thad.maxfield.407>cat textl.l

-hreads () {
coloxr (255, 255; 0);
for(i = 0; i < et - 1; i++) {
cntr = (1 + (rand() - .5) / 20) * ce
get_pos(cntr - u_len + u_thk, (i + v_len - v_thk); x0 = px; y0 = py; 20 = p=z
get_pos(cntr - u_len - u_thk, (i len + v_thk); xl1 = px; yl = py: zl = pz
get_pos(entr + u_len - u_thk, (° an + v_thk); x2 = px; y2 = py; z2 = pz
get_pos (cntr + u_len + u_thk, - v_thk); x3 = px; y3 = py; z3 = pz
polygon(x0,y0, z0, =xl1,yl 23) ;
polygon(-x0,y0,-z0, -x3,y")iz
}
for{(i = 0; i < :
cntr = (1 (rand ()
get _pos(l- u px; y0 = py; z0
get_pos(1l- px; vl = py: zl
get_pos(1-(citer P%; y2 = py: z2
get_pos(l-(ent- pPx; y3 = py; z3
pelygon(x0
pelygon(-x"
}
Torfi = 0% 3
cntr =
get_~ .4; y0 = p
get_p. r .4; yl = p
get_pos_ R, ST o
get_pos_. pXs <47 ¥3 = D
pelygon(.
polygon(-xu
}
for(i = 0; i < ect - edj.ted by
cntr = (1 + (rana
get_pos_side(cntr - nk): x0 = px + .4; y0 = p
get_pos_side(cntr - A \ DRE ‘;‘,‘ S Zehk): %l = px + .4; yl = p
o5+ pos_side(entr + u_ v_thk); x2 = px + .4; y2 = p
"1de(cntr + u 1...(; l aJ SSNE3~ v_thk); %3 =px + .4; y3 = p
-
", e < T
e o T
\“ﬁ;é; Il (ray_wvector->ix>SIZE && ray_ vector->nc
\“F%; 2 L (ray_vector->iy>SIZE && ray_vector->n«
kHE%L = " vector->iz>SIZE && ray_ vector->nc
Wi -
h“ﬁm“:’ﬁ-.\ — &

‘+* the next face of the
v the current ar

n ey

GRAPHICS

GEMS

edited by

ANDREW S. GLASSNER

Xerox Palo Alto Research Center
Palo Alto, California

AP PROFESSIONAL
Boston San Diego New York
London Sydney Tokyo Toronto

Copyright (c) 1995 by Academic Press, Inc.

GRAPHICS GEMS copyright (c) 1990 by Academic Press, Inc.
GRAPHICS GEMS Il copyright (c) 1991 by Academic Press, Inc.
GRAPHICS GEMS Il copyright (c) 1992 by Academic Press, Inc.

QUICK REFERENCE TO COMPUTER GRAPHICS TERMS
copyright (c) 1993 by Academic Press, Inc.

RADIOSITY AND REALISTIC IMAGE SYNTHESIS
copyright (c) 1993 by Academic Press Inc.

VIRTUAL REALITY APPLICATIONS AND EXPLORATIONS
copyright (c) 1993 by Academic Press Inc.

All rights reserved.

No part of this product may be reproduced or transmitted in any form or by any
means, electronic or mechanical, including input into or storage in any information
system, other than for uses specified in the License Agreement, without permission
in writing from the publisher.

Except where credited to another source, the C and C++ Code may be used freely to
modify or create programs that are for personal use or commercial distribution.

Produced in the United States of America

ISBN 0-12-059756-X

To the spirits of creativity and sharing that
imagine new inventions and urge their
communication

O O

About the Cover

The cover picture was designed and produced by Thad Beier at Pacific Data images. The book inspired
the picture, although there are only 74 gems on the cover and over 100 in the book. There are four
gem shapes repeated many times in many colors. The bag is modeled after the bag a certainScotch comes
in. While the picture was created over a two-month period, it of course came down tothe last minute
to get it created, so it was ray-traced on 18 Silicon Graphics workstations in about an hour and a half.
The text behind the gems and the title is from the animation script that places the gems and the ray-
tracing program that created the picture from that script.

Thad Beier
Pacific Data Images

¢

When Andrew showed us the image designed for the cover of Graphics Gems and asked if we
wereinterested in digitally converting it to printable form, we said “ What a wonderful image! It’s going
tobe tricky, but it will be fun.” It was both. The image colors were designed with respect to a color
monitor, producing red, green, and blue pixels. For printing, we needed to convert these pixels to cyan,
magenta, yellow and black color separations.

Whether colors are defined for a printer or a monitor, they can be defined with respect to a device-
independent standard based on the Commission Internationale de I’Eclairage (CIE) standards for color
measurement. Given such a definition, we can define the gamut, or set of all possible colors that can
be reproduced by each device. Colors outside of the device gamut cannot be reproduced. The figure
shows a plot of the monitor, printer and image gamuts overlaid. It is easy to see that the monitor and
image gamuts are much larger than the printer gamut, and that the image nearly fills the monitor gamut.
To make the best reproduction of the picture, we had to squeeze the image colors into the printer gamut
in a way that maintained the appearance of the image. We did this with a piecewise, non-linear 3D
transformation that collapsed the monitor gamut into the printer gamut. The constraints on this
transformation were that colors should move radially towards the lightness axis of the color space
~preserves hue an~ lightness at the cost of saturation) and that colors outside of the gamut should move
more than colors inside the gamut (preserves overall saturation).

. Magenta

Finding the best transformation is still a research problem. The image was particularly challenging
because it filled the monitor gamut, so we had to compress in all directions at once. The texture on
the bag and the sparkle of the gems were very sensitive to variations in the transformation; many
attempts produced dull, plastic looking gems or an untextured bag, even though the absolute color
fidelity was better than the one chosen for final reproduction (proving there is much more to good color
reproduction than the colors).

Maureen Stone and Bill Wallace
Xerox Palo Alto Research Center

CONTENTS

Italic page numbers refer to location of corresponding C implementation.

Preface

Introduction
Mathematical Notation
Pseudo-Code

Contributors

1
2D GEOMETRY

Useful 2D Geometry

Trigonometry Summary

Useful Trigonometry

Trigonometric Functions at Select Points
Triangles

Generating Random Points in Triangles (649)

Fast Line-Edge Intersections on a Uniform Grid (651)

GRAPHICS GEMS | Edited by ANDREW S. GLASSNER

XV
XVii
XiX
XXI

XXVI

12
13
18
20
24
29

Vil

CONTENTS

Anti-Aliasing Summary

Area of Intersection: Circle and a Half-Plane
Area of Intersection: Circle and a Thick Line
Area of Intersection: Two Circles

Vertical Distance from a Point to a Line

A Fast 2D Point-on-Line Test (654)

Fast Circle-Rectangle Intersection Checking (656)

2
2D RENDERING

Circles of Integral Radius on Integer Lattices
Nice Numbers for Graph Labels (657)

Efficient Generation of Sampling Jitter Using Look-up
Tables (660)

Scan Conversion Summary

Fast Anti-Aliasing Polygon Scan Conversion (662)

Generic Convex Polygon Scan Conversion and Clipping (667)
ConcavePolygon Scan Conversion (681)

Fast Scan Conversion of Arbitrary Polygons

Line-Drawing Summary

Digital Line Drawing (685)

Symmetric Double Step Line Algorithm (686)

Rendering Anti-Aliased Lines (690)

An Algorithm for Filling in 2D Wide Line Bevel Joints

Rendering Fat Lines on a Raster Grid

GRAPHICS GEMS | Edited by ANDREW S. GLASSNER

37
38
40
43
47
49
o1

57
61

64
75
76
84
87
92
98
99
101
105

107

114

viii

CONTENTS

Two-Dimensional Clipping: A Vector-Based Approach (694)

Periodic Tilings of the Plane on a Raster

S
IMAGE PROCESSING

Anti-Aliasing Filters Summary

Convenient Anti-Aliasing Filters That Minimize
“Bumpy” Sampling

Filters for Common Resampling Tasks
Smoothing Enlarged Monochrome Images
Median Finding on a 3 x 3 Grid (711)
Ordered Dithering (713)

A Fast Algorithm for General Raster Rotation
Useful 1-to-1 Pixel Transforms

Alpha Blending

4
FRAME BUFFER TECHNIQUES

Frame Buffers and Color Maps

Reading a Write-Only Write Mask

A Digital “Dissolve” Effect (715)

Mapping RGB Triples onto Four Bits (718)
What Are the Coordinates of a Pixel?
Proper Treatment of Pixels as Integers (719)

Normal Coding

Recording Animation in Binary Order for Progressive
Temporal Refinement (720)

GRAPHICS GEMS | Edited by ANDREW S. GLASSNER

121
129

143

144
147
166
171
176
179
196
210

215
219
221
233
246
249
257

265

CONTENTS

1-to-1 Pixel Transforms Optimized through
Color-Map Manipulation

A Seed Fill Algorithm (721)
Filling a Region in a Frame Buffer

Precalculating Addresses for Fast Fills, Circles,
and Lines

A Simple Method for Color Quantization:
Octree Quantization

=2
3D GEOMETRY

Useful 3D Geometry

An Efficient Bounding Sphere (723)
Intersection of Two Lines in Three-Space
Intersection of Three Planes

Mapping Summary

Digital Cartography for Computer Graphics
Albers Equal-Area Conic Map Projection. (726)
Boxes and Spheres Summary
Spheres-to-Voxels Conversion

A Simple Method for Box-Sphere Intersection Testing (730)

6
3D RENDERING

3D Grid Hashing Function (733)
Backface Culling

GRAPHICS GEMS | Edited by ANDREW S. GLASSNER

270
275
278

285

287

297
301
304
305
306
307
321
326
327
335

343

346

CONTENTS

Fast Dot Products for Shading

Scanline Depth Gradient of a Z-Buffered Triangle
Simulating Fog and Haze

Interpretation of Texture Map Indices

Multidimensional Sum Tables

e
RAY TRACING

A Simple Ray Rejection Test

Ray—-Object Intersection Summary
Intersection of a Ray with a Sphere

An Efficient Ray—Polygon Intersection (735)
Fast Ray—-Polygon Intersection

Fast Ray—-Box Intersection (736)

Shadow Attenuation for Ray Tracing
Transparent Objects

8

NUMERICAL AND PROGRAMMING

TECHNIQUES

Root Finding Summary
Cubic and Quartic Roots (738)
A Bézier Curve-Based Root-Finder (787)

Using Sturm Sequences to Bracket Real Roots
of Polynomial Equations (743)

Distance Measures Summary

GRAPHICS GEMS | Edited by ANDREW S. GLASSNER

348
361
364
366
376

385
387
388
390
394
395

397

403
404
408

416

423

Xi

CONTENTS

A High-Speed, Low Precision Square Root (756)
A Fast Approximation to the Hypotenuse (758)
A Fast Approximation to 3D Euclidean Distance
Full-Precision Constants

Converting between Bits and Digits
Storage-free Swapping

Generating Random Integers

Fast 2D-3D Rotation

Bit Patterns for Encoding Angles

Bit Interleaving for Quad- or Octrees (759)

A Fast HSL-to-RGB Transform (763)

9
MATRIX TECHNIQUES

Matrix ldentities

Rotation Matrix Methods Summary
Transforming Axes

Fast Matrix Multiplication

A Virtual Trackball

Matrix Orthogonalization (765)
Rotation Tools

Matrix Inversion (766)

Matrices and Transformations

Efficient Post-Concatenation of Transformation Matrices (770)

GRAPHICS GEMS | Edited by ANDREW S. GLASSNER

424
427
432
434
435
436
438
440
442
443
448

453
455
456
460
462
464
465
470
472
476

Xli

CONTENTS

10
MODELING AND TRANSFORMATIONS

Transformation ldentities

Fixed-Point Trigonometry with CORDIC Iterations (773)
Using Quaternions for Coding 3D Transformations (775)
3D Viewing and Rotation Using Orthonormal Bases (778)
The Use of Coordinate Frames in Computer Graphics
Forms, Vectors, and Transforms (780)

Properties of Surface-Normal Transformations
Transforming Axis-Aligned Bounding Boxes (785)
Constructing Shapes Summary

Defining Surfaces from Sampled Data

Defining Surfaces from Contour Data

Computing Surface Normals for 3D Models

Calculation of Reference Frames along a Space Curve

11
CURVES AND SURFACES

Planar Cubic Curves

Explicit Cubic Spline Interpolation Formulas
Fast Spline Drawing

Some Properties of Bézier Curves

Tutorial on Forward Differencing

Integration of Bernstein Basis Functions

GRAPHICS GEMS | Edited by ANDREW S. GLASSNER

485
494
498
516
522
533
539
548
551
552
558
562
567

575
579
585
587
594
604

Xii

CONTENTS

Solving the Nearest-Point-on-Curve Problem (787)

An Algorithm for Automatically Fitting Digitized Curves (797)

References

Index

GRAPHICS GEMS | Edited by ANDREW S. GLASSNER

607
612

808
822

X1V

PREFACE

Welcome to Graphics Gems: a collection of algorithms, programs, and
mathematical techniques for the computer graphics programmer.

| have wanted a book like this for a long time. | have written tens of
thousands of lines of computer graphics code in the last few years, and |
know that much of it could have been better. | even knew that when |
wrote it. But often | didn’t have the time to find the best data structure or
design the most elegant or robust algorithm. Sometimes | only realized
how to do something well after doing it the wrong way first.

As time went on | found myself sharing my experiences and tricks with
friends and colleagues, who offered their insights in return. Though we
were trading our hard-earned lessons with each other, there was no more
general or public forum where we could document these ideas perma-
nently. And | sometimes wondered what insights | was missing simply
because | couldn’t talk with everyone in the field.

Thus Graphics Gems was born. This book was created for the working
graphics programmer. Its production concludes one turn of a cycle of
discovery, documentation, editing, publishing, and reading, which will
lead to new discoveries. The articles in this book are not research papers.
The formal publication process in journals and conferences works well for
disseminating the architecture of large, new ideas. Rather, this book
focuses on the nuts-and-bolts of programming and implementation, sup-
plying the details often left out of technical papers.

How This Book Came to Be

In the spring of 1989 | decided that there was probably enough informal
(and unpublished) community wisdom in the graphics field that we could

GRAPHICS GEMS | Edited by ANDREW S. GLASSNER

XV

PREFACE

put together a “little book” of clever ideas. The book’s title was inspired
by Jon Bentley’s excellent Programming Pearls column published in
the Communications of the ACM. At Siggraph ‘89 in Boston | handed
out the first call for contributions, which was followed up at other
conferences and in graphics publications. | asked for tools that belong in
a graphics programmer’s toolbox, yet don’t appear in the standard
literature.

| expected about 25 or 30 contributions; by the deadline in January
1990 over 110 Gems had been submitted. As contributions arrived | let
the scope of the book grow slightly, and accepted a few short tutorials. |
accepted these longer pieces because they were in tune with the philoso-
phy of the book, presenting useful information not easily accessible in the
current literature.

Most of the contributions went through at least one revision step after
submission. | have attempted to make the book consistent in presentation
by asking everyone to use a uniform mathematical notation and pseudo-
code. | hope that most of the Gems in this book are accessible to most
readers.

| originally planned to include a set of appendices providing source
code in various programming languages. But, except for one short assem-
bly-language routine, all the code submitted was in C! Thus there is one
substantial appendix containing C implementations of many Gems. This
source code is public domain—it is yours to use, study, modify, and
share. By the time you read this, all the code in the appendix should be
available on many of the popular networks, so you need not type it in
yourself.

I would like to thank my employer, the Xerox Corporation, for its
support of this project as part of my work in the Electronic Documents
Lab at its Palo Alto Research Center (PARC).

It gives me great pleasure to offer you a book that | have always wanted
to have myself. Through the efforts of over 50 contributors, you are
holding many valuable nuggets of knowledge and craft earned by experi-
ence over many years. We hope that you will find these Gems useful in
your work, enhancing your programs and extending your reach.

Enjoy!

Andrew S. Glassner
February, 1990
Palo Alto, California

GRAPHICS GEMS | Edited by ANDREW S. GLASSNER

XVi

INTRODUCTION

This introduction is designed to help you get the most out of this book.
| will discuss some aspects of the book’s structure, and then summarize
the mathematical notation and the pseudo-code used in many of the
Gems.

Some of the Gems originally submitted to this book presented different
solutions to the same problem. I've included some of these multiple
approaches when | felt they demonstrated interesting alternatives that
were useful either for their practical differences or educational value.
Some Gems place a high premium on speed; others emphasize algorith-
mic clarity. Similarly, some Gems take slightly different views of the
same problem: For example, there are many ways to draw a line, but
your needs are quite different for thick lines, thin lines, anti-aliased
lines, and so on.

| have indicated connections between Gems in this book in two ways.
When related Gems are all in the same chapter, | have grouped them
together and written a short summary that appears at the start of the
group. If you refer to one of the Gems in such a group you should
at least take a look at the others. When related Gems are not sequential
| have included a listing of other relevant Gems under the heading
“See also” at the end of the Gem. The “See also” lists are not
exhaustive, but they should point you in the right directions.

To make the most of the connections in this book, | suggest you skim
briefly all the Gems once. | sometimes find that | can apply an
algorithm in a setting completely different from the one for which it
was originally designed; knowing what the book contains will help
you make these leaps of interpretation.

GRAPHICS GEMS | Edited by ANDREW S. GLASSNER

XVii

INTRODUCTION

All of the references are collected together into a single bibliography.
Each reference entry contains back-pointers to all the Gems that refer-
ence it. You may draw further connections between Gems by following
these pointers.

Except for some of the tutorials, most Gems do not provide the
background mathematics for their discussions. Usually this math does not
go beyond 3-dimensional vector geometry; you can find good summaries
of this topic in Kindle, or in virtually any modern textbook on introduc-
tory calculus and analytic geometry, such as Flanders. Many graphics
programmers have a copy of Beyer on their shelves; this standard
reference work distills many important mathematical results into a form
that is easy to access.

Some Gems use matrix techniques for geometric transformations. These
techniques are described in detail in the standard graphics texts. Our
convention is that points are represented by row vectors, and are trans-
formed by post-multiplication with a matrix. You must be careful when
transferring the results in this volume to other systems, for they may use
a different convention. For example, the PHIGS standard and the Dore
rendering system use pre-multiplication of column vectors. You can make
the switch between conventions simply by transposing the transformation
matrix.

Most of the Gems assume that you are familiar with most of the
fundamental material of computer graphics. If you find that you’re left
behind somewhere, you may wish to consult the classic standard texts,
Newman and Foley, or one of the more modern textbooks that have
appeared recently; some of these references are listed in the bibliography.

Beyer, W. B. CRC Standard Mathematical Tables, CRC Press, Inc., Boca Raton, Florida.
(Updated yearly.)

Flanders, H. and Price, J. (1978). Calculus with Analytic Geometry. Academic Press,
New York.

Foley, J., van Dam, A., Feiner, S., and Hughes, J. (1990). Fundamentals of Interactive
Computer Graphics, Addison-Wesley, Reading, MA.

Kindle, J.H. (1950). Plane and Solid Analytic Geometry Schaum’s Outline Series.
McGraw-Hill, New York.

Newman, W.M., and Sproull, R..F. (1979). Principles of Interactive Computer Graph-
ics, 2nd edition. McGraw-Hill, New York.

GRAPHICS GEMS | Edited by ANDREW S. GLASSNER

XViii

MATHEMATICAL
NOTATION

AN /

Geometric Objects

0

—Toe
w3O0F

ozZ>»
Ay

the number 0, the zero vector, the point (0, 0), the
point (0, 0, 0)

the real numbers (lower—case italics)

points (upper-case italics)

lines (lower-case bold)

vectors (upper-case bold)(components A)

matrix (upper-case bold)

angles (lower-case greek)

Derived Objects

A[I

M-
MT

the vector perpendicular to A (valid only in 2D, where
AY = (A, A)

the inverse of matrix M

the transpose of matrix M

the adjoint of matrix Mg\ﬂ_l :ﬂel':/lM)E

determinant of M

same as above

element from row i, column j of matrix M (top-left is
(0, 0)

all of row i of matrix M

GRAPHICS GEMS Il Edited by ANDREW S. GLASSNER

XX

MATHEMATICAL NOTATION

all of column j of Matrix
triangle formed by points A, B, C
angle formed by points A, B, C with vertex at B

O 2

'ABC
ABC

Basic Operators

+, - /, 0 standard math operators
[] the dot (or inner or scalar) product
X the cross (or outer or vector) product

Basic Expressions and Functions

X[floor of x (largest integer not greater than x)
X[ceiling of x (smallest integer not smaller than x)
alb modulo arithmetic; remainder of a + b

a mod b same as above o

B (t) Bernstein polynomial = EIH (1-1)"", i=0Ln

] i . n!
binomial coefficient (—rn_i H

0

GRAPHICS GEMS Il Edited by ANDREW S. GLASSNER

XX

PSEUDO-CODE

Declarations (not required)

name: TYPE « initialValue;

examples:

mreal — 3.14159;

v: array [0..3] of integer ~ [0, 1, 2, 3];

Primitive Data Types

array [lowerBound..upperBound] of TYPE;
boolean

char

integer

real

double

point

vector

matrix3
equivalent to:
matrix3: record [array [0..2] of array [0..2] of real;];
example: m:Matrix3 — [[1.0, 2.0, 3.0], [4.0, 5.0, 6.0], [7.0, 8.0, 9.0]];
m[2][1] is 8.0
m[0][2] -~ 3.3; assigns 3.3 to upper-right corner of matrix

GRAPHICS GEMS | Edited by ANDREW S. GLASSNER XXi

PSEUDO-CODE

matrix4
equivalent to:
matrix4: record [array [0..3] of array [0..3] of real;];
example: m: Matrix4 ~ [
[1.0, 2.0, 3.0, 4.0],
[5.0, 6.0, 7.0, 8.0],
[9.0, 10.0, 11.0, 12.0],
[13.0, 14.0, 15.0, 16.0]];
m[3][1] is 14.0
m[0][3] ~ 3.3; assigns 3.3 to upper-right corner of matrix

Records (Structures)
Record definition:
Box: record [
left, right, top, bottom: integer;
I;

newBox: Box — new[Box];
dynamically allocate a new instance of Box and return a pointer to it

newBox.left ~10;
this same notation is appropriate whether newBox is a pointer or
structure

Arrays
v:array [0..3] of integer — [0, 1, 2, 3]; vis afour-element array of integers

v[2] ~ 5; assign to third element of v

Comments

A comment may appear anywhere—it is indicated by italics

GRAPHICS GEMS | Edited by ANDREW S. GLASSNER XXii

PSEUDO-CODE

Blocks

begin
Statement;
Statement;

L
end:

Conditionals and Selections

If Test
then Statement;
[else Statement]; else clause is optional

result = select Item from

instance: Statement;
endcase: Statement;

Flow Control

for ControlVariable: Type InitialExpr, NextExpr do
Statement;
endloop;
until Test do
Statement;
endloop;
while Test do
Statement;
endloop;
loop; go directly to the next endloop
exit; go directly to the first statement after the next endloop

return[value] return value as the result of this function call

GRAPHICS GEMS | Edited by ANDREW S. GLASSNER XXiil

PSEUDO-CODE

Logical Connectives

or, and, not, xor

Bitwise Operators

bit-or, bit-and, bit-xor

Relations

Assignment Symbol

«—

(note: the test for equality is =)

Available Functions

These functions are defined on all data types

min(a, b)
max(a, b)
abs(a)
sin(x)
cos(x)
tan(x)
arctan(y)
arctan2(y, x)
arcsin(y)
arccos(y)
rshift(x, b)
Ishift(x, b)
swap(a, b)
lerp(a, I, h)

returns minimum of a and b

returns maximum of a and b

returns absolute value of a

sin(x)

cos(x)

tan(x)

arctan(y)

arctan(y/x), defined for all values of x and y
arcsin(y)

arccos(y)

shift x right b bits

shift x left b bits

swap a and b

linear interpolation: (1 — a)*l) + (a*h) = | + (a(h - 1))

GRAPHICS GEMS | Edited by ANDREW S. GLASSNER XXiv

PSEUDO-CODE

clamp(v, I, h) return | if v<I, else h if v > h, else v.: min(h,max(l,v))

floor(x) or x round x towards 0 to first integer

ceiling(x) orxp round x away from 0 to first integer

round(x) round x to nearest integer, if frac(x) = .5, round towards
0

frac(x) fractional part of x

GRAPHICS GEMS | Edited by ANDREW S. GLASSNER XXV

CONTRIBUTORS

Numbers in parentheses indicate pages on which authors’ Gems begin

James Arvo (335, 548), Apollo Systems Division of Hewlett-Packard, 330 Billerica
Road, Chelmsford, Massachusetts 01824

Didier Badouel (390), IRISA /INRIA, Campus Universitaire Beaulieu, 35042 Rennes
Cédex, France

Paul D. Bame (321), Hewlett-Packard, P.0. Box 617, Colorado Springs, Colorado
80901-0617

Jules Bloomenthal (567), Xerox PARC, 3333 Coyote Hill Road, Palo Alto, California
94304

Richard Carling (470), 13 Overlook Drive, Bedford, Massachusetts 01730

Steve Cunningham (516), Department of Computer Science, California State
University, Stanislaus, Turlock, California 95380

Joseph M. Cychosz (64, 476), Purdue University CADLAB, Potter Engineering Center,
West Lafayette, Indiana 47907

Robert Dawson (424), Dalhousie University, 1179 Tower Road, Halifax, Nova Scotia
B3H 2Y7, Canada

Ken Fishkin (278, 448), Pixar, Inc., 3240 Kerner Boulevard, San Rafael, California
94901

Michael Gervautz (287), Technische Universitat Wien, Institut fur Praktische Infor-
matik, Karlsplatz 13/180, A-1040 Wien, Austria

Andrew S. Glassner (3, 13, 215, 257, 297, 364, 366, 376, 438, 562, 575) Xerox PARC,
3333 Coyote Hill Road, Palo Alto, California 94304

GRAPHICS GEMS | Edited by ANDREW S. GLASSNER

XXVi

CONTRIBUTORS

Ronald Goldman (20, 304, 305, 472, 587, 604), Department of Computer Science,
University of Waterloo, Waterloo, Ontario N2L 3G1, Canada

Julian Gomez (585), MacroMind, Inc., 410 Townsend St., Suite 408, San Francisco,
California 94107

Ned Greene (485), Apple Computer, Inc., 20705 Valley Green Drive, MS 60-W,
Cupertino, California 95014

Mark Hall (552, 558), Computer Science Department, Rice University, P.0. Box 1892,
Houston, Texas 77251-1892

Stephen Hawley (176), 13 Catherine Lane #2, Morristown, New Jersey 07960

Paul S. Heckbert (61, 84, 87, 99, 246, 265, 275), 1415 Arch Street, Berkeley, California
94708

D. G. Hook (416), Department of Engineering Computer Resources, Faculty of Engi-
neering, The University of Melbourne, Melbourne, Australia

Jeff Hultquist (346, 388, 462), Mailstop T-045-1, NASA Ames Research Center, Moffett
Field, California 94035

Paul Lalonde (424), Dalhousie University, 1179 Tower Road, Halifax, Nova Scotia
B3H 2Y7, Canada

Greg Lee (129), Weitek Corporation, 1060 East Arques Avenue, Sunnyvale, California
94086

Mark Lee (348), Amoco Production Company, Tulsa Research Center, P.0. Box 3385,
Tulsa, Oklahoma 74102

Patrick-Gilles Maillot (498), Sun Microsystems, Inc., Desktop and Graphics Develop-
ment Organization, 2550 Garcia Avenue, MS 21-04, Mountain View, California
94043

P. R. McAree (416), Department of Engineering Computer Resources, Faculty of
Engineering, The University of Melbourne, Melbourne, Australia

Claudio Montani (327), Istituto di Elaborazione del‘Informazione, Consiglio Nazionale
delle Ricerche, Via Santa Maria 46, 56100 Pisa, Italy

Jack C. Morrison (76), 5654 South Jackpine Road, Evergreen, Colorado 80439
Mike Morton (221), P.0. Box 11299, Honolulu, Hawaii 96828

John Olsen (166), Hewlett-Packard, Mail Stop 73, 3404 E. Harmony Road, Fort
Collins, Colorado 80525

Alan W. Paeth (18, 49, 57, 171, 179, 219, 233, 249, 307, 427), Computer Graphics
Laboratory, Department of Computer Science, University of Waterloo, Waterloo,
Ontario N2L 3G1, Canada

Mark J. Pavicic (144), Department of Computer Science, North Dakota State Univer-
sity, 300 Minard Hall, SU Station, P.0. Box 5075, Fargo, North Dakota 58105-5075

GRAPHICS GEMS | Edited by ANDREW S. GLASSNER

XXVil

CONTRIBUTORS

Andrew Pearce (397), Alias Research, Inc., 110 Richmond, Street East #550, Toronto,
Ontario M5C IPI, Canada

Mike Penk (129), 525 South East 15th Street, Apartment #2, Portland, Oregon 97214

Michael E. Pique (465), Research Institute of Scripps Clinic, MB-5, 10666 North
Torrey Pines Road, La Jolla, California 92037

Werner Purgathofer (287), Technische Universitat Wien, Institut fur Praktische Infor-
matik, Karlsplatz 13 / 180, A-1040 Wien, Austria

Eric Raible (464), 1591 Ensenada Drive, Campbell, California 95008

Richard Rasala (579), Northeastern University, 117 Cullinane Hall, Boston, Mas-
sachusetts 02115

Jack Ritter (107, 301, 385, 432, 440), Versatec, Inc., MS 1-7, 2710 Walsh Avenue, P.0.
Box 58091, Santa Clara, California 95052-8091

Philip J. Schneider (408, 607, 612), University of Geneva CUI 12 rue du Lac, Geneva
CH-1207, Switzerland

Dale Schumacher (196, 270), 399 Beacon Avenue, St. Paul, Minnesota 55104-3527

Jochen Schwarze (404), ISA GmbH, Azenberstrasse 35, 7000 Stuttgart 1, Federal
Republic of Germany

Roberto Scopigno (327), Istituto di Elaborazione dell’Informazione, Consiglio
Nazionale delle Ricerche, Via Santa Maria 46, 56100 Pisa, Italy

Clifford A. Shaffer (51, 443), Department of Computer Science, Virginia Technical
University, Blacksburg, Virginia 24061

Andrew Shapira (29), ECSE Department, Rensselaer Polytechnic Institute, Troy, New
York, 12180

Ken Shoemake (442), Xerox PARC, 3333 Coyote Hill Road, Palo Alto, California
94304

Hans J. W. Spoelder (121), Physics Applied Computer Science, Faculty of Physics and
Astronomy, Vrije Universiteit, De Boelelaan 1081, 1081 HV Amsterdam, The
Netherlands

Kelvin Thompson (38, 40, 43, 47, 105, 210, 361, 434, 435, 453, 456, 460), 903 Romeria
#204, Austin, Texas 78757-3435

Greg Turk (24), Department of Computer Science, Sitterson Hall, UNC-Chapel Hill,
Chapel Hill, North Carolina 27599-3175

Ken Turkowski (147, 494, 522, 539), Apple Computer, Inc, 20705 Valley Green Drive,
MS 60-W, Cupertino, California 95014

Fons H. Ullings (121), Physics Applied Computer Science, Faculty of Physics and
Astronomy, Vrije Universiteit, De Boelelaan 1081, 1081 HV Amsterdam, The
Netherlands

GRAPHICS GEMS | Edited by ANDREW S. GLASSNER

XXViii

CONTRIBUTORS

Bill Wallace (285), 101 Earl Grey Road, Toronto, Ontario M4J 3L6, Canada

Bob Wallis (92, 114, 129, 533, 594), Weitek Corporation, 1060 East Arques Avenue,
Sunnyvale, California 94086

Andrew Woo (394, 395), Alias Research, Inc., 110 Richmond Street East, Toronto,
Ontario M5C 1P1 Canada

Brian Wyvill (101, 343, 436), University of Calgary, Computer Science Department,
2500 University Drive N.W., Calgary, Alberta T2N 1N4, Canada

GRAPHICS GEMS | Edited by ANDREW S. GLASSNER XXiX

2D GEOMETRY

L1 —

USEFUL
2D GEOMETRY

Andrew S. Glassner
Xerox PARC
Palo Alto, California

Many of the formulae in this section are 2D specializations of a more
general solution. Why don’t we bother giving the multidimensional solu-
tion in its full generality? There are at least two good reasons that the
equations in this section are mostly valid only in 2D: they either produce
a unique answer, or they require less computation. These advantages are
usually related to the facts that in 2D Euclidean geometry, nonparallel
lines intersect and there is exactly one line perpendicular to a given line.

Some of these formulae are valid in higher dimensions, and are re-
peated in the Gem on Useful 3D Geometry without much change in the
notation. Others are generalized in that Gem, when appropriate.

I will use a programmer’s notation to express the formulae. This allows
us to express some computations in terms of previous results. | use the
prefix V2 to distinguish the techniques for 2D vector geometry in this
section from techniques with similar names in the 3D section. In this
section the dot (or inner or scalar) product of two vectors A and B will be
written A [B; this may be translated for implementation as V2 Dot(A, B).
| will sometimes treat points as vectors; this will be allowed with the
understanding that a point P will represent a vector P with tail at the
origin and head at P; thus, the coordinate descriptions of both entities
will have the same values.

Record Line:[
implicit: N, ¢; Points P satisfy N [OP + ¢ = 0 (see Fig. 1a)
explicit: U, V; Points P satisfy P = U + Vt for some scalar t (see
Fig. 1b)
normalized: BOOL ~ FALSE True if and only if NI = |[V[I= 1
|

GRAPHICS GEMS | Edited by ANDREW S. GLASSNER 3

.1 USEFUL 2D GEOMETRY

Vv
.. u
® (0, 0)
Figure. 1
Line structures of this form will be represented in italic (e.g., I, m).

Record Circle: [
center: C;
radius: r

]

Circles of this form will be represented by capital roman letters
(e.g., A, B) (see Fig. 2).

Figure 2. Figure 3.

GRAPHICS GEMS | Edited by ANDREW S. GLASSNER 4

.1 USEFUL 2D GEOMETRY

V2 Normalize
A < V2 Normalize (A)

A A
V2Length(A)

V2 Dot
d « V2 Dot(A, B)
d « AB + AyBy

V2 Implicit to Explicit
| « V2 Implicit to Explicit (I)
|, « V2 Point on Line (I) Nearest the Origin
|, « V2 Perpendicular(V2 Reflect (1))

V2 Explicit to Implicit
| « V2 Explicit to Implicit(l)
I, < V2 Perpendicular(l,)

N
|~ 1, O,
V2 Line Tangent to a Circle at a Point
| « V2 Line Tangent to a Circle (C) at a Point (P) (see Fig. 3)
I, « P-C

N

C
|« (1, OP)

V2 Perpendicular
N < V2 Perpendicular(V) (see Fig. 4)
N - (-V, V)

V2 Reflect
N « V2 Reflect(V) (see Fig. 5)
N « (-V, -V)

V2 Length
d « V2 Length (A)

d -« VALA

V2 Intersection of a Circle and a Line
P1, P2 — V2 Intersection of a Circle (C) and a Line (I) (see Fig. 6)
G ~ 1I,-C,

GRAPHICS GEMS | Edited by ANDREW S. GLASSNER 5

.1 USEFUL 2D GEOMETRY

vV
\'
N
N
Figure 4. Figure 5,
G
H
o
P2 N] B
P1 M'
G’
Figure 6. Figure 7.

ad « IV DIV

b ~ 2(l, 0G)

c « (G OUG) - C?

d « b? - 4ac

ifd<O

then “no intersection”
else

PL « (-b+ +d)/2a
P2 « (-b - +d)/2a

V2 Lines Tangent to Two Circles Meeting Outside
I, m « V2 Lines Tangent to Two Circles (A, B) Meeting Outside (see Fig. 7)
To make life easier, we label circles A and B so that A = B..

r

GRAPHICS GEMS | Edited by ANDREW S. GLASSNER 6

.1 USEFUL 2D GEOMETRY

We assume that A is the origin, and B_ is on the X axis.
We build a line parallel to the X axis through H; it intersects line A_G at

point J. Thus by construction, [JG| = A - B,

Note from the figure that cosf = %
OA, - B O
0 — arccosljwD

G « A_+ A(cosb, sinb)

G « A+ A(cos - 6, sin — 0)

H ~ B.+ B(cos6, sinb)

H' ~ B. + B(cos - 6, sin - 6)

| « V2 Line through 2 Points(G,H)

m « V2 Line through 2 Points(G’, H')

V2 Lines Tangent to Two Circles Meeting Inside
I, m « V2 Lines Tangent to Two Circles (A, B) Meeting Inside (see Fig. 8)

| p— Br
d-x’
d is the distance between the centers: d < B. - A

0 A [l
o (B - AJBT T F

M<_Ac+x

From similar triangles, observe that

c

Observe from the figure that cos@ = '?(“.
DA, O

Ux U

G « (A, cosf, A sinb) + A,

H ~ (B, cos6, B, Sinf) + B,

| « V2 Line through 2 Points (G, M)
m — V2 Line through 2 Points (H, M)

6 — arccos

V2 Lines Tangent to Circle and Perpendicular to Line
I, m « V2 Lines Tangent to Circle (C) and Perpendicular to Line (k) (see

Fig. 9)
P~ C.+ Ck,
Q « Cc - C:rkv
I, < my < Kk,
|« — (I, UP)

GRAPHICS GEMS | Edited by ANDREW S. GLASSNER 7

.1 USEFUL 2D GEOMETRY

Figure 8.

m._« - (I, 0Q)
| « V2 Implicit to Explicit(l)
m « V2 Implicit to Explicit(m)

Point on Circle Nearest Point
Q < Point on Circle (C) Nearest Point (P) (see Fig. 10)

Q -~ C.+ C_0V2 Normalize(P - C))

Figure 9.

GRAPHICS GEMS | Edited by ANDREW S. GLASSNER 8

.1 USEFUL 2D GEOMETRY

P

Figure 10. Figure 11.

V2 Line Through Two Points
| « V2 Line Through Two Points (A, B)
IU « A
I, « V2 Normalize(B - A)
| « V2 Explicit to Implicit(l)

V2 Normalize
| « V2 Normalize(l)
. « 1./V2 Length (I)
I, < V2 Normalize(l,)
I, « V2 Normalize(l,)
Inormalized - TRUE

V2 Distance from Point to Line
d « V2 Distance from Point (P) to Line (I) (see Fig . 11)
Q < V2 Point on Line (I) Nearest to Point(P)
d — V2 Distance between Point (P) to Point (Q)

V2 Point on Line Nearest Origin
P < V2 Point on Line (I) Nearest the Origin
d « V2 Point on Line (I) Nearest Point (0)

V2 Point on Line Nearest Point
Q < V2 Point on Line (I) Nearest Point (P)
Forhlotationaltonvenienceih this discussion,lale write MNOfor | and(t
for 1.
Obsecrvation 1: Since Q is on I, then (N 0Q) + ¢ = 0.
Observation 2: The&traight line that joins Pahd Q is perpendicular tol]
so P = Q + gN, for some value of g. Rewrite this as Q = P — gN.

GRAPHICS GEMS | Edited by ANDREW S. GLASSNER 9

.1 USEFUL 2D GEOMETRY

Plug this expression for Q into the line equation, distribute the dot
product, and solve for q:

N OP-9gN) +c =0

N OP -q(N ON) +c¢c =0

q=(c + N OP)/(N ON).

We now plug this value for q back into the equation in observation 2 to

find Q:
q I+ (I, dP)
If not Inormalized
h q
then 4 « 2 Length (I,)
Q « P —ql.

V2 Distance between Point and Point
d « V2 Distance between Point (P) and Point (Q)
d « V2 Length(P - Q))

V2 Line Perpendicular to Line through Point
m — V2 Line Perpendicular to Line (I) through Point (P)
General Solution
Q < V2 Point on Line (I) Nearest Point (P)
m « V2 Line through Point (P) and Point (Q)
Direct Solutions (A" = V2 Perpendicular(A))

INPUT
explicit implicit
explicit m, ~ P m, « P
m, « I m, « |
OUTPUT
implicit m « |, m, < I
m ~ -, 0P m ~ -1J0P

V2 Cosine of Angle between Line and Line
d « V2 Cosine of Angle between Line (I) and Line (m)
d « (I, Om,)

if not | and m

normalize normalized

d
V2 Length(l,) V2 Length(m,,)

GRAPHICS GEMS | Edited by ANDREW S. GLASSNER 10

then d <

.1 USEFUL 2D GEOMETRY

V2 Point of Intersection between Line and Line
P < V2 Point of Intersection between Line (I) and Line (m)

The point P must be on both lines, so it satisfies both line equations. Write
one explicitly and one implicitly: 1, OP + 1 =0, and P = m, + tm,
Since both are true at the same time, plug the explicit into the implicit,
distribute the dot product, and solve for t:

I, O(m, + tm) + 1 =0
(I, dm,) + t(I,Om,) + 1 =0
_ L+, dmy)

I, Om,

Now it can happen that |, Om, = 0. This indicates that the two lines are
parallel, and there is no intersection at all. Otherwise, we plug this ualue
of t back into the explicit form to find the point of intersection:

[

d 1
o

mV
if 0
then Error[“no point of intersection”]

+
else P -« my —ﬂ“'ﬂ&’umv

V2 Parameter of Point on Line from Point to Point
a « V2 Parameter of Point (P) on Line from Point (Q) to Point (R)

. V2 Distance between Point (P) to Point (Q)
" V2 Distance between Point (P) to Point (Q +R)

V2 Area of Polygon
a « V2 Area of Polygon (P)
polygon has n points, PO, P1, . . . Pn -1

n-1

a= E 4 (Xiy(i+1)mod N yix(i+1)mod n)

See also Useful 3D Geometry (297); Useful Trigonometry (13)

GRAPHICS GEMS | Edited by ANDREW S. GLASSNER 11

TRIG SUMMARY

The following two Gems provide some relationships that may
prove useful when working on trigonometry problems. The first
Gem includes some relationships based on the geometry of
planar triangles; for more discussion on this topic see Trian-
gles. The second Gem provides simple closed-form values for
the major trig functions at a number of special angles. These
values can be helpful when you are doing symbolic calculations
prior to writing a program.

See also Fixed-Point Trigonometry with CORDIC Iterations
(494); Triangles (20)

GRAPHICS GEMS | Edited by ANDREW S. GLASSNER 12

1.2 —/\

USEFUL
TRIGONOMETRY

Andrew S. Glassner
Xerox PARC
Palo Alto, California

Law of Cosines

Law of Tangents

tan 2~ B
- b _ 5
a+b L A*E
2
Law of Sines
a b Cc

sin A sinB sinC

Mollweide’s Formula

GRAPHICS GEMS | Edited by ANDREW S. GLASSNER

13

Newton’s Formula

.2 USEFUL TRIGONOMETRY

2
2 A
2

Inverse Trig Functions in Terms of Inverse Tangent

0 X [

sin(x) = tan™ 5/ - x2 o
o _n tan-. [l x [l
cos™t (x) = > an Eﬁ%

Functions Sums and Differences

sin a +

cos a +

COoS a —

tan a +

tan a -

Sin,B=25ina+ﬁCOSa;'[3
Sina—SinBZZCOSaJrﬁsina;'B

cos,B=2cosaJ2r cosa;’[3

cos,B=—25inaJ2r sina;,B

@B e o

R

GRAPHICS GEMS | Edited

by ANDREW S. GLASSNER

14

.2 USEFUL TRIGONOMETRY

DeMoivre’s Theorem
(cos 8 + i sin)" = cos n@ + i sin n@; where i = -1

Sines and Cosines in Exponentials

el = cos a + i sin a; i = V-1
eia _ e—ia
sin g = ———
21
eia' + e—la
cos a =
2

_ - ia e—iag ~ - 2 1@
tan a = -l ia + e—ia = -l Egzia + 1

Power Relations

1

sin? a = > (1 — cos 20a)

: 1 . :

sin® a = 2 (3 sin a - sin 3a)

sin* a = 3 (3 — 4 cos 2a + cos 4a)
1

cos? a = > (1 + cos 2a)
1

cos® a = 2 (3 cos a + cos 3q)
1

cos* a = 3 (3 + 4 cos 2a + cos 40a)

1 - cos 2«

2 =
tan® o 1+ cos 2.

GRAPHICS GEMS | Edited by ANDREW S. GLASSNER 15

.2 USEFUL TRIGONOMETRY

Product Relations

: . a +
sin a sin 3 = cos ’B—COS ZB
— a +
COS a cos B = cos 2’B+cos 2[3
. . a + . a -
sin a cos B = sin P + sin P
2 2
Half-Angle Relations
1 - cos a
. a |
sin 5+ = | ——m
2 A
1+ cos a
a |
cos 5 = £ | ————
2 A
a 1-cosa _ 1l-cosa _ sina
tan 5 = \—F — = ——— = ————
2 \1+ cos a sin a 1+ cos a

Angle Sum and Difference Relations

sin (a + B) = sin a cos B+ cos a sin

sin (a — B) = sin a cos B - cos a sin 8

cos (a + B)= cos acos B-sin asin

cos (a - B) = cos acos B+ sinasinpf

tan a + tan 8
1 - tan a tan 8

tan (a + B) =

tan a — tan 8
1+ tam tmf

tan (a - B) =

GRAPHICS GEMS | Edited by ANDREW S. GLASSNER

16

I.2 USEFUL TRIGONOMETRY
Double-Angle Relations

2 tan a

sin2a =2sinacos a=——(—5—_
1+ tan® a

i . 1 - tan® a
CoS 2a = cos’a - sina = 2 cos?a -1 =1 - 2 sina =

1+ tan® a

2 tan a

tan 2a = 1 tarf a

Multiple-Angle Relations

sin na = 2 sin(n - 1)a cos a - sin(n - 2)a

COS na

2 cos(n — 1)a cos a - cos(n - 2)a

tan (n — 1)a + tan a

@an na = 9 tan (n - Yo tan a

GRAPHICS GEMS | Edited by ANDREW S. GLASSNER

17

/7 1.3 7/ \

/ N\

TRIGONOMETRIC FUNCTIONS

AT SELECT POINTS
Alan W. Paeth
University of Waterloo
Waterloo, Ontario, Canada/

N\

Brief trigonometric tables as appearing in high-school texts usually pre-
sent values of sine, cosine and tangent for a small number of arguments,
Most often the values coincide with a subset of vertex locations on the
regular dodecagon (a twelve-sided n-gon). This implicit choice relates to
that polygon’s underlying three- and four-fold symmetries, for which the
related trigonometric values are easily derived.

Although trig functions have transcendental value for most arguments,
other n-gons yield up coordinates expressible in simple algebraic forms.
This is a consequence of Gauss’s seminal work on the compass construc-
tion of the 17-gon. Generally, any n-gon is constructible if n’s factors are
members of the set (2 3 5 17 257 65537), in which each odd
factor appears at most once. The factors are the known prime Fermat
numbers of the form 2° + 1. (Euler found the factor 641 in 232 + 1, and
no further Fermat primes have been found through n = 20, a number
containing a third of a million digits; current research suggests that the
above set is complete.) Surprisingly, 2% — 1 = 4, 294, 967, 295—known
to lovers of computer trivia as the largest unsigned thirty-two bit integer
—is also the largest known constructible polygon having odd sides.

By considering the regular pentagon and octagon, a more useful table
may be derived. This has value in the symbolic computation of vertex
locations for these n-gons, which are commonplace. As an example, the
twenty-faced icosahedron, which underlies many geodesic domes, rests
heavily on the cosine for an argument of thirty-six degrees, a value that
is easily represented. Here ¢ = (.5 + 1) = 1.618 (the golden mean) with
the useful properties ¢! = qoz— 1 and ¢¢# = ¢ + 1. By the Fibonacci
series, ¢! + @ = ¢@"*!, making a series of arbitrary powers easily

GRAPHICS GEMS | Edited by ANDREW S. GLASSNER 18

.3 TRIGONOMETRIC FUNCTIONS AT SELECT POINTS

Table 1. Select Rational Trigonometric Values.

Degrees Radians Sine Cosine Tangent
0 0 0 1 0

15 /12 Y2 -3 W2 +v3 2-V3
18 7/10 56! W2+ o V1-%/6
22.5 /8 e -2 e+ 2 V2 -1
30 /6 1 3 V3 /3

36 /5 V3 -6 36 V5 - 2/5
45 /4 e 3V2 1

derived from the three terms given. Values outside of the first octant may

rely on the identities cos((p/2) - x) = sin(x) or tan((p/2) - x) =

1/tan(x). Half-angle identities using cos(6/2) =\%(1+ cos §) and

sin(6/2) =\%(1 - cos 8) allow the construction of higher order even-

sided n-gons by angle bisection, though the symbolic forms quickly

become awkward.

GRAPHICS GEMS | Edited by ANDREW S. GLASSNER 19

.4 —

TRIANGLES

Ronald Goldman
University of Waterloo
Waterloo, Ontario, Canada

Most of the physical properties and distinguished points of a triangle
AP P,P, can be written as simple, symmetric, closed-form expressions
in the vertices P, P,, P,. We provide examples below.
Perimeter
Perimeter{ A PPP.} = |P. - PJ| + |P,- P+ |P, - P
Area
Area{ APPP} =1|P xP, +P, xP, + P, xPl|2
Center of Gravity (Intersection of the Medians—see Fig. 1)
C,= (P, +P,+P)/3

In Radius and In Center (Intersection of the Angle Bisectors—see
Fig. 2)

r., = 2 Area{A P P,P.}/Perimeter{ A P.P,P}

c,=1{P,-PJP, +|P,-PIP, +|P, - P,P}/Perimeter{A P.PP.}

Circumradius and Circumcenter (Intersection of the Perpendicular
Bisectors—see Fig. 3).

GRAPHICS GEMS | Edited by ANDREW S. GLASSNER 20

.4 TRIANGLES

Cg

P, ' Py

e o

Figure 1. Center of gravity: Intersection of the medians.

Figure 3. The circumradius and circumcenter: Intersection of the perpendicular biseaors.

GRAPHICS GEMS | Edited by ANDREW S. GLASSNER

21

.4 TRIANGLES

Py

P1 al P3

Figure 4. Intersection of the altitudes.

First define scalars d, d,, d, and ¢, ¢, ¢, c by setting

d, = (P,- P) O(P,- P,

o
1

(P,- P,) O(P,- P,)
d, = (P,- P,) O(P,- P,)

c. =dd

1 273 CZ = d3dl C3 = dle ¢ = Cl + CZ + C3'

Then we can compute the circumradius and circumcenter by setting

ree = 172.(d, + d,)(d, + d,)(d, + d,)/¢
Ceo = {(c, + c)P, + (c, + c)P, + (c, + c,)P.}/2c.
Intersection of the Altitudes of A P PP, (see Fig. 4)

Let ¢, ¢, c,, ¢ be as above. Then

ANNNCH

P,, = {c,P, + ¢c,P, + c,P,)/cC.

The formulas for the intersection of the perpendicular bisectors (C,)
and the intersection of the altitudes (P,,) are related because the alti-
tudes of the triangle A Q,Q,Q, formed by the midpoints of the sides of
A P,P,P, are identical to the perpendicular bisectors of A P P,P, (see

17 2" 3

GRAPHICS GEMS | Edited by ANDREW S. GLASSNER 22

.4 TRIANGLES

Q3 Ql

Pl T Q2 I P3

Figure 5. Altitudes and perpendicular bisectors.

Fig. 5). That is,

QAIt = PCirc '
where

Q, = (P, + P)/2

Pk:Qi+Qj_Qk’

and the indices i, j, k represent a permutation of the integers 1, 2, 3.
Thus we can find Q, by solving for P, P,, P, and using the formula for
the circumcenter of A P.P,P,. Similarly, we can find P_ _ by solving for
Q, Q, Q, and using the formula for the intersection of the altitudes of
A Q,Q,Q,

Observe that the circumcenter and circumradius solve the problem of
finding the circle through three given points P, P,, P,. Similarly, we can
use the in center and in radius to solve the problem of finding the circle
tangent to three given lines. To find this tangent circle, first find the
pairwise intersections P, P, P, of the three given lines. Then simply
compute the in center and in radius of AP.P P. The results are the

1 2 3
center and the radius of the circle tangent to the original three lines.

See also Generating Random Points in Triangles (24)

GRAPHICS GEMS | Edited by ANDREW S. GLASSNER 23

— 1. —

GENERATING RANDOM
POINTS IN TRIANGLES

Greg Turk
University of North Carolina

Chapel Hill
AN /

Problem

Given three points A, B and C that describe a triangle, pick a random
point in the triangle. When many such points are picked the distribution
of the points should be uniform across the triangle.

Method 1

Let s and t be two numbers chosen from a uniform distribution of
random numbers in the interval [0, 1]. Then the point Q given below is a
random point in the triangle with vertices A, B and C.

ad « 1 - \f'q;

b « (1-5s)t;

C SN’E;

Q « aA + bB + cC;
This amounts to having t determine a line segment parallel to BC that
joins a point on AB with a point on AC, and then picking a point on this
segment based on the value of s (see Fig. 1). Taking the square root of t

IS necessary to weight all portions of the triangle equally. The values a, b
and c are the barycentric coordinates for the point in the triangle.

GRAPHICS GEMS | Edited by ANDREW S. GLASSNER 24

.5 GENERATING RANDOM POINTS IN TRIANGLES

C
Figure 1. Random point in polygon using method 1.

Method 2

Let s and t be random numbers in [0, 1]. A random point Q in the triangle
Is given by the following:

if s+ t>1then

begin
S « 1-75;
t « 1-1t;
end;

a « 1-s-1t
b « s
C « t

Q « aA + bB + cC
Without the “if” statement, the point Q will be a random point in the
parallelogram with vertices A, B, C and (B + C - A) (see Fig. 2). A point

that lands in the triangle B, C, (B + C -A) is moved into the triangle
A, B, C by reflecting it about the center of the parallelogram.

GRAPHICS GEMS | Edited by ANDREW S. GLASSNER 25

.5 GENERATING RANDOM POINTS IN TRIANGLES

Figure 2b. Method 2 when s + t > 1.

Generalizations

Method 1 can be extended to higher-dimensional shapes in a straightfor-
ward manner. For example, a random point in a tetrahedron can be found
by using three random numbers: the cube root of the first number is used
to pick a triangle that is parallel to the base of the tetrahedron, and then
the two remaining numbers are used to pick a random point on that
triangle.

GRAPHICS GEMS | Edited by ANDREW S. GLASSNER 26

.5 GENERATING RANDOM POINTS IN TRIANGLES

Method 2 does not gracefully generalize to higher dimensions. For
picking a random point in a tetrahedron, the analog of method 2 will use
three random numbers r, s and t to give a random point in a paral-
lelepiped. This parallelepiped cannot be easily dissected into parts that
are all congruent to the desired tetrahedron, so it is difficult to take points
that fall outside the tetrahedron and map them back into the tetrahedron.
The simplest thing to do is throw out points in the parallelepiped that are
not also in the tetrahedron, and this can be accomplished by rejecting
triples r, s, t when r + s + t > 1. As this method is extended beyond
tetrahedra, a higher proportion of the random values must be rejected.

Either method can be used to pick random points in a polygon by
breaking the polygon into triangles and using a random number to choose
a triangle in which to pick a random point. The triangle must be selected
taking into account the relative areas of the subtriangles. Given random
numbers s and t in [0, 1], here is how to pick a random point in a convex
polygon described by the vertices V, V,, ..., V.

n

area_sum ~ O0;
for k « 1ton-2do find area of triangles radiating from V |

area, « |(V,,,- V) x (V,- V)|, hialf area of triangles
area_sum area_sum + area,; [find total area of polygon
endloop;

sum « O0;

for k « 1ton-2do pick a triangle based on relative areas
sum « sum + area, keep running area subtotal
if sum > s*area_sum then exit; [See if we’re within proper range
endloop;

S « 1 + (s*area_sum - sum/area,); maps into [0,0]]

pick random point in the sub-triangle with vertices V,, V, ., V, .,

Q « (1-At)V, +(1- S)\EVKEM + stV

k®2 ?

The above code extends method 1 to give a mapping from the unit square
[0, 1] x [0, 1] into the given polygon. This mapping is continuous, one-to-

GRAPHICS GEMS | Edited by ANDREW S. GLASSNER 27

.5 GENERATING RANDOM POINTS IN TRIANGLES

one and onto. We can use this mapping to define a Peano (area-filling)
curve for a convex polygon. If we have a Peano curve that maps the
interval [0, 1] into [0, 1] x [0, 1], we can compose this with our mapping
from above to give a mapping from [0, 1] into the polygon. Method 2 does
not give a one-to-one mapping from [0, 1] x [0, 1] into a triangle, so a
Peano curve constructed using method 2 for mapping onto the triangles
would fold on top of itself, which is probably undesirable.

Acknowledgements

Some of these ideas were worked out during conversations | had with
John Airey and David Banks.

See also Triangles (20)

See Appendix 2 for C Implementation (649)

GRAPHICS GEMS | Edited by ANDREW S. GLASSNER 28

— 1.6 ——

/ N\
FAST LINE-EDGE

INTERSECTIONS ON A
UNIFORM GRID

Andrew Shapira
Rensselaer Polytechnic Institute

\ Troy, New York /

This paper presents an algorithm that uses only integer addition and
subtraction to find intersections between a uniform grid and a line
segment having grid vertices as its endpoints. The output of the algorithm
Is a list of grid vertices and edges that intersect the line segment; the
precise points of intersection are not found. The algorithm is very similar
to Bresenham’s algorithm for drawing line segments on a raster device,
The problem is stated below.

Given: (1) A 2D uniform grid G with square cells of unit side length
(2) Two distinct vertices of G, P = (P, Py) and Q = (Q,, Qy)

Find: All edges and vertices of G, excluding P and Q, that
intersect PQ

The solution of this problem was motivated by the need to compute
visibility in a grid-based terrain. An implementation of the line-edge
algorithm presented in this paper was used as a platform by a grid
visibility algorithm. The resulting grid visibility data have been used for
several applications, including terrain labelling, path planning, line-of-
sight communication, visualization, visibility theory experiments, and
object recognition in images. Other possible visibility applications include
terrain orientation, terrain navigation, and representation of terrain phys-
iography.

The terrain model mentioned above was selected because digital terrain
data are often packaged in a form that matches this model. The terrain
model is as follows. Each vertex in a 2D uniform grid has an integer-val-

GRAPHICS GEMS | Edited by ANDREW S. GLASSNER 29

.6 FAST LINE-EDGE INTERSECTIONS ON A UNIFORM GRID

Q
10 9 7 7
/ I3
12 8 12 7 8
I1
P
10 9 9 10
PQ terrain
1§ 9 25/3
12 17/2 15/2
I3 8 7

Figure 1. Determining whether or not two points are mutually visible. The upper
diagram shows a terrain as seen from above, with elevations given next to each vertex.
The projection of line-of-sight PQ intersects the grid at points 11, 12, and 13. The table
shows the heights of PQ and the terrain at each intersection. Since the line of sight is
above the terrain at all intersections, points P and Q are mutually visible.

ued elevation associated with it; each of the resulting points in 3-space is
called a data value. Terrain elevations above grid edges are obtained by
linear interpolation between the appropriate data values. The terrain
above the interior of all grid cells is defined in such a way so as not to
interfere with the intervisibility of data values.

Visibility within this simple terrain model approximates visibility within
more complicated models such as triangulated terrain models, but is
simpler to calculate (see Fig. 1). To determine whether two data points U
and V are mutually visible, a test is performed everywhere that the 2D
projection of UV intersects a grid edge or vertex. The test determines

GRAPHICS GEMS | Edited by ANDREW S. GLASSNER 30

.6 FAST LINE-EDGE INTERSECTIONS ON A UNIFORM GRID

whether the line-of-sight UV is above the terrain at the point of intersec-
tion. If UV always turns out to be above the terrain, then U and V are
visible. If any test shows that UV is below the terrain, then U and V are
mutually invisible, and testing terminates.

This computation is very efficient. The entire visibility calculation can
be done using only integer additions, subtractions, and multiplications. If
desired, the calculation for many pairs of data values can easily be
adapted to execute in parallel on a coarse-grained machine.

The visibility algorithm was implemented in C; intersections are gener-
ated using a slightly modified version of the line-edge intersection algo-
rithm in this paper. On a SUN 3/60 computer running SUN Operating
System 3.4 with 12 megabytes of memory, the program took roughly 11
hours of CPU time to compute the 100 million visibility pairs of a 100 by
100 terrain taken from United States Geological Survey data.

The line-edge intersection algorithm is derived below using pseudo-C.
Included are two intermediate versions that use floating point. Because of
rounding problems, these versions may not work on machines with finite
floating point precision. They are used only to derive the final version.

First we will discuss a few miscellaneous items. We will assume for the
time being that Q lies between 0° and 45° from P, inclusive. If PQ forms
an angle with the x-axis that is a multiple of 45°, then PQ will be
considered to intersect the terrain only at grid vertices. In Algorithms
1-4, the symbols Ax and Ay are used as abbreviations for (Q - P) and
(Qy— Py) respectively, and m denotes (Ay/Ax). All variables are local
and type integer unless otherwise indicated. The unary operator (real)
converts its operand to type real. In any expression containing one or
more floating point operands, all operations are performed using floating
point. The value of an arbitrary variable t during loop iteration i is
denoted t;t, to denotes the value of t just before the first loop iteration.

To derive the first version of the algorithm, consider each point (X, y(x))
along PQ such that x [{P, + 1, P_+ 2, . . .,Q - 1}, and y(x) =
P, + m(x — P). It is apparent from Fig. 2 that if y(x) = y(x)O, then
PQ intersects a vertex at (x, y(x)). If y(x) # y(x)OO, then PQ intersects
the vertical edge connecting (x, ¥(x)O) and (xUy(x)D; if, in addition,
y(x — 1) < y(x)O, then PQ also intersects the horizontal edge connect-
ing (x -1, y(x)d) and (x, ¥y(x)O). An algorithm based on these ideas is
given below.

GRAPHICS GEMS | Edited by ANDREW S. GLASSNER 31

.6 FAST LINE-EDGE INTERSECTIONS ON A UNIFORM GRID

10

0 1 2 3 4 3 6 7 8 9 10

Figure 2. The intersection of line segment PQ and the uniform grid can be expressed as
{up(2,), left(3, 2), up(3, 2), left(4, 3), up(4, 3), vertex(5, 4), up(6, 4), left(7, 5), up (7, 5),
left(8, 6), up(8, 6)}. Highlighted grid edges indicate intersections with PQ. Circles indicate
points traversed by Algorithm I; squares indicate points traversed by Algorithms 2-4.

GRAPHICS GEMS | Edited by ANDREW S. GLASSNER 32

.6 FAST LINE-EDGE INTERSECTIONS ON A UNIFORM GRID

Algorithm |
oy, fy: real
CX « P +1
oy « P,
while cx < Q, do
begin
fy < P, + (cx = P,)*(Ay/(real)Ax)
iIf fy # dylthen
begin
If oy < (dylthen left (cx, Fyl)
up (cx, y0)
end
else vertex (cx, (fyl)
oy ~ fy
CX « cx +1
end
endloop

Instead of traversing points (cx, fy) as in Algorithm 1, we can traverse
points (cx, cy), where cy = [yl and use a new variable r that contains
as its value fy — [dyll The value of r can be computed inductively as
follows:

O.,+m if rr,+ m«<1
- ﬁi_l + m — 1 otherwise

The intersection tests of Algorithm 1 can be rewritten as follows: at
(cx,, cy,), PQ intersects a vertex if r. = 0, an upward edge if r. # 0, and
a leftward edge if r, # 0 and r, _, + m > 1. The resulting algorithm is
given below.

1

GRAPHICS GEMS | Edited by ANDREW S. GLASSNER 33

.6 FAST LINE-EDGE INTERSECTIONS ON A UNIFORM GRID

Algorithm 2
r, or, m: real
C: IntPoint2
C -~ P +1
r —«0
while C < Q _do
begin
or — r
ifr+m<1lthenr « r+ m
else
begin
N « r+m-1
Cy - Cy + 1
end
if r # 0 then
begin
iIf or + m > 1 then left (C)
up(C)
end
else vertex (C)
C - C +1
end
endloop

All floating point operations in Algorithm 2 can be eliminated by introduc-
ing a new variable nr = rAx. The Algorithm 2 operations on r can be
expressed in terms of nr as listed below, yielding Algorithm 3.

In terms of r In terms of nr
r=20 nr =20

r+ m«<y»1 nr + Ay < Ax
r=r+m nr = nr + Ay
r=r+m-1 nr = nr + Ay — Ax

GRAPHICS GEMS | Edited by ANDREW S. GLASSNER 34

.6 FAST LINE-EDGE INTERSECTIONS ON A UNIFORM GRID

Algorithm 3
C: IntPoint2
C -~ P +1
nr —« 0
while C < Q _do
begin
onr — nr
If nr + Ay < Ax then nr « nr + Ay
else
begin
nr « nr + Ay — Ax
C, - C, +1
end
iIf nr # 0 then
begin
If onr + Ay > Ax then left (C)
up (C)
end
else vertex (C)
C «-C +1
end
endloop

Several simplifications can be made. Introducing a constant const =
Ax — Ay moves some computation out of the loop. The check for a left
edge need only be made when C, Is incremented. With this check moved
to its new location, it is sufficient to check for nr # 0. This leaves onr
unused, so it can be removed. Finally, a redundant check of nr can be
eliminated by copying and combining if statements. The final version of
the single-octant algorithm is given below.

GRAPHICS GEMS | Edited by ANDREW S. GLASSNER 35

.6 FAST LINE-EDGE INTERSECTIONS ON A UNIFORM GRID

Algorithm 4
C: IntPoint2

C P +1
Cy<_Py
nr « 0
const — AXx — Ay

while C < Q _do

begin
If nr < const then
begin
nr « nr + Ay
iIf nr £ 0 then up (C)
else vertex (C)
end
else
begin
C, - C, +1
nr —« nr — const
If nr £ 0 then
begin
left (C)
up (C)
end
else vertex (C)
end
C ~-C +1
end
endloop

Algorithms 1-4 assume that Q lies between 0° and 45° from P,
inclusive. To handle the other eight octants without slowing down the
algorithm, separate code segments are used for each octant of the plane
(see Appendix).

See Appendix 2 for C Implementation (651)

GRAPHICS GEMS | Edited by ANDREW S. GLASSNER 36

ANTI-ALIASING SUMMARY

AN /

The following four Gems are useful for anti-aliasing calcula-
tions. One technique for exact anti-aliasing is to find the area of
overlap between a piece of geometry to be rendered and a filter
function. Often this filter is a unit-height box over a pixel, but
larger, more symmetric filters (such as a Gaussian with a radius
of 1.5 pixels) will usually give better results. Since such filters
are radially symmetric, they have a circular footprint, and one
needs to find the region of this circle occupied by the geometry;
a weighting factor is then wusually included to account for the
changing height of the filter.

The first Gem determines the area of overlap between a circle
and a half-plane. This technique may be adapted for polygon
anti-aliasing by observing that a convex polygon may be repre-
sented as the intersection of a collection of half-planes. The
second Gem applies this technique to thick lines. The third Gem
iIs useful when anti-aliasing circles. The final Gem may be useful
to determine whether a particular piece of geometry is a candi-
date for anti-aliasing in a particular situation by examining
some points (for example, the vertices of a polygon).

See also Line Drawing Gems; Polygon Scan Conversion Gems;

Filtering Gems; Anti-Aliasing Filters Summary (143); A Fast 2D
Point-on-Line Test (49)

GRAPHICS GEMS | Edited by ANDREW S. GLASSNER 37

L. —

AREA OF INTERSECTION:
CIRCLE AND A HALF-PLANE

Kelvin Thompson
Nth Graphics, Ltd.
\ Austin, Texas /

Given a circle of radius r whose center is a distance d from the edge of a
half-plane (see Fig. 1), the fraction of the circle that intersects the
half-plane is

d\r n d 1 d

1
CZ) T - 7—_[arcsin F

r,
r,

cov(d,rl) = %j
B

and the area of intersection is 12 Ocov(d, r). If the center of the circle
Is inside the half-plane, then the fractional coverage is 1 — cov(d, r) and
the area mr? (1 - cov(d, r)).

The function cov(d, r) can be useful when anti-aliasing lines and
polygon edges—see Gupta and Sproull (1981) and “Area of Intersection:
Circle and a Thick Line” in this volume.

Proof

We will take the integral of part of a semicircle, and then double that to
get the area of intersection; the area of intersection divided by the area of
the circle gives us the fractional coverage. We know the equation for a
semicircle is y = \r?2 - x?, and a table of integrals tells us

i 2 .
vai — u* + & arcsin %.

I\/a2 — U du = 5

u
2

GRAPHICS GEMS | Edited by ANDREW S. GLASSNER 38

.7 AREA OF INTERSECTION: CIRCLE AND A HALF-PLANE

Figure 1.

To get the area of intersection with the semicircle we integrate from d to
the edge of the circle, r. After a little bit of algebra this gives us

ar .2 2 q2 g2 -QD
2 r d vr d r° arcsin s

N[=

[t = xdx =

When we double this and divide by 1r?, we get the expression for
cov(d, r) shown above.

GRAPHICS GEMS | Edited by ANDREW S. GLASSNER 39

.8 /.

AREA OF INTERSECTION:
CIRCLE AND A THICK LINE

Kelvin Thompson
Nth Graphics, Ltd
N\ Austin, Texas

Given a circle of radius r at a distance p from the center of a line of
thickness 2w (see Fig. 1), the fraction of the circle that overlaps the line
iIs defined in terms of the function cov(d), which in turn is defined in
terms of the coverage function found in “Area of Intersection: Circle and
a Half-Plane” in this volume:

cov(d) ; cov(d, r).
Our use of cov(d) depends on whether the line is thinner than the pixel:

For w < r (the line is thinner than the pixel):

Range of p Coverage
0O<psw 1 - cov(w - p) — cov(w + p)

WSp<sr-w cov(p — w) — cov(p + w)
r—wes<p cov(p - w)

For w > r (the line is thicker than the pixel):

Range of p Coverage
O<psw 1 - cov(w - p)
w<p cov(p - w)

The area of intersection is the coverage shown above multiplied by the
area of the circle mr.

GRAPHICS GEMS | Edited by ANDREW S. GLASSNER 40

.8 AREA OF INTERSECTION: CIRCLE AND A THICK LINE

w

Figure 1.

Proof, by Observation of the Geometry

For skinny lines we have:

Geometry: See Fig. 2. See Fig. 3.
Coverage: 1 - cov(w - p,) — cov(w + p) cov(p — w) — cov(p + w)
Range: O<p<sw WSpsTr-w

i
2w

Figure 2. Figure 3

GRAPHICS GEMS | Edited by ANDREW S. GLASSNER 41

.8 AREA OF INTERSECTION: CIRCLE AND A THICK LINE

-
w

Figure 4. Figure 5.

And if w > r, we invoke cov(d) once for each p:

Geometry: See Fig. 4. See Fig. 5.
Coverage: 1 - cov(w - p) cov(p - w)
Range: O<p<sw wWspsr+w

GRAPHICS GEMS | Edited by ANDREW S. GLASSNER

42

— .9 —

/ N\
AREA OF INTERSECTION:

TWO CIRCLES
Kelvin Thompson
The University of Texas at Austin

Given two filled circles (discs) with radii r, < r, whose centers are a

distance d apart (see Fig. 1), and some expressions relating to this
geometry,

P+ -n o _d+rn-n o n-on-d (1)
v 2d o 2d ’ a 2d ’
D). = 2w — xyr’.— x* — r* arcsin (5) 2
then the are(a 'of |nte rdection ‘is given by r) (2)
o(r,, r,, d)
™ <r,-r, 7m Egg;
=0 Zhrz Pt <o - afs) +oa(s + dor) (3c)
E otherwise Epl2 > - 17, a(x, r) + alx, r,) (3d)
Proof

Equations 3a and 3b are obvious by inspection, since they occur when (a)
disc 1 is completely inside disc 2, and (b) the two circles do not intersect.

GRAPHICS GEMS | Edited by ANDREW S. GLASSNER
43

.9 AREA OF INTERSECTION: TWO CIRCLES

We now prove the remaining expressions in Equation 3.

Figure 1

First we note that the area of intersection can be split into two
crescentlike shapes, where each of these shapes is the intersection
between a disc and half-plane. The two regions—denoted C,, and C, in
Fig. 2—are always separated by the chord connecting the two points
where the boundaries of the discs intersect (we call this the shared
chord).

From “Area of Intersection: Circle and a Half-Plane” in this volume we
know that the area of intersection between a disc and a half-plane is given
by a(x, r) in Equation 2, where x is the distance between the center of
the disc and the edge of the half-plane, and r is the radius of the disc.
Thus, once we know the distance between the center of each disc and the
shared chord, we can determine the area of intersection. Now let us draw
a triangle (see Fig. 3) whose vertices are at the centers of the two circles
and at one of the endpoints of the shared chord. When r?+ d* = r2, the
triangle is a right triangle (with r, the hypotenuse), and the distances x,,
and x, are 0 and d by inspection. However, if we hold r, and d
constant, then as r, gets larger and smaller, we encounter two differing

center of
disc 2

center of
disc 1

Figure 2.

GRAPHICS GEMS | Edited by ANDREW S. GLASSNER
44

.9 AREA OF INTERSECTION: TWO CIRCLES

|
Y

Figure 3.

geometries. When r2is less than r? + d*> we get the geometry shown
above, and this gives us the simultaneous equations

With a little bit of algebra we get the expressions for x, and x, in
Equation 1. Since x, and x, are the distances between the centers of the
discs and the shared chord, we immediately get Equation 3d.

Now we let r, grow larger than r? + d? and we get the geometry in
Fig. 4. This, in turn, gives us the relation

2 2 = 2 2
r:r—(s+d? =r; - s

Again, we apply a little algebra to get the expression for s in Equation 1.
Here, however, the geometry is a little more complicated. The distance
from the center of disc 2 to the shared chord is d + s, and the distance

Figure 4.

GRAPHICS GEMS | Edited by ANDREW S. GLASSNER
45

.9 AREA OF INTERSECTION: TWO CIRCLES

a(s,rl)

Figure 5.

from the center of disc 1 is s. However, the center of disc 1 is inside the
half-plane with which we are intersecting it, so Equation 2 is not valid.

To get the correct area for C, we use the expression m? - a(s, r,),
which leads us to Equation 3c.

GRAPHICS GEMS | Edited by ANDREW S. GLASSNER
46

1,10 —

VERTICAL DISTANCE
FROM A POINT
TO A LINE

Kelvin Thompson
Nth Graphics, Ltd.
Austin, Texas

Given a line with slope m = dy/dx, and “perpendicular” and “vertical”
distances p and v between a point and the line in Fig. 1, the ratio k
relating p and v is

1
1+ m*

k:E:
\Y

(The “vertical” distance v is the length of the shortest vertical line
segment between the point and the line.) Further, if -1 < m < 1, then
/42 <k <1

This relationship can be useful for rendering anti-aliased lines and
polygon edges—see Gupta and Sproull (1981), and “Area of Intersection:
Circle and Half-Plane” in this volume.

Proof

By elementary geometry, the three right triangles (two inside the third) in
Fig. 2 are similar.
v
A

Figure 1.

GRAPHICS GEMS | Edited by ANDREW S. GLASSNER 47

.10 VERTICAL DISTANCE FROM A POINT TO A LINE

p 1

-

vim

Figure 2.

Hence,
v/m 1

TV A VM T myl+ i/mt TN+ mE

GRAPHICS GEMS | Edited by ANDREW S. GLASSNER

48

—1L11—

A FAST
2D POINT-ON-LINE
TEST

Alan W. Paeth
University of Waterloo
Waterloo, Ontario, Canada

Introduction

Fast proximity testing between a point and a line on a two-dimensional
plane finds common application, particularly in graphics editors. Unfortu-
nately, the “first principles” perpendicular distance test requires a
square-root operation to form a normalized (Euclidean) vector of unit
length. This step is expensive and often unnecessary. For simple
“hit/miss” selection, the distance inequality may be squared to yield a
form requiring only multiplication, yielding faster code, which operates
on integer variables while maintaining mathematical consistency. Substi-
tution of an alternate vector norm reduces multiplication counts and in
some cases Yyields a more useful proximity test. For instance, a vector
rasterized using conventional DDA techniques generates a pixel set of
“on” points, whose distances to the underlying vector “backbone” all fall
within a common infinity-norm distance independent of line slope, though
an outer, bracketing Euclidean distance may always be fitted.

The code presented below was originally written to merge chains of
short vectors having similar slope into a larger constituent vector (Paeth,
1988), provided that all intermediate vertices lie along the common
parent—an application for which the Euclidean norm is both slow and
inappropriate. An example of test distances returned by the code appears
in the comments prefacing the C source code in the appendix.

GRAPHICS GEMS | Edited by ANDREW S. GLASSNER 49

.L11A FAST 2D POINT-ON-LINE TEST

Pseudo-Code

Given two points P and Q and a test point T
return 0 if T is not on the (infinite) line PQ
1 if T is on the open ray P
2 if T is within the line segment ﬁ
3 if T is on the open ray Q

if ABS((Qy - Py) x (Tx — Px) — (Ty — Py) x (Qx - PXx))

> MAX(ABS(Qx - Px), ABS(Qy - Py)) return[0];
If (Qx < Px and Px < Tx) or (Qy < Py and Py < Ty) return[1];
If (Tx < Px and Px < Qx) or (Ty < Py and Py < Qy) return[1];
If (Px < Qx and Qx < Tx) or (Py < Qy and Qy < Ty) return[3];
If (Tx < Qx and Qx < Px) or (Ty < Qy and Qy < Py) return][3];
return[2];

See also Solving the Nearest-Point-on-Curve Problem (607); A
Fast Approximation to the Hypotenuse (427); Line Drawing
Summary (98)

See Appendix 2 for C Implementation (654)

GRAPHICS GEMS | Edited by ANDREW S. GLASSNER 50

—1.12—

FAST CIRCLE-RECTANGLE
INTERSECTION CHECKING

Clifford A. Shaffer
Virginia Tech
\ Blacksburg, Virginia /

If you do a lot of graphics or spatial data programming, sooner or later
you will want to know if a circle and a rectangle intersect, or if a sphere
and a box intersect. This is even more likely if you use quadtree or octree
methods. (For example, you may want to find all nodes of the tree within
a certain Euclidean distance of a point). Unfortunately, this problem is
not as easy to solve as it appears. The first approach that normally comes
to mind is to check if any corner of the rectangle falls within the circle
(using a simple distance check). Unfortunately, this approach will some-
times give false negative results. There are three anomalous cases to
watch out for. First, while no corner of the rectangle may be in the circle,
a chord of the circle may overlap one edge of the rectangle (see Fig. 1).
Second, the rectangle might fall inside a bounding box placed around the
circle, but still be outside the circle (see Fig. 2). Third, the circle might lie
entirely inside the rectangle (see Fig. 3).

A fast algorithm is presented, for determining if a circle and a rectangle
intersect. The 3D case can easily be derived from the 2D case; although it
is a little longer, it requires only slightly more execution time. The 2D
version of this algorithm requires at most five comparisons (all but one
test against 0), three multiplies, five add/subtracts (four of which are for
normalization) and one absolute-value function. It basically works by
determining where the rectangle falls with respect to the center of the
circle. There are nine possibilities in 2D (27 in 3D): the rectangle can be
entirely to the NW, NE, SW, or SE of the circle’s centerpoint (four cases),
directly N, E, S, or W of the circle’s centerpoint (four cases) or in the
center (that is, containing the circle’s centerpoint). The algorithm

GRAPHICS GEMS | Edited by ANDREW S. GLASSNER 51

.12 FAST CIRCLE-RECTANGLE INTERSECTION CHECKING

Figure 1. Figure 2.

Figure 3

enumerates these cases and determines the distance between the single
closest point on the border of the rectangle and the center of the circle.

boolean Check_Intersect(R, C, Rad)

Return TRUE iff rectangle R intersects circle with centerpoint C and radius Rad.
begin Comments assume origin is at lower left corner
Translate coordinates, placing C at the origin
R.max « R.max - C; R.min « R.min - C;
If (R.max.x < 0) R to left of circle center
then if (R.max.y < 0) R in lower left corner
then return (R.max.x> + R.max.y? < Rad?);
else if (R.min.y > 0) R in upper left corner
then return (R.max.x> + R.min.y? < Rad?);
else R due West of circle
return (JR.max.x|< Rad):

GRAPHICS GEMS | Edited by ANDREW S. GLASSNER 52

.12 FAST CIRCLE-RECTANGLE INTERSECTION CHECKING

else if (R.min.x > 0) R to right of circle center
then if (R.max.y < 0) R in lower right corner
then return (R.min.x? + R.max.y? < Rad?);
else if (R min.y > 0) R in upper right corner
then return (R.min.x? + R.min.y? < Rad?);
else R due EAST of circle
return (R.min.x < Rad)
else R on circle vertical centerline
If (R.max.y < 0) R due South of circle
then return (JR.max.y| < Rad);
else if (R.min.y > 0) R due North of circle
then return (R.min.y < Rad);
else R contains circle centerpoint
return (TRUE);
end; Check_intersect

See also Fast Ray-Box Intersection (395); Spheres-to-Voxels
Conversion (327); A Simple Method for Box-Sphere Intersec-
tion Testing (335); Ray Tracing (383)

See Appendix 2 for C Implementation (656)

GRAPHICS GEMS | Edited by ANDREW S. GLASSNER 53

2D RENDERING

.1 —

/ CIRCLES OF \
INTEGRAL RADIUS ON

INTEGER LATTICES
Alan W. Paeth
University of Waterloo
Waterloo, Ontario, Canada
/

N\

Introduction

Consider the question of drawing circles of integral radius R on an
integer point lattice (i,j) so that select points on the lattice fall exactly
along the circle’s perimeter. This situation occurs implicitly when render-
ing circles of integral size on a raster display. Here the pixels represent
the point lattice. The question arises explicitly when we represent a circle
by an interpolating curve: a desirable control polygon places knots at
locations having exact representations. When the circles are small the
interpolation curve may degenerate to simple line segments, and a convex
polygon of irregular edge lengths (but precise circumferential vertices) is
rendered.

Sets of points (i,j) lying at a constant distance R solve the well-known
Pythagorean relation i> + j2 = R2. What values of R yield up large sets
of integral sides and what are their properties? A brute-force search of the
solution space yields those triangles with hypotenuse less than one
hundred. Restricting R to prime numbers assures triangles in lowest
terms; the generation of additional triangles with composite, relatively
prime, edge lengths is explained later:

It is unfortunate that in lowest terms the hypotenuse must be an odd
length. To show this, note that an even number (of form 2n and congru-
ent to 0 mod 2) is congruent to 0 mod 4 after squaring as (2n)? = 4n2
Similarly, squaring an odd yields (2n + 1)> = 4(n> + n) + 1, leaving it
congruent to 1 mod 4. In particular, even/odd parity is preserved under
squaring.

Parity implies that a triangle of even hypotenuse must be the sum of
either two even or two odd legs. The first case is immediately discarded

GRAPHICS GEMS | Edited by ANDREW S. GLASSNER 57

.1 CIRCLES OF INTEGRAL RADIUS ON INTEGER LATTICES

Table 1. Prime Pythagorean Triangles.

R) J
5 4 3
13 12 5
17 15 8
29 21 20
37 35 12
41 40 9
53 45 28
61 60 11
73 55 48
89 80 39
97 72 65

as it is not in lowest terms, as stated. In the remaining case, the sum of
two odd legs gives a hypotenuse length congruent to 2 mod 4, which
cannot be represented as a perfect square. Thus, even hypotenuse lengths
are ruled out for triangles in lowest terms. Worse, a hypotenuse with
length a power of two can have no (odd) factors in common with either
odd leg—the form is necessarily in lowest terms. Thus, no Pythagorean
triangles exist whose hypotenuse length is a power of two.

By dividing edge lengths by the hypotenuse, a unit vector is formed
with rational coefficients. For instance, binary floating point hardware
approximates real values by using scaled rationals, in which both the
iImplicit mantissa denominator and scaling exponent are powers of
two. Thus, there exist (under radix-2 or radix-16 floating point) no
values 0 < x < 1 and 0 <y < 1 such that x2 + y> = 1 when evaluated
in full precision. This further implies that the universal identity sin? x +
cos? x = 1.0 holds only as round-off allows.

Fortunately, the situation is not as severe in base ten. By happenstance
this base possesses an odd factor (5), which appears in Tab. 1 in the
(3, 4, 5) triangle known to the Egyptians. This allows Cartesian pairs
possessing exact integral length in finite digits. For instance, scaling the
above onto (6, 8, 10) and dividing gives (0.6, 0.8) as a unit vector. To
show that there are additional points of higher precision, additional
triangles are formed whose hypotenuse lengths are the product of two

GRAPHICS GEMS | Edited by ANDREW S. GLASSNER 58

.1 CIRCLES OF INTEGRAL RADIUS ON INTEGER LATTICES

(possibly identical) hypotenuse values appearing in the table. This yields
triangles of two types: the scaled versions of the original parents, plus
additional triangles which, surprisingly, are already in lowest terms (the
algebraic number theory is left as a recreation to the interested reader).

For instance, scaling (3, 4, 5) by five yields two triangles of common
hypotenuse: the expected (15, 20, 25), found directly, plus the unex-
pected (7, 24, 25) in lowest terms, found by searching edge lengths for
R = 25. Similarly, the product of table entries two and three (hypo-
tenuses of length 13 and 17) yield four integral triangles of hypotenuse
221: the originals scaled by 17 and 13, plus the additional members
(21, 220, 221), and (140, 171, 221).

This property may be applied to generate coordinate pairs with exact
decimal representation in a fixed number of digits. For any vector of
length 10° a lowest-term triangle of length 5P exists; normalization
yields a Cartesian pair of D decimal digits. Searching the set of powers
(5 25 125 625 3125 15625) for edge pairs through six digits yields
these unit vectors:

(0.6 0.8)

(0.28 0.96)
(0.352 0.936)
(0.5376 0.8432)
(0.07584 0.99712)
(0.658944 0.752192)

As a circle is symmetric about any line through the origin, the eight
symmetry axes implicit in the Cartesian coordinate system may be used
to map the point (a, b) into all eight octants, (xa, £ b) and (zb, * a),
but note that (1,0) gives rise to only three new points. Taking the first
two entries above, a twenty-point polygonal approximation to a circle
may be formed, in which all vertices are exact and required only two
significant digits for specification. Presented in counterclockwise direc-
tion beginning on the x-axis these are as follows:

(10, 00), (096, 0.28), (0.80, 0.60), (0.60, 0.80), (0.28, 0.96)
(0.0, 10, (-0.28, 0.96), (-0.60, 0.80), (-0.80, 0.60), (-0.96, 0.28)
(-L0, 0.0), (-0.96, -0.28), (~0.80, -0.60), (-0.60, -0.80), (-0.28, -0.96)
(0.0, -10), (0.28, -0.96), (0.60, -0.80), (0.80, -0.60), (0.96, -0.28)

GRAPHICS GEMS | Edited by ANDREW S. GLASSNER 59

.1 CIRCLES OF INTEGRAL RADIUS ON INTEGER LATTICES

Alternately, the method is useful in providing large triangle families with
common hypotenuse lengths by choosing values rich in table factors,.
For instance, the easily remembered 16385 = (2 +) has factors
(5 29 113) all within the prime table and yields thirteen triangles with
sides ranging from (256, 16383) through (11484, 11687). Much larger
triangle sets are possible. For instance, a hypotenuse length of 27625,
factored as (5 5 5 13 17) yields up thirty-one distinct triangles, making
possible a polygon coincident with a circle at two hundred fifty-two
rational vertices.

What can be said of a circle drawn on a conventional frame buffer? In
this setting, the method provides an excellent accuracy test for any
circle-drawing algorithm—for select integer radii many pixels should be
always visited regardless of implementation specifics, as they lie precisely
on the circle’s perimeter. Two noteworthy values are R= 325 (seven
triangles, sixty vertices in circular agreement) and R= 1105 (thirteen
triangles, one hundred eight vertices). Searching for the edge sets is
straightforward since the hypotenuse lengths are given, and may be sped
using the identity (i? — j?)% + (2ij)> = (i* + j»2 Row n of the decimal
coordinate table contains an entry ‘Tn(O.G‘. This Chebyshev polynomial
may be evaluated using the recursive form T . = 12T - T ., with
T,=1and T, = 0.6.

See also What Are the Coordinates of a Pixel? (246); Pecalcu-
lating Addresses for Fast Fills, Circles, and Lines (285)

GRAPHICS GEMS | Edited by ANDREW S. GLASSNER 60

.2/

N\

E NUMBERS FOR
GRAPH LABELS

Paul S. Heckbert
University of California
Berkeley, California

AN /

When creating a graph by computer, it is desirable to label the x and y
axes with “nice” numbers: simple decimal numbers. For example, if the
data range is 105 to 543, we’d probably want to plot the range from 100
to 600 and put tick marks every 100 units (see Fig. 1). Or if the data range
iIs 2.03 to 2.17, we’d probably plot a range from 2.00 to 2.20 with a tick
spacing of .05. Humans are good at choosing such “nice” numbers, but
simplistic algorithms are not. The naive label-selection algorithm takes
the data range and divides it into n equal intervals, but this usually
results in ugly tick labels. We here describe a simple method for generat-
ing nice graph labels.

The primary observation is that the “nicest” numbers in decimal are 1,
2, and 5, and all power-of-ten multiples of these numbers. We will use
only such numbers for the tick spacing, and place tick marks at multiples
of the tick spacing. We choose the minimum and maximum of the
graphed range in either of two ways: (a) loose: round the data minimum

AN

NI

O

b [

. | | 1
naive labels: 105,00 214.50 324.00 433.50 543.00
| | I | T |
loose labels: 100 200 300 400 500 60(
. _ T T T T
tight labels. 105 200 300 400 500 543
Figure 1.

GRAPHICS GEMS | Edited by ANDREW S. GLASSNER 61

.2 NICE NUMBERS FOR GRAPH LABELS

down, and the data maximum up, to compute the graph minimum and
maximum, respectively, or (b) tight: use the data minimum and maximum
for the graph minimum and maximum. The relative merits of these two
approaches are discussed in Tufte (1983). Below is some pseudo-code for
the loose method:

const ntick « 5; desired number of tick marks

loose label: label the data range from min to max loosely.
(tight method is similar)

procedure loose label(min, max: real);

nfrac: int;

d: real; tick mark spacing
graphmin, graphmax: real; graph range min and max
range, x: real;

begin

range < nicenum(max — min, false);

d — nicenum(range/(ntick — 1), true);

graphmin — floor(min/d)*d,

graphmax < ceiling(max/d)*d;

nfrac — max(- floor(logl0(d)), 0); number of fractional digits to show

for x < graphmin to graphmax + .5*d step d do
put tick mark at x, with a numerical label showing nfrac fraction digits
endloop;

endproc loose_label,

nicenum: find a “nice” number approximately equal to x.
Round the number if round = true, take ceiling if round = false.

function nicenum(x: real; round: boolean): real;

exp: int; exponent of x
f: real,; fractional part of x
nf: real; nice, rounded fraction
begin

exp « floor(loglO(x));

f — x/expt(10., exp); between 1 and 10

GRAPHICS GEMS | Edited by ANDREW S. GLASSNER 62

.2 NICE NUMBERS FOR GRAPH LABELS

if round then
if f <15 then nf « 1,
else if f < 3. then nf « 2.;
else if f < 7. then nf « 5.
else nf « 10,

else
if f <1 then nf « 1,
else if f < 2. then nf « 2,
else if f < 5. then nf « 5,
else nf « 10,

return nf*expt(10., exp);

endfunc nicenum;

We assume in the above that logl0(z) is log base 10 of z.

We also assume expt(a, n) = a" for integer n. But note that the exponen-
tiation routines in some math libraries are inexact for integer arguments,
and such errors can cause the above code to fail. On early UNIX systems
| found that pow(10.,2.) # 100 exactly, so | wrote my own expt function by
multiplying or dividing in a loop. The pow routine in current (BSD 4.3)
UNIX is trustworthy, however.

See Appendix 2 for C Implementation (657)

GRAPHICS GEMS | Edited by ANDREW S. GLASSNER 63

—IL.3—
EFFICIENT GENERATION OF
SAMPLING JITTER USING
LOOK-UP TABLES

Joseph M. Cychosz
Purdue University
W. Lafayette, Indiana

Introduction

Presented in this paper is a method for generating sampling jitter using a
limited number of random numbers. The proposed jitter function is a
function of three variables, namely the sample location (x,y) and the
sample number (s) for the location. Furthermore, the method will pro-
duce repeatable jitter for all x and y without requiring either the storage
of a large number of random numbers, or the consistent access of x, vy,
and s. This paper examines the application of this jitter function to the
ray-tracing algorithm.

Recent advances in the ray-tracing algorithm have used stochastic
sampling techniques as a method of rendering anti-aliased images. Cook
et al. (1984) pioneered this approach in their work on “distributed ray
tracing.” Other works by Cook (1983, 1986) examined the use of stochas-
tic sampling in ray tracing from a theoretical perspective. Lee et al.
(1985) and Dippé and Wold (1985) also examined the use of stochastic
sampling in ray tracing. Kajiya (1986) in a later work used stochastic
sampling as a basis for evaluating the “rendering equation.” The three
works by Cook, Lee, and Dippé used a jitter function to simulate Monte
Carlo integration, in which random sampling points for the image plane
are generated. The generated jitter is then used to perturb the sampling
rays as they pass through the image plane. Cook, however, (1985, 1986)
identified that the distribution of samples should approximate a Poisson
disk based on Yellot’s study (1983) of the distribution of cones in the
retina of Rhesus monkeys.

GRAPHICS GEMS | Edited by ANDREW S. GLASSNER 64

1.3 EFFICIENT GENERATION OF SAMPLING JITTER USING LOOK-UP TABLES

Although it is not desirable to have a method that can produce a
consistent set of sample points for each frame in an animation, it may be
desirable to have a method that can produce a consistent set of sample
points during the rendering of an individual frame. For example, in a
scan-conversion environment using a z-buffer such as Reyes (Cook et al.,
1987) each polygon should be sampled with the same set of points for
each pixel being processed. Without consistency, temporal artifacts may
occur as the sample points move within the pixels. A basic approach to
this problem would be to save all of the sample points used in the
generation of an image for reuse at a later time. For a 512 x 512 image
with 16 samples per pixel, more than eight million numbers would have
to be stored. An alternative approach might be to use a congruential
random-number generator to generate the sample points as each pixel is
processed. Production of a consistent set of sample points would not only
require that the initial seed of the random-number function be the same,
but also that the pixels be accessed in a consistent manner. An optimiza-
tion algorithm, such as screen space bounding, may eliminate the need to
examine certain pixels, thereby disturbing the random-number sequence.
Other optimization algorithms may alter the number of samples required
for particular pixels. Multiprocessor implementations would experience
similar problems in the generation of consistent jitter.

In ray tracing only the efficiency aspect of generating sampling jitter is
of concern. Multiprocessor implementations (Dippé and Swensen, 1984;
Cleary et al.,, 1983; Nishimura et al., 1983) and computationally dis-
tributed approaches (Arvo and Kirk, 1987; Arvo and Kirk, 1987 Film
Show Contribution) would experience similar problems, only this time in
the generation of jitter without spatial regularity.

A Jitter Function Using Look-up Tables

With stochastic sampling, the sampling locations within the area of a
pixel are perturbed, or jittered. To implement this method of anti-alias-
ing, an efficient method for generating jitter is necessary. As stated
earlier, the generated random numbers must be a function of both the
pixel location and the sample number for that pixel. Although it is not
necessary that the function have a long period (that is, the time it takes

GRAPHICS GEMS | Edited by ANDREW S. GLASSNER 65

1.3 EFFICIENT GENERATION OF SAMPLING JITTER USING LOOK-UP TABLES

for the number sequence to repeat), it is necessary that the function not
exhibit any patterns of spatial or temporal regularity with respect to the
image. Shown below is an implementation of the proposed jitter function:
x. = URAND(mod(x + 2y + IRAND(mod(x + s,n)), n)

y, = URAND(mod(y + 2x + IRAND(mod(y + s + 1,n)), n),

where
X, Y = the location of the given pixel,
S = the sample number for the given pixel,
X; = the amount of jitter in x for the sample point,
Y; = the amount of jitter in y for the sample point,

URAND= a table of uniform random numbers,

T
>
Z
)
I

a table of random integers of the range 0 to n,
n = the number of elements in the random-number tables.

The jitter function uses two look-up tables. One table, URAND, simply
contains a uniformly distributed set of random numbers, which may be
prescaled to the size of the jitter for final use in the sampling process. The
numbers in these tables may be generated using standard, random-num-
ber generation techniques, such as those found in Knuth (1981) in press
(1988), or in L’Ecuyer (1988). The second table, IRAND, contains a set of
integers, which is used as a shuffle generator to prevent the function
from exhibiting any spatial patterns. Without this table, the sampling
pattern generated by the function would repeat, thus causing a low-
frequency artifact to appear from the resulting correlation of the sam-
pling pattern. The y + s + | component of the equation for y-jitter is
used to ensure that the x and y indices into URAND are nonequal for all
values of x and y. Should they become equal, only the diagonal of the
pixel will be sampled. This component can be simplified to y + s by

GRAPHICS GEMS | Edited by ANDREW S. GLASSNER 66

1.3 EFFICIENT GENERATION OF SAMPLING JITTER USING LOOK-UP TABLES

either extending IRAND to n + 1 elements and by repeating the first
element, or by substituting two independent tables, one for x and one for
y, for URAND. The latter approach is more desirable, especially if the
scaling of the jitter is nonuniform in x and vy.

A slightly more computationally efficient jitter function can be imple-
mented by using a bitwise or operation to compute the sums x + 2y and
y + 2x. Shown below is an implementation of the jitter function using the
or operations and independent tables for URAND:

X; = URANX(mod(or(x,2y) + IRAND(mod(x + s,n)),n)

y, = URANY(mod(or(y,2x) + IRAND(mod(y + s,n)),n).

Evaluation of the Computational Cost

If the size of the look-up tables is a power of two, then the mod functions
can be replaced with bitwise and operations. Multiplications by 2 may be
replaced with shift operations. This allows the function to be imple-
mented fairly efficiently, requiring only four additions, four indexed
loads, four and operations, and two shift operations.

Typical pseudo-random-number generators use a feedback approach,
in which each number generated is used as a seed to generate the next
number in the sequence. Random-number generators of this type, other-
wise known as linear congruential generators (LCG), have the follow-
ing form:

R.,, = mod(R;s + ¢, m),

i+1

where R,,, is the next random number in the sequence, and R, is the
current seed. S, ¢, and m are the multiplier, and additive and modulo
terms of the generator. While this method seems to be computationally
simpler than the proposed approach, this computation often requires the
use of either double-precision or multiple-precision integer arithmetic,
thus requiring several multiplications and additions. Furthermore, this
approach does not exhibit the desirable repeatability that the jitter func-

GRAPHICS GEMS | Edited by ANDREW S. GLASSNER 67

1.3 EFFICIENT GENERATION OF SAMPLING JITTER USING LOOK-UP TABLES

Table 1. Operational Cost Comparison for Jitter Generations.

Operation Jitter 1 Jitter 2 LCG
multiplies 0 0 4
adds 3 2 2
indexed loads 2 2 0
and/Zors 2 3 0
shifts 1 1 0
Total 8 8 6

tions do. Table 1 compares the unweighted operational costs of the
jitter-generation methods, and Table 2 compares the measured computa-
tional costs of the methods for a variety of computers. The times reported
in Table 2 are the CPU times in seconds required to generate jitter for a
512 by 512 image with 16 samples per pixel. The random-number
generator used was R, = R, 1629 + 1 modulus 1048576, with an
initial seed of 98531.

Table 2. Computational Comparison for Various CPUs.

Jitter 1 Jitter 2 LCG
Machine Jitter 1 Jitter 2 LCG Inline Inline Inline Comments

Ardent Titan 29.53 29.48 73.21 8.40 7.88 43.22 P2 16Mhz

MIPS R2000
6.76 6.76 22.59 4.13 3.88 22.59 P3 32Mhz
MIPS R3000/3010
Cray YMP 7.38 7.61 9.73 232 2.34 4,26 6ns

ETA 10-P* 83.55 83.55 91.82 32.47 32.47 49.30 21ns
Gould NP1 32.30 32.75 41.33 16.80 16.98 29.47 Arithmetic
Accelerator
SGI4D/20G 19.68 19.69 37.69 10.10 10.07 3291 12.56Mhz
MIPS R2000A
Sun 3/160 9295 8962 36730 63.50 63.51 248.08 16Mhz 68020,
12.5Mhz 68881
Sun 4 /280 17.70 17.70 103.15 13.85 13.82 133.46 16Mhz SPARC
FPU1, 32kb
cache

GRAPHICS GEMS | Edited by ANDREW S. GLASSNER 68

1.3 EFFICIENT GENERATION OF SAMPLING JITTER USING LOOK-UP TABLES

Evaluation of the Sampling Properties

The sampling properties of the two jitter functions are evaluated using
approaches similar to those used by Cook. The visual results of these
tests are presented in Figs. 1 and 2. The first test (shown in the upper left
of each figure), examines the sampling pattern generated by the func-
tions. A good sampling pattern will have the points randomly distributed
with very little clustering of the points. Once again, to simulate a Poisson
disk distribution, the sample points should be randomly distributed with

Figure 1. lJitter function 1 results. Upper left: sampling pattern; upper right: 2D FFT
of the pattern; lower left: image of single-point/pixel sampled comb; lower right:
image of 16-points/pixel sampled comb.

GRAPHICS GEMS | Edited by ANDREW S. GLASSNER 69

1.3 EFFICIENT GENERATION OF SAMPLING JITTER USING LOOK-UP TABLES

Figure 2. lJitter function 2 results. Upper left: sampling pattern; upper right: 2D FFT
of the pattern, lower left: image of single-point/pixel-sampled comb; lower right:
image of 16-point/pixel-sampled comb.

some minimal separation. In the test, the pixels are 8 x 8 with 1 sample
per pixel. The 2D Fourier transform of the sample pattern is shown in the
upper right of each figure. For comparison, the 2D Fourier transforms for
uniformly spaced sampling and for correlated random sampling are
shown in Fig. 3.

The second test examines the image resulting from the sampling of a
comb of slivers, in which each sliver is 1.01 pixels wide and 50 pixels
high. The results for jittered single-point sampling are shown in the lower
left of Figs. 1 and 2. The lower right shows the results for jittered

GRAPHICS GEMS | Edited by ANDREW S. GLASSNER 70

1.3 EFFICIENT GENERATION OF SAMPLING JITTER USING LOOK-UP TABLES

Figure 3. Left: 2D FFT of uniformly spaced sampling; right: 2D FFT of correlated
sampling using 128 by 128 tiles.

Figure 4. Comparison images. Upper Left: single-point/pixel uniform sampling;
lower left: 16-point/pixel uniform sampling; upper right: 16-point/pixel random
sampling; lower right: “ideal” image.

GRAPHICS GEMS | Edited by ANDREW S. GLASSNER 71

1.3 EFFICIENT GENERATION OF SAMPLING JITTER USING LOOK-UP TABLES

Table 3. Error Analysis Results for Single- and 16-Point Sampling.

Average Standard
Sampling Method Error Deviation RMS Error
Single-point sampling:
Random .3319 .23561 .1654
Jitter function 1 .3332 .2361 .1668
Jitter function 2 3297 2336 .1632
Uniformly spaced 3313 2347 .1648
16-point sampling:
Random 0774 0657 .0103
Jitter function 1 0787 0651 .0104
Jitter function 2 .0804 0701 0114
16-point subpixel sampling:
Random .0519 0427 .0045
Jitter function 1 .0533 .0440 .0048
Jitter function 2 .0544 0439 .0049
Uniformly spaces 0794 .0568 .0095

16-point subpixel sampling. For comparison, Fig. 4 shows results of
uniformly spaced sampling for single-point and 16-point sampling, and
16-point random sampling, as well as the “ideal” image.

Table 3 compares the error of the various sampling methods for single-
and 16-point sampling. The error is determined by comparing the pixel
values of the resulting image for the sampling method with the pixel
values of an ideal square-aperture sampled image. Both jitter functions
produce error levels comparable to that of completely random sampling
(that is, the jitter is generated using the LCG random-number generator
presented earlier) for all three categories of sampling. Sixteen point
subpixel random sampling produces the least error, followed closely by
16-point subpixel sampling using jitter functions 1 and 2.

Use of the Jitter Function in Ray Tracing
In ray tracing, the jitter function is used to perturb the direction of the
sampling rays as they pass through the image plane. Other sampling rays

may be jittered also, such as the rays used to sample an area light source

GRAPHICS GEMS | Edited by ANDREW S. GLASSNER 72

1.3 EFFICIENT GENERATION OF SAMPLING JITTER USING LOOK-UP TABLES

to produce soft shadows, or the location of the eye to simulate depth of
focus (Cook et al.,, 1984). To anti-alias a given pixel located at x, y, the
following equations may be used to perturb the point where the ray
passes through the image plane:

S

X, = X + WX(XJ. - .5)

Yo = Y.t wy, - .5),
where
X, Y, = the sampling location for the pixel,
X, Yy, = the location of the center for the pixel,
W, W, = the width and height of the pixel,
Xp Y, = the amount of jitter (0. to 1.).

Traditional ray tracing passes the ray through the center of the pixel for
single ray sampling, or through uniformly spaced points within the pixel
for multiple ray sampling. To jitter a square set of regularly spaced
sample points the following equations may be used:

W = Xx W = &
Xs \/ﬁ’ ys \/ﬁ
= b d Vn
X = X, - > + W, Mmo (s—l, n)+wxsyj,
W s - 10
= - Y 4 - = 4+ ,
Y. =Y, 5 WysfloorD NRlE WY,
where
s = the sample number for the pixel,
n = the number of samples per pixel (1 to n).

GRAPHICS GEMS | Edited by ANDREW S. GLASSNER 73

1.3 EFFICIENT GENERATION OF SAMPLING JITTER USING LOOK-UP TABLES

A final value for the pixel may be found by computing the average of the
samples for the pixel (that is, applying a box filter). Other filter functions
may be used by weighting the samples by the shape of the filter function.

Conclusions

Presented is a jittering method that is not only computationally efficient
(shown in Tables 1 and 2), but that also produces image-sampling results
comparable to random jittering (shown graphically in Figures 1, 2, and 4,
and analytically in Table 3). The method can also generate reproducible
jitter that is a function of pixel location and sample number. To aid in
providing insight into the construction of a jitter function, two jittering
methods using look-up tables are presented for comparison. Function 1
exhibits a good sampling pattern with a Poisson distribution; function 2,
on the other hand, has a less desirable sampling pattern with some degree
of spatial regularity.

See also Ray Tracing (383); Scan Conversion Summary (75)

See Appendix 2 for C Implementation (660)

GRAPHICS GEMS | Edited by ANDREW S. GLASSNER 74

SCAN CONVERSION
SUMMARY

Scan conversion is the general technique of rendering a piece of
2D geometry into a discrete mesh. Typically in graphics we use
scan conversion to render polygons, lines, alphanumeric char-
acters, and other such image elements into a rectangular grid.
Usually this grid is either a frame buffer or a piece of standard
computer memory, though various other approaches are possi-
ble. (Imagine a Logo turtle carrying cans of paint, trailing paint
behind it as it crawls.)

The next four Gems demonstrate some different ways to
scan-convert polygons. They show some different approaches to
trading off speed, simplicity, efficiency, support of anti-aliasing,
and generality.

See also Anti-Aliasing Gems; Scanline Depth Gradient of a
Z-Buffered Triangle (361)

GRAPHICS GEMS | Edited by ANDREW S. GLASSNER 75

—.4—

FAST ANTI-ALIASING
POLYGON SCAN
CONVERSION

Jack C. Morrison
Evergreen, Colorado

Introduction

This algorithm scan-converts polygons into raster lines at subpixel res-
olution, providing some anti-aliasing benefits without the expense of
polygon-to-pixel clipping or brute-force subpixel scan conversion. The
resulting data may be used with depth-buffer or scanline anti-aliasing
hidden-surface methods.

Background

One approach to reducing aliasing artifacts (for example, “jaggies”) in
computer-generated pictures is to render the image at a high resolution,
then average the resulting pixel data to a lower-resolution display. Al-
though this method requires no new algorithms, the additional memory
and execution time required to prevent aliasing effectively is high.
More sophisticated anti-aliasing hidden-surface methods, such as
Carpenter’s A-Buffer (1984), typically require information about the
coverage of a pixel by the polygon being rendered. The usual method for
extracting this subpixel detail is to apply repeatedly a 2D clipping
algorithm to clip the original polygon to the boundaries of each pixel, and
compute the exact fraction of the pixel area covered by the polygon. This
area is then used to scale the polygon color intensity. The A-Buffer

GRAPHICS GEMS | Edited by ANDREW S. GLASSNER 76

.4 FAST ANTI-ALIASING POLYGON SCAN CONVERSION

method also converts the clipped polygon into a bitmask for visible
surface determination within the pixel.

For smooth-shaded and textured images, a significant amount of data is
maintained at each polygon vertex, including model coordinates (for
texture computation), world coordinates and normal vector (for shading),
and display coordinates (for pixel coverage and depth-prioritizing). All
this information must be interpolated at each clipping boundary, making
the pixel-clipping method expensive. Since ultimately only a single shad-
ing result is needed at each pixel, a faster approximate method is
possible.

The Scan Conversion Algorithm

The following algorithm efficiently determines approximate pixel cover-
ages from a polygon represented by its vertex coordinates. Coverage area
and a subpixel bitmask can both be readily computed.

It is assumed that the polygon to be converted is convex, and that the
vertices are consistently ordered (for example, clockwise). For each
vertex, integer x (horizontal) and y (vertical) subpixel coordinates are
computed from transformed floating point image coordinates. In fact,
only the y-coordinates need be stored for each vertex; x-coordinates are
referenced only once and can therefore be computed on the fly. X
resolution can be increased at no cost, up to the number of bits available
for an integer. Increasing y resolution requires two integers and a small
time increase per subpixel y-coordinate. Powers of two are always
convenient, and it seems wise to keep the two resolutions on the same
order of magnitude. For clarity, the pseudo-code assumes a subpixel
resolution of eight times the final rendering resolution.

In this algorithm, x and y refer to subpixel coordinates, while pixel
and scanline refer to their corresponding low-resolution counterparts.
Both refer to the display coordinate system (see Fig. 1). Polygon x and y
coordinates are interpolated at subpixel resolution, but all other vertex
information is interpolated only at display pixel resolution. To compute
pixel coverage, only the left and right x-coordinates of the polygon at
each y-coordinate within the current scanline need to be saved.

GRAPHICS GEMS | Edited by ANDREW S. GLASSNER 77

.4 FAST ANTI-ALIASING POLYGON SCAN CONVERSION

scanline 1
L— subpixel
7 [
6
5
scanline 0 4
3
1 2
1
Y O
012345678
x —f
| | |
pixel 0 pixel 1
Figure 1. Subpixel display coordinates.
Vertex: record [polygon vertex information
model, world,
normal, image: vector; geometric information
X, Y. integer; subpixel display coordinates
I
Vleft, VnextLeft: Vertex; limits of current left polygon edge
Vright, VnextRight: Vertex; limits of current right polygon edge

VscanLeft, VscanRight: Vertex; interpolated vertices at scanline

subpixel x-coordinates of polygon within current scanline
xLeft, xRight: array [0..7] of integer,

GRAPHICS GEMS | Edited by ANDREW S. GLASSNER 78

.4 FAST ANTI-ALIASING POLYGON SCAN CONVERSION

VnextLeft
VnextRight
VscanLeft VscanRight
Vieft
Vright

Figure 2. Polygon vertices during scan conversion.

Scan convert one polygon. For each scanline, build xLeft[] and xRight[]
with subpixel x edges at each of eight subpixel y’s, and interpolate other

polygon vertex information once. See Fig. 2.

begin
Vlieft — Polygon vertex V with minimum V.y;
VnextLeft — (Vleft + 1) mod numVertex;
Vright — Vleft;
VnextRight — (Vright - 1) mod numVertex;

for each subpixel y covered by polygon
for y « Vlefty by 1 do

update edge data if reached next vertex
If y = VnextLeft.y
then begin
Vieft « VnextLeft;
VnextLeft — (Vleft + 1) mod numVertex;

end,
If y = VnextRight.y
then begin

Vright « VnextRight;
VnextRight — (Vright - 1) mod numVertex;
end,

GRAPHICS GEMS | Edited by ANDREW S. GLASSNER

79

.4 FAST ANTI-ALIASING POLYGON SCAN CONVERSION

If y > VnextLeft.y or y > VnextRight.y
then begin last scanline
call renderScanline(Vleft, Vright,x);
return;
end;

interpolate subpixel x endpoints at this subpixel y

xLeft [y mod 8] — lerp(Vleft.x, VnextLeft.x at y);

xRight[y mod 8] ~ lerp(Vright.x, VnextRight.x at y);

if (y mod 8) =7

then begin end of scanline

VscanLeft — lerp(Vleft, VnextLeft at y);
VscanRight — lerp(Vright, VnextRight at y);
call renderScanline(VscanLeft, VscanRight, %);
end;

endloop;

end;

Render one scanline of the polygon from the subpixel information. The
shading and renderPixel procedures are beyond the scope of this Gem!

renderScanline: procedure (VscanLeft, VscanRight, scanLine);
begin

for each pixel in scanline overlapped by polygon
min(xLeft| max(xRight) + 7

8
area — computePixelCoverage(pixel);
Vpixel — lerp(VscanLeft, VscanRight at pixel);

for pixel - to do

color - % U shading(Vpixel);
mask — computePixelMask(pixel); (if needed)
insert anti-aliased pixel data into hidden surface routine
renderPixel(scanLine, pixel, color, mask);
endloop;
end;
Compute fraction of the pixel (actually, number of subpixels) covered by

GRAPHICS GEMS | Edited by ANDREW S. GLASSNER 80

.4 FAST ANTI-ALIASING POLYGON SCAN CONVERSION

the polygon. See Fig. 3.

computePixelCoverage: procedure (pixel);
begin
area — 0;
pixelLeft — pixel O 8; subpixel edges of pixel
pixelRight — pixelLeft + 7;
fory « 0to 7 do
partialArea — min(xRight[y], pixelRight) —
max(xLeft[y], pixelLeft) + 1;
iIf partialArea > 0 polygon overlaps this pixel
then area — area + partialArea;

endloop;
return area;
end;
Combined
Mask
Right
Mask
Left
Mask
pixelRight Partial 1
xLeft[6] xRight[6] i Area ¢ ‘
0 FF 00 00
[o FF 00 00
——— 2 FF CO CO
8 FF FF FF
s 7F FC 1C
3 07 FF 07
e C 00 FF 00
T To 00 FF 00
1 xLeft[1] xRight[1]
pixelLeft

Figure 3. Example pixel coverage computation.

GRAPHICS GEMS | Edited by ANDREW S. GLASSNER

.4 FAST ANTI-ALIASING POLYGON SCAN CONVERSION

Compute subpixel bitmask indicating which parts of the pixel are covered by
the polygon. Look-up tables speed up mask computation when the polygon
edge occurs inside the pixel. See Fig. 3.

computePixelMask: procedure (pixel);

leftMaskTable: array[0..7] of char ~

[OXFF, Ox7F, Ox3F, Ox1F, Ox0F, 0x07, 0x03, 0x01];
rightMaskTable: array[0..7] of char —

[0x80, 0xCO0, OxEO, OxFO0, OxF8, OxFC, OxFE, OxFF];

begin
pixelLeft — pixel O 8; subpixel edges of pixel
pixelRight ~ pixelLeft + 7;
fory « 0to 7 do
If xLeft][y] < pixelLeft
then leftMask ~ OxFF;
else if xLeft[y] > pixelRight
then leftMask ~ O;
else left edge of polygon is inside pixel
leftMask ~ leftMaskTable[xLeft[y] — pixelLeft];
if xRight[y] > pixelRight
then rightMask ~ OxFF;
else if xRight[y] < pixelLeft
then rightMask ~ O0;
else right edge of polygon is inside pixel
rightMask ~ rightMaskTable[xRight[y] — pixelLeft];
mask[y] — leftMask bit-and rightMask;
endloop;
return mask;
end;

Implementation Notes

Care must be taken at the first and last scanline of a polygon, where some
y-coordinates may not be covered. Setting the uncovered xLeft[]] and
xRight[] values to -1 is sufficient, making sure renderScanline ignores
such edges.

GRAPHICS GEMS | Edited by ANDREW S. GLASSNER 82

.4 FAST ANTI-ALIASING POLYGON SCAN CONVERSION

Pixel area (and bitmask) computation can be readily optimized to make
use of pixel-to-pixel coherence, since most pixels within a scanline are
completely covered by the polygon. One approach is to determine the
maximum xLeft[] and minimum xRight[], for all subpixel y’s, at the
beginning of renderScanline. ComputePixelCoverage can then imme-
diately return maximum area for pixels between these limits.

If the pixel bitmask is to be computed at coarser resolution than the
area, the left and right limits should be averaged over each group of
y-coordinates to compute partial bitmasks. The lookup tables can ac-
count for reducing x resolution automatically. If both bitmasks and areas
are desired, they can be computed together to reduce overhead, or the
area determined from the bitmask. (See Carpenter's A-Buffer article for
tips on computing area from a bitmask.)

As described, the scan conversion algorithm is suitable for depth-buffer
hidden-surface methods, where one polygon at a time is rendered. For
scanline methods, where one scanline at a time is rendered (for all
polygons), standard interpolation or clipping procedures can be used to
extract polygon vertex data at the scanline limits, with the above algo-
rithm used within the scanline to compute subpixel detail.

For an RGBaZ-style hidden-surface method, such as the one described
by Duff (1985), it may be useful to interpolate Z-coordinates (depth) at
high resolution also, so that depth at each corner of the pixel can be
determined more accurately.

For related information see Catmull (1978), Crow (1977), and Suther-
land (1974).

See Appendix 2 for C Implementation (662)

GRAPHICS GEMS | Edited by ANDREW S. GLASSNER 83

—I1.5—
GENERIC
CONVEX POLYGON SCAN
CONVERSION AND CLIPPING

Paul S. Heckbert
University of California
Berkeley, California

AN /

When doing faceted shading, Gouraud shading, Phong shading, or texture
mapping in a painter’s or z-buffer hidden-surface algorithm, typically a
small set of floating point attributes need to be interpolated across a
polygon. For example, when doing z-buffered color Gouraud shading, the
four attributes r, g, b, and z are used: they are initialized at each
polygon vertex and interpolated at each pixel within the polygon. If linear
interpolation is used for all attributes, then the code for interpolating
each attribute is very similar. Maintaining separate source code for scan
converting each different attribute set becomes very tedious.

| see three general techniques for reducing the code redundancy: (1)
use a vertex structure with dynamic size and layout containing only the
attribute set of interest; (2) use a static vertex structure that includes all
attributes, and interpolate everything; and (3) use a static vertex structure
but interpolate only the attributes of interest. Alternative (1) is the most
space-efficient, but attribute offsets must be computed at run-time, so it is
slow. Method (2) reduces access time because the fixed structure offsets
allow compile-time optimization, but it is less efficient overall because
unused attributes would be allocated and interpolated. Method (3) is the
fastest, as offsets are fixed at compile-time, and only relevant attributes
are interpolated. It uses more storage than the first method, however.

The following is C code that | have evolved over the years to perform
scan conversion and clipping of generic convex, planar polygons. Use of
method (3) allows a variety of attribute sets to be handled efficiently
without changing the scan converter or clipper code, as those routines
are device-independent and ignorant of the semantics of the attributes

GRAPHICS GEMS | Edited by ANDREW S. GLASSNER 84

.5 GENERIC CONVEX POLYGON SCAN CONVERSION AND CLIPPING

being interpolated. The scan converter is based on an algorithm by
Frank Crow at NYIT, and the clipper is based on an implementation of
Sutherland-Hodgman by Ed Catmull and Alvy Ray Smith (Sutherland and
Hodgman, 1974). | rewrote and evolved the code several times at Pacific
Data Images, Pixar, and UC Berkeley. | have been careful with roundoff;
consequently, polygons sharing an edge abut perfectly with no gaps or
overlap. Lance Williams suggested interpolation of generic attributes, and
interpolation masks were inspired by Whitted and Weimer (1982). Henry
Moreton suggested the texture coordinate interpolation trick involving
division by sw.

The general method for using these routines is as follows: load data
into the vertices, set the polygon’s mask to indicate which attributes are
in use, call the clipper, modify the vertex attributes (typically a homoge-
neous divide), set the polygon’s mask to indicate which attributes are
still in use, call the scan converter, supplying a callback procedure that is
called by poly_scan at each pixel, and in the pixel routine, unload data
from the interpolated point, using it to draw into a raster image.

There are four files of generic code,

poly.h Polygon data structure.

poly.c Utility subroutines to print polygons.

poly _scan.c Scan convert a convex, planar polygon by uniform
sampling at pixel centers.

poly clip.c Clip a convex, planar polygon to a screen space

parallelepiped,

and two files giving simple examples of their use:

scantest.c Gouraud shading with z-buffer using poly_scan.
fancytest.c Phong shading and texture mapping using poly_clip
and poly scan.

You can change anything in the Poly_vert structure definition except the
screen space position fields sx, sy, sz, and sw, which are required by

GRAPHICS GEMS | Edited by ANDREW S. GLASSNER 85

.5 GENERIC CONVEX POLYGON SCAN CONVERSION AND CLIPPING

poly scan and poly clip. All fields of Poly vert should be doubles.
Note that incorrect settings of the interpolation mask can result in
meaningless attribute values or wasted compute time. For C environ-
ments that don’t have the bcopy routine, use #define bcopy (from, to,
nbytes) memcpy(to, from, nbytes).

Note that linear interpolation is not correct for all attributes; it is
appropriate only when the mapping between screen space x, y and the
attribute is affine (linear plus a constant). Incidentally, linear interpolation
for Gouraud and Phong shading on polygons with more than three sides
gives results that are, in general, not rotation-invariant, so in this sense
linear interpolation is not “correct” for those purposes. The errors
caused by linear-interpolated Gouraud and Phong shading are invisible in
most images, however, unlike the errors of linear-interpolated perspective
texture coordinates, which typically cause a distracting “rubber sheet”
effect. A discussion of affine and projective mappings and their efficient
computation is given in Heckbert (1989).

See also Concave Polygon Scan Conversion (87)

See Appendix 2 for C Implementation (667)

GRAPHICS GEMS | Edited by ANDREW S. GLASSNER 86

1.6 —

N\
CONCAVE POLYGON

SCAN CONVERSION

Paul S. Heckbert
University of California
\ Berkeley, California /

Scan conversion of concave polygons or nonsimple polygons is more
complex than scan conversion of convex polygons because each scan line
can intersect the polygon in more than one interval or span of pixels. (A
polygon is simple if it does not intersect itself.) When scan-converting
concave polygons one must keep track of a variable-length active edge
list of polygon edges intersecting the current scan line. This is not as
difficult as it may seem. Many published algorithms for concave (or
convex) polygon scan conversion employ voluminous code to handle the
special cases of horizontal edges. In fact, such cases do not require
special treatment if care is taken in the inequalities of the conditionals.
The program resulting from this approach, listed below, is surprisingly
simple. It is very similar to that of Rogers (1985), p. 76.

This program assumes the polygon is described by a single cyclic loop
of points. To describe polygons with holes using this data structure,
construct “bridges” joining the holes to the outer vertices. For example,
if the outer polygon has vertices p[i] for 0 < i < np, and the inner
polygon has vertices g[i] for 0 < i < ng, construct a single polygon
consistingldfifiheMertices:MM p[O]...p[npE T] ,i@ [0],@[O0]...q[ngE 0 ,
q[0]. The two new bridge edges connect vertices p[0] and q[0] in both
directions.

Depending on the sorting algorithm used and the shape of the polygon,
the complexity of this algorithm will be between O(n) and O(n?).

GRAPHICS GEMS | Edited by ANDREW S. GLASSNER 87

.6 CONCAVE POLYGON SCAN CONVERSION

Zd

Figure 1. Output for a “random” 25-sided polygon.

The program follows:

concave: scan convert n-sided concave nonsimple polygon with vertices at
(pt[i].x, pt[i].y) for i in [0..nEIT] within the window win by calling
drawproc for each visible span of pixels.

Polygon can be clockwise or counterclockwise.

Algorithm does uniform point sampling at pixel centers.

Inside—outside test done by Jordan’s rule: a point is considered inside if an
emanating ray intersects the polygon an odd number of times.

drawproc should fill in pixels from x| to xr inclusiue on scanline y, e.g:

procedure drawproc(y, xlI, xr: int);
X: int;
begin
for x < x| to xr do
pixel_write(x, y, pixelvalue);
endloop;
endproc;

GRAPHICS GEMS | Edited by ANDREW S. GLASSNER 88

.6 CONCAVE POLYGON SCAN CONVERSION

Note: lines enclosed in angle bracketsf<’, ‘>’ should be replaced with the

code described.

Point: type « record [x, y: real];

2D point

Window: type ~ record [xmin, ymin,xmax, ymax: int]:inclusive window

Spanproc: type — procedure(y, xlI, xr: int);

procedure concave(
n: int;
pt: array [0..n — 1] of Point;
win: Window;
drawproc: Spanproc;

);

Edge: type — record [
x: real;

dx: real;
I: int;

I
nact: int;
active: array [0..n — 1] of Edge;
ind: array [0..n — 1] of int;
k, yO, yl, y, i, j, xI, xr: int;
begin procedure concave

number of vertices

vertices of polygon

screen clipping window
called for each span of pixels

a polygon edge

x-coordinate of edge’s intersection with
current scanline

change in x with respect to y

edge number: edge i goes from pt [i] to
pt[i + 1]

number of active edges
active edge list: edges crossing scanline y
list of vertex indices

create y-sorted array of indices ind [K] into vertex list

for k « 0ton-1do
ind[K] < k;
endloop;

<sort ind by pt[ind[Kk]].y>

nact — O;
k « O;

start with empty active list
ind[k] is next vertex to process

y0 < max(win.ymin, ceiling(pt[ind[0]].y - .5)); ymin of polygon
yl « min(win.ymax, floor(pt[ind[n-I]].y — .5)); ymax of polygon

GRAPHICS GEMS | Edited by ANDREW S. GLASSNER

89

.6 CONCAVE POLYGON SCAN CONVERSION

fory « y0 to yl do step through scanlines
scanline y is at y + .5 in continuous coordinates

check vertices between previous scanline and current one, if any
while k < n and pt[ind[k]].y <y + .5 do
invariant: y — .5 < pt[ily <y + .5
i < ind[Kk];
insert or delete edges before and after vertex 1 (i — 1 to i, and
I to i + 1) from active list if they cross scanline y

] « ifi>0theni-1elsen-1, vertex previous to i

if pt[jl.y < y - .5 then old edge, remove from active list
delete());

else if pt[jl.y >y + .5 then new edge, add to active list
insert(j, y);

] « iIfi<nHf 1theni + 1 else 0; vertex next after i

if pt[jly < y 2 .5 then old edge, remove from active list
delete(i);

else if pt[jl.y > y + .5 then new edge, add to active list
insert(i, y);

k « kH 1;

endloop;

[$ort active edge list by active [j].xO

draw horizontal segments for scanline y
for | « 0 to nact — 1 step 2 do
span between j and j + 1 is inside, span from j + 1 to j + 2 is outside

x1 ~ ceiling(active[j].x — .5); left end of span
if x1 < win.xmin then xI « win.xmin;
xr — floor(active[] + 1].x — .5); right end of span

if Xxr > win.xmax then xr < win.xmax;
if x1 < xr then
drawproc(y, xl, xr); draw pixels in span
increment edge coords
active[j].x « active[j].x + active[j].dx;
active[] + 1].x < active[j + 1].x + active[j + 1].dx;
endloop;
endloop; y loop

GRAPHICS GEMS | Edited by ANDREW S. GLASSNER 90

.6 CONCAVE POLYGON SCAN CONVERSION

procedure delete(i: int); remove edge i from active list
], K:int;
begin
for j « 0 to nact - 1 do
if active[j].i = i then begin edge found
nact — nact - 1;
for k —« j to nact - 1 do shift remainder of array down

active[k].x < active[k + 1].x;
active[k].dx « active[k + 1].dx;
active[k].i ~ active[k + 1].i;
endloop;
return;
end;
endloop;

edge not found; this can happen at win.ymin
endproc delete;

procedure insert(i, y: int); append edge i to end of
active list

I, p, g int;

begin

] « ifi<n =1 then i+1 else O;

if pt[i]l.y < pt[j].y then begin p « i; g < J; end,

else begin p « J; 9 <« I; end;

initialize x position at intersection of edge with scanline y
active[nact].dx — (pt[q].x - pt[p].x)/(pt[al.y - pt[p].y);
active[nact].x ~ active[nact].dx*(y + .5 — pt[p]l.y) + ptip].x;
active[nact].i ~ i,

nact — nact + 1;

endproc insert;

endproc concave;

See also Generic Convex Polygon Scan Conversion and Clip-
ping (84)

See Appendix 2 for C Implementation (681)

GRAPHICS GEMS | Edited by ANDREW S. GLASSNER 91

.7 —
FAST SCAN
CONVERSION OF
ARBITRARY POLYGONS

Bob Wallis
Weitek Corporation
Sunnyvale, California

AN /

Introduction

Many of the traditional scan-conversion methods described in the litera-
ture are not well suited to implementation on RISC processors. A fast and
extremely simple algorithrm, which maximizes usage of machine registers
but sacrifices memory to gain speed, is described.

Keeping the Registers Full

In devising algorithms for implementation on RISC processors, a major
goal is minimizing the amount of load/store traffic between machine
registers an(i memory. This is particularly true in cost-sensitive platforms
employing slow external memory in which wait-state penalties are in-
curred. On CISC processors which are less register oriented, this is not
as much of a concern (or at least, there is less opportunity to do anything
about it).

Active Edge Lists

The standard scan-conversion schemes typically fill a polygonal path by
employing a data structure called an active edge list (Foley and
Van Dam, 1982). As the scan line scrolls through the y direction, the
list’s edge elements are updated by adding new line segments that have

GRAPHICS GEMS | Edited by ANDREW S. GLASSNER 92

1.7 FAST SCAN CONVERSION OF ARBITRARY POLYGONS

just begun straddling the active scan, and by deleting lines that no longer
straddle y. Each x element of the list structure contains the parameters
required to produce x values for that given line segment of the polygon.
By maintaining the list’s elements in x sorted order, the x spans for a
given y are produced directly.

A problem with this scheme is that it is difficult to take advantage of the
relative speed of register-to-register operations. Each element of an
active edge list corresponds to a line of a different slope with different
DDA parameters; thus, there is a great deal of load/store thrashing
involved, with a significant loss of efficiency in the normally very efficient
DDA interpolator. Furthermore, there is a fair amount of sorting involved
In setting things up.

The following is a description of an alternate method, which scan-con-
verts the line segments of the polygon one at a time so that the same DDA
coefficients may be kept in registers and used for the entire duration of
the line segment. The price to be paid is that the method uses more
memory than the active edge scheme. However, the memory require-
ments are quite modest for applications such as scan conversion of fonts,
which are typically represented as small polygons.

The X-Transition Table

The basic concept is to eliminate explicit y-sorting and active edges
altogether. A polygon is treated as just a succession of chained line
segments, and each line segment is rasterized separately as the perimeter
of the polygon is traversed. As with all scan-conversion algorithms, if a
scan line is permitted to go directly through a vertex there are messy
special cases to be dealt with, and one has to worry about half-open
intervals and other ugly details. The most expedient way to deal with this
problem is to avoid it by using a coordinate system that is much finer than
the pixel grid—for example, eight bits of binary fraction for an x or y
coordinate. On a CPU with 32 bit registers, this leaves plenty of room to
the left of the decimal point. If the least significant bit of the fraction is
always set to 1, this amounts to adding a tiny amount of additional
roundoff error, but a scan line never hits a vertex (see “Rendering Fat
Lines on a Raster Grid” in this volume).

GRAPHICS GEMS | Edited by ANDREW S. GLASSNER 93

1.7 FAST SCAN CONVERSION OF ARBITRARY POLYGONS

—
Q
—
m\\

NXfrang

Figure 1.

Each line segment [x1, y1] - [x2, y2] is processed separately, pro-
ducing an x value for every scan line that it straddles. This is done with
a slightly modified Bresenham DDA that supports subpixel resolution. The
x values that are produced go into a rectangular array referred to as the
transition table for the polygon. The array is high enough in the y
direction to accommodate all required scan lines for the given polygon,
and wide enough in the x direction to accommodate the maximum
possible number of line segments that can straddle a scan line. Consider
the example in Fig. 1, which has a table 8 columns wide and 11 scan lines
high. The line segments of the W polygon are scan-converted in the order
0-1, 1-2, and so on. As the DDA walks down the scan lines, each X
produced is loaded into the next available column in the yth row of the
table. The sign of y2 — yl1 is also recorded in a reserved bit of the x
value.

Once the table has been completed, it is a simple matter to visit each
row, sort the x values, and produce interior spans to be filled for that
scan line. The x-sorting required from one row of the map to the next
row is highly coherent, making it advantageous to use the sort permuta-
tion required on the previous row as an initial guess on how to x-sort the
current row. A very general way to determine the interior regions of the
polygon is to use the signs of y2-yl to track the winding number
transitions (Newell and Sequin, 1980) at each x intersection (see Fig. 2).

The winding number starts at zero outside the polygon and is incre-
mented + 1 depending on whether the line segment being crossed is
rising or falling. Horizontal lines are not encountered because scans never
hit vertices. In the example above, the winding number rises to 3 in the

GRAPHICS GEMS | Edited by ANDREW S. GLASSNER 94

1.7 FAST SCAN CONVERSION OF ARBITRARY POLYGONS

Ay
f tangent vectors
X's denote y extrema
. 0 winding # :
-SCan line
X
X6 >

X transitions

Figure 2.

innermost loop. If the sense of the polygon had been counterclockwise,
the winding numbers would have been negative but nonzero in both
cases. The shaded areas in the figure illustrate the standard even/odd
parity rule, which declares a span to be interior whenever the least
significant bit of the winding number is 1. An alternate definition, suitable
for self-intersecting polygons, is to declare any span with a nonzero
winding number as interior.

Y Extrema and Memory Requirements

One issue was glossed over earlier: determining how many columns
should be allocated for the transition table. This should be the worst-case
number of x transitions possible for any scan line (maximum number of

GRAPHICS GEMS | Edited by ANDREW S. GLASSNER 95

1.7 FAST SCAN CONVERSION OF ARBITRARY POLYGONS

active edges). This can be easily determined by counting the number of
times that the polarity of y2 - yl changes as we traverse the polygon.
This count is easily obtained at the same time as the polygon’s bounding
box is calculated. Each of the points where the slope of y changes is ay
extrema. These are indicated for X’s in Fig. 2. It has six extrema, and
thus has a maximum of six x transitions possible. The W polygon in Fig.
1 has eight extrema, so its transition table needs eight columns.

To be able to scan-convert polygons of arbitrary size and complexity, it
IS necessary that the algorithm be able to break polygons that are too big
for the transition table into horizontal swaths, which are scan-converted
separately. The amount of memory available for the table should be large
enough so that most polygons can be handled without resorting to

stripping.

Intersecting Polygons

A simple modification of the previous algorithm permits it to determine
the intersection of two or more polygons. For example, the intersection
of a W and E is shown below. The trick is to feed both polygons to the
scan converter as if they were one single polygon, but to keep their
winding numbers separate. For a given scan line, the x regions within
which both winding numbers are nonzero are interior to both polygons.
The intersection corresponds to the Boolean AND of both winding num-
bers, but any other logical function could be used.

Figure 3.

GRAPHICS GEMS | Edited by ANDREW S. GLASSNER 96

1.7 FAST SCAN CONVERSION OF ARBITRARY POLYGONS
S N
D @

Figure 4.

Convex Decompositions

Some applications require that arbitrary polygons be fractured into con-
vex figures, such as trapezoids. By adding a little more data to the x
elements stored in the transition table, the algorithm can serve as a front
end for a convex decomposer. It is necessary that the x elements
“remember” which line segments they came from, so that segments with
matching left and right sides from successive scan lines can be merged
and grown into convex polygons. Figure 4 shows a convex decomposition
of the E/W intersection.

GRAPHICS GEMS | Edited by ANDREW S. GLASSNER 97

LINE-DRAWING
SUMMARY

Vector graphics remains an important application area of com-
puter graphics. Although shaded images have much to offer,
lines remain a valuable primitive for many types of images. Fast
and efficient line-drawing is not a simple task, particularly if you
want to avoid aliasing artifacts.

The basic line-drawing algorithm is Bresenham’s algorithm,
developed originally for digital plotters. The first three of the
following algorithms present the basic Bresenham technique
and then extend it for increased speed, or for inclusion of
anti-aliasing information. The next two Gems discuss only lines
thicker than one pixel, showing how to put bevels on the
corners formed by two flat line ends, and how efficiently to
render fat lines in a rectangular grid.

See also Anti-Aliasing Gems; Fast Spline Drawing (585); Tuto-
rial on Forward Differencing (594)

GRAPHICS GEMS | Edited by ANDREW S. GLASSNER o8

1.8 —

DIGITAL LINE DRAWING

Paul S. Heckbert
University of California
Berkeley, California

A digital line-drawing algorithm is one of the most basic tools in a
computer graphicist’s toolbox. The following is skeleton code for
Bresenham’s algorithm (1965). The code as listed calls a user-supplied
procedure at each pixel, but for efficiency you may prefer to do
inline/macro substitution for the pixel procedure.

digline: draw digital line from (x1, y1)do(x2,y2),
calling a user-supplied procedure at each pixel.
Does no clipping. Uses Bresenham’s algorithm.

Pixelproc: type — procedure(x, y: int);

procedure digline(x1, y1, x2, y2: int; dotproc: Pixelproc);
d, X, y, ax, ay, sx, sy, dx, dy: int;
begin

dx < x2 - x1; ax < abs(dx)*2; sx « sgn(dx);
dy « y2 - yl;ay ~ abs(dy)*2; sy « sgn(dy);
X « Xx1;
y <« yL

GRAPHICS GEMS | Edited by ANDREW S. GLASSNER 99

1.8 DIGITAL LINE DRAWING
If ax > ay then begin X dominant
d - ay - ax/2;
while true do
dotproc(x, y);

If x = x2 then return;
iIf d = 0 then begin
Yy « Yy t38y,;
d « d- ax;
end;
X <« X +BK;
d -« d+ ay;
endloop;
end;
else begin y dominant
d « ax - ay/2;

while true do
dotproc(x, y);
iIf y = y2 then return;
iIf d = 0 then begin
X « X + 8X;
d « d- ay;
end;
y <« Yy + 38y,
d « d + ax;
endloop;
end;

endproc diglineg;

function sgn (x: int) : int;
begin return if x > 0 then 1 else -1; endfunc;

See Appendix 2 for C Implementation (685)

GRAPHICS GEMS | Edited by ANDREW S. GLASSNER

100

1.9 —

SYMMETRIC DOUBLE STEP
LINE ALGORITHM

Brian Wyuvill
University of Calgary
Alberta, Canada

AN /

Line Drawing

Drawing straight lines on a raster device, such as an incremental graph
plotter or frame store is an old problem. Jack Bresenham (1965) pro-
duced a simple and efficient algorithm that lent itself to hardware imple-
mentation. Bresenham’s algorithm works by keeping track of the error
between the actual line and the nearest pixel. This value is called a
discriminator. The method has to find the next pixel closest to the true
line. Once the direction of the line is determined, all the algorithm has to
do is decide between two alternative pixels at each step. To do this the
discriminator is tested to find the next pixel and then (and this is the
clever bit) incremented by a constant amount ready for the next test. This
basic algorithm was not greatly improved in over twenty years. Many
researchers became interested in line drawing, particularly the hardware
manufacturers, who relied on producing faster line drawing for compari-
son with their competitors. Today Bresenham’s algorithm is at the heart
of several fast line drawing chips.

Double Speed Bresenham’s

A few years ago one of my students, Xialon Wu, approached me with an
exciting new line drawing algorithm. At the time his English was bad, his
claims outrageous, and | was busy. Eventually Wu developed his double
step algorithm with Prof. Jon Rokne and | realized what a good idea he

GRAPHICS GEMS | Edited by ANDREW S. GLASSNER 101

1.9 SYMMETRIC DOUBLE STEP LINE ALGORITHM

Pattern 1 Pattern 2 Pattern 3 Pattern 4

Reference Pixel

Figure 1. Double step pixel patterns (Wu, 1987).

had had (see Wu and Rokne, 1987). Like all good ideas it is very simple:
instead of using a discriminator to choose the next pixel, Wu chooses the
next pattern of two pixels (see Fig. 1). Since there are four distinct
patterns, how does the algorithm reduce to a simple binary decision? Let
us for the moment call patterns 2 and 3 one pattern, 2(3). This could be
the case on a multilevel display since both patterns could be shown as
one with the center pixels at half intensity to achieve a degree of
anti-aliasing. It can be shown that for lines whose slope is less than 1/2
that pattern 4 does not occur; the choice is then between pattern 1 and
2(3). Similarly, for lines with slope greater than or equal to 1/2, the
choice is between pattern 2(3) and pattern 4 (pattern 1 cannot occur).
Simply by testing the slope outside the plotting loop the algorithm
reduces to a single discriminator. To distinguish between patterns 2 and 3
also turns out to be easy, requiring one more test but using the same
discriminator. In this way the algorithm does only slightly more work to
produce two pixels instead of one per step, virtually doubling the speed
of Bresenham’s original. (A similar, but much more complex algorithm
also exists for quadruple step patterns (Bao and Rokne, 1990).

Using Symmetry

So impressed was | with this breakthrough that | coded the algorithm and
added a small change of my own. Since lines are symmetric about the
center, it makes sense to use this symmetry to plot from both ends

GRAPHICS GEMS | Edited by ANDREW S. GLASSNER 102

1.9 SYMMETRIC DOUBLE STEP LINE ALGORITHM

symwuline(al, bl, a2, b2) int al, bl, a2, b2;
drawline from al, bl to a2, b2

The algorithm is described for slopes between 0 and 1/2
The C version given later is generalized to all quadrants

begin
dx a2-al; This may be generalized to
dy b2-bil; axis of greatest movement

xend ~ (dx-1) 7/ 4

pixelsLeft ~ (dx-1) mod 4;

incr2 — 4*dy-2*dx;

plot first two points

setpixel(al, bl);

setpixel(a2, b2);

C ~ 2*dy;

incrl — 2%*c;

D incrl-dx;

plotting loop

for izint — 0,i<xend,i —~ i+ 1do
al o al + 1,

a2 . az2-1;
if (D < 0) then
begin
drawPatternlForwards;

drawPatternl1Backwards;
D =D + incri;

end;
else begin
if (D < c¢) then
begin
pattern2Forwards;
pattern2Backwards;
end;
else begin
pattern3Forwards;
pattern3Backwards;
end;
D =D + incr2;
end;
endloop;
if pixelsLeft > 0 then

begin
drawTwoForwardPixels;
drawTwoBackwardPixels;
end;
end;
Figure 2. Pseudo-code for symmetrical double step line algorithm.

GRAPHICS GEMS | Edited by ANDREW S. GLASSNER

103

1.9 SYMMETRIC DOUBLE STEP LINE ALGORITHM

simultaneously using half the number of steps. Wu was not pleased to see
that | had doubled the speed of his algorithm overnight! It turns out that
using the symmetry was not a new idea; probably Bresenham himself
thought of it originally. The symmetric double step algorithm is between
three and four times faster than the original Bresenham’s (see Rokne
et al., 1990). The hardware manufacturers were not particularly inter-
ested in Wu’s idea. The bottleneck (currently) in line drawing is not
choosing the pixels, but getting the information to the display, the pixel
write operations. Wu went on to develop a similar idea for drawing conics
and Jon Rokne and Paul Bao continued with the pattern idea to produce
a quadruple step version of the line algorithm. Pseudo code for lines with
slopes from 0 to 1/2 is set out in Fig. 2. C code for lines of any slope is
given in the appendix.

See Appendix 2 for C Implementation (686)

GRAPHICS GEMS | Edited by ANDREW S. GLASSNER 104

1. 10—

/ RENDERING \

ANTI-ALIASED LINES

Kelvin Thompson
Nth Graphics, Ltd.
\ Austin, Texas /

Problem

Render an anti-aliased line segment.

Solution |

Model the line segment as having a finite thickness and set each pixel’s
intensity according to how much it overlaps the line. We accomplish this
with an extension to the traditional Bresenham line algorithm
(Bresenham,1965). With each iteration, the usual algorithm moves by one
pixel along a major axis and by zero or one pixel along a minor axis (for
example, if the line’s slope is in the range [-1, 1], then the major axis is
X and the minor is Y). To expand the algorithm we add two loops—called
orthogonal loops—in sequence inside the traditional loop. Immediately
after the traditional algorithm chooses the central pixel of the line, the
first orthogonal loop examines adjacent pixels in the positive direction
along the minor axis, then the second orthogonal loop examines adjacent
pixels in the negative direction.

At each pixel (including the central pixel) the algorithm updates a
variable that contains the distance between the center of the pixel and the
middle of the thick line; this distance variable can be used to calculate
(usually via a look-up table) how much the pixel overlaps the thick line.

GRAPHICS GEMS | Edited by ANDREW S. GLASSNER 105

.10 RENDERING ANTI-ALIASED LINES

.Central pixels found by Bresenham’s algorithm.
JPixels found by orthogonal loops.

Figure 1.

Also see Gupta and Sproull (1981) for a more detailed description of the
algorithm; “Vertical Distance from a Point to a Line” (in this volume) for
the mapping between the “vertical” and true distances between a point at
a line; “Area of Intersection: Circle and a Thick Line” (in this volume) for
the overlap calculation; and subroutine Anti_Line for example code.

Solution 2

Render several slightly offset lines using the traditional Bresenham line
algorithm, but use alpha blending with progressively smaller coverage

values (for example, 1, 7, 3, 5, , ..., see “Alpha Blending” in this volume).
The lines should all be parallel with slightly different starting positions,.
You can change the subpixel starting position in Bresenham’s line algo-
rithm by adding values in the range [0, 2 Odx] to the initial decision

variable.

See Appendix 2 for C Implementation (690)

GRAPHICS GEMS | Edited by ANDREW S. GLASSNER 106

— L1
AN ALGORITHM FOR
FILLING IN 2D WIDE
LINE BEVEL JOINTS

Jack Ritter
Versatec Inc.
Santa Clara, California

Typical 2D graphics packages allow for wide lines to be joined end to
end, where their end center points are coincident. Bevelling fills in the
triangle between the outer corners. This is an arbitrary isosceles triangle.

From Fig. 1, this bevel triangle is made of the two outer points 01 and
02, and the center point C.

This algorithm is an alternative to breaking the bevel triangle into two
triangles with a horizontal line, then generating both triangles, thus doing
Bresenham walking along all three edges of the bevel triangle. This
algorithm fills in the bevel triangle area with one nonrotated right trian-
gle, and zero, one, or two orthogonal rectangles. The advantage is that
only the outer edge is walked (as part of drawing the right triangle), and
so the amount of Bresenham step calculation is reduced to about one
third. The other advantage is that it won’t leave “stiches” (holes) along
the two interior edges, where the old method might, if the drawing of the
wide line and the drawing of the triangles did not meet flush. This
algorithm may be easily implemented in integer arithmetic.

The right triangle is (01, 02, R), where the outer edge (01, 02) is its
hypotenuse, shown as a dashed line in all figures. The triangle’s two
interior legs are shown as dotted lines. Its inside 90-degree corner point
will be one of the two “opposite points” to the hypotenuse. Note in Figs.
2, 3, and 4: that one opposite point is R, and the other is depicted by X.
Between R and X, how do we choose the inside point? We pick the one
closest to c. Closeness can be determined by “Manhattan distance,”
which is the number of blocks you would walk in a city grid to get from
one point to another. Euclidian distance need not be used.

GRAPHICS GEMS | Edited by ANDREW S. GLASSNER 107

.11 AN ALGORITHM FOR FILLING IN 2D WIDE LINE JOINTS

Bev Triangle
02

Figure 1. General Case.

Now we have two triangles: the original bevel triangle (01, 02, C), and
the right triangle (01, 02, R). They share the outer edge. The situation can
now be broken down into one of three states, depending on the topological

relationship between these two triangles. One of the following
will be the case:

case 1 (Fig. 2): C is inside the right triangle
case 2 (Fig. 3): R is inside the bevel triangle

case 3 (Fig. 4): neither point is inside the other triangle.

For case 1, all we need draw is the right triangle. For case 2, we draw the

GRAPHICS GEMS | Edited by ANDREW S. GLASSNER 108

.11 AN ALGORITHM FOR FILLING IN 2D WIDE LINE JOINTS

Figure 2. Case 1.

right triangle, plus the two rectangles whose diagonals are the two
interior edges. For case 3, we draw the right triangle, plus a rectangle
whose outer edge is the longest leg of the right triangle, and whose
opposite edge goes through C. C can be left of, right of, below, or above
this outer edge. This rectangle can be thought of as the area swept out if
we “push” the outer edge up to C.

Here is the pseudo-code for this algorithm:

01 is specified as (O1x, Oly),
02 is specified as (02x, 02y),
C is specified as (Cx, Cy),

R is specified as (Rx, Ry).

GRAPHICS GEMS | Edited by ANDREW S. GLASSNER 109

.11 AN ALGORITHM FOR FILLING IN 2D WIDE LINE JOINTS

Rectangle Diagonal

Rectangle Diagonal

Figure 3. Case 2.

The main routine is first, and the called routines are described
afterwards.

Input parameters are the 3 points 01, 02, & C
bevel fill (01x, Oly, 02x, 02y, Cx, Cy)
{
First Anomoly
If all three points are collinear, the two wide lines are parallel.
This means the bevel triangle has collapsed to nothing.
iIf (01, 02, and C are colinear)
then
return;
end,
Second anomoly
If the bevel edge (01, 02) is horizontal or vertical
(Fig. 4 comes close to being vertical), then the right
triangle has collapsed to nothing. In this case, we simply
draw the “push” rectangle of case 3.

GRAPHICS GEMS | Edited by ANDREW S. GLASSNER 110

.11 AN ALGORITHM FOR FILLING IN 2D WIDE LINE JOINTS

Figure 4. Case 3.

If ((Ox1 = 0x2) or (Oyl = 0y2))
then
push line (01, 02) to point C.
emit_push_rec(01, 02, C);
return;
end;

set R (eg, Rx, Ry) to 1 of the 2 hypotenuse opposite points,
whichever one is closest to C.
The Ist point passed to manhattan_dist is C, the 2nd is a pair of
coordinates
If (manhattan_dist(C, 01x, 02y) < manhattan_dist(C, 02x, 01y))
then
begin
Rx « 01x;
Ry « 02y,

GRAPHICS GEMS | Edited by ANDREW S. GLASSNER 111

.11 AN ALGORITHM FOR FILLING IN 2D WIDE LINE JOINTS

end;

else
begin
Rx « 02x;
Ry « Oly;
end;

emit_right_tri(R, 01, 02); for all 3 cases

iIf (pt_in_tri(C, 01, 02, R))
then
CASE 1
C is inside the triangle (01, 02, R).
Above emitted triangle has covered the full bevel triangle.

return;
end;
iIf (pt_in_tri(R, 01, 02, C))
then
CASE 2

R is inside the triangle (01, 02, C).
Draw the two rectangles whose diagonals are the interior edges
(C, 01) and (C, 02).
emit_diag_rec(C, 01);
emit diag_rec(C, 02);
return
end;
else CASE 3
Neither point is inside the other’s triangle
Draw the rectangle swept by pushing an edge perpendicularly to C.
The edge to be pushed will be the longest leg of the right triangle:
If (manhattan_dist(R, 01x, 01y) > manhattan_dist(R, 02x, 02y))
then emit_push_rec (R, 01, C);
else emit_push_rec (R, 02, C);
end of bevel fill()
Routines called from above

emitt_right_tri(P1, P2, P3)

draws the right triangle made of the three points passed, P1 is the
triangle’s inside point.

GRAPHICS GEMS | Edited by ANDREW S. GLASSNER 112

.11 AN ALGORITHM FOR FILLING IN 2D WIDE LINE JOINTS

emit_diag_rec(P1, P2)
draws the rectangle whose diagonal is (P1, P2).

emit_push_rec(P1, P2, P3)
determines if P3 is left of, right of, above, or below the

edge (P1, P2), and draws the rectangle that would be swept out if the edge
were pushed directly to the point C.

pt_in_tri(P, T1, T2, T3)
Returns TRUE if the point P is in the triangle (T1, T2, T3).
This is done by comparing the signs of crossproducts:
Here, sign_of() is actually the sign of the z component of the cross vector
get winding direction of triangle:
Let tri_wind = sign_of [(T1, T2) X (T1, T3)]
V3Cross ((T1, T2), (T1, T3), WIND);
tri_wind = sign_of(WIND);

Now cross P with each side

V3Cross ((T1, P), (T1, T3), WIND);
signl « sign_of(WIND);

V3Cross ((T2, P), (T2, T1), WIND);
sign2 « sign_of(WIND);
V3Cross((T3, P), (T3, T2), WIND);
sign3 « sign_of(WIND);

if (
signl
and
sign2
and
sign3
)
then return(TRUE);
else return(FALSE);

NOTE: all calls to pt_in_tri() have 01 before 02,

for consistent winding.

tri_wind

tri_wind

tri_wind

GRAPHICS GEMS | Edited by ANDREW S. GLASSNER 113

—1.12—
RENDERING

FAT LINES ON A
RASTER GRID

Bob Wallis
Weitek Corporation
Sunnyvale, California

Introduction

If multipixel wide lines are rendered improperly, unattractive beat fre-
guencies with the raster grid may result. A practical method for produc-
ing aesthetically pleasing fat lines is presented.

The standard textbooks in computer graphics do not appear to cover
algorithms for rendering multipixel wide lines on a raster grid. On devices
such as laser printers, the standard skinny lines generated by the conven-
tional Bresenham algorithm might be too narrow to be acceptable. A good
method for generating uniform-looking wide is known, but the approach
hasn’t received the exposure that it deserves in the graphics community.
It is based on the polygonal pens used by Hobby (1985).

Hobby’s Polygonal Pens

Denoting pixel centers by the integer coordinates [x, y], we may define
the interior of a line to be those pixels that satisfy the criterion

-d < (ax + by + ¢) < d.

(1)
This implies a line whose width in pixel space is roughly
w = 2d/+va’ +b’.
(2)
The problem is that the actual width can change with the phasing
(c offset) of the line in pixel space. For example, using a = -1, b = 3,

GRAPHICS GEMS | Edited by ANDREW S. GLASSNER 114

+
LIEIRIE S AR

LARIE AR AL AR SRR IR AR

LS REAR R AR L AR AR AR AR R AR

L ZEIEIE IR AR SE SR SR AR R BE S8 BE SR AL

LEE AR AR IE AR IR AR AR SR AR SR SE BE SR SR AR RE K

LAE R IR R AR AR AR IR AE SR AR SR SE SR AR R BE IE AR BE SR

|+ (F(e[e]*|¥|+
AR AR R AR SRR RE R AR AR SR RE SR SE AR BEAE JE BE BE AE A BE SR

tir(e(e|e|v|e|e|e|s|[e]+]
t|ef4]eiv]|t|s]e]s]e]|e]e g
(]t +[+]t]r]t[e]|e]|s]
slejefe{s|s|s]s[s[+]s]s

LAEZEIREAEIEBERE RE R AR B K 2

115

L ZESEIEIE IR AR A AL BE SE NE)

ISEEZEAEZE AR AR SESE AR AE R AR AE AR SR AR AR AR AR AR AR S RARA RIS

LARIEARAESEFERE SR SRS E S

LR R SE SR ZEESE AR AR AR EE SE AR RE AR AR AR IE AR SR AR AR BE SR AR BE SR AR L RS

Figure 1.

LRI ZEAE SR AR A S E EE SRR 2

[IEIEIESEAESESEIESESE SR SE SR SE FE BE AR AR AR SRS E AR SR AR AR AR AR AR IR SR ARARA L

LEESESESESESE SE AR IR AL 2R]

'i‘0OO0.0#000#&0000#"0'0'."0‘1‘4400-000000‘0‘4

LIRIESE NE BE SE BE PR EE BE 2L J

iej{e|e]|e|*]|t *|+ | +lr]e

.12 RENDERING FAT LINES ON A RASTER GRID

LIESE IR SR SR AR AR JEBE ML BE 4

LARARARARZRAR AR R AR LIRS

AR AR AR AE R SR AR AR AR SESE AR AR R AR AR AR AR R RR AR AR A E AR AR AR AR AR AR AR J
LR AR AR AR AR AR AR AR AR AR IR SE BE AR RR AR AR AR AR AR AR AR A R A RARAR AR AR S

AR AR AR AR AR AR SR AR AR AR SESESE AR AR AR AR AR SR AR AR AR B B EAE

LR AE RIS L AR FERE BE AR BE SRR AR AR AR AR AR AR BE AR R 4

LR IR AR AR IR SR AR AR AR L AE SR AR SR AR AR AR AR

LARAR AR AR AR IR SR BR AR AR AR AL AR AR AR

LR AR AR R AR IR SR AR SR AR IS E K]

LA AL R AR AR AR IR BE BE BK 2

LA A AR AR AR IR NE]

LAR IR AR AT AR ZE SR RE BE 2
LIAEIEAE AR BE 2R N3

+ |4 || e

AR AR e R R AR A E AR SR AR SR FE AR R AR AR SR AR AR AR SR AR AR RE AR AR AR AR R AE!

AR AR R R AR R R A A A R R R A S E R FE A E AR SRR AR AR AR SR AR AR AR AR SE AR RRE AR AR AR AL

P B S P A PR P P P P P P P P 4 PR PR PR P P P P PN P 0 W W P P P P P P VS P S P W1 P P P PN P P P

biejafeje]le

4.01

{0, -20.5}, d =
different c offsets (see Fig. 1).

cC =

we obtain different-looking lines for the two

Since the phasing of a line relative to the pixel grid may be random,
this behavior should be avoided if possible. What is going on can be

analyzed by examining the set of pixels “turned on” by Eq. 1 as we

change the line equation offset c. For the time being, assume that the

coefficients a, b are mutually prime, that is, they have been scaled by

1 /gcd (a,b). Using a = -1, b

3, ¢c =0, d =4, we have the situation

depicted in Fig. 2. The numbers above each pixel are the values of
ax + by + ¢, which will be defined to be class numbers for that pixel

Figure 2.

n “ ~ ™ o o
‘D 7@ 7O Ta Y@ Ta ¢
m ~m “w o o~ e 0
.
‘0 7a T4 A Y0 A ¢
%o %0 %o Ao To 5
T0 7o 7o Yo Y Te %
bo {4
%o 7o Yo Vo Y0 Y0 9
% %o %o %o So 2
@70 7o 70 7O Y0
o~ ['1] <« - -
L] L) - ~ ~ ~ ™~
18 T8 TP A 7D 50 9
il - ~ o -
- D @ ~ ~ ~ ™ o~
+ =] _u _u _ﬂ— _n .H— 1
o m o o o~
"] . - Ll — -
foy i1 - B - B = B - By - B
% ~ n o -
f0 3 $a Ta Yo 7o A
% ~- - ~ o
50 Y ko o 7o 7o Ja §
@ “ o ” w (]
[]
fo Ya d 78 70 g g
o~ () o
o $o AfO 7D YD A Y
- ~ ~
~ - @ - - Ll
[- N - | 0 50 70 74
+8 5]
(=] ™ w
a0 ") ~ - L] Lot
(L
0o ¥0 30 'a 7a 78
~N wy
o ¢0 %o “a o a7
- -
~ -
o 7o 5o 3 i1- B - In
o ™
o 3o $a 9 - S
o~
o 70 90 %o b - B
-
o 7o 74 50 - Il
L=
o 70 y0 $a 99 N - Iy
o'ya 7o %o fo a9
-]
1

15 +14 +13 +12 +11 +10 49 48 +7 +6 +5

=]
4 +23 +22 +21 +20 -BID 418 +17 +16 +15 +14 +13 +12 +11 +10 49
a
o
a

2 +11 +10 +9 +8 +7 46 +5 +4

=]

=]

+5 44 o
;

P1 420 +19 +18 +17 +16 +15 +14 +13 +12 +11 +10 +3 +8

o

18 +17 +16 +15 +u14 +13 +12 +11 +10 +8 +8 +7
a
a

a
=]
=]
d
a
a
b +8 47 +6

P7 426 425 +24 423 422 421 420 +19 +18 +17 416 +15 +14 +13 +12 +11 +10 +9

GRAPHICS GEMS | Edited by ANDREW S. GLASSNER

.12 RENDERING FAT LINES ON A RASTER GRID

(Hobby’s nomenclature). The diagonal lines through the pixel centers are
intended to show that all pixels having the same class number are
equivalent in a sense; each class is a diagonal row of pixels, which stack
together to form our fat line. Since gcd(a, b) = 1, pixel centers of the
same class along a given diagonal line are separated by the displacement
vector[b,Ha]=[3,0].Each diagonal of the stack contributes a pixel

density of 1/+/a?+b? pixels per unit length, and there are precisely d
classes, so our line width expressed in Eq. 2 is indeed the average
number of pixels per unit length.

Note that as we slide the interior region up and down by changing the
¢ coefficient, the fact that we are using an open and closed interval for the
permissible class numbers in Eq. 1 and an exact integer for 2d, ensures
that the number of pixels turned on in a given column doesn’t behave
discontinuously. If our a, b coefficients were irrational, the behavior
would be similar to using rational a, b coefficients, but gradually chang-
ing the c offset. Therefore, keeping the line width invariant with c is
required for uniformity.

In one dimension, the analogous question is how many integers lie in
the semiopen interval of width 2W,

-W< (X +¢) £ W c = arbitrary phase shift, (3a)

as we slide the window left or right by changing the ¢ phasing factor?
Since the phase factor is arbitrary, we can merge the W terms by using a
different phase factor:

c=c+W different phase factor

—C’' < X £ 2W - ¢ combine with Eqg. 3a. (3b)

The answer can be formulated in terms of floor functions (Graham et al.,
1989):

Nn=2W —c'[+ [FC'[# of integers in interval . (4)

GRAPHICS GEMS | Edited by ANDREW S. GLASSNER 116

.12 RENDERING FAT LINES ON A RASTER GRID

If 2W is an integer, it can be taken out of the floor function, reducing the
value of n to

n=2W+ @g'r'r = 2W invariant with phase. [®)

If 2W is not an integer, it cannot be taken out of the floor functions, and
it will cause variations in n as we shift c.

In the 2D line drawing case, the counterpart of 2W is 2d. To achieve
an integer value of 2d for an arbitrary line, Hobby has proposed using
polygonal pens, defined by integer offset vectors. Relative to the center
of the polygon, the vectors need only have coefficients that are multiples
of 1. The symmetry will guarantee that the value of 2d is then an integer.

For a line of a given slope, the value of d in Eq. 1 is obtained by dotting
the vector [a, b] with the integer offset vector that is closest to being
normal to the line. This is easily accomplished with some abs and max
functions. An example is shown in Fig. 3. The envelope may be consid-
ered the convolution of a line with a polygonal brush.

If we had formulated the line geometry using the obvious Euclidean
metric for line width (a perfectly circular pen instead of a polygon with
integer “diameters”), not only would the calculation of our Xx-spans
require square roots, but the results would actually be inferior to the
more efficient, integer based, polygonal pen approach.

Software Implementation

Writing efficient code to implement polygonal pen fat lines is quite
straightforward. In a bitmapped environment, we would like to lay down
an entire scan line (x-span) at a time as we walk up our fat line in the y
direction. This requires a slight modification (described here) to the
classic one-pixel-at-a-time, Bresenham DDA algorithm. Some of the tricks
described fall in the category of expediencies, and thus may offend
purists.

The easiest way to achieve subpixel accuracy is to use a pixel coordi-
nate system with a binary fraction. Eight bits of pixel fraction (1/256th
of a pixel) works quite well. This provides a simple way to implement
floor/ceiling functions, half-open intervals, and so on. If the Isb of the

GRAPHICS GEMS | Edited by ANDREW S. GLASSNER 117

.12 RENDERING FAT LINES ON A RASTER GRID

sleje|e|e]|e|ejeie|e]|e *le|e]ejele sjelelefe sleje|e|e|efeid
s|e|e|e|r]|eje]e|e]|e] eleleje]e]s sje|e]e]e s|efe|e|e]e]e]d
t[e|e]e]e|e]n]|efr]e tla]e|e]e]® ¢ie|e]e]e se|e]e]e]e]e}d
+|e|elele|s]ele]|e]e Fleje|e]e]e +{v|e]e]e dlafaie]|e]e]|e]]
+ wlelei{e|[s]olefe]s +|elele|s +[e|a]s]e slejo|a|o|e]e}d
o] s s{ele|risie]|e]e}s slo|efefe slejele s[o|e|s|e]e}d
ele]e s{e|(e|eiefe]|eie]s e e(ele sie]e|e sjo|e|e|®]|e]d
ele|ele elejt{e]o|e]e]|e vje|e]ele *|e|e sle|e|e|e]e]d
tie|e]|e|e sl{eje{e|ejr]e]e *(eleie +|e]e]|s +(e|a]|e]|e]e]d
v|eleje]|e]e ele{e]|ejr]|s|2] *ejeie +leje]e sie|e]|2]e]+]
te[e]efale]e ele|e]|eis]|e]|s elefee o] +|e|e]|e]e
e|eje]e|eisis *le|efr|e]|e]s siele i +|e|ofe]|»
(e|e|e]|sis|r]|sie IR DD siele|e +| t|e|e|e]e
tle|e|e]|e|e|r|rie]|e *iv(e|o|sle || 4+ +|e|e{e]|e
eiv|e|e|v|ejejrle]e]|e +|e|e|e]e]e +|e]# +|e|e +|¢lefe]|e
sle|e|r]|2je|[e]e]|s]es]|e +|e|e]e]|e]e +|e|e +|e siefe]e
sje(s|e]|r|e|e]|e]|s]|+ +{eje|e|e +|+ +|e sie[ele
S|e|e|e]e|e|s|[s|s]|e +|ele|e]e +|e | siefe]e
t(e|a]o]|s|sle]|e]e +tle|e|e]s +|e +|+ viv|oie
ele|e|e|e|[e]|e]e +|e]|2]e e * e|eie
+lefeie|e|e|e]e +[e]|4]e S+ * |4
[To |+ +ie|e|e|e]e]e +ie|e]|# . + ||
+le|e(s +|e|e|e]eie|e (] * |+
le|+]|s|e s|e[s]e|e]|s] > el
t(a[e]e]|e|e|e]|¥ +|(e|o]|e|e|e e * +iedd
Prefe|+|e|®|e]e|e +|e|e[eje +le + |+
ele|s]|s|e|[e|2]a|a]e t|ele|e]| *|e * LIEIE
s(ele|ejajele]|e]e tlele|e * + ||
sleje]|e|eie|e]e Fle[ele + + |+
*le|ejsje|e]s +ie |+ + + |4
|e|e|s|0|e]|e +|e + 4
3 GEIEIEIE] *|e + 4
1005 ALIEI IR * «|[q
Ple|e]|*|[e]|e * | |e|F + * [
ble|e|+|+jeje|e|+F RIS R
ble|e|+iv]e|e|eisefefs +|# 4 4
te|s|e|e|e|s]e]e]|ris|e + 1
s(e|s|e|eje|e{e|e|vjs|e & 1 4
’ +|ejef{e|e]|2|e]|e|» \
ele|e|s|e|e]|f
A 2leie|e]|+
% +le
“le]e|e|e ‘
io|sis|e{s|ale]e]|s
ele|sje|e|sje|e]|e|e|e|e|e]|s]F
tle|e|a|e|t]e|s]|s|s]|4|efe|s]|s]|efe]|+|2]F
el e (e e|+]r|[a]|4|ele]|e[s]e]e]a]{s]s]s]+[+]+
e e v s]|e|s]s|[a[d]|sbie]|e|a]|s]s[s][s]|e]s]|s|a{2]|a[s]s]s]¥+
e |d(a|a|e|]e|sit|a]e]|s|a]|s|s|a[s]|e]s]|s|aja]|ala{s|[s]s]s|s{e]a]|s
. S P o lala P P P P P |

Figure 3.

scan line and eliminates an entire class of ugly special cases that are
usually required in scan conversion algorithms. This effectively reduces

fraction is always set, this prevents vertices from ever hitting an exact
the accuracy to 1/128th of a pixel.

The basic trick in Bresenham-type linear interpolators is to express the
dx/dy part as an (exact) integer part and a positive fractional part,

118

GRAPHICS GEMS | Edited by ANDREW S. GLASSNER

.12 RENDERING FAT LINES ON A RASTER GRID

(x2,y2)

» Scanline = y

x= xl+ (x2-x1)(y-y1)|(y2-y1) = x1 + (y-y1) dx/dy

(x1,y1)
Figure 4.

instead of trying to approximate it by a single number. This eliminates
accumulated roundoff error:
dx/dy = | + f where 0 < f <1 DDA increment.

That is, -7/3 = -2 - 1/3 =-3 + 2/3 (I = -3; f = 2/3). Assuming
f = p/q, we insist that

0<sf<l1 fractional part
0<p<aqg numerator.
In the standard (one-pixel-at-a-time) algorithm, I = 0. The modified

algorithm is as follows:

P < poO init frac term
until finished do keep 0 < p < ¢
X <« X + 1 integer part
P « p + dp bump numerator of fraction
if (p = q) then begin overflow
P -« p-¢ restore legality of fraction
X « X + | carry into int part
end
endloop

GRAPHICS GEMS | Edited by ANDREW S. GLASSNER 119

.12 RENDERING FAT LINES ON A RASTER GRID

We can simplify this with the usual trick of biasing the p term so it
overflows by crossing 0 instead of g. This usually saves one instruction in
the inner loop.

One price to be paid for the subpixel accuracy is that the initialization
of the DDA coefficients requires a divide and remainder operation. If the
pixel coordinates with their binary fractions exceed 16 bits, then the
intermediate product will require 64 bits.

Once the d term of Egq. 1 has been determined, using the polygonal
pen, the width of the x-span is fixed. Consequently, the DDA needs to
track only the left side of the line, and may determine the right side of the
x-span by knowing the width. All of this can be done with exact rational
arithmetic. Some additional code is required to deal with miter joints at
the ends of line segments.

GRAPHICS GEMS | Edited by ANDREW S. GLASSNER 120

—1.13—

TWO-DIMENSIONAL CLIPPING:
A VECTOR-BASED APPROACH

Hans J. W. Spoelder, Fons H. Ullings
Vrije Universiteit
\Amsterdam, The Netherlands /

Introduction

The problem we address here is the intersection of lines with polygons.
Although numerous textbooks on computer graphics give partial solu-
tions and hints (Sedgewick, 1983; Sutherland and Hodgeman, 1974;
Nicholl et al., 1987; Van Wyck, 1984; Cheng and Jiaan, 1986), it is hard
to find a complete algorithm. The algorithm described here provides a
robust solution of the problem of clipping a vector against a polygon. The
same algorithm can with minor extensions be used for applications such
as area shading and polygon filling.

Representation: Integers and Vectors

We will assume that the algorithms will be used for drawing graphics on
some kind of graphics device with a possibly high but finite resolution,
Consequently, an integer notation of the coordinates involved seems most
appropriate. Since the user coordinates will generally consist of floating
point quantities, they will have to be converted into integers. This can be
done by multiplying the floating point quantities by a well-chosen integer
constant and by rounding the result to an integer. With this, one enters
the field of fixed point arithmetic. Although precautions have to be taken
to ensure sufficient accuracy (and avoid overflows) no fundamental prob-
lems are involved. We summarize the most relevant features here.

Let (x,, y,) denote the floating point quantity to be converted and let
SCALE denote the integer used for upscaling. Note that the number of

GRAPHICS GEMS | Edited by ANDREW S. GLASSNER 121

.13 TWO-DIMENSIONAL CLIPPING: A VECTOR-BASED APPROACH

“decimals” preserved is equal to log,,(SCALE). The integer representa-
tion corresponding to (xy,) is then given by

iy, = ¥, SCALE;
1 —_ o
iX = (X, SCALE;

Addition and subtraction do not pose a problem. For multiplication and
division a rescaling has to be performed. The correct way to perform the
last two operations is

multiplication: a = (b c)/SCALE

division: a 0= (b JSCALE)/c.

Furthermore, one should bear in mind that divisions should be avoided as
much as possible. So rather than evaluating, for instance, the inequality

(a/b) > (c/d),
one should evaluate
ald — clbh > 0.

These slight arithmetic inconveniences are more than matched by the
advantages. Not only do integer operations perform faster than their
floating point counterparts on almost any machine, but above all the
calculations are now done in standard integer “infinite” precision.

Another fundamental decision is concerned with the representation. In
the algorithm described here we will use a so-called vector notation, in
which the endpoints of the line segments are specified. This implies that
the line segments themselves are not digitized. Although this complicates
somewhat the algorithm used, the advantage is that at every stage the
resolution is merely determined by the value of SCALE and not by the
resolution with which the vectors are digitized. This is the case in the final
stage of pixel-based algorithms—for example the Post-Script stencil
operation.

GRAPHICS GEMS | Edited by ANDREW S. GLASSNER 122

.13 TWO-DIMENSIONAL CLIPPING: A VECTOR-BASED APPROACH

Some Basic Considerations

Let {Pi}_“_i denote a set of n points (x,, y,). The polygon P is then
defined by the n line segments connectlng two consecutive points. Note
that this implies that the contour is always closed. We will furthermore
assume that no three consecutive points of the contour are colinear; this
constraint can be easily accommodated. As a generalized notation for the
points of the j* segment of the contour, we will use

P(s) = P, + s(P,,, - P), s O [0, 1).

i+1 J

Note that we use a half-open interval for s to avoid double use of the
endpoint of a segment. Some basic algebra suffices to determine the
intersection between a line segment | and the segments of the contour
(see Appendix). The problem of clipping a line segment against a polygon
can now easily be solved. It involves two major steps: the calculation of
the intersections of the line segment | with the polygon and the determi-
nation of the status of an arbitrary point of |I. By status we mean in this
context whether the point under investigation lies inside or outside the
polygon (note that the polygon is always closed). Within the set of
possible intersection of the line segment | with the contour P three
different classes must be considered:

1. intersections coinciding with begin (or end) points of the line seg-
ments of the polygon (see Fig. 1).

Figure 1. Two illustrations of begin points of the polygon coinciding with the line
segment |.

GRAPHICS GEMS | Edited by ANDREW S. GLASSNER 123

.13 TWO-DIMENSIONAL CLIPPING: A VECTOR-BASED APPROACH

P,
d 2B P '
l& l i-I\'/ZA l E / \
Fia P, Pi
Pi

Figure 2. Two illustrations of line segments |, which (partially) coincide with the
contour P.

2. line segment I, which coincides (partially) with line segments of the
polygon, that is, an infinite number of intersections, (see Fig. 2).

3. intersections not belonging to 1 or 2. We will refer to these as
§tandard.

It will be clear from the examples given that it does not suffice to merely
calculate the possible intersection, but that additional information has to
be computed and stored. One further ingredient is needed for a complete
description of the algorithm. This is to determine the relative position of
two points with respect to a given line segment I. Again some basic
algebra suffices. Let (x,, y,) and (x,, y,) denote the endpoints of the line
segment | and let P with coordinates (xp, yp) denote the given points.
Then comparison of the slopes of line segment | with the line segment
defined by one of the endpoints of | and P will result in a quantity of
which the sign determines the relative position of P with respect to I
This quantity S is given by:

> 0: P lies on “one” side of |
S = (x,- xl)(yp -y) -, - yl)(xp - X)= 0: P lies on |
< 0: P lies on “other” side of |

Algorithm

After these basic considerations, the complete algorithm for finding the
intersections can now be stated as follows:

1. Test if there is a simple intersection between line segment 2 and the
polygon segment P.P If not, goto 5.

i+1°

GRAPHICS GEMS | Edited by ANDREW S. GLASSNER 124

.13 TWO-DIMENSIONAL CLIPPING: A VECTOR-BASED APPROACH

N

Test if the intersection found coincides with P, or P, If not, add

the intersection to the list marked standard and goto 8.

D

3. Test if the intersection is P, . If so, goto 8.

4. Test if the polygon points P, _, and P, lie at opposite sides of I. If
so, add the intersection to the list marked standard. Goto 8.

5. Test if the line segment | coincides with the polygon segment
PP..,. If not, goto 8

6. Test if both P, and P, lie on [; if not, goto 8.

7. Test if P, and P, lie at opposite sides of I. If so, add both
points to the intersection list marked delayed.

8. Test if more polygon segments have to be investigated. If so, goto 1.
9. Add the begin and endpoints of | to the intersection list and sort it.

10. Scan the list for two successive points marked delayed. If present,
remove the first point from the list and remark the second as
standard.

If the number of intersections found is two, the segment | does not
intersect the polygon (note that the endpoints of the | have been added to
the list!) Otherwise the status of an arbitrary point of | has to be
determined.

This can be done using the same algorithm albeit with a slight modifi-
cation. The idea behind this calculation is that in going from the “inside”
of the polygon to the “outside,” one will encounter an odd number of
intersections. Note that it is essential to have a point that lies outside the
polygon. This can be found easily by first calculating the smallest rectan-
gular box enclosing all the points of the polygon. Any point outside this
box will clearly lie outside the polygon. Let (x, y,) denote such a point
and let (x, y,) denote an arbitrary point of 1. We can then determine the
number of intersections k of this line segment with the polygon using
steps 1 to 6 of the algorithm. The interpretation of k is not completely
straightforward since it is possible that (x, y) lies on the polygon. In
that case (x,, y,) need not be taken into account and consequently k has

GRAPHICS GEMS | Edited by ANDREW S. GLASSNER 125

.13 TWO-DIMENSIONAL CLIPPING: A VECTOR-BASED APPROACH

(xo -)’ 0)

Figure 3. Determination of the status of point (x,, y,). The dashed line represents
the box enclosing the polygon P.

to be decreased by 1. If the resulting k is odd, (x,, y) lies inside the
polygon; otherwise it lies outside the polygon.

Each line segment of the intersection list, defined by two successive
points of the list, can now be marked as outside or inside. If we want to
clip the line segment | against the polygon, only the segments marked
outside have to be taken into account, whereas the reverse is true for
filling the polygon. It will be clear that this scheme can be recursively
repeated for m polygons.

Implementation

We have implemented a clipping procedure, based on this algorithm in
standard C. The polygons are stored in a linked list. Each element of this
linked list holds information about a specific polygon and contains among
other things an identification, a segment count, the coordinates of the
smallest rectangular box enclosing the polygon, some status information,
and a pointer to a circular linked list. The elements of this circular list
contain the endpoints of the segments of the polygon (see Fig. 4).

Upon entering these routines, user coordinates are transformed to
integer representation. During the definition of a contour, the contour is
also stretched to avoid colinearity of three or more points. For clipping
purposes the algorithm described in the previous section is applied
recursively to the linked list of polygons. The specific actions depend on
the status information of the polygon. When a line segment is clipped
against a specific polygon this will result in a (new) set as line segment,
which can either be plotted directly or clipped subsequently against other

polygons.

GRAPHICS GEMS | Edited by ANDREW S. GLASSNER 126

.13 TWO-DIMENSIONAL CLIPPING: A VECTOR-BASED APPROACH

polygon segment descriptions

A 4

polygon
info

.............

polygon

info | e
—_1

Figure 4. Symbolic representation of the storage structure of the polygons.

Our implementation took approximately 500 lines of C code. Among
others, the following utilities were included: definition of polygons, re-
moval of polygons, temporarily on and off switching of polygons. SCALE
was set to 1024. The efficiency of the algorithm was tested by clipping
random generated line segments | against polygons with a variable
number of segments. Using a SUN3/60 (MC68020, 20 MHz, SunOS
4.0 C-compiler) workstation we find that the average time needed to
handle one segment of the polygon is approximately 125 microseconds.
Consequently, for a rectangular-shaped polygon one can process about
2000 vectors per second.

Appendix: Polygon Stretching and
Intersection Calculation

The problem of polygon stretching can be handled very easily. Consider
the three consecutive points P, , P, and P, .. Since the two line
segments defined by these three points have one point in common (P),

GRAPHICS GEMS | Edited by ANDREW S. GLASSNER 127

.13 TWO-DIMENSIONAL CLIPPING: A VECTOR-BASED APPROACH

one needs merely to compare the slopes of the two line segments to
test for colinearity. If the relation

(yi_ yi—l)(Xi+1_ Xi) = (yi+1 - yi)(Xi - Xi—l)

holds, the three points are colinear. In that case it suffices to consider the
segment P, _, P. , rather than the two segments P,_ P.and P.P,

The problem of intersecting the two line segments determined by the
points P.P. ., and QQ., ,, respectively, can be solved as follows. Let

P(s) = P, + s(P - PJ.), s O[O0, 1)

i+1

Q(t) = Qj + t(Qj+1’ - Qj)! t O [01 1)

define the line segments under consideration. Then the quantities a, b,
and ¢ can be defined as

a = (Xi+1,p B Xi,P)(yi,Q B yi+1,Q) - (Xi,Q B Xi+I,Q)(yi+I,P B yi,P)
b = (Xi, o~ X p)(yi, o = Vi, Q) B (Xi, 0~ Xi+n, Q)(yi, o ~ Vi)
c=(x, 1p ~ X, p)(yi, o ~ i) = (Vi e~ Y P)(Xi,Q - X)

and s = b/a and t = c/a.
The following possibilities then exist:

a=0andb=0:PP

i GO

and Q.Q,,, coincide

Oand b # 0: PP

a i 0

and Q.Q,,, are parallel

Otherwise, they intersect if s 0 [0, 1) and t O [0, 1), that is ¢c < a and
b < a. Note that the proper way to evaluate s (and t) is

s = (b[BCALE)/a.

See Appendix 2 for C Implementation (694)

GRAPHICS GEMS | Edited by ANDREW S. GLASSNER 128

—11.14—

PERIODIC TILINGS OF THE
PLANE ON A RASTER GRID

Greg Lee, Mike Penk, Bob Wallis
Weitek Corporation
\ Sunnyvale, California /

Introduction

Certain results from group and number theory are ideally suited for
analyzing and manipulating periodic patterns on raster grids. Conversely,
periodic plane tilings may be used to illuminate some otherwise abstract
mathematical concepts in a concrete manner. A general method for
bit-blitting any periodic pattern into a raster grid will be derived.

Wallpaper Groups

Consider the periodic plane tesselation of Fig. 1. It is basically a jigsaw
puzzle composed of identical butterflies (diseased moths?) in a hexagonal
array. The standard manner in which such tilings are categorized is by
examining the types of symmetries that leave the pattern invariant.
Informally, this process can be thought of as overlaying an infinite
translucent tracing of the pattern over the original (also extended to
infinity), and examining the nature of the translations, rotations, and flips
(mirror images) of the tracing that result in an exact realignment of the
tracing with the underlying image. If an x, y coordinate of the plane is
viewed as a complex number, the operations of flipping the tracing over,
shifting it, and rotating may be modelled as compositions of complex
conjugation, addition, and multiplication.

GRAPHICS GEMS | Edited by ANDREW S. GLASSNER 129

I1.14 PERIODIC TILINGS OF THE PLANE ON A RASTER GRID

:%’ NSV AN S V2 AN
DS DS D

S\ A\\ﬂﬂﬁ*‘ S % WA
S 5 ‘ VY e\ W
W@\ ”3@?4\%, i

2 S PhiSe SN
SIS VA LSS/ N S V4 SN\

wp = NS I
Wt Was 2, U
NNz =i =

If symmetry-preserving operations are combined together, the elements
are found to produce yet other symmetry-preserving operations. Alge-
braically, the set of manipulations obey closure, possess inverses, are
associative, and have an identity element. Therefore, they form a mathe-
matical group structure. The group properties of a periodic tiling may be
used as a means of classifying it. It turns out that there are exactly 17
types of these, and they are known as the plane crystallographic groups,
or wallpaper groups (Burn, 1985). The first organized collection of (most
of) these appears to be in the ornamental decorations used in the
Granada’s Alhambra cathedral, which dates back to the thirteenth cen-
tury.

Consider the tiling depicted in Fig. 1. The parallelograms and boxes
depict three different types of regions, each of which may be used to step
and repeat a template of the pattern to form an extended region of
wallpaper. The rectangular boxes are quite attractive from an implemen-

GRAPHICS GEMS | Edited by ANDREW S. GLASSNER 130

I1.14 PERIODIC TILINGS OF THE PLANE ON A RASTER GRID

tation standpoint, since once we fill one box, we can repeat it over the
plane with bit-blit operations to produce the desired tiling. The next
section will describe how to do this.

The wallpaper group represented in Fig. 1 is of type p6, characterized
by sixfold and threefold rotational symmetries about two different fixed
points. The six-center is at the right wingtip, while the three-center is at
the trailing edge of the left wing. If we take the origin of the coordinate
system as one of the six-centers (the center of Fig. 1), and call the
coordinate of the three-center z,, then we can define two symmetry

operators g and (B as
a:z — zeis sixfold rotation about z = 0
B:z - (z - z,)e2™” + z4 threefold rotation about z..

These two group elements are sufficient to generate the entire structure.
The following will show how various combinations of these two genera-
tors may be used to extract other symmetries. There have to be pure
translations lurking about in the set of symmetry operations. We can
ferret one of them out by combining the g and B operators in such a way
as to neutralize the rotation component, leaving only a translational
residue. One way to do this is to combine two rotations of —60 degrees
about z = 0 with one rotation of 120 degrees about z,. The result is

a-? ,8: y AR e—j2n/3[(z - Zs)ejZ"/3 + 2],
which reduces to
T:z o z+2,(e7°"°-1) =2-27,\/3e”""?,

The T translation vector is precisely a shift from one six-center to
another. Combining a and T yields other translations, which are just
60-degree rotations of one another. Any two adjacent translations form
the legs of a fundamental parallelogram (two types of which are shown in
Fig. 1). Note that each contains exactly six butterflies (if we cut and paste
wrapped-around fragments together). We can step and repeat one of
these parallelograms to fill the entire plane with the periodic pattern.

GRAPHICS GEMS | Edited by ANDREW S. GLASSNER 131

I1.14 PERIODIC TILINGS OF THE PLANE ON A RASTER GRID

There are of course many other symmetries waiting to be discovered by
combining powers of a and B. For example, a 240 rotation about z,
followed by a -60 about O results in a net rotation of 180. This must be a
two-center,

aBrz - e (2-2,)e " +2,),
which reduces to
Viz > —z+z,(e?° +1)

which is a 180-degree rotation about the middle leading edge of the left
wing. The fixed point of this two-center is located at

2, =-z,/3¢ """ two-center.

If we join butterflies paired together by y and color the pairs white, gray,
and black, we get Fig. 2.

Figure 2.

GRAPHICS GEMS | Edited by ANDREW S. GLASSNER 132

I1.14 PERIODIC TILINGS OF THE PLANE ON A RASTER GRID

Figure 3.

If we produce triplets of butterlies by combining the triad produced by
the [rotation, and color these distorted triangles black and white, we get
Fig. 3.

Figs. 2 and 3 depict groups within groups. In the case of Fig. 3, if the
triads are viewed as the basic element, the tiling is an example of
wallpaper group p3. The group theoretic description of this embedding is
a factor group or quotient group (Bloch, 1987; Burn, 1985). This concept
proves useful in the design of color tilings that preserve the inherent
symmetry of the embedding group (Coxeter et al., 1987).

Tiling in Raster Grids
In this section, we are interested in devising an algorithm to tile periodic
patterns efficiently into a pixel array. Clearly, there must be a way to

exploit the step-and-repeat tiling suggested by the interlocking parallelo-

GRAPHICS GEMS | Edited by ANDREW S. GLASSNER 133

I1.14 PERIODIC TILINGS OF THE PLANE ON A RASTER GRID

grams. If we can find rectangular bricks orthogonal to the coordinates of
our raster, such as those in the lower right area of Fig. 1, we could load
up one copy of the brick and then step and repeat it with a bit-blit
operation over whatever area of the plane we wish to cover.

It will be shown that this is always possible to do. The basic mathemati-
cal tools for doing this come from the field of number theory, which deals
with the properties of integers. We have to deal with exact integers
because we want a bit-blit template whose corners are aligned exactly
with pixel centers. All we need is a parallelogram basis with one compo-
nent that is exactly horizontal. Referring again to Fig. 1, note that the
rectangles can be derived from the horizontal parallelograms by slicing
off the triangle from the left edge of the parallelogram and gluing it to the
right edge.

Assume that we start with a pair of valid basis vectors [a, b] and [c, d].
Topologically, we treat the entire plane as if it were just one (fundamen-
tal) parallelogram cell that wraps around itself in toroidal fashion. A pixel
in the plane translated by any integer combination of these basis vectors
will land at the same place relative to the parallelogram cell. It is easy to
show that we can transform a set of basis vectors to another set of valid
basis vectors as long as we use integer weights and preserve the area of
the parallelogram. We wish to do this in a fashion that will produce a new
basis with an exactly horizontal component (in order to make a horizontal
block, which is more suitable for bit-blitting). Denoting the new basis
vectors as [A, 0], [C, D],

[A,0] = i[a, b] + j[c, d] the new horizontal basis vector

[C, D] = k[a, b] + I[c, d] il — jk =1 - preserve area.

First we want to find the smallest i and j that satisfy:
0=1ib + jd y component of horizontal vector.

The solution is

I = d/g
j = -b/g
g = gcd (b, d) greatest common denominator.

GRAPHICS GEMS | Edited by ANDREW S. GLASSNER 134

I1.14 PERIODIC TILINGS OF THE PLANE ON A RASTER GRID

The remaining k, | components must satisfy:

1
g

il —jk = (dZg)l + (b/Z9)k unit determinant
dl + bk solve for I, k.

This is exactly the problem solved by the extended version of Euclid’s
gcd algorithm (Knuth, 1981b), and a solution is guaranteed to exist. The
final results are

A =al +j
C = ak + cl
D = bk + dl

You can always put [C, D] in the upper half-plane and then add any
integer combination of the [A, 0] vector to the [C, D] vector, so you can
always adjust [C, D] such that

NN

0<C<A

0 < D.

This represents a reduced canonical representation of the lattice. That is,
any two lattices that reduce to the same set of A, B, C values are
equivalent. The matrices with integral weights and unit determinants that
relate equivalent lattices are known as unimodular transforms, and
form a group themselves.

As an example, consider the parallelogram lattice with basis vectors
[9, 9] and [— 3, 6]. We have

g = gcd(b, d) = gcd(9, 6) = 3

A =ia + jc = (ad — bc)/g = 27

3 =dl + bk

6l + 9Kk,

whose solution is | = -1, k = 1.

So the new basis is [27, 0] and [12, 3].

The old basis is shown in Fig. 4, overlaying a periodic array of 81
numbers arranged to show the pattern that we wish to tile by a step and

GRAPHICS GEMS | Edited by ANDREW S. GLASSNER 135

I1.14 PERIODIC TILINGS OF THE PLANE ON A RASTER GRID

4

24‘222!2425260123456789101112131(1516171819202122232425250L2434155733101112

79] 80, 54, 55, 56, 57,48, %9, 60, 61, 62, 63, 64, 65, 66,67, 68, 69, 70,71, 74 73, 74,75,76,77,78, 79, 80, 54, 55, 56, 57,48, 89, 60,61, 62, 63, 64, 65, 66,£7, 68,69, 70
29]30, 31, 32, 33,44, 35, 36\ 37, 38, 39, 40, 41, 42,43, 44, 45, 46,47, 48,49, X0, 51,82, 53, 27, 28, 29, 30, 31, 32, 33,44, 35, 3\ 37, 38, 39, 40, 41, 42,43, 24, 45, 46, 47
6l 7. 8, sA40,11,12,13,\4, 15, 16, 17, 18,49, 20, 21, 22, 23, 24, 25,26, 1, 2, 3. 4, 5. 6, 7, 8, 940,11,12,13,\4,15,16,17, 18,49, 20,21, 22,23, 24
64165,66,467,68,69,70,71, 77 73, 74, 75,/46,77,78, 79, 80, 54, 55, 56, 57,68, 59, 60,61, 62,63, 64, 65,66,67,68,69,70,71, 73 73,74, 75,/76, 77, 78, 79, 80, 54, 55
41 42,43, 44, 45, 46, 47,48, 49,50, 51,52, 53, 27, 28, 29, 30, 31, 32, 33,754, 35, 36\, 37,238,139, 40, 41, 42,43, 44, 45,46, 47, 48, 49, %0, 51,42, 53, 27, 28, 29, 30, 31, 32
18/49, 20, 21, 22, 23, 24, 25, 26, i, 2, 3, 4 5,6, 7, 8 940,11, 12,13, 14,15,16,17, 18,49, 20,21, 22, 23, 24, 25, 26, 1, 2, 3, 4, 5,6, 7, 8 9
76177,78, 79, 80,54, 55,56, 57,48, 59, 60, 61,62, 63, 64, 65, 66,67,68,69,70,71,7 73,74, 75,46, 77,78,79, 80, 54, 55, 56, 57,48, 59, 60, 61, 62, 63, 64,65, 66 £7
53] 27, 28, 29, 30, 31, 32, 33,44, 35, 36\ 37, 38,39, 40, 41, 42,43, 44, 45, 46, 47, 48,49, %50, 5142, 53, 27, 28, 29, 30, 31, 32, 33,44, 35,36, 37, 38, 39,40, 41, 42,43, 44
3} 4, 5, 6 7, 8 9A40,11,12, 13,\4,15,16,17, 18449, 20, 21, 22, 23, 24, 25, 26, 1, 2, 3, 4, 5, 6, 7, 8, 340 ,11,12,13,14,15,16,17, 18,49, 20, 21
61062, 63, 64, 65,66,67,68,69,70, 71, 73 73,74, 75,76, 77, 78, 79, 80, 54, 55, 56, 57,/58,59, 60, 61, 62, 63, 64, 65, 66,47, 68, 69,70, 71, 72 73, 74, 75,46, 77,78, 79
38139,40,41,42,43,44, 45,46, 47,48, 45,50, 5L,/52, 53, 27, 28, 29, 30, 31, 32, 33,44, 35,36\ 37, 38, 39,40, 41, 42,43, 44, 45, 46,47, 48, 49, §0, 51,42, 53, 27, 28, 29
1s] 16, 17, 18,49, 20, 21, 22, 23, 24, 25, 26, 1, 2, 3, 4, 5, 6, 7, 8 940,11,12 13.\4,15,16,17, 1845, 20, 21, 22, 23, 24, 25, 26, 1, 2, 3, 4, S, 6
73] 74,75,46,77, 78,79, 80, 54, 55, 56, 57,48, 59, 60, 61,62, 63, 64, 65, 66,67, 68, 69,70, 71, 74 73, 74, 75,46, 77, 78, 79, 80, 54, 55, 56, 57,48, §9, 60, 61, 62, 63, 64
50} 51,42, 53, 27, 28, 29, 30, 31, 32, 33,44, 35,38, 37, 38, 39, 40, 41, 42,43, 44, 45, 46,47, 48,49, %0, 51,42, 53,27, 28, 29, 30, 31, 32, 33,44, 35, 38\ 37, 38, 39, 40, 41,

o1, 2 3 4 5 £ 7 8 0,11,12,13 14 35 16,17, 18 20,21,22,23 24 25 26 1, 2, 3, 4 5 & 7 8 940 11,12, 13 14,15 16,17 _18

Figure 4.

GRAPHICS GEMS | Edited by ANDREW S. GLASSNER 136

I1.14 PERIODIC TILINGS OF THE PLANE ON A RASTER GRID

repeat process. The + signs represent pixel centers. In the language of
group theory, the set of pixels marked 0 is the subgroup of the plane
generated by the basis vectors. All the pixels marked as 1 represent one
of 81 possible cosets of the subgroup.

The same diagram with the new basis is shown in Fig. 5.

Note that in both cases the same numbers appear in the same places in
each parallelogram, which is precisely what we want. Our bit-blit rectan-
gle is 27 pixels wide by 3 pixels high, and each row of bricks should be
right-shifted by 12 pixels relative to the previous row.

An alternate way to see what is happening is to view the basis vectors
as the axes of a new [u, v] coordinate system.

X = au + cv [u, v] = [1, 0] = [x, y] = [a, b]
y = bu + dv [u, v] = [0, 1] - [Xx, y] = [c, d]
M = ad - bc number of pixels in cell

If we try to solve for [u, v] in terms of [X, y] by inverting this relation-
ship, we seem to be faced by a division with the determinant, which
would destroy the exact integer relationships we wish to maintain. How-
ever, if we scale up the [u, v] coordinates so that they lie in the interval
[0, M - 1] instead of [0, 1], and enforce wrap conditions on the boundary
of our fundamental cell, we obtain

u=fdx-cyl, generators for group structure
v =A{-bx +ay L, of tiling pattern,

where (x) ,, denotes taking the least positive residue mod M,

The residue reduction ensures that an [x, y] from anywhere in the
plane maps to a [u, v] in the interior of the fundamental cell. This dual
basis is exactly equivalent to the “reciprocal lattice” used in crystallogra-
phy. In the case of our example in Fig. 5, we have

u = 3x - 12yl

v = f0x + 27yl

GRAPHICS GEMS | Edited by ANDREW S. GLASSNER 137

I1.14 PERIODIC TILINGS OF THE PLANE ON A RASTER GRID

¥

21“22232!25260123!557!9101112131l15151')181&2&11222324152601234567E

75] 80,8 ;5€, 57, 50,59, 60, 61, 62, 63, 64, 65,66, 67,68, 69,70,71, 72,73, 74,75, 76,77, 78,79, 80, 8
30, 31, 32, 33, 34,35, 36,37, 38,39, 40, 41,42, 43, 44, 45, 46,47, 48, 49, 50, 51,52, 53, 27

26,57,58,59,60,61,62, 63, 64, 65, 66,

, 30,31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43,

65, 66, 67, 68, 69,70,71,72, 73,74, 75,76, 77,78, 79, 80, 5
410 42,43, 44,45, 46,47, 48,49, 50, 51, 52,53, 27

56, 57,58, 59,60,61,62,63, 64,65,66,67,68,69,70,71,72,73,74,75, 76, 77, 78,

4,5,

9,10, 31,12
67, 68,69, 70
44,45, 46,47

79, 80, 54
3,30, 31,32
6, 2,839

. 30,31 32, 33, 34, 35,36, 37, 38, 39, 40,

3L 4. S 6 7 A 9. 1011 12, 113 14,15 16 37 18, 19, 20 21 .22 23 24 2% 264 _ 0 3, 4 S _6 7, 0B, 9,10,11,12,13 14,15, 16,17

41,42,43, 44

61}62, 63, 64, 65, 66, 67,68, 69,70, 71,72, 73,74, 75,76, 77, 78,79, 80, 5
38039, 40, 41,42, 43, 44,45, 46, 47, 48, 49, 50, 51, 52, 53, 21

SE, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 65,70, 71,72, 73, 74, 75,

15016, 17 18 19,20 21,22, 23 24, 2% 26 0

<30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, S1, 52, 53, 27, 28779
A, 4, S, 6, 7 & 910 11 12 13 14,15 14 17 18 19 20 21 .22 23 24 25 26 _ O 2, 3, 4, 85 6

18,19, 20,21

76,77,78,79

73174, 75, 76,77, 78,75, 80, 54,855, 57,58, 59, 60, 61, 62, 63,64, 65, 66, 67, 68,69,70, 71,72, 73, 74,75, 76,77, 78,79, 80, 5
sof 51, 52, 53, 27,28;75, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45,46, 47, 48, 49, 50, 51, 52, 53, 27
0. 3 _4 5 6. 1 2,910 31 12 13 14 15 _16 17 18 19 20 21 22 23 24 2% 24 70’

L 30, 31,32, 33, 34, 35, 36, 37,
2, 3, 4 5 &, 7 8 9,10 13 12 13 14

56, 57,58, 59, 60,61, 62,63, 64

38,39,40, 41

Figure 5.

GRAPHICS GEMS | Edited by ANDREW S. GLASSNER

15,16, 17 18] o

138

I1.14 PERIODIC TILINGS OF THE PLANE ON A RASTER GRID

If we run through all possible values of [x, y], number theory tells us that
u can only take on 81/gcd(3, 12) = 27 different values, all of which will
be multiples of 3. The v component can only take on the three values
{0, 27, 54}. The geometrical significance of this is that the u basis vector
hits three pixel centers, and the v vector hits 27 (not including the
origin). Consequently, our exact integer relationships will be maintained
If we shrink the basis vectors (group generators) by 3 and 27, that is,

u’ = u/3 =(x - 4y),, u in range {0, 1 ,... 26}

V' = v/27 =(y) v in range {0, 1, 2}

3

This means that the group structure is essentially Z,, X Z.. One way that
we can use the above to produce a 1D function that assigns a unique
number to every pixel in the cell is to form a map Z,, X Z, - Z_, with

z(x, y) = U+ 27V’ = (x — 4y}, + 27(y)..

This is exactly the function used to produce the pixel indices in Figs. 4
and 5.

The utility of the above indexing method is that we can load up all
possible M elements of the cell into a linear array, and then for each
[X, y] in the plane, pick out the one selected by z(x, y).

Another practical application of the above technique is in generating
digital patterns for halftone screens that are rotated relative to the raster
grid (Holladay, 1980). In this case, the pixels are usually one bit deep,
and the tiling is accomplished by bit-blitting an entire rectangle.

GRAPHICS GEMS | Edited by ANDREW S. GLASSNER 139

IMAGE
PROCESSING

T

ANTI-ALIASING
FILTERS SUMMARY

Aliasing is a fact of life when using digital computers to repre-
sent continuous signals. One must be constantly aware of the
implications of sampling and quantization, and attempt to avoid
or suppress image artifacts resulting from these processes. An
essential step in all algorithms that suppress or eliminate alias-
ing is the choice of filters used in the sampling and reconstruc-
tion processes. The search for *“good” filters (according to
different criteria) is an active research area.

The following Gems present some different filtering strate-
gies, ranging from the explicit to the implicit. These filtering
techniques may be adapted for use in almost any anti-aliasing
technique.

See also Anti-Aliasing Summary (37); Scan Conversion Sum-
mary (75); Line-Drawing Summary (98)

GRAPHICS GEMS | Edited by ANDREW S. GLASSNER 143

A]y, —
/ N

CONVENIENT ANTI-ALIASING
FILTERS THAT MINIMIZE
“BUMPY” SAMPLING

Mark J. Pavicic
North Dakota State University

\ Fargo, North Dakota /

A solution to the spatial aliasing problem is to convolve the image with
an appropriate filter function. Two commonly used functions are the cube
and the Gaussian. Advantages of the cube are that it is a simple function
and it evenly weights the image plane. Uneven weighting contributes to
problems such as lines that appear to have varying thickness. Advantages
of the Gaussian are that it is a closer approximation to a CRT dot and it
Is radially symmetric. The radial symmetry makes it easy to construct a
look-up table, since it is indexed by a single variable, r, which is the
distance of an edge from the center of a pixel.

An ideal function would be radially symmetric and would evenly sample
the image plane. A properly chosen Gaussian can come close to this ideal.
Figure 1 shows how a particular Gaussian weights the square region
whose corners are the centers of four pixels. The square region forms the
base of the cube. The top surface results from taking the sum of four
Gaussian “mountains.” The partial outline of one of the Gaussian moun-
tains is shown on the front face of the cube. This filter has the equation

1 - exp(pfr?
f(r) = af - - PUT)S
0 1-exp(-8)0
where a = 1 and [= 2.378. It satisfies the criteria that it have a unit
volume, that f(0) = 1, and that f(I) = 0. It is defined to be zero for
r > 1. Note that f(0) = a = 1 is not a fixed requirement. In fact, a more
even weighting can be achieved if a # 1. Figure 2 shows the optimal
result, which occurs when a = 0.918 and B = 1.953. The unit-volume
and f(1) = 0 criteria are still satisfied.

An interesting alternative is the sum of a cone and a cosine. This

composite function satisfies all the criteria imposed on the Gaussian in

GRAPHICS GEMS | Edited by ANDREW S. GLASSNER 144

[II.LCONVENIENT ANTI-ALIASING FILTERS THAT MINIMIZE “BUMPY” SAMPLING

Figure 1. Unit height Gaussian. Figure 2. Optimized Gaussian.

< - \,
~ e
A o L
. - \

Figure 3. Cone plus cosine. Figure 4. A tabular solution.

Fig. 1, yet samples the image plane nearly as evenly as the optimized
Gaussian in Fig. 2. This filter has the equation

f(r)y =a(l -r) + (1 - a)(1 + cos(mr))/2
for r < 1, where a = (1 - v2)/(vl - v2), vl = /3, and v2 = /2 -
2/1. It was used to generate Fig. 3. Note that the filters sum to 1 along
the top edges of the cube.

To get a quantitative comparison of these three cases, the percentage
of the volume above and below a unit height was calculated and found to
be 3.25, 1.03, and 1.13 for Figs. 1, 2, and 3, respectively. Thus, these
measures verify what is already evident in the figures, namely that
carefully chosen filter functions can do a superior job of minimizing
“bumpy” sampling while still retaining the convenient characteristic of
radial symmetry.

GRAPHICS GEMS | Edited by ANDREW S. GLASSNER 145

[II.LCONVENIENT ANTI-ALIASING FILTERS THAT MINIMIZE

Table I. A Tabular Solution.

“BUMPY” SAMPLING

Radius Height Radius Height Radius Height

0.000 0.98408 0.350 0.68296 0.700 0.25793
0.025 0.97480 0.375 0.65948 0.725 0.22992
0.050 0.94708 0.400 0.63234 0.750 0.20212
0.075 0.93409 0.425 0.60675 0.775 0.17534
0.100 0.91498 0.450 0.57303 0.800 0.15028
0.125 0.89570 0.475 0.54482 0.825 0.12665
0.150 0.87605 0.500 0.51341 0.850 0.10394
0.175 0.85232 0.525 0.48111 0.875 0.08269
0.200 0.83052 0.550 0.44843 0.900 0.06390
0.225 0.80723 0.575 0.41493 0.925 0.04723
0.250 0.78173 0.600 0.38189 0.950 0.03279
0.275 0.75696 0.625 0.34996 0.975 0.02462
0.300 0.73128 0.650 0.31849 1.000 0.00000
0.325 0.70686 0.675 0.28760

At this point one might ask, “What is the optimum?” To get some idea,
a table of 41 values was adjusted to minimize the volume displaced by
uneven sampling. The result is shown in Fig. 4 and the values are listed
in Tab. 1. The percentage volume displaced in this case is 0.43. This level
of performance can also be approximated by radially symmetric filters
whose shapes are described by polynomials or spline curves. As a final
example, Tab. 2 lists the five control points for a nonuniform cubic
B-spline that has a “bump factor” of 0.60.

GRAPHICS GEMS | Edited by ANDREW S. GLASSNER

Radius Height
0.00 1.000
0.25 0.788
0.50 0.558
0.75 0.149
1.00 0.000

Table 2. Control Points.

146

—l.2—

FILTERS FOR COMMON
RESAMPLING TASKS

Ken Turkowski
Apple Computer
Cupertino, California

Continuous, Sampled, and Discrete Signals

Signals or functions that are continuous are defined at all values on an
interval. When these are then sampled, they are defined only at a given
set of points, regularly spaced or not. When the values at these sample
points are then quantized to a certain number of bits, they are called
discrete. A sampled function may or may not be discrete.

In computer graphics, we deal with all three of these representations, at
least in our models of computation. A function such as sin(x) is consid-
ered continuous. A sequence of floating-point values may be considered
to represent a sampled function, whereas a sequence of integers (espe-
cially 8-bit integers) represent a discrete function.

Interpolation and Decimation

Even though a signal is sampled, we may have certain rules about
inferring the values between the sample points. The most common
assumption made in signal processing is that the signal is bandlimited to
an extent consistent with the sampling rate, that is, the values change
smoothly between samples. The Sampling Theorem guarantees that a
continuous signal can be reconstructed perfectly from its samples if the
signhal was appropriately bandlimited prior to sampling (Oppenheim and
Schaeffer, 1975). Practically speaking, signals are never perfectly band-
limited, nor can we construct a perfect reconstruction filter, but we can
get as close as we want in a prescribed manner.

GRAPHICS GEMS | Edited by ANDREW S. GLASSNER 147

1.2 FILTERS FOR COMMON RESAMPLING TASKS

We often want to change from one sampling rate to another. The
process of representing a signal with more samples is called interpola-
tion, whereas representing it with less is called decimation. Examples of
interpolation are zooming up on an image; correcting for nonsquare
pixels; and converting an image from 72 dpi to 300 dpi to feed a
high-resolution output device. Applications of decimation are reducing

the jaggies on an supersampled image; and correcting for nonsquare
pixels.

Choices of Filters

Several types of filters are more popular than others: box, tent, Gaussian,
and sinc. In Fig. 1, we show the frequency response of a few of the
continuous versions of these filters. The ideal filter would have a gain of
0 dB between frequencies of 0 and 1 (the passband), and -« beyond 1 (the
stopband). The rolloff in the passband is responsible for blurriness, and
the leakage in the stopband is responsible for aliasing (jaggies). One
generally has to make the tradeoff between sharpness and aliasing in
choosing a filter. We will be sampling some of these filters, specifically for

use in interpolation and decimation ratios of integer amounts, such as 2,
3, and 4.

? freq

Gaussian
1/2

Figure 1.

GRAPHICS GEMS | Edited by ANDREW S. GLASSNER 148

1.2 FILTERS FOR COMMON RESAMPLING TASKS

BoXx

1/2 9

Figure 2.

The box filter for interpolation merely picks the closest value. For
decimation, it is simply an average of the input samples. With an even
number of samples, the filter produces an output that is situated between
two input samples (half phase), whereas with an odd number, it is situated
at the same location as the middle sample (zero phase). With other filters,
you can select the phase of the filter, but not so for the box filter. In Fig.
2, we show the half-phase box filter for decimation by 2. Higher decima-
tion ratio filters just have coefficients with weights that sum to 1.

Tent

1/84

5 1 05 05 1 15 15 -1 05 & 05 1 15
phase=0 phase=1/2

Figure 3. Decimation by a factor of two with the tent function.

GRAPHICS GEMS | Edited by ANDREW S. GLASSNER 149

1.2 FILTERS FOR COMMON RESAMPLING TASKS

3/18¢ 3/18

2o Do 1184 . :|: : /1/18

45 1 05 05 1 15 15 1 05 = 05 1 15
phase=0 phase=1/2

Figure 4. Decimation by a factor of three with the tent function.

2/16 @ :
1/16 ¢ =

32 | it | waa2

1328 : il

45 4 05 05 1 15 154 05 05 1 15
phase=0 . phase=1/2
Figure 5. Decimation by a factor of four with the tent function.

The tent filter is a generalization of linear interpolation, and is so when
interpolating. Unlike the box filter, this can accommodate arbitrary filter
phases; we show the zero-phase and half-phase filter for decimation by
two, three, and four (see Figs. 3, 4, and 5).

Gaussian

The Gaussian function is popular for its many elegant analytical proper-
ties; it is entirely positive, it is the limit of probability density functions,
and it is its own Fourier transform. Here, we give a rationale for choosing
an appropriate width, or variance, or filtering in graphics.

We choose Gaussian filters here whose variances have physical and
computational significance. The first is the narrowest that we would

GRAPHICS GEMS | Edited by ANDREW S. GLASSNER 150

1.2 FILTERS FOR COMMON RESAMPLING TASKS

probably ever want to use, and has a half-amplitude width of , that is,

1

it has the value | at a distance ; from its center. Its value gets negligible
1, samples away from the center, so it can be considered to have a support
of 3.

Energy, in general terms, is the square of the magnitude. If the eye is
more linear in energy than in magnitude, then a more appropriate Gauss-
ian might be one in which the square of the magnitude is ; at a distance
;> from the center, or that the magnitude itself has a value of 1/+/2 at that
point. This is a wider Gaussian than the first, and its magnitude doesn’t
become negligible until 2 samples from the center, so that it may be
considered a filter with support 4.

In Fig. 1, we compare the box, tent, and these two Gaussians. The box
filter captures more of the passband (freq < 1) than the others, but it also
lets through more of the stopband (freq > 1). It is the leakage in the
stopband that is responsible for aliasing artifacts, or “jaggies.” The tent
filter is 15 dB better at eliminating aliasing in the stopband, but does so
at the expense of losing more features in the passband. The Gaussian ; filter
matches the tent for a good portion of the passband, but continues to
attenuate the stopband. The Gaussian 1/7/2 filter does an even better job
at attenuating the aliases, but does so at the expense of losing additional
detail in the passband.

A comparison of the tent and the narrow Gaussian in the time (space)

domain will show that they look very similar, except that the Gaussian is

Gaussian |, (x) = 2%
o2

Gaussian, (x)= 274"

Figure 6.

GRAPHICS GEMS | Edited by ANDREW S. GLASSNER 151

1.2 FILTERS FOR COMMON RESAMPLING TASKS

smooth at the peak and the base, whereas the tent has slope discontinu-
ities there. It is these discontinuities that cause the ringing and ineffective
alias suppression in the stopband.

One of the side effects of our particular choices of Gaussian variance is
that many of their coefficients at interesting locations are scaled powers
of two, which makes way for faster computation. We will see this in the
following filters, specialized for certain interpolation and decimation
tasks.

Interpolation with the Gaussian % Filter

1/81

1 phase=-1/4 ‘ - " phase=1/4

Figure 7. Interpolation with the Gaussian % filter.

In Fig. 7, we give the filter coefficients for a set of filters to interpolate
between two given samples: halfway between, and a quarter of the way to
either side of a sample. Notice the nice rational coefficients that are
scaled powers of two.

GRAPHICS GEMS | Edited by ANDREW S. GLASSNER 152

1.2 FILTERS FOR COMMON RESAMPLING TASKS

To determine the coefficients for a filter to produce the value at any
other point between two samples, we merely sample the Gaussian at a
series of locations one sample apart, and normalize them so that their
sum equals one. Even though the Gaussian is zero nowhere, we consider
this filter’s value to be negligible greater than 1.5 samples away from its
center.

Decimation with the Gaussian % Filter

64/162 ¢ | §64/162

16/162

2. S 2.
phase=1/2

Figure 8. Decimation by a factor of two with the Gaussian % filter.

-++++0.002

O-oOmMOo—o
NN r® O N O 595388585
OO NMNOOOQO S o a N -
cCcocococooo Py S Sk SO,

000,157

. . 2 1, 2.
phase=0 phase=1/2

Figure 9. Decimation by a factor of three with the Gaussian % filter.

GRAPHICS GEMS | Edited by ANDREW S. GLASSNER 153

1.2 FILTERS FOR COMMON RESAMPLING TASKS

% R A § R . T i, .
phase=0 phase=1/2

Figure 10. Decimation by a factor of four with the Gaussian % filter.
1
Interpolation with the Gaussian .2 Filter

This wider Gaussian becomes negligible greater than two samples away
from the center (see Fig. 11).

phase=0 phase=1/4
(a) (b)

1
Figure 11. Interpolation with the Gaussian 2 filter.

GRAPHICS GEMS | Edited by ANDREW S. GLASSNER 154

1.2 FILTERS FOR COMMON RESAMPLING TASKS

y 64/105

32/105 ¢

-é. -'1 . phase=1/2 1 . 2. -2. -'1 . phase=3/4 1 . 2.

Figure 11. (Continued)

64/2109"[4 64/210

0.083 0.083 8/210

0015,/ i | 1 I\Q015 1210 1/210

-2. -1. phase=0 1. 2. '2. -1, phase=1/2 1 2.
. 1
Figure 12. Decimation by a factor of two with the Gaussian 7 filter.
v
NoOWVO ONS OO LW NOTWUNOOONONYT ON
OC-rWMAONOND~ O o
9O ~aN~—-099 8588258528858

'2. "1. phase=o i 2. -2. "1. phase___‘[/z 1. 2

1
Figure 13. Decimation by a factor of three with the Gaussian 2 filter.

GRAPHICS GEMS | Edited by ANDREW S. GLASSNER 155

1.2 FILTERS FOR COMMON RESAMPLING TASKS

AUMNOANOWOOMNOMOOWANONAN

2.

-2. -1. 1. 2. -2. -1 phasé=1/2

1
Figure 14. Decimation by a factor of four with the Gaussian 2 filter.

The Sinc Function

The sinc function (see Fig. 15) is the ideal low-pass filter (Oppenheim and
Schaeffer, 1975).

-8 =7 -5 -NA3 -V1
~0. 21

Figure 15.
The Lanczos-Windowed Sinc Functions

Since the sinc function never goes to zero but approaches it slowly, we
multiply it by an appropriate windowing function. The two-lobed Lanczos-

GRAPHICS GEMS | Edited by ANDREW S. GLASSNER 156

1.2 FILTERS FOR COMMON RESAMPLING TASKS

windowed sinc function is one such windowed sinc function, and is
defined as follows (see Fig. 16):

. sinD at
E’Pin 7X) H'2H
_ . |x <2
Lanczos2(x) = 0 mx X
0 T,
2
5 o X > 2
-3 -2\ A1 N2 3

Figure 16.

The three-lobed Lanczos-windowed sinc function is defined similarly
(see Fig. 17):

N b O

Figure 17.

GRAPHICS GEMS | Edited by ANDREW S. GLASSNER 157

1.2 FILTERS FOR COMMON RESAMPLING TASKS

o SinTas

E,sm(nx) H"3H X <3
Lanczos 3 (X) = 0 T =

. 3

g 0, X = 3

The Lanczos-windowed sinc function filters have been shown to be
particularly useful for graphics applications.! We will concern ourselves
here mainly with the two-lobed version, because of its smaller kernel.

Interpolation by a Factor of Two with the

Lanczos2 Sinc Function

Note that in Fig. 18, with a zero-phase filter, the contributions from other
than the central pixel are zero, so that only the central pixel is used.

phase=0 phase=1/2
(a) (b)

Figure 18. Interpolation by a factor of two with the Lanczos2 sinc function

Turkowski, Ken and Gabriel, Steve, 1979. Conclusions of experiments done at Ampex,
comparing box, Gaussian, truncated-sinc, and several windowed-sinc filters (Bartlett,
cosine, Hanning, Lanczos) for decimation and interpolation of 2-dimensional image data.
The Lanczos-windowed sinc functions offered the best compromise in terms of reduction
of aliasing, sharpness, and minimal ringing.

GRAPHICS GEMS | Edited by ANDREW S. GLASSNER 158

® 0.869

0.233¢ 0.233
-0.018 -0.084 : -0.018
2 T 2 2

phase= -1/4 phase=1/4
(© (@

Figure 18. (Continued)

Decimation with the Lanczos2 Sinc Function

-2
phase=0 phase=1/2

Figure 19. Decimation by a factor of two with the Lanczos2 sinc function.

The zero-phase filter (Fig. 19) has coefficients that are nearly rational. If
the negative coefficients are scaled so that they are equal to -1, then the
remaining coefficients are 9 and 15.7024. This inspired a search for such
filters with rational coefficients. This yielded the two zero-phase filters in
Fig. 20.

GRAPHIC GEMS | edited by DAVID KIRK 159

1.2 FILTERS FOR COMMON RESAMPLING TASKS

Turkowski decimator Gabriel decimator

Figure 20.

Comparative Frequency Responses

Filters are evaluated on their ability to retain detail in the passband
(sharpness is valued more than blurriness) and to eliminate aliasing in the
stopband (smoothness is valued more than jagginess). The frequency
response of a sampled filter is quite different than the continuous one

o N roOov~—m O O Net NN ON NN M
58 —&888c- 8§35 88832nn=3888
o??ooocooo??o ???OOOOOO???

phase=0 phase=1/2

Figure 21. Decimation by a factor of three with the Lanczos2 sinc function.

GRAPHICS GEMS | Edited by ANDREW S. GLASSNER 160

1.2 FILTERS FOR COMMON RESAMPLING TASKS

phase=0 phase=1/2

Figure 22. Decimation by a factor of four with the Lanczos2 function.

By the way, one bit corresponds to about 6 dB, so that attenuation
beyond 48 dB is irrelevant when working with 8-bit pixels from which it
was derived. Instead of taking the Fourier transform as with
continuous filters, we take the z-transform and sample on the unit circle.

In Figs. 23 and 24 we see that the filter derived from the Gaussian 1/2
filter doesn’t perform as well as the one derived from the tent, although
we know that in the continuous case, the Gaussian is much better. What
happened? We sampled the filter functions, that’s what happened. In the
process, we changed the characteristics of the filter. In fact, there are
several continuous filters that give rise to the same sampled filters. The
labels on each of the filters are actually misnomers, since the sampled
filters are not the same as the continuous ones.

The box filter seems to retain a large portion of the passband, but lets
through a tremendous amount of energy in the stopband, resulting in
noticeable aliasing. The Lanczos filters keep more of the passband than
the others (except for maybe the box), and they cut off more of the
stopband (except for maybe the Gaussian 1/+2), with the Lanczos3 filter
coming closest to the ideal filter shape of all the filters evaluated. The
Gaussian 1/~/2 filter is competitive with the Lanczos3 for stopband
response, but does so at the expense of excessive attenuation on the
passband.

GRAPHICS GEMS | Edited by ANDREW S. GLASSNER 161

1.2 FILTERS FOR COMMON RESAMPLING TASKS

gain (dB) O.'5 1 freq

- Gaussian 1/2

Figure 23. Frequency response of the zero-phase filters for decimation by 2.

gain (dB) 7 0.5 1 froq

10 Gaussian 1/V2 Gaussian 1/2
-20 Tent

-30 Lanczos2

-40

-50

Figure 24. Frequency response of the half-phase filters for decimation by 2.

GRAPHICS GEMS | Edited by ANDREW S. GLASSNER 162

1.2 FILTERS FOR COMMON RESAMPLING TASKS

Frequency Response of the Gaussian Filters for
Several Decimation Ratios

The cutoff frequencies are 0.5 for the 42 filter, 0.333 for the 43, 0.25
for the 44. Note that the zero-phase and the half-phase filters for
decimation by 2 diverge, whereas the higher-decimation filters do not.

Figure 25. Frequency response of the Gaussian%filter for several decimation ratios.

ain (dB .
gain (dB) 0:5 1-freq

1
Figure 26. Frequency response of the Gaussian 7z filter for several decimation ratios.

GRAPHICS GEMS | Edited by ANDREW S. GLASSNER 163

1.2 FILTERS FOR COMMON RESAMPLING TASKS

Frequency Response of the Lanczos2 Sinc
Functions

gain (dB)

-60! Gabriel \ee i Turkowsk

Figure 27. Frequency response of the Lanczos2 sinc functions.

: 1, 1 1
gain (dB) 4 s 2 1 freq

Figure 28. Frequency response of the Lanczos2 sinc functions for several decimation
ratios.

GRAPHICS GEMS | Edited by ANDREW S. GLASSNER 164

1.2 FILTERS FOR COMMON RESAMPLING TASKS

We show the responses of the decimate-by-2 filters related to the
Lanczos2 filter in Fig. 27. Note that the Gabriel decimator lets more of
the passband through and has a sharper cutoff in the stopband, but also
bounces back in the stopband at a higher level than that of the Lanczos2.
The Turkowski decimator, however, does not bounce back and eliminates
more of the highest frequencies than the other two. They all have
approximately the same passband response and aliasing energy, but the
aliasing energy is distributed differently throughout the spectrum, so they
can be considered about equivalent.

GRAPHICS GEMS | Edited by ANDREW S. GLASSNER 165

—l.3—

SMOOTHING ENLARGED
MONOCHROME IMAGES

John Olsen
Hewlett-Packard
Fort Collins, Colorado

Typical methods of enlarging a monochrome image result in a very blocky
product because of pixel replication or repeating a pixel to fill in the area
added between pixels when an image is increased in size. The enlarging
method that follows will preserve many of the angles that are missed by
simple enlargement schemes such as pixel replication, and will generate a
much more intuitive result. This method of image enlargement is espe-
cially effective on images such as circles, disks, and other continuous or
smooth curves.

Only monochrome images will be discussed here because there are
many complications that arise when dealing with color or grayscale
images. This technique of enlarging bitmaps will not be extended to color
iImages because there is no obvious or intuitive scheme for doing so. The
difficulty arises because the result image can vary, depending on which
colors are smoothed first.

The monochrome enlarging process is implemented as a search over a
series of rules that govern how the enlarged pixels are filled in. These
rules consist of an array of source pixels and of data indicating what
additional areas are filled with the foreground color, as is seen in the rules
shown in Fig. 1.

Scaling by integer multiples gives the most uniform results, but this
scaling technique is equally applicable to noninteger increases in size.
The code required for noninteger scaling will of course be more complex.

Each of the specified rules is to be rotated by 90-degree increments
and mirrored in order to generate a complete set of eight final rules per

GRAPHICS GEMS | Edited by ANDREW S. GLASSNER 166

1.3 SMOOTHING ENLARGED MONOCHROME IMAGES

Rule 1 Rule 2 Rule 3

Figure 1. The rules used to create smooth monochrome enlargements.

initial rule. Fig. 2 shows how one of the rules from Fig. 1 is used to
generate a set of eight rules.

By using all three rules in Fig. 1 and applying the mirroring in Fig. 2
you will obtain a set of 24 rules that will each preserve a unique angle. A
simplified set of rules is obtained by using only rules 1 and 2 with their
associated mirroring, and rotating to obtain a set of 16 rules. The

Figure 2. The original rule 2 with its rotations and reflections.

GRAPHICS GEMS | Edited by ANDREW S. GLASSNER 167

1.3 SMOOTHING ENLARGED MONOCHROME IMAGES

simplified set is well-behaved because the preserved angles are evenly
distributed, whereas with the set of 24 the additional preserved angles
tend to be close to multiples of 90 degrees.

The initial step used to create a smoothed image is to generate a blown
up image, just as with pixel replication. Next, the rules are applied to the
image from the most complex to the least complex, which will partially

VA RS

'

¥ Y=

%

2 ¥l

Figure 3. Results of smoothing various patterns.

GRAPHICS GEMS | Edited by ANDREW S. GLASSNER 168

1.3 SMOOTHING ENLARGED MONOCHROME IMAGES

fill some of the previously empty blocks within the result image. The rules
need to be sequentially checked from complex to simple only until a
match is found because the simpler rules will fill only a subset of the area
filled by the more complex rules.

There is a definite pattern within the rules: each successive rule is a
copy of the previous one, with one column added to generate the
following more complex rule. This means that the process of generating
rules can continue as far as you would like to take it, but it is generally
not practical to go past rule 3 as specified in Fig. 1 because of the
increased CPU time required for the more complex rules.

These rule sets will preserve many patterns (such as the interior and
edges of checkerboards and both inside and outside square corners)
instead of causing them to be smoothed in distracting or unexpected
ways, yet will do a very good job of smoothing curves on objects where
smoothing makes more sense. Fig. 3 shows a few typical patterns and
how the smoothing algorithm will modify each.

+ o+ o+ o+ + o+ o+

+ +
4 +
+ +

+ o+ o+ o+ o+ o+ o+ o+

Figure 4. Smoothing causes certain areas to be filled by multiple rules.

GRAPHICS GEMS | Edited by ANDREW S. GLASSNER 169

1.3 SMOOTHING ENLARGED MONOCHROME IMAGES

These results are obtained by taking each of the original rules and its
seven rotated and mirrored rules and comparing them to each location on
the image. Wherever a match occurs, the shaded areas are filled in. Best
results are obtained by skipping pixels that appear exactly at the edge of
the area to be filled. This is demonstrated by doubling the scale of a
simple object that uses only rule 1, and noting that horizontal and vertical
edges are emphasized when the border pixels are drawn. Care must also
be taken in applying the rules to generate the final output, since destina-
tion blocks of pixels can be modified by more than a single rule, as seen
in Fig. 4.

Admittedly, this smoothing algorithm does not take all possible angles
into consideration, but it is meant to produce a much better final result
than simple scaling of bitmapped images with pixel replication. The
greatest gain in using this technique is that the resulting smoothed
images will always be generated in a predictable and intuitive manner.

GRAPHICS GEMS | Edited by ANDREW S. GLASSNER 170

.4

MEDIAN FINDING
ON A 3x3 GRID

Alan W. Paeth
University of Waterloo
Waterloo, Ontario, Canada

Overview

A fast implementation for finding the median of nine elements is pre-
sented. This supports median filtering on 2D raster images—output
pixels are defined as the median value contained by a corresponding
3 x 3 pixel region on the input. Filtering by this nonlinear technique
removes ‘“shot” noise, pixel dropout, and other spurious features of
single pixel extent (Fig. 1) while preserving overall image quality (Huang,
1981). The technique is also attractive in that median is defined by a
logical ranking of element values, not by arithmetic computation, yielding
tools that operate on images of arbitrary pixel precision (Paeth, 1986a,
1986b; Paeth, 1987). Fast median evaluation is essential as operation
counts on images quickly approach one million.

The median on n elements is that value having rank ;(n + 1), where
rank is each element’s relative sorted position within the array. That is,
the median element is the central element on the sorted data set. The
computation time for median finding is known to increase linearly with
input length but the related methods are unsuitable for small arrays.
Brute-force sorting performs unnecessary computation because all n
elements become ranked. The approach presented here requires twenty
comparisons and is close to the minimum exchange-network bound for
median finding on nine elements (nineteen comparisons) and a clear win
over a bubble-sort featuring early completion after sorting has ranked the
first five elements (thirty comparisons).

GRAPHICS GEMS | Edited by ANDREW S. GLASSNER 171

1.4 MEDIAN FINDING ON A 3 X 3 GRID

(a) (b)

Figure 1. Median filtering (3 x 3).

Element Exchange

Ranking of the data is achieved using simple element exchanges. This
supports straight-line code implementation lacking conditional logic or
subroutine calls. This approach also allows for parallel execution or reuse
of partial terms for larger 2D filter kernels. Exchanging may be done in a
manner reminiscent of data swapping without a temporary variable using
three bit-wise exclusive OR'’s:

A: a B: b
a < a bit-xor b A: a xor b B: b
b —« b bit-xor a A: a xor b B: b xor (a xor b) = a
a < a bit-xor b A: a xor b xor a = b,B: a.

Subtraction behaves in a self-complementary fashion identical to xor
because both bit complementation and arithmetic negation are their own
inverses. The basic two-element exchange that underpins the entire
algorithm shares the subtraction implicit in any arithmetic comparison.,
This reduces three program statements to two; coding as a macro re-

GRAPHICS GEMS | Edited by ANDREW S. GLASSNER 172

1.4 MEDIAN FINDING ON A 3 X 3 GRID

moves the cost of subroutine invocation:

s2(a, b) — place a and b in ascending order
macro s2(a, b) if (z <« b - a) <0 then begina « a+2z;b « b -z end.

The s2 sorting operator is a special case of the minnax, operation with
k = 2. The general operation finds the overall winner and loser (elements
of rank 1 and k) on a k element set. Finding the minimum and maximum
on larger sets using two element comparisons may be done by way of a
tournament. Here elements and comparisons are represented by players
and matches (which may take place in parallel), respectively. The tourna-
ment commences by pairing off all players; in subsequent rounds only
matches between remaining winners (or losers) occur. Play ends when
both an all-time winner and an all-time loser have been found. For
tournaments whose membership is not a power of two some players will
draw byes and will (re)enter later rounds. A k-player tournament ends
after completion of [3(3n — 4)matches. An illustration of minmax on six
elements using seven comparisons is diagramed in Fig. 2, in which circles
represent players and arrows represent matches with an arrowhead indi-
cating the winner,

The median operation on a nine-element array partitions the array into
three sets: a set of four elements with rank < 5, the median with
rank = 5, and a set of four elements with rank > 5. The median may be
found by placing elements pairwise into the nonmedian sets until the
median remains. Any six-element subset of the nine-element input array
contains an element whose rank is at least six (as when the subset
happens to contain the six smallest elements of the array); conversely,

O O @) O -0 O O O -0
W
p p A L
@) O @) O O -0 O -0 @)
(a) (b) (c)

Figure 2. Six-player min-max tournament.

GRAPHICS GEMS | Edited by ANDREW S. GLASSNER 173

1.4 MEDIAN FINDING ON A 3 X 3 GRID

median
7
Y
Kminmaxﬁ k /} minmax6_)
smallest set largest set

Figure 3. Reducing the median.

this subset contains a smallest element whose rank can be no greater than
four (see Fig. 3).

These outermost two elements bracket the median and belong within
the remaining two partitions: discarding them reduces the input data to
seven elements. The median (rank 4) on the remaining elements is then
found by finding and discarding minimum and maximum elements using
a subset of four; the procedure continues through minmax,. At this point,
eight discard values have been partitioned and the median remains. The
complete pseudo-code requires twenty comparisons and is listed here:

macro s2(a, b) if (z « b -a) <0 then begina « a+2z;b « b-2; end

macro mn3(a, b, ¢) s2(a, b); s2(a, ¢);

macro mx3(a, b, ¢) s2(b, c); s2(a, c¢);

macro mnmx3(a, b, ¢) mx3(a, b, ¢); s2(a, b);

macro mnmx4(a, b, ¢, d) s2(a, b); s2(c, d); s2(a, c); s2(b, d);

macro mnmx5(a, b, ¢, d, e) s2(a, b); s2(c, d); mn3(a, c, e); mx3(b, d, e);

macro mnmx6(a, b, c, d, e, f) s2(a, d); s2(b, e); s2(c, f); mn3(a, b, c,); mx3(d, e, f);

integer function median9 (v)
v:array [1..9] of integer Subscripting from one for clarity,
begin v is of type real or integer.

mnmx6(v[1], v[2], v[3], v[4], v[5], v[6]); Cast off two elements each time.
mnmx5(v[2], v[3], v[4], v[5], VI[7]);
mnmx4(v[3], v[4], v[5], v[8]);
mnmx3(v[4], v[5], v[9]);

The median is now in v[5]; v[1..4] and v[6..9] are the ranked partitions.
return[v[5]];
end;

GRAPHICS GEMS | Edited by ANDREW S. GLASSNER 174

1.4 MEDIAN FINDING ON A 3 X 3 GRID

Although the macro expansion form suggests underlying machine code
with many costly indexing operations (as compared to the pointer arith-
metic possible with sorting), this is not the case. Because the array size is
small, most array elements can be cached in local registers. The form
presented here is particularly useful because discarding of min/max pairs
may commence immediately after the first six elements have been read in
consecutive order; subsequent program statements drop two elements
and fetch only one additional input so the number of active registers
steadily declines. This suggests C code (see the Appendix) in which the
“register” source code directive—which provides the compiler a list of
suggested candidates for register variables—Ileads to further speed-ups.
For larger odd-order boxes the comparison technique is still useful.
The above approach costs 1/16[3n* + 10n? — 13] integral comparisons
for boxes of n? elements and odd edge length n, giving 132 comparisons
for a 5 x 5 box. An alternate network for median on twenty-five elements
(Paeth, 1990), requiring less than one hundred comparisons, is included
in the C code. It has been exhaustively checked against all possible input
permutations and transcribed directly from the sources. For larger sam-
pling boxes (kernels) reuse of common elements suggests traditional
median finding methods on large arrays. In the 2D spatial case, these
include the use of sorted data structures in which the trailing and leading
element columns are deleted and added while indexing across a scan-line.

See also Storage-free Swapping (436)

See Appendix 2 for C Implementation (711)

GRAPHICS GEMS | Edited by ANDREW S. GLASSNER 175

—lL.5—

ORDERED
DITHERING

Stephen Hawley
Morristown, New Jersey

AN /

Ordered dithering is a technique of reducing high-precision, two-dimen-
sional data to a lower precision using positional information to retain as
much information as possible. In the context of image processing, or-
dered dithering can be used to reduce multilevel grayscale images to
fewer levels, or in the simple case, to black and white. This can be used
to reduce the storage space of an image, while retaining a fair amount of
the image contents or to display multilevel grayscale images on a black-
and-white display.

Ordered dithering is a very fast, efficient technique. Dithering typically
requires one comparison, one array lookup, and two modulo operations
per pixel and can be implemented as a macro or inline function. In most
cases, the modulo operations can be done with bit-ands.

The whole idea behind ordered dithering is to distribute evenly the
expected range of gray levels throughout a matrix, which will act as a
screen. A gray level is compared to a value in the matrix using the
coordinates of the gray level as indices into the matrix. Gray levels that
are greater than the corresponding value in the dithering matrix are
filtered out as representing black. All other values represent white. This is
almost exactly the same as the halftoning process used in newspapers.

The real trick is to come up with a way to design the matrix so that
each gray level will produce an even pattern in the output. For example,
a 50% gray level should come out as a checkerboard pattern. If we adopt
a recursive definition of the matrix, we get this for free.

GRAPHICS GEMS | Edited by ANDREW S. GLASSNER 176

1.5 ORDERED DITHERING

To start off, here’s a base case for a dithering matrix for 256 gray
levels:

M, = [0]

This is the zeroth dithering matrix. Its dimensions are 2° by 2% It
contains the range from 0 to 255, but is not very useful by itself. M,
looks like this:

0 0, 1920
O 0.

M, =
428, 64f

M., is the first dithering matrix. Its dimensions are 2' by 2'. It contains
the range from 0 to 255, but with only four numbers. This means that M?
can only generate four distinct “halftone” patterns. If we use larger M’s
we’ll get more patterns, and better image quality.

M, can be thought of as four copies of M, with constants added:

M. = EM°+ 0, M, + 192%
"M, + 128, M, + 64 1

Similarly, M, appears as follows:

00, 192, 48, 2400
Mlzgl_zg, 64, 176, 1125
032, 224, 16, 2087
460, 96, 144, 80g

In this case, M, is just four copies of M, with constants added:

= M0 M, + 48D
>~ Hv, + 32, M, + 168

In general, M, can be defined as follows:

M 3 El\/lk_l+ OEQn—Zk’ Mk_1+ 3[Qn—2kg
T M2, M e)

GRAPHICS GEMS | Edited by ANDREW S. GLASSNER 177

1.5 ORDERED DITHERING

where 2" is the upper limit of the range that is being dithered over (in the
above examples, n is 8) and k such that n > 2k. Generating dithering
matrices by hand is time-consuming and prone to error. It is far easier to
use a program to generate them. For an example of such a program,
please refer to the Appendix.

In the following example, you’ll see how to reduce a multilevel image to
a bilevel image. The function reduce loops over the entire input bitmap
dithering each pixel. To stress the size-independence of the code, neither
the dithering matrix nor its dimensions are specified in the pseudo-code.

DitherSize: integer;
DitherMatrix: array [0..DitherSize — 1] of array [0..DitherSize — 1] of integer;
MultiMap: record [
array [0..m] of array [0..n] of integer;
I
BiMap: record [
array [0..m] of array [0..n] of boolean;
I
macro dither(x, y, level)
(level > DitherMatrix[x mod DitherSize] [y mod DitherSize]);
This macro compares the given level to an element in the dithering matrix.
The element is located by mapping the coordinates of the pixel into the dithering
matrix.

function reduce (in: MultiMap; out: BiMap;)
begin
for i: integer « 0, i « i + 1 whilei <md
for j: integer « 0,] « J + 1 while j<n
out[i][j] ~ dither(i, j, in[i][i]);
Since the dither macro is a boolean expression, it reduces the
multilevel input to binary output.
endloop;
endloop;
end;

0
do

See Appendix 2 for C Implementation (713)

GRAPHICS GEMS | Edited by ANDREW S. GLASSNER 178

— .6/

A FAST ALGORITHM FOR
GENERAL RASTER ROTATION?

Alan W. Paeth
University of Waterloo
\ Waterloo, Ontario, Canada /

Introduction

The rotation of a digitized raster by an arbitrary angle is an essential
function for many raster manipulation systems. We derive and implement
a particularly fast algorithm which rotates (with scaling invariance) rasters
arbitrarily; skewing and translation of the raster is also made possible by
the implementation. This operation is conceptually simple and is a good
candidate for inclusion in digital paint or other interactive systems, where
near real-time performance is required.

We derive a high-speed raster algorithm based on the decomposition of
a 2D rotation matrix into the product of three shear matrices. Raster
shearing is done on a scan-line basis, and is particularly efficient. A useful
shearing approximation is to average adjacent pixels, where the blending
ratios remain constant for each scan-line. Taken together, our technique
(with anti-aliasing) rotates rasters faster than previous methods. The
general derivation of rotation also sheds light on two common tech-
niques: small-angle rotation using a two-pass algorithm, and three-pass
90-degree rotation. We also provide a comparative analysis of Catmull
and Smith’s method (1980) and a discussion of implementation strategies
on frame buffer hardware.

This paper revises and updates the journal article (Paeth, 1986a), which first described
general raster rotation using three shearing passes. Minor errors have been corrected, the
references have been augmented, and an addendum has been included, which provides
additional background and application notes.

GRAPHIC GEMS | Edited by DAVID KIRK 179

1.6 A FAST ALGORITHM FOR GENERAL RASTER ROTATION

Statement of the Problem

A general 2D counterclockwise rotation of the point (x, y) onto (x', y')
by angle theta is performed by multiplying the point vector (X, y) by the
rotation matrix

[cos@ -sinf0

M =
%in@ 00395

The matrix is orthogonal: its inverse is its transpose, rows and columns
are unit vectors, and the determinant is one. To rotate a raster image, we
consider mapping the unit cell with center at location (i, j) onto a new
location (i’, j').

The image of the input cell on the output grid is a cell with (usually) a
nonintegral center, and with a rotation angle theta (8). We adopt a
“box-filter” sampling criterion, so the value of the output pixel is the sum
of the intensities of the covered pixels, with each contributing pixel’s
intensity weighted in direct proportion to its coverage (see Fig. 1). Note
that the output pixel may take intensities from as many as six input
pixels. Worse, the output pixel coverage of adjacent input pixels is
nonperiodic; this is directly related to the presence of irrational values in
the rotation matrix. Clearly, the direct mapping of a raster by a general
2 x 2 matrix is computationally difficult: many intersection tests result,
usually with no coherence or periodicity to speed program loops.

Rotate 45°
?’\‘ 39%,

2.3%[3] 60.0%

“

h)
8.9%"\

_

Figure 1. Rotation by raster sampling.

GRAPHIC GEMS | Edited by DAVID KIRK 180

1.6 A FAST ALGORITHM FOR GENERAL RASTER ROTATION

Rotation through Shearing

Now consider the simplest 2 x 2 matrices that may operate on a raster.
These are shear matrices:

X shear = 4af shear = 400
o1 U T

Shear matrices closely resemble the identity matrix: both have a
determinant of one. They share no other properties with orthogonal
matrices. To build more general matrices, we form products of shear
matrices—these correspond to a sequence of shear operations on the
raster. Intuitively, consecutive shearing along the same axis produces a
conforming shear. This follows directly:

I

a'0d a'
D:
1g

1 adofl i
O

? 199 1§ O

Thus, shear products may be restricted to products of alternating X
and y shears, without loss of generality. The product of three shears
gives rise to a general 2 x 2 matrix in which three arbitrary elements may
be specified. The fourth element will take on a value that ensures that the
determinant of the matrix remains one. This “falls out” because the
determinant of the product is the product of the determinants (which are
always one for each shear matrix). Orthogonal 2 x 2 matrices also have

unit determinants, and may thus be decomposed into a product of no
more than three shears:

a

ImI |

+
1

0 aodl 00 yd ©os® -sinfO
5) 15%& 155) 15_%in9 cos@%

Solving the general equation, we have a =y = (cos 6 — 1)/sin 6, B =
sin 6. The first equation is numerically unstable near zero, but can be
replaced by substituting the half-angle identity for the tangent:

6 sin6@ _ 1-cos@
tan — =

2 1+cos@ B sin@

GRAPHIC GEMS | Edited by DAVID KIRK 181

1.6 A FAST ALGORITHM FOR GENERAL RASTER ROTATION

yielding a = y -tan(6/2). Counterclockwise rotation by 6 is thus the
shear product:

1 —tanB/ZBml oo —tanQ/ZE
53 1 @%in@ 1553 1 g

Notice that 8 and a have opposing signs for nonzero 6. As will be shown
later, B = -2a/(1 + a?). Program code to shear and update the point
(x,y) with (x',y") is then:

X shear y shear
X' « X — tan(6/2) x vy; X" « X;
y' <y, y' < y + sin(6) x x;

When the output vector replaces the input, x = x" and y = y’, so the
second line of the sequence may be optimized out. Consecutive shears
yield sequential program steps. Thus, a three-shear rotation is achieved
by the three program statements:

X « X+ axy, X shear (1)
X « y+ pBxy; y shear (2)
X « X+ axy, x shear (3).

With 6 = 0, Cohen (Newman and Sproull, 1979) uses steps (1) and (2)
to generate circles by plotting points incrementally. His derivation begins
by choosing a and [to approximate the conventional rotation matrix
and then points out that by reassigning x + a x y to the original variable
x in (1), and not to a temporary value x’, the determinant becomes one,
and the circle eventually closes. Our analysis demonstrates formally why
this is true: rewriting the variables constitutes a shear, and the sequence
of shears always maintains a determinant of one. Augmenting the code
with line (3) would convert the two-axis shear in a true rotation: the circle
generator would then produce points rotated through a constant angle
relative to the preceding point. This is important should the algorithm be

GRAPHIC GEMS | Edited by DAVID KIRK 182

1.6 A FAST ALGORITHM FOR GENERAL RASTER ROTATION

used to produce circle approximations as n-gons (and not point draw-
ings), where 8 = 360/n is no longer small.

Raster Shearing

Raster shearing differs from point transformation in that we must con-
sider the area of the unit cell that represents each pixel. Fortunately, the
shear operation modifies the pixel location with respect to only one axis,
so the shear can be represented by skewing pixels along each scan-line.
This simplifies the intersection testing that must go on to recompute the
intensity of each new output pixel.

In general, the unit square P(i,) on row i is rewritten as a unit
parallelogram with side of slope 1/a on row i, with the former displaced
by a x i pixel widths. This displacement is not usually integral, but
remains invariant for all pixels on the ith scan-line. For illustration and

- Shear 0.3 77 7
N yasaas

Figure 2. Raster shearing along the x-axis.

(1-£) B,

/

areas identical

-dk\---

fPyy

Figure 3. The parallelogram approximation.

GRAPHIC GEMS | Edited by DAVID KIRK 183

1.6 A FAST ALGORITHM FOR GENERAL RASTER ROTATION

implementation, it is represented as the sum of an integral and a frac-
tional part (f in Fig. 3; skewf on p. 187). Those pixels covered by this
parallelogram are written with fractional intensities proportional to their
coverage by the parallelogram. The sum of all these pixels must equal the
value of the original input pixel, as they represent this input pixel after
shearing.

We next approximate this parallelogram of unit area with a unit square.
Placing the edges of the square through the midpoints of the parallelo-
gram, we produce an exact approximation when the parallelogram covers
two pixels, but not when it covers three. This approximation is the basis
for our rotation algorithm. As we shall see, it can be implemented as a
very efficient innermost pixel blending loop, thus offsetting the cost of
making three shearing passes, as compared with previous techniques,
which employ two less efficient (though more general) passes.

Based on this filtering strategy, we consider two approaches to rota-
tion. First, we seek angles 6 for which the filtering is exact. Second, we
analyze the filter for arbitrary values of @ where the filter may not be
exact.

Rational Rotation

Filtering is exact when all parallelograms overlap no more than two
pixels. This will always occur when the shear offset is of length 1/n,
because a periodic cycle of n parallelograms results in which each spans
exactly two pixels. Choosing this ideal filter for the first and third passes,
we derive the second pass shear value. This requires the general solution

of B in terms of a. Since a = -tan(6/2), 6 = -2 tan'a as tan — x =
—tan Xx. Substitution yields B = sin a = -sin(2 tan-a); similarly
sin — x = =sin X. Given a right triangle of adjacent side 1 and opposite
side a it is clear that
tan™ a = sin™ = cos™ L :
vai+1 vai+1

Also, sin(260) = 2 sin 8 cos 6. By expressing arctangent successively in

GRAPHIC GEMS | Edited by DAVID KIRK 184

1.6 A FAST ALGORITHM FOR GENERAL RASTER ROTATION

terms of arcsine and arccosine, we have

B =-2 sinDin‘l—chosDos‘l 1 -_ -2
BS Ja?+10 Ef Jar+10 1+a”
i e _ 2n
In the case at hand, we choose a in the form Fyleldlng B = 1o
An all-integer case occurs when setting n = 1, which yields a = -1,

B = 1. Thus, rotations with 6 = 90° are exact, a feature not possible
when using the two-pass approach of Catmull-Smith. Because no frac-
tional pixel values are generated, rotation by 90 degrees may be coded as
a high-speed three pass “shuffle” for use on either software or hardware
(Kornfeld, 1987).

We may consider rotation by rational values generally, as these specific
forms allow “loop unrolling” for fast rotations. [pass generates small
errors on a periodic basis. When a and are small rationals of the form
i/j, then the shear values (which are used as blending coefficients by our
algorithm) will recur every j scan-lines. In particular, the jth scan-line
will have no fractional remainder and can be “blitted” directly into the
output buffer. Solving for general rational values of a and (B, we find that
o = —-i/j and B = 2ij/(i*> + j?). These tabulated values give rise to
highly efficient filters, with approximation errors minimized (see Fig. 4).

Graphically, these rotation angles are related to solutions of Pythago-
ras’ theorem i? + j2 = k? wherein the coordinates of select input pixels
and matching output pixels remain integral. As an example, rotation by

a B 0

-1 1 90.00
-3/74 24/25 73.74
-2/3 12/13 67.38
-1/2 4/5 53.13
-1/3 3/5 36.87
-1/4 8717 28.07
-1/5 5713 22.62

Figure 4. Rotation by a rational shear.

GRAPHIC GEMS | Edited by DAVID KIRK 185

1.6 A FAST ALGORITHM FOR GENERAL RASTER ROTATION

6 = 53.13° maps all input pixels at coordinates (5i,5j) onto output
pixels at (3i, 4j) exactly. (See also “Circles of Integral Radius on Integer
Lattices” beginning on page 57.)

Arbitrary Rotation

We now consider arbitrary choices of 6 and then the precision of the
rotation. For 68 > 90°, our shear parallelogram may span four pixels and
the filtering rapidly breaks down. Based on the four-fold symmetry of a
raster, we may restrict our attention to rotations of no more than 45
degrees, where our approximation has worst-case performance (because
a and B grow monotonically with 0 < 6 < 90°). Here a =1 - 2 =
—-.4142; and B =+2/2 = .7071. The second B pass is the most error-
prone.

Probabilistically, its filter is exact 29.3% of the time. Otherwise, the
parallelogram spans three pixels, and the error, as a function of fractional
pixel skew, grows quadratically to a cusp, reaching its worst-case error
when the parallelogram is symmetric about the output pixel. This error is

V278 or 17.7%. However, the sampling tile shifts as the shear value
changes with each scan-line, so average degradation to the sheared raster
Is computed by integrating over parallelograms of all possible skew.
Solving the equations, we find that the worst-case shear filter approxi-
mates intensities to within 4.2% of the actual intensity. For rotations less
than 45 degrees, the approximation is even closer, as the probability of

L —
, P i 4.3
’ ’ ’ *
,o ’o ’/ E
r
i e d 12 . a=.7
el
éxact./ /\vorst] r]
L4 7 x4 * o=.5
I 4 I'd 7 1l hhaceoo=
’/ 7 r 4
{ i 4 T T T,
’I ’, ’, - 2 L] ‘ L] 6 L] 8
L L L Fractional Skew

Figure 5. Approximation error.

GRAPHIC GEMS | Edited by DAVID KIRK 186

1.6 A FAST ALGORITHM FOR GENERAL RASTER ROTATION

the parallelogram spanning three pixels decreases. Where it does, the
error terms are also smaller.

The nature of the error is to concentrate intensities from a center pixel,
whereas the true box-filter approximation calls for contributing coverages
from two neighboring pixels. Thus, the approach “peaks” the data: the
nature of the degradation is not random. Further, a reasonable implemen-
tation of the filter guarantees that when any scan-line is skew-sheared by
a fractional amount, the contributing intensities of each input pixel sum
to 1.0—the filter parallelograms never overlap. If we consider the sum of
the pixel intensities along any scan-line, this sum remains unchanged
after the shear operation. Thus, the algorithm produces no visible shifts
in intensity and introduces no “holes” during rotation—all pixel flux is
accounted for. The only rotation artifacts discernible appear with high-
frequency data (such as lines of single pixel width), and even then only
after magnification. This property is shared generally with rotation and
translation algorithms, which must resample such *“sharp” rasters onto
nonintegral pixel boundaries.

Implementation

Scan-line shearing is approximated by a blending of adjacent pixels. In
the following code segment, the pixmult function returns a pixel scaled
by a value skewf, where 0 < skewf < 1 is a constant parameter for all
width passes through the innermost loop.

procedure xshear(shear, width, height)
begin
for y « 0 to height-1 do begin
skew « shear x (y + 0.5);
skewi « floor(skew);
skewf « frac(skew); (see addenda)
oleft ~ 0;
for x <« 0 to width — 1 do begin
pixel « P[width - x, y];
left — pixmult(pixel, skewf); pixel = left + right
pixel « pixel — left + oleft; pixel — left = right

GRAPHIC GEMS | Edited by DAVID KIRK 187

1.6 A FAST ALGORITHM FOR GENERAL RASTER ROTATION

P[width - x + skewi, y] « pixel,;
oleft ~ left;
endloop;
P[skewi, y] « oleft;
endloop;
end

function pixmult(pix, frac)
begin
pix ~pix x frac
pixg - pixg x frac
pix, « pix, x frac
end.

This operation is a shearing algorithm for the x-axis; it shears a raster
of size (width, height) by the value present in shear, so the data matrix P
must be of sufficient width to accommodate the shifted output data. Note
that only width output entries are written, so the skewed output line may
be written to frame buffer memory modulo the frame buffer scan-line
width, thus requiring no additional memory but; complicating the specifi-
cation of data to the three shear passes. A virtual frame buffer implemen-
tation, which provided a notion of “margins” to active picture detail, can
maintain this offset information implicitly.

A shear operation always has an axis of shear invariance (it is in fact an
eigenvector). In this implementation, the axis is the pixel boundary below
the final row of pixel data at a distance height. This gives rise to rotation
about the interstices between pixel centers. To rotate rasters about pixel
centers, the 0.5 half-pixel offset may be removed.

The code splits each pixel into a left and right value using one
multiply per pixel; left and right always sum exactly to the original pixel
value, regardless of machine rounding considerations. The output pixel is
then the sum of the remainder of the lefthand pixel, plus the computed
fractional value for the present (righthand) pixel. The pixmult function
reduces to a fractional multiply or table look-up operation with
monochromatic images. More generally, it may operate on an aggregate
pixel, which might contain three color components or an optional cover-
age factor (Porter and Duff, 1984). Because read and write references to

GRAPHIC GEMS | Edited by DAVID KIRK 188

1.6 A FAST ALGORITHM FOR GENERAL RASTER ROTATION

P occur at adjacent pixel locations during the course of the innermost
loop, pixel indexing can be greatly optimized.

On machines lacking hardware multiply, code to shear a large (512 X
512) image may build a multiply table at the beginning of each scan-line
and then use table look-up to multiply. By skew symmetry, x-shearing of
line —n and line n are identical, save for shear direction, so one table
may be used for two scan-lines, or for every 1024 pixels. With a pixel
consisting of three 8-bit components, the table length is 256, and table
fetches will exceed table loads by a factor of 12. Since the table can be
built with one addition per (consecutive) entry, its amortized cost per
look-up is low, and decreases linearly with raster size.

Many frame buffers now incorporate integer multiply hardware, often
targeted to pixel blending applications (The Adage/lkonas frame buffers
at Waterloo’s Computer Graphics Laboratory provide a 16-bit integer
multiply in hardware). This speeds the evaluation of the pixel blending;
the majority of the inner-loop overhead is in (un)packing the 24-bit RGB
pixel to provide suitable input for the multiplier. Fortunately, the addition
used to complete the blend may be done as a 24-bit parallel add, because
the values to be summed, left and right, have been scaled by frac and
1-ffrac respectively. Thus, the blending operation is closed, and no carry
can overflow from one pixel component into the next.

Finally, the shear code may more generally be used to introduce spatial
translation of the raster. By introducing an output offset in the shear
code, a BitBlt-style operation (Ingalls, 1978) may be included at no extra
cost. In this setting, skewi and skewf would have integral and fractional
offsets added to them to accommodate the lateral displacement of the
raster. Displacement during data passes two and three provides arbitrary
displacement on the plane, with orthogonal specification of the displace-
ment parameters.

More generally, when the code is incorporated into a larger package,
which provides arbitrary (affine) matrix operations on a raster, the com-
posite of all intermediate image transformations are represented in one
matrix. This avoids unnecessary operations to the image. Eventually, this
matrix is decomposed into three operations: scaling, rotation, and shear-
ing (plus an optional translation if a 3 X 3 homogeneous matrix is used).
The shearing, rotation, and possible translation operations may be gath-
ered into one three-shear operation. The scale pass prefaces the rotation

GRAPHIC GEMS | Edited by DAVID KIRK 189

1.6 A FAST ALGORITHM FOR GENERAL RASTER ROTATION

iIf it scales to a size larger than 1 : 1; otherwise it follows the rotation. This
maximizes image quality and minimizes data to the shear (and possibly
rotate) routines. Other four pass scale/shear sequences are discussed in
the literature (Weiman, 1989).

Comparisons

As with the Catmull-Smith approach, the algorithm may be implemented
as a pipeline for real-time video transformation. Both approaches require
two “rotators” to transpose the data entering and leaving the second
scan-line operator, since this step requires data in column (and not row)
order.

Most two-pass warps are described in terms of separable functions on
x and y (Smith, 1989). By way of comparison, they may be modeled by
the two-matrix transformation

I

g o

1 0 Orosf -sinfOXO
an@ sec@%% 0 1 8Eg

Xx'0 O
0,0=Q
e 8

These slightly more general matrices perform a simultaneous shear and
scale along one axis, while leaving the second axis unchanged. This
approach saves one data pass, but incurs the penalty of more complex
scan-line sampling. Moreover, in two-pass scale-invariant rotation all
pixels undergo a cos@ minification and restoring sec@ spatial magnifica-
tion. Thus, for intermediate values represented in integer arithmetic
(frame buffer pixels), there is a small penalty in roundoff error.

Finally, because sample pixels are both sheared and scaled, no pixel-
to-pixel coherence of fractional sampling location exists. Thus, each pixel
must be sampled at two fractional locations, doubling the number of pixel
(aggregate RGB) multiplies for each pass. Hand analysis of our microcode
showed that this is already the dominant operation in the pixel loop.
Finally, the Catmull-Smith approach must additionally recompute the
fractional sample points for each next pixel or approximate their location
using fixed-point arithmetic. In our implementation, fractional sampling
points are constant per scan-line, and are calculated exactly in floating
point at the beginning of each line.

GRAPHIC GEMS | Edited by DAVID KIRK 190

1.6 A FAST ALGORITHM FOR GENERAL RASTER ROTATION

Compared generally to other work, our algorithm finds application
where a generalized BitBIt operation is needed to perform rotation and
translation efficiently. More complex pixel sampling passes may justify
their added expense in allowing for generalized rotation operations, such
as Krieger’s modified two-pass approach (Krieger, 1984) used to perform
3D rotation with perspective transformation, useful in texture mapping.

Conclusions

The technique outlined here performs arbitrary high-speed raster rotation
with anti-aliasing and optional translation. The mathematical derivation
guarantees scaling invariance when rotating. The implementation strategy
allows for particularly fast operation, while minimizing the approximation
error. This algorithm is a powerful tool in the repertoire of digital paint
and raster manipulation systems. Coupled with state-of-the-art raster
scaling techniques, it can transform an input raster by an arbitrary 2 x 2
transformation matrix in near real time.

Addenda: History

The shear-matrix notation and associated code optization sheds light on
the register saving technique” which is now an oft-repeated bit of
Computer Graphics lore. It is almost indisputable that the first implemen-
tation was MIT. An entry from “HAKMEM” (Beeler et al., 1972) is
excerpted here:

Item 149 (Minsky)

Here is an elegant way to draw almost circles on a point-plotting display.
CIRCLE ALGORITHM:

NEW X = OLD X - e*OLD Y

NEW Y = OLD Y + e NEW(!)X

This makes a very round ellipse centered at the origin with its size deter-
mined by the initial point.

GRAPHIC GEMS | Edited by DAVID KIRK 191

1.6 A FAST ALGORITHM FOR GENERAL RASTER ROTATION

. . . The circle algorithm was invented by mistake when I tried to save one
register in a display hack!

. .. [It is] exciting to have curves, and | was trying to get a curve display
hack with minimal instructions.

The earliest use of triple shear matrices is much older. Gauss paired
one spatial shear with each of the three physical processes that occur at
the boundaries and interior of each element in an optical system: refrac-
tion, transfer (across the new media), refraction (Blaker, 1971). Ironically,
his application was in ray tracing!

Circle Drawing

This algorithm updates the circle-drawing routine cited above. In this
guise a circle of radius r located at the origin is represented by the initial
point (r, 0) with subsequent points formed iteratively by applying succes-
sive triple shears. This formulation yields a radius vector of demonstrably
invariant length, thus assuring the creation of true circles. The previous
two-pass method maintains a constant swept area between successive
radii as a consequence of unit system determinant. The locus of points
generated therefore describes ellipses as a consequence of two of Kepler’s
laws of motion: planets move along elliptical orbits and sweep out regions
of constant area per unit time. Closure is thus guaranteed, albeit with a
residual eccentricity. The three-pass trigonometric matrix formulation
describes rotation by arbitrary constant angle. Thus, the revised algo-
rithm may be used for the efficient construction of arbitrary n-gons in
which no trigonometric functions appear within the innermost code loop.
When representing a circle as a polygon of large n the matrix product
(XYX)" represents all shears constituting one complete cycle. Therefore,
this product is the identity matrix and we may permute any run of 3n
products cyclically. Also, matrix products associate, thus allowing arbi-
trary grouping. In particular, the product may be written as (Y(XX))".
This reduces the number of shears to two by summing the off-diagonal
values for the consecutive X matrices, yielding (YX')" as a valid two-pass
technique for closed curve generation. By Taylor expansion we have

X' = 2X = -2 tan(8/2) = — 6 — 63/12 + 0(6Y)
Y = Y= sin(8) = 6 — 63/6 + 0(85).

For 9 = 0 zero we omit all but the linear terms and thus rederive Minsky’s

GRAPHIC GEMS | Edited by DAVID KIRK 192

1.6 A FAST ALGORITHM FOR GENERAL RASTER ROTATION

original circle generator:

1 -0 1 00l 60
[l (=0] [
P 1 625 B 199 1g

Note that the coordinates for circumferential points are no longer gener-
ated explicitly, but are now implicit within the aggregate X' shear. Thus,
the two-pass method vyields circles with overall X shear: ellipses with
major and minor axes not parallel to the Cartesian ones. The two-pass
technique maintains high accuracy because it provides an approximation
correct to the quadratic term while employing only linear operations.

Font Rendering

The three-pass algorithm is well-suited for the rendering of bitmapped
fonts at various rotations and emphases (normal, bold, italic). Most often,
glyph libraries are hand-tuned for specific sizes making a fast rotator
providing anti-aliasing (but lacking scaling) an ideal choice. Raster-based
character italicization is most often done using scan-line skewing (x-axis
shearing) by the discrete values 0.25 or 0.2. These values correspond to a
single pixel scan-line displacement occurring every fourth or fifth scan-line
within the character string, respectively. When combined with rotation,
this skew matrix S of arbitrary x-shear value prefaces the three-pass
rotation as we wish to rotate an italic font, not the converse—the
symmetry of the three-pass formula is destroyed and matrix multiplica-
tion does not commute. For the new XYXS we may immediately regroup
the trailing x-shears to form XYX' The complete operation utilizes shear
matrix products in their most general capacity.

Similarly, glyph emboldening is an operation that occurs prior to the
first shear pass. Simple emboldening merely brightens pixel values. When
made implicit to the operation of the scan-line code, emboldening in-
creases the fractional pixel coverage value skewf, thereby thickening the
vertical edges of the original character set. With imagination, related
effects such as haloing or shadowing can also take place concurrently.

Generalized BitBlt

The entire pseudo-code algorithm can be rewritten using incremental
pointer arithmetic (C-language “el = *ptr + + ”) as all memory reads and

GRAPHIC GEMS | Edited by DAVID KIRK 193

1.6 A FAST ALGORITHM FOR GENERAL RASTER ROTATION

writes are to consecutive pixels. This is a consequence of the overall
scale invariance, which means no rate differentials exist on the input and
output data streams that otherwise give rise to the bottlenecking and
fold-over problems of generalized warping (Wolberg and Boult, 1989).
The input and output pointers may share the same 2D pixel buffer space,
thus allowing in situo rotation with impunity: the output pointer will
never overwrite an input pixel not yet visited. Frame buffer algorithms for
two-pass magnification and minification that share this valuable property
have recently been discussed (Heckbert, in press). A public-domain C-lan-
guage implementation of xshear in both fixed and floating point which
accommodates out-of-core rasters of arbitrary spatial and pixel dimension
Is present in the IM Raster Toolkit (Paeth, 1986a, 1986b, 1987).

Advanced Anti-Aliasing

Text and other objects may also be sharpened by substituting more
general aliasing filters in the fractional coverage test. The present imple-
mentation blends neighboring input pixels together as a linear function of
the fractional pixel distance by which the output box overlaps both inputs
—the spatial skewf value directly drives the blending coefficients. This
simple coverage sampling yields a triangular (Bartlett) filter window—the
convolution of the input and output boxes. Good results are also afforded
using the window created by J. von Hann (termed Hanning or raised
cosine). Under this window the fractional pixel displacement along the
domain [0..1) maps onto the range [0..1) in a sinusoidal fashion (Johnson,
1989). As the inner loop considers only left and right neighbors, a

three-point version of the filter yields the function y = (1 - (cos mnx),

which biases the blending weight in the direction of that input pixel
closest to the fractional x location (page 187), sharpening the data.

It is worth reiterating that the fractional offset (the skew between input
and output pixel edges) remains constant along an entire scan-line be-
cause the algorithm is scale-invariant. Thus, the weight-adjustment com-
putation takes place outside the innermost loop. Typically, the function is
tabulated prior to the entire algorithm and is both stored and indexed in
integer precision. This filtering upgrade therefore adds one table look-up
per scan-line, which occurs when the assignment to skewf is made on the
fourth line of the pseudo-code fragment. Related filters such as that by

GRAPHIC GEMS | Edited by DAVID KIRK 194

1.6 A FAST ALGORITHM FOR GENERAL RASTER ROTATION

1

.15

Bartlett 'iindow

0 .25 S5 .75 1

Figure 6. Filter windows.

R. W. Hamming introduce negative blending coefficients, which can
complicate operation on pixel fields, which are typically treated as un-
signed integers of small precision. Higher-order filters additionally re-
quire pixel sampling at more than merely adjacent pixels and rapidly
increase the complexity of the inner loop.

Further Work

Data structures modeling “virtual” frame buffers (Higgins and Booth,
1986) allow the implicit representation of scan-line skew, thereby reduc-
ing storage. This has greatest benefit when rendering narrow objects such
as character strings at values of 8 = 45°. General affine transformations
are possible when combining rotation with rectilinear scaling. As neither
method requires fractional (phase) recomputations on a per-pixel basis,
highly simplified 1D filtering may be used throughout. This approach
requires more than three passes, making an algorithmic test for image
degradation desirable. The use of matrix products in representing spatial
operations on rasters is desirable and should generally be encouraged.

GRAPHIC GEMS | Edited by DAVID KIRK 195

.7

USEFUL 1-TO-1
PIXEL TRANSFORMS

Dale Schumacher
St Paul, Minnesota

Many useful kinds of image enhancements can be achieved with 1-to-1
pixel transforms. These are transforms where the new value of a pixel is
strictly a function of the old value of that pixel. The digital equivalents of
most photographic darkroom techniques fall into this category. This
paper discusses some of the more useful 1-to-1 pixel transforms and
illustrates their effect on a sample image.

In this discussion, the images are composed of monochrome grayscale
pixel values with a floating point range of [0.0, 1.0]. The transforms will
usually be shown as an input-output relationship graph with the original
pixel value on the horizontal axis as the input, and the new pixel value on
the vertical axis as the output.

The simplest transform is a null transform, where the new pixel has the
same value as the old pixel. If the transform function is called f(x), then
the null transform is simply f(x) = x. The corresponding input-output
graph is Fig. 1. The next simplest transform is photo-inversion, where the
luminance values are reversed, similar to a photographic negative. The
function for photo-inversion is f(x) = 1.0 - x. Figure 2 shows the
input-output graph.

A quantization transform, also called posterization, is accomplished by
dividing the input values into discrete ranges and assigning the same
output value to all pixels in the range. The output values are usually
chosen to create a stair-step effect. In the extreme case, with only two

GRAPHICS GEMS | Edited by ANDREW S. GLASSNER 196

1.7 USEFUL [-TO-lI PIXEL TRANSFORMS

10
090
00 10
Figure 1. Null transform.
10
00
00 10

Figure 2. Photo-inversion transform.

GRAPHICS GEMS | Edited by ANDREW S. GLASSNER 197

1.7 USEFUL I-TO-I PIXEL TRANSFORMS

10 o

0.75 - p——

0.5 - [

025 - P—

0.0 L) T]
0.0 02 04 0.6 08 1.0

Figure 3. Quantization transform.

ranges (above or below a certain threshold value), this results in all input
values mapping to either 0.0 or 1.0. Figures 3, 4, and 5 illustrate the
effect of a five-step quantization based on the transform function

0.00 0.0<x<0.2
0.25 0.2<x<0.4

f(x)=0.50 0.4<x<0.6.
.75 0.6<x<0.8
400 0.8<x<10

A contrast enhancement transform alters the slope of the transform
function. Steeper slope results in greater contrast. Often, when an image
has poor contrast, there is relatively little picture information at the high
and/or low end of luminance range. A very useful tool for finding this
clustering of information across the luminance range is a luminance
histogram. This histogram shows the relative number of pixels in the
iImage at each luminance value. Peaks on this graph indicate significant

GRAPHICS GEMS | Edited by ANDREW S. GLASSNER 198

1.7 USEFUL I-TO-I PIXEL TRANSFORMS

Figure 4. Original image.

Figure 5. Transformed image.

GRAPHICS GEMS | Edited by ANDREW S. GLASSNER 199

1.7 USEFUL I-TO-I PIXEL TRANSFORMS

Figure 6. Original Image

0.0 1.0

Figure 7. Original histogram

GRAPHICS GEMS | Edited by ANDREW S. GLASSNER 200

1.7 USEFUL I-TO-I PIXEL TRANSFORMS

1.0

0.0 - T
0.0 0.12 0.82 10

Figure 8. Contrast enhancement transform.

numbers of pixels with nearly the same luminance. Figure 7 shows a
luminance histogram for the sample image. A significant improvement in
the image through increased contrast may be gained by setting all values
below some lower bound to 0.0, all values above some upper bound to
1.0, and all values between the bounds to a linear ramp of values from 0.0
to 1.0. These upper and lower bounds are chosen by examining the
histogram for relatively lower pixel counts near the high and low ends of
the luminance range. Figure 8 shows the transform chosen, with a lower
bound of 0.12 and an upper bound of 0.82. The general form of this
transform function is

.0 _ X < low
f(x) = gx - low)/(high - low) ow < x < high.
5.0 x > high

Figure 9 shows the transformed image, and Fig. 10 shows the his-
togram of the transformed image. The histogram shows that the bulk of

GRAPHICS GEMS | Edited by ANDREW S. GLASSNER 201

1.7 USEFUL I-TO-I PIXEL TRANSFORMS

Figure 9. Transformed image.

Figure 10. Transformed histogram.

GRAPHICS GEMS | Edited by ANDREW S. GLASSNER 202

1.7 USEFUL I-TO-I PIXEL TRANSFORMS

the image information is now spread more evenly across the luminance
range.

The overall “brightness” of an image can be adjusted with a gamma
correction transform. This is a nonlinear transform, which relates closely
to the effects of the “brightness” control on a CRT or variations in
exposure time in photography. The general form of the gamma correction
function is

f(x) — XGAMMA)

A GAMMA value of 1.0 produces a null transform. Values greater than 1.0
darken the image and values between 0.0 and 1.0 lighten the image. In
the examples below, Figs. 11, 12, and 15 show a gamma correction of
0.45 and Figs. 13, 14 and 16 show a gamma correction of 2.2. His-
tograms of the transformed images are included to show the effect this
transform has in the distribution of intensities within an image. Some-
times an output device like a CRT is described as having a gamma of 2.2.
This indicates the amount of darkening that will occur when the device
displays an image. To account for this, you can apply a gamma correction
that is the reciprocal of the gamma of the output device to your image
before it is displayed. For a device with a 2.2 gamma, the correction is
0.45.

Arbitrary 1-to-1 transforms can also create useful effects that have no
photographic equivalents. Some applications, such as medical imaging,
find great utility in a variety of “banding,” techniques, which can be used
to highlight particular image features. Two banding transforms are shown
here. The first transform is a sawtooth function, which divides the input
range into a series of full-range output sweeps. Each sawtooth acts as a
dramatic contrast enhancement transform of the corresponding input
range. This gives consistently high slope in the transform function and
thus high contrast throughout the image, with a wrap-around effect from
white to black at the boundary between ranges. The sawtooth transform
function, in general form, looks like

f(x) = frac(x x ranges).

GRAPHICS GEMS | Edited by ANDREW S. GLASSNER 203

1.7 USEFUL [-TO-lI PIXEL TRANSFORMS

1.0

0.0

0.0 Lo

Figure 11. 0.45 gamma correction transform.

0.0 1.0

Figure 12. 0.45 gamma histogram.

GRAPHICS GEMS | Edited by ANDREW S. GLASSNER 204

1.7 USEFUL [-TO-lI PIXEL TRANSFORMS

10

00 - v
00 10

Figure 13. 2.2 gamma correction transform.

00 10

Figure 14. 2.2 gamma histogram.

GRAPHICS GEMS | Edited by ANDREW S. GLASSNER 205

.7 USEFUL |-TO-I PIXEL TRANSFORMS

Figure 15. 0.45 gamma transformed image.

Figure 16. 2.2 gamma transformed image.

GRAPHICS GEMS | Edited by ANDREW S. GLASSNER 206

.7 USEFUL |-TO-I PIXEL TRANSFORMS

10

00
0.0 033 0.66 10

Figure 17. Saw-tooth transform.

Figure 18. Transformed image.

GRAPHICS GEMS | Edited by ANDREW S. GLASSNER 207

1.7 USEFUL I-TO-I PIXEL TRANSFORMS

10

00
0.0 028 05 082 010

Figure 19. Arbitrary band transform.

Figure 20. Transformed image.

GRAPHICS GEMS | Edited by ANDREW S. GLASSNER 208

1.7 USEFUL I-TO-I PIXEL TRANSFORMS

The second transform is an arbitrary series of graybands chosen to
highlight specific input luminance ranges. This type of transform typically
iIs defined as a look-up table (particularly if the input is actually discrete
luminance values rather than a full floating point range) or a series of
highlight ranges. The function shown is

1.0 0.28<x<0.50
f(x) = 0.5 0.82<x<0.94
a).o else.

The use of a histogram helps identify important relationships between the
image and its luminance distribution. This information can then be used
to guide the application of 1-to-1 transforms for maximum improvement
of the original image.

See also 1-to-1 Pixel Transforms Optimized through Color-Map
Manipulation (270)

GRAPHICS GEMS | Edited by ANDREW S. GLASSNER 209

.8

ALPHA BLENDING

Kelvin Thompson
Nth Graphics, Ltd.
Austin, Texas

Alpha blending works best when you premultiply color vectors with
alpha channels (Porter and Duff, 1984). Specifically, it is best to represent
the color (r, g, b) and coverage a with the color vector

(r Da,g Lao,b Da,a).

Some example colors using this convention are as follows:

Color Vector

half red (0.5, 0, 0, 0.5)
full black (0, 0, 0, 1)
invisible (0, 0, 0, 0).

Suppose we want to composite two vectors A = (r,, g,, b,, a,) and
B = (r,, Og» b,, a;) into a new vector C = (r_, g., b, a.) with operator
op, that is, C = A op B. Then for each component color ¢ [{r, g, b, a},
premultiplication allows us simply to write

CC = CAFA + CBFB !
where F, and F, are fractions determined by the operator op. Table 1
lists some useful alpha operators and their associated blending fractions.
The over operator makes a foreground image A occlude a background
image B. The in and out operators allow B to act as a matte for A: A is

visible only where allowed or disallowed by the alpha channel of B (the
color channels of B are not used). Atop is sometimes useful when B

GRAPHICS GEMS | Edited by ANDREW S. GLASSNER 210

111.8 ALPHA BLENDING

Table 1. Alpha compositing operators.

Operation Diagram F, Fg Description
clear 0 0 result is completely transparent
A \\\\\\\§ 1 0 A only
N
B 7 0 1 B only
%
%
A over B \\\Q 1 1 - a, foreground A occludes background B
%
7
Ain B & ag 0 A within B; B acts as a matte for A;
A shows only where B is visible
Aout B @ 1l -ag 0 A outside B; not-B acts as a matte for
A; A shows only where B is invisible
A atop B N ag 1-a, (Ain BYU(B out A); B isboth
background and matte for A
Z
A xor B \\ l-ap 1-a, (AoutB)U(Bout A), Aand B
ANNN\E mutually exclude one another; rarely
7
/ used
7.
A plus B Q 1 1 blend without precedence
R .
%

should act as both background and matte for A. The remaining operators
are useful primarily for occasional special effects.

The a component of a color vector may describe two kinds of cover-
age: the transparency of the color, or the fraction of the pixel that the
color covers. The diagrams in Table 1 show the meanings of the operators
when a represents pixel coverage.

GRAPHICS GEMS | Edited by ANDREW S. GLASSNER 211

FRAME BUFFER
TECHNIQUES

V. 1/

FRAME BUFFERS AND
COLOR MAPS

Andrew S. Glassner
Xerox MRC
Palo Alto, California

AN /

A frame buffer is a piece of hardware often found in computer graphics
installations. The idea behind the frame buffer is that a picture may be
represented by a two-dimensional matrix of colors. This matrix is usually
implemented with fast random-access memory. The RAM itself is the
frame buffer, since it stores, or buffers, one frame of video information.
To display this frame on a CRT, the colors in the frame buffer are read to
the CRT’s input circuits in synchrony with the scanning beam. Thus, as
the electron guns in the tube sweep the face of the screen top-to-bottom,
left-to-right, a signal is arriving that specifies the color to be displayed at
each point.

In this scheme there is a one-to-one correspondence between screen
locations and memory locations. Individual elements in the frame buffer
are called pixels (a contraction of “picture element”), and since the
correspondence is so strong, the associated point on the screen is usually
called a pixel as well.

Typically, frame buffers organize their constituent pixels in a rectangu-
lar grid. Each pixel may therefore be identified by its address in a
Cartesian coordinate system as (X, y) (see Fig. 1). Common frame buffer
resolutions are 512-by-512 and 640-by-480 pixels. Frame buffers with
higher resolutions are also available for applications where the displayed
image will be large; for film applications one sometimes finds frame
buffers as large as 4096-by-4096. The advantage of more resolution is
finer control over small details in the final image. The disadvantage is
increased cost, both fiscally to buy the extra hardware, and temporally in
the extra computer time required to calculate the appropriate color for
each pixel.

GRAPHICS GEMS | Edited by ANDREW S. GLASSNER 215

IV.1 FRAME BUFFERS AND COLOR MAPS

@)

RAM CRT

Figure 1. The shaded square indicates the same pixel in both devices.

The simplest form of pixel is a single number. The most common form
of frame buffers store one 8-bit byte at a pixel (allowing one to specify a
number from 0 to 255 inclusive). This number does not directly encode a
color; rather, it is an index into a list of colors called the color map. In
this example, the color map would contain 256 entries, one for each
possible value stored in the pixels. Each entry in the color map is
typically composed of three numbers. These indicate the red, green, and
blue intensities of the color associated with that entry.

Thus, when a picture is being scanned out to a CRT, the value in the
pixel about to be displayed is first fetched from the frame buffer, and then
used as an index into the color map. Out of the color map come the red,
green, and blue components of that color; these components are then fed
directly to the color guns in the CRT (see Fig. 2).

RGB = (23, 23, 24)
29 | 122 44 | 22| 22| 22 /
45 | 243 a5 | 23| 23| 24 /
17| 15 46 | 54 | 75 | 102
Frame Buffer Color Map Image

Figure 2. The highlighted pixel in the frame buffer indicates that color number 54 should
be displayed at the corresponding screen location. The color-map entry for index 54
contains the color (32, 20, 50), which is then displayed on the screen.

GRAPHICS GEMS | Edited by ANDREW S. GLASSNER 216

IV.1 FRAME BUFFERS AND COLOR MAPS

This technique allows an image to have up to 256 different colors. The
contents of the color map, not the pixel itself, determine which color is
associated with each of these 256 numbers. A common demonstration of
color maps is to turn a day scene into a night scene by leaving the values
in the pixels constant, but changing the color-map entries. For example,
Imagine a picture of a farmhouse with the sky overhead, and suppose the
pixels in the sky region have color number 73. For the day scene, color
number 73 in the color map might be a light blue, but for the night scene,
color number 73 may be changed to dark blue or black. The number of
the color in the image didn’t change; only the description of the color to
which it referred changed.

Typical color maps contain 8, 10, or 12 bits to represent each of these
red, green, and blue components for each color.

A more expensive but also more powerful frame buffer may be built,
which allows each pixel to represent any color at all. Rather than storing
the index into a color map, each pixel directly stores the red, green, and
blue components of the color at that location. Thus each pixel contains
three pieces of data—as with the color map, the intensity of each of these
primaries typically is represented by 8, 10, or 12 bits. Thus, such a frame
buffer is typically 24, 30, or 36 bits deep at each pixel.

Often there is a color map associated with these frame buffers as well.
In this arrangement, there are actually three individual color maps, one
each for the red, green, and blue components of the image. When a pixel
Is to be displayed, its three color components are retrieved from the
frame buffer. The red value is used as an index into the red color map to
determine a new intensity for the red component at that point; similar
look-ups are performed for green and blue (see Fig. 3). This allows one to
apply overall intensity changes to the image without directly affecting the
pixel values in the image. A common use of these color maps is to
implement gamma-correction, which compensates for the nonlinearity of
the display monitor.

Each layer of information in a frame buffer is called a plane (or
channel). Thus, the first form of frame buffers discussed above has but a
single plane (which is 8 bits deep), whereas frame buffers that store the
red, green, and blue components at each pixel are three planes deep. A
frame buffer may be constructed with an arbitrary number of planes at
each pixel. Typically these other planes hold information that varies from
pixel to pixel across the image, such as transparency (often called alpha),

GRAPHICS GEMS | Edited by ANDREW S. GLASSNER 217

IV.1 FRAME BUFFERS AND COLOR MAPS

Frame Buffer Color Maps Image

B

O >

Composite Color
Figure 3. Each of the three color planes holds an 8-bit index into its own color map.

or depth (often called z). Rather than use a single physical frame buffer
with many channels, one may use many smaller frame buffers. Sometimes
one hears references to “the alpha buffer” or “the depth buffer” of an
image, referring to the plane that contains that information, whether or
not it is physically located in the same frame buffer that holds the color
information for that image.

GRAPHICS GEMS | Edited by ANDREW S. GLASSNER 218

—AV.2——

READING A
WRITE-ONLY
WRITE MASK

Alan W. Paeth
University of Waterloo
\ Waterloo, Ontario, Canada /

Overview

On many frame buffers the current display modes are contained in
hardware registers and not in read/write memory. Although a *“shadow”
set of outboard memory might maintain these modes (including the
current pixel color and write mask) in some cases it is desirable to
ascertain the hardware state directly, as it represents the “truth.” The
following pseudo-code recovers the current hardware write mask in a
nondestructive fashion, thereby providing a useful diagnostic. The code
also serves as a start-up configuration test for bit plane depth in a manner
analogous to memory self-sizing as when booting an operating system. In
this case the write mask is set to the known value minus one (all bit
planes enabled) and the procedure is executed directly.

procedure setxy(X, y) set pixel location for future readpix and writepix
integer function readpix() return pixel (integer) from the latest setxy() location
procedure writepix(bits) write pixel (integer) to the latest setxy() location

GRAPHICS GEMS | Edited by ANDREW S. GLASSNER 219

IV.2 READING A WRITE-ONLY MASK

integer function getwritemask()
integers must contain as many bits as hardware pixels

begin

tmp, mask: integer; saved pixel, computed mask

ones, zeros: integer; two probe words

setxy(0, 0); to probe pixel at origin

tmp < readpix(); save “original” value

writepix(- 1); write all ones through unknown mask
ones « readpix(); recover ON bit planes

writepix(0); write zeros through unknown mask
zeros < readpix(); recover OFF bit planes
writepix(tmp); fully restore origin

mask < ones bit-xor zeros; WRITMASK BITS TOGGLED **IFF** ENABLED
an alternate operation is “bit-clear” i.e., “bit-and bit-invert”

return[mask]; return computed write mask

end

GRAPHICS GEMS | Edited by ANDREW S. GLASSNER 220

—IV.3—

A DIGITAL
“DISSOLVE” EFFECT

Mike Morton
Honolulu, Hawaii

Computer screens are looking more and more like movie screens—pre-
sentation and animation applications pan, zoom, and cut. Analog video
hardware under software control yields the best special effects, but
all-digital solutions in software can produce good results, too.

For instance, consider the problem of dissolving one image into an-
other. In the analog world, this is easy: just mix two images, bringing the
new image's intensity up while decreasing the old image’s. In the digital
world, color or grayscale images can be dissolved by computing a
weighted average of the old and new values for each pixel, then varying
the weighting from 0 to 100%, much as with analog video.

Dissolving monochrome images is a different problem—in the world of
binary pixels, there are no intermediate pixel values through which to
make a smooth transition. One solution is to copy the new image’s pixels
over the old ones in a pseudo-random order. This article presents a
machine-independent technique for this, with a partial case study of an
iImplementation for a single-monitor Macintosh. Carefully crafted assem-
bly code, directly manipulating video memory, can dissolve quite quickly.
For instance, a full-screen dissolve on a Macintosh SE takes only about
three seconds.

Randomly Traversing a 2D Array

Traversing a large number of screen pixels (an array, in effect) in
pseudo-random order is easier said than done. A first step is to reduce the
problem by numbering each pixel, starting at zero. If you can produce the

GRAPHICS GEMS | Edited by ANDREW S. GLASSNER 221

IV.3 A DIGITAL “DISOLVE” EFFECT

pixel numbers in random order, you can produce coordinate pairs in
random order, and bring the problem from two dimensions to one.

One simple mapping from a linear random sequence to a 2D sequence
Is to take each sequence element N and compute N div width and
N mod width to get the vertical and horizontal coordinates in the array.
This is much like randomly scrambling integers from 0..51, then mapping
them to playing-card values by computing (N div 13) and (N mod 13).

A typical method for scrambling a set of integers (such as 0..51) is to
store them in an array and swap random pairs of numbers. This isn’t
useful when you want to shuffle a deck of a million cards. To dissolve a
million-pixel screen, you need the integers 0..1,048,575 scrambled. Most
applications don’t have that much room, nor do they have the time to
make a million swaps.

Scrambling Integers in Hardware

The software trick that avoids this is based on a simple circuit. Hardware
types will recognize Fig. 1 as a “linear feedback shift register.” At each
cycle, selected bits are sent through an n-way XOR, the entire register is
shifted left, and the result of the XOR feeds in as the new rightmost bit.
(If you’re a hardware-phobe, don’t panic—the software version is presented
below.)

For each length of register, there’s at least one combination of bits to
take from it that will make the register cycle through all nonzero values
(zero is a “demon state”). If you interpret the contents of the register as
a number, the sequence produces each of the numbers from 1 to 255 (in
this example) in a fairly random manner.

N
1/

Figure 1. An 8-bit hardware sequence generator: a shift register with selected bits
XORed to form the next input. In software, the corredsponding mask would be 10111000
(binary).

GRAPHICS GEMS | Edited by ANDREW S. GLASSNER 222

IV.3 A DIGITAL “DISOLVE” EFFECT

How random is this sequence? Actually, it fails many randomness tests,
but the circuit has a software analog that is easy to code and runs so fast
that it,s worth it. Knuth points out that the sequence of bits shifted out is
actually quite random, although the successive numeric values aren’t.

Scrambling Integers in Software

Although you can exactly mimic the circuit in software, a much faster
algorithm is to shift the current element right (not left, as in the circuit);
if a “1” bit falls out because of the shift, XOR the mask into the new
element. This code fragment shows the code to advance from one
element to the next:

reg: integer; current sequence element

reg « 1; start in any nonzero state

if (reg bit-and 1) # 0 is the bottom bit set?

then reg ~ rshift(reg, 1) bit-xor MASK; yes: toss out 1 bit; XOR in mask
else reg « rshift(reg, 1); no:. toss out 0 bit

For certain values of the constant MASK, executing the if statement in
a loop will make the register take on all values from 1..2" — 1, for various
values of n. Table 1 gives one constant (there may be more than one) for
each width. (The “width” of the values produced need not be the full
width of the variable storing it, of course.)

A First Attempt

With a software-based ID sequence generator, and a way to map ele-
ments of a ID sequence into a 2D array of pixels, you can write a dissolve
algorithm. The idea is to find a “register width” for the sequence
generator such that the sequence will generate at least as many elements
as there are pixels. The highest-numbered elements don’t map to pixels,
and they are discarded. Figure 2 illustrates this approach.

The main loop maps each sequence element to a pair of coordinates,
using modulo and division. Coordinates past the last row are ignored,;
those in bounds are copied. The loop ends when the sequence returns to

GRAPHICS GEMS | Edited by ANDREW S. GLASSNER 223

IV.3 A DIGITAL “DISOLVE” EFFECT

Table 1. For any given bit-width w, there’s usually more than one mask that produces
all values from 1 to 2% — 1. These particular masks are chosen because they can each
be packed into a byte—note that bit #w of the mask for width w) is set, so each mask
can be shifted down for compact storage, then shifted left until the highest “I”” bit is

positioned correctly. The masks are shown in 8-, 16-, and 32-bit hex only for readability.

Produces sequence

Bit width (w) Mask values from 1 to...
2 0x03 3
3 0x06 7
4 0x0C 15
5 0x14 31
6 0x30 63
7 0x60 127
8 0xB8 2556
9 0x0110 511
10 0x0240 1,023
11 0x0500 2,047
12 0xQ0CAOQ 4,095
13 0x1B00O 8,191
14 0x3500 16,383
15 0x6000 32,767
16 0xB400 65,5635
17 0x00012000 131,071
18 0x00020400 262,143
19 0x00072000 524,287
20 0x00090000 1,048,575
21 0x00140000 2,097,151
22 0x00300000 4,194,303
23 0x00400000 8,388,607
24 0x00D80000 16,777,215
25 0x01200000 33,564,431
26 0x03880000 67,108,863
27 0x07200000 134,217,727
28 0x09000000 268,435,455
29 0x14000000 536,870,911
30 0x32800000 1,073,741,823
31 0x48000000 2,147,483,647
32 0xA3000000 4,294,967,295

GRAPHICS GEMS | Edited by ANDREW S. GLASSNER

IV.3 A DIGITAL “DISOLVE” EFFECT

U A five-bit generator produces sequence elements
* * from 1..31. (This diagram is only symbolic; the
| | software generator doesn't work like the haroware
one.)

E(p N (1..31)

o [1]2[3]2]5
Zoroth element is a special
case, not produced by the 6171818119 " (values of Nfrom 18

sequence. 12| 13| 14| 15] 18] 17| through 31 are
ignored)

Figure 2. Mapping sequence elements into an array, using the formulas:
row — N div width
column —« N mod width.

Values of row which are $ height are ignored.

the original element. The function to copy a single pixel should eventually
get called once for every (row, col) such that 0 # row # height - 1, and
0 # col # width - 1.

Listing |

A first attempt at the dissolve algorithm. This will be improved later by
eliminating the division and modulo computations in the main loop.
procedure dissolvel (height, width: integer);

begin

pixels,lasthnum: integer; # of pixels; last pixel’s number
regwidth: integer; “width” of sequence generator
mask: longint; mask to XOR with to create sequence
seqg: unsigned longint; 1 element of sequence

row, column: integer, row and column numbers for a pixel

Find the smallest “register” that produces enough pixel numbers
pixels « height * width; compute # of pixels to dissolve
lasthum ~ pixels - 1; last element (they go 0..lastnum)
regwidth ~ bitwidth (lasthum); how wide must the register be?
mask — randmasks [regwidth]; which mask produces that bitwidth?

GRAPHICS GEMS | Edited by ANDREW S. GLASSNER 225

IV.3 A DIGITAL “DISOLVE” EFFECT

Now cycle through all sequence elements.

seq ~ 1; 1st element (could be any nonzero)

loop do

begin

row — seq/width; how many rows down is this pixel?
column « seq mod width; and how many columns across?

iIf row < height does seq element fall in the array?
then copy (row, column); yes: copy the (r, c¢)’'th pixel

Compute the next sequence element

iIf (seq bit-and 1) # 0 Is the low bit set?
then seq ~ rshift(seq, 1) bit-xor mask; yes: shift, XOR
else seq ~ rshift(seq, 1); no: just shift

end;

until seq = 1, loop till original element

copy (0, 0); kludge: loop doesn’t produce (0, 0)
end; of procedure dissolvel

The correct width of sequence generator is found with a function called
bitwidth(). Given a number, this function computes how wide a “register”
IS needed to hold the number. Here it’s used to find what width of
generator is needed to produce at least as many pixel numbers as needed.

Listing 2

The bitwidth () function

function bitwidth (N: unsigned integer): integer;

begin
width: integer ~ O0; initially, 0 bits needed for N
while N # 0 do loop till N is whittled down to O
N < rshift (N, 1); NB: N is unsigned
width —« width + 1; and remember how wide N is
endloop; end of loop shrinking N
return width; return bit positions counted
end; of function bitwidth

GRAPHICS GEMS | Edited by ANDREW S. GLASSNER 226

IV.3 A DIGITAL “DISOLVE” EFFECT

Once the width has been found, the randMasks[] array is used to find
the magic value to generate the sequence. The sequence length can be
nearly twice as long as the number of pixels to copy, because the length
must be a power of 2 and larger than the number of pixels. The [0] and
[1] elements of the array aren’t defined—the smallest generator is 2 bits
wide. Again, see Table 1.

The copy () routine—the code to copy a pixel from the old image to
the new—isn’t defined here. It will depend on which hardware and
graphics system you’re using. We’ll cover this in more detail in the case
study for Macintosh, but you will almost certainly want to make copy() be
in-line code, to save the cost of a function being called many thousands of
times.

Because the sequence never produces the value 0, the dissolve function
must call copy with (0, 0) explicitly. (Sharp-eyed users watching a dis-
solve will notice that the top-left pixel is always the first or last to be
copied.)

Faster Mapping

This method works, but it’s too slow because of the division and modulo
calculations. Another approach is shown in Fig. 3. Here, the bits in the
sequence element are broken apart bitwise into row and column numbers.
This bit operation is much faster than a division for most CPUs. (If you're
lucky to have a fast divide on your favorite CPU, skip this section.)

With this method, the number of sequence elements can be almost four
times the number of pixels—twice as bad as the worst case for the
simpler algorithm. But generating elements is so much faster than divi-
sion that the new method is still faster. In addition, since many screens
have a width that is a power of 2, a full-screen fade is no slower.

The code for this faster version is shown in Listing 3. It’s a lot like the
original function, except for the way the sequence-to-coordinates map-
ping is done.

Listing 3

An improved dissolve, which breaks up the sequence element into coordi-
nates with bit operations, not with division

GRAPHICS GEMS | Edited by ANDREW S. GLASSNER 227

V.3 A DIGITAL

procedure dissolve2 (height, width:

begin

rwidth, cwidth: integer;
regwidth: integer;
mask: longint;
rowshift: integer;
colmask: integer;

seq; unsigned longint;
row, column: integer;

“DISOLVE” EFFECT
integer);

bit width for rows, for columns
“width” of sequence generator

mask to XOR with to create sequence

shift dist to get row from element
mask to extract column from element
1 element of sequence

row and column for one pixel

Find the mask to produce all rows and columns.

rwidth — bitwidth (height);
cwidth « bitwidth (width);
regwidth — rwidth + cwidth;
mask ~ randmasks [regwidth];

how many bits needed for height?
how many bits needed for width?
how wide must the register be?
which mask produces that bitwidth?

Find values to extract row and col numbers from each element.

rowshift — cwidth;
colmask « Ishift(1, cwidth) — 1;

dist to shift to get top bits (row)
mask to extract bottom bits (col)

Now cycle through all sequence elements.

seq ~ 1;
loop do
begin
row . rshift(seq, rowshift);
column L seq bit-and colmask;
if (row < height)
and (column < width)
then copy (row, column);

Compute the next sequence element.
if (seq bit-and 1) # 0

1st element (could be any nonzero)

find row number for this pixel
and column number

does element fall in the array?
...must check row AND column
in bounds: copy the (r, c)’'th pixel

is the low bit set?

then seq rshift(seq, 1) bit-xor mask; yes: shift, XOR

else seq rshift(seq, 1);
end:
while seq # 1;

copy (0, 0);
end;

no: just shift

loop till original element
kludge: element never comes up zero
of procedure dissolue2

GRAPHICS GEMS | Edited by ANDREW S. GLASSNER

228

IV.3 A DIGITAL “DISOLVE” EFFECT

A
L
| ! Zeroth element is still a
special case, not produced by
the sequence.
col number (0..7
— 7 ©.7) P
112345 N=14, for example, maps to (1,

6). This sequence element is
ignored, since the column is >
width.

B|9o|10]11}12113
161718} 19|20} 21

N AT
RN AR
Figure 3. A revised calendar with more holidays? Not quite... This shows a faster
mapping of 1D sequence elements into a 2D array, using the formulas:

row — rshift(N, rowShift) [rowShift = 3]
column « N bit-and colMask [colMask = 00111 base 2].

Coordinate pairs where row $ height or column $ width are ignored.

row number (0..3)

i

Case Study: Details

When you code this, here are some reminders that probably apply to most
implementations:

e Don't forget the (0, 0)th element of the array, as handled
explicitly in Listings 1 and 3.

e The algorithm breaks down for tiny images, because the sequence
generator doesn't work for small width of registers. You should
probably hand this case off to your system's graphical-copy function.

e To copy pixels quickly, you probably will not be able to use your local
graphics primitives, but will have to access video memory directly, in
assemble language. Be careful to check exactly how this interferes
with your high-level graphics. (For instance, a Macintosh dissolve
function must hide the cursor in software so as not to overwrite it in
hardware.)

e | found it easiest to convert byte addresses of a bitmap to bit ad-
dresses, do all my computation in bit numbers, and convert to bytes

GRAPHICS GEMS | Edited by ANDREW S. GLASSNER 229

IV.3 A DIGITAL “DISOLVE” EFFECT

only when it was time to access video memory. (This assumes that very
large addresses on your machine won’t overflow when scaled to be bit
addresses.)

Case Study: Optimizations

That’s all there is to it—just write a fast copy() function. But if you want
a megapixel screen to fade in a few seconds, you have only a few
microseconds per call of copy. Here are some hints to obtain speed
approaching that of analog hardware.

Many of these hints apply only for certain inputs to the function. There
are many possible combinations of optimizations. Instead of trying to
code all possible combinations, it might be interesting to compile optimal
dissolve code at the time of the call.

e For an actual function for a single, monochrome Macintosh screen, see
Morton (1986). | don’t recommend this routine for the Mac any more
because it doesn’t work in the brave, new world of multiple monitors
or color. It’s the first code | ever wrote for the 68000, so it’s hardly
textbook reading.

e When the pixel array is less than 64K pixels, you can store the
sequence elements in 16-bit words.

e When either the width or height of the array in a power of 2, you can
of course omit the respective checks for whether the coordinates are
in bounds—the sequence will exactly cover the needed coordinates in
that dimension. A dissolve where both the width and height are powers
of 2 will be incredibly fast.

e |In pseudo-code and C, there are separate checks for whether the low
bit is 1 and whether the element has returned to its original value. In
assembler, you can sometimes combine these, as in this 68000 code:

Isr.1 # 1,d0 shift current element right by one

bhi.s loopTop if no carry out and not zero, do it again

eorl mask, dO otherwise, flip magic bits . . .

cmp.l mask, dO ...but has this brought us back to the sequence start?
bne.s loopTop nope:loop back for more grueling fun

bra done go copy element(0, 0).

GRAPHICS GEMS | Edited by ANDREW S. GLASSNER 230

IV.3 A DIGITAL “DISOLVE” EFFECT

This code takes advantage of the fact that the initial shift instruction
(Isr) affects the Zero condition code (based on the value after the shift)
and also sets the Carry bit if a “1” bit fell out in the shift. The first
branch instruction (bhi) branches if both Carry and Zero are false—just
right to test for “no XOR needed, but not a zero result either.”

e The sequence element can be viewed as a pair of coordinates concate-
nated together. Before extracting either one, you can check if the left
one is in bounds by comparing the entire sequence element to the
maximum value plus 1, shifted to align with the left one.

e Once the left end of the sequence element is found to be in bounds,
extract and check the coordinate from the right end, before taking the
time to extract the left end.

e When there’s no carry, the mask isn’t XORed into the next element,
and you know the element has a top bit equal to zero (since it wasjust
shifted). This means that the value at the left end of the sequence
element is in bounds, and thus the *“bhi.s loopTop” in the 68000 code
can actually enter the loop late, after the point where the left end is
checked

e The code currently has to test the source pixel and branch to either set
or clear the destination pixel. It might be faster to XOR the destination
into the offscreen source, creating a bitmap that has “1” bits only
where the bitmaps differ. Then the dissolve code would ignore *“0”
source bits and toggle the destination on “1” source bits. Finally, it
would copy the destination back to the source to undo the damage
done by the XOR.

e On the 68000, bytes are numbered in increasing order from left to
right, while bits go the other way. Thus if you want to convert a bit
number to a byte address and a bit, you need to map the bit number
from 0..7 to 7..0. But if your source and destination bitmaps have both
their left and right edges at byte boundaries, you can skip this map-
ping. A full-screen dissolve, for example, will typically be able to do
this.

Further Research

I’ve done this technique something of a disservice by implying it’s good
only for copying an image over another. In general, this is a way to

GRAPHICS GEMS | Edited by ANDREW S. GLASSNER 231

IV.3 A DIGITAL “DISOLVE” EFFECT

traverse a 2D array of nearly any size in pseudo-random order. (Or
sticking with a 1D sequence, it's the world's fastest coin-flip randomizer.)
Some examples of other uses and possible variations are as follows:

Given that the original motivation for the sequence generator comes
from a hardware circuit, why not develop video-hardware support
for a dissolve?

Because the sequence generator’s state can be described with a single
number, it's simple to start and stop the sequence at any point,
allowing partial dissolves—sort of a dithered blending.

Graphical primitives besides copying could be supported——pixel could
be ORed, ANDed, XORed, and so on. Or a repeating pattern could be
used for the source instead of a source bitmap.

Inverting the destination image (XORing for a black pattern) is
especially interesting because it's an invertible process. Combining
this with a partial dissolve yields very interesting results: traversing the
first 50% of the pixels will yield a screen full of gray noise. Re-travers-
ing those pixels will bring back the image.

When images can’t be placed rapidly on the screen, such as in
calculating images of the Mandelbrot set, the pixels can be and drawn
pseudo-randomly, to present an approximate image as soon as possible.
This is also useful when transmitting an image over a slow
communications link.

Suggestions and comments for other applications are welcome!

See also Generating Random Integers (438); Circles of Integral
Radius on Integer Latices (57); Precalculating Addresses for
Fast Fills, Circles, and Lines (295)

See Appendix 2 for C Implementation (715)

GRAPHICS GEMS | Edited by ANDREW S. GLASSNER 232

L IV.4
MAPPING

RGB TRIPLES ONTO
FOUR BITS

Alan W. Paeth
University of Waterloo
Waterloo, Ontario, Canada /

N\

Introduction

We describe a method for the efficient mapping of arbitrary triples
(typically RGB color values) onto a reduced set of 14 triples. The
intended use is for pixel reduction for use on four-bit frame buffers,
though the technique may be used generally on any three-element vector,

Background

Many frame buffers provide the choice of displayable colors by way of
color look-up table (LUT) hardware. How are representative colors cho-
sen? Further, how can arbitrary input points (high-precision color pixels)
be efficiently mapped to a nearest select point within this color cube? On
systems providing a large color palette (256 or more) a specific set of
color choices may be allocated based on the nature of the input data. A
guantization method using this approach is well-known (Heckbert, 1982).
On systems providing the minimal number of colors (eight) the choice is
clear: the extreme points of the interval [0.0..1.0], must be taken sepa-
rately on each of the RGB axes.

This Cartesian product yields the point set [1/2 6 1/2, 1/2 6 1/2,
1/2 6 1/2] of primary and secondary colors, which coincides with the
vertices of the unit color cube (see Fig. 1). Thus, with small look-up
tables the choice of representative colors may be made a priori—without
regard to the nature of the input data being mapped. The accompanying
software procedure is straightforward (see Fig. 2). This fragment locates

GRAPHICS GEMS | Edited by ANDREW S. GLASSNER 233

IV.4 MAPPING RGB TRIPLES ONTO FOUR BITS

001
blue
magenta 111 : cyan
white |
1
!
' 000
- il:lack
red <777 T
yellow
110

Figure 1. Eight-point color cube.

that vertex triple [R2, G2, B2] closest to the input triple [R, G, B] and
additionally returns a code (the vertex number), which serves as a
color-map index.

Unfortunately, in the world of computer logic most low-end frame
buffers provide a palette of 16 representable colors based on an underly-
ing four-bit data path. Because any fixed color table necessarily contains
the eight vertices of the bounding cube, a four-bit index leaves half of the
colors unassigned. This suggests that a preselected set of suitable values
might be chosen. An essential feature of a reduced color set is a distribu-
tion that shows little bias and high uniformity, while lending itself to an
efficient nearest neighbor test. As the number of potential colors will

integer function remap8(real: R, G, B, R’, G’, B’)

begin
integer code:
R « G « B’ « code ~ 0;
if (R $ 0.5) then begin R’ ~1.0; code ~ code bit-or 1; end
if (G $ 0.5) then begin G ~ 1.0; code ~ code bit-or 2; end
if (B $ 0.5) then begin B® ~ 1.0; code ~ code bit-or 4; end
returnfcode];
end

Figure 2. RGB onto RGB (three-bit).

GRAPHICS GEMS | Edited by ANDREW S. GLASSNER 234

IV.4 MAPPING RGB TRIPLES ONTO FOUR BITS

double, an algorithm running in not more than twice the time of remap8
Is sought, with a sublinear (or logarithmic) increase in time ideal. Given
the simplicity of remap8, a brute-force linear search for nearest neighbor
is ruled out.

A Four-Bit Color Solid

A highly symmetric set of target colors is now created, making for a
uniform selection set. Consider a unit cube augmented by allocating new
vertices at the center of each of its six faces. This extends the color set to
fourteen colors in a uniform manner, owing to the high symmetry of the
cube. Enumerating the location of vertices yields the target color space.
The new colors include three desaturated primaries and three secondaries
of reduced intensity. These are tabulated in Fig. 3. Note that the midpoint
of the cube (50% gray) does not appear.

To form a uniform solid with these color vertices, add edges from each
face center to the four face vertices that bound it. This facets each

Code Name Red Green Blue
0000 black 0 0 0
0001 olive 3 5 0
0010 purple 3 0 3
0011 red 1 0 0
0100 aqua 0 3 3
0101 green 0 1 0
0110 blue 0 0 1
0111 (undef) — — —
1000 {undef) _— — —
1001 yellow 1 1 0
1010 magenta 1 0 1
1011 pink 1 3 3
1100 cyan 0 1 1
1101 lime 3 1 3
1110 sky 3 3 1
1111 white 1 1 1

Figure 3. The fourteen target colors.

GRAPHICS GEMS | Edited by ANDREW S. GLASSNER 235

IV.4 MAPPING RGB TRIPLES ONTO FOUR BITS

aqua

olive

Figure 4. The rhombic dodecahedron.

square face into four equilateral right triangles. Next, extend the new
vertices outward from the cube center so that all 14 vertices are equidis-
tant from this center. (This changes the notion of color cube into color
sphere, but this discrepancy will be resolved later.) By symmetry the two
triangles joining at each cube edge lie in the same plane and the edge
belonging to the original cube may be removed. A rhombus is left (a
parallelogram with all four edges congruent). Repeating for each of 12
edges in the underlying cube thus yields the rhombic dodecahedron. This
solid is well-known in lattice theory: it is the only “Archimedean dual”
that can pack three-space, made clear by considering it the union of a
white cube with six black pyramidal apexes that pack in a checkerboard-
ing fashion. As with other Archimedean duals all faces are congruent and
all dihedral angles equal—properties that make for fair dice. (Since six
matching solids pack to fill space by the above, this dihedral is p/3
radians or 120 degrees.) The polyhedron appears in Fig. 4.

Dual Solids

Now consider the problem of finding the nearest vertex (target color) on
this solid. For a test point lying along an edge of the solid there are
merely two nearest vertices to be considered. The decision point for
vertex choice occurs at the midpoint of that edge. This may be extended
to find the region of space containing all test points nearest one vertex.

GRAPHICS GEMS | Edited by ANDREW S. GLASSNER 236

IV.4 MAPPING RGB TRIPLES ONTO FOUR BITS

Figure 5. The cuboctahedron.

By taking the midpoints of the three or four edges common to some
vertex, a cutting plane may be defined in which all nearest points lie on
one side. By replacing each of the 14 vertices with its related plane the
solid becomes truncated. In this case, the process of truncation yields the
dual solid (see Fig. 5).

As duality occurs in symmetric pairs, the original Archimedean solid a
cuboctahedron—is created. It is semiregular: not among Plato's canoni-
cal five because although the faces are all regular n-gons in symmetrical
arrangement, the faces are not of identical type. This is another solid
sharing the symmetry group of the dual octahedron-cube family. It can be
formed from either of these parent solids by forming the convex hull of
all edge midpoints. (That it may also be formed from the rhombic
dodecahedron in this fashion attests to how “close” the latter comes to
being among the select five. Its four-dimensional analog, a cell of 24
octahedra, is regular. In higher dimensions it vanishes together with the
teapot and all other interesting regular solids, leaving merely hypertetra-
hedra, cubes, and their duals (Coexeter, 1948).) The cuboctahedron has
six square and eight triangular faces, showing its lineage from both
representative parents.

Proximity Testing

The properties of this solid form the crux of our algorithm. As with
two-dimensional Voronai diagrams and their duals—common to problems

GRAPHICS GEMS | Edited by ANDREW S. GLASSNER 237

IV.4 MAPPING RGB TRIPLES ONTO FOUR BITS

concerning “nearest point to a set of given points”—the original ques-
tion of nearest neighboring point to a test point has been dualized. The
problem now is finding that face containing (or nearest to) a given point.
Fortunately, this test can be made quickly by taking advantage of the
quasi-regular nature of the regular cuboctahedron. An attribute of such
solids is that select, closed, edge circuits not defining faces still lie in a
common plane. This property is rare (the octahedron shares it, though
not the cube) and makes for geodesic dome tents, which are easily
assembled as each edge circuit becomes one long brace. In this case the
faces are hexagons. They may be derived directly by slicing a cube along
a plane perpendicular to one of its body diagonals, thereby exposing a
face along an axis of three-fold rotational symmetry. As seen in Fig. 6a,
this nicely reveals the color wheel of primaries and secondaries implicit in
the color cube.

By taking all four body diagonals and matching hexagons, an “empty”
cuboctahedron termed a “nolid” (Holden, 1971) appears as seen in Fig.
6b. The bounded indentations (occlusions in the shape of regular tetrahe-
dra and half-octahedral pyramids) partition space into 14 distinct vol-
umes. All points within a partition are associated with a matching nearest
vertex on the rhombic dodecahedron. Thus, a test point’s spatial partition
may be identified by performing four inequality tests to locate the half-
spaces in which the test point lies. Because the partitions may be
extended outward to divide all of 3-space, the test remains valid for
arbitrary points, making the algorithm well-defined for any input. This is

Figure 6. Hexagonal construction.

GRAPHICS GEMS | Edited by ANDREW S. GLASSNER 238

IV.4 MAPPING RGB TRIPLES ONTO FOUR BITS

Name Faces Vertices Edges Comments

Cube 6 8 12 “regular hexahedron”’
Octahedron 8 6 12 dual of above
Cuboctahedron 14 12 24 connect others’ mid-edges
Rhombic Dodecahedron 12 14 24 dual of above

Figure 7. Select polyhedral solids.

Important as certain triaxial color spaces, such as the YIQ basis used in
commercial broadcasting (Limb et al.,, 1977), can give rise to negative
values of | and Q for strongly saturated colors. This extension accounts
for the departure from a “color cube,” alluded to when placing vertices at
the cube faces, centers. For most data sets, the cuboctahedron nolid may
be contained within a unit cube “case.”

A summary of the solids encountered so far appears in Fig. 7. Notice
that Euler’s equation F + V = E - 2 is satisfied and that for duality F
and V commute, leaving the right-hand term unchanged. Dual solids
possess matching edge pairs, which are oriented to each other at right
angles.

Related Methods

Spatial search methods, which divide volumes by means of planar half-
space tests, have long been applied to rendering algorithms (Schumaker
et al., 1969), but universally employ conditional logic (in the form of a
tree traversal) in the generation of test planes. The related geometric
method of fixed, symmetric planes tested en masse rederives the “com-
plete face” characterization of stellated polyhedra, wherein the intersec-
tion diagram between one arbitrary face plane and the entire remaining
set is drawn. The canonical enumeration of solids thus generated is an
open problem (the octahedron yields 1, the icosahedron 59) but graphics
tools useful in their visualization exist (McKeown and Badler, 1980).
The hexagonal symmetry of the cube is explicit in other color spaces,
such as HSV—Hue Saturation Value—(Smith, 1978), where it is recorded
as the hue angle. Under this model, the six additional face colors are
represented as desaturated primaries (S =1 - S = 1/2) and as secon-

GRAPHICS GEMS | Edited by ANDREW S. GLASSNER 239

IV.4 MAPPING RGB TRIPLES ONTO FOUR BITS

daries of reduced value (V=1 - V = 1/2), with other terms left un-
changed. In particular, hue angles are still members of the original eight
vertex set. Other hexagonally symmetric spaces include HSL (Foley and
van Dam, 1982). A color space similar in treating the angular distribution
of points about a gray axis is described in (Joblove and Greenberg, 1978).
A general treatment of color spaces as topological solids containing axes
of opposing colors (with related indexing methods) appears in Turkowski
(1986).

Half-Space Testing

Because the half-space tests regard merely the sign and not the absolute
perpendicular distance between point and plane, the normalized coeffi-
cients in the plane equation may be scaled arbitrarily. The goal is to
remove irrational values or rational fractions, thus yielding arithmetically
efficient tests. The plane equations that define the half-spaces are most
easily derived by simple application of Pythagoras’ theorem. The gray
axis body diagonal shown in Figure 6a has endpoints at [0, 0, 0] and
[1, 1, 1]. Thus, for any test point (X, y, z) a boolean test may be derived,
which reports the nearer endpoint using a distance inequality. For test
points nearer the white point the following are true:

V(x=0)+(y-0) + (z-0)> y(x= 1) +(y- 1) + (z - 1)
X2+ y e 2> (x - 17 + (y - 1)+ (z - 1)
0> -2x+1-2y+1-2z2+1

2(x +y +2z) >3

(x +y +2z) >15

This follows intuition, since X, y, and z contribute equally in symmet-
ric fashion as the white point [1, 1, 1] is approached from the origin, and
the point of indecision is located at [.5, .5, .5]. For equations that test
along the remaining three body diagonals, intuition is less helpful but the
above approach remains useful in eliminating quadratic and radical terms,

GRAPHICS GEMS | Edited by ANDREW S. GLASSNER 240

IV.4 MAPPING RGB TRIPLES ONTO FOUR BITS

The remaining diagonal endpoints are the cyclic coordinate permutations
of the line [(1, 0, 0);(0, 1, 1)], which yield three boolean tests of the form

(x= 2 +(y= 0 + (2= 0) > y(x= 0) +(y- 1) + (z - 1)
(x= 1)+ y*+ 22 >x*+ (y- 1)+ (z - 1)°
-2x+1> -2y +1-2z+1
-2x + 2y + 22 > 1

-X+y+2z>05

Algorithm Design

A four-bit code word may be formed directly from the signed tests by
ORing successive code bits into a code word in a manner analogous to
Sutherland’s viewpoint clipping (Newman and Sproull, 1979). Bit signs
and positions within the code word may be complemented and permuted
arbitrarily, yielding 2% 04! or 384 distinct codings, corresponding to
rotations and inversions of the solid. An important property of all codings
iIs that any color’s complement may be selected by complementing (or
subtracting into 17) in that color’s code word. Put another way, given a
color C and its complement C’, then Code [C] + Code[C’] = 1111 and
Red[C] + Red[C’] = 1.0, and so on. To find a “canonical” representation
of choice a boolean test polarity is chosen, which assigns black and white
the codes 0000 and 1111, respectively. The two vacant code positions
are of the permuted form 0001 and 1110 and relate to the fact that only
seven (and not eight) distinct partitions appear in any hemisphere. Per-
mutation of the dissimilar bit yields vacant code words at the consecutive
mid-table locations 0111 and 1000, suggesting their potential use in
recording two mid-level grayscale values. At this point the three primary
colors occur within the first eight entries of the table. A final permutation
allows them to appear in RGB order. The primaries are necessarily not
consecutive because code words differing in only one bit position (as with
successive even and odd integers) represent neighboring partitions, yet
the primaries are nonadjacent. Thus, 14 of 16 possible code words are

GRAPHICS GEMS | Edited by ANDREW S. GLASSNER 241

IV.4 MAPPING RGB TRIPLES ONTO FOUR BITS

V. V, V. array [0..15] of real;

v, . [0,5,51.00,0,5,51,1,1,0.,5,5 1],

Vg < [0.,.5, 0, 0.,,.5, 1., 0.,.,5 ,.5, 1., 0.,.5, 1., 1.,.5 ,1.];

v, - [0,0.,5,0,5,0,1,.5,5 0, 1,5, 1,5, 1.,1];

map the floating triple (R, G, B) - (R’, G’, B’) thereby quantizing

it; the return value is the vertex code/ colormap index
integer function remapl4(real: R, G, B, R’, G’, B
begin
code: integer _ O;
iIfR+ G + B > 1.5 then code . code bit-or §;
if-R + G + B > 0.5 then code .~ code bit-or 4;
iIfR -G + B > 0.5 then code . code bit-or 2;
iIfR+ G- B > 0.5 then code . code bit-or 1;
R’ — V [code];
G’ o Vg[code];
B” ~ V,[code];
returnfcode];
end

Figure 8. RGB onto RGB (four-bit).

employed. Absence (and potential treatment) of the remaining two table
entries is discussed under the section *“gray interior points.” At this point
a practical, standardized mapping of RGB onto a space of four-bit
precision has been defined: the original goal. The software procedure that
generates a code word and companion target vertex value appears in
Fig. 8.

The function remapl4 is robust in that the vector h4§,.4§.4§ maps
onto [0, 0, 0] and the vector [.5, .5, .5] maps onto [1, 1, 1]. In general, any
point [t, t, t] along the achromatic axis (as with gray-level input data for
display on a color monitor) can generate only the black or white points as
representative output. No multiplications take place in the routine, which
makes for ready adaptation to scaled-integer values. For the common
case of (unsigned) eight-bit color components, care must be taken be-
cause both the scaled value 1.5 and intermediate variable expressions
may exceed the maximum unsigned byte value 2°- 1 = 255.

The function remapl4 returns the code word (useful for the actual
colormap value given to the frame buffer memory) and fills the true color
in variables R’, G’, B’, of use as when halftoning by error diffusion (Floyd

GRAPHICS GEMS | Edited by ANDREW S. GLASSNER 242

IV.4 MAPPING RGB TRIPLES ONTO FOUR BITS

and Steinberg, 1975). Because the decoding tables contain only three
distinct values it is tempting to infer table elements implicitly through
additional boolean logic. However, direct look-up is both faster and
essential for use with color spaces not possessing six-fold symmetry
about the achromatic axis (as with RGB and HSV). As an additional
benefit, the use of a table allows the precomputation of 14 color descrip-
tors in a chosen space of representation based on the RGB values listed in
Fig. 3. An implementation accommodating RGB input pixels of arbitrary
precision is part of the IM Raster Toolkit made available through the
University of Waterloo (Paeth, 1986a, 1986b, 1987).

Three versus Four Bits

By way of comparison, the three-bit mapping case is seen to be of
identical form with the above, except that a table look-up step is not
needed to remap the code word into a representative set of values. This
happens because in the three-bit case the half-space tests divide the three
Cartesian axes allowing each bit in the code word to generate an associ-
ated axis value directly (Fig. 9).

This illustration makes it clear that the often programmed three-bit
Cartesian case (most often conceptualized as a three-channel quantization
operation) is of identical form to the four-bit polyhedral algorithm de-
scribed—it is the minimal case common to both approaches. The major
difference in the methods regards the orientation of the test planes.
Whereas the three-bit version uses the cube’s three planes of mirror

f
)
1
R S ———
|
1
|
AN
--
Y
\ LG |

N

Figure 9. Cube as Cartesian and polyhedral model.

GRAPHICS GEMS | Edited by ANDREW S. GLASSNER 243

IV.4 MAPPING RGB TRIPLES ONTO FOUR BITS

symmetry, the four-bit case uses the cube’s four axes of three-fold
rotational symmetry.

Complexity Analysis

The three- and four-bit cases are computationally optimal in that the
number of plane tests T for vertices V matches the information theoretic
lower bound T = [log, V] exactly. They are optimal in an implementation
sense because they are devoid of any conditional logic. That is, results of
previous plane tests do not drive subsequent decisions. This complete
decoupling implies that the half-space testing (program if statements)
may be executed in parallel on hardware allowing concurrent computa-
tion. Each test contributes 0.25 log, 14 bits of information, or 0.952,
yielding an information content of 3.81 bits from the four boolean tests.

Gray Interior Points

As noted, the gray point is not represented in the choice of colors and
cannot appear under this model. In fact, the point [.5, .5, .5] is the
common intersection of the test planes for both program routines. Be-
cause the target color vertices are created on the surface of a “color
sphere” that circumscribes our polyhedron, there is no provision for
allocating interior points. This is a major obstacle in generalizing this
method. Explicit methods for interior testing are expensive. For instance,
identifying the central gray subcube requires six inequality tests. Reduc-
tion to four by employing a bounding tetrahedron still doubles the total
number of plane tests and complicates the code. Methods of extension to
our color polyhedra approach will appear in a forthcoming paper (Paeth,
in press).

Cartesian Quantization versus Polyhedra

For a 16-entry color table the lack of gray is not a major liability: a
competitive 2 3 3 3 2 Cartesian table (weighted in the green) cannot
place any interior points, as at least one axis (the red and blue compo-
nents) can represent only the extrema of their interval. Moreover, only 12
points are created.

On frame buffers providing additional precision the Cartesian approach
becomes desirable. For instance, on a hypothetical five-bit device (32

GRAPHICS GEMS | Edited by ANDREW S. GLASSNER 244

IV.4 MAPPING RGB TRIPLES ONTO FOUR BITS

colors) an excellent choice of table allocation is a 3 3 3 3 3 Cartesian
color “Rubik’s” cube, which fills the table nearly to capacity (84%) and
further places a target point (with surrounding cubical volume) at the
central point (.5, .5, .5). (See Figure 2 in the Gem “Proper Treatment of
Pixels as Integers” on page 254.) This approach requires as a worst-case
six boolean tests for the six panes versus the theoretical lower bound of
five. The operation may also proceed in parallel (three processes with
each performing two consecutive plane tests) and the logic may be
arranged conditionally so that a test point located above the higher (or
beneath the lower) test plane need not be considered further. This
reduces the total number of tests to three for a select cube corner (such
as white) and lowers the average-case performance to 1.67 tests per axis,
or to five overall. As with the three-bit case the target output color
R', G', B’ may be formed directly on a per-axis basis without resort to a
code word. For efficiency reasons a 64-entry sparse table is still desirable
to compute the LUT index defined as | = 9R + 3G + B, thereby forming
a Cartesian product while avoiding integer multiplication.

It is not surprising the eight vertices of the cube are present in all
higher-order Cartesian models. What is surprising is that the 14 cubocta-
hedron vertices can be derived form the 3 3 3 3 3 Cartesian cube. This
Is possible because the latter’s point lattice may be regarded as the union
of a cube’s vertices (8), face midpoints (6), edge midpoints (12) and
central point (1), totaling 27. Here the cuboctahedron vertices are formed
by the union of only the first two spatial symmetry groups.

Summary

An optimally efficient testing method for mapping RGB colors onto a
reduced palette of four bits is described. Implementation is straightforward
and the predefined set of 14 target colors is highly symmetric. The exposition
provides a good overview into descriptive solid geometry and the symmetries
of cubic lattices.

See also A Fast HSL-to-RGB transform (448); A Simple Method
for Color Quantization: Octree Quantization (287)

See Appendix 2 for C Implementation (718)

GRAPHICS GEMS | Edited by ANDREW S. GLASSNER 245

/7 IV.5—\

WHAT ARE THE
COORDINATES OF A
PIXEL?

Paul S. Heckbert
University of California
Berkeley, California

\ /

Did you ever get confused deciding whether pixels were centered at
integer coordinates or centered halfway between the integers? We present
here a consistent answer to this question.

When modeling, we use real numbers, but pixels have integer coordi-
nates, so somewhere during rendering we must quantize the coordinates
to integer values. How, exactly, do we perform this mapping? Do we
round or truncate? Consistency is vital, but making the better choice is
also important. This may seem like a petty question, but failure to address
it can lead to misalignment, gaps or overlap between objects, or edge
effects at the screen border. The question is especially important if we are
anti-aliasing.

To clarify the problem, we distinguish between discrete images and
continuous images, and also between discrete coordinates and continuous
coordinates. A discrete image is an array of pixels, the sort of image
with which we’re familiar in computer graphics and image processing,
and a continuous image is a function defined over a continuous domain,
as in optics or the real world. In computer graphics we take a geometric
description of a continuous image (for example, a list of polygons with
floating point coordinates) and sample it at a discrete array of points to
create a discrete image. The discrete image we render is an approxima-
tion of the continuous image. We call the coordinates in the discrete
iImage discrete coordinates and the coordinates in the continuous image
continuous coordinates. Discrete coordinates take on integer values at
the sample points, which are the pixel centers. The mapping question is
now reduced to a choice of phase (displacement) between continuous and
discrete coordinates.

GRAPHICS GEMS | Edited by ANDREW S. GLASSNER 246

V.5 WHAT ARE THE COORDINATES OF A PIXEL?

0 1 2 3 & discrete coords
rounding: T - - T
0 1 2 3 « continuous coords
0 1 2 3 « discrete coords
truncating: ~——p—2 % —°
0 1 2 3 4 « continuous coords

Figure 1. Rounding and truncating schemes for coordinate conversion.

If we round when converting floating point continuous coordinates to
discrete coordinates, this is equivalent to aligning the continuous and
discrete axes. Figure 1 shows the rounding mapping at top, for a hypo-
thetical frame buffer four pixels on a side, with pixel centers marked by
bullets. Rounding seems attractive at first, because continuous coordi-
nates and discrete coordinates are equal. Unfortunately, the continuous
range corresponding to our hypothetical frame buffer, using rounding, is
the awkward range of - .5 to 3.5.

The better mapping choice is truncation, or more accurately, flooring,
where continuous coordinates are converted to discrete coordinates by
taking the floor function. In this scheme, there is a half-pixel phase shift
between continuous coordinates and discrete coordinates as can be seen
in Fig. 1, bottom. Continuous coordinates take on integer values halfway
between pixels. The pixel with discrete coordinates (x, y) has its center
at continuous coordinates (x + 1/2, y + 1/2). Assuming as a first ap-
proximation that we reconstruct using a one-pixel-wide box filter, the
continuous coordinate domain of pixel (x, y) is from x to x + 1 in x and
from y toy + 1 in y. For our hypothetical frame buffer, the continuous
coordinate range using truncation is 0 to 4—simpler numbers than with
rounding. The simplicity of the coordinate range facilitates image scaling
and other transformations.

In summary, both continuous and discrete coordinates have their place.
Continuous coordinates are most appropriate when modeling, that is,
when one is concerned with geometry, not with pixels. Discrete coordi-
nates are most useful when working close to the pixel level, as in scan

GRAPHICS GEMS | Edited by ANDREW S. GLASSNER 247

V.5 WHAT ARE THE COORDINATES OF A PIXEL?

conversion or image processing. Note that discrete coordinates are not
always integers: it is often useful to use floating point variables for
discrete coordinates. When writing graphics software it is vital to be
conscious of whether you are using continuous coordinates or discrete

coordinates.
To convert from continuous to discrete or vice versa, where ¢ Is the
continuous coordinate and d is the discrete coordinate,

d = floor (c)
c=d-= 3
| developed the above dualist view of pixel coordinates while working

on an image zoom algorithm at Xerox PARC in 1988. Thanks also to Alvy
Ray Smith at Pixar for reinforcing my reverence for the pixel.

See also A Digital “Dissolve” Effect (221); Circles of Integral
Radius on Integer Lattices (57); Precalculating Addresses for
Fast Fills, Circles, and Lines (285)

GRAPHICS GEMS | Edited by ANDREW S. GLASSNER 248

—AV.6/—\

PROPER TREATMENT OF
PIXELS AS INTEGERS

Alan W. Paeth
University of Waterloo
Waterloo, Ontario, Canada

AN /

Overview

Pixels are all-too-often viewed as collections of hardware bits, to be
shifted, masked, and mapped. This three-part discussion illustrates short-
comings of this conceptual approach and suggests efficient alternatives,
which give rise to more useful forms.

Proper Interpretation of Pixel Integers

The interpretation of the data bits present within any pixel is arbitrary.
Most often, they are treated as unsigned integers used to specify intensity
across a linear domain, such as black - white. A useful convention
regards this integer as lying along the closed, unit interval [0..1]. Choice
of this interval is consistent with the domains used in various color
spaces, including XYZ and LUV space defined by the CIE (Commission
International L’Eclairage) and the HSV space well-known in computer
graphics (Smith, 1978). In the case of color pixels, three independent
axes are represented along the interval [0.0..1.0].

Unfortunately, many software tools in existence implicitly adopt the
interval [0..1). This commonly occurs within software that employs bit
shifting as an efficient, reversible means to map between pixels with
differing precisions. For instance, four-bit pixels on the range [0..15] may
be mapped into eight-bit pixels on the range [0..255] by left shifting four
bits, such that 1111 - 11110000. Right-shifting reconstructs the original

GRAPHICS GEMS | Edited by ANDREW S. GLASSNER 249

IV.6 PROPER TREATMENT OF PIXELS AS INTEGERS

0/4 1/4 2/4 3/4 0/3 1/3 213 3/3
“ e e _e ---------- >- “ c 49 ”
0/16 4/16 8/6 12/16 15/16 0/15 5/15 10/15 15/1¢
E-0—O6—0——6—6——O0——6—6—6—6—6—0 > O%-—6—8—0—6—6—H—6—6—6—6—0——6—6-3p
incorrect incorrect
(a) (b)

Figure 1. Pixel integers along the unit axis.

data without roundoff error—an important virtue. Moreover, under this
scheme a pixel of select value (for example, 5/8 under a three-bit
precision) may be represented exactly on any system of higher precision
(the value 5/8 exists under three or more bits of precision). Here an
n-bit pixel representation divides the unit axis into intervals
of length 2", converting between precisions m and n requires an
(unsigned) multiplication of 2™™, which is conveniently represented as a
left shift of n — m bits. A major failing with this system is that white
cannot be represented (see Fig. la). To take the common, worst case
occurring with two-level bitmaps, mapping one-bit pixels onto eight bits
yields the values 0.0 and 0.5, as the binary value .1 remains .100 when
zeros are inserted from the right.

The proper approach substitutes the divisor 2" — 1 for the partitioning
of the unit axis (see Fig. 1 b). The adoption of this model yields a
symmetric representation interval [0..1] that is closed under the opera-
tions complementation (with x = 1 - x) and multiplication. This yields a
number of benefits, notably the proper representation of the white point
at 1.0. As an example, with n = 8, black and white in this system are
0/255 and 255/255, respectively, and not 0/256 and 255/256. Note
that binary (one-bit) data under this scheme represent 0.0 and 1.0
exactly.

Adoption of this system means replacing bit shifts (multiplications by a
value 2°M) by general multiplication and division. This is not a severe
speed penalty. In practice, a scaling table can be constructed and a
look-up operation used to find the appropriate mapped value. As with the
previous method, mapping to a system of higher bit precision and back to
the original system introduces no roundoff error.

GRAPHICS GEMS | Edited by ANDREW S. GLASSNER 250

IV.6 PROPER TREATMENT OF PIXELS AS INTEGERS

Exact representation under the higher system is more difficult to
achieve. When scaling up to a system of exactly twice the number of bits,
it is guaranteed. Here the higher system 22" — 1 can be factored as
(2" — 1)(2™ + 1). The left-hand factor is the lower system, and the right-
hand factor is simply an integral scale value. For instance, n = 4 bit data
represents intensity values spaced by 1/15. When scaling to n = 8 bit
precision, 2" + 1 = 17, so scaling is by 17. Thus, white,(15) becomes
white, (255) because 255 = 15 3 17. Similarly, the mapping between
pixel indices of two—and four-bit precision (as appearing in Fig. Ib)
merely requires multiplying or dividing by five.

In general, exact representation of all pixels under a lower system of m
bits is possible in a higher n-bit system whenever n is a multiple of m.
That is, 2™ — 1 divides 2" — 1 iff m divides n, meaning that white in the
lower system must divide white in the higher system. To illustrate this
assertion rather than prove it rigorously, consider this: since 4 is a factor
of 1 2, we assert that four-bit data has an exact representation in a
twelve-bit system. Representing the factors 22 — 1 and 2% — 1 in binary,
111111111111 can be divided by 1111 giving 000100010001, or 273.
Thus, 4095 = 15 x 273, and the representation for white is still exact.
More generally, multiplying any value in the four-bit system by 273 yields
exact representation in the twelve-bit system.

Nonlinear Pixel Mappings

Nonlinear subdivision along an axis of representation is a worthwhile
departure from the above first-order model. For instance, use of logarith-
mic encoding of pixels records intensities as “optical density”; this is a

common practice in photometry. Here P = log, | where P is the en-
coded pixel value, | is the intensity it represents, and b = 0.1 is the
chosen base. It follows directly that the inverse map is | = b” The latter

function may be made implicit in frame buffer look-up tables, allowing
log-encoded pixel data to be stored internally and viewed directly. This
approach has a number of benefits. First, because log(a) + log(b)

+ gog+log(n) = log(a x b OOOx n), summing images in encoded
form yields the consecutive product of their constituent linear intensities,
also in encoded form. Composition in this fashion models the physical

GRAPHICS GEMS | Edited by ANDREW S. GLASSNER 251

IV.6 PROPER TREATMENT OF PIXELS AS INTEGERS

superimpositioning of film transparencies, in which total transmitted light
Is computed by multiplying by the transparency of each successive media
(Beer’s Law). Second, the adjacent intensities represented by discretized
pixels P and P + 1 differ by a constant ratio, because b® * V/b® = b
for any P. This means that quantization effects (visible steps in bright-
ness) are not biased toward any part of the dynamic intensity range. The
approach also has drawbacks. Input pixels of I = 0 (no light or full
opacity) cannot be encoded under any base, as log 0 - — . Also, sum-
ming two intensities I, and I, linearly must be computed by first
returning to the linear domain and then re-encoding: log, (I, + 1) =
Iogb(b“’gb'l +b'°gb'2). In general, complex operations on the encoded
domain will require these two recoding steps.

Useful alternatives exist, which resemble log x and which feature
reduced quantization noise while lacking the latter’s discontinuity at zero.
Shifting and scaling the input domain gives the form log,| + pux in
which u is an arbitrary scaling parameter. This function maps zero onto
zero for any base; a unique choice of base fully constrains the function so
F. [0..1] - [0..1], a valuable property. The correct choice is F“(x) =
log(1 + px)/log(1 + w), found by applying the identities log, +“(1 + L)
= 1 and Iog,w(x) = log,(x)/log (1 + u). Here the log is of arbitrary
base; the denominator becomes a suitably scaled constant. The u param-
eter may be tuned to set the slope at zero: F,(0) = u/In(1 + p). In
practice, u = 255 is a good choice and closely approximates the piece-
wise-linear u — 255 law encoding used in digital telephony throughout
North America. The latter maps voice data quantized at 12-bits precision
onto eight bits for long distance transmission with increased channel
capacity, and minimizes quantization effects otherwise present at low
volumes.

A similar approach has been used successfully by the author for the
accurate offset-press reproduction of digital color imagery to be included
in ACM TOG journals (July, 1987). Here the original pixels of 1 2-bit linear
precision showed marked step contouring at low levels when linearly
coded at eight-bit precision, because pixel values differing by one unit in
adjacent dark regions showed a distracting intensity step of roughly 6%.
A custom display tool supporting both u - 255 law input encoding plus CRT
gamma correction reduced these effects to almost imperceptible levels
and simultaneously fitted the high-precision linear data into a film
recorder, which supported only eight-bit pixel channels. The equations
used to encode pixels under u — 255 law appear below; The fourth equa-

GRAPHICS GEMS | Edited by ANDREW S. GLASSNER 252

IV.6 PROPER TREATMENT OF PIXELS AS INTEGERS

tion was used to ready data for the custom display tool described.

1
y = glog.(1 + 255x) M: [0.0..1.0] - [0.0..1.0]
sign(x
y = 98()logz(l + 255x|) M: [-1.0..1.0] - [-10..1.0]
255
y = =5-10g, (1 + x) M: [0..255] - [0..255]

255 2 E]l 17 [

y = Tlog t o1XD M: [0..4095] - [0..255]

The fourth equation was inverted to create the correct look-up table
(LUT) entries. This operation prefaces the customary inverse transforma-
tion used to linearize film/CRT response using the “gamma” model. The
forward transformation of the latter was derived empirically from densi-
tometry of film samples giving | = VY with Yoystem = 2:8, in which 1 is
illuminated film intensity and V is CRT drive voltage (equivalent to LUT
entries on systems with linear DAC, that is, Digital to Analog Converters).
The film recorder provided 2% = 256 LUT entries with values on the
range [0..1023] specifyng linear drive voltage in 10-bit precision. Here is

the pseudo-code used to fill the LUT:

lut: array [0..255] of integer;
for i « 0 to 255 do
y: real — 2.8; empirically derived

. 010, O _ 40
t: real — D255Dx 1[|

1
lut[i] « round (1023 x t”)
endloop

GRAPHICS GEMS | Edited by ANDREW S. GLASSNER 253

IV.6 PROPER TREATMENT OF PIXELS AS INTEGERS

Color Pixels and Cartesian Products

When a single pixel is used to represent a RGB color, most often three
integer values are derived, which form the color primaries directly. The
“quick and dirty” approach to uniform division of the color space (so that
R, G, and B can be treated separately) very often slices up eight-bit
pixels into three bits for red and green, and two bits for blue (the primary
for which the eye is least sensitive).

This is an unnecessary oversimplification that leaves blue with only two
mid-range intensities, which suggests itself when color is regarded as
“bits” at the hardware level, not as “N discrete intensity steps.” This
approach is further suggested because the pixel channels for R, G, and B
can be written individually through the proper setting of the write mask,
but in practice, the color-mapped pixel is normally written as a single
byte, not as three consecutive “inking” passes. One useful property of
this power-of-two approach to color axis allocation is that a number of
gray values are always present (that is, R = G = B) because the channel
precisions are all multiples of each other.

A better approach is to form a color table containing a Cartesian
product of intensities by using axis division that is not necessarily a
power of two. For example, taking red = [0..5], green = [0..7], blue =
[0..4] (each suitably normalized to represent intensities on the range
[0.0..1.0]) yields a color table of 6 x 8 x 5 = 240 entries. Compared to
the |RRRGGGBB| bit-allocation approach, the blue axis shows a 50%
increase in mid-range specification.

\ |

] -

\\Q R| L~ \\Q /l"//'
\// \

Figure 2. Cartesian color cubes.

GRAPHICS GEMS | Edited by ANDREW S. GLASSNER 254

IV.6 PROPER TREATMENT OF PIXELS AS INTEGERS

General adoption of this method allows for more efficient use of the
color map. For instance, consider the reduced scenario of 12 colors (as
on a four-bit system in which four colors have been previously dedicated
to the operating system). Here the bit plane scheme must allocate one bit
to each of the three channels, totaling eight colors and leaving four
unused. A better treatment would be to form the product 2 3 3 3 2 with
the axis of higher precision given to the green channel. Similarly, on a
2° = 32 bit color system the allocation scheme |RRGGB| provides only
on/off values in blue (see Fig. 2a). A better allocation isa 3 3 3 3 3
volume, which additionally allows representation of mid-level gray (see
Fig. 2b).

The latter approach is taken in the IM raster tool (Paeth, 1986a, 1986Db,
1987), which provides X-window display of files containing color infor-
mation at arbitrary bit precision. Here the creation of a systematic,
uniform color space is essential in providing a shared color map common
to all windows on the machine. As the hardware platform supports either
four- or eight-bit color indices, conversion of input pixel precision onto
the range [0.0..1.0] takes place as described in the first part of this Gem.
At run-time, the low-level allocation routine is requested to build a
product of evenly distributed factors whose product is no larger than
27/32 2 84.4% of the hardware color table size. In practice, four- and
eight-bit display architectures call the color allocator with values 13 or
216 respectively, yielding the factors 12 = (2 3 2) and 216 = (6 6 6) with
channel allocation done in GRB order. Appearing in Fig. 3, the code has

split N into three (near) identical values R, G, and B
suchthat N>R 3 G3 Band G >R > B

Max « Med « Min ~ 0;
while Min 3 Min 3 Min < N do Min « Min 1 + 1;
Min « Min - 1;
while Med 3 Med 3 Min £ N do Med -~ Med 1 + 1;
Med ~ Med - 1;
Max < n/(Min 3 Med);
G « Max;
R « Med;
B « Min;
Figure 3. Factoring into a Cartesian triple.

GRAPHICS GEMS | Edited by ANDREW S. GLASSNER 255

IV.6 PROPER TREATMENT OF PIXELS AS INTEGERS

provision to alter the allocation order, which is occasionally useful when
rendering predominantly sky-blue images.

The allocation 216 = (6 6 6) guarantees the existence of a gray axis
along the body diagonal of the underlying color cube. The largest set
possible on an eight-bit architecture is 6 3 7 3 6 = 252. All factorings
show significantly improved blue precision in comparison to the four
possible blue values implicit under the common “three bits red and
green, two for blue” scheme.

Extensions

The generalized use of Cartesian products may be combined with the
nonlinear axis spacing described previously. This yields a nonlinear
spacing of orthogonal planes, which define a color space in which points
(color descriptors) lie in regions of varying density. This makes possible
accurate color representation on frame buffers, which lack the pixel
precision necessary for high-precision color (24-bit RGB), but which
minimally provide color table indexing on a per-channel basis. Heckbert
(1982) describes a means to create such custom color tables in which the
density of color descriptors in the space increases in regions of com-
monly occurring colors within the input data.

Generally, nonlinear Cartesian products may be constructed a priori,
which satisfy general constraints in the absence of any input data set.
Two approaches are described by Paeth (1989a, 1989b); one allows the
precise representation of a gray axis for color spaces of high nonlinearity
as encountered on color hardcopy devices; the other is a symmetric space
based on the theory of Chebyshev minimax approximation.

In their most general setting, “pixels as integers” serve as color table
indices into a space that is both nonlinear and non-Cartesian: points may
be distributed arbitrarily. A systematic, nonorthogonal approach to color
descriptors and pixel indexing is described in the Gem “Mapping RGB
Triples onto Four Bits” in this volume.

See Appendix 2 for C Implementation (719)

GRAPHICS GEMS | Edited by ANDREW S. GLASSNER 256

V. 1T—

NORMAL CODING

Andrew S. Glassner
Xerox MRC
Palo Alto. California

A common technique for interactive lighting and surface design is to use
an approach called normal coding. Using this technique, you can write a
tool that gives the user interactive control over the lighting in a 3D scene,
with options to add and delete lights, and to change the color and
position of each light. The user may also interactively change some of the
surface properties of the objects in the scene, such as specular and
diffuse reflectivity.

The secret behind such an interactive system is that it is all done
through the color map. Assume an eight-bit deep frame buffer, and an
iImage rendered by a point-sampling Z-buffer (that is, there is exactly one
nearest visible surface per pixel). When computing an image, typically we
store the depth of the nearest visible surface in the Z-buffer, and the
shaded color of that surface in the image buffer.

Suppose that we could turn any surface normal into an eight-bit
number. Then instead of storing the color of the nearest object in the
iImage buffer, we can store the eye-space surface normal of that object.
When the final image is completed, each pixel in the image buffer
contains the encoded eight-bit surface normal of the nearest visible
object; we might rename the image buffer the normal buffer. The
contents of the normal buffer will generally not look anything like a
picture.

To make an image from the normal buffer, recall that there are only
256 different surface normals in the buffer—after all, each pixel is only
eight bits deep. If the normal at some pixel has the bit pattern 00001001,
it will be displayed on the screen with the color stored in color-map entry

GRAPHICS GEMS | Edited by ANDREW S. GLASSNER 257

IV.7 NORMAL CODING

9. To create an image, we need only compute the shading appropriate to
each stored normal, and store that shade in the correct color-map entry.
If a light is moved, we recompute the shading on each of the 256
normals, and write that new shading into the color map. The image is thus
immediately updated to include the new lighting.

To make this scheme work, we need a way to encode and decode
normals, or convert from normals to eight-bit entries and back again. This
note suggests one way that works well.

Although this technique makes for a great interactive tool, it has some
restrictions:

e You get only 256 unique normals in your image.

= You cannot distinguish between objects.

= You cannot use “local” light sources (that is, those with a position in
space in addition to direction), since only the normal of the visible

surface is stored at each point, not the spatial location of the surface.

e The image will show banding due to the quantization of normals.

The interactive image will show aliasing artifacts, since there is only
one sample per pixel.

Some of these problems can be overcome with some additional storage
and processing; such remedies are discussed after we present the basic
technique.

Some Encoding Methods

There are a couple of principles that we should keep in mind when
building a normal encoding scheme. Typically we will not want to use all
256 entries in the color map. Often the image in the frame buffer will only
occupy part of the screen; menus, controls, and a cursor may all be
visible, and they must all have colors allocated. | suggest at a minimum
that colors 0 and 255 be left untouched; typically these are used for black
and white, to provide backgrounds, borders, text, and so forth. If a

GRAPHICS GEMS | Edited by ANDREW S. GLASSNER 258

IV.7 NORMAL CODING

program decides to change these colors, that’s fine, but the normal
encoding process should leave them alone.

There are many ways to convert a normal into an eight-bit quantity.
Perhaps the most obvious approaches are direct, 1-to-1 invertible map-
pings. Assume that all normals have unit length (that is, x> + y? + 2z2
= 1). Most approaches save bits by encoding just the x and vy
components (we can easily recover the z component from x and y since

z ~ \1 - x* — y?. we choose the sign of z so that the normal points

back to the viewer).

For example, consider the x component. We will use four bits to
encode X, mapping - 1.0 to 0, and + 1.0 to 15. So x, the encoded value
for x, is found by x, 6 ~ floor[(x + 1)*7.5]. Similarly, y, = floor
[(y + 1)*7.5]. We can combine these two four-bit values into a single
eight-bit composite byte by storing x_in the high four bits and y, in the
low four: ¢ © (x,*16) + y This sum represents c, the byte that encodes
the normal.

To decode ¢ back into components, first turn the high and low bits
back into individual numbers: x, ~ floor(c/16), y, « ¢ — (16*x).
Now Xx « (x/7.5) - 1 and y ~ (y/7.5) - 1. As we saw above,

Z « y1-x2 -y,

Another approach is to encode the x and vy components of each
normal in polar coordinates r and u, four bits each r ~ | x* -y?,
u arctan(y/x)). As before, we scale each of r and v into numbers
from 0 to 15 and store them in the low and high halves of the byte, as
before.

Yet another encoding is to use a single value representing 1 of 256
positions along an equal-area spiral, which starts at the origin and winds
outward. Each position along this spiral represents the head of a normal,
which begins at the origin.

These approaches all require a special test to avoid the foreground and
background colors. Some also have wasted entries. For example, consider
the meaning of bit patternc=11111 1 10 using the first encoding. Here,
X, = 1111 = 15, so x = +1.0, and y, = 1110 = 14, so y = 0.8666667.
Clearly there IS no unit normal with these X and y components; in fact
every bit pattern 1111xxxx is meaningless except for 11110000. So
we’ve wasted 14 possible encodings (there are 16 possible sequences for
xxxx above; 1 1 1 1 is reserved and 0000 is okay, leaving 14 wasted).

GRAPHICS GEMS | Edited by ANDREW S. GLASSNER 259

IV.7 NORMAL CODING

Each bit pattern that we can’t use gives us a smaller available range of
normals to represent our image, making it look slightly worse.

A Better Encoding Method

The technique | use is to construct a pair of tables, one associating
normals with indices, and the other associating indices with normals. To
encode a normal, one looks it up in the table, and receives an index
number giving the color-map entry for that normal. To decode, one looks
up the index number in the other table, which provides a normal. This
way the correspondence between normal bit patterns and geometric
normals is not direct, and we get a greater range of possible normals. We
can also use more sophisticated or expensive mappings, since they are
computed only once and stored in the tables.

This approach is exactly analogous to the use of color maps in eight-bit
frame buffers. One way (though not the best) to encode a color in eight
bits is to use three bits for red, three bits for green, and two bits for blue
(see “Pixels as Integers” in this volume). This would lock us into one
particular color space, which directly associates a color with its bit
pattern. A more general technique is to use a color map, which allows us
to associate any color with any bit pattern; analagously, the technique
mentioned here may be thought of as a normal map.

What might be the best such normal map or table? A first thought is to
space normals equally on the surface of a hemisphere. But remember that
we’re viewing the image from a single, fixed location, and that the
normals have already been transformed into eye space. We want most of
the resolution near the normal pointing head-on toward us, and less to the
sides, where we can see the changes less clearly. In other words, we want
the perceived differences in the normals to be about equal.

One easy approach is to lay a grid over the unit circle, and use normals
corresponding to grid centers within the circle. This is much like the first
encoding technique described above (using four bits each for x and vy),
but we don’t waste bit patterns that don’t correspond to possible normals.

We wish to build two tables: BtoNTable[] converts a byte to a normal,
and NtoBTable[] converts a normal to a byte. To build these tables, we
place a grid of fixed size over the unit circle and scan the grid top-down,
left-right, looking for cells whose center is within the circle. Suppose we

GRAPHICS GEMS | Edited by ANDREW S. GLASSNER 260

IV.7 NORMAL CODING

01 10 11 17

il &

o~

17

Figure 1. Using a 17-by-17 grid to encode normals. Cell (10, 7) is highlighted.

have a grid 17 units on a side, and the cell under consideration is (10, 7)
(see Figs. 1 and 2). The (x, y) coordinates of this cell’s normal are found
by subtracting the cell’s center at (10.5, 7.5) from the circle’s center at
(8.5, 8.5) and dividing by the radius, giving ((10.5 - 8.5)/8.5, (7.5 -
8.5)/8.5) = (0.2352941, - 0.1176471). Since in this case x* + y? < 1,
this cell is within the unit circle. We can find z = 1.0 - (x* + x*), s0
the normal at this cell is (0.2352941, — 0.1176471, 0.9647776).

Given that we now have a new normal to encode, how do we build the
tables? Assume that table entries [0 . . s] have been filled so far, so this is

-+- (10.5,7.5

Figure 2. Cell (10, 7) is defined on the left and right by x = 10 and x = 11, and above
and below by y = 7 and y = 8. Thus, the center is at (10.5, 7.5).

GRAPHICS GEMS | Edited by ANDREW S. GLASSNER 261

IV.7 NORMAL CODING

the s + 1st normal to be encoded. So now BtoNTable[s + 1] -
(0.2352941 , - 0.1176471, 0.9647776), which associates index s + 1 with
this normal.

The other table, NtoTable, associates the color-map entry s + 1 with a
guantized version of this normal. For this table, | use a 2D array
corresponding to the quantized (x, y) coordinates that are equal to the
cell index, so NtoBTable[10][7] « s + 1.

On a 17-by-17 grid, 225 entries will be filled this way. Entries 0 and
255 are reserved for foreground and background colors (usually black
and white, respectively). The others are available for use by the interac-
tive tool. Table 1 provides the occupancy data for some other grid sizes.

Table 1. Cell Occupancy for Different Grid Sizes.

Number of
Size Cells Occupied Density

12 112 0.7777778
13 137 0.8106509
14 156 0.7959183
15 177 0.7866667
16 208 0.8125
17* 225 0.7785467
18 256 0.7901235
19 293 0.8116344
20 316 0.79
21 349 0.7913832
22 384 0.7933884
23 421 0.7958412
24 448 0.7777778
25 489 0.7824
26 540 0.7988166
35 973 0.7942857
36 1020 0.787037
37 1085 0.7925493
38 1124 0.7783933
250 49080 0.78528
1000 785456 0.78545

GRAPHICS GEMS | Edited by ANDREW S. GLASSNER 262

IV.7 NORMAL CODING

It is interesting to note that an 18-by-18 grid has exactly 256 valid
normals! We drop down one size to provide for the background, fore-
ground, and auxiliary colors mentioned earlier. Note that with the method,
a normal such as (1.0, 0.0, 0.0) is never represented, since it lies on the
boundary of the grid.

Improving the Method

There are a few things one can do to make life a little easier; we will
address the five problems mentioned in the first section.

There’s not much to be done about the limit of 256 normals if you have
only an eight-bit image buffer. Of course, deeper buffers will provide
more normals.

You can work with individual objects in several ways. One way is to
allow the user to specify a material description, and apply that to all
normals in the scene (so everything in the scene is made of that material).
Some rendering programs can produce an object buffer, which contains
an integer uniquely identifying the visible object at each pixel. You can
set all pixels not equal to some object value to the background color, so
only the selected object will change in appearance (the rest of the screen
will be the background color). Of course, you’ll have to store the original
normal buffer so you can bring it back when another object is selected.
When calculating a shade for a normal you may use a more complete
shading equation, taking into account the object’s color, diffuse and
specular reflectance, and so on.

I don’t have a good solution for handling local light sources; they
require spatial information, which can vary on a pixel-by-pixel basis.
There may be a more complex encoding scheme using more bits that
handles these efficiently.

Banding is an artifact of this technique. Just as with color quantization,
one can see bands of equal-normal regions of objects on the screen. This
effect can be reduced by adding some low-level noise to each normal
before quantization (this is similar to dithering). | have found that using
random x and y perturbations in the range -3/17 to +3/17 gives
good results.

If you provide interactive pointing on the screen (that is, in which the
user may point to a spot and the light will be moved so it is head-on to
that normal), you’ll want to average a local region on the screen around

GRAPHICS GEMS | Edited by ANDREW S. GLASSNER 263

IV.7 NORMAL CODING

the point being picked. This will compensate for both the quantization
and the dithering. Another handy feature is to allow the user to point to
where the highlight should appear, and then automatically calculate the
position of the light to put the highlight at that spot.

| don’t have any suggestions about the aliasing due to a single point per
pixel. I don’t think that’s really much of a problem in an interactive tool,
anyway—you’re not making final images, just setting up parameters.

With some effort, the techniques in this note can be the heart of a
useful, interactive lighting design program.

For other discussions of normal encoding and color-map techniques,
see Heckbert (1984), and Sloan and Brown (1979).

See also Mapping RGB Triples onto Four Bits (233)

GRAPHICS GEMS | Edited by ANDREW S. GLASSNER 264

,——IV.87
RECORDING ANIMATION IN
BINARY ORDER FOR
PROGRESSIVE TEMPORAL REFINEMENT

Paul S. Heckbert
University of California
Berkeley, California

Introduction

When recording hardware allows frames to be written multiple times,
animation can be recorded in an order that provides progressive temporal
refinement: halfway through the recording process, the animation is
double-framed, one quarter of the way through recording, the animation
Is quadruple-framed, one eighth of the way through recording, the anima-
tion is octuple-framed, and so on. By recording frames in binary order,
animation errors can be detected earlier than they would with sequential
recording order. The technique is typically the same speed as sequential
recording, and it is trivial to implement.

Double-Framed Order

A trick sometimes used in the animation production business is to record
a double-framed animation in the process of recording a single-framed
animation. This is done by first recording each of the even numbered
pictures for two frames, yielding a double-framed animation, and then
dropping in the odd numbered pictures for one frame each? yielding the
finished, single-framed animation. For example, this double-framed
order for an eight-frame animation is shown here:

i | o 1 2 3 4 5 & 71
start_frame 0 2 4 6 1 3
repeat_frame 2 2 2 2 1 1 1 1

(6]
~

GRAPHICS GEMS | Edited by ANDREW S. GLASSNER 265

IVV.8 RECORDING ANIMATION IN BINARY ORDER FOR PROGRESSIVE TEMPORAL REFINEMENT

At each step i, picture number start frame is recorded starting at frame
start_frame and continuing for repeat_count consecutive frames. In
this example, we’d have a double-framed animation after step 3 and a
single-framed animation after step 7.

This trick requires that the recording hardware allow frames to be
recorded multiple times. Most single-frame video recorders have this
capability, but film recorders and write-once media do not. If frames are
being rendered as they are recorded, then the trick also requires that the
rendering process “have no history,” that each frame can be rendered
independent of the others. The benefit of the trick is that a rough draft of
the animation is available halfway through the recording process for
checking purposes.

Binary Order

This trick can be extended further to what we call binary order: on the
way to generating a single-framed animation, we generate a double-framed
animation at the halfway point, a quadruple-framed animation at the
one-quarter point, an octuple-framed animation at the one-eighth point,
and so on. Binary order is illustrated here for an eight-frame animation:

i 0 1 2 3 4 5 6 7

start frame 0 4 2 6 1 5 3 7
repeat_count 8 4 2 2 1 1 1 1
i base 2 000 001 010 0112 100 101 110 112

start_frame base 2 | 000 100 010 110 001 101 011 111

As shown in the table, step 0 records picture 0 over frames 0-7 (the
entire duration of the animation), step 1 records picture 4 over frames
4-7, step 2 records picture 2 over frames 2-3, and so on. The sequence
Is obvious when i and start_frame are written in binary (last two rows
of the table). Observe that start_frame is the bit-reversal of i, and that
repeat_count is the largest power of two that divides start frame.
Incidentally, bit reversal crops up in many Fast Fourier Transform algo-
rithms. The sequence is also related to breadth-first traversal of a binary
tree.

GRAPHICS GEMS | Edited by ANDREW S. GLASSNER 266

IVV.8 RECORDING ANIMATION IN BINARY ORDER FOR PROGRESSIVE TEMPORAL REFINEMENT

Defining binary order in terms of bit reversal works only when the
number of frames is a power of two, so we must generalize bit reversal to
arbitrary sequence lengths. This can be done by noting that bit reversal of
a sequence of length n = 2% consists of k — 1 stages of shuffles, where
each shuffle brings all the even-numbered items to the front and all the
odd-numbered items to the back (see Fig. 1, but note that these multi-
stage shuffle diagrams are not FFT butterfly diagrams). The multiple-
shuffle definition of binary order works for any sequence length. I call this
generalization of bit reversal “turning a number inside-out.” An algo-
rithm is given here:

Inside-out: turn a number “inside-out”: a generalization of bit-reversal.
For n = power of two, this is equivalent to bit-reversal.

Turn the number a inside-out, yielding b. If 0 # a < n then 0 # b < n.
Also return r = min(n — b, largest power of 2 dividing b)

procedure inside_out(n, a: int; b, r: ref int);
note: b and r are returned via call-by-reference
k, m: int;

begin

while k < n do
iIf 2*a $ m then begin
if b =0thenr _ k;
b - b+ k;
a - a-(m+1)/2;
m . m/2;
end;
elsem . (m + 1)/2;
k o k*2:
endloop;
ifr>n-Dbthenr - n - Db;
endproc;

We can now compute binary order for any sequence length. For example,

GRAPHICS GEMS | Edited by ANDREW S. GLASSNER 267

IVV.8 RECORDING ANIMATION IN BINARY ORDER FOR PROGRESSIVE TEMPORAL REFINEMENT

012345867

|
n=8 (|)246;1SST

> X

0 4 26'1t5 37

012345¢67 8910

024681013579

n=11 ;
TR
08 4'2106'1 9 5i3 7

I o 1 2 3 4 5 6 7 8 9 10
start frame o 8 4 210 6 1 9 5 3 7
repeat count 112 3 4 2 1 2 1 1 1 1 1

Figure 1. Bit reversal by multi-stage shuffle for sequences of length 8 and 11.

if nframes = 11:

To record an n-frame animation in binary order, step a variable i from
0 to n - 1, and turn this number inside-out at each step:

fori —« 0 to nframes - 1 do
inside_out(nframes, i, start_frame, repeat_count);
here record picture number start_frame
into frames start_frame through start_frame + repeat_count — 1
endloop;

GRAPHICS GEMS | Edited by ANDREW S. GLASSNER 268

IVV.8 RECORDING ANIMATION IN BINARY ORDER FOR PROGRESSIVE TEMPORAL REFINEMENT

Summary

By recording in binary order, the temporal resolution of animation can be
progressively refined. If recording is terminated at any time, the anima-
tion is still presentable, since the entire duration has been recorded. The
method uses one record operation for each frame, so it is as fast as simple,
sequential order on most recorder. If frames are being rendered as they are
recorded, binary recording order allows rough drafts of the animation to
be previewed a fraction of the way through the rendering process, enabling
early detection of errors. The ideas here obviously generalize to nontemporal
and multidimensional sampling process.

The technique described here was developed by the author at NYIT in 1981,
and was used for video recording there. Others have employed similar
techniques for progressive transmission of images, but few have addressed
the treatment of data sizes that are not powers of two.

Some related references: Sloan and Tanimoto (1979), Knowlton (1980), and
Bergman et al. (1986).

See appendix 2 for C Implementation (720)

GRAPHICS GEMS | Edited by ANDREW S. GLASSNER 269

—AV.9—/—
/ N

1-TO-1 PIXEL TRANSFORMS
OPTIMIZED THROUGH
COLOR-MAP MANIPULATION

\ Dale Schumacher /
\ St. Paul, Minnesota y

Many image manipulation suites include a number of tools that are
analogous to common darkroom techniques. These tools can all be
described as 1-to-1 pixel transforms, since the output pixel value is
strictly a function of the input pixel value. When working with discrete
pixel values, such as the integer range [0, 255], this kind of transform can
often be implemented more efficiently by precomputing a look-up table of
output values for every possible input value. As a further optimization, a
color map can be used to implement this table look-up in hardware, and
thus display the results of the transform at the next screen refresh.
Some examples of typical 1-to-1 transforms are photo-inversion, quan-
tization (also known as posterization), gamma correction, and contrast
adjustment. Photo-inversion simply replaces each pixel value with its
grayscale opposite, like a photographic negative. Quantization divides the
input range into a number of subranges and assigns the same value to
each input value in each subrange. This creates a stair-step effect, which
reduces the number of distinct output values that are used to represent
the image. This kind of transform is often used to move images from a
system that supports a large number of gray values, like 256, to a system
that supports fewer gray values, like 16. Gamma correction is a nonlinear
transform curve, which adjusts for the nonlinear response of image input
or output devices to a linear range of inputs. This transform is analogous
to overexposure and underexposure in photography. Finally, contrast
enhancement is used to make light values lighter and dark values darker
at the same time. Upper limits, above which all output will be white, and
lower limits, below which all output will be black, define an input range
between which output values are assigned in a linear ramp of gray values

GRAPHICS GEMS | Edited by ANDREW S. GLASSNER 270

IV.9 |-TO-lI PIXEL TRANSFORMS OPTIMIZED THROUGH COLOR-MAP MANIPULATION

255

0 255

Figure 1. Photo-inversion transform.

255

255
Figure 2. Quantization transform.

GRAPHICS GEMS | Edited by ANDREW S. GLASSNER 271

IV.9 |-TO-lI PIXEL TRANSFORMS OPTIMIZED THROUGH COLOR-MAP MANIPULATION

using the entire output range. This increases the total contrast of an
image.

All of the transforms described above are 1-to-1 pixel transforms since
the output pixel value depends only on the input pixel value. Techniques
like convolution, which examines a neighborhood of input pixels, and
dithering, which depends on the position in the image matrix as well as
sometimes depending on the values of nearby pixels, are not 1-to-1
transforms. 1-to-1 transforms can be described as mathematical functions
of the input pixel, and thus shown as a function graph. Figures 1, 2, 3,
and 4 display input-output graphs of the transform functions described
here. The input pixel values are along the horizontal axis and the output
pixels values are along the vertical axis.

It is often convenient to work with image pixels as discrete grayscale
values in an integer range such as [0, 255] rather than idealized values in
the continuous real number range [0.0, 1.0]. When implementing 1-to-1
transforms on a discrete input range, the number of possible input pixel
values is usually much smaller than the number of pixels in the input
iImage. Therefore, it is more efficient to precompute the output value
corresponding to each possible input value, store these values in a
look-up table, and use the look-up, table to “compute” the output pixel
value for each input pixel. This is particularly true as the transformation
function gets more complex.

On a graphics system with a color map, the hardware can, in essence,
provide a look-up table for you. The frame buffer holds index values into
the color map and the color map stores the actual pixel value that
corresponds to that index. To take advantage of this feature for imple-
menting 1-to-1 pixel transforms, set aside a range of color map entries
equal to the number of possible input pixel values. The index into the
reserved color map range now corresponds to an input pixel value. The
contents of each of those color map cells determines the actual output
value of the pixel on the screen. Simply using that color map range as
your precomputed look-up table causes the display hardware to do the
look-up for each pixel for you as part of its normal operation. Changes to
the color map appear on the screen almost immediately (at the next
screen refresh). You never need to examine or change the pixel data
actually in the frame buffer since it is always the input pixel value. The
output pixel value is determined by the transform function look-up table
that is loaded into the color map.

GRAPHICS GEMS | Edited by ANDREW S. GLASSNER 272

IV.9 |-TO-lI PIXEL TRANSFORMS OPTIMIZED THROUGH COLOR-MAP MANIPULATION

255

0 255

Figure 3. Gamma correction transform.

255

0 255

Figure 4. Contrast enhancement transform.

GRAPHICS GEMS | Edited by ANDREW S. GLASSNER 273

IV.9 |-TO-lI PIXEL TRANSFORMS OPTIMIZED THROUGH COLOR-MAP MANIPULATION

Using a color map to implement 1-to-1 pixel transforms allows real-time
manipulation of transform parameters, like the upper and lower bounds
of a contrast adjustment or the gamma value of a gamma-correction
transform. Visual feedback showing the effect of the transform is immedi-
ate. This makes “tweaking” the transform parameters much more of an
interactive try-it-and-see process. The results of even very complex trans-
form functions can be shown quickly. When the desired resultant image is
obtained, the images can be written to disk along with the color map in
effect at the time, thus saving the transformed image.

See also Useful 1-to-1 Pixel Transforms (196)

GRAPHICS GEMS | Edited by ANDREW S. GLASSNER 274

—1IV.10 —

A SEED FILL ALGORITHM

Paul S. Heckbert
University of California
Berkeley, California

AN /

Provided here is pseudo code for seed fill. Given a seed point (X, y), it
sets this pixel and all of its 4-connected neighbors with the same pixel
value to a new pixel value. This is a useful operation in paint programs.

Unfortunately, many of the published algorithms for seed fill stress
simplicity to the point of inefficiency. A near-optimal algorithm for seed
fill is actually not much more complex than the simplest one, as demon-
strated by the code here. Optimality can be measured by the number of
times a pixel is read. One of the earliest published algorithms for seed fill
reads each pixel twice (Smith, 1979). The algorithm here, which | devel-
oped in 1982, reads each pixel just a bit more than once on average, as
does the similar algorithm described in Fishkin and Barsky (1985), which
gives a good analysis of previous fill algorithms.

Our code stops filling with any change in pixel value, but other
stopping rules, such as “stop at a specific pixel value” are often useful.
The code could easily be generalized in this way.

fill: set the pixel at (x, y) and all of its 4-connected neighbors

with the same pixel value to the new pixel value nv.

A 4-connected neighbor is a pixel above, below, left, or right of a pixel.
Pixel: type < int;
Window: type ~ record [xmin, ymin, xmax, ymax: int]; inclusive window

GRAPHICS GEMS | Edited by ANDREW S. GLASSNER 275

V.10 A SEED FILL ALGORITHM

procedure fill(

X, y: int; seed point

nv: int; new pixel value

win: Window; screen window

pixelread: function(x, y: int): Pixel; procedure for reading pixels
pixelwrite: procedure(x, y: int; pv: Pixel); procedure for writing pixels
);

start, xI, x2, dy: int;
ov: Pixel,; old pixel value

Segment: type ~ record [y, xI, xr, dy: int];
Filled horizontal segment of scanline y for xI # x # xr.
Parent segment was on line y — dy. dy = 1 or -1

max: const int — 10000; max depth of stack

stack: array[0..max — 1] of Segment; stack of filled segments

sp: int < O; stack pointer

procedure push(y, xlI, xr, dy: int); push new segment on stack
begin

if sp < max and y + dy $ win.ymin and y + dy # win.ymax then begin

stack[spl.y < V;
stack[sp].xl < xl;
stack[sp].xr « xr;
stack[sp].dy < dy;
sp < sp + I;
end;

endproc push;

procedure pop(y, xl, xr, dy: ref int); pop segment off stack
begin

Ssp <« sp - 1;

dy ~ stack[sp].dy;

y « stack[sp]l.y + dy;

xl < stack[sp].xl;

Xr — stack[sp].xr;

endproc pop;

GRAPHICS GEMS | Edited by ANDREW S. GLASSNER 276

V.10 A SEED FILL ALGORITHM

begin procedure fill

ov pixelread(x, y); read pixel value at seed point
if ov = nv or x < winxmin or X > winxmax or y < win.ymin or y > win.ymax then
return;
push(y, x, x, 1); needed in some cases
push(y + 1, x, x, -1); seed segment(popped 1st)

while sp > 0 do
pop segment off stack and fill a neighboring scan line
pop(y, x1, x2, dy);
segment of scan line y — dy for x1 < x < x2 was previously filled,
now explore adjacent pixels in scan line y
X « X1,
while x > win.xmin and pixelread(x, y) = ov do
pixelwrite(x, y, nv);
X « X = 1;
endloop;
if x > xI then goto skip;
start « x + 1;
if start < xl then push(y, start, x1 — 1, — dy); leak on left?
X « xI + 1;
loop do
while x < win.xmax and pixelread(x, y) = ov do
pixelwrite(x, y, nv);
X « X+ 1;
endloop;
push(y, start, x — 1, dy);
if x > x2 + 1 then push(y, x2 + 1, x — 1 — dy);leak on right?
skip: X « X + 1;
while x < x2 and pixelread(x, y) # ov do
X « X+ 1;
endloop;
start — Xx;
while x < x2;
endloop;
endproc fill;

See also Filling a Region in a Frame Buffer (278)

See Appendix 2 for C Implementation (721)

GRAPHICS GEMS | Edited by ANDREW S. GLASSNER 277

—IV.11—

/
FILLING A REGION
IN A FRAME BUFFER

Ken Fishkin
Pixar, Inc.
San Rafael, California

AN /

Fill algorithms are a common graphics utility. They explore through a
frame buffer from some seed point, finding all the pixels connected to
that seed point that share some property (for example, all being the same
color). Some function (for example, changing the color) is invoked
exactly once on each pixel found.

This Gem doesn’t worry about exactly what property you’re looking for,
or what function you want to invoke on each pixel: rather, it contains the
“controller,” which decides which pixels to look at and when. It assumes
a boolean-valued function INSIDE(X, y), which returns true for any pixel
that has the property you want, and a void-valued function SET(x, y),
which changes the pixel as you wish. Furthermore, INSIDE(x, y) must
return false if (x, y) has been SET(); commonly, a one-bit-per-pixel
mask is used for this. The INSIDE and SET functions encapsulate the type
of fill (interior fill, boundary fill, tint fill . . .), while the controller sitting
above it, contained in this gem, remains constant.

As terminology, the set of all pixels connected to the seed point that
need to be filled comprise the region. A scanline of pixels, all of which
are in the region, is termed a span. Figure la shows a sample “before”
state of a frame buffer: pixels with a hollow circle inside them have the
property we are interested in, and the pixel with a solid circle is the seed
point. Figure 1b shows all SET() pixels with a solid circle, and outlines
each span with a solid line.

Algorithms that do this exploration all work similarly: they start with a
seed span, and then have a stack of unexplored spans, termed shadows,
which they examine in classic graph-traversal fashion.

GRAPHICS GEMS | Edited by ANDREW S. GLASSNER 278

IV.11 FILLING A REGION IN A FRAME BUFFER

a1 000] e OO0
::f@-@.:@t@i@t: 90000
|20 @ O @ @ .0 |
| 20:0:0:0,0:.. 100000
— .(a). — .(b). —

Figure 1. Filling a region.

When a shadow is pushed on the stack, it can have one of three
possible relations to the span that is pushing it. It can overlap it at both
edges (a “W turn”), it can overlap it at one edge (a “U turn”), or it can
overlap it at neither edge (an “S turn”) (see Fig. 2).

A detailed comparison of the most popular fill algorithms would take
too long: the interested reader is referred to Fishkin and Barsky (1985).
To make a long story short, they differ in how they handle S, U, and W
turns, and in whether they need a bit-per-pixel.

The *“canonical” fill algorithm, written by Smith (1982), works fine on
S turns, but is nonoptimal on U and W turns. An extension to this,
written by Levoy (1981), works fine on S and U turns, but is nonoptimal
on W turns. Another, written by Shani (1980), works well on all three
turns and doesn’t require a bit-per-pixel, but has poor worst-case behav-
ior. The gem you see here works fine on all three turns, and has the best
average- and worst-case behavior of the four.

W U S

shadow
span
Figure 2. The three kinds of turns.

GRAPHICS GEMS | Edited by ANDREW S. GLASSNER 279

IV.11 FILLING A REGION IN A FRAME BUFFER

current shadow
X X \ X| | X
X parent X

Figure 3. About to process a shadow.

The algorithm works by maintaining a stack of shadows. A shadow is
not an area that has been filled, but rather an area that might be filled:
any sets of fillable pixels that intersect the shadow should be filled. In
addition to the shadow, the stack remembers where the parent of the
shadow (the “pusher® of this shadow) was; this lets it detect U, S, and W
turns.

To process a particular shadow the algorithm marches across the
shadow, finding all spans that the shadow touches. It calls SET() on each
pixel in the span, and then pushes the new shadows cast by this new
span. The pushing order is arranged in such a way that shadows that
change direction, that is, shadows that are below an upward-moving span
or above a downward-moving span are pushed last (and hence processed
first). This is a heuristic based on the observation that turns are relatively
rare and usually lead into relatively small areas; by processing them first,
stack size is reduced.

To make this description more concrete, consider Figs. 3, 4, and 5.
Figure 3 shows a frame buffer as we start to process a shadow. The
parent of the shadow is shown, and the X-ed pixels are those pixels that
are not inside the region.

In Figure 4, we have found the spans that contacted the current
shadow. Then, in Figure 5, we push the new shadows on the stack cast by
our two new spans (who become the parents of these new shadows).
Child 2 does an S turn with respect to its parent, and hence pushes one
shadow. Child 1 does a U turn with respect to its parent, and hence

GRAPHICS GEMS | Edited by ANDREW S. GLASSNER 280

IV.11 FILLING A REGION IN A FRAME BUFFER

X child1 X cridz | [X][X

Figure 4. Found the spans in the shadow.

pushes two shadows: one that continues in the current direction and one
that reverses direction and explores the other lobe of the U. That shadow
Is pushed last (and processed first). Both shadows of child 1 are pushed
before either shadow of child 2, as child 1 was discovered before child 2.

A good fill algorithm is one that reads as few pixels as possible. It can
be shown that the algorithm in this Gem is optimal if the region has no
holes. In other words, if the region is a solid, connected group of pixels,
then the algorithm will read the necessary and sufficient set of pixels. In
the worst case, a region full of holes (a grid), the algorithm will read 50%

shadows of child1 shadow of child2

Figure 5. The new shadows.

GRAPHICS GEMS | Edited by ANDREW S. GLASSNER 281

IV.11 FILLING A REGION IN A FRAME BUFFER

more pixels than it has to, as opposed to the 100% and 200% worst-case
behaviors of earlier algorithms. One other feature is that the algorithm
uses only increments, decrements, negations, assignments, and tests; this
Is handy for implementation on simple processors.

StackElement record [
myLXx, myRx: integer endpoints of this shadow
dadLx dadRx: integer and of my parent
myY: integer
myDirection: TWO_VAL records whether I’'m above or below my parent:
can only have values of -1 or +1
I
assume a stack of StackElements,
and a Box-valued variable Limit, which indicates
the limits of the frame buffer window.

macro PUSH(left, right, dadl, dadr, y, dir)
pushes a new shadow, going from left to right (inclusive) on line v,
with a parent going from dadl to dadr (inclusive) on line y — dir

macro POP()
pops the shadow on TOS into local variables;
IX, rx, y, direction, dadLx, and dadRx

macro STACK(dir, dadLx, dadRx, Ix, rx, y)
pushes one more shadow on the stack, given a newly discovered
span and its parent: this is where S vs. U vs. W turns are handled
pushrx < rx + 1; pushlx « Ix - 1;
PUSH(Ix, rx, pushlx, pushrx, y + dir, dir)
if rx > dadRx
then PUSH(dadRx + 1, rx, pushlx, pushrx, y —