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About the cover image:

The cover image shows the interior of Le Corbusier’s Chapel at Ronchamp,
France. The illumination was computed using radiosity, with the sunbeams added
by stochastic ray tracing during rendering [109, 110]. The model was created by
Paul Boudreau, Keith Howie, and Eric Haines at 3D/EYE, Inc. with Hewlett-
Packard’'s ARTCore Radiosity and Ray Tracing library.

The image is a frame from the animatibime Key is Lighpresented at the
Siggraph '91 Electronic Theater. The video was produced by Hewlett-Packard
Company TV, with extensive help from Becky Naqvi, John Fujii, and Ron Firooz
at Hewlett-Packard Company.

The back coverimage is a radiosity rendering from a scene of Luther’s Tavern
in the Operdlales of HoffmanThe opera lighting design software used for this
image is part of a PhD dissertation by Julie O’Brien Dorsey at Cornell University’s
Program of Computer Graphics [73].

Radiosity and Realistic Image Synthesis ii
Edited by Michael F. Cohen and John R. Wallace



(f)

Plate 1.“Six Renderings of Red-Blue Box” (see Chapter 1). (a) Local, (b) Ray
Trace, (c) Radiosity, (d) Radiosity + Glossy, (e) Radiosity + Fog, (f) Monte Carlo.
Courtesy of Michael Cohen, Holly Rushmeier, and Ben Trumbore, Program of
Computer Graphics, Cornell University.
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Plate 2.A sculpture by
John Ferren entitled
“Construction in Wood, A
Daylight Experiment.”
Front faces of the panels
are white. The color is
caused by daylight
reflected from rear-facing
colored surfaces.
Courtesy of Cindy Goral,
Program of Computer
Graphics, Cornell
University.

Plate 3.A ray traced
image of the above
sculpture. All the panels
appear white since a
standard ray tracer cannot
simulate the
interreflection of light
between diffuse surfaces.
Courtesy of Cindy Goral,
Program of Computer
Graphics, Cornell
University.

Plate 4.A radiosity image
of the above sculpture.
Note the color bleeding
from the backs of the
boards to the fronts.
Courtesy of Cindy Goral,
Program of Computer
Graphics, Cornell
University.
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Plate 6.0bserver viewing images
projected onto frosted glass in
portrait camerasCourtesy of Gary
Meyer, Program of Computer
Graphics, Cornell University.

Plate 5. Experimental setup to test Plate 7.Upside down views as seen
accuracy of radiosity method and by observerCourtesy of Gary Meyer,
choice of color space€ourtesy of  Program of Computer Graphics,
Gary Meyer, Program of Computer Cornell University.

Graphics, Cornell University.

Plate 8. Photograph of real scene Plate 9. Photograph of CRT screen
taken with portrait camera. (Color  containing radiosity imag€ourtesy of
adjusted for film and monitor Gary Meyer, Program of Computer
gamuts in Plates 8 and Tpurtesy  Graphics, Cornell University.

of Gary Meyer, Program of Com-

puter Graphics, Cornell University.
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Plate 10.“Magritte
Studio.” Radiosity with
texture mapping of both
reflecting surfaces and
light sourcesCourtesy
of Michael Cohen,
Program of Computer
Graphics, Cornell
University.

Plate 11.“Computer
Room.” Shading using
direct illumination only.
Courtesy of Tamoyuki
Nishita, Fukuyama
University.

Plate 12.“Auditorium.”
An element mesh in
which “T” vertices have
been eliminated by
triangulation to create
conforming elements.
Courtesy of Daniel
Baum, Silicon Graphics
Corporation.



Radiosity and Realistic Image Synthesis
Edited by Michael F. Cohen and John R. Wallace

Plate 13.“Magritte
Studio, Lights Off.”
Image created using the
same form factors as
plate 10. Turning off
light requires only
resolving the matrix
equation with new
emission values.
Courtesy of Michael
Cohen, Program of
Computer Graphics,
Cornell University.

Plate 14.“ Computer
Room.” The same
environment as in Plate
11, with radiosity used
to compute both direct
and indirect illumina-
tion. Note the addi-
tional illumination on
the ceiling.Courtesy of
Tamoyuki Nishita,

Plate 15.The same
image as in Plate 12
with out displaying the
mesh.Courtesy of
Daniel Baum, Silicon
Graphics Corporation.



Plate 16.“Steel Mill.” A complex environment shaded using progressive refine-
ment radiosity.Courtesy of John Wallace and Stuart Feldman, Program of
Computer Graphics, Cornell University.

Plate 17.“Constuctivist Museum.” The complex interreflection from the ceiling
baffles was simulated with the progressive refinement apprézaintesy of
Shenchang Chen, Stuart Feldman, and Julie O’Brien Dorsey, Program of Com-
puter Graphics, Cornell University.
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Plate 18. Plate 19.

Plate 20. Plate 21.

A Sequence showing the links formed at each level of a hierarchy generated by
Hanrahan, Salzman, and Aupperle’s algoritifdourtesy of Pat Hanrahan,
Princeton University.

Plate 22.Final image with
texture mappingCourtesy of
Pat Hanrahan, Princeton
University.
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Plate 23.Radiosity
solution.Courtesy of
Brian Smits, James Arvo,
and David Salesin,
Program of Computer
Graphics, Cornell
University.

Plate 24.Importance
solution.Courtesy of
Brian Smits, James Arvo,
and David Salesin,
Program of Computer
Graphics, Cornell
University.

Plate 25.Combined
radiosity and importance
solutions.Courtesy of
Brian Smits, James Arvo,
and David Salesin,
Program of Computer
Graphics, Cornell
University.



Plate 26.Radiosity/Importance
solution with meshCourtesy of

Brian Smits, James Arvo, and David
Salesin, Program of Computer
Graphics, Cornell University.

Plate 27.Radiosity/Importance
solution after reconstruction.
Courtesy of Brian Smits, James
Arvo, and David Salesin, Program
of Computer Graphics, Cornell
University.

Plate 28.Radiosity solution from
further back Courtesy of Brian
Smits, James Arvo, and David
Salesin, Program of Computer
Graphics, Cornell University.

Plate 29.Importance solution.
Courtesy of Brian Smits, James
Arvo, and David Salesin, Program
of Computer Graphics, Cornell
University.

Plate 30.Radiosity from even
further back Courtesy of Brian
Smits, James Arvo, and David
Salesin, Program of Computer
Graphics, Cornell University.

Plate 31.Importance from even
further back.Courtesy of Brian

Smits, James Arvo, and David
Salesin, Program of Computer
Graphics, Cornell University.
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Plate 32.Radiosity
solution using quadtree
based adaptive subdivi-
sion. Failure to resolve
discontinuities results in
the inaccurate representa-
tion of shadow bound-
aries.Courtesy of Filippo
Tampieri and Dani
Lischinski, Program of
Computer Graphics,
Cornell University.

Plate 33.Radiosity
solution of same environ-
ment as above, but with
the use of discontinuity
meshing.Courtesy of
Filippo Tamieri and Dani
Lischinski, Program of
Computer Graphics,
Cornell University.

Plate 34.Use of disconti-
nuity meshing to create
accurate shadow bound-
aries.Courtesy of Filippo
Tamieri and Dani
Lischinski, Program of
Computer Graphics,
Cornell University.



Plate 35.Multipass solution
after the initial progressive
radiosity solution. Total time:
approx. 12 minuteCourtesy of
Shenchuang Chen, Apple
Computer Corporation.

Plate 36.Multipass solution:
Direct illumination computed
with Monte Carlo ray tracing,
caustics computed with light ray
tracing, combined with indirect
component of initial progressive
radiosity solution. Total time:
approx. 4.5 hour€ourtesy of
Shenchuang Chen, Apple
Computer Corporation.

Plate 37.Components of Plate 36. Direct Monte Carlo + Indirect Progressive
Refinement Radiosity + Light Ray Tracin@ourtesy of Shenchuang Chen,
Apple Computer Corporation.

Plate 38.Multipass solution
after full Monte Carlo solution
for both direct and indirect
illumination. Total time: approx
21 hours.Courtesy of
Shenchuang Chen, Apple
Computer Corporation.

Plate 39.Components of Plate 38. Direct + Indirect Monte Carlo + Light Ray
Tracing. Courtesy of Shenchuang Chen, Apple Computer Corporation.
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Plate 40.A ship’s boiler
room, with Phong
highlights added to a
progressive radiosity
solution during rendering.
Courtesy of John Wallace,
John Lin, and Eric
Haines, Hewlett-Packard
Corporation.

Plate 41.Radiosity
solution for indirect
illumination, with the
direct illumination
computed at each pixel
during rendering. Bump
mapping is performed
during the per-pixel
illumination computation.
Courtesy of Peter Shirley.

Plate 42.Bidirectional

ray tracing. The caustic
on the table is caused by
light focused through the
glass and was computed
using light ray tracing.
Courtesy of Peter Shirley.



Plate 43.Radiosity solution without  Plate 44.Radiosity solution with

inclusion of specular to diffuse extended form factors to capture
reflection of light off mirror. light reflected from mirrorCourtesy
Courtesy of Francois Sillion, Ec6le  of Francois Sillion, Ec6le Normale
Normale Supériuere. Supériuere.

Plate 45.“Dutch
Interior, after
Vermeer.” A two-
pass solution:
radiosity plus the
reflection frustum
algorithm during
rendering to com-
pute glossy reflec-
tion from floor to
eye.Courtesy of
John Wallace,
Program of Com-
puter Graphic,
Cornell University.
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Plate 46.Computation of glossy
and mirror specular reflection
using spherical harmonics to
approximate directional radiance
distribution.Courtesy of Francois
Sillion, Program of Computer
Graphics, Cornell University.

Plate 47.Main Council
chamber in the new
Jerusalem City Hall.
Designed by A. J.
Diamond, Donald Schmitt
and Co. Rendered using
radiosity software being
developed at Lightscape
Graphics.Courtesy of
Stuart Feldman,
Lightscape Graphics
Software.

Plate 48.Use of

zonal method to
include a participating
medium (smoke)
within a radiosity
solution.Courtesy of
Holly Rushmeier,
Program of Computer
Graphics, Cornell
University.
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Plate 49.A unified solution
for Lambertian diffuse,
glossy, and mirror specular
reflection using spherical
harmonics to approximate
radiance distribution.
Courtesy of Francois
Sillion, Program of Com-
puter Graphics, Cornell
University.

Plate 50.The main
council chamber in
Plate 47 Courtesy of
Stuart Feldman,
Lightscape Graphics
Software.

Plate 51.
“Gemaldegalerie
BERLIN.” Image
produced using the
COPHOS lighting design
software under develop-
ment at Zumtobel Licht
GmbH. Courtesy of
Zumtobel GmbH, Austria.



Plate 52.“Home of the
Brain,” from a project on
Virtual Reality and
Telecommunications.
Courtesy of Monika
Fleischmann and
Wolfgang Strauss,
ART+COM, Berlin

Plate 53.Scene from the
opera “Turandot,” rendered
with software for stage
lighting design.Courtesy of
Julie O’Brien Dorsey,
Program of Computer
Graphics, Cornell Univer-
sity.

Plate 54.Scene of
Venice from “Tales of
Hoffman.” Courtesy of
Julie O’Brien Dorsey,
Program of Computer
Graphics, Cornell
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Foreword

For the past 25 years, researchers in the field of computer graphics have
continuously striven for the production of realistic images of nonexistent envi-
ronments. To attain this goal and its ultimate potential for design and aesthetic
evaluations, it is necessary to accurately represent the appearance of objects and
scenes as they look to us. This requires the knowledge of how to simulate both
the physical behavior of light and the perceptual behavior of the human visual
system.

The accurate simulation of physical processes is crucial for realistic image
synthesis. Ad hoc procedures, despite the fact that they can produce pretty
pictures, will not suffice. The radiosity method, originally based on principles
of thermodynamics, provides this physical basis and establishes the foundations
for future rendering and display systems.

More explicitly, the creation of photorealistic images requires four basic
components, a local model of light reflection, a means for simulating the propa-
gation of energy throughout an environment, the appropriate strategies for sam-
pling the scene, and procedurally accurate methods for displaying the results.
The radiosity method discussed in this book describes each of these steps in
great detail.

Historically, a major argument against the use of radiosity procedures has
been the excessive computing demands. Today these constraints are rapidly
being eliminated. During the last decade alone, processing power of workstations
and personal computers has increased by three orders of magnitude. However
skeptical one might be, all indications are that the trend of almost doubling
computer power each year will continue until at least the end of this decade.
Memory and storage costs have also dropped, by approximately four orders
of magnitude since the early 1970s. Most recently, new advances in network
technology have improved the possibility for image transmission rates by six
orders of magnitude from what was available two decades ago. Further advances
in the technology will occur due to parallelism and compression schemes.

Display technology is also accelerating at a remarkable pace. The dot spac-
ing in printing technologies has been vastly reduced. High-resolution display
monitors are now commonplace. The advent of high-definition television will
push video technology further, both in terms of refresh rates and display res-
olution, and ultimately in cost due to the economics of mass production. For
normal viewing conditions, resolutions will have surpassed the visual acuity of
the human eye. Intensity ranges will be increased, and the speed of displays is
already sufficiently fast to imply continuous motion.

With these dramatic advances in computing and display technologies, the
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FORWARD

arguments against the computational complexity of image synthesis techniques
fall hollow. Processing and storage will essentially be free, and transmission
will be sufficiently fast to deliver high quality picture information and allow the
use of remote computing nodes. The computing obstacles of the past will have
been overcome.

What is now needed is the ability to mimic the complex physical behavior
of light distribution, from microscopic to macroscopic ranges. The radiosity
method for image synthesis provides the theoretical underpinnings and algorith-
mic techniques toward these ends. With future experimental measurements and
comparisons, these methods can be continually refined to improve their accuracy.

This book is the most thorough treatise on the radiosity method yet to be
published in the field of computer graphics. The text includes detailed descrip-
tions of all of the major components required to create a system for displaying
modeled environments. From the explanations of the fundamental scientific
bases to the state-of-the-art algorithms for implementation, the topics are cov-
ered in a clear and comprehensive way. The authors are to be congratulated
for their in-depth treatment of the subject and for the presentation of a text
that can significantly influence rendering systems of the future. The quest for
photorealism will continue!

Donald P. Greenberg
Professor and Director
Program of Computer Graphics
Cornell University
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Preface

Over the past decade, computer graphics has exploded out of university re-
search laboratories onto television and cinema screens, and into medical imag-
ing, scientific visualization and computer-aided design systems. A persistent
goal through much of the research that has contributed to these developments
has been to recreate, with the computer, strikingly realistic images of environ-
ments that do not (and often could not) exist. This field of endeavor has come
to be known asealistic image synthesi®adiosity provides one important ap-
proach to evaluating a physically-based illumination model, which is a key part
of image synthesis.

The number of papers published on radiosity and related techniques increases
yearly. Although the field is by no means mature, it is at a transition point, with
early intuitive methods being replaced by approaches based on more rigorous
attention to underlying physical processes and numerical methods. Thus, this is
a natural time to summarize the research to date and to present it in a uniform
format.

Our goal in writing this book is to survey the state-of-the-art in radiosity
and related image synthesis research, to explain the underlying theory, and to
provide a framework that organizes the broad and growing literature surround-
ing this field. The book is intended for those interested in pursuing research in
global illumination and image synthesis. It should also provide a useful theoret-
ical background and insight into many practical issues, for those implementing
radiosity or other global illumination systems.

After a short introductory chapter, the book continues with a chapter by Pat
Hanrahan that carefully defines the terminology and concepts of radiometry and
photometry, the fields concerned with the measurement of light. This discussion
ends with the derivation of the rendering equation and its specialization in the
form of the radiosity integral equation. The following three chapters discuss
the use of finite element methods to solve this equation, by first formulating an
approximately equivalent set of linear equations, then evaluating the coefficients
of the linear system (the form factors), and finally solving the resulting matrix
equation.

This is followed by three chapters in which the topic of domain subdivision
(or meshing) is discussed. The discussion begins with an overview of mesh-
ing issues, then takes an aside to discuss new hierarchical formulations of the
radiosity problem including applications of wavelet methods, and closes with a
chapter on the practical issues in generating a good mesh.

Chapter 9 explores the final step in the image synthesis process, that is,
mapping the results of the numerical simulation to a display device. In this
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context, the peculiarities of the human visual system are discussed, ranging
from the nonlinear response of the eye to luminance, to the tristimulus theory of

color perception. Chapter io then expands the scope of the radiosity methods by
lifting many of the restrictions assumed in the earlier discussion, such as diffuse

surfaces and non-participating media. Finally, the book concludes with a chapter
that explores a number of developing applications of the radiosity method, and

takes a moment to look towards the future.

The presentation in this book assumes a familiarity with the basic concepts
of computer graphics. There are a number of excellent computer graphics texts
that more fully explore some of the techniques that are called on in the algo-
rithms described here [84, 97, 173, 195, 258]. The discussion also assumes
an understanding of undergraduate calculus and linear algebra. Where more
advanced mathematical concepts are required, an effort is made to provide the
reader with enough background information to understand and appreciate the
material.

Acknowledgments

We thank the many colleagues who have directly and indirectly contributed
to the making of this book.

Without the dedication and persistent efforts of Prof. Donald P. Greenberg
of Cornell University, neither author would be in a position today to write this
text. His contributions to the development of the field of image synthesis are
well known. We thank him personally for inviting us into Cornell’s Program of
Computer Graphics where both authors were introduced to radiosity and image
synthesis, and for contributing the Foreword to this book.

Pat Hanrahan, beyond contributing a chapter to the book, is also largely
responsible for providing the first author with the stimulating environment at
Princeton University in which to work.

We would like to especially acknowledge the great efforts that went into
reviewing chapters of this book by Ken Chiu, Robert Cross, Brian Curless,
Stuart Feldman, Alain Fournier, John Fujii, Steven Gortler, Paul Lalonde, Marc
Levoy, Robert Lewis, Dani Lischinski, Earlin Lutz, Holly Rushmeier, David
Salesin, Peter Shirley, and Filippo Tampieri.

We thank Jutta Joesch for many hours of editing this text and for her enor-
mous help in gaining a better understanding of how to explain many of the more
difficult concepts presented. We would also like to thank Steven Gortler and
Peter Schroder for many discussions leading to much of the material on wavelets
in Chapter 7; Holly Rushmeier for numerous discussions that contributed ma-
terially to the content of this book; John Abel, Maged Tawfik, Paul Heckbert,
Mark Reichert, Seth Teller, David Munson, and Stuart Feldman for valuable

Radiosity and Realistic Image Synthesis Xiii
Edited by Michael F. Cohen and John R. Wallace



PREFACE

discussions; John Fujii for first pointing out the topological shadow test dis-
cussed in Chapter 8, and for many hours of enjoyable discussions of aesthetic
and philosophical questions; Tamar Cohen for creating models used in some of
the images; Emil Ghinger for the black and white photography; Kevin Stokker
for software used to compute the error images in Chapter 6; Kim Wagner for
help in obtaining the cover image; Eric Haines for providing the initial version
of the Bibliography; Brian Rosen for help in compiling the Bibliography.

The authors would like to acknowledge some of the many additional collabo-
rators through the past decade who have contributed to this work. These include
Daniel Baum, Philip Brock, Rikk Carey, Shenchang Chen, Lisa Desjarlais, Stu-
art Feldman, Cindy Goral, Kevin Koestner, David Immel, Peter Kochevar, Alan
Polinsky, David Salmon, Kenneth Torrance, Ben Trumbore, and many others
at Cornell University; Francois Sillion and Claude Puech at the Ecble Normale
Supérieure, James Painter, John Kawai, and Gershon Elber at the University of
Utah, Philipp Slusallek at Universitat Erlangen, and many current colleagues at
Princeton University.

We would like to thank Eric Haines and Kells EImquist at 3D/EYE, Inc. for
many years of collaboration in the pursuit of realistic image synthesis, Samir
Hanna for providing the second author time to write this all down, and the many
other people at 3D/EYE, Inc. and Hewlett-Packard who have jointly participated
in the development of radiosity and rendering software.

Images were contributed by Daniel Baum, A. T. Campbell IIl, Julie O’Brien
Dorsey, Shenchang Chen, Stuart Feldman, Monika Fleischmann, Cindy Goral,
Eric Haines, Pat Hanrahan, Paul Heckbert, Keith Johnson, Dani Lischinski, Gary
Meyer, David Munson, Mark Reichert, Holly Rushmeier, Brian Smits, David
Salesin, Peter Shirley, Francois Sillion, Filippo Tampieri, Hewlett Packard, and
Zumtobel Licht GmbH.

To Jenifer Niles, our editor at Academic Press, thank you for guiding us
successfully through the process of creating an actual book.

Finally, the contribution of our wives, Jutta M. Joesch and Diane L. Wallace
cannot be understated. Without their patience and support we could not have
finished this.

Michael F. Cohen John R. Wallace
Department of Computer Science 3D/EYE, Inc.

Princeton University Ithaca, NY

Radiosity and Realistic Image Synthesis Xiv

Edited by Michael F. Cohen and John R. Wallace



“But something in the air sets me to thinking, there might be things
not too far off, that | might tell a few stories about, someday myself.
Though exactly how I'll do it’s beyond me. It wouldn’t be any too
simple, just trying to describe this scene right here, how pretty a
figure that bird cuts, sailing across the red horizon. And | took
these sharp eyes to be a blessing. When they might, just as easily,
turn out to be a curse.

Oh well, enough of these idle musings. They ain’t gonna feed me.

I'd better get down to business.”

Alan Cohen
from The Saga of Harry the Snake
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Chapter 1

INntroduction

In the pursuit of lifelike images, artists have long attempted to understand the
behavior of light and the characteristics of perception. Techniques that may
appear obvious, like perspective, were developed through painstaking study and
experimentation. The paintings of Vermeer and Rembrandt represent an under-
standing of illumination, color, and perception that evolved through centuries
of such experience. More recently, the Impressionists made a particular study
of the subtleties of light and shading; Renoir, for example, pointed out that
“Shadows are not black; no shadow is black. It always has color.”

The connection between light and visual representation received its most
concrete realization with the invention of photography in the nineteenth century.
Because a photograph is the direct consequence of the physical propagation of
light, the camera is an invaluable recorder of things that exist. The creation of
realistic images of things that do not exist, or that are not normally perceivable
as images, such as scientific data, has remained until recently the domain of the
artist and illustrator.

1.1 Realistic Image Synthesis

Over the last few centuries physicists have developed mathematical models of
the processes by which light interacts with surfaces and propagates through an
environment. With the advent of the computer it has become practical to evaluate
such models on a large enough scale to simulate complex phenomena. Using
a computer, a model of light reflection and propagation can be evaluated for a
scene whose geometry and material properties have been specified numerically.
In effect, a photograph can be taken of a scene that does not exist in reality.
The ability to create images of nonexistent environments is important to ap-
plications ranging from industrial or architectural design to advertising and enter-
tainment. Phenomena not accessible to normal visual experience can also be vi-

The immediate source of this quotation, which comes close to reducing radiosity to a
sentence, is Parket al.[179], who in turn quote from [193].
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sualizedby applying the illumination model to other forms of three-dimensional
data. For example, data from magnetic resonance imaging can be rendered to
provide three-dimensional images of the inside of the body.

The creation of images by evaluating a model of light propagation is called
image synthesiand has been studied extensively in the field of computer graph-
ics since the 1970s. The goal of image synthesis is often stapadtasealism.
However, although photography produces “realistic” images, it is a physical pro-
cess subject to the constraints of camera optics and the chemical nature of film.
Should image synthesis really attempt to simulate photography, or should it aim
higher?

1.1.1 Goals

A clear understanding of the goal of image synthesis becomes increasingly im-
portant as algorithms and computational methods grow more sophisticated. In
addition to the evaluation of competing approaches, more intelligent algorithms
need a basis for deciding how to allocate computational effort and when to end
the computation, which requires knowing when the goal has been achieved.

Perhaps the most far reaching goal for image synthesis is the creation a
visual experiencédentical to that which would be experienced in viewing the
real environment. The diagram in Figure 1.1 shows a simple model of the
image synthesis process that provides a basis for discussing the issues involved
in reaching this goal.

In the real world, as shown in the top half of the diagram, light propagates
through the scene and eventually enters the eye with a particular directional
and wavelength distribution. The eye and the brain process this information at
increasingly higher levels of abstraction, leading ultimately to what is called the
visual experience.

The bottom half of the diagram shows the modifications to the process
required for image synthesis. Instead of the physical propagation of light, a
mathematical model is evaluated to produce the required distribution of light
energy. These results are then passed to a display device that physically realizes
the computed light distribution and sends it to the eye. Image synthesis thus
appears to require simply the exact reproduction of the distribution of light
energy entering the eye. Given this, the process of experiencing the image will
take care of itself.

1.1.2 Limitations

There are two problems with this apparently simple approach. First, the com-
putation in step one is arbitrarily expensive. For all practical purposes, there is
no end to the detail or accuracy with which reality might be simulated. How
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Figure 1.1: The process of visual experience. The top half of the figure dia-
grams real-world experience; the bottom half displays visual experience based
on computer simulation.

should limited computational resources be distributed? When is the simulation
done?

The second problem is with the display device. Even assuming that the
first step is performed perfectly, there is no existing device that can correctly
perform the second step! We can only imagine what such a device might be
like—perhaps a descendant of current virtual-reality goggles, with extremely
high spatial and color resolution, a field of view encompassing the entire range
of our peripheral vision, and the ability to reproduce luminances ranging from
starlight to the glare of snow on a sunny day.

In today'’s reality, the device will likely consist of a cathode ray tube (CRT),
which generates a two-dimensional map of discrete picture elements with a spa-
tial resolution of 1280 by 1024 pixels (often much less) and a color resolution
of 256 values for each of three color channels. The range, or gamut, of repro-
ducible colors will depend on the particular phosphors used in the CRT. Viewing
conditions, such as the ambient light level in the room containing the CRT, will
partially determine the eye’s response to the light leaving the CRT. In most cases
a single image will be presented to both eyes.
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In part because of the limitations of available devices, the goal of image
synthesis is, in practice, the reproduction of an image rather than of a direct
visual experience. This goal maps more directly to the currently available 2D
device (the CRT). The goal is similar but not identical to photorealism in that it
does not necessarily include reproducing all the characteristics of photography.

The limitations of the display device provide one set of guidelines for the
computation. For example, there is no point in computing a simulation with
a spatial or color resolution greater than that reproducible by the device. An
understanding of the final perceptual steps of the process is also important to
guiding the development of image synthesis algorithms. Based on an under-
standing of perception one can focus computational resources on aspects of the
simulation that contribute most to the final visual experience. For example,
the eye is particularly sensitive to contrast in luminance while being relatively
insensitive to absolute luminance levels.

The subject of this book is primarily the first part of the image synthesis
process, the computation of the light distribution at an image plane. This requires
developing a mathematical model of light propagation. The model may contain
certain simplifying assumptions; tlmadiosity methodfor example, is initially
based on the assumption that all surfaces reflect light diffusely. Analytical or
numerical methods can then be developed to evaluate the mathematical model.
Algorithms that implement these solution methods must be written and, finally,
the results must be displayed as an image. These steps will form the basic
content of this book.

The evaluation of an illumination model cannot proceed until one has a
mathematical description of the environment to be rendered. The specification
of the scene geometry and material properties is itself a topic of active research
and presents many difficulties. This problem will not be addressed in this book.

1.2 A Short Historical Perspective

The radiosity method emerged relatively recently in the development of im-
age synthesis. Radiosity methods represent the development of several trends:
the development of physically based shading models, the use of more rigorous
computational methods, and the continuing tension between interactivity and re-
alism in computer graphics. The historical development of image synthesis and
radiosity will be discussed in this section.

CRTs were used as computer displays as early as the late 1940s. Such de-
vices were capable of drawing dots and lines (vectors) on the CRT according
to coordinates provided by the computer. lvan SutherlgBkiEtchpagrogram
[228], an interactive 2D drawing application, provided an important demonstra-
tion of the potential of interactive computer graphics. Subsequent years saw
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many developments in vector graphics, including methods for representing and
manipulating free-form curved surfaces for applications such as mechanical and
industrial design.

1.2.1 Raster Graphics

By the late 1960s, the price of computer memory decreased to the point where
raster graphics became practical. In raster graphics the computer specifies colors
for an array of picture elements, pixels, instead of drawing vectors, thus
allowing the more realistic portrayal of surfaces. The seminal work of Bouknight
[37], Gouraud [103], and Phong [182] explored the use of shading models to
characterize surface shape visually. The models aeteoc,in that they were

not derived from physical models of light reflection. The models werdadab

in that they computed shading based only on the relative positions of the light,
the surface, and the eye. lllumination due to light reflected from other surfaces
was ignored, as were othglobal phenomena such as the shadowing of one
surface by another. In color plate 1, which contains six renderings of a simple
environment computed using various algorithms, color plate 1a is rendered using
a simple local shading model.

Another preoccupation of early researchers was the problem of determining
the visible surfaces in an image; a wide variety of algorithms were developed
for this purpose. Although visibility was originally posed as the problem of
determining what is seen by the eye, visible surface algorithms turn out to be
important to shading in general (e.g., in determining the surfaces that are visible
to a light source).

Much of this early work was directed towards improving the information
conveyed byinteractivegraphics. Thus, the primary objective was efficiency
of computation as opposed to accurate physical simulation. As stated by Phong
[182]:

“We do not expect to be able to display the object exactly as it would
appear in reality, with texture, overcast shadows, etc. We hope only
to display an image that approximates the real object closely enough
to provide a certain degree of realism.”

The success of these early local illumination models and visibility algorithms
is attested to by the presence of their direct descendants in the microcode and
hardware of current graphics workstations. Such workstations are currently
capable of displaying on the order of one million shaded polygons per second.
In spite of the focus on interactive graphics, the ultimate attraction of realism
was not lost on early researchers. Appel [8] recognized that
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. many difficult problems need to be solved such as the effect
of illumination by direct and diffuse lighting, atmospheric diffusion,
back reflection, the effect of surface texture, tonal specification and
transparency of surfaces . . .”

Early steps toward solving these problems were taken with the develop-
ment of techniques like texture mapping and bump mapping [31, 32, 44], which
allowed the realistic representation of more complex surface properties. In ad-
dition, visible surface algorithms were applied to the problem of determining
shadows [13, 36, 67].

1.2.2 Global lllumination Models

As Appel recognized, greater realism requgledalillumination models, which
account for the interreflection of light between surfaces. It was not until 1980
that the first global illumination algorithm was introduced by Whitted [265].
Whitted’s innovation was the recursive applicationr@y tracingto evaluate

a simple global illumination model accounting for mirror reflection, refraction,
and shadows. The resulting spectacular images inspired growing interest in
photorealism.

Whitted recognized that the evaluation of a global illumination model re-
quires determining the surfaces visible in various directions from the point to
be shaded. The heart of the ray tracing algorithm is thus the point visibility test
provided by ray casting. Much of the subsequent innovation in ray tracing has
consisted of faster algorithms for performing this visibility test.

The basic ray tracing strategy was extended to glossy reflection and soft
shadows using stochastic ray tracing [63, 64] and cone tracing [7]. Color plate
1b was rendered using stochastic ray tracing to compute illumination from the
area light source in the ceiling and glossy reflection on the floor. Although
ray traced images continued to improve, the accuracy of the simulations was
difficult to quantify since the reflection and illumination models were not based
on physical principles and quantities. Also, ray tracing did not provide a practical
strategy for computing diffuse interreflection.

More accurate physically based local reflection models were developed by
Blinn [30] and Cook and Torrance [65], using results from the fields of radiative
heat transfer and illumination engineering. This work contributed to a clearer
understanding of the appropriate physical quantities for illumination, as well
as an increased awareness of the results available in the engineering and the
physical sciences.
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1.2.3 Early Radiosity Methods

In 1984, researchers at Fukuyama and Hiroshima Universities in Japan and at the
Program of Computer Graphics at Cornell University in the United States began
to apply radiosity methods from the field of radiative heat transfer to image
synthesis. These methods were first developed in the [950s for computing
radiant interchange between surfaces [216], for engineering applications ranging
from radiator and boiler design to the analysis of radiative transfer between
panels on spacecraft.

In image synthesis, radiositynethods are applicable to solving for the
interreflection of light between ideal (Lambertian) diffuse surfaces. Initial al-
gorithms [100] were restricted to environments in which all surfaces could see
each other. In following years, radiosity algorithms allowing occlusion were de-
veloped [60, 175], and efficiency was improved through the use of a hierarchical
subdivision of the environment [61, 116].

Radiosity is a departure for image synthesis for several reasons. As opposed
to the earlier empirical techniques, radiosity begins with an energy balance equa-
tion, which is then approximated and solved by numerical means. In contrast
to ray tracing, which evaluates the illumination equation for directions and lo-
cations determined by the view and the pixels of the image, radiosity solves the
illumination equation at locations distributed over the surfaces of the environ-
ment. This specification of the unknownsnsgependent of the viewer position,
and thus radiosity methods are often caMselv-independentechniques. Of
course, a final image is dependent on the viewer position and the screen reso-
lution, but most of the computational effort is complete before the selection of
viewing parameters. In this way, efficient interactivalkthroughsof simulated
environments can be performed following the radiosity preprocess. Color plate
14 shows an early radiosity solution by Nishita and Nakamae. The effect of
including indirect illumination by diffusely interreflected light is apparent when
this image is compared to the image in color plate 11, in which only direct
illumination is accounted for.

While the original radiosity method is based on the assumption of Lamber-
tian diffuse reflection, subsequent work has included extensions of the radiosity
approach to glossy and ideal (mirror) reflection [132, 217, 218, 246]. Rushmeier
[200] has also exceeded the basic radiosity formulation to include participating
media (e.g., smoke and haze). Color plates 1c-1e were rendered using varia-
tions of the radiosity method. Color plate 1c is the result of the original radiosity
method for diffuse environments. Note that indirect illumination adds color to

2The term radiosityrefers to a measure of radiant energy, in particular, the energy
leaving a surface per unit area per unit time. Over traipsity has also come to mean
a set of computational techniques for computing global illumination.
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the shadows and the shadowed faces of the boxes. Color plate 1d is the result
of extensions that provide glossy reflection on the floor, while Color plate 1e
includes the effect of smoke within the environment.

More recent work has directly addressed the computational complexity of
radiosity algorithms. In 1988, Coheaat al [59] introduced gorogressive re-
finementapproach that allows fast approximate solutions to be displayed. In
1991, Hanrahagt al [116] formulated a complete hierarchical radiosity system
leading to a linear time algorithm. A great deal of work has also been devoted
to the critical step of discretizing areshinghe surfaces [21, 43, 154, 230]. An
important recent trend has been the incorporation of quantitative error estimates
into the solution process. Examples include estimates of integration error [19]
and the use of geometric—and energy-based error metrics in the hierarchical
algorithm of Hanrahaet al [116].

1.2.4 The Rendering Equation

Kajiya [135] unified the discussion of global illumination algorithms in 1986
with the generatendering equationKajiya applied Monte Carlo integration
methods to solving the rendering equation and proposed a number of techniques
for accelerating the convergence of the solution. Color plate 1f was rendered
using a Monte Carlo solution to the rendering equation.

1.3 Radiosity and Finite Element Methods

Radiosity can be understood as a particular approach to solving the rendering
equation under the assumption of Lambertian diffuse reflection. Heckbert and
Winget [125] have shown that radiosity is essentially a finite element method.
Like Monte Carlo techniques, the finite element method is a broadly ap-
plicable approach to solving difficult integral equations, such as the rendering
equation. The basic approach is to approximate an unknown function by subdi-
viding the domain of the function into smaller pieceglementsacross which
the function can be approximated using relatively simple functions like poly-
nomials. The unknown function is thus projected intiinde function space,
in which the approximated function is fully characterized by a finite number of
unknowns. The resulting system can then be solved numerically.
The ideas underlying the finite element method were first discussed as early
as the 1940s [66], although ttexm finite elemendid not become popular until
the 1960s [57]. The development of the finite element method closely paralleled
related work in approximating functions using piecewise polynomiaplores
[205]. It was also recognized in the 1950s that finite element methods were a
form of the more general Ritz variational methods.
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derings of a sculpture, “Construction in Wood, A Daylight Experiment,’
John Ferren (color plate 2). The sculpture, diagramed above, consis

before entering the eye. As a result, the colors from the back of the Qoards
“bleed” onto the white surfaces. Color plates 2-4 show a photograph of
the sculpture and ray tracing and radiosity renderings of the sculpturgd. The
sculpture is solid white in the ray traced image since illumination dye to
diffuse interreflection is ignored. The radiosity method, however, accqunts
for the diffuse interreflections and reproduces the color bleeding.

It was not until computers became more routinely available in the 1960s and
1970s that these methods became a common technique for engineering analysis.
Since then, there has been considerable research resulting in many working
finite element codes and in a better theoretical understanding of convergence
and other mathematical properties of such methods. In addition, a number of
excellent texts have also been written [23, 70, 273].

As Heckbert and Winget [125] point out, the heat transfer formulations
upon which radiosity is based can be viewed as simple finite element methods.
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Heckbert and Winget emphasize the need for quantitative error metrics and show
that an explicit finite element approach considerably clarifies the understanding
of the accuracy of the approximation. Radiosity will be presented in this book
as a finite element method. However, this book cannot begin to do justice to
the broad field of finite element methods in general, and the reader is referred
to the above-mentioned texts for a wider theoretical background, as well as for
a wealth of practical information.

1.4 The Radiosity Method and This Book

This book is structured as follows (see Figure 1.2 for a diagram of the book's
structure). The first step is to derive a mathematical model of global illumination.

This derivation is undertaken in Chapter 2, working from basic transport theory
to the rendering equation, and finally making the assumptions that lead to the
radiosity equation.

In Chapter 3, the basic principles of finite element approximation are used
to cast the radiosity equation into a discrete form that is amenable to numerical
solution. In particular, the original radiosity function is approximated by a sum
of weightedbasis functionsThese basis functions are in turn defined Inyesh
or discretization of the surfaces in the environment.

The finite element formulation of the radiosity integral equation produces
a system of linear equations that must be solved for the weights of the basis
functions. The coefficients of this linear system are formed by integrals over
portions of the surfaces in the environment. These integrals can be solved using
both analytic and numeric methods. Chapter 4 describes a variety of algorithms
that have been developed for this purpose.

Techniques for solving the matrix equation once it has been formulated are
described in Chapter 5. We will examine a number of linear equation solvers and
discuss their applicability to the system of equations resulting from the radiosity
problem.

Chapters 6, 7 and 8 cover the general problem of subdividing the surfaces
of the model into the elements upon which the finite element approximation is
based. The accuracy and the efficiency of the solution are strongly dependent
on this subdivision. Basic subdivision strategies are described in Chapter 6. The
use of hierarchical methods that incorporate subdivision into the solution process
itself and accelerate the matrix solution is described in Chapter 7. Chapter 8
covers the basic mechanics of meshing.

Once a solution has been obtained, the final step is to produce an image,
which is discussed in Chapter 9. This is less straightforward than it might seem,
due to the limitations of display devices and the demands of visual perception.
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Figure 1.2: Diagram of the radiosity method indicating the chapters where con-
cepts are discussed.

In Chapter 10 techniques for extending the basic radiosity method are de-
scribed. These provide methods to handle more general global illumination
models, including general light sources, glossy and mirror reflection, and par-
ticipating media. With these more general approaches, the distinction between
ray tracing and radiosity will become less clear.

Chapter 11 concludes this book with a discussion of applications that are
already taking advantage of this technology. We also discuss current trends in
the development of radiosity methods.

Another way to look at the organization of the book is to relate it to the
flow of information in a generic radiosity algorithm. This view is provided by
the diagram in Figure 1.2.
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Chapter 2

Rendering Concepts

by Pat Hanrahan

2.1 Motivation

The progress in rendering in the last few years has been driven by a deeper and
better understanding of the physics of materials and lighting. Physically based or
realistic rendering can be viewed as the problem of simulating the propagation
of light in an environment. In this view of rendering, there are sources that
emit light energy into the environment; there are materials that scatter, reflect,
refract, and absorb light; and there are cameras or retinas that record the quantity
of light in different places. Given a specification of a scene consisting of the
positions of objects, lights and the camera, as well as the shapes, material, and
optical properties of objects, a rendering algorithm computes the distribution of
light energy at various points in the simulated environment.

This model of rendering naturally leads to some questions, the answers to
which form the subjects of this chapter.

1. What is light and how is it characterized and measured?
2. How is the spatial distribution of light energy described mathematically?
3. How does one characterize the reflection of light from a surface?

4. How does one formulate the conditions for the equilibrium flow of light
in an environment?

In this chapter these questions are answered from both a physical and a
mathematical point of view. Subsequent chapters will address specific represen-
tations, data structures, and algorithms for performing the required calculations
by computer.

Radiosity and Realistic Image Synthesis 13
Edited by Michael F. Cohen and John R. Wallace



CHAPTER 2. RENDERING CONCEPTS
2.2 BASIC OPTICS

700 nm light 400 nm
<1I£rared red orange green blue violet ultraviolct>
radio micro infrared ultraviolet x-rays gamma rays
——} | | | | | i 1 1 | .

T T 1T T T T T T T
1012 1010 108 106 104 102 10! 1 10°! 1072104 10-6
Wavelength (nm)

Figure 2.1 Electromagnetic spectrum.

2.2 Basic Optics

Light is a form of electromagnetic radiation, a sinusoidal wave formed by cou-
pled electric and magnetic fields. The electric and magnetic fields are perpen-
dicular to each other and to the direction of propagation. The frequency of
the oscillation determines the wavelength. Electromagnetic radiation can exist
at any wavelength. From long to short, there are radio waves, microwaves,
infrared, light, ultraviolet, x-rays, and gamma rays (see Figure 2.1).

A pure source of light, such as that produced by a laser, consists of light
at a single frequency. In the natural world, however, light almost always exists
as a mixture of different wavelengths. Laser light is alsloerentthat is, the
source is tuned so that the wave stays in phase as it propagates. Natural light,
in contrast, isncoherent.

Electromagnetic radiation can alsopmdarized.This refers to the preferen-
tial orientation of the electric and magnetic field vectors relative to the direction
of propagation. Just as incoherent light consists of many waves that are summed
with random phase, unpolarized light consists of many waves that are summed
with random orientation. The polarization of the incident radiation is an impor-
tant parameter affecting the reflection of light from a surface, but the discussion
will be simplified by ignoring polarization.

The fact that light is just one form of electromagnetic radiation is of great
benefit for computer graphics in that it points to theory and algorithms from
many other disciplines, in particular, optics, but also more applied disciplines
such as radar engineering and radiative heat transfer. The study of optics is typ-
ically divided into three subareas: geometrical or ray optics, physical or wave
optics, and quantum or photon optics. Geometrical optics is most relevant to
computer graphics since it focuses on calculating macroscopic properties of light
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as it propagates through environments. Geometrical optics is useful to under-
stand shadows, basic optical laws such as the laws of reflection and refraction,
and the design of classical optical systems such as binoculars and eyeglasses.
However, geometrical optics is not a complete theory of light. Physical or wave
optics is necessary to understand the interaction of light with objects that have
sizes comparable to the wavelength of the light. Physical optics allows us to
understand the physics behind interference, dispersion, and technologies such as
holograms. Finally, to explain in full detail the interaction of light with atoms
and molecules quantum mechanics must be used. In the quantum mechanical
model light is assumed to consist of particles, or photons. For the purposes of
this book, geometrical optics will provide a full-enough view of the phenomena
simulated with the radiosity methods.

2.3 Radiometry and Photometry

Radiometry is the science of the physical measurement of electromagnetic en-
ergy. Since all forms of energy in principle can be interconverted, a radiometric
measurement is expressed in the Sl units for energy or powkErsandwatts
respectively. The amount of light at each wavelength can be measured with a
spectroradiometer, and the resulting plot of the measurements is the spectrum
of the source.

Photometry, on the other hand, is the psychophysical measurement of the
visual sensation produced by the electromagnetic spectrum. Our eyes are only
sensitive to the electromagnetic spectrum between the ultraviolet (380 nm) and
the infrared (770 nm). The most prominent difference between two sources of
light with different mixtures of wavelengths is that they appear to have different
colors. However, an equally important feature is that different mixtures of light
also can have different luminosities, or brightnesses.

Pierre Bouguer established the field of photometry in 1760 by asking a hu-
man observer to compare different light sources [35]. By comparing an unknown
source with a standard source of known brightness—a candle at the time—the
relative brightness of the two sources could be assessed. Bouguer’s experiment
was quite ingenious. He realized thahwaman observer could not provide an
accurate quantitative description of how much brighter one source was than an-
other, but could reliably tell whether two sources were equally btiBbuguer
was also aware of the inverse square law. Just as Kepler and Newton had used it
to describe the gravitational force from a point mass source, Bouguer reasoned
that it also applied to a point light source. The experiment consisted of the

This fact will be used in Chapter 9 when algorithms to select pixel values for display
are examined.
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Figure 2.2 Spectral luminous relative efficiency curve.

observer moving the standard source until the brightnesses of the two sources
were equal. By recording the relative distances of the two light sources from
the eye, the relative brightnesses can be determined with the inverse square law.

Bouguer founded the field of photometry well before the mechanisms of
human vision were understood. It is now known that different spectra have
different brightnesses because the pigments in our photoreceptors have different
sensitivities or responses toward different wavelengths. A plot of the relative
sensitivity of the eye across the visible spectrum is shown in Figure 2.2; this
curve is called thepectral luminous relative efficiency curviéhe observer’s
responseR, to a spectrum is then the sum, or integral, of the response to each
spectral band. This in turn is equal to the amount of energy at that wavelength,
I, times its relative luminosity.

770
R=[ V()SA)dA (2.1)
380nm
whereV is the relative efficiency an8 is the spectral energy. Because there
is wide variation between people’s responses to different light soldess
been standardized.

Radiometry is more fundamental than photometry, in that photometric quan-
tities may be computed from spectroradiometric measurements. For this reason,
it is best to use radiometric quantities for computer graphics and image syn-
thesis. However, photometry preceded radiometry by over a hundred years, so
much of radiometry is merely a modern interpretation of ideas from photometry.

As mentioned, the radiometric units for power and energy are the watt and
joule, respectively. The photometric unit for luminous power is |timen
and the photometric unit for luminous energy is thbot Our eye is most
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sensitive to yellow-green light with a wavelength of approximately 555 nm that
has a luminosity of 684 lumens per watt. Light of any other wavelength, and
therefore any mixture of light, will yield fewer lumens per watt. The number of
lumens per watt is a rough measure of the effective brightness of a light source.
For example, the garden-variety 40-Watt incandescent light bulb is rated at only
490 lumens—roughly 12 lumens per watt. Of course, the wattage in this case
is not the energy of the light produced, but rather the electrical energy consumed
by the light bulb. It is not possible to convert electrical energy to radiant energy
with 100% efficiency so some energy is lost to heat.

When we talk about light, power and energy usually may be used inter-
changeably, because the speed of light is so fast that it immediately attains
equilibrium. Imagine turning on a light switch. The environment immediately
switches from a steady state involving no light to a state in which it is bathed
in light. There are situations, however, where energy must be used instead of
power. For example, the response of a piece of film is proportional to the total
energy received. The integral over time of power is callece®posureThe
concept of exposure is familiar to anyone who has stayed in the sun too long
and gotten a sunburn.

An important principle that must be obeyed by any physical system is the
conservation of energy. This applies at two levels—a macro or global level, and
a micro or local level.

» Atthe global level, the total power put into the system by the light sources
must equal the power being absorbed by the surfaces. In this situation
energy is being conserved. However, electrical energy is continuing to
flow into the system to power the lights, and heat energy is flowing out
of the system because the surfaces are heated.

» At the local level, the energy flowing into a region of space or onto a
surface element must equal the energy flowing out. Accounting for all
changes in the flow of light locally requires that energy is conserved.
Thus, the amount of absorbed, reflected, and transmitted light must never
be greater than the amount of incident light. The distribution of light can
also become more concentrated or focused as it propagates. This leads to
the next topic which is how to characterize the flow of light.

2.4 The Light Field

2.4.1 Transport Theory

The propagation of light in an environment is built around a core of basic ideas
concerning the geometry of flows. In physics the study of how “stuff” flows
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Figure 2.3 Particles in a differential volume.

is termedtransport theory.The “stuff’ can be mass, charge, energy, or light.
Flow quantities are differential quantities that can be difficult to appreciate and
manipulate comfortably. In this section all the important physical quantities
associated with the flow of light in the environment will be introduced along
with their application to computer graphics.

The easiest way to learn transport quantities is to think in terms of particles
(think of photons). Particles are easy to visualize, easy to count, and therefore
easy to track as they flow around the environment. The particle defsjtis
the number of particles per unit volume at the pairisee Figure 2.3). Then
the total number of particleB(x), in a small differential volumdV is

RX) = p(x) dV (2.2)

Note that the particle density is an intrinsic or differential quantity, whereas the
total number of particles is an absolute or extrinsic quantity.

Now imagine a stream of particles all moving with the same velocity vector
V; that is, if they are photons, not only are they all moving at the speed of
light, but they are all moving in the same direction. We wish to count the total
number of particles flowing across a small differential surface eled¥eim
a slice of timedt. The surface element is purely fictitious and introduced for
convenience and may or may notcorrespond to a real physical surface. In time
dt each particle moves a distandt. How many particles crosdA? This
can be computed using the following observgtion: consider the tube formed by
sweepingdA a distancevdt in the direction . All particles that crosslA
betweent andt + dt must have initially been inside this tube at tim# they
were outside this tube, they would not be moving fast enough to make it to
the surface elememfA in the allotted time. This implies that one can compute
the number of particles crossing the surface element by multiplying the particle
volume density times the volume of the tube. The volume of the tube is just
equal to its basalf) times its height, which is equal wcos 6 dt. Therefore,
as depicted in Figure 2.4, the total number of particles crossing the surface is

Rx) = p(x)dVv
=  p(x)(vdtcos6) dA (2.3)
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>

Figure 2.4 Total particles crossing a surface.

Note that the number of particles flowing through a surface element depends
on both the area of the surface element and its orientation relative to the flow.
Observe that the maximum flow through a surface of a fixed size occurs when
the surface is oriented perpendicular to the direction of flow. Conversely, no
particles flow across a surface when it is oriented parallel to the flow. More
specifically, the above formula says that the flow across a surface depends on the
cosine of the angle of incidence between the surface normal and the direction of
the flow. This fact follows strictly from the geometry of the situation and does
not depend on what is flowing.

The number of particles flowing is proportional both to the differential area
of the surface element and to the interval of time used to tally the particle count.
If either the area or the time interval is zero, the number of particles flowing
is also zero and not of much interest. However, we can divide through by the
time intervaldt and the surface aretA and take the limit as these quantities
go to zero. This quantity is called tAax.

More generally all the particles through a point will not be flowing with
the same speed and in the same direction. Fortunately, the above calculation is
fairly easy to generalize to account for a distribution of particles with different
velocities moving in different directions. The partijcle density is now a function
of two independent variables, positioand directiortw. Then, just as before, the
ngmber of particles flowing across a differential surface element in the direction
W equals r r
P(x, W) =p(x, W) cosO dw dA (2.4)

Here the notatiodw s introduced for the differential solid angle. The direction
of this vector is in the direction of the flow, and its length is equal to the small
differential solid angle of directions abod®. For those unfamiliar with solid
angles and differential solid angles, please refer to the box.

2.4.2 Radiance and Luminance
The above theory can be immediately applied to light transport by considering
ight as photons. However, rendering systems almost never need consider (or at
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Angles and Solid Angles

A direction is indicated by the vector . Since this is a unit vector, it can be
represented by a point on the unit sphere. Positions on a sphere in turn can
be represented by two angles: the number of degrees from the Nortlp Pole
or zenith, 8, and the number of degrees about the equator or azimuth,
Directions ar)and spherical coordinate8, (@ can be used interchangeablly.
A

rsin@

dA = r2 sin 0 d0 do

A big advantage of thinking of directions as points on a sphere comes [when
considering differential distributions of directions. A differential distribut{on
of directions can be represented by a small region on the unit sphere

least have not considered up to this point) the quantum nature of light. Instead,
when discussing light transport, the stuff that flows, or flux, is the radiant energy
per unit time, or radiant pow@r, rather than the number of particles. The radiant
energy per unit volume is simply the photon volume density times the energy of
a single photorh dA, whereh is Planck’s constant andis the speed of light.

The radiometric term for this quantity iadiance.

r r hc
L(x, W) :_/’ px, W, A) 5 dA (2.6)

Radiance is arguably the most important quantity in image synthesis. Defined
precisely, radiance is power per unit projected area perpendicular to the ray per
unit solid angle in the direction of the ray (see Figure 2.5). The definition in
equation 2.6 is that proposed by Nicodemus [174], who was one of the first
authors to recognize its fundamental nature.

The radiance distribution completely characterizes the distribution of light
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The area of a small differential surface element on a sphere of raius
dA = (r d6) (r sin @dg =r?sin 6d6 dg

Hererd@ is the length of the longitudinal are generatedawes tod + d6.
Similarly r sin 8dg is the length of the latitudinal are generatedpages
to ¢ + dg. The product of these two lengths is the differential area of|that
patch on the sphere.

This derivation uses the definition of angle in radians: the angle subtgnded
by a circular arc of length is equal tol/r. The circle itself subtends an
angle of Ztradians because the circumference of the circlenisRy using
a similar idea we can define a solid angle. The solid angle subtended by a
spherical area is equal toa/r2. This quantity is the measure of the angle

in steradians(radians squared), denotsd A sphere has a total area pf
412, so there are Msteradians in a sphere.

A differential solid angleindicated aglw, is then

d
dw= — = sin6dOédg (2.5)

It {5 very convenient to think of the differential solid angle as a vegtor,
d@. The directjon ofd @ is in the direction of the point on the sphere, gnd
the length ofd W is equal to the size of the differential solid angle in that
direction.

dw

L(x,w)

Figure 2.5 Theradiances the power per unit projected area perpendicular to
the ray per unit solid angle in the direction of the ray.
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Figure 2.6 Equality of flux leaving the first surface and flux arriving on the
second surface.

in a scene. Note that it is a function of five independent variables, three that
specify position and two that specify direction. All other radiometric quantities
can be computed from it. For example, the differential flux in a small beam
with cross-sectional aredA and differential solid angldw is

r
do = L(x, W) cos6 dw dA (2.7)
This follows immediately from the earlier discussion of particle transport.

To emphasize further the importance of radiance, consider the following two
properties:

I. The radiance in the direction of a light ray remains constant as it prop-
agates along the ragassuming there are no losses due to absorption or
scattering). This law follows from the conservation of energy within a
thin pencil of light, as shown in Figure 2.6.

The total flux leaving the first surface must equal the flux arriving on the
second surface.

L, dw, dA =L, dw, dA, (2.8)
butdw, = dA/r?> anddw, = dA/r?, thus,
T = day, dA, = deo, dA, = dA&rf'Az (2.9)
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Figure 2.7: A simple exposure meter.

This quantity T is called thethroughputof the beam; the larger the
throughput, the bigger the beam. This immediately leads to the conclusion
that

L =L, (2.10)

and hence, the invariance of radiance along the direction of propagation.
As a consequence of this law, radiance is the numeric quantity that should
be associated with a ray in a ray tracer.

2. The response of a sensor is proportional to the radiance of the surface
visible to the sensor.

To prove this law, consider the simple exposure meter in Figure 2.7. This
meter has a small sensor with area a and an aperture witlA.afdee
response of the sensor is proportional to the total integrated flux falling
on it.

R:j,: j;LcosedoodA:LT (2.11)

Thus, assuming the radiance is constant in the field of view, the response
is proportional to the radiance. The constant of proportionality is the
throughput, which is only a function of the geometry of the sensor. The
fact that the radiance at the sensor is the same as the radiance at the surface
follows from the invariance of radiance along a ray.

This law has a fairly intuitive explanation. Each sensor element sees that
part of the environment inside the beam defined by the aperture and the
receptive area of the sensor. If a surface is far away from the sensor, the
sensor sees more of it. Paradoxically, one might conclude that the surface
appears brighter because more energy arrives on the sensor. However, the
sensor is also far from the surface, which means that the sensor subtends a
smaller angle with respect to the surface. The increase in energy resulting
from integrating over a larger surface area is exactly counterbalanced by
the decrease in percentage of light that makes it to the sensor. This
property of radiance explains why a large uniformly illuminated painted
wall appears equally bright over a wide range of viewing distances.
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Figure 2.8 Projection of differential area.

As a consequence, the radiance from a surface to the eye is the quantity
that should be output to the display device.

2.4.3 Irradiance and llluminance

The two properties of radiance described in the previous section were derived
by considering the total flux within a small beam of radiation. Another very
important quantity is the total energy per unit area incident onto a surface with a
fixed orientation. This can be computed by integrating the incident, or incoming
radiancel;, over a hemispher€.

do = Q'Li cos 6 dw DdA (2.12)
o |

Theirradiance, E is the radiant energy per unit area falling on a surface
(the corresponding photometric quantity is tfeminance).

E = di) (2.13)
dA
or
E = J'L cos 6 dw (2.14)
Q

The quantity co® dw is often referred to as thprojected solid angldt can be
thought of as the projection of a differential area on a sphere onto the base of
the sphere, as shown in Figure 2.8.

This geometric construction shows that the integral of the projected solid
angle over the hemisphere is justthe area of the base of a hemisphere with
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unit radius. This result can also be derived directly by computing the following
integral:

27

[ J’O"cos 6 sin 8d6dg

J’Qcos 6dw

—J’OZ nfoﬂcos 6d cos Odg

/2
cos? 6
2

27T

0
= (2.15)

Note that if all rays of light are parallel, which occurs if a single distant
source irradiates a surface, then the integral reduces to the simple formula

E = Ecos@ (2.16)

whereE, is the energy per unit perpendicular area arriving from the distant
source.

2.4.4 Radiosity and Luminosity

As the title of this book suggestsdiosity isanother important quantity in
image synthesis. Radiosify, is very similar to irradiance. Whereas irradiance

is the energy per unit area incident onto a surface, radiosity is the energy per
unit area that leaves a surface. It equals

B:./;2 L, cos 8 dw (2.17)

wherelL, is the outgoing radiance.

The official term for radiosity igadiant exitanceBecause of the wide-
spread use of the term radiosity in the computer graphics literature, it will be
used in this book. The photometric equivalenurminosity.

2.4.5 Radiant and Luminous Intensity

Radiance is a very useful way of characterizing light transport between surface
elements. Unfortunately, it is difficult to describe the energy distribution of a
point light source with radiance because of the point singularity at the source.
Fortunately, it is very easy to characterize the energy distribution by introducing
another quantity—theadiant or luminous intensity.
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Note that this use of “intensity” is very different from that typically used
by the computer graphics community. Even more confusion results because
intensity is often used to indicate radiance-like transport quantities in the physics
community. The radiant intensity is quite similar to that used in the geometric
optics community.

The energy distribution from a point light source expands outward from the
center. A small beam is defined by a differential solid angle in a given direction.
The flux in a small beardw is defined to be equal to

db = | (cr)) dw (2.18)

| is the radiant intensity of the point light source with units of power per unit
solid angle. The equivalent photometric quantity is the luminous intensity.

The radiant intensity in a given direction is equal to the irradiance at a
point on the unit sphere centered at the source. In the geometric optics literature
intensity is defined to be the power per unit area (rather than per unit solid angle).
In the case of a spherical wavefront emanating from a point source, the geometric
optics definition is basically the same as the radiometric definition. However,
in general, the wavefront emanating from a point source will be distorted after
it reflects or refracts from other surfaces and so the definition in terms of solid
angle, is less general.

For an isotropic point light source,

= 2 2.19
am (2.19)
Of course, a point source may act like a spotlight and radiate different amounts

of light in different directions. The total energy emitted is then

® :j; | (ar)) dw (2.20)

The irradiance on a differential surface due to a single point light source can
be computed by calculating the solid angle subtended by the surface element
from the point of view of the light source.

_Idw _ ® cos®b

==laa T ZT|X — xg° 22

where |x - X5| is the distance from the point to the surface element. Note the
1/r? fall-off: this is the origin of the inverse square law.

The distribution of irradiance on a surface is often drawn using a contour
plot oriso-lux diagram, while the directional distribution of the intensity from
a point light source is expressed witlg@niometricor iso-candeladiagram?
This is a contour plot of equal candela levels as a function ofie (

2See Chapter 10 for details of lighting specifications.
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Physics Radiometry Radiometric Units
Radiant energy joules][= kgn¥/s?]
Flux Radient power watssN = joules/$
Angular flux density  Radiance W/ntsr]
Flux density Irradiance W/nt]
Flux density Radiosity \\V/n]
Radiant intensity \\V/si
Physics Photometry Photometric Units
Luminous energy talbot
Flux Luminous power lumengdlbot/secon{l
Angular flux density  Luminance Nitgmens/risr]
Flux density llluminance Luxlimens/resr]
Flux density Luminosity Lux Ibmens/rsr]

Luminous intensity Candeldumens/sf

Table 2.1 Radiometric and photometric quantities.

2.4.6 Summary of Radiometric and Photometric Quantities

In most computer graphics systems, optical quantities are simply colors denoted
by red, green, and blue triplets. These triplets are used to specify many quanti-
ties including light sources, material properties, and intermediate calculations.
As noted, there is a small but finite number (six to be exact) of radiometric
(photometric) quantities that characterize the distribution of light in the environ-
ment. They are the radiant energy (luminous energy), radiant power (luminous
power), radiance (luminance), irradiance (illuminance), radiosity (luminosity),
and radiant intensity (luminous intensity). These quantities and their units are
summarized in Table 2.1.

3A more complete treatment of color specification is given in Chapter 9.
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Figure 2.9 Bidirectional reflection distribution function.

2.5 Reflection Functions

The next question is how to characterize the reflection of light from a surface.
Reflection is defined as the process by which light incident on a surface leaves
that surface from the same side. Transmission, absorption, spectral and polariza-
tion effects, fluorescence, and phosphorescence are also important to consider in
developing an accurate model of the interaction of light with materials, but will
not be treated in detail here. Instead, this section will concentrate on nomencla-
ture and the general properties that are satisfied by all reflection functions.

2.5.1 The Bidirectional Reflection Distribution Function

Consider the ligpt incident on a surface from a small differential splid angle
in the direction@,. The amount of reflegted light in another directton is
proportional to the incident irradiance fr@m (see Figure 2.9). That is,

dL, (C*r)r) [ dE(C*r)i) (2.22)

Equation 2.22 simply states that an increase in the incident light energy per unit
area results in a corresponding increase in the reflected light energy. The incident
irradiance can be increased by increasing either the solid angle subtended by the
source or the energy density in the beam.

The constant of proportionality is termed thidirectional reflection distri-
bution function,or BRDF.

r
r r L (w
f(w - w) = 3 (@) (2.23)
L; (w;) cos 6, dw,
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Figure 2.10 Helmholtz reciprocity principle.

More precisely, the BRDF is defined to be the ratio of the reflected radiance in
the direction@, to the differential irradiance from the incident directjahat
produces it. The BRDF is bidirectional because it depends on two directions.
Often, the dependence on the four angles is made explicit by writing the BRDF
asf(8, @; 6., @). The BRDF is a distribution function because it is strictly
positive. Since it gives the concentration of flux per steradian, it may take on
any value between zero and infinity. The BRDF has units of inverse steradians.

1.

The BRDF has several interesting properties:

If the BRDF is based on physical laws, then it will remain unchanged if
the incident and reflected directions are interchanged. That is,

r r r r
fr(c‘)r - w|) = fr(wi - wr) (224)
ThisHelmholtz reciprocity principle isquivalent to saying that if a photon

moves along a path, it will follow the same path if its direction is reversed
(see Figure 2.10).

The BRDF is, in generanisotropic.That is, if the incident and reflected
directions are fixed and the underlying surface is rotated about the surface
normal, the percentage of light reflected may change (see Figure 2.11).
Examples of anisotropic materials are brushed aluminum or cloth [134].

Many materials, however, are smooth and their reflectivity does not depend
on the surface’s orientation. Thus, their reflection functions do not change
if the surface is rotated, and

6.9 +9 - (6.0 +9)=1(6.9) - (6. 9) (2.25)
This implies that the reflection function has only three degrees of freedom
instead of four.
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Figure 2.11 The reflection may change with rotations of the surface due to
anisotropy.

Notice that adding light from another incident direction has no influence
on the amount of light reflected from other incident directions. Thus, reflection
behaves linearly, and hence the total amount of light reflected by a surface in a
specific direction is given by a hemispherical integral over all possible incident
directions. This leads to theflectance equatian

L(@) = J, f.(@ - ©)L(®)cosh dwy,  (226)

Put another way, the reflected radiance in a particular direction is due to the
radiance arriving from all directions weighted by the BRDF relating the incoming,
and reflected directions and by the projected solid angle.

2.5.2 Mirror Reflection

As an example of a BRDF, consider a perfect mirror and the geometry of the
reflection. For a mirror, the angle of reflectance is equal to the angle of incidence,
and the reflected vector is in the plane determined by the incident ray and surface
normal vector. This implies that

6 = 6

r 1

Q g+ (2.27)

Second, consider the radiometry of reflection. For a mirror, the reflected
radiance is exactly equal to the incident radiance.

I'r(gr’ (R) = I-i(gr’ qq * Tl) (228)
This physical fact can be mathematically expressed with a BRDF involving delta
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functions.

_ O(cos 6 — cos 6,) B

Recall that the delta function has the following three properties:
1. x)=0 ifx#0

2. J’;J(x) dx = 1

3.7 80 = y) T(x)dx = f(y)

It can be verified that this leads to the correct reflected radiance by performing
the hemispherical integral.

o(cos 6; — cos 6,)

Lr(er’ (pr) = IQi cos 6. 5((P| - ((pr t 7'[))
[L,(6;, @) cos 6, do, dg (2.30)
= L(6, ¢ + 1)

2.5.3 The Reflectance

Recall that the delta function can be interpreted as an infinitesimally thin, in-
finitely high spike with unit area. This implies that the BRDF, although always
positive, may be infinite. Often it is more intuitive to work with a quantity that
is bounded between 0 and 1. This quantity is calledbibenical reflectance,
or simplyreflectance.

Consider the ratio of reflected flux to incident flux. Since the reflected flux
must always be less than the incident flux giving rise to it, the reflectance must
always be less than 1.

dd, _ Jg Lr(cf)r) cos 6. dw,

de, IQ. Li((’[‘)i) cos 6, dw,

IQr IQi fr((r)i - J)r) Li(Ol:)i) cos 6, dw, cos 6. dw, (2.31)
Jo L (c'oi) cos 0 dw

Unfortunately, the reflectance depends on the distribution of incoming light,

If it is assumed thalt, is uniform and isotropic, theln can be taken out from

the integral in both the numerator and the denominator. This results in the
relationship between the reflectance and the BRDF which forms the definition
of the reflectance:

Jo Jo fr(of)i R J)r) cos 6, dw cos 0, dw,

p(of)i - rf)r) = (2.32)

Jqo cos6 dw
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The reflectance involves a double integral over the incident and reflected
directions for which the limits of integration have not yet been set. Three
choices for the limits are a differential solid angle, a finite solid angle, or the
entire hemisphere. Since this choice can be made for both the incident and the
reflected directions, there are nine different reflectances. These are shown in
table 2.2.

w Aw 21T

w | p@-a) pa-~Aw) p( - 27)
Aw | pAw - @) pAw - Aw)  p(Aw - 27)
2 | p2r- @)  p2m - Aw) p2m - 21

Table 2.2 The nine biconical reflectances.

The names of these reflectances are formed by combining the following
words:directional (for differential solid angle)¢onical (for finite solid angle),
ang-hemispherical(for a solid angle equal to the entire hemisphere). Thus,
p(w, - W,), p(Aw - Aw), and p(2rr - 2mn) are referred to as theidi-
rectional, biconicalandbihemisphericateflectances, respectively. Perhaps the
mopt interesting reflectance function is thectional-hemispherical reflectance,
p(w,, - 2m). This is the amount of light scattered into the entire hemisphere
from a single incident direction. Since this quantity is the ratio of fluxes, it must
be less, than 1. However, be aware that this quantity can change with the angle
of incidence.

2.5.4 Lambertian Diffuse Reflection

To illustrate the relationship between the BRDF and reflectance, consider the case
of Lambertian diffuse reflectance. Diffuse reflectance is modeled by assuming
that light is equally likely to be scattered in any direction, regardless of the
incident direction. In other words, the BRDF is constant. Thus,

Lr,d(cr)r) = IQ. fra I—i(([’i) cos 6, dw,

=ty Jo L(®) cos § dw
= f ,E (2.33)

This leads to two conclusions:

1. The value of the reflected radiance is proportional to the incident irradi-
ance.
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2. The reflected radiance is a constgnt and hence the same in all directions,
since neitheff , nor E depends onw,. This is true independent of the
distribution of incoming light.

The fact that energy is conserved can be ensured by forcing the hemispherical-
hemispherical reflectance to be less than 1.

r
>, , J’Qr L, 4(@,) cos 6, dw,

p,(2m - 2n) =
“ ® Jo L) cos 6 da

L.s Jq cos 6, dw,
E

7TLr’d
E
= nfr,d (2.34)

It thus immediately follows that if the BRDF is a constant, then the reflectance is
also a constant. More importantly, this relationship can be used to parameterize
the BRDF in terms of the reflectandg; = p,/m. Often, it is more intuitive
to describe materials using their reflectances because they are constrained to lie
between 0 and 1. Whenevepas used in this text, it can safely be assumed to
lie between 0 and 1.

Since the outgoing radiance is constant, the radiosity

B=rmL,, (2.35)
is related to the irradiance by the following equation:
B
- — 2.36
Py E (2.36)

Equation 2.36 states that for diffuse reflection, the reflectance is equal to the
radiosity divided by the irradiance.

2.5.5 Glossy Reflection

In practice it is often convenient to treat the general BRDF as the sum of
three qualitatively different components: mirror (or ideal) specular reflection,
Lambertian (or ideal) diffuse reflection, and glossy reflection (see Figure 2.12).
The diffuse and mirror reflection laws, Lambert’s law, and the law of reflection,
were discussed in the previous sections.

However, real materials are not perfectly diffuse or perfect mirror specular.
This is to be expected since these models of reflection are the simplest math-
ematical abstractions of the properties of surfaces and materials. Real surfaces
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BRDF Diffuse Mirror Glossy
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Figure 2.12 Reflectance components.

Figure 2.13 Complex reflection distributions arise from rough surface and sub-
surface phenomena.

are not planar and perfectly smooth and thus would not be expected to reflect
light in just one direction. A real BRDF will thus contain a component between
these limiting cases in which light hitting the surface from a certain direction is
reflected into a complex distribution of outgoing directions.

The terminology for the various components is highly variable in the image
synthesis literature. In particular, the intermediate component that we call glossy
reflection is variously called specular, rough specular, wide and narrow diffuse,
and directional diffuse. The terghossyhas also been used in the surface reflec-
tion literature and has been selected instead for this work because its common
usage is suggestive of the intended technical meaning.

Lord Rayleigh was the first to explain the effects of surface finish on the
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Figure 2.14 Vectors for glossy reflection models

reflective properties of materials. He reasoned that a surface would become
shinier if it were perfectly flat, or at least flat relative to the wavelength of the
incident radiation. His theory is relatively easy to test because the wavelengths
of common sources of radiation range from the macroscopic to the microscopic,
and it can be verified that long wavelength radiation is more easily reflected from
a surface. As shorter and shorter wavelengths are directed toward the surface,
the ideal specular component decreases and the reflection becomes less focused.
This transition occurs roughly when the wavelength of light becomes equal to
the relative height changes in the surface. Thus, glossy reflection arises from
the scattering of light from rough surfaces, an idea first proposed by Bouguer.
The mirror specular term is considered to arise from perfectly smooth surfaces,
while the Lambertian diffuse term arises from multiple surface reflections from
very rough surfaces and from subsurface scattering (see Figure 2.13).

Another important optical effect is that glossy reflection increases at glancing
angles of incidences and reflection. This is predicted by the Fresnel formula,
which gives the relative percentage of light that is reflected or refracted across a
planar boundary as a function of the angles of incidence and index of refraction.

In computer graphics glossy reflection from rough surfaces is typically mod-
eled using the microfacet theory. This theory assumes the surface is made of
little reflective facets, each behaving as a small mirror; that is, each reflecting
light perfectly. This model predicts that the amount of light reflected from a light
source toward the eye is equal to the relative number of microfacets oriented
halfway between the eye and the light source. This model has been enhanced
by many researchers [30, 65] and in its modern form consists of several terms

- DGF
" 4cos6, cosB (2.37)
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» D isthe microfacet distribution. This distribution function gives the num-
ber of microfacets oriented in a particular direction. This function is
typically modeled with the following formula (see Figure 2.14):

DH, N, k) = (N « H)¥ (2.38)

Note that this distribution is maximal wheh equalsN, implying that

the maximum number of microfacets are oriented parallel to the surface.
Note also thaK controls the rate at which the distribution of microfacets
falls off, and is related to the roughness of the surface.

G is a geometric attenuation term accounting for self-shadowing. This
arises because a rough surface is actually a height field, and facets in the
valleys are less visible at glancing angles as facets at the peaks. This is
an important effect, but very difficult to model precisely with a simple
formula.

* Fis the Fresnel reflection term related to a material’'s index of refraction.

The modeling of reflection of light from real materials is an interesting and
important subject; however, space does not permit us to cover it in detail in
this book. Models that can be found in the literature range from Phong’s simple
empirical model [181], to models of the form given above [30, 65, 236] that differ
primarily in the details of the D function, to more recent (and complex) models
such as that proposed by ldeal [118]. A good summary and description of
the earlier models is given by Hall[114]. Subsurface reflection (see Figure 2.13)
that has typically been modeled as part of the Lambertian diffuse component has
also been reexamined to provide a more physically based model for biological
materials such as skin and leaves [115].

2.6 The Rendering Equation

The reflectance equation makes it possible to compute the reflected light distri-
bution from the incident light distribution and the BRDF of the material. The
important remaining task is to specify, or preferably to compute, the incident
light distribution. This is typically referred to as thlemination model

The first and easiest case to consider is one with no occlusion and direct
illumination from simple light sources. In this case there is typically a small
number of point or distant lights, and it can be assumed that all light arrives at
the surface; that is, there is no shadowing. Since this model does not consider
the environment as a whole and only depends on the individual properties of the
light sources and the surface being shaded, it is often cdlbedlallumination
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model. Shadows can be added by testing whether a point on the surface is visible
to the light source. This is what is done in a ray tracer, but it requires access
to the entire environment and is therefore an examplegtdlkaal illumination

model.

The second and considerably more difficult case is indirect illumination. In
this case light may come from any surface in the environment, and it is very
important to consider shadowing.

In the following sections, the interreflection of light between surfaces will
be taken into account, and tteedering equatioms derived from the reflectance
equation. Theadiosity equationa simplified form of the rendering equation,
that results by assuming all surfaces are Lambertian reflectors is also derived.

2.6.1 Local or Direct Illlumination

It is easy to incorporate direct lighting from point light sources into the previous
reflection models. Recall the reflectance equation

r r r r
L () = fQi f(w - w)L(w) cos B dw  (2.39)

Recall also that the irradiance from a single point light source was derived,

E - ® cosb (2.40)
47T|X _ XS|2r ’
If the direction to the light source is given Iy, then the radiance from a point
light source can be expressed with a delta function.

Li(ar)i) = o(cos B, — cosb,) (@ — @) (2.41)

4mix — xs|2

Substituting equation 2.41 into the reflectance equation yields

r r r
[ (@ - @) L(@) cos 6 do
P . rr 0
= — f.(w,, w,) cos
4]'[|X _ XS|2 r( r S) S
If there aren light sources, then the hemispherical integral collapses to a sum
over then sources. This is the lighting model used by 3D graphics workstations.
It is easy to extend this model to light sources with arbitrary directional
distributions, as well as distant light sources. The above formulae are changed
to use the radiant intensity in the direction of the surface. In principle, linear
and area light sources can also be used, although this involves integrating the
reflectance function over the range of possible directions incident from the light
source. Nishita and Nakamae [175] and Amanatides [7] discuss this possibility.

r
L ()
(2.42)
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Figure 2.15 Two point transport geometry.

2.6.2 Global or Indirect lllumination

The first step in using a global illumination model is to relate the illumination on
one surface to the reflected light distribution from another surface. This requires
that the spatial dependence of radiance is made explicit and that occlusion is
considered.

Using the fact that radiance is invariant along a ray, the incident radiance
atx” due to the radiance fromis

L, (x', cf);) = Ly(X, g)o) V(Xx, X') (2.43)

r
where, a direction vector fronx” to X, and is in the opposite direction.

X — X'

r r
W = —W, = m (2.44)

The functionV(x, X") is a visibility function. It is 1, ifx andx” are mutually
visible; otherwise it is O.

Returning to the reflectance equation, the next step is to switch the hemi-
spherical integral over all incident directions to an area integral over all the
other surfaces in the environment. This is easily done by relating the solid angle
subtended by the source to its projected surface area.

de = cos Bod,ZA (2.45)
x = x| -
Dotting this to form the projected solid angle results in
dw' cos 8, dA = G(x, x") dA (2.46)
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where cos 6’ cos 6.

2
X = X'
SubstitutingG(x, x) into the reflectance equation leads to the following
integral equation over the surfacés,

G(x, x') = G(x', x) =

(2.47)

L(x", cf)) = IS f.(x) L(X,A) G(x, X) V(x, X)) dA (2.48)

Since this equation only involves outgoing radiances and directions, the sub-
scripts denoting incoming and outgoing directions can safely be dropped (except
from f,).

Equation 2.48 was first introduced to the computer graphics literature by
Kajiya [135], who appropriately named it thendering equationActually, his
notation (and development) is slightly different than that used in equation 2.48.
He introduced a new intensity quantityx — Xx")—the two point transport
intensityfrom x to x” (see Figure 2.15). This intensity quantity is a function of
surface position only and does not involve solid angles. The two point transport
intensity is defined by the following equation:

v
ab =I(x » X)) =L(X, @) G(x, X)) dA dA (2.49)
This is the flux flowing in the beam connectidé to dA’. Equation 2.48 can

be put in this form by multiplying both sides &¢x", x"") dA"dA”"which leads
to the following equation:

(X" - X7) =G(x", X7) Isfr(x - X 5> X))V X) I(x - xX)dA  (2.50)

Equation 2.50 defines the amount of light flowing frarno x” and reflected to
X"". Thus, it is sometimes referred to as the multipoint transport equation (see
Figure 2.16). The quantity

r r
fX - X - xX7)=f(X, 0 - ) (2.51)

is just a reparameterization of the BRDF.

There is one final step required to arrive at the full rendering equation, and
that is to account for all modes of light transport at a surface. In an environment
consisting only of opaque surfaces, the only other source of light is due to
emission from the surface.

L(x", c';)') =L (X, c';)') + _[Sfr(x) L(x, cf)) G(x, X)) V(x, X)) dA (2.52)

whereL, is the two point intensity of emitted light.
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Figure 2.16 Three point transport geometry.

2.6.3 The Radiosity Equation

Finally, the rendering equation can be simplified giverrélogosity assumption.

In radiosity, it is assumed that all surfaces in the environment are Lambertian
diffuse reflector. Thus, the BRDF is independent of the incoming and outgoing
directions and can be taken out of the integral.

LX" - X7) = L(X - X7) +f(X) -[S L(x - X) G(x, X)) V(x, X)) dA

= L - x)+ 25 [ox - x) G, ) Vix, X) dA
(2.53)

More importantly, the outgoing radiance from a Lambertian surface is the same
in all directions and in fact equals the radiodtylivided by rz. This leads to
even more dramatic simplificatiofs.

B(x) = E(x) + P(X)ISB(X’)

The rendering equation expresses the conservation of light energy at all
points in space. The key feature of such an integral equation is that the quantity
to be computed—in this case, the radiance or radiosity—appears on the left-hand
side as well as under an integral on the right-hand side. For this reason, integral
equations are notoriously difficult to solve. They very rarely have closed-form
analytic solutions, and numerical methods must be used.

G(x, x") V(x, x") dA"

(2.54)

‘Note the switch in notatiorE is the energy per unit area emitted by the surface,
or . In addition, for clarity in the following chapters, the geometric term &{ will
absorb the visibility term and thein the denominator.
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Chapter 3

Discretizing the Radiosity
Equation

3.1 The Radiosity Equation

The radiosity equation was derived at the end of Chapter 2 from the render-
ing equation under the assumption that all surfaces (and light sources) exhibit
Lambertian diffuse reflection (emission). Repeating the radiosity equation 2.54:

B(x) = E(x) + r(x) fs B(X") G(x, X" )dA” (3.2)

where the geometric terng(x, x’), now includes the visibility termy(x, x°),
and division byt (A complete table of the mathematical terms used in this
chapter is provided in Tables 3.l and 3.2.)

The radiosity,B(x), describes an arbitrargcalar function across the sur-
faces (i.e., the radiosity function defines a single value at each location on a
surface) The potential complexity of the radiosity function is suggested by
Figure 3.1, where the radiosity function across a partially shadowed polygon is
plotted as a surface. The radiosity function is piecewise smooth, that is, it is
continuous in all derivatives within regions bounded by discontinuities in value
or derivatives. These characteristics will be discussed in much greater detail in
chapters 6 and 8.

The dimension of théunction spaceof the radiosity functionB(x), is
infinite (for a discussion of function spaces, refer to the box on page 45). This
means that solving the radiosity equation for a pwrinoih a surface does not

A full solution to the radiosity problem must also take into account the distribution of
energy across the visible spectrum (i.e.,dbler of the light). Assuming that the wave-
length of light is not changed by interaction with surfaces (i.e., igndiilogescence),
independent radiosity equations differing only in the reflectivitiesan be formed and
solved for each of a small number of wavelengths or color bands. The selection of these
sample wavelengths and the reconstruction of colors suitable for display are discussed in
Chapter 9. Elsewhere in the book, the radiosity problem will be discussed in terms of an
achromatic (i.e., black, gray, white) world.
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S surfaces, the domain of the radiosity (and other) functions
n the number of basis functions or nodes

i, j indices into vectors and arrays

X, X’ two points in the domaif§, e.g., K, ¥, 2, (X', Y¥', z)
X a specific point irf5, the location of théth node
A A area, area of element

dA a differential area at, i.e.,dx dy

B(x) radiosity function

B column vector of valuesB(, B,, ... B, ...., B )"
(x) approximate radiosity function

E(x) emission function

E column vector of valuesk(, E,, ...,E, ....,.E,)’

P(X) diffuse reflectivity
) diffuse reflectivity atx; or of element

&(x) error function
r(x) residual function
K matrix of interaction coefficients

Table 3.1 Table d Terms

determine the radiosity at an immediately neighboring location. As a result, a
full and exact solution to the radiosity equation requires either finding the exact
functional form of the radiosity across each surface or computing radiosity values
for an infinite number of surface points.

The first step in constructing a practical global illumination algorithm is thus
to reformulate the problem as one that can be solved for a finite set of unknown
values, which can then be used to construcagproximatesolution. This is
the topic of the present chapter, in which the finite element method will be used
to derive a linear system of equations that can be solved for discrete unknowns.
These unknowns then define an approximation to the radiosity function.

3.2 Making Image Synthesis Tractable

A great deal of research has been conducted on solving integral equations such
as the radiosity equation. A good source for this work is [69]. The finite element
approach used in radiosity methods is one of two distinct approaches that have
been taken in image synthesis to solving the global illumination problem.

One basic approach is the use of Monte Carlo or quasi-Monte Carlo ray
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K; ij™ term ofK

F matrix of form factors

M matrix of basis interactions, often the identlty,

P diagonal matrix of element reflectivities

N.(X) the ith basis function

Ni(x)) the ith basis function evaluated»at

G(x, X') function of geometric relationship betwegrandx”

G; geometric relationship between points in elemeaisd
G, geometric function of a point and a direction

V(X, X) visibility relationship betweenx andx;

V; visibility relationship between points in elementsndj
q angle between normal a&tand vector fronx to x”

q angle between normal &t and vector fronx” to x

Q the hemispherical solid angle around the surface normal
r [x — x’|, the distance from to x

9, Kronecker delta, 1 if =j, O otherwise

u,v parametric coordinates

Table 3.2 Table of Terms (cont.)

tracing to solve the rendering equation for locations and directions determined
by the view specification. This approach solves the rendering equation for only
those surface locations that are visible in the image and for only those directions
that lead back to the eye. If interreflection is limited to the ideal (mirror)
specular component and light sources are limited to point lights, Monte Carlo
evaluation of the rendering equation is essentially equivalent to classical ray
tracing. Ray tracing and Monte Carlo methods for image synthesis have been
extensively investigated [64, 135, 198, 215]. Basic Monte Carlo integration will
be discussed in Chapter 4.

Because the solution is limited by the view, ray tracing is often said to
provide aview-dependergolution, although this is somewhat misleading in that
it implies that the radiance itself is dependent on the view, which is not the case.
The termview-dependentefers only to the use of the view to limit the set of
locations and directions for which the radiance is computed. When a new view
is specified, previously computed radiances are still valid but are often no longer
relevant, and the rendering equation must be solved for a new set of locations
and directions.

The radiosity method is based on the other basic approach to solving the

Radiosity and Realistic Image Synthesis 43
Edited by Michael F. Cohen and John R. Wallace



CHAPTER 3. DISCRETIZING THE RADIOSITY EQUATION
3.2 MAKING IMAGE SYNTHESIS TRACTABLE

Figure 3.1 An Image; the shadow on the floor; and the radiosity function across
the floor plotted as a surface.

global illumination problem, which is to compute and store an approximation
of the radiance function across the surfaces of the scene in object space, often
in the form of radiance values at discrete locations in the environment. During
a final rendering step, the shading of visible surfaces is derived from this ap-
proximation as needed. Because the view is not used to limit the scope of the
solution, a change in the view does not require recomputing the solution, and
this approach is often referred to\d@sw-independentrigure 3.2 shows both
approaches. Combinations of view-dependent and view-independent approaches
are also possible, and examples will be discussed in Chapters 9 and 10.
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Function Spaces

A function spacalefines a set of possible functions. For example, thq ra-
diosity function is in the space &f functions over some finite domash
(e.g., the surfaces). Thé functions space is defined to contain all functigns
f(x) such that

Js 1 Pdx<eo

In other words, the function is finite everywhere in the domain (except|pos-
sibly in infinitesimal regions). Another function space would be the space
of all functions that are piecewise constant over integer intervals betwgen 0
and 100. This function space can be defined as a linear sum of a box) basis
functions:

f(x) = Zf N, (X)

where the basiN(x) = 1 fori <x < i + 1, and O elsewhere. Th
coefficients,f,, describe the height of the function (step) inithenterval.

The dimensionof a function space is the number of discrete values required
to describe the function fully. Thus the dimension of théunction space
is infinite since the function can take on any form. In contrast, the piecgwise
constant function space above isimte function spaceince exactly 100
numbers (the coefficientg fully define the function.

Since any function in the piecewise constant function space is alsp in
this finite function space issubspaceof L2
The projection (or more precisely the orthogonal projection) of a general
function f(x) into the subspace (or basis) defined by basis funchgrps
involves selecting theoefficientsor weights f, so as to minimize thg

norm (see section 6.1) of the difference between the original funigpn
and f(x), (i.,e., min [f x) — 3, £ N. (X) |L).

D

Computing and storing an object space approximation is particularly straight-
forward in the case of the radiosity equation, since for Lambertian diffuse reflec-
tion the radiance is independent of direction and is simply a constant multiple
of the scalar radiosity value at any given point on a surface. This means that the
approximation needs to define only a single value for each surface location. The
radiosity methodvas the first application of this approach to image synthesis.
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Figure 3.2 View-dependent and view-independent approaches to computing
global illumination.

3.3 The Radiosity Approach

As shown by Heckbert and Winget [125], the radiosity method as developed
in the field of radiative heat transfer can be viewed as a simple finite element
formulation? Finite element methods represent a complicated function by sub-
dividing the domain into elements over which the function is approximated by
a linear sum of simpléasis functions alssometimes calledhape functions
[38, 273]. The contribution of each basis function to the approximation is de-
termined by values computed at a finite number of locationepdes.These
nodal values become the unknowns in a linear system of equations, which can
be solved using a variety of techniques.

The basic steps to formulating and solving a generic radiosity problem are
outlined here (corresponding to the flow diagram in Figure 3.3):

1. Subdivide the surfaces inebements.
2. Select locations arodeson the elements at which to determine discrete

radiosity values. These will ultimately become the finite set of unknowns
in the linear system of equations.

2In the case of the radiosity function, whose domain is the surfaces of the environment
but where the interaction occurs across the space between submoedary element
methodsre specifically relevant. The basic approximation method in finite and boundary
element methods is the same.
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Model Environment
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- Mesh Surfaces
- Select Basis Functions
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Reconstruct  Solution
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Figure 3.3 Flow chart of traditional radiosity program.

3. Assume a simple functional form for the variation of radiosity across an
element. This is accomplished by associatirgasis functiorwith each
node. The basis functions are typically simple polynomials Vaital
support(i.e., zero everywhere except in the neighborhood of the associated
node). When weighted by the nodal radiosity values, the basis functions
for a particular element sum to define an approximate radiosity at each
point on the element.

4. Select a finite error metric to minimize pyojectinga residual function
onto a set of basis functions. This approximates the error as a finite
sum, thus casting the infinite dimension problem into a finite set of linear
equations.

5. Compute the coefficients of the linear system. These coefficients are pri-
marily based on the geometric relationships that determine the transport
of light between elements. The geometric relationships are dalted
factors.
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6. Solve the resulting system of equations for the unknown nodal radiosity
values.

7. Reconstruct the approximate radiosity solution as the linear sum of the
basis functions weighted by the resulting nodal values from step 6.

8. Render an image, deriving shading values from the radiosity approxima-
tion as needed for the particular view. The approximation used during the
solution may be modified during this stage to meet the particular require-
ments of rendering.

Note that this is a generic radiosity method; many of the enhancements
to the radiosity method that will be discussed in later chapters of this book
complicate this simple flow by looping back to repeat earlier steps. It should
also be noted that steps 3 and 4, in particular, are stages in formulating the basic
solution approach and should not be interpreted as steps that might be explicitly
performed by an algorithm.

The goal of the first four steps in the previous outline is to derive a linear
system of equations that can be solved for a finite number of discrete unknowns.
The remainder of this chapter will expand the explanation of these steps to
provide techniques for obtaining this system of equations.

3.4 Approximating Radiosity across a Surface

The heart of the finite element method is the approximation of a complicated
function by a linear sum of a finite number n, of simpasisfunctions,N; (x),

each of which is nonzero over a limited region of the function domain. The
domain of the function (the surfaces, in the case of radiosity) is subdivided into
ameshof elements, each of which has one or more nodes located at pgints,
inside or on the element boundary. The mesh of elements and nodes organizes
the basis functions.

Each node is associated with a basis function. Each basis function, although
defined over the full domain of the original unknown function, is chosen to have
a zero value everywhere except over a small region of the domairsufipert
of the basis function is confined to the elements adjacent to the node (a node on
an element boundary may be adjacent to two or more elements). This limited
support implies that the coefficient of single basis will only effect a small range
of the overall function. The approximation within an element is thus determined
by summing only the few basis functions whose support overlaps the element,
with the contribution of each basis function weighted by a coefficient vBjue,
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at the associated node. The radiosity functi(x), is thus approximated by
B(x), where

B(X) = B(x) = iB. N (X) (3.2)

Evaluating B(x) at a particular poink; involves summing only those basis
functions with their support over the point.

There are many possible basis functions. Low-order polynomials are the
most common, including constant, linear, quadratic, and cubic functions. The
constant (or “box”) basis, which is often used in radiosity, is defined by

if X isinside dlement (33)

If X is outside element
N;(x) = g

The number and placement of nodes within elements will depend on the order
of the polynomial. In the case of constant elements, defined by constant basis
functions, a single node located in the center of the element is commonly used.

The radiosity function across linear elements is defined by nodes and as-
sociated basis functions at the boundaries or corners (in two dimensions) of
the element. A simple example of function approximation using linear bases is
shown in Figure 3.4 for a function of a single variable. In this exampilegar
basis function is associated with each node, and the nodes are located at element
boundaries. The linear (or “hat”) basis function in one dimension is defined by

(X=X for Xi—l < X < Xi

N; (x) = D)(f%x for X, < X < Xj4q (3.4)
otherwise

In Figure 3.4 the nodal valueB,, are determined by simply evaluating the
function to be approximated at the node locations. In general, the function to be
approximated is not known, thus the coefficient values are computed to minimize
an error estimate or provide an overall best fit according to some criterion.

The generalization of finite element approximations to functions defined
over a two-dimensional domain, such as the radiosity function, is straightfor-
ward (see Figure 3.5). The elements are typically simple shapes, usually tri-
angles and/or convex quadrilaterals. Nodes for constant, linear, and quadratic
elements are shown in Figure 3.6. The approximation of a function for a single,
two-dimensional element using constant and linear basis functions is shown in
Figure 3.7. Note that the tensor product of the two one dimensional linear basis
functions results in a bilinear basis in two dimensions and is thus curved along
the diagonals.
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Figure 3.4 Finite element approximation of a function using linear basis func-
tions
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Figure 3.5 Finite element approximation of the radiosity function.
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o

Figure 3.6 Dividing the surface into elements with nodes.
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In two dimensions, the linear basis functidh(x), has the properties:

1 at nodei
N H...1  within adjacent elements 5)
(xX) = .
' %) at all other node points

=0 outside adjacent elements

This definition ensures that the basis function associated with a particular node
is zero outside of the elements adjacent to the node, as well as at any other
nodes within those elements.

The variation of the linear basis function from a value of 1 at the node
to 0 across the element depends on the parametric mapping of a generic basis
defined on astandard elemertb the triangular or quadrilateral elements. In the
case of triangles, barycentric coordinates are often used to define the 2D linear
basis. In the case of quadrilaterals a tensor product of two one-dimensional
linear basis functions defines one quarter of a bilinear basis within each element.
For example, the value of the hat function is determined by the interpolation,
N (X) = (1 —u)(1 —vV), where (1, V) is the (0, 0) to (1, 1) parametric coordinate
of the pointx within the element with node at the parametric origin (see
Figure 3.9). Parametric mappings are discussed briefly in section 3.8 and in
more detail in most finite element texts [273].

Elements constructed using other types of basis functions are also possible.
For example, cubitiermite elements provide continuity of derivatives across
element boundaries by using basis functions that interpolate function derivatives
at the nodes as well as values. Given the radiosity values and their paramet-
ric derivatives at the four corners of a quadrilateral, one can derive a bicubic
variation of radiosity across the element. Hybrid sets of basis functions with
constant, linear, and higher-order functions can also be employed. Other poly-
nomial bases (e.g., Jacobi polynomial sets [270]) and non-polynomial functions
are other possible choices. For a given approximation accuracy, there is typi-
cally a tradeoff between the number of elements required and the complexity of
the basis functions.

To date, radiosity implementations have used constant basis functions almost
exclusively. Linear functions have been explored in one dimension by Heckbert
[122]. Max and Allison [163] have implemented radiosity using linear elements.
Lischinskiet al [154] have used quadratic elements in a radiosity solution. For
radiosity, as will be discussed at length in Chapter 9, elements of linear or higher
order have more commonly been used during the rendering stage [203].
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Constant Basis Function
N i(x) B

N3(x) B3 N 4(.\:) B 4

Figure 3.7: Basis functions.

3.5 Error Metrics

A set of discrete elements, with a totalrofiodal values ah nodal pointsx;,
andn basis functionsN,, defines afinite dimension function spaqsee box

on page 45). This finite function space medegrees of freedom, thenodal
values B ,thus B(x) is everywhere defined by the finite set of the n coefficients,
B.

Ideally, one would like the approximate radiosity solutiBr{x) to agree
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with the actual solutioB(x) everywhere. This is not possible in general since
B(x) is restricted to the finite subspace of functions representable as the linear
sum of the selected basis functions. Given the choice of basis functions, the
goal is then to find the nodal values that generate a solimmizingthe error
according to some measureroetric.

The actual errorg(x), is the difference between the approximate and exact
solutions, that is,

&(x) = B(x) — B(X) (3.6)
Unfortunately, it is impossible to determisag) directly since the exact solution
is not known.

_An alternative characterization of the error is provided by the residual. If
B(x) is substituted for both occurrences®in the original radiosity equation

B(x) = E(X) + p(X) _[S B(X) G(X, X") dA” (3.7)

then theresidualfunction is given by the difference of the left and right hand
ides

() = BO — Ex) - p00) [ BOx) 6, x) dA (3.8)

An exact solution will make(x) zero everywhere, but this is unobtainable since,
as we have seerB is restricted to the subspace of functions realizable using the
basis functions. AlthougIB is restricted to a finite function space, the residual,
r, is not. However, a similar approach to that taken in approximdimgn
be taken to project the residual into a finite function space. In this way, rather
than seek a solution technique that make} zero everywhere, the goal will
instead be to minimize(x) according taa finite dimensionakrror metric.

The general approach is to choose n indepemnaeighting functions, Wk),
each having local support, much like the earlier basis functionsndime or
size of the residual is then approximated as a finite sum:

n

reqf = Z| < r(x), W(x) > | (3.9)

This residual norm can be driven to zero by finding radiosity values such that
each of then terms <r(x), W,(x) > is equal to zero. As will be derived below,

3The notation <(x), g(x) > indicates theénner productof the two functions. The
inner productof two functions is analogous to the dot product of two vectors and is

defined to be
<fx), g > = £ f(x) g(x) dx
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If <f(x), g(x) > = 0,thenf(x) andg(x) areorthogonal.

setting each of these terms to zero results in a linear equation. Therset of
such linear equations (one for each weighting function) ohthedal values,

B,, can be solved simultaneously as discussed in Chapter 5.

This approach defines a general class of methods ca#eghted residual
methods.Two different choices for the weighting functiodé(x) lead to two
contrasting formulationgoint collocationand theGalerkin methodwhich will
be discussed in the following sections.

3.5.1 Point Collocation

The simplest set of weighting functions are delta functions:

W(x) = ax —x) (3.10)

which are zero unlessis coincident with the node at.

Using these weighting functions, the norm of the residual defined by equa-
tions 3.8 and 3.9 is minimized (i.e., zero) whéx) is exactly zero at all the
node pointsx (i.e.,r(x;) = 0, i). This clearly differs from requiring(x) to
be zero everywhere, sincéx) is free to vary away from zero in between the
nodes. However, as the number of nodes increases this difference diminishes.
In general, the points at which the residual function is minimized are selected
to be located at the nodes used in approximating the radiosity function. This
technique is known gsoint collocation.

If there aren nodes, there is now a finite number of conditions that must be
met. These are captured by thesimultaneous linear equations, one for each
nodei located at locatior;:

B(x) —E(x) —p(x) [, B(X) Gix,x)dA'=0,0i  (3.11)
Note that the only change from equation 3.8 to equation 3.11 is that equation

3.11 is defined only at thenode locationsy, as opposed to the entire surface
domain,S. ExpandingB using equation 3.2 gives

z B N (x) —E(x;) —p(x) J.S Z B N (x) G(x;, x) dA"=0 (3.12)
=1 J=

Grouping terms and factorirtg), which is independent of , out of the integral
leaves

(in 0 M
EZB,- 7N, () — 006) f o N () Glx;, x') dA [T - E(x) = 0 (3.13)
= g @
Equation 3.13 can be restated simply as the setliakar equations
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n
Z B K, —E(x)=0 (3.14)
=

or in matrix/vector form as

KB=E (3.15)

The coefficientK; are given by

Ki = Ni(x;) — p(x;) fs N(X) G(x;, X) dA’ (3.16)

These coefficients are independent of the nodal radiosities and are defined solely
by the geometry and material properties of the environment. The evaluation of
these coefficients will be the topic of the following chapter. However, it should
be noted here that for any particular tetq), the integral only needs to be
evaluated over the nonzero support of ftiebasis function. Also, the term
N(x;) is simply the Kronecker deltg,, (i.e., one ifi = and zero otherwise),

for constant and linear basis functions with local support limited to adjacent
elements. Equation 3.14 completes the objective of deriving a linear system of
equations that can be solved for the unknown nodal radiodgies,

3.5.2 Galerkin Form of Weighted Residuals

The point collocation formulation defines the error metric to be zero when the
approximate residual is zero at the node points only. An alternative approach to
deriving a linear system of radiosity equations defines the approximate residual
to be zero when a set wkighted integral®f the residual are zero.

The weighting functions in this case are selected to have local support much
like the basis functions used to approximate the radiosity function. In this case
the weighted residual methoskeeks a solution for which there is a weighted
“average” zero residual over each small region of the domamwiéighting
functions,W(x), are defined, a solution is found if

<W(x), r(x) > = j;Wi(x) r(x) dA= 0, i (3.17)
or expanding (x) above with equation 3.8
0= fiwx) B dA-
j;Wi(x) E(x) dA — j;W(X) P(X) fs é(x') G(x, x) dA” dA (3.18)
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The Galerkinformulation selects the same basis functions used to approx-
imate the radiosity function as the weighting functions, (M&(x) = N.(x)),
thus, equation 3.18 becomes,

0= fs N.(x) B(x) dA —
_/; N.(x) E(x) dA — fs N.(X) p(x) fs B(X) G(x, x") dA'dA  (3.19)
Finally, expandingand grouping terms as before results in:
]n U
g B, gs N; (x) N (x) dA — IS N; (X) p(x) IS N; (x") G(x, x") dA’ dA%
—j; E(x) N(x) dA=0 (3.20)
The unknownsB,, have been isolated in this expression. Therenagch
expressions, one for each nodend, as with point collocation, the linear system
of equations can be expressed as the matrix equation
KB=E (3.21)
The entries oK are given by
K = fs N(x) N.(x) dA — fs N.(X) p(x) fs N(x) G(x, X') dA’dA (3.22)
and the entries ik by
E= fs E(x) N.(x) dA (3.23)

The Galerkin method has been explored for one-dimensional “flatland” radiosity
by Heckbert [122, 123].

3.6 Constant Element Radiosities

The previous two sections have taken two different approaches to achieving
the same basic objective, a linear system of equations for the discrete nodal
values. However, the relationship of these equations to the physical problem
of global illumination may still be somewhat obscure. The complexity in the
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above formulations is reduced if constant basis functions are used, with the
reflectivity and emission of each element assumed to be constant. This set
of assumptions has been made in most radiosity implementations to date and
provides the clearest physical intuition.
For constant basis functions,, the Galerkin formulation can be rewritten
by performing the integration for each term in equation 3.20. First, using the
fact that the box basis functions have values of only 11 and 0, and do not overlap
with one another,
A ifi =] QO

Jo NGO N dA = o ohewise] = A (3.24)
where ¢, is the Kronecker delta, and is the area of elememt Note that
the integration only has to be performed across eleneatslj since the
corresponding basis functions are zero elsewhere. Likewise,

_[S E(x) N(x) A= E A (3.25)

whereE, is the area average emission value for element

Finally, since the basis functions have unit value within the element, the basis
functions themselves can be dropped and it is possible to integrate explicitly over
element areas. Thus, assuming the reflectip(ty) is a constantp. overA,,

N T [oNe) 66, x) da da=p [, [, Gk x) dA dA
(3.26)
Making these substitutions into equation 3.20 results in, far all

On 0O mE
EZBJ. gsijA, —o Ja Jaoxx)da dA%— EA =0 (3.27)

Dividing through byA and moving the emission term to the right side gives

n

ZBj %ij —loii IA J.A G (x, X')dAjdAﬁgz E; (3.28)
A E A ! 5

or

éeﬁ [5ij - piFij]é: E (3.29)
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whereF.

ij?

called theform factor,is given by

1
Fi= o Ja Jaooox)an o (3.30

The form factor represents the fraction of energy that leaves eleareharrives
directly at element. Evaluating the form factor is the topic of Chapter 4.
As in previous formulations, the system of equations can be represented by
the matrix equatiolk B = E. As evident in equation 3.29, the entrieKirare
given by
Kj = 5|j — P Fij (3-31)

Rearranging equation 3.29 gives ttassical radiosity equation:
n

B=E+p Z B F; (3.32)
=1
A more physically intuitive form is obtained by first reinserting the area terms,
Aii n
BlA:EiA+piszFijA (3.33)
=1
and then using the reciprocity relationship between form factors,
FEA =FA (3.34)
to obtain n
BA=EA+pYBFA (3.3
=1

A physical interpretation of equation 3.35 is that the total poBek
leaving an element depends on any light that it emits directly plus light that is
reflected. This reflected light depends, in turn, on the light leaving every element
in the environment, since some fraction of the light leaving every other surface
may arrive at the surface in question and be reflected back into the environment.
This fraction depends on the geometric relationship between the elements and
on the element reflectivities.

A radiosity equation of the form of equation 3.32 exists for each element.
The system of equations can be expanded into matrix form:

Eﬂ- - pFn e —pF, SD BbO 0OFK O
O P2Fer = —pFon DBBZ S BEZ B
[ . . e O Oe 0O
O . . oo, o=0, O (3.36)
O ao - o O  d
Lo, _(F_ . 0 O e 0O
Ul Pn-1Fn-11 DEBn—lD o lg
B ~PnFna c - 1- pnFn,nEEEﬁw B OE, O
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Solving this linear system is the topic of Chapter 5. The radiosity formulation
for constant elements that has just been derived will be used for most of the
remainder of the book.

3.7 Higher-Order Basis Functions

The use of linear or higher-order basis (and residual weighting) functions does
not affect the basic formulation of the last section. A similar set of linear
equations results, but the physical interpretation is slightly altered. As described,
the form factor,F;, from constant basis functions represents the fraction of
energy leaving element that arrives directly at element Generalizing to
any basis functionsr; represents the weighted effect of the energy leaving
the region under the support of one basis function on the energy of the region
under the support of another basis function (see Figure 3.8). The differential
interaction between two differential areas is similar to that with constant bases,
except in this case it is weighted by the local values of the two basis functions
at each end of the interaction. Although the physical intuition is somewhat less
direct, this is still essentially a geometric term.

The generaK matrix can be expressed as the difference of two matrices,
M — P F. For constant basis functions, thematrix is simply the identity ma-
trix and the F matrix is the form factor matri6 a diagonal matrix of element
reflectivities p). M; captures the inner product of the two basis functidis,
andN;:

M = <N®), N} >= [ NX Nx) dA (3.37)

For orthonormal bases, this results in an identity since the inner products will
be zero unless they are the same function. Put differently, the terids in

are zero unless the basis functions overlap as, for example, for linear functions
associated with nodes belonging to the same element. Thul| thatrix is

sparse. The nonzero “area” terms, in the case of constant bases, are divided out
and disappear in the “classical” radiosity formulation.

In general, however, it is not possible to divide through by the area terms a
with the constant basis functions. Instead, one must be satisfied with the general
form

K=M-PF (3.38)

with M from equation 3.37, and the unnormalized

Fy = j; N(x) -/; N(X") G(x, x) dA” dA (3.39)
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Figure 3.8 Form factors between basis functions.

3.8 Parametric Mapping to a Master Element

3.8.1 Master Elements

The complexity of handling many different types of surfaces and basis functions
can be ameliorated to a great extent by developing a bookkeeping scheme based
on the use of generinaster elementdhis topic is only briefly described here.

The specific derivations of and the use of master elements is described in great
detail in most finite element books such as [23, 273].

The radiosity function has been defined over the domain of the two-dimen-
sional surfaces embedded in three dimensional space. The basis functions are
defined in terms of the shape and size of the elements over which they have
non-zero support. Thus, each basis function is unique in terms of its location,
size and shape. One would like to be able to perform certain computations
independent of the specific element under consideration. For this reason, it is
useful to develop the notion of a small set of standaadter elementand as-
sociated basis functions to which all elements camégpedGeneric methods
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Figure 3.9 Parametric mapping.

for interpolation, integration of form factors, and other operations can then be
developed to act on the standard elements in their local setting and the results
transferred to the specific element in the global environment. This eliminates a
great deal of awkwardness that may be associated with working directly in the
more general global setting of planes and curved surfaces in three-dimensional
space.

Although many master element shapes are possible, most applications use
triangles and quadrilaterals. The original elements may or may not be planar;
however, it is important that there is an invertible mapping from the world space
coordinates to the two-dimensional ¢) parametric coordinates of the master
element (see Figure 3.9). Typically, the master element coordinates are defined
over the unit 0 to 1 interval or the two unit -1 to 1 interval.

In the case of planar elements, thie\) coordinates are typically derived
by establishing a coordinate system on the plane of the element. Surface patches
that are already defined in terms of parametric coordinates may require a further
scaling to the master element coordinate system.

It is also important to be able to determine the transformation of differential
areas to the parameterized space. This requires careful attention in the case of
parametrically defined polygons and curved surface patches.

3.8.2 Isoparametric Mapping

The above discussion has not relied on the actual form of the mapping functions
other than to specify that they shoulddree to oneandinvertible. (In practice
this means that polygonal elements musttevex) Although many mapping
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functions are possible, commonly the basis functions themselves are used as the
mapping functions. This is called &oparametricmapping.

In this case, both the radiosity function and the geometry are mapped in
the same way. For linear basis functions, the one-to-one mapping requirement
will permit the use of triangles armbnvexquadrilaterals in parametric space.
Quadratic basis functions will permit three- and four-sided elements bounded by
guadratic curves to be mapped to square master elements. A full set of element
types and mapping functions can be found in most finite element texts such as
[273]. In the case of constant basis functionsuperparametricnapping is
often employed using barycentric and bilinear functions to map triangles and
guadrilaterals to equilateral triangular and square master elements.

The example of linear bases and a square master element ranging from (0,0)
to (1,1) results in four mapping functions for the four corner nodes,

Noo (u,v) = %1(1_ u(1-v
Nio(U,v) = 2(v) (1-V)
N, , (u,v) = %(V) (V)

Nos (U, V) = 2(u) (V)

(3.40)

These mapping functions can then be used to find the world coordinates corre-
sponding to a parametric location inside a master element, thus defining the shape
of the element in world coordinates. If the world coordinates of the four corners
of a quadrilateral element are (in counter-clockwise onder), X,, andx,, then

4

X(u, v) = z N (u, V)X (3.41)
=1
The inverse of this mapping function is described in section 9.2.1 in the context
of interpolating radiosity values. In a similar fashion, curved element geometries
can be defined with higher order basis functions.

3.9 Summary

This chapter has provided a mathematical framework for approximately solving
the radiosity integral through the solution of a system of linear equations. Given
this framework, many practical questions remain to be explored. What is a
good element subdivision and how can it be obtained automatically? How are
the coefficients of th&k matrix to be computed numerically and how is the
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accuracy of that computation to be controlled? What matrix techniques are
appropriate to solving this system of equations? How is the resulting solution
applied to the rendering of an actual image? Efficiency and accuracy will be
primary concerns throughout the discussion of these and other questions in the
following chapters.
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Chapter 4

The Form Factor

|. The Form Factor Integral

As shown in Chapter 3, the solution of the radiosity integral equation using
point collocation or Galerkin methods leads to a system of linear equations of
the form

KB = E (4.2)

Evaluating the terms &f is the major computational bottleneck of the radiosity
method. This chapter will address the computation of the entri€s Gompar-
ing algorithms according to their efficiency and accuracy. Chapter 7 addresses
another approach to increased efficiency, that is, limiting the number of entries
in the operator that are actually computed.

The matrixK is defined as the difference of matrices:

K=M-PF (4.2)

whereM and P are diagonal in structure and defined by the selected basis
functions and element reflectivities, respectivélye form factorgentries inF)

make up the most important componenKofThey are central to the radiosity
method and to understanding the propagation of light within an environment.
Simply put, the form factor represents the geometric relationship between two
surface areas, although, depending on the selection of basis functions, the form
factor will take on more and less intuitive meanings. In the common case of
constant basis functions, the form factor represents the fraction of light leaving
one element that arrives directly at another. Thus, in the case where one element
is a light source, the form factor itself represents the direct illumination of the
other element per unit of emissive power from the ligite form factor is

purely a function of geometrit. does not depend on the reflective or emissive
characteristics of the surfaces. It does depend on the distance and orientation of
the two elements, as well as the visibility relationship between them.
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The computation of each form factor and thus eghinvolves evaluating

an integral of a geometric kernel over the areas of support of two basis fuActions.
Integrals of this type can sometimes be solved in a closed form, and this will
be the case for special geometric arrangements of the elements. These special-
case analytic formulae will be discussed; however, in general, there will be no
closed form solution for this integral. Thus the bulk of the chapter will explore

a variety of numerical algorithms designed specifically for this problem.

4.1 The Coefficients of K

As described in Chapter 3, the matKx results from the projection of the
radiosity function onto a selected basis set followed by the projection of the
linear integral operator itself (or the residual) onto a kFa3ise matrixK
consists of the difference of two matricés,— PF, whereM accounts for the
overlap (inner product) of neighboring basis functiddss a diagonal matrix

of surface reflectivities, anB is a matrix of form factors.

The coefficients of the matrik represent the weighted direct influence of
the radiosity of a region under the support of one basis function to the radiosity
of another such region. Repeating from the previous chapter, the coefficients of
F are given by

F= JoN JoNe) G x) da da, (4.3)

whereN;(x) andN,(x') are the basis functions evaluated @ndx’ andG(x, x’)
incorporates the geometric and visibility relationship between the two regions
as it affects radiant energy transport.

In the case of constant basis functioNgx) andN,(x) are both equal to
1 over the finite areas of the corresponding elements. In this cadé, rtregrix
is simply a diagonal matrix of element areas. Thus, each equation in the system
can be divided by the area of the corresponding element.NThiersimply the
identity and

1
Fy = A L\ IAj G; dA dA (4.4)
where the geometric kernel is now denoted using the shor@ard this case,
the coefficients; take on a particularly intuitive physical meanirg:is the
fraction of light leaving element i that arrives directly at elemeiiheF; in

!One basis may be a point as in the case of point collocation.
2The same basis set is used in Galerkin methods.

Radiosity and Realistic Image Synthesis 66
Edited by Michael F. Cohen and John R. Wallace



CHAPTER 4. THE FORM FACTOR
4.2 THE DIFFERENTIAL FORM FACTOR

r(x,x”)

/

E

Figure 4.1 Form factor geometry.

this case are commonly calléafm factors® We will use the term form factor
for both constant and higher order bases, although the physical interpretation is
somewhat less straightforward in the more general case.

The form factor is purely a function of the geometric relationship between
elements and thus does not depend on the reflectivity (color) of surfaces. This is
a potential advantage of the radiosity method, since it allows surface attributes
to be changed without repeating the expensive form factor computation.

4.2 The Differential Form Factor

The geometric kernel in equation 43(x, x'), was derived in Chapter 2. It
corresponds to the form factor between differential acasnd dA’” and is
given by
cos @ , | cosfdcos @' .,
dFyy g = do' = N OA (4.5)
T mrr(x, X')

3Form factorhas emerged as the common term in image synthesis. In the field of
heat transfer, the terne®nfiguration factorandshape factoalso appear, among others.
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wherer = x — X'|? is the distance betweenandx’, 6 is the angle between
the normal to the surface at x and the direction fraimx’, 8 is angle between
the normal to the surface &t and the direction fronx’ to x, anddw’ is the
differential solid angle subtended @A’ from dA. The geometry for these
terms is shown in Figure 4.1.

The fraction of light leavinglA that arrives atlA' is proportional to the
solid angledw’ subtended bydA as viewed fromdA. The form factor thus
depends inversely on the square of the distance between the areas and on the
cosine of the angl€. The form factor also drops off @&\ moves toward the
horizon ofdA, according to the cosine of the angle between the nornd at
and the line frondA to dA". This follows from the definition of Lambertian
diffuse reflectivity, which dictates that the energy per unit solid angle leaving
dA in a certain direction is constant per upibjected area The T in the
denominator originates with the transformation from radiance to radiosity see
section 2.4.4), and acts to normalize the form factor to integrate to unity over
the hemisphere.

The differential form factor is a smooth function, in the sense that the cosine
and 12 factors are continuous in all derivativesd® moves about over the
domain. However, a singularity occursras 0 when the two differential areas
meet at some poink (= x'). This can cause practical difficulties in evaluating
the form factor between elements that intersect or share a common edge.

Equation 4.5 does not account for occlusion due to surfaces positioned be-
tween the two differential areas, which block the direct transfer of light. De-
termining occlusion is often the most computationally demanding aspect of the
form factor computation since determining the visibility between two points may
require testing all surfaces in the environment. Also, because changes in visi-
bility can cause perceptually important discontinuities in the radiosity function,
visibility must often be determined to a high accuracy.

Occlusion is accounted for formally by adding a visibility tehfx, x’),
to equation 4.5V(x, x') takes the value 1 iflA is visible fromdA’, and O
otherwise. With the incorporation of occlusion, the complete differential form
factor equation becomes

cos B cos &'

F = G(x, ') dA’ = - V(x, x")dA’ (4.6)

dA - dA’
whereG(x, x') captures all the geometric terms.

Finally, it is useful to note that the differential form factor from one differen-
tial area to anothef,, ... is equal to the reverse form factét,, ,,. This
is known as theeciprocity relationship. The reciprocity relationship for form
factors follows from the Helmholtz reciprocity principle discussed in Chapter 2.
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Figure 4.2 Differential solid angle.

4.3 Three Formulations of the Form Factor

The full form factor integral for constant bases, equation 4.4, involves performing
an integration over the support of two basis functions (i.e., the two element
areas). Three different formulations of this form factor integral between elements
can be derived. Each is used in the algorithms that will be described in the
following sections.

The first formulation results from inserting the differential form factor (equa-
tion 4.6) into the form factor integral, equation 4.4. Thus, the element-to-element
form factor is thedouble areaintegral, with geometric kerneG;,
1 cos 6. cos 6.

Fj = X IA IA,» ijij dAy dA (4.7)
whereV; is the visibility term between differential aredd anddA.

The second formulation results from replacing the inner integration over area
with an equivalent integration over the hemisphere ara#ndThe differential
solid angle (see Figure 4.8y from dA to dA is

cos 6,
r.2
Thus, the inner integral of equation 4.7 can be rewritten over the hemisphere of

directions,Q, and overA, resulting in thearea-hemispherentegral,

dw, =

I

dA (4.8)

1 cos 6
Fij = K IAi IQ - Vij dCA)J- dA (49)
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whereV; is now 1 if elemenj is visible fromdA in direction dcf)j. The new
geometric kernely; cos 8/ will be denotedG,,. This alternate form of the
integral will be used in some algorithms to compute the form factors didm
to all elements at once.

If the elements are assumed to be fully visible to one another, a third vari-
ation of the form factor integral can be derived by applying Stokes’ theorem to
convert the double area integral into a dowdatourintegral [143, 222]. The
result (not derived here) is

1
Fi = A fojﬁcjlnrobq dx; + Inrdy dy; + Inrdz dz (4.10)
whereC,; and C; are the boundaries of elementandj. This third form of the
integral will also be used by some algorithms when visibility can be determined
4.4 Computing the Form Factor

Both closed form analytic and numerical methods have been applied to solving
the form factor integral.

“An excerpt from Schréder and Hanrahan [206]: The history of computing the
amount of light impinging on a diffusely reflecting surface from some light source is
very long. A closed form expression for the form factor between a differential surface
element and a polygon had already been found by Lambert in 1760 [143]. Lambert
proceeded to derive the form factor for a number of special configurations among them
the form factor between two rectangles sharing a common edge with an angle of 90
degrees between them. He writes about the latter derivation:

Although this task appears very simple its solution is considerably more
knotted than one would expect. For it would be very easy to write down
the differential expression of fourth order which one would need to inte-
grate four fold; but the highly laborious computation would fill even the
most patient with disgust and drive them away from the task. The only
simplification which | was able to achieve was to reduce the expression
to a second order differential using [the formula for differential surface
element to polygon form factor (equation 4.15)] with which | was able to
perform the computation.

Lambert also formulates the reciprocity principle in his theorem 16 and uses form factor
algebra to compute unknown factors from known ones. The first use of Stokes’ the-
orem [224] to solve for the form factor between two arbitrary surfaces can be found
in a book by Herman in 1900 [126]. Through two applications of Stokes theorem he
reduces the form factor between two arbitrary surfaces to a double contour integral. He
uses this result to give the form factor for two parallel quadrilaterals in an exercise. A
similar derivation can be found in an article by Fock in 1924 [83]. Fock proceeds by
applying the formulation to elliptical disks for which he derives a closed form solution.
In 1936 Moon [169] aware of Fock’s works, derives closed form solutions for a number
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Form Factor Solutions
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Figure 4.3 A taxonomy of form factor algorithms.

A taxonomy of form factor computation methods is shown in Figure 4.3.
The discussion of these methods will begin with an examination of closed form
(analytic) solutions. Although there is no closed form solution to the general
form factor integral, if the two elements are assumed (or can be determined) to
be fully visible to each other, there are some useful analytic formulae.

of specialized configurations. In the same year Gershun [93] puts various photometric
quantities on a vector calculus footing and gives an especially elegant derivation of the
double contour integration using differential forms. Sparrow [221] in 1963 used the dou-
ble contour form to derive closed form solutions for the case of parallel disks and parallel
quadrilaterals. However none of these sources or any since that we are aware of has
iven a closed form solution of the form factor between two general polygons.”
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Il. Closed Form Solutions for the Form Factor
4.5 Formulae for Simple Shapes

Analytic formulae for specialized geometries can be found in the appendices of
most radiative heat transfer texts [131, 155, 216, 222]. The formulae given in
Figure 4.4 for opposing and perpendicular rectangles are typical. Although the
geometries are simple and visibility is not an issue, the analytic formulae ale far
from straightforward.

Analytic formulae are often used in conjunction widihm factor algebra,
which allows the form factors for the union or difference of simple areas to be
computed from the form factors to the individual areas. As shown in Figure 4.5,
the form factor from elememtto elemenj plus the form factor from element
to elemenk must be equal to the form factor from element i to a new element
made up of the union gfandk. Similarly, the form factor from the union of
j andk to element is the area average of the two individual elements. Thus,
if an element shape can be decomposed into simple shapes for which analytic
form factors are known, the form factor algebra can be used to determine the
full form factor.

Closed form formulae are also available for a differential area to various
finite geometries. An example is shown in Figure 4.6 for a parallel, axially
aligned disk. The differential area to finite area form factor arises naturally in
point collocation, where the radiosity equation is evaluated at element nodes. It
is also used in some numeric algorithms, since the outer integral in equations
4.7 and 4.9 can be performed numerically by evaluating the inner integral at one
or more locations on regianand averaging the result.

4.6 Differential Area to Convex Polygon

The analytic formula for the form factor from a differential area to a polygon is
particularly useful, since polygonal models are often encountered in image syn-
thesis [19, 130, 143, 175]. The geometry for this formula is given in Figure 4.7.
The form factor is computed as a sum around the perimeter of the polygon:

1 n
F = = ' COS d. 4. 15
dA - A 27T Z BI i ( )
or equivalently,
1 « —
FdA~Aj = E ZBI Ni ¢ (R X Ri+1)%n) (4-16)
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1/2

_ 2 1+X2)(1+Y?2
Fij= xv {ln [(1Tc¥-|72_2]

1 v -1 Y -1 -1
+Y 1+X2 tan (m)—Xtan X—Ytan Y
(4.11)

F‘ij= "—IW (W tan‘lﬁ + Htan‘lf‘; - vH2+W5 tﬂ.n-lwrlm

1 14w (1+H?Y) [ wrasw?+m?) 177 [ m2aew?+m?) 15
ti ln{s_)’('uw FHT [ﬁ)_lﬁi;iuw Wit ] [Z’1+§ﬂﬂﬁ5_27+ W ]
(4.12)

Figure 4.4 Analytic form factors between rectangles.

wheren is the number of sides on the polygbnis the angle betweeR and
Ri:yun IN radians,ai is the angle between the plane of differential atéa
and the triangle formed by dAi and tite edge of the polygon, and is the
unit normal todA.

This formula does not take into account occlusion. However, in conjunction
with the appropriate visibility algorithm, the form factor algebra can be used
to compute an exact result. In an algorithm by Nishita and Nakamae [175],
the form factor to the original polygon is first computed, ignoring occlusion.
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J
k j+k
— —  FuA +FgA
I:i,(j+k) - Fi,j + Fi,k F(j+k),i - TTA+TAC (4.13)
Figure 4.5 Form factor algebra.
r2
Fi = —— (4.14)

Il h2 + r2

Figure 4.6 Analytic form factor from point to disk.

Other polygons in the scene are clipped against this polygon (as viewed from
the differential area) and against each other. The form factor to each of the
clipped polygons is computed and subtracted from the unoccluded form factor,
giving the form factor to the visible portion of the original polygon.

4.7 General Polygon to Polygon

Schroder and Hanrahan give a closed form solution for general polygon-to-
polygon form factors, ignoring occlusion [206]. The formulation is non-elemen-
tary, as it is based on thilogarithm [151] arising in the integration of the
contour integral form of the form factor, equation 4.10. The specifics of the
closed form solution are not repeated here as they involve a long series of
complex terms.
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Figure 4.7: Differential area to polygon form factor.

[1l. Numerical Solutions for the Form Factor

Closed form analytic formulae do not lend themselves to the direct evaluation of
form factors between complex shapes or where occlusion is a factor. For more
general situations, numerical approaches are required to approximate the form
factor.

Numerical methods of evaluating integrals (knowmjaadraturemethods)
generally involve sampling the kernel at various points and approximating the
integral as a weighted sum of the kernel evaluated at the sample points. In
general, the more sample points selected, the more accurate the approximation.
However,the cost of approximating the integral is directly related to the num-
ber of kernel evaluations requirddach of which generally requires a visibility
calculation). Thus, the goal in developing a numerical algorithm (or quadrature
rule) to solve the form factor integral is to get the most accuracy with the fewest
(and/or cheapest) kernel evaluations.

There are a number of choices to make in designing a quadrature rule for
form factor evaluation. First, in the case of constant basis functions, one can
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choose to evaluate any of the different formulations of the form factor integral
given in section 4.3. The area-area form (equation 4.7) and the area-hemisphere
form (equation 4.9) are equivalent, and the contour form (equation 4.10) is also
a suitable choice if one can determine a priori that the elements are fully visible
to one another.

In addition, there is not just a single form factor to be evaluated, but rather
a matrix of form factors. Each entry of a row (or column) of the form factor
matrix shares a common element as the domain of integration, thus one may
take advantage of thtoherencédoy simultaneously solving for a complete row
and/or column of form factors.

Finally, one is free to a great extent to choose where to sample the kernel
and how to weight the samples so long as it can be shown that as the number
of samples increases, the weighted sum converges to the true solution.

After a brief discussion of the general topic of numerical integration, the
chapter will proceed with a description of a variety of numerical algorithms that
have been developed for form factor evaluation. Other surveys of form factor
algorithms such as [78, 187] provide additional insights. The approaches are
broadly classified according to which form of the form factor integral they use,
how the sample points are selected and weighted, and in what order the form
factors are evaluated (e.g., one at a time or a row at a time).

4.8 Numerical Integration in General

Generically, quadrature rules approximate some intdgralith kernel h(x)
over the domaiX as a weighted sum :

H= [, hx)dx =H = Zwk h(x,) (4.17)

One is free to use any information available alixf in choosing the quadra-
ture pointsx,.

Normally, one would like to make as small as possible to limit the cost
incurred in the evaluation of th&Xx,), without compromising accuracy. The
simplest methods, like the trapezoidal rule or Simpson’s rule, sample the domain
at evenly spaced intervals, evaluate the kernel at these points, and sum the results
weighted by the size of the interval. Clearly, as the number of samples increases,
and the size of the intervals decreases the approximation approaches the true
integral.
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4.8.1 Gaussian Quadrature

Simple methods like the trapezoidal rule ignore any knowledge of the integrand.
A more efficient selection of quadrature points and weights can be made given
the available knowledge about the nature of the integn@qdFor example, if

one knowdh(x) is constant across the limits of the integral, then one quadrature
point anywhere is sufficient and the weight is simply the difference of the upper
and lower limits of integration (in our case, the area of the elements). In general,
the smoother the integrand, the fewer quadrature points required to approximate
the integral to within some given error.

In one dimension, Gaussian quadrature methods [185] can be used to evalu-
ate exactly integrals of polynomials up to order+21 with n carefully selected
points and proper weights. The theory behind this observation is quite elegant
[226]. The specific quadrature points and associated weights are tabulated and
can be found in most numerical methods books or can be computed through re-
currence relationships. Extensions to multiple dimensions as in the form factor
problem are possible but can be difficult due to the exponential growth in the
number of quadrature points required with respect to dimension.

4.8.2 Quadrature Points and the Form Factor Integral

In the double area integral form of the form factor (equation 4.7), the quadrature
pointis now defined in the four-dimensional spaBé,3 R?, of the combined
elements.In other words, a quadrature point represents the selection of a pair
of 2D points,x andx’, in elements andj at which to evaluate the integrand.
Similarly, in the area-hemisphere form (equation 4.9), a quadrature point is in
the spac&k? 3 S, that is, a pointx, 65) is in the combined space of an element
area and the hemisphere of directions above that point.

4.8.3 Monte Carlo Methods

Monte Carlomethods are a family of quadrature methods of very general appli-
cability, often used for difficult equations where other methods are impractical
or unavailable. Monte Carlo techniques use random numbers to select sample
locations in the domain of integration at which to evaluate the inte§rahe.
integral is then taken to be a weighted average of the kernel evaluation at sam-
ple points. The weights associated with each sample evaluation depend on how

°R is the space of the real number line &is the space of directions on a circle.
Thus R? corresponds to a plane a8 corresponds to the surface of a sphere.

SQuasi-randomdistributions such as the Poisson disk may also be used. The sam-
ples in a quasi-random distribution are not completely independent but have statistical
properties that allow them to be used in place of random samples. See for example
discussions by Shirley in [212].
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the samples are selected. If, for example, samples are evenly distributed in the
domain, then the weights are simplior n samples withA the size of the
domain of integration.

One would like, however, to make as few evaluations of the integrand as
possible to reach an answer with some level of confidence of being within some
error bound. This process can be enhanced by taking advantage of whatever
knowledge one has of the integrand. For example, if the intéfyred be
evaluated has a kern&(x) that can be factoredy(x) = f(x) » g(x), where
g(x) is a simple known positive functiorg() > 0 for x O X), then the
integral can be written

H= [y 109 g0 dx (4. 18)

In this case, one would like to find a distribution of samples X that mimics
the known functiong(x). This method of selecting samples is callagortance
sampling,since more samples are taken whg(e is large (important) and
fewer are taken wherg(x) is small. More formally,

H = fX f(x) g(x) dx = j;( f(X) Gp(x) dx (4.19)

where

G = J gwdx and pp) = 92 (4.20)

p(x) is essentially a normalizeg(x) (i.e.,ffowp(x) =1) and is thus grob-
ability density functionThe cumulative density function(¥® can be defined

- P(X) = [_p(x) dx @.21)

Loosely speaking, ip(x) represents the odds of pickirgthenP(x) represents
the odds of picking some number less than or equal bothe inverse of the
function P(x) is P~%(x), then the Monte Carlo evaluation for the approximation
H = H is simply

~

H=0;

for (k=1 ton) { for n samples

choosef ; randomly in the interval from O to 1

x=P?1(&; x will be chosen with probability(x)

H=H + X ; sum the sample values fgk)

oo

H=H+ 2%, normalize by G and divide by samples
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This type ofimportance samplingvill be used, for example, to distribute
samples according to the cosine in the form factor integral to reduce the number
of expensive visibility evaluations. Explicit inverses R(x) may be difficult
to derive, in which case analog procedures, or precomputed lookup tables may
be useful. Malley’s method, discussed in section 4.9.5, is an example of this
approach.

Monte Carlo integration in general is a broad topic, to which numerous
textbooks and articles are devoted. Monte Carlo integration for image synthesis
is discussed in greater detail in [71, 135, 147, 215]

4.9 Evaluating the Inner Integral

The area-area and the area-hemisphere forms of the double integral both share
the same outer integral over elemenThus, one can separate the question
of evaluating the full integral into two parts: first, the evaluation of the inner
integral from somelA, and second, the selection of one or more sample points
on element at which to evaluate the inner integral. If points on elemamné
chosen with an even distribution then the full integral is the average of the inner
integral evaluations.

In fact, many implementations use only one representative point on element
i, in essence making the following assumption (valid also for the area-area
form):

1 :
F = X IA IQ G, dwdA = IQ G, dw at sample point x; (4.22)

This assumes that the inner integral is constant across elenveimch may

be reasonable when the distance (squared) is much greater than the area of
elementj. However, changes in visibility between elemdnédj also affect

the validity of this approximation. Whether or not this assumption is used, or
the inner integral is evaluated at many sample points in eleimene is left

with the problem of evaluating the inner integral. This will be the topic of the
following sections.

4.9.1 Hemisphere Sampling Algorithms

The use of the hemispherical integral provides a direct basis for evaluating the
form factor from a differential area@A, to all elements simultaneously. The

geometric kernelG, , is given by
cos 6.
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The visibility term,V;, which is 1 if elemenj is visible in directiondcf), is

the computationally expensive part of the kernel evaluation. Determining the
visibility of an element in a particular direction involves intersecting a ray
emanating fromdA with elementj and with all surfaces that may block the
ray.

Since form factors from elementto all elements are needed eventually,
there is a clear advantage in performing the visibility calculation once and simply
summing a differential form factor int6,, where elemenk is the element
“seen” in directiord cf) from dAi. Thus,a single integration over the hemisphere
results in a full row of differential area-to-element form factdéven this
observation, the question is how to sample the hemisphere of directions above
dA, and how to perform the visibility calculations in the chosen directions.

Hemisphere sampling approaches can be principally differentiated by the
hidden surface algorithm they use. Certain algorithms provide efficiency by
exploiting coherence in the geometry of visible surfaces, while others provide
flexibility for stochastic, adaptive or nonuniform sampling. A geometric analog
to the differential area-to-area form factor equation is given first to provide some
useful intuition for the algorithms that follow.

4.9.2 Nusselt Analog

The Nusselt analog provides a geometric analog to the differential area-to-area
form factor equation 4.7 (ignoring the visibility factor). An imaginary unit
hemisphere is centered on the differential area, as in Figure 4.8. The element
is projected radially onto the hemisphere and then orthogonally down from the
hemisphere onto its base. The fraction of the base area covered by this projection
is equal to the form factor.

Why does this work? The area of the projection of the element on the unit
hemisphere is equal to the solid angle subtended by the element, by definition
of the solid angle, and thus accounts for the factor &S The projection
down onto the base accounts for the 8aerm, and thetin the denominator
is the area of a unit circle.

In heat transfer applications, form factors have sometimes been computed
for complex shapes by evaluating the Nusselt analog photographically, using
a fisheye lens that effectively performs the same double projection. The area
covered by the object in the resulting photograph is measured manually to obtain
the form factor.

4.9.3 The Hemicube

The Nusselt analog illustrates the fact that elements covering the same projected
area on the hemisphere will have the same form factor, since they occupy the

Radiosity and Realistic Image Synthesis 80
Edited by Michael F. Cohen and John R. Wallace



CHAPTER 4. THE FORM FACTOR
4.9. EVALUATING THE INNER INTEGRAL

Figure 4.8 Nusselt analog. The form factor from the differential areatdA
element Ais proportional to the area of the double projection onto the base of
the hemisphere.

same solid angle. Likewise, if an element is projected radially onto any inter-
mediate surface, as in Figure 4.9, the form factor for the projection will be the
same as for the element itself. This observation forms the basis foertheube

form factor algorithm, in which elements are projected onto the planar faces of
a half cube instead of onto a hemisphere [62].

A hemicube is placed around a differential area (see Figure 4.10), with
the hemicube faces subdivided into small grid cells. Each grid cell defines a
direction and a solid angle. A deltarm factor, AF, is computed for each
cell based on its size and orientation (see Figure 4.11). For this purpose, it is
convenient to consider a unit hemicube (i.e., with a height of 1, and a top face
2 3 2 units), although the size of the hemicube is arbitrary, since it is the solid
angles subtended by the grid cells that are of interest. The delta form factors are
precomputed and stored in a lookup table. Only one eighth of the delta form
factors need be stored, due to symmetry (one eighth of the top face and half of
one side face).

Each face of the hemicube defines a perspective projection, with the eye
point located at the differential area and & 9@®wing frustum’ The form
factor to an element is then approximated by projecting the element onto the

The sides of the hemicube actually define the top half of°afr@@tum since the
bottom half falls below the horizon.
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Figure 4.9 Areas with same form factor. Areas A, B, and C, have the same
form factor as Afrom dA.

faces of the hemicube and summing the delta form factors of the grid cells
covered by the projection. The visibility problem of determining the closet
surface for a regular grid of cells is, of course, a familiar one in computer
graphics, since it is essential to producing a raster image. The hemicube uses
theZ-buffer algorithm [84], which is simple and efficient, and has the additional
advantage of wide availability in hardware graphics accelerators.

The only difference between rendering onto the hemicube and normal image
rendering is that in addition toZ&adepth, an ID for the visible element is stored
at each grid cell, instead of a color (the result is often callegsnbufferafter
[260]). The distances are initialized to infinite and the identifiers to NONE.
Each element in the environment is projected onto the face of the hemicube one
at a time. If the distance to the element through each grid cell is less than what
is already recorded, the new smaller distance is recorded as well as the identifier
for the element. When all elements have been processed, each grid cell will
contain an identifier of the closest element. The grid cells are traversed and the
delta form factor for each cell is added to the form factor for the element whose
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Figure 4.10 The hemicube.

ID is stored with that cell. The form factor to elemgnd thus

F, = )AF (4.26)

] q
qt]

whereq represents delta grid cells covered by elemdP$eudocode is supplied
in Figures 4.12 and 4.13. Hall [114] also provides a detailed pseudocode for the
hemicube algorithm.

The hemicube algorithm defines a specific form of quadrature for evaluating

the inner form factor integralF,, .. The directions on the hemisphere are
g dAI‘J p

predetermined by the orientation and resolution of the grid imposed on the
hemicube. The weights associated with each quadrature point are precisely the
delta form factorsAF, described above. Th&F, in turn, have been evaluated
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AF,, = AA (4.24)

(4.25)

>
D_'I'I
>
|
N
£

Figure 4.11 Delta form factors.

by a one-point quadrature from the center of the hemicube to the hemicube pixel
centers.

The efficiency of the hemicube derives from the incremental nature of the
buffer algorithm, which exploits coherency in the projected geometry. However,
the inflexibility of the Z-buffer is also the source of many of the hemicube’s
disadvantages.

The hemicube divides the domain of integration, the hemisphere, into dis-
crete, regularly spaced solid angles. When projected elements cover only a few
of the grid cells, aliasing can occur. The result is often a plaid-like variation in
shading as the hemicube subdivision beats against the element discretization (see
Figure 4.14). Very small elements may fall between grid cells and be missed
entirely. This is a particular problem for small, high-energy elements like light
emitters. Increasing the hemicube resolution can reduce the problem, but this
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I* Preprocess: determine delta form factors, given a resolution of the
hemicube. Note: resolution may vary for sides and top of hemicube. Also
Note: symmetry can be used to minimize the storage and computation of
delta form factors. */

[* Top */
dx = dy = 2.0ftes;
X = dx/2.0;
AA = 4.0/(es);
for (i =1 tores) {
y = dy/2.0;
for (j = 1 tores) {
AFTI[] = 1.0/(r* (% +y? + 1.0p);
y=y+dy,
}
X=X+ dx
}

/* Side, Note: keep track of ordering for scan conversion below */
dx = dz= 2.0fes
X = dx/2.0;
DA = 4.0/(es);
for (i =1 tored2) {
z=dZ2.0;F Note:z goes from bottom to top */
for (j = 1 tores) {
AF[I[j] = Z(m* (¢ + 2 + 1.0§);
z=z+dz
}
X=X+ dx

}

Figure 4.12 Pseudocode for hemicube form factor calculation.

is an inefficient solution, since it increases the effort applied to all elements,
irrespective of their contributich.

Because scan conversion requires a uniform grid, the hemisphere subdivision
imposed by the hemicube is also inefficient. From an importance sampling point
of view, the hemisphere should be subdivided so that every grid cell has the same
delta form factor, to distribute the computational effort evenly. Because it uses

8Typical hemicube resolutions for images in [62, 246] range from 32 by 32 to 1024
by 1024 on the top hemicube face.
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[* For each element, determine form factor to each other element */
for (i =1 tonum_elementy{
initialize F,=0 for allj ;
initialize all hemicube grid cells tNULL element ID ;
initialize all hemicube grid cells to largévalue ;
place eye at center (sample point on elennent
[* scan convert and-buffer element projections */
for ( top and each side of hemicube ) {
Align view direction with top or side;
for (j = 1 tonum_element¥{
Projectelementonto hemicube ;
for (each grid cell covered)
if (Z distance < recorded) grid cell ID =j;
}

for (j = 1 tonum_elementy
F,=F+ 2 AF of grid cells with ID =j;

Figure 4.13 Pseudocode for hemicube form factor calculation (cont.).

uniform grid, the hemicube spends as much time determining form factors close
to the horizon as it does near the normal direction.

Max [162] has investigated variations of the hemicube in which the reso-
lution of the top and sides are allowed to differ, the cubical shape can become
rectangular, and the sizes of the grid cells are allowed to vary with position. By
assuming a statistical distribution of the elements being projected, he derives
optimal resolutions, shapes, and grid cell spacings to reduce quadrature errors.
For example, a top face resolution about 40% higher than for the sides, and a
side height of approximately 70% of the width provides are found to minimize
the error for a given number of grid cells.

The advantage of the hemicube is that it determines form factors to all
elements from a single point. This can also be a liability if only one form factor
is required. In addition, computing the full area-hemisphere form factor requires
repeating the hemicubat a sufficient number of sample points on element
to ensure the desired accuracy for elements that are relatively close together.

*Rotating the hemicube for each selected sample point is useful for eliminating aliasing
artifact.
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Figure 4.14 Hemicube Aliasing.

Increasing accuracy in this way will be inefficient, since elemeunll be close
to only a fraction of the other elements in the environment, and the effort of the
extra hemicube evaluations will be wasted for elements that are distant from

In spite of these limitations, the hemicube can be a useful and efficient means
of computing form factors, as long as its limitations are taken into account.
Baumet al [19] provide an extensive discussion of the inaccuracies introduced
by the hemicube, along with useful error estimates. Comparing results for the
hemicube to analytic results for a variety of geometries, Baual find that
elements must be separated by at least five element diameters for the relative
error in the form factor to drop below 2.5 percent. This result will naturally
depend on the particular geometries and hemicube parameters, but it provides a
useful rule of thumb.

A cube is, of course, not the only solid constructed of planar faces, and
other shapes might be used similarly to the hemicube in constructing faces for
projection and scan conversion. For example, Beran-Koehn and Pavicic [24, 25]
describe an algorithm similar to the hemicube based on a cubic tetrahedron.
Spencer [223] describes the use of a regularly subdivided hemisphere.
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Figure 4.15 Single plane method.

4.9.4 Single-Plane Method

The single-planeform factor algorithm developed by Sillion [218] partially
addresses the inflexibility of the hemicube by replacingAfiffer with an
adaptive hidden surface algorithm based on Warnock [255]. Sillion’s algorithm
projects elements onto a single plane above the differentiatl&re®arnock’s

[84] algorithm is used to subdivide the image plane adaptivelyimadowsfor

which the element visibility can be determined trivially. Sillion’s algorithm is
able to subdivide coarsely for large elements and finely for small elements, and
thus avoids some of the sampling problems of the hemicube. The delta-form
factors associated with regions on the projection plane can be precomputed,
similarly to delta form factors for the hemicube.

Sillion’s algorithm can also compute form factors that take into account
specular surfaces. Rays are cast through the corners of the region if the visible
element is specular and traced recursively until a diffuse element is encountered
(see Figure 4.15).

A single plane algorithm similar to Sillion’s is described by Recker [191],
who uses &-buffer for the hidden surface removal. Both Sillion and Recker
note that the single plane will miss elements near the horizon. However, these
elements will typically contribute very little to the overall radiosity, due to the
cosine dependence of the form factor. Of course, there is no reason, in principle,
why a Warnock-style hidden surface algorithm could not be applied to the full
hemicube.

Single plane algorithms are based on projection, like the hemicube, and thus
compute form factors from a single point. The single plane thus has the same
problems as the hemicube for computing full area-hemisphere form factors.
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Figure 4.16 Malley’s method.

4.9.5 Monte Carlo Ray Tracing

Ray tracing (as opposed to scan conversion and-th&fer) provides an ex-
tremely flexible basis for evaluating the visibility term in the numerical integra-
tion of the form factor equation. Because rays are cast independently they can
be shot to and from any distribution of points on the elements or directions in the
hemisphere. Nonuniform and adaptive sampling can be used to distribute com-
putational effort evenly. Rays can also be distributed stochastically, which can
render the effects of inadequate sampling less noticeable by converting aliasing
to noise.

In addition, ray tracing handles a wide variety of surface types, including
curved surfaces, and a number of efficiency schemes to accelerate ray intersec-
tions exist. A disadvantage of ray tracing is that the expense per quadrature
point will generally be higher since coherency from ray to ray is more difficult
to exploit than in scan conversion algorithms.

Ray casting provides an excellent basis for Monte Carlo integration of the
form factor equation over the hemisphere. In equation 4.9, the kernel contains
the factor co®l. Thus importance sampling can be performed by selecting
directions over the hemisphere with a sample density proportional to the cosine.
In this way, more effort will be expended where the form factor is largest.
Since the density of rays is then proportional to the differential form factor,
each sample will carry equal weight.

Malley describes a straightforward method for generating a set of sample
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directions with the desired distribution [157]. Malley’s method is essentially a
Monte Carlo evaluation of the Nusselt analog (see Figure 4.8) run in reverse. He
begins by generating a set of random points uniformly distributed in the'tircle
under the hemisphere (see Figure 411G determine a direction to shoot

a ray, one of these points is projected vertically to intersect the hemisphere.
The ray is then directed radially out from the center of the hemisphere through
this projected point. Rays are shot in this manner for every sample point in the
circle. The number of times each element in the scene is hit by a ray is recorded.
The form factor is then given by the number of rays that hit a given element
divided by the total number of rays shot. Referring back to Nusselt’s analog,
the total number of rays shot is an estimate of the area of the circle covered by
the double projection. The fraction of the total rays that hit a given element thus
approximates the area of the projection of the element on the hemisphere base,
relative to the total area of the base. This fraction is equal to the form factor.
Maxwell also describes the computation of form factors with ray tracing [164].

4.9.6 Area Sampling Algorithms

The hemisphere sampling algorithms described in the previous sections are most
efficient when form factors to all elements from a single point must be computed
at once. Certain solution techniques (e.g., the progressive radiosity algorithm
described in the next chapter) require form factors between only a single pair of
elements at a time, thus the full hemisphere methods are inefficient. In this case,
the area-area formulation (equation 4.7) is a more efficient basis for algorithm
development.

For convenience, the equation for the form factor from a differentialiarea
to a finite element is repeated

_ cos 6, cos 6,
Fonon = Ja TV, A, (4.27)

The integration can be performed by evaluating the kernel at randomly dis-
tributed points for a Monte Carlo solution. Wang’s discussion of Monte Carlo
sampling of spherical and triangular luminaires in [248] contains much practical
information that can be applied to form factor integration.

%A random set of points in a circle can be derived by generating two random numbers
between 0 and 1 to locate a point in the square surrounding the circle. If the point is in
the circle, use it; if not discard it. Independently generating a random angle and radius
will not result in a uniform distribution of points.

"These points are only used to determine a direction, not to select a point to start a
ray. For an area-to-area computation, the ray origin can also be stochastically distributed
over the area of the element.
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Figure 4.17 Numerical integration of form factor from differential area to finite
area.

Alternatively, the integration can be performed by subdividing the area uni-
formly. Wallaceet al subdivideA, into a set of m smaller areaﬁ‘:sﬁﬁk and
select a sample point at the center of each subarea (see Figure 4.17). The form
factor then becomes

n cos 6 cos 6 k k
Fonn = g —— V(dA,, AA!) AAS  (4.28)

The equation is evaluated by shooting a ray frd#nto each delta area to
determine the visibility,V(dA ,AA"). The contributions of those delta areas
that are visible is then summed.

Equation 4.28 assumes that the subareas are reasonable approximations to
differential areas, which is the case onIyAifAjk << r?, Otherwise,AAjk
should be treated as a finite area. For example, each term of the summation
could evaluate the exact polygon form factor formula for the particular subarea,
as discussed in Tampieri in [230].

A less expensive alternative is to approximﬁt@" by a finite disk of the
same area, as suggested by Walkted [247]. The analytic formula for a point-
to-disk form factor can then be substituted into the summation of Equation 4.28.
The form factor from a differential area to a directly opposing disk of Afea
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Figure 4.18 Configuration for approximation of the form factor from a differ-
ential area to arbitrarily oriented disk.

is
%
A BT (4.29)
The effect of element orientation can be approximated by including the

cosines of the angle between the normal at each surface and the direction between
the source and the receiver (see Figure 4.18):

_ QA cos 6 cos 6,
P T T
The form factor from a differential area to an elenjesgpproximated by a
set ofm disks of aread\/mis thus

(4.30)

_ m cos 6 cos 6
Fon = A - V(dA,, AA) (4.31)

The reciprocity relationship can also be used to approximate the form factor
from a finite area to a differential area through the ratio of the areas:

_ dA _ cos 6 cos 6,
FAdeAi - FAinA"K - n’rTA]JdA (132)

The disk approximation breaks down when the distance from the disk to
the receiver is small relative to the size of the delta area, and visible artifacts
may result, as shown in Figure 4.19(a). An additional difficulty with uniform
subdivision of the element is that since a single ray is cast to each of the source
subdivisions, the element is essentially treated as several point lights as far
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Figure 4.19 (a) Artifacts introduced by the disk approximation. The receiving
surface consists of 30 by 30 elements. (b) Adaptive subdivision of the source
element for a typical node on the receiving element.

as visibility is concerned. As a result, the shadow boundary may appear as
a number of overlapping, sharp-edged shadows rather than a smoothly shaded
penumbra.

Both of these problems can be addressed by adaptively subdividing area
A. This is performed in a straightforward manner by subdividing the area
recursively until the resulting delta areas fulfill some criterion. The criterion
may be geometric (e.g., the delta area must be much less3han based
on the energy received from the delta area. The result of adaptive element
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Sample point Xj

Figure 4.2Q Monte Carlo area-to-area form factor.

subdivision is shown in Figure 4.19(b). Tampieri [230] provides a detailed
practical discussion of this approach, including pseudocode.

4.10 Full Area-to-Area Quadrature

Any of the analytic or numeric differential area-to-area form factor solutions
discussed so far can be used to approximate the full area to area form factor.
The differential area-to-area form factor is evaluated at one or more points on
elementA and the result averaged. For example, the ray tracing algorithm
just described could be performed for several pointsAorHowever, since
many rays connecting the two surfaces originate at the same poiAtstors
approach samples inefficiently. There are several more effective approaches,
including Monte Carlo integration, numerical solution of the contour integral
form, and hierarchical subdivision.

4.10.1 Monte Carlo Integration

The double area integral can be approximated more accurately by distribut-
ing the endpoints of the rays ov&ras well asA. In a Monte Carlo approach

ray endpoints on both elements would be distributed randomly, or according
to some quasi-random distribution like the Poisson disk. Pseudocode is for a
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simple area-to-area Monte Carlo form factor algorithm is given in Figurge 4.21
(the geometry is shown in Figure 4.20).

F,=0

fork =1 ton
randomly select point, on element or use stratified sample
randomly select point; on elemeng or use stratified sample
determine visibility betweer; andx
if visible

computer® = (x; —X;)?

r
compute co§ = r;; * N,

r
compute co§ = I;; ¢ N,

computeAF = cosbicos6;

oy
if( AF > 0)F, =F, + 4F
end if
end for
Fy=F; * A

r. : r. :
wherer;; is the normalized vector from tox, and N. is the unit normal to
element at pointx, (and vice versa for switchingandj).

Figure 4.21 Pseudocode for Monte Carlo area-to-area form factor computation.

One can do better in terms of fewer rays by sampling the elements nonuni-
formly and adaptively. An elegant solution for this decision-making process is
presented in Chapter 7.

4.11 Contour Integral Formulation

In the earliest work introducing the radiosity method to computer graphics, Goral
et al [100] used Stokes, theorem to convert the doabda integral into the
double contour integral of equation 4.10.

The contour integrals can be evaluated numerically by “walking,, around
the contours of the pair of elemeftsvaluating the kernel at discrete points
and summing the values of the kernel at those points [100]. In fact, Goral
et al use a three-point quadratic Gaussian quadrature (nine-point in 2D) along

2Nishita and Nakamae point out that the contour integration approach can be used to
compute a single form factor to objects constructed of multiple non-coplanar surfaces.
The form factor computed for the contour of the composite object as viewed from the
differential area is equal to the sum of the form factors to each of the component surfaces,
since it is the solid angle subtended by the surfaces of the object that determines their
contribution to the form factor. This is a valuable observation that has not yet been taken
advantage of in radiosity implementations for image synthesis.
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Flgure 4.22 Simple test environment.

h-

the boundaries. Care must be taken when the boundaries are shared between
elements, as In( is undefined as - 0.

Equation 4.10 does not account for occlusion. It only the inner contour
integral is to be evaluated (in computing, a differential area-to-area form factor),
occlusion can be accounted for using a polygon clipping approach such as Nishita
and Nakamae’ s [175].

4.12 A Simple Test Environment

To provide a concrete illustration of some of the issues discussed in this chapter,
three numerical form factor algorithms have been tested on the simple two-
polygon environment shown in Figure 4.22. Results are shown in Figure 4.23.
The two polygons are parallel unit squares one unit distance apart. The analytic
form factor between them is approximately 0.1998.

Tests were run using the hemicube method, Malley’s method for randomly
selecting directions, and the area-area Monte Carlo method. In each case, two
tests were run, (Test 1) from the center point only of elemant (Test 2) from
a set of randomly selected points in elemewt series of 1000 runs was made
of each. The mean, standard deviation (box height in graph) and minimum and
maximum values (vertical lines) are displayed in the graphke horizontal
axis is given in terms of the resolution of the hemicube, the number of random
directions that fell in elementin Malley’s method and the number of sample
points in elemeni in the Monte Carlo method. In Test 2, the same number

3The hemicube method from the center of elemdiiest 1) has no deviation since
it is a deterministic algorithm.

Radiosity and Realistic Image Synthesis 96
Edited by Michael F. Cohen and John R. Wallace



CHAPTER 4. THE FORM FACTOR
4.12 A SIMPLE TEST ENVIRONMENT

Fg‘ Testl Fij % Test2
30} 30}
20} 20§ % % -
1 1
.10} 101
[, e — b ettt ——0——0—4—0—-—0—0—0—-—0—0—0—0—0—’
01234567891011?2’ 0123456 789101112
logz(res) Hemicube log,(n x res)
Fu% 1N Fj I

301

1 -J:ﬁ' —— e T S S
oi23456789101112 0123456 78910111
log,(n) Malley’s Method  log,(n x n) ‘
Fij FU%
301 | .303:
éééééamm !
2041 11 ] .20::. ......... N . N S -S—
- :E
1 101
0123456 78910111 0123456 78001110

log,(n) Monte Carlo 1032(" X n)

Figure 4.23 Test results on parallel elements. In Test1, only the center point
was chosen on element i and n points on element j. In Test 2 n points are chosen
on both elements. res is the resolution of the hemicube in both tests.
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was chosen for sample points in elemiegmd the horizontal axis represents the
product of the number of sample points and directions.

All of the methods converged reasonably well in this case as the sampling
density (resolution, in the case of the hemicube) increased. Note that the form
factor from the center of elemento elemenj is approximately 0.2395, and
thus the solution always converged to about 20% over the actual value for Test
1. Also, note the single point on the graph for the hemicube with resolution 2
performed at 2 random points chosen on elemddécause of the low resolu-
tion and the fixed orientation of the hemicube with respect to the environment
coordinate frame, the form factor happens always to be the same, no matter
where the hemicube is position on elemierthis extreme case highlights the
problems due to the regular sampling enforced by the hemicube that are en-
countered as the resolution becomes small relative to the projected area of the
elements.

4.13 Nonconstant Basis Functions

The discussion so far has been limited to evaluating form factors where con-
stant basis functions are used. This has been the dominant approximation used
in radiosity implementations to date. In this section we briefly introduce the
computation of form factors for higher order elements. However, this remains
largely an area for future development.

Recall from the last chapter that the coefficients of the linear opétados
given by

Ky = M; —pFy (4.33)

For orthonormal (e.g., constant) bases thenatrix is simply the identity
after division by “area” terms. In the more general case, it represents the inner
product of thath andjth basis functions:

M = j; N(x) N,(x) dA (4.34)

The integral will be nonzero only where the support of the two basis functions
overlaps. This integral can generally be evaluated analytically since the basis
functions are chosen to be simple polynomials.

Slightly reorganizing equation 4.3, tik¢ are given by

Fo = Ja Ja NGO N, (9) G(x, x9) d9 dA (4.35)

The interpretation of the coefficieni is slightly less intuitive in this general
case. The integral is still over the suppdk, @) of the two basis functions
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as before. The only difference is the inclusion of the basis functions in the
integrand. The form factor now represents the exchange of energy between
regions under the support of the basis functions, weighted by the local values
of basis functions.

4.13.1 The Hemicube for General Form Factors

Many numeric form factor algorithms can be generalized in a straightforward
manner to higher order basis functions. Wallace’s ray casting algorithm, for
example, could evaluate the basis functions at each delta area and weight the
delta form factor accordingly. This is essentially the approach used by Tampieri
and Lischinski in [231].

Max and Allison [163] describe a hemicube algorithm for linear elements
that makes clever use of graphics hardware. Performing a hemicube for higher
order elements requires that the delta form factor for each grid cell be weighted
by the value of each basis function that is nonzero at the point on elpment
seen through that particular grid cell.

Max and Allison use the Gouraud shading hardware in a graphics accelerator
to interpolate the basis function for triangular elements. Each of the three vertices
is given the maximum value for one of theg, b color channels. The faces of the
hemicube are set up as perspective views and the elements passed as polygons
to the hardware. The Gouraud shading hardware will then interpolate the vertex
colors to the hemicube grid cells. The value of each color channel gives the
value of the respective basis functions at that grid cell.

Noting that the three basis functions for a triangular element sum to 1.0
everywhere on the element interior, Max and Allison actually store colors for
only two vertices. The value of the third basis function can be obtained at any
grid cell using the identityN,(x) = 1.0 —N;(X) — N,(x). This frees up a
color channel, which when combined with the alpha channel provides room for
a 16-bit element ID.

4.13.2 Monte Carlo for General Form Factors

The Monte Carlo algorithm described earlier in section 4.10.1 for evaluating the
area-to-area form factor can also be generalized to higher order elements. The
algorithm is basically unchanged, except that each sample poiftamd A

now contributes to the form factor for each of the nonzero basis functions at that
point, with the contribution weighted by the value of the basis function. A single
ray between two sample pointsandx9 can be used to contribute to more than
oneF; if the basis functions overlap. For example, with linear, quadrilateral
elements, a single ray will typically result in 16i(dases3 4] bases) nonzero
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5 NS Contributions td-4 7, F57, F1g andF,g will be nonzero
¢ .+ forthe ray shown. Note: there would be 16 nonzero
----- contributions in 3D.

]

1
Figure 4.25 Simple test environment with a singularity.

contributions to th& matrix (see Figure 4.24). The same samples can also be
used to evaluate thHd; numerically if desired.

4.13.3 Singularities in the Integrand

Although most of the algorithms described above will provide reasonable evalu-
ations of the form factor for most cases, they can suffer serious inadequacies in
the presence of singularities in the kernel. The singularity in the integrand for
equations 4.7 and 4.10 occurs when the two differential areas meet {i.€),
Potential difficulties are illustrated by an experimental comparison in which
three variations of numerical form factor algorithms were tested as before, but
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this time on two unit squares at right angles with a shared edge (see Figure 4.25).
The test environment thus contains no transitions in visibility but does have a
region (along the shared edge) at which the kernel of the area-area integrand
becomes singular.

Results are shown in Figure 4.26. Although in all the algorithms the mean
tends toward an accurate answer, any single invocation of the Monte Carlo
method can return an extremely inaccurate answer due to the singularity. The
standard deviation is much less in the hemicube and Malley’s method since the
area-hemisphere method removes the singularity analytically before the numer-
ical evaluation.

There are a number of other ways to deal with the singularities. If the
singularities in the kernel are guaranteed to occur only on the edges of the
elements (e.g., where a wall meets the floor), and the basis set is chosen to have
zeros of multiplicity 2 at its edges, then the singularity will disappear when
weighted by the basis function under the integral. One example of such a basis
is provided by the Jacobi polynomial set on the element parameterizeanily
v ranging from -1 to 1:

Nu,V) = (1-1w¥)?*(1- V> (4.36)

Although the numerator goes to zex® fastas the denominator, this of course
does not prevent a divide by zero in practice. One would need explicitly to
check for this condition. This option is not pursued further here. Details of this
approach can be found in [270].

Another solution is to move the quadrature point away from the singularity
by a small amount. In other wordsrifs below some threshold, the quadrature
points are moved away from the intersection of the elements where the singu-
larity occurs. Care must be taken that the movementiard on the elements.
Since there is no analytic justification for moving the points inward, the accu-
racy of the results will not converge to zero with large numbers of samples, but
the possible large errors incurred from hitting the singularity will be avoided.
Hybrid methods that handle singular regions analytically coupled with numer-
ical methods for the rest of the integral are also possible but have not been
extensively explored.

In point collocation, nodes on concave corners, such as on the floor where
it intersects the wall, will result in a form factor of zero for the intersecting
surface. In the case of a projection algorithm like the hemicube, this is because
the intersecting surface passes through the eye point and thus projects as a line
[163]. The form factor will be zero for other algorithms, since the cosine of the
angle with respect to the intersecting surface is zero. If that surface reflects a
significant amount of energy, a visible dark streak along the receiving surface
near the intersection may result. Moving the node inward may help in these
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Figure 4.26 Test results on perpendicular elements.
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cases. The hierarchical subdivision algorithms discussed in Chapter 7 provide a
more systematic approach to this problem.

4.14 Acceleration Techniques

The form factor computation is expensive and is repeated many times during the
radiosity solution. It has thus been a natural target for acceleration. Improved
algorithms and hardware assistance have both been applied, particularly to the
visibility problem. In the following sections we will survey methods for speeding
up the hemicube and ray-tracing-based form factor algorithms. (A discussion of
coarser grained parallel algorithms will be held off until Chapter 5.)

4.14.1 Hemicube Acceleration
Visibility Preprocessing

Performing a single hemicube consists essentially of determining the surfaces
visible from a particular point of view. During the radiosity solution this visi-
bility calculation is repeated over and over for potentially thousands of different
viewpoints. Since the geometry of the scene does not change during this process,
radiosity is a natural candidate for visibility preprocessing.

In a visibility preprocess, the surfaces of the scene are organized by a spa-
tial data structure that allows the visibility from any particular viewpoint to be
quickly determined. Visibility preprocessing has a long history in computer
graphics; the need to render a fixed geometry from many different viewpoints is
often encountered in interactive simulation or “walk-through” and “fly-through”
applications. Algorithms date back to Schumakéss priority method [208]
and include octree [72] and BSP-based [87] visibility algorithms.

Wang and Davis [249] build an octree as a visibility preprocess for radiosity.
As space is split recursively into octants, surfaces are subdivided into elements by
clipping them against the octant boundaries. As a result, when the preprocess
is complete each element will fall into one and only one octree cell. For a
particular hemicube, the goal is to traverse the octree cells in front-to-back
order with respect to the hemicube location. The elements can then be painted
onto the hemicube faces in front-to-back order, which eliminates the need to
compute and store the z-depth.

For a particular viewpoint, a visibility priority can be established for the
eight children of a given octant. The subdivision of the octant determines eight
subspaces. The priority ordering of the eight children is determined by which of
these subspaces the viewpoint falls into. Each of the children is visited according
to the priority ordering and traversed recursively in the same fashion. The leaves
of the octree are thus visited in front-to-back order with respect to the viewpoint.
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Figure 4.27 Hemicube positioning and clipping.

If more than one element is contained in a single leaf cell, the priority of these
must be established by some other means.

View Coherence

Although a hemicube requires projecting the scene onto five different image
planes, the five planes are obviously far from arbitrarily related. The hemicube
determines five orthogonal 90-degree view frustums. If the five planes are posi-
tioned to face in theX, — X, +Y, — Y, and & directions (see Figure 4.27),

the coherence that arises from this arrangement provides several opportunities
for optimization.

Vilaplana and Pueyo [245] observe that once the elements have been trans-
formed to the view coordinates of the front face of the hemicube, they can
be rapidly transformed for the other faces simply by swapping coordinates and
changing signs appropriately. Given a coordinatg z in the top face’s view,
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the transformations are

Left : (X,vy,2)=(,2z X
Right : X, VY,2)=(Y, z, ¥
Front : (X,Vy,2)=(K, z, Y (4.37)

Back : (X,Vy,2)=(Xx12Y

Vilaplana and Pueyo also suggest a way of accelerating the clipping that
must be performed against each of the five view frustums. The top view frustum
shares a clipping plane with each of the four side view frustums, and each of the
side frustums shares planes with two other side frustums. Vilaplana and Pueyo
describe a modified Sutherland-Hodgman clipping algorithm in which each edge
of each element is clipped against all five frustums in one pass (as well as against
the sixth horizon plane determined by the base of the hemicube). Vertices are
transformed into the view coordinates for the top face. Each vertex of an element
is then classified in turn by testing against the six clipping planes. The vertices,
including those created by clipping edges, are added to lists maintained for each
frustum. Following clipping, the vertices for each frustum are transformed as
above, projected onto the corresponding hemicube face, and scan-converted as
usual.

Hardware Z-Buffering

One inspiration for the original hemicube algorithm was the availability of hard-
ware depth-buffers to do the visibility determination. The basic approach to
using graphics acceleration is to specify a view for each face of the hemicube
and pass the elements down the hardware pipeline for scan-conversign and
buffering. Instead of a color, an item ID is stored at each pixel, which identifies
the visible element. The ID can be generated by assigning each element a color
corresponding to its ID. The colors can then be read back from the frame buffer
and decoded, with the contribution due to the delta form factor at each pixel
computed in software as usual. This approach has been implemented by Baum
et al [21] and others. Bu [39] also describes a hardware implementation for fast
form factor computation.

A similar approach is used by Reclatral. [191]. Instead of the hemicube,
Recker uses a single plane method, which requires that each element be pro-
jected, clipped and scan converted once rather than five times.

An interesting hardware alternative to the hemicube has been proposed by
Fuchset al. [88] for thePixel Planes$ graphics engine. This algorithm computes
Nusselt’s analog directly, taking advantage of the abilityPixel Planesb to
evaluate a quadratic expression at every pixel. Their estimated time to compute
form factors to 100,000 elements is 1 second.
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4.14.2 Ray Tracing Acceleration

One advantage of ray tracing for computing form factors is the wealth of acceler-
ation algorithms and data structures that are available. Bounding box hierarchies,
voxel grids, and octrees are all applicable to ray tracing for radiésity.

The rays used for form factor computations are geneshiglowrays. Thus
they need only determine whether occlusion occurs or not, as opposed to de-
termining the closest intersection alone the ray. There are several specialized
tricks for accelerating shadow ray testing that are worthwhile looking at for ra-
diosity implementations [111]. Perhaps the simplgsadow cachings always
to test the ray against the most recently encountered occluding object, on the as-
sumption that an extended object will tend to intersect a number of neighboring
rays.

Directional acceleration schemes are particularly well suited to radiosity.
These take advantage of the coherence between rays leaving a particular region
of space in a particular set of closely related directions [11]. As has been seen,
computing the form factor from one element to another may require shooting
many rays between the two elements. These rays tend to have similar origins
and directions.

The shaft-cullingalgorithm described by Haines and Wallace [112] and by
Zhang [271] is intended to exploit this coherence. Haines and Wallace organizes
the objects of the scene into a bounding box hierarchy. Rays can always be
tested for an intersection by traversing this hierarchy starting at the root node.
Intuitively, however, if many rays are to be shot between two limited regions,
such as two elements, it is worth some effort to create a chiodidate listof
objects for testing. Candidate objects are those that lie in the region of space
joining the starting and ending areas.

Haines and Wallace first construct a volumeshaft,using planes to join the
bounding boxes of the objects or elements that define the endpoints of the rays.
The bounding boxes are constrained to be orthogonal to the world coordinate
axes. This allows a number of geometric and algebraic simplifications in the
construction of the shaft. An example is shown in Figure 4.28.

Once the shaft is created, it is tested against the bounding box hierarchy.
A box that is entirely contained within the shaft is added to the candidate list.
A box that partly intersects the shaft is usually opened up, and its sons tested
against the shaft recursively, in a depth-first manner. In some cases it may be
better to add the box on the candidate list without opening it up. A box that
is entirely outside the shaft eallled, and traversal of that branch of the tree is
ended. The final result is a candidate list of bounding boxes and objects.

“The best introduction to this topic is Arvo and KirlSsirvey of Ray Tracing Accel-
eration Techniquén [97].
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Figure 4.28 Shaft culling: first an axis aligned bounding box in constructed
around each polygon. Then a convex hull (or shaft) is constructed between pairs
of bounding boxes.

Shaft culling is potentially useful for occlusion algorithms other than ray
tracing. For example, the polygon contour clipping algorithm of Nishita and
Nakamae [175] could be accelerated using shaft culling to produce a candidate
list of polygons for clipping.

Markset al.[160] describe an algorithm related to shaft culling in which the
object is to rapidly cull away empty portions of the volume connecting two
elements. The volume is subdivided recursively, with recursion stopping
when a volume becomes empty. After a certain subdivision limit is exceeded, the
remaining volumes are tested for occlusion using rays.

Teller and Hanrahan investigate incremental visibility algorithms that rapidly
preprocess the environment and categorize pairs of surfaces as fully visible to one
another, fully blocked, or partially blocked [232]. They also maintain a candidate
list of blocking surfaces between each pair. This preprocessed information then
greatly accelerates visibility calculations during form factor computation.
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Chapter 5

Radiosity Matrix Solutions

In Chapter 3, techniques were described for approximating the radiosity integral
equation (3.1) by a system of linear equations. Depending on whsirer
collocationor Galerkintechniques are used, a system of linear equations is ob-
tained (equations 3.13 or 3.20) which when solved provide the nodal values that
determine an approximate radiosity function. In either case the linear equations
can be summarized by

KB =E (5.1)

whereK is a matrix of interaction® is a vector of nodal radiosity values, and

E is a vector of emission terms. The matrix can be broken down into the
difference of a (almost) diagonal matrix and a matrix of coefficients scaled by
reflectivity terms! r:

[M—PF] B =E (5.2)

If the radiosity function is approximated using constant basis functions, area
terms can be divided out, aiMl is simply the identity. ThusK looks like

Bl_ p1F1,1 _plFl,Z _p1F1,3 : : _plFl,n E
H _pz F2,1 1- pz F2,2 _pz I:2,3 : : _pz Fz,n C
B E (5.3)
] : L
S_pn—an—l,l E
0 —pnFn’1 ) ) . ) 1—pnFn’n|:

The previous chapter concentrated on ways to evaluate the entfestiod
form factors. This chapter focuses on how to solve the linear systemlgiven

'As noted in Chapter 3, the reflectivity, must be specified for each of the wave-
lengths or color bands of interest. In most applications for image synthesis, 3 or 4
wavelengths are sufficient. Thus, there will be 3 df 4natrices, one for each wave-
length. The form factors discussed in Chapter 4 are only dependent on geometry and
are thus valid across the visible spectrum. The radiosity problem will continue to be
addressed as a monochrome one, with the understanding that the algorithms described
are applicable at each wavelength individually.
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andE. The characteristics df are examined first followed by a description
of applicable techniques from the numerical methods literature on solutions of
linear systems. Finally these methods are applied to the radiosity problem.

5.1 Qualities of the Matrix

The following points describe qualities of the matixhat are relevant to the
selection of specific numerical algorithms:

* Size: In general, the matrix will be square and of sizey n, wheren is
the number of basis functions (i.e., the unknown coefficiBpthat make
up the approximation of the radiosity function. In Chaptérerarchical
methods are examined in which rectangular matrices will appear.

* Sparcity: As for most systems resulting from integral equations of a form
like the radiosity equation, the matrix will typically be more full than
sparse. Th@th position of the matrix will be zero only when the reflec-
tivity of a surface is zero (i.e., the surface is black) or the supports of the
ith andjth bases are completely invisible to one another (e.g., for constant
bases, when elementannot see elemejjt The bases can be invisible
to one another either because of occlusion or because they face away from
one other. Only an environment resembling the inside of an empty sphere
(i.e., one in which every element can see every other element) will result
in a completely full matrix. For a complex environment, the matrix will
be fairly sparse, since many elements will be invisible to each other. In
fact, if the environment consists of two separate rooms with no means for
light to travel between them, the matrix will be block diagonal, meaning
that, intuitively, it can be divided into two independent subproblems.

« Symmetry A matrix A is symmetric if elements;a= g, for alli, j. K
IS not symmetric in its current form. However a simple transformation can
produce an equivalent system in which the matrix is symmetric. If each
row i is multiplied by the area of thth element, then thie matrix is made
symmetric, due to the reciprocity of form factors (ig4A = F A). K
can also be premultiplied by the inverse of the reflectivities to complete the
symmetry, but zero-valued reflectivities (as in the case of light sources)
will be a problem. Thus, although there is a type of symmetry in the
physical process which is manifest in the matrix, it will not be relied on
explicitly in the solution methods discussed in this chapter.

» Diagonal Dominance A matrix is said to be diagonally dominant if the
absolute value of the sum of the off-diagonal terms in each row is less
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than or equal to the absolute value of the diagonal term itself:

n

Z IKil < 1Kl O (5.4)

j#i
This is strictly true for the radiosity problem with constant basis functions.
This can be seen by examining the matrix equation 5.3, in which the
diagonal terms are all equal to one. The sum of the form factors in any
row is by definition equal to unity, and in any physically realistic system
the reflectivity terms will be less than one. Thus, the off-diagonal terms
must sum to less than the diagonal term. The matrix will also be diagonally
dominant for general basis functions with local support.

The diagonal dominance of K ensures that particular iterative solution
methods such as Gauss-Seidel (described in section 5.3.2) will converge.
However, the diagonal dominance of rows should not be confused with the
diagonal dominance of columns, which does not characterize the current
form of K. This distinction will arise in the discussion of Southwell’'s
method, described in section 5.3.3.

» Spectral RadiusThe spectral radius of a matrix is a particular type of
norm that describes the size of its largest eigenvalue. The detailed defi-
nition of these terms is beyond the scope of this text. The spectral radius
is an indicator of the speed with which iterative methods will converge.
Intuitively, one can see that as the reflectivity values approach unity (i.e.,
perfect reflectors), the system will require more iterations to converge.
Physically speaking the light will reflect about the environment more be-
fore being absorbed. Mathematically, the spectral radius is approaching
one.

If PF has a norm less than one, ther= [I — PF] is invertible, and the
Neumann series of successive multiplication®Bfwill converge to the
inverse.

If | PF || <1then KT =[I - PF]™ = aZD(PF)a (5.5)

This property is also important for iterative methods such as Jacobi itera-
tion, which in essence mimics the Neumann series.

 Condition: The condition number of a matrix describes how sensitive the
solution is to small perturbations in the input (as in the case the emission
terms). In general, the matrix arising in radiosity applicationsad
conditioned,ndicating that most solution methods are applicable.
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5.2 Linear System Solution Methods

Of the great variety of algorithms that have been developed to solve linear
systems, the following sections will concentrate on methods that have proven
useful for the radiosity problem. Each of the basic algorithms will be described,

followed by a discussion of its behavior in the context of the radiosity problem.

More general surveys and more theoretical treatments are widely available in
numerical methods texts [138, 185, 226].

5.2.1 Direct Methods

Direct methods for solving linear systems are perhaps most familiar but are
not well suited to large systems of equations. Such methods like Gaussian
elimination and its variants, can be applied to systems such as the radiosity
problem, but they exhibit a computational complexity related to the cube of the
number of equation®)(n®). Thus, these methods are prohibitively expensive
except when applied to small problems, or when the system of equations is
sparse. For image synthesis the system of equations is liable to be quite large
and relatively full. Thus, iterative solution methods are the focus of the ensuing
discussion.

5.2.2 lterative Methods

In contrast to direct methods, iterative methods begin with a guess for the solu-
tion and proceed by performing (preferably) inexpensive operations that move
the guess to a better guess. The solution is said to have been fowod; or
vergedwhen there is some confidence that the current guess is very close to the
actual solution. Given the linear system

KB =E (5.6)

containing the unknown vectoB, and an initial guessB©, the error,e?®
defined to be equal to the difference between the actual answer B and the current
guess

€9 =B - BO (5.7)

Since the real answér is not knowng cannot be measured directly. However,
one can define eesidual, ), where

rO=KBO_—E (5.8)
Clearly, if the residual is zero, then the solution guess is correct and the error

is zero as well. In contrast to the error, the residual is a quantity that can be
directly measured.
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After each iteratioh of the solution process, the most recent guess and
residual, B® andr®), are replaced by a more accurate guess and residual,
(B(k+1) andr(k+1))_

The initial guessB®, can influence the rate of convergence. In general,
an initial guess that is closer to the final solution will require fewer iterations.
If there is no information available upon which to base an initial gug%s,
can simply be a vector of zeros. For the radiosity problem the light source
radiosities are given a priori by, and a better initial guess B% = E since
light sources typically have zero reflection.

5.3 Relaxation Methods

The types of iterative algorithms explored below are cadakationmethods.

The idea is that at each step of the algorithm one element of the residual vector
will be set to zero. In other words, one of tB€ will be chosen to change

in such a way that® = 0. Of course the othet®, j # i may increase,

but hopefully an improvement has been made on the whole. The input to each
step may be the approximate solut® (and perhaps part of the new guess
B*) and one or all of the current residuals, in addition to the mH&trand
vectorE.

5.3.1 Jacobi Iteration

Perhaps the simplest iterative scheme is to update each elB¥eat the
solution vector by solving for that variable using the current gBg&sThus
n steps (one iteration) can be performed simultaneously (one for)e&civing
for a singleB, beginning with thath row from the matrix equation 5.3

ZK” Bj = E (5.9)

moving all but thath term to the right hand side

KB = E - ZK”BJ- (5.10)

2Superscripts (e.gB®) will be used to indicate a complédteration of the iterative
solution process. A superscript of zero indicates the state prior to the first iteration. An
iteration is distinguished from step,which refers to the processing of one entryBin
during a particular iteration. A complete iteration will usually invalh&eps. Subscripts
will be used to indicate position in the vector when necessary.
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and dividing by K results in a new value fdg, for iterationk + 1

Bk*D = E ZK..J_ (5.11)

With the definition of the residual vector (equation 5.8), this can be simplified
to adding the residual divided by the diagonal to the previous guess,

(k+1) — g(k) rt
B = B + e (5.12)

Thus if the residual vector is knowrthe full iteration (alln steps) can be
performed in linear time)(n). Although each step in isolation would relax one
element of the residual if the old solution were still valid, none other than the first
element oB dealt with would actually result in zeroing out the corresponding
residual. Thus this is not, strictly speaking, a relaxation method. As with all
new guesses. It is this recursive nature of iterative methods that makes them
very sensitive to the characteristics of the system outlined above.

A close look at the Jacobi algorithm reveals its essential similarity to the
Neumann series described in section 5.1. Thus, it can be said with confidence
that this simple algorithm will converge to the correct solution in the case of the
radiosity problem.

5.3.2 Gauss-Seidel Iteration

Gauss-Seidel iteration is a slight variation of the Jacobi method. It provides
a true relaxation method and will usually improve the speed with which the
solution converges. At each step during an iteration, the Gauss-Seidel method
uses the most up-to-date version of the solution vector, rather than the solution
vector computed by the previous iteration. Thus, at each oh 8teps of an
iteration, the new entry d8 is computed using the valu&§*Y computed by
previous steps of the current iteration. Otherwise, values computed during the
previous iteratiorB, are used. Thus, to relax set

i1 pg(k+l) n B(K)

k) - g _ § K. _ K. 5.13

SAlthough Jacobi iteration is not often used on its own since more efficient methods
are known, it will become clear in later sections how one can take advantage of the
known residual vector to increase the power of other algorithms.

Radiosity and Realistic Image Synthesis 114
Edited by Michael F. Cohen and John R. Wallace



CHAPTER 5. RADIOSITY MATRIX SOLUTIONS
5.3. RELAXATION METHODS

for (alli) B, = starting guess ;
while ( not converged ) {
for (eachi)

— n BKi -
B =5 - )ijriw -

outputB ;

OO, WN B

Figure 5.1 Pseudocode for Gauss-Seidel iterative solver.

Performing the step for a single entry Bfrequires taking the dot product
of the current guesB®*1 with a row of the matrix, and thus requires
O(n) operations. Consequently, a full iteration consistingn agteps isO(n?).
Alternatively, since

n

r® = E - ZK” Bj(k) (5. 14)
if all the residuals are updated afesch steppne can set
(o)) _ gl 4 T (5.15)
= + — .
gD = B+

i
In this case the cost of a step is reduce®(b), but the residual update will
be O(n) for each step and a full iteration is ag&in?. Essentially, these
operations are equivalent to the operations in equation 5.12.

The Gauss-Seidel Algorithm

If the i’'s are relaxed in order, the Gauss-Seidel algorithm in Figure 5.1
results. One iteration of the algorithm involves relaxing each residual in turn.
Gauss-Seidel iteration can be shown to be absolutely convergent for diagonally
dominant systems such as the one arising in the constant radiosity formulation. A
variant of this algorithm has been shown to work well for the radiosity problem
[62]. Convergence criteria are typically specified by a maximum residugl, ||
or a maximum change in the solutiorB*l} — B¥||., where the notation
[f (X)||- refers to thé. norm (see box page 133).

Gathering: A Physical Interpretation of Gauss-Seidel

Examining a single step in the Gauss-Seidel algorithm (line 4), a single nodal
radiosity valueB,, has been selected to update by summing contributions from
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Figure 5.2 Gathering: a Gauss-Seidel step.

all other radiosity values weighted by the reflectivities and form factors in the
ith row of K. Assuming constant elements, each term of summation in line 5
can be expanded using the K matrix (equation 5.3) entries and taking advantage
of the fact thaK; = 1 if elements cannot “see” themselves. Thus

DB =rBF,; (5.16)
This term represents the contribution made by elemeatthe radiosity of
elementi. Thus the complete step is equivaleng#aheringthe light from all
other elementsto arrive at a new estimate f8 (see Figure 5.2). Note that
single step involves omew of K and updates singleradiosity value.

5.3.3 Southwell Iteration

A variation of the Gauss-Seidel method provides an alternative algorithm with
a slightly different physical interpretation. In the less well kndouthwell
iteration [90], rather than relax each residual in turn, theirawth the largest
residual,Max (r), will always be selected.

“Strictly speaking, gathering is from the energy under the other basis functions, but
for constant bases one can speak of gathering from elements.
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Thus a singlestep’ p, of the Southwell algorithm is

B.K.
Fori, suchthatr; = Max(r): B = E - Z% (5.17)

It would seem that Southwell would requit¥n?) operations to compute
all ther,’s before picking the greatest one. (The computation of eaabove
involves computing the dot product 8f? with the rowK,.) Fortunately, if
at some step, r® is known for a giverB®, the next approximation can be
made if the changesB® are known. Thus,

B®+*) = B® + AB® (5.18)
and the updated residual can be computed as:
re = E —K(B® + AB®) = r® — KAB® (5.19)
since
r®=E —KB® (5.20)

However, in this case all th®B® are zero excepB,. Therefore,

P = () Ki gror g (5.21)
Kii

and expanding for the case of constant elements,
rj(D+1) = rj(P) + erji * ri(P), ;] (522)

Updatingr thus takes onl{(n) steps involving multiplying a scalar bycalumn
of the matrix,K.

The final requirement is to comput® easily at the start of the algorithm.
Simply choosingB®© to be0 (the zero vector) gives

rO=E-KBO=E (5.23)
The Southwell Algorithm

The Southwell relaxation method follows the pseudocode in Figure 5.3.
As in the Gauss-Seidel algorithm, eastiepis O(n). It is more difficult to
characterize the cost of an entire iteration since some elements may be revisited
many times before another is operated on. As will be seen below, a close
approximation to the final answer can often be achieved in a small number of
steps, resulting in a linear overall solution time.

%It is impossible to write down a single iteration, since it is possible that one residual
will be relaxed many times before another is ever touched. The supersasipised
to indicate thestepnumber in this section rather than the iteration number as in other
sections

Radiosity and Realistic Image Synthesis 117
Edited by Michael F. Cohen and John R. Wallace



CHAPTER 5. RADIOSITY MATRIX SOLUTIONS
5.3. RELAXATION METHODS

1 for (alli) {
2 B =0;
3 r,=E;
4}
5  while ( not converged ) {
6 pick i, such that | is largest ;
7 B =B +r,/K,;
8 temp=r, ;
9 for (allj)r, =r —K/K; * temp;
10 }
11 outputB ;
Figure 5.3 Pseudocode for Southwell relaxation.
Traditional Radiosity Progressive Refinement
Mesh Environment Mesh Environment
Y Y
Compute Form Factor Matrix > ComputeOne Rowof F
Y Y
Solve Linear System PerformOne Stepof Solution
Y Y
Display Result Display Intermediate Result

Figure 5.4 Traditional radiosity versus progressive refinement.

Shooting: A Physical Interpretation of Southwell Iteration

Each step of the Southwell algorithm does two things. It updates one element
of the radiosity vectorB, and updatesll of the residuals. If constant bases
are used, the physical interpretatiorBofs the vector of nodal radiosity values
and thus the radiosity of each element. What is the physical interpretation of the
residuals,r? The residuals are thenshotradiosity of each element. In other
words, the residuals represent the radiosity that has been received as illumination
by the elements but has not yet been “reflectedshmtback out to contribute
further to the illumination of the environment.

It is clear from equation 5.22 that each step takes one residual and adds
fractions of it to each of the others. The specific fractions arghtemlumn of
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Figure 5.5 Shooting: a progressive radiosity step.

K. Rewriting equation 5.22 using the reciprocity principle,

rJ(p+1) = rj(|o) + erjiri(p) = rJ(|o) + ,—j[:ijﬁri(p) (5.24)
A

or rearranging,

DA =r®A+rF r®A foreach residual (5.25)

shows that the totainshot energyradiosity 3 area), is reduced in each step
since both the"and the sum of thE;’s are less than one.

Progressive Refinement

Coheret al [59] describe a slightly different form of Southwell’s algorithm,
called progressive refinemermr progressive radiosityThe goal of progressive
refinement is to display results after eatbpof an iterative process, in order
to provide immediate feedback. The requirement is thus not only to provide an
algorithm that converges quickly, but one that makes as much progress at the
beginning of the algorithm as possible. In progressive refinement the flow of
the traditional radiosity approach becomes an iterative repetition of the steps of
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1 for (alli){

2 B =E;

3 AB =E ;

4}

5  while ( not converged ) {

6 pick i, such thakB, * A is largest ;
7 for (every element) {

8 Arad =AB, * rjF; ;

9 AB, = AB, + Arad ;

10 B =B+ Arad ;

11 }

12 AB =0,

13 display the image usifgyas the intensity of element i ;
14 }

Figure 5.6. Pseudocode for progressive refinement.

computing form factors, performing steps of the solution and displaying inter-
mediate results (see Figure 5.4). For constant elements, the progressive radiosity
algorithm follows the pseudocode in Figure 5.6.

The previous algorithm has the following physical interpretation. All el-
ementsi have a valueB;,, which is the radiosity calculated so far for that
element, and\B, which is the portion of that element’s radiosity that has yet
to be “shot”. During one iteration, the element with the greatest unshot radiosity
is chosen and its radiosity is shot (see Figure 5.5) through the environment. As
result of the shot, the other elementsmay receive some new radiosity,
Arad. This Arad is added toB, Arad is alsoadded toAB, since this newly
received radiosity is unshot. As a result of the shooting, elenmastno unshot
radiosity, SoAB; = 0.

In this algorithm one shooting step (lines 7-11 in Figure 5.6) updates all
the other elements. Energy is shot from the element that currently has the most
unshot radiosity. One shooting step takes)Q@ifperations and can be viewed
multiplying the scalaB, by a column of the form factor matrix. Cohen
al. [59] show that in many cases only a small fractiom shooting steps is
required to approximate a solution closely.

At first glance Southwell and progressive refinement seem to be quite dif-
ferent. Southwell updates only one entryBnwhile progressive refinement
updates them all at each step. However, recognEimgthe progressive refine-
ment algorithm to be the sum Bfandr of the Southwell algorithm, the two
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GATHER ING

Progressive Refinement after 1, 2, 24, and 100 Steps

Figure 5.7 Guass-Seidel versus progressive radiosity.
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algorithms are in fact almost identical. There is one other difference: progres-
sive refinement selects the largesergyto shoot (i.e., the largestA) rather
than simply the largest residual. The use of the sum alteady shotadiosity
and theunshotresidual to be the current answer can be explained as a hybrid of
Southwell and Jacobi iteration. This sum is exactly equivalent to the Southwell
algorithm followed by one full iteration of Jacobi iteration before display.

It should be clear why this algorithm should converge faster than a Gauss-
Seidel algorithm, particularly in the early steps (see Figure 5.7). The Southwell
and progressive refinement algorithms make very good guesses about which el-
ement of the residual vector to relax to get the greatest reduction in the residual
as a whole. Particularly at the start of the iterations, all the unshot energy resides
in the light sources (i.e., only a few emission terms are nonzero) thus there a
only a few nonzero residuals. As the light interreflects about an environment,
the unshot energy (i.e., residuals) becomes more evenly spread out and thus the
advantage of selecting the largest to process is reduced as the algorithm pro-
gress. A full analysis and proof of convergence properties of these algorithms
for the radiosity problem can be found in Gorg¢ral [101].

5.3.4 Ambient Energy and Overrelaxation

Ambient Term

In Cohenet al [59] an additional term, similar to ttenbientillumination
term commonly used in ray tracing, is added to the radiosity approximation,
for the purpose of display only. The ambient term is a crude approximation
that accounts for the reflected illumination not yet accounted for in the solution.
The ambient term models the unknown illumination arriving from unknown
directions as a constant illumination from all directions.

At each step of the progressive refinement solution, there is a known amount
of energy that has not yet been distributedhmt. The average unshot radiosity,
AB, is simply the sum of the entries in the residual vector weighted by the
fraction of the total aréaf the element corresponding to each entry.

- 2 A (5.26)
> A

Each time some of this unshot radiosity is processed in a step of the progressive
refinement algorithm, some of that energy is absorbed, but some of it is returned
to the unshot quantities of other elements (or basis functions). On average, with-
out knowing in advance where the unshot energy will arrive, one can estimate

%In the case of nonconstant basis functionsatkais the integral of the basis function
dotted with itself.
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Displayed Image after 1, 2, 24, and 100 Steps

Figure 5.8 Progressive radiosity with ambient addition.

that some fraction of the energy will be reflected. This fraction is represented
by r,where

2 niA (5.27)
> A

Of course, in the same way that some of the shot energy is reflected, some of
the reflected energy will be rereflected and so on. The total refledigp,
can be represented by the infinite sum

r=

Rog = 1+r+r?>+r3+ ... = (5.28)

1
1-r
Finally, the product of the average unshot radioABy,and the total reflection
gives us an estimate for tlaenbient radiosity, B, ..

Bambient = ERtotal (529)

Each elemeni will reflect its own fractionr; of this quantity. Thus for display
purposes only (see Figure 5.8)

Bidisplay: Bi + r, Bambient (530)
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—— Gauss-Seidel
20 & —o— Progressive Radiosity
—o— PR + Ambient

Y J ’ WI ’ | . |
0 20 40 60 80 100

Figure 5.9 Convergence versus number of steps for three algorithms.

Adding the ambient term brings the displayed image much closer to the
converged solution very early in the process. Figure 5.9 shows a plot of the
convergence for the images in Figures 5.7 and 5.8 of the Gauss-Seidel, progres-
sive refinement, and progressive refinement plus ambient vensuiser of steps
(not iterations). The vertical axis is in terms of area weighted RMS error:

S8 - BY) A
V' osA

x 100 (5.31)

wherep is the step number, argF is the result of a converged solution.

It should be noted that as each step of the progressive refinement algorithm
proceeds, the total unshot energy is reduced and thusrthentterm is also
reduced and the displayed and actual radiosity values, converge.

Overrelaxation

The ambient term described in the previous section is a crude representation
of the energy that has not yet beshot. It improves the displayed image, but
does not speed up convergence of the actual sol@werrelaxatiortechniques
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provide a more systematic attempt to acknowledge the energy unaccounted for
so far, by “pushing” the solution farther ahead at each step than the current
solution vector indicates.

Overrelaxation techniques are similar to the relaxation methods previously
described with one exception. When relaxing a particular residual, the change
in the solution vector is increased by a faotofor equivalently the residual is
considered to have been larger than it actually is). Equation 5.12 becomes

k
(k+1) — pn(K) ri( )
B = BY + Vo (5.32)

i
and theith residual being relaxed is now not set to zero, but rather,
r&d = (1-v) r® (5.33)

Overrelaxation involves a value forgreater than 1, while underrelaxation
involves a value between 0 and 1. In cases where Gauss-Seidel methods con-
verge, overrelaxation will often increase the convergence rate. (Underrelaxation
is sometimes useful for unstable systems.) The best valuevidi depend on
the behavior of the particular problem being solved and is usually determined
experimentally. For radiosity algorithms, overrelaxation witlequal to about
1.2 has been found to give good results [58].

In the context of the progressive refinement method, overrelaxation can be
thought of a®overshootingFeda [82] discusses a heuristic for overshooting in
the progressive refinement algorithm which works well if certain restrictions are
placed on the overshot amount to avoid divergence.

Gortleret al [101] propose an analytic approach that simulates the known
interreflection between the shooting element and all others while maintaining a
linear complexity at each step. In each step all the selected element’s residual
is relaxed as well as the portion of the residual from all other elements to the
selected element. The method is callesuper-shoot-gathesince in essence
light is shot from the element to all other elements, and then gathered back
to the shooting element, thus taking further advantage of the form factors that
have been computed for the shooting step. This form of overrelaxation was
found to be particularly useful in “bright” environments (i.e., environments with
a high average reflectivity). This should be no surprise since it is the secondary,
tertiary, etc., reflections that are captured by the overshooting.

Other Solution Methods

The above sections do not completely enumerate all methods for solving linear
systems. Methods applicable to the radiosity problem have been addressed to
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the exclusion of others. However, a class of applicable methods based on a
divide and conqueparadigm remains to be described. This approach will be
discussed in Chapter 7, where hierarchical solution methods are outlined.

5.4 Dynamic Environments

All the discussion of the radiosity method in previous chapters has assumed
that that environment is unchanging, that is, the geometry, lighting, and material
properties are static. Although this is acceptable for some applications, many
other applications of image synthesis require the ability to change or move
objects. Of course, the solution can always be restarted from scratch after
each change, but this requires throwing away potentially valuable information,
particularly if the change is small.

5.4.1 Lighting Changes

Changes in the emission terms for the light sources are the simplest type of
change to include. The form factors are purely a function of geometry, thus the
most computationally expensive part of the radiosity algorithm is not affected
by changes in the lighting. Thus tKematrix is unchanged and modifications
to E require at most a new solution to the linear system of equatid@hs; E.
If the changes t& are small, then the old solution is a good approximation to
the new one and should be used as the starting guess for the iterative methods
discussed above. For example, one might begin with the old solution and shoot
out the additional light from a light source that has changed. This also includes
the possibility of shooting negative light from lights that have been turned down.
If the application calls for many lighting changes in an otherwise static
environment, a separate solution can be run for each light source with a unit
emission [5]. Since the radiosity equation is linear, the independent solutions
can then be scaled and summed to provide any possible setting for the lights
with no extra matrix solutions.

NumLights

B = Z E B, (5.34)

where E = the emission otLth light source, an®, = the radiosity solution
vector computed using the emission vector set to 1 ttodight source and O
elsewhere.

This provides a very rapid means of changing between lighting settings.
Dorsey [73] has gone one step further in her opera lighting design system by
prerendering multiple images of complex scenes from a fixed viewpoint, differ-
ing only by the light emissions (color plates 53, 54 and the back cover). By
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Figure 5.10 A dynamic environment with bounding box around all positions of
moving object.

scaling and summing the images themselves, different lighting conditions can be
set at interactive rates. (More details of the rendering step and this application
can be found in Chapters 9 and 11). If the cost of inveKing undertaken,

then the radiositieB due to any emission vector E can be solved by a simple
matrix-vector multiplicationK* E = B.

5.4.2 Reflectivity Changes

Changes in the reflectivity of surfaces in the environment also do not require
new form factor computations. Again, at most this will require modifying the
rows ofK based on the newvalues and performing a new solution of the linear
equations. However, a new solution accounting for changes in a single, or a few,
surfaces can be found more quickly by starting from the original solution [51].
New unshot energ@BA, (possibly negative) can be shot from the surfaces
that have changed, where

A = L——1 B (5.35)
Clearly, this will not work in the case of surfaces that were originally defined

as black (i.e.p? = 0).

5.4.3 Changes in Geometry

Changes in the geometry present the most challenging problem for rapidly de-
termining new solutions. Any individual change in the shape or position of a
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-

Figure 5.1 A dynamic environment: (a) initial solution, (b) after shooting
negative energy to table top, (c) after shooting positive energy with airplane in
new position.

single object, or the addition (or removal) of a new object, has the potential to
change any entry iK. However, if it is assumed that only small changes are
made, there are a number of acceleration methods that have been described and
demonstrated.

Baumet al [20] describe a method that can be used when all changes in the
positions of any objects are known in advance of any form factor computation.
In this, case, a bounding object can be constructed for each dynamic object. The
bounding box contains the volume swept by the object as it moves along the path
(see the airplane in Figure 5.10). During form factor computation, form factors
are marked if their visibility is affected by the composite bounding box. Thus,
at subsequent points in time only marked form factors need to be recomputed
before a new solution is performed.

Chen [51] and Georget al [91] do not assume a priori knowledge of ob-

Radiosity and Realistic Image Synthesis 128
Edited by Michael F. Cohen and John R. Wallace



CHAPTER 5. RADIOSITY MATRIX SOLUTIONS
5.5. PARALLEL IMPLEMENTATIONS

FF FF FF
FF i-# Master FF
FF Display FF

<>

Figure 5.12 A parallel radiosity implementation. One master processor controls
the overall flow of the computation and performs the row or columnwise vector
multiply for the solution. A display processor constantly updates the display
based on the partial solutions. The remaining processors (two are idle) compute
rows (columns) of form factors and report the results to the master processor. This
coarse grained approach assumes each processor has a full geometric description
of the environment.

ject motion, addition, or deletion. As in the methods for changes in lighting or
material reflectance, they start with an existing solution for an environment (see
Figure 5.11) and compute a new solution after some small change, for example
moving the position of a chair. The new solution proceeds by identifying the
affected form factors (e.g., between the light and the table top in Figure 5.11).
Negative energy is shot to “undo” the affected interactions. The dynamic object
is then moved to its new position, and positive energy is shot. The unbalanced
positive and negative energy are then propagated as before. Both Chen and
Georgeet al. provide many implementation details concerning the rapid iden-
tification of affected form factors, the optimal ordering for the new shooting
sequences, and other issues.

5.5 Parallel Implementations

Radiosity solutions for complex environments continue to be slow. Beyond
improvements in the radiosity algorithms themselves, one is left with the possi-
bility of speeding up the solutions with the use of parallel hardware. A number
of implementations have been described that parallelize various portions of the
solution process.

The different implementations range from the use of built-in pipelined hard-
ware in graphics workstations [21], to course grained systems developed on
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networked workstations [186, 191], to transputer arrays [46, 107, 188] to the
thousands of processors on SIMD machines such as the CM2 [77] and MasPar
[240]. Other reports describe theoretical analyses of possible algorithms [244].

Methods can be grouped according to where and how they exploit the natu-
ral parallelism in the algorithms. The computation of form factors is the primary
bottleneck in the radiosity algorithm, and it is on that step that most implemen-
tations have concentrated. In [46, 50, 81, 107, 190] severaiofufl of form
factors are computed in parallel. Each processor performs a single hemicube or
other form factor quadrature and reports the results to another processor which
uses the results for the next step in an iterative solution (see Figure 5.12). An
additional processor may be devoted to displaying the current state of the radios-
ity solution. In a finer grained approach, individual form factors are parceled
out to processors in [21, 95]. There are also many implementations of parallel
ray tracing which can be used at an even finer level within a single form factor
computation. Drucker and Schrdoder [77] exploit parallelism at many levels in
their implementation on the Connection Machine.

Each of the reports offers insights into the many subtleties that arise when
using and implementing parallel strategies. The reader is encouraged to seek
out these references for a fuller understanding of the algorithms and reports of
experiments on a variety of environments.
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Chapter 6

Domain Subdivision

As described in Chapter 3, the approximation of the radiosity fundsips),

is a fundamental step in the discretization of the radiosity equation. The ap-
proximation, B(x), is defined by the linear combination mfasis functions,

N, (X):

B(x) = B(x) = Z BN, (x) (6.1)

The basis functions define a finite subspace of functions from which the approx-
imation B(x) is realized by choosing the coefficienBs,

In a finite element approximation, each of the basis functiin), has
local supportjn other words, each is nonzero over a limited range of the function
domain. A basis function is associated with a single node and has a value of
zero outside of elements adjacent to the node.

As discussed in Chapter 3, each type of basis function is defined with respect
to a generic element, such as the unit square. The generic basis functions are
then mapped to the actual model geometry according to the subdivision of the
surfaces into elements. Thus, the form of pasticular basis function is tied to
the placement and size of one or a few elements. The total set of basis functions
defining the approximation is thus determined by itieshof elements and
nodes.

The next three chapters will describe strategies and algorithms for subdi-
viding the domain of the radiosity function into finite elements, with the goal
of producing an efficient and accurate radiosity solution. The accuracy of the
approximation, B(x), is influenced by the size, shape and orientation of the
elements, as well as by the polynomial order of the basis functions. An optimal
mesh uses as few elements as possible to achieve a desired accuracy, which
generally means distributing errors in the approximation as evenly as possible
among the elements.

To achieve a high quality mesh, it is first necessary to be able to measure the
accuracy of the approximation produced by a particular subdivision and choice
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of basis functions. It is also important to understand how various characteristics

of the mesh affect accuracy. This knowledge can then be used to develop
strategies for producing a good mesh. These basic issues will be discussed in
the present chapter. More sophisticateerarchical mesh refinement methods

will be discussed in Chapter 7. The actual mechanics of subdividing geometry

will then be treated in Chapter 8.

6.1 Error Metrics

6.1.1 True Error

The true error in the approximate radiosity function at locatisrthe difference
between the actual function and the approximate function at

&(x) = B(x) — B(X) (6.5)

Of course, equation 6.5 cannot be evaluated directly, 8(deis not known.
Instead,e(x) must be estimated. Several error estimator are described in the
following sections. Particular implementations of these approaches for radiosity
will be described in section 6.3.3.

6.1.2 Local Estimate of Approximation Error

The mesh and associated basis functions determine a subspace of possible func-
tions. Higher-order basis functions increase the space of realizable functions,
allowing a closer approximation to the actual function. Thus, one approach to
estimating the error is to compare the original approximation

n

B(x) = Z BN (x) (6.6)

where the basis function,(x), are of ordek, to a higher order approximation

B(x) = Z BN, (x) (6.7)

where the new basis functions, ,(x), are of ordek + 1 or greater. For example,

if B(X) is constructed using Ilnear basis functions, the error can be estimated
by comparingB(x) to an approximatiorB(x) constructed using a quadratic or
cubic basis. The error estima#dx) is then given by

£(x) = B(X) — B(X) (6.8)
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Function Norms and Error Metrics

A function norm is a measure of the “magnitude” of a function, analogous
to a vector norm or an absolute value for a scalar.LJHenction norms
are given by

_ _ o OP
Lo(0) = |df, = a'ql)cp(x)l o (6.2)
wheregis a function defined over domain

When used to characterize the error of an approximagi@hjs simply the
difference between the desired and approximate solufof:= &(x) =
f(x) — f (x). The norm can be computed over a limited region to characterize
local error or over the entire domain of the function to meagiaigal error.

The most commonly used norms are thel,, or L, norms, the cases
wherep equals 1, 2 oro for equation 6.2. Thé&, norm of the approxi
mation errorg, is simply the area between the true function curve and the
approximate function curve (in the case of a function of two variables, the
volume between the function surfaces). Thaorm ofegis similar but giveg
more weight to large errors. The norm ofe is simply the maximum valug
of the error in the region.

As with other integral values, function norms are usually evaluated as 4 finite
sum. A discrete form of the, norm is given by

d!p
L) = ;Iqo(ml%xg 6.9

Note that if the discretle, norm is used as a local measure of mesh element
error, merely subdividing an element will produce elements with a smaller
local error, even if the global error is unaffected, sinceAthare related tc
the element size. The root mean square (RMS) error is a useful altefnative
in this case. The RMS error is related to thenorm and is given by

TO(F(x) — f(x))?W
o = J (109 — o)W (6.4)
where the Ware weights assigned to each sample point. Typically gach

weight is the area of the domain represented by the sample point, in which
case the RMS error is an area average otjheorm.

For a more detailed discussion of function norms, and of functional apjprox-
imation in general, see, for example, [180].
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Figure 6.1 Error measures: true versus approximate error.

Figure 6.1(a) shows approximations of a funcfigi using piecewise con-
stant and piecewise linear basis functions. The shaded areas béyeard
the approximation curves represent the approximation error. Figure 6.1(b) shows
two plots depicting the estimation of this error by the difference between the
original approximation and a higher-order approximation constructed using the
same nodal values. In the upper plot the error in a constant element approxi-
mation is estimated by comparing it to linear interpolation. In the lower plot,
linear and quadratic interpolation are compared.

This estimate of the error is typically evaluated over a local region of the
domain, for example, over an element when deciding whether it should be re-
placed by several smaller elements. A single value characterizing the magnitude
of the error function can be obtained usinfyiaction normsuch as one of the
L, norms (see the box on page 133 for a discussion of function norms).

6.1.3 Residual of the Approximate Solution

The residual of the approximate solution provides another approach to charac-
terizing &(x). The residuak(x) is obtained by substituting(x) for B(x) in
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the original radiosity integral equation:

r(x) = B(x) - Ex) - fs p(X) G(x, x(x)) B(X) dA (6.9)

Clearly, if the residual is zero everywhere, thex) is an exact solution
to the integral equation and the actual error is also zero. Otherwise, the resid-
ual function is not identical to the actual error function. Strictly speaking, the
residual provides a global rather than local error estimate; a high residual in
a certain local region does not necessarily mean B{a} is a poor approxi-
mation over that particular region. The residual in that region may be due to
inaccuracies elsewhere in the domain. However, in practice the residual is often
a useful indicator of local error introduced by the approximation. The residual
IS expensive to compute because of the integration and is normally evaluated
only at selected points.

6.1.4 Error Based on the Behavior of the Kernel

As discussed in Chapter 3, the kerr(x') G(x, x') of the radiosity integral
equation is also approximated by projecting it onto the selected basis functions.
Thus the error can also be characterized by examining the behavior of the ker-
nel function itself rather than the radiosity approximation. For example, while
computing the form factors one might recognize large local variations in the
geometric kernelG(x, x'), across certain pairs of elements. These gradients
might result from surfaces that are in close proximity or from shadow edges or
penumbra.

The geometric termG(x, X'), is a function of two points, typically on two
different elements. When it is determined that the basis functions cannot capture
the local variation of the geometric kernel itself, a decision can be made to
subdivide one or both of the elements in order to reduce the error introduced by
the mesh. This topic will be explored in much greater detail in Chapter 7 in the
context of hierarchical subdivision methods.

6.1.5 Image Based Error Metrics

The error metrics discussed in the previous sections are based on quantities
computed in the same domain as the radiosities, that is, the surfaces. However,
the final product of an image synthesis algorithm is actually an image comprised
of a finite number of pixels. If an image for a known viewpoint is the goal
of the global illumination solution, then an error metric that incorporates view
information can provide a valuable means of limiting and focusing computational
effort.
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Given a particular set of viewing parameters, the accuracy of the approxi-
mation for the visible surfaces is clearly the most critical, or the imgstrtant.
The importance of other surfaces depends on their contribution to the illumina-
tion of the visible surfaces. Smigs al. [220] incorporate a quantity measuring
importance in this case into an image-based error metric. Much like radiosity,
importance depends on surface geometry and reflectivity. It is propagated back
from the eye point into the environment, much as radiosity is propagated for-
ward from the light sources. Smits’ formulation and algorithm are described in
detail in Chapter 7.

6.1.6 Perceptually Based Error Metrics

The development of quantitative error metrics for radiosity [116, 120] is a crucial
step toward reliable algorithms. However, for image synthesis applications, it
Is important to keep in mind that computiB¢x) is not the ultimate goal. For
image synthesis, computing the radiosity, or radiance, is just one step in the
process of generating a visual experience.

As outlined in Chapter 1 and discussed in detail in Chapter 9, the dis-
play and perception of an image involve converting the radiance or radiosity to
screen values and finally to brightness as perceived by the eye and brain. These
transformations are nonlinear and highly complex. As a result, certain errors
may degrade perceived image quality to a greater or lesser degree than an error
measure based on photometric or radiometric quantities alone would indicate.

A perceptually based error metric would perhaps be used on the subjective
guantity of perceived brightness rather than radiosity. Low-order derivatives
might be incorporated into the metric to account for the sensitivity of the eye
to contrast. In the absence of such a metric, current attempts to incorporate
perception into the image synthesis process are largely heuristic or ad hoc.
Perceptually based error metrics for image synthesis remain an important re-
search topic.

6.2 Mesh Characteristics and Accuracy

An important goal when creating a mesh is to produce an approximation of

the required accuracy as inexpensively as possible. This requires understanding
how various characteristics of the mesh affect the accuracy of the approxima-
tion. These characteristics can be classified into four broad categories: mesh
density, element order, element shape and discontinuity representation. Before
discussing each of these in more detail, a concrete example will be presented

For exceptions and valuable discussions of this issue, see [238] and [250]. Subjective
brightness and image display are discussed at length in Chapter 9.
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Figure 6.2 A radiosity image computed using a uniform mesh.

(see Figures 6.2 through 6.4) to illustrate the related issues of mesh quality,
approximation error and visual quality.

6.2.1 An Example

The images in this series compare a radiosity solution to a “correct,, reference
image. The model is a simpleshaped room illuminated by a single, diffusely
emitting area light.

The image in Figure 6.2 shows a radiosity solution on a uniform mesh of
linear elements performed using point collocation and rendered with Gouraud
interpolation. The solution was performed for direct illumination only (i.e.,
interreflected light was ignored). The form factors to the light source were
computed at each mesh node by shooting 256 rays to randomly selected points
on the light polygon.

The reference image (see Figure 6.3(a)) was computed by similarly eval-
uating the form factor to the light at the surface point visible at the center of
each image pixel. Since the contribution of the light source has been evaluated
similarly in both the radiosity and reference images, the difference between the
two images is essentially due to the approximation created by the element mesh.

Numerous artifacts introduced by the approximation are evident, including
blocky shadows (letter A of Figure 6.3(b)), missing features (letter B), Mach
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(a) Reference image.

(b) Artifacts introduced by the approximation.

Figure 6.3:
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Flgure 6.4 Error image.

bands (letter C), inappropriate shading discontinuities (letter D), and unresolved
discontinuities (letter E).

Figure 6.4 is a visualization of the RMS error (defined in the bdxrmtion
normson page 133) for each element. The error was computed by evaluating
the radiosity at 16 interior points across each element and comparing this to
the approximate value. The comparison shows absolute as opposed to relative
error. As apparent in this image, the error in the approximation is very unevenly
distributed over the mesh. Computational effort has been applied fairly equally
over the domain of the approximation, with very unequal contributions to the
resulting accuracy.

The example shown in these images will be referred to throughout this
chapter, to illustrate the discussion of meshing strategies. That discussion will
begin with the description of basic mesh characteristics in the following sections.

6.2.2 Mesh Density

Meshdensity isdetermined by the size of the elements into which the domain is
subdivided. The density of the element mesh determines the number of degrees
of freedom available to the approximation. More elements provide more degrees
of freedom, which allows the approximation to follow the actual function more
closely and increases the degree to which small features like shadows can be
resolved.
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Figure 6.5 Comparison of element subdivision strategies.
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Figure 6.6. A radiosity solution with the mesh density increased four times over
the mesh used in Figure 6.2.

To illustrate, a one-dimensional function is approximated in Figure 6.5 using
a variety of subdivisions. In the coarsest subdivision (the topmost plot in Fig-
ure 6.5) the approximation follows the actual radiosity function closely where it
is almost linear, but diverges where the function changes slope quickly. Smaller
features of the function are missing entirely when they fall between nodes.

Evaluating the function at smaller intervals increases the accuracy of the
approximation, as shown in the second plot of Figure 6.5. However, the errors
remain unevenly distributed, meaning that the extra effort has been applied
inefficiently. Ideally, the domain should be subdivided more finely only where
it will improve the accuracy significantly, as in the third plot of Figure 6.5.

Similar observations apply to approximating the radiosity function. In the
example image (see Figure 6.2), inadequate mesh density results in elements that
are too large to capture shading detail accurately. This is particularly evident in
the “staircase” shadows cast by the table (letter A in Figure 6.3(b)), where the
size of the shading feature (the penumbra) is much smaller than the separation
between nodes.

Just as in the one-dimensional case, uniformly increasing the mesh density
improves the overall accuracy. The image in Figure 6.6 was produced using
a uniform mesh with four times as many elements as used in Figure 6.2. The
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Figure 6.7 RMS error for the elements in figure 6.6.

quality is better and some of the artifacts are almost eliminated. However,
the corresponding error image in Figure 6.7 shows that the extra effort has been
applied inefficiently, with many elements subdivided where the error was already
negligible. This effort would have been better expended in further reducing the
error in the remaining problem areas, such as along the shadow boundaries.

6.2.3 Element Order and Continuity

Element order (i.e., the order of the basis functions defined over the element) also
has a direct effect on accuracy. Higher-order elements interpolate the function
using higher-order polynomials and use more information about the behavior
of the function, either by evaluating both values and derivatives at the nodes
or by evaluating the function at Additional nodes. Thus, higher-order elements
can follow the local variations in a function more closely than the same number
of lower-order elements. However, higher-order elements are generally more
expensive to evaluate. Thus, one approach is to use higher-order elements only
where the error is high and the extra effort is justified.

The type of basis functions used also affects the degree of continuity in the
approximation at element boundaries. Continuity of value and of lower-order
derivatives C° C!, C?, ..) is important because the human visual system is
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Figure 6.8 Mach bands caused by first-derivative discontinuities at element
boundaries.

highly sensitive to relative spatial variation in luminance and its derivatives.

For example, the bright streaks along the wall in the example image (see
the closeup in Figure 6.8) correspond to discontinuities in the first derivative of
the radiosity approximation, which occur at the boundaries of linear elements.
The eye accentuates first derivative discontinuities, resulting in the perceptual
phenomenon known as Mach bands [189]. Although Mach bands can occur
naturally, they are distracting when they are incorrectly introduced by the ap-
proximation.

Since interpolation within elements is a linear sum of polynomials, the ap-
proximation is smoothG*) on element interiors. However, continuity at ele-
ment boundaries is not guaranteed. Eagrangeelements interpolation inside
or on the boundary of the element depends only on the function values at the
nodes belonging to that element. Because interpolation along boundaries uses
only nodes on the boundary, linear and higher order Lagrange elements guaran-
tee C° continuity at element boundaries. (Constant elements are discontinuous

2The notationC* indicates that a function is continuous in all derivatives up to and
including k. C° thus indicates that a function is continuoussatue (i.e., there are no
sudden jumps in valuef! that the function is continuous 8tope (i.e., there are no
kinks), andC” that the function ismooth(i.e., continuous in all derivatives).
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Figure 6.9 A combination of rectangular and triangular elements used to fill a
complicated geometry.

in values at element boundarigdermite elements can provide a higher degree
of continuity with fewer nodes by interpolating nodal derivatives as well as val-
ues.C* continuity, for example, requires interpolating the gradient at boundary
nodes.

For radiosity, providing continuity greater th@his motivated primarily by
perceptual issues. Thus, elements with this property, such as the Clough-Tocher
element used by Sales#t al. [203], have been applied mainly to the rendering
stage. These will be discussed in detail in Chapter 9.

6.2.4 Element Shape

Elements should provide well-behaved, easily evaluated basis functions. For this
reason, standard element shapes consist of simple geometries, typically triangles
and rectangles. These standard shapes can be mixed to subdivide a complicated
geometry more efficiently (see figure 6.9) or to provide a transition between
regions of differing mesh density (see Figure 6.10).

Isoparametric elements allow the standard shapes to be mapped to more
general geometries, using the basis functions to interpolate geometric location
as well as radiosity values (see section 3.8). The bilinear quadrilateral
element is a common example. Higher order isoparametric elements can be
mapped to curved geometries. The parametric mapping must be invertible,
which places some restrictions on the element shape. Concavities and extra
vertices are normally to be avoided.

If Gouraud shading is to be used for rewndering, anumber of special problems
relating to element shape must be avoided. For example, Gouraud interpolation
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Figure 6.1Q Use of triangular elements to provide transition between regions of
high and low mesh density.

over a concave element can generate discontinuities in value, as shown in Fig-
ure 6.11. The problems relating to element shape and Gouraud interpolation
will be discussed in Chapter 9.

Aspect Ratio

Element shape affects the efficiency with which the mesh samples the radiosity
function [18]. To make the most efficient use of a given number of nodes, the
nodes should be evenly distributed over the domain of the function (assuming
that the behavior of the function is unknown). A distribution of nodes that is
denser in one direction than in another is inefficient, since if elements are subdi-
vided far enough to make sampling adequate in the sparse direction, sampling in
the denser direction will be greater than necessary. Poor element shape can also
affect the accuracy or efficiency of numerical integration of the form factors.

A reasonably uniform distribution of nodes can be obtained by requiring
elements to have as high aspect ratioas possible. The aspect ratio is defined
as the ratio of the radius of the largest circle that will fit completely inside the
element to the radius of the smallest circle that will fit completely outside the
element (see Figure 6.12) [18]. This ratio should be as close to 1 as possible.

However, if the behavior of the function is known, anisotropic sampling
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Figure 6.11 A concave element, with a discontinuity introduced by Gouraud
shading (closeup of letter D in Figure 6.3 (b)).

may be more efficient than a uniform distribution, since the function changes
more slowly in the direction orthogonal to the gradient and thus fewer samples
are required along that direction. Elements with a lower aspect ratio may be
more efficient in this case, if oriented correctly.

In a review of surface triangulation techniques, Schumaker [207] provides an
excellent example of the effect of element orientation. A function surface is first
approximated by triangulating regularly spaced nodes. However, the approxi-
mation is more accurate when the nodes are connected to form triangles with
“poor” aspect ratios (see Figure 6.13). Schumaker discusses how approximation
accuracy can be incorporated into the quality metric used by the triangulation
algorithm. The approximation of a surface in 3-space is analogous to the ap-
proximation of the radiosity function and the surface approximation literature is
thus a fruitful source for meshing algorithms.

Form factor algorithms may make assumptions that are violated by elements
with poor aspect ratios. For example, in the adaptive ray casting algorithm
described by Wallacet al [247], (see Chapter 4), elements or pieces of elements
(delta-areas) are approximated as disks. The accuracy of the disk approximation
decreases with decreasing element aspect ratio.
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Aspect ratio =0.15 Aspect ratio = 0.45

Figure 6.12 The effect of aspect ratio on sampling density. A low aspect ratio
tends to produce an anisotropic sampling density.

Mesh Grading

A nonuniform, orgraded,mesh may be required to distribute the error evenly in
the approximation. Inwell-gradedmesh, element size and shape vary smoothly

in the transition between regions of higher and lower density (see Figure 6.14).
Abrupt changes in size or shape will often cause visible irregularities in shading,
since neighboring elements will approximate the function with slightly different
results. Because of the eye’s sensitivity to contrast, such differences may be
visible even when the error for both elements is within tolerance.

Mesh Conformance

It is important that adjacent elemerdsnform across shared boundaries, as
shown in Figure 6.15. Discontinuities in value created by nonconforming ele-
ments can cause distinctive image artifacts. Conforming elements share nodes
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(b)

Figure 6.13 (a) A surface approximation based on a regular subdivision. (b) The
same surface approximated using elements with poor aspect ratios but oriented
S0 as to provide a better approximation, (after Schumaker, 1993).

Figure 6.14 The top mesh shows a poorly graded transition between regions of
high and low mesh density. The bottom well-graded mesh provides a smoother
transition.
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T-vertex

Figure 6.15 Conforming versus nonconforming elements.

along boundaries, thus ensuri@jcontinuity at the boundaries. In practice, this
means thatf-vertices(defined in Figure 6.15) must be avoided. Conformance
is not an issue for constant elements, which are often used during the radiosity
solution, but it is critical for rendering, where linear or higher-order elements
are normally used.

6.2.5 Discontinuities

If light sources have a constant emission value (orCaneacross the surface
and if changes in visibility are ignored, then the radiosity fundBion across a
receiving surface will be continuous in all derivatives (i.e., it will als&Cbg
This is evident from the form factor kern&(x, x'), which itself isC* except
where the visibility ternV/(x, x') changes from one to zero, and at singularities
wherex andx’ meet and the denominator goes to O.

If changes in visibility (i.e., shadows) are included, the radiosity function can
contain discontinuities of any order [121]. Discontinuities in value and in the first
and second derivatives are the most important, since these often provide visual
cues to three-dimensional shape, proximity, and other geometric relationships.
Much of the “image processing” performed by the eye involves enhancing such
discontinuities and, as a result, the failure to reproduce discontinuities correctly
can degrade image quality dramatically.
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Figure 6.16 Shadows can cause Oth, 1st, 2nd, and higher-order discontinuities
in the radiosity function across a surface.

Value Discontinuities

Discontinuities in the value of the radiosity function occur where one surface
touches another, as at leteeof Figure 6.16. In Figure 6.17 the actual radiosity
function is discontinuous in value where the wall passes below the table top. The
shading should thus change abruptly from light to dark at the boundary defined
by the intersection of the wall and the table. Unfortunately, the boundary falls
across the interior of elements on the wall. Instead of resolving the discontinuity,
interpolation creates a smooth transition and the shadow on the wall appears to
leak upwards from below the table top.

Incorrectly resolved value discontinuities can also cause “light leaks,” in
which interpolation across one or more discontinuities causes light to appear
where shadow is expected. In Figure 6.18, for example, elements on the floor
pass beneath the wall dividing the room. The resulting light leak gives the
incorrect impression of a gap between the wall and the floor. The problem
is compounded when these elements incorrectly contribute illumination to the
room on the left, which is totally cut off from the room containing the light
source.

Derivative Discontinuities

Discontinuities in the first or second derivative occur at penumbra and umbra
boundaries (lette of Figure 6.16), as well as within the penumbra. When mesh
elements span these discontinuities, interpolation often produces an inaccurate
and irregular shadow boundary. The staircase shadows in Figure 6.2 are an
example.
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Figure 6.17 Failure to resolve a discontinuity in value. This is a closeup of the
radiosity solution shown in Figure 6.2.

Figure 6.18 A light leak caused by failure to resolve discontinuities in value
where the dividing wall touches the floor. The dividing wall completely separates
the left side of the room from the right side, which contains the light source.
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Singularities in the first derivative can also occur, as at leteFigure 6.16
where the penumbra collapses to a single point. Tracing along the line of
intersection between the two objects, an instantaneous transition from light to
dark is encountered at the corner point. The first derivative is infinite at that
point, although the function is continuous away from the boundary.

The correct resolution of discontinuities requires that they fall along ele-
ment boundaries, since the approximation is alw@yon element interiors.
Thus, discontinuity boundaries must either be determined before meshing or the
mesh must adapt dynamically to place element edges along the discontinuities.
Since discontinuities may be of various orders, interpolation schemes that can
enforce the appropriate degree of continuity at a particular element boundary are
also required. Techniques for finding and reconstructing discontinuities will be
discussed in detail in Chapter 8.

Continuity at Geometric Boundaries

Discontinuities in value occur naturally at boundaries where the surface nor-
mal is discontinuous, such as where the edge of the floor meets a wall. Such
discontinuities are normally resolved automatically, since surfaces are meshed
independently.

A problem can occur, however, if the boundaries of the primitives gener-
ated by a geometric modeler do not correspond to discontinuities in the surface
normal. For example, curved surfaces will often be represented by collections
of independent polygonal facets. If the facets are meshed independently, adja-
cent elements will often be nonconforming across facet boundaries, and shading
discontinuities will result, as shown in Figure 6.19. It is easiest to maintain
conformance in this case if the connectivity of the facets is determined prior
to meshing and the surface is meshed as a single unlit (see Figure 6.20). This
approach is used by Bawrhal.[18] for the special case of coplanar facets. Bet-
ter yet, the radiosity implementation should allow the user to enter the faceted
surfaces as a topologically connected primitive such as a polyhedron.

6.3 Automatic Meshing Algorithms

With a better understanding of how various mesh attributes affect the accuracy
of the solution, it is now possible to discuss automatic meshing strategies. A
taxonomy of automatic meshing algorithms is shown in Figure %.21.

SAlthough user intervention can be helpful in constructing a mesh, the discussion
in this chapter will be limited t@utomatic meslgeneration. Meshes for engineering
applications are still often constructed with some interactive help, but good results require
an experienced user who understands the underlying principles of the analysis. In image
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Figure 6.19 The polygonal facets representing the curved surface in this image
were meshed independently. The resulting elements are nonconforming at the
facet boundaries, causing shading discontinuities.

Figure 6.2Q The facets in this image were connected topologicatlor to
meshing, and the surface was meshed as a unit.
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Automatic Meshing Strategies

No Knowledge of Function Knowledge of Function
Uniform Non-Uniform A Priori A Posteriori

r-refinement h-refinementp-refinement remeshing

Figure 6.21 A taxonomy of automatic meshing strategies.

Meshing algorithms can be broadly classified according to whether or not
they use information about the behavior of the function to be approximated. Al-
though obtaining an optimal mesh normally requires such knowledge, in practice
some degree of meshing without it is almost always necessary. Meshing in this
case generally means subdividing as uniformly as possible (although subdividing
complex geometries may require a nonuniform mesh). Algorithms for producing
a uniform mesh are described in Chapter 8.

Meshing techniques that use knowledge of the function can be characterized
as either a priori or a posteriori [211]. A priori methods specify all or part of
the mesh before the solution is performed. Discontinuity meshing, in which
discontinuity boundaries associated with occlusion are determined prior to the
solution based on purely geometric considerations, is an a priori method. A
priori algorithms, including discontinuity meshing, are discussed in Chapter 8.

A posteriori algorithms determine or refine the mesh after the solution has
been at least partially completed. An initial approximation is obtained using
a uniform or other mesh determined a priori. The mesh is then refined in
regions where the local error is high, using information provided by the initial
approximation of the function, such as the gradient, to guide decisions about
element size, shape, and orientation. A posteriori meshing strategies are the
subject of the remainder of this chapter.

6.3.1 A Posteriori Meshing

A posteriori meshing algorithms common to finite element analysis can be cat-
egorized as follows [211]:

synthesis the analysis of illumination is typically not the user’s primary task, and the
detailed specification of a mesh is intrusive and often beyond the user’s expertise.
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r-refinement reposition nodes

h-refinementsubdivide existing elements

p-refinementincrease polynomial order of existing elements

remeshingreplace existing mesh with new mesh

Each of these approaches addresses one or more of the basic mesh characteristics
discussed earlier: mesh density, basis function order, and element shape. Radios-
ity algorithms have so far relied almost exclusively on h-refinement. However,
the other approaches will also be briefly described here, partly to indicate pos-
sible directions for radiosity research. See Figure 6.22 for illustrations of these
approaches.

R-refinement

In r-refinement the nodes of the initial mesh are movecdelocatedduring
multiple passes of mesh relaxation. At each pass, each node of the mesh is
moved in a direction that tends to equalize the error of the elements that share the
node. (See section 8.4 for a basic algorithmic approach to moving the vertices.)
The function is then reevaluated at the new node locations. Relaxation can
continue until the error is evenly distributed among the elements.

R-refinement has the advantage that the mesh topology is not altered by
the refinement, which may simplify algorithms. It generates an efficient mesh,
in that it minimizes the approximation error for a given number of elements
and nodes. On the other hand, r-refinement cannot guarantee that a given error
tolerance will be achieved. Since the number of elements is fixed, once the error
is evenly distributed it can’t be lowered further. Also, care must be taken during
relocation not to move nodes across element boundaries. It may furthermore be
difficult to maintain good element shape near fixed boundaries.

H-refinement

In h-refinement, the local error is decreased by increasing the density of the
mesh; elements with a high error are subdivided into smaller elements. (The
“h” refers to the symbol commonly used to characterize element size in finite
element analysis.) The function is then evaluated at the new nodes. Since
new nodes are added, the approximation error can be made as small as desired
(although this may not always be practical). Elements and nodes can also be
removed in regions where the approximation error is lower than necessary. In
some h-refinement algorithms, refinement does not require reevaluation of the
function at existing nodes.
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Figure 6.22 Basic a posteriori meshing strategies.

However, the inability to move existing nodes restricts the ability of h-
refinement to reduce error by adjusting element shape or orientation. As a
result, h-refinement can be inefficient, in that more elements than necessary
may be needed to reach a desired accuracy. Special handling is required to
maintain continuity between elements subdivided to different levels of refine-
ment. H-refinement algorithms must also pay careful attention to mesh grading.
Radiosity implementations have relied almost exclusively on a variety of h-
refinement algorithms. These are expanded on in section 6.3.2. Badiuska
[15] provide a valuable source for h-refinement and p-refinement approaches
used in engineering applications.
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P-refinement
In p-refinement, the approximation error is reduced by increasing the order of the

basis functions for certain elements. (The symbol “p” refers to the polynomial
order of the basis functions.) New nodes are added to the affected elements,
but the element shape and the mesh topology are not otherwise changed. In
contrast to h-refinement, the number of elements in the mesh is not increased,
which limits computational costs in some ways. However, the function must be
evaluated at additional nodes, and the higher-order basis functions can be more
expensive to compute. As with h-refinement, the ability to change element
shape or orientation is restricted. Care must also be taken to maintain continuity

between adjacent elements having basis functions of different orders.

Remeshing

Remeshing algorithms modify both the node locations and mesh topology; in
essence the existing mesh is completely replaced. This allows complete flexibil-
ity of element shape and orientation, as well as the ability to decrease arbitrarily
the approximation error. Following remeshing, the function must be reevaluated
at the nodes of the new mesh.

Hybrid Methods

Hybrid refinement methods can be constructed by combining the above basic
approaches. For example, r-refinement works best when it begins with a mesh
that is reasonably well refined, since relaxation cannot reduce the local error
beyond the minimum achievable with the initial number of nodes. A potentially
useful hybrid strategy might thus use h-refinement to achieve a reasonable initial
sampling density and r-refinement to more evenly distribute the approximation
error.

6.3.2 Adaptive Subdivision: H-refinement for Radiosity

Almost all a posteriori meshing algorithms for radiosity have used h-refinement.
This approach, commonly called adaptive subdivision in radiosity applications,
follows the basic outline of an a posteriori method: a solution is computed on a
uniform initial mesh, and the mesh is then refined by subdividing elements that
exceed some error tolerance.

Figure 6.23 illustrates the improvement provided by adaptive subdivision
over the uniform mesh approximation shown at the beginning of the chapter in
Figure 6.2. The image quality is improved compared to that provided by the
high uniform mesh resolution of Figure 6.6, while using the same number of
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Figure 6.23 Adaptive subdivision. Compare to Figure 6.2.
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Figure 6.24 Error image for adaptive subdivision. Compare to Figures 6.4 and 6.7
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Adaptive_Subdivision ( error_tolerance ) {
Create initial mesh of constant elements ;
Compute form factors ;
Solve linear system ;
do until ( all elements within error tolerance
or minimum element size reached ) {
Evaluate accuracy by comparing adjacent element radiosities ;
Subdivide elements that exceed user-supplied error tolerance ;
for ( each new element ) {
Compute form factors from new element to all other elements
Compute radiosity of new element based on old radiosity values ;
}

}

}

Figure 6.25 Adaptive subdivision pseudocode.

elements. The corresponding error image is shown in Figure 6.24. Note that
even with adaptive subdivision, the error remains high for elements lying along
the shadow boundary.

Cohen et al. [61] first applied adaptive subdivision to radiosity meshing,
using the algorithm outlined in the pseudocode in Figure 6.25. For clarity, this
outline ignores the hierarchical nature of the adaptive subdivision algorithm,
which will be discussed in detail in the following chapter. For now, note only
that new nodes created by adaptive subdivision have their radiosities computed
using the approximatiorfa(x) obtained during the initial solution. As a result,
it is not necessary to recompute radiosities for existing nodes when an element
is subdivided.

Many variations of this basic approach have been developed differing pri-
marily in how they estimate error, and how elements are subdivided. The fol-
lowing sections will survey adaptive subdivision algorithms and how they have
addressed these two issues.

6.3.3 Error Estimation for Adaptive Subdivision

Heuristic and Low-Order Subdivision Criteria

Many algorithms subdivide according to a discrete approximation to one or
more of the error norms described in section 6.1. For example, Gbhan
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Radiosity

Position

Figure 6.26 Cohen’s subdivision criterion based on the difference between nodal
values results in the subdivision of element A, although linear interpolation pro-
videsa good approximation in this case. (Added nodes due to the subdivision
are indicated by holloweircles.) The local minimum at D is also missed.

[61] compare the radiosities of an element and its neighbors . If these differ in
value by more than a user-specified tolerance, the element is subdivided. For the
constant elements, this is essentially equivalent to estimating the local error by
comparing the piecewise constant approximation to linear interpolation through
the same nodes and nodal values.

For rendering, however, Cohen uses linear interpolation. With respect to
linear interpolation, this subdivision criterion is better characterized as a heuristic
designed to produce smaller elements in regions where the radiosity is highly
variable. This heuristic usually produces acceptable results, although it tends to
oversubdivide where the gradient is high but constant. Since linear interpolation
is a reasonable approximation for this case, subdividing has little effect on the
error (see Figure 6.26.)

This heuristic may also fail to identify elements that should be subdivided.
In Figure 6.26 the nodes bounding an element containing a local minimum (letter
D in the figure) happen to have almost the same value. The heuristic fails in this
case, since the nodal values alone do not provide enough information about the
behavior of the function on the element interior. This difficulty is common to all
types of error estimators and algorithm make efforts of varying sophistication
to characterize the function between nodes.

For example, Vedel and Puech [242] use the gradient at the nodes as well as
the function value. Elements are subdivided if the gradients at the element nodes
vary by more than a certain tolerance (see Figure 6.27). This criterion avoids
subdividing elements unnecessarily where the gradient is high but constant (letter
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Figure 6.27 Gradient-based subdivision criterion. Nodes added due to adaptive
subdivision are indicated by hollow circles.

A of Figure 6.27). It may also detect a local minimum within an element whose
nodal values happen to be similar (letter B of Figure 6.27). However, the
criterion is not foolproof. Letter C of Figure 6.27 shows a situation that might
occur when a penumbra falls entirely within an element. The gradients at the
nodes spanning the element happen to be equal and the element is not subdivided.
A more stringent criterion can be constructed that uses both the nodal values
and gradients. An algorithm based on this approach might first compare gradi-
ents at the nodes. If the gradients vary by too much, the element is subdivided.
Otherwise, the gradient at the nodes is compared to the slope of the plane deter-
mined by the nodal values. If they are inconsistent, the element is subdivided.
This criterion correctly identifies the element at letter C in Figure 6.27, although
it does not identify the case indicated by the letter D.

Higher-Order Subdivision Criteria

Vedel and Puech describe a test-bed system that estimates local error based on
a higher-order (bicubic) interpolant over rectangular elements [242]. The local
error estimate is provided by thé norm of the difference between bilinear

and bicubic interpolation over an element (see Figure 6.28). This integral is
evaluated in closed form as a function of the radiosities and gradients at the
element nodes.

In comparing the higher-order error estimate to value—and gradient-based
criteria for several simple cases, Vedel and Puech find the bicubic interpola-
tion estimate to be the most accurate of the three when the radiosity is slowly
varying. However, it fails to identify elements across which the radiosity is

Radiosity and Realistic Image Synthesis 161
Edited by Michael F. Cohen and John R. Wallace



CHAPTER 6. RENDERING
6.3 AUTOMATIC MESHING ALGORITHMS

Radiosity

60 @006 66— 6000
Position
Figure 6.28 Estimation oferror by comparing linear and cubic interpolation.

The gray area represents the estimated error. Nodes that will be added due to
adaptive subdivision are indicated by hollow circles.

changing very rapidly, for example, where the element contains a sharp shadow
boundary. In this case, the simple comparison of values does better, although
as expected, it tends to oversubdivide in other regions. Vedel and Puech con-
clude that the complexity of the bicubic method is not justified, and they suggest
simply comparing both radiosities and gradients.

Estimation Using the Residual

All of the methods described so far ultimately fail at some point because the
nodes can never be relied on to completely characterize the behavior of the
function elsewhere in the element. A local minimum or maximum can fall
entirely within an element without affecting the function or its derivatives at the
nodes, as is the case for the local minimum at letter D in Figure 6.26. Small
shadows are often missed for this reason, with one common result being the
appearance of floating furniture in radiosity images (see the artifact labeled B in
Figure 6.3(b).)

In such cases, the only solution is to evaluate the function inside the element.
One approach is to evaluate the radiosity equation at one or more points within
the element and compare the results to the interpolated values. This is equivalent
to estimating the residual, (described in section 6.1.3.)

Lischinskiet al [153] have used this technique for one-dimensional elements
in a “flatland” radiosity implementation. In [154] they generalize this approach
to two-dimensional elements by evaluating the radiosity at the centroid of the
element and comparing it to the interpolated value at the same location (see
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Figure 6.29 Estimation of error by computing the residual at element centers.
The hollow circles represent interpolated values and the solid circles the com-
puted value. The residual is the difference between the two.

Figure 6.29). The error at the centroid is assumed to be the maximum error
for the element. This approach can thus be viewed as estimatih§ togm.

This technique is independent of the interpolation order (quadratic interpolation
was used by Lischinslat al).

Of course, evaluating the error at the centroid is not guaranteed to catch
every case. In Lischinski’s implementation, mesh boundaries corresponding to
discontinuities in the radiosity function or its derivatives are specified a priori.
Thus, a posteriori adaptive subdivision is required to refine the mesh only within
regions over which the radiosity function is relatively smooth and well behaved,
in which case checking the error at the centroid will generally produce good
results.

Campbell [42] describes a more systematic approach to determining the
behavior of the function on the interior. This is particularly useful when the
radiosity function cannot be assumed to be smooth. Campbell’s criterion for
subdivision uses the difference between the maximum and minimum radiosities
over the entire element, not just at the nodes. Elements that require subdivision
are split perpendicularly to the line connecting the maximum and minimum
points. Thus, Campbell's algorithm depends on a systematic search for the
extrema, which is achieved using standard optimization techniques.

Since Campbell's algorithm computes shadow boundaries a priori, it can
identify fully lit regions and treat them differently from penumbra regions, which
are more complex. For fully lit regions Campbell computes the gradient at the
nodes analytically by differentiating the point-polygon form factor equation.
This allows the use of optimization techniques that take advantage of gradient
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information to accelerate the search. In addition, for a fully lit region there
can be only one local maximum on the interior of the element due to a given
constant diffuse source.

For regions within the penumbra the gradient cannot be computed analyti-
cally and no assumptions can be made about the number of local extrema. In
this case global optimization is performed using fhdtistart method. A grid
is laid over the region and the function is evaluated at a random point inside
each grid cell. Cells whose neighbors are either all greater or all lesser in value
than the cell itself provide the starting point for local optimization.

None of the error criteria that have been described in these sections can guar-
antee that small features will be found. This is one advantage of discontinuity
meshing (discussed in Chapter 8), which locates critical shading boundaries a
priori based on the model geometry. Within regions bounded by discontinuities,
the radiosity function is reasonably well behaved, and simple error estimators
are more reliable.

Computing the Gradient

A number of error estimators require the gradient of the radiosity at the nodes.
Campbell points out that the analytic expression for the form factor between
a differential area and a constant, unoccluded polygonal element is continuous
and differentiable [42]. The expression can thus be symbolically differentiated
to provide an analytic formula for the gradient at unoccluded nodes. However,
the gradient is difficult or impossible to compute analytically in the presence of
occlusion and is actually undefined at certain discontinuity boundaries.
Numerical differencing can also be used to compute partial derivatives. If the
nodes fall on a regular grid, a first-order estimate of the partial derivative along
grid lines can be made by comparing a nodal value with that of its neighbors.
This estimate can be computed using forward or backward differencing, given

by

AB _ B(x;) = B(X-1)
i (6.10)

where x and x , are neighboring nodes. Central differencing can also be used,
given by

AB _ B(Xi.y) = B(Xi.1) (6.11)
AX Xiv1 — Xy

If the mesh is irregular, the tangent plane at the node can be estimated using a
least-squares fit of a plane to the values at the node and its immediate neighbors.
(The contouring literature is a good source for techniques of this kind [257].)
The accuracy of these techniques depends on the spacing between nodes.
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Figure 6.3Q Two different subdivisions of the same element. The upper right
subdivision does not reduce the overall error of the approximation.

Another option is to perform extra function evaluations at points in the
neighborhood of the node. For example, Salegiral. [203] use quadratic
triangular elements having nodes at the midpoint of each edge. To compute the
gradient, a quadratic curve is fit to the values of the three nodes along each edge.
The tangents of the two parabolas intersecting a given corner node determine a
tangent plane at the node, and thus the gradient. This technique is described in
more detail in section 9.2.2.

Ward describes a techniqgue useful for methods that compute the irradiance
at a point by sampling the visible surfaces over the entire hemisphere above
the point, as in the hemicube [253]. The method was developed in the context
of Ward’s Radiancelighting simulation system, which does not use radiosity.
However, a full-matrix (gathering) radiosity solution using the hemicube or sim-
ilar method for computing form factors is equally amenable to Ward's technique,
although as yet no radiosity implementations have taken advantage of it.

6.3.4 Deciding How to Subdivide

Identifying elements that require subdivision is only the first step. The goal
in identifying elements for subdivision is to reduce the local error for those
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elements, but the actual reduction in error will depend~ on how the elements are
subdivided. For example, in Figure 6.30, two ways of subdividing an element
are compared. In one case, the error is reduced significantly, while in the other
it is not reduced at all.

Subdividing intelligently requires some estimate of the behavior of the func-
tion inside the element. Campbell’'s optimization approach, described in the
previous section, is one of the few algorithms that attempts to obtain and use
this information. Campbell searches for the maximum and minimum points
on the interior of the element. The element is then subdivided on a bound-
ary perpendicular to the line connecting the maximum and minimum points.
The flexibility required to subdivide in this way places demands on the actual
subdivision algorithm. Campbell chooses a BSP-tree based approach for this
reason.

Airey [5] and Sturzlinger [227] note a useful technique for the special case
of subdividing rectangles into triangles. The edge created to split the rectangle
should connect the nodes with the most similar radiosities, since this produces
the greatest reduction in the variation between the nodes of each of the resulting
elements. Schumaker [207] discusses a generalization of this approach in which
the behavior of the approximation is incorporated into the quality metric used
during triangulation of the set of nodes. This more general approach has not yet
been applied to radiosity, however.

In the absence of knowledge about the function behavior, the best that can
be done is to subdivide uniformly. This is the approach taken by most existing
adaptive subdivision algorithms. The resulting subdivision will depend on the
particular subdivision algorithm. One common approach is to subdivide ele-
ments into four similarly shaped elements, generating a quadtree subdivision
hierarchy. If the elements are triangles, another approach is to subdivide ele-
ments, by inserting nodes and adding new edges. These and a wide variety of
other subdivision algorithms are surveyed in Chapter 8, with some discussion
of how they can be applied to adaptive subdivision.
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Hierarchical Methods

The meshing strategies surveyed in the previous chapter are designed to reduce
the computational cost of the radiosity solution by minimizing the number of
elements in the mesh. The solution cost depends strongly on the number of
elements, since solving the discrete radiosity equation requires computing an
interaction between every pair of elements. Thus, the cost of the radiosity
solution appears to be inheren@n?) in the number of elements. Each of these
O(n?) relationships involves evaluating the form factor integral (the subject of
Chapter 4) and is thus expensive to compute. Hence, the goal of the meshing
strategies outlined in the previous chapter is to minimize the number of elements
while maintaining accuracy.

The subject of this chapter is an alternative approach to reducing the com-
putational cost of the radiosity algorithm. This approach keeps the same number
of elements, instead attempting to reduce the number of individual relationships,
or form factors, that have to be computed. For example, two groups of elements
separated widely in space might reasonably have the total interaction between all
pairs of individual elements represented by a single number computed once for
the entire group. Attaining this goal involves developingexarchical subdi-
vision of the surfaces and an associated hierarchy of interactions. The hierarchy
will provide a framework for deriving interactions between groups of elements,
which will result in computing many fewer thad(n? interactions. In fact,
it will turn out that onlyO(n) form factors are required to represent the linear
operatorK to within a desired error tolerance.

This chapter is divided into three major sections. The first two sections
describe hierarchical subdivision techniques that minimize the number of form
factors to be computed by grouping elements together. The first section assumes
that constant basis functions have been selected to approximate the radiosity
function. The section begins with a description of a two-level, patch-element
hierarchy and continues with the generalization of the basic hierarchical ap-
proach, resulting in a®(n) algorithm. The second section then describes an
alternate way of approaching the same goal, in which the hierarchical algorithms
are derived in terms of hierarchical basis functions. One such class of basis func-
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\

Figure 7.1 Room with a desk and wall.

tions, known as wavelets, will be used to represent the kernel of the radiosity
function at variable levels of detail. This formulation will provide a framework
for incorporating higher order basis functions into hierarchical algorithms.

The third section of the chapter introducesadjointto the radiosity equa-
tion that allows themportanceof a particular element to the final image to
be determined. The combined radiosity equation and its adjoint will provide
yet another means to reduce greatly the computational complexity for complex
environments, in the case where only one, or a few, views are required.

|. Hierarchical Subdivision

7.1 A Physical Example

The basic physical intuition behind hierarchical solution methods is straightfor-
ward. Imagine a room containing a table on which are placed several small
objects (see Figure 7.1). Light reflected from the table top contributes some
illumination to the wall. Intuitively, however, the shading of the wall does not
depend significantly on the small details of the illumination leaving the table
top. If the objects on the table are rearranged so that the shadows on the table
are slightly altered, the shading of the wall does not change significantly.
Representing the contribution of the table top to the wall by a single aver-
age value will give a similar result to computing individual contributions from
many small elements on the table top. This is because ideal diffuse reflection
effectively averages the light arriving over an incoming solid angle. If the solid
angle is not too great, as is the case when a source is far away relative to its
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size from a receiver, it is reasonable to average the source radiosity before the
integration step.For radiosity, this means replacing several form factors with
a single form factor.

On the other hand, when the table top is eventually rendered in an image,
its shading must capture all the details of the light and shadows falling on it.
These details will be lost if the effect of illumination arriving at the table is
averaged over a large area rather than computed in detail for smaller regions.
Thus, the radiosity of a particular surface or group of surfaces will have to be
represented at at least two levels of detail: coarsely when the surface acts as a
source of illumination and more finely when it acts as a receiver. There is no
inherent limitation to two levels, and these notions will be extended in a later
section to a generalized hierarchical representation.

7.2 Two-Level Hierarchy

The first hierarchical algorithm for radiosity was developed by Cehah[61].
It provides two levels of hierarchy and is based directly on the above-noted
distinction between sources and receivers. Surfaces are subdivided coarsely into
patchego represent the surface when it acts as a source of illumination to other
surfaces. The same surfaces, when receiving illumination, are represented by
a finer subdivision of the patches inttementsimages are rendered using
the element mesh. The element mesh can be subdivided adaptively as more
information about the illumination of the surface becomes known to achieve an
appropriate element size, but the patch subdivision is specified a priori by the
user. The algorithm assumes constant basis functions.

The steps in the two-level hierarchical algorithm are as follows (correspond-
ing to the numbers in Figure 7.2):

1. Divide the surfaces intm patches ana smaller elementsn{ << n),
where each patch is composed exactly of the union of some subset of
the elements. The patches will act as the sources or “shooters” and the
elements will act as the receivers or “gatherers.” The patches are indexed
by i orj and the elements ly

2. Compute then x n form factors from each element to each patch. A
single entry from elemer to patchj would beF .

3. Compute then x mform factors between pairs of patches directly from
the element-to-patch form factors by summing the form factors for the

A similar observation enables the use of a local reflection model to approximate the
complex interactions of light with the microscopic geometry of a surface.
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Figure 7.2 Two-level hierarchical algorithm.

elementsy belonging to patch weighted by the areas of the elements:

_ Ay
Fi= ) Fg-t 7.1
| Z ap (7.1)
4. Solve thenx m systerof equations using Gauss-Seidel to get the patch
radiosities:
B=E*+ PiZ B, Fij (7.2)
]:

5. Back solve for the element radiosities. This is accomplished by plugging
the element-to-patch form factors computed in step 2 and the patch radiosi-
ties, B, from step 4, into the radiosity equation expressing the element
radiosity as the sum of contributions from each patch:

m

By = Eg qu B Fy (7.3)
]:
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Figure 7.3 Quadtree surface subdivision.

6. If the difference in radiosity between neighboring elements is too high,
elements can be further subdivided. New patch-to-element form factors are
computed only for the new elements, and the new element radiosities can
be computed directly from the original patch radiosities without solving a
new system (i.e., the original m patches are intact). This last step can be
repeated adaptively as needed.

In practice, recursive adaptive subdivision is achieved by constructing a
quadtreé of elements. If the original surfaces are initially divided into quadri-
laterals and triangles (see Figure 7.3), there is a simple operation that splits
each simple shape along each of its parametric midpoints, resulting in four new
smaller elements. The mechanics are discussed in greater detail in Chapter 8.

Following the solution, the radiosity function is approximated by the n
elements. However, the solution has required computing onby n form
factors, wheren ismuch less than n.

7.3 The K Matrix

In Chapter 3 the discrete radiosity system was derived, resulting in the system
of linear equation&B = E, where the operatdf is a matrix that represents
the interrelationships between nodes in the finite element approximation. It will

2A quadtree is the two-dimensional analog to a binary tree (i.e., each node in the tree
has fourchildrenand one parent).
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be useful in what follows to understand the relationship between the physical
intuition developed in section 7.1 and structure inKhmatrix.

In the two-level hierarchy of the previous section, grouping elements to-
gether into patches allows every element to compute only a single form factor
to each patch (rather than to each element), effectively reducing the number of
entries to be computed in the matkix The two-level hierarchy assumes that,
in effect, a number of form factors on the same row adre closely related.

In particular, the form factors from a single element to all the elements of a
particular patch are treated as a constant scaled by the individual element areas.
Conversely, using the reciprocity principle, the form factors from all elements
of a single patch tany otherelement are assumed to be identical.

To understand better why this assumption is often valid, it is easiest to use
contrived example in a two-dimensional “flatland.” In flatland, “surfaces” are
lines in a plane. Flatland was introduced to radiosity investigation by Heckbert
[122].

Imagine a model consisting of two perpendicular line segments that touch at
one end, as depicted in Figure 7.4(a). In this two-dimensional world the kernel
functionG(x, X") (see Chapter 3) of the integral operator depends on the cosine
of the angles between the line connecting the poirdadx” and the surface
normals at those points, and inversely on the distandeetween the points
(as opposed to the distance squared in three dimensions). It also depends on
visibility, although this is not an issue in this particular example. Also, aside
from the singularity at the corner where the surfaces n&etsmooth.

Clearly the value o6 is smaller and varies less quickly in cases wixere
andx’are distant from each other, since thedrd cosine terms are then less
sensitive to small changes»ror x". This will be reflected in the values of the
corresponding entries in the matkx

The K matrix for this model is shown in Figure 7.4¢b)he surfaces (line
segments) have been divided into eight elements each. There are a row and a
column corresponding to each element of the two surfaces, resulting in a 16 by
16 matrix. In this particular model, the upper left and lower right quadrants of
the matrix will be identically zero, except for the ones on the diagonal, since
the entries in these quadrants represent interactions between elements on the
same surface. The interactions between elements on two different surfaces are
represented by the upper right and lower left quadrants, enlarged in Figure 7.4(c).

This example has been set up intentionally so that neighboring entries in the
upper right quadrant represent interactions that are closely related in a physical
sense. For example, entries in the upper right-hand corner of the quadrant rep-
resent interactions between elements that are at the far ends of the two surfaces

3Constant basis functions will be assumed for the discussi#h iofthe following
sections. However, the ideas are equally applicable to higher order bases.
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Figure 7.4 Two flatland surfaces and the upper right quadrankKofThe value
of the entry2, 10represents the transport of light from elem&@to elemeng.

and that are thus widely separated. According to the behavior of the fu@ction
just described, these entries will be smaller and change less rapidly than those
in the lower left-hand corner of the quadrant, which represent elements that
are closer together. This is demonstrated very clearly in Figure 7.5, which is
a visualization of the upper right quadrant of a 32 by 32 matrix for the same
model.

Returning to the 16 by 16 example, the entigs and K, ,,, which
neighbor each other on row 2, represent the effect of elements 9 and 10 on
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Figure 7.5 Value of entries in the upper right quadrant of the oper#toiThe
values indicated by the area of the circles.
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element 2. If the values of these two entries are almost the same, a single value
could be computed and simply used twice. In essence, a single larger element
composed of elements 9 and 10 would be used as a source of light for element 2.

Why not just eliminate the two smaller elements entirely by joining them
together into a single larger element? This would be reasonable for this par-
ticular interaction. However, it may be that in another row the form factors to
elements 9 and 10 are quite different, and thus it is important to keep the effects
of elements 9 and 10 distinct for those interactions! For example, looking at
Figure 7.5, the difference between the entries of the first two columns is clearly
much more significant in the bottom row than in the top row.

Similarly, two neighboring entries in a single column may be very similar,
indicating that the element corresponding to that column makes a similar con-
tribution to the two receiving elements. In this case, a single larger receiving
element would provide sufficient accuracy. Finally, a whiéeck of the matrix
may be identical, indicating that the effect of a group of source elements on a
group of receiving elements could be treated as a single interaction.

This discussion has ignored visibility, which may decrease or increase the
coherence between neighboring entries in the matrix. If some polygon fully or
partially obscures the visibility between two other polygons, a series of zeros
will occur in the matrix. Rapidly changing partial visibility may also result in a
portion of the operator that was very coherent becoming less coherent.
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In the matrix for a complex three-dimensional model, neighboring entries
are by no means guaranteed to represent “neighboring” physical situations. Nev-
ertheless, the basic principle remains the same: there will be entries throughout
the matrix that do represent related physical neighborhoods and that can be
grouped along rows, columns, or in blocks to reduce the computation required
to formulate the matrix.

Returning now to the two-level, patch-element hierarchy, it is clear that this
approach has the user make an a priori guess at which entries along rows of
the matrix can be grouped together. This initial grouping is the patch level
subdivision. Elements are only grouped together (into patches) in so far as they
act as source of illumination for other elements. This reduces lilgen matrix
to anm by n matrix of source patches and receiving elements.

The limitations of the two-level algorithm are also clear. First, the grouping
of elements into patches is fixed. The same grouping is applied to every row
of the matrix whether or not the grouped entries would actually be similar in
that row. Thus, even the elements of two surfaces that happen to be quite
close together will be treated as a single patch, although this is not justified.
The ability to group elements into larger or smaller groups depending on the
interaction is important to maintaining accuracy.

Returning to the example of the wall and the table, in a two-level hierarchy
the entire table top might be a patch and act as a source for all elements. This
might satisfactorily account for the effect of the table on the wall, but would be
inadequate to represent the effect of the table on the objects resting on it. A more
detailed representation of the illumination provided by the table is necessary in
this case.

A second limitation is that entries that are similar within a column cannot
be grouped together. This corresponds to the distinction between sources and
receivers in the two-level algorithm. This distinction is justified only in terms
of maintaining a special, highly refined approximation for rendering purposes.
For the purposes of the solution process itself, the inability to group receivers
removes a potential source of efficiency.

Finally, the two-level algorithm requires that the user perform the patch
subdivision. Since the user does not have access to detailed quantitative data
characterizing the interactions being grouped, this is clearly inadequate. An
error metric that can be used to evaluate interactions for possible grouping is
required, as well as an algorithm for automatically constructing the hierarchy.

These limitations are all addressed in the next section, which describes a
general algorithm for constructing multilevel hierarchies of interactions.
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Figure 7.6 Hierarchical quadtrees and interactions.

7.4 Multilevel Hierarchy

Hanrahanret al [116] have generalized the notion of subdivision hierarchy to
multiple levels, allowing both receivers and sources to be treated at the appropri-
ate level of detail. A basic hierarchical subdivision is diagramed in Figure 7.6,
in which two surfaces have been recursively subdivided into a hierarchy of ele-
ments and groups of elements. The recursive subdivision of each surface result.
in aquadtreeof nodes, each of which represents some portion of the surface.
As in the two-level hierarchy, the leaf nodes are the elements, with nodes higher
in the quadtrees representing groups of elements.

In the multilevel hierarchy, energy can be shot framy nodeto any other
node at any level in the hierarchical subdivision (not only to the leaves as before).
One such interaction is indicated by the arrow in Figure 7.6, where energy from
a group of seven elements (a) is transported to a group of four elements (b).
If energy is shot to a node at a level above the leaves, the nodes below (down
to the leaves) wilinherit the energy received above. This operation will be
explained in more detail below. It will be shown that this approach leads to
fewer total shooting (gathering) operations. The key result will be thaGgn)y
interactions (form factors) are required to meet a given error tolerance, nvhere
is the number of leaves of the quadtrees (i.e., the number of elements). Thus,
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while the two-level hierarchy reduced the number of form facto@(mox m),
the general hierarchical algorithm@%n).

7.4.1 N-Body Problem

Hanraharet al [116] gained their inspiration by relating the radiosity problem
to theN-body problemwhich addresses the gravitational interactions within a
collection ofn particles.

If each ofn particles exerts a force on all the otmer 1 particles, there
will be O(n?) interactions between pairs of particles to account for. Fast algo-
rithms have been developed [9] by recognizing that the force due to a group of
particles beyond some distance from another particle can be approximated with
a single interaction. Likewise, pairs of such groups, where the whole groups
are separated by some distance, can be considered with a single interaction.
For example, two widely separated galaxies each represent very large groups
of particles, but the gravitational interaction between them can be approximated
by the interaction of two particles, each representing the combined mass of the
stars in the corresponding galaxy. This insight has been refined to develop fast
N-body algorithms by Esselink [79], Barnes and Hut [16], and Greengard and
Rokhlin [1086].

7.4.2 Radiosity and the N-Body Problem

The radiosity problem is similar to the N-body problem in that the interactions
(form factors) drop off according tort/ The interactions can also be summed

as with the form factor algebra. On the other hand, the radiosity problem often
starts with large areas to subdivide rather than small particles to group together
(although see the discussion of clustering in section 11.3.5). There is also no
analog to occlusion in the N-body problem (i.e., the gravitational force between
two particles is not affected by intervening particles). Nevertheless, the basic
structure of the hierarchical algorithm remains valid.

7.4.3 Hierarchical Refinement

In contrast to previously discussed algorithms, the multilevel hierarchical algo-
rithm never explicitly builds a matrix. Instead, as the subdivision is performed
recursivelylinks are built on-the-fly between nodes of the quadtrees associated
with each surface.

A link represents the physical relationship between one set of elements and
another set of elements, which determines the potential for energy transport
between them. The two sets of elements are the leaves of the subtrees below the
nodes at which the links terminate (indicated by the dotted ovals in Figure 7.6).
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In other words, each link will represent a subset of form factors from the original
n by n matrix, that is, the form factors fail pairs of elements in the two
subtrees. A link between a pair of nodes at the lowest level connects two
individual elements and thus represents a single entry in the matrix. Links at
higher levels represent successively larger groups of form factors.

The set of entries in the originalby n matrix, K, that are represented by
a single link will map taregionsin the domain of the kernel of the radiosity
integral. Remember that the kernel function is four-dimensional in the case of
a three-dimensional environment, since it is a function of two two-dimensional
points on two surfaces. Thus the local four-dimensional region represented by
a link is the cross product of the two two-dimensional regions represented by
the sets of elements at either end of the link. Since the sets of form factors
encompassed in a single link do not define complete columns of the original
matrix as in the two-level hierarchy, or neat rectangular blocks in the three-
dimensional model, it is more difficult to visualize or to explicitly construct a
matrix representation of the links. Instead, a solution method that relies directly
on the link data structure is used.

To determine the links, one could conceivably build the wmléorm
factor matrix and then search for subsets of the matrix for which all entries
are similar in magnitude. These would correspond to potential links between
guadtree nodes and could then be grouped together into a single value. This
might, in fact, reduce the solution time for iterative matrix solution methods by
making the matrix-vector multiplications faster, but would not solve the more
important problem of reducing the form factor computation.

Instead, the aim is to develop a method of predicting whether a subset
of form factors will becoherent(e.g., similar in magnitude) before actually
computing the subset of form factors. If the subset is predicted to be coherent,
a single representative form factor can be computed for the subset. Such a
prediction method will be called araclein the following discussioh.

For this discussion of hierarchical algorithms, we will use two data struc-
tures, one for a quadtree no@rjadnode, and one for a link between quadtree
node” Linknode (see Figure 7.7). The hierarchical algorithm begins with
a basic recursive procedure callBefine that subdivides the surfaces into
guadtrees and create the links between quadtree nodes (see Figure 7.8). Three
functions are required:

1. Oracle (p,q, €) returns a decision of whether or not to link two quadtree
nodesp andq based on the error that would be incurred if the nodes are
linked rather than linking multiple nodes at lower levels b@and/org.

If both p andq are already subdivided as far as possible (i.e., their areas

—*The use of am oracte o determine element subdivision is also discussed in [76].
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structQuadnode {

float B,
float B,
float E;
float area,
float o

struct Quadnode** children

struct Linknode* L;
8
structLinknode {
struct Quadnode*
struct Quadnode*
float Foo
struct Linknode* next

[* gathering radiosity */
/* shooting radiosity */
[* emission */

[* pointer to list of four children */
[* first gathering link of node */

g; /* gathering node */

p; /* shooting node */

[* form factor fromq top */

[* next gathering link of nodg */

Figure 7.7 Quadnode andLinknode data structures.

{

Quadnodewhich, r;

if (Oraclel (p,q,F.))
Link (p, q);

else{
which= Subdiv (p, q);
if( which==q)

else if (which==p)

else
Link (p, q);

Refine (Quadnode:p, Quadnodeq, floatF, )

for( each child node of q) Refine(p, r, F,);

for( each child node of p ) Refine(r, q, F,);

Figure 7.8 Refine pseudocode.
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SolveSystem ()
{
Until Converged {
for (all surfaceg ) GatherRad (p);
for (‘all surfacep ) PushPullRad (p, 0.0);}
}

Figure 7.9 SolveSystem pseudocode.

are below a user-specified minimum ar@g, then the Oracle returns
FALSE

2. Subdiv (p, q) is called if theoracle returns true indicating nodes
belowp or q should be usedubdiv returnsp or g depending on for
which it appears using lower level nodes will reduce the error. It may
also decide not to choose either node. If the selected quadtree node has
not yet been subdivided th&ubdiv performs this operation.

3. Link (p, q) actually builds the link betwegnandqg by computing the
form factor between the areas represented at paahelg of the quadtrees
and stores the form factor in the link data structure.

These three functions and a user-supplied error toler&ncerovide the
necessary tools to adaptively perform the quadtree subdivision and build the
appropriate links between quadtree nodes. Given two (rectangular or triangular)
surface$ andq, representing the roots of two quadtrees, the algorithm proceeds
recursively (see the pseudocode in Figure 7.8).

After each ordered pair of surfaces has been handedfioe, the result is
a network of links that create connections between pairs of quadtree nodes. Note
that every element-to-element pair will bevered.In other words, given two
elements (leaves)andj, there will be exactly one link fromor i’'s ancestors
toj or j's ancestors.

The number of links corresponds to the number of form factor calculations
that must be performed. Using an inexpensive form factor estimate for the oracle,
Hanrahan et al. [116] make a counting argument to show that the number of
links required isO(n) rather thanO(n?), wheren is the maximum number of
elements if all surfaces are fully subdivided. In fact, this may be a conservative
estimate; their experience has shown that many fewerrthiaks are usually
created.
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GatherRad ( Quadnodep)
Quadnodeq; Link =L;

p-B,=0;
for ( each gathering link of p ) /* gather energy across link */

for each child node of p

p—»Bg+: p—»p* L—)qu* L—»q—»BS,

GatherRad (r);

Figure 7.10 GatherRad pseudocode.

7.4.4 Solution of the Hierarchical System

Although no explicit matrix has been formed, the set of links created by

Refine defines a linear system that can be solved for the element radiosities.
At each quadtree node, the data structure should contain two radiosity #alues,
(for shooting) andB, (for gathering). Information must also be available about
its emission, area and reflectivity. The solution of the system is performed iter-
atively by the functiorbolveSystem (see Figure 7.9). Each iteration consists
of two steps, performed on each top-level surface (i.e. root of a quadtree):

1. GatherRad gathers energy over each incoming link, converBpat

one end intd3, at the other (line 5 of Figure 7.10).

PushPullRad , pusheshe received enerdy, down to the children of
each quadtree node, apdlls the results back up the quadtrees by area
averaging (see Figure 7.11), thus preparingBtHer the next iteration.

On the way recursively down the quadtree, the gathered radiosity of each
node is simply added to the nodes below (line 9 of Figure 7.11). The
radiosity of an area is not diminished by cutting the area into parts since
radiosity has units of power per area, thus the simple summing of radiosity
values.

At the leaves of the quadtree, the sum of the gathered raglioshgd
down the tree is added to the leaf node’s own gathered radiosity and
emitted radiosity and the result transferred to the leaf node's shooting
radiosity (line 3 of Figure 7.11). This quantity is returned up the tree
(line 14). Since radiosity is in units of power/area, the radipsitgdup

the tree is th@averageover a node's children (line 10). For example, if
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PushPullRad ( Quadnode:p, floatB,,,,)

floatB,,, B,
if ( p-children==NULL) [* pis aleaf */
Bup =p- E+ p- Bg + Bdown;
else
{
B,=0;
for (each child node of p)

{

O©CO~NOOUTA,WNPE™

= PushPullRad (r, p— B, + By,.);

— rarea
+= Btmp* p-area

Btmp
B.p

11 }
12 }

13 p-B,=B,;
14 return B,

up

Figure 7.12 PushPullRad pseudocode.

four children all have the same radiosity, their parent node will have the
same radiosity, since radiosity is measured in power/area. (By contrast,
the powerfor the parent is the sum of the powers of the children).

The two steps ibolveSystem are performed iteratively until less than a
user-specified maximum change occurs in the radiosity values from one iteration
to the next. Thus, it may be advisable to store a copy, bkefore zeroing it
out and then run a comparison of the copy and new shooting radiosities. This
solution process corresponds to the iterative relaxation methods described in
Chapter 5.

7.4.5 The Oracle Function

The Oracle function plays a key role in the efficiency of the overall hi-
erarchical algorithm. The job of the oracle is to estimate the error that will be
introduced bylinking two quadtree nodes, rather than creating a series of links
at lower levels. In essence, the oracle must answer the equivalent question:
“By linking nodesp andq, what is the error introduced if@nstant value is

%In fact, the constancy test is the result of the use of constant hierarchical basis
functions. This will be generalized in Part Il of this chapter.
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BooleanOraclel ( Quadnodep, Quadnodeq, floatFe)
{
if (p-area< A, andg-area<A,)
return ( FALSE);
if (EstimateFormFactor (p,q) <Fe)
return ( FALSE);
else
return ( TRUE );

Figure 7.12 Oraclel pseudocode.

assigned to alK; entries in the matrix, whereis a descendant of quadtree
nodep andj is a descendant @?” It is not immediately clear how to answer

the above question. For example, should the error norm reflect the estimated
error in the entries of the matrix (i.e., the form factors) or the error in the final
radiosity function? In addition, since the goal is to eliminate evaluations of the
form factor, the oracle must be less expensive to evaluate than the form factor.

The Oracle as Form Factor Estimate

In the work reported by Hanrahanhal, the value of the oracle is derived from
an estimate of the unoccluded form factor (see Figure 7.12):

_ cosf
Pq P

F Wy (7.4)

The estimate is computed at the centers of the areas represented by quadtree
nodesp andg. The factorw, is the solid angle subtended by a sphere (or disk)
surrounding the area of node(see Figure 7.13).

This provides an upper bound on the error of any single enty ifhe
rationale is that the form factor estimated by equation 7.4 can only get smaller if
the real areg is used, or if there is occlusion, or if a descendaniroth smaller
area is selected. In [116] boky, and F_, are estimated. If either estimate is
larger than a givelfr,, the element corresponding to the larger is subdivided.
When both are below the threshold, a bidirectional link is established. This
oracle is efficient and simple to implement, and is reported to work well in
experiments by Hanraha al
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Figure 7.13 Geometry for simple oracle function that estimates unoccluded form
factor.

Other Oracle Possibilities

The oracle described above establishes a threshold for individual errors in the
K matrix. Other norms are possible and may offer a better prediction of error.
The assumption implicit in creating a link is that the set of entries in the full
matrix represented by the link are approximately equal in magnitude. The above
test measures the maximum possible form factor value (and thus bounds the
individual errors irK). However, a better test might be to estimate the potential
variability in the differential form factor. This would require either an analytic
formula for the derivative of the form factor or a multipoint quadrature and the
use of finite differences across the two areas at either end of the link. Although
this test would be more expensive, it might also lead to less subdivision and
fewer total links. In fact, Hanrahaet al perform a variation of this scheme
when they take into account knowledge about partial visibility between surfaces
in the adaptive algorithm discussed in the next section.

7.4.6 Progressive Refinement of the Hierarchy

The hierarchical algorithm outlined above makes a priori decisions about the
level of the hierarchy at which to create the links, then solves the resulting sys-
tem. Thus, the oracle makes decisions based solely on the geometry of the form
factor estimates, independently of how much energy will eventually be trans-
ferred across individual links. An adaptive a posteriori version (see Figure 7. 14)
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HierarchicalRad(floaBF,)
{
Quadnode:p, =q;
Link =L;
int Done = FALSE;
for (all surfacep ) p—~B,=p-E;
for ( each pair of surfacqs q)
Refine (p, q, BF);
while ( notDone) {
Done= TRUE;
SolveSystem (); [* as in Figure 7.9 */
for (all linksL)
/* RefineLink returns FALSE if any subdivision occurs */
if( RefineLink (L, BF,) ==FALSE )
Done= FALSE

Figure 7.14 HierarchicalRad pseudocode.

of the hierarchical algorithm can make better decisions about the subdivision,
thus leading to more efficient performance. The a posteriori algorithm estab-
lishes a threshold for the oracle based on the amount of energy transferred across
any individual link. The threshol8F, is based on the radiosity, the element
area,andthe form factor, oB ¢« F ¢ A. Since the radiositie®, are not known

a priori, the algorithm proceeds adaptively (see Figures 7.14 and 7.15), using a
modified Oracle2 function (see Figure 7.16).

Using the modified oracle, links are formed only from quadtree nodes from
which a significant amount of energy is ready to be “shot.” In the first pass,
links are formed only at the highest level unless the shooting surface is a light
source. As the algorithm progresses and more surfaces receive light to reflect,
old links are broken and new links formed at lower levels as necessary. The
link structure converges when all links carry approximately the same amount of
energy.

An additional enhancement can be made by storing visibility information
with the links. When the link is created, the form factor is computed and
information describing the visibility between the two elements is recorded (i.e.,
whetherp andq are fully visible, fully occluded, or partially visible to each
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int RefineLink  (LinknodexL, float BF,)

{
int no_subdivisior TRUE;
Quadnode’p =L-p; I* shooter */
Quadnode®gy=L-q; I* receiver */
if (Oracle2 (L, BF,) {
no_subdivisiors FALSE ;
which = Subdiv (p, q);
DeleteLink (L);
if (which==q)
for (each child node of g) Link (p, r);
else
for (each child node of p) Link (r, q);
}
return (no_subdivisio
}

Figure 7.15 RefineLink  pseudocode

float Oracle2 ( LinknodexL, float BF, )

Quadnodep =L-p; I* shooter */

Quadnodey=L-q; I* receiver */

if (p~area<A, andq-area<A,)
return ( FALSE);

if (p-~B,==0.0)
return ( FALSE);

if (p~B,* p—~Areax L-F ) <BF,);
return ( FALSE);

elselOreturn ( TRUE);

YO O~NOOOUOPR~WNE™

Figure 7.16 Oracle2 pseudocode
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Polygons 98
Potential elements 175964
Potential interactions 15481576666
Quadtree Nodes 5674
Elements 4280
Interactions 11800
Totally-invisible 4605 39.0%
Totally-visible 4519 38.3%
Partially-visible 2676 22.7%
Tests
Refinement tests 14149
Totally-invisible refines 3901 27.6%
Pre-Totally-invisible refines 0 0.0%
Totally-visible refines 5414 38.3%
Pre-Totally-visible refines 4128 29.2%
Partially-visible refines 4834 34.2%
Partial visibility tests 10021
Ray tests 53187
Visibility tests 3545
Ray tests 56720

Table 7.1 Statistics for color plates 18-22 (after Hanrahan et al.).

other). Clearly, the fully occluded case will not benefit from further subdivision.
The fully visible case can have a more relaxed threshold set than the partially
visible case, for which one might expect larger fluctuations in the form factor
kernel across the portions of the surfaces representpdabyq.

7.4.7 Experimental Results

Reports of experiments [116] using tHeerarchicalRad algorithm are very
encouraging (see Table 7.1). Color plates 18-21 show the links formed during
the progressive refinement process. The multiple images are provided in order to
show the links at the various levels of the hierarchy. Links are also color-coded
by visibility (dark blue: fully occluded, white: fully visible, green: partially
occluded). Color plate 22 shows a final image with texture mapping added (see
Chapter 10 for a discussion of texture mapping). The statistics in Table 7.1
provide numerical evidence of the algorithm’s ability to produce an image with

a very limited number of interactions, (e.g., only about 12 thousand out of a
potential 15 billion interactions are created).

II. Hierarchical Basis Functions and Wavelets

7.5 Hierarchical Basis Functions

The hierarchical methods just described can alternatively be characterized in
terms ofhierarchical basis functionsChis view also provides a framework for
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Figure 7.17 Hierarchical basis set used by Hanrahan et al.

developing other hierarchical basis functions as well as some understanding of
the properties that lead to efficient algorithms. The basis functions discussed
in previous chapters all have the property that their support is limited to the
elements adjacent to the node at which the basis function is situated. Hierarchical
basis functions will be developed by relaxing this restriction.

As an example of a hierarchical basis set, Figure 7.17 shows a binary tree of
hierarchical box bases in one dimension. The basis set can be constructed either
top-downor bottom-up.In the top-down approach, a single box bayjs, at
the top levelL, is subdivided in half, producing two basis functioNs, ,
andN,_, ,, with the same combined support in the domain. These are in turn
subdivided recursively until a preset minimum level is reached. The bottom-up
approach simply reverses this process, beginning with the lowest level of box
basesN, , to N,,, and recursively grouping two bases into a new, wider basis
one level up. In the radiosity context, a binary tree (in 2D) or quadtree (in 3D)
of bases would be constructtat each surface.

Figure 7.18 shows a one dimensional function approximated by a set of basis
functions at each level of the hierarchy. The coefficients of each basis function
represent the average radiosity over the support of the basis. These coefficients
would be, for example, the By terms after applyingRhehPullRad function
in Figure 7.11.
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Figure 7.18 Function represented at each level of hierarchy.

The hierarchical basis setresdundantin the sense that any function repre-
sentable at one level of the hierarchy can also be represented one level below
(with two coefficients having values identical to the higher level coefficient).
The reverse is not the case, however. Thus, the use of hierarchical systems does
not lead to an increase in the size of the function sgpp@enedy the bases. In
particular, the multilevel hierarchical system described in the previous sections
spans the same piecewise constant space of functions as a nonhierarchical set of
box functions consisting of only the lowest level of the hierarchy. Thus, the use
of a hierarchical system itself cannot produce an approximaiorith a better
fit to the actual functio. Instead, the use of hierarchy leads to sparser linear
operators (i.e., fewer form factors) and thus more efficient algorithms.

The hierarchical set of basis functions, being redundant, would at first appear
to be less efficient since there are more bases to represent the same space of
functions. The hierarchical system, however, gains its efficiency from the fact

Radiosity and Realistic Image Synthesis 189
Edited by Michael F. Cohen and John R. Wallace



CHAPTER 7. HIERARCHICAL METHODS
7.6 WAVELETS

that, unlike the nonhierarchical formulatiomsyt all pairs of basis functions
require interaction terms (form factorsfror example, using the subscripting
shown in Figure 7.17 and a superscript to represent the surface at the root of
the tree,NJ, would be the fourth basis function on the third level, forlthe
level quadtree associated with surfacén the nonhierarchical formulatioks

has entries for every pair (f,of elements (represented as the lowest leaves in
the hierarchical system, with the basis functions at level 1). In contrast, in a
hierarchical system, if Bnk is established between nodes of the quadtrees on
surfacesp andq, for example, betweemf, and Ng,, then no more links can

be made fromN}, (or any of its children on levels 1 and 2) kg, (or any of

its children on levels 4 and below). Thus, this single link represents all pairings
of leaves in the quadtree below?, and Ng,. In total, the single form factor on

the link from N, to Ng, will represent 2% x 26D = 64 form factors at the
lowest level of the binary trees in two dimensions, afid & 4¢-Y = 4096

form factors for the quadtrees in three dimensions!

7.6 Wavelets

A growing body of theory and applications is associated witlvtheletfamily

of bases [27, 185]. It is beyond the scope of this book to provide a full discussion
of wavelet theory. However, a short introduction will make it possible to cast the
hierarchical radiosity formulation in terms of a simple example from the family

of wavelets. The intention is to introduce some of the basic ideas necessary to
extending hierarchical methods to new basis sets. These new basis sets have
properties that allow them to better approximate the radiosity function and may
possibly provide even sparser representations of the integral operator. Details
can be found in [102].

7.6.1 Haar Basis

Building a wavelet basis begins with two functiod¥x) (called thesmooth
function), andW(x) (called thedetail function). An example from a simple
wavelet basis known as the Haar basis is shown in the center of Figure 7.19. By
examining the two box basis functiord, andN,, and the smooth and detalil

Haar functions, it can be seen that the two sets both span the same space of
functions. In other words, a linear combination of either the two boxes or the
two Haar bases can represent any piecewise constant furfefignover the

two intervals. An example is shown at the bottom of the figure. The coefficient

of the @ function will represent thaverageover its nonzero range, and the
coefficient of the function represents thdifferencefrom the average.
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Figure 7.19 Two consecutive box basis functions are equivalent t’thed ®
functions of the Haar basis.

Given the above observation, a sehd@Wvheren isa power of 2) box basis
functions can be replaced with a hierarchy constructed from thedaad¥
functions (see Figure 7.20) using a bottom-up approach. Beginning with eight
box basis functions, we can replace these by four sebsasfdW¥ functions as
shown in the first row of Figure 7.20. The resulting féuand four functions
are then reordered, grouping each set together. In the second row it can be seen
that the four® functions are exactly the same in structure as the original box
basis functions, but twice as wide. Thus, these fburases can be rewritten
as two® and twoW functions, now twice the width. Once again these can
be reordered. Finally, in the bottom row the two new widefunctions are
rewritten as on& and oneW function. This results in thelaar waveletbasis
consisting of one smooti _, basis (wherd., the top level, equals lg@) for
n box bases) at the top level angyaamid of W detail basis functions (see
Figure 7.21). Just as any piecewise constant (over unit intervals) fuR€ipn
could be represented by a linear sum of the original box basis functions:

n

F(x) = ZfiNi(x) (7.5)
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wavelet basis
Figure 7.2Q Construction of the hierarchical Haar basis.

F(x) can also be represented by a linear combination of the Haar wavelet basis
functions:

L n/2t—D

F(X) = @, P(x) + Z Zwi,jwi,j(x) (7.6)
= 1=

The coefficients of the box basis functioffis, represent the local value
of F(x). In the case of the wavelet basis, the coefficignt represents the
average of the function overall, and therepresent the local detail or variation
away from the average I(x) at each level. This immediately points to the
key advantage of the wavelet basis. If the function being represented is locally
smooth (in this case constant) over a portion of its domain, then the coefficients
representing the local detail will be zero (note the third coefficient itthe
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Figure 7.21 Haar wavelet basis.

row in Figure 7.22). While the coefficients of the original hierarchical box
functions represent local averages, the coefficients of the Haar wavelet bases
represent locadifferencesand thus are zero in locally constant regions.

The projection of a one-dimensional function into the Haar basis can be
thought of as passing a high-pads ¢r detail) and low-passd( or smooth)
filter over the function. The filters are then applied again recursively on the
coefficients obtained in the low-pass filtering operation.

Referring again to the piecewise constant function in Figure 7.22, low and
high pass filters are implemented by taking local averages and local differences,
respectively. One application of low-pass filtering gives the coefficients 11.5,
10.5, 8.0, and 10.0. High-pass filtering gives the four coefficients, 0.5, — 0.5, 0.0
and —1.0, shown in the row labelgtl _,, with the coefficient 0.5, for example,
being the difference between the local average, 11.5, and the two segments of the
original function, 11.0 and 12.0. The coefficient 0.0 corresponds to a flat region
in the function (i.e., no detail). The process then recurses on the coefficients
obtained by low-pass filtering, leading to two average values 11.0 and 9.0, and
differences of —0.5 and 1.0. Finally, the last filtering pass results in the overall
average value of 10.0, which becomes the coefficient of the highest level smooth
basis, and a coefficient of —1.0 for the highest level detail basis. The Haar basis
thus results in ® coefficients and on® coefficient. The value of the function
F(x) as represented by the basis functions can then be obtained by evaluating
equation 7.6 with these coefficients.
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Figure 7.22 Piecewiseconstant function represented with the Haar basis (top)
and the hierarchical box basis (bottom).

7.6.2 Vanishing Moments

The purpose of developing the preceding alternate basis for representing piece-
wise constant functions is to understand how it leads to a sparse representation of
a function. In particulathe goal is to find a sparse representation of the radios-
ity kernel function, and similarly a large number of zeros in the discrete operator,
K. Wavelets are finding many uses in data, image, and signal compression for
similar reasons.

If it is possible to find a basis set that leads to a sparse representation, and
if one can predict in advancghere the nonzero regions (entrieKihwill be,
then it will be possible to reduce greatly the number of form factors required.
Concepts presented below in one dimension will be extrapolated to apply to the
multidimensional kernel of the radiosity problem.

The key concept is that enishing moment# function W(x) is said to
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Figure 7.23 Basis with two vanishing moments in detail functions.

haveM vanishing moments if,

2, Wx)x'dx = 0 fori =0,.., M-1 (7.7)

For example, a function has one vanishing moment if its integral is zero, since
X% is a constant. A function has two vanishing moments if when integrated

against any linear function the result is zero, and so on for quadratic, cubic, and
higher order polynomials. The Haar wavelet detail function has one vanishing

moment since any constant function when integrated against it will be zero (i.e.,
vanish).For example, in Figure 7.22 the third coefficient on ‘the , row is

zero since the local region of the function is flat.

Figure 7.23 depicts a set of four bases, two smooth and two detail, that
also span the same piecewise constant function space [102], but in this case, the
detail functions have two vanishing moments (call this/thdasis). In other
words, any linear function will vanish when integrated against these functions.
The price that one must typically pay for more vanishing moments is a wider
support, in this case over four intervals rather than the two of the Haar basis.
Basis sets can be constructed with varying numbers of vanishing moments and
abilities to span higher order function spaces, with associated costs in terms
of their support and the difficulty of evaluating integrals in which they appear.
Construction of such bases is not pursued here. The reader in encouraged to
investigate the expanding literature on wavelets for this purpose.

7.6.3 Vanishing Moments and Sparse Representations

How do vanishing moments in the basis functions lead to sparse representations
of functions and integral operators? The answer can be seen in the example of
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Figure 7.24 Piecewise constant function represented by 9 hierarchical Haar
basis functions versus 16 box bases.

Figure 7.24. In this specific example, the piecewise constant function can be
exactly represented as a weighted sum of 16 individual box bases. Alternatively,
it can be represented by a weighted sum of only eight hierarchical Haar detalil
basis functions plus the average value of the overall function represented by the
weight of the single smooth basis function. For areas in which the function is
flat (i.e., constant), the projectfoonto lower-level detail functions vanishes,
and thus these basis functions are not necessary. Similarly, projecting onto bases
with two vanishing moments will result in zero weights when the function is
linear across the support of the basis. In general, functions will not exhibit
exactly constant or linear behavior across the support of a basis. However,
regions that aralmostconstant (or linear) will result in very small coefficients.
In this case, the coefficients (weights) can be set to zero with only a small error
in the approximation.

The hierarchical representation of a 2D matrix using the Haar basis is some-
what similar to the hierarchicahipmaprepresentation of a texture map [266].

5The projection (more precisely the orthogonal projection) of one function onto
basis described in Chapter 3. The projection involves finding the coefficient or weight
of each basis function so as to minimize the norm of the difference between the original
function and the sum of the weighted basis functions.
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Figure 7.25 The two-dimensional nonstandard pyramid algorithm (from Gortler
et al., 1993). (a) The full n by n matrix. (b) A horizontal high-pass and low-
pass filter on each row results inZ2némooth and 12/ detail coefficients. (c) A
vertical pass on this results indfetail-detail coefficients, A/detail-smooth
coefficients, ¥ smooth-detail, and 4/ smooth-smooth coefficients. (d) The
process is recursively applied to the smooth-smooth quadrant.

To construct a mipmap, a two-dimensional low-pass filiepassed over the
original image, giving an image of 1/4 the size. The same filter is applied again
on the result recursively, resulting in a pyramid of images. Each successive
image moving up the pyramid averages the values from below and thus contains
less “detail”; the final image consists of a single value equal to the average value
of the original image.

The construction of a representation of a 2D matrix (or image) using the
Haar basis begins with the application of low-pass and high-pass filters along
the rows and columns of the matrix (see Figure 7.25). For the Haar basis,
low-pass filtering consists of averaging together pairs of entries along the row
or column and high-pass filtering of taking differences between entries. Each
filter is first applied to the matrix in the horizontal direction (along the rows).

If there aren entries in a row, the result will b@2 smooth coefficients and

n/2 detail coefficients. Following the filtering pass, the coefficients resulting
from each filter are grouped together (see letter (b) of Figure 7.25), forming a n
by n matrix for which the firstn/2 entries in each row are smooth coefficients,

A 2D box filter is equivalent to the tensor product of the one-dimensional smooth
Haar basig=.
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and the last/2 entries are detail coefficients. The filters are then applied in
the vertical direction to this matrix and the results are similarly reorganized to
give ann, by n matrix for which the coefficients in the four quadrants consist of
the detail-detail, detail-smooth, smooth-detail, and the smooth-smooth filtering
results (see letter (c) of Figure 7.25). This filtering and reorganization process
is then repeated recursively on the upper right (smooth-smooth) quadrant.

The final result of this decomposition is a hierarchy of representations of the
2D matrix (in what has been termed@nstandardwo-dimensional Haar basis
[26]). The differences between this representation and a mipmap are instructive.
The levels of a mipmap contain low frequencies (averages) in all levels of
the image. The Haar basis also begins at the top with a single average value;
however, at each level moving down from the top level the coefficients represent
thevariation of the matrix values from the representation of the previous level.
The possibility for efficiency lies in taking advantage of the fact that smooth
regions of the matrix result in near zero valued coefficients that can be ignored.

The results of applying the above decomposition process ti timatrix
are shown in Figures 7.26 and 7.27 for the same “flatland” example (two per-
pendicular line segments) used in Figure 7.4. The top box in Figure 7.26 shows
the 32 by 32 upper right quadrant of a 64 by 64 matrix, with the dot size pro-
portional to the form factor in the original matrix. In the two boxes below,
the matrix has been projected into the nonstandard basis (examples are shown
for the Haar and™, basis). The three quadrants in the lower left of the boxes
are the detail-detail, detail-smooth and smooth-detail quadrants following one
complete filtering pass (see letter (c) of Figure 7.25). The smooth-smooth quad-
rant is not shown. Instead, the next three quadrants moving diagonally toward
the upper right show the result of the second complete filtering pass applied
the missing smooth-smooth quadrant. The recursive application of this process
generates the progressively lower detail representations of the matrix, as shown.
The four boxes at the bottom of Figure 7.26 show the error in the reconstruction
of the matrix (as compared to the original), after discarding (setting to zero) all
but the 32 or 64 largest terms.

Figure 7.27 shows a similar example for the case of two parallel line seg-
ments. The important thing to note is that only 32 or 64 entries, compared to the
original 32x 32 = 1024 matrix coefficients have been used to reconstruct the
original matrix while incurring only very small errors. Also, note the reduced
error when applying bases with two vanishing moments {thkeasis).

7.6.4 A Wavelet Radiosity Algorithm

A full radiosity application differs in two major ways from the above examples.
First, the radiosity domain consists of two-dimensional surfaces embedded in
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Figure 7.26 Projecting a flatland kernel (from Gortler et al., 1993). The original
matrix shows the kernel function between two perpendicular line segments that
meet in a corner discretized into a 32 by 32 grid. Darker entries represent larger
kernel values. The kernel values are greatest in the lower left corner, where the
two segments meet and 1/r goes to infinity. This kernel is projected into both the
nonstandard two-dimensional Haar basis and the nonstandard two-dimensional
basis with two vanishing moments. In both of these representations many of
the 1024 coefficients are small. In both cases, only 32 and 64 of the largest
coefficients have been selected to reconstruct an approximate kernel. An error
matrix (the difference between actual kernel and approximate kernel) is shown.
This demonstrates that a low error can be achieved with very few entries from
the projection.
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Figure 7.27 This figure shows the application of the wavelet projection to the
flatland configuration of two parallel line segments. The kernel is largest along
its diagonal, where points on the two segments lie directly across from each
other. Note the greater sparsity provided by the projection into the basis with
two vanishing moments.

three-dimensional space. Thus, the kernel function is four-dimensional, since
each basis function is two-dimensional. This does not present any important
conceptual problems or changes in the algorithm, but makes illustration in the
fashion of Figures 7.26 and 7.27 difficult.

The more important difference is thidte goal is not to compute the full
matrix and then decomposetd find the significant terms, since this entails
computingn? form factors, wheren is the number of elements. Instead, as in
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the hierarchical algorithms outlined in the previous section, an oracle is relied
upon to predict which terms will be significant. The numerical integration of
the kernel (form factor computation) is then only performed for the associated
pairs of bases that are determined to be significant by the oracle.

The full family of wavelet bases provide options for continuity (e.g., linear,
guadratic, and higher order bases) beyond the piecewise constant bases discussed
here. They also can exhibit more vanishing moments leading to sparser linear
operators. In general, more vanishing moments will require a wider support for
the basis functions and higher order continuity leads to higher costs in evaluating
the form factor integrals and developing appropriate oracle functions. Further
study is required to assess these tradeoffs to develop optimal hierarchical bases
for the radiosity application.

Although the section above cannot provide a complete description of the
algorithms required to project the integral operator onto the wavelet bases, it is
hoped that some understanding of the potential of hierarchical bases has been
provided. The reader is directed to the growing body of literature on wavelets
and their applications to the solution of integral equations for a detailed study
of this new research topic [27, 185].

lll. Importance-Based Radiosity

7.7 Importance Meshing

All of the discussion above and in the previous chapters has assumed the goal of
generating aiew-independergolution. Consequently, the error metrics we have
described assume all surfaces to be equally important. What if, in contrast, the
goal is to create only a single image of the environment from a given viewpoint,
or multiple images confined to a small area of an extensive model? This is
a common situation in architectural rendering, where models may consist of
buildings containing many rooms and floors.

It would be preferable in this case to concentrate the effort on closely ap-
proximating the radiosity of surfaces visible in the image. It is still necessary to
consider all surfaces, however, since surfaces that are not visible may contribute
indirectly to the illumination of visible surfaces.

Making decisions about where and when to subdivide surfaces given the
knowledge of a fixed viewpoint for the final image requires an error metric that
takes into account the relative importance of a given surface to the image. Devel-
oping such aiew-dependerdrror metric will lead to more efficient algorithms
for this case.
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Figure 7.28 Just as light emission E interreflects about an environment resulting
in a radiosity at the surfaces, receiverfunction R emanating from the eye
interrflects among surfaces resulting in the surfaces having varying values of
importanceto the final image.

7.7.1 The Importance Equation

Smitset al. [220] have developed amportance-driverapproach to radiosity

that uses the above ideas. lllumination models such as the radiosity equation
capture the transport of photons from the light source to the eye. Ray tracing
from the eye typifies a dual process in which rays representing photon paths are
traced in the reverse direction from that taken by the light. Similarly, just as the

radiosity problem can be stated as

K B(x) = E(X) (7.8)

whereK is a linear operator on the unknown radiosBy,andE is asource
term, one can write aadjoint equation for the dual process:

K* Y(x) = R(X) (7.9)

In this equatiorK * is again a linear operator, but this time it acts on the unknown
importanceY (x). R(x) is areceiverfunction. The adjoint operatdf* in this
case is simplKT. In neutron transport theory, a similar adjoint to the transport
equation is developed to increase the efficiency of solutions for the flux arriving
at a small receiver [68, 152].

Intuitively, one can think of importance as a scalar function over the surfaces,
just like radiosity. The value of(x) represents the importance of poito

Radiosity and Realistic Image Synthesis 202
Edited by Michael F. Cohen and John R. Wallace



CHAPTER 7. HIERARCHICAL METHODS
7.7 IMPORTANCE METHODS

Figure 7.29 Geometry for initializing receiver function

the final image, given a receiver (or eye) position. The receiver funkfgn
acts much like the light sources in the radiosity equation. It can be thought of as
resulting from a spotlight at the eye location emanating importance in the view
direction.

The receiver function can be initialized by assigning each point a value
related to the point’s visible projected size in the image; thus areas not seen in
the image have a zero receiver value. More formally,

R(X) = Eibors_izex If X is visible in the image

D otherwise

cos @
———x _\/(eye, X
cos@,, r2 (ey )

%:
E
(7.10)

where the terms are shown in Figure 7.29. In the discrete function, the receiver
valueR of each elemenitis proportional to the area of the image covered by
the element. If the eye point moves and multiple images are to be rendered from
the solution, the receiver function might be nonzero at any point ever visible in
the sequence

Just as light interreflects about an environment, the importance from the eye
interreflects among surfaces (see Figure 7.28). Clearly, a point that is visible in
the image will have a large importance, but a point on another surface that has
a large potential to reflect light to a visible surface will also have a significant
importance value.
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7.7.2 Importance-Based Error

If the approximate linear operator and radiosity are givei bgnd B, respec-
tively, and the erroAK in the operator is given by

AK = K —K (7.11)
then a view-dependent error norm is provided by
Y(x) AK B(X) (7.12)

A detailed derivation call be found in [220]. The importance funcigr)

is unknown, just like the radiosity functidg(x). Thus, the best that can be
hoped for is to compute an approximatigrin a manner similar to that used to
approximate the radiosity function. A more useful importance-based error norm
is thus provided by

Y (X) AK B(X) (7.13)

When evaluated at a point, this norm gives a measure of the error approximation,
weighted by the importance of the point to the image and by the magnitude of
the radiosity at that point.

This leads to an algorithm (see Figure 7.30) in which one simultaneously
solves for the approximate radiosity and importance functions, making adap-
tive subdivision choices based on the importance-based metric of equation 7.13.
Clearly, minimizing the error in either the radiosity function or the importance
function alone will reduce the overall error. Importance based algorithms gain
their efficiency by taking into account both radiosity and importance, concen-
trating more effort on the radiosity function in regions of high importance, and
more effort on the importance function in brightly lit regions (i.e., high radiosity
values).

Solving for importance is very similar to solving for radiosity. If the radios-
ity associated with elemenis

n

B =F +p ZBj Fi (7.14)
E

then the importance of elemanis given by

n

Y. =R+ Z rYF, (7.15)
=

Note the switch in the indices pfandF.
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ImportanceDrivenRad  ( floatF,)
{
float eps
for (all surfacey )
{
p-B,=p-E
p-Y.,=p-R /[* visible area in image */
for (all mutually visible pairs of surfaceg,())
} { Link (p, @); Link (a, p); }
/* beginning with large tolerance, reduce it after each iteration */
for (¢ initially large diminishing to a small error threshold )
{
SolveDualSystem ();
for (each linkL)
RefineLink (L, &); /* see Figure 7.15 */
}
}

Figure 7.3Q ImportanceDrivenRad pseudocode.

Color plates 23 and 24 show independent radiosity and importance solutions,
respectively. The more interesting image is color plate 25, which shows the
combined radiosity and importance solution. The yellow areas with a high
combined radiosity and importance are the most critical to the final accuracy of
the image.

7.8 Hierarchical Radiosity and Importance

7.8.1 Pseudocode

The importance-based radiosity approach solves simultaneously for two un-
known functions, the radiosity functioB(x) and the importanc&’(x) (see
Figure 7.31). The discrete forms of the two equations after projection onto
constant basis functions aB= KE andY = KT R. The error norm to be
minimized is then based on

Y™ AKB (7.16)
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SolveDualSystem ()
{
Until Converged
{
for (all surfacegp) GatherRadShootimp (p);
for (all surfaceg) PushPullRad (p, 0.0);
for (all surfacesp) PushPulllmp (p, 0.0);
}
}

Figure 7.31 SolveDualSystem pseudocode.

GatherRadShootimp ( Quadnodep)
{
p- Bg =0;
for (each gathering link of p)
{
[* gather energy across link */
p_>Bg +=p-p*L-F*L-g-B;;
/* shoot importance across link */
p_>Yg +t=p-p*L-F*L-qg-Y,;
}
for (each childg of p) GatherRadShootimp ( q);

Figure 7.32 GatherRadShootimp pseudocode.

whereAK is the matrix of errors in the operatdr Pseudocode for the hierar-
chical importance-based algorithm is provided in Figures 7.31, 7.32, and 7.33.
The input to the algorithm consists, as before, of the geometry and reflectance
properties of the surfaces, the light source emissions, and additionaifytitiie
importance Rof each surface. This is typically the visible area of the surface in
the desired image (or images). The algorithm then recursively solves the dual
system, subdividing elements and creating new links until all interactions are
within given tolerances for the product of radiosity and importance.

The changes from the basic hierarchical code (described in section 7.4.3)
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PushPulllmp ( Quadnode:p, floatY,,,,)
{

1 floatyY,,, Yy

2 If (p-ne==NULL) [* pis a leaf */
3 Yup :p_’R+p_’Yg+Ydown;

4 else

5 |

6 Y,=0

7 for (each child node of p)

8 {

9 thp = (p_’Y + Ydowr) * rp:ggg
10 Y, +=PushPulllmp (r, Y, );
11 }

12 }

13 p-Y. =Yy,

14 return Yup;

}

Figure 7.33: PushPulllmp  pseudocode.

are minimal and much of the pseudocode is reused. The following
must be made.

* Fields to hold the receiver vali&® and the importancé must be added
to theQuadnode structure.

* Importance ishotat the same time that energgatheredover the links
(see Figure 7.32).

* PushingandPulling importance is similar to the same operations for ra-
diosity except that the area averaging is reversed (see Figure 7.33). This
is due to the fact that radiosity is enepgyr unit area Thus, moving up
the quadtree is an averaging operation. Importance, in contrast, is pro-
portional to area. Thus, moving one level up the tree requires summing
importance (line 10 iRushPulllmp ). Transferring radiosity and im-
portance down one level is just the reverse; radiosity is transferred directly
while importance must be parceled out according to the area of the chil-
dren (line 9) (compareushPulllmp )inFigure 7.33 t€ushPullRad
in Figure 7.11).
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* The oracle function must be modified to include multiplying by the
current element importandéas well as the form factor on the link and
the radiosity and area of the element (line 7 in Figure 7.16).

7.8.2 Example Results

Color plates 26-31 show a series of images of the radiosity-importance solution
(color plates 26, 28, 30) and the importance-only solution (color plates 27, 29,
31) for a mazelike environment [220]. As the eye point is backed away from
the original point from which importance was propagated, it is apparent that the
algorithm has concentrated effort on regions that are either visible in the original
image or that contribute significantly to the light eventually arriving at the eye.
The timings given by Smitst al indicate a performance increase of two to three
orders of magnitude for this environment.
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Chapter 8

Meshing

The general strategies for automatic meshing described in the previous chapters
determine where and when to subdivide, but not how to subdivide. The actual
mechanics of subdividing geometry will be addressed in this chapter.

Basic subdivision techniques are addressed first. These are useful both for
producing an initial uniform mesh as well as for further refining a mesh by
adaptive subdivision. A priori algorithms for determining mesh boundaries that
correspond to discontinuities in the radiosity function will also be discussed.

Meshing algorithms are best constructed on an underlying topological data
structure that efficiently represents the adjacencies between nodes, edges and
elements. The basic characteristics of such data structures and how they can be
applied to meshing will be described.

Finally, several alternatives to meshing have been developed in order to
avoid some of the complexities of surface subdivision. These approaches will
be examined both for their own sake as well as for the somewhat different light
they shed on the overall problem of approximating the radiosity function.

8.1 Basic Subdivision Techniques

A wide variety of subdivision techniques has been developed for finite and
boundary element analysis. Surveys have organized these techniques according
to a variety of taxonomies [92, 146, 211]. For our purposes, subdivision tech-
niques are broadly classified according to whether or not the mesh topology is
predetermined.

Algorithms that use a predetermined topology subdivide by mapping a mesh
template to the geometry. The template is a predefined subdivision into standard
elements, such as a rectangular grid. The essential step of the meshing process
consists of determining a mapping between the geometry and the template. The
alternative, in which the topology is not predetermined, idgcomposehe
geometry into elements by locating and connecting nodes according to some
procedure. As a trivial example, a polygon might be subdivided by connecting
its vertices to form triangles.
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Figure 8.1 Subdivision using a mesh template.

Both basic subdivision approaches have been used for radiosity and are
described further in the following sections.

8.2 Mesh Template Methods

8.2.1 Grid Superposition

The most direct way of mapping a mesh template to the geometry is simply to

superimpose the template on the geometry. The geometry is then split along
the grid lines to create the mesh (see Figure 8.1). The chief advantage of
this approach is that it generates perfectly regular, well-shaped elements on the
interior of the geometry.

Unfortunately, the “cookie-cutter” approach frequently generates unaccept-
able elements where the template intersects the boundary. Elements are often
poorly shaped, with low aspect ratios, concavities or extra vertices. Element
shape can be improved by smoothing the mesh (as in section 8.4), but smooth-
ing cannot eliminate extra vertices.

Grid superposition schemes improve on the cookie-cutter approach by pro-
viding special handling for elements near the boundary. For example, elements
of the template that contain pieces of the boundary may be partially collapsed
to eliminate extra vertices.

Baumet al. [18] describe an alternative in which the mesh template is used
to create only those elements that lie fully inside the boundary. The region
between the boundary and the interior elements is then triangtilated.

This subdivision technique was first described by Rockwood as a means of tesselating
trimmed spline surfaces for display [194].
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Figure 8.2 Subdivision using a template for interior elements and triangulation
to connect to boundary.

In the first step of Baum’'s approach the template is superimposed on the
geometry. The grid is traversed and elements are created only where all four
corners of the grid square are well inside the boundary. Grid corners that are
inside but very close to the boundary are rejected, since they may cause poorly
shaped elements during the triangulation step. Next, the boundary is subdivided
at regular intervals corresponding to the desired mesh density. Finally, the region
between the subdivided boundary and the internal elements is triangulated (see
Figure 8.2).

Since the triangulation will link element edges to all boundary vertices, small
boundary features are incorporated into standard three-sided elements. However,
if the boundary contains features or edges that are much smaller than the target
element size, triangulation will often result in poorly shaped elements and a
poorly graded mesh (see Figure 8.3).

In general, the graceful incorporation of small boundary features requires a
nonuniform mesh. Producing a well-graded, nonuniform mesh requires greater
control over element size than is provided by a uniform template. However,
template methods can be generalized to produce nonuniform meshes by using
an adaptive, variable-size template [211].

8.2.2 Template Mapping

The use of a template is simplified if the template can be mapped to fit the
geometry exactly. For example, a rectangular template can be mapped exactly
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Figure 8.3 Small features of the geometry may cause poorly shaped elements.

to fill a convex quadrilateral. The mapping in this case is the same as for the

bilinear isoparametric element described in Chapter 5. Once the mapping is

obtained, a set of elements corresponding to the template can be turned into an
actual mesh simply by transforming the parametric coordinates for each node to

geometric coordinates. More general mappings can be used to handle regions
with curved boundaries or with more than four sides [235], although these have

not been applied to radiosity to date.

Although mapping increases the range of geometries that can be meshed
with template subdivision, there are limitations. The mapping may introduce
severe distortions, resulting in a nonuniform mesh of poorly shaped elements.
In addition, although a conformal mapping does exist between any two simply
connected regions with an equal number of vertices, directly mapping geometries
with more than four sides can be complicated.

8.2.3 Multiblocking

An alternative when the geometry is too complicated or is concave is to subdivide
the geometry into simpler regionstdocksfirst. Templates can then be mapped
directly to each of the regions.

Cohenet al [61] use multiblocking with mapped templates in an early
radiosity implementation. Surfaces are subdivided into convex quadrilaterals
and triangles by connecting vertices of the geometry These regions are then
subdivided into quadrilateral or triangular elements by splitting the edges in half
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Figure 8.4 Subdivision with mapped elements. The geometry is first split into
simple shapes. In Cohen’s algorithm, the boundaries are then bisected and new
vertices joined to form elements. Subdivision proceeds recursively as needed.

and joining them across the interior to create four elements. Finer mesh densities
are obtained by continuing the subdivision recursively until the desired element
size is reached (see Figure 8.4). Splitting edges at the midpoint guarantees that
new elements created on either side of the edge will be conforming.

When the initial blocks are obtained by joining the vertices of the original
geometry, the blocks may sometimes have extreme shapes that produce highly
distorted mappings. These can be avoided by adding new vertices on the bound-
ary or the interior of the geometry. As noted in [146], however, once such an
algorithm is available for the initial subdivision, there is little reason not to use
it to produce the entire mesh.
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8.2.4 Adaptive Subdivision with Templates

Once the mapping has been established, a mesh produced using a template can be
refined during adaptive subdivision by applying the template again to elements
requiring further subdivision. In Cohen’s quadtree subdivision algorithm, for
example, quadtree subdivision is invoked again following the initial solution to
refine elements where needed.

As a means of a posteriori mesh refinement, mapped templates (of which
the quadtree scheme is the most common example for radiosity) have the dis-
advantage that the placement of element boundaries is inflexible. New element
edges cannot be oriented to distribute the error as evenly as possible. As a result,
adaptive subdivision using template mapping may require more elements than
necessary to achieve a certain accuracy.

Template mapping approaches, like the quadtree algorithm, also tend to
generate nonconforming elements in regions of changing mesh density. For ex-
ample, when neighboring elements are subdivided to different levels, quadtree
subdivision creates T-vertices. If the node at the T-vertex is not shared by the
larger neighboring element, a discontinuity in the approximation will be intro-
duced along that edge, since the interpolated value at that point will generally
be different from the value computed at the node for the same point (see Fig-
ure 8.5). On the other hand, if the node at the T-vertex is shared with the larger
element, the large element is no longer well shaped, since it contains 5 nodes,
one of which is at the apex of edges forming a 180-degree angle.

Quadtree algorithms have employed several techniques for handling T-
vertices Cohert al create special nodes at T-vertices, sometimes csithed
nodes in the finite element literature. The function is not actually evaluated at
slave nodes. Instead, the value at a slave node is interpolated (linearly, in this
case) from the nodes of the largest element sharing that edge (nodes A and B in
Figure 8.6). This allows interpolation on the larger element to ignore the slave
nodes without introducing discontinuities.

Baum, et al. [18] describe an alternative way of handling T-vertices. Nodes
at T-vertices are shared by all elements surrounding the vertex and the function
is evaluated at the node. To maintain correct element shape, the larger element
is then triangulated to form smaller properly shaped elements (see Figure 8.7).
The resulting modified hierarchy is calledreaquadtree.

The extra triangulation in the tri-quadtree is not a permanent part of the
mesh. The triangulation of a problem element is used only when needed for lin-
ear interpolation. If further adaptive subdivision is required later in the solution,
it will be performed on the original element, not the triangulation.

Adaptive subdivision using a quadtree often produces poorly graded meshes.
Figure 8.8 shows an example in which a large element is adjacent to a highly
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Figure 8.5 Discontinuity introduced by incorrectly handled T-vertices

subdivided region. Triangulation of the large element in this case will produce
triangles with a poor aspect ratio. The use of slave nodes may produce a visible
artifact along the long edge, due to its close proximity to nodes at which the
function is actually evaluated.

Better mesh grading can be achieved by requiribglancedor restricted
quadtree [18, 211]. Neighboring elements in a restricted quadtree are allowed
to differ by only one level of subdivision. A balanced tree can be achieved by
checking the neighbors of an element when it is subdivided, and by subdividing
those neighbors recursivéely.

2Algorithms for performing this and other operations on quadtrees can be found in
Samet [204].
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IA
<— slave node

B

Figure 8.6 T-vertices treated as slave nodes.

Figure 8.7: Tri-quadtree used to eliminate t-vertices.

8.3 Decomposition Methods

Mapped template methods are efficient and produce well shaped elements for
simple geometries. However, their limited flexibility is a drawback when sub-
dividing more complicated geometries and during a posteriori mesh refinement.

Subdivision methods that decompose the geometry into elements piece by
piece provide greater flexibility. There are two basic approaches to this decom-
position: the nodes and elements can be produced at the same time using a
single procedure or the nodes can be produced first and then connected to form
edges in an independent step.
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Unrestricted quad-tree Restricted quad-tree
Figure 8.8 Useof restricted quadtree to improve mesh grading.

8.3.1 Nodes-Elements—Together Decomposition

In this approach, the geometry is subdivided by creating nodes and joining
them with edges to generate new elements one by one. Subdivision can be
performed recursively, first subdividing the entire geometry into initial elements,
then splitting those elements again until the desired element size is reached.
During subdivision, new nodes can be positioned according to criterion selected
to produce a mesh with certain density or smoothness properties. Chew [53]
and Watson [256] describe incremental Delaunay triangulation algorithms of
this type. Alternatively, subdivision may proceed from the boundary inward,
splitting off triangles one by one until the entire geometry is meshed.

8.3.2 Decomposition by Recursive Splitting

Campbell and Fussell [43] subdivide surfaces by recursive splitting using a two-
dimensional binary space partition (BSP) tree. The BSP-tree allows arbitrary
orientation of element edges (see Figure 8.9). Elements are created by splitting
larger regions along an arbitrary edge. The ability to incorporate arbitrarily
oriented edges allows Campbell and Fussel to include previously determined
discontinuity boundaries into the mesh.

Campbell and Fussell also use the flexibility of BSP subdivision advan-
tageously during adaptive subdivision. The edge used to split an element is
oriented to minimize the variation in radiosity over the new elements. Using
optimization techniques, Campbell and Fussell locate the global maximum and
minimum for the element and subdivide halfway between the two extreme points
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Figure 8.9 Hierarchical surface subdivision using a BSP tree (after Campbell,
1990).

along an edge perpendicular to the line joining the extrema.

Although the BSP-tree is more flexible than the quadtree, it is also more
difficult to maintain conforming elements with the bsp-tree. T-vertices occur
frequently, since neighboring elements are split along edges that are not likely to
meet at a common node. Campbell and Fussell treat T-vertices as slave nodes.
They also recommend a final clean-up pass following adaptive subdivision, dur-
ing which the tree is balanced by subdividing elements with highly subdivided
neighbors and those with a poor aspect ratio.

Lischinski and Tampieri [154], who also use a bsp-tree to represent surface
subdivision, avoid the clean-up pass by simultaneously maintaining a data struc-
ture representing the mesh topology. Nodes of the BSP-tree point to edges in
a winged-edge data structure. T-vertices can then be eliminated using a simple
trianlgulation pass.

8.3.3 Decomposition by Advancing Front

In contrast to recursive splitting, decomposition may also proceed from the
boundary inward, splitting off finished elements one at a time. This is some-
times called theadvancing fronimethod, because the forward boundary of the
meshed region is progressively advanced into the unmeshed region until the en-
tire geometry is subdivided [92]. Algorithms of this type are distinguished by
the technique with which the front is advanced. For example, the front may
be searched to locate the smallest angle, which is then incorporated into a new
triangular element and split off from the unmeshed region (see Figure 8.10). The
advancing front method is also known @avingwhen it is used to subdivide
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Figure 8.1Q A intermediate stage of an advancing front algorithm.

into quadrilateral elements.

The advancing front method allows control over element quality, since qual-
ity criteria can be explicitly incorporated into the rules according to which ele-
ments are split off from the front. However, this approach can run into difficul-
ties for complicated geometries. For example, backtracking may be required to
undo decisions, resulting in fronts for which no good candidates are available
for splitting. The advancing front technique has not yet been applied to radiosity
meshing.

8.3.4 Nodes-First Decomposition

In anodes-firstmethod, decomposition is accomplished by first positioning the
nodes and then connecting them to form edges. Because nodes are placed and
connected in independent steps, the procedures for each task can be chosen
independently from a greater range of possibilities. This leads to greater overall
flexibility. Nodes can be placed anywhere, with nonuniform density if desired,
either to handle small features of the geometry, or to address some anticipated
behavior of the function. All the nodes may be laid out before any edges are
created or the subdivision may proceed recursively by creating some nodes and
linking them, then creating more nodes within the resulting elements, and so on.
Figure 8.11 shows an example in which nodes are generated by superimposing
a grid over the geometry and placing a node more or less randomly in each grid

cell.
The nodes are usually connected by triangulation. Delaunay triangélation
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Figure 8.11 Subdivision using aodes-firstalgorithm.

is commonly used since it guarantees triangles that are as well shaped as possible
(according to a certain criterion) for a given set of nodes. Delaunay triangulations
are often also constructed incrementally, positioning new nodes in relationship
to existing elements in order to achieve elements with desired shape or density.
Algorithms for connecting nodes into quadrilaterals are less common.

For radiosity applications, Heckbert [121] has incorporated a triangulation
approach into an a priori discontinuity meshing scheme. Critical element bound-

%A Delaunay triangulation connects a given set of points so that the circle circum-
scribing any triangle contains only the points belonging to that triangle (except in the
case where four or more points are cocircular). A Delaunay triangulation also minimizes
the smallest angle of its triangles over all possible triangulations of the set of points and
thus avoids thin slivers as far as possible. A further, not inconsequential, advantage of
Delaunay triangulations is that they are a generally useful construct for computational
geometry and algorithms for producing them have thus received great attention. The
standard computational geometry text by Preparata and Shamos [184] provides a detailed
discussion. The article by Schumaker [207] provides a short overview and a discussion
of practical issues.
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aries corresponding to discontinuities in the radiosity function are placed first.
The remainder of the mesh is determined by placing and connecting nodes us-
ing aconstrainedDelaunay triangulation, which preserves existing edges [53]
(Heckbert uses an algorithm based on [33]). The flexibility of decomposition
by triangulation is particularly useful when dealing with the complex region
boundaries often created by discontinuity meshing. Lischieisél [154] have

also used triangulation to incorporate discontinuity edges.

Sturzlinger [227] employs a variation on the nodes-first approach designed
specifically for a radiosity implementation in which constant elements are used
during the solution and linear interpolation is used during rendering. The initial
mesh is created by first positioning nodes according to a uniform grid. Constant
elements consisting of the Voronoi polygonalization of the nodes are used during
the solution. Prior to rendering, the same nodes are triangulated to provide
elements suitable for linear interpolation. The Voronoi diagram is the straight-
line dual of the Delaunay triangulation, which makes conversion between the
Voronoi mesh and the triangular mesh easy and convenient. Sturzlinger also uses
incremental refinement of the Voronoi polygonalization to implement adaptive
subdivision.

8.4 Mesh Smoothing

The quality of the subdivision produced by both template and decomposition
methods can often be improved &moothingthe mesh. Mesh smoothing con-
sists of several passes of relaxation during which nodes are repositioned to
improve element shape and grading. In each relaxation pass each node is typi-
cally relocated to the centroi®, of the n adjacent nodes locatedPausing a
formula like the following:

i (8.1)

Not all nodes are equally free to move. Nodes along fixed boundaries can
move only along the boundary. Fixed boundaries include the original edges of
the geometry and mesh boundaries that may have been added a priori, such as
discontinuity boundaries. Nodes at the intersection of fixed boundaries are not
free to move at all.

Mesh smoothing is a useful tool because it relieves the subdivision algo-
rithms of some responsibility for element shape. The subdivision algorithm is
then free to concentrate on creating a correct topology. For radiosity, mesh
smoothing has been employed by Heckbert [121] as a final step following tri-
angulation.
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Mesh relaxation can also be used for a posteriori mesh refinement (the r-
refinement method described in Chapter 6) by incorporating local element error
into the relocation method. For example, the following relocation formula moves
the nodeP according to the area weighted errors ofiledements adjacent to
the node:

n
b= zizlnxiqu (8.2)
2=
wheren is the number of elements adjacenPto is the centroid of adjacent
elementi, e is the approximation error for elementandA is the area of
element. This formula will tend to move the node in a direction that equalizes
the error among the elements adjacent to the node.

8.5 Discontinuity Meshing

The radiosity function is piecewise smoo&”) within regions bounded by
discontinuities of various orders. The failure to resolve these discontinuities
correctly can result in highly visible artifacts, as demonstrated in Chapter 6.

A posteriori refinement is not very effective at reducing error in the neighbor-
hood of discontinuities. Since the basis functions are continuous, discontinuitis
can only be introduced into the approximation along element boundaries. Re-
ducing error in the neighborhood of a discontinuity requires either a relatively
high mesh density, which is expensive, or exact alignment of element edges with
the discontinuity, which is difficult to achieve using an a posteriori algorithm.

However, it is possible to determine the location of discontinuity boundaries
a priori. Discontinuities in the radiosity function correspond to transitions in
occlusion between source and receiving surfaces. These are purely geometric in
nature and can be determined before radiosities are computed.

8.5.1 Discontinuities in Value

A discontinuity in the value of the radiosity function occurs; when one surface
touches another (see Figure 8.12he discontinuity is caused by the abrupt
transition from complete visibility to complete occlusion that is encountered in
crossing the line of contact between the surfaces. The locations of these value
discontinuities can be identified by determining the geometric intersections of all
surfaces, as described by Bawhal [18]. Although conceptually straightfor-
ward, the intersection computation requires careful handling to avoid numerical
difficulties. Isect the program used by Baum to resolve surface intersections,

“Value discontinuities also occur at the boundaries of shadows cast by point light
sources. Point lights are discussed in the context of the radiosity method in Chapter 10.
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Figure 8.12 A discontinuity in value. The plot to the lower right shows the ra-
diosity of the surface as a function of position along the horizontal line overlayed
on the upper right image. Courtesy of Daniel Lichinski and Filippo Tampieri,
Program of Computer Graphics, Cornell University.

was designed to compute the intersection of solid model boundary representa-
tions robustly [209].

Once boundaries have been identified, they can be inserted into the repre-
sentation of the polygon as specially flagged edges. The insertion of new edges
is easier if polygons are represented by a robust topological data structure, like
the winged-edge data structure (topological data structures are discussed in sec-
tion 8.6). When the polygon is meshed, the discontinuity edges become element
boundaries. Correct reconstruction of the discontinuity requires that adjacent
elements do not share nodes along such boundaries.

In a point collocation radiosity method, in which form factors are evaluated
at the nodes, occlusion testing must be handled carefully along value disconti-
nuities. As shown in Figure 8.13, the geometric location of a node on such a
boundary is not sufficient in itself to determine its occlusion with respect to the
intersecting surface. Such nodes actually represent the behavior of the radiosity
function in the limit moving towards the boundary from the left or the right.
Any purely numerical shadow algorithm, such as ZHeuffer or ray tracing,
will return the same answer for nodes with the same location (in most cases it
will ignore occlusion by the intersecting surface).

One solution is to move the node temporarily away from the boundary by
a small amount in the appropriate direction. It is also possible to determine the
occlusion with respect to the intersecting surface topologically. If the source
and the element to which the node belongs are on opposite sides of the plane of
the intersecting surface, the node is in shadow. If they are on the same side, the
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intersecting 79 plane of T
surface surface ' .

a) b)

Figure 8.13 Occlusion testing at a discontinuity in value. a) A numerical shadow
testwill return the same values for nodesidb, since they have the same geomet-

ric location. b) Occlusion with respect to theersecting surfaces determined

by whether the corresponding element lies on the same side or the opposite side
of the plane from the light source.

node is in the light (or, at least, not shadowed by the intersecting surface). When
the light straddles the plane of the occluder, the test remains straightforward for
point sampling from factor algorithms (e.g., ray traced form factors), since it is
performed for each point sample. For other algorithms, the light in the straddling
case may have to be split temporarily across the plane.

The image in Figure 8.14 shows artifacts typically produced when value
discontinuities are ignored. Not also the extra elements generated by adaptive
subdivision in an unsuccessful attempt to resolve the discontinuity. Compare
this image with Figure 8.15, in which discontinuity boundaries are incorporated
into the mesh. The shadow leak on the wall behind the table top is eliminated
and no adaptive subdivision is required along a boundary.

8.5.2 First and Second Derivative Discontinuities

Discontinuities in the first and second derivatives of the radiosity function result
from qualitative transitions in occlusion between surfaces in a polygonal environ-
ment® The image in Figure 8.16 shows the geometry of occlusion for a simple
scene. The resulting first and second derivative discontinuities are evident in the

*Additional discontinuities of arbitrary degree will occur due to interreflection, as
Heckbert demonstrates [120], but these are of much lesser visual consequence.
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Figure 8.15 Discontinuity in value correctly handled.
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Figure 8.16 First and second derivative discontinuity boundaries for a polyg-

onal environment. Note the visible discontinuity in the first derivative of the
radiosity function plotted in the lower right of the figure. Courtesy of Daniel

Lischinski and Filippo Tampieri, Program of Computer Graphics, Cornell Uni-

versity.

plot of the radiosity function. As apparent in this image, discontinuities define
the outer boundary of the shadow penumbra and the boundary of the umbra.
Additional discontinuities occur within the penumbra itself.

In a polygonal environment, certain geometric events cause a qualitative
transition in the occlusion of an illumination source. The variation in the occlu-
sion of a source undergoes a qualitative transition at certain geoexnts.
Imagine viewing a partially occluded source from a point moving along a re-
ceiving surface. As the viewpoint moves, more of the source is revealed (see
Figure 8.17). In general, the visibility of the source (and thus the direct energy
transfer for a constant source) varies quadratically according to a function de-
termined by the relative orientation of the overlapping edges of the source and
the occluding polygon.

Whenever an edge joins or leaves the set of overlapping edges, a new
quadratic variation is determined and there is a discontinuity in the first or second
derivative. This transition is calledvésual eventThere are two classes of visual
events Vertex-EdggVE or EV) andEdge-Edge-EdgéEEE), corresponding to
the two possible ways that an edge can leave or join the set of overlapping
edges.

A VE event occurs when a vertex of the source crosses an edge of the
occluding polygon (first row of Figure 8.17), or conversely when an edge of
the source crosses a vertex of the occluder (for convenience this case may be
differentiated as an EV event). The event definest&cal surface,that is, the
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VE event (second-derivative discontinuity)

\‘ .

VE events (first-derivative discontinuity)

hvae 8

EEE event

Figure 8.17 VE and EEE visual events, from a viewpoint looking back toward
the occluded light source.

wedgeformed by the vertex and the edge that cause the event. The intersection
of this wedge with the scene polygons determines the discontinuity boundaries
resulting from this event. The critical surface and its effect on the radiosity
function are shown in Figures 8.18 and 8.19.

A discontinuity in the first derivative occurs when an edge of the source and
an edge of the occluder are coplanar, as shown in the second row of Figure 8.17.
First derivative discontinuities are evident in Figure 8.16.

Visual events can also occur where neither the vertex nor the edge belongs
to the source, as shown in row three of Figure 8.17. The visual event involving
the two occluding polygons in this case modifies the function describing the
change in source visibility, even though the event does not involve any of the
source vertices or edges.

The other class of visual events, EEE events, involves transitions caused by
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Figure 8.18 A VE event caused by a source vertex and an occluder edge. Cour-
tesy of Daniel Lischinski and Filippo Tampieri, Program of Computer Graphics
Cornell University.

Figure 8.19 A VE event caused by an occluder vertex and a source edge.
Lischinski et al. differentiate these as EV events. Courtesy of Daniel Lischinski
and Filippo Tampieri, Program of Computer Graphics, Cornell University.

overlapping edges of multiple occluders (fourth row of Figure 8.17). The critical
surfaces in this case are quadric and the resulting discontinuity boundaries are
curves.

The computational challenge in discontinuity meshing is to test the scene
polygons against the critical surfaces efficiently and robustly and insert the re-
sulting boundaries into the polygon mesh.
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Figure 8.20 Determining penumbra and umbra volumes using Nishita and
Nakamae’s algorithm. (After Nishista and Nakamae, 1985).

8.5.3 Shadow Volume Algorithms

Early algorithms deal only with the subset of events that define the boundaries of
the umbra and penumbra. Nishita and Nakamae [175] determine these bound-
aries by computing shadow volumes formed by an object and each vertex of
the light polygon (see Figure 8.20.) The umbra volume for a single occluder
is defined by the intersection of the shadow volumes. The penumbra volume is
defined by the three-dimensional convex hull containing the shadow volumes.
The intersection of the umbra and penumbra volumes with surfaces defines the
penumbra and umbra boundaries. This approach ignores discontinuities within
the penumbra.

Campbell [42] also resolves only the outer penumbra and umbra bound-
aries. Like Nishita and Nakamae, Campbell constructs umbra and penumbra
volumes for each source-occluder pair. However, he avoids computing a three-
dimensional convex hull by constructing the volumes directly from critical sur-
faces.

Campbell's algorithm assumes convex source and occluder polygons. For
each edge of the occluder, ldocker,there exists a critical surface formed with
respect to each vertex of the source. The minimum blocker extremal plane is
defined to be the critical surface that forms the minimum angl