal.*/
/*Depending on CurrentSubdividingAxis, DividingAxis can be
either x, y, or z.* /
if (CurrentSubdividingAxis is X-Axis) then begin

child[0].max.x ← child[1].min.x ← mid-point of CurrentNode’s
X-Bound
NextSubdivideAxis ← Y-Axis

end else if (CurrentSubdividingAxis is Y-Axis) then begin
child[0].max.y ← child[1].min.y ← mid-point of
CurrentNode’s Y-Bound
NextSubdivideAxis ← Z-Axis

end else begin
child[0].max.z ← child[1].min.z ← mid-point of
CurrentNode’s Z-Bound
NextSubdivideAxis ← X-Axis



GRAPHICS GEMS III Edited by DAVID KIRK 273

VI.1 RAY TRACING WITH THE BSP TREE
  end

for (each of the primitives in CurrentNode’s object link list) do
if (the primitive is within children’s bounding volume) then

add the primitive to the children’s object link list
Subdivide (child[0], CurrentTreeDepth + 1, NextSubdivideAxis)
Subdivide (child[1], CurrentTreeDepth + 1, NextSubdivideAxis)

end

As suggested by Arvo (1988), RayTreeIntersect( ) avoids recursive proce-
dure calls in the inner loop of tree walking by maintaining an explicit
stack. The pseudo-code given here is based on Arvo’s article in the Ray
Tracing News, where recursion is used for ease of understanding. When
calling RayTreeIntersect( ) the first time, initial values of min and max
should be the distances (measured from the ray origin along the ray
direction) to the two intersecting points between the ray and the bound-
ing volume of the root of the BSP tree. Notice that if a ray originates from
inside the BSP tree, then the initial value of min will be negative.

RayTreeIntersect (Ray, Node, min, max)
if (Node is NIL) then return [“no intersect”]
if (Node is a leaf) then begin

intersect Ray with each primitive in the object link list
discarding those farther away than “max”

return [“object with closest intersection point”]
end
dist ← signed distance along Ray to the cutting plane of the Node
near ← child of Node for half-space containing the origin of Ray
far ← the “other” child of Node—i.e. not equal to near
if ((dist > max) or (dist < 0)) then /*Whole interval is on near side*/

return [RayTreeIntersect (Ray, near, min, max)]
else if (dist < min) then /*Whole interval is on far side*/

return [RayTreeIntersect (Ray, far, min, max)]
else begin /*the interual intersects the plane*/

hit_data ← RayTreeIntersect (Ray, near, min, dist) /*test near side*/
if hit_data indicates that there was a hit then return [hit_data]
return [RayTreeIntersect (Ray, near, dist, max)] /*test far side*/

end
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There are a few standard link list functions that are not listed in the
C code: FirstOfLinkList( ), NextOfLinkLIst( ), AddToLinkList( ), and
DuplicateLinkList( ).

One possible improvement over the basic algorithm is to keep track of
the nearest intersection and its distance, regardless of whether it is inside
of the current node. With this information, as soon as a node is found that
starts beyond this nearest intersection distance, we know we are done.

If an object spans multiple tree nodes (spatial cells), then the intersec-
tion calculation between this object and a given ray may need to be
carried out multiple times, once in each node traversed by the ray. The
mailbox idea was proposed (Amanatides and Woo, 1987; Arnaldi et al,
1987) to avoid this problem. However, it is observed that this technique is
effective only when primitives in the scene are large compared to the
spatial cells. When the size of the primitives in a scene is small compared
to the size of the spatial cells, the mailbox implementation may slow
down the rendering process (Sung, 1991). Also, the mailbox implementa-
tion requires the scene database to be updated after each intersection
calculation. This implies that to parallelize the algorithm, some kind of
database coherence policy must be administrated; this would increase the
complexity of an implementation. Based on these observations, we have
chosen not to include the mailbox enhancement in our code.

Other work on BSP trees includes Fussell and Subramanian (1988),
MacDonald and Booth (1989), and Subramanian and Fussell (1991).
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Quadric surfaces are common modeling primitives for a variety of com-
puter graphics and computer aided design applications (Glassner et al.,
1989; Blinn, 1984; Gardiner, 1984; Roth, 1982). Ray tracing or ray firing
is also a popular method used for realistic renderings of quadric surfaces.
Summarized in the Gem is an algorithm for locating the intersection
point(s) between a ray and general quadratic surfaces including ellipsoids,
cones, cylinders, paraboloids and hyperboloids. Also detailed is a means
for determining the surface normal at the point of intersection. The
normal is required in lighting model computations.

The Equation of a Quadratic SurfaceThe Equation of a Quadratic SurfaceThe Equation of a Quadratic SurfaceThe Equation of a Quadratic SurfaceThe Equation of a Quadratic Surface
The general implicit equation for a quadric surface can be written in the
expanded algebraic form

F(x, y, z) = ax2 + 2bxy + 2cxz + 2dx + ey2

+ 2fyz + 2gy + hz2 + 2iz + j = 0,     (1)

or it can be expressed in a more compact, symmetric 4 × 4 coefficient
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matrix form (Q), sometimes referred to as the quadric form:

  

      

f (x,  y ,  z) =  [x  y  z  1]

a b c d

b e f g

c f h i

d g i j



















x

y

z

1



















 =  XQXT  =  0.     (2)

For a variety of common quadric surfaces in standard position, i.e.,
positioned at the origin with the y-axis being the axis of symmetry, the
coefficient matrices can be quickly constructed. These include the follow-
ing equations (2a–2e).

Ellipsoid: With axis lengths of 2a, 2b, and 2c along the principal
directions. A sphere of radius r is simply a special case of the ellipsoid in
which r = a = b = c.

      

f (x,  y,  z) =  
x2

a2  +  
y2

b2  +  
z2

c2  –  1 =  X

1
a2 0 0 0

0
1

b2 0 0

0 0
1
c2 0

0 0 0 –1
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





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




XT  =  0.

(2a)

Elliptical cylinder: With principal axis lengths of 2a and 2c. As before,
a circular cylinder of radius r is simply a special case in which r = a = c.

      

f (x,  y,  z) =  
x2

a2  +  
z2

c2  –  1 =  X

1
a2 0 0 0

0 0 0 0

0 0
1
c2 0
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
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








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




XT  =  0.    (2b)
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Elliptical cone: With principal axis lengths of 2a and 2c at a unit

distance from the apex. Once again, a right circular cone is simply a
special case in which r = a = c.

  

      

f (x,  y,  z) =  
x2

a2  –  y2 +  
z2

c2  =  X

1
a2 0 0 0

0 –1 0 0

0 0
1
c2 0
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


XT  =  0.    (2c)

Elliptical paraboloid: With principal axis lengths of 2a and 2c at twice
the focal distance f.

  

      

f (x,  y,  z) =  
x2

a2  +  
z2

c2  –  4 fy =  X

1
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0 0 0 –2 f

0 0
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XT  =  0.

(2d)

Elliptical hyperboloid (of one sheet): With principal axis vertex dis-
tances of 2a and 2c at the origin, and b determining the asymptotes.

      

f (x,  y,  z) =  
x2

a2  –  
y2

b2  +  
z2

c2  –  1 =  X

1
a2 0 0 0
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(2e)
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Any of the standard quadric surfaces can be transformed to an arbitrary

position and orientation using a Euclidean transformation T. The equa-
tion f *(x, y, z) for the transformed quadric surface is given by the
expression

  f*(x, y, z) = XTQTTXT = XQ*XT = 0,

where as indicated Q* = TQTT. It is important to note here that trans-
forming implicit equations is essentially a change of coordinate reference
frame or basis and requires the inverse mapping of the standard rigid
body transformations often used throughout computer graphics. For
example, suppose a mapping M is applied to all points on a unit sphere
that translates the center of the sphere to the location (1, 1, 1). The
transformation T used in mapping the implicit equation of the sphere
must be the inverse of M:

   f *(x, y, z) = (x – 1)2 + (y – 1)2 + (z – 1)2 – 1

= x2 – 2x + 1 + y2 – 2y + 1 + z2 – 2z + 1 – 1

      

=  X
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= XTQTTXT = XM—1QM—ITXT = XQ*XT + 0.

The position and orientation of a quadric can be conveniently defined
using any two of the three unit vectors describing the local coordinate
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system of that quadric. Suppose that U and V are unit vectors represent-
ing the local x and y axes (recall that the local y axis is the axis of
symmetry) in terms of the global coordinate system. Let B define the
appropriate base point for translating the quadric surface, i.e., the local
origin. The base point is, for example, the center of an ellipsoid, or the
apex of a cone. From these two unit vectors and the base point, the 4 × 4
transformation M for mapping individual points on the quadric surface
and T for transforming the implicit equation are given by the following
expressions. This formulation for T is similar to an observation transfor-
mation frequently applied in the 3-D viewing pipeline of computer graph-
ics (Foley and Van Dam, 1982; Gasson, 1983).

      

M =  

U

V

U × V

B

  

0
0
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1
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

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 =  M–1.

More general transformations including scaling, reflection, and shearing
can also be included but require a different formulation for M and T than
that shown.

Intersection of a Ray with a Quadric SurfaceIntersection of a Ray with a Quadric SurfaceIntersection of a Ray with a Quadric SurfaceIntersection of a Ray with a Quadric SurfaceIntersection of a Ray with a Quadric Surface
The intersection of a ray with a quadric surface can be found by substitut-
ing the vector expression of the parametric ray equations (Eq. (3) below)
into the matrix form of the general quadric surface (Eq. (2)). This results
in a quadratic polynomial in the ray parameter, t, which is proportional to
the distance(s) along the ray at which the intersection(s) with the quadric
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surface occur:

  

      

x =  x0  +  axt

y =  y0  +  ayt

z =  z0  +  azt






 ⇒  X =  X0  +  Rt.     (3)

Substitution into the matrix form of the implicit quadric, expanding, and
taking advantage of the matrix symmetry produces the following result:

    f(x, y, z) = XQXT = [X0 + Rt]Q[X0 + Rt]T

= X0Q    X0
T  + t(X0QRT + RQ    X0

T ) + t2RQRT,

= k2t
2 + k1t + k0 =f(t) = 0,     (4)

where

k2 = αx(αxQ11 + αy(Q12 + Q21))

+ αy(αyQ22 + αz(Q23 + Q32))

+ αz(αzQ33 + αx(Q13 + Q31)),

k1 = αx((z0(Q13 + Q31) + y0(Q12 + Q21) + x0(2Q11)) + (Q14 + Q41))

+ αy((z0(Q23 + Q32) + x0(Q12 + Q21) + y0(2Q22)) + (Q24 + Q42))

+ αz((y0(Q23 + Q32) + x0(Q13 + Q31) + z0(2Q33)) + (Q34 + Q43)),

k0 = x0(x0Q11 +y0(Q12 + Q21) + z0(Q13 + Q31) + (Q14 + Q41))

+ y0(  y0Q22      + z0(Q23 + Q32) + (Q24 + Q42))

+ z0(   z0Q33      + (Q34 + Q43)) + Q44.
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To simplify the ray-quadric intersection with arbitrarily positioned and

oriented quadrics, the Euclidean map M defined earlier can be used to
transform the ray base X0 and direction cosines R into equivalent rays
(
    
X*

0
 and R*) relative to the local coordinate frame of the quadric. In this

manner, geometric queries are resolved to dealing with quadrics in
standard position:

     
    
X*

0
 = X0M;    R* = RM,

     X*  = 
    
X*

0
 + tR*.

Once the substitution is completed, the real roots of the quadratic
polynomial in the parameter t are determined. Possible outcomes include
no intersections (no real roots), a tangential intersection (repeated real
roots), or two distinct points of intersection (two distinct real roots)
between the ray and the quadric surface.

With M being a Euclidean map, the real parameter values, tint , deter-
mined can be used to locate the intersection in either the local or true
global coordinates of the intersection point:

 XInt/Global = X0 + tintR,

 XInt/Local + 
    
X*

0
 + tintR*.

An Efficient Ray Rejection TestAn Efficient Ray Rejection TestAn Efficient Ray Rejection TestAn Efficient Ray Rejection TestAn Efficient Ray Rejection Test
A quick and efficient bounding test for eliminating unnecessary
ray-quadric surface intersections involves bounding the quadric with an
infinite cylinder. Most quadrics, excluding spheres and ellipsoids, will be
truncated or bounded along their symmetry axis by a pair of “end cap”
planes. The position of these end caps sets the maximum distance the
quadric surface is allowed to extend away from its symmetry axis and is
used to set the radius of the corresponding bounding cylinder (r). When
the shortest distance between the ray and the symmetry axis of the
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quadric is greater than the radius of the bounding cylinder, no intersec-
tion exists, and there is no need for further unnecessary computations.

Using vector algebra, it can be shown that the perpendicular distance d
between the ray and the axis of the arbitrarily positioned quadric surface
is defined as shown where X0 , B, R, and V are the points and vectors
defined earlier:

   d = |(B – X0 ) ⋅ (V × R)|.

Should the ray and symmetry axis of the quadric be parallel, the distance
d can be computed as follows. This second expression also represents
the shortest distance between the ray and the center (B) of an ellipsoid
and can therefore be used to provide a quick elimination test for the
corresponding ray-ellipsoid intersections:

      d =  B –  X0 1 –  (B –  X0 ) ⋅  R =  (B –  X0 ) ×  R

Determining the Surface NormalDetermining the Surface NormalDetermining the Surface NormalDetermining the Surface NormalDetermining the Surface Normalof a Quadric Surfaceof a Quadric Surfaceof a Quadric Surfaceof a Quadric Surfaceof a Quadric Surface
The normal to an implicitly defined surface f(x, y, z) = 0 at intersection
point, P, is established by evaluating the gradient of the surface function
at that point. This entails computing the partial derivatives of the surface,
f, with respect to each of the coordinates x, y, and z:

 N(x, y, z)|P = ∇f(x, y, z)|P

    
=  

∂f (x,  y,  z)
∂x P

,  
∂f (x,  y,  z)

∂y
P

,  
∂f (x,  y,  z)

∂z P












.

Recalling the compact matrix expression for the general quadric surface
(Eq. (2)), the partial derivatives and normal vector are resolved to the
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following set of computations:

  

      

N x  =  
∂f (x,  y ,  z)

∂x
 =  ∂X

∂x
QX T  +  XQ ∂X T

∂x
 =  2 ∂X

∂x
QX T

=  2 1  0   0   0[ ]QX T  =  2(ax +  by +  cz +  d),

N y  =  
∂f (x,  y ,  z)

∂y
 =  ∂X

∂y
QX T  +  XQ ∂X T

∂y
 =  2 ∂X

∂y
QX T

=  2 0  1  0   0[ ]QX T  =  2(bx +  ey +  fz +  g ),

N z  =  
∂f (x,  y ,  z)

∂z
 =  ∂X

∂z
QX T  +  XQ ∂X T

∂z
 =  2 ∂X

∂z
QX T

=  2 0  0   1  0[ ]QX T  =  2(cx +  fy +  hz +  i).

The vector N represents a non-unit surface normal to an arbitrary quadric
surface. Where necessary, this vector can be normalized to a unit length.
If the ray-quadric intersection points and gradient are determined in the
local coordinate frame of the quadric, then the Euclidean mapping M
must also be applied to the resulting normal vector N.

See also G2, 251
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Joseph M. CychoszPurdue University CADLABWest Lafayette, Indiana

IntroductionIntroductionIntroductionIntroductionIntroduction
Traditionally, ray tracing has been a computationally intensive process. A
large portion of the computation is used to compute the intersection of
the sampling rays with the objects that make up the scene. A number of
algorithms and approaches have been published that reduce the number
of ray-object intersection calculations through the use of bounding
volumes that either enclose objects in the scene (Rubin and Whitted,
1980; Weghorst et al., 1984; Kay and Kajiya, 1986) or partition the
object space (Fujimoto et al., 1986; Glassner, 1984; Kaplan, 1985).
Alternative approaches to improving ray tracing performance exploit
specific architectural features of a given computer, such as processor
parallelism (Plunkett, 1984; Plunkett and Bailey, 1985; Cychosz, 1986;
Dippé and Swensen, 1984; Cleary et al., 1983; Nishimura et al., 1983:
Delany, 1988).

In object space partitioning, the extent of the objects within the scene
is divided into a number of smaller spaces or cells. Each cell is then
assigned a list of objects that are contained within it. Partitioning of the
object space can be done in a number of ways Fujimoto et al. (1986)
used uniform subdivision, Glassner (1984) used octrees, and Kaplan
(1985) used BSP trees. The sampling rays are then traversed from cell to
cell until a satisfactory conclusion is reached in determining the visible
surface for the ray. As each cell is processed, the ray is intersected with
the list of objects that reside within the cell. As pointed out by Kaplan
(1985), this can result in unnecessary duplicated intersection calculations
for objects that span multiple cells—for example, a long thin cylinder.
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The Boolean properties of residency masks combined with spatial

partitioning can be used either to eliminate duplicated intersection calcu-
lations, or as a selection mechanism for determining which objects in a
scene must be examined.

Residency MasksResidency MasksResidency MasksResidency MasksResidency Masks
A residency mask is simply a bit vector in which each bit is assigned to a
cell within the partitioned object space. A residency mask is assigned to
each object defining the cells in which the given object resides. Figure 1
illustrates the residency masks for four objects and a ray. During the ray
firing process, only objects A, B, and C need to be tested for intersection
with the given ray. Furthermore, objects A and B need be intersected only
once.

By updating the ray mask as it passes from cell to cell, a quick
determination of whether an object within the cell needs to be intersected
can be made by simply ANDing the residency mask of the object with the
complement of the residency mask for the ray. If the result is nonzero, the
object has already been intersected. This application of residency masks
is analogous to the mailbox technique proposed by Arnaldi et al. (1987)
which avoids duplicated intersections by tagging the objects with unique
ray identifiers. If at some later time, the value of the tag for the object
matches the ray identifier, the object has already been intersected, and

Item Bit Mask
Object A 0000 0000 0110 0110
Object B 0000 0000 1100 1100
Object C 0000 0010 0000 0000
Object D 1100 0000 0000 0000

Ray a 0000 0011 1110 0000

Figure 1. 2-D representation of ray-object residency masks.
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thus the current query on the object can be skipped. The advantage
residency masks has over mailboxes is that the object; database does not
have to be updated during the ray firing process.

In the example shown in Fig. 1, the ray will pass through cells 8, 9, 5,
6, and possibly 7, depending on whether the visibility of B call be
determined in cell 6. The object list for cell 5 will contain object A, and
cell 6 will contain objects A and B. Therefore, object A. will be intersected
in cell 5 and object B will be intersected in cell 6, thereby  eliminating the
unnecessary intersection calculation for objects A and B as the ray passes
through cells 6 and 7, respectively.

For algorithms that must process a cluster of rays as a group—for
example, the ray queue in vectorized ray tracing (Plunkett, 1984; Plunkett
and Bailey, 1985; Cychosz, 1986)—a group residency mask can be used
as a selection mechanism to determine if an object needs to be inter-
sected with at least one member of the group of rays. This is important
since it is unlikely that the rays within the group will coherently pass
through the same cells. To illustrate this, the situation shown in Fig.1 can
be modified to depict the residency mask for a queue of rays. Shown in
Fig. 2 are the residency masks for the individual rays a, b, and c, and the
resulting mask for the ray group. Determination of a list of objects that
need to be considered by the group can be made by ANDing the residency
mask for a given object with the residency mask of the ray group. If the
result is nonzero, the object must be added to the list of objects to be

Item Bit Mask

Object A 0000 0000 0110 0110
Object B 0000 0000 1100 1100
Object C 0000 0010 0000 0000
Object D 1100 0000 0000 0000

Ray a 0000 0011 1110 0000
Ray b 0001 0011 0110 1100
Ray c 0000 1111 0000 0000

Ray Group 0001 1111 1110 1100

Figure 2. 2-D representation or residency masks for a ray group.
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considered by the ray group. In the example shown in Fig. 2, the list of
objects would consist of A, B, and C.

Effective performance of this bounding model relies on the assumption
that the rays in the group can be geometrically bundled as tightly as
possible, thereby minimizing the number of cells associated with the
group of rays. This is true for the initial rays that are fired through the
image plane, and for the shadow rays that are fired toward a common
point, namely the light source being tested. For secondary rays resulting
from reflections and refractions, a scattering occurs that reduces the
effectiveness of the algorithm (this is especially true for surfaces with
large changes in gradient). However, most scattering rays will remain in
the same half-space (such as a group of rays striking a sphere).

See also G1, 385; G2, 264.
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F. Kenton MusgraveYale UniversityNew Haven, Connecticut

IntroductionIntroductionIntroductionIntroductionIntroduction
With ray tracing’s synthetic camera model, we can do something that
would be extremely difficult, perhaps even impossible, to do with a real
camera: create a 360° by 180° field-of-view panoramic “photograph.”
The standard imaging model used in ray tracing is that of a pinhole
camera with a flat virtual screen. We can supplement this model with a
cylindrical virtual screen to obtain a 360° (or greater) lateral field of view.
By using appropriate angular distribution of samples on the vertical axis,
we can obtain a 180° vertical field of view as well.

The standard virtual screen model used in ray tracing is equivalent
to placing a piece of graph paper in the “world,” in front of the eye and
perpendicular to the view direction, then firing rays through the little
squares (the pixels) on the grid. (A notable improvement to this naïve
scheme was described by Mitchell, 1987.) Changing the field of view at a
fixed image resolution corresponds to moving the piece of graph paper
closer to, or farther away from, the eye. This scheme provides a good
projection for relatively narrow fields of view, but it breaks down for wide
angles: If we attempt to obtain a 180° field of view, the construction of
the viewing projection becomes degenerate, as the eye lies in the plane of
the screen. A field of view of greater than 180° in this scheme is, of
course, nonsense.

Thus, with a standard virtual screen we can only approach, never
achieve, a field of view of 180°. We can also see that as we approach the
180° field of view, the distortion introduced by the regular spatial sam-
pling of the virtual screen grows: Near the center of the screen the
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Figure 1. Angular width of a pixel as a function of position on the virtual screen: pixels
near the edge of the screen subtend a smaller angle.

angular width of a pixel is much greater than near the edges (see Fig. 1).
This distortion has the effect of, among other things, giving a sphere
imaged near the edge of the screen, a pronouncedly elliptical projection
on the image plane.1 In a landscape image, features around the horizon
get pinched down into a line as the vertical field of view approaches 180°.

Some distortion on the screen due to the viewing projection is in-
evitable. This is because the projection is an instance of a mapping of a
sphere (the “celestial sphere” surrounding the eye) onto a plane (the
image plane). The fact is, there exists no mapping from the sphere to the
plane f: S2 → R2, such that f(x) – f(y) = x – y.2 Cartographers have
long known this; hence the plethora of cartographic projections for maps
of the globe (Paeth, 1990). Thus, we may choose among various evils,
among various distortions in our images of the world, but we cannot
avoid them altogether. (It is interesting to note that the same holds true
for designers of camera lenses.)

In this Gem we describe a scheme for sampling a virtual screen in such
a way that we can map the entire celestial sphere onto a rectilinear image
plane, with (what we deem to be) “acceptable” distortion. Our viewing
projection, known to cartographers as a cylindrical equirectangular
projection (Paeth, 1990), generates a lateral-stretching distortion. The
magnitude of this stretching grows with distance from the equator, i.e.,

1For an example of this, see the moon on the cover of the January, 1989 edition of
IEEE Computer Graphics and Applications.

2One can find a proof of this in a textbook on projective or differential geometry.

Eye Point

Virtual Screen

Pixel
Width
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with distance from the horizontal bisector of the image. Our projection
does not become degenerate, however, at a 180° vertical field of view.

Cylindrical Virtual ScreenCylindrical Virtual ScreenCylindrical Virtual ScreenCylindrical Virtual ScreenCylindrical Virtual Screen
With the standard virtual screen, the horizontal field of view is determined
by the width of the virtual screen in world space, and its distance from
the eye. For a given (finite) world-space width of the virtual screen, as the
horizontal field of view goes to 180°, its distance from the eye must go to
zero. At 180°, the construction is degenerate, as the eye lies in the plane
of the virtual screen.

In the case of the standard virtual screen, jittering aside, samples are
generally taken at regular (e.g., equally spaced) intervals on the screen.
The vector defining a primary ray (i.e., a ray from the eye that samples
the virtual screen) is therefore generally determined by taking the vector
difference of the sample point on the virtual screen and the eye point, and
normalizing the resultant vector. As the sample cells on the virtual screen
are equally spaced in screen space, we can determine the x (i.e., horizon-
tal) offset as a linear function of the screen column being sampled:

  x_offset [i] = i*sample_spacing

for i ∈ [–screen_width/2 .. screen_width/2].
For a cylindrical virtual screen, the construction of the primary ray is

not quite so simple. We need a linear increment in angle, not in screen
space. This can be accomplished by applying a rotation to a ray directed
at the center of the virtual screen. As this requires a matrix multiplication,
and thus several floating-point operations, we may want to precompute an
array of horizontal (relative to the “up” vector for the screen) directions
so that we only need perform this matrix multiplication once per pixel
column. The size of this array of vectors is, of course, equal to the
horizontal resolution of the virtual screen. The accompanying C code
illustrates the construction of this array.

This array stores the cardinal horizontal directions for rays sampling
the n columns of the virtual screen. One might then ask, how do we
handle jittering? For reasonably large screen resolutions, a simple linear
interpolation between adjacent cardinal directions is an adequate solu-
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tion. (Linear interpolation across large angles would not be a good
approximation to the proper cosine distribution, but pixels are generally
of small angular size, so a linear approximation to the cosine is sufficient.)
Again, this is illustrated in the accompanying C code.

Vertical SamplingVertical SamplingVertical SamplingVertical SamplingVertical Sampling
The cylindrical virtual screen just described allows unlimited horizontal
field of view: One can as easily render a 1° field of view as a 720° field of
view; fields of view greater than 360° yield periodic images, like wallpa-
per. There remain problems, however, with the vertical field of view.
These include distortion at very wide fields of view, as the screen gets
(relatively) too close to the eye, and a degenerate projection at 180° field
of view.

The way we have chosen to obtain equal angular increments on the
vertical axis is to vary the vertical increments as the tangent of the y (i.e.,
vertical) index of the pixel on the virtual screen. (We assume that y = 0
at the center of the screen.) In our scheme we construct two arrays of
vectors, one for the horizontal directions and another for the vertical
increments. To generalize for an arbitrary “up” vector, the latter is also
an array of vectors, rather than of scalar increments. All vertical incre-
ment vectors are colinear (i.e., scalar multiples of the “up” vector), and
orthogonal to all horizontal direction vectors. To get the direction vector
for a ray to sample pixel (x, y) on the virtual screen then, we take the
vector sum of entry x in the horizontal directions array and entry y in the
vertical increments array, and normalize. (Again, see the code fragment.)

With this scheme, vertical fields of view greater than 180° yield peri-
odic (but always right-side-up) images of the scene.

An Application: Martian PanoramasAn Application: Martian PanoramasAn Application: Martian PanoramasAn Application: Martian PanoramasAn Application: Martian Panoramas
The panoramic virtual screen was developed for a specific application:
creating realistic panoramic views of Martian terrains to be viewed in a
virtual reality setting. The work was undertaken at the Visualization for
Planetary Exploration (VPE) Lab at NASA Ames, in Mountain View,
California, where the author worked in the summer of 1991. The goal of
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the development of the panoramic virtual screen model was to supple-
ment the existing, comparatively less-realistic, real-time rendering capa-
bility for terrain height fields, with the enhanced realism and aesthetic
quality available in (far from real-time!) ray-traced imagery.

The virtual reality implementation at VPE features interactive viewing
of landscape panoramas, using a head-mounted display that tracks the
user ’s movements. In this mode a large (e.g., 6,000 by 3,000 pixel) static
image is loaded into video memory, and the display presents an appropri-
ate viewport on the panoramic scene via real-time pan-and-scroll frame
buffer animation. The image loaded into memory may be of arbitrary
complexity, as update requires only presentation of a new viewport, as
opposed to rendering an entirely new frame. Thus, both the update rate
and the visual quality are generally better than with real-time rendering
animation.

At the outset of this work, VPE possessed the capability of Z-buffer
rendering static panoramas using available hardware rendering capabili-
ties. These panoramic views are constructed by abutting a series of
flat-screen views edge-to-edge. The net result is a kind of faceted-cylinder
virtual screen. (A cylindrical projection equivalent to that presented here
can be obtained by reducing the facet widths to one pixel.) As these
renderings use the hardware implementation of the viewing projection,
they are prone to the same kind of vertical distortion as is seen when
using a standard virtual screen. We sought to recreate this cylindrical
projection, with improvements to the vertical sampling, in a ray tracer. A
ray tracer gives access to certain realistic effects not readily available in a
hardware Z-buffer renderer, e.g., shadows, atmospheric effects, and pro-
cedural textures (Musgrave, 1990, 1991).

A result of this effort is seen in Plate 1 (see color insert), a panoramic
view of the Valles Marineris on Mars. Note the extreme bow-shaped
distortion of the (in reality) nearly linear, parallel valley features. This
distortion is a natural and inevitable by-product of the viewing projection
we have constructed. Note also that the image was not designed to be
viewed in its entirety, as it is reproduced here, but rather in a virtual
reality system, wherein only a viewport on relatively small area of the
image is visible at any given time. The idea was to construct an image
such that anywhere the user looked, they would see an appropriate (if
distorted) area of the Martian environs. The distortion near the bottom of
the image serves to discourage the viewer from investigating that area;
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Figure 2. Eye point rotation scheme for stereo panoramas.

not altogether a bad thing, as the fixed-resolution terrain data being
imaged shows little detail there, where it is closest to the eye point.

We have also implemented a method for creating stereo panoramas
suggested by Lew Hitchner at VPE. In this scheme, the eye points
describe a circle as the view direction scans about the virtual screen (see
Fig. 2). A conventional stereo rendering using two fixed eye points will
lack stereoscopy around the direction defined by the line through the two
eye points, as the stereo separation goes to zero there. This rotating-eye
model yields good stereoscopy over the entire 360° horizontal field. Its
implementation appears in the code segment.

ConclusionConclusionConclusionConclusionConclusion
We have constructed a panoramic virtual screen for ray tracing. This
projection maps the entire view-dependent celestial sphere to a rectilinear
screen. Introduction of distortion is unavoidable in this sphere-to-plane
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mapping; the distortion in this construction of the viewing projection is of
a different character than that of a standard virtual screen, taking the
form of horizontal stretching of the image as one approaches the poles of
the sphere. The resulting panoramic images may be useful for interactive
viewing of static imagery in a virtual reality system.

This panoramic viewing projection is interesting, as it is something that
is relatively straightforward to implement in a synthetic camera, but
difficult to impossible to accomplish with a real camera.

See also G2, 179.



6.4 Plate 1. Valles Merineris, Mars.
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Many efficient ray tracing algorithms require that each primitive object in
an environment be bounded by an orthogonal, rectangular volume. This
Gem provides derivations and source code for the generation of minimal
bounding volumes for a cube, a group of polygons, a sphere, a cylinder, a
cone, and a torus.

The methods described here assume that each object in an environment
is created by applying a cumulative transformation matrix (CTM) to a
canonical primitive object. This CTM is defined to be

  

      

M =  

M00 M01 M02 0
M10 M11 M12 0
M20 M21 M22 0
M30 M31 M32 1



















.

To calculate these bounding volumes, components of the primitive
object are transformed using a CTM. Extrema of these transformed
components are then calculated. These extrema are used to determine the
extents of the bounding volume.

CubeCubeCubeCubeCube
The bounding volume for a cube is easily calculated by transforming each
corner of the cube and performing simple min/max tests. In the provided
C code, the cube is defined to extend from –1.0 to 1.0 in X, Y, and Z.



GRAPHICS GEMS III Edited by DAVID KIRK 296

VI.5 RECTANGULAR BOUNDING VOLUMES
Thus, it is centered about the origin, and it has sides of length 2.0.

PolygonsPolygonsPolygonsPolygonsPolygons
Collections of polygons can be bounded in a manner similar to that for
cubes. Each vertex of the polygon set is transformed and is then used to
update the extrema values. If a list of unique spatial vertices is not
maintained, a less efficient algorithm can perform the calculation for each
vertex of every polygon in the set.

CylinderCylinderCylinderCylinderCylinder
By transforming the circles at both ends of a cylinder and finding the
extrema of those circles, a tight bounding volume can be determined.
Here, a cylinder is defined as the extrusion of a circle of radius 1.0 along
the Y axis from –1.0 to 1.0. The circle components are expressed
functionally as

Ctop(t) = (cos(t), 1, sin(t), 1),  0 ≤ t ≤ 2π,

Cbot(t) = (cos(t), –1, sin(t), 1).

The transformed circles T top and Tbot are defined as

Ttop(t) = Ctop(t)M

= (M00cos(t) + M10 + M20sin(t) + M30,

   M01cos(t) + M11 + M21sin(t) + M31,

   M02cos(t) + M12 + M22sin(t) + M32);

Tbot(t)  = Cbot(t)M

= (M00cos(t) – M10 + M20sin(t) + M30,

   M01cos(t) – M11 + M21sin(t) + M31,

   M02cos(t) – M12 + M22sin(t) + M32).
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The derivatives of Ttop and Tbot are the same for all three dimensions.
The extrema in each dimension (d) can be found by setting the derivative
equal to 0.0 and solving for t:

    

0 =  Td
'  =  M2d cos(t) –  M0d sin(t),

M2d / M0d =  sin(t)/ cos(t),

t =  arctan(M2d / M0d )

By substituting these three values for t into the equations for Ttop and
Tbot, points that determine the extent of the bounding volume can be
found.

ConeConeConeConeCone
The bounding volume of a cone is calculated using the circle component
formed by its base and the point component formed by its apex. The
presented algorithm effectively combines aspects of the cube and cylinder
bounding volume routines. The canonical cone used here has a circular
base of radius 1.0 around (0, –1, 0) in the Y = –1.0 plane, and an apex
at (0, 1, 0).

ConicConicConicConicConic
The conic object class bounded by this routine has a circular base of
radius 1.0 around (0, –1, 0) in the Y = –1.0 plane, and a circular top of
radius r around (0,1, 0) in the Y = 1.0 plane. The parameter r may vary
between 0.0 and 1.0. When r = 0.0, the conic forms a cone; where
r = 1.0, it forms a cylinder. Separate extrema are found in each dimen-
sion for the base and the top, and they are compared to find the
dimensional extrema for the entire object. While this algorithm could be
used to calculate bounding volumes for cones and cylinders, the algo-
rithms explicitly designed for those objects are more efficient.
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SphereSphereSphereSphereSphere
A bounding volume can be generated for a spheroid by finding the
extrema of the surface in world coordinates. A unit sphere of radius 1.0
centered at the origin is defined as

S(u, v) = (cos(u)cos(v), sin(v), sin(u)cos(v), 1),

0 ≤ u ≤ 2π , –π/2 ≤ v ≤ π/2.

Transforming this sphere by the matrix M yields T:

T(u, v) = S(u, v)M

   = (M00cos(u)cos(v) + M10sin(v) + M20sin(u)cos(v) + M30,

           M01cos(u)cos(v) + M11sin(v) + M21sin(u)cos(v) + M31,

           M02cos(u)cos(v) + M12sin(v) + M22sin(u)cos(v) + M32).

In order to find the u and v parameter values for the extrema on this
surface, the partial derivatives of T are found:

Tu = (cos(v)[M20cos(u) – M00sin(u)],

cos(v)[M21cos(u) – M01sin(u)],

cos(v)[M22cos(u) – M02sin(u)]);

Tv = (M10cos(v) – sin(v)[M00cos(u) + M20sin(u)],

M11cos(v) – sin(v)[M01cos(u) + M21sin(u)],

M12cos(v) – sin(v)[M02cos(u) + M22sin(u)]).

The extrema in each dimension are then found by setting each pair of
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partial derivatives equal to 0.0 and solving:

  0 = Tud = cos(v)[M2dcos(u) – M0dsin(u)],

  M2d/M0d = sin(u)/cos(u),

  u = arctan(M2d/M0d);

  0 = Tvd = M1dcos(v) – sin(v)[M0dcos(u) + M2dsin(u)],

sin(v)/cos(v) = M1d/(M0dcos(u) + M2dsin(u)),

  v = arctan(M1d/(M0dcos(u) + M2dsin(u)).

Once one extremum is found, π is added to u and the negative of v is
used to find the other extremum in this dimension. This procedure is
repeated for all three dimensions. Each of these u, v locations is then
substituted into T(u, v) to find the point used to generate the bounding
volume.

TorusTorusTorusTorusTorus
The torus in this derivation is defined as a vertical circle of radius r that
is revolved around the Y axis. The center of the circle sweeps out a
perpendicular circle of radius q in the XZ plane. The equations of such a
surface and its transformed counterpart are

S(u, v) = ((r + qcos(v))cos(u), qsin(v), (r + qcos(v))sin(u), 1),

T(u, v) = S(u, v)M.

The u and v parameter values for the extrema in each dimension are
found by setting the partial derivatives equal to 0.0 and solving simulta-
neously. In fact, the solution values for these partial derivatives are found
using the same equations as were used for spheres. The parametric
coordinates are then substituted into T to find the extrema in each
dimension.
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Alternatively, the u, v coordinates can be found using a circular com-

ponent of the torus. To do this, transform the horizontal circle C of the
torus by M to give Tc:

C(u) = (rcos(u), 0, rsin(u)),

Tc(u) = C(u)M.

At each of the dimensional extrema of the circle Tc, q can be added or
subtracted to find points that will determine the rectangular bounding
volume.

See also G1, 308; G1, 548; G3, F.6.
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Three-dimensional bounding volume is a ubiquitous tool of accelerating
ray tracing and visibility testing (Arvo and Kirk, 1989; Foley et al., 1990).
The two most common types of bounding volume are box and sphere.
This is because the intersections between rays and boxes or rays and
spheres involve very simple computations. To have the optimal perfor-
mance of the bounding volumes we desire the smallest bounding vol-
umes. Namely, given N points in 3-D space, we want to pack them into a
box or a sphere of the smallest possible volume. The smallest bounding
volume has received considerable attention in the computational geome-
try community (Megiddo, 1984; Preparata and Shamos, 1985). The 0(N)
algorithm for smallest bounding sphere (Megiddo, 1984) and 0(N log N)
algorithm for the three-dimensional Voronoi diagram (Preparata and
Shamos, 1985) exist, and they are both optimal. However, these algo-
rithms require mathematical sophistication to understand, their imple-
mentation is not easy, and furthermore the constant before the 0
notation is considerable. In practice, near-optimal bounding boxes or
spheres with slightly larger volumes will perform just as well as the
optimal ones in terms of avoiding unnecessary ray-object intersection
examinations. Therefore, simple and fast approximation algorithms for
smallest bounding volumes are highly desirable for practitioners. This
Gem introduces a simple algorithm to compute near-optimal bounding
volumes enclosing N points in 0(N) time.

A naive bounding volume algorithm will be as follows. We scan the
input point set S = {(xi , yi , zi): 0 ≤ i < N}, to find their x, y, and z
extents: [xmin, xmax], [ymin, ymax], and [zmin, zmax]. Immediately we have
an orthogonal bounding box enclosed by six planes x = xmin, x = xmax,
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Figure 1. The worst case for the naive bounding volume algorithm.

y = ymin y = ymax, z = zmin, z = zmax. A bounding sphere can also be
constructed by setting the sphere center to be the center of the preceding
box, and its radius to be the distance from the center to a vertex of the
box. But this will not in general give us a good bounding box or sphere.
The worst case for the preceding naïve approach is when the data points
are stretched along the diagonal of the orthogonal bounding box. A
two-dimensional illustration of this adverse situation is given in Fig. 1a.
Intuitively, the cure to the problem is clear. The orientations of the
bounding halfplanes should be made adaptive to, the data distribution.
What we need is a linear transformation to rotate the old coordinate
system in which the input data are given to a new coordinate system. The
new coordinate system will have one of its axes coincide with the
principal axis of the point set in which the data spread the most, or have
the maximum variance in terms of multivariate analysis. In this new
coordinate system it now makes sense to use the simple orthogonal
bounding box as a good approximation to the smallest bounding box. The
effect of the said linear transformation is demonstrated in Fig. 1b for
two-dimensional space. It should not be difficult to visualize the same
effect in three-dimensional space.
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The remaining key question is how to compute the desired new coordi-

nate system. Fortunately, the answer readily comes from a well-known
technique called principal component analysis (Manly, 1986). The com-
putational procedure for principal component analysis can be found in
Manly (1986) or any other multivariate analysis books. But we will sketch
it for completeness.

Step 1. Compute the covariance matrix of the data set S:

 C = 
  

Cx,  x Cx,  y Cx,  z

Cy,  x Cy,  y Cy,  z

Cz,  x Cz,  y Cz,  z














,     (1)

in which the nine covariances are

    
cx,  z =  cz,  x =  cxcz0 ≤  i < N∑

N
 –  µxµ z ,

    
cy,  y =  

yi
2

0 ≤  i < N∑
N

 –  µ y
2 ,

    
cz,  z =  zi

2
0 ≤  i < N∑

N
 –  µ z

2 ,

    

cx ,  y  =  cy ,  x =  o  ≤  i  <  NCxCy∑
N

−  µxµ y ,

cx ,  z =  cz ,  x =  0  ≤  i  <  NCxCz∑
N

−  µxµ z ,

    
cy,  z =  cz,  y =  

cycz0 ≤  i < N∑
N

 –  µ yµ z ,     (2)
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where

  
    
µx =  

xi0 ≤  i < N∑
N

,         µ y  =  
yi0 ≤  i < N∑

N
,         µ z =  

zi0 ≤  i < N∑
N

,     (3)

are the centroid coordinates of the data set S.

Step 2. Compute the eigenvalues λ1, λ2, λ3, and the corresponding
eigenvectors u, v, w, of the 3 × 3 matrix C. A C program for performing
this eigenvector transform can be found in a reference book Numerical
Recipes in C (Press et al., 1988).

Step 3. The three orthogonal eigenvectors u, v, and w define the
desired new coordinate system. The relation between the old coordinates
xi, yi, zi) and the new coordinates     (xi

‘ ,  yi
‘ ,  zi

‘ )  is given by the linear
transform

    

xi
'

yi
'

zi
'













 =  
u1 u2 u3

v1 v2 v3

w1 w2 w3













xi

yi

zi












.     (4)

After the eigenvector transform we can compute the orthogonal bound-
ing box of the points     (xi

‘ ,  yi
‘ ,  zi

‘ ) , 0 ≤ i < N.
Now consider the problem of finding the smallest bounding sphere. In

Graphic Gems I, Ritter (1990) proposed a simple approximation scheme.
His technique will first scan the N input points pi = (xi, yi, zi), 0 ≤ i < N,
to find the extreme points in the x, y, and z directions: px min, px max,
py min , py max , pz min , pz max. Then we tentatively construct a sphere with
max{d(px min , px max), d(py min , py max), d(pz min , pz  m a x )} being its diame-
ter, where d(⋅, ⋅) denotes the Euclidean distance. The N points will be
scanned one more time to test if they are contained in the tentative
sphere. If the test fails for the current point, the tentative sphere will be
expanded to just cover this point.

Unfortunately, the preceding technique could fail to find a satisfactory
approximation to the smallest bounding sphere when the data distribution
is not orthogonal to the x, y, z axes, a common occurrence in practice.
To see this defect, refer to Fig. 2. Sphere 1 is the initial tentative sphere,
and sphere 2 is the bounding sphere by expanding the tentative sphere if
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Figure 2. A situation in which the simple bounding sphere algorithm fails without
principal component analysis.

Ritter ’s technique is used. As we can observe from the figure, the majority
of input points fall outside of the tentative sphere, resulting in a poor
approximation. Sphere 3 is the smallest bounding sphere. The differences
between the approximation (sphere 2) and the true solution (sphere 3) in
terms of their sizes and locations are significant. Note that the given point
distribution is by no means degenerated. However, if the eigenvector
transform is performed to find the principal orientation of the data points,
then the problem associated with Ritter ’s simple bounding sphere tech-
nique can be fixed. Indeed, if Ritter ’s technique is applied in the new
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x′y′z′ coordinate system rather than directly in the old xyz coordinate
system, we will precisely obtain the smallest bounding sphere in the
situation of Fig. 2. For a robust bounding sphere algorithm, we strongly
recommend that the reader analyze the data first using eigenvector
transform before using Ritter ’s technique.

Finally, the time complexity issue. How fast is the eigenvector trans-
form? The cost of computing covariance matrix C at step 1 dominates
that of the whole process. The computation clearly takes O(N) time.
Furthermore, if N is sufficiently large, we may only randomly sample a
fraction of N points to approximate C, achieving even sublinear time.
The numerical computation of the eigenvectors for the positive definite
3 × 3 matrix C is fast and robust.

See also G1, 301; G3, F.5.
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The direct lighting component in distribution ray tracing is calculated by
performing a numerical integration accounting for all potentially visible
luminaires.1 In this Gem, a physically correct method for calculating the
contribution from spherical and triangular luminaires is presented.

Suppose a point x is illuminated by a luminaire S and is viewed from
direction ψ (see Fig. 1). The spectral radiance (essentially brightness) of
the point at a particular wavelength is expressed by the rendering equa-
tion:

    
L(x,  ψ ) =     g(x,  x ' )x'∈S∫ ρ(x,  ψ ,  ψ ' )Le (x ' ,  ψ ' )cosθ dA'cosθ '

x ' –  x 2 ,     (8)

where S is a luminaire; g(x, x¢) is zero if there is an obstruction between
x and x¢, and one otherwise; y¢ is the direction from x to x¢; r(x, y, y¢)
is the BRDF; Le(x’, y’) is the radiance in power/area—solid angle; q is
the angle between y’ and the surface normal at x; q¢ is the angle between
y¢ and the surface normal at x¢; and dA¢ is the differential area of x¢.

If a RGB color model is used, Eq. (1) should be evaluated for each color
component. If a spectral model is used, then Eq. (1) should be evaluated
at each wavelength.

For an environment with multiple luminaires, there is an integral like
that of Eq. (1) for each luminaire, and the direct lighting is the sum of
these integrals. For the rest of this discussion, one luminaire will be
assumed.

1A luminaire is an object that produces light, e.g. the sun.
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Figure 1. Direct lighting for x.

A simple and common way to estimate the integral in Eq. (1) is to first
define Lmax to be the approximate value of the integral if g is always 1
(i.e., there is no shadowing). Then we use the approximation

 L(x, ψ) = Lmax × (fraction of S that is visible to x)

To estimate the fraction, we send a shadow ray to a random point on S,
and if it gets blocked before it reaches S we let L(x, ψ) = 0. If the
shadow ray is not blocked, we get L(x, ψ) = Lmax This approximation
can work well if solid angle is small, i.e., the area of S is small compared
to distance(x, x′).

If the physical accuracy is required, then a more rigorous Monte Carlc
integration can be used to get an unbiased estimate for Eq. (1). Given a
set of N points xi , we can estimate any integral with

    
    f (x)x∈Ω∫ dµ (x) ≈  1

N
f (xi )
p(xi )i =  1

N

∑ ,

where p(x) is any probability density function that is positive when f(x)
is nonzero; xi  is a random variable with density p(x).

In classic distribution ray tracing, N is 1, so one shadow ray is sent to
each luminaire, and Monte Carlo integration for (1) gives

    
L(x,  ψ ) ≈  g(x,  x ' )ρ(x,  ψ ,  ψ ' )Le (x ' ,  ψ ' )cosθ cosθ '

p(x ' ) x ' –  x 2 , (2)

where x′ is a point on S according to p.
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This means that we can carry out the calculation by the following

procedure:

1. Choose a probability density function p;

2. find x′ on S according to p;

3. compute g(x, x′ ) by sending a shadow ray from x to x′ ;

4. if g = 1, then evaluate L(x, ψ) by Eq. (2); otherwise, set L(x, ψ) = 0.

The only problems left are how to choose p and how to choose x′  with
respect to p .  The easiest way is to let p(x ′)= 1/(area of S), i.e.,
uniformly choose a random point on S. To uniformly choose a point on a
sphere, we can transform two random numbers r1 and r2 from 0 to 1 to a
point on a unit sphere, (1, θ, φ) = (1, cos–1[1 – 2r1], 2πr2) in spherical
coordinates, then transfer the point to Cartesian coordinates: (x, y, z) =
(sin θ cos φ, sin θ sin φ, cos θ). Of course, this will generate sample points
on the back of the sphere that do not contribute, and we will have a high
variance in our estimate. We are better off intelligently choosing p by
importance sampling.

If the luminaire is diffuse (Le(x,⋅ y) = constant), then the radiance from
the luminaire coming into any direction inside the solid angle should have
approximately the same contribution. According to the principle of im-
portance sampling, choosing a sample point on the luminaire to the solid
angle, p(x′′) = 1/(solid angle), where x′′ is a point on the unit sphere
within the solid angle, should be the most efficient sampling method.
Also, since the probability density function we need is for a point x′ on
S, after we find out x′ with the help of x′′, we need to scale p(x′′) to get
p(x′). Suppose dA is the differential area. On surface S′, the solid angle
covered by dA with respect to x is dA cos θ′/distance2(x, x′), where x′
is a point inside dA on S′ and θ′ is the angle between the vector from x′
to x and the normal on S′ at x′. Similarly, on surface S′′, the solid angle
is dA cos θ″/distance2(x, x”). Since the probability of choosing a sample
point is proportional to the covered solid angle, p(x′)/p(x′′) = solid
angle of dA on S′/solid angle of dA on S′′. Therefore, p(x′) can be
expressed

p(x′) = (x′′)
    
distance2 (x,  x ' ' )cosθ '
distance2 (x,  x ' )cosθ ' ' .
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Sampling for Spherical LuminaireSampling for Spherical LuminaireSampling for Spherical LuminaireSampling for Spherical LuminaireSampling for Spherical Luminaire
As it turned out, in Fig. 2, we can sample according to the solid angle of a
spherical luminaire. First, find out the solid angle, then uniformly pick a
point on the unit sphere within the solid angle, i.e., a unit vector within
the solid angle, and then scale the probability. All vectors are assulned lo
be unit vectors.

1. Compute θmax:

 
    
θmax  =  sin–1

radius
distance(x,  center) .

2. Suppose x is the origin and the center, as well as the solid angle, has
been rotated to Z axis. Then we can uniformly pick a unit vector
(ψ = x” – x),(1,θ,φ) in the spherical coordinate system, within the

Figure 2. Sampling ideas for spherical luminaire and triangular luminaire.

triangle light
normal
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the solid angle
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the solid angle
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rotated solid angle. r1 and r2 are random numbers from 0 to 1:

(θ, φ) = (cos–1(1 – r1 + r1cosθmax), 2πr2).

3. Find ψ in the Cartesian coordinate system:

ψ = (sinθ cosφ, sinθ sinφ, cosθ).

4. Find a new Cartesian coordinate system (X′, Y′, Z′) in terms of the
original Cartesian coordinate system (X, Y, Z), where Z′ is the unit
vector from x to center. v is an arbitrary vector that does not agree
with ±Z′. Notice we are using the right-handed coordinate system.

X′ = Z′ × v,

Y′ = Z′ × X′.

5. Compute the rotation matrix M that rotates (X, Y, Z) to (X′, Y′, Z′):

    
    

M =  
X'.x Y'.x Z'.x
X'.y Y'.y Z'.y
X'.z Y'.z Z'.z












.

6. Rotate ψ to the real solid angle from the Cartesian coordinates of
step 2:

  ψ = Mψ.

7. Find x′ on S. Refer to Graphics Gems I, page 388 (Glassner, 1990).

8. Return ψ and p(x′):

    
p(x ' ) =  p(x ' ' ) cosθ '

distance2 (x,  x ' )  =  cosθ '
2π(1 –  cosθmax )distance2 (x,  x ' ) .
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Sampling for Triangular LuminaireSampling for Triangular LuminaireSampling for Triangular LuminaireSampling for Triangular LuminaireSampling for Triangular Luminaire
Because of the difficulty in computing the solid angle of a triangle an
finding a sample direction within the solid angle, we approximate the
solid angle of a triangular luminaire with another triangle that is a
approximation of the projection of the luminaire on the unit sphere
centered at x (see Fig. 2).

1. Find p′1, p′2, p′3:

    
p' i  =  x +  

pi –  x 
distance(x,  pi )

,          i =  1,  2,  3.  

2. Find x″, a random point on triangle 
    
p ’

1 ,  p ’
2 ,  p ’

3 , in uv coordinates:

  
    
(u,  v) =  1 –  1 –  r1 ,  r2 1 –  r1( ).

3. Find x″ in the Cartesian coordinate system:

    x ' '  =  p'1  +  u p'2  −  p'1( )  +  v p'3  −  p'1( ).

4. Find ψ:

     ψ = x” – x.

5. Find x′. Refer to Graphics Gems I, pp. 390 and 394 (Glassner,
1990).

6. Return ψ and p(x’):

    
p(x ' ) =  p(x ' ' ) distance2 (x,  x ' ' )cosθ '

distance2 (x,  x ' )cosθ ' '  =  distance2 (x,  x ' ' )cosθ '
area

p1
’p2

’p3
’distance2 (x,  x ' )cosθ ' ' .

For a rectangular luminaire, the solid angle is very difficult to compute,
and the approximation method used for a triangular luminaire is not
suitable. But to estimate direct lighting for a rectangular luminaire, we
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can use the method that uniformly picks a random point on the luminaire,
or divide the luminaire into two triangular luminaires.

For an environment with complicated lighting, such as a nondiffuse
luminaire, the shadow rays should be sent out more toward the brighter
region and the distribution of choosing shadow rays is not even within the
solid angle. However, the Monte Carlo integration still guarantees an
unbiased estimate, which means that the uniform sampling method and
solid angle method will converge to a correct result, although many
samples may be needed.

The definition of radiance can be found in an ANSI report (American
National Standard Institute, 1986). Distribution ray tracing originated in
Cook et al. (1984). The rendering equation was first presented in Com-
puter Graphics in Kajiya (1986) and Immel et al. (1986). Monte Carlo
integration is explored in depth in Screider (1966). A different way to
sample a triangular luminaire can be found in Lee et al. (1985).

See also G3, F.8.
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Form factor calculation is very important in order to obtain an accurate
simulation of a real scene. The form factor is calculated analytically in
terms of the area of a hemispherical projection of a planar patch; the
triangle is used herein as an example. The intensity of the receiving
triangle, due to a luminous planar triangle in space, is proportional to the
area of the hemispherical projection of the luminous triangle. Given two
3-D triangles, homogeneous transformations are applied to move the
coordinate system so that the origin is located on P, the center of the
receiving triangle, and the xy plane is the triangle plane. The luminous
triangle is transformed, and its vertices are located at P1, P2, and P3.
A hemisphere is placed with its center at P and its equatorial plane on
the xy plane. To simplify the problem, consider only one line in the
triangle. Points P1 and P2 and the line connecting them are selected to
show the calculation procedures; the extension to the triangle is straight-
forward. P1, and P2 are projected on to the unit hemisphere; two unit
vectors P1 and P2 are formed, pointing from P  to P1 and P2. The
endpoints of the two vectors are located on a great circle (since the plane
containing them passes through the center of the hemisphere), and the
normal C of this circles plane is

   C = P1 × P2 = {Cx, Cy, Cz}.

The great circle is projected onto the equatorial plane of the hemi-
sphere forming a great ellipse; the arc terminated by P1 and P2 of the
great circle has a corresponding arc of a great ellipse. The major axis of
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Figure 1. Projection of a line on a hemisphere.

the ellipse has unit length and points in the direction of the vector

    d = Z × C = {dx , dy , 0},

which is perpendicular to the z direction; therefore, it is on the xy plane
(the equatorial plane). The minor axis, c, is the projection of C to the
equatorial plane:

   c = (Cx , Cy , 0}.

The vectors C and d define the plane of the ellipse. Using p1 and p2 to
represent the projection of P1 and P2 on the equatorial plane, we have
two 2-D vectors:

    p1 = {P1x , P1y},

    p2 = {P2x , P2y}.

A rotation matrix M is constructed to make the ellipse major axis d
coincide with the x axis:

  
      
M =  

dx dy

–dy dx









.



GRAPHICS GEMS III Edited by DAVID KIRK 316

VI.8 HEMISPHERICAL PROJECTION OF A TRIANGLE

Figure 2. Projection of spherical triangle on equatorial plane.

Then, by applying M to p1 and p2, we have

      

′p1 =  Mp1 =  ′p1x ,  ′p1y{ },

′p2  =  Mp2  =  ′p2x ,  ′p2y{ },

These are the coordinates of the projected points in the (d, c) coordinate
system. The area of the ellipse sector containing the points     ′p1 ′p2 , and the
origin P, is

      

A =  Cz

2C

The area of the projected triangle is obtained by adding or subtracting
the three areas corresponding to the three sectors formed by the three
sides, in their respective great ellipses. The form factor can be expressed
in a closed form:

    
F =  1

π Ai
i =  1

3

∑ .

When quadrilateral patches, or polygons with even more vertices, are
used, the number of area calculations is equal to the number of vertices.

(a cos(p′2x) – a cos(p’1x)).
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Figure 3. Equatorial projection of a spherical quadrilateral.

This can be seen by decomposing the polygon into triangles and noticing
that some of the sector areas are both added and subtracted, canceling
each other out. Note that this decomposition into triangles is not unique,
but the number of ellipse sector area calculations is invariant with
decomposition.

The equations allow exact calculation of the illuminance produced at
any point by an arbitrary planar polygon with uniform luminance (Bian,
1990). Of course, since portions of a polygon lying below the equatorial
plane cannot illuminate the plane (assuming it lies on an opaque surface),
it might be necessary to clip the polygon to assure that it lies completely
above the equatorial plane.

Compared with the hemicube projection (Cohen and Greenberg; 1985),
which can perform visibility checks and estimate the form factor, hemi-
sphere projection can not only check the visibility between patches, but
also give an analytical calculation of the form factor. The analytical
approach (Baum et al., 1989) can calculate the form factor analytically,
but it has to use some other methods such as hemicube projection to do
the visibility check.

See also G.3, F.7; G.3, F.11.
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Most current radiosity algorithms assume that the radiosity is constant on
each patch. In his U.C. Berkeley Ph.D. thesis, Paul Heckbert suggested
approximating the radiosity variation with higher-order polynomial finite
elements. He demonstrated in 2-D “flatland” that this gives better ap-
proximations with fewer elements, and less computation time. We have
made a first step toward extending this approach to 3-D, by using linear
radiosity variations across triangular patches. Such linear variation is
usually assumed in the rendering phase after the solution has converged,
but not in the radiosity solution itself.

Linear radiosity variation can be incorporated into both ray-tracing
and hemicube methods. Ray-tracing methods for progressive radiosity
(Wallace et al., 1989) shoot rays from a patch to a vertex and can use
linearly interpolated radiosities at sample points on the patch to find the
energy transported along each ray. We used a hemicube algorithm (Cohen
and Greenberg, 1985), taking advantage of hardware shading features to
do the necessary interpolation.

In the finite element conceptual framework, the radiosity variation is
approximated by a linear combination of basis functions or ”shape
functions”. (See Burnett, 1987.) An optimization criterion is then used to
specify a set of equations to solve for the coefficients in this linear
combination which in our case are the vertex radiosities. We use the
“point collocation” criterion (Burnett, 1987), requiring a consistent en-
ergy balance at the vertices.

All polygons are divided into triangles, so that the vertex radiosities
specify a linear radiosity variation on each triangle. The basis function fi

corresponding to a vertex Pi is the piecewise linear function that is 1 on
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Figure 1. Graph of a basis function fi taking the value 1 on the vertex Pi, and 0 on the
other vertices. It slopes linearly from 1 to 0 along the six triangles having Pi as a vertex,
and is 0 on all other triangles.

Pi and 0 on all other vertices: a “tent” with a single tent pole at Pi, as
shown in Fig. 1. (If a vertex lies on the boundary between two different
surface types or orientations, there must be a separate copy of the vertex
for each surface type, to permit different radiosities, and parts of each
“tent” will be absent.)

If Bi is the diffuse radiosity at Pi, then the linear combination B(Q) =
ΣiBi fi(Q) is linear on each triangle and takes the value Bi at Pi. It will
be our radiosity approximation.

The energy balance equation for vertex Pi states that

   Bi = Ei + pi I(Pi ),

where Ei is the radiosity emitted by Pi (if it lies on a light source), Pi is
the diffuse reflectivity of the surface at Pi , and I(Pi ) is the irradiance at
Pi coming in from other surfaces in the scene. The values for Ei are
specified in the input, and our formulation allows linear variation of
intensity across light source triangles.

The irradiance I(Pi) is defined by integration over a hemisphere H
above the surface:

   I(Pi) = (1/ π )∫HB(Q)cos θ dω
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Here Q is the point visible in direction ω from Pi, and θ is the angle
between the direction ω and the surface normal at Pi. The 1/π fac-
tor converts the radiosity B(Q) to an intensity, and the Lambert factor
cos θ converts the intensity to irradiance.

Replacing B(Q) by our linear combination,

      

I(Pi ) =  (1/ π ) Bi f jj
∑

H
∫ (Q)cosθ dω

=  BjFi jj
∑ ,

where

      
Fi j =  (1/ π ) f j

H
∫ (Q)cosθ dω

is a vertex-to-vertex form factor.
Thus the energy balance criterion gives the system of linear equations

      
Bi =  Ei +  ρi BjFi j

j
∑ ,

which can be solved for the unknown radiosities Bi using Gauss-Seidel
iteration. If Ei and Pi vary with wavelength, these equations are solved
separately for each wavelength band.

In the hemicube formulation, the integration is replaced by a summa-
tion over pixels k in a hemicube above the vertex Pi :

    

I(Pi ) =  B(Qk )
k
∑ ∆ (k)

=  Bj f j
j

∑ ,(Qk )
k
∑ , ∆ (k).

Here Qk is the surface point visible in hemicube pixel k, and ∆(k) is the
”∆ form factor” from Cohen and Greenberg (1985),  which contains the
1/π, the  Lambert cosine factor, and the solid angle of pixel k. Thus,
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the hemicube approximation to the vertex-to-vertex form factor is

      
Fi j =  f j(Qk )∆(k).

k
∑

By traversing the hemicube, the appropriate Fij can be incremented for
each pixel k. Note that fj(Qk) will be nonzero only if j is one of the three
vertex indices I1, I2, and I3 of the triangle Tl containing the point Qk.
Inside this triangle,

  fI1(Q) + fI2(Q) + fI3 (Q) = 1,

since this sum is a linear function that is 1 on each vertex. The index l
for the triangle Tl is stored in the ItemBuffer entry for pixel k, and the
vertex indices I1(l), I2(l), and I3(l) can be found from the vertex
pointers for triangle Tl in the geometry model.

On our Personal IrisTM, we used the gouraud shading hardware to do
the linear interpolation of the fi(Q). In triangle Tl, we colored vertex
I1(l) pure maximum-intensity red, vertex I2(l) pure green, and vertex
I3(l) pure black. We then combined the blue and “alpha” channels into
one 16 bit ItemBuffer, to store the triangle index l. (We thank Paul
Heckbert for suggesting that we use the identity fI3 = 1 – fI1 – fI2 to
free up the blue channel, so that we could do both the fi interpolation
and the ItemBuffer in one pass.)

For each vertex Pi , we started by setting Fij = 0 for all j. We then
rendered all triangles in the model into the hemicube buffers, as de-
scribed above, using the hardware Z-buffer and transformation pipeline.
We read back the Red, Green, and ItemBuffers, respectively, into large
contiguous memory arrays that included all five full and partial faces of
the hemicube. (We had precomputed a corresponding large contiguous
array of ∆ form factors.) Then, we did the following loop:

For all pixels k in the large arrays
l = ItemBuffer(k)
j = I1(l)
Fij = Fij + RedBuffer(k)* ∆(k)
j = I2(l)
Fij = F ij + GreenBuffer(k)* ∆(k)
j = I3(l)
Fij = Fij + (255 – RedBuffer(k) – GreenBuffer(k))* ∆(k)
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When hemicubes are placed at a vertex instead of at a face center,

problems arise at a concave corner, because faces adjacent to the vertex
project onto the hemicube as lines, instead of as the area appropriate for
computing the energy balance. For example, suppose V and W are the
floor and wall copies of a vertex at the edge of the floor of a room. In
order for the final gouraud shading on the floor to be correct near V, the
radiosity at V should be the limit of the radiosities at points Q on the
floor near V. Consider hemicubes centered at Q. As Q approaches V,
the wall polygons cover half of the hemicube in the limit, although they
project to a line at V itself. So to get the appropriate contribution for the
wall, the center of the hemicube for V must be moved a small amount out
into the interior of the room.

Also, as Q approaches V, smaller and smaller regions of the wall
polygons near W contribute almost all of the solid angle to the wall’s half
of the hemicube. Thus, the radiosity at W itself should determine the
wall’s contribution to the input illumination at V; other vertices of
triangles containing W should have no effect. So when wall triangles
containing W are rendered into the hemicube for V, the color compo-
nents of these other vertices are set to be the same as those of W.

This second fix is necessary because fj(Q) should actually be linearly
interpolated in object space, while the hardware shader interpolates in
image space. Hardware that can interpolate texture coordinates in object
space would give better accuracy on all triangles. However, the error is
only significant on ones that pass close to the hemicube center.

The preceding discussion was for the special case of the edge of a
room, but by similar reasoning, these small displacement and recoloring
fixes apply at any concave corner.

For large data bases, it may be impractical to store all the form factors,
so they may be regenerated at each step in the Gauss-Seidel iteration. To
update the radiosity Bi , one would place a hemicube at vertex Pi , find
the corresponding F ij’s and, in each wavelength band, replace Bi by
Σ jBjF ij .  This is mathematically equivalent to rendering a colored,
gouraud-shaded image into the hemicube, using the current radiosities,
and then summing the image, weighted by the ∆ form factors. When we
tried this image summation method, we found that the 8-bit dynamic
range for the image was not sufficient to accurately represent both the
light sources and the diffuse surfaces. Therefore, we did a first iteration
with just the light source emissivities to find the direct illumination. Then
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we turned off the emissivities in subsequent Gauss-Seidel iterations for
the indirect illumination.

The image summation method eliminates the need to access the Item-
Buffer, the vertex pointers, and the Fij. In our experience it is faster than
the vertex-to-vertex form factor method, for three or fewer iterations,
possibly because the random accesses for the Fij and vertex pointers
frequently missed the memory cache on the Iris CPU. The brute force
“render the scene from the point of view of every vertex,” previously
considered hopeless, actually wins with modern hardware!
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See also G2, 303.
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The hemicube algorithm has become the most popular method of
calculating radiosity solutions for complex environments containing hid-
den surfaces and shadows (Cohen and Greenberg, 1985). The cubic
tetrahedral algorithm replaces the hemicube with a cubic tetrahedron
(Beran-Koehn and Pavicic, 1991). This adaptation increases performance
by reducing the number of projection planes from five to three, while
maintaining the simplicity of the required clipping and projection opera-
tions.

The cubic tetrahedral algorithm calculates the amount of light landing
on a patch from every other patch by transforming the environment so
that the receiving patch’s center is at the origin and its surface normal
coincides with the vector (1, 1, 1). An imaginary cubic tetrahedron is
constructed around the center of the receiving patch by selecting the
points (–2, 1, 1), (1, –2, 1), and (1, 1, –2) as the base, and the point
(1, 1, 1) as the apex. This provides three symmetric faces onto which the
environment is projected. The cubic tetrahedron is illustrated in Fig. 1.

Each face of the cubic tetrahedron is divided into square cells at a
given resolution. Associated with each cell is a delta form-factor that
specifies the fraction of the light passing through the cell and landing on
the center of the patch.

The delta form-factor of a cell with an area of a, centered at the point
P is computed as follows:

    
    
∆FF(P,  a) =  

cos  α cos  β
πr2

a,
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where α is the angle between Np, the surface normal of the receiving
patch, and R, the vector between the origin and the point P; β is the
angle between Nc, the cell’s surface normal, and –R; and r is the length
of R. These relationships are illustrated in Fig. 2.

The surface normal of the receiving patch is (1, 1, 1) and therefore the
cos α term is

  
    

cos  α =  (Px ,  Py ,  Pz ) ⋅  (1,  1,  1)
(Px ,  Py ,  Pz ) (1,  1,  1)

 =  Px +  Py +  Pz

r31/2
.

For cells on the face of the cubic tetrahedron perpendicular to the y
axis, the cos β term is

 
    

cos  β =  
(–Px ,  – Py ,  – Pz) ⋅  (0,  –1,  0)

(–Px ,  – Py ,  – Pz) (0,  –1,  0)
 =  

Py
r  =  1

r .

The same result is obtained for cells on the other two faces of the cubic
tetrahedron.

Thus, the delta form-factor of a cell with area a, centered at the point
P on any face of the cubic tetrahedron, is

    
    

∆FF(P,  a) =  
Px +  Py +  Pz

π Px
2 +  Py

2 +  Pz
2( )2

31/2
a.

For each face, one of Px , Py , or Pz will always be 1, and thus ∆FF may
be simplified to

   
    
∆FF(u,  v,  a) =  u +  v +  1

π u2  +  u2  +  1( )2
31/2

a.

where u and v range from 1 to –2 and originate from the apex of the
cubic tetrahedron.

Because of symmetry, the delta form-factor values need to be com-
puted for only one-half of any face. Figure 3 illustrates a cubic tetrahedral
face with a cell resolution of 8 × 8 for which the shaded cells have been
selected for delta form-factor calculation. The cells located along the base
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Figure 1. The cubic tetrahedron.

Figure 2. Delta form-factors.

(–1,1,–2)

(–2,1,1)

(1,–2,1)
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Figure 3. Delta form-factor symmetry.

Figure 4. Center of a base cell.
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of the cubic tetrahedron, those with a triangular shape, present a special
case. These cells may be ignored, especially if the number of cells is
large, since their delta form-factors will be very small. If these cells are
included, the area is one-half that of the other cells and the center is
calculated as shown in Fig. 4. See the appendix for a program that
demonstrates the calculation of delta form-factors.

See also G2, 299.
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Filippo TampieriCornell UniversityIthaca, New York

The radiosity method for diffuse environments (Goral et al, 1984; Cohen
and Greenberg, 1985) expresses the energy transfer between a source
patch s and a receiving patch r as

 ∆BrAr = rrBsAsFAs →Ar,

where

∆Br is the unknown to be computed; it is the contribution of patch s to
the radiosity of patch r, assumed constant across patch r;

Ar is the area of patch r;

ρr is the reflectivity of patch r;

Bs is the radiosity of patch s, assumed constant;

As is the area of patch s; and

FAs → Ar is the form-factor from patch s to patch r and represents the
fraction of energy leaving patch s and arriving at patch r.

Lying at the core of the radiosity formulation, the accurate computation
of form-factors plays an important role in determining the quality of the
radiosity solution.

This Gem presents a simple algorithm for the computation of accurate
form-factors based on a number of ideas and techniques assembled from
previously published work (Baum et al., 1989; Wallace et al., 1989;
Hanrahan et al., 1991). The algorithm computes the form-factor between

(1)
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a finite-area polygonal source and a differential area on a receiving patch
and can be used directly within the progressive refinement radiosity
method (Cohen et al., 1988).

If a differential area dAr , centered about location x on patch r, is
substituted for finite area Ar in Eq. (1), we obtain

 ∆Br(x)dAr(x) = ρrBsAsFAs → dAr(x).     (2)

Using the reciprocity relationship for form-factors, AsFAs → dAr
 =

dAr FdAr → As
, and dividing both sides of Eq. (2) by dAr, leads to

    
∆Br (x)  =  ρ r Bs FdAr (x) →  As

 =  ρ r Bs   v(x,  y )
As
∫ cos θ r  cos θ s

πr 2
dAs (y ),     (3)

where

∆Br(x) is the radiosity contribution of patch s to a differential area
dAr centered about point x;

v(x, y) is a visibility term, 1 if point y is visible from x, 0 otherwise;

r is the distance between x and y;

θr , θs are the angles between the surface normals at x and y and the
line connecting the two points; and

dAs(y) is the differential area centered about point y on patch s.

In the absence of occlusions, the visibility term is everywhere 1, and
the area integral can be transformed into a contour integral using Stoke’s
theorem. This, in turn, can be evaluated analytically using the formula
provided by Hottel and Sarofin (1967):

    
FdAr (x)  →  As

 =  1
2π   cos–1(Ri ⋅ Ri⊕1 )

Ri ×  Ri⊕1i = 0

n –  1

∑  (Ri ×  Ri⊕1 ) ⋅  Nr ,

where

⊕ represents addition modulo n;

n is the number of vertices of source patch s;

  (4)
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Ri is the unit vector from point x on patch r to the ith vertex of patch

s; and

Nr is the unit normal to patch r at point x.

Assuming the visibility term v were constant, it could be taken out
from under the integral in Eq. (3), and the form-factor could be com-
puted correctly using Eq. (4). Unfortunately, v is constant only when
source patch s is either totally visible (v(x, y) = 1) or totally occluded
(v(x, y) = 0) from the receiving differential area dAr(x). When partial
occlusion occurs, however, approximating the visibility term with a con-
stant function might result in a poor estimate of the form-factor.

A solution to this problem is not hard to find. By subdividing the source
patch into smaller and smaller areas ∆Aj and using a different constant
approximation to v for each ∆Aj , the visibility function can be approxi-
mated to any degree of accuracy, as can the integral in Eq. (3). Thus, the
contribution of source s to receiving point x becomes

    
∆Br(x) =  ρrBs  VjFdAr (x)  →  ∆Aj





j = 1

m

∑ ,

where Vj is the fraction of ∆Aj visible from x.
The following pseudo-code gives a recursive algorithm to compute

∆Br:
∆Br ← ComputeContribution(r(x), s, εB , εA);
ComputeContribution (r (x), s, εB , ε l)

1. if CanCull(r(x),s)
then return 0;
else begin

2. εF ← εB/(ρrBs);
return ρrBs. ComputeFormFactor(r(x),s, εF , εA);
end;

ComputeFormFactor(r(x), s, εF , εA)
begin

3. V ← ComputeVisibilityFactor(r(x),s);
if V ≤ 0
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4. then return 0;

else if V ≥ 1
then begin

5. FdAr → As
 ← ComputeUnoccludedFormFactor(r(x),s);

return FdAr → As
;

end:
else begin

FdAr → As
 ←  ComputeUnoccludedFormFactor(r(x),s);

6. if FdAr → As
 ≤ εF or As ≤ εA

7. then return VFdAr → As
;

else begin
8. (s1, s2, . . ., sm) ← SplitPatch(s):
9. return     Σ j =  1

m ComputeFormFactor(r(x), sj , εF , εA);
end;

end;
end;

Subroutine ComputeContribution takes as input the description of a
differential area centered about point x on patch r, the description of a
source patch s, a radiosity tolerance εB , and an area εA , and uses
recursive subdivision of the source patch s to compute the radiosity
contribution within an accuracy controlled by εB . The area term εA  is
used to prevent excessive subdivision such as could occur for a receiving
point very close to an edge of the source.

The subroutine starts by calling subroutine CanCull to check whether
receiving point x is oriented away from patch s or is behind it (step 1),
and returns a null contribution if either of the conditions hold. If
point x cannot be culled out of consideration, a tolerance εF is derived
(step 2) so that a form-factor computed within precision εF yields a
radiosity contribution accurate within the required precision εB . Subrou-
tine ComputeFormFactor relies on an external routine to get an esti-
mate of the visibility factor V (step 3); ComputeVisibilityFactor should
return 0 for total occlusion, 1 for total visibility, and the fraction of
source s that is visible from point x in the case of partial occlusion The
cases when V is either 0 or 1 are simple: The radiosity contribution is
respectively equal to 0 (step 4) and to ρrBs times the unoccluded
analytical form-factor (step 5), computed by subroutineComputeUnoc-
cludedFormFactor using Eq. (4).
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The case of partial occlusion deserves more care: If the unoccluded

analytical form-factor falls within the εF tolerance (step 6), then the
radiosity contribution cannot possibly be larger than the desired accuracy
εB and is estimated by the product of the visibility factor V and the
computed unoccluded form-factor (step 7). If, instead, the unoccluded
form-factor is larger than εF, the source is subdivided (step 8) and its
contribution computed as the sum of the individual contributions of its
parts (step 9). Also note that the recursive subdivision of the source is
stopped if the area of the source falls below a specified threshold εA . This
is done to prevent infinite recursion for receiving points along the corners
and edges of the source, as suggested by Hanrahan et al. (1991).

The accurate computation of the visibility term V may not be a simple
task. Such a computation could be carried out by projecting every
polygon onto the source from the point of view of the receiving point and
then computing the ratio of the sum of the unoccluded areas of the
source to its total area. Unfortunately, this approach is prohibitively
expensive, and faster methods must be used.

As an alternative to computing the visibility term V exactly, a reason-
able approximation can be computed much more efficiently by tracing
one or more shadow rays between the source and receiver and averaging
their 0/1 associated visibilities (Hanrahan et al., 1991.) The accuracy
and efficiency of this technique is improved even further by testing for
total occlusion or total visibility first, and using shadow rays only if
neither case can be recognized with certainty.

Shaft culling (Haines and Wallace, 1991) provides a means of comput-
ing a list of potential occluders for a given source-receiver pair. If the list
is empty, the source is totally visible; if an object in the list cuts the shaft
and completely separates the source from the receiver, then the source is
totally occluded; otherwise, the source is treated as partially occluded,
and shadow rays are used as described above. Note that shaft culling also
speeds up this last process by reducing the number of possible occluders
that need to be tested against shadow rays.

See also G3, F.8.
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This final chapter is a sort of “catch all” for many Gems that did not fit
explicitly into other sections. As such, “rendering” means anything to do
with making pictures. That is not to say that the section contains the
dregs; in fact, some of my favorite Gems in this volume are in this very
section.

The first Gem describes an optimization to create better images using a
shadow depth buffer. The second Gem describes a clever trick for
organizing the arithmetic in color interpolation across a scanline. The
third Gem describes some shortcuts for anti-aliasing polygons. The fourth
Gem describes a general programming trick for the C language, which
has some nice side effects for span conversion. The fifth Gem presents a
framework for progressive refinement display of a sampled image.

The sixth Gem is one of my personal favorites. It describes a way to
think about how to decide which pixels to draw as part of a triangle to be
rendered. The technique is accurate and consistent, and the exposition is
very clear. The seventh Gem discusses a little trick for making interesting
shadow effects using negative light sources, or “darklights.” The eighth
Gem asks the question “What if pixels were triangular?” and then
provides some useful tools for rendering into triangular pixels.

The ninth Gem takes advantage of commonly available workstation
graphics hardware to create higher quality images than the hardware was
designed to make! This Gem describes how to use polygon drawing
hardware to make motion blurred images for still or video recording. It
also discusses some of the finer points of filtering for video. The final
Gem describes a useful optimization for drawing polygons that are part of
a mesh. This Gem applies the concept of cacheing to the shading process.

RENDERINGRENDERINGRENDERINGRENDERINGRENDERING
VIIVIIVIIVIIVII
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Andrew WooAlias ResearchToronto, Ontario

IntroductionIntroductionIntroductionIntroductionIntroduction
The shadow depth map has proven to be an effective shadow determina-
tion approach in image synthesis (Williams, 1978; Hourcade, 1985;
Reeves et al., 1987). Not only does it handle any class of geometric
primitives with equal ease, it is also the only shadow approach that
requires a storage complexity independent of the number of objects in the
scene (Woo et al., 1990): an advantage when it comes to complex
scenes. However, the depth map is prone to aliasing problems, of which
some have been improved (Hourcade, 1985; Reeves et al., 1987) using
some filtering techniques. In this Gem, we attempt to reexamine the
Moiré Pattern aliasing problem, and offer a superior solution.

The Shadow Depth MapThe Shadow Depth MapThe Shadow Depth MapThe Shadow Depth MapThe Shadow Depth Map
The basic shadow depth map approach :is very simple. Perform a Z-buffer
scan-conversion and visibility determination of the scene from the per-
spective of a light source instead of the eye. However, the visibility is
simplified in that only the depth information is kept in 2-D grid or map,
with no information about the visible objects at all. During rendering of
each pixel, the point or region to be shaded is projected onto the
appropriate cell(s) in the depth map. A SampleShadow routine is called
to compare the depth value for each applicable depth map cell with that
for the current intersection point. If the intersection point is further away
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from the light source than the distance stored in the depth map for that
cell, then the point is in shadow; otherwise, it is not.

The Moiré Pattern ProblemThe Moiré Pattern ProblemThe Moiré Pattern ProblemThe Moiré Pattern ProblemThe Moiré Pattern Problem
In Fig. 1, when the closest surface to the left of the point marked (*) is to
be shaded, it will improperly result in self-shadow because the depth map
value is further away from the light source than the closest surface.
Reeves et al. (1987) attempt to solve this problem by introducing a bias
that is added to the depth value on the fly so the same surface will be in
front of the depth map value. Note that if bias is too large to avoid the
moiré pattern problems, then objects that should be shadowed might be
fully lit. If the bias is not large enough, then improper self-shadowing
occurs much more often—this usually results in the appearance of noisy
surfaces or moiré patterns (noise from the randomness attached to the
bias value)—see Fig. 2. Thus, no matter how carefully bias is chosen,
the shadow results are usually unsatisfactory, and are especially notice-
able for low depth map resolutions < 512 × 512.

Figure 1.
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Figure 2. The old algorithm.

Another solution instead of bias is proposed here. If the depth map
cell only encounters one surface, then the depth map value is set to the
same value as if there were no surfaces in that cell, i.e., the z value is set
to some large value. Such a surface will always be fully lit where it
intersects that cell.

If there is more than one surface that hits the depth map cell, then the
depth map cell value is assigned to be an average (halving the sum of the
values is a good rule of thumb) between the first two visible surfaces with
respect to the light source; see Fig. 1. In this way, the closest surface
should always be lit and the second surface should always be in shadow.
Thus, the bias value is not needed at all, and the results generated are far
superior.

A Boundary CaseA Boundary CaseA Boundary CaseA Boundary CaseA Boundary Case
Special care is required at the outer limits of a spotlight’s cone of
illumination. When sampling occurs outside this cone, make sure that an
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in shadow result is returned. Otherwise, spurious brightly lit lines may
appear at the juncture between lit and shadowed regions. Reeves et al.
(1987) provided source code that had this error.

Some OptimizationsSome OptimizationsSome OptimizationsSome OptimizationsSome Optimizations
The changes proposed above not only produce better quality shadows,
but should also be faster computationally. For example, there is no need
to compute bias values on the fly for each shadow sample (in the
SampleShadow routine). Furthermore, because halving the depth value
between visible surfaces results in large value differences during depth
comparisons, depth values can be compared in integer first, then done in
floating-point only if the integer comparison is inconclusive. This tends to
help out on platforms where integer evaluations are much faster than
floating-point. Available is some pseudo-code showing Reeves et al.‘s
SampleShadow routine vs. the new approach.

Figure 3. The new algorithm.
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ConclusionsConclusionsConclusionsConclusionsConclusions
The changes made to the shadow depth map approach seem to work
quite well, even at a low resolution of 256 × 256. This can be seen in
Figs. 2 and 3, where a 256 × 256 depth map is used to render the scene:
Notice the difference in the noise level of the surfaces. The spotlight
frustum is 75 degrees, and the minimum and maximum bias values are
0.2 and 0.4, respectively. Thus, a 1,024 × 1,024 resolution depth map is
not always necessary for realistic shadows. With this approach, a very
reasonable job can be achieved at much lower resolutions and thus use up
a lot less computation and memory.

See also G2, 273; G2, 275.
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This Gem gives an algorithm for doing fast z-buffered linear color
rendering of polygons.

Normally, linear shading is an expensive computation because separate
interpolation is needed to calculate each of the attributes r, g, b, and z
at each pixel in the polygon. Additionally, and still at the pixel level, the
separate r, g, b values have to be merged to form the overall value
representing the given color. (See, for example, Heckbert, 1990.) Hard-
ware solutions for doing the interpolation and merging can overcome
speed problems, but only at the expense of a less flexible format in the
choice of color mode. A software solution is clearly desirable in this latter
respect, or when a hardware implementation is not available.

When the shading is linear, the color-slopes, i.e., the rates of change of
rgb values, remain constant over the entire polygon. There is actually no
need to do the interpolation for the r, g, and b values separately for
every pixel of the entire polygon; it is only necessary to make the
interpolation along a single scanline. The algorithm below takes advan-
tage of this fact to yield a renderer that is significantly more efficient,
particularly for large polygons, than that which is conventionally de-
scribed.

The rationale of the method is given for the case when the color value
is held as the first 24 bits of a 32-bit integer, i.e., 8 bits each for r, g, and
b—with r the first byte, g the second, and b the third. Thus, r, g, and b
each lie in the range 0 through 255. The method is easily modified for
other color representations.

For definiteness a floating-point Z-buffer is assumed, but this is not
essential to the method.
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Typically, linear shading is implemented by stepping through each

scanline, y, that intersects the polygon. Suppose that

1. xleft[y] and xright[y] are the leftmost and rightmost x-values of the
pixels lying in the polygon on this scanline, and that the polygon
covers all pixels between these two values;

2. the r, g, b, and z values are initialized to their correct values at the
leftmost pixel of this line-segment, i.e., at position xleft[y], y;

3. floating point r, g, b color shade increments in the x-direction have
been precalculated as dr_by_dx, dg_by_dx, db_by_dx, and the z-
distance increment is dz_by_dx.

Then the pixels of a given scanline can be rendered with a loop calcula-
tion that, because of the linearity of the shading process, involves r, g, b, z
increments in the x-direction only, the incrementation in the y-direction
being only needed to set the r, g, b, z values in (2) above at the start of
the scanline. The loop calculation for the scanline takes the form

for x ← xleft[y] to xright[y] do begin
if z < zbuffer [x][y] then

begin
framebuffer[x][y] ← ((int)r) + (((int)g) << 8) +

(((int)b) << 16); Step A

zbuffer[x][y] ← z;
end;

  r ← r + dr_by_dx; Step B
  g ← g + dg_by_dx; Step B
  b ← b + db_by_dx; Step B
  z ← z + dz_by_dx;
  endloop;

This constitutes the innermost loop. It proceeds by incrementing the
r, g, b values separately (Step B). The variables r, g, and b have to be
floats to retain accuracy over the scanline. In Step A, these values are
rounded into integers and merged to form the actual 24-bit colour value
that is inserted into the frame-buffer. In the overall linear shading algo-
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rithm, the greatest computational expense thus lies in these calculations
at Steps A and B.

A significant improvement can be made to the preceding on noting that
linearity of the shading process means that Steps A and B are in effect
identical for each scanline. This is because, as far as the x-direction is
concerned, the same merged 24-bit rgb x-increment is used for all pixels
with the same x value. This means that, if the values of these 24-bit rgb
increments are recorded for each value of x along any one scanline, then
they can be used at Step A for every scanline, without the need to
recalculate them. The separate incrementation of r, g, and b at Step B is
only needed, of course, in the calculation of the merged 24-bit increments
along the one scanline.

The pseudo-code for this fast linear renderer is as follows:

procedure FastLinearRend(
x min: int; leftmost x value amongst all pixels of the

polygon being rendered
x max: int; corresponding rightmost x value
y min: int; smallest y value amongst all pixels of the

polygon being rendered
y max: int; corresponding largest y value
xleft: array[0. .HRES-1] of int; on entry xleft[y min], . . . ,

xleft[y max] hold the x value of the leftmost pixel
lying in the polygon

xright: array[0. .VRES-1] of int; on entry
xright[ymin]. .xright[y max] hold the x value of
the rightmost pixel lying in the polygon, for
each scanline

r0,g0,b0,z0: float; ualue of r, g, b, and z at the base
pixel at position x0, y0. The base pixel need
not necessarily be a pixel of the polygon but
is typically one of its vertices.
Alternatiuely the base pixel can be taken to
be the origin (0, 0).

dr_by_dx, dr_by_dy,
dg_by_dx, dg_by_dy,
db_by_dx, db_by_dy,
dz_by_dx, dz_by_dy; float;



GRAPHICS GEMS III Edited by DAVID KIRK 346

VII.2 FAST LINEAR COLOR RENDERING
incremental slope information giving the rate of
change of each attribute in the x and y
directions.

);
r, g, b, z, r1, g1, b1, z1, dx, dy: float; work variables
x, y: int; position of current pixel
z: float; z-value of pixel
screenbuff: array [0..HRES-1, 0. .VRES-1] of int;

the screen-buffer, for clarity defined here as a
two-dimensional array, but usually occupies
linear memory. HRES and VRES are the
horizontal and uertical resolutions of the
frame.

zbuffer: array [0. .HRES-1, 0. .VRES-1] of float; z-buffer
col: int; work variable storing 24-bit rgb color
rgboffset: array [0. .HRES-1] of int; holds the merged
24-bit color x-offsets

begin
Find the r, g, b, z value at position (x0, y min)
dy ← (y min – y0);
r1  ← r0 + dr_by_dy*dy;
g1 ← g0 + dg_by_dy*dy;
b1 ← b0 + db_by_dy*dy;
z1 ← z0 + dz_by_dy*dy;
Find the combined 24-bit rgb offset values along the scanline y min
for x ← x min to x max do begin

dx ← (x – x0);
r ← dr_by_dx*dx;
g ← dg_by_dx*dx;
b ← db_by_dx*dx;
rgboffset[x] ← ((int)r) + (((int)g) << 8) + (((int)b) << 16)
endloop;

for y ← y min to y max do begin
find the 24-bit color value at (x0, y)
col ← ((int)r1) + (((int)g1) << 8) + (((int)b1) << 16);
find the z ualue at (xleft[y], y)
dx ← xleft[y] – x0;
z ← z1 + dz_by_dx*dx;
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do the scanline fill
for x ← xleft[y] to xright[y] do begin
if z < zbuffer[x][y] then begin
screenbuff[x][y] ← col + rgboffset[x];
zbuffer[x][y] ← z;
end;
z ← z + dz_by_dx;
endloop;

Increment the leftmost rgbz ualue ready for the next y
r1 ← r1 + dr_by_dy;
g1 ← g1 + dg_by_dy;
b1 ← b1 + db_by_dy;
z1 ← z1 + dz_by_dy;
endloop:

 end;

There are several points to note in this algorithm.

1. The calculation does introduce an additional rounding error because
the color intensities, r1, g1, b1, at the leftmost pixel of a scanline
have to be rounded as well as the rgb offset values. Thus the overall
rounding error can be +/– one unit rather than the usual +/– half
unit. In my experience, with 8-bit color intensities and in real-time
applications this effect is not noticeable.

2. None of the offset values of any color intensity have to lie in the
range 0 to 255. So long as the final intensities of r, g, and b at any
pixel lie properly in range, then any numerical “overflow” into a
neighbouring byte at an intermediate calculation is automatically
allowed for by the usual arithmetic operations of carrying and bor-
rowing. Thus, intensity values are correct and positioned each in their
own byte (apart from rounding) by the end of the calculation, and no
special assumptions are needed to avoid colour-wrapping effects.

3. Colour overshoot because of rounding can occur at edges where an
intensity is at or very near its maximum or minimum. This is a
problem with any shading renderer and is most acute in small
polygons, but the additional rounding error mentioned in 2 means
that extra care is needed to avoid this effect. I usually adjust polygon
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vertex intensities to be slightly away from their minimum and maxi-
mum values (taking care to preserve linearity) to prevent this.

4. The speed gain is dependent on the number, shape, and size of
polygons. Typically I found an increase by factors of 2.3, 3.3, and 3.8
for 50, 500, and 5,000-pixel polygons, respectively.

5. Finally it is worth repeating the warning mentioned by Heckbert, that
linear interpolation is not correct for all attributes. In particular the
z-distance attribute is not affine, and in perspective-sensitive scenes
use of linear approximation can be distracting. However, the recipro-
cal z-distance is affine, so that linear interpolation is correct if
z-buffer calculations are done with reciprocal-z. The only change
needed in the algorithm is to alter the z-test in the inner loop from
(z < z_buffer[x][y]) to (z > z_buffer[x][y]).

See also G1, 75.
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IntroductionIntroductionIntroductionIntroductionIntroduction
At the heart of many antialiasing algorithms for rendering polygons is a
routine for calculating the overlap between a polygon and the (square)
pixels at the edge of the polygon. (See for example Watt, 1989, for a
discussion of such area sampling.) Anyone who has had to implement
such an edge calculator will have encountered the problem of ensuring
that the code

1. handles polygons consistently (e.g., abutting faces are seam-free);

2. does not become bogged down by numerous special cases (e.g.,
copes with a tiny face lying in a single pixel);

3. remains accurate under difficult conditions (e.g., copes with long, thin
polygons);

4. does not contain redundant calculations (e.g., does not reset variables
that are already clear).

An algorithm follows for such an edge-calculator in which particular
attention has been paid to the preceding points so that it operates in a
clean, efficient, and fast manner. The algorithm has been used success-
fully in real-time applications. The basis of the method is a generalized
Bresenham-type calculation that switches between not one, but two error
variables.
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The algorithm identifies those pixels intersected by an edge, and the

nature of each intersection. This information can be used, for example, to
calculate the bit-masks of an A-buffer anti-aliasing renderer as described
by Carpenter (1984).

Alternating Bresenham Edge-CalculatorAlternating Bresenham Edge-CalculatorAlternating Bresenham Edge-CalculatorAlternating Bresenham Edge-CalculatorAlternating Bresenham Edge-Calculator
The routine works, scanline by scanline, up to the left edges of the face,
then the right edges. (Here “up” means “in the direction of increasing
y,” though for many displays scanlines are labelled from top to bottom.)
Four types of edge are used, and these are depicted in Fig. 1.

The form of the intersection of an edge with a pixel is determined by
the two end points of the edge either within or at the boundary of the
pixel square. At the core of the routine is the calculation of these end
points for each pixel. The traversal from pixel to pixel along edgetypes 1
or 3 is illustrated in Fig. 2. Each square represents a pixel and the way an
edge can intersect it. The arrows between pixels indicate the only possi-
ble ways of switching from one pixel lo another. For example, from a
type “mx” it is only possible to go to another “mx,” an “sy,” or an
“rx.”

The switching between pixel types is controlled by two Bresenham
error quantities: ex and ey, one in the x and the other in the y direction.
Use of two error terms rather than one gives the calculation a simple

Figure 1. Edge types.
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Figure 2. Possible edgetype 1 and 3 traversals. For edgetype 2 and 4 traversals, rotate
the diagram 90° anticlockwise and use the labelling in brackets.

symmetry, and at the same time allows the coordinates of the end points
of the edge-segment to be expressed immediately in terms of them.

Tests of ex alternate with tests of ey to find the next type of pixel
encountered, with the end conditions of one block of tests forming the
starting conditions of the next block. The alternating sets of computation
dovetail to form a compact and efficient code. Details appear in the
C-code version.

The edge-calculator also records, for each horizontal row of pixels
intersected by the face, the leftmost and rightmost pixel affected:
xleft[y], xright[y].
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Bit-Mask CalculationsBit-Mask CalculationsBit-Mask CalculationsBit-Mask CalculationsBit-Mask Calculations
We illustrate how the edge-calculator might be utilized to set up bit-masks
for use in an A-buffer anti-aliased renderer.

The method is not dependent on the precise size of bit-mask, but to be
specific, suppose that each pixel is divided into 4 × 4 = 16 square
subpixels so that the bit-mask of each pixel can be represented by a
16-bit integer. Suppose that array element frag[x][y] is used to record the
bit-mask of the overlap of a face with the pixel at position x, y. Let each
element of the array be initialized as ffff(hex) (i.e., the subpixels are all
assumed covered—indicated by each bit being set equal to 1).

As each pixel overlapping the boundary of the face is obtained, the
bit-mask corresponding to the particular overlap can be read-off precalcu-
lated arrays:

mask[1] [][][][], mask[2] [][][][],
mask[3] [][][][], mask[4] [][][][],

each array corresponding to one of the four edge-types. The last four
arguments are the coordinates of the two endpoints defining the overlap.
If the precalculated bit-masks are set as in Fig. 3, i.e., where the subpixels
in the area marked 0 are set to zero, whilst the remainder are set to 1,
then each overlap, when it is identified by edge-calculate(), can have its
precalculated bit-mask bitwise ANDed with the existing bit-mask,
frag[x][y], of that pixel and the result stored back in frag[x][y]. The effect
of this is to cut out portions of the bit-mask of the pixel not covered by
the face. The precalculated bit-masks will correctly handle pixels contain-
ing one or more vertices of a convex face (see, for example, Fig. 4a, b)
except for pixels containing a vertex that is the intersection of an
edge-type 1 with an edge-type 3 or of an edge-type 2 with an edge-type 4.
For these cases an additional ANDing operation is needed to clip out a
fragment that should be, but that would not otherwise, be removed. (See
Fig. 4c.) Note that for a convex polygon these cases can only occur once
each at the bottom or top of a thin polygon, so that this correction is not
at all time-consuming.

Once a face has been processed in this way, the elements of frag[][]
lying between xleft[y] and xright[y] on each scanline will contain their
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Figure 3. Suggested bit-mask definitions.

Figure 4. Examples of bit-masks at vertices formed by ANDing basic mask types.
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correct bit-mask value; outside this segment the bit-mask will still be at
their initialized ffff(hex) value.

Implementation DetailsImplementation DetailsImplementation DetailsImplementation DetailsImplementation Details
The implemented version contains all the calculations for ensuring that
the bit-masks are correctly calculated, assuming the bit-mask-structure
described above.

For reasons of space, the C-code version is written for compactness
rather than full computational efficiency. An efficient version (about three
times faster) is readily obtained by making the following two modifica-
tions:

1. For clarity, the main Bresenham-type calculation has been separated
off, starting at label “gamma.” This handles all four edge-types by
using switches, the main ones being:
a. toggle, which selects between edge-types 1 and 3 and edge-types

2 and 4,
b. the lookup table rl[][], which is used in resultproc() to select the

appropriate combinations of pixel and edge-types at which the xl
and xr arrays are set.

This code should place “inline” using the appropriate version of the
calculation for each of the four cases, so that all switches and their
associated tests are removed.

2. For clarity the error quantities ex, ey, and their associated variables
are given using pixel-width as the unit of measure. This means that
they have to be rescaled to subpixel units in resultproc() to access the
bit-mask arrays. At the expense of more opaque-looking code, it is
much more efficient to do all the calculations directly in subpixel
units in the main Bresenham loop. Rescaling is then unnecessary
when the bit-mask arrays are accessed.

See also G1, 76.
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IntroductionIntroductionIntroductionIntroductionIntroduction
A common operation in many graphics applications is the illumination of
a “span” of pixels: Several consecutive pixels are to be set to the same
value. This occurs naturally in polygon scan-conversion, area filling,
drop-shadowing, and the like. A closely related operation is the illumina-
tion of several consecutive pixels by values that are determined by
differences (forward differencing is most common) from their immediate
predecessors. This is essentially the situation in many interpolated shad-
ing techniques (e.g., Gouraud, Warnock, and the normal vector interpola-
tion in Phong shading).

If we assume that consecutive pixels occupy contiguous memory loca-
tions, and that they are to be assigned common values, then the imple-
mentation of the preceding idea is most naturally expressed as a loop:

for (i = FirstPixel; i < = LastPixel; i + + )
setpixel(i, val);

This compact implementation has, however, a serious drawback: Each
pass through the loop requires the update and test of the loop control
variable (i here), as well as a potential jump back to the start of the loop.
These operations can easily equal the time used to do the useful work,
namely the pixel illumination. This means that somewhat close to half of
the time needed to illuminate a span of pixels may be spent “housekeep-
ing.’’
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There is a very popular technique by which the overhead introduced by

the use of a loop (as described above) may be avoided. We speak, of
course, about loop “unrolling.” This is best illustrated by replacing

for i ← 1, 3 do
whatever();
endloop;

with the following:

whatever();
whatever();
whatever();

This Gem details programming techniques whereby this idea may be
conveniently implemented.

ImplementationImplementationImplementationImplementationImplementation
The C function movespan() shown in the Appendix will implement a
complete unrolling of the pixel illumination loop for spans of up to 16
pixels. The idea, of course, is for control to pass into the appropriate
section of the switch to move data into one pixel, then fall through the
rest of the cases so that the rest of the pixel data is also moved. This
relies on a peculiarity of the semantics of the switch in C; other languages
(e.g., Pascal and the Graphics Gems pseudocode) may not be amenable to
this trick.

Longer spans may be accommodated at the cost of additional memory
consumption by the obvious insertion of more cases in the switch.
Arbitrarily long spans may be handled by including a loop before the
switch, as illustrated by the C function movelongspan(). Note that the
constants in the while condition and the subtraction should be the same
as the number of cases in the switch. Although this only partially unrolls a
loop, it is a useful technique, especially if memory is scarce.
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The operations carried out at each pixel are not limited to the move-

ment of a single byte of data. The function shadespan() shown in the
Appendix moves linearly interpolated values to the pixels in a span,
where the interpolation is computed incrementally at each pixel. Several
other variations are possible (e.g., moving more than one byte per pixel,
compositing images, etc.), but the basic technique is the same. Note,
however, that the effective time savings (as a percentage of the total time
used) decrease when the amount of processing per pixel increases.

See also G1, 75.
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The most common method employed to display a raster image is to
sample the image data along scanlines, usually from left to right, top to
bottom When the pixel-painting process is fast enough, the particular
pixel ordering chosen is unimportant as far as the viewer is concerned.
However, if the pixel sampling is slow, or if the resolution is sufficiently
high, the time to display the image can take minutes, hours, or days.

This Gem addresses the display of images by sampling at progressively
finer grids over the entire image area. The advantage over scanline
sampling is that for the equivalent expense of a few scanlines, the viewer
quickly gets a good impression of the overall image. The image is
displayed with an initially coarse resolution that eventually refines down
to the final display resolution. Each pixel is sampled only once (as for
scanline methods). This approach does assume, however, that displaying
square regions of a solid color is not much more expensive than sampling
a pixel.

The main idea is this:

1. Display an initial coarse sampling of the image data. For each initial
picture region, sample a corner pixel and use this color to display the
region.

2. Subdivide each of the picture regions into four quadrants of equal
size. Sample each new quadrant at a corner pixel and assign the
sampled pixel’s color to the quadrant. For each region, there will be
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Figure 1. Progressive refinement of the picture elements. White circles denote newly-
sampled pixels; black circles denote previously sampled pixels.
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three new quadrants and one whose corner pixel has already been
sampled.

3. Repeat step 2 until the regions are subdivided to one pixel per region.

See Fig. 1 for an illustration of the subdivision process. The white
circles denote newly sampled pixels, and the black circles denote previ-
ously sampled pixels.

Note that, for the purposes of illustration, the [0,0] pixel is in the lower
left corner. If the display device uses inverted Y coordinates, the algo-
rithm is unchanged.

The algorithm’s first step is to lay down the initial regions over the
image area. Since the regions will be subdivided down to a single pixel,
the initial region dimensions must be a power of two. In addition, the
initial regions must evenly tile the display surface. For example, if the
display resolution is 768 × 1024, then the largest possible initial region
size will be 256 × 256 pixels (this may not be a good choice, however, as
will be discussed later).

When the resolution doesn’t allow for an initial coarse gridding, e.g.,
1,152 × 900, then there are two approaches you can take. One possibility
is to just use the largest region that will fit evenly (4 × 4 pixels in this
case). Another approach would be to tile the image with larger regions,
and then to draw the remaining scanlines using regular scanline sampling.

When selecting the size of the initial tiling, you should consider several
points. First of all, you want to select an initial display that will present a
reasonable preview of the scene. For example, if you selected an initial
region size of 256 pixels for the 768 × 1024 display, the initial resolution
would be 3 × 4 picture elements—not much of an image preview. In this
case an initial region size of 32 × 32 pixels would be much better (an
initial resolution of 24 × 32 picture regions).

You also want to choose an initial resolution that’s large enough to
display a coarse screen in a “reasonable” amount of time. Obviously this
is up to the user, but if an image takes two hours to generate, then it
would take about half an hour to display the first screen if the initial
region size were 2 × 2 pixels. Selecting a larger initial region size, such
as 8 × 8 pixels, would bring up an initial screen in less than two minutes.

One last consideration is an artifact caused by sampling the regions at
the corners. Because the color of a given region appears to ”shrink
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down” to its corner pixel, the image can appear to creep toward the
origin for successive passes. Fortunately this effect is largely over-
whelmed by other artifacts of coarse sampling, such as aliasing, and is
mostly noticeable when the picture regions are large (more than about 16
pixels on a side) and when successive passes occur quickly (in several
seconds or less). If you wish to ameliorate this effect, keep the size of the
initial regions down to around 8 × 8 or less. For images that take longer
to display, the effect won’t be noticeable.

See also G1, 265; G2, 295.
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IntroductionIntroductionIntroductionIntroductionIntroduction
Here is a simple, efficient polygon scan-conversion algorithm that allows
a mesh of polygons to be scan-converted, one polygon at a time, without
drawing any pixel twice, and without leaving any holes.

The algorithm uses a slightly modified Bresenham algorithm (Bresen-
ham, 1965) to scan-convert the polygon edges, and uses half-open inter-
vals1 to disambiguate the pixels lying on edges shared by adjacent
polygons. For clarity, we exhibit here a scanline algorithm for triangles;
however, the technique is readily extended to arbitrary simple polygons.

DerivationDerivationDerivationDerivationDerivation
Suppose we are given a planar subdivision S—that is, a division of the
plane into (polygonal) faces, edges, and vertices, with no edge crossings.
We would like to find a consistent way of mapping points in the plane to
the faces of the subdivision so that every point (including those on
vertices and edges of S) maps to a single face of S.

We define the edges and faces of S to be open sets. By choosing a
Cartesian coordinate system in the plane, we can map every element of S

1The half-open interval (a, b] is the set of points {x|a < x ≤ b}.
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to a single face of S as follows:

• Map every face to itself.

• Map every horizontal edge to the face above it; map every other edge
to the face on its left.

• Map every vertex that is the right endpoint of a horizontal edge to the
same face as that edge; map every other vertex to the face on its left.

Since the plane is the union of all faces, edges, and vertices of S, these
rules define a mapping from every point in the plane to a particular
polygonal face P of S. Thus, a scan conversion algorithm that paints
exactly those pixels whose centers are mapped to a given polygon P will
be able to render all the polygons of a polygonal mesh, one at a time,
without leaving any holes or duplicating any pixels.

AlgorithmAlgorithmAlgorithmAlgorithmAlgorithm
The following algorithm scan-converts a polygon P, painting exactly
those pixels whose centers are mapped to P.

Let EdgeScan(e)  be a function that, given an edge e, returns the
x-coordinate of the rightmost pixel whose center lies on or to the left of e
for a particular scanline. Let LeftEdge and RightEdge be left and right
edges of a polygon P. At each scanline we compute

xmin ← EdgeScan (LeftEdge)
xmax ← EdgeScan (RightEdge)

and draw every pixel on the half-open interval (xmin, xmax].
Clearly, the algorithm paints exactly those pixels on scanline y whose

centers are mapped to polygon P. Furthermore, if we repeat this step for
every scanline on the half-open interval (ymin, ymax], where ymin and
ymax are the y-coordinates of the topmost and bottommost pixels of P,
then we will paint exactly those pixels whose centers are mapped to P.
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Here is pseudo-code for scanning two edges ab and ac, starting at the

apex a:

LeftEdge ← EdgeSetup(a.x, a.y, b.x, b.y)
RightEdge ← EdgeSetup(a.x, a.y, c.x, c.y)
for y = a.y + 1 to min{b.y, c.y} do

xmin ← EdgeScan(LeftEdge)
xmax ← EdgeScan(RightEdge)
for x = xmin + 1 to xmax do

DrawPoint(x, y)
end for

end for

For efficiency, EdgeScan is computed incrementally using a Bresenham-
like algorithm. The EdgeSetup routine initializes a structure that con-
tains the increments, and the EdgeScan routine uses these increments to
compute the intersection of the edge with each scanline.

Note that a necessary consequence of painting only those pixels whose
centers map to a polygon is that the algorithm may draw disconnected
sets of pixels for very thin polygons, and draws no pixels at all for
polygons that are degenerate such as line segments or single points.

Scan-Converting the EdgesScan-Converting the EdgesScan-Converting the EdgesScan-Converting the EdgesScan-Converting the Edges
All we need now is a good implementation of the EdgeSetup and
EdgeScan routines. We use a slight modification of Bresenham’s classic
line-drawing algorithm.

Recall that for a line l with slope greater than 1, the Bresenham
algorithm scans in y; paints the nearest pixel (bx , y), such that –  

1
2  <

bx – lx ≤   
1
2 , where lx is the actual intersection of line l with scanline y;

and increments bx by either 0 or 1. The classic Bresenham algorithm
treats lines with slope less than 1 in the same fashion, with the roles of x
and y reversed.

Our EdgeSetup and EdgeScan routines implement a Bresenham algo-
rithm with the following changes.

First, our algorithm treats every edge alike—regardless of slope—by
scanning only in y. Thus, just a single pixel is generated for each edge at
each scanline.
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Second, to handle edges with slope less than 1, the algorithm must

compute an increment i in the EdgeSetup routine, and increment bx by
either i or i + 1 as each pixel is drawn (instead of incrementing by 0 or
1). The increment i can also be used for edges with negative slopes.

Finally, since our algorithm must compute pixels whose x-coordinates
ex satisfy 0 < ex – lx ≤ 1, we must use the conversion ex = bx –   

1
2 .

Thus, the pixels drawn by EdgeScan for a given edge (of slope greater
than 1) are the same as those drawn by the Bresenham algorithm for the
same edge, shifted left by half a pixel.

The appendix gives code for scan-converting triangles with integer
coordinates, as well as an extension for triangles whose vertices are
defined to sub-pixel resolution (Fleischer, 1991). The two versions
of the algorithm use different EdgeSetup routines, but share the same
EdgeScan.

See also G1, 76; G1, 84; G1, 87; G1, 92.
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DDDDDARKLIGHTSARKLIGHTSARKLIGHTSARKLIGHTSARKLIGHTS

Andrew S. GlassnerXerox PARCPalo Alto, California

Every image designer knows that appropriate illumination is an important
part of an effective image. The play of light on the surfaces of the scene
gives the image depth and mood, indicates position and character, and
reveals both objective visual information and suggests subjective emo-
tional impressions. Even objective physical rendering, when used in fields
such as scientific visualization, requires sensitive judgement for the place-
ment and control of illumination.

The interplay of light and surface is a subject; that rewards close study.
Our purpose in this note is to make better known a tool that is used
subconsciously by many painters, and quite explicitly by many graphics
designers.

The idea is actually something that people have wanted for a long time.
I recall reading a comic book in the late 1960s, in which a superhero
caught a bank robber in the act of emptying a vault in the middle of the
day. To thwart the hero, the villian turned on an “anti-flashlight” and
pointed it at the hero, immersing the good guy in a cone of darkness. The
villian got away because the hero couldn’t see. In real life it is unclear
how to build such an anti-flashlight, but in computer graphics we work
with a more general physics that provides the facility naturally.

The mechanism is quite simple. First, note that to create a brightly
illuminated piece of surface, one directs onto that surface a light source.
This source sends illumination energy to that surface, in addition to any
light arriving from other sources.

Alternatively, suppose you wish some piece of surface to appear darker.
One approach is to add lights everywhere else in the scene so that the
desired surface is relatively darker. A simpler approach is to illuminate
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the surface with negative light. This is easy: Simply create a light source
whose color is defined by negative numbers. I call such lights darklights.
Usually there is nothing in a rendering program to prevent you from
assigning any numbers you want to the color of a light source—if a
program does prevent you from using negative numbers, it’s a bug, not a
feature: Negative sources make syntactic and semantic sense, and should
be available in every rendering system.

As an example application, suppose you have a kitchen scene with a
complex lighting arrangement. But there’s one spot on a countertop that
appears too bright—it distracts the eye from where you really want the
viewer to look. You could change all the lighting, but suppose that you’ve
spent some time getting the illumination correct in the area of interest,
and it’s just bad luck that there happens to be a bright spot in the wrong
place. Simply create a spotlight source with negative coefficients and
direct it to the surface. The rendering program will add the light from all
other sources, and subtract the light from the darklight, thereby darken-
ing the patch of surface.

To see how this gets implemented, suppose you have a standard Phong
lighting equation (for illustration, we’ll just write the diffuse component,
ignoring transparency, Fresnel effects, etc.):

     
      
I(λ) =  kd(λ) In

n = 0

lights

∑ (λ)(Ln ⋅  N).

To create a darklight, simply create a light with negative energy; that is,
some (or all) of the components of In(λ) < 0. If the colors are repre-
sented simply by three components (typically near monitor red, green,
and blue phosphors), these end up less than zero.

Darklights can cause the final pixel values to dip below zero. This is a
problem, but it's nothing new. It is well known that the dynamic range of
brightness that can be displayed on monitors is far less than that which
can be computed for real scenes. Typically the colors of every image
must be compressed in some way to fit onto a monitor. The simplest
approach is to simply clamp color components greater than one to one;
alternatively, one may simply compress or expand the synthesized range
of colors into the displayable range. A slightly more sophisticated solu-
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tion desaturates the offending colors until they are within gamut. Good
color gamut mapping is still an art. Whatever techniques are applied to
map pixel values greater than one into gamut should also be applied to
pixel values that dip below zero.

Just as with all lights, darklights must be designed and positioned with
care to achieve an effect. They are useful for simulating fuzzy shadows,
darkening up corners of rooms, and changing the relative brightness of
objects without affecting the basic lighting scheme. They are naturally
available in virtually all rendering systems. Used with care and sensitivity,
darklights can extend your expressive power with the medium of image
synthesis.
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Andrew S. GlassnerXerox PARCPalo Alto, California

Most graphics rendering today takes place in a square pixel grid. This is
because the boundaries of the square grid are all vertical and horizontal
lines, which eases the computational burden of sampling, filtering, and
reconstruction.

But it is well known that the square grid is not the most uniform in
terms of sampling densities. In two dimensions, the triangular lattice
shown in Fig. 1 is more isotropic. This lattice permits two tilings by
regular polygons: hexagonal and triangular. Both unit cells have been
used for image processing, and to a lesser extent, computer graphics
(note that the arrangement of phosphor triples on the inside of a CRT
monitor is a lattice like that of Fig. 1). In this note we present an
inexpensive anti-aliasing technique for triangular pixels. Figure 2 shows a
tiling of the plane by equilateral triangles, and a polygon passing through
each triangle. We can parameterize the prefiltered contribution of the
polygon to each element of the grid by building a look-up table based on
the vertices of the polygon and the polygon’s intersections with the edges
of the triangle. A simple box filter simply returns the amount of area
within the triangle; higher-order filters may apply a weighting mask
(e.g., a Gaussian) first.

Our analysis is inspired by the square-pixel anti-aliasing technique of
Abram, Westover, and Whitted (1985).

There are two cases to consider: no vertices in the triangle (the V0
case), and one vertex in the triangle (the V1 case). The side length of the
triangle is 1. We take the V0 case first.

Figure 3 shows the two possible V0 configurations. In 3a, the area to
be counted is the shaded triangle. We identify the two intersection points
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Figure 1.

by their distances α and β from the surrounded vertex. Without loss of
generality, we label the coordinates (α, 0) and (β/2, β  3 / 2 ). Since
A =   

1
2 bh, we find

A = αβ
  

3

4
  (Case V0, Convex)

Figure 2.
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Figure 3.

The area in Fig. 3b is just the area of the triangle (A =   3 / 4) minus
this amount:

A = 
  

3

4
(1 – αβ)  (Case V0, Concave).

This concludes type V0.
The V1 case comes in three types, called Types 1, 2, and 3, illustrated

in Figs. 4, 5, and 6. Note that Types 2 and 3 each have the two
configurations we saw for the V0 case.

Figure 4.

Figure 5.

Figure 6.
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We start with Type 1. In Fig. 4, the two edges of the polygon intersect

the triangle on the same side, at distances α and β from the origin. These
points have coordinates

    

α
2

,  
α 3

2







,         

β
2

,  
β 3

2







,         and        Vx ,  V y( ).

We apply the more general triangular area formula

A =   
1
2 (x1y2 + x2y3 + x3y1 – y1x2 – y2x3 – y3x1).

Setting the point at α to point 1, the point at β to point 2, and V to
point 3, and simplifying, we get

    
A =  α –  β

4 Vx 3 –  Vy




    (Case V1, Type 1).

This concludes Type 1.
Type 2 is illustrated in Fig. 5. This type is identified by a single vertex

V in the triangle (thus case V1), the two polygon edges pass through two
triangle edges, and the vertex V is outside the triangle formed by the
enclosed triangle vertex and the points at ⋅α and ⋅β. We find the area by
first finding the area of the triangle (V, α, β), and then adding the area of
triangle (α, V, β). As we saw from case V0, the area of the “inner”
triangle (V, α ,β) is

    
Ai  =  

3

4
αβ .

Using the triangle area formula above, we find that the area of “outer”
triangle (α, V, β) is

  AO =   
1
4 (αβ – βVy  3  – βVx – 2Vyα).

The area of the complete quadrilaterial is thus

   A = Ai + AO  (Case V1, Type 2, Convex).
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Note that for the concave case, we subtract this area from the triangle:

    
A =  3

4  –  Ai  +  Ao( )   (Case V1, Type 2, Concave).

This ends Type 2.
Type 3 follows much the same argument, only we subtract the  triangle

(V, α, β) from the other:

A = Ai – Ao (Case V1, Type 3, Convex),

    
A =  3

4  –  Ai  –  Ao( ) (Case V1, Type 3, Concave).

This concludes the case analysis. Note that in Case V1, Types 2 and 3
Concave find the area of pentagonal regions by finding the complemen-
tary quadrilateral within a triangle, and decomposing that quadrilateral
into triangles. This decomposition is a general result for this situation.

We consider polygons that include more than one vertex in the triangle
to be sufficiently rare, and sufficiently hard, that traditional (and more
expensive) area-estimation techniques such as low-resolution scan con-
version and analytical area computation should be considered, rather
than building many more case analyses.

These techniques are also applicable to text filtering, drawing thick
lines, and other scan-conversion operations with triangular pixels.

This note uses included areas as an anti-aliasing measure. This implies
that we are using a box filter. A box filter is better than no filter at all, but
it is not ideal. One could extend this technique by applying the ideas of
Abram, Westover, and Whitted to build precomputed anti-aliasing tables
based on parameterized intersections with the triangle edges.
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John Snyder and Ronen Barzel Steve GabrielCalifornia Institute of Technology and Arvada, ColoradoPasadena, California

Lively and dynamic motion can make exciting computer-generating im-
ages and animations. Typically, each individual image is rendered at a
single instant of time. For a single image of a moving subject, this
conveys no sense of motion. For an animation, this can result in ex-
tremely objectionable strobing (time-aliasing) artifacts.

Aliasing in time can be reduced by motion blur, that is, by averaging or
filtering images at many instants of time to create a result in which
moving objects are blurred. Motion blur techniques for ray tracing are
relatively well understood, involving the association of different time
values for each ray cast (Cook et al., 1984). This paper presents a motion
blur technique suitable for graphics workstations having fast z-buffer
rendering. The essential result is that fast, high-quality motion blur is
achieved simply by

1. supersampling in time using a temporal box filter, and

2. computing images on fields, rather than frames, for video animations.

We will explain these concepts further in the next sections, along with
some “tricks” to improve speed and quality on typical graphics work-
stations. Plate 1 (see color insert) shows the results of the techniques
described in this paper.

Supersampling in TimeSupersampling in TimeSupersampling in TimeSupersampling in TimeSupersampling in Time
To create an image with motion blur, the basic method is to average n
images, each rendered at a single instant of time using the z-buffer
hardware. The images are rendered at equally spaced times, ti,
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ti  =  t0 +  

i∆
n

,       i = 0, 1,..., n – 1,

where t0 is the start time of the image, and ∆ is the interval during which
images are averaged, analogous to the interval during which the shutter is
open in a camera. In our animation experience, good results are achieved
with ∆ equal to the entire time interval between frames. The final frame,
I, is the average of the n time-sampled images I(ti):

1

   
    
I =  1

n I(ti )
i = 0

n –  1

∑ .

We will use the term subframe for a time-sampled image, I(ti).
The technique of rendering subframes at equally spaced time intervals,

called uniform sampling, caused strobing artifacts if n is too small, or the
temporal frequencies too high. Some of these artifacts can be made less
objectionable, without increasing n, by using stochastic sampling. A
simple technique that works well is to compute each subframe at time

  
    
ti  =  t0 +  

(i +  δ )∆
n

,

where δ is a random variable with uniform distribution over [0, 1]. By
stochastically perturbing the rendering time for each subframe, we effec-
tively transform aliasing into less objectionable noise (Cook, 1986). For
example, if a body rotates an integral number of times between each
subframe, then uniform sampling yields no motion blur, whereas stochas-
tic sampling yields a more acceptable, blurred result.

Computing on FieldsComputing on FieldsComputing on FieldsComputing on FieldsComputing on Fields
On video displays, all scan lines of a single frame are not presented
simultaneously. Instead, scan lines are displayed in an interleaved fash-

1One might consider more sophisticated filtering than averaging (box filtering), but we have found
that box filtering works well, and at a small computational cost.
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ion, called interlacing: first, lines 1, 3, 5, and so on (called the first
field), followed by lines 0, 2, 4, and so on (called the second field).
Therefore, temporal antialiasing is much enhanced by “computing on
fields”—i.e., by computing n subframes, the first n/2 of which are
averaged to create the scan lines of the first field, and the second n/2 of
which are averaged to create the scan lines of the second field.2

Thus, if F1 and F2 are the first and second field images, respectively,
then

    

F1 =  2
n     I

i = 0

n/2 –  1

∑ t0 +  (i +  δ)∆
n









 ,

F2 =  2
n     I

i = n/2

n –  1

∑ t0 +  (i +  δ)∆
n









.

The scan lines of the computed field images, F1 and F2, are then
interleaved to create the resulting frame. That is, the kth scan line of the
resulting frame, Ik, is given by scan lines F1k and F2k via

     
    
Ik  =  

F1k if k is odd
F2k if k is even





Note that the even scan lines of F1 and the odd scan lines of F2 are never
used and need not be computed. Computing on fields can therefore save
computation time on graphics workstations because we average only half
the scan lines of each subframe. Of course, the same total number of
subframes must still be rendered.

Combining Spatial and Temporal Anti-aliasingCombining Spatial and Temporal Anti-aliasingCombining Spatial and Temporal Anti-aliasingCombining Spatial and Temporal Anti-aliasingCombining Spatial and Temporal Anti-aliasing
Most workstation z-buffer hardware lacks spatial anti-aliasing capability;
rendering images have ”jaggies.” One way to reduce aliasing is to render

2We assume n is even.
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Table 1.  Pixel shifts yielding a box filter in x and y.

Field 1                                   Field 2
Time t0 t1 t2 t3 t4 t5 t6 t7

x shift + 1

4
+ 1

4
− 1

4
− 1

4
+ 1

4
+ 1

4
− 1

4
− 1

4

y shift − 1

4
+ 1

4
+ 1

4
− 1

4
− 1

4
+ 1

4
+ 1

4
− 1

4

each image at high resolution and filter it down to lower resolution. This
can work well, but requires costly processing to do the filtering.

Given that the image is to be motion-blurred anyway, we can combine
temporal anti-aliasing with spatial anti-aliasing of static parts of the
image, at no extra computational cost. The idea is to slightly displace
each of the subframes spatially before they are averaged. For example,
consider an image in which four subframes are rendered for each frame
(two for each field). If we displace subframe 0 by –   

1
4  pixel in x, and

subframe 1 by +   
1
4  pixel in x before averaging, and likewise for sub-

frames 2 and 3 of the second field, then static parts of the image will be
spatially anti-aliased in x as though they had been computed at a higher
x resolution and averaged, but without the cost of high-resolution to
low-resolution filtering.3, 4, 5 With eight subframes (four per field), we can
achieve a box filter in both x and y, using the shifts from Table I. With
32 subframes, we can achieve a triangle filter in x and y, using the shifts
from Table II.

The pixel displacements need not be tied to a rectangular grid as in the
tables. Better results can be obtained using a Poisson distribution of
displacements (see Barkans, 1991).

3It is important to note that only static parts of the image are spatially anti-aliased, not
moving parts. But moving parts are motion-blurred anyway, and hence require less spatial
anti-aliasing.

4Correlating spatial and temporal sampling can produce sampling artifacts if the
animation contains high spatial and temporal frequencies. We have not encountered
difficulties in practice.

5Many graphics workstations do not directly support subpixel displacement of an
image. The section on implementation tricks describes a trick to implement this technique
anyway.
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Table  2. Pixel shifts yielding a triangle filter in x and y. The shifts for the second field are identical.

Field 1
Time t0 t1 t2 t3 t4 t5 t6 t7 t8 t9 t10 t11 t12 t13 t14 t15

x shift
  
− 1

2   
− 1

2
0 0 0 0

  
+ 1

2   
+ 1

2   
− 1

2   
− 1

2
0 0 0 0

  
+ 1

2   
+ 1

2

y shift
  
− 1

2
0 0

  
− 1

2   
− 1

2
0 0

  
+ 1

2   
+ 1

2
0 0

  
+ 1

2   
+ 1

2
0 0 ..

Reducing Interlace ArtifactsReducing Interlace ArtifactsReducing Interlace ArtifactsReducing Interlace ArtifactsReducing Interlace Artifacts
Flicker is a well-known problem with interlaced video. In a still image, a
one-pixel wide horizontal line colored differently than adjacent scan lines
will flicker. For a moving image computed on fields, any narrow, high-
contrast, quickly moving lines or edges will appear to break apart and
look jaggy or blocky.

This problem can be solved by filtering each field image (F1 or F2 from
earlier) in y before discarding alternate scan lines. We have had good
results with a five-pixel wide filter having the coefficients

  
  
– 1

8 ,  2
8 ,  6

8 ,  2
8 ,  –  1

8 .

That is, the kth scan line of the result field image,   ′Fk , is computed from
five scan lines of the original field image, Fk – 2 through Fk + 2, via6

    F ' k  =  1
8 Fk –  2 +  2

8 Fk –  1 +  6
8 Fk +  2

8 Fk + 1 –  1
8 Fk + 2 .

The two resulting field images should be interleaved to create a final
frame as discussed in the section on computing on fields. This filter
allows scan lines that would be discarded to contribute to the resulting
field scan lines, without undue blur. Interlace problems are much re-
duced.

As in the earlier section, we need only compute the even or odd scan
lines of the result field images, F′. However, since the filter requires all

6Scan lines off the top (bottom) of the original image can be replicated from the top
(bottom) scan line.
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the original field image’s scan lines to compute the result field image, the
motion blur accumulation must be performed on all scan lines. Thus, the
time savings for computing on fields does not apply when using this
anti-flicker filter.

Other EffectsOther EffectsOther EffectsOther EffectsOther Effects
Motion blur can be thought of as the result of integrating a time-depen-
dent image over a range of time values; our method of averaging sub-
frames computes a simple approximation of this integral. Other rendering
effects, such as diffuse shadows and depth of field, similarly depend on
integrating the image over a range of parameter values (see Cook et al.,
1984). We can achieve such effects by choosing different rendering
parameters for each subframe, allowing the subframe averaging to per-
form the integration.7

For example, by varying the position of the light source slightly with
each subframe, we achieve diffuse shadows and lighting, simulating an
area light source. In addition, since our graphics hardware lacks the
ability to render transparent shadows,8 we render some fraction of
subframes with shadows and the rest without, in order to achieve trans-
parent shadows rather than completely black ones. Plate 1 shows diffuse
and transparent shadows computed this way. Depth-of-field effects can be
achieved similarly by varying the camera model parameters with each
subframe.

To choose the parameter values (e.g., the position of a light source) for
each subframe of an animation, it is best to precompute a table of values
so that the same sequence of parameter values is used in each field (or
frame). This produces better results than stochastically generating a
different sequence of parameter values for each field (or frame), which
would make the animation flicker from frame to frame.

7As stated in Section 3, correlating time and rendering parameters can cause artifacts. In
most cases, increasing the number of subframes reduces these artifacts.

8We render shadows by projecting objects onto a floor or ground plane with an
appropriate 4 × 4 matrix, drawing them in black. Because our graphics hardware lacks
the ability to render transparent polygons, these shadows are completely opaque.
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Implementation TricksImplementation TricksImplementation TricksImplementation TricksImplementation Tricks
We will describe three “tricks” that can be used in implementing motion
blur:

• achieving spatial antialiasing on graphics hardware that lacks subpixel
positioning

• using pixel displacement arrays to increase spatial antialiasing as the
number of subframes increases

• using double buffering or video-resolution rendering to speed accumu-
lation of each subframe

The discussion in the section on combining temporal and spatial
antialiasing assumes the workstation graphics can do subpixel positioning
—i.e., shifting an image by a fraction of a pixel results in a different
image. Not all workstations support subpixel positioning. For instance,
the Starbase graphics library on the HP9000 Series 800 workstation with
the HP 98731 (Turbo SRX) graphics accelerator and z-buffer, and the GL
graphics library on the Silicon Graphics 4D 80GT workstation do not
support subpixel positioning. These graphics systems convert polygon
vertices to pixel coordinates before tiling; only shifting by entire pixel
amounts results in a change in the resulting image.

Fortunately, we can mimic subpixel positioning by taking advantage of
our workstation’s high-resolution rendering (i.e., approximately 1,280 by
1,024 pixels). Although we can’t shift by half pixels, we can render at
twice video resolution, so that a shift by one high-resolution pixel corre-
sponds to a shift by one-half of a video-resolution pixel. We can then
achieve the image displacements required by Table II. In converting the
high-resolution image to video resolution, we simply ignore samples not
falling on a video resolution sampling grid. That is, we sample only every
other pixel of every other scan line, for computation on frames, and every
other pixel of every fourth scan line, for computation on fields (see Fig.
1). Since we examine only as many pixels as needed for video resolution,
there is no extra averaging or filtering cost compared with rendering
directly at video resolution without antialiasing.9 Thus, given that we are

9The cost due to rendering at high resolution rather than video resolution is minimal on
most z-buffer hardware, where rendering time depends mostly on the number of polygons
rendered, not their screen size.
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Figure 1. Sampling grid for spatial anti-aliasing. The x’s indicate pixels that are sam-
pled; the pixels without x’s are ignored.

supersampling to produce motion blur, we can spatially antialias almost
for free.

The pixel shifts can be implemented by creating an array of offsets for
x and y, which are indexed by the subframe number. A 2-D image
translation transformation using the resulting x and y offset is then
applied before the subframe is rendered (see the mb_frame routine in the
included code). The offsets are easily arranged so that computing more
subframes yields better spatial antialiasing. Table III shows the relation
between the number of subframes per field and spatial antialiasing pro-
duced by the offset arrays in the mb_frame routine. We note that this
procedure can cause a global shift of the entire image by a small fraction
of a pixel. For example, the eight subframes per field case shifts the
entire image left by one-fourth of a pixel. This is of little consequence if
the number of subframes per field is constant through the animation.

Cached memory access on most workstations means that two passes of
a simple computation over the frame buffer is often slower than a single
pass of a significantly more complex computation. On workstations that
implement double buffering by dividing each pixel of the frame buffer into
low- and high-order halves (such as the HP9000 Series 800 Turbo SRX),

Table 3. Relationship between number of subframes per field and resulting kind
of spatial antialiasing filter, in the mb_frame routine

Subframes/Field Spatial Anti-aliasing

1 none
4 2 sample box filler in x and y
8 3 sample triangle filler in x, 2 sample box filter in y
16 3 sample triangle filter in both x and y
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we can take advantage of this behavior. We render two subframes into the
frame buffer, the first in the low order half, the second in the upper. This
sacrifices half the color resolution, but allows both subframes to be
accumulated into the final image with a single frame buffer pass, by using
a few extra shifts and adds. On the HP Series 800 workstation, this
technique speeds up the accumulation process by nearly a factor of two.

If we are willing to sacrifice spatial anti-aliasing, we can get an addi-
tional speed-up. Since the hardware frame buffer has twice the resolution
of video both horizontally and vertically, we can render four subframes at
video resolution into the four quadrants of the framebuffer, and accumu-
late them all in a single pass. Combining video-resolution rendering with
double-buffering allows us to accumulate eight subframes in a single pass.
This technique sacrifices half the color resolution and all spatial anti-alias-
ing, but it is our fastest motion-blur method. We often use these quick
and dirty motion-blur methods for motion tests, and the slower methods
for final results.

The technique of squeezing as much computation as possible into a
single pass over the data can be applied to other processing that may
need to be done to the image before it is recorded, such a conversion
from RGB to YUV, filtering, or indirection through the color map. It is
most efficient to do all such processing during the last accumulation pass,
rather than making further passes over the frame buffer or accumulation
buffer memory. Unfortunately, this requires special-purpose code for
every combination of postprocessing procedures.

ExamplesExamplesExamplesExamplesExamples
Plate 1 (color insert) shows images rendered using the motion blur
technique. See the Appendix for a sample implementation.



A. Cylinders without Blur B. Cylinders with Blur

C. Wheels without Blur D. Wheels with Blur

7.9 Plate 1. This plate illustrates motion blur as described in “Motion Blur on
Graphics Workstations.” The pictures on the left are individual time samples
rendered using the z-buffer hardware; the pictures on the right are the result of
averaging many time samples. Note the motion Blur as well as the diffuse, trans-
parent shadows in the pictures on the right. On the top, a chain of cylinders
linked by rubber bands swings from two anchor points. On the right bottom, a
bicycle wheel suspended from the ceiling rotates roughly 45° during the shutter
open interval. The cylinder image was computed by averaging 64 time samples;
the bicycle wheel image used 256 samples.
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IntroductionIntroductionIntroductionIntroductionIntroduction
This Gem describes a caching strategy to accelerate shading calculations
in any traditional polygon rendering pipeline, such as that defined by
PHIGS + . The purpose of the cache is to reduce the number of redun-
dant shading calculations performed on behalf of adjacent polygons
sharing at least one vertex and associated surface normal. Such polygons
frequently result from applications that tesselate trimmed or implicit
surfaces. Because implementations of these algorithms often do not
perform the necessary bookkeeping to record polygon adjacency, large
numbers of autonomous polygons may be emitted in lieu of more efficient
organizations such as a triangle strips or quad meshes. Given that some
applications will always choose to generate streams of independent poly-
gons, we wish to do what we can “on the fly” to mitigate the cost of such
redundancy without affecting the performance in other circumstances.

Our approach is to augment the shading module with a cache to store
the results of recently performed shading calculations. Then, with reason-
able probability, these results can be reused for adjacent polygons that
share one or more vertices with identical data and attributes. If we view
the shader as a function that computes a color based on the position P,
normal N, and color index k of a polygon vertex, that is

   color ← Shader(P, N, k),     (1)

then the role of the cache is to mimic this behavior based on a table
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Figure 1. A flow chart showing where the shader cache fits into the rendering pipeline.

lookup, deferring to the actual shader only when the appropriate entry is
not found. Thus, each cache entry associates a color with a complete set
of shader input arguments. These entries must be indexed efficiently so
that lookups can be done with a minimum of overhead.

The logical arrangement of the cache is shown in Fig. 1. A shader
request is intercepted and serviced by the cache ii′ this same request has
been issued recently on behalf of another polygon and the result is still
resident in the cache. The cost of each lookup can be reduced by means
of a hash function and multilevel hit validation as described later in the
section on implementation. This caching scheme does not require any
reorganization of drawing elements in the display list. It automatically
takes advantage of a common form of redundancy whenever it is present
in the data, and it can be employed with no modification to the rest of the
rendering pipeline.
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Shading CalculationsShading CalculationsShading CalculationsShading CalculationsShading Calculations
In this section we examine the cost of a shading calculation to get an idea
of what might be gained by economizing on the number of shader calls. In
the very simplest case, the scene may be illuminated by a single “direc-
tional” light source, which is equivalent to an infinitely distant source.
This requires a calculation of the form

     
    
C A(N ⋅  L) +  B(E ⋅  R)S[ ],     (2)

where A, B, and C are the colors of the polygon, specular highlight, and
light source respectively. Even this simple case requires several dot
products and an exponent. For spotlights the calculations can be much
more costly, involving another exponent for the light concentration (mak-
ing the light diminish with angle), and the calculation of attenuation
(making the light diminish with distance) (van Dam, 1988). Given that
there are potentially many light sources, we are faced with a computation
of the form

    

 
Ci(Di ⋅  Li )k A(N ⋅  Li ) +  B(E ⋅  Ri )S[ ]

α1 +  α2 P –  Qii =  1

N

∑     (3)

for each vertex of each polygon. This can add up to a significant amount
of work and become the dominant computation. In contrast, the work
involved in traversing the display list, transforming vertices, and clipping
polygons remains nearly constant. It is easy to see how cases can arise in
which saving a few shading calculations will increase the overall through-
put of the rendering pipeline.

ImplementationImplementationImplementationImplementationImplementation
Figure 2 shows how to incorporate the caching strategy into an existing
shader. The new shader simply consults the cache before resorting to the
more costly computation carried out by the general-purpose shader.
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Figure 2. A shader that incorporates the caching mechanism.

When a cache miss occurs, the newly computed color and associated
data is inserted into the cache so that it is potentially available to adjacent
polygons. If there are no such polygons, or if this color is overwritten
before an adjacent polygon is encountered, then no work has been saved.
In no case, however, is an incorrect result generated.

Figure 3 shows how the cache works. It first takes all of the arguments
passed to the shader and combines them into a single hash tag. A simple
yet effective method for doing this is to XOR all the components of all the
arguments together. From this hash tag we extract enough bits to index
into the cache; for instance, we may use the low-order byte to index into a
256-entry cache.

Next, we need to determine whether or not the given cache entry
already contains the result we are looking for. If so, this is a cache hit.
Hit validation is done in two phases: First we compare the entire hash tag

procedure NewShader( X, Color )

begin

First consult the shader cache.

hit ← Cache_Lookup( X, tag, Color);

if not hit then begin

Invoke full shader to compute color

Shader( x, Color);

Update the shader cache with the new info

index ← mask( tag );

Table[index].tag ← tag;

Table[index].X ← X

Table[index].Color ← Color

end;

end;
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Figure 3. The shader cache look-up algorithm. The input data, X, will typically include a
3-D point and a normal vector.

to the one generated when the current cache entry was computed. If the
cache entry contains the result of a different request, this tag will very
likely differ and immediately indicate a cache miss. If the tags match, we
then proceed to compare all the actual input arguments in order to verify
a hit. This is a multilevel validation scheme, with each level increasing the
total cost but also increasing the probability of a hit. If all entries match,
we can immediately return the desired color with no further computation.

Note that it is necessary to invalidate the contents of the entire cache
when there is a state change that is not reflected in the input arguments
to the shader. In particular, this is necessary when any of the light

boolean function Cache_Lookup( X, tag, Color)

begin

Compute the “tag” by xor-ing all the data

tag ← X1 xor X2xor . . . xor Xn;

Compute table index from the low-order bits.

index ← mask( tag );

Compare the tags as a quick validation check.

if Table[index].tag ≠ tag then return False

Now do a complete cascaded validation check.

if Table[index].X1 ≠ X1 then return  False;

if Table[index].X2 ≠ X2 then return  False;

:

if Table[index].Xn ≠ Xn then return  False;

A hit, return the previously computed color.

Color ← Table[index].Color;

return True;

end;
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sources change or the view changes (because specular highlights are
view-dependent). The former may occur in mid-traversal if light sources
are turned on or off via attributes in the display list.

EffectivenessEffectivenessEffectivenessEffectivenessEffectiveness
When is this strategy likely to be effective? It’s easy to analyze expected
performance in terms of the dominant costs and the hit rate of the
cache, although the latter can be very difficult to characterize in advance.
Let σ be the total cost of an un-assisted shading calcu]ation and let   ̂σ  be
the cost of this operation when the shader cache is added. We can think
of   ̂σ  as a random variable that depends upon the characteristics of the
cache and of the display list being processed. Our goal is to make   ̂σ  < σ
on average; otherwise we’re better off without the cache. In other words,
we want E(  ̂σ ) < σ, where E(  ̂σ ) is the expected vahle of   ̂σ . It is easy to
see that

E(  ̂σ ) = (1 – h)σ + c,     (4)

where h is the probability of a cache hit and c is the cost of consulting
the cache. Therefore, the cache is advantageous only when c < hσ. This
quantifies the trade-off between the cost of a cache look-up and the
likelihood of a cache hit. The quantity h depends upon the size of the
cache, the hash function, and the organization of the polygons processed
by the pipeline. Clearly, if there are no shared vertices whatsoever, h = 0,
and the cache can only hurt performance by adding a cost of c to each
shading calculation. This cost is quite small, however, so even a very
modest hit rate can more than compensate for the time spent consulting
the cache. Furthermore, the larger σ is, the smaller the hit rate required
to break even.

ResultsResultsResultsResultsResults
We have measured the performance of a software rendering pipeline with
and without a shader cache on a number of test models. The models were
generated by tesselating various surfaces into regular meshes of several
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thousand triangles. We have found that with a 256-entry cache using an
XOR hash function, even with as few as two directional light sources, the
shader cache resulted in a 20% increase in throughput, and with four
spotlights this figure increased to 60%. In fairly extreme cases involving
15 spotlights the shader cache increased performance by 250%. In our
tests we have found that increasing the cache size beyond 256 entries was
of little benefit and, in fact, could even degrade performance on large
display lists because of increased paging.
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Animation, 2 1/2-D depth-of-field simulation,

36–38
Anti-aliasing

combining spatial and temporal, 376–378
edge and bit-mask calculations, 345–354
triangular pixels, 369–373

Apollonius problem, solution, 203–209

B

Bartlett filter, 13, 15
Beta function, integral form, 150–151
Bézier curves, interpolation using, 133–136

implementation, 136
numeric solution, 134
symbolic solution, 134–135

Bézier triangles, conversion to rectangular
patches, 256–261

Binary space partitioning tree, 226
ray tracing with, 271–274

Bitmap
black-and-white, compositing, 34–35
scaling operations, optimization, 17–19
stretching, 4–7

IIIIINNNNNDDDDDEXEXEXEXEX

Bit-mask calculations, 352–354
Black-and-white bitmaps, compositing, 34–35
Boundary generator, composited regions, 39–43,
Bounding volume algorithm

linear-time, 301–306
worst case, 302

Bounding volumes
cone, 297
cube, 295–296
cylinder, 296–297
linear-time simple, 301–306
polygon, 296
rectangular, primitives, 295–300
sphere, 298–299
torus, 299

Box, Euhn’s triangulation, 246–247, 252–253
Box filter, 13, 15
Bresenham line drawing algorithm, 4–5

C

Center of mass, superquadrics, 139
Change-of-focus simulation, 38
C Header file, 393–395
Circle clipping algorithm, 182–187
Circular arc fillet, joining two lines, 193–198
Color reduction filter, 20–22
Color rendering, linear, 343–348
Compact cubes, 24–28
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Compact isocontours, 23–28
compact cubes, 24–28
cube-based contouring, 23-24

Composited regions, boundary generator, 39–43,
Compositing stage, 37
Cone, bounding volume, 297
Conjugate diameters, 169–171
Connection algorithm, 2-D drawing, 173–181,

definitions, 173–174
overcrossing correction, 179–180
translate and rotate algorithm, 174–179

Coplanar sets, of nearly coplanar polygons,
225–230

Cross product, in four dimensions and beyond,
84–88

Cube
bounding volume, 295–296
intersection with triangle, 236–239

Cube-based contouring, 23–24
Cubic B-spline, 14–15
Cubic tetrahedral algorithm, delta form-factor

calculation, 324–328
Cubic triangles, conversion to rectangular

patches, 260–261
Cumulative transformation matrix, 295
Curve tessellation criteria, 262–265
Cyclic sequences, fast generation, 67–76

N = 2, 67–68
N = 3, 68–70
N = 3, 4, 6, 70–71
N = 6 derivation, 71–73
N = 6 triggering, 73–74
N = 7, 74–75
N = 24, 75–76

Cylinder, bounding volume, 296–297
Cylindrical equirectangular projection, 289

D

Darklights, 366–368
Decision tree 176–177
Delta form factor, calculation, cubic tetrahedral

algorithm, 324–328
Density, superquadrics, 139–140
Depth of field, 36
2 1/2-D Depth-of-field simulation, computer

 animation, 36–38

Destination pixel, contributors to, 12
Diameters, conjugate, 169–171
Digital generation, sinusoids, 167–169
Dimensional extent, overlap testing, 240–243,
n-Dimensional space, face connected line
Direct lighting, distribution ray tracing, 307–313,
Distribution check, 131–132
Distribution ray tracing, direct lighting, 307–313,

E

Edge calculations, anti-aliasing, 345–354
Ellipsoids

equation, 276
superquadric
inertia tensor, 140–144
“inside-outside” function, 148
normal vectors, 148
parametric surface functions, 147
shells, 154–157
volume, 140

Elliptical arc, parametric, see Parametric
elliptical arc

Elliptical cone, equation, 277
Elliptical cylinder, equation, 276
Elliptical hyperboloid, equation, 277
Elliptical paraboloid, equation, 277
Energy balance criterion, 320
Euclidean dimensions, four, 58–59
Exact computation of 2-D intersections,

188–192
Apollonius problem solution, 203–209

F

Face-connected line segment generation,
n-dimensional space, 89–91

Fast memory allocator, 49–50
Feuerbach circle, 215–218
Filtered image rescaling, 8–16

magnification, 9
minification, 9–11

Filter post-processing stage, 37
First decomposition algorithm, 99–100
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Form factor
accurate computation, 329–333
vertex-to-vertex, 318–323

G

Gamma function, computation, 151–152
Gaussians, uniform rotations from, 129
Gouraud renderer, 345–347
Gram-Schmidt orthogonalization procedure,

108–109
modified, 112–113, 116

Graphics workstations, motion blur, 374–382,
Gridded sampling, progressive image refinement,

358–361
Group theory of infinitesimal rotations, 56–57

H

Haar test, 125
Half-open intervals, polygon scan conversion,

362–365
Hash tag, 386–387
Hemicube algorithm, 324
Hemispherical projection, triangle, 314–317
Hidden-surface removal stage, 37
Householder matrix, 118
Hyperface, 89–91
Hyperlattice, 89–90
Hypervoxel, 89

I

IEEE fast square root, 48
Image processing, 3

bitmap scaling operation optimization, 17–19,
color reduction filter, 20–22
compact isocontours, 23–28
compositing black-and-white bitmaps, 34–35
fast bitmap stretching, 4–7, 411
fast boundary generator, composited regions,

 39–43
filtered image rescaling, 8–16
isovalue contours from pixmap, 29–33

2 1/2-D depth-of-field simulation for computer

animation, 36–38
Image refinement, progressive, gridded sampling,

358–361
Image rescaling, filtered, 8–16
Importance sampling, 309
Inclusion isotony, 64
Inertia tensor

superquadric, 140–115, 153
world coordinates, 145

Infinitesimal rotations, group theory, 56–57
“Inside-outside” function, superquadrics,

147–148
Interlace artifacts, reduction, 378–379
Interlacing, 376
Interpolation

linear vs. splined, 122
logarithmic space, 121
quaternion, with extra spins, 96–97, 461
using Bézier curves, 133–136, 468

Intersection
line segment, 199–202
plane-to-plane, 233–236
ray with quadric surface, 275–283
triangle-cube, 236–239
two-dimensional, exact computation,

188–192
Interval arithmetic, 61–66
Irradiance, 319–320
Isovalue contours, from pixmap, 29–33

J

Jacobian matrix, 155, 158

K

Kuhn’s triangulation, box, 246–247, 252–253

L

Lanczos filter 14, 16
Lighting computations, 226
Linear color rendering, 343–348
Linear interpolation, 122
Linear transformations

nonsingular, decomposing, 108–112
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singular, decomposing, 112–116
Line equation, 190
Lines, joining two with circular arc fillet,

193–198
Line segment

face connected, generation in n-dimensional
space, 89–91

intersection, 199–202
Line subsegment, 189
Lissajous figure, 166
Logarithmic space, interpolation, 121
Lorentz transformations, 59–60

M

Mailbox technique, 285–286
Martian panoramas, 291–293
Mass, superquadric, 139–140, 152
Memory allocator, 49–50
Mitchell filter, 15–16
Moire pattern problem, 339–340
Monte Carlo integration, 80

spectral radiance, 308
Motion blur, graphics workstation, 374–382

combining spatial and temporal anti-aliasing,
376–378

computing on fields, 375–376
implementation tricks, 380–382
interlace artifact reduction, 378–379
pixel shifts, 380–381
supersampling in time, 374–375

N

Negative light, 367
Newell’s method, plane equation of polygon,

231–232
Nonuniform random point sets, via warping,

80–83
Normal vectors, superquadrics, 148
Numerical and programming techniques, 47

cross product, in four dimensions and beyond,
84–88

face-connected line segment generation,
n-dimensional space, 89–91

fast generation of cyclic sequences, 67–76,
fast memory allocator, 49–50

generic pixel selection mechanism, 77–79
IEEE fast square root, 48
interval arithmetic, 61–66
nonuniform random point sets, via warping,

80–83
rolling ball, 51–60

O

Object space partitioning, 284–287
Orientation control, mouse-driven, rolling ball,

51–60
Overcrossing correction, 179–180

Overlapping testing, n-dimensional extent,
240–243

P

Panoramic virtual screen, ray tracing, 288–294,
Parametric elliptical arc algorithm

conjugate diameters, 169–171
digital generation of sinusoids, 167–169
quarter ellipse, 164–165
simplifying computation, 171–172

Parametric surface functions, superquadrics,
146–147

Partitioning
object space, 284–287
3-D polygons, 219–222

Pipeline accelerator, 383–389
Pixel

angular width, 289
destination, contributors to, 12
selection mechanism, 77–79
triangular, anti-aliasing, 369–373

Pixmap, generating isovalue contours from,
29–33

Planar rotations, 124–126
Plane

arbitrary, partitioning 3D convex polygon with,
219–222

comparing two, 229–230
signed distance to point, 223–224

Plane equation of polygon, Newell’s method,
231–232
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Plane-to-plane intersection, 233–236
Point, signed distance to plane, 223–224
Polygon

bounding volume, 296
nearly coplanar, grouping into coplanar sets,

225–230
plane equation, Newell’s method, 231–232
scan conversion, half-open intervals, 362–365
Sutherland-Hodgman clipper, 219–222
3-D, partitioning, 219–222

Pool, 49
Primitives, rectangular bounding volumes,

295–300
Progressive image refinement, gridded sampling,

358–361
Projection, hemispherical, triangle, 314–317,
Projective transformations, decomposing,

98–107
first decomposition algorithm, 99–100
fourth decomposition algorithm, 104–106
second decomposition algorithm, 100–102
third decomposition algorithm, 102–104

Q

Quadratic surface, equation, 275–279
Quadratic triangles, conversion to rectangular

patches, 256–259
Quadric surface

intersection with ray, 275–283
surface normal, 282–283

Quarter ellipse algorithm, 164–165
Quaternions

interpolation with extra spins, 96–97
rotations, 57

R

Radiosity, 227, 269–270
accurate form-factor computation, 329–333,
linear approximation, vertex-to-vertex form

factors, 318–323
Random rotation matrices, 117–120
Random rotations, uniform, 124–132

from Gaussians, 129
Ray, intersection with

object, eliminating calculations, 284–287

quadric surface, 275–283
Ray rejection test, 281–282
Ray tracing, 269

with BSP tree, 271–274
distribution, direct lighting, 307–313
eliminating ray-object intersection
calculations, 284–287
hemispherical projection of triangle, 314–317,
intersecting ray with quadric surface,

275–283
linear-time simple bounding volume, 301–306
panoramic virtual screen, 288–294

Rectangular Bézier patches, conversion of Bézier
triangles, 256–261

Rectangular bounding volumes, primitives,
295–300

Relative motion, transformations, 122
Rendering, 337

anti-aliasing, triangular pixels, 369–373
darklights, 366–368
edge and bit-mask calculations for anti-

aliasing, 349–354
fast linear color, 343–348
motion blur on graphics workstations,

374-382
pipeline accelerator, 383–389
polygon scan conversion, using half-open
intervals, 362–365
shader cache, 383–389
shadow depth map, 338–342

Rending equation, 307
Representative tree, 228
Rescaling, filtered image, 8–16
Residency masks, 284–287
Rigid-body motion, equations, superquadric,

149–150
Ritter ’s simple bounding sphere technique,

305–306
Rolling ball, 51–60
Rolling-ball algorithm

extensions, 56–60
four Euclidean dimensions, 58–59
group theory of infinitesimal rotations, 56–57
implementation, 54–56
Lorentz transformations, 59–60

Rolling-ball algorithm (Cont’d)Square root,
quaternion rotations, 57
using, 53–54

Rotation matrices, see Random rotation
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S

Satellite, 24
Scaling operations, bitmap, optimization, 17–19,
Scan conversion, polygon, half-open intervals,

362–365
Shader cache, 383–389

effectiveness, 388
implementation, 385–388
logical arrangement, 384
results, 388–389
shading cache, 385

Shadow depth map, 338–342
boundary case, 340–341

Moiré pattern problem, 339–340
optimization, 341

Shaft culling, 333
Shear, 110–111, 113
Short loops, unrolling, 355–357
Signed distance, point to plane, 223–224, 511
Simplex

dividing boxes into, 252–253
splitting into simploid, 253–255
subdividing, 244–249

applications, 248–249
recursively, 244–246
symmetrically, 246–248

Simploids, 250–255, see also Box; Simplex
dividing boxes into simplices, 252–253
splitting simplices into, 253–255

Sinusoids, digital generation, 167–169
Solid modeling, 226
Span conversion, unrolling short loops, 355–357
Spatial rotations, 128
Spectral radiance, 307
Sphere, bounding volume, 298–299
Spherical distribution, uniform, 126–127
Spherical luminaire, importance sampling,

310–311
Spinors, 57
Splined interpolation, 122
Square root, IEEE, 48
Stretcher-algorithm, 6
Stretching, bitmap 4–7
Subdividing motion, transformations, 123
Subdivision, simplices, 244–249
Subgroup algorithm, 129–131
Superquadrics

review, 137–138

rigid physically based, 137–159
center of mass, 139
derivation of volume, mass, and inertia

tensor, 152–159
equations of rigid-body motion, 149–150
inertia tensor, 140–145
“inside-outside” function, 147–148
normal vectors, 148
parametric surface functions, 146–147
quantities, 138–145
volume, density, and mass, 139–140

Surface normal, quadric surface, 282–283
SU(2) spinors, 57
Sutherland-Hodgman polygon clipper, 219–222

T

Tensor product, 85
Texture mapping, 227
Thomas precession, 60
Three-dimensional geometry, 213

Bézier triangles conversion to rectangular
patches, 256–261

curve tessellation criteria, 262–265
fast n-dimensional extent, 240–243
grouping nearly coplanar polygons into

coplanar sets, 225–230
Newell’s method, 231–232
plane-to-plane intersection, 233–236
signed distance from point to plane, 223–224,
simploids, 250–255
subdividing simplices, 244–249
triangle-cube intersection, 236–239
triangles, 215–218
3-D polygon partitioning, 219–222

Three-dimensional polygons, partitioning,
219–222

Three-dimensional vector C, library, 399
Toroids, superquadric

inertia tensor, 141
“inside-outside” function, 148

Toroids, superquadric (Cont’d)
normal vectors, 148
parametric surface functions, 147
shells, 157–159
volume, 140

Torus, bounding volume, 299
Transformations, 95

decomposing linear and affine, 108–116
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fast random rotation matrices, 117–120
interpolation, using Bézier curves, 133–136,
keyframing, 121–123
projective, decomposing, 98–107
quaternion interpolation with extra spins,

96–97
relative motion, 122
rigid physically based superquadrics,

137–159
subdividing motion, 123
uniform random rotations, 124–132

Translate and rotate algorithm, 174–179
Triangle, 215–218

hemispherical projection, 314–317
Triangle-cube intersection, 236–239
Triangle filter, 13, 15

Triangular luminaire, importance sampling,
312–313

Triangular pixels, anti-aliasing, 369–373
Two-dimensional drawing, intersection, exact

computation, 188–192
Two-dimensional geometry, 163

connection algorithm, 173–181
fast circle clipping algorithm, 182–187
parametric elliptical arc algorithm, 164–172

U

Unrolling short loops, span conversion,
355–357

V

Vertex-to-vertex form factors, linear radiosity
approximation, 318–323

Vertical sampling, 291
Virtual screen

cylindrical, 290–291
panoramic, ray tracing, 288–294

Visualization for Planetary Exploration Lab, 291
Volume, superquadrics, 139–140, 152

W

Wedge product, 85–88
World coordinates, inertia tensor, 145
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