

GGGGGRAPHICSRAPHICSRAPHICSRAPHICSRAPHICS
GGGGGEMSEMSEMSEMSEMS
edited by

AAAAANDREWNDREWNDREWNDREWNDREW S. G S. G S. G S. G S. GLASSNERLASSNERLASSNERLASSNERLASSNER

Xerox Palo Alto Research Center
Palo Alto, California

AP PROFESSIONAL
Boston San Diego New York

London Sydney Tokyo Toronto

Copyright (c) 1995 by Academic Press, Inc.

GRAPHICS GEMS copyright (c) 1990 by Academic Press, Inc.

GRAPHICS GEMS II copyright (c) 1991 by Academic Press, Inc.

GRAPHICS GEMS III copyright (c) 1992 by Academic Press, Inc.

QUICK REFERENCE TO COMPUTER GRAPHICS TERMS
copyright (c) 1993 by Academic Press, Inc.

RADIOSITY AND REALISTIC IMAGE SYNTHESIS
copyright (c) 1993 by Academic Press Inc.

VIRTUAL REALITY APPLICATIONS AND EXPLORATIONS
copyright (c) 1993 by Academic Press Inc.

All rights reserved.
No part of this product may be reproduced or transmitted in any form or by any
means, electronic or mechanical, including input into or storage in any information
system, other than for uses specified in the License Agreement, without permission
in writing from the publisher.

Except where credited to another source, the C and C++ Code may be used freely to
modify or create programs that are for personal use or commercial distribution.

Produced in the United States of America

ISBN 0-12-059756-X

To the spirits of creativity and sharing that
imagine new inventions and urge their

communication

GRAPHICS GEMS I Edited by ANDREW S. GLASSNER vi

CONTENTS
About the CoverAbout the CoverAbout the CoverAbout the CoverAbout the Cover
The cover picture was designed and produced by Thad Beier at Pacific Data images. The book inspired
the picture, although there are only 74 gems on the cover and over 100 in the book. There are four
gem shapes repeated many times in many colors. The bag is modeled after the bag a certainScotch comes
in. While the picture was created over a two-month period, it of course came down tothe last minute
to get it created, so it was ray-traced on 18 Silicon Graphics workstations in about an hour and a half.
The text behind the gems and the title is from the animation script that places the gems and the ray-
tracing program that created the picture from that script.

 Thad Beier
 Pacific Data Images

♦
When Andrew showed us the image designed for the cover of Graphics Gems and asked if we
wereinterested in digitally converting it to printable form, we said “ What a wonderful image! It’s going
tobe tricky, but it will be fun.” It was both. The image colors were designed with respect to a color
monitor, producing red, green, and blue pixels. For printing, we needed to convert these pixels to cyan,
magenta, yellow and black color separations.

 Whether colors are defined for a printer or a monitor, they can be defined with respect to a device-
independent standard based on the Commission Internationale de l’Éclairage (CIE) standards for color
measurement. Given such a definition, we can define the gamut, or set of all possible colors that can
be reproduced by each device. Colors outside of the device gamut cannot be reproduced. The figure
shows a plot of the monitor, printer and image gamuts overlaid. It is easy to see that the monitor and
image gamuts are much larger than the printer gamut, and that the image nearly fills the monitor gamut.
To make the best reproduction of the picture, we had to squeeze the image colors into the printer gamut
in a way that maintained the appearance of the image. We did this with a piecewise, non-linear 3D
transformation that collapsed the monitor gamut into the printer gamut. The constraints on this
transformation were that colors should move radially towards the lightness axis of the color space
~preserves hue an~ lightness at the cost of saturation) and that colors outside of the gamut should move
more than colors inside the gamut (preserves overall saturation).

Finding the best transformation is still a research problem. The image was particularly challenging
because it filled the monitor gamut, so we had to compress in all directions at once. The texture on
the bag and the sparkle of the gems were very sensitive to variations in the transformation; many
attempts produced dull, plastic looking gems or an untextured bag, even though the absolute color
fidelity was better than the one chosen for final reproduction (proving there is much more to good color
reproduction than the colors).

Maureen Stone and Bill Wallace
Xerox Palo Alto Research Center

GRAPHICS GEMS I Edited by ANDREW S. GLASSNER vii

CONTENTS

 CONTENTS

Italic page numbers refer to location of corresponding C implementation.

Preface xv

Introduction xvii

Mathematical Notation xix

Pseudo-Code xxi

Contributors xxvi

12D GEOMETRY
Useful 2D Geometry 3

Trigonometry Summary 12

Useful Trigonometry 13

Trigonometric Functions at Select Points 18

Triangles 20

Generating Random Points in Triangles (649) 24

Fast Line–Edge Intersections on a Uniform Grid (651) 29

GRAPHICS GEMS I Edited by ANDREW S. GLASSNER viii

CONTENTS
Anti-Aliasing Summary 37

Area of Intersection: Circle and a Half-Plane 38

Area of Intersection: Circle and a Thick Line 40

Area of Intersection: Two Circles 43

Vertical Distance from a Point to a Line 47

A Fast 2D Point-on-Line Test (654) 49

Fast Circle–Rectangle Intersection Checking (656) 51

22D RENDERING
Circles of Integral Radius on Integer Lattices 57

Nice Numbers for Graph Labels (657) 61

Efficient Generation of Sampling Jitter Using Look-up
Tables (660) 64

Scan Conversion Summary 75

Fast Anti-Aliasing Polygon Scan Conversion (662) 76

Generic Convex Polygon Scan Conversion and Clipping (667) 84

ConcavePolygon Scan Conversion (681) 87

Fast Scan Conversion of Arbitrary Polygons 92

Line-Drawing Summary 98

Digital Line Drawing (685) 99

Symmetric Double Step Line Algorithm (686) 101

Rendering Anti-Aliased Lines (690) 105

An Algorithm for Filling in 2D Wide Line Bevel Joints 107

Rendering Fat Lines on a Raster Grid 114

GRAPHICS GEMS I Edited by ANDREW S. GLASSNER ix

CONTENTS
Two-Dimensional Clipping: A Vector-Based Approach (694) 121

Periodic Tilings of the Plane on a Raster 129

3IMAGE PROCESSING
Anti-Aliasing Filters Summary 143

Convenient Anti-Aliasing Filters That Minimize
“Bumpy” Sampling 144

Filters for Common Resampling Tasks 147

Smoothing Enlarged Monochrome Images 166

Median Finding on a 3 × 3 Grid (711) 171

Ordered Dithering (713) 176

A Fast Algorithm for General Raster Rotation 179

Useful 1-to-1 Pixel Transforms 196

Alpha Blending 210

 4FRAME BUFFER TECHNIQUES
Frame Buffers and Color Maps 215

Reading a Write-Only Write Mask 219

A Digital “Dissolve” Effect (715) 221

Mapping RGB Triples onto Four Bits (718) 233

What Are the Coordinates of a Pixel? 246

Proper Treatment of Pixels as Integers (719) 249

Normal Coding 257

Recording Animation in Binary Order for Progressive
Temporal Refinement (720) 265

GRAPHICS GEMS I Edited by ANDREW S. GLASSNER x

CONTENTS
1-to-1 Pixel Transforms Optimized through

Color-Map Manipulation 270

A Seed Fill Algorithm (721) 275

Filling a Region in a Frame Buffer 278

Precalculating Addresses for Fast Fills, Circles,
and Lines 285

A Simple Method for Color Quantization:
Octree Quantization 287

53D GEOMETRY
Useful 3D Geometry 297

An Efficient Bounding Sphere (723) 301

Intersection of Two Lines in Three-Space 304

Intersection of Three Planes 305

Mapping Summary 306

Digital Cartography for Computer Graphics 307

Albers Equal-Area Conic Map Projection. (726) 321

Boxes and Spheres Summary 326

Spheres-to-Voxels Conversion 327

A Simple Method for Box-Sphere Intersection Testing (730) 335

63D RENDERING
3D Grid Hashing Function (733) 343

Backface Culling 346

GRAPHICS GEMS I Edited by ANDREW S. GLASSNER xi

CONTENTS
Fast Dot Products for Shading 348

Scanline Depth Gradient of a Z-Buffered Triangle 361

Simulating Fog and Haze 364

Interpretation of Texture Map Indices 366

Multidimensional Sum Tables 376

7RAY TRACING
A Simple Ray Rejection Test 385

Ray−Object Intersection Summary 387

Intersection of a Ray with a Sphere 388

An Efficient Ray−Polygon Intersection (735) 390

Fast Ray−Polygon Intersection 394

Fast Ray−Box Intersection (736) 395

Shadow Attenuation for Ray Tracing
Transparent Objects 397

8NUMERICAL AND PROGRAMMINGTECHNIQUES
Root Finding Summary 403

Cubic and Quartic Roots (738) 404

A Bézier Curve-Based Root-Finder (787) 408

Using Sturm Sequences to Bracket Real Roots
of Polynomial Equations (743) 416

Distance Measures Summary 423

GRAPHICS GEMS I Edited by ANDREW S. GLASSNER xii

CONTENTS
A High-Speed, Low Precision Square Root (756) 424

A Fast Approximation to the Hypotenuse (758) 427

A Fast Approximation to 3D Euclidean Distance 432

Full-Precision Constants 434

Converting between Bits and Digits 435

Storage-free Swapping 436

Generating Random Integers 438

Fast 2D−3D Rotation 440

Bit Patterns for Encoding Angles 442

Bit Interleaving for Quad- or Octrees (759) 443

A Fast HSL-to-RGB Transform (763) 448

 9MATRIX TECHNIQUES
Matrix Identities 453

Rotation Matrix Methods Summary 455

Transforming Axes 456

Fast Matrix Multiplication 460

A Virtual Trackball 462

Matrix Orthogonalization (765) 464

Rotation Tools 465

Matrix Inversion (766) 470

Matrices and Transformations 472

Efficient Post-Concatenation of Transformation Matrices (770) 476

GRAPHICS GEMS I Edited by ANDREW S. GLASSNER xiii

CONTENTS
10MODELING AND TRANSFORMATIONS

Transformation Identities 485

Fixed-Point Trigonometry with CORDIC Iterations (773) 494

Using Quaternions for Coding 3D Transformations (775) 498

3D Viewing and Rotation Using Orthonormal Bases (778) 516

The Use of Coordinate Frames in Computer Graphics 522

Forms, Vectors, and Transforms (780) 533

Properties of Surface-Normal Transformations 539

Transforming Axis-Aligned Bounding Boxes (785) 548

Constructing Shapes Summary 551

Defining Surfaces from Sampled Data 552

Defining Surfaces from Contour Data 558

Computing Surface Normals for 3D Models 562

Calculation of Reference Frames along a Space Curve 567

11CURVES AND SURFACES
Planar Cubic Curves 575

Explicit Cubic Spline Interpolation Formulas 579

Fast Spline Drawing 585

Some Properties of Bézier Curves 587

Tutorial on Forward Differencing 594

Integration of Bernstein Basis Functions 604

GRAPHICS GEMS I Edited by ANDREW S. GLASSNER xiv

CONTENTS
Solving the Nearest-Point-on-Curve Problem (787) 607

An Algorithm for Automatically Fitting Digitized Curves (797) 612

References 808

Index 822

xvGRAPHICS GEMS I Edited by ANDREW S. GLASSNER xv

PREFACE

PPPPPREFACEREFACEREFACEREFACEREFACE

Welcome to Graphics Gems: a collection of algorithms, programs, and
mathematical techniques for the computer graphics programmer.

I have wanted a book like this for a long time. I have written tens of
thousands of lines of computer graphics code in the last few years, and I
know that much of it could have been better. I even knew that when I
wrote it. But often I didn’t have the time to find the best data structure or
design the most elegant or robust algorithm. Sometimes I only realized
how to do something well after doing it the wrong way first.

As time went on I found myself sharing my experiences and tricks with
friends and colleagues, who offered their insights in return. Though we
were trading our hard-earned lessons with each other, there was no more
general or public forum where we could document these ideas perma-
nently. And I sometimes wondered what insights I was missing simply
because I couldn’t talk with everyone in the field.

Thus Graphics Gems was born. This book was created for the working
graphics programmer. Its production concludes one turn of a cycle of
discovery, documentation, editing, publishing, and reading, which will
lead to new discoveries. The articles in this book are not research papers.
The formal publication process in journals and conferences works well for
disseminating the architecture of large, new ideas. Rather, this book
focuses on the nuts-and-bolts of programming and implementation, sup-
plying the details often left out of technical papers.

How This Book Came to BeHow This Book Came to BeHow This Book Came to BeHow This Book Came to BeHow This Book Came to Be
In the spring of 1989 I decided that there was probably enough informal
(and unpublished) community wisdom in the graphics field that we could

xviGRAPHICS GEMS I Edited by ANDREW S. GLASSNER xvi

PREFACE

put together a “little book” of clever ideas. The book’s title was inspired
by Jon Bentley’s excellent Programming Pearls column published in
the Communications of the ACM. At Siggraph ‘89 in Boston I handed
out the first call for contributions, which was followed up at other
conferences and in graphics publications. I asked for tools that belong in
a graphics programmer’s toolbox, yet don’t appear in the standard
literature.

I expected about 25 or 30 contributions; by the deadline in January
1990 over 110 Gems had been submitted. As contributions arrived I let
the scope of the book grow slightly, and accepted a few short tutorials. I
accepted these longer pieces because they were in tune with the philoso-
phy of the book, presenting useful information not easily accessible in the
current literature.

Most of the contributions went through at least one revision step after
submission. I have attempted to make the book consistent in presentation
by asking everyone to use a uniform mathematical notation and pseudo-
code. I hope that most of the Gems in this book are accessible to most
readers.

I originally planned to include a set of appendices providing source
code in various programming languages. But, except for one short assem-
bly-language routine, all the code submitted was in C! Thus there is one
substantial appendix containing C implementations of many Gems. This
source code is public domain—it is yours to use, study, modify, and
share. By the time you read this, all the code in the appendix should be
available on many of the popular networks, so you need not type it in
yourself.

I would like to thank my employer, the Xerox Corporation, for its
support of this project as part of my work in the Electronic Documents
Lab at its Palo Alto Research Center (PARC).

It gives me great pleasure to offer you a book that I have always wanted
to have myself. Through the efforts of over 50 contributors, you are
holding many valuable nuggets of knowledge and craft earned by experi-
ence over many years. We hope that you will find these Gems useful in
your work, enhancing your programs and extending your reach.

Enjoy!
Andrew S. Glassner
February, 1990
Palo Alto, California

xviiGRAPHICS GEMS I Edited by ANDREW S. GLASSNER xvii

INTRODUCTION

IIIIINTRODUCTIONNTRODUCTIONNTRODUCTIONNTRODUCTIONNTRODUCTION

This introduction is designed to help you get the most out of this book.
I will discuss some aspects of the book’s structure, and then summarize
the mathematical notation and the pseudo-code used in many of the
Gems.

Some of the Gems originally submitted to this book presented different
solutions to the same problem. I’ve included some of these multiple
approaches when I felt they demonstrated interesting alternatives that
were useful either for their practical differences or educational value.
Some Gems place a high premium on speed; others emphasize algorith-
mic clarity. Similarly, some Gems take slightly different views of the
same problem: For example, there are many ways to draw a line, but
your needs are quite different for thick lines, thin lines, anti-aliased
lines, and so on.

I have indicated connections between Gems in this book in two ways.
When related Gems are all in the same chapter, I have grouped them
together and written a short summary that appears at the start of the
group. If you refer to one of the Gems in such a group you should
at least take a look at the others. When related Gems are not sequential
I have included a listing of other relevant Gems under the heading
“See also” at the end of the Gem. The “See also” lists are not
exhaustive, but they should point you in the right directions.

To make the most of the connections in this book, I suggest you skim
briefly all the Gems once. I sometimes find that I can apply an
algorithm in a setting completely different from the one for which it
was originally designed; knowing what the book contains will help
you make these leaps of interpretation.

xviiiGRAPHICS GEMS I Edited by ANDREW S. GLASSNER xviii

INTRODUCTION

All of the references are collected together into a single bibliography.
Each reference entry contains back-pointers to all the Gems that refer-
ence it. You may draw further connections between Gems by following
these pointers.

Except for some of the tutorials, most Gems do not provide the
background mathematics for their discussions. Usually this math does not
go beyond 3-dimensional vector geometry; you can find good summaries
of this topic in Kindle, or in virtually any modern textbook on introduc-
tory calculus and analytic geometry, such as Flanders. Many graphics
programmers have a copy of Beyer on their shelves; this standard
reference work distills many important mathematical results into a form
that is easy to access.

Some Gems use matrix techniques for geometric transformations. These
techniques are described in detail in the standard graphics texts. Our
convention is that points are represented by row vectors, and are trans-
formed by post-multiplication with a matrix. You must be careful when
transferring the results in this volume to other systems, for they may use
a different convention. For example, the PHIGS standard and the Dore
rendering system use pre-multiplication of column vectors. You can make
the switch between conventions simply by transposing the transformation
matrix.

Most of the Gems assume that you are familiar with most of the
fundamental material of computer graphics. If you find that you’re left
behind somewhere, you may wish to consult the classic standard texts,
Newman and Foley, or one of the more modern textbooks that have
appeared recently; some of these references are listed in the bibliography.

Beyer, W. B. CRC Standard Mathematical Tables, CRC Press, Inc., Boca Raton, Florida.
(Updated yearly.)

Flanders, H. and Price, J. (1978). Calculus with Analytic Geometry. Academic Press,
New York.

Foley, J., van Dam, A., Feiner, S., and Hughes, J. (1990). Fundamentals of Interactive
Computer Graphics, Addison-Wesley, Reading, MA.

Kindle, J.H. (1950). Plane and Solid Analytic Geometry Schaum’s Outline Series.
McGraw-Hill, New York.

Newman, W.M., and Sproull, R..F. (1979). Principles of Interactive Computer Graph-
ics, 2nd edition. McGraw-Hill, New York.

xixGRAPHICS GEMS III Edited by ANDREW S. GLASSNER xix

MATHEMATICAL NOTATION

MMMMMATHEMATICALATHEMATICALATHEMATICALATHEMATICALATHEMATICALNNNNNOTATIONOTATIONOTATIONOTATIONOTATION
Geometric ObjectsGeometric ObjectsGeometric ObjectsGeometric ObjectsGeometric Objects
0 the number 0, the zero vector, the point (0, 0), the

point (0, 0, 0)
a, b, c the real numbers (lower–case italics)
P, Q points (upper-case italics)
l, m lines (lower-case bold)
A, B vectors (upper-case bold)(components Ai)
M matrix (upper-case bold)
θ, ϕ angles (lower-case greek)

Derived ObjectsDerived ObjectsDerived ObjectsDerived ObjectsDerived Objects
A⊥ the vector perpendicular to A (valid only in 2D, where

A⊥ = (−Ay, Ax)
M-1 the inverse of matrix M
MT the transpose of matrix M

M* the adjoint of matrix M

M−1 = M∗

det M()






|M| determinant of M
det(M) same as above
Mi,j element from row i, column j of matrix M (top-left is

(0, 0)
Mi, all of row i of matrix M

xxGRAPHICS GEMS III Edited by ANDREW S. GLASSNER xx

MATHEMATICAL NOTATION
M ,j all of column j of Matrix
∆ ABC triangle formed by points A, B, C
∠ ABC angle formed by points A, B, C with vertex at B

Basic OperatorsBasic OperatorsBasic OperatorsBasic OperatorsBasic Operators
 + , − , /, ∗ standard math operators
⋅ the dot (or inner or scalar) product
× the cross (or outer or vector) product

Basic Expressions and FunctionsBasic Expressions and FunctionsBasic Expressions and FunctionsBasic Expressions and FunctionsBasic Expressions and Functions
 x  floor of x (largest integer not greater than x)

 x  ceiling of x (smallest integer not smaller than x)
a|b modulo arithmetic; remainder of a ÷ b
a mod b same as above

 Bi
n t() Bernstein polynomial =

n
i







ti 1 − t()n− i , i = 0Ln

n
i





 binomial coefficient

n!

n− i()!i!

xxi

PSEUDO-CODE

GRAPHICS GEMS I Edited by ANDREW S. GLASSNER xxi

PPPPPSEUDO-CODESEUDO-CODESEUDO-CODESEUDO-CODESEUDO-CODE

Declarations (not required)Declarations (not required)Declarations (not required)Declarations (not required)Declarations (not required)
name: TYPE ← initialValue;
examples:
π :real ← 3.14159;
v: array [0..3] of integer ← [0, 1, 2, 3];

Primitive Data TypesPrimitive Data TypesPrimitive Data TypesPrimitive Data TypesPrimitive Data Types
array [lowerBound..upperBound] of TYPE;
boolean
char
integer
real
double
point
vector

matrix3
 equivalent to:
 matrix3: record [array [0..2] of array [0..2] of real;];
 example: m:Matrix3 ← [[1.0, 2.0, 3.0], [4.0, 5.0, 6.0], [7.0, 8.0, 9.0]];
 m[2][1] is 8.0
 m[0][2]← 3.3; assigns 3.3 to upper-right corner of matrix

xxii

PSEUDO-CODE

GRAPHICS GEMS I Edited by ANDREW S. GLASSNER xxii

matrix4
equivalent to:
matrix4: record [array [0..3] of array [0..3] of real;];
example: m: Matrix4 ← [

 [1.0, 2.0, 3.0, 4.0],
 [5.0, 6.0, 7.0, 8.0],
 [9.0, 10.0, 11.0, 12.0],
 [13.0, 14.0, 15.0, 16.0]];

m[3][1] is 14.0
m[0][3] ← 3.3; assigns 3.3 to upper-right corner of matrix

Records (Structures)Records (Structures)Records (Structures)Records (Structures)Records (Structures)
Record definition:
Box: record [

left, right, top, bottom: integer;
];

newBox: Box ← new[Box];
 dynamically allocate a new instance of Box and return a pointer to it

newBox.left ←10;
 this same notation is appropriate whether newBox is a pointer or
 structure

ArraysArraysArraysArraysArrays
v: array [0..3] of integer ← [0, 1, 2, 3]; v is a four-element array of integers

v[2] ← 5; assign to third element of v

CommentsCommentsCommentsCommentsComments
A comment may appear anywhere–it is indicated by italics

xxiii

PSEUDO-CODE

GRAPHICS GEMS I Edited by ANDREW S. GLASSNER xxiii

BlocksBlocksBlocksBlocksBlocks
begin

Statement;
Statement;
 L
end;

Conditionals and SelectionsConditionals and SelectionsConditionals and SelectionsConditionals and SelectionsConditionals and Selections
if Test

then Statement;
[else Statement]; else clause is optional

result = select Item from
instance: Statement;
endcase: Statement;

Flow ControlFlow ControlFlow ControlFlow ControlFlow Control
for ControlVariable: Type ← InitialExpr, NextExpr do

Statement;
endloop;

until Test do
Statement;
endloop;

while Test do
Statement;
endloop;

loop; go directly to the next endloop

exit; go directly to the first statement after the next endloop

return[value] return value as the result of this function call

xxiv

PSEUDO-CODE

GRAPHICS GEMS I Edited by ANDREW S. GLASSNER xxiv

Logical ConnectivesLogical ConnectivesLogical ConnectivesLogical ConnectivesLogical Connectives
or, and, not, xor

Bitwise OperatorsBitwise OperatorsBitwise OperatorsBitwise OperatorsBitwise Operators
bit-or, bit-and, bit-xor

RelationsRelationsRelationsRelationsRelations
=, ≠, >, ≥, <, ≤

Assignment SymbolAssignment SymbolAssignment SymbolAssignment SymbolAssignment Symbol
←
(note: the test for equality is =)

Available FunctionsAvailable FunctionsAvailable FunctionsAvailable FunctionsAvailable Functions
These functions are defined on all data types

min(a, b) returns minimum of a and b
max(a, b) returns maximum of a and b
abs(a) returns absolute value of a
sin(x) sin(x)
cos(x) cos(x)
tan(x) tan(x)
arctan(y) arctan(y)
arctan2(y, x) arctan(y/x), defined for all values of x and y
arcsin(y) arcsin(y)
arccos(y) arccos(y)
rshift(x, b) shift x right b bits
lshift(x, b) shift x left b bits
swap(a, b) swap a and b
lerp(α, l, h) linear interpolation: ((1 – α)*l) + (α*h) = l + (α(h – l))

xxv

PSEUDO-CODE

GRAPHICS GEMS I Edited by ANDREW S. GLASSNER xxv

clamp(v, l, h) return l if v < l, else h if v > h, else v: min(h,max(l,v))

floor(x) or x  round x towards 0 to first integer

ceiling(x) or x  round x away from 0 to first integer
round(x) round x to nearest integer, if frac(x) = .5, round towards

0
frac(x) fractional part of x

CONTRIBUTORS

xxviGRAPHICS GEMS I Edited by ANDREW S. GLASSNER xxvi

CONTRIBUTORS

Numbers in parentheses indicate pages on which authors’ Gems begin

James Arvo (335, 548), Apollo Systems Division of Hewlett-Packard, 330 Billerica
Road, Chelmsford, Massachusetts 01824

Didier Badouel (390), IRISA /INRIA, Campus Universitaire Beaulieu, 35042 Rennes
Cédex, France

Paul D. Bame (321), Hewlett-Packard, P.0. Box 617, Colorado Springs, Colorado
80901-0617

Jules Bloomenthal (567), Xerox PARC, 3333 Coyote Hill Road, Palo Alto, California
94304

Richard Carling (470), 13 Overlook Drive, Bedford, Massachusetts 01730

Steve Cunningham (516), Department of Computer Science, California State
University, Stanislaus, Turlock, California 95380

Joseph M. Cychosz (64, 476), Purdue University CADLAB, Potter Engineering Center,
West Lafayette, Indiana 47907

Robert Dawson (424), Dalhousie University, 1179 Tower Road, Halifax, Nova Scotia
B3H 2Y7, Canada

Ken Fishkin (278, 448), Pixar, Inc., 3240 Kerner Boulevard, San Rafael, California
94901

Michael Gervautz (287), Technische Universität Wien, Institut fur Praktische Infor-
matik, Karlsplatz 13/180, A-1040 Wien, Austria

Andrew S. Glassner (3, 13, 215, 257, 297, 364, 366, 376, 438, 562, 575) Xerox PARC,
3333 Coyote Hill Road, Palo Alto, California 94304

CONTRIBUTORS

xxviiGRAPHICS GEMS I Edited by ANDREW S. GLASSNER xxvii

Ronald Goldman (20, 304, 305, 472, 587, 604), Department of Computer Science,
University of Waterloo, Waterloo, Ontario N2L 3G1, Canada

Julian Gomez (585), MacroMind, Inc., 410 Townsend St., Suite 408, San Francisco,
California 94107

Ned Greene (485), Apple Computer, Inc., 20705 Valley Green Drive, MS 60-W,
Cupertino, California 95014

Mark Hall (552, 558), Computer Science Department, Rice University, P.0. Box 1892,
Houston, Texas 77251-1892

Stephen Hawley (176), 13 Catherine Lane #2, Morristown, New Jersey 07960

Paul S. Heckbert (61, 84, 87, 99, 246, 265, 275), 1415 Arch Street, Berkeley, California
94708

D. G. Hook (416), Department of Engineering Computer Resources, Faculty of Engi-
neering, The University of Melbourne, Melbourne, Australia

Jeff Hultquist (346, 388, 462), Mailstop T-045-1, NASA Ames Research Center, Moffett
Field, California 94035

Paul Lalonde (424), Dalhousie University, 1179 Tower Road, Halifax, Nova Scotia
B3H 2Y7, Canada

Greg Lee (129), Weitek Corporation, 1060 East Arques Avenue, Sunnyvale, California
94086

Mark Lee (348), Amoco Production Company, Tulsa Research Center, P.0. Box 3385,
Tulsa, Oklahoma 74102

Patrick-Gilles Maillot (498), Sun Microsystems, Inc., Desktop and Graphics Develop-
ment Organization, 2550 Garcia Avenue, MS 21-04, Mountain View, California
94043

P. R. McAree (416), Department of Engineering Computer Resources, Faculty of
Engineering, The University of Melbourne, Melbourne, Australia

Claudio Montani (327), Istituto di Elaborazione del‘Informazione, Consiglio Nazionale
delle Ricerche, Via Santa Maria 46, 56100 Pisa, Italy

Jack C. Morrison (76), 5654 South Jackpine Road, Evergreen, Colorado 80439

Mike Morton (221), P.0. Box 11299, Honolulu, Hawaii 96828

John Olsen (166), Hewlett-Packard, Mail Stop 73, 3404 E. Harmony Road, Fort
Collins, Colorado 80525

Alan W. Paeth (18, 49, 57, 171, 179, 219, 233, 249, 307, 427), Computer Graphics
Laboratory, Department of Computer Science, University of Waterloo, Waterloo,
Ontario N2L 3G1, Canada

Mark J. Pavicic (144), Department of Computer Science, North Dakota State Univer-
sity, 300 Minard Hall, SU Station, P.0. Box 5075, Fargo, North Dakota 58105-5075

CONTRIBUTORS

xxviiiGRAPHICS GEMS I Edited by ANDREW S. GLASSNER xxviii

Andrew Pearce (397), Alias Research, Inc., 110 Richmond, Street East #550, Toronto,
Ontario M5C IPI, Canada

Mike Penk (129), 525 South East 15th Street, Apartment #2, Portland, Oregon 97214

Michael E. Pique (465), Research Institute of Scripps Clinic, MB-5, 10666 North
Torrey Pines Road, La Jolla, California 92037

Werner Purgathofer (287), Technische Universität Wien, Institut fur Praktische Infor-
matik, Karlsplatz 13 / 180, A-1040 Wien, Austria

Eric Raible (464), 1591 Ensenada Drive, Campbell, California 95008

Richard Rasala (579), Northeastern University, 117 Cullinane Hall, Boston, Mas-
sachusetts 02115

Jack Ritter (107, 301, 385, 432, 440), Versatec, Inc., MS 1-7, 2710 Walsh Avenue, P.0.
Box 58091, Santa Clara, California 95052-8091

Philip J. Schneider (408, 607, 612), University of Geneva CUI 12 rue du Lac, Geneva
CH-1207, Switzerland

Dale Schumacher (196, 270), 399 Beacon Avenue, St. Paul, Minnesota 55104-3527

Jochen Schwarze (404), ISA GmbH, Azenberstrasse 35, 7000 Stuttgart 1, Federal
Republic of Germany

Roberto Scopigno (327), Istituto di Elaborazione dell’lnformazione, Consiglio
Nazionale delle Ricerche, Via Santa Maria 46, 56100 Pisa, Italy

Clifford A. Shaffer (51, 443), Department of Computer Science, Virginia Technical
University, Blacksburg, Virginia 24061

Andrew Shapira (29), ECSE Department, Rensselaer Polytechnic Institute, Troy, New
York, 12180

Ken Shoemake (442), Xerox PARC, 3333 Coyote Hill Road, Palo Alto, California
94304

Hans J. W. Spoelder (121), Physics Applied Computer Science, Faculty of Physics and
Astronomy, Vrije Universiteit, De Boelelaan 1081, 1081 HV Amsterdam, The
Netherlands

Kelvin Thompson (38, 40, 43, 47, 105, 210, 361, 434, 435, 453, 456, 460), 903 Romeria
#204, Austin, Texas 78757-3435

Greg Turk (24), Department of Computer Science, Sitterson Hall, UNC-Chapel Hill,
Chapel Hill, North Carolina 27599-3175

Ken Turkowski (147, 494, 522, 539), Apple Computer, Inc, 20705 Valley Green Drive,
MS 60-W, Cupertino, California 95014

Fons H. Ullings (121), Physics Applied Computer Science, Faculty of Physics and
Astronomy, Vrije Universiteit, De Boelelaan 1081, 1081 HV Amsterdam, The
Netherlands

CONTRIBUTORS

xxixGRAPHICS GEMS I Edited by ANDREW S. GLASSNER xxix

Bill Wallace (285), 101 Earl Grey Road, Toronto, Ontario M4J 3L6, Canada

Bob Wallis (92, 114, 129, 533, 594), Weitek Corporation, 1060 East Arques Avenue,
Sunnyvale, California 94086

Andrew Woo (394, 395), Alias Research, Inc., 110 Richmond Street East, Toronto,
Ontario M5C 1P1 Canada

Brian Wyvill (101, 343, 436), University of Calgary, Computer Science Department,
2500 University Drive N.W., Calgary, Alberta T2N 1N4, Canada

2D GEOMETRY
11

3

I.1 USEFUL 2D GEOMETRY

GRAPHICS GEMS I Edited by ANDREW S. GLASSNER 3

I.1I.1I.1I.1I.1
UUUUUSEFULSEFULSEFULSEFULSEFUL22222D GEOMETRYD GEOMETRYD GEOMETRYD GEOMETRYD GEOMETRY
Andrew S. GlassnerXerox PARCPalo Alto, California

Many of the formulae in this section are 2D specializations of a more
general solution. Why don’t we bother giving the multidimensional solu-
tion in its full generality? There are at least two good reasons that the
equations in this section are mostly valid only in 2D: they either produce
a unique answer, or they require less computation. These advantages are
usually related to the facts that in 2D Euclidean geometry, nonparallel
lines intersect and there is exactly one line perpendicular to a given line.

Some of these formulae are valid in higher dimensions, and are re-
peated in the Gem on Useful 3D Geometry without much change in the
notation. Others are generalized in that Gem, when appropriate.

I will use a programmer ’s notation to express the formulae. This allows
us to express some computations in terms of previous results. I use the
prefix V2 to distinguish the techniques for 2D vector geometry in this
section from techniques with similar names in the 3D section. In this
section the dot (or inner or scalar) product of two vectors A and B will be
written A ⋅ B; this may be translated for implementation as V2 Dot(A, B).
I will sometimes treat points as vectors; this will be allowed with the
understanding that a point P will represent a vector P with tail at the
origin and head at P; thus, the coordinate descriptions of both entities
will have the same values.

Record Line:[
implicit: N, c; Points P satisfy N ⋅ P + c = 0 (see Fig. 1a)
explicit: U, V; Points P satisfy P = U + Vt for some scalar t (see

Fig. 1b)
normalized: BOOL ← FALSE True if and only if N␣| = |␣V␣| = 1
]

4

I.1 USEFUL 2D GEOMETRY

GRAPHICS GEMS I Edited by ANDREW S. GLASSNER 4

Figure. 1

Line structures of this form will be represented in italic (e.g., l, m).

Record Circle: [
center: C;
radius: r
]

Circles of this form will be represented by capital roman letters
(e.g., A, B) (see Fig. 2).

Figure 2. Figure 3.

5

I.1 USEFUL 2D GEOMETRY

GRAPHICS GEMS I Edited by ANDREW S. GLASSNER 5

V2 Normalize
A ← V2 Normalize (A)

A ← A

V2Length(A)

V2 Dot
d ← V2 Dot(A, B)

d ← AxBx + AyBy

V2 Implicit to Explicit
l ← V2 Implicit to Explicit (l)

lU ← V2 Point on Line (l) Nearest the Origin
lV ← V2 Perpendicular(V2 Reflect (lN))

V2 Explicit to Implicit
l ← V2 Explicit to Implicit(l)

lN ← V2 Perpendicular(lV)
lc ← lN ⋅ lU

V2 Line Tangent to a Circle at a Point
l ← V2 Line Tangent to a Circle (C) at a Point (P) (see Fig. 3)

lN ← P – CC

lc ← –(lN ⋅ P)

V2 Perpendicular
N ← V2 Perpendicular(V) (see Fig. 4)

N ← (–Vx, Vy)

V2 Reflect
N ← V2 Reflect(V) (see Fig. 5)

N ← (–Vy, –Vx)

V2 Length
d ← V2 Length (A)

 d ← A ⋅ A

V2 Intersection of a Circle and a Line
P1, P2 ← V2 Intersection of a Circle (C) and a Line (l) (see Fig. 6)

G ← lU – CC

6

I.1 USEFUL 2D GEOMETRY

GRAPHICS GEMS I Edited by ANDREW S. GLASSNER 6

Figure 4. Figure 5.

Figure 6. Figure 7.

a ← lV ⋅ lV
b ← 2(lV ⋅ G)
c ← (G ⋅ G) – C r

2

d ← b2 – 4ac
if d < 0
then “no intersection”
else

P1 ← (– b + d)/2a
P2 ← (– b – d)/2a

V2 Lines Tangent to Two Circles Meeting Outside
l, m ← V2 Lines Tangent to Two Circles (A, B) Meeting Outside (see Fig. 7)

To make life easier, we label circles A and B so that Ar ≥ Br.

7

I.1 USEFUL 2D GEOMETRY

GRAPHICS GEMS I Edited by ANDREW S. GLASSNER 7

We assume that AC is the origin, and BC is on the X axis.
We build a line parallel to the X axis through H; it intersects line ACG at
point J. Thus by construction, JG = Ar – Br

Note from the figure that cosθ =

JG
JH

.

θ ← arccos Ar − Br

AC − BC







G ← AC + Ar(cosθ, sinθ)
G′ ← AC + Ar(cos – θ, sin – θ)
H ← BC + Br(cosθ, sinθ)
H′ ← BC + Br(cos – θ, sin – θ)
l ← V2 Line through 2 Points(G,H)
m ← V2 Line through 2 Points(G′, H′)

V2 Lines Tangent to Two Circles Meeting Inside
l, m ← V2 Lines Tangent to Two Circles (A, B) Meeting Inside (see Fig. 8)

From similar triangles, observe that

Ar

x
= Br

d − x
.

d is the distance between the centers: d ← BC – AC.

x ← BC − AC() A r

A r + B r







M ← AC + x

Observe from the figure that cosθ =

Ar

x
.

θ ← arccos

Ar

x






G ← (Ar cosθ, Ar sinθ) + AC
H ← (Br cosθ, Br Sinθ) + BC
l ← V2 Line through 2 Points (G, M)
m ← V2 Line through 2 Points (H, M)

V2 Lines Tangent to Circle and Perpendicular to Line
l, m ← V2 Lines Tangent to Circle (C) and Perpendicular to Line (k) (see
Fig. 9)

P ← CC + CrkV
Q ← CC – CrkV
lN ← mN ← kV
lc ← – (lN ⋅ P)

8

I.1 USEFUL 2D GEOMETRY

GRAPHICS GEMS I Edited by ANDREW S. GLASSNER 8

Figure 8.

mc ← – (lN ⋅ Q)
l ← V2 Implicit to Explicit(l)
m ← V2 Implicit to Explicit(m)

Point on Circle Nearest Point
Q ← Point on Circle (C) Nearest Point (P) (see Fig. 10)

Q ← CC + Cr ∗ V2 Normalize(P – CC)

Figure 9.

9

I.1 USEFUL 2D GEOMETRY

GRAPHICS GEMS I Edited by ANDREW S. GLASSNER 9

Figure 10. Figure 11.

V2 Line Through Two Points
l ← V2 Line Through Two Points (A, B)

lU ← A
lV ← V2 Normalize(B – A)
l ← V2 Explicit to Implicit(l)

V2 Normalize
l ← V2 Normalize(l)

lc ← lc/V2 Length (lN)
lN ← V2 Normalize(lN)
lV ← V2 Normalize(lV)
lnormalized ← TRUE

V2 Distance from Point to Line
d ← V2 Distance from Point (P) to Line (l) (see Fig . 11)

Q ← V2 Point on Line (l) Nearest to Point(P)
d ← V2 Distance between Point (P) to Point (Q)

V2 Point on Line Nearest Origin
P ← V2 Point on Line (l) Nearest the Origin

d ← V2 Point on Line (l) Nearest Point (0)

V2 Point on Line Nearest Point
Q ← V2 Point on Line (l) Nearest Point (P)

For␣notational␣convenience␣in this discussion,␣ ␣we write ␣N␣ for␣ l N␣ and␣ c
for lc.
Observation 1: Since Q is on l, then (N ⋅ Q) + c = 0.
Observation 2: The␣straight line that joins P␣and Q is perpendicular to␣l,
so P = Q + qN, for some value of q. Rewrite this as Q = P – qN.

10

I.1 USEFUL 2D GEOMETRY

GRAPHICS GEMS I Edited by ANDREW S. GLASSNER 10

Plug this expression for Q into the line equation, distribute the dot
product, and solve for q:
N ⋅ (P – qN) + c = 0
N ⋅ P – q(N ⋅ N) + c = 0
q = (c + N ⋅ P)/(N ⋅ N).
We now plug this value for q back into the equation in observation 2 to
find Q:

q ← lc + (lN ⋅ P)
if not lnormalized

then q ←

q
V 2 Length lN()

Q ← P – qlN.

V2 Distance between Point and Point
d ← V2 Distance between Point (P) and Point (Q)

d ← V2 Length(P – Q))

V2 Line Perpendicular to Line through Point
m ← V2 Line Perpendicular to Line (l) through Point (P)

General Solution
Q ← V2 Point on Line (l) Nearest Point (P)
m ← V2 Line through Point (P) and Point (Q)

Direct Solutions (A⊥ = V2 Perpendicular(A))

V2 Cosine of Angle between Line and Line
d ← V2 Cosine of Angle between Line (l) and Line (m)

d ← (lV ⋅ mV)
if not lnormalize and mnormalized

then d ←

d
V2 Length(lV) V2 Length(mV)

INPUT
explicit implicit

explicit mU ← P mU ← P
mV ← lV

⊥ mV ← lN
OUTPUT

implicit mN ← lV mN ← lN
⊥

mc ← –lV ⋅ P mc ← –lN
⊥

 ⋅ P

11

I.1 USEFUL 2D GEOMETRY

GRAPHICS GEMS I Edited by ANDREW S. GLASSNER 11

V2 Point of Intersection between Line and Line
P ← V2 Point of Intersection between Line (l) and Line (m)

The point P must be on both lines, so it satisfies both line equations. Write
one explicitly and one implicitly: lN ⋅ P + lc = 0, and P = mU + tmV
Since both are true at the same time, plug the explicit into the implicit,
distribute the dot product, and solve for t:

lN ⋅ (mU + tmV) + lc = 0
(lN ⋅ mU) + t(lN ⋅ mV) + lc = 0

t = –

lc + (lN ⋅ mU)
lN ⋅ mV

Now it can happen that lN ⋅ mV = 0. This indicates that the two lines are
parallel, and there is no intersection at all. Otherwise, we plug this ualue
of t back into the explicit form to find the point of intersection:

d ← lN ⋅ mV

if d = 0
then Error[“no point of intersection”]

else

P ←mU − (lN ⋅mU)+ lc

d
mV

V2 Parameter of Point on Line from Point to Point
a ← V2 Parameter of Point (P) on Line from Point (Q) to Point (R)

a ←

V2 Distance between Point P() to Point Q()
V2 Distance between Point P() to Point Q + R()

V2 Area of Polygon
a ← V2 Area of Polygon (P)

polygon has n points, P0, P1, . . . Pn – 1

a = 1

2
xi y i+1() mod n − yix i+1() mod n()

i=1

n−1

∑

See also Useful 3D Geometry (297); Useful Trigonometry (13)

12

 TRIG SUMMARY

GRAPHICS GEMS I Edited by ANDREW S. GLASSNER 12

IIIII
TTTTTRIG SUMMARYRIG SUMMARYRIG SUMMARYRIG SUMMARYRIG SUMMARY

The following two Gems provide some relationships that may
prove useful when working on trigonometry problems. The first
Gem includes some relationships based on the geometry of
planar triangles; for more discussion on this topic see Trian-
gles. The second Gem provides simple closed-form values for
the major trig functions at a number of special angles. These
values can be helpful when you are doing symbolic calculations
prior to writing a program.

See also Fixed-Point Trigonometry with CORDIC Iterations
(494); Triangles (20)

13

I.2 USEFUL TRIGONOMETRY

GRAPHICS GEMS I Edited by ANDREW S. GLASSNER 13

b – c
a

 =
sin

B – C
2

cos
A
2

I.2I.2I.2I.2I.2
UUUUUSEFULSEFULSEFULSEFULSEFULTRIGONOMETRYTRIGONOMETRYTRIGONOMETRYTRIGONOMETRYTRIGONOMETRY
Andrew S. GlassnerXerox PARCPalo Alto, California

Law of Cosines
a2 = b2 + c2 – 2bc cos A

Law of Tangents

a – b
a + b

 =
tan

A – B
2

tan
A + B

2

Law of Sines

a

sin A
 =

b
sinB

 =
c

sinC

Mollweide’s Formula

14

I.2 USEFUL TRIGONOMETRY

GRAPHICS GEMS I Edited by ANDREW S. GLASSNER 14

Newton’s Formula

Inverse Trig Functions in Terms of Inverse Tangent

sin–l(x) = tan–1

x
1 – x 2







cos–1 (x) =

π
2

 – tan–1

x
1 – x 2







Functions Sums and Differences

sin α + sin β = 2 sin

α + β

2
 cos

α – β

2

sin α – sin β = 2 cos

α + β

2
 sin

α – β

2

cos α + cos β = 2 cos

α + β

2
 cos

α – β

2

cos α – cos β = – 2 sin

α + β

2
 sin

α – β

2

tan α + tan β =

sin α + β()
cos α cos β

tan α – tan β =

sin α – β()
cos α cos β

b + c
a

 =
cos

B – C
2

sin
 A

2

15

I.2 USEFUL TRIGONOMETRY

GRAPHICS GEMS I Edited by ANDREW S. GLASSNER 15

DeMoivre’s Theorem

(cos θ + i sin θ)n = cos nθ + i sin nθ; where i = –1

Sines and Cosines in Exponentials

eiα = cos α + i sin α; i = –1

sin α =

e iα – e – iα

2i

cos α =

e iα + e – iα

2

tan α = –i

e iα – e – iα

eiα + e – iα





 = –i

e 2iα – 1
e 2iα + 1







Power Relations

sin2 α =

1
2

 (1 – cos 2α)

sin3 α =

1
4

 (3 sin α – sin 3α)

sin4 α =

1
8

 (3 – 4 cos 2α + cos 4α)

cos2 α =

1
2

 (1 + cos 2α)

cos3 α =

1
4

 (3 cos α + cos 3α)

cos4 α =

1
8

 (3 + 4 cos 2α + cos 4α)

tan2 α =

1 – cos 2α

1 + cos 2α

16

I.2 USEFUL TRIGONOMETRY

GRAPHICS GEMS I Edited by ANDREW S. GLASSNER 16

Product Relations

sin α sin β = cos

α – β

2
 – cos

α + β

2

cos α cos β = cos

α – β

2
 + cos

α + β

2

sin α cos β = sin

α + β

2
 + sin

α – β

2

Half-Angle Relations

sin

α
2 =

±

1 – cos α
2

cos

α
2 =

±

1 + cos α
2

tan

α
2 =

±

1 − cos α
1 + cos α

 =
1 − cos α

sin α
 =

sin α
1 + cos α

Angle Sum and Difference Relations

sin (α + β) = sin α cos β + cos α sin β

sin (α – β) = sin α cos β – cos α sin β

cos (α + β) = cos α cos β – sin α sin β

cos (α – β) = cos α cos β + sin α sin β

tan (α + β) =

tan α + tan β
1 – tan α tan β

tan (α – β) =

tan α – tan β
1 + t a n α t an β

17

I.2 USEFUL TRIGONOMETRY

GRAPHICS GEMS I Edited by ANDREW S. GLASSNER 17

Double-Angle Relations

sin 2α = 2 sin α cos α =

2 tan α
1 + tan2 α

cos 2α = cos2α – sin2α = 2 cos2α – 1 = 1 – 2 sin2α =

1 – tan2 α
1 + tan2 α

tan 2α =

2 tan α
1 – tan2 α

Multiple-Angle Relations

sin nα = 2 sin(n – 1)α cos α – sin(n – 2)α

cos nα = 2 cos(n – 1)α cos α – cos(n – 2)α

tan nα =

 tan n – 1()α + tan α
1 – tan n – 1()α tan α

18

I.3 TRIGONOMETRIC FUNCTIONS AT SELECT POINTS

GRAPHICS GEMS I Edited by ANDREW S. GLASSNER 18

I.3I.3I.3I.3I.3
TTTTTRIGONOMETRIC FUNCTIONSRIGONOMETRIC FUNCTIONSRIGONOMETRIC FUNCTIONSRIGONOMETRIC FUNCTIONSRIGONOMETRIC FUNCTIONSAAAAAT SELECT POINTST SELECT POINTST SELECT POINTST SELECT POINTST SELECT POINTS

Alan W. PaethUniversity of WaterlooWaterloo, Ontario, Canada

Brief trigonometric tables as appearing in high-school texts usually pre-
sent values of sine, cosine and tangent for a small number of arguments.
Most often the values coincide with a subset of vertex locations on the
regular dodecagon (a twelve-sided n-gon). This implicit choice relates to
that polygon’s underlying three- and four-fold symmetries, for which the
related trigonometric values are easily derived.

Although trig functions have transcendental value for most arguments,
other n-gons yield up coordinates expressible in simple algebraic forms.
This is a consequence of Gauss’s seminal work on the compass construc-
tion of the 17-gon. Generally, any n-gon is constructible if n’s factors are
members of the set (2 3 5 17 257 65537), in which each odd
factor appears at most once. The factors are the known prime Fermat
numbers of the form 22n

 + 1. (Euler found the factor 641 in 232 + 1, and
no further Fermat primes have been found through n = 20, a number
containing a third of a million digits; current research suggests that the
above set is complete.) Surprisingly, 232 – 1 = 4, 294, 967, 295—known
to lovers of computer trivia as the largest unsigned thirty-two bit integer
—is also the largest known constructible polygon having odd sides.

By considering the regular pentagon and octagon, a more useful table
may be derived. This has value in the symbolic computation of vertex
locations for these n-gons, which are commonplace. As an example, the
twenty-faced icosahedron, which underlies many geodesic domes, rests
heavily on the cosine for an argument of thirty-six degrees, a value that
is easily represented. Here φ =

1
2

(5 + 1) ≈ 1.618 (the golden mean) with
the useful properties φ–1 = φ – 1 and φ2 = φ + 1. By the Fibonacci
series, φn–1 + φn = φn+1, making a series of arbitrary powers easily

19

I.3 TRIGONOMETRIC FUNCTIONS AT SELECT POINTS

GRAPHICS GEMS I Edited by ANDREW S. GLASSNER 19

Table 1. Select Rational Trigonometric Values.

derived from the three terms given. Values outside of the first octant may

rely on the identities cos((p/2) – x) = sin(x) or tan((p/2) – x) =

1/tan(x). Half-angle identities using cos(θ/2) =

1
2 1 + cos θ() and

sin(θ/2) =

1
2 1 − cos θ() allow the construction of higher order even-

sided n-gons by angle bisection, though the symbolic forms quickly

become awkward.

20

I.4 TRIANGLES

GRAPHICS GEMS I Edited by ANDREW S. GLASSNER 20

I.4I.4I.4I.4I.4
TTTTTRIANGLESRIANGLESRIANGLESRIANGLESRIANGLES

Ronald GoldmanUniversity of WaterlooWaterloo, Ontario, Canada

Most of the physical properties and distinguished points of a triangle
∆P1P2P3 can be written as simple, symmetric, closed-form expressions
in the vertices P1, P2, P3. We provide examples below.

Perimeter

Perimeter{ ∆ P1P2P3} = |P1 – P2| + |P2 – P3| + |P3 – P1|

Area

Area{ ∆ P1P2P3} = |P1 × P2 + P2 × P3 + P3 × P1|/2

Center of Gravity (Intersection of the Medians—see Fig. 1)

CG = (P1 + P2 + P3)/3

In Radius and In Center (Intersection of the Angle Bisectors—see
Fig. 2)

rIn = 2 Area{ ∆ P1P2P3}/Perimeter{ ∆ P1P2P3}

CIn = {|P2 – P3|P1 + |P3 – P1|P2 + |P1 – P2|P3}/Perimeter{ ∆ P1P2P3}

Circumradius and Circumcenter (Intersection of the Perpendicular
Bisectors—see Fig. 3).

21

I.4 TRIANGLES

GRAPHICS GEMS I Edited by ANDREW S. GLASSNER 21

Figure 1. Center of gravity: Intersection of the medians.

Figure 2. The in radius and in center: Intersection of the angle bisectors.

Figure 3. The circumradius and circumcenter: Intersection of the perpendicular bisectors.

22

I.4 TRIANGLES

GRAPHICS GEMS I Edited by ANDREW S. GLASSNER 22

Figure 4. Intersection of the altitudes.

First define scalars d1, d2, d3 and c1, c2, c3, c by setting

d1 = (P3 – P1) ⋅ (P2 – P1)

d2 = (P3 – P2) ⋅ (P1 – P2)

d3 = (P1 – P3) ⋅ (P2 – P3)

c1 = d2d3 c2 = d3d1 c3 = d1d2 c = c1 + c2 + c3.

Then we can compute the circumradius and circumcenter by setting

rCir = l/2 d1 + d2() d2 + d3() d3 + d1()/ c

CCirc = {(c2 + c3)P1 + (c3 + c1)P2 + (c1 + c2)P3}/2c.

Intersection of the Altitudes of ∆ P1P2P3 (see Fig. 4)

Let c1, c2, c3, c be as above. Then

PAlt = {c1P1 + c2P2 + c3P3)/c.

The formulas for the intersection of the perpendicular bisectors (CCirc)
and the intersection of the altitudes (PAlt) are related because the alti-
tudes of the triangle ∆ Q1Q2Q3 formed by the midpoints of the sides of
∆ P1,P2,P3 are identical to the perpendicular bisectors of ∆ P1P2P3 (see

23

I.4 TRIANGLES

GRAPHICS GEMS I Edited by ANDREW S. GLASSNER 23

Figure 5. Altitudes and perpendicular bisectors.

Fig. 5). That is,

QAlt = PCirc ,

where

Qk = (Pi + Pj)/2

Pk = Qi + Qj – Qk,

and the indices i, j, k represent a permutation of the integers 1, 2, 3.
Thus we can find QAlt by solving for P1, P2, P3 and using the formula for
the circumcenter of ∆ P1P2P3. Similarly, we can find PCirc by solving for
Q1, Q2, Q3 and using the formula for the intersection of the altitudes of
∆ Q1Q2Q3.

Observe that the circumcenter and circumradius solve the problem of
finding the circle through three given points P1, P2, P3. Similarly, we can
use the in center and in radius to solve the problem of finding the circle
tangent to three given lines. To find this tangent circle, first find the
pairwise intersections P1, P2, P3 of the three given lines. Then simply
compute the in center and in radius of ∆P1P2P3. The results are the
center and the radius of the circle tangent to the original three lines.

See also Generating Random Points in Triangles (24)

24

I.5 GENERATING RANDOM POINTS IN TRIANGLES

GRAPHICS GEMS I Edited by ANDREW S. GLASSNER 24

I.5I.5I.5I.5I.5
GGGGGENERATING RANDOMENERATING RANDOMENERATING RANDOMENERATING RANDOMENERATING RANDOMPPPPPOINTS IN TRIANGLESOINTS IN TRIANGLESOINTS IN TRIANGLESOINTS IN TRIANGLESOINTS IN TRIANGLES

Greg TurkUniversity of North CarolinaChapel Hill
ProblemProblemProblemProblemProblem
Given three points A, B and C that describe a triangle, pick a random
point in the triangle. When many such points are picked the distribution
of the points should be uniform across the triangle.

Method 1Method 1Method 1Method 1Method 1
Let s and t be two numbers chosen from a uniform distribution of
random numbers in the interval [0, 1]. Then the point Q given below is a
random point in the triangle with vertices A, B and C.

a ← 1 – t ;

b ← (1 – s) t ;

c ← s t ;

Q ← aA + bB + cC;

This amounts to having t determine a line segment parallel to BC that
joins a point on AB with a point on AC, and then picking a point on this
segment based on the value of s (see Fig. 1). Taking the square root of t
is necessary to weight all portions of the triangle equally. The values a, b
and c are the barycentric coordinates for the point in the triangle.

25

I.5 GENERATING RANDOM POINTS IN TRIANGLES

GRAPHICS GEMS I Edited by ANDREW S. GLASSNER 25

Figure 1. Random point in polygon using method 1.

Method 2Method 2Method 2Method 2Method 2
Let s and t be random numbers in [0, 1]. A random point Q in the triangle
is given by the following:

if s + t > 1 then
begin

s ← 1 – s;
t ← 1 – t;
end;

a ← 1 – s – t;
b ← s;
c ← t;

Q ← aA + bB + cC

Without the “if” statement, the point Q will be a random point in the
parallelogram with vertices A, B, C and (B + C – A) (see Fig. 2). A point
that lands in the triangle B, C, (B + C – ␣A) is moved into the triangle
A, B, C by reflecting it about the center of the parallelogram.

26

I.5 GENERATING RANDOM POINTS IN TRIANGLES

GRAPHICS GEMS I Edited by ANDREW S. GLASSNER 26

Figure 2a. Method 2 when s + t ≤ 1.

Figure 2b. Method 2 when s + t > 1.

GeneralizationsGeneralizationsGeneralizationsGeneralizationsGeneralizations
Method 1 can be extended to higher-dimensional shapes in a straightfor-
ward manner. For example, a random point in a tetrahedron can be found
by using three random numbers: the cube root of the first number is used
to pick a triangle that is parallel to the base of the tetrahedron, and then
the two remaining numbers are used to pick a random point on that
triangle.

27

I.5 GENERATING RANDOM POINTS IN TRIANGLES

GRAPHICS GEMS I Edited by ANDREW S. GLASSNER 27

Method 2 does not gracefully generalize to higher dimensions. For
picking a random point in a tetrahedron, the analog of method 2 will use
three random numbers r, s and t to give a random point in a paral-
lelepiped. This parallelepiped cannot be easily dissected into parts that
are all congruent to the desired tetrahedron, so it is difficult to take points
that fall outside the tetrahedron and map them back into the tetrahedron.
The simplest thing to do is throw out points in the parallelepiped that are
not also in the tetrahedron, and this can be accomplished by rejecting
triples r, s, t when r + s + t > 1. As this method is extended beyond
tetrahedra, a higher proportion of the random values must be rejected.

Either method can be used to pick random points in a polygon by
breaking the polygon into triangles and using a random number to choose
a triangle in which to pick a random point. The triangle must be selected
taking into account the relative areas of the subtriangles. Given random
numbers s and t in [0, 1], here is how to pick a random point in a convex
polygon described by the vertices Vl, V2 , . . . , Vn:

area_sum ← 0;
for k ← 1 to n – 2 do ␣find area of triangles radiating from V 1

areak ← |(Vk+1 – Vk) × (Vk+2 – V1)|; ␣half area of triangles
area_sum ← area_sum + areak; ␣ find total area of polygon
endloop;

sum ← 0;
for k ← 1 to n – 2 do ␣pick a triangle based on relative areas

sum ← sum + areak; ␣keep running area subtotal
if sum ≥ s*area_sum then exit; ␣ see if we’re within proper range
endloop;

s ← 1 + (s*area_sum – sum/areak); maps into [0,␣1]

pick random point in the sub-triangle with vertices V1, Vk + 1, Vk + 2

Q ← (1 – t)V1 + (1 – s) t Vk␣+␣1 + s t Vk␣+␣2 ;

The above code extends method 1 to give a mapping from the unit square
[0, 1] x [0, 1] into the given polygon. This mapping is continuous, one-to-

28

I.5 GENERATING RANDOM POINTS IN TRIANGLES

GRAPHICS GEMS I Edited by ANDREW S. GLASSNER 28

one and onto. We can use this mapping to define a Peano (area-filling)
curve for a convex polygon. If we have a Peano curve that maps the
interval [0, 1] into [0, 1] × [0, 1], we can compose this with our mapping
from above to give a mapping from [0, 1] into the polygon. Method 2 does
not give a one-to-one mapping from [0, 1] × [0, 1] into a triangle, so a
Peano curve constructed using method 2 for mapping onto the triangles
would fold on top of itself, which is probably undesirable.

AcknowledgementsAcknowledgementsAcknowledgementsAcknowledgementsAcknowledgements
Some of these ideas were worked out during conversations I had with
John Airey and David Banks.

See also Triangles (20)

See Appendix 2 for C Implementation (649)

29

 I.6 FAST LINE-EDGE INTERSECTIONS ON A UNIFORM GRID

GRAPHICS GEMS I Edited by ANDREW S. GLASSNER 29

I.6I.6I.6I.6I.6
FFFFFAST LINAST LINAST LINAST LINAST LINEEEEE–EDGE–EDGE–EDGE–EDGE–EDGEIIIIINTERSECTIONS ON ANTERSECTIONS ON ANTERSECTIONS ON ANTERSECTIONS ON ANTERSECTIONS ON AUUUUUNIFORM GRIDNIFORM GRIDNIFORM GRIDNIFORM GRIDNIFORM GRID

Andrew ShapiraRensselaer Polytechnic InstituteTroy, New York

This paper presents an algorithm that uses only integer addition and
subtraction to find intersections between a uniform grid and a line
segment having grid vertices as its endpoints. The output of the algorithm
is a list of grid vertices and edges that intersect the line segment; the
precise points of intersection are not found. The algorithm is very similar
to Bresenham’s algorithm for drawing line segments on a raster device.
The problem is stated below.

Given: (1) A 2D uniform grid G with square cells of unit side length
(2) Two distinct vertices of G, P = (Px, Py) and Q = (Qx, Qy)

Find: All edges and vertices of G , excluding P and Q , that
intersect PQ

The solution of this problem was motivated by the need to compute
visibility in a grid-based terrain. An implementation of the line-edge
algorithm presented in this paper was used as a platform by a grid
visibility algorithm. The resulting grid visibility data have been used for
several applications, including terrain labelling, path planning, line-of-
sight communication, visualization, visibility theory experiments, and
object recognition in images. Other possible visibility applications include
terrain orientation, terrain navigation, and representation of terrain phys-
iography.

The terrain model mentioned above was selected because digital terrain
data are often packaged in a form that matches this model. The terrain
model is as follows. Each vertex in a 2D uniform grid has an integer-val-

30

 I.6 FAST LINE-EDGE INTERSECTIONS ON A UNIFORM GRID

GRAPHICS GEMS I Edited by ANDREW S. GLASSNER 30

Figure 1. Determining whether or not two points are mutually visible. The upper
diagram shows a terrain as seen from above, with elevations given next to each vertex.
The projection of line-of-sight PQ intersects the grid at points I1, I2, and I3. The table
shows the heights of PQ and the terrain at each intersection. Since the line of sight is
above the terrain at all intersections, points P and Q are mutually visible.

ued elevation associated with it; each of the resulting points in 3-space is
called a data value. Terrain elevations above grid edges are obtained by
linear interpolation between the appropriate data values. The terrain
above the interior of all grid cells is defined in such a way so as not to
interfere with the intervisibility of data values.

Visibility within this simple terrain model approximates visibility within
more complicated models such as triangulated terrain models, but is
simpler to calculate (see Fig. 1). To determine whether two data points U
and V are mutually visible, a test is performed everywhere that the 2D
projection of UV intersects a grid edge or vertex. The test determines

31

 I.6 FAST LINE-EDGE INTERSECTIONS ON A UNIFORM GRID

GRAPHICS GEMS I Edited by ANDREW S. GLASSNER 31

whether the line-of-sight UV is above the terrain at the point of intersec-
tion. If UV always turns out to be above the terrain, then U and V are
visible. If any test shows that UV is below the terrain, then U and V are
mutually invisible, and testing terminates.

This computation is very efficient. The entire visibility calculation can
be done using only integer additions, subtractions, and multiplications. If
desired, the calculation for many pairs of data values can easily be
adapted to execute in parallel on a coarse-grained machine.

The visibility algorithm was implemented in C; intersections are gener-
ated using a slightly modified version of the line-edge intersection algo-
rithm in this paper. On a SUN 3/60 computer running SUN Operating
System 3.4 with 12 megabytes of memory, the program took roughly 11
hours of CPU time to compute the 100 million visibility pairs of a 100 by
100 terrain taken from United States Geological Survey data.

The line-edge intersection algorithm is derived below using pseudo-C.
Included are two intermediate versions that use floating point. Because of
rounding problems, these versions may not work on machines with finite
floating point precision. They are used only to derive the final version.

First we will discuss a few miscellaneous items. We will assume for the
time being that Q lies between 0° and 45° from P, inclusive. If PQ forms
an angle with the x-axis that is a multiple of 45°, then PQ will be
considered to intersect the terrain only at grid vertices. In Algorithms
1–4, the symbols ∆x and ∆y are used as abbreviations for (Qx – Px) and
(Qy – Py) respectively, and m denotes (∆y/∆x). All variables are local
and type integer unless otherwise indicated. The unary operator (real)
converts its operand to type real. In any expression containing one or
more floating point operands, all operations are performed using floating
point. The value of an arbitrary variable t during loop iteration i is
denoted ti;t0 to denotes the value of t just before the first loop iteration.

To derive the first version of the algorithm, consider each point (x, y(x))
along PQ such that x [{Px + 1, Px + 2, . . .,Qx – 1}, and y(x) =
Py + m(x – Px). It is apparent from Fig. 2 that if y(x) = y(x) , then
PQ intersects a vertex at (x, y(x)). If y(x) ≠ y(x) , then PQ intersects
the vertical edge connecting (x, y(x)) and (x, y(x)); if, in addition,
y(x – 1) < y(x) , then PQ also intersects the horizontal edge connect-
ing (x – 1, y(x)) and (x, y(x)). An algorithm based on these ideas is
given below.



32

 I.6 FAST LINE-EDGE INTERSECTIONS ON A UNIFORM GRID

GRAPHICS GEMS I Edited by ANDREW S. GLASSNER 32

Figure 2. The intersection of line segment PQ and the uniform grid can be expressed as
{up(2, l), left(3, 2), up(3, 2), left(4, 3), up(4, 3), vertex(5, 4), up(6, 4), left(7, 5), up (7, 5),
left(8, 6), up(8, 6)}. Highlighted grid edges indicate intersections with PQ. Circles indicate
points traversed by Algorithm l; squares indicate points traversed by Algorithms 2–4.

33

 I.6 FAST LINE-EDGE INTERSECTIONS ON A UNIFORM GRID

GRAPHICS GEMS I Edited by ANDREW S. GLASSNER 33

Algorithm IAlgorithm IAlgorithm IAlgorithm IAlgorithm I
oy, fy: real

cx ← Px + 1
oy ← Py
while cx < Qx do

begin
fy ← Py + (cx – Px)*(∆y/(real)∆x)
if fy ≠ fy then

begin
if oy < fy then left (cx, fy)
up (cx, fy)

end
else vertex (cx, fy)
oy ← fy
cx ← cx + 1

end
endloop

Instead of traversing points (cx, fy) as in Algorithm 1, we can traverse
points (cx, cy), where cy = fy , and use a new variable r that contains
as its value fy – fy. The value of r can be computed inductively as
follows:

r0 = 0

ri = ri − 1 + m if ri − 1 + m < 1

ri − 1 + m − 1 otherwise


The intersection tests of Algorithm 1 can be rewritten as follows: at
(cxi, cyi), PQ intersects a vertex if ri = 0, an upward edge if ri ≠ 0, and
a leftward edge if ri ≠ 0 and ri – 1 + m > 1. The resulting algorithm is
given below.

34

 I.6 FAST LINE-EDGE INTERSECTIONS ON A UNIFORM GRID

GRAPHICS GEMS I Edited by ANDREW S. GLASSNER 34

Algorithm 2Algorithm 2Algorithm 2Algorithm 2Algorithm 2
r, or, m: real
C: IntPoint2

Cx ← Px + 1
Cy ← Py
r ← 0
while Cx < Qx do

begin
or ← r
if r + m < 1 then r ← r + m
else

begin
r ← r + m – 1
Cy ← Cy + 1

end
 if r ≠ 0 then

begin
if or + m > 1 then left (C)
up(C)

end
else vertex (C)
Cx ← Cx +1

end
endloop

All floating point operations in Algorithm 2 can be eliminated by introduc-
ing a new variable nr = r∆x. The Algorithm 2 operations on r can be
expressed in terms of nr as listed below, yielding Algorithm 3.

In terms of r In terms of nr

r = 0 nr = 0
r + m < 1 nr + ∆y < ∆x
r = r + m nr = nr + ∆y
r = r + m – 1 nr = nr + ∆y – ∆x

35

 I.6 FAST LINE-EDGE INTERSECTIONS ON A UNIFORM GRID

GRAPHICS GEMS I Edited by ANDREW S. GLASSNER 35

Algorithm 3Algorithm 3Algorithm 3Algorithm 3Algorithm 3
C: IntPoint2

Cx ← Px + 1
Cy ← Py
nr ← 0
while Cx < Qx do

begin
onr ← nr
if nr + ∆y < ∆x then nr ← nr + ∆y
else

begin
nr ← nr + ∆y – ∆x
Cy ← Cy +1

end
if nr ≠ 0 then

begin
if onr + ∆y > ∆x then left (C)
up (C)

end
else vertex (C)
Cx ← Cx + 1

end
endloop

Several simplifications can be made. Introducing a constant const =
∆x – ∆y moves some computation out of the loop. The check for a left
edge need only be made when Cy is incremented. With this check moved
to its new location, it is sufficient to check for nr ≠ 0. This leaves onr
unused, so it can be removed. Finally, a redundant check of nr can be
eliminated by copying and combining if statements. The final version of
the single-octant algorithm is given below.

36

 I.6 FAST LINE-EDGE INTERSECTIONS ON A UNIFORM GRID

GRAPHICS GEMS I Edited by ANDREW S. GLASSNER 36

Algorithm 4Algorithm 4Algorithm 4Algorithm 4Algorithm 4
C: IntPoint2

Cx ← Px + 1
Cy ← Py
nr ← 0
const ← ∆x – ∆y
while Cx < Qx do

begin
if nr < const then

begin
nr ← nr + ∆y
if nr ≠ 0 then up (C)
else vertex (C)

end
else

begin
Cy ← Cy +1
nr ← nr – const
if nr ≠ 0 then

begin
left (C)
up (C)

end
else vertex (C)

end
Cx ← Cx + 1

end
endloop

Algorithms 1–4 assume that Q lies between 0° and 45° from P,
inclusive. To handle the other eight octants without slowing down the
algorithm, separate code segments are used for each octant of the plane
(see Appendix).

See Appendix 2 for C Implementation (651)

37GRAPHICS GEMS I Edited by ANDREW S. GLASSNER 37

IIIII
AAAAANTI-ALIASING SUMMARYNTI-ALIASING SUMMARYNTI-ALIASING SUMMARYNTI-ALIASING SUMMARYNTI-ALIASING SUMMARY

The following four Gems are useful for anti-aliasing calcula-
tions. One technique for exact anti-aliasing is to find the area of
overlap between a piece of geometry to be rendered and a filter
function. Often this filter is a unit-height box over a pixel, but
larger, more symmetric filters (such as a Gaussian with a radius
of 1.5 pixels) will usually give better results. Since such filters
are radially symmetric, they have a circular footprint, and one
needs to find the region of this circle occupied by the geometry;
a weighting factor is then usually included to account for the
changing height of the filter.

The first Gem determines the area of overlap between a circle
and a half-plane. This technique may be adapted for polygon
anti-aliasing by observing that a convex polygon may be repre-
sented as the intersection of a collection of half-planes. The
second Gem applies this technique to thick lines. The third Gem
is useful when anti-aliasing circles. The final Gem may be useful
to determine whether a particular piece of geometry is a candi-
date for anti-aliasing in a particular situation by examining
some points (for example, the vertices of a polygon).

See also Line Drawing Gems; Polygon Scan Conversion Gems;
Filtering Gems; Anti-Aliasing Filters Summary (143); A Fast 2D
Point-on-Line Test (49)

38

I.7 AREA OF INTERSECTION: CIRCLE AND A HALF-PLANE

GRAPHICS GEMS I Edited by ANDREW S. GLASSNER 38

I.7I.7I.7I.7I.7
AAAAAREA OF INTERSECTIONREA OF INTERSECTIONREA OF INTERSECTIONREA OF INTERSECTIONREA OF INTERSECTION:::::CCCCCIRCLE AND A HALF-PLANEIRCLE AND A HALF-PLANEIRCLE AND A HALF-PLANEIRCLE AND A HALF-PLANEIRCLE AND A HALF-PLANE

Kelvin ThompsonNth Graphics, Ltd.Austin, Texas

Given a circle of radius r whose center is a distance d from the edge of a
half-plane (see Fig. 1), the fraction of the circle that intersects the
half-plane is

and the area of intersection is πr2 ⋅ cov(d, r). If the center of the circle
is inside the half-plane, then the fractional coverage is 1 – cov(d, r) and
the area πr2 ⋅ (1 – cov(d, r)).

The function cov(d, r) can be useful when anti-aliasing lines and
polygon edges—see Gupta and Sproull (1981) and “Area of Intersection:
Circle and a Thick Line” in this volume.

ProofProofProofProofProof
We will take the integral of part of a semicircle, and then double that to
get the area of intersection; the area of intersection divided by the area of
the circle gives us the fractional coverage. We know the equation for a
semicircle is y = r2 – x2 , and a table of integrals tells us

a2 – u2∫ du = u

2 a2 – u2 + a2

2 arcsin u
a .

 cov(d, ␣r) =

d ≤ r , 1
2

 – d r2 – d2

πr2

d ≥ r , 0






 – 1

π arcsin d
r

39

I.7 AREA OF INTERSECTION: CIRCLE AND A HALF-PLANE

GRAPHICS GEMS I Edited by ANDREW S. GLASSNER 39

Figure 1.

To get the area of intersection with the semicircle we integrate from d to
the edge of the circle, r. After a little bit of algebra this gives us

 d
r r2 – x2∫ dx = 1

2 π
2 r2 – d r2 – d2 – r2 arcsin d

r





.

When we double this and divide by πr2, we get the expression for
cov(d, r) shown above.

40

I.8 AREA OF INTERSECTION: CIRCLE AND A THICK LINE

GRAPHICS GEMS I Edited by ANDREW S. GLASSNER 40

I.8I.8I.8I.8I.8
AAAAAREA OF INTERSECTIONREA OF INTERSECTIONREA OF INTERSECTIONREA OF INTERSECTIONREA OF INTERSECTION:::::CCCCCIRCLE AND A THICK LINEIRCLE AND A THICK LINEIRCLE AND A THICK LINEIRCLE AND A THICK LINEIRCLE AND A THICK LINE

Kelvin ThompsonNth Graphics, LtdAustin, Texas

Given a circle of radius r at a distance p from the center of a line of
thickness 2w (see Fig. 1), the fraction of the circle that overlaps the line
is defined in terms of the function cov(d), which in turn is defined in
terms of the coverage function found in “Area of Intersection: Circle and
a Half-Plane” in this volume:

cov(d) ; cov(d, r).

Our use of cov(d) depends on whether the line is thinner than the pixel:

For w < r (the line is thinner than the pixel):

Range of p Coverage

0 ≤ p ≤ w 1 – cov(w – p) – cov(w + p)
w ≤ p ≤ r – w cov(p – w) – cov(p + w)

r – w ≤ p cov(p – w)

For w ≥ r (the line is thicker than the pixel):

Range of p Coverage

0 ≤ p ≤ w 1 – cov(w – p)
w ≤ p cov(p – w)

The area of intersection is the coverage shown above multiplied by the
area of the circle πr2.

41

I.8 AREA OF INTERSECTION: CIRCLE AND A THICK LINE

GRAPHICS GEMS I Edited by ANDREW S. GLASSNER 41

Figure 1.

Proof, by Observation of the GeometryProof, by Observation of the GeometryProof, by Observation of the GeometryProof, by Observation of the GeometryProof, by Observation of the Geometry
For skinny lines we have:

Geometry: See Fig. 2. See Fig. 3.

Coverage: 1 – cov(w – p,) – cov(w + p) cov(p – w) – cov(p + w)

Range: 0 ≤ p ≤ w w ≤ p ≤ r – w

 Figure 2. Figure 3

42

I.8 AREA OF INTERSECTION: CIRCLE AND A THICK LINE

GRAPHICS GEMS I Edited by ANDREW S. GLASSNER 42

 Figure 4. Figure 5.

And if w > r, we invoke cov(d) once for each p:

Geometry: See Fig. 4. See Fig. 5.
Coverage: 1 – cov(w – p) cov(p – w)
Range: 0 ≤ p ≤ w w ≤ p ≤ r + w

GRAPHICS GEMS I Edited by ANDREW S. GLASSNER 43

I.9 AREA OF INTERSECTION: TWO CIRCLESI.9I.9I.9I.9I.9
AAAAAREA OF INTERSECTIONREA OF INTERSECTIONREA OF INTERSECTIONREA OF INTERSECTIONREA OF INTERSECTION:::::TTTTTWO CIRCLESWO CIRCLESWO CIRCLESWO CIRCLESWO CIRCLES

Kelvin ThompsonThe University of Texas at Austin

Given two filled circles (discs) with radii r1 ≤ r2 whose centers are a
distance d apart (see Fig. 1), and some expressions relating to this
geometry,

(1)

then the area of intersection is given by

o(r1, r2, d)

≡

d ≤ r2 − r1 , πr1

2

d ≥ r2 + r1 , 0








ProofProofProofProofProof
Equations 3a and 3b are obvious by inspection, since they occur when (a)
disc 1 is completely inside disc 2, and (b) the two circles do not intersect.

a (x, r) (2)

≡ 1

2 πr2 – x r2 – x2 – r2 arcsin x
r(),

(3a)
(3b)

d2 < r2
2 – r1

2 , πr1
2 – a s, r1() + a s + d, r2()

d2 ≥ r2
2 – r1

2 , a x1 , r1() + a x2 , r2().




(3c)
(3d)

x1 ≡ d2 + r1

2 – r2

2

2d , x2 ≡ d2 + r2

2 – r1

2

2d , s ≡ r2

2 – r1

2 – d2

2d ,

otherwise

GRAPHICS GEMS I Edited by ANDREW S. GLASSNER 44

I.9 AREA OF INTERSECTION: TWO CIRCLES
We now prove the remaining expressions in Equation 3.

Figure 1

First we note that the area of intersection can be split into two
crescentlike shapes, where each of these shapes is the intersection
between a disc and half-plane. The two regions—denoted C1, and C2 in
Fig. 2—are always separated by the chord connecting the two points
where the boundaries of the discs intersect (we call this the shared
chord).

From “Area of Intersection: Circle and a Half-Plane” in this volume we
know that the area of intersection between a disc and a half-plane is given
by a(x, r) in Equation 2, where x is the distance between the center of
the disc and the edge of the half-plane, and r is the radius of the disc.
Thus, once we know the distance between the center of each disc and the
shared chord, we can determine the area of intersection. Now let us draw
a triangle (see Fig. 3) whose vertices are at the centers of the two circles
and at one of the endpoints of the shared chord. When r1

2 + d2 = r2
2 , the

triangle is a right triangle (with r2 the hypotenuse), and the distances x1,
and x2 are 0 and d by inspection. However, if we hold r1 and d
constant, then as r2 gets larger and smaller, we encounter two differing

Figure 2.

GRAPHICS GEMS I Edited by ANDREW S. GLASSNER 45

I.9 AREA OF INTERSECTION: TWO CIRCLES

Figure 3.

geometries. When r2
2 is less than r1

2 + d2 we get the geometry shown
above, and this gives us the simultaneous equations

r1
2 – x1

2 = r2
2 – x2

2 , and x1 + x2 = d.

With a little bit of algebra we get the expressions for xl and x2 in
Equation 1. Since xl and x2 are the distances between the centers of the
discs and the shared chord, we immediately get Equation 3d.

Now we let r2 grow larger than r2
1 + d2, and we get the geometry in

Fig. 4. This, in turn, gives us the relation

r2
2 – (s + d)2 = r2

1 – s2.

Again, we apply a little algebra to get the expression for s in Equation 1.
Here, however, the geometry is a little more complicated. The distance

from the center of disc 2 to the shared chord is d + s, and the distance

Figure 4.

GRAPHICS GEMS I Edited by ANDREW S. GLASSNER 46

I.9 AREA OF INTERSECTION: TWO CIRCLES

Figure 5.

from the center of disc 1 is s. However, the center of disc 1 is inside the
half-plane with which we are intersecting it, so Equation 2 is not valid.

To get the correct area for Cl, we use the expression πr2
1 – a(s, r1),

which leads us to Equation 3c.

47

I.10 VERTICAL DISTANCE FROM A POINT TO A LINE

GRAPHICS GEMS I Edited by ANDREW S. GLASSNER 47

I.10I.10I.10I.10I.10
VVVVVERTICAL DISTANCEERTICAL DISTANCEERTICAL DISTANCEERTICAL DISTANCEERTICAL DISTANCEFFFFFROM A POINTROM A POINTROM A POINTROM A POINTROM A POINTTTTTTO A LINEO A LINEO A LINEO A LINEO A LINE

Kelvin ThompsonNth Graphics, Ltd.Austin, Texas

Given a line with slope m = dy/dx, and “perpendicular” and “vertical”
distances p and v between a point and the line in Fig. 1, the ratio k
relating p and v is

k =

p
v =

1

1 + m2 .

(The “vertical” distance v is the length of the shortest vertical line
segment between the point and the line.) Further, if –1 ≤ m ≤ 1, then
1/ 2 ≤ k ≤ 1.

This relationship can be useful for rendering anti-aliased lines and
polygon edges—see Gupta and Sproull (1981), and “Area of Intersection:
Circle and Half-Plane” in this volume.

ProofProofProofProofProof
By elementary geometry, the three right triangles (two inside the third) in
Fig. 2 are similar.

Figure 1.

48

I.10 VERTICAL DISTANCE FROM A POINT TO A LINE

GRAPHICS GEMS I Edited by ANDREW S. GLASSNER 48

Figure 2.

Hence,

k =

p
v

 =

v / m
v2 + v2 / m2 =

1
m 1 + 1/ m2 =

1

1 + m2 .

49GRAPHICS GEMS I Edited by ANDREW S. GLASSNER 49

I.11I.11I.11I.11I.11
AAAAA FAST FAST FAST FAST FAST22222D POINT-ON-LINED POINT-ON-LINED POINT-ON-LINED POINT-ON-LINED POINT-ON-LINETTTTTESTESTESTESTEST

Alan W. PaethUniversity of WaterlooWaterloo, Ontario, Canada

IntroductionIntroductionIntroductionIntroductionIntroduction
Fast proximity testing between a point and a line on a two-dimensional
plane finds common application, particularly in graphics editors. Unfortu-
nately, the “first principles” perpendicular distance test requires a
square-root operation to form a normalized (Euclidean) vector of unit
length. This step is expensive and often unnecessary. For simple
“hit/miss” selection, the distance inequality may be squared to yield a
form requiring only multiplication, yielding faster code, which operates
on integer variables while maintaining mathematical consistency. Substi-
tution of an alternate vector norm reduces multiplication counts and in
some cases yields a more useful proximity test. For instance, a vector
rasterized using conventional DDA techniques generates a pixel set of
“on” points, whose distances to the underlying vector “backbone” all fall
within a common infinity-norm distance independent of line slope, though
an outer, bracketing Euclidean distance may always be fitted.

The code presented below was originally written to merge chains of
short vectors having similar slope into a larger constituent vector (Paeth,
1988), provided that all intermediate vertices lie along the common
parent—an application for which the Euclidean norm is both slow and
inappropriate. An example of test distances returned by the code appears
in the comments prefacing the C source code in the appendix.

50

I.11A FAST 2D POINT-ON-LINE TEST

GRAPHICS GEMS I Edited by ANDREW S. GLASSNER 50

Pseudo-CodePseudo-CodePseudo-CodePseudo-CodePseudo-Code
Given two points P and Q and a test point T
return 0 if T is not on the (infinite) line PQ

1 if T is on the open ray
r
P

2 if T is within the line segment PQ
3 if T is on the open ray

r
Q

if ABS((Qy – Py) × (Tx – Px) – (Ty – Py) × (Qx – Px))
≥ MAX(ABS(Qx – Px), ABS(Qy – Py)) return[0];

if (Qx < Px and Px < Tx) or (Qy < Py and Py < Ty) return[1];
if (Tx < Px and Px < Qx) or (Ty < Py and Py < Qy) return[1];
if (Px < Qx and Qx < Tx) or (Py < Qy and Qy < Ty) return[3];
if (Tx < Qx and Qx < Px) or (Ty < Qy and Qy < Py) return[3];
return[2];

See also Solving the Nearest-Point-on-Curve Problem (607); A
Fast Approximation to the Hypotenuse (427); Line Drawing
Summary (98)

See Appendix 2 for C Implementation (654)

↔

51

I.12 FAST CIRCLE-RECTANGLE INTERSECTION CHECKING

GRAPHICS GEMS I Edited by ANDREW S. GLASSNER 51

I.12I.12I.12I.12I.12
FFFFFAST CIRCLE–RECTANGLEAST CIRCLE–RECTANGLEAST CIRCLE–RECTANGLEAST CIRCLE–RECTANGLEAST CIRCLE–RECTANGLEINTERSECTION CHECKINGINTERSECTION CHECKINGINTERSECTION CHECKINGINTERSECTION CHECKINGINTERSECTION CHECKING

Clifford A. ShafferVirginia TechBlacksburg, Virginia

If you do a lot of graphics or spatial data programming, sooner or later
you will want to know if a circle and a rectangle intersect, or if a sphere
and a box intersect. This is even more likely if you use quadtree or octree
methods. (For example, you may want to find all nodes of the tree within
a certain Euclidean distance of a point). Unfortunately, this problem is
not as easy to solve as it appears. The first approach that normally comes
to mind is to check if any corner of the rectangle falls within the circle
(using a simple distance check). Unfortunately, this approach will some-
times give false negative results. There are three anomalous cases to
watch out for. First, while no corner of the rectangle may be in the circle,
a chord of the circle may overlap one edge of the rectangle (see Fig. 1).
Second, the rectangle might fall inside a bounding box placed around the
circle, but still be outside the circle (see Fig. 2). Third, the circle might lie
entirely inside the rectangle (see Fig. 3).

A fast algorithm is presented, for determining if a circle and a rectangle
intersect. The 3D case can easily be derived from the 2D case; although it
is a little longer, it requires only slightly more execution time. The 2D
version of this algorithm requires at most five comparisons (all but one
test against 0), three multiplies, five add/subtracts (four of which are for
normalization) and one absolute-value function. It basically works by
determining where the rectangle falls with respect to the center of the
circle. There are nine possibilities in 2D (27 in 3D): the rectangle can be
entirely to the NW, NE, SW, or SE of the circle’s centerpoint (four cases),
directly N, E, S, or W of the circle’s centerpoint (four cases) or in the
center (that is, containing the circle’s centerpoint). The algorithm

52

I.12 FAST CIRCLE-RECTANGLE INTERSECTION CHECKING

GRAPHICS GEMS I Edited by ANDREW S. GLASSNER 52

 Figure 1. Figure 2.

Figure 3

enumerates these cases and determines the distance between the single
closest point on the border of the rectangle and the center of the circle.

boolean Check_Intersect(R, C, Rad)

Return TRUE iff rectangle R intersects circle with centerpoint C and radius Rad.
begin Comments assume origin is at lower left corner

Translate coordinates, placing C at the origin
R.max ← R.max – C; R.min ← R.min – C;
if (R.max.x < 0) R to left of circle center

then if (R.max.y < 0) R in lower left corner
then return (R.max.x2 + R.max.y2 < Rad2);
else if (R.min.y > 0) R in upper left corner

then return (R.max.x2 + R.min.y2 < Rad2);
else R due West of circle

return (|R.max.x|< Rad):

53

I.12 FAST CIRCLE-RECTANGLE INTERSECTION CHECKING

GRAPHICS GEMS I Edited by ANDREW S. GLASSNER 53

else if (R.min.x > 0) R to right of circle center
then if (R.max.y < 0) R in lower right corner

then return (R.min.x2 + R.max.y2 < Rad2);
else if (R min.y > 0) R in upper right corner

then return (R.min.x2 + R.min.y2 < Rad2);
else R due EAST of circle

return (R.min.x < Rad)
else R on circle vertical centerline

if (R.max.y < 0) R due South of circle
then return (|R.max.y| < Rad);
else if (R.min.y > 0) R due North of circle

then return (R.min.y < Rad);
else R contains circle centerpoint

return (TRUE);
end; Check_intersect

See also Fast Ray-Box Intersection (395); Spheres-to-Voxels
Conversion (327); A Simple Method for Box-Sphere Intersec-
tion Testing (335); Ray Tracing (383)

See Appendix 2 for C Implementation (656)

22
2D RENDERING

II.1 CIRCLES OF INTEGRAL RADIUS ON INTEGER LATTICES

GRAPHICS GEMS I Edited by ANDREW S. GLASSNER 57

II.1II.1II.1II.1II.1CCCCCIRCLES OFIRCLES OFIRCLES OFIRCLES OFIRCLES OFIIIIINTEGRAL RADIUS ONNTEGRAL RADIUS ONNTEGRAL RADIUS ONNTEGRAL RADIUS ONNTEGRAL RADIUS ONIIIIINTEGER LATTICESNTEGER LATTICESNTEGER LATTICESNTEGER LATTICESNTEGER LATTICES
Alan W. PaethUniversity of WaterlooWaterloo, Ontario, Canada

IntroductionIntroductionIntroductionIntroductionIntroduction
Consider the question of drawing circles of integral radius R on an
integer point lattice (i,j) so that select points on the lattice fall exactly
along the circle’s perimeter. This situation occurs implicitly when render-
ing circles of integral size on a raster display. Here the pixels represent
the point lattice. The question arises explicitly when we represent a circle
by an interpolating curve: a desirable control polygon places knots at
locations having exact representations. When the circles are small the
interpolation curve may degenerate to simple line segments, and a convex
polygon of irregular edge lengths (but precise circumferential vertices) is
rendered.

Sets of points (i,j) lying at a constant distance R solve the well-known
Pythagorean relation i2 + j2 = R2. What values of R yield up large sets
of integral sides and what are their properties? A brute-force search of the
solution space yields those triangles with hypotenuse less than one
hundred. Restricting R to prime numbers assures triangles in lowest
terms; the generation of additional triangles with composite, relatively
prime, edge lengths is explained later:

It is unfortunate that in lowest terms the hypotenuse must be an odd
length. To show this, note that an even number (of form 2n and congru-
ent to 0 mod 2) is congruent to 0 mod 4 after squaring as (2n)2 = 4n2.
Similarly, squaring an odd yields (2n + 1)2 = 4(n2 + n) + 1, leaving it
congruent to 1 mod 4. In particular, even/odd parity is preserved under
squaring.

Parity implies that a triangle of even hypotenuse must be the sum of
either two even or two odd legs. The first case is immediately discarded

II.1 CIRCLES OF INTEGRAL RADIUS ON INTEGER LATTICES

GRAPHICS GEMS I Edited by ANDREW S. GLASSNER 58

as it is not in lowest terms, as stated. In the remaining case, the sum of
two odd legs gives a hypotenuse length congruent to 2 mod 4, which
cannot be represented as a perfect square. Thus, even hypotenuse lengths
are ruled out for triangles in lowest terms. Worse, a hypotenuse with
length a power of two can have no (odd) factors in common with either
odd leg—the form is necessarily in lowest terms. Thus, no Pythagorean
triangles exist whose hypotenuse length is a power of two.

By dividing edge lengths by the hypotenuse, a unit vector is formed
with rational coefficients. For instance, binary floating point hardware
approximates real values by using scaled rationals, in which both the
implicit mantissa denominator and scaling exponent are powers of
two. Thus, there exist (under radix-2 or radix-16 floating point) no
values 0 < x < 1 and 0 < y < 1 such that x2 + y2 = 1 when evaluated
in full precision. This further implies that the universal identity sin2 x +
cos2 x = 1.0 holds only as round-off allows.

Fortunately, the situation is not as severe in base ten. By happenstance
this base possesses an odd factor (5), which appears in Tab. 1 in the
(3, 4, 5) triangle known to the Egyptians. This allows Cartesian pairs
possessing exact integral length in finite digits. For instance, scaling the
above onto (6, 8, 10) and dividing gives (0.6, 0.8) as a unit vector. To
show that there are additional points of higher precision, additional
triangles are formed whose hypotenuse lengths are the product of two

Table 1. Prime Pythagorean Triangles.

II.1 CIRCLES OF INTEGRAL RADIUS ON INTEGER LATTICES

GRAPHICS GEMS I Edited by ANDREW S. GLASSNER 59

(possibly identical) hypotenuse values appearing in the table. This yields
triangles of two types: the scaled versions of the original parents, plus
additional triangles which, surprisingly, are already in lowest terms (the
algebraic number theory is left as a recreation to the interested reader).

For instance, scaling (3, 4, 5) by five yields two triangles of common
hypotenuse: the expected (15, 20, 25), found directly, plus the unex-
pected (7, 24, 25) in lowest terms, found by searching edge lengths for
R = 25. Similarly, the product of table entries two and three (hypo-
tenuses of length 13 and 17) yield four integral triangles of hypotenuse
221: the originals scaled by 17 and 13, plus the additional members
(21, 220, 221), and (140, 171, 221).

This property may be applied to generate coordinate pairs with exact
decimal representation in a fixed number of digits. For any vector of
length I0D a lowest-term triangle of length 5D exists; normalization
yields a Cartesian pair of D decimal digits. Searching the set of powers
(5 25 125 625 3125 15625) for edge pairs through six digits yields
these unit vectors:

(0.6 0.8)
(0.28 0.96)
(0.352 0.936)
(0.5376 0.8432)
(0.07584 0.99712)
(0.658944 0.752192)

As a circle is symmetric about any line through the origin, the eight
symmetry axes implicit in the Cartesian coordinate system may be used
to map the point (a, b) into all eight octants, (±a, ± b) and (±b, ± a),
but note that (1,0) gives rise to only three new points. Taking the first
two entries above, a twenty-point polygonal approximation to a circle
may be formed, in which all vertices are exact and required only two
significant digits for specification. Presented in counterclockwise direc-
tion beginning on the x-axis these are as follows:

 1.0,(0.0), 0.96,(0.28), 0.80,(0.60), 0.60,(0.80), 0.28,(0.96)
 0.0,(1.0), –0.28,(0.96), –0.60,(0.80), –0.80,(0.60), –0.96,(0.28)
–1.0,(0.0), –0.96,(–0.28), –0.80,(–0.60), –0.60,(–0.80), –0.28,(–0.96)
 0.0,(–1.0), 0.28(, –0.96), 0.60,(–0.80), 0.80,(–0.60), 0.96,(–0.28)

II.1 CIRCLES OF INTEGRAL RADIUS ON INTEGER LATTICES

GRAPHICS GEMS I Edited by ANDREW S. GLASSNER 60

Alternately, the method is useful in providing large triangle families with
common hypotenuse lengths by choosing values rich in table factors.
For instance, the easily remembered 16385 = (214 + l) has factors
(5 29 113) all within the prime table and yields thirteen triangles with
sides ranging from (256, 16383) through (11484, 11687). Much larger
triangle sets are possible. For instance, a hypotenuse length of 27625,
factored as (5 5 5 13 17) yields up thirty-one distinct triangles, making
possible a polygon coincident with a circle at two hundred fifty-two
rational vertices.

What can be said of a circle drawn on a conventional frame buffer? In
this setting, the method provides an excellent accuracy test for any
circle-drawing algorithm—for select integer radii many pixels should be
always visited regardless of implementation specifics, as they lie precisely
on the circle’s perimeter. Two noteworthy values are R= 325 (seven
triangles, sixty vertices in circular agreement) and R= 1105 (thirteen
triangles, one hundred eight vertices). Searching for the edge sets is
straightforward since the hypotenuse lengths are given, and may be sped
using the identity (i2 – j2)2 + (2ij)2 = (i2 + j2)2. Row n of the decimal
coordinate table contains an entry

Tn 0.6() . This Chebyshev polynomial

may be evaluated using the recursive form Tn+1 = 1.2Tn – Tn–1 with
T0 = 1 and Tl = 0.6.

See also What Are the Coordinates of a Pixel? (246); Pecalcu-
lating Addresses for Fast Fills, Circles, and Lines (285)

GRAPHICS GEMS I Edited by ANDREW S. GLASSNER 61

II.2 NICE NUMBERS FOR GRAPH LABELSII.2II.2II.2II.2II.2
NNNNNICE NUMBERS FORICE NUMBERS FORICE NUMBERS FORICE NUMBERS FORICE NUMBERS FORGGGGGRAPH LABELSRAPH LABELSRAPH LABELSRAPH LABELSRAPH LABELS

Paul S. HeckbertUniversity of CaliforniaBerkeley, California

When creating a graph by computer, it is desirable to label the x and y
axes with “nice” numbers: simple decimal numbers. For example, if the
data range is 105 to 543, we’d probably want to plot the range from 100
to 600 and put tick marks every 100 units (see Fig. 1). Or if the data range
is 2.03 to 2.17, we’d probably plot a range from 2.00 to 2.20 with a tick
spacing of .05. Humans are good at choosing such “nice” numbers, but
simplistic algorithms are not. The naive label-selection algorithm takes
the data range and divides it into n equal intervals, but this usually
results in ugly tick labels. We here describe a simple method for generat-
ing nice graph labels.

The primary observation is that the “nicest” numbers in decimal are 1,
2, and 5, and all power-of-ten multiples of these numbers. We will use
only such numbers for the tick spacing, and place tick marks at multiples
of the tick spacing. We choose the minimum and maximum of the
graphed range in either of two ways: (a) loose: round the data minimum

Figure 1.

GRAPHICS GEMS I Edited by ANDREW S. GLASSNER 62

II.2 NICE NUMBERS FOR GRAPH LABELS
down, and the data maximum up, to compute the graph minimum and
maximum, respectively, or (b) tight: use the data minimum and maximum
for the graph minimum and maximum. The relative merits of these two
approaches are discussed in Tufte (1983). Below is some pseudo-code for
the loose method:

const ntick ← 5; desired number of tick marks

loose_label: label the data range from min to max loosely.
(tight method is similar)

procedure loose_label(min, max: real);

nfrac: int;
d: real; tick mark spacing
graphmin, graphmax: real; graph range min and max
range, x: real;
begin

range ← nicenum(max – min, false);
d ← nicenum(range/(ntick – 1), true);
graphmin ← floor(min/d)*d;
graphmax ← ceiling(max/d)*d;
nfrac ← max(– floor(logl0(d)), 0); number of fractional digits to show

for x ← graphmin to graphmax + .5*d step d do
put tick mark at x, with a numerical label showing nfrac fraction digits
endloop;

endproc loose_label;

nicenum: find a “nice” number approximately equal to x.
Round the number if round = true, take ceiling if round = false.

function nicenum(x: real; round: boolean): real;
exp: int; exponent of x
f: real; fractional part of x
nf: real; nice, rounded fraction
begin

exp ← floor(logl0(x));
f ← x/expt(10., exp); between 1 and 10

GRAPHICS GEMS I Edited by ANDREW S. GLASSNER 63

II.2 NICE NUMBERS FOR GRAPH LABELS
if round then

if f < 1.5 then nf ← 1.;
else if f < 3. then nf ← 2.;
else if f < 7. then nf ← 5.;
else nf ← 10.;

else
if f ≤ 1. then nf ← 1.;
else if f ≤ 2. then nf ← 2.;
else if f ≤ 5. then nf ← 5.;
else nf ← 10.;

return nf*expt(10., exp);
endfunc nicenum;

We assume in the above that logl0(z) is log base 10 of z.

We also assume expt(a, n) = an for integer n. But note that the exponen-
tiation routines in some math libraries are inexact for integer arguments,
and such errors can cause the above code to fail. On early UNIX systems
I found that pow(10.,2.) ≠ 100 exactly, so I wrote my own expt function by
multiplying or dividing in a loop. The pow routine in current (BSD 4.3)
UNIX is trustworthy, however.

See Appendix 2 for C Implementation (657)

GRAPHICS GEMS I Edited by ANDREW S. GLASSNER 64

II.3 EFFICIENT GENERATION OF SAMPLING JITTER USING LOOK-UP TABLESII.3II.3II.3II.3II.3EEEEEFFICIENT GENERATION OFFFICIENT GENERATION OFFFICIENT GENERATION OFFFICIENT GENERATION OFFFICIENT GENERATION OFSSSSSAMPLING JITTER USINGAMPLING JITTER USINGAMPLING JITTER USINGAMPLING JITTER USINGAMPLING JITTER USINGLLLLLOOK-UP TABLESOOK-UP TABLESOOK-UP TABLESOOK-UP TABLESOOK-UP TABLES
Joseph M. CychoszPurdue UniversityW. Lafayette, Indiana

IntroductionIntroductionIntroductionIntroductionIntroduction
Presented in this paper is a method for generating sampling jitter using a
limited number of random numbers. The proposed jitter function is a
function of three variables, namely the sample location (x,y) and the
sample number (s) for the location. Furthermore, the method will pro-
duce repeatable jitter for all x and y without requiring either the storage
of a large number of random numbers, or the consistent access of x, y,
and s. This paper examines the application of this jitter function to the
ray-tracing algorithm.

Recent advances in the ray-tracing algorithm have used stochastic
sampling techniques as a method of rendering anti-aliased images. Cook
et al. (1984) pioneered this approach in their work on “distributed ray
tracing.” Other works by Cook (1983, 1986) examined the use of stochas-
tic sampling in ray tracing from a theoretical perspective. Lee et al.
(1985) and Dippé and Wold (1985) also examined the use of stochastic
sampling in ray tracing. Kajiya (1986) in a later work used stochastic
sampling as a basis for evaluating the “rendering equation.” The three
works by Cook, Lee, and Dippé used a jitter function to simulate Monte
Carlo integration, in which random sampling points for the image plane
are generated. The generated jitter is then used to perturb the sampling
rays as they pass through the image plane. Cook, however, (1985, 1986)
identified that the distribution of samples should approximate a Poisson
disk based on Yellot’s study (1983) of the distribution of cones in the
retina of Rhesus monkeys.

GRAPHICS GEMS I Edited by ANDREW S. GLASSNER 65

II.3 EFFICIENT GENERATION OF SAMPLING JITTER USING LOOK-UP TABLES
Although it is not desirable to have a method that can produce a

consistent set of sample points for each frame in an animation, it may be
desirable to have a method that can produce a consistent set of sample
points during the rendering of an individual frame. For example, in a
scan-conversion environment using a z-buffer such as Reyes (Cook et al.,
1987) each polygon should be sampled with the same set of points for
each pixel being processed. Without consistency, temporal artifacts may
occur as the sample points move within the pixels. A basic approach to
this problem would be to save all of the sample points used in the
generation of an image for reuse at a later time. For a 512 × 512 image
with 16 samples per pixel, more than eight million numbers would have
to be stored. An alternative approach might be to use a congruential
random-number generator to generate the sample points as each pixel is
processed. Production of a consistent set of sample points would not only
require that the initial seed of the random-number function be the same,
but also that the pixels be accessed in a consistent manner. An optimiza-
tion algorithm, such as screen space bounding, may eliminate the need to
examine certain pixels, thereby disturbing the random-number sequence.
Other optimization algorithms may alter the number of samples required
for particular pixels. Multiprocessor implementations would experience
similar problems in the generation of consistent jitter.

In ray tracing only the efficiency aspect of generating sampling jitter is
of concern. Multiprocessor implementations (Dippé and Swensen, 1984;
Cleary et al., 1983; Nishimura et al., 1983) and computationally dis-
tributed approaches (Arvo and Kirk, 1987; Arvo and Kirk, 1987 Film
Show Contribution) would experience similar problems, only this time in
the generation of jitter without spatial regularity.

A Jitter Function Using Look-up TablesA Jitter Function Using Look-up TablesA Jitter Function Using Look-up TablesA Jitter Function Using Look-up TablesA Jitter Function Using Look-up Tables
With stochastic sampling, the sampling locations within the area of a

pixel are perturbed, or jittered. To implement this method of anti-alias-
ing, an efficient method for generating jitter is necessary. As stated
earlier, the generated random numbers must be a function of both the
pixel location and the sample number for that pixel. Although it is not
necessary that the function have a long period (that is, the time it takes

GRAPHICS GEMS I Edited by ANDREW S. GLASSNER 66

II.3 EFFICIENT GENERATION OF SAMPLING JITTER USING LOOK-UP TABLES
for the number sequence to repeat), it is necessary that the function not

exhibit any patterns of spatial or temporal regularity with respect to the
image. Shown below is an implementation of the proposed jitter function:

xj = URAND(mod(x + 2y + IRAND(mod(x + s,n)), n)

yj = URAND(mod(y + 2x + IRAND(mod(y + s + l,n)), n),

where

x, y = the location of the given pixel,

s = the sample number for the given pixel,

xj = the amount of jitter in x for the sample point,

yj = the amount of jitter in y for the sample point,

URAND= a table of uniform random numbers,

IRAND = a table of random integers of the range 0 to n,

n = the number of elements in the random-number tables.

The jitter function uses two look-up tables. One table, URAND, simply
contains a uniformly distributed set of random numbers, which may be
prescaled to the size of the jitter for final use in the sampling process. The
numbers in these tables may be generated using standard, random-num-
ber generation techniques, such as those found in Knuth (1981) in press
(1988), or in L’Ecuyer (1988). The second table, IRAND, contains a set of
integers, which is used as a shuffle generator to prevent the function
from exhibiting any spatial patterns. Without this table, the sampling
pattern generated by the function would repeat, thus causing a low-
frequency artifact to appear from the resulting correlation of the sam-
pling pattern. The y + s + l component of the equation for y-jitter is
used to ensure that the x and y indices into URAND are nonequal for all
values of x and y. Should they become equal, only the diagonal of the
pixel will be sampled. This component can be simplified to y + s by

GRAPHICS GEMS I Edited by ANDREW S. GLASSNER 67

II.3 EFFICIENT GENERATION OF SAMPLING JITTER USING LOOK-UP TABLES
either extending IRAND to n + 1 elements and by repeating the first

element, or by substituting two independent tables, one for x and one for
y, for URAND. The latter approach is more desirable, especially if the
scaling of the jitter is nonuniform in x and y.

A slightly more computationally efficient jitter function can be imple-
mented by using a bitwise or operation to compute the sums x + 2y and
y + 2x. Shown below is an implementation of the jitter function using the
or operations and independent tables for URAND:

xj = URANX(mod(or(x,2y) + IRAND(mod(x + s,n)),n)

yj = URANY(mod(or(y,2x) + IRAND(mod(y + s,n)),n).

Evaluation of the Computational CostEvaluation of the Computational CostEvaluation of the Computational CostEvaluation of the Computational CostEvaluation of the Computational Cost
If the size of the look-up tables is a power of two, then the mod functions
can be replaced with bitwise and operations. Multiplications by 2 may be
replaced with shift operations. This allows the function to be imple-
mented fairly efficiently, requiring only four additions, four indexed
loads, four and operations, and two shift operations.

Typical pseudo-random-number generators use a feedback approach,
in which each number generated is used as a seed to generate the next
number in the sequence. Random-number generators of this type, other-
wise known as linear congruential generators (LCG), have the follow-
ing form:

Ri+1 = mod(Ris + c, m),

where Ri+1 is the next random number in the sequence, and Ri is the
current seed. S, c, and m are the multiplier, and additive and modulo
terms of the generator. While this method seems to be computationally
simpler than the proposed approach, this computation often requires the
use of either double-precision or multiple-precision integer arithmetic,
thus requiring several multiplications and additions. Furthermore, this
approach does not exhibit the desirable repeatability that the jitter func-

GRAPHICS GEMS I Edited by ANDREW S. GLASSNER 68

II.3 EFFICIENT GENERATION OF SAMPLING JITTER USING LOOK-UP TABLES

tions do. Table 1 compares the unweighted operational costs of the
jitter-generation methods, and Table 2 compares the measured computa-
tional costs of the methods for a variety of computers. The times reported
in Table 2 are the CPU times in seconds required to generate jitter for a
512 by 512 image with 16 samples per pixel. The random-number
generator used was Ri + 1= Ri 1629 + 1 modulus 1048576, with an
initial seed of 98531.

Table 2. Computational Comparison for Various CPUs.

Table 1. Operational Cost Comparison for Jitter Generations.

Operation Jitter 1 Jitter 2 LCG

multiplies 0 0 4
adds 3 2 2
indexed loads 2 2 0
and/ors 2 3 0
shifts 1 1 0

Total 8 8 6

GRAPHICS GEMS I Edited by ANDREW S. GLASSNER 69

II.3 EFFICIENT GENERATION OF SAMPLING JITTER USING LOOK-UP TABLES
EEEEEvaluation of the Sampling Propertiesvaluation of the Sampling Propertiesvaluation of the Sampling Propertiesvaluation of the Sampling Propertiesvaluation of the Sampling Properties
The sampling properties of the two jitter functions are evaluated using
approaches similar to those used by Cook. The visual results of these
tests are presented in Figs. 1 and 2. The first test (shown in the upper left
of each figure), examines the sampling pattern generated by the func-
tions. A good sampling pattern will have the points randomly distributed
with very little clustering of the points. Once again, to simulate a Poisson
disk distribution, the sample points should be randomly distributed with

Figure 1. Jitter function 1 results. Upper left: sampling pattern; upper right: 2D FFT
of the pattern; lower left: image of single-point/pixel sampled comb; lower right:
image of 16-points/pixel sampled comb.

GRAPHICS GEMS I Edited by ANDREW S. GLASSNER 70

II.3 EFFICIENT GENERATION OF SAMPLING JITTER USING LOOK-UP TABLES

Figure 2. Jitter function 2 results. Upper left: sampling pattern; upper right: 2D FFT
of the pattern, lower left: image of single-point/pixel-sampled comb; lower right:
image of 16-point/pixel-sampled comb.

some minimal separation. In the test, the pixels are 8 × 8 with 1 sample
per pixel. The 2D Fourier transform of the sample pattern is shown in the
upper right of each figure. For comparison, the 2D Fourier transforms for
uniformly spaced sampling and for correlated random sampling are
shown in Fig. 3.

The second test examines the image resulting from the sampling of a
comb of slivers, in which each sliver is 1.01 pixels wide and 50 pixels
high. The results for jittered single-point sampling are shown in the lower
left of Figs. 1 and 2. The lower right shows the results for jittered

GRAPHICS GEMS I Edited by ANDREW S. GLASSNER 71

II.3 EFFICIENT GENERATION OF SAMPLING JITTER USING LOOK-UP TABLES

Figure 3. Left: 2D FFT of uniformly spaced sampling; right: 2D FFT of correlated
sampling using 128 by 128 tiles.

Figure 4. Comparison images. Upper Left: single-point/pixel uniform sampling;
lower left: 16-point/pixel uniform sampling; upper right: 16-point/pixel random
sampling; lower right: “ideal” image.

GRAPHICS GEMS I Edited by ANDREW S. GLASSNER 72

II.3 EFFICIENT GENERATION OF SAMPLING JITTER USING LOOK-UP TABLES
 Table 3. Error Analysis Results for Single- and 16-Point Sampling.

16-point subpixel sampling. For comparison, Fig. 4 shows results of
uniformly spaced sampling for single-point and 16-point sampling, and
16-point random sampling, as well as the “ideal” image.

Table 3 compares the error of the various sampling methods for single-
and 16-point sampling. The error is determined by comparing the pixel
values of the resulting image for the sampling method with the pixel
values of an ideal square-aperture sampled image. Both jitter functions
produce error levels comparable to that of completely random sampling
(that is, the jitter is generated using the LCG random-number generator
presented earlier) for all three categories of sampling. Sixteen point
subpixel random sampling produces the least error, followed closely by
16-point subpixel sampling using jitter functions 1 and 2.

Use of the Jitter Function in Ray TracingUse of the Jitter Function in Ray TracingUse of the Jitter Function in Ray TracingUse of the Jitter Function in Ray TracingUse of the Jitter Function in Ray Tracing
In ray tracing, the jitter function is used to perturb the direction of the

sampling rays as they pass through the image plane. Other sampling rays
may be jittered also, such as the rays used to sample an area light source

GRAPHICS GEMS I Edited by ANDREW S. GLASSNER 73

II.3 EFFICIENT GENERATION OF SAMPLING JITTER USING LOOK-UP TABLES
to produce soft shadows, or the location of the eye to simulate depth of
focus (Cook et al., 1984). To anti-alias a given pixel located at x, y, the
following equations may be used to perturb the point where the ray
passes through the image plane:

xs = xc + wx(xj – .5)

ys = yc + wy(yj – .5),

where

xs, ys = the sampling location for the pixel,

xc, yc = the location of the center for the pixel,

wx, wy = the width and height of the pixel,

xj, yj = the amount of jitter (0. to 1.).

Traditional ray tracing passes the ray through the center of the pixel for
single ray sampling, or through uniformly spaced points within the pixel
for multiple ray sampling. To jitter a square set of regularly spaced
sample points the following equations may be used:

wxs =

xx

n
,

wys =

wy

n

x

s = xc −
wx

2
 + wxs mod s − 1, n() + wxsy j ,

y

s = yc −
wy

2
 + wys floor

s − 1
n

 



 + wysy j ,

where

s = the sample number for the pixel,
n = the number of samples per pixel (1 to n).

GRAPHICS GEMS I Edited by ANDREW S. GLASSNER 74

II.3 EFFICIENT GENERATION OF SAMPLING JITTER USING LOOK-UP TABLES
A final value for the pixel may be found by computing the average of the
samples for the pixel (that is, applying a box filter). Other filter functions
may be used by weighting the samples by the shape of the filter function.

ConclusionsConclusionsConclusionsConclusionsConclusions
Presented is a jittering method that is not only computationally efficient
(shown in Tables 1 and 2), but that also produces image-sampling results
comparable to random jittering (shown graphically in Figures 1, 2, and 4,
and analytically in Table 3). The method can also generate reproducible
jitter that is a function of pixel location and sample number. To aid in
providing insight into the construction of a jitter function, two jittering
methods using look-up tables are presented for comparison. Function 1
exhibits a good sampling pattern with a Poisson distribution; function 2,
on the other hand, has a less desirable sampling pattern with some degree
of spatial regularity.

See also Ray Tracing (383); Scan Conversion Summary (75)

See Appendix 2 for C Implementation (660)

75GRAPHICS GEMS I Edited by ANDREW S. GLASSNER 75

I II II II II I
SSSSSCAN CONVERSIONCAN CONVERSIONCAN CONVERSIONCAN CONVERSIONCAN CONVERSIONSSSSSUMMARYUMMARYUMMARYUMMARYUMMARY

Scan conversion is the general technique of rendering a piece of
2D geometry into a discrete mesh. Typically in graphics we use
scan conversion to render polygons, lines, alphanumeric char-
acters, and other such image elements into a rectangular grid.
Usually this grid is either a frame buffer or a piece of standard
computer memory, though various other approaches are possi-
ble. (Imagine a Logo turtle carrying cans of paint, trailing paint
behind it as it crawls.)

The next four Gems demonstrate some different ways to
scan-convert polygons. They show some different approaches to
trading off speed, simplicity, efficiency, support of anti-aliasing,
and generality.

See also Anti-Aliasing Gems; Scanline Depth Gradient of a
Z-Buffered Triangle (361)

GRAPHICS GEMS I Edited by ANDREW S. GLASSNER 76

II.4 FAST ANTI-ALIASING POLYGON SCAN CONVERSIONII.4II.4II.4II.4II.4
FFFFFAST ANTI-ALIASINGAST ANTI-ALIASINGAST ANTI-ALIASINGAST ANTI-ALIASINGAST ANTI-ALIASINGPPPPPOLYGON SCANOLYGON SCANOLYGON SCANOLYGON SCANOLYGON SCANCCCCCONVERSIONONVERSIONONVERSIONONVERSIONONVERSION

Jack C. MorrisonEvergreen, Colorado

IntroductionIntroductionIntroductionIntroductionIntroduction
This algorithm scan-converts polygons into raster lines at subpixel res-
olution, providing some anti-aliasing benefits without the expense of
polygon-to-pixel clipping or brute-force subpixel scan conversion. The
resulting data may be used with depth-buffer or scanline anti-aliasing
hidden-surface methods.

BackgroundBackgroundBackgroundBackgroundBackground
One approach to reducing aliasing artifacts (for example, “jaggies”) in
computer-generated pictures is to render the image at a high resolution,
then average the resulting pixel data to a lower-resolution display. Al-
though this method requires no new algorithms, the additional memory
and execution time required to prevent aliasing effectively is high.

More sophisticated anti-aliasing hidden-surface methods, such as
Carpenter ’s A-Buffer (1984), typically require information about the
coverage of a pixel by the polygon being rendered. The usual method for
extracting this subpixel detail is to apply repeatedly a 2D clipping
algorithm to clip the original polygon to the boundaries of each pixel, and
compute the exact fraction of the pixel area covered by the polygon. This
area is then used to scale the polygon color intensity. The A-Buffer

GRAPHICS GEMS I Edited by ANDREW S. GLASSNER 77

II.4 FAST ANTI-ALIASING POLYGON SCAN CONVERSION
method also converts the clipped polygon into a bitmask for visible
surface determination within the pixel.

For smooth-shaded and textured images, a significant amount of data is
maintained at each polygon vertex, including model coordinates (for
texture computation), world coordinates and normal vector (for shading),
and display coordinates (for pixel coverage and depth-prioritizing). All
this information must be interpolated at each clipping boundary, making
the pixel-clipping method expensive. Since ultimately only a single shad-
ing result is needed at each pixel, a faster approximate method is
possible.

The Scan Conversion AlgorithmThe Scan Conversion AlgorithmThe Scan Conversion AlgorithmThe Scan Conversion AlgorithmThe Scan Conversion Algorithm
The following algorithm efficiently determines approximate pixel cover-
ages from a polygon represented by its vertex coordinates. Coverage area
and a subpixel bitmask can both be readily computed.

It is assumed that the polygon to be converted is convex, and that the
vertices are consistently ordered (for example, clockwise). For each
vertex, integer x (horizontal) and y (vertical) subpixel coordinates are
computed from transformed floating point image coordinates. In fact,
only the y-coordinates need be stored for each vertex; x-coordinates are
referenced only once and can therefore be computed on the fly. X
resolution can be increased at no cost, up to the number of bits available
for an integer. Increasing y resolution requires two integers and a small
time increase per subpixel y-coordinate. Powers of two are always
convenient, and it seems wise to keep the two resolutions on the same
order of magnitude. For clarity, the pseudo-code assumes a subpixel
resolution of eight times the final rendering resolution.

In this algorithm, x and y refer to subpixel coordinates, while pixel
and scanline refer to their corresponding low-resolution counterparts.
Both refer to the display coordinate system (see Fig. 1). Polygon x and y
coordinates are interpolated at subpixel resolution, but all other vertex
information is interpolated only at display pixel resolution. To compute
pixel coverage, only the left and right x-coordinates of the polygon at
each y-coordinate within the current scanline need to be saved.

GRAPHICS GEMS I Edited by ANDREW S. GLASSNER 78

II.4 FAST ANTI-ALIASING POLYGON SCAN CONVERSION

Vertex: record [polygon vertex information
model, world,
normal, image: vector; geometric information
x, y: integer; subpixel display coordinates

];

Vleft, VnextLeft: Vertex; limits of current left polygon edge
Vright, VnextRight: Vertex; limits of current right polygon edge
VscanLeft, VscanRight: Vertex; interpolated vertices at scanline

subpixel x-coordinates of polygon within current scanline
xLeft, xRight: array [0..7] of integer;

Figure 1. Subpixel display coordinates.

GRAPHICS GEMS I Edited by ANDREW S. GLASSNER 79

II.4 FAST ANTI-ALIASING POLYGON SCAN CONVERSION

Scan convert one polygon. For each scanline, build xLeft[] and xRight[]
with subpixel x edges at each of eight subpixel y’s, and interpolate other
polygon vertex information once. See Fig. 2.

begin
Vleft ← Polygon vertex V with minimum V.y;
VnextLeft ← (Vleft + 1) mod numVertex;
Vright ← Vleft;
VnextRight ← (Vright – 1) mod numVertex;

for each subpixel y covered by polygon
for y ← Vleft.y by 1 do

update edge data if reached next vertex
if y = VnextLeft.y

then begin
Vleft ← VnextLeft;
VnextLeft ← (Vleft + 1) mod numVertex;
end;

if y = VnextRight.y
then begin

Vright ← VnextRight;
VnextRight ← (Vright – 1) mod numVertex;
end;

Figure 2. Polygon vertices during scan conversion.

GRAPHICS GEMS I Edited by ANDREW S. GLASSNER 80

II.4 FAST ANTI-ALIASING POLYGON SCAN CONVERSION
if y > VnextLeft.y or y > VnextRight.y

then begin last scanline
call renderScanline(Vleft, Vright,

y
8);

return;
end;

interpolate subpixel x endpoints at this subpixel y
xLeft [y mod 8] ← lerp(Vleft.x, VnextLeft.x at y);
xRight[y mod 8] ← lerp(Vright.x, VnextRight.x at y);
if (y mod 8) = 7

then begin end of scanline
VscanLeft ← lerp(Vleft, VnextLeft at y);
VscanRight ← lerp(Vright, VnextRight at y);
call renderScanline(VscanLeft, VscanRight,

y
8);

end;
endloop;

end;

Render one scanline of the polygon from the subpixel information. The
shading and renderPixel procedures are beyond the scope of this Gem!

renderScanline: procedure (VscanLeft, VscanRight, scanLine);
begin

for each pixel in scanline overlapped by polygon

for pixel

←

min xLeft()
8

 to

max xRight() + 7

8
 do

area ← computePixelCoverage(pixel);
Vpixel ← lerp(VscanLeft, VscanRight at pixel);

color ←

area
256 ∗ shading(Vpixel);

mask ← computePixelMask(pixel); (if needed)
insert anti-aliased pixel data into hidden surface routine
renderPixel(scanLine, pixel, color, mask);
endloop;

end;
Compute fraction of the pixel (actually, number of subpixels) covered by

GRAPHICS GEMS I Edited by ANDREW S. GLASSNER 81

II.4 FAST ANTI-ALIASING POLYGON SCAN CONVERSION
the polygon. See Fig. 3.

computePixelCoverage: procedure (pixel);
begin

area ← 0;
pixelLeft ← pixel ∗ 8; subpixel edges of pixel
pixelRight ← pixelLeft + 7;
for y ← 0 to 7 do

partialArea ← min(xRight[y], pixelRight) –
max(xLeft[y], pixelLeft) + 1;

if partialArea > 0 polygon overlaps this pixel
then area ← area + partialArea;

endloop;
return area;
end;

Figure 3. Example pixel coverage computation.

GRAPHICS GEMS I Edited by ANDREW S. GLASSNER 82

II.4 FAST ANTI-ALIASING POLYGON SCAN CONVERSION
Compute subpixel bitmask indicating which parts of the pixel are covered by
the polygon. Look-up tables speed up mask computation when the polygon
edge occurs inside the pixel. See Fig. 3.

computePixelMask: procedure (pixel);

leftMaskTable: array[0..7] of char ←
[0xFF, 0x7F, 0x3F, 0x1F, 0x0F, 0x07, 0x03, 0x01];

rightMaskTable: array[0..7] of char ←
[0x80, 0xC0, 0xE0, 0xF0, 0xF8, 0xFC, 0xFE, 0xFF];

begin
pixelLeft ← pixel ∗ 8; subpixel edges of pixel
pixelRight ← pixelLeft + 7;
for y ← 0 to 7 do

if xLeft[y] < pixelLeft
then leftMask ← 0xFF;

else if xLeft[y] > pixelRight
then leftMask ← 0;

else left edge of polygon is inside pixel
leftMask ← leftMaskTable[xLeft[y] – pixelLeft];

if xRight[y] > pixelRight
then rightMask ← 0xFF;

else if xRight[y] < pixelLeft
then rightMask ← 0;

else right edge of polygon is inside pixel
rightMask ← rightMaskTable[xRight[y] – pixelLeft];

mask[y] ← leftMask bit-and rightMask;
endloop;

return mask;
end;

Implementation NotesImplementation NotesImplementation NotesImplementation NotesImplementation Notes
Care must be taken at the first and last scanline of a polygon, where some
y-coordinates may not be covered. Setting the uncovered xLeft[] and
xRight[] values to –1 is sufficient, making sure renderScanline ignores
such edges.

GRAPHICS GEMS I Edited by ANDREW S. GLASSNER 83

II.4 FAST ANTI-ALIASING POLYGON SCAN CONVERSION
Pixel area (and bitmask) computation can be readily optimized to make

use of pixel-to-pixel coherence, since most pixels within a scanline are
completely covered by the polygon. One approach is to determine the
maximum xLeft[] and minimum xRight[], for all subpixel y’s, at the
beginning of renderScanline. ComputePixelCoverage can then imme-
diately return maximum area for pixels between these limits.

If the pixel bitmask is to be computed at coarser resolution than the
area, the left and right limits should be averaged over each group of
y-coordinates to compute partial bitmasks. The lookup tables can ac-
count for reducing x resolution automatically. If both bitmasks and areas
are desired, they can be computed together to reduce overhead, or the
area determined from the bitmask. (See Carpenter's A-Buffer article for
tips on computing area from a bitmask.)

As described, the scan conversion algorithm is suitable for depth-buffer
hidden-surface methods, where one polygon at a time is rendered. For
scanline methods, where one scanline at a time is rendered (for all
polygons), standard interpolation or clipping procedures can be used to
extract polygon vertex data at the scanline limits, with the above algo-
rithm used within the scanline to compute subpixel detail.

For an RGBaZ-style hidden-surface method, such as the one described
by Duff (1985), it may be useful to interpolate Z-coordinates (depth) at
high resolution also, so that depth at each corner of the pixel can be
determined more accurately.

For related information see Catmull (1978), Crow (1977), and Suther-
land (1974).

See Appendix 2 for C Implementation (662)

84

II.5 GENERIC CONVEX POLYGON SCAN CONVERSION AND CLIPPING

GRAPHICS GEMS I Edited by ANDREW S. GLASSNER 84

II.5II.5II.5II.5II.5GGGGGENERICENERICENERICENERICENERICCCCCCONVEX POLYGON SCANONVEX POLYGON SCANONVEX POLYGON SCANONVEX POLYGON SCANONVEX POLYGON SCANCCCCCONVERSION AND CLIPPINGONVERSION AND CLIPPINGONVERSION AND CLIPPINGONVERSION AND CLIPPINGONVERSION AND CLIPPING
Paul S. Heckbert University of Ca!iforniaBerkeley, California

When doing faceted shading, Gouraud shading, Phong shading, or texture
mapping in a painter ’s or z-buffer hidden-surface algorithm, typically a
small set of floating point attributes need to be interpolated across a
polygon. For example, when doing z-buffered color Gouraud shading, the
four attributes r, g, b, and z are used: they are initialized at each
polygon vertex and interpolated at each pixel within the polygon. If linear
interpolation is used for all attributes, then the code for interpolating
each attribute is very similar. Maintaining separate source code for scan
converting each different attribute set becomes very tedious.

I see three general techniques for reducing the code redundancy: (1)
use a vertex structure with dynamic size and layout containing only the
attribute set of interest; (2) use a static vertex structure that includes all
attributes, and interpolate everything; and (3) use a static vertex structure
but interpolate only the attributes of interest. Alternative (1) is the most
space-efficient, but attribute offsets must be computed at run-time, so it is
slow. Method (2) reduces access time because the fixed structure offsets
allow compile-time optimization, but it is less efficient overall because
unused attributes would be allocated and interpolated. Method (3) is the
fastest, as offsets are fixed at compile-time, and only relevant attributes
are interpolated. It uses more storage than the first method, however.

The following is C code that I have evolved over the years to perform
scan conversion and clipping of generic convex, planar polygons. Use of
method (3) allows a variety of attribute sets to be handled efficiently
without changing the scan converter or clipper code, as those routines
are device-independent and ignorant of the semantics of the attributes

85

II.5 GENERIC CONVEX POLYGON SCAN CONVERSION AND CLIPPING

GRAPHICS GEMS I Edited by ANDREW S. GLASSNER 85

being interpolated. The scan converter is based on an algorithm by
Frank Crow at NYIT, and the clipper is based on an implementation of
Sutherland-Hodgman by Ed Catmull and Alvy Ray Smith (Sutherland and
Hodgman, 1974). I rewrote and evolved the code several times at Pacific
Data Images, Pixar, and UC Berkeley. I have been careful with roundoff;
consequently, polygons sharing an edge abut perfectly with no gaps or
overlap. Lance Williams suggested interpolation of generic attributes, and
interpolation masks were inspired by Whitted and Weimer (1982). Henry
Moreton suggested the texture coordinate interpolation trick involving
division by sw.

The general method for using these routines is as follows: load data
into the vertices, set the polygon’s mask to indicate which attributes are
in use, call the clipper, modify the vertex attributes (typically a homoge-
neous divide), set the polygon’s mask to indicate which attributes are
still in use, call the scan converter, supplying a callback procedure that is
called by poly_scan at each pixel, and in the pixel routine, unload data
from the interpolated point, using it to draw into a raster image.

There are four files of generic code,

poly.h Polygon data structure.
poly.c Utility subroutines to print polygons.
poly_scan.c Scan convert a convex, planar polygon by uniform

sampling at pixel centers.
poly_clip.c Clip a convex, planar polygon to a screen space

parallelepiped,

and two files giving simple examples of their use:

scantest.c Gouraud shading with z-buffer using poly_scan.
fancytest.c Phong shading and texture mapping using poly_clip

and poly scan.

You can change anything in the Poly_vert structure definition except the
screen space position fields sx, sy, sz, and sw, which are required by

86

II.5 GENERIC CONVEX POLYGON SCAN CONVERSION AND CLIPPING

GRAPHICS GEMS I Edited by ANDREW S. GLASSNER 86

poly_scan and poly_clip. All fields of Poly_vert should be doubles.
Note that incorrect settings of the interpolation mask can result in
meaningless attribute values or wasted compute time. For C environ-
ments that don’t have the bcopy routine, use #define bcopy (fr om, to,
nbytes) memcpy(to, from, nbytes).

Note that linear interpolation is not correct for all attributes; it is
appropriate only when the mapping between screen space x, y and the
attribute is affine (linear plus a constant). Incidentally, linear interpolation
for Gouraud and Phong shading on polygons with more than three sides
gives results that are, in general, not rotation-invariant, so in this sense
linear interpolation is not “correct” for those purposes. The errors
caused by linear-interpolated Gouraud and Phong shading are invisible in
most images, however, unlike the errors of linear-interpolated perspective
texture coordinates, which typically cause a distracting “rubber sheet”
effect. A discussion of affine and projective mappings and their efficient
computation is given in Heckbert (1989).

See also Concave Polygon Scan Conversion (87)

See Appendix 2 for C Implementation (667)

87

II.6 CONCAVE POLYGON SCAN CONVERSION

GRAPHICS GEMS I Edited by ANDREW S. GLASSNER 87

II.6II.6II.6II.6II.6
CCCCCONCAVE POLYGONONCAVE POLYGONONCAVE POLYGONONCAVE POLYGONONCAVE POLYGONSCAN CONVERSIONSCAN CONVERSIONSCAN CONVERSIONSCAN CONVERSIONSCAN CONVERSION

Paul S. HeckbertUniversity of CaliforniaBerkeley, California

Scan conversion of concave polygons or nonsimple polygons is more
complex than scan conversion of convex polygons because each scan line
can intersect the polygon in more than one interval or span of pixels. (A
polygon is simple if it does not intersect itself.) When scan-converting
concave polygons one must keep track of a variable-length active edge
list of polygon edges intersecting the current scan line. This is not as
difficult as it may seem. Many published algorithms for concave (or
convex) polygon scan conversion employ voluminous code to handle the
special cases of horizontal edges. In fact, such cases do not require
special treatment if care is taken in the inequalities of the conditionals.
The program resulting from this approach, listed below, is surprisingly
simple. It is very similar to that of Rogers (1985), p. 76.

This program assumes the polygon is described by a single cyclic loop
of points. To describe polygons with holes using this data structure,
construct “bridges” joining the holes to the outer vertices. For example,
if the outer polygon has vertices p[i] for 0 ≤ i < np, and the inner
polygon has vertices q[i] for 0 ≤ i < nq, construct a single polygon
cons is t ing ␣ ␣ o f ␣ ␣ the ␣ ␣ ver t i ces : ␣ ␣ ␣ p [0] . . .p [np ␣ – ␣ 1] , ␣ ␣ p [0] , ␣ q [0] . . . q [nq ␣ – ␣ l] ,
q[0]. The two new bridge edges connect vertices p[0] and q[0] in both
directions.

Depending on the sorting algorithm used and the shape of the polygon,
the complexity of this algorithm will be between O(n) and O(n2).

88

II.6 CONCAVE POLYGON SCAN CONVERSION

GRAPHICS GEMS I Edited by ANDREW S. GLASSNER 88

Figure 1. Output for a “random” 25-sided polygon.

The program follows:

concave: scan convert n-sided concave nonsimple polygon with vertices at
(pt[i].x, pt[i].y) for i in [0..n␣– ␣1] within the window win by calling
drawproc for each visible span of pixels.
Polygon can be clockwise or counterclockwise.
Algorithm does uniform point sampling at pixel centers.
Inside–outside test done by Jordan’s rule: a point is considered inside if an
emanating ray intersects the polygon an odd number of times.
drawproc should fill in pixels from xl to xr inclusiue on scanline y, e.g:

procedure drawproc(y, xl, xr: int);
x: int;
begin

for x ← xl to xr do
pixel_write(x, y, pixelvalue);
endloop;

endproc;

89

II.6 CONCAVE POLYGON SCAN CONVERSION

GRAPHICS GEMS I Edited by ANDREW S. GLASSNER 89

Note: lines enclosed in angle brackets␣’<’, ‘>’ should be replaced with the
code described.

Point: type ← record [x, y: real]; 2D point

Window: type ← record [xmin, ymin, xmax, ymax: int]: inclusive window

Spanproc: type ← procedure(y, xl, xr: int);

procedure concave(
n: int; number of vertices
pt: array [0..n – 1] of Point; vertices of polygon
win: Window; screen clipping window
drawproc: Spanproc; called for each span of pixels
);

Edge: type ← record [a polygon edge
x: real; x-coordinate of edge’s intersection with

 current scanline
dx: real; change in x with respect to y
i: int; edge number: edge i goes from pt [i] to

 pt[i + 1]
];

nact: int; number of active edges
active: array [0..n – 1] of Edge; active edge list: edges crossing scanline y
ind: array [0..n – 1] of int; list of vertex indices
k, y0, yl, y, i, j, xl, xr: int;
begin procedure concave

create y-sorted array of indices ind [k] into vertex list
for k ← 0 to n – 1 do

ind[k] ← k;
endloop;

<sort ind by pt[ind[k]].y>

nact ← 0; start with empty active list
k ← 0; ind[k] is next vertex to process
y0 ← max(win.ymin, ceiling(pt[ind[0]].y – .5)); ymin of polygon
y1 ← min(win.ymax, floor(pt[ind[n–l]].y – .5)); ymax of polygon

90

II.6 CONCAVE POLYGON SCAN CONVERSION

GRAPHICS GEMS I Edited by ANDREW S. GLASSNER 90

for y ← y0 to y1 do step through scanlines
scanline y is at y + .5 in continuous coordinates

check vertices between previous scanline and current one, if any
while k < n and pt[ind[k]].y ≤ y + .5 do

invariant: y – .5 < pt[i].y ≤ y + .5
i ← ind[k];
insert or delete edges before and after vertex i (i – 1 to i, and
i to i + 1) from active list if they cross scanline y

j ← if i > 0 then i – 1 else n – 1; vertex previous to i
if pt[j].y ≤ y – .5 then old edge, remove from active list

delete(j);
else if pt[j].y > y + .5 then new edge, add to active list

insert(j, y);

j ← if i < n ␣– 1 then i + 1 else 0; vertex next after i
if pt[j].y ≤ y ␣– .5 then old edge, remove from active list

delete(i);
else if pt[j].y > y + .5 then new edge, add to active list

insert(i, y);
k ← k␣+ 1;
endloop;

〈sort active edge list by active [j].x〉

draw horizontal segments for scanline y
for j ← 0 to nact – 1 step 2 do

span between j and j + 1 is inside, span from j + 1 to j + 2 is outside
x1 ← ceiling(active[j].x – .5); left end of span
if x1 < win.xmin then xl ← win.xmin;
xr ← floor(active[j + 1].x – .5); right end of span
if xr > win.xmax then xr ← win.xmax;
if x1 ≤ xr then

drawproc(y, xl, xr); draw pixels in span
increment edge coords
active[j].x ← active[j].x + active[j].dx;
active[j + 1].x ← active[j + 1].x + active[j + 1].dx;
endloop;

endloop; y loop

91

II.6 CONCAVE POLYGON SCAN CONVERSION

GRAPHICS GEMS I Edited by ANDREW S. GLASSNER 91

procedure delete(i: int); remove edge i from active list
j, k: int;
begin

for j ← 0 to nact – 1 do
if active[j].i = i then begin edge found

nact ← nact – 1;
for k ← j to nact – 1 do shift remainder of array down

active[k].x ← active[k + 1].x;
active[k].dx ← active[k + 1].dx;
active[k].i ← active[k + 1].i;
endloop;

return;
end;

endloop;

edge not found; this can happen at win.ymin
endproc delete;

procedure insert(i, y: int); append edge i to end of
active list

j, p, q: int;
begin

j ← if i<n – 1 then i+1 else 0;
if pt[i].y < pt[j].y then begin p ← i; q ← j; end;
else begin p ← j; q ← i; end;
initialize x position at intersection of edge with scanline y
active[nact].dx ← (pt[q].x – pt[p].x)/(pt[q].y – pt[p].y);
active[nact].x ← active[nact].dx*(y + .5 – pt[p].y) + pt[p].x;
active[nact].i ← i;
nact ← nact + 1;
endproc insert;

endproc concave;

 See also Generic Convex Polygon Scan Conversion and Clip-
 ping (84)

 See Appendix 2 for C Implementation (681)

92

II.7 FAST SCAN CONVERSION OF ARBITRARY POLYGONS

GRAPHICS GEMS I Edited by ANDREW S. GLASSNER 92

II.7II.7II.7II.7II.7FFFFFAST SCANAST SCANAST SCANAST SCANAST SCANCCCCCONVERSION OFONVERSION OFONVERSION OFONVERSION OFONVERSION OFAAAAARBITRARY POLYGONSRBITRARY POLYGONSRBITRARY POLYGONSRBITRARY POLYGONSRBITRARY POLYGONS
Bob WallisWeitek CorporationSunnyvale, California

IntroductionIntroductionIntroductionIntroductionIntroduction
Many of the traditional scan-conversion methods described in the litera-
ture are not well suited to implementation on RISC processors. A fast and
extremely simple algorithrm, which maximizes usage of machine registers
but sacrifices memory to gain speed, is described.

Keeping the Registers Ful lKeeping the Registers Ful lKeeping the Registers Ful lKeeping the Registers Ful lKeeping the Registers Ful l
In devising algorithms for implementation on RISC processors, a major
goal is minimizing the amount of load/store traffic between machine
registers an(i memory. This is particularly true in cost-sensitive platforms
employing slow external memory in which wait-state penalties are in-
curred. On CISC processors which are less register oriented, this is not
as much of a concern (or at least, there is less opportunity to do anything
about it).

Active Edge ListsActive Edge ListsActive Edge ListsActive Edge ListsActive Edge Lists
The standard scan-conversion schemes typically fill a polygonal path by
employing a data structure called an active edge list (Foley and
Van Dam, 1982). As the scan line scrolls through the y direction, the
list’s edge elements are updated by adding new line segments that have

93

II.7 FAST SCAN CONVERSION OF ARBITRARY POLYGONS

GRAPHICS GEMS I Edited by ANDREW S. GLASSNER 93

just begun straddling the active scan, and by deleting lines that no longer
straddle y. Each x element of the list structure contains the parameters
required to produce x values for that given line segment of the polygon.
By maintaining the list’s elements in x sorted order, the x spans for a
given y are produced directly.

A problem with this scheme is that it is difficult to take advantage of the
relative speed of register-to-register operations. Each element of an
active edge list corresponds to a line of a different slope with different
DDA parameters; thus, there is a great deal of load/store thrashing
involved, with a significant loss of efficiency in the normally very efficient
DDA interpolator. Furthermore, there is a fair amount of sorting involved
in setting things up.

The following is a description of an alternate method, which scan-con-
verts the line segments of the polygon one at a time so that the same DDA
coefficients may be kept in registers and used for the entire duration of
the line segment. The price to be paid is that the method uses more
memory than the active edge scheme. However, the memory require-
ments are quite modest for applications such as scan conversion of fonts,
which are typically represented as small polygons.

The X-Transition TableThe X-Transition TableThe X-Transition TableThe X-Transition TableThe X-Transition Table
The basic concept is to eliminate explicit y-sorting and active edges
altogether. A polygon is treated as just a succession of chained line
segments, and each line segment is rasterized separately as the perimeter
of the polygon is traversed. As with all scan-conversion algorithms, if a
scan line is permitted to go directly through a vertex there are messy
special cases to be dealt with, and one has to worry about half-open
intervals and other ugly details. The most expedient way to deal with this
problem is to avoid it by using a coordinate system that is much finer than
the pixel grid—for example, eight bits of binary fraction for an x or y
coordinate. On a CPU with 32 bit registers, this leaves plenty of room to
the left of the decimal point. If the least significant bit of the fraction is
always set to 1, this amounts to adding a tiny amount of additional
roundoff error, but a scan line never hits a vertex (see “Rendering Fat
Lines on a Raster Grid” in this volume).

94

II.7 FAST SCAN CONVERSION OF ARBITRARY POLYGONS

GRAPHICS GEMS I Edited by ANDREW S. GLASSNER 94

Each line segment [x1, y1] → [x2, y2] is processed separately, pro-
ducing an x value for every scan line that it straddles. This is done with
a slightly modified Bresenham DDA that supports subpixel resolution. The
x values that are produced go into a rectangular array referred to as the
transition table for the polygon. The array is high enough in the y
direction to accommodate all required scan lines for the given polygon,
and wide enough in the x direction to accommodate the maximum
possible number of line segments that can straddle a scan line. Consider
the example in Fig. 1, which has a table 8 columns wide and 11 scan lines
high. The line segments of the W polygon are scan-converted in the order
0-l, 1-2, and so on. As the DDA walks down the scan lines, each x
produced is loaded into the next available column in the yth row of the
table. The sign of y2 – y1 is also recorded in a reserved bit of the x
value.

Once the table has been completed, it is a simple matter to visit each
row, sort the x values, and produce interior spans to be filled for that
scan line. The x-sorting required from one row of the map to the next
row is highly coherent, making it advantageous to use the sort permuta-
tion required on the previous row as an initial guess on how to x-sort the
current row. A very general way to determine the interior regions of the
polygon is to use the signs of y2–y1 to track the winding number
transitions (Newell and Sequin, 1980) at each x intersection (see Fig. 2).

The winding number starts at zero outside the polygon and is incre-
mented ± 1 depending on whether the line segment being crossed is
rising or falling. Horizontal lines are not encountered because scans never
hit vertices. In the example above, the winding number rises to 3 in the

Figure 1.

95

II.7 FAST SCAN CONVERSION OF ARBITRARY POLYGONS

GRAPHICS GEMS I Edited by ANDREW S. GLASSNER 95

innermost loop. If the sense of the polygon had been counterclockwise,
the winding numbers would have been negative but nonzero in both
cases. The shaded areas in the figure illustrate the standard even/odd
parity rule, which declares a span to be interior whenever the least
significant bit of the winding number is 1. An alternate definition, suitable
for self-intersecting polygons, is to declare any span with a nonzero
winding number as interior.

Y Extrema and Memory RequirementsY Extrema and Memory RequirementsY Extrema and Memory RequirementsY Extrema and Memory RequirementsY Extrema and Memory Requirements
One issue was glossed over earlier: determining how many columns
should be allocated for the transition table. This should be the worst-case
number of x transitions possible for any scan line (maximum number of

Figure 2.

96

II.7 FAST SCAN CONVERSION OF ARBITRARY POLYGONS

GRAPHICS GEMS I Edited by ANDREW S. GLASSNER 96

active edges). This can be easily determined by counting the number of
times that the polarity of y2 – y1 changes as we traverse the polygon.
This count is easily obtained at the same time as the polygon’s bounding
box is calculated. Each of the points where the slope of y changes is a y
extrema. These are indicated for X’s in Fig. 2. It has six extrema, and
thus has a maximum of six x transitions possible. The W polygon in Fig.
1 has eight extrema, so its transition table needs eight columns.

To be able to scan-convert polygons of arbitrary size and complexity, it
is necessary that the algorithm be able to break polygons that are too big
for the transition table into horizontal swaths, which are scan-converted
separately. The amount of memory available for the table should be large
enough so that most polygons can be handled without resorting to
stripping.

Intersecting PolygonsIntersecting PolygonsIntersecting PolygonsIntersecting PolygonsIntersecting Polygons
A simple modification of the previous algorithm permits it to determine
the intersection of two or more polygons. For example, the intersection
of a W and E is shown below. The trick is to feed both polygons to the
scan converter as if they were one single polygon, but to keep their
winding numbers separate. For a given scan line, the x regions within
which both winding numbers are nonzero are interior to both polygons.
The intersection corresponds to the Boolean AND of both winding num-
bers, but any other logical function could be used.

Figure 3.

97

II.7 FAST SCAN CONVERSION OF ARBITRARY POLYGONS

GRAPHICS GEMS I Edited by ANDREW S. GLASSNER 97

Figure 4.

Convex DecompositionsConvex DecompositionsConvex DecompositionsConvex DecompositionsConvex Decompositions
Some applications require that arbitrary polygons be fractured into con-
vex figures, such as trapezoids. By adding a little more data to the x
elements stored in the transition table, the algorithm can serve as a front
end for a convex decomposer. It is necessary that the x elements
“remember” which line segments they came from, so that segments with
matching left and right sides from successive scan lines can be merged
and grown into convex polygons. Figure 4 shows a convex decomposition
of the E/W intersection.

98GRAPHICS GEMS I Edited by ANDREW S. GLASSNER 98

II LINE-DRAWING SUMMARYI II II II II I
LLLLLINE-DRAWINGINE-DRAWINGINE-DRAWINGINE-DRAWINGINE-DRAWINGSSSSSUMMARYUMMARYUMMARYUMMARYUMMARY

Vector graphics remains an important application area of com-
puter graphics. Although shaded images have much to offer,
lines remain a valuable primitive for many types of images. Fast
and efficient line-drawing is not a simple task, particularly if you
want to avoid aliasing artifacts.

The basic line-drawing algorithm is Bresenham’s algorithm,
developed originally for digital plotters. The first three of the
following algorithms present the basic Bresenham technique
and then extend it for increased speed, or for inclusion of
anti-aliasing information. The next two Gems discuss only lines
thicker than one pixel, showing how to put bevels on the
corners formed by two flat line ends, and how efficiently to
render fat lines in a rectangular grid.

See also Anti-Aliasing Gems; Fast Spline Drawing (585); Tuto-
rial on Forward Differencing (594)

99

 II.8 DIGITAL LINE DRAWING

GRAPHICS GEMS I Edited by ANDREW S. GLASSNER 99

II.8II.8II.8II.8II.8
DDDDDIGITAL LINE DRAWINGIGITAL LINE DRAWINGIGITAL LINE DRAWINGIGITAL LINE DRAWINGIGITAL LINE DRAWING

Paul S. HeckbertUniversity of CaliforniaBerkeley, California

A digital line-drawing algorithm is one of the most basic tools in a
computer graphicist’s toolbox. The following is skeleton code for
Bresenham’s algorithm (1965). The code as listed calls a user-supplied
procedure at each pixel, but for efficiency you may prefer to do
inline/macro substitution for the pixel procedure.

digline: draw digital line from (x1, y1)␣ to(x2,y2),
calling a user-supplied procedure at each pixel.
Does no clipping. Uses Bresenham’s algorithm.

Pixelproc: type ← procedure(x, y: int);

procedure digline(x1, y1, x2, y2: int; dotproc: Pixelproc);
d, x, y, ax, ay, sx, sy, dx, dy: int;
begin

dx ← x2 – x1; ax ← abs(dx)*2; sx ← sgn(dx);
dy ← y2 – y1; ay ← abs(dy)*2; sy ← sgn(dy);
 x ← x1;
 y ← y1;

100

 II.8 DIGITAL LINE DRAWING

GRAPHICS GEMS I Edited by ANDREW S. GLASSNER 100

if ax > ay then begin x dominant
d ← ay – ax/2;
while true do

dotproc(x, y);
if x = x2 then return;
if d ≥ 0 then begin

y ← y + sy;
d ← d – ax;
end;

x ← x +␣sx;
d ← d + ay;
endloop;

end;
else begin y dominant

d ← ax – ay/2;
while true do

dotproc(x, y);
if y = y2 then return;
if d ≥ 0 then begin

x ← x + sx;
d ← d – ay;
end;

y ← y + sy;
d ← d + ax;
endloop;

end;
endproc digline;

function sgn (x: int) : int;
begin return if x > 0 then 1 else –1; endfunc;

See Appendix 2 for C Implementation (685)

101GRAPHICS GEMS I Edited by ANDREW S. GLASSNER 101

II.9 SYMMETRIC DOUBLE STEP LINE ALGORITHMII.9II.9II.9II.9II.9
SSSSSYMMETRIC DOUBLE STEPYMMETRIC DOUBLE STEPYMMETRIC DOUBLE STEPYMMETRIC DOUBLE STEPYMMETRIC DOUBLE STEPLlNE LlNE LlNE LlNE LlNE ALGORITHALGORITHALGORITHALGORITHALGORITHMMMMM

Brian WyvillUniversity of CalgaryAlberta, Canada
Line DrawingLine DrawingLine DrawingLine DrawingLine Drawing
Drawing straight lines on a raster device, such as an incremental graph
plotter or frame store is an old problem. Jack Bresenham (1965) pro-
duced a simple and efficient algorithm that lent itself to hardware imple-
mentation. Bresenham’s algorithm works by keeping track of the error
between the actual line and the nearest pixel. This value is called a
discriminator. The method has to find the next pixel closest to the true
line. Once the direction of the line is determined, all the algorithm has to
do is decide between two alternative pixels at each step. To do this the
discriminator is tested to find the next pixel and then (and this is the
clever bit) incremented by a constant amount ready for the next test. This
basic algorithm was not greatly improved in over twenty years. Many
researchers became interested in line drawing, particularly the hardware
manufacturers, who relied on producing faster line drawing for compari-
son with their competitors. Today Bresenham’s algorithm is at the heart
of several fast line drawing chips.

Double Speed Bresenham’sDouble Speed Bresenham’sDouble Speed Bresenham’sDouble Speed Bresenham’sDouble Speed Bresenham’s
A few years ago one of my students, Xialon Wu, approached me with an
exciting new line drawing algorithm. At the time his English was bad, his
claims outrageous, and I was busy. Eventually Wu developed his double
step algorithm with Prof. Jon Rokne and I realized what a good idea he

102GRAPHICS GEMS I Edited by ANDREW S. GLASSNER 102

II.9 SYMMETRIC DOUBLE STEP LINE ALGORITHM

 Figure 1. Double step pixel patterns (Wu, 1987).

had had (see Wu and Rokne, 1987). Like all good ideas it is very simple:
instead of using a discriminator to choose the next pixel, Wu chooses the
next pattern of two pixels (see Fig. 1). Since there are four distinct
patterns, how does the algorithm reduce to a simple binary decision? Let
us for the moment call patterns 2 and 3 one pattern, 2(3). This could be
the case on a multilevel display since both patterns could be shown as
one with the center pixels at half intensity to achieve a degree of
anti-aliasing. It can be shown that for lines whose slope is less than 1/2
that pattern 4 does not occur; the choice is then between pattern 1 and
2(3). Similarly, for lines with slope greater than or equal to 1/2, the
choice is between pattern 2(3) and pattern 4 (pattern 1 cannot occur).
Simply by testing the slope outside the plotting loop the algorithm
reduces to a single discriminator. To distinguish between patterns 2 and 3
also turns out to be easy, requiring one more test but using the same
discriminator. In this way the algorithm does only slightly more work to
produce two pixels instead of one per step, virtually doubling the speed
of Bresenham’s original. (A similar, but much more complex algorithm
also exists for quadruple step patterns (Bao and Rokne, 1990).

Using SymmetryUsing SymmetryUsing SymmetryUsing SymmetryUsing Symmetry
So impressed was I with this breakthrough that I coded the algorithm and
added a small change of my own. Since lines are symmetric about the
center, it makes sense to use this symmetry to plot from both ends

103GRAPHICS GEMS I Edited by ANDREW S. GLASSNER 103

II.9 SYMMETRIC DOUBLE STEP LINE ALGORITHM
symwuline(a1, b1, a2, b2) int a1, b1, a2, b2;
drawline from a1, b1 to a2, b2
The algorithm is described for slopes between 0 and 1/2
The C version given later is generalized to all quadrants
begin
dx ← a2–a1; This may be generalized to
dy ← b2–b1; axis of greatest movement

xend ← (dx–1) / 4;
pixelsLeft ← (dx–1) mod 4;
incr2 ← 4*dy–2*dx;
plot first two points
setpixel(a1, b1);
setpixel(a2, b2);
c ← 2*dy;
incrl ← 2*c;
D ← incrl–dx;
plotting loop
for i:int ← 0, i < xend, i ← i + 1 do

a1 ← a1 + 1;
a2 ← a2–1;
if (D < 0) then

begin
 drawPattern1Forwards;
 drawPattern1Backwards;
 D = D + incr1;
 end;
else begin
 if (D < c) then

 begin
pattern2Forwards;
pattern2Backwards;
end;

else begin
pattern3Forwards;
pattern3Backwards;
end;

D = D + incr2;
end;

 endloop;
if pixelsLeft > 0 then
 begin

 drawTwoForwardPixels;
 drawTwoBackwardPixels;
 end;

end;
Figure 2. Pseudo-code for symmetrical double step line algorithm.

104GRAPHICS GEMS I Edited by ANDREW S. GLASSNER 104

II.9 SYMMETRIC DOUBLE STEP LINE ALGORITHM
simultaneously using half the number of steps. Wu was not pleased to see
that I had doubled the speed of his algorithm overnight! It turns out that
using the symmetry was not a new idea; probably Bresenham himself
thought of it originally. The symmetric double step algorithm is between
three and four times faster than the original Bresenham’s (see Rokne
et al., 1990). The hardware manufacturers were not particularly inter-
ested in Wu’s idea. The bottleneck (currently) in line drawing is not
choosing the pixels, but getting the information to the display, the pixel
write operations. Wu went on to develop a similar idea for drawing conics
and Jon Rokne and Paul Bao continued with the pattern idea to produce
a quadruple step version of the line algorithm. Pseudo code for lines with
slopes from 0 to 1/2 is set out in Fig. 2. C code for lines of any slope is
given in the appendix.

See Appendix 2 for C Implementation (686)

105

 II.10 RENDERING ANTI-ALIASED LINES

GRAPHICS GEMS I Edited by ANDREW S. GLASSNER 105

II.10II.10II.10II.10II.10
RRRRRENDERINGENDERINGENDERINGENDERINGENDERINGAAAAANTI-ALIASED LINESNTI-ALIASED LINESNTI-ALIASED LINESNTI-ALIASED LINESNTI-ALIASED LINES

Kelvin Thompson Nth Graphics, Ltd.Austin, Texas

ProblemProblemProblemProblemProblem
Render an anti-aliased line segment.

Solution ISolution ISolution ISolution ISolution I
Model the line segment as having a finite thickness and set each pixel’s
intensity according to how much it overlaps the line. We accomplish this
with an extension to the traditional Bresenham line algorithm
(Bresenham,1965). With each iteration, the usual algorithm moves by one
pixel along a major axis and by zero or one pixel along a minor axis (for
example, if the line’s slope is in the range [–1, 1], then the major axis is
X and the minor is Y). To expand the algorithm we add two loops—called
orthogonal loops—in sequence inside the traditional loop. Immediately
after the traditional algorithm chooses the central pixel of the line, the
first orthogonal loop examines adjacent pixels in the positive direction
along the minor axis, then the second orthogonal loop examines adjacent
pixels in the negative direction.

At each pixel (including the central pixel) the algorithm updates a
variable that contains the distance between the center of the pixel and the
middle of the thick line; this distance variable can be used to calculate
(usually via a look-up table) how much the pixel overlaps the thick line.

106

 II.10 RENDERING ANTI-ALIASED LINES

GRAPHICS GEMS I Edited by ANDREW S. GLASSNER 106

Also see Gupta and Sproull (1981) for a more detailed description of the
algorithm; “Vertical Distance from a Point to a Line” (in this volume) for
the mapping between the “vertical” and true distances between a point at
a line; “Area of Intersection: Circle and a Thick Line” (in this volume) for
the overlap calculation; and subroutine Anti_Line for example code.

Solution 2Solution 2Solution 2Solution 2Solution 2
Render several slightly offset lines using the traditional Bresenham line
algorithm, but use alpha blending with progressively smaller coverage
values (for example, 1,

1
2
,

1
3
,

1
4
, , . . .; see “Alpha Blending” in this volume).

The lines should all be parallel with slightly different starting positions.
You can change the subpixel starting position in Bresenham’s line algo-
rithm by adding values in the range [0, 2 ⋅ dx] to the initial decision
variable.

See Appendix 2 for C Implementation (690)

Figure 1.

107

II.11 AN ALGORITHM FOR FILLING IN 2D WIDE LINE JOINTS

GRAPHICS GEMS I Edited by ANDREW S. GLASSNER 107

II.11II.11II.11II.11II.11AAAAAN ALGORITHM FORN ALGORITHM FORN ALGORITHM FORN ALGORITHM FORN ALGORITHM FORFILLING IN 2D WIDEFILLING IN 2D WIDEFILLING IN 2D WIDEFILLING IN 2D WIDEFILLING IN 2D WIDELINE BEVEL JOINTSLINE BEVEL JOINTSLINE BEVEL JOINTSLINE BEVEL JOINTSLINE BEVEL JOINTS
Jack RitterVersatec Inc.Santa Clara, California

Typical 2D graphics packages allow for wide lines to be joined end to
end, where their end center points are coincident. Bevelling fills in the
triangle between the outer corners. This is an arbitrary isosceles triangle.
From Fig. 1, this bevel triangle is made of the two outer points 01 and
02, and the center point C.

This algorithm is an alternative to breaking the bevel triangle into two
triangles with a horizontal line, then generating both triangles, thus doing
Bresenham walking along all three edges of the bevel triangle. This
algorithm fills in the bevel triangle area with one nonrotated right trian-
gle, and zero, one, or two orthogonal rectangles. The advantage is that
only the outer edge is walked (as part of drawing the right triangle), and
so the amount of Bresenham step calculation is reduced to about one
third. The other advantage is that it won’t leave “stiches” (holes) along
the two interior edges, where the old method might, if the drawing of the
wide line and the drawing of the triangles did not meet flush. This
algorithm may be easily implemented in integer arithmetic.

The right triangle is (01, 02, R), where the outer edge (01, 02) is its
hypotenuse, shown as a dashed line in all figures. The triangle’s two
interior legs are shown as dotted lines. Its inside 90-degree corner point
will be one of the two “opposite points” to the hypotenuse. Note in Figs.
2, 3, and 4: that one opposite point is R, and the other is depicted by X.
Between R and X, how do we choose the inside point? We pick the one
closest to c. Closeness can be determined by “Manhattan distance,”
which is the number of blocks you would walk in a city grid to get from
one point to another. Euclidian distance need not be used.

108

II.11 AN ALGORITHM FOR FILLING IN 2D WIDE LINE JOINTS

GRAPHICS GEMS I Edited by ANDREW S. GLASSNER 108

 Figure 1. General Case.

Now we have two triangles: the original bevel triangle (01, 02, C), and
the right triangle (01, 02, R). They share the outer edge. The situation can
now be broken down into one of three states, depending on the topological
relationship between these two triangles. One of the following
will be the case:

 case 1 (Fig. 2): C is inside the right triangle

 case 2 (Fig. 3): R is inside the bevel triangle

 case 3 (Fig. 4): neither point is inside the other triangle.

For case 1, all we need draw is the right triangle. For case 2, we draw the

109

II.11 AN ALGORITHM FOR FILLING IN 2D WIDE LINE JOINTS

GRAPHICS GEMS I Edited by ANDREW S. GLASSNER 109

 Figure 2. Case 1.

right triangle, plus the two rectangles whose diagonals are the two
interior edges. For case 3, we draw the right triangle, plus a rectangle
whose outer edge is the longest leg of the right triangle, and whose
opposite edge goes through C. C can be left of, right of, below, or above
this outer edge. This rectangle can be thought of as the area swept out if
we “push” the outer edge up to C.
Here is the pseudo-code for this algorithm:

01 is specified as (O1x, O1y),

02 is specified as (02x, 02y),

C is specified as (Cx, Cy),

R is specified as (Rx, Ry).

110

II.11 AN ALGORITHM FOR FILLING IN 2D WIDE LINE JOINTS

GRAPHICS GEMS I Edited by ANDREW S. GLASSNER 110

 Figure 3. Case 2.

The main routine is first, and the called routines are described
afterwards.

Input parameters are the 3 points 01, 02, & C
bevel_fill (01x, 01y, 02x, 02y, Cx, Cy)
{

First Anomoly
If all three points are collinear, the two wide lines are parallel.
This means the bevel triangle has collapsed to nothing.

if (01, 02, and C are colinear)
then
return;
end;

Second anomoly
If the bevel edge (01, 02) is horizontal or vertical
(Fig. 4 comes close to being vertical), then the right
triangle has collapsed to nothing. In this case, we simply
draw the “push” rectangle of case 3.

111

II.11 AN ALGORITHM FOR FILLING IN 2D WIDE LINE JOINTS

GRAPHICS GEMS I Edited by ANDREW S. GLASSNER 111

if ((0x1 = 0x2) or (0y1 = 0y2))
 then
 push line (01, 02) to point C.
 emit_push_rec(01, 02, C);
 return;
 end;

 set R (eg, Rx, Ry) to 1 of the 2 hypotenuse opposite points,
 whichever one is closest to C.
 The Ist point passed to manhattan_dist is C, the 2nd is a pair of
coordinates
if (manhattan_dist(C, 01x, 02y) < manhattan_dist(C, 02x, 01y))

then
begin
Rx ← 01x;
Ry ← 02y;

Figure 4. Case 3.

112

II.11 AN ALGORITHM FOR FILLING IN 2D WIDE LINE JOINTS

GRAPHICS GEMS I Edited by ANDREW S. GLASSNER 112

end;
else

begin
Rx ← 02x;
Ry ← 0ly;
end;

emit_right_tri(R, 01, 02); for all 3 cases

if (pt_in_tri(C, 01, 02, R))
then

CASE 1
C is inside the triangle (01, 02, R).
Above emitted triangle has covered the full bevel triangle.

return;
end;

if (pt_in_tri(R, 01, 02, C))
then

CASE 2
R is inside the triangle (01, 02, C).
Draw the two rectangles whose diagonals are the interior edges
(C, 01) and (C, 02).

emit_diag_rec(C, 01);
emit diag_rec(C, 02);
return
end;

else CASE 3
Neither point is inside the other’s triangle
Draw the rectangle swept by pushing an edge perpendicularly to C.
The edge to be pushed will be the longest leg of the right triangle:

if (manhattan_dist(R, 01x, 01y) > manhattan_dist(R, 02x, 02y))
then emit_push_rec (R, 01, C);
else emit_push_rec (R, 02, C);

end of bevel_fill()
Routines called from above

emitt_right_tri(P1, P2, P3)
draws the right triangle made of the three points passed, P1 is the
triangle’s inside point.

113

II.11 AN ALGORITHM FOR FILLING IN 2D WIDE LINE JOINTS

GRAPHICS GEMS I Edited by ANDREW S. GLASSNER 113

emit_diag_rec(P1, P2)
 draws the rectangle whose diagonal is (P1, P2).
emit_push_rec(P1, P2, P3)
 determines if P3 is left of, right of, above, or below the
edge (P1, P2), and draws the rectangle that would be swept out if the edge
wewere pushed directly to the point C.

pt_in_tri(P, T1, T2, T3)
 Returns TRUE if the point P is in the triangle (T1, T2, T3).
 This is done by comparing the signs of crossproducts:
 Here, sign_of() is actually the sign of the z component of the cross vector
 get winding direction of triangle:
 Let tri_wind = sign_of [(T1, T2) × (T1, T3)]
 V3Cross ((T1, T2), (T1, T3), WIND);
 tri_wind = sign_of(WIND);

 Now cross P with each side
 V3Cross ((T1, P), (T1, T3), WIND);
 sign1 ← sign_of(WIND);
 V3Cross ((T2, P), (T2, T1), WIND);
 sign2 ← sign_of(WIND);
 V3Cross((T3, P), (T3, T2), WIND);
 sign3 ← sign_of(WIND);

if (
 sign1 = tri_wind
 and
 sign2 = tri_wind
 and
 sign3 = tri_wind
)

then return(TRUE);
 else return(FALSE);
NOTE: all calls to pt_in_tri() have 01 before 02,
 for consistent winding.

114GRAPHICS GEMS I Edited by ANDREW S. GLASSNER 114

(1)

(2)

II.12II.12II.12II.12II.12RRRRRENDERINGENDERINGENDERINGENDERINGENDERINGFFFFFAT LINES ON AAT LINES ON AAT LINES ON AAT LINES ON AAT LINES ON ARRRRRASTER GRIDASTER GRIDASTER GRIDASTER GRIDASTER GRID
Bob WallisWeitek CorporationSunnyvale, California

IntroductionIntroductionIntroductionIntroductionIntroduction
If multipixel wide lines are rendered improperly, unattractive beat fre-
quencies with the raster grid may result. A practical method for produc-
ing aesthetically pleasing fat lines is presented.

The standard textbooks in computer graphics do not appear to cover
algorithms for rendering multipixel wide lines on a raster grid. On devices
such as laser printers, the standard skinny lines generated by the conven-
tional Bresenham algorithm might be too narrow to be acceptable. A good
method for generating uniform-looking wide is known, but the approach
hasn’t received the exposure that it deserves in the graphics community.
It is based on the polygonal pens used by Hobby (1985).

Hobby’s Polygonal PensHobby’s Polygonal PensHobby’s Polygonal PensHobby’s Polygonal PensHobby’s Polygonal Pens
Denoting pixel centers by the integer coordinates [x, y], we may define
the interior of a line to be those pixels that satisfy the criterion

 −d < (ax + by + c) ≤ d.

This implies a line whose width in pixel space is roughly

 w = 2d / a2 + b2 .

The problem is that the actual width can change with the phasing
(c offset) of the line in pixel space. For example, using a = −1, b = 3,

115

II.12 RENDERING FAT LINES ON A RASTER GRID

GRAPHICS GEMS I Edited by ANDREW S. GLASSNER 115

c = {0, −20.5}, d = 4.01, we obtain different-looking lines for the two
different c offsets (see Fig. 1).

Since the phasing of a line relative to the pixel grid may be random,
this behavior should be avoided if possible. What is going on can be
analyzed by examining the set of pixels “turned on” by Eq. 1 as we
change the line equation offset c. For the time being, assume that the
coefficients a, b are mutually prime, that is, they have been scaled by
1 /gcd (a,b). Using a = −1, b = 3, c = 0, d = 4, we have the situation
depicted in Fig. 2. The numbers above each pixel are the values of
ax + by + c, which will be defined to be class numbers for that pixel

Figure 1.

Figure 2.

116

II.12 RENDERING FAT LINES ON A RASTER GRID

GRAPHICS GEMS I Edited by ANDREW S. GLASSNER 116

(Hobby’s nomenclature). The diagonal lines through the pixel centers are
intended to show that all pixels having the same class number are
equivalent in a sense; each class is a diagonal row of pixels, which stack
together to form our fat line. Since gcd(a, b) = 1, pixel centers of the
same class along a given diagonal line are separated by the displacement
vector[b, ␣–a]=[3, ␣1].Each diagonal of the stack contributes a pixel
density of 1/ a2 + b2 pixels per unit length, and there are precisely d
classes, so our line width expressed in Eq. 2 is indeed the average
number of pixels per unit length.

Note that as we slide the interior region up and down by changing the
c coefficient, the fact that we are using an open and closed interval for the
permissible class numbers in Eq. 1 and an exact integer for 2d, ensures
that the number of pixels turned on in a given column doesn’t behave
discontinuously. If our a, b coefficients were irrational, the behavior
would be similar to using rational a, b coefficients, but gradually chang-
ing the c offset. Therefore, keeping the line width invariant with c is
required for uniformity.

In one dimension, the analogous question is how many integers lie in
the semiopen interval of width 2W,

–W< (x + c) ≤ W c = arbitrary phase shift, (3a)

as we slide the window left or right by changing the c phasing factor?
Since the phase factor is arbitrary, we can merge the W terms by using a
different phase factor:

 c’ = c + W different phase factor

The answer can be formulated in terms of floor functions (Graham et al.,
1989):

 n = 2W – c '  – –c '  # of integers in interval . (4)

–c’ < x ≤ 2W – c’ combine with Eq. 3a. (3b)

117

II.12 RENDERING FAT LINES ON A RASTER GRID

GRAPHICS GEMS I Edited by ANDREW S. GLASSNER 117

If 2W is an integer, it can be taken out of the floor function, reducing the
value of n to

n = 2W+ c '  – c '  = 2W invariant with phase. ␣ ␣ ␣(5)

If 2W is not an integer, it cannot be taken out of the floor functions, and
it will cause variations in n as we shift c.

In the 2D line drawing case, the counterpart of 2W is 2d. To achieve
an integer value of 2d for an arbitrary line, Hobby has proposed using
polygonal pens, defined by integer offset vectors. Relative to the center
of the polygon, the vectors need only have coefficients that are multiples
of

1
2
. The symmetry will guarantee that the value of 2d is then an integer.

For a line of a given slope, the value of d in Eq. 1 is obtained by dotting
the vector [a, b] with the integer offset vector that is closest to being
normal to the line. This is easily accomplished with some abs and max
functions. An example is shown in Fig. 3. The envelope may be consid-
ered the convolution of a line with a polygonal brush.

If we had formulated the line geometry using the obvious Euclidean
metric for line width (a perfectly circular pen instead of a polygon with
integer “diameters”), not only would the calculation of our x-spans
require square roots, but the results would actually be inferior to the
more efficient, integer based, polygonal pen approach.

Software ImplementationSoftware ImplementationSoftware ImplementationSoftware ImplementationSoftware Implementation
Writing efficient code to implement polygonal pen fat lines is quite
straightforward. In a bitmapped environment, we would like to lay down
an entire scan line (x-span) at a time as we walk up our fat line in the y
direction. This requires a slight modification (described here) to the
classic one-pixel-at-a-time, Bresenham DDA algorithm. Some of the tricks
described fall in the category of expediencies, and thus may offend
purists.

The easiest way to achieve subpixel accuracy is to use a pixel coordi-
nate system with a binary fraction. Eight bits of pixel fraction (1/256th
of a pixel) works quite well. This provides a simple way to implement
floor/ceiling functions, half-open intervals, and so on. If the lsb of the

118

II.12 RENDERING FAT LINES ON A RASTER GRID

GRAPHICS GEMS I Edited by ANDREW S. GLASSNER 118

fraction is always set, this prevents vertices from ever hitting an exact
scan line and eliminates an entire class of ugly special cases that are
usually required in scan conversion algorithms. This effectively reduces
the accuracy to 1/128th of a pixel.

The basic trick in Bresenham-type linear interpolators is to express the
dx/dy part as an (exact) integer part and a positive fractional part,

Figure 3.

119

II.12 RENDERING FAT LINES ON A RASTER GRID

GRAPHICS GEMS I Edited by ANDREW S. GLASSNER 119

Figure 4.

instead of trying to approximate it by a single number. This eliminates
accumulated roundoff error:

dx/dy = I + f where 0 ≤ f < 1 DDA increment.

That is, –7/3 = –2 – 1/3 = –3 + 2/3 (I = –3; f = 2/3). Assuming
f = p/q, we insist that

0 ≤ f < 1 fractional part

0 ≤ p < q numerator.

In the standard (one-pixel-at-a-time) algorithm, I = 0. The modified
algorithm is as follows:

P ← p0
until finished do

X ← X + I
p ← p + dp
if (p ≥ q) then begin

init frac term
keep 0 ≤ p ≤ q
integer part
bump numerator of fraction
overflow
restore legality of fraction
carry into int part

p ← p – q
X ← X + I
end

 endloop

120

II.12 RENDERING FAT LINES ON A RASTER GRID

GRAPHICS GEMS I Edited by ANDREW S. GLASSNER 120

We can simplify this with the usual trick of biasing the p term so it
overflows by crossing 0 instead of q. This usually saves one instruction in
the inner loop.

One price to be paid for the subpixel accuracy is that the initialization
of the DDA coefficients requires a divide and remainder operation. If the
pixel coordinates with their binary fractions exceed 16 bits, then the
intermediate product will require 64 bits.

Once the d term of Eq. 1 has been determined, using the polygonal
pen, the width of the x-span is fixed. Consequently, the DDA needs to
track only the left side of the line, and may determine the right side of the
x-span by knowing the width. All of this can be done with exact rational
arithmetic. Some additional code is required to deal with miter joints at
the ends of line segments.

121

II.13 TWO-DIMENSIONAL CLIPPING: A VECTOR-BASED APPROACH

GRAPHICS GEMS I Edited by ANDREW S. GLASSNER 121

II.13II.13II.13II.13II.13
TTTTTWO-DIMENSIONAL CLIPPINGWO-DIMENSIONAL CLIPPINGWO-DIMENSIONAL CLIPPINGWO-DIMENSIONAL CLIPPINGWO-DIMENSIONAL CLIPPING:::::AAAAA VECTOR-BASED APPROACH VECTOR-BASED APPROACH VECTOR-BASED APPROACH VECTOR-BASED APPROACH VECTOR-BASED APPROACH

Hans J. W. Spoelder, Fons H. UllingsVrije UniversiteitAmsterdam, The Netherlands
IntroductionIntroductionIntroductionIntroductionIntroduction
The problem we address here is the intersection of lines with polygons.
Although numerous textbooks on computer graphics give partial solu-
tions and hints (Sedgewick, 1983; Sutherland and Hodgeman, 1974;
Nicholl et al., 1987; Van Wyck, 1984; Cheng and Jiaan, 1986), it is hard
to find a complete algorithm. The algorithm described here provides a
robust solution of the problem of clipping a vector against a polygon. The
same algorithm can with minor extensions be used for applications such
as area shading and polygon filling.

Representation: Integers and VectorsRepresentation: Integers and VectorsRepresentation: Integers and VectorsRepresentation: Integers and VectorsRepresentation: Integers and Vectors
We will assume that the algorithms will be used for drawing graphics on
some kind of graphics device with a possibly high but finite resolution.
Consequently, an integer notation of the coordinates involved seems most
appropriate. Since the user coordinates will generally consist of floating
point quantities, they will have to be converted into integers. This can be
done by multiplying the floating point quantities by a well-chosen integer
constant and by rounding the result to an integer. With this, one enters
the field of fixed point arithmetic. Although precautions have to be taken
to ensure sufficient accuracy (and avoid overflows) no fundamental prob-
lems are involved. We summarize the most relevant features here.

Let (xp, yp) denote the floating point quantity to be converted and let
SCALE denote the integer used for upscaling. Note that the number of

122

II.13 TWO-DIMENSIONAL CLIPPING: A VECTOR-BASED APPROACH

GRAPHICS GEMS I Edited by ANDREW S. GLASSNER 122

“decimals” preserved is equal to log10 (SCALE). The integer representa-
tion corresponding to (xp,yp) is then given by

iyp = yp SCALE





Addition and subtraction do not pose a problem. For multiplication and
division a rescaling has to be performed. The correct way to perform the
last two operations is

 multiplication: a = (b ∗ c)/SCALE

 ␣division: a ␣ ␣ = (b ∗ SCALE)/c.

Furthermore, one should bear in mind that divisions should be avoided as
much as possible. So rather than evaluating, for instance, the inequality

(a/b) > (c/d),

one should evaluate

a∗d – c∗b > 0.

These slight arithmetic inconveniences are more than matched by the
advantages. Not only do integer operations perform faster than their
floating point counterparts on almost any machine, but above all the
calculations are now done in standard integer “infinite” precision.

Another fundamental decision is concerned with the representation. In
the algorithm described here we will use a so-called vector notation, in
which the endpoints of the line segments are specified. This implies that
the line segments themselves are not digitized. Although this complicates
somewhat the algorithm used, the advantage is that at every stage the
resolution is merely determined by the value of SCALE and not by the
resolution with which the vectors are digitized. This is the case in the final
stage of pixel-based algorithms—for example the Post-Script stencil
operation.

ixp = xp SCALE





123

II.13 TWO-DIMENSIONAL CLIPPING: A VECTOR-BASED APPROACH

GRAPHICS GEMS I Edited by ANDREW S. GLASSNER 123

Some Basic ConsiderationsSome Basic ConsiderationsSome Basic ConsiderationsSome Basic ConsiderationsSome Basic Considerations
Let Pi{ }i = i

n denote a set of n points (xi,p, yi,p). The polygon P is then
defined by the n line segments connecting two consecutive points. Note
that this implies that the contour is always closed. We will furthermore
assume that no three consecutive points of the contour are colinear; this
constraint can be easily accommodated. As a generalized notation for the
points of the jth segment of the contour, we will use

Note that we use a half-open interval for s to avoid double use of the
endpoint of a segment. Some basic algebra suffices to determine the
intersection between a line segment l and the segments of the contour
(see Appendix). The problem of clipping a line segment against a polygon
can now easily be solved. It involves two major steps: the calculation of
the intersections of the line segment l with the polygon and the determi-
nation of the status of an arbitrary point of l. By status we mean in this
context whether the point under investigation lies inside or outside the
polygon (note that the polygon is always closed). Within the set of
possible intersection of the line segment l with the contour P three
different classes must be considered:

1. intersections coinciding with begin (or end) points of the line seg-
 ments of the polygon (see Fig. 1).

Figure 1. Two illustrations of begin points of the polygon coinciding with the line
segment l.

P(s) = Pj + s(Pj + 1 – Pj), s ∈ [0, 1).

 1

124

II.13 TWO-DIMENSIONAL CLIPPING: A VECTOR-BASED APPROACH

GRAPHICS GEMS I Edited by ANDREW S. GLASSNER 124

Figure 2. Two illustrations of line segments l, which (partially) coincide with the
contour P.

2. line segment l, which coincides (partially) with line segments of the
 polygon, that is, an infinite number of intersections, (see Fig. 2).

3. intersections not belonging to 1 or 2. We will refer to these as
 ␣standard.

It will be clear from the examples given that it does not suffice to merely
calculate the possible intersection, but that additional information has to
be computed and stored. One further ingredient is needed for a complete
description of the algorithm. This is to determine the relative position of
two points with respect to a given line segment l. Again some basic
algebra suffices. Let (x1, y1) and (x2, y2) denote the endpoints of the line
segment l and let P with coordinates (xp, yp) denote the given points.
Then comparison of the slopes of line segment l with the line segment
defined by one of the endpoints of l and P will result in a quantity of
which the sign determines the relative position of P with respect to l.
This quantity S is given by:

 > 0: P lies on “one” side of l

< 0: P lies on “other” side of lAlgorithmAlgorithmAlgorithmAlgorithmAlgorithm
After these basic considerations, the complete algorithm for finding the
intersections can now be stated as follows:

1. Test if there is a simple intersection between line segment 2 and the
polygon segment PiPi+1. If not, goto 5.

= 0: P lies on lS = (x2 – x1)(yp – y1) – (y2 – y1)(xp – x1)

125

II.13 TWO-DIMENSIONAL CLIPPING: A VECTOR-BASED APPROACH

GRAPHICS GEMS I Edited by ANDREW S. GLASSNER 125

2. Test if the intersection found coincides with Pi or Pi␣ +␣l If not, add
the intersection to the list marked standard and goto 8.

3. Test if the intersection is Pi ␣– ␣1 . If so, goto 8.

4. Test if the polygon points Pi – l and Pi + 1 lie at opposite sides of l. If
so, add the intersection to the list marked standard. Goto 8.

5. Test if the line segment l coincides with the polygon segment
PiPi␣+ ␣1 . If not, goto 8

6. Test if both Pi and Pi ␣ +␣l lie on l; if not, goto 8.

7. Test if Pi␣ –␣1 and Pi ␣+␣2 lie at opposite sides of l. If so, add both
points to the intersection list marked delayed.

8. Test if more polygon segments have to be investigated. If so, goto 1.

9. Add the begin and endpoints of l to the intersection list and sort it.

10. Scan the list for two successive points marked delayed. If present,
remove the first point from the l ist and remark the second as
standard.

If the number of intersections found is two, the segment l does not
intersect the polygon (note that the endpoints of the l have been added to
the list!) Otherwise the status of an arbitrary point of l has to be
determined.

This can be done using the same algorithm albeit with a slight modifi-
cation. The idea behind this calculation is that in going from the “inside”
of the polygon to the “outside,” one will encounter an odd number of
intersections. Note that it is essential to have a point that lies outside the
polygon. This can be found easily by first calculating the smallest rectan-
gular box enclosing all the points of the polygon. Any point outside this
box will clearly lie outside the polygon. Let (x0, y0) denote such a point
and let (xl, yl) denote an arbitrary point of 1. We can then determine the
number of intersections k of this line segment with the polygon using
steps 1 to 6 of the algorithm. The interpretation of k is not completely
straightforward since it is possible that (xl, yl) lies on the polygon. In
that case (xl, yl) need not be taken into account and consequently k has

126

II.13 TWO-DIMENSIONAL CLIPPING: A VECTOR-BASED APPROACH

GRAPHICS GEMS I Edited by ANDREW S. GLASSNER 126

Figure 3. Determination of the status of point (x1, y1). The dashed line represents
the box enclosing the polygon P.

to be decreased by 1. If the resulting k is odd, (xl, yl) lies inside the
polygon; otherwise it lies outside the polygon.

Each line segment of the intersection list, defined by two successive
points of the list, can now be marked as outside or inside. If we want to
clip the line segment l against the polygon, only the segments marked
outside have to be taken into account, whereas the reverse is true for
filling the polygon. It will be clear that this scheme can be recursively
repeated for m polygons.

ImplementationImplementationImplementationImplementationImplementation
We have implemented a clipping procedure, based on this algorithm in
standard C. The polygons are stored in a linked list. Each element of this
linked list holds information about a specific polygon and contains among
other things an identification, a segment count, the coordinates of the
smallest rectangular box enclosing the polygon, some status information,
and a pointer to a circular linked list. The elements of this circular list
contain the endpoints of the segments of the polygon (see Fig. 4).

Upon entering these routines, user coordinates are transformed to
integer representation. During the definition of a contour, the contour is
also stretched to avoid colinearity of three or more points. For clipping
purposes the algorithm described in the previous section is applied
recursively to the linked list of polygons. The specific actions depend on
the status information of the polygon. When a line segment is clipped
against a specific polygon this will result in a (new) set as line segment,
which can either be plotted directly or clipped subsequently against other
polygons.

127

II.13 TWO-DIMENSIONAL CLIPPING: A VECTOR-BASED APPROACH

GRAPHICS GEMS I Edited by ANDREW S. GLASSNER 127

Figure 4. Symbolic representation of the storage structure of the polygons.

Our implementation took approximately 500 lines of C code. Among
others, the following utilities were included: definition of polygons, re-
moval of polygons, temporarily on and off switching of polygons. SCALE
was set to 1024. The efficiency of the algorithm was tested by clipping
random generated line segments I against polygons with a variable
number of segments. Using a SUN3/60 (MC68020, 20 MHz, SunOS
4.0 C-compiler) workstation we find that the average time needed to
handle one segment of the polygon is approximately 125 microseconds.
Consequently, for a rectangular-shaped polygon one can process about
2000 vectors per second.

Appendix: Polygon Stretching andAppendix: Polygon Stretching andAppendix: Polygon Stretching andAppendix: Polygon Stretching andAppendix: Polygon Stretching andIntersection CalculationIntersection CalculationIntersection CalculationIntersection CalculationIntersection Calculation
The problem of polygon stretching can be handled very easily. Consider
the three consecutive points Pi – 1, Pi, and Pi + 1. Since the two line
segments defined by these three points have one point in common (Pi),

128

II.13 TWO-DIMENSIONAL CLIPPING: A VECTOR-BASED APPROACH

GRAPHICS GEMS I Edited by ANDREW S. GLASSNER 128

one needs merely to compare the slopes of the two line segments to
test for colinearity. If the relation

(yi – yi – 1)(xi + 1 – xi) = (yi + 1 – yi)(xi – xi – 1)

holds, the three points are colinear. In that case it suffices to consider the
segment Pi – 1 Pi + l rather than the two segments Pi – 1 Pi and Pi Pi + 1.

The problem of intersecting the two line segments determined by the
points PiPi + 1, and QiQi + 1, respectively, can be solved as follows. Let

P(s) = Pj + s(Pj + 1 – Pj), s ∈ [0, 1)

Q(t) = Qj + t(Qj + 1, – Qj), t ∈ [0, 1)

define the line segments under consideration. Then the quantities a, b,
and c can be defined as

a = (xi + 1, p – xi, P)(yi, Q – yi + 1, Q) – (xi, Q – xi + l, Q)(yi + l, P – y i, P)

b = (xi, Q – xi, p)(yi, Q – yi + 1, Q) – (xi, Q – xi + 1, Q)(yi, Q – yi, P)

c = (xi + 1, p – xi, p)(yi, Q – yi, P) – (yi + 1, P – yi, P)(xi,Q – xi, P)

and s = b/a and t = c/a.
␣The following possibilities then exist:

a = 0 and b = 0: PiPi␣ +␣1 and QiQi + l coincide

a = 0 and b ≠ 0: PiPi␣ +␣l and QiQi + l are parallel

Otherwise, they intersect if s ∈ [0, 1) and t ∈ [0, 1), that is c < a and
b < a. Note that the proper way to evaluate s (and t) is

s = (b∗SCALE)/a.

See Appendix 2 for C Implementation (694)

129

II.14 PERIODIC TILINGS OF THE PLANE ON A RASTER GRID

GRAPHICS GEMS I Edited by ANDREW S. GLASSNER 129

II.14II.14II.14II.14II.14
PPPPPERIODIC TILINGS OF THEERIODIC TILINGS OF THEERIODIC TILINGS OF THEERIODIC TILINGS OF THEERIODIC TILINGS OF THEPLANE ON A RASTER GRIDPLANE ON A RASTER GRIDPLANE ON A RASTER GRIDPLANE ON A RASTER GRIDPLANE ON A RASTER GRID

Greg Lee, Mike Penk, Bob WallisWeitek CorporationSunnyvale, California

IntroductionIntroductionIntroductionIntroductionIntroduction
Certain results from group and number theory are ideally suited for
analyzing and manipulating periodic patterns on raster grids. Conversely,
periodic plane tilings may be used to illuminate some otherwise abstract
mathematical concepts in a concrete manner. A general method for
bit-blitting any periodic pattern into a raster grid will be derived.

Wallpaper GroupsWallpaper GroupsWallpaper GroupsWallpaper GroupsWallpaper Groups
Consider the periodic plane tesselation of Fig. 1. It is basically a jigsaw
puzzle composed of identical butterflies (diseased moths?) in a hexagonal
array. The standard manner in which such tilings are categorized is by
examining the types of symmetries that leave the pattern invariant.
Informally, this process can be thought of as overlaying an infinite
translucent tracing of the pattern over the original (also extended to
infinity), and examining the nature of the translations, rotations, and flips
(mirror images) of the tracing that result in an exact realignment of the
tracing with the underlying image. If an x, y coordinate of the plane is
viewed as a complex number, the operations of flipping the tracing over,
shifting it, and rotating may be modelled as compositions of complex
conjugation, addition, and multiplication.

130

II.14 PERIODIC TILINGS OF THE PLANE ON A RASTER GRID

GRAPHICS GEMS I Edited by ANDREW S. GLASSNER 130

 Figure 1.

If symmetry-preserving operations are combined together, the elements
are found to produce yet other symmetry-preserving operations. Alge-
braically, the set of manipulations obey closure, possess inverses, are
associative, and have an identity element. Therefore, they form a mathe-
matical group structure. The group properties of a periodic tiling may be
used as a means of classifying it. It turns out that there are exactly 17
types of these, and they are known as the plane crystallographic groups,
or wallpaper groups (Burn, 1985). The first organized collection of (most
of) these appears to be in the ornamental decorations used in the
Granada’s Alhambra cathedral, which dates back to the thirteenth cen-
tury.

Consider the tiling depicted in Fig. 1. The parallelograms and boxes
depict three different types of regions, each of which may be used to step
and repeat a template of the pattern to form an extended region of
wallpaper. The rectangular boxes are quite attractive from an implemen-

131

II.14 PERIODIC TILINGS OF THE PLANE ON A RASTER GRID

GRAPHICS GEMS I Edited by ANDREW S. GLASSNER 131

tation standpoint, since once we fill one box, we can repeat it over the
plane with bit-blit operations to produce the desired tiling. The next
section will describe how to do this.

The wallpaper group represented in Fig. 1 is of type p6, characterized
by sixfold and threefold rotational symmetries about two different fixed
points. The six-center is at the right wingtip, while the three-center is at
the trailing edge of the left wing. If we take the origin of the coordinate
system as one of the six-centers (the center of Fig. 1), and call the
coordinate of the three-center z3, then we can define two symmetry
operators α and β as

 α : z → ze j2π/6 sixfold rotation about z = 0

 β : z → z − z3()e j2π/3 + z3 threefold rotation about z3.

These two group elements are sufficient to generate the entire structure.
The following will show how various combinations of these two genera-
tors may be used to extract other symmetries. There have to be pure
translations lurking about in the set of symmetry operations. We can
ferret one of them out by combining the α and β operators in such a way
as to neutralize the rotation component, leaving only a translational
residue. One way to do this is to combine two rotations of –60 degrees
about z = 0 with one rotation of 120 degrees about z3. The result is

α −2 β: z → e− j2π / 3 z − z3()e j2π/3 + z3[],

which reduces to

 τ : z → z + z3(e− j2π/3 – 1) = z – z3 3e2π (1/12) .

The τ translation vector is precisely a shift from one six-center to
another. Combining α and τ yields other translations, which are just
60-degree rotations of one another. Any two adjacent translations form
the legs of a fundamental parallelogram (two types of which are shown in
Fig. 1). Note that each contains exactly six butterflies (if we cut and paste
wrapped-around fragments together). We can step and repeat one of
these parallelograms to fill the entire plane with the periodic pattern.

132

II.14 PERIODIC TILINGS OF THE PLANE ON A RASTER GRID

GRAPHICS GEMS I Edited by ANDREW S. GLASSNER 132

There are of course many other symmetries waiting to be discovered by
combining powers of α and β. For example, a 240 rotation about z3
followed by a –60 about 0 results in a net rotation of 180. This must be a
two-center,

 a
–1β 2:z → e– j2π/6 z – z3()e– j8π/6 + z3[],

which reduces to

 γ :z → –z + z3(e– j2π/6 + 1)

which is a 180-degree rotation about the middle leading edge of the left
wing. The fixed point of this two-center is located at

 z2 = –z3 3e
– j2π/12 two-center.

If we join butterflies paired together by γ and color the pairs white, gray,
and black, we get Fig. 2.

Figure 2.

133

II.14 PERIODIC TILINGS OF THE PLANE ON A RASTER GRID

GRAPHICS GEMS I Edited by ANDREW S. GLASSNER 133

If we produce triplets of butterlies by combining the triad produced by
the β rotation, and color these distorted triangles black and white, we get
Fig. 3.

Figs. 2 and 3 depict groups within groups. In the case of Fig. 3, if the
triads are viewed as the basic element, the tiling is an example of
wallpaper group p3. The group theoretic description of this embedding is
a factor group or quotient group (Bloch, 1987; Burn, 1985). This concept
proves useful in the design of color tilings that preserve the inherent
symmetry of the embedding group (Coxeter et al., 1987).

Tiling in Raster Grids
In this section, we are interested in devising an algorithm to tile periodic
patterns efficiently into a pixel array. Clearly, there must be a way to
exploit the step-and-repeat tiling suggested by the interlocking parallelo-

Figure 3.

134

II.14 PERIODIC TILINGS OF THE PLANE ON A RASTER GRID

GRAPHICS GEMS I Edited by ANDREW S. GLASSNER 134

grams. If we can find rectangular bricks orthogonal to the coordinates of
our raster, such as those in the lower right area of Fig. 1, we could load
up one copy of the brick and then step and repeat it with a bit-blit
operation over whatever area of the plane we wish to cover.

It will be shown that this is always possible to do. The basic mathemati-
cal tools for doing this come from the field of number theory, which deals
with the properties of integers. We have to deal with exact integers
because we want a bit-blit template whose corners are aligned exactly
with pixel centers. All we need is a parallelogram basis with one compo-
nent that is exactly horizontal. Referring again to Fig. 1, note that the
rectangles can be derived from the horizontal parallelograms by slicing
off the triangle from the left edge of the parallelogram and gluing it to the
right edge.

Assume that we start with a pair of valid basis vectors [a, b] and [c, d].
Topologically, we treat the entire plane as if it were just one (fundamen-
tal) parallelogram cell that wraps around itself in toroidal fashion. A pixel
in the plane translated by any integer combination of these basis vectors
will land at the same place relative to the parallelogram cell. It is easy to
show that we can transform a set of basis vectors to another set of valid
basis vectors as long as we use integer weights and preserve the area of
the parallelogram. We wish to do this in a fashion that will produce a new
basis with an exactly horizontal component (in order to make a horizontal
block, which is more suitable for bit-blitting). Denoting the new basis
vectors as [A, 0], [C, D],

 [A,0] = i[a, b] + j[c, d] the new horizontal basis vector

 [C, D] = k[a, b] + l[c, d] il – jk = 1 → preserve area.

First we want to find the smallest i and j that satisfy:

 0 = ib + jd y component of horizontal vector.

The solution is
 i = d/g
 j = –b/g
 g = gcd (b, d) greatest common denominator.

135

II.14 PERIODIC TILINGS OF THE PLANE ON A RASTER GRID

GRAPHICS GEMS I Edited by ANDREW S. GLASSNER 135

The remaining k, l components must satisfy:

 1 = il – jk = (d/g)l + (b/g)k unit determinant
 g = dl + bk solve for l, k.

This is exactly the problem solved by the extended version of Euclid’s
gcd algorithm (Knuth, 1981b), and a solution is guaranteed to exist. The
final results are

A = ai + cj

C = ak + cl

D = bk + dl

You can always put [C, D] in the upper half-plane and then add any
integer combination of the [A, 0] vector to the [C, D] vector, so you can
always adjust [C, D] such that

 0 ≤ C < A
 0 < D.

This represents a reduced canonical representation of the lattice. That is,
any two lattices that reduce to the same set of A, B, C values are
equivalent. The matrices with integral weights and unit determinants that
relate equivalent lattices are known as unimodular transforms, and
form a group themselves.

As an example, consider the parallelogram lattice with basis vectors
[9, 9] and [– 3, 6]. We have

g = gcd(b, d) = gcd(9, 6) = 3

A = ia + jc = (ad – bc)/g = 27

3 = dl + bk = 6l + 9k,

whose solution is l = –1, k = 1.
So the new basis is [27, 0] and [12, 3].
The old basis is shown in Fig. 4, overlaying a periodic array of 81

numbers arranged to show the pattern that we wish to tile by a step and

136

II.14 PERIODIC TILINGS OF THE PLANE ON A RASTER GRID

GRAPHICS GEMS I Edited by ANDREW S. GLASSNER 136

Figure 4.

137

II.14 PERIODIC TILINGS OF THE PLANE ON A RASTER GRID

GRAPHICS GEMS I Edited by ANDREW S. GLASSNER 137

repeat process. The + signs represent pixel centers. In the language of
group theory, the set of pixels marked 0 is the subgroup of the plane
generated by the basis vectors. All the pixels marked as 1 represent one
of 81 possible cosets of the subgroup.

The same diagram with the new basis is shown in Fig. 5.
Note that in both cases the same numbers appear in the same places in

each parallelogram, which is precisely what we want. Our bit-blit rectan-
gle is 27 pixels wide by 3 pixels high, and each row of bricks should be
right-shifted by 12 pixels relative to the previous row.

An alternate way to see what is happening is to view the basis vectors
as the axes of a new [u, v] coordinate system.

x = au + cv [u, v] = [1, 0] → [x, y] = [a, b]

y = bu + dv [u, v] = [0, 1] → [x, y] = [c, d]

M = ad – bc number of pixels in cell

If we try to solve for [u, v] in terms of [x, y] by inverting this relation-
ship, we seem to be faced by a division with the determinant, which
would destroy the exact integer relationships we wish to maintain. How-
ever, if we scale up the [u, v] coordinates so that they lie in the interval
[0, M – 1] instead of [0, 1], and enforce wrap conditions on the boundary
of our fundamental cell, we obtain

u = K dx – cy LM generators for group structure

v = K –bx + ay LM of tiling pattern,

where x M denotes taking the least positive residue mod M.
The residue reduction ensures that an [x, y] from anywhere in the

plane maps to a [u, v] in the interior of the fundamental cell. This dual
basis is exactly equivalent to the “reciprocal lattice” used in crystallogra-
phy. In the case of our example in Fig. 5, we have

u = K3x – 12yL81

v = K0x + 27yL81

138

II.14 PERIODIC TILINGS OF THE PLANE ON A RASTER GRID

GRAPHICS GEMS I Edited by ANDREW S. GLASSNER 138

Figure 5.

139

II.14 PERIODIC TILINGS OF THE PLANE ON A RASTER GRID

GRAPHICS GEMS I Edited by ANDREW S. GLASSNER 139

If we run through all possible values of [x, y], number theory tells us that
u can only take on 81/gcd(3, 12) = 27 different values, all of which will
be multiples of 3. The v component can only take on the three values
{0, 27, 54}. The geometrical significance of this is that the u basis vector
hits three pixel centers, and the v vector hits 27 (not including the
origin). Consequently, our exact integer relationships will be maintained
if we shrink the basis vectors (group generators) by 3 and 27, that is,

u’ = u/3 = x – 4y 27 u in range {0, 1 ,... 26}

v’ = v/27 = y 3 v in range {0, 1, 2}

This means that the group structure is essentially Z27 × Z3. One way that
we can use the above to produce a 1D function that assigns a unique
number to every pixel in the cell is to form a map Z27 × Z3 → Z81 with

z(x, y) = u’ + 27v’ = x – 4y 27 + 27 y 3.

This is exactly the function used to produce the pixel indices in Figs. 4
and 5.

The utility of the above indexing method is that we can load up all
possible M elements of the cell into a linear array, and then for each
[x, y] in the plane, pick out the one selected by z(x, y).

Another practical application of the above technique is in generating
digital patterns for halftone screens that are rotated relative to the raster
grid (Holladay, 1980). In this case, the pixels are usually one bit deep,
and the tiling is accomplished by bit-blitting an entire rectangle.

33IMAGEPROCESSING

143

III ANTI-ALIASING FILTERS SUMMARY

GRAPHICS GEMS I Edited by ANDREW S. GLASSNER 143

IIIIIIIIIIIIIII
ANTI-ALIASINGANTI-ALIASINGANTI-ALIASINGANTI-ALIASINGANTI-ALIASINGFILTERS SUMMARYFILTERS SUMMARYFILTERS SUMMARYFILTERS SUMMARYFILTERS SUMMARY

Aliasing is a fact of life when using digital computers to repre-
sent continuous signals. One must be constantly aware of the
implications of sampling and quantization, and attempt to avoid
or suppress image artifacts resulting from these processes. An
essential step in all algorithms that suppress or eliminate alias-
ing is the choice of filters used in the sampling and reconstruc-
tion processes. The search for “good” filters (according to
different criteria) is an active research area.

The following Gems present some different filtering strate-
gies, ranging from the explicit to the implicit. These filtering
techniques may be adapted for use in almost any anti-aliasing
technique.

See also Anti-Aliasing Summary (37); Scan Conversion Sum-
mary (75); Line-Drawing Summary (98)

144GRAPHICS GEMS I Edited by ANDREW S. GLASSNER 144

III.1III.1III.1III.1III.1
CCCCCONVENIENT ANTI-ALIASINGONVENIENT ANTI-ALIASINGONVENIENT ANTI-ALIASINGONVENIENT ANTI-ALIASINGONVENIENT ANTI-ALIASINGFFFFFILTERS THAT MINIMIZEILTERS THAT MINIMIZEILTERS THAT MINIMIZEILTERS THAT MINIMIZEILTERS THAT MINIMIZE“B“B“B“B“BUMPY” SAMPLINGUMPY” SAMPLINGUMPY” SAMPLINGUMPY” SAMPLINGUMPY” SAMPLING

Mark J. PavicicNorth Dakota State UniversityFargo, North Dakota

A solution to the spatial aliasing problem is to convolve the image with
an appropriate filter function. Two commonly used functions are the cube
and the Gaussian. Advantages of the cube are that it is a simple function
and it evenly weights the image plane. Uneven weighting contributes to
problems such as lines that appear to have varying thickness. Advantages
of the Gaussian are that it is a closer approximation to a CRT dot and it
is radially symmetric. The radial symmetry makes it easy to construct a
look-up table, since it is indexed by a single variable, r, which is the
distance of an edge from the center of a pixel.

An ideal function would be radially symmetric and would evenly sample
the image plane. A properly chosen Gaussian can come close to this ideal.
Figure 1 shows how a particular Gaussian weights the square region
whose corners are the centers of four pixels. The square region forms the
base of the cube. The top surface results from taking the sum of four
Gaussian “mountains.” The partial outline of one of the Gaussian moun-
tains is shown on the front face of the cube. This filter has the equation

f r() = a 1 –

1 – exp βr 2()
1 – exp –β()









,

where α = 1 and β = 2.378. It satisfies the criteria that it have a unit
volume, that f(0) = 1, and that f(l) = 0. It is defined to be zero for
r > 1. Note that f(0) = α = 1 is not a fixed requirement. In fact, a more
even weighting can be achieved if α ≠ 1. Figure 2 shows the optimal
result, which occurs when α = 0.918 and β = 1.953. The unit-volume
and f(1) = 0 criteria are still satisfied.

An interesting alternative is the sum of a cone and a cosine. This
composite function satisfies all the criteria imposed on the Gaussian in

145GRAPHICS GEMS I Edited by ANDREW S. GLASSNER 145

III.1CONVENIENT ANTI-ALIASING FILTERS THAT MINIMIZE “BUMPY” SAMPLING

 Figure 1. Unit height Gaussian. Figure 2. Optimized Gaussian.

 Figure 3. Cone plus cosine. Figure 4. A tabular solution.

Fig. 1, yet samples the image plane nearly as evenly as the optimized
Gaussian in Fig. 2. This filter has the equation

f(r) = α(1 – r) + (1 – α)(1 + cos(πr))/2
for r < 1, where α = (1 – v2)/(v1 – v2), vl = π/3, and v2 = π/2 –
2/π. It was used to generate Fig. 3. Note that the filters sum to 1 along
the top edges of the cube.

To get a quantitative comparison of these three cases, the percentage
of the volume above and below a unit height was calculated and found to
be 3.25, 1.03, and 1.13 for Figs. 1, 2, and 3, respectively. Thus, these
measures verify what is already evident in the figures, namely that
carefully chosen filter functions can do a superior job of minimizing
“bumpy” sampling while still retaining the convenient characteristic of
radial symmetry.

146GRAPHICS GEMS I Edited by ANDREW S. GLASSNER 146

III.1CONVENIENT ANTI-ALIASING FILTERS THAT MINIMIZE “BUMPY” SAMPLING

Table I. A Tabular Solution.

At this point one might ask, “What is the optimum?” To get some idea,
a table of 41 values was adjusted to minimize the volume displaced by
uneven sampling. The result is shown in Fig. 4 and the values are listed
in Tab. 1. The percentage volume displaced in this case is 0.43. This level
of performance can also be approximated by radially symmetric filters
whose shapes are described by polynomials or spline curves. As a final
example, Tab. 2 lists the five control points for a nonuniform cubic
B-spline that has a “bump factor” of 0.60.

Table 2. Control Points.

147GRAPHICS GEMS I Edited by ANDREW S. GLASSNER 147

III.2 FILTERS FOR COMMON RESAMPLING TASKSIII.2III.2III.2III.2III.2
FFFFFILTERS FOR COMMONILTERS FOR COMMONILTERS FOR COMMONILTERS FOR COMMONILTERS FOR COMMONRRRRRESAMPLING TASKSESAMPLING TASKSESAMPLING TASKSESAMPLING TASKSESAMPLING TASKS

Ken TurkowskiApple ComputerCupertino, California

Continuous, Sampled, and Discrete SignalsContinuous, Sampled, and Discrete SignalsContinuous, Sampled, and Discrete SignalsContinuous, Sampled, and Discrete SignalsContinuous, Sampled, and Discrete Signals
Signals or functions that are continuous are defined at all values on an
interval. When these are then sampled, they are defined only at a given
set of points, regularly spaced or not. When the values at these sample
points are then quantized to a certain number of bits, they are called
discrete. A sampled function may or may not be discrete.

In computer graphics, we deal with all three of these representations, at
least in our models of computation. A function such as sin(x) is consid-
ered continuous. A sequence of floating-point values may be considered
to represent a sampled function, whereas a sequence of integers (espe-
cially 8-bit integers) represent a discrete function.

Interpolation and DecimationInterpolation and DecimationInterpolation and DecimationInterpolation and DecimationInterpolation and Decimation
Even though a signal is sampled, we may have certain rules about
inferring the values between the sample points. The most common
assumption made in signal processing is that the signal is bandlimited to
an extent consistent with the sampling rate, that is, the values change
smoothly between samples. The Sampling Theorem guarantees that a
continuous signal can be reconstructed perfectly from its samples if the
signal was appropriately bandlimited prior to sampling (Oppenheim and
Schaeffer, 1975). Practically speaking, signals are never perfectly band-
limited, nor can we construct a perfect reconstruction filter, but we can
get as close as we want in a prescribed manner.

148GRAPHICS GEMS I Edited by ANDREW S. GLASSNER 148

III.2 FILTERS FOR COMMON RESAMPLING TASKS
We often want to change from one sampling rate to another. The

process of representing a signal with more samples is called interpola-
tion, whereas representing it with less is called decimation. Examples of
interpolation are zooming up on an image; correcting for nonsquare
pixels; and converting an image from 72 dpi to 300 dpi to feed a
high-resolution output device. Applications of decimation are reducing
the jaggies on an supersampled image; and correcting for nonsquare
pixels.

Choices of FiltersChoices of FiltersChoices of FiltersChoices of FiltersChoices of Filters
Several types of filters are more popular than others: box, tent, Gaussian,
and sinc. In Fig. 1, we show the frequency response of a few of the
continuous versions of these filters. The ideal filter would have a gain of
0 dB between frequencies of 0 and 1 (the passband), and –∞ beyond 1 (the
stopband). The rolloff in the passband is responsible for blurriness, and
the leakage in the stopband is responsible for aliasing (jaggies). One
generally has to make the tradeoff between sharpness and aliasing in
choosing a filter. We will be sampling some of these filters, specifically for
use in interpolation and decimation ratios of integer amounts, such as 2,
3, and 4.

Figure 1.

149GRAPHICS GEMS I Edited by ANDREW S. GLASSNER 149

III.2 FILTERS FOR COMMON RESAMPLING TASKS
BoxBoxBoxBoxBox

Figure 2.

The box filter for interpolation merely picks the closest value. For
decimation, it is simply an average of the input samples. With an even
number of samples, the filter produces an output that is situated between
two input samples (half phase), whereas with an odd number, it is situated
at the same location as the middle sample (zero phase). With other filters,
you can select the phase of the filter, but not so for the box filter. In Fig.
2, we show the half-phase box filter for decimation by 2. Higher decima-
tion ratio filters just have coefficients with weights that sum to 1.

TentTentTentTentTent

Figure 3. Decimation by a factor of two with the tent function.

150GRAPHICS GEMS I Edited by ANDREW S. GLASSNER 150

III.2 FILTERS FOR COMMON RESAMPLING TASKS

Figure 4. Decimation by a factor of three with the tent function.

Figure 5. Decimation by a factor of four with the tent function.

The tent filter is a generalization of linear interpolation, and is so when
interpolating. Unlike the box filter, this can accommodate arbitrary filter
phases; we show the zero-phase and half-phase filter for decimation by
two, three, and four (see Figs. 3, 4, and 5).

GaussianGaussianGaussianGaussianGaussian
The Gaussian function is popular for its many elegant analytical proper-
ties; it is entirely positive, it is the limit of probability density functions,
and it is its own Fourier transform. Here, we give a rationale for choosing
an appropriate width, or variance, or filtering in graphics.

We choose Gaussian filters here whose variances have physical and
computational significance. The first is the narrowest that we would

151GRAPHICS GEMS I Edited by ANDREW S. GLASSNER 151

III.2 FILTERS FOR COMMON RESAMPLING TASKS
probably ever want to use, and has a half-amplitude width of

1

2
, that is,

it has the value

1

2
 at a distance

1

2
 from its center. Its value gets negligible

1

1

2
 samples away from the center, so it can be considered to have a support

of 3.
Energy, in general terms, is the square of the magnitude. If the eye is

more linear in energy than in magnitude, then a more appropriate Gauss-
ian might be one in which the square of the magnitude is

1

2
 at a distance

1

2
 from the center, or that the magnitude itself has a value of 1/ 2 at that

point. This is a wider Gaussian than the first, and its magnitude doesn’t
become negligible until 2 samples from the center, so that it may be
considered a filter with support 4.

In Fig. 1, we compare the box, tent, and these two Gaussians. The box
filter captures more of the passband (freq < 1) than the others, but it also
lets through more of the stopband (freq > 1). It is the leakage in the
stopband that is responsible for aliasing artifacts, or “jaggies.” The tent
filter is 15 dB better at eliminating aliasing in the stopband, but does so
at the expense of losing more features in the passband. The Gaussian

1

2
 filter

matches the tent for a good portion of the passband, but continues to
attenuate the stopband. The Gaussian 1/ 2 filter does an even better job
at attenuating the aliases, but does so at the expense of losing additional
detail in the passband.

A comparison of the tent and the narrow Gaussian in the time (space)
domain will show that they look very similar, except that the Gaussian is

 Figure 6.

152GRAPHICS GEMS I Edited by ANDREW S. GLASSNER 152

III.2 FILTERS FOR COMMON RESAMPLING TASKS
smooth at the peak and the base, whereas the tent has slope discontinu-
ities there. It is these discontinuities that cause the ringing and ineffective
alias suppression in the stopband.

One of the side effects of our particular choices of Gaussian variance is
that many of their coefficients at interesting locations are scaled powers
of two, which makes way for faster computation. We will see this in the
following filters, specialized for certain interpolation and decimation
tasks.

Interpolation with the Gaussian Interpolation with the Gaussian Interpolation with the Gaussian Interpolation with the Gaussian Interpolation with the Gaussian

1
2 Filter Filter Filter Filter Filter

Figure 7. Interpolation with the Gaussian

1

2
 filter.

In Fig. 7, we give the filter coefficients for a set of filters to interpolate
between two given samples: halfway between, and a quarter of the way to
either side of a sample. Notice the nice rational coefficients that are
scaled powers of two.

153GRAPHICS GEMS I Edited by ANDREW S. GLASSNER 153

III.2 FILTERS FOR COMMON RESAMPLING TASKS
To determine the coefficients for a filter to produce the value at any

other point between two samples, we merely sample the Gaussian at a
series of locations one sample apart, and normalize them so that their
sum equals one. Even though the Gaussian is zero nowhere, we consider
this filter ’s value to be negligible greater than 1.5 samples away from its
center.

Decimation with the Gaussian Decimation with the Gaussian Decimation with the Gaussian Decimation with the Gaussian Decimation with the Gaussian

1
2 Filter Filter Filter Filter Filter

Figure 8. Decimation by a factor of two with the Gaussian

1

2
 filter.

Figure 9. Decimation by a factor of three with the Gaussian

1

2
 filter.

154GRAPHICS GEMS I Edited by ANDREW S. GLASSNER 154

III.2 FILTERS FOR COMMON RESAMPLING TASKS

Figure 10. Decimation by a factor of four with the Gaussian

1

2
 filter.

Interpolation with the Gaussian Interpolation with the Gaussian Interpolation with the Gaussian Interpolation with the Gaussian Interpolation with the Gaussian

1
2 Filter Filter Filter Filter Filter

This wider Gaussian becomes negligible greater than two samples away
from the center (see Fig. 11).

Figure 11. Interpolation with the Gaussian

1

2
 filter.

155GRAPHICS GEMS I Edited by ANDREW S. GLASSNER 155

III.2 FILTERS FOR COMMON RESAMPLING TASKS

Figure 11. (Continued)

Figure 12. Decimation by a factor of two with the Gaussian

1

2
 filter.

Figure 13. Decimation by a factor of three with the Gaussian

1

2
 filter.

156GRAPHICS GEMS I Edited by ANDREW S. GLASSNER 156

III.2 FILTERS FOR COMMON RESAMPLING TASKS

Figure 14. Decimation by a factor of four with the Gaussian

1

2
 filter.

The Sinc FunctionThe Sinc FunctionThe Sinc FunctionThe Sinc FunctionThe Sinc Function
The sinc function (see Fig. 15) is the ideal low-pass filter (Oppenheim and
Schaeffer, 1975).

Figure 15.

The Lanczos-Windowed Sinc FunctionsThe Lanczos-Windowed Sinc FunctionsThe Lanczos-Windowed Sinc FunctionsThe Lanczos-Windowed Sinc FunctionsThe Lanczos-Windowed Sinc Functions
Since the sinc function never goes to zero but approaches it slowly, we
multiply it by an appropriate windowing function. The two-lobed Lanczos-

157GRAPHICS GEMS I Edited by ANDREW S. GLASSNER 157

III.2 FILTERS FOR COMMON RESAMPLING TASKS
windowed sinc function is one such windowed sinc function, and is
defined as follows (see Fig. 16):

Lanczos2 x() =
sin πx()

πx

sin π
x

2






π
x

2

, x < 2

 0, x ≥ 2.














Figure 16.

The three-lobed Lanczos-windowed sinc function is defined similarly
(see Fig. 17):

Figure 17.

158GRAPHICS GEMS I Edited by ANDREW S. GLASSNER 158

III.2 FILTERS FOR COMMON RESAMPLING TASKS

Lanczos 3 (x) =
sin πx()

πx
sin π x

3






π x
3

, x < 3

 0, x ≥ 3














The Lanczos-windowed sinc function filters have been shown to be
particularly useful for graphics applications.1 We will concern ourselves
here mainly with the two-lobed version, because of its smaller kernel.

Interpolation by a Factor of Two with theInterpolation by a Factor of Two with theInterpolation by a Factor of Two with theInterpolation by a Factor of Two with theInterpolation by a Factor of Two with theLanczos2 Sinc FunctionLanczos2 Sinc FunctionLanczos2 Sinc FunctionLanczos2 Sinc FunctionLanczos2 Sinc Function
Note that in Fig. 18, with a zero-phase filter, the contributions from other
than the central pixel are zero, so that only the central pixel is used.

Figure 18. Interpolation by a factor of two with the Lanczos2 sinc function

1Turkowski, Ken and Gabriel, Steve, 1979. Conclusions of experiments done at Ampex,
comparing box, Gaussian, truncated-sinc, and several windowed-sinc filters (Bartlett,
cosine, Hanning, Lanczos) for decimation and interpolation of 2-dimensional image data.
The Lanczos-windowed sinc functions offered the best compromise in terms of reduction
of aliasing, sharpness, and minimal ringing.

Figure 18. (Continued)

Decimation with the Lanczos2 Sinc FunctionDecimation with the Lanczos2 Sinc FunctionDecimation with the Lanczos2 Sinc FunctionDecimation with the Lanczos2 Sinc FunctionDecimation with the Lanczos2 Sinc Function

Figure 19. Decimation by a factor of two with the Lanczos2 sinc function.

The zero-phase filter (Fig. 19) has coefficients that are nearly rational. If
the negative coefficients are scaled so that they are equal to –1, then the
remaining coefficients are 9 and 15.7024. This inspired a search for such
filters with rational coefficients. This yielded the two zero-phase filters in
Fig. 20.

GRAPHIC GEMS I edited by DAVID KIRK 159

160GRAPHICS GEMS I Edited by ANDREW S. GLASSNER 160

III.2 FILTERS FOR COMMON RESAMPLING TASKS

Figure 20.

Comparative Frequency ResponsesComparative Frequency ResponsesComparative Frequency ResponsesComparative Frequency ResponsesComparative Frequency Responses
Filters are evaluated on their ability to retain detail in the passband
(sharpness is valued more than blurriness) and to eliminate aliasing in the
stopband (smoothness is valued more than jagginess). The frequency
response of a sampled filter is quite different than the continuous one

Figure 21. Decimation by a factor of three with the Lanczos2 sinc function.

161GRAPHICS GEMS I Edited by ANDREW S. GLASSNER 161

III.2 FILTERS FOR COMMON RESAMPLING TASKS

Figure 22. Decimation by a factor of four with the Lanczos2 function.

By the way, one bit corresponds to about 6 dB, so that attenuation
beyond 48 dB is irrelevant when working with 8-bit pixels from which it
was derived. Instead of taking the Fourier transform as with
continuous filters, we take the z-transform and sample on the unit circle.

In Figs. 23 and 24 we see that the filter derived from the Gaussian 1/2
filter doesn’t perform as well as the one derived from the tent, although
we know that in the continuous case, the Gaussian is much better. What
happened? We sampled the filter functions, that’s what happened. In the
process, we changed the characteristics of the filter. In fact, there are
several continuous filters that give rise to the same sampled filters. The
labels on each of the filters are actually misnomers, since the sampled
filters are not the same as the continuous ones.

The box filter seems to retain a large portion of the passband, but lets
through a tremendous amount of energy in the stopband, resulting in
noticeable aliasing. The Lanczos filters keep more of the passband than
the others (except for maybe the box), and they cut off more of the
stopband (except for maybe the Gaussian 1/ 2), with the Lanczos3 filter
coming closest to the ideal filter shape of all the filters evaluated. The
Gaussian 1/ 2 filter is competitive with the Lanczos3 for stopband
response, but does so at the expense of excessive attenuation on the
passband.

162GRAPHICS GEMS I Edited by ANDREW S. GLASSNER 162

III.2 FILTERS FOR COMMON RESAMPLING TASKS

Figure 23. Frequency response of the zero-phase filters for decimation by 2.

Figure 24. Frequency response of the half-phase filters for decimation by 2.

163GRAPHICS GEMS I Edited by ANDREW S. GLASSNER 163

III.2 FILTERS FOR COMMON RESAMPLING TASKS
Frequency Response of the Gaussian Filters forFrequency Response of the Gaussian Filters forFrequency Response of the Gaussian Filters forFrequency Response of the Gaussian Filters forFrequency Response of the Gaussian Filters forSeveral Decimation RatiosSeveral Decimation RatiosSeveral Decimation RatiosSeveral Decimation RatiosSeveral Decimation Ratios
The cutoff frequencies are 0.5 for the 42 filter, 0.333 for the 43, 0.25
for the 44. Note that the zero-phase and the half-phase filters for
decimation by 2 diverge, whereas the higher-decimation filters do not.

Figure 25. Frequency response of the Gaussian filter for several decimation ratios.

Figure 26. Frequency response of the Gaussian

1

2
 filter for several decimation ratios.

1

2

164GRAPHICS GEMS I Edited by ANDREW S. GLASSNER 164

III.2 FILTERS FOR COMMON RESAMPLING TASKS
Frequency Response of the Lanczos2 SincFrequency Response of the Lanczos2 SincFrequency Response of the Lanczos2 SincFrequency Response of the Lanczos2 SincFrequency Response of the Lanczos2 SincFunctionsFunctionsFunctionsFunctionsFunctions

Figure 27. Frequency response of the Lanczos2 sinc functions.

Figure 28. Frequency response of the Lanczos2 sinc functions for several decimation
 ratios.

165GRAPHICS GEMS I Edited by ANDREW S. GLASSNER 165

III.2 FILTERS FOR COMMON RESAMPLING TASKS
We show the responses of the decimate-by-2 filters related to the
Lanczos2 filter in Fig. 27. Note that the Gabriel decimator lets more of
the passband through and has a sharper cutoff in the stopband, but also
bounces back in the stopband at a higher level than that of the Lanczos2.
The Turkowski decimator, however, does not bounce back and eliminates
more of the highest frequencies than the other two. They all have
approximately the same passband response and aliasing energy, but the
aliasing energy is distributed differently throughout the spectrum, so they
can be considered about equivalent.

166GRAPHICS GEMS I Edited by ANDREW S. GLASSNER 166

III.3 SMOOTHING ENLARGED MONOCHROME IMAGESIII.3III.3III.3III.3III.3
SSSSSMOOTHING ENLARGEDMOOTHING ENLARGEDMOOTHING ENLARGEDMOOTHING ENLARGEDMOOTHING ENLARGEDMONOCHROME IMAGESMONOCHROME IMAGESMONOCHROME IMAGESMONOCHROME IMAGESMONOCHROME IMAGES

John OlsenHewlett-PackardFort Collins, Colorado

Typical methods of enlarging a monochrome image result in a very blocky
product because of pixel replication or repeating a pixel to fill in the area
added between pixels when an image is increased in size. The enlarging
method that follows will preserve many of the angles that are missed by
simple enlargement schemes such as pixel replication, and will generate a
much more intuitive result. This method of image enlargement is espe-
cially effective on images such as circles, disks, and other continuous or
smooth curves.

Only monochrome images will be discussed here because there are
many complications that arise when dealing with color or grayscale
images. This technique of enlarging bitmaps will not be extended to color
images because there is no obvious or intuitive scheme for doing so. The
difficulty arises because the result image can vary, depending on which
colors are smoothed first.

The monochrome enlarging process is implemented as a search over a
series of rules that govern how the enlarged pixels are filled in. These
rules consist of an array of source pixels and of data indicating what
additional areas are filled with the foreground color, as is seen in the rules
shown in Fig. 1.

Scaling by integer multiples gives the most uniform results, but this
scaling technique is equally applicable to noninteger increases in size.
The code required for noninteger scaling will of course be more complex.

Each of the specified rules is to be rotated by 90-degree increments
and mirrored in order to generate a complete set of eight final rules per

167GRAPHICS GEMS I Edited by ANDREW S. GLASSNER 167

III.3 SMOOTHING ENLARGED MONOCHROME IMAGES

Figure 1. The rules used to create smooth monochrome enlargements.

initial rule. Fig. 2 shows how one of the rules from Fig. 1 is used to
generate a set of eight rules.

By using all three rules in Fig. 1 and applying the mirroring in Fig. 2
you will obtain a set of 24 rules that will each preserve a unique angle. A
simplified set of rules is obtained by using only rules 1 and 2 with their
associated mirroring, and rotating to obtain a set of 16 rules. The

Figure 2. The original rule 2 with its rotations and reflections.

168GRAPHICS GEMS I Edited by ANDREW S. GLASSNER 168

III.3 SMOOTHING ENLARGED MONOCHROME IMAGES
simplified set is well-behaved because the preserved angles are evenly
distributed, whereas with the set of 24 the additional preserved angles
tend to be close to multiples of 90 degrees.

The initial step used to create a smoothed image is to generate a blown
up image, just as with pixel replication. Next, the rules are applied to the
image from the most complex to the least complex, which will partially

Figure 3. Results of smoothing various patterns.

169GRAPHICS GEMS I Edited by ANDREW S. GLASSNER 169

III.3 SMOOTHING ENLARGED MONOCHROME IMAGES
fill some of the previously empty blocks within the result image. The rules
need to be sequentially checked from complex to simple only until a
match is found because the simpler rules will fill only a subset of the area
filled by the more complex rules.

There is a definite pattern within the rules: each successive rule is a
copy of the previous one, with one column added to generate the
following more complex rule. This means that the process of generating
rules can continue as far as you would like to take it, but it is generally
not practical to go past rule 3 as specified in Fig. 1 because of the
increased CPU time required for the more complex rules.

These rule sets will preserve many patterns (such as the interior and
edges of checkerboards and both inside and outside square corners)
instead of causing them to be smoothed in distracting or unexpected
ways, yet will do a very good job of smoothing curves on objects where
smoothing makes more sense. Fig. 3 shows a few typical patterns and
how the smoothing algorithm will modify each.

Figure 4. Smoothing causes certain areas to be filled by multiple rules.

170GRAPHICS GEMS I Edited by ANDREW S. GLASSNER 170

III.3 SMOOTHING ENLARGED MONOCHROME IMAGES
These results are obtained by taking each of the original rules and its

seven rotated and mirrored rules and comparing them to each location on
the image. Wherever a match occurs, the shaded areas are filled in. Best
results are obtained by skipping pixels that appear exactly at the edge of
the area to be filled. This is demonstrated by doubling the scale of a
simple object that uses only rule 1, and noting that horizontal and vertical
edges are emphasized when the border pixels are drawn. Care must also
be taken in applying the rules to generate the final output, since destina-
tion blocks of pixels can be modified by more than a single rule, as seen
in Fig. 4.

Admittedly, this smoothing algorithm does not take all possible angles
into consideration, but it is meant to produce a much better final result
than simple scaling of bitmapped images with pixel replication. The
greatest gain in using this technique is that the resulting smoothed
images will always be generated in a predictable and intuitive manner.

171GRAPHICS GEMS I Edited by ANDREW S. GLASSNER 171

III.4 MEDIAN FINDING ON A 3 × 3 GRIDIII.4III.4III.4III.4III.4
MMMMMEDIAN FINDINGEDIAN FINDINGEDIAN FINDINGEDIAN FINDINGEDIAN FINDINGON AON AON AON AON A 3 3 3 3 3×3 3 3 3 3 GRIDGRIDGRIDGRIDGRID

Alan W. PaethUniversity of WaterlooWaterloo, Ontario, Canada

OverviewOverviewOverviewOverviewOverview
A fast implementation for finding the median of nine elements is pre-
sented. This supports median filtering on 2D raster images—output
pixels are defined as the median value contained by a corresponding
3 × 3 pixel region on the input. Filtering by this nonlinear technique
removes “shot” noise, pixel dropout, and other spurious features of
single pixel extent (Fig. 1) while preserving overall image quality (Huang,
1981). The technique is also attractive in that median is defined by a
logical ranking of element values, not by arithmetic computation, yielding
tools that operate on images of arbitrary pixel precision (Paeth, 1986a,
1986b; Paeth, 1987). Fast median evaluation is essential as operation
counts on images quickly approach one million.

The median on n elements is that value having rank

1

2
(n + 1), where

rank is each element’s relative sorted position within the array. That is,
the median element is the central element on the sorted data set. The
computation time for median finding is known to increase linearly with
input length but the related methods are unsuitable for small arrays.
Brute-force sorting performs unnecessary computation because all n
elements become ranked. The approach presented here requires twenty
comparisons and is close to the minimum exchange-network bound for
median finding on nine elements (nineteen comparisons) and a clear win
over a bubble-sort featuring early completion after sorting has ranked the
first five elements (thirty comparisons).

172GRAPHICS GEMS I Edited by ANDREW S. GLASSNER 172

III.4 MEDIAN FINDING ON A 3 × 3 GRID

Figure 1. Median filtering (3 × 3).

Element ExchangeElement ExchangeElement ExchangeElement ExchangeElement Exchange
Ranking of the data is achieved using simple element exchanges. This
supports straight-line code implementation lacking conditional logic or
subroutine calls. This approach also allows for parallel execution or reuse
of partial terms for larger 2D filter kernels. Exchanging may be done in a
manner reminiscent of data swapping without a temporary variable using
three bit-wise exclusive OR’s:

A: a B: b
a ← a bit-xor b A: a xor b B: b
b ← b bit-xor a A: a xor b B: b xor (a xor b) = a
a ← a bit-xor b A: a xor b xor a = b, B: a.

Subtraction behaves in a self-complementary fashion identical to xor
because both bit complementation and arithmetic negation are their own
inverses. The basic two-element exchange that underpins the entire
algorithm shares the subtraction implicit in any arithmetic comparison.
This reduces three program statements to two; coding as a macro re-

173GRAPHICS GEMS I Edited by ANDREW S. GLASSNER 173

III.4 MEDIAN FINDING ON A 3 × 3 GRID
moves the cost of subroutine invocation:

s2(a, b) – place a and b in ascending order
macro s2(a, b) if (z ← b – a) < 0 then begin a ← a + z; b ← b – z; end.

The s2 sorting operator is a special case of the minnaxk operation with
k = 2. The general operation finds the overall winner and loser (elements
of rank 1 and k) on a k element set. Finding the minimum and maximum
on larger sets using two element comparisons may be done by way of a
tournament. Here elements and comparisons are represented by players
and matches (which may take place in parallel), respectively. The tourna-
ment commences by pairing off all players; in subsequent rounds only
matches between remaining winners (or losers) occur. Play ends when
both an all-time winner and an all-time loser have been found. For
tournaments whose membership is not a power of two some players will
draw byes and will (re)enter later rounds. A k-player tournament ends
after completion of

1
2 3n – 4()  matches. An illustration of minmax on six

elements using seven comparisons is diagramed in Fig. 2, in which circles
represent players and arrows represent matches with an arrowhead indi-
cating the winner.

The median operation on a nine-element array partitions the array into
three sets: a set of four elements with rank < 5, the median with
rank = 5, and a set of four elements with rank > 5. The median may be
found by placing elements pairwise into the nonmedian sets until the
median remains. Any six-element subset of the nine-element input array
contains an element whose rank is at least six (as when the subset
happens to contain the six smallest elements of the array); conversely,

Figure 2. Six-player min-max tournament.

174GRAPHICS GEMS I Edited by ANDREW S. GLASSNER 174

III.4 MEDIAN FINDING ON A 3 × 3 GRID

Figure 3. Reducing the median.

this subset contains a smallest element whose rank can be no greater than
four (see Fig. 3).

These outermost two elements bracket the median and belong within
the remaining two partitions: discarding them reduces the input data to
seven elements. The median (rank 4) on the remaining elements is then
found by finding and discarding minimum and maximum elements using
a subset of four; the procedure continues through minmax3. At this point,
eight discard values have been partitioned and the median remains. The
complete pseudo-code requires twenty comparisons and is listed here:

macro s2(a, b) if (z ← b – a) < 0 then begin a ← a + z; b ← b – z; end
macro mn3(a, b, c) s2(a, b); s2(a, c);
macro mx3(a, b, c) s2(b, c); s2(a, c);
macro mnmx3(a, b, c) mx3(a, b, c); s2(a, b);
macro mnmx4(a, b, c, d) s2(a, b); s2(c, d); s2(a, c); s2(b, d);
macro mnmx5(a, b, c, d, e) s2(a, b); s2(c, d); mn3(a, c, e); mx3(b, d, e);
macro mnmx6(a, b, c, d, e, f) s2(a, d); s2(b, e); s2(c, f); mn3(a, b, c,); mx3(d, e, f);

integer function median9 (v)
v:array [1..9] of integer Subscripting from one for clarity,

begin v is of type real or integer.

mnmx6(v[1], v[2], v[3], v[4], v[5], v[6]); Cast off two elements each time.
mnmx5(v[2], v[3], v[4], v[5], v[7]);
mnmx4(v[3], v[4], v[5], v[8]);
mnmx3(v[4], v[5], v[9]);

The median is now in v[5]; v[1..4] and v[6..9] are the ranked partitions.
return[v[5]];
end;

175GRAPHICS GEMS I Edited by ANDREW S. GLASSNER 175

III.4 MEDIAN FINDING ON A 3 × 3 GRID
Although the macro expansion form suggests underlying machine code
with many costly indexing operations (as compared to the pointer arith-
metic possible with sorting), this is not the case. Because the array size is
small, most array elements can be cached in local registers. The form
presented here is particularly useful because discarding of min/max pairs
may commence immediately after the first six elements have been read in
consecutive order; subsequent program statements drop two elements
and fetch only one additional input so the number of active registers
steadily declines. This suggests C code (see the Appendix) in which the
“register” source code directive—which provides the compiler a list of
suggested candidates for register variables—leads to further speed-ups.

For larger odd-order boxes the comparison technique is still useful.
The above approach costs 1/16[3n4 + 10n2 – 13] integral comparisons
for boxes of n2 elements and odd edge length n, giving 132 comparisons
for a 5 × 5 box. An alternate network for median on twenty-five elements
(Paeth, 1990), requiring less than one hundred comparisons, is included
in the C code. It has been exhaustively checked against all possible input
permutations and transcribed directly from the sources. For larger sam-
pling boxes (kernels) reuse of common elements suggests traditional
median finding methods on large arrays. In the 2D spatial case, these
include the use of sorted data structures in which the trailing and leading
element columns are deleted and added while indexing across a scan-line.

See also Storage-free Swapping (436)

See Appendix 2 for C Implementation (711)

176GRAPHICS GEMS I Edited by ANDREW S. GLASSNER 176

III.5 ORDERED DITHERINGIII.5III.5III.5III.5III.5
OOOOORDEREDRDEREDRDEREDRDEREDRDEREDDDDDDITHERINGITHERINGITHERINGITHERINGITHERING

Stephen HawleyMorristown, New Jersey

Ordered dithering is a technique of reducing high-precision, two-dimen-
sional data to a lower precision using positional information to retain as
much information as possible. In the context of image processing, or-
dered dithering can be used to reduce multilevel grayscale images to
fewer levels, or in the simple case, to black and white. This can be used
to reduce the storage space of an image, while retaining a fair amount of
the image contents or to display multilevel grayscale images on a black-
and-white display.

Ordered dithering is a very fast, efficient technique. Dithering typically
requires one comparison, one array lookup, and two modulo operations
per pixel and can be implemented as a macro or inline function. In most
cases, the modulo operations can be done with bit-ands.

The whole idea behind ordered dithering is to distribute evenly the
expected range of gray levels throughout a matrix, which will act as a
screen. A gray level is compared to a value in the matrix using the
coordinates of the gray level as indices into the matrix. Gray levels that
are greater than the corresponding value in the dithering matrix are
filtered out as representing black. All other values represent white. This is
almost exactly the same as the halftoning process used in newspapers.

The real trick is to come up with a way to design the matrix so that
each gray level will produce an even pattern in the output. For example,
a 50% gray level should come out as a checkerboard pattern. If we adopt
a recursive definition of the matrix, we get this for free.

177GRAPHICS GEMS I Edited by ANDREW S. GLASSNER 177

III.5 ORDERED DITHERING
To start off, here’s a base case for a dithering matrix for 256 gray

levels:

M0 = 0[].

This is the zeroth dithering matrix. Its dimensions are 20 by 20. It
contains the range from 0 to 255, but is not very useful by itself. M1
looks like this:

M1 =
0, 192

128, 64














 .

M1 is the first dithering matrix. Its dimensions are 21 by 21. It contains
the range from 0 to 255, but with only four numbers. This means that M1

can only generate four distinct “halftone” patterns. If we use larger M’s
we’ll get more patterns, and better image quality.

M1 can be thought of as four copies of M0 with constants added:

M1 =
M0 + 0, M0 + 192
M0 + 128, M0 + 64














 .

Similarly, M2 appears as follows:

M1 =

0, 192, 48, 240
128, 64, 176, 112
32, 224, 16, 208

160, 96, 144, 80

























 .

In this case, M2 is just four copies of Ml with constants added:

M2 =

M1 + 0, M1 + 48
M1 + 32, M0 + 16









.

In general, MK can be defined as follows:

Mk =
M k –1 + 0∗2n– 2k , M k –1 + 3∗2n– 2k

M k –1 + 2∗2n– 2k , M k –1 + 1∗2n– 2k














 ,

178GRAPHICS GEMS I Edited by ANDREW S. GLASSNER 178

III.5 ORDERED DITHERING
where 2n is the upper limit of the range that is being dithered over (in the
above examples, n is 8) and k such that n ≥ 2k. Generating dithering
matrices by hand is time-consuming and prone to error. It is far easier to
use a program to generate them. For an example of such a program,
please refer to the Appendix.

In the following example, you’ll see how to reduce a multilevel image to
a bilevel image. The function reduce loops over the entire input bitmap
dithering each pixel. To stress the size-independence of the code, neither
the dithering matrix nor its dimensions are specified in the pseudo-code.

DitherSize: integer;
DitherMatrix: array [0..DitherSize – 1] of array [0..DitherSize – 1] of integer;
MultiMap: record [

array [0..m] of array [0..n] of integer;
];

BiMap: record [
array [0..m] of array [0..n] of boolean;
];

macro dither(x, y, level)
(level > DitherMatrix[x mod DitherSize] [y mod DitherSize]);

This macro compares the given level to an element in the dithering matrix.
The element is located by mapping the coordinates of the pixel into the dithering
matrix.

function reduce (in: MultiMap; out: BiMap;)
begin
 for i: integer ← 0, i ← i + 1 while i ≤ m do

for j: integer ← 0, j ← j + 1 while j ≤ n do
out[i][j] ← dither(i, j, in[i][j]);

Since the dither macro is a boolean expression, it reduces the
multilevel input to binary output.

endloop;
endloop;

end;

See Appendix 2 for C Implementation (713)

179

III.6 A FAST ALGORITHM FOR GENERAL RASTER ROTATION

GRAPHIC GEMS I Edited by DAVID KIRK 179

AAAAA FAST ALGORITHM FOR FAST ALGORITHM FOR FAST ALGORITHM FOR FAST ALGORITHM FOR FAST ALGORITHM FORGGGGGENERAL RASTER ROTATIONENERAL RASTER ROTATIONENERAL RASTER ROTATIONENERAL RASTER ROTATIONENERAL RASTER ROTATION11111
Alan W. Paeth University of WaterlooWaterloo, Ontario, Canada

IntroductionIntroductionIntroductionIntroductionIntroduction
The rotation of a digitized raster by an arbitrary angle is an essential
function for many raster manipulation systems. We derive and implement
a particularly fast algorithm which rotates (with scaling invariance) rasters
arbitrarily; skewing and translation of the raster is also made possible by
the implementation. This operation is conceptually simple and is a good
candidate for inclusion in digital paint or other interactive systems, where
near real-time performance is required.

We derive a high-speed raster algorithm based on the decomposition of
a 2D rotation matrix into the product of three shear matrices. Raster
shearing is done on a scan-line basis, and is particularly efficient. A useful
shearing approximation is to average adjacent pixels, where the blending
ratios remain constant for each scan-line. Taken together, our technique
(with anti-aliasing) rotates rasters faster than previous methods. The
general derivation of rotation also sheds light on two common tech-
niques: small-angle rotation using a two-pass algorithm, and three-pass
90-degree rotation. We also provide a comparative analysis of Catmull
and Smith’s method (1980) and a discussion of implementation strategies
on frame buffer hardware.

1This paper revises and updates the journal article (Paeth, 1986a), which first described
general raster rotation using three shearing passes. Minor errors have been corrected, the
references have been augmented, and an addendum has been included, which provides
additional background and application notes.

I I I .6II I .6II I .6II I .6II I .6

180

III.6 A FAST ALGORITHM FOR GENERAL RASTER ROTATION

GRAPHIC GEMS I Edited by DAVID KIRK 180

Statement of the ProblemStatement of the ProblemStatement of the ProblemStatement of the ProblemStatement of the Problem
A general 2D counterclockwise rotation of the point (x, y) onto (x′, y′)
by angle theta is performed by multiplying the point vector (x, y) by the
rotation matrix

M =

cosθ –sinθ
sinθ cosθ













The matrix is orthogonal: its inverse is its transpose, rows and columns
are unit vectors, and the determinant is one. To rotate a raster image, we
consider mapping the unit cell with center at location (i, j) onto a new
location (i′, j′).

The image of the input cell on the output grid is a cell with (usually) a
nonintegral center, and with a rotation angle theta (θ). We adopt a
“box-filter” sampling criterion, so the value of the output pixel is the sum
of the intensities of the covered pixels, with each contributing pixel’s
intensity weighted in direct proportion to its coverage (see Fig. 1). Note
that the output pixel may take intensities from as many as six input
pixels. Worse, the output pixel coverage of adjacent input pixels is
nonperiodic; this is directly related to the presence of irrational values in
the rotation matrix. Clearly, the direct mapping of a raster by a general
2 × 2 matrix is computationally difficult: many intersection tests result,
usually with no coherence or periodicity to speed program loops.

Figure 1. Rotation by raster sampling.

181

III.6 A FAST ALGORITHM FOR GENERAL RASTER ROTATION

GRAPHIC GEMS I Edited by DAVID KIRK 181

Rotation through ShearingRotation through ShearingRotation through ShearingRotation through ShearingRotation through Shearing
Now consider the simplest 2 × 2 matrices that may operate on a raster.
These are shear matrices:

x shear =

1 α
0 1













y shear =

1 0
β 1












.

Shear matrices closely resemble the identity matrix: both have a
determinant of one. They share no other properties with orthogonal
matrices. To build more general matrices, we form products of shear
matrices—these correspond to a sequence of shear operations on the
raster. Intuitively, consecutive shearing along the same axis produces a
conforming shear. This follows directly:

1 a

0 1












1 a′
0 1













=
1 a + a′
0 1












.

Thus, shear products may be restricted to products of alternating x
and y shears, without loss of generality. The product of three shears
gives rise to a general 2 × 2 matrix in which three arbitrary elements may
be specified. The fourth element will take on a value that ensures that the
determinant of the matrix remains one. This “falls out” because the
determinant of the product is the product of the determinants (which are
always one for each shear matrix). Orthogonal 2 × 2 matrices also have
unit determinants, and may thus be decomposed into a product of no
more than three shears:

1 α
0 1













1 0
β 1













1 γ
0 1













=
cosθ –sinθ
sinθ cosθ












.

Solving the general equation, we have α = y = (cos θ – 1)/sin θ; β =
sin θ. The first equation is numerically unstable near zero, but can be
replaced by substituting the half-angle identity for the tangent:

tan θ

2
 = sinθ

1+ cosθ
 = 1– cosθ

sinθ

182

III.6 A FAST ALGORITHM FOR GENERAL RASTER ROTATION

GRAPHIC GEMS I Edited by DAVID KIRK 182

yielding α = γ –tan(θ/2). Counterclockwise rotation by θ is thus the
shear product:

1 –tanθ /2
0 1













1 0
sinθ 1













1 –tanθ /2
0 1












.

Notice that β and α have opposing signs for nonzero θ. As will be shown
later, β = –2α/(1 + α2). Program code to shear and update the point
(x,y) with (x′,y′) is then:

x shear y shear
x′ ← x – tan(θ/2) × y; x′ ← x;
y′ ← y; y′ ← y + sin(θ) × x;

When the output vector replaces the input, x ≡ x′ and y ≡ y′, so the
second line of the sequence may be optimized out. Consecutive shears
yield sequential program steps. Thus, a three-shear rotation is achieved
by the three program statements:

x ← x + α × y; x shear (1)

x ← y + β × y; y shear (2)

x ← x + α × y; x shear (3).

With θ ≈ 0, Cohen (Newman and Sproull, 1979) uses steps (1) and (2)
to generate circles by plotting points incrementally. His derivation begins
by choosing α and β to approximate the conventional rotation matrix
and then points out that by reassigning x + α × y to the original variable
x in (1), and not to a temporary value x´, the determinant becomes one,
and the circle eventually closes. Our analysis demonstrates formally why
this is true: rewriting the variables constitutes a shear, and the sequence
of shears always maintains a determinant of one. Augmenting the code
with line (3) would convert the two-axis shear in a true rotation: the circle
generator would then produce points rotated through a constant angle
relative to the preceding point. This is important should the algorithm be

183

III.6 A FAST ALGORITHM FOR GENERAL RASTER ROTATION

GRAPHIC GEMS I Edited by DAVID KIRK 183

used to produce circle approximations as n-gons (and not point draw-
ings), where θ = 360/n is no longer small.

Raster ShearingRaster ShearingRaster ShearingRaster ShearingRaster Shearing
Raster shearing differs from point transformation in that we must con-
sider the area of the unit cell that represents each pixel. Fortunately, the
shear operation modifies the pixel location with respect to only one axis,
so the shear can be represented by skewing pixels along each scan-line.
This simplifies the intersection testing that must go on to recompute the
intensity of each new output pixel.

In general, the unit square P(i, j) on row i is rewritten as a unit
parallelogram with side of slope 1/α on row i, with the former displaced
by α × i pixel widths. This displacement is not usually integral, but
remains invariant for all pixels on the ith scan-line. For illustration and

Figure 2. Raster shearing along the x-axis.

Figure 3. The parallelogram approximation.

184

III.6 A FAST ALGORITHM FOR GENERAL RASTER ROTATION

GRAPHIC GEMS I Edited by DAVID KIRK 184

implementation, it is represented as the sum of an integral and a frac-
tional part (f in Fig. 3; skewf on p. 187). Those pixels covered by this
parallelogram are written with fractional intensities proportional to their
coverage by the parallelogram. The sum of all these pixels must equal the
value of the original input pixel, as they represent this input pixel after
shearing.

We next approximate this parallelogram of unit area with a unit square.
Placing the edges of the square through the midpoints of the parallelo-
gram, we produce an exact approximation when the parallelogram covers
two pixels, but not when it covers three. This approximation is the basis
for our rotation algorithm. As we shall see, it can be implemented as a
very efficient innermost pixel blending loop, thus offsetting the cost of
making three shearing passes, as compared with previous techniques,
which employ two less efficient (though more general) passes.

Based on this filtering strategy, we consider two approaches to rota-
tion. First, we seek angles θ for which the filtering is exact. Second, we
analyze the filter for arbitrary values of θ where the filter may not be
exact.

Rational RotationRational RotationRational RotationRational RotationRational Rotation
Filtering is exact when all parallelograms overlap no more than two
pixels. This will always occur when the shear offset is of length 1/n,
because a periodic cycle of n parallelograms results in which each spans
exactly two pixels. Choosing this ideal filter for the first and third passes,
we derive the second pass shear value. This requires the general solution
of β in terms of α. Since α = –tan(θ/2), θ = –2 tan–1α as tan – x =
–tan x . Substitution yields β = sin α = –sin(2 tan–1α); similarly
sin – x = –sin x. Given a right triangle of adjacent side 1 and opposite
side α it is clear that

tan–1 α = sin–1 α

α 2 + 1
 = cos–1 1

α 2 + 1
.

Also, sin(2 θ) = 2 sin θ cos θ . By expressing arctangent successively in

185

III.6 A FAST ALGORITHM FOR GENERAL RASTER ROTATION

GRAPHIC GEMS I Edited by DAVID KIRK 185

terms of arcsine and arccosine, we have

β = –2 sin sin–1 α

α 2 + 1









 cos cos–1 1

α 2 + 1









 = –2α

1+ α 2 .

In the case at hand, we choose α in the form

–1
n yielding ,

β = 2n

1+ n2 .

An all-integer case occurs when setting n = 1, which yields α = –1,
β = 1. Thus, rotations with θ = 90° are exact, a feature not possible
when using the two-pass approach of Catmull-Smith. Because no frac-
tional pixel values are generated, rotation by 90 degrees may be coded as
a high-speed three pass “shuffle” for use on either software or hardware
(Kornfeld, 1987).

We may consider rotation by rational values generally, as these specific
forms allow “loop unrolling” for fast rotations. β pass generates small
errors on a periodic basis. When α and β are small rationals of the form
i/j, then the shear values (which are used as blending coefficients by our
algorithm) will recur every j scan-lines. In particular, the jth scan-line
will have no fractional remainder and can be “blitted” directly into the
output buffer. Solving for general rational values of α and β, we find that
α = –i/j and β = 2ij/(i2 + j2). These tabulated values give rise to
highly efficient filters, with approximation errors minimized (see Fig. 4).

Graphically, these rotation angles are related to solutions of Pythago-
ras’ theorem i2 + j2 = k2 wherein the coordinates of select input pixels
and matching output pixels remain integral. As an example, rotation by

α β θ

–1 1 90.00
–3/4 24/25 73.74
–2/3 12/13 67.38
–1/2 4/5 53.13
–1/3 3/5 36.87
–1/4 8/17 28.07
–1/5 5/13 22.62

Figure 4. Rotation by a rational shear.

186

III.6 A FAST ALGORITHM FOR GENERAL RASTER ROTATION

GRAPHIC GEMS I Edited by DAVID KIRK 186

θ = 53.13° maps all input pixels at coordinates (5i, 5j) onto output
pixels at (3i, 4j) exactly. (See also “Circles of Integral Radius on Integer
Lattices” beginning on page 57.)

Arbitrary RotationArbitrary RotationArbitrary RotationArbitrary RotationArbitrary Rotation
We now consider arbitrary choices of θ and then the precision of the
rotation. For θ > 90°, our shear parallelogram may span four pixels and
the filtering rapidly breaks down. Based on the four-fold symmetry of a
raster, we may restrict our attention to rotations of no more than 45
degrees, where our approximation has worst-case performance (because
α and β grow monotonically with 0 < θ < 90°). Here α = 1 – 2 ≈
–.4142; and β = 2 / 2 ≈ .7071. The second β pass is the most error-
prone.

Probabilistically, its filter is exact 29.3% of the time. Otherwise, the
parallelogram spans three pixels, and the error, as a function of fractional
pixel skew, grows quadratically to a cusp, reaching its worst-case error
when the parallelogram is symmetric about the output pixel. This error is

 2 /8 or 17.7%. However, the sampling tile shifts as the shear value
changes with each scan-line, so average degradation to the sheared raster
is computed by integrating over parallelograms of all possible skew.
Solving the equations, we find that the worst-case shear filter approxi-
mates intensities to within 4.2% of the actual intensity. For rotations less
than 45 degrees, the approximation is even closer, as the probability of

Figure 5. Approximation error.

187

III.6 A FAST ALGORITHM FOR GENERAL RASTER ROTATION

GRAPHIC GEMS I Edited by DAVID KIRK 187

the parallelogram spanning three pixels decreases. Where it does, the
error terms are also smaller.

The nature of the error is to concentrate intensities from a center pixel,
whereas the true box-filter approximation calls for contributing coverages
from two neighboring pixels. Thus, the approach “peaks” the data: the
nature of the degradation is not random. Further, a reasonable implemen-
tation of the filter guarantees that when any scan-line is skew-sheared by
a fractional amount, the contributing intensities of each input pixel sum
to 1.0—the filter parallelograms never overlap. If we consider the sum of
the pixel intensities along any scan-line, this sum remains unchanged
after the shear operation. Thus, the algorithm produces no visible shifts
in intensity and introduces no “holes” during rotation—all pixel flux is
accounted for. The only rotation artifacts discernible appear with high-
frequency data (such as lines of single pixel width), and even then only
after magnification. This property is shared generally with rotation and
translation algorithms, which must resample such “sharp” rasters onto
nonintegral pixel boundaries.

ImplementationImplementationImplementationImplementationImplementation
Scan-line shearing is approximated by a blending of adjacent pixels. In
the following code segment, the pixmult function returns a pixel scaled
by a value skewf, where 0 < skewf < 1 is a constant parameter for all
width passes through the innermost loop.

procedure xshear(shear, width, height)
begin

for y ← 0 to height–1 do begin
skew ← shear x (y + 0.5);
skewi ← floor(skew);
skewf ← frac(skew); (see addenda)
oleft ← 0;
for x ← 0 to width – 1 do begin

pixel ← P[width – x, y];
left ← pixmult(pixel, skewf); pixel = left + right
pixel ← pixel – left + oleft; pixel – left = right

188

III.6 A FAST ALGORITHM FOR GENERAL RASTER ROTATION

GRAPHIC GEMS I Edited by DAVID KIRK 188

P[width – x + skewi, y] ← pixel;
oleft ← left;
endloop;

P[skewi, y] ← oleft;
endloop;
end

function pixmult(pix, frac)
begin

pixr ← pixr × frac
pixg ← pixg × frac
pixb ← pixb × frac
end.

This operation is a shearing algorithm for the x-axis; it shears a raster
of size (width, height) by the value present in shear, so the data matrix P
must be of sufficient width to accommodate the shifted output data. Note
that only width output entries are written, so the skewed output line may
be written to frame buffer memory modulo the frame buffer scan-line
width, thus requiring no additional memory but; complicating the specifi-
cation of data to the three shear passes. A virtual frame buffer implemen-
tation, which provided a notion of “margins” to active picture detail, can
maintain this offset information implicitly.

A shear operation always has an axis of shear invariance (it is in fact an
eigenvector). In this implementation, the axis is the pixel boundary below
the final row of pixel data at a distance height. This gives rise to rotation
about the interstices between pixel centers. To rotate rasters about pixel
centers, the 0.5 half-pixel offset may be removed.

The code splits each pixel into a left and right value using one
multiply per pixel; left and right always sum exactly to the original pixel
value, regardless of machine rounding considerations. The output pixel is
then the sum of the remainder of the lefthand pixel, plus the computed
fractional value for the present (righthand) pixel. The pixmult function
reduces to a fractional multiply or table look-up operation with
monochromatic images. More generally, it may operate on an aggregate
pixel, which might contain three color components or an optional cover-
age factor (Porter and Duff, 1984). Because read and write references to

189

III.6 A FAST ALGORITHM FOR GENERAL RASTER ROTATION

GRAPHIC GEMS I Edited by DAVID KIRK 189

P occur at adjacent pixel locations during the course of the innermost
loop, pixel indexing can be greatly optimized.

On machines lacking hardware multiply, code to shear a large (512 ×
512) image may build a multiply table at the beginning of each scan-line
and then use table look-up to multiply. By skew symmetry, x-shearing of
line –n and line n are identical, save for shear direction, so one table
may be used for two scan-lines, or for every 1024 pixels. With a pixel
consisting of three 8-bit components, the table length is 256, and table
fetches will exceed table loads by a factor of 12. Since the table can be
built with one addition per (consecutive) entry, its amortized cost per
look-up is low, and decreases linearly with raster size.

Many frame buffers now incorporate integer multiply hardware, often
targeted to pixel blending applications (The Adage/Ikonas frame buffers
at Waterloo’s Computer Graphics Laboratory provide a 16-bit integer
multiply in hardware). This speeds the evaluation of the pixel blending;
the majority of the inner-loop overhead is in (un)packing the 24-bit RGB
pixel to provide suitable input for the multiplier. Fortunately, the addition
used to complete the blend may be done as a 24-bit parallel add, because
the values to be summed, left and right, have been scaled by frac and
1-ffrac respectively. Thus, the blending operation is closed, and no carry
can overflow from one pixel component into the next.

Finally, the shear code may more generally be used to introduce spatial
translation of the raster. By introducing an output offset in the shear
code, a BitBlt-style operation (Ingalls, 1978) may be included at no extra
cost. In this setting, skewi and skewf would have integral and fractional
offsets added to them to accommodate the lateral displacement of the
raster. Displacement during data passes two and three provides arbitrary
displacement on the plane, with orthogonal specification of the displace-
ment parameters.

More generally, when the code is incorporated into a larger package,
which provides arbitrary (affine) matrix operations on a raster, the com-
posite of all intermediate image transformations are represented in one
matrix. This avoids unnecessary operations to the image. Eventually, this
matrix is decomposed into three operations: scaling, rotation, and shear-
ing (plus an optional translation if a 3 × 3 homogeneous matrix is used).
The shearing, rotation, and possible translation operations may be gath-
ered into one three-shear operation. The scale pass prefaces the rotation

190

III.6 A FAST ALGORITHM FOR GENERAL RASTER ROTATION

GRAPHIC GEMS I Edited by DAVID KIRK 190

if it scales to a size larger than 1 : 1; otherwise it follows the rotation. This
maximizes image quality and minimizes data to the shear (and possibly
rotate) routines. Other four pass scale/shear sequences are discussed in
the literature (Weiman, 1989).

ComparisonsComparisonsComparisonsComparisonsComparisons
As with the Catmull-Smith approach, the algorithm may be implemented
as a pipeline for real-time video transformation. Both approaches require
two “rotators” to transpose the data entering and leaving the second
scan-line operator, since this step requires data in column (and not row)
order.

Most two-pass warps are described in terms of separable functions on
x and y (Smith, 1989). By way of comparison, they may be modeled by
the two-matrix transformation

x′
y′













=
1 0

tanθ secθ












cosθ –sinθ
0 1













x

y











.

These slightly more general matrices perform a simultaneous shear and
scale along one axis, while leaving the second axis unchanged. This
approach saves one data pass, but incurs the penalty of more complex
scan-line sampling. Moreover, in two-pass scale-invariant rotation all
pixels undergo a cos θ minification and restoring sec θ spatial magnifica-
tion. Thus, for intermediate values represented in integer arithmetic
(frame buffer pixels), there is a small penalty in roundoff error.

Finally, because sample pixels are both sheared and scaled, no pixel-
to-pixel coherence of fractional sampling location exists. Thus, each pixel
must be sampled at two fractional locations, doubling the number of pixel
(aggregate RGB) multiplies for each pass. Hand analysis of our microcode
showed that this is already the dominant operation in the pixel loop.
Finally, the Catmull-Smith approach must additionally recompute the
fractional sample points for each next pixel or approximate their location
using fixed-point arithmetic. In our implementation, fractional sampling
points are constant per scan-line, and are calculated exactly in floating
point at the beginning of each line.

191

III.6 A FAST ALGORITHM FOR GENERAL RASTER ROTATION

GRAPHIC GEMS I Edited by DAVID KIRK 191

Compared generally to other work, our algorithm finds application
where a generalized BitBlt operation is needed to perform rotation and
translation efficiently. More complex pixel sampling passes may justify
their added expense in allowing for generalized rotation operations, such
as Krieger ’s modified two-pass approach (Krieger, 1984) used to perform
3D rotation with perspective transformation, useful in texture mapping.

ConclusionsConclusionsConclusionsConclusionsConclusions
The technique outlined here performs arbitrary high-speed raster rotation
with anti-aliasing and optional translation. The mathematical derivation
guarantees scaling invariance when rotating. The implementation strategy
allows for particularly fast operation, while minimizing the approximation
error. This algorithm is a powerful tool in the repertoire of digital paint
and raster manipulation systems. Coupled with state-of-the-art raster
scaling techniques, it can transform an input raster by an arbitrary 2 × 2
transformation matrix in near real time.

Addenda: HistoryAddenda: HistoryAddenda: HistoryAddenda: HistoryAddenda: History
The shear-matrix notation and associated code optization sheds light on
the ”register saving technique” which is now an oft-repeated bit of
Computer Graphics lore. It is almost indisputable that the first implemen-
tation was MIT. An entry from “HAKMEM” (Beeler et al., 1972) is
excerpted here:

Item 149 (Minsky)

Here is an elegant way to draw almost circles on a point-plotting display.
CIRCLE ALGORITHM:

NEW X = OLD X – e*OLD Y

NEW Y = OLD Y + e*NEW(!)X

This makes a very round ellipse centered at the origin with its size deter-
mined by the initial point.

192

III.6 A FAST ALGORITHM FOR GENERAL RASTER ROTATION

GRAPHIC GEMS I Edited by DAVID KIRK 192

. . . The circle algorithm was invented by mistake when I tried to save one
register in a display hack!
. . . [It is] exciting to have curves, and I was trying to get a curve display
hack with minimal instructions.

The earliest use of triple shear matrices is much older. Gauss paired
one spatial shear with each of the three physical processes that occur at
the boundaries and interior of each element in an optical system: refrac-
tion, transfer (across the new media), refraction (Blaker, 1971). Ironically,
his application was in ray tracing!

Circle DrawingCircle DrawingCircle DrawingCircle DrawingCircle Drawing
This algorithm updates the circle-drawing routine cited above. In this
guise a circle of radius r located at the origin is represented by the initial
point (r, 0) with subsequent points formed iteratively by applying succes-
sive triple shears. This formulation yields a radius vector of demonstrably
invariant length, thus assuring the creation of true circles. The previous
two-pass method maintains a constant swept area between successive
radii as a consequence of unit system determinant. The locus of points
generated therefore describes ellipses as a consequence of two of Kepler ’s
laws of motion: planets move along elliptical orbits and sweep out regions
of constant area per unit time. Closure is thus guaranteed, albeit with a
residual eccentricity. The three-pass trigonometric matrix formulation
describes rotation by arbitrary constant angle. Thus, the revised algo-
rithm may be used for the efficient construction of arbitrary n-gons in
which no trigonometric functions appear within the innermost code loop.

When representing a circle as a polygon of large n the matrix product
(XYX)n represents all shears constituting one complete cycle. Therefore,
this product is the identity matrix and we may permute any run of 3n
products cyclically. Also, matrix products associate, thus allowing arbi-
trary grouping. In particular, the product may be written as (Y(XX))n.
This reduces the number of shears to two by summing the off-diagonal
values for the consecutive X matrices, yielding (YX′)n as a valid two-pass
technique for closed curve generation. By Taylor expansion we have

X′ = 2X = –2 tan(θ /2) = – θ – θ 3/12 + 0(θ 5)
Y′ = Y= sin(θ) = θ – θ 3/6 + 0(θ 5).

For θ ≈ 0 zero we omit all but the linear terms and thus rederive Minsky’s

193

III.6 A FAST ALGORITHM FOR GENERAL RASTER ROTATION

GRAPHIC GEMS I Edited by DAVID KIRK 193

original circle generator:

1 –θ
θ 1 –θ2













=
1 0
θ 1













1 –θ
0 1












.

Note that the coordinates for circumferential points are no longer gener-
ated explicitly, but are now implicit within the aggregate X′ shear. Thus,
the two-pass method yields circles with overall X shear: ellipses with
major and minor axes not parallel to the Cartesian ones. The two-pass
technique maintains high accuracy because it provides an approximation
correct to the quadratic term while employing only linear operations.

Font RenderingFont RenderingFont RenderingFont RenderingFont Rendering
The three-pass algorithm is well-suited for the rendering of bitmapped
fonts at various rotations and emphases (normal, bold, italic). Most often,
glyph libraries are hand-tuned for specific sizes making a fast rotator
providing anti-aliasing (but lacking scaling) an ideal choice. Raster-based
character italicization is most often done using scan-line skewing (x-axis
shearing) by the discrete values 0.25 or 0.2. These values correspond to a
single pixel scan-line displacement occurring every fourth or fifth scan-line
within the character string, respectively. When combined with rotation,
this skew matrix S of arbitrary x-shear value prefaces the three-pass
rotation as we wish to rotate an italic font, not the converse—the
symmetry of the three-pass formula is destroyed and matrix multiplica-
tion does not commute. For the new XYXS we may immediately regroup
the trailing x-shears to form XYX′ The complete operation utilizes shear
matrix products in their most general capacity.

Similarly, glyph emboldening is an operation that occurs prior to the
first shear pass. Simple emboldening merely brightens pixel values. When
made implicit to the operation of the scan-line code, emboldening in-
creases the fractional pixel coverage value skewf, thereby thickening the
vertical edges of the original character set. With imagination, related
effects such as haloing or shadowing can also take place concurrently.

Generalized BitBltGeneralized BitBltGeneralized BitBltGeneralized BitBltGeneralized BitBlt
The entire pseudo-code algorithm can be rewritten using incremental
pointer arithmetic (C-language “el = *ptr + + ”) as all memory reads and

194

III.6 A FAST ALGORITHM FOR GENERAL RASTER ROTATION

GRAPHIC GEMS I Edited by DAVID KIRK 194

writes are to consecutive pixels. This is a consequence of the overall
scale invariance, which means no rate differentials exist on the input and
output data streams that otherwise give rise to the bottlenecking and
fold-over problems of generalized warping (Wolberg and Boult, 1989).
The input and output pointers may share the same 2D pixel buffer space,
thus allowing in situo rotation with impunity: the output pointer will
never overwrite an input pixel not yet visited. Frame buffer algorithms for
two-pass magnification and minification that share this valuable property
have recently been discussed (Heckbert, in press). A public-domain C-lan-
guage implementation of xshear in both fixed and floating point which
accommodates out-of-core rasters of arbitrary spatial and pixel dimension
is present in the IM Raster Toolkit (Paeth, 1986a, 1986b, 1987).

Advanced Anti-AliasingAdvanced Anti-AliasingAdvanced Anti-AliasingAdvanced Anti-AliasingAdvanced Anti-Aliasing
Text and other objects may also be sharpened by substituting more
general aliasing filters in the fractional coverage test. The present imple-
mentation blends neighboring input pixels together as a linear function of
the fractional pixel distance by which the output box overlaps both inputs
—the spatial skewf value directly drives the blending coefficients. This
simple coverage sampling yields a triangular (Bartlett) filter window—the
convolution of the input and output boxes. Good results are also afforded
using the window created by J. von Hann (termed Hanning or raised
cosine). Under this window the fractional pixel displacement along the
domain [0..1) maps onto the range [0..1) in a sinusoidal fashion (Johnson,
1989). As the inner loop considers only left and right neighbors, a
three-point version of the filter yields the function y =

1
2
 (1 – (cos πx),

which biases the blending weight in the direction of that input pixel
closest to the fractional x location (page 187), sharpening the data.

It is worth reiterating that the fractional offset (the skew between input
and output pixel edges) remains constant along an entire scan-line be-
cause the algorithm is scale-invariant. Thus, the weight-adjustment com-
putation takes place outside the innermost loop. Typically, the function is
tabulated prior to the entire algorithm and is both stored and indexed in
integer precision. This filtering upgrade therefore adds one table look-up
per scan-line, which occurs when the assignment to skewf is made on the
fourth line of the pseudo-code fragment. Related filters such as that by

195

III.6 A FAST ALGORITHM FOR GENERAL RASTER ROTATION

GRAPHIC GEMS I Edited by DAVID KIRK 195

Figure 6. Filter windows.

R. W. Hamming introduce negative blending coefficients, which can
complicate operation on pixel fields, which are typically treated as un-
signed integers of small precision. Higher-order filters additionally re-
quire pixel sampling at more than merely adjacent pixels and rapidly
increase the complexity of the inner loop.

Further WorkFurther WorkFurther WorkFurther WorkFurther Work
Data structures modeling “virtual” frame buffers (Higgins and Booth,
1986) allow the implicit representation of scan-line skew, thereby reduc-
ing storage. This has greatest benefit when rendering narrow objects such
as character strings at values of θ ≈ 45°. General affine transformations
are possible when combining rotation with rectilinear scaling. As neither
method requires fractional (phase) recomputations on a per-pixel basis,
highly simplified 1D filtering may be used throughout. This approach
requires more than three passes, making an algorithmic test for image
degradation desirable. The use of matrix products in representing spatial
operations on rasters is desirable and should generally be encouraged.

196

III.7 USEFUL I-TO-I PIXEL TRANSFORMS

GRAPHICS GEMS I Edited by ANDREW S. GLASSNER 196

III.7III.7III.7III.7III.7
UUUUUSEFULSEFULSEFULSEFULSEFUL 1- 1- 1- 1- 1-TOTOTOTOTO-1-1-1-1-1PPPPPIXEL TRANSFORMSIXEL TRANSFORMSIXEL TRANSFORMSIXEL TRANSFORMSIXEL TRANSFORMS

Dale SchumacherSt Paul, Minnesota

Many useful kinds of image enhancements can be achieved with 1-to-1
pixel transforms. These are transforms where the new value of a pixel is
strictly a function of the old value of that pixel. The digital equivalents of
most photographic darkroom techniques fall into this category. This
paper discusses some of the more useful 1-to-1 pixel transforms and
illustrates their effect on a sample image.

In this discussion, the images are composed of monochrome grayscale
pixel values with a floating point range of [0.0, 1.0]. The transforms will
usually be shown as an input-output relationship graph with the original
pixel value on the horizontal axis as the input, and the new pixel value on
the vertical axis as the output.

The simplest transform is a null transform, where the new pixel has the
same value as the old pixel. If the transform function is called f(x), then
the null transform is simply f(x) = x. The corresponding input-output
graph is Fig. 1. The next simplest transform is photo-inversion, where the
luminance values are reversed, similar to a photographic negative. The
function for photo-inversion is f(x) = 1.0 – x. Figure 2 shows the
input-output graph.

A quantization transform, also called posterization, is accomplished by
dividing the input values into discrete ranges and assigning the same
output value to all pixels in the range. The output values are usually
chosen to create a stair-step effect. In the extreme case, with only two

197

III.7 USEFUL I-TO-I PIXEL TRANSFORMS

GRAPHICS GEMS I Edited by ANDREW S. GLASSNER 197

Figure 1. Null transform.

Figure 2. Photo-inversion transform.

198

III.7 USEFUL I-TO-I PIXEL TRANSFORMS

GRAPHICS GEMS I Edited by ANDREW S. GLASSNER 198

Figure 3. Quantization transform.

ranges (above or below a certain threshold value), this results in all input
values mapping to either 0.0 or 1.0. Figures 3, 4, and 5 illustrate the
effect of a five-step quantization based on the transform function

f x() =

0.00 0.0 ≤ x < 0.2
0.25 0.2 ≤ x < 0.4
0.50 0.4 ≤ x ≤ 0.6 .
0.75 0.6 < x ≤ 0.8
1.00 0.8 < x ≤1.0
















A contrast enhancement transform alters the slope of the transform
function. Steeper slope results in greater contrast. Often, when an image
has poor contrast, there is relatively little picture information at the high
and/or low end of luminance range. A very useful tool for finding this
clustering of information across the luminance range is a luminance
histogram. This histogram shows the relative number of pixels in the
image at each luminance value. Peaks on this graph indicate significant

199

III.7 USEFUL I-TO-I PIXEL TRANSFORMS

GRAPHICS GEMS I Edited by ANDREW S. GLASSNER 199

Figure 4. Original image.

 Figure 5. Transformed image.

200

III.7 USEFUL I-TO-I PIXEL TRANSFORMS

GRAPHICS GEMS I Edited by ANDREW S. GLASSNER 200

Figure 6. Original Image

Figure 7. Original histogram

201

III.7 USEFUL I-TO-I PIXEL TRANSFORMS

GRAPHICS GEMS I Edited by ANDREW S. GLASSNER 201

Figure 8. Contrast enhancement transform.

numbers of pixels with nearly the same luminance. Figure 7 shows a
luminance histogram for the sample image. A significant improvement in
the image through increased contrast may be gained by setting all values
below some lower bound to 0.0, all values above some upper bound to
1.0, and all values between the bounds to a linear ramp of values from 0.0
to 1.0. These upper and lower bounds are chosen by examining the
histogram for relatively lower pixel counts near the high and low ends of
the luminance range. Figure 8 shows the transform chosen, with a lower
bound of 0.12 and an upper bound of 0.82. The general form of this
transform function is

f x() =

0.0
x − low()

1.0






/ high − low()

Figure 9 shows the transformed image, and Fig. 10 shows the his-
togram of the transformed image. The histogram shows that the bulk of

x ≤ low
low < x < high.
x ≥ high

202

III.7 USEFUL I-TO-I PIXEL TRANSFORMS

GRAPHICS GEMS I Edited by ANDREW S. GLASSNER 202

Figure 9. Transformed image.

Figure 10. Transformed histogram.

203

III.7 USEFUL I-TO-I PIXEL TRANSFORMS

GRAPHICS GEMS I Edited by ANDREW S. GLASSNER 203

the image information is now spread more evenly across the luminance
range.

The overall “brightness” of an image can be adjusted with a gamma
correction transform. This is a nonlinear transform, which relates closely
to the effects of the “brightness” control on a CRT or variations in
exposure time in photography. The general form of the gamma correction
function is

f(x) = xGAMMA .

A GAMMA value of 1.0 produces a null transform. Values greater than 1.0
darken the image and values between 0.0 and 1.0 lighten the image. In
the examples below, Figs. 11, 12, and 15 show a gamma correction of
0.45 and Figs. 13, 14 and 16 show a gamma correction of 2.2. His-
tograms of the transformed images are included to show the effect this
transform has in the distribution of intensities within an image. Some-
times an output device like a CRT is described as having a gamma of 2.2.
This indicates the amount of darkening that will occur when the device
displays an image. To account for this, you can apply a gamma correction
that is the reciprocal of the gamma of the output device to your image
before it is displayed. For a device with a 2.2 gamma, the correction is
0.45.

Arbitrary 1-to-1 transforms can also create useful effects that have no
photographic equivalents. Some applications, such as medical imaging,
find great utility in a variety of “banding,” techniques, which can be used
to highlight particular image features. Two banding transforms are shown
here. The first transform is a sawtooth function, which divides the input
range into a series of full-range output sweeps. Each sawtooth acts as a
dramatic contrast enhancement transform of the corresponding input
range. This gives consistently high slope in the transform function and
thus high contrast throughout the image, with a wrap-around effect from
white to black at the boundary between ranges. The sawtooth transform
function, in general form, looks like

f(x) = frac(x × ranges).

204

III.7 USEFUL I-TO-I PIXEL TRANSFORMS

GRAPHICS GEMS I Edited by ANDREW S. GLASSNER 204
Figure 12. 0.45 gamma histogram.

Figure 11. 0.45 gamma correction transform.

205

III.7 USEFUL I-TO-I PIXEL TRANSFORMS

GRAPHICS GEMS I Edited by ANDREW S. GLASSNER 205

 Figure 13. 2.2 gamma correction transform.

 Figure 14. 2.2 gamma histogram.

206

III.7 USEFUL I-TO-I PIXEL TRANSFORMS

GRAPHICS GEMS I Edited by ANDREW S. GLASSNER 206

 Figure 15. 0.45 gamma transformed image.

 Figure 16. 2.2 gamma transformed image.

207

III.7 USEFUL I-TO-I PIXEL TRANSFORMS

GRAPHICS GEMS I Edited by ANDREW S. GLASSNER 207

Figure 17. Saw-tooth transform.

 Figure 18. Transformed image.

208

III.7 USEFUL I-TO-I PIXEL TRANSFORMS

GRAPHICS GEMS I Edited by ANDREW S. GLASSNER 208

 Figure 19. Arbitrary band transform.

 Figure 20. Transformed image.

209

III.7 USEFUL I-TO-I PIXEL TRANSFORMS

GRAPHICS GEMS I Edited by ANDREW S. GLASSNER 209

The second transform is an arbitrary series of graybands chosen to
highlight specific input luminance ranges. This type of transform typically
is defined as a look-up table (particularly if the input is actually discrete
luminance values rather than a full floating point range) or a series of
highlight ranges. The function shown is

f x() =
1.0 0.28 < x < 0.50
0.5 0.82 < x < 0.94
0.0 else.










The use of a histogram helps identify important relationships between the
image and its luminance distribution. This information can then be used
to guide the application of 1-to-1 transforms for maximum improvement
of the original image.

See also 1-to-1 Pixel Transforms Optimized through Color-Map
Manipulation (270)

210GRAPHICS GEMS I Edited by ANDREW S. GLASSNER 210

III.8 ALPHA BLENDINGIII.8III.8III.8III.8III.8
AAAAALPHA BLENDINGLPHA BLENDINGLPHA BLENDINGLPHA BLENDINGLPHA BLENDING

Kelvin ThompsonNth Graphics, Ltd.Austin, Texas

Alpha blending works best when you premultiply color vectors with
alpha channels (Porter and Duff, 1984). Specifically, it is best to represent
the color (r, g, b) and coverage α with the color vector

(r ⋅ α,g ⋅ α,b ⋅ α,α).

Some example colors using this convention are as follows:

Color Vector

half red (0.5, 0, 0, 0.5)
full black (0, 0, 0, 1)
invisible (0, 0, 0, 0).

Suppose we want to composite two vectors A = (rA, gA, bA, αA) and
B = (rB, gB, bB, αB) into a new vector C = (rC, gC, bC, αC) with operator
op, that is, C = A op B. Then for each component color c [{r, g, b, α},
premultiplication allows us simply to write

cC = cAFA + cBFB ,

where FA and FB are fractions determined by the operator op. Table 1
lists some useful alpha operators and their associated blending fractions.
The over operator makes a foreground image A occlude a background
image B. The in and out operators allow B to act as a matte for A: A is
visible only where allowed or disallowed by the alpha channel of B (the
color channels of B are not used). Atop is sometimes useful when B

211GRAPHICS GEMS I Edited by ANDREW S. GLASSNER 211

III.8 ALPHA BLENDING
Table 1. Alpha compositing operators.

should act as both background and matte for A. The remaining operators
are useful primarily for occasional special effects.

The α component of a color vector may describe two kinds of cover-
age: the transparency of the color, or the fraction of the pixel that the
color covers. The diagrams in Table 1 show the meanings of the operators
when α represents pixel coverage.

44FRAME BUFFERTECHNIQUES

215

IV.1 FRAME BUFFERS AND COLOR MAPS

GRAPHICS GEMS I Edited by ANDREW S. GLASSNER 215

IV.1IV.1IV.1IV.1IV.1
FFFFFRAME BUFFERS ANDRAME BUFFERS ANDRAME BUFFERS ANDRAME BUFFERS ANDRAME BUFFERS ANDCCCCCOLOR MAPSOLOR MAPSOLOR MAPSOLOR MAPSOLOR MAPS

Andrew S. GlassnerXerox MRCPalo Alto, California

A frame buffer is a piece of hardware often found in computer graphics
installations. The idea behind the frame buffer is that a picture may be
represented by a two-dimensional matrix of colors. This matrix is usually
implemented with fast random-access memory. The RAM itself is the
frame buffer, since it stores, or buffers, one frame of video information.
To display this frame on a CRT, the colors in the frame buffer are read to
the CRT’s input circuits in synchrony with the scanning beam. Thus, as
the electron guns in the tube sweep the face of the screen top-to-bottom,
left-to-right, a signal is arriving that specifies the color to be displayed at
each point.

In this scheme there is a one-to-one correspondence between screen
locations and memory locations. Individual elements in the frame buffer
are called pixels (a contraction of “picture element”), and since the
correspondence is so strong, the associated point on the screen is usually
called a pixel as well.

Typically, frame buffers organize their constituent pixels in a rectangu-
lar grid. Each pixel may therefore be identified by its address in a
Cartesian coordinate system as (x, y) (see Fig. 1). Common frame buffer
resolutions are 512-by-512 and 640-by-480 pixels. Frame buffers with
higher resolutions are also available for applications where the displayed
image will be large; for film applications one sometimes finds frame
buffers as large as 4096-by-4096. The advantage of more resolution is
finer control over small details in the final image. The disadvantage is
increased cost, both fiscally to buy the extra hardware, and temporally in
the extra computer time required to calculate the appropriate color for
each pixel.

216

IV.1 FRAME BUFFERS AND COLOR MAPS

GRAPHICS GEMS I Edited by ANDREW S. GLASSNER 216

 Figure 1. The shaded square indicates the same pixel in both devices.

The simplest form of pixel is a single number. The most common form
of frame buffers store one 8-bit byte at a pixel (allowing one to specify a
number from 0 to 255 inclusive). This number does not directly encode a
color; rather, it is an index into a list of colors called the color map. In
this example, the color map would contain 256 entries, one for each
possible value stored in the pixels. Each entry in the color map is
typically composed of three numbers. These indicate the red, green, and
blue intensities of the color associated with that entry.

Thus, when a picture is being scanned out to a CRT, the value in the
pixel about to be displayed is first fetched from the frame buffer, and then
used as an index into the color map. Out of the color map come the red,
green, and blue components of that color; these components are then fed
directly to the color guns in the CRT (see Fig. 2).

Figure 2. The highlighted pixel in the frame buffer indicates that color number 54 should
be displayed at the corresponding screen location. The color-map entry for index 54
contains the color (32, 20, 50), which is then displayed on the screen.

217

IV.1 FRAME BUFFERS AND COLOR MAPS

GRAPHICS GEMS I Edited by ANDREW S. GLASSNER 217

This technique allows an image to have up to 256 different colors. The
contents of the color map, not the pixel itself, determine which color is
associated with each of these 256 numbers. A common demonstration of
color maps is to turn a day scene into a night scene by leaving the values
in the pixels constant, but changing the color-map entries. For example,
imagine a picture of a farmhouse with the sky overhead, and suppose the
pixels in the sky region have color number 73. For the day scene, color
number 73 in the color map might be a light blue, but for the night scene,
color number 73 may be changed to dark blue or black. The number of
the color in the image didn’t change; only the description of the color to
which it referred changed.

Typical color maps contain 8, 10, or 12 bits to represent each of these
red, green, and blue components for each color.

A more expensive but also more powerful frame buffer may be built,
which allows each pixel to represent any color at all. Rather than storing
the index into a color map, each pixel directly stores the red, green, and
blue components of the color at that location. Thus each pixel contains
three pieces of data—as with the color map, the intensity of each of these
primaries typically is represented by 8, 10, or 12 bits. Thus, such a frame
buffer is typically 24, 30, or 36 bits deep at each pixel.

Often there is a color map associated with these frame buffers as well.
In this arrangement, there are actually three individual color maps, one
each for the red, green, and blue components of the image. When a pixel
is to be displayed, its three color components are retrieved from the
frame buffer. The red value is used as an index into the red color map to
determine a new intensity for the red component at that point; similar
look-ups are performed for green and blue (see Fig. 3). This allows one to
apply overall intensity changes to the image without directly affecting the
pixel values in the image. A common use of these color maps is to
implement gamma-correction, which compensates for the nonlinearity of
the display monitor.

Each layer of information in a frame buffer is called a plane (or
channel). Thus, the first form of frame buffers discussed above has but a
single plane (which is 8 bits deep), whereas frame buffers that store the
red, green, and blue components at each pixel are three planes deep. A
frame buffer may be constructed with an arbitrary number of planes at
each pixel. Typically these other planes hold information that varies from
pixel to pixel across the image, such as transparency (often called alpha),

218

IV.1 FRAME BUFFERS AND COLOR MAPS

GRAPHICS GEMS I Edited by ANDREW S. GLASSNER 218

Figure 3. Each of the three color planes holds an 8-bit index into its own color map.

or depth (often called z). Rather than use a single physical frame buffer
with many channels, one may use many smaller frame buffers. Sometimes
one hears references to “the alpha buffer” or “the depth buffer” of an
image, referring to the plane that contains that information, whether or
not it is physically located in the same frame buffer that holds the color
information for that image.

219

IV.2 READING A WRITE–ONLY MASK

GRAPHICS GEMS I Edited by ANDREW S. GLASSNER 219

IV.2IV.2IV.2IV.2IV.2
RRRRREADING AEADING AEADING AEADING AEADING AWWWWWRITE-ONLYRITE-ONLYRITE-ONLYRITE-ONLYRITE-ONLYWWWWWRITE MASKRITE MASKRITE MASKRITE MASKRITE MASK

Alan W. PaethUniversity of WaterlooWaterloo, Ontario, Canada

OverviewOverviewOverviewOverviewOverview
On many frame buffers the current display modes are contained in
hardware registers and not in read/write memory. Although a “shadow”
set of outboard memory might maintain these modes (including the
current pixel color and write mask) in some cases it is desirable to
ascertain the hardware state directly, as it represents the “truth.” The
following pseudo-code recovers the current hardware write mask in a
nondestructive fashion, thereby providing a useful diagnostic. The code
also serves as a start-up configuration test for bit plane depth in a manner
analogous to memory self-sizing as when booting an operating system. In
this case the write mask is set to the known value minus one (all bit
planes enabled) and the procedure is executed directly.

procedure setxy(x, y) set pixel location for future readpix and writepix
integer function readpix() return pixel (integer) from the latest setxy() location
procedure writepix(bits) write pixel (integer) to the latest setxy() location

220

IV.2 READING A WRITE–ONLY MASK

GRAPHICS GEMS I Edited by ANDREW S. GLASSNER 220

integer function getwritemask()
integers must contain as many bits as hardware pixels

begin
tmp, mask: integer; saved pixel, computed mask
ones, zeros: integer; two probe words
setxy(0, 0); to probe pixel at origin
tmp ← readpix(); save “original” value
writepix(– 1); write all ones through unknown mask
ones ← readpix(); recover ON bit planes
writepix(0); write zeros through unknown mask
zeros ← readpix(); recover OFF bit planes
writepix(tmp); fully restore origin
mask ← ones bit-xor zeros; WRITMASK BITS TOGGLED **IFF** ENABLED

an alternate operation is “bit-clear” i.e., “bit-and bit-invert”
return[mask]; return computed write mask
end

221

IV.3 A DIGITAL “DISOLVE” EFFECT

GRAPHICS GEMS I Edited by ANDREW S. GLASSNER 221

IV.3IV.3IV.3IV.3IV.3
AAAAA DIGITAL DIGITAL DIGITAL DIGITAL DIGITAL“D“D“D“D“DISSOLVE” EFFECTISSOLVE” EFFECTISSOLVE” EFFECTISSOLVE” EFFECTISSOLVE” EFFECT

Mike MortonHonolulu, Hawaii

Computer screens are looking more and more like movie screens—pre-
sentation and animation applications pan, zoom, and cut. Analog video
hardware under software control yields the best special effects, but
all-digital solutions in software can produce good results, too.

For instance, consider the problem of dissolving one image into an-
other. In the analog world, this is easy: just mix two images, bringing the
new image's intensity up while decreasing the old image’s. In the digital
world, color or grayscale images can be dissolved by computing a
weighted average of the old and new values for each pixel, then varying
the weighting from 0 to 100%, much as with analog video.

Dissolving monochrome images is a different problem—in the world of
binary pixels, there are no intermediate pixel values through which to
make a smooth transition. One solution is to copy the new image’s pixels
over the old ones in a pseudo-random order. This article presents a
machine-independent technique for this, with a partial case study of an
implementation for a single-monitor Macintosh. Carefully crafted assem-
bly code, directly manipulating video memory, can dissolve quite quickly.
For instance, a full-screen dissolve on a Macintosh SE takes only about
three seconds.

Randomly Traversing a Randomly Traversing a Randomly Traversing a Randomly Traversing a Randomly Traversing a 2D2D2D2D2D Array Array Array Array Array
Traversing a large number of screen pixels (an array, in effect) in
pseudo-random order is easier said than done. A first step is to reduce the
problem by numbering each pixel, starting at zero. If you can produce the

222

IV.3 A DIGITAL “DISOLVE” EFFECT

GRAPHICS GEMS I Edited by ANDREW S. GLASSNER 222

pixel numbers in random order, you can produce coordinate pairs in
random order, and bring the problem from two dimensions to one.

One simple mapping from a linear random sequence to a 2D sequence
is to take each sequence element N and compute N div width and
N mod width to get the vertical and horizontal coordinates in the array.
This is much like randomly scrambling integers from 0..51, then mapping
them to playing-card values by computing (N div 13) and (N mod 13).

A typical method for scrambling a set of integers (such as 0..51) is to
store them in an array and swap random pairs of numbers. This isn’t
useful when you want to shuffle a deck of a million cards. To dissolve a
million-pixel screen, you need the integers 0..1,048,575 scrambled. Most
applications don’t have that much room, nor do they have the time to
make a million swaps.

Scrambling Integers in HardwareScrambling Integers in HardwareScrambling Integers in HardwareScrambling Integers in HardwareScrambling Integers in Hardware
The software trick that avoids this is based on a simple circuit. Hardware
types will recognize Fig. 1 as a “linear feedback shift register.” At each
cycle, selected bits are sent through an n-way XOR, the entire register is
shifted left, and the result of the XOR feeds in as the new rightmost bit.
(If you’re a hardware-phobe, don’t panic—the software version is presented
below.)

For each length of register, there’s at least one combination of bits to
take from it that will make the register cycle through all nonzero values
(zero is a “demon state”). If you interpret the contents of the register as
a number, the sequence produces each of the numbers from 1 to 255 (in
this example) in a fairly random manner.

Figure 1. An 8-bit hardware sequence generator: a shift register with selected bits
XORed to form the next input. In software, the corredsponding mask would be 10111000
(binary).

223

IV.3 A DIGITAL “DISOLVE” EFFECT

GRAPHICS GEMS I Edited by ANDREW S. GLASSNER 223

How random is this sequence? Actually, it fails many randomness tests,
but the circuit has a software analog that is easy to code and runs so fast
that it,s worth it. Knuth points out that the sequence of bits shifted out is
actually quite random, although the successive numeric values aren’t.

Scrambling Integers in SoftwareScrambling Integers in SoftwareScrambling Integers in SoftwareScrambling Integers in SoftwareScrambling Integers in Software
Although you can exactly mimic the circuit in software, a much faster
algorithm is to shift the current element right (not left, as in the circuit);
if a “1” bit falls out because of the shift, XOR the mask into the new
element. This code fragment shows the code to advance from one
element to the next:

reg: integer; current sequence element
reg ← 1; start in any nonzero state
...
if (reg bit-and 1) ≠ 0 is the bottom bit set?
then reg ← rshift(reg, 1) bit-xor MASK; yes: toss out 1 bit; XOR in mask
else reg ← rshift(reg, 1); no: toss out 0 bit

For certain values of the constant MASK, executing the if statement in
a loop will make the register take on all values from 1..2n – 1, for various
values of n. Table 1 gives one constant (there may be more than one) for
each width. (The “width” of the values produced need not be the full
width of the variable storing it, of course.)

A First AttemptA First AttemptA First AttemptA First AttemptA First Attempt
With a software-based ID sequence generator, and a way to map ele-
ments of a ID sequence into a 2D array of pixels, you can write a dissolve
algorithm. The idea is to find a “register width” for the sequence
generator such that the sequence will generate at least as many elements
as there are pixels. The highest-numbered elements don’t map to pixels,
and they are discarded. Figure 2 illustrates this approach.

The main loop maps each sequence element to a pair of coordinates,
using modulo and division. Coordinates past the last row are ignored;
those in bounds are copied. The loop ends when the sequence returns to

224

IV.3 A DIGITAL “DISOLVE” EFFECT

GRAPHICS GEMS I Edited by ANDREW S. GLASSNER 224

Table 1. For any given bit-width w, there’s usually more than one mask that produces
all values from 1 to 2w – 1. These particular masks are chosen because they can each
be packed into a byte—note that bit #w of the mask for width w) is set, so each mask
can be shifted down for compact storage, then shifted left until the highest “l” bit is
positioned correctly. The masks are shown in 8-, 16-, and 32-bit hex only for readability.

225

IV.3 A DIGITAL “DISOLVE” EFFECT

GRAPHICS GEMS I Edited by ANDREW S. GLASSNER 225

Figure 2. Mapping sequence elements into an array, using the formulas:
row ← N div width
column ← N mod width.

Values of row which are $ height are ignored.

the original element. The function to copy a single pixel should eventually
get called once for every (row, col) such that 0 # row # height – 1, and
0 # col # width – 1.

Listing IListing IListing IListing IListing I
A first attempt at the dissolve algorithm. This will be improved later by
eliminating the division and modulo computations in the main loop.

procedure dissolve1 (height, width: integer);
begin

pixels,lastnum: integer; # of pixels; last pixel’s number
regwidth: integer; “width” of sequence generator
mask: longint; mask to XOR with to create sequence
seq: unsigned longint; 1 element of sequence
row, column: integer; row and column numbers for a pixel

Find the smallest “register” that produces enough pixel numbers
pixels ← height * width; compute # of pixels to dissolve
lastnum ← pixels – 1; last element (they go 0..lastnum)
regwidth ← bitwidth (lastnum); how wide must the register be?
mask ← randmasks [regwidth]; which mask produces that bitwidth?

226

IV.3 A DIGITAL “DISOLVE” EFFECT

GRAPHICS GEMS I Edited by ANDREW S. GLASSNER 226

Now cycle through all sequence elements.
seq ← 1; 1st element (could be any nonzero)
loop do
begin
 row ← seq/width; how many rows down is this pixel?
 column ← seq mod width; and how many columns across?
 if row < height does seq element fall in the array?
 then copy (row, column); yes: copy the (r, c)’th pixel

 Compute the next sequence element
 if (seq bit-and 1) ≠ 0 is the low bit set?
 then seq ← rshift(seq, 1) bit-xor mask; yes: shift, XOR
 else seq ← rshift(seq, 1); no: just shift
end;
until seq = 1; loop till original element
copy (0, 0); kludge: loop doesn’t produce (0, 0)
end; of procedure dissolve1

The correct width of sequence generator is found with a function called
bitwidth(). Given a number, this function computes how wide a “register”
is needed to hold the number. Here it’s used to find what width of
generator is needed to produce at least as many pixel numbers as needed.

Listing 2Listing 2Listing 2Listing 2Listing 2
The bitwidth () function

function bitwidth (N: unsigned integer): integer;
begin

width: integer ← 0; initially, 0 bits needed for N
while N ≠ 0 do loop till N is whittled down to 0

N ← rshift (N, 1); NB: N is unsigned
width ← width + 1; and remember how wide N is
endloop; end of loop shrinking N

return width; return bit positions counted
end; of function bitwidth

227

IV.3 A DIGITAL “DISOLVE” EFFECT

GRAPHICS GEMS I Edited by ANDREW S. GLASSNER 227

 Once the width has been found, the randMasks[] array is used to find
the magic value to generate the sequence. The sequence length can be
nearly twice as long as the number of pixels to copy, because the length
must be a power of 2 and larger than the number of pixels. The [0] and
[1] elements of the array aren’t defined—the smallest generator is 2 bits
wide. Again, see Table 1.

The copy () routine—the code to copy a pixel from the old image to
the new—isn’t defined here. It will depend on which hardware and
graphics system you’re using. We’ll cover this in more detail in the case
study for Macintosh, but you will almost certainly want to make copy() be
in-line code, to save the cost of a function being called many thousands of
times.

Because the sequence never produces the value 0, the dissolve function
must call copy with (0, 0) explicitly. (Sharp-eyed users watching a dis-
solve will notice that the top-left pixel is always the first or last to be
copied.)

Faster MappingFaster MappingFaster MappingFaster MappingFaster Mapping
This method works, but it’s too slow because of the division and modulo
calculations. Another approach is shown in Fig. 3. Here, the bits in the
sequence element are broken apart bitwise into row and column numbers.
This bit operation is much faster than a division for most CPUs. (If you’re
lucky to have a fast divide on your favorite CPU, skip this section.)

With this method, the number of sequence elements can be almost four
times the number of pixels—twice as bad as the worst case for the
simpler algorithm. But generating elements is so much faster than divi-
sion that the new method is still faster. In addition, since many screens
have a width that is a power of 2, a full-screen fade is no slower.

The code for this faster version is shown in Listing 3. It’s a lot like the
original function, except for the way the sequence-to-coordinates map-
ping is done.

Listing 3Listing 3Listing 3Listing 3Listing 3
An improved dissolve, which breaks up the sequence element into coordi-
nates with bit operations, not with division

228

IV.3 A DIGITAL “DISOLVE” EFFECT

GRAPHICS GEMS I Edited by ANDREW S. GLASSNER 228

procedure dissolve2 (height, width: integer);
begin
 rwidth, cwidth: integer; bit width for rows, for columns
 regwidth: integer; “width” of sequence generator
 mask: longint; mask to XOR with to create sequence
 rowshift: integer; shift dist to get row from element
 colmask: integer; mask to extract column from element
 seq; unsigned longint; 1 element of sequence
 row, column: integer; row and column for one pixel

 Find the mask to produce all rows and columns.
 rwidth ← bitwidth (height); how many bits needed for height?
 cwidth ← bitwidth (width); how many bits needed for width?
 regwidth ← rwidth + cwidth; how wide must the register be?
 mask ← randmasks [regwidth]; which mask produces that bitwidth?

 Find values to extract row and col numbers from each element.
 rowshift ← cwidth; dist to shift to get top bits (row)
 colmask ← lshift(1, cwidth) – 1; mask to extract bottom bits (col)

 Now cycle through all sequence elements.
 seq ← 1; 1st element (could be any nonzero)
 loop do
 begin
 row ← rshift(seq, rowshift); find row number for this pixel
 column ← seq bit-and colmask; and column number
 if (row < height) does element fall in the array?
 and (column < width) ...must check row AND column
 then copy (row, column); in bounds: copy the (r, c)’th pixel

 Compute the next sequence element.
 if (seq bit-and 1) ≠ 0 is the low bit set?
 then seq ← rshift(seq, 1) bit-xor mask; yes: shift, XOR
 else seq ← rshift(seq, 1); no: just shift
 end:
 while seq ≠ 1; loop till original element
copy (0, 0); kludge: element never comes up zero
end; of procedure dissolue2

229

IV.3 A DIGITAL “DISOLVE” EFFECT

GRAPHICS GEMS I Edited by ANDREW S. GLASSNER 229

Figure 3. A revised calendar with more holidays? Not quite... This shows a faster
mapping of 1D sequence elements into a 2D array, using the formulas:

row ← rshift(N, rowShift) [rowShift = 3]
column ← N bit-and colMask [colMask = 00111 base 2].

Coordinate pairs where row $ height or column $ width are ignored.

Case Study: DetailsCase Study: DetailsCase Study: DetailsCase Study: DetailsCase Study: Details
When you code this, here are some reminders that probably apply to most
implementations:

• Don't forget the (0, 0)th element of the array, as handled
explicitly in Listings 1 and 3.

• The algorithm breaks down for tiny images, because the sequence
generator doesn't work for small width of registers. You should
probably hand this case off to your system's graphical-copy function.

• To copy pixels quickly, you probably will not be able to use your local
graphics primitives, but will have to access video memory directly, in
assemble language. Be careful to check exactly how this interferes
with your high-level graphics. (For instance, a Macintosh dissolve
function must hide the cursor in software so as not to overwrite it in
hardware.)

• I found it easiest to convert byte addresses of a bitmap to bit ad-
dresses, do all my computation in bit numbers, and convert to bytes

230

IV.3 A DIGITAL “DISOLVE” EFFECT

GRAPHICS GEMS I Edited by ANDREW S. GLASSNER 230

only when it was time to access video memory. (This assumes that very
large addresses on your machine won’t overflow when scaled to be bit
addresses.)

Case Study: OptimizationsCase Study: OptimizationsCase Study: OptimizationsCase Study: OptimizationsCase Study: Optimizations
That’s all there is to it—just write a fast copy() function. But if you want
a megapixel screen to fade in a few seconds, you have only a few
microseconds per call of copy. Here are some hints to obtain speed
approaching that of analog hardware.

Many of these hints apply only for certain inputs to the function. There
are many possible combinations of optimizations. Instead of trying to
code all possible combinations, it might be interesting to compile optimal
dissolve code at the time of the call.

• For an actual function for a single, monochrome Macintosh screen, see
Morton (1986). I don’t recommend this routine for the Mac any more
because it doesn’t work in the brave, new world of multiple monitors
or color. It’s the first code I ever wrote for the 68000, so it’s hardly
textbook reading.

• When the pixel array is less than 64K pixels, you can store the
sequence elements in 16-bit words.

• When either the width or height of the array in a power of 2, you can
of course omit the respective checks for whether the coordinates are
in bounds—the sequence will exactly cover the needed coordinates in
that dimension. A dissolve where both the width and height are powers
of 2 will be incredibly fast.

• In pseudo-code and C, there are separate checks for whether the low
bit is 1 and whether the element has returned to its original value. In
assembler, you can sometimes combine these, as in this 68000 code:

lsr.l # 1,d0 shift current element right by one
bhi.s loopTop if no carry out and not zero, do it again
eor.l mask, d0 otherwise, flip magic bits . . .
cmp.l mask, d0 ...but has this brought us back to the sequence start?
bne.s loopTop nope:loop back for more grueling fun
bra done go copy element(0, 0).

231

IV.3 A DIGITAL “DISOLVE” EFFECT

GRAPHICS GEMS I Edited by ANDREW S. GLASSNER 231

This code takes advantage of the fact that the initial shift instruction
(lsr) affects the Zero condition code (based on the value after the shift)
and also sets the Carry bit if a “1” bit fell out in the shift. The first
branch instruction (bhi) branches if both Carry and Zero are false—just
right to test for “no XOR needed, but not a zero result either.”

• The sequence element can be viewed as a pair of coordinates concate-
nated together. Before extracting either one, you can check if the left
one is in bounds by comparing the entire sequence element to the
maximum value plus 1, shifted to align with the left one.

• Once the left end of the sequence element is found to be in bounds,
extract and check the coordinate from the right end, before taking the
time to extract the left end.

• When there’s no carry, the mask isn’t XORed into the next element,
and you know the element has a top bit equal to zero (since it wasjust
shifted). This means that the value at the left end of the sequence
element is in bounds, and thus the “bhi.s loopTop” in the 68000 code
can actually enter the loop late, after the point where the left end is
checked

• The code currently has to test the source pixel and branch to either set
or clear the destination pixel. It might be faster to XOR the destination
into the offscreen source, creating a bitmap that has “1” bits only
where the bitmaps differ. Then the dissolve code would ignore “0”
source bits and toggle the destination on “1” source bits. Finally, it
would copy the destination back to the source to undo the damage
done by the XOR.

• On the 68000, bytes are numbered in increasing order from left to
right, while bits go the other way. Thus if you want to convert a bit
number to a byte address and a bit, you need to map the bit number
from 0..7 to 7..0. But if your source and destination bitmaps have both
their left and right edges at byte boundaries, you can skip this map-
ping. A full-screen dissolve, for example, will typically be able to do
this.

Further ResearchFurther ResearchFurther ResearchFurther ResearchFurther Research
I’ve done this technique something of a disservice by implying it’s good
only for copying an image over another. In general, this is a way to

232

IV.3 A DIGITAL “DISOLVE” EFFECT

GRAPHICS GEMS I Edited by ANDREW S. GLASSNER 232

traverse a 2D array of nearly any size in pseudo-random order. (Or
sticking with a 1D sequence, it's the world's fastest coin-flip randomizer.)
Some examples of other uses and possible variations are as follows:

• Given that the original motivation for the sequence generator comes
from a hardware circuit, why not develop video-hardware support
for a dissolve?

• Because the sequence generator ’s state can be described with a single
number, it's simple to start and stop the sequence at any point,
allowing partial dissolves––sort of a dithered blending.

• Graphical primitives besides copying could be supported––pixel could
be ORed, ANDed, XORed, and so on. Or a repeating pattern could be
used for the source instead of a source bitmap.

• Inverting the destination image (XORing for a black pattern) is
especially interesting because it's an invertible process. Combining
this with a partial dissolve yields very interesting results: traversing the
first 50% of the pixels will yield a screen full of gray noise. Re-travers-
ing those pixels will bring back the image.

• When images can’t be placed rapidly on the screen, such as in
calculating images of the Mandelbrot set, the pixels can be and drawn
pseudo-randomly, to present an approximate image as soon as possible.
This is also useful when transmitting an image over a slow
communications link.

Suggestions and comments for other applications are welcome!

See also Generating Random Integers (438); Circles of Integral
Radius on Integer Latices (57); Precalculating Addresses for
Fast Fills, Circles, and Lines (295)

See Appendix 2 for C Implementation (715)

233

IV.4 MAPPING RGB TRIPLES ONTO FOUR BITS

GRAPHICS GEMS I Edited by ANDREW S. GLASSNER 233

IV.4IV.4IV.4IV.4IV.4
MMMMMAPPINGAPPINGAPPINGAPPINGAPPINGRRRRRGB TRIPLES ONTOGB TRIPLES ONTOGB TRIPLES ONTOGB TRIPLES ONTOGB TRIPLES ONTOFFFFFOUR BITSOUR BITSOUR BITSOUR BITSOUR BITS

Alan W. PaethUniversity of WaterlooWaterloo, Ontario, Canada
IntroductionIntroductionIntroductionIntroductionIntroduction
We describe a method for the efficient mapping of arbitrary triples
(typically RGB color values) onto a reduced set of 14 triples. The
intended use is for pixel reduction for use on four-bit frame buffers,
though the technique may be used generally on any three-element vector.

BackgroundBackgroundBackgroundBackgroundBackground
Many frame buffers provide the choice of displayable colors by way of
color look-up table (LUT) hardware. How are representative colors cho-
sen? Further, how can arbitrary input points (high-precision color pixels)
be efficiently mapped to a nearest select point within this color cube? On
systems providing a large color palette (256 or more) a specific set of
color choices may be allocated based on the nature of the input data. A
quantization method using this approach is well-known (Heckbert, 1982).
On systems providing the minimal number of colors (eight) the choice is
clear: the extreme points of the interval [0.0..1.0], must be taken sepa-
rately on each of the RGB axes.

This Cartesian product yields the point set [1/2 6 1/2, 1/2 6 1/2,
1/2 6 1/2] of primary and secondary colors, which coincides with the
vertices of the unit color cube (see Fig. 1). Thus, with small look-up
tables the choice of representative colors may be made a priori—without
regard to the nature of the input data being mapped. The accompanying
software procedure is straightforward (see Fig. 2). This fragment locates

234

IV.4 MAPPING RGB TRIPLES ONTO FOUR BITS

GRAPHICS GEMS I Edited by ANDREW S. GLASSNER 234

Figure 1. Eight-point color cube.

that vertex triple [R2, G2, B2] closest to the input triple [R, G, B] and
additionally returns a code (the vertex number), which serves as a
color-map index.

Unfortunately, in the world of computer logic most low-end frame
buffers provide a palette of 16 representable colors based on an underly-
ing four-bit data path. Because any fixed color table necessarily contains
the eight vertices of the bounding cube, a four-bit index leaves half of the
colors unassigned. This suggests that a preselected set of suitable values
might be chosen. An essential feature of a reduced color set is a distribu-
tion that shows little bias and high uniformity, while lending itself to an
efficient nearest neighbor test. As the number of potential colors will

integer function remap8(real: R, G, B, R’, G’, B’)
begin

 integer code:
 R’ ← G’ ← B’ ← code ← 0;
 if (R $ 0.5) then begin R’ ←1.0; code ← code bit-or 1; end
 if (G $ 0.5) then begin G’ ← 1.0; code ← code bit-or 2; end
 if (B $ 0.5) then begin B’ ← 1.0; code ← code bit-or 4; end
 return[code];
 end

Figure 2. RGB onto RGB (three-bit).

235

IV.4 MAPPING RGB TRIPLES ONTO FOUR BITS

GRAPHICS GEMS I Edited by ANDREW S. GLASSNER 235

double, an algorithm running in not more than twice the time of remap8
is sought, with a sublinear (or logarithmic) increase in time ideal. Given
the simplicity of remap8, a brute-force linear search for nearest neighbor
is ruled out.

A Four-Bit Color SolidA Four-Bit Color SolidA Four-Bit Color SolidA Four-Bit Color SolidA Four-Bit Color Solid
A highly symmetric set of target colors is now created, making for a
uniform selection set. Consider a unit cube augmented by allocating new
vertices at the center of each of its six faces. This extends the color set to
fourteen colors in a uniform manner, owing to the high symmetry of the
cube. Enumerating the location of vertices yields the target color space.
The new colors include three desaturated primaries and three secondaries
of reduced intensity. These are tabulated in Fig. 3. Note that the midpoint
of the cube (50% gray) does not appear.

To form a uniform solid with these color vertices, add edges from each
face center to the four face vertices that bound it. This facets each

Figure 3. The fourteen target colors.

236

IV.4 MAPPING RGB TRIPLES ONTO FOUR BITS

GRAPHICS GEMS I Edited by ANDREW S. GLASSNER 236

Figure 4. The rhombic dodecahedron.

square face into four equilateral right triangles. Next, extend the new
vertices outward from the cube center so that all 14 vertices are equidis-
tant from this center. (This changes the notion of color cube into color
sphere, but this discrepancy will be resolved later.) By symmetry the two
triangles joining at each cube edge lie in the same plane and the edge
belonging to the original cube may be removed. A rhombus is left (a
parallelogram with all four edges congruent). Repeating for each of 12
edges in the underlying cube thus yields the rhombic dodecahedron. This
solid is well-known in lattice theory: it is the only “Archimedean dual”
that can pack three-space, made clear by considering it the union of a
white cube with six black pyramidal apexes that pack in a checkerboard-
ing fashion. As with other Archimedean duals all faces are congruent and
all dihedral angles equal—properties that make for fair dice. (Since six
matching solids pack to fill space by the above, this dihedral is p/3
radians or 120 degrees.) The polyhedron appears in Fig. 4.

Dual SolidsDual SolidsDual SolidsDual SolidsDual Solids
Now consider the problem of finding the nearest vertex (target color) on
this solid. For a test point lying along an edge of the solid there are
merely two nearest vertices to be considered. The decision point for
vertex choice occurs at the midpoint of that edge. This may be extended
to find the region of space containing all test points nearest one vertex.

237

IV.4 MAPPING RGB TRIPLES ONTO FOUR BITS

GRAPHICS GEMS I Edited by ANDREW S. GLASSNER 237

Figure 5. The cuboctahedron.

By taking the midpoints of the three or four edges common to some
vertex, a cutting plane may be defined in which all nearest points lie on
one side. By replacing each of the 14 vertices with its related plane the
solid becomes truncated. In this case, the process of truncation yields the
dual solid (see Fig. 5).

As duality occurs in symmetric pairs, the original Archimedean solid a
cuboctahedron—is created. It is semiregular: not among Plato's canoni-
cal five because although the faces are all regular n-gons in symmetrical
arrangement, the faces are not of identical type. This is another solid
sharing the symmetry group of the dual octahedron-cube family. It can be
formed from either of these parent solids by forming the convex hull of
all edge midpoints. (That it may also be formed from the rhombic
dodecahedron in this fashion attests to how “close” the latter comes to
being among the select five. Its four-dimensional analog, a cell of 24
octahedra, is regular. In higher dimensions it vanishes together with the
teapot and all other interesting regular solids, leaving merely hypertetra-
hedra, cubes, and their duals (Coexeter, 1948).) The cuboctahedron has
six square and eight triangular faces, showing its lineage from both
representative parents.

Proximity TestingProximity TestingProximity TestingProximity TestingProximity Testing
The properties of this solid form the crux of our algorithm. As with
two-dimensional Voronai diagrams and their duals—common to problems

238

IV.4 MAPPING RGB TRIPLES ONTO FOUR BITS

GRAPHICS GEMS I Edited by ANDREW S. GLASSNER 238

concerning “nearest point to a set of given points”—the original ques-
tion of nearest neighboring point to a test point has been dualized. The
problem now is finding that face containing (or nearest to) a given point.
Fortunately, this test can be made quickly by taking advantage of the
quasi-regular nature of the regular cuboctahedron. An attribute of such
solids is that select, closed, edge circuits not defining faces still lie in a
common plane. This property is rare (the octahedron shares it, though
not the cube) and makes for geodesic dome tents, which are easily
assembled as each edge circuit becomes one long brace. In this case the
faces are hexagons. They may be derived directly by slicing a cube along
a plane perpendicular to one of its body diagonals, thereby exposing a
face along an axis of three-fold rotational symmetry. As seen in Fig. 6a,
this nicely reveals the color wheel of primaries and secondaries implicit in
the color cube.

By taking all four body diagonals and matching hexagons, an “empty”
cuboctahedron termed a “nolid” (Holden, 1971) appears as seen in Fig.
6b. The bounded indentations (occlusions in the shape of regular tetrahe-
dra and half-octahedral pyramids) partition space into 14 distinct vol-
umes. All points within a partition are associated with a matching nearest
vertex on the rhombic dodecahedron. Thus, a test point’s spatial partition
may be identified by performing four inequality tests to locate the half-
spaces in which the test point lies. Because the partitions may be
extended outward to divide all of 3-space, the test remains valid for
arbitrary points, making the algorithm well-defined for any input. This is

Figure 6. Hexagonal construction.

239

IV.4 MAPPING RGB TRIPLES ONTO FOUR BITS

GRAPHICS GEMS I Edited by ANDREW S. GLASSNER 239

Figure 7. Select polyhedral solids.

important as certain triaxial color spaces, such as the YIQ basis used in
commercial broadcasting (Limb et al., 1977), can give rise to negative
values of I and Q for strongly saturated colors. This extension accounts
for the departure from a “color cube,” alluded to when placing vertices at
the cube faces, centers. For most data sets, the cuboctahedron nolid may
be contained within a unit cube “case.”

A summary of the solids encountered so far appears in Fig. 7. Notice
that Euler ’s equation F + V = E – 2 is satisfied and that for duality F
and V commute, leaving the right-hand term unchanged. Dual solids
possess matching edge pairs, which are oriented to each other at right
angles.

Related MethodsRelated MethodsRelated MethodsRelated MethodsRelated Methods
Spatial search methods, which divide volumes by means of planar half-
space tests, have long been applied to rendering algorithms (Schumaker
et al., 1969), but universally employ conditional logic (in the form of a
tree traversal) in the generation of test planes. The related geometric
method of fixed, symmetric planes tested en masse rederives the “com-
plete face” characterization of stellated polyhedra, wherein the intersec-
tion diagram between one arbitrary face plane and the entire remaining
set is drawn. The canonical enumeration of solids thus generated is an
open problem (the octahedron yields 1, the icosahedron 59) but graphics
tools useful in their visualization exist (McKeown and Badler, 1980).

The hexagonal symmetry of the cube is explicit in other color spaces,
such as HSV—Hue Saturation Value—(Smith, 1978), where it is recorded
as the hue angle. Under this model, the six additional face colors are
represented as desaturated primaries (S = 1 → S = 1/2) and as secon-

240

IV.4 MAPPING RGB TRIPLES ONTO FOUR BITS

GRAPHICS GEMS I Edited by ANDREW S. GLASSNER 240

daries of reduced value (V= 1 → V = l/2), with other terms left un-
changed. In particular, hue angles are still members of the original eight
vertex set. Other hexagonally symmetric spaces include HSL (Foley and
van Dam, 1982). A color space similar in treating the angular distribution
of points about a gray axis is described in (Joblove and Greenberg, 1978).
A general treatment of color spaces as topological solids containing axes
of opposing colors (with related indexing methods) appears in Turkowski
(1986).

Half-Space TestingHalf-Space TestingHalf-Space TestingHalf-Space TestingHalf-Space Testing
Because the half-space tests regard merely the sign and not the absolute
perpendicular distance between point and plane, the normalized coeffi-
cients in the plane equation may be scaled arbitrarily. The goal is to
remove irrational values or rational fractions, thus yielding arithmetically
efficient tests. The plane equations that define the half-spaces are most
easily derived by simple application of Pythagoras’ theorem. The gray
axis body diagonal shown in Figure 6a has endpoints at [0, 0, 0] and
[1, 1, 1]. Thus, for any test point (x, y, z) a boolean test may be derived,
which reports the nearer endpoint using a distance inequality. For test
points nearer the white point the following are true:

 x – 0()2 + y – 0()2
 + z – 0()2 > x – 1()2 + y – 1()2

 + z – 1()2

 x
2 + y 2 + z2 > x – 1()2 + y – 1()2

+ z – 1()2

 2 x + y + z() > 3

 x + y + z() > 1.5

This follows intuition, since x, y, and z contribute equally in symmet-
ric fashion as the white point [1, 1, 1] is approached from the origin, and
the point of indecision is located at [.5, .5, .5]. For equations that test
along the remaining three body diagonals, intuition is less helpful but the
above approach remains useful in eliminating quadratic and radical terms.

 0 > – 2x + 1 – 2y + 1 − 2z + 1

241

IV.4 MAPPING RGB TRIPLES ONTO FOUR BITS

GRAPHICS GEMS I Edited by ANDREW S. GLASSNER 241

The remaining diagonal endpoints are the cyclic coordinate permutations
of the line [(1, 0, 0);(0, 1, 1)], which yield three boolean tests of the form

 x – 1()2 + y – 0()2
 + z – 0()2 > x – 0()2 + y – 1()2

 + z – 1()2

 x – 1()2 + y 2 + z2 > x 2 + y – 1()2
+ z – 1()2

 – x + y + z > 0.5

Algorithm DesignAlgorithm DesignAlgorithm DesignAlgorithm DesignAlgorithm Design
A four-bit code word may be formed directly from the signed tests by
ORing successive code bits into a code word in a manner analogous to
Sutherland’s viewpoint clipping (Newman and Sproull, 1979). Bit signs
and positions within the code word may be complemented and permuted
arbitrarily, yielding 24 ⋅ 4! or 384 distinct codings, corresponding to
rotations and inversions of the solid. An important property of all codings
is that any color ’s complement may be selected by complementing (or
subtracting into 17) in that color ’s code word. Put another way, given a
color C and its complement C’, then Code [C] + Code[C’] = 1111 and
Red[C] + Red[C’] = 1.0, and so on. To find a “canonical” representation
of choice a boolean test polarity is chosen, which assigns black and white
the codes 0000 and 1111, respectively. The two vacant code positions
are of the permuted form 0001 and 1110 and relate to the fact that only
seven (and not eight) distinct partitions appear in any hemisphere. Per-
mutation of the dissimilar bit yields vacant code words at the consecutive
mid-table locations 0111 and 1000, suggesting their potential use in
recording two mid-level grayscale values. At this point the three primary
colors occur within the first eight entries of the table. A final permutation
allows them to appear in RGB order. The primaries are necessarily not
consecutive because code words differing in only one bit position (as with
successive even and odd integers) represent neighboring partitions, yet
the primaries are nonadjacent. Thus, 14 of 16 possible code words are

 – 2x + 1 > – 2y + 1 − 2z + 1

 – 2x + 2y + 2z > 1

242

IV.4 MAPPING RGB TRIPLES ONTO FOUR BITS

GRAPHICS GEMS I Edited by ANDREW S. GLASSNER 242

Vr, Vg, Vb: array [0..15] of real;
Vr ← [0.,.5 ,.5, 1.,.0, 0., 0.,.5 ,.5, 1., 1., 1., 0.,.5 ,.5 ,1.];
Vg ← [0.,.5, 0., 0.,.5, 1., 0.,.5 ,.5, 1., 0.,.5, 1., 1.,.5 ,1.];
Vb ← [0., 0.,.5, 0.,.5, 0., 1.,.5 ,.5, 0., 1.,.5, 1.,.5, 1.,1.];
map the floating triple (R, G, B) → (R′, G′, B′) thereby quantizing
it; the return value is the vertex code/ colormap index
integer function remapl4(real: R, G, B, R′, G′, B′)

begin
code: integer ← 0;
if R + G + B > 1.5 then code ← code bit-or 8;
if – R + G + B > 0.5 then code ← code bit-or 4;
if R – G + B > 0.5 then code ← code bit-or 2;
if R + G – B > 0.5 then code ← code bit-or 1;
R′ ← Vr[code];
G′ ← Vg[code];
B′ ← Vb[code];
return[code];
end

Figure 8. RGB onto RGB (four-bit).

employed. Absence (and potential treatment) of the remaining two table
entries is discussed under the section “gray interior points.” At this point
a practical, standardized mapping of RGB onto a space of four-bit
precision has been defined: the original goal. The software procedure that
generates a code word and companion target vertex value appears in
Fig. 8.

The function remap14 is robust in that the vector .49,.49.49[] maps
onto [0, 0, 0] and the vector [.5, .5, .5] maps onto [1, 1, 1]. In general, any
point [t, t, t] along the achromatic axis (as with gray-level input data for
display on a color monitor) can generate only the black or white points as
representative output. No multiplications take place in the routine, which
makes for ready adaptation to scaled-integer values. For the common
case of (unsigned) eight-bit color components, care must be taken be-
cause both the scaled value 1.5 and intermediate variable expressions
may exceed the maximum unsigned byte value 28 – 1 = 255.

The function remapl4 returns the code word (useful for the actual
colormap value given to the frame buffer memory) and fills the true color
in variables R’, G’, B’, of use as when halftoning by error diffusion (Floyd

243

IV.4 MAPPING RGB TRIPLES ONTO FOUR BITS

GRAPHICS GEMS I Edited by ANDREW S. GLASSNER 243

and Steinberg, 1975). Because the decoding tables contain only three
distinct values it is tempting to infer table elements implicitly through
additional boolean logic. However, direct look-up is both faster and
essential for use with color spaces not possessing six-fold symmetry
about the achromatic axis (as with RGB and HSV). As an additional
benefit, the use of a table allows the precomputation of 14 color descrip-
tors in a chosen space of representation based on the RGB values listed in
Fig. 3. An implementation accommodating RGB input pixels of arbitrary
precision is part of the IM Raster Toolkit made available through the
University of Waterloo (Paeth, 1986a, 1986b, 1987).

Three versus Four BitsThree versus Four BitsThree versus Four BitsThree versus Four BitsThree versus Four Bits
By way of comparison, the three-bit mapping case is seen to be of
identical form with the above, except that a table look-up step is not
needed to remap the code word into a representative set of values. This
happens because in the three-bit case the half-space tests divide the three
Cartesian axes allowing each bit in the code word to generate an associ-
ated axis value directly (Fig. 9).

This illustration makes it clear that the often programmed three-bit
Cartesian case (most often conceptualized as a three-channel quantization
operation) is of identical form to the four-bit polyhedral algorithm de-
scribed—it is the minimal case common to both approaches. The major
difference in the methods regards the orientation of the test planes.
Whereas the three-bit version uses the cube’s three planes of mirror

Figure 9. Cube as Cartesian and polyhedral model.

244

IV.4 MAPPING RGB TRIPLES ONTO FOUR BITS

GRAPHICS GEMS I Edited by ANDREW S. GLASSNER 244

symmetry, the four-bit case uses the cube’s four axes of three-fold
rotational symmetry.

Complexity AnalysisComplexity AnalysisComplexity AnalysisComplexity AnalysisComplexity Analysis
The three- and four-bit cases are computationally optimal in that the
number of plane tests T for vertices V matches the information theoretic
lower bound T = [log2 V] exactly. They are optimal in an implementation
sense because they are devoid of any conditional logic. That is, results of
previous plane tests do not drive subsequent decisions. This complete
decoupling implies that the half-space testing (program if statements)
may be executed in parallel on hardware allowing concurrent computa-
tion. Each test contributes 0.25 log2 14 bits of information, or 0.952,
yielding an information content of 3.81 bits from the four boolean tests.

Gray Interior PointsGray Interior PointsGray Interior PointsGray Interior PointsGray Interior Points
As noted, the gray point is not represented in the choice of colors and
cannot appear under this model. In fact, the point [.5, .5, .5] is the
common intersection of the test planes for both program routines. Be-
cause the target color vertices are created on the surface of a “color
sphere” that circumscribes our polyhedron, there is no provision for
allocating interior points. This is a major obstacle in generalizing this
method. Explicit methods for interior testing are expensive. For instance,
identifying the central gray subcube requires six inequality tests. Reduc-
tion to four by employing a bounding tetrahedron still doubles the total
number of plane tests and complicates the code. Methods of extension to
our color polyhedra approach will appear in a forthcoming paper (Paeth,
in press).

Cartesian Quantization versus PolyhedraCartesian Quantization versus PolyhedraCartesian Quantization versus PolyhedraCartesian Quantization versus PolyhedraCartesian Quantization versus Polyhedra
For a 16-entry color table the lack of gray is not a major liability: a
competitive 2 3 3 3 2 Cartesian table (weighted in the green) cannot
place any interior points, as at least one axis (the red and blue compo-
nents) can represent only the extrema of their interval. Moreover, only 12
points are created.

On frame buffers providing additional precision the Cartesian approach
becomes desirable. For instance, on a hypothetical five-bit device (32

245

IV.4 MAPPING RGB TRIPLES ONTO FOUR BITS

GRAPHICS GEMS I Edited by ANDREW S. GLASSNER 245

colors) an excellent choice of table allocation is a 3 3 3 3 3 Cartesian
color “Rubik’s” cube, which fills the table nearly to capacity (84%) and
further places a target point (with surrounding cubical volume) at the
central point (.5, .5, .5). (See Figure 2 in the Gem “Proper Treatment of
Pixels as Integers” on page 254.) This approach requires as a worst-case
six boolean tests for the six panes versus the theoretical lower bound of
five. The operation may also proceed in parallel (three processes with
each performing two consecutive plane tests) and the logic may be
arranged conditionally so that a test point located above the higher (or
beneath the lower) test plane need not be considered further. This
reduces the total number of tests to three for a select cube corner (such
as white) and lowers the average-case performance to 1.67 tests per axis,
or to five overall. As with the three-bit case the target output color
R′, G′, B′ may be formed directly on a per-axis basis without resort to a
code word. For efficiency reasons a 64-entry sparse table is still desirable
to compute the LUT index defined as I = 9R + 3G + B, thereby forming
a Cartesian product while avoiding integer multiplication.

It is not surprising the eight vertices of the cube are present in all
higher-order Cartesian models. What is surprising is that the 14 cubocta-
hedron vertices can be derived form the 3 3 3 3 3 Cartesian cube. This
is possible because the latter ’s point lattice may be regarded as the union
of a cube’s vertices (8), face midpoints (6), edge midpoints (12) and
central point (1), totaling 27. Here the cuboctahedron vertices are formed
by the union of only the first two spatial symmetry groups.

SummarySummarySummarySummarySummary
An optimally efficient testing method for mapping RGB colors onto a

reduced palette of four bits is described. Implementation is straightforward
and the predefined set of 14 target colors is highly symmetric. The exposition
provides a good overview into descriptive solid geometry and the symmetries
of cubic lattices.

See also A Fast HSL-to-RGB transform (448); A Simple Method
for Color Quantization: Octree Quantization (287)

See Appendix 2 for C Implementation (718)

246

IV.5 WHAT ARE THE COORDINATES OF A PIXEL?

GRAPHICS GEMS I Edited by ANDREW S. GLASSNER 246

IV.5IV.5IV.5IV.5IV.5WWWWWHAT ARE THEHAT ARE THEHAT ARE THEHAT ARE THEHAT ARE THECCCCCOORDINATES OF AOORDINATES OF AOORDINATES OF AOORDINATES OF AOORDINATES OF APPPPPIXELIXELIXELIXELIXEL?????
 Paul S. HeckbertUniversity of CaliforniaBerkeley, California

Did you ever get confused deciding whether pixels were centered at
integer coordinates or centered halfway between the integers? We present
here a consistent answer to this question.

When modeling, we use real numbers, but pixels have integer coordi-
nates, so somewhere during rendering we must quantize the coordinates
to integer values. How, exactly, do we perform this mapping? Do we
round or truncate? Consistency is vital, but making the better choice is
also important. This may seem like a petty question, but failure to address
it can lead to misalignment, gaps or overlap between objects, or edge
effects at the screen border. The question is especially important if we are
anti-aliasing.

To clarify the problem, we distinguish between discrete images and
continuous images, and also between discrete coordinates and continuous
coordinates. A discrete image is an array of pixels, the sort of image
with which we’re familiar in computer graphics and image processing,
and a continuous image is a function defined over a continuous domain,
as in optics or the real world. In computer graphics we take a geometric
description of a continuous image (for example, a list of polygons with
floating point coordinates) and sample it at a discrete array of points to
create a discrete image. The discrete image we render is an approxima-
tion of the continuous image. We call the coordinates in the discrete
image discrete coordinates and the coordinates in the continuous image
continuous coordinates. Discrete coordinates take on integer values at
the sample points, which are the pixel centers. The mapping question is
now reduced to a choice of phase (displacement) between continuous and
discrete coordinates.

247

IV.5 WHAT ARE THE COORDINATES OF A PIXEL?

GRAPHICS GEMS I Edited by ANDREW S. GLASSNER 247

Figure 1. Rounding and truncating schemes for coordinate conversion.

If we round when converting floating point continuous coordinates to
discrete coordinates, this is equivalent to aligning the continuous and
discrete axes. Figure 1 shows the rounding mapping at top, for a hypo-
thetical frame buffer four pixels on a side, with pixel centers marked by
bullets. Rounding seems attractive at first, because continuous coordi-
nates and discrete coordinates are equal. Unfortunately, the continuous
range corresponding to our hypothetical frame buffer, using rounding, is
the awkward range of – .5 to 3.5.

The better mapping choice is truncation, or more accurately, flooring,
where continuous coordinates are converted to discrete coordinates by
taking the floor function. In this scheme, there is a half-pixel phase shift
between continuous coordinates and discrete coordinates as can be seen
in Fig. 1, bottom. Continuous coordinates take on integer values halfway
between pixels. The pixel with discrete coordinates (x, y) has its center
at continuous coordinates (x + 1/2, y + 1/2). Assuming as a first ap-
proximation that we reconstruct using a one-pixel-wide box filter, the
continuous coordinate domain of pixel (x, y) is from x to x + 1 in x and
from y to y + 1 in y. For our hypothetical frame buffer, the continuous
coordinate range using truncation is 0 to 4—simpler numbers than with
rounding. The simplicity of the coordinate range facilitates image scaling
and other transformations.

In summary, both continuous and discrete coordinates have their place.
Continuous coordinates are most appropriate when modeling, that is,
when one is concerned with geometry, not with pixels. Discrete coordi-
nates are most useful when working close to the pixel level, as in scan

248

IV.5 WHAT ARE THE COORDINATES OF A PIXEL?

GRAPHICS GEMS I Edited by ANDREW S. GLASSNER 248

conversion or image processing. Note that discrete coordinates are not
always integers: it is often useful to use floating point variables for
discrete coordinates. When writing graphics software it is vital to be
conscious of whether you are using continuous coordinates or discrete
coordinates.

To convert from continuous to discrete or vice versa, where c is the
continuous coordinate and d is the discrete coordinate,

d = floor (c)

c = d =
1
2

.

I developed the above dualist view of pixel coordinates while working
on an image zoom algorithm at Xerox PARC in 1988. Thanks also to Alvy
Ray Smith at Pixar for reinforcing my reverence for the pixel.

See also A Digital “Dissolve” Effect (221); Circles of Integral
Radius on Integer Lattices (57); Precalculating Addresses for
Fast Fills, Circles, and Lines (285)

249

 IV.6 PROPER TREATMENT OF PIXELS AS INTEGERS

GRAPHICS GEMS I Edited by ANDREW S. GLASSNER 249

IV.6IV.6IV.6IV.6IV.6
PPPPPROPER TREATMENT OFROPER TREATMENT OFROPER TREATMENT OFROPER TREATMENT OFROPER TREATMENT OFPPPPPIXELS AS INTEGERSIXELS AS INTEGERSIXELS AS INTEGERSIXELS AS INTEGERSIXELS AS INTEGERS

Alan W. PaethUniversity of WaterlooWaterloo, Ontario, Canada

OverviewOverviewOverviewOverviewOverview
Pixels are all-too-often viewed as collections of hardware bits, to be
shifted, masked, and mapped. This three-part discussion illustrates short-
comings of this conceptual approach and suggests efficient alternatives,
which give rise to more useful forms.

Proper Interpretation of Pixel IntegersProper Interpretation of Pixel IntegersProper Interpretation of Pixel IntegersProper Interpretation of Pixel IntegersProper Interpretation of Pixel Integers
The interpretation of the data bits present within any pixel is arbitrary.
Most often, they are treated as unsigned integers used to specify intensity
across a linear domain, such as black → white. A useful convention
regards this integer as lying along the closed, unit interval [0..1]. Choice
of this interval is consistent with the domains used in various color
spaces, including XYZ and LUV space defined by the CIE (Commission
International L’Eclairage) and the HSV space well-known in computer
graphics (Smith, 1978). In the case of color pixels, three independent
axes are represented along the interval [0.0..1.0].

Unfortunately, many software tools in existence implicitly adopt the
interval [0..1). This commonly occurs within software that employs bit
shifting as an efficient, reversible means to map between pixels with
differing precisions. For instance, four-bit pixels on the range [0..15] may
be mapped into eight-bit pixels on the range [0..255] by left shifting four
bits, such that 1111 → 11110000. Right-shifting reconstructs the original

250

 IV.6 PROPER TREATMENT OF PIXELS AS INTEGERS

GRAPHICS GEMS I Edited by ANDREW S. GLASSNER 250

Figure 1. Pixel integers along the unit axis.

data without roundoff error—an important virtue. Moreover, under this
scheme a pixel of select value (for example, 5/8 under a three-bit
precision) may be represented exactly on any system of higher precision
(the value 5/8 exists under three or more bits of precision). Here an
n-bit pixel representation divides the unit axis into intervals
of length 2–n; converting between precisions m and n requires an
(unsigned) multiplication of 2n–m, which is conveniently represented as a
left shift of n – m bits. A major failing with this system is that white
cannot be represented (see Fig. 1a). To take the common, worst case
occurring with two-level bitmaps, mapping one-bit pixels onto eight bits
yields the values 0.0 and 0.5, as the binary value .1 remains .100 when
zeros are inserted from the right.

The proper approach substitutes the divisor 2n – 1 for the partitioning
of the unit axis (see Fig. 1 b). The adoption of this model yields a
symmetric representation interval [0..1] that is closed under the opera-
tions complementation (with x = 1 – x) and multiplication. This yields a
number of benefits, notably the proper representation of the white point
at 1.0. As an example, with n = 8, black and white in this system are
0/255 and 255/255, respectively, and not 0/256 and 255/256. Note
that binary (one-bit) data under this scheme represent 0.0 and 1.0
exactly.

Adoption of this system means replacing bit shifts (multiplications by a
value 26m) by general multiplication and division. This is not a severe
speed penalty. In practice, a scaling table can be constructed and a
look-up operation used to find the appropriate mapped value. As with the
previous method, mapping to a system of higher bit precision and back to
the original system introduces no roundoff error.

incorrect
(a)

incorrect
(b)

251

 IV.6 PROPER TREATMENT OF PIXELS AS INTEGERS

GRAPHICS GEMS I Edited by ANDREW S. GLASSNER 251

Exact representation under the higher system is more difficult to
achieve. When scaling up to a system of exactly twice the number of bits,
it is guaranteed. Here the higher system 22n – 1 can be factored as
(2n – 1)(2n + 1). The left-hand factor is the lower system, and the right-
hand factor is simply an integral scale value. For instance, n = 4 bit data
represents intensity values spaced by 1/15. When scaling to n = 8 bit
precision, 2n + 1 = 17, so scaling is by 17. Thus, white4(15) becomes
white8 (255) because 255 = 15 3 17. Similarly, the mapping between
pixel indices of two—and four-bit precision (as appearing in Fig. lb)
merely requires multiplying or dividing by five.

In general, exact representation of all pixels under a lower system of m
bits is possible in a higher n-bit system whenever n is a multiple of m.
That is, 2m – 1 divides 2n – 1 iff m divides n, meaning that white in the
lower system must divide white in the higher system. To illustrate this
assertion rather than prove it rigorously, consider this: since 4 is a factor
of 1 2, we assert that four-bit data has an exact representation in a
twelve-bit system. Representing the factors 212 – 1 and 24 – 1 in binary,
111111111111 can be divided by 1111 giving 000100010001, or 273.
Thus, 4095 = 15 × 273, and the representation for white is still exact.
More generally, multiplying any value in the four-bit system by 273 yields
exact representation in the twelve-bit system.

Nonlinear Pixel MappingsNonlinear Pixel MappingsNonlinear Pixel MappingsNonlinear Pixel MappingsNonlinear Pixel Mappings
Nonlinear subdivision along an axis of representation is a worthwhile
departure from the above first-order model. For instance, use of logarith-
mic encoding of pixels records intensities as “optical density”; this is a
common practice in photometry. Here P = logb I where P is the en-
coded pixel value, I is the intensity it represents, and b = 0.1 is the
chosen base. It follows directly that the inverse map is I = bP. The latter
function may be made implicit in frame buffer look-up tables, allowing
log-encoded pixel data to be stored internally and viewed directly. This
approach has a number of benefits. First, because log(a) + log(b)
+ ⋅ ⋅ ⋅ +log(n) = log a × b ⋅ ⋅ ⋅ × n() , summing images in encoded
form yields the consecutive product of their constituent linear intensities,
also in encoded form. Composition in this fashion models the physical

252

 IV.6 PROPER TREATMENT OF PIXELS AS INTEGERS

GRAPHICS GEMS I Edited by ANDREW S. GLASSNER 252

superimpositioning of film transparencies, in which total transmitted light
is computed by multiplying by the transparency of each successive media
(Beer’s Law). Second, the adjacent intensities represented by discretized
pixels P and P + 1 differ by a constant ratio, because b(P + 1)/b(P) = b
for any P. This means that quantization effects (visible steps in bright-
ness) are not biased toward any part of the dynamic intensity range. The
approach also has drawbacks. Input pixels of I = 0 (no light or full
opacity) cannot be encoded under any base, as log 0 → – ∞. Also, sum-
ming two intensities I1 and I2 linearly must be computed by first
returning to the linear domain and then re-encoding: logb(I1 + I2) =
logb b

log b I1 + b log b I 2() . In general, complex operations on the encoded
domain will require these two recoding steps.

Useful alternatives exist, which resemble log x and which feature
reduced quantization noise while lacking the latter ’s discontinuity at zero.
Shifting and scaling the input domain gives the form logbl + µx in
which µ is an arbitrary scaling parameter. This function maps zero onto
zero for any base; a unique choice of base fully constrains the function so
F: [0..1] → [0..1], a valuable property. The correct choice is Fµ(x) =
log(1 + µx)/log(1 + µ), found by applying the identities logl + µ(1 + µ)
= 1 and logl+µ(x) = logn(x)/logn(1 + µ). Here the log is of arbitrary
base; the denominator becomes a suitably scaled constant. The µ param-
eter may be tuned to set the slope at zero: ′Fµ (0) = µ/ln(1 + µ). In
practice, µ = 255 is a good choice and closely approximates the piece-
wise-linear µ – 255 law encoding used in digital telephony throughout
North America. The latter maps voice data quantized at 12-bits precision
onto eight bits for long distance transmission with increased channel
capacity, and minimizes quantization effects otherwise present at low
volumes.

A similar approach has been used successfully by the author for the
accurate offset-press reproduction of digital color imagery to be included
in ACM TOG journals (July, 1987). Here the original pixels of 1 2-bit linear
precision showed marked step contouring at low levels when linearly
coded at eight-bit precision, because pixel values differing by one unit in
adjacent dark regions showed a distracting intensity step of roughly 6%.
A custom display tool supporting both µ – 255 law input encoding plus CRT
gamma correction reduced these effects to almost imperceptible levels
and simultaneously fitted the high-precision linear data into a film
recorder, which supported only eight-bit pixel channels. The equations
used to encode pixels under µ – 255 law appear below; The fourth equa-

253

 IV.6 PROPER TREATMENT OF PIXELS AS INTEGERS

GRAPHICS GEMS I Edited by ANDREW S. GLASSNER 253

The fourth equation was inverted to create the correct look-up table
(LUT) entries. This operation prefaces the customary inverse transforma-
tion used to linearize film/CRT response using the “gamma” model. The
forward transformation of the latter was derived empirically from densi-
tometry of film samples giving I = Vγ with γsystem = 2.8, in which I is
illuminated film intensity and V is CRT drive voltage (equivalent to LUT
entries on systems with linear DAC, that is, Digital to Analog Converters).
The film recorder provided 28 = 256 LUT entries with values on the
range [0..1023] specifyng linear drive voltage in 10-bit precision. Here is
the pseudo-code used to fill the LUT:

lut: array [0..255] of integer;
for i ← 0 to 255 do

γ: real ← 2.8; empirically derived

t: real ←

1
255





 × 2

8i
255 − 1





lut[i] ← round (1023 × t
1
γ)

endloop

tion was used to ready data for the custom display tool described.

y =

1
8

log2 1 + 255x() M: [0.0..1.0] → [0.0..1.0]

y =

sign(x)
8

log2 1 + 255 x() M: [–1.0..1.0] → [–1.0..1.0]

y =

255
8

log2 1 + x() M: [0..255] → [0..255]

y =

255
8

log2 1 +
17
273

x



 M: [0..4095] → [0..255]

254

 IV.6 PROPER TREATMENT OF PIXELS AS INTEGERS

GRAPHICS GEMS I Edited by ANDREW S. GLASSNER 254

Color Pixels and Cartesian ProductsColor Pixels and Cartesian ProductsColor Pixels and Cartesian ProductsColor Pixels and Cartesian ProductsColor Pixels and Cartesian Products
When a single pixel is used to represent a RGB color, most often three
integer values are derived, which form the color primaries directly. The
“quick and dirty” approach to uniform division of the color space (so that
R, G, and B can be treated separately) very often slices up eight-bit
pixels into three bits for red and green, and two bits for blue (the primary
for which the eye is least sensitive).

This is an unnecessary oversimplification that leaves blue with only two
mid-range intensities, which suggests itself when color is regarded as
“bits” at the hardware level, not as “N discrete intensity steps.” This
approach is further suggested because the pixel channels for R, G, and B
can be written individually through the proper setting of the write mask,
but in practice, the color-mapped pixel is normally written as a single
byte, not as three consecutive “inking” passes. One useful property of
this power-of-two approach to color axis allocation is that a number of
gray values are always present (that is, R = G = B) because the channel
precisions are all multiples of each other.

A better approach is to form a color table containing a Cartesian
product of intensities by using axis division that is not necessarily a
power of two. For example, taking red = [0..5], green = [0..7], blue =
[0..4] (each suitably normalized to represent intensities on the range
[0.0..1.0]) yields a color table of 6 × 8 × 5 = 240 entries. Compared to
the |RRRGGGBB| bit-allocation approach, the blue axis shows a 50%
increase in mid-range specification.

Figure 2. Cartesian color cubes.

255

 IV.6 PROPER TREATMENT OF PIXELS AS INTEGERS

GRAPHICS GEMS I Edited by ANDREW S. GLASSNER 255

General adoption of this method allows for more efficient use of the
color map. For instance, consider the reduced scenario of 12 colors (as
on a four-bit system in which four colors have been previously dedicated
to the operating system). Here the bit plane scheme must allocate one bit
to each of the three channels, totaling eight colors and leaving four
unused. A better treatment would be to form the product 2 3 3 3 2 with
the axis of higher precision given to the green channel. Similarly, on a
25 = 32 bit color system the allocation scheme |RRGGB| provides only
on/off values in blue (see Fig. 2a). A better allocation is a 3 3 3 3 3
volume, which additionally allows representation of mid-level gray (see
Fig. 2b).

The latter approach is taken in the IM raster tool (Paeth, 1986a, 1986b,
1987), which provides X-window display of files containing color infor-
mation at arbitrary bit precision. Here the creation of a systematic,
uniform color space is essential in providing a shared color map common
to all windows on the machine. As the hardware platform supports either
four- or eight-bit color indices, conversion of input pixel precision onto
the range [0.0..1.0] takes place as described in the first part of this Gem.
At run-time, the low-level allocation routine is requested to build a
product of evenly distributed factors whose product is no larger than
27/32 ª 84.4% of the hardware color table size. In practice, four- and
eight-bit display architectures call the color allocator with values 13 or
216 respectively, yielding the factors 12 = (2 3 2) and 216 = (6 6 6) with
channel allocation done in GRB order. Appearing in Fig. 3, the code has

split N into three (near) identical values R, G, and B
such that N ≥ R 3 G 3 B and G ≥ R ≥ B

Max ← Med ← Min ← 0;
while Min 3 Min 3 Min ≤ N do Min ← Min 1 + 1;
Min ← Min – 1;
while Med 3 Med 3 Min ≤ N do Med ← Med 1 + 1;
Med ← Med – 1;
Max ← n/(Min 3 Med);
G ← Max;
R ← Med;
B ← Min;

Figure 3. Factoring into a Cartesian triple.

256

 IV.6 PROPER TREATMENT OF PIXELS AS INTEGERS

GRAPHICS GEMS I Edited by ANDREW S. GLASSNER 256

provision to alter the allocation order, which is occasionally useful when
rendering predominantly sky-blue images.

The allocation 216 = (6 6 6) guarantees the existence of a gray axis
along the body diagonal of the underlying color cube. The largest set
possible on an eight-bit architecture is 6 3 7 3 6 = 252. All factorings
show significantly improved blue precision in comparison to the four
possible blue values implicit under the common “three bits red and
green, two for blue” scheme.

ExtensionsExtensionsExtensionsExtensionsExtensions
The generalized use of Cartesian products may be combined with the
nonlinear axis spacing described previously. This yields a nonlinear
spacing of orthogonal planes, which define a color space in which points
(color descriptors) lie in regions of varying density. This makes possible
accurate color representation on frame buffers, which lack the pixel
precision necessary for high-precision color (24-bit RGB), but which
minimally provide color table indexing on a per-channel basis. Heckbert
(1982) describes a means to create such custom color tables in which the
density of color descriptors in the space increases in regions of com-
monly occurring colors within the input data.

Generally, nonlinear Cartesian products may be constructed a priori,
which satisfy general constraints in the absence of any input data set.
Two approaches are described by Paeth (1989a, 1989b); one allows the
precise representation of a gray axis for color spaces of high nonlinearity
as encountered on color hardcopy devices; the other is a symmetric space
based on the theory of Chebyshev minimax approximation.

In their most general setting, “pixels as integers” serve as color table
indices into a space that is both nonlinear and non-Cartesian: points may
be distributed arbitrarily. A systematic, nonorthogonal approach to color
descriptors and pixel indexing is described in the Gem “Mapping RGB
Triples onto Four Bits” in this volume.

See Appendix 2 for C Implementation (719)

257

IV.7 NORMAL CODING

GRAPHICS GEMS I Edited by ANDREW S. GLASSNER 257

IV.7IV.7IV.7IV.7IV.7
NNNNNORMAL CODINGORMAL CODINGORMAL CODINGORMAL CODINGORMAL CODING

Andrew S. GlassnerXerox MRCPalo Alto. California

A common technique for interactive lighting and surface design is to use
an approach called normal coding. Using this technique, you can write a
tool that gives the user interactive control over the lighting in a 3D scene,
with options to add and delete lights, and to change the color and
position of each light. The user may also interactively change some of the
surface properties of the objects in the scene, such as specular and
diffuse reflectivity.

The secret behind such an interactive system is that it is all done
through the color map. Assume an eight-bit deep frame buffer, and an
image rendered by a point-sampling Z-buffer (that is, there is exactly one
nearest visible surface per pixel). When computing an image, typically we
store the depth of the nearest visible surface in the Z-buffer, and the
shaded color of that surface in the image buffer.

Suppose that we could turn any surface normal into an eight-bit
number. Then instead of storing the color of the nearest object in the
image buffer, we can store the eye-space surface normal of that object.
When the final image is completed, each pixel in the image buffer
contains the encoded eight-bit surface normal of the nearest visible
object; we might rename the image buffer the normal buffer. The
contents of the normal buffer will generally not look anything like a
picture.

To make an image from the normal buffer, recall that there are only
256 different surface normals in the buffer—after all, each pixel is only
eight bits deep. If the normal at some pixel has the bit pattern 00001001,
it will be displayed on the screen with the color stored in color-map entry

258

IV.7 NORMAL CODING

GRAPHICS GEMS I Edited by ANDREW S. GLASSNER 258

9. To create an image, we need only compute the shading appropriate to
each stored normal, and store that shade in the correct color-map entry.
If a light is moved, we recompute the shading on each of the 256
normals, and write that new shading into the color map. The image is thus
immediately updated to include the new lighting.
To make this scheme work, we need a way to encode and decode
normals, or convert from normals to eight-bit entries and back again. This
note suggests one way that works well.
Although this technique makes for a great interactive tool, it has some
restrictions:

• You get only 256 unique normals in your image.

• You cannot distinguish between objects.

• You cannot use “local” light sources (that is, those with a position in
space in addition to direction), since only the normal of the visible
surface is stored at each point, not the spatial location of the surface.

• The image will show banding due to the quantization of normals.

• The interactive image will show aliasing artifacts, since there is only
one sample per pixel.

Some of these problems can be overcome with some additional storage
and processing; such remedies are discussed after we present the basic
technique.

Some Encoding MethodsSome Encoding MethodsSome Encoding MethodsSome Encoding MethodsSome Encoding Methods
There are a couple of principles that we should keep in mind when
building a normal encoding scheme. Typically we will not want to use all
256 entries in the color map. Often the image in the frame buffer will only
occupy part of the screen; menus, controls, and a cursor may all be
visible, and they must all have colors allocated. I suggest at a minimum
that colors 0 and 255 be left untouched; typically these are used for black
and white, to provide backgrounds, borders, text, and so forth. If a

259

IV.7 NORMAL CODING

GRAPHICS GEMS I Edited by ANDREW S. GLASSNER 259

program decides to change these colors, that’s fine, but the normal
encoding process should leave them alone.

There are many ways to convert a normal into an eight-bit quantity.
Perhaps the most obvious approaches are direct, 1-to-1 invertible map-
pings. Assume that all normals have unit length (that is, x2 + y2 + z2

= 1). Most approaches save bits by encoding just the x and y
components (we can easily recover the z component from x and y since

z ← 1 − x 2 − y 2 . we choose the sign of z so that the normal points
back to the viewer).

For example, consider the x component. We will use four bits to
encode x, mapping – 1.0 to 0, and + 1.0 to 15. So xe, the encoded value
for x , is found by xe ¨ floor[(x + 1)*7.5]. Similarly, ye ¨ floor
[(y + 1)*7.5]. We can combine these two four-bit values into a single
eight-bit composite byte by storing xe in the high four bits and ye in the
low four: c ¨ (xe*16) + ye This sum represents c, the byte that encodes
the normal.

To decode c back into components, first turn the high and low bits
back into individual numbers: xe ← floor(c/16), ye ← c – (16*xe).
Now x ← (xe/7.5) – 1 and y ← (ye/7.5) – 1. As we saw above,

z ← 1 − x 2 − y 2 .
Another approach is to encode the x and y components of each

normal in polar coordinates r and u, four bits each r ← x 2 − y 2 ,
u ← arctan(y/x)). As before, we scale each of r and u into numbers
from 0 to 15 and store them in the low and high halves of the byte, as
before.

Yet another encoding is to use a single value representing 1 of 256
positions along an equal-area spiral, which starts at the origin and winds
outward. Each position along this spiral represents the head of a normal,
which begins at the origin.

These approaches all require a special test to avoid the foreground and
background colors. Some also have wasted entries. For example, consider
the meaning of bit pattern c = 1 1 1 1 1 1 10 using the first encoding. Here,
xe = 1111 = 15, so x = +1.0, and ye = 1110 = 14, so y = 0.8666667.
Clearly there is no unit normal with these x and y components; in fact
every bit pattern 1111xxxx is meaningless except for 11110000. So
we’ve wasted 14 possible encodings (there are 16 possible sequences for
xxxx above; 1 1 1 1 is reserved and 0000 is okay, leaving 14 wasted).

260

IV.7 NORMAL CODING

GRAPHICS GEMS I Edited by ANDREW S. GLASSNER 260

Each bit pattern that we can’t use gives us a smaller available range of
normals to represent our image, making it look slightly worse.

A Better Encoding MethodA Better Encoding MethodA Better Encoding MethodA Better Encoding MethodA Better Encoding Method
The technique I use is to construct a pair of tables, one associating
normals with indices, and the other associating indices with normals. To
encode a normal, one looks it up in the table, and receives an index
number giving the color-map entry for that normal. To decode, one looks
up the index number in the other table, which provides a normal. This
way the correspondence between normal bit patterns and geometric
normals is not direct, and we get a greater range of possible normals. We
can also use more sophisticated or expensive mappings, since they are
computed only once and stored in the tables.

This approach is exactly analogous to the use of color maps in eight-bit
frame buffers. One way (though not the best) to encode a color in eight
bits is to use three bits for red, three bits for green, and two bits for blue
(see “Pixels as Integers” in this volume). This would lock us into one
particular color space, which directly associates a color with its bit
pattern. A more general technique is to use a color map, which allows us
to associate any color with any bit pattern; analagously, the technique
mentioned here may be thought of as a normal map.

What might be the best such normal map or table? A first thought is to
space normals equally on the surface of a hemisphere. But remember that
we’re viewing the image from a single, fixed location, and that the
normals have already been transformed into eye space. We want most of
the resolution near the normal pointing head-on toward us, and less to the
sides, where we can see the changes less clearly. In other words, we want
the perceived differences in the normals to be about equal.

One easy approach is to lay a grid over the unit circle, and use normals
corresponding to grid centers within the circle. This is much like the first
encoding technique described above (using four bits each for x and y),
but we don’t waste bit patterns that don’t correspond to possible normals.

We wish to build two tables: BtoNTable[] converts a byte to a normal,
and NtoBTable[] converts a normal to a byte. To build these tables, we
place a grid of fixed size over the unit circle and scan the grid top-down,
left-right, looking for cells whose center is within the circle. Suppose we

261

IV.7 NORMAL CODING

GRAPHICS GEMS I Edited by ANDREW S. GLASSNER 261

 Figure 1. Using a 17-by-17 grid to encode normals. Cell (10, 7) is highlighted.

have a grid 17 units on a side, and the cell under consideration is (10, 7)
(see Figs. 1 and 2). The (x, y) coordinates of this cell’s normal are found
by subtracting the cell’s center at (10.5, 7.5) from the circle’s center at
(8.5, 8.5) and dividing by the radius, giving ((10.5 – 8.5)/8.5, (7.5 –
8.5)/8.5) = (0.2352941, – 0.1176471). Since in this case x2 + y2 < 1,
this cell is within the unit circle. We can find z = 1.0 − x 2 + x 2() , so
the normal at this cell is (0.2352941, – 0.1176471, 0.9647776).

Given that we now have a new normal to encode, how do we build the
tables? Assume that table entries [0 . . s] have been filled so far, so this is

Figure 2. Cell (10, 7) is defined on the left and right by x = 10 and x = 11, and above
and below by y = 7 and y = 8. Thus, the center is at (10.5, 7.5).

262

IV.7 NORMAL CODING

GRAPHICS GEMS I Edited by ANDREW S. GLASSNER 262

the s + 1st normal to be encoded. So now BtoNTable[s + 1] ←
(0.2352941 , – 0.1176471, 0.9647776), which associates index s + 1 with
this normal.

The other table, NtoTable, associates the color-map entry s + 1 with a
quantized version of this normal. For this table, I use a 2D array
corresponding to the quantized (x, y) coordinates that are equal to the
cell index, so NtoBTable[10][7] ← s + 1.

On a 17-by-17 grid, 225 entries will be filled this way. Entries 0 and
255 are reserved for foreground and background colors (usually black
and white, respectively). The others are available for use by the interac-
tive tool. Table 1 provides the occupancy data for some other grid sizes.

Table 1. Cell Occupancy for Different Grid Sizes.

Number of
Size Cells Occupied Density

12 112 0.7777778
13 137 0.8106509
14 156 0.7959183
15 177 0.7866667
16 208 0.8125
17 225 0.7785467
18 256 0.7901235
19 293 0.8116344
20 316 0.79
21 349 0.7913832
22 384 0.7933884
23 421 0.7958412
24 448 0.7777778
25 489 0.7824
26 540 0.7988166
—
35 973 0.7942857
36 1020 0.787037
37 1085 0.7925493
38 1124 0.7783933
—

250 49080 0.78528
—

1000 785456 0.78545

*

263

IV.7 NORMAL CODING

GRAPHICS GEMS I Edited by ANDREW S. GLASSNER 263

It is interesting to note that an 18-by-18 grid has exactly 256 valid
normals! We drop down one size to provide for the background, fore-
ground, and auxiliary colors mentioned earlier. Note that with the method,
a normal such as (1.0, 0.0, 0.0) is never represented, since it lies on the
boundary of the grid.

Improving the MethodImproving the MethodImproving the MethodImproving the MethodImproving the Method
There are a few things one can do to make life a little easier; we will
address the five problems mentioned in the first section.

There’s not much to be done about the limit of 256 normals if you have
only an eight-bit image buffer. Of course, deeper buffers will provide
more normals.

You can work with individual objects in several ways. One way is to
allow the user to specify a material description, and apply that to all
normals in the scene (so everything in the scene is made of that material).
Some rendering programs can produce an object buffer, which contains
an integer uniquely identifying the visible object at each pixel. You can
set all pixels not equal to some object value to the background color, so
only the selected object will change in appearance (the rest of the screen
will be the background color). Of course, you’ll have to store the original
normal buffer so you can bring it back when another object is selected.
When calculating a shade for a normal you may use a more complete
shading equation, taking into account the object’s color, diffuse and
specular reflectance, and so on.

I don’t have a good solution for handling local light sources; they
require spatial information, which can vary on a pixel-by-pixel basis.
There may be a more complex encoding scheme using more bits that
handles these efficiently.

Banding is an artifact of this technique. Just as with color quantization,
one can see bands of equal-normal regions of objects on the screen. This
effect can be reduced by adding some low-level noise to each normal
before quantization (this is similar to dithering). I have found that using
random x and y perturbations in the range –3/17 to +3/17 gives
good results.

If you provide interactive pointing on the screen (that is, in which the
user may point to a spot and the light will be moved so it is head-on to
that normal), you’ll want to average a local region on the screen around

264

IV.7 NORMAL CODING

GRAPHICS GEMS I Edited by ANDREW S. GLASSNER 264

the point being picked. This will compensate for both the quantization
and the dithering. Another handy feature is to allow the user to point to
where the highlight should appear, and then automatically calculate the
position of the light to put the highlight at that spot.

I don’t have any suggestions about the aliasing due to a single point per
pixel. I don’t think that’s really much of a problem in an interactive tool,
anyway—you’re not making final images, just setting up parameters.

With some effort, the techniques in this note can be the heart of a
useful, interactive lighting design program.

For other discussions of normal encoding and color-map techniques,
see Heckbert (1984), and Sloan and Brown (1979).

See also Mapping RGB Triples onto Four Bits (233)

265

IV.8 RECORDING ANIMATION IN BINARY ORDER FOR PROGRESSIVE TEMPORAL REFINEMENT

GRAPHICS GEMS I Edited by ANDREW S. GLASSNER 265

IV.8IV.8IV.8IV.8IV.8RRRRRECORDING ANIMATION INECORDING ANIMATION INECORDING ANIMATION INECORDING ANIMATION INECORDING ANIMATION INBBBBBINARY ORDER FORINARY ORDER FORINARY ORDER FORINARY ORDER FORINARY ORDER FORPPPPPROGRESSIVE TEMPORAL REFINEMENTROGRESSIVE TEMPORAL REFINEMENTROGRESSIVE TEMPORAL REFINEMENTROGRESSIVE TEMPORAL REFINEMENTROGRESSIVE TEMPORAL REFINEMENT
 Paul S. HeckbertUniversity of CaliforniaBerkeley, California

IntroductionIntroductionIntroductionIntroductionIntroduction
When recording hardware allows frames to be written multiple times,
animation can be recorded in an order that provides progressive temporal
refinement: halfway through the recording process, the animation is
double-framed, one quarter of the way through recording, the animation
is quadruple-framed, one eighth of the way through recording, the anima-
tion is octuple-framed, and so on. By recording frames in binary order,
animation errors can be detected earlier than they would with sequential
recording order. The technique is typically the same speed as sequential
recording, and it is trivial to implement.

Double-Framed OrderDouble-Framed OrderDouble-Framed OrderDouble-Framed OrderDouble-Framed Order
A trick sometimes used in the animation production business is to record
a double-framed animation in the process of recording a single-framed
animation. This is done by first recording each of the even numbered
pictures for two frames, yielding a double-framed animation, and then
dropping in the odd numbered pictures for one frame each? yielding the
finished, single-framed animation. For example, this double-framed
order for an eight-frame animation is shown here:

i 0 1 2 3 4 5 6 7
start_frame 0 2 4 6 1 3 5 7
repeat_frame 2 2 2 2 1 1 1 1

266

IV.8 RECORDING ANIMATION IN BINARY ORDER FOR PROGRESSIVE TEMPORAL REFINEMENT

GRAPHICS GEMS I Edited by ANDREW S. GLASSNER 266

At each step i, picture number start_frame is recorded starting at frame
start_frame and continuing for repeat_count consecutive frames. In
this example, we’d have a double-framed animation after step 3 and a
single-framed animation after step 7.

This trick requires that the recording hardware allow frames to be
recorded multiple times. Most single-frame video recorders have this
capability, but film recorders and write-once media do not. If frames are
being rendered as they are recorded, then the trick also requires that the
rendering process “have no history,” that each frame can be rendered
independent of the others. The benefit of the trick is that a rough draft of
the animation is available halfway through the recording process for
checking purposes.

Binary OrderBinary OrderBinary OrderBinary OrderBinary Order
This trick can be extended further to what we call binary order: on the
way to generating a single-framed animation, we generate a double-framed
animation at the halfway point, a quadruple-framed animation at the
one-quarter point, an octuple-framed animation at the one-eighth point,
and so on. Binary order is illustrated here for an eight-frame animation:

As shown in the table, step 0 records picture 0 over frames 0–7 (the
entire duration of the animation), step 1 records picture 4 over frames
4–7, step 2 records picture 2 over frames 2–3, and so on. The sequence
is obvious when i and start_frame are written in binary (last two rows
of the table). Observe that start_frame is the bit-reversal of i, and that
repeat_count is the largest power of two that divides start_frame.
Incidentally, bit reversal crops up in many Fast Fourier Transform algo-
rithms. The sequence is also related to breadth-first traversal of a binary
tree.

i 0 1 2 3 4 5 6 7

start frame 0 4 2 6 1 5 3 7
repeat_count 8 4 2 2 1 1 1 1

i base 2 000 001 010 011 100 101 110 111
start_frame base 2 000 100 010 110 001 101 011 111

267

IV.8 RECORDING ANIMATION IN BINARY ORDER FOR PROGRESSIVE TEMPORAL REFINEMENT

GRAPHICS GEMS I Edited by ANDREW S. GLASSNER 267

Defining binary order in terms of bit reversal works only when the
number of frames is a power of two, so we must generalize bit reversal to
arbitrary sequence lengths. This can be done by noting that bit reversal of
a sequence of length n = 2k consists of k – 1 stages of shuffles, where
each shuffle brings all the even-numbered items to the front and all the
odd-numbered items to the back (see Fig. 1, but note that these multi-
stage shuffle diagrams are not FFT butterfly diagrams). The multiple-
shuffle definition of binary order works for any sequence length. I call this
generalization of bit reversal “turning a number inside-out.” An algo-
rithm is given here:

inside-out: turn a number “inside-out”: a generalization of bit-reversal.

For n = power of two, this is equivalent to bit-reversal.

Turn the number a inside-out, yielding b. If 0 # a < n then 0 # b < n.
Also return r = min(n – b, largest power of 2 dividing b)

procedure inside_out(n, a: int; b, r: ref int);
note: b and r are returned via call-by-reference
k, m: int;
begin

m ← n;
r ← n;
b ← 0;
k ← 1;
while k < n do

if 2*a $ m then begin
if b = 0 then r ← k;
b ← b + k;
a ← a – (m + 1)/2;
m ← m/2;
end;

else m ← (m + 1)/2;
k ← k*2;
endloop;

if r > n – b then r ← n – b;
endproc;

We can now compute binary order for any sequence length. For example,

268

IV.8 RECORDING ANIMATION IN BINARY ORDER FOR PROGRESSIVE TEMPORAL REFINEMENT

GRAPHICS GEMS I Edited by ANDREW S. GLASSNER 268

Figure 1. Bit reversal by multi-stage shuffle for sequences of length 8 and 11.

if nframes = 11:

To record an n-frame animation in binary order, step a variable i from
0 to n – 1, and turn this number inside-out at each step:

for i ← 0 to nframes – 1 do
inside_out(nframes, i, start_frame, repeat_count);
here record picture number start_frame

into frames start_frame through start_frame + repeat_count – 1
endloop;

i 0 1 2 3 4 5 6 7 8 9 10

start frame 0 8 4 2 10 6 1 9 5 3 7

repeat_count 11 3 4 2 1 2 1 1 1 1 1

269

IV.8 RECORDING ANIMATION IN BINARY ORDER FOR PROGRESSIVE TEMPORAL REFINEMENT

GRAPHICS GEMS I Edited by ANDREW S. GLASSNER 269

SummarySummarySummarySummarySummary
By recording in binary order, the temporal resolution of animation can be
progressively refined. If recording is terminated at any time, the anima-
tion is still presentable, since the entire duration has been recorded. The
method uses one record operation for each frame, so it is as fast as simple,
sequential order on most recorder. If frames are being rendered as they are
recorded, binary recording order allows rough drafts of the animation to
be previewed a fraction of the way through the rendering process, enabling
early detection of errors. The ideas here obviously generalize to nontemporal
and multidimensional sampling process.

The technique described here was developed by the author at NYIT in 1981,
and was used for video recording there. Others have employed similar
techniques for progressive transmission of images, but few have addressed
the treatment of data sizes that are not powers of two.

Some related references: Sloan and Tanimoto (1979), Knowlton (1980), and
Bergman et al. (1986).

See appendix 2 for C Implementation (720)

270

IV.9 I-TO-I PIXEL TRANSFORMS OPTIMIZED THROUGH COLOR-MAP MANIPULATION

GRAPHICS GEMS I Edited by ANDREW S. GLASSNER 270

IV.9IV.9IV.9IV.9IV.9
1–1–1–1–1–TOTOTOTOTO–1 –1 –1 –1 –1 PIXEL TRANSFORMSPIXEL TRANSFORMSPIXEL TRANSFORMSPIXEL TRANSFORMSPIXEL TRANSFORMSOOOOOPTIMIZED THROUGHPTIMIZED THROUGHPTIMIZED THROUGHPTIMIZED THROUGHPTIMIZED THROUGHCCCCCOLOR-MAP MANIPULATIONOLOR-MAP MANIPULATIONOLOR-MAP MANIPULATIONOLOR-MAP MANIPULATIONOLOR-MAP MANIPULATION

Dale SchumacherSt. Paul, Minnesota

Many image manipulation suites include a number of tools that are
analogous to common darkroom techniques. These tools can all be
described as 1-to-1 pixel transforms, since the output pixel value is
strictly a function of the input pixel value. When working with discrete
pixel values, such as the integer range [0, 255], this kind of transform can
often be implemented more efficiently by precomputing a look-up table of
output values for every possible input value. As a further optimization, a
color map can be used to implement this table look-up in hardware, and
thus display the results of the transform at the next screen refresh.

Some examples of typical 1-to-1 transforms are photo-inversion, quan-
tization (also known as posterization), gamma correction, and contrast
adjustment. Photo-inversion simply replaces each pixel value with its
grayscale opposite, like a photographic negative. Quantization divides the
input range into a number of subranges and assigns the same value to
each input value in each subrange. This creates a stair-step effect, which
reduces the number of distinct output values that are used to represent
the image. This kind of transform is often used to move images from a
system that supports a large number of gray values, like 256, to a system
that supports fewer gray values, like 16. Gamma correction is a nonlinear
transform curve, which adjusts for the nonlinear response of image input
or output devices to a linear range of inputs. This transform is analogous
to overexposure and underexposure in photography. Finally, contrast
enhancement is used to make light values lighter and dark values darker
at the same time. Upper limits, above which all output will be white, and
lower limits, below which all output will be black, define an input range
between which output values are assigned in a linear ramp of gray values

271

IV.9 I-TO-I PIXEL TRANSFORMS OPTIMIZED THROUGH COLOR-MAP MANIPULATION

GRAPHICS GEMS I Edited by ANDREW S. GLASSNER 271

Figure 1. Photo-inversion transform.

Figure 2. Quantization transform.

272

IV.9 I-TO-I PIXEL TRANSFORMS OPTIMIZED THROUGH COLOR-MAP MANIPULATION

GRAPHICS GEMS I Edited by ANDREW S. GLASSNER 272

using the entire output range. This increases the total contrast of an
image.

All of the transforms described above are 1-to-1 pixel transforms since
the output pixel value depends only on the input pixel value. Techniques
like convolution, which examines a neighborhood of input pixels, and
dithering, which depends on the position in the image matrix as well as
sometimes depending on the values of nearby pixels, are not 1-to-1
transforms. 1-to-1 transforms can be described as mathematical functions
of the input pixel, and thus shown as a function graph. Figures 1, 2, 3,
and 4 display input-output graphs of the transform functions described
here. The input pixel values are along the horizontal axis and the output
pixels values are along the vertical axis.

It is often convenient to work with image pixels as discrete grayscale
values in an integer range such as [0, 255] rather than idealized values in
the continuous real number range [0.0, 1.0]. When implementing 1-to-1
transforms on a discrete input range, the number of possible input pixel
values is usually much smaller than the number of pixels in the input
image. Therefore, it is more efficient to precompute the output value
corresponding to each possible input value, store these values in a
look-up table, and use the look-up, table to “compute” the output pixel
value for each input pixel. This is particularly true as the transformation
function gets more complex.

On a graphics system with a color map, the hardware can, in essence,
provide a look-up table for you. The frame buffer holds index values into
the color map and the color map stores the actual pixel value that
corresponds to that index. To take advantage of this feature for imple-
menting 1-to-1 pixel transforms, set aside a range of color map entries
equal to the number of possible input pixel values. The index into the
reserved color map range now corresponds to an input pixel value. The
contents of each of those color map cells determines the actual output
value of the pixel on the screen. Simply using that color map range as
your precomputed look-up table causes the display hardware to do the
look-up for each pixel for you as part of its normal operation. Changes to
the color map appear on the screen almost immediately (at the next
screen refresh). You never need to examine or change the pixel data
actually in the frame buffer since it is always the input pixel value. The
output pixel value is determined by the transform function look-up table
that is loaded into the color map.

273

IV.9 I-TO-I PIXEL TRANSFORMS OPTIMIZED THROUGH COLOR-MAP MANIPULATION

GRAPHICS GEMS I Edited by ANDREW S. GLASSNER 273

Figure 3. Gamma correction transform.

Figure 4. Contrast enhancement transform.

274

IV.9 I-TO-I PIXEL TRANSFORMS OPTIMIZED THROUGH COLOR-MAP MANIPULATION

GRAPHICS GEMS I Edited by ANDREW S. GLASSNER 274

Using a color map to implement 1-to-1 pixel transforms allows real-time
manipulation of transform parameters, like the upper and lower bounds
of a contrast adjustment or the gamma value of a gamma-correction
transform. Visual feedback showing the effect of the transform is immedi-
ate. This makes “tweaking” the transform parameters much more of an
interactive try-it-and-see process. The results of even very complex trans-
form functions can be shown quickly. When the desired resultant image is
obtained, the images can be written to disk along with the color map in
effect at the time, thus saving the transformed image.

See also Useful 1-to-1 Pixel Transforms (196)

275

IV.10 A SEED FILL ALGORITHM

GRAPHICS GEMS I Edited by ANDREW S. GLASSNER 275

IV.10IV.10IV.10IV.10IV.10
AAAAA SEED FILL ALGORITHM SEED FILL ALGORITHM SEED FILL ALGORITHM SEED FILL ALGORITHM SEED FILL ALGORITHM

Paul S. HeckbertUniversity of CaliforniaBerkeley, California

Provided here is pseudo code for seed fill. Given a seed point (x, y), it
sets this pixel and all of its 4-connected neighbors with the same pixel
value to a new pixel value. This is a useful operation in paint programs.

Unfortunately, many of the published algorithms for seed fill stress
simplicity to the point of inefficiency. A near-optimal algorithm for seed
fill is actually not much more complex than the simplest one, as demon-
strated by the code here. Optimality can be measured by the number of
times a pixel is read. One of the earliest published algorithms for seed fill
reads each pixel twice (Smith, 1979). The algorithm here, which I devel-
oped in 1982, reads each pixel just a bit more than once on average, as
does the similar algorithm described in Fishkin and Barsky (1985), which
gives a good analysis of previous fill algorithms.

Our code stops filling with any change in pixel value, but other
stopping rules, such as “stop at a specific pixel value” are often useful.
The code could easily be generalized in this way.

fill: set the pixel at (x, y) and all of its 4-connected neighbors
with the same pixel value to the new pixel value nv.
A 4-connected neighbor is a pixel above, below, left, or right of a pixel.

Pixel: type ← int;
Window: type ← record [xmin, ymin, xmax, ymax: int]; inclusive window

276

IV.10 A SEED FILL ALGORITHM

GRAPHICS GEMS I Edited by ANDREW S. GLASSNER 276

procedure fill(
x, y: int; seed point
nv: int; new pixel value
win: Window; screen window
pixelread: function(x, y: int): Pixel; procedure for reading pixels
pixelwrite: procedure(x, y: int; pv: Pixel); procedure for writing pixels

);

start, xl, x2, dy: int;
ov: Pixel; old pixel value

Segment: type ← record [y, xl, xr, dy: int];
Filled horizontal segment of scanline y for xl # x # xr.
Parent segment was on line y – dy. dy = 1 or –1

max: const int ← 10000; max depth of stack
stack: array[0..max – 1] of Segment; stack of filled segments
sp: int ← 0; stack pointer

 procedure push(y, xl, xr, dy: int); push new segment on stack
begin

if sp < max and y + dy $ win.ymin and y + dy # win.ymax then begin
stack[sp].y ← y;
stack[sp].xl ← xl;
stack[sp].xr ← xr;
stack[sp].dy ← dy;
sp ← sp + l;
end;

 endproc push;

 procedure pop(y, xl, xr, dy: ref int); pop segment off stack
 begin

sp ← sp – 1;
dy ← stack[sp].dy;
y ← stack[sp].y + dy;
xl ← stack[sp].xl;
xr ← stack[sp].xr;
endproc pop;

277

IV.10 A SEED FILL ALGORITHM

GRAPHICS GEMS I Edited by ANDREW S. GLASSNER 277

begin procedure fill
ov ← pixelread(x, y); read pixel value at seed point
if ov = nv or x < win.xmin or x > win.xmax or y < win.ymin or y > win.ymax then

return;
push(y, x, x, 1); needed in some cases

push(y + 1, x, x, –1); seed segment(popped 1st)

while sp > 0 do
pop segment off stack and fill a neighboring scan line
pop(y, x1, x2, dy);
segment of scan line y – dy for x1 ≤ x ≤ x2 was previously filled,
now explore adjacent pixels in scan line y
x ← x1;
while x ≥ win.xmin and pixelread(x, y) = ov do

pixelwrite(x, y, nv);
x ← x – 1;
endloop;

if x ≥ xl then goto skip;
start ← x + 1;
if start < xl then push(y, start, x1 – 1, – dy); leak on left?
x ← xl + 1;
loop do

while x ≤ win.xmax and pixelread(x, y) = ov do
pixelwrite(x, y, nv);
x ← x + 1;
endloop;

push(y, start, x – 1, dy);
if x > x2 + 1 then push(y, x2 + 1, x – 1 – dy); leak on right?

skip: x ← x + 1;
while x ≤ x2 and pixelread(x, y) ≠ ov do

x ← x + 1;
endloop;

start ← x;
while x ≤ x2;

endloop;
endproc fill;

See also Filling a Region in a Frame Buffer (278)

See Appendix 2 for C Implementation (721)

278

 IV.11 FILLING A REGION IN A FRAME BUFFER

GRAPHICS GEMS I Edited by ANDREW S. GLASSNER 278

IV.11IV.11IV.11IV.11IV.11
FFFFFILLING A REGIONILLING A REGIONILLING A REGIONILLING A REGIONILLING A REGIONIIIIIN A FRAME BUFFERN A FRAME BUFFERN A FRAME BUFFERN A FRAME BUFFERN A FRAME BUFFER

Ken FishkinPixar, Inc.San Rafael, California

Fill algorithms are a common graphics utility. They explore through a
frame buffer from some seed point, finding all the pixels connected to
that seed point that share some property (for example, all being the same
color). Some function (for example, changing the color) is invoked
exactly once on each pixel found.

This Gem doesn’t worry about exactly what property you’re looking for,
or what function you want to invoke on each pixel: rather, it contains the
“controller,” which decides which pixels to look at and when. It assumes
a boolean-valued function INSIDE(x, y), which returns true for any pixel
that has the property you want, and a void-valued function SET(x, y),
which changes the pixel as you wish. Furthermore, INSIDE(x, y) must
return false if (x, y) has been SET(); commonly, a one-bit-per-pixel
mask is used for this. The INSIDE and SET functions encapsulate the type
of fill (interior fill, boundary fill, tint fill . . .), while the controller sitting
above it, contained in this gem, remains constant.

As terminology, the set of all pixels connected to the seed point that
need to be filled comprise the region. A scanline of pixels, all of which
are in the region, is termed a span. Figure 1a shows a sample “before”
state of a frame buffer: pixels with a hollow circle inside them have the
property we are interested in, and the pixel with a solid circle is the seed
point. Figure 1b shows all SET() pixels with a solid circle, and outlines
each span with a solid line.

Algorithms that do this exploration all work similarly: they start with a
seed span, and then have a stack of unexplored spans, termed shadows,
which they examine in classic graph-traversal fashion.

279

 IV.11 FILLING A REGION IN A FRAME BUFFER

GRAPHICS GEMS I Edited by ANDREW S. GLASSNER 279

Figure 1. Filling a region.

When a shadow is pushed on the stack, it can have one of three
possible relations to the span that is pushing it. It can overlap it at both
edges (a “W turn”), it can overlap it at one edge (a “U turn”), or it can
overlap it at neither edge (an “S turn”) (see Fig. 2).

A detailed comparison of the most popular fill algorithms would take
too long: the interested reader is referred to Fishkin and Barsky (1985).
To make a long story short, they differ in how they handle S, U, and W
turns, and in whether they need a bit-per-pixel.

The “canonical” fill algorithm, written by Smith (1982), works fine on
S turns, but is nonoptimal on U and W turns. An extension to this,
written by Levoy (1981), works fine on S and U turns, but is nonoptimal
on W turns. Another, written by Shani (1980), works well on all three
turns and doesn’t require a bit-per-pixel, but has poor worst-case behav-
ior. The gem you see here works fine on all three turns, and has the best
average- and worst-case behavior of the four.

Figure 2. The three kinds of turns.

280

 IV.11 FILLING A REGION IN A FRAME BUFFER

GRAPHICS GEMS I Edited by ANDREW S. GLASSNER 280

Figure 3. About to process a shadow.

The algorithm works by maintaining a stack of shadows. A shadow is
not an area that has been filled, but rather an area that might be filled:
any sets of fillable pixels that intersect the shadow should be filled. In
addition to the shadow, the stack remembers where the parent of the
shadow (the “pusher“ of this shadow) was; this lets it detect U, S, and W
turns.

To process a particular shadow the algorithm marches across the
shadow, finding all spans that the shadow touches. It calls SET() on each
pixel in the span, and then pushes the new shadows cast by this new
span. The pushing order is arranged in such a way that shadows that
change direction, that is, shadows that are below an upward-moving span
or above a downward-moving span are pushed last (and hence processed
first). This is a heuristic based on the observation that turns are relatively
rare and usually lead into relatively small areas; by processing them first,
stack size is reduced.

To make this description more concrete, consider Figs. 3, 4, and 5.
Figure 3 shows a frame buffer as we start to process a shadow. The
parent of the shadow is shown, and the X-ed pixels are those pixels that
are not inside the region.

In Figure 4, we have found the spans that contacted the current
shadow. Then, in Figure 5, we push the new shadows on the stack cast by
our two new spans (who become the parents of these new shadows).
Child 2 does an S turn with respect to its parent, and hence pushes one
shadow. Child 1 does a U turn with respect to its parent, and hence

281

 IV.11 FILLING A REGION IN A FRAME BUFFER

GRAPHICS GEMS I Edited by ANDREW S. GLASSNER 281

Figure 4. Found the spans in the shadow.

pushes two shadows: one that continues in the current direction and one
that reverses direction and explores the other lobe of the U. That shadow
is pushed last (and processed first). Both shadows of child 1 are pushed
before either shadow of child 2, as child 1 was discovered before child 2.

A good fill algorithm is one that reads as few pixels as possible. It can
be shown that the algorithm in this Gem is optimal if the region has no
holes. In other words, if the region is a solid, connected group of pixels,
then the algorithm will read the necessary and sufficient set of pixels. In
the worst case, a region full of holes (a grid), the algorithm will read 50%

Figure 5. The new shadows.

282

 IV.11 FILLING A REGION IN A FRAME BUFFER

GRAPHICS GEMS I Edited by ANDREW S. GLASSNER 282

more pixels than it has to, as opposed to the 100% and 200% worst-case
behaviors of earlier algorithms. One other feature is that the algorithm
uses only increments, decrements, negations, assignments, and tests; this
is handy for implementation on simple processors.

StackElement record [
myLx, myRx: integer endpoints of this shadow
dadLx dadRx: integer and of my parent
myY: integer
myDirection: TWO_VAL records whether I’m above or below my parent:

can only have values of -1 or +1
];
assume a stack of StackElements,
and a Box-valued variable Limit, which indicates
the limits of the frame buffer window.

macro PUSH(left, right, dadl, dadr, y, dir)
pushes a new shadow, going from left to right (inclusive) on line y,
with a parent going from dadl to dadr (inclusive) on line y – dir

macro POP()
pops the shadow on TOS into local variables;
lx, rx, y, direction, dadLx, and dadRx

macro STACK(dir, dadLx, dadRx, lx, rx, y)
pushes one more shadow on the stack, given a newly discovered
span and its parent: this is where S vs. U vs. W turns are handled
pushrx ← rx + 1; pushlx ← lx – 1;
PUSH(lx, rx, pushlx, pushrx, y + dir, dir)
if rx > dadRx

then PUSH(dadRx + 1, rx, pushlx, pushrx, y – dir, dir) U turn to the right
if lx < dadLx

then PUSH(lx, dadLx – 1, pushlx, pushrx, y – dir, dir) U turn to the left
a W turn is just two U turns: both “if”s would evaluate true.

main: fill a region with seed at (seedx, seedy)
Fill(seedx: integer, seedy: integer)

find the span containing the seed point.

283

 IV.11 FILLING A REGION IN A FRAME BUFFER

GRAPHICS GEMS I Edited by ANDREW S. GLASSNER 283

Suppose it goes from lx to rx, inclusive

PUSH(lx, rx, lx, rx, seedy + 1, 1);
PUSH(lx, rx, lx, rx, seedy –1, –1);

while stack is not empty do
POP();
if y < Limit.top or y > Limit.bottom

then loop;
x ← lx + 1
if (wasIn ← INSIDE(lx, y))
then begin

SET(lx, y); lx ← lx – 1;
while INSIDE(lx, y) and lx ≥ Limit.left do

 the left edge of the shadow contacts a span: walk over
 to its edge.

SET(lx, y); lx ← lx – 1;
endloop

end
now enter the main loop: we are now looking at pixel x, and moving to the
right. If wasIn is true, then I am currently inside a span of pixels whose left
edge is at lx.
while (x ≤ Limit.right) do
if wasIn

then begin
if INSIDE(x, y)

then begin
case 1: was inside, am still inside.
SET(x, y)
end

else begin
case 2: was inside, am no longer inside: just
found the right edge of a span
STACK(direction, dadLx, dadRx, lx, (x – 1), y);
wasIn ← false
end

else begin
if x > rx

then exit;

284

 IV.11 FILLING A REGION IN A FRAME BUFFER

GRAPHICS GEMS I Edited by ANDREW S. GLASSNER 284

if INSIDE(x, y)
then begin
SET(x, y);
case 3: wasn’t inside, am now: just found the
start of a new run
wasIn ← true;
lx ← x
end

else begin
case 4: wasn’t inside, still isn’t
end

x ← x+ l;
end

endloop
if wasIn

then begin
hit an edge of the frame buffer while inside a run
STACK(direction, dadLx, dadRx, lx, (x – 1), y);

end
endloop

return

See also A Seed Fill Algorithm (275)

285

IV.12 PRECALCULATING ADDRESSES FOR FAST FILLS, CIRCLES, AND LINES

GRAPHICS GEMS I Edited by ANDREW S. GLASSNER 285

IV.12IV.12IV.12IV.12IV.12
PPPPPRECALCULATINGRECALCULATINGRECALCULATINGRECALCULATINGRECALCULATINGAAAAADDRESSES FORDDRESSES FORDDRESSES FORDDRESSES FORDDRESSES FORFFFFFAST FILLS, CIRCLES, AND LINESAST FILLS, CIRCLES, AND LINESAST FILLS, CIRCLES, AND LINESAST FILLS, CIRCLES, AND LINESAST FILLS, CIRCLES, AND LINES

Bill WallaceWaterloo, Ontario, Canada

When adjacent pixels are accessed in an algorithm that needs to be fast,
macro definitions (or inline functions) can be used, which precalculate
one address and then use simple addition to find neighboring points.
Assume screen is a pointer to a screen k bytes wide, eight bits deep (for
ease of explanation, but this method can be used for arbitrary depth
screens.) Then a fast fill algorithm can be written as follows:

macro Calculate Address(x, y) (y*k + x + screen address);
macro Move Left(address) (address + 1);
macro Move Right(address) (address – 1);
macro Move Up(address) (address – k);
macro Move Down (address) (address + k);

macro Plot(address, color) Put Byte (address, color);
macro Get Color(address) Get Byte (address);

fastfill(address, color, boundary color)
begin
if Get Color(address) ≠ boundary color

then begin
Plot(address, color);
fastfill(Move Left(address), color, boundary color);
fastfill(Move Right(address), color, boundary color);
fastfill(Move Up(address), color, boundary color);
fastfill(Move Down(address), color, boundary;
end;

end;

286

IV.12 PRECALCULATING ADDRESSES FOR FAST FILLS, CIRCLES, AND LINES

GRAPHICS GEMS I Edited by ANDREW S. GLASSNER 286

This routine is called with something like

fastfill(Calculate Address(x, y) fill color, boundary color)

with the result being that everything in an area surrounded by the
boundary color will be filled with the fill color.

This saves explicitly passing both x and y coordinates and saves two
multiplies and four adds on each iteration of fastfill. Using this method
with Bresenham’s algorithm or with some line drawing algorithms saves
one multiply and two adds per pixel. If the screen is 24 bits deep with
separate base address, savings are increased correspondingly. One prob-
lem with this method is that there is no easy way to detect if the edge of
the screen has been encountered. For the line drawing and circle algo-
rithms, clipping can be performed before the line is drawn and for the fill
algorithms it may or may not be a problem.

See also What Are the Coordinates of a Pixel? (246); Circles of
Integral Radius on Integer Lattices (57); A Seed Fill Algorithm
(275); Filling a Region in a Frame Buffer (278)

287

IV.13 A SIMPLE METHOD FOR COLOR QUANTIZATION: OCTREE QUANTIZATION

GRAPHICS GEMS I Edited by ANDREW S. GLASSNER 287

IV.13IV.13IV.13IV.13IV.13
AAAAA SIMPLE METHOD SIMPLE METHOD SIMPLE METHOD SIMPLE METHOD SIMPLE METHODFFFFFOR COLOR QUANTIZATIONOR COLOR QUANTIZATIONOR COLOR QUANTIZATIONOR COLOR QUANTIZATIONOR COLOR QUANTIZATION:::::OOOOOCTREE QUANTIZATIONCTREE QUANTIZATIONCTREE QUANTIZATIONCTREE QUANTIZATIONCTREE QUANTIZATION

Michael Gervautz, Werner PurgathoferTechnische Universität WienWien, Austria
IntroductionIntroductionIntroductionIntroductionIntroduction
A method for filling a color table is presented that produces pictures of
similar quality as existing methods, but requires less memory and execu-
tion time. All colors of an image are inserted in an octree, and this octree
is reduced from the leaves to the root in such a way that every pixel has
a well-defined maximum error.

The human eye is able to distinguish about 200 intensity levels in each
of the three primaries red, green, and blue. All in all, up to 10 million
different colors can be distinguished. The RGB cube with 256 subdivi-
sions on each of the red, green, and blue axes, as it is very often used,
represents about 16.77 million colors and suffices for the eye. It enables
display of color shaded scenes without visible color edges, and is there-
fore well-suited for computer graphics. Figure 1, on the back cover,
shows a computer-generated image displayed with 16 million colors.

Color devices (mainly frame buffers) that allow for the projection of
those 16 million colors at the same time are complicated and therefore
expensive. On the other hand, even good dithering techniques produce
relatively poor-quality pictures on cheap devices (Jarvis et al., 1976).
Therefore, devices with color tables are produced that allow the use of a
small contingent K (for example, K = 256) of colors out of a larger
palette (for example, 16 million colors).

When displaying images that contain more than K colors on such
devices, the problem arises as to which K colors out of the possible
colors will be selected and how the original colors are mapped onto the
representatives to produce a satisfying picture. Such a selection is also
needed for some other algorithms, such as the CCC-method for image
encoding (Campbell et al., 1986). The question is, how much expense

288

IV.13 A SIMPLE METHOD FOR COLOR QUANTIZATION: OCTREE QUANTIZATION

GRAPHICS GEMS I Edited by ANDREW S. GLASSNER 288

can or will be invested in this job? This Gem presents a very simple but
effective algorithm we called “octree quantization” to handle this task.

There are some existing solutions that have already been introduced.
The simplest way to handle the problem is to divide the RGB cube into
equal slices in each dimension and use the cross product of these (few)
color levels of every primary for the color table. It is called “uniform
quantization,” and is depicted on the back cover in Fig. 2, which is the
same image as Fig. 1, displayed with 64 colors. The “popularity algo-
rithm” (Heckbert, 1982) chooses the K most frequently occurring colors
for the color table, shown in Fig.3 on the back cover. The “median cut
algorithm” (Heckbert, 1982) tries to select K colors in such a way that
each of these colors represents approximately the same number of pixels
(see Fig. 4 on the back cover).

Principle of the Octree Quantization MethodPrinciple of the Octree Quantization MethodPrinciple of the Octree Quantization MethodPrinciple of the Octree Quantization MethodPrinciple of the Octree Quantization Method
The image is read sequentially. The first K different colors are used as
initial entries to the color table. Ii another color is added, which means
that the already processed part of the image has K + 1 different colors,
some very near neighbors are merged into one and substituted by their
mean. This step is repeated for every additional color, so that at any
moment no more than K representatives are left. This property, of
course, remains true after the image is completely processed.

The OctreeThe OctreeThe OctreeThe OctreeThe Octree
For this method a data structure has to be used that enables quick
detection of colors that lie close together in the color space. An octree is
well suited for this problem (Jakson and Tanimoto, 1980; Meagher,1932). The
RGB cube can easily be administered by an octree
 It suffices to use an octree of depth eight (two in the eighth is 256 levels
in red, green, blue; eight in the eighth gives 16 million colors) to represent
all possible colors. The red, green, and blue components (each between 0
and 255) are the coordinates within the octree.

Every exact color is represented by a leaf in depth eight. Intermediate
nodes represent subcubes of the RBG space. The greater the depth of
such a node, the smaller is the color subcube represented by it; therefore,
the depth of a node is a measure for the maximum distance of its colors.

289

IV.13 A SIMPLE METHOD FOR COLOR QUANTIZATION: OCTREE QUANTIZATION

GRAPHICS GEMS I Edited by ANDREW S. GLASSNER 289

The AlgorithmThe AlgorithmThe AlgorithmThe AlgorithmThe Algorithm
The octree quantization is done in three phases:

• evaluation of the representatives
• filling the color table
• mapping the original colors onto the representatives.

These three steps are now described in detail using the color octree.

Evaluation of the RepresentativesEvaluation of the RepresentativesEvaluation of the RepresentativesEvaluation of the RepresentativesEvaluation of the Representatives
The octree is constructed only in those parts that are necessary for the
image we want. At the beginning, the octree is empty. Every color that
occurs in the image is now inserted by generating a leaf in depth eight;
thereby, the color is represented exactly.

InsertTree (Tree: Octree, RGB: Color);
inserts the color RGB into the subtree Tree

begin InsertTree
if Tree = nil

then NewAndInit (Tree); produces and inits a new octree node.
if Leaf we have reached the eighth level.

then
begin

inc(Tree^.ColorCount); update the number of represented pixels
AddColors (Tree^.RGB, RGB); sum up the color values
end

else InsertTree (Next[Branch(RGB)], RGB);
end;

In this way an incomplete octree is created, in which many branches are
missing. Actually, this octree does not have to be filled with all the colors
because every time the number of colors reaches K + 1, similar colors
can be merged into one, so that there are never more than K colors left.
We will call this action a reduction of the octree.

290

IV.13 A SIMPLE METHOD FOR COLOR QUANTIZATION: OCTREE QUANTIZATION

GRAPHICS GEMS I Edited by ANDREW S. GLASSNER 290

ReduceTree combines the successors of an intermediate node to one leaf node

GetReducible (Tree); finds a reducible node
Sum ← (0,0,0);
Children 0;
for i:integer 0,7 do

if Next[i] <> nil there is an ith successor
then

begin
Children ← Children + 1;
AddColors (Sum, Tree^.Next[i]^.RGB)
end;

Tree^.Leaf ← true; cut the tree at this level
Tree^.RGB ← Sum; the node represents the sum of all color values
Size ← Size – Children + 1; of children

Every time the number of leaves (that is, the number of representatives
found up to the moment) exceeds K, the octree is reduced. The reduction
begins at the bottom of the octree by always substituting some leaves by
their predecessor.

Reducing the octree, the following criteria are relevant:

• From all reducible nodes, those that have the largest depths within the
octree should be chosen first, for they represent colors that lie closest
together.

• If there is more than one node in the largest depth, additional criteria
could be used for an optimal selection. For example, reduce the node
that represents the fewest pixels up to now. In this way the error sum
will be kept small. Reduce the node that represents the most pixels up
to now. In this case large areas will be uniformly filled in a slightly
wrong color, and detailed shadings (like anti-aliasing) will remain.

To construct the color octree, the whole image has to be read once and
all colors of the image have to be inserted into the octree.

Filling the Color TableFilling the Color TableFilling the Color TableFilling the Color TableFilling the Color Table
At the end, the K leaves of the octree contain the colors for the color
table (the mean value of all represented colors = RGB/ColorCount).
They can be written into the color table by recursively examining the

291

IV.13 A SIMPLE METHOD FOR COLOR QUANTIZATION: OCTREE QUANTIZATION

GRAPHICS GEMS I Edited by ANDREW S. GLASSNER 291

octree. During this recursive tree traversal in every leaf node of the octree
also its own color index is stored.

Mapping onto the RepresentativesMapping onto the RepresentativesMapping onto the RepresentativesMapping onto the RepresentativesMapping onto the Representatives
The mapping of the original colors onto their representatives can now be
managed easily with the octree, too. Trying to find any original color in
the reduced octree will end at a leaf in some depth. This node contains a
color very similar to the one in search, and is therefore its representative.
Since the index of the color table is stored there too, no further search
has to be carried out.

If the original image used less than K colors, no reduction will have
taken place, and the found color table entry will contain exactly the
correct color. Otherwise, only the path to the leaf in depth eight was
shortened by the reduction, so that the color will be displayed less exactly
by the means of all the colors that had their paths over this node. Since
the octree contains only K leaves, all original colors are mapped onto
valid color table entries. For this, the image has to be read a second time.

Quant (Tree: Octree, Original_Color: Color): index;
for the original color its representative
is searched for in the octree, and the index of
its color table entry is returned

begin Quant
if Leaf

then return Tree^.ColorIndex stored color index in the tree
else return Quant(Tree^.Next[Branch (Original_Color)], Original_Color)

end;

The visual result using this octree quantization is of similar quality as
the result using the median cut method (see Fig. 5 on the back cover).

ImprovementsImprovementsImprovementsImprovementsImprovements
A significant portion of the execution time is spent with the search for an
optimal reducible node every time a reduction of the octree has to take
place. These nodes can be collected easily in an appropriate structure
during the construction of the tree. They have to be sorted by depth to
ensure quick access. An appropriate structure for this purpose has proved

292

IV.13 A SIMPLE METHOD FOR COLOR QUANTIZATION: OCTREE QUANTIZATION

GRAPHICS GEMS I Edited by ANDREW S. GLASSNER 292

to be eight linear lists (one for every depth level) containing all reducible
nodes. All nodes of one depth level are elements of the same list. The
node with the largest depth can then be found quickly for reduction.

An intermediate node is inserted into its list of reducible nodes after its
creation during NewAndlInit.

At any given moment one level of the octree will be the depth in which
the reductions take place. This depth is the level of the deepest intermedi-
ate nodes. At the beginning, this is level seven, and it moves toward the
root during the octree construction. This “reduction level” states what
the minimal distance between two representatives will already have to be.
This minimal distance can never again decrease, even by adding more
colors to the octree. Therefore, nothing beneath this reduction level + 1
will ever again be relevant, so that the insertion of colors can also stop at
that depth. The depth of the octree is not constant, but decreases with
lifetime.

Memory and Computational ExpenseMemory and Computational ExpenseMemory and Computational ExpenseMemory and Computational ExpenseMemory and Computational Expense
Let N be the number of pixels of the original image. If the image is
run-length encoded, N can also be the number of runs of the image. The
algorithm has to be modified slightly by using runs instead of pixels in the
octree.

Let K be the number of representatives, that is, the size of the color
table. Let D be the number of different colors in the original image.

In general the following equations hold:

N > D > K and N >> K.

An upper bound for the memory used by the octree is 2.K – 1 nodes,
because there are K leaves and at the most (in the case of a bintree)
K – 1 intermediate nodes. The algorithm needs very little memory! It is
also independent of N and D, that is, of the image. Only the color table
size is relevant.

Upper bounds for the number of steps for the insertions, for the
generation of the color table, and for the quantization are

Insertion:N.MaxDepth.

N insertions take place, each of them not deeper than MaxDepth.
MaxDepth itself is a constant (≤ 8).

Color table generation:2.K.

293

IV.13 A SIMPLE METHOD FOR COLOR QUANTIZATION: OCTREE QUANTIZATION

GRAPHICS GEMS I Edited by ANDREW S. GLASSNER 293

Table 1. Comparison of the Quantization Techniques

To fill the color table the incomplete octree has to be examined once;
for every node there is exactly one call to the procedure InitColortable.

Mapping: N.MaxDepth

For every pixel the color index of its representative is found not deeper
than in the maximum tree depth. Thus, the octree quantization algorithm
is of O(N), the larger part of the execution time is spent by I/O-oper-
ations.

Comparison with Other MethodsComparison with Other MethodsComparison with Other MethodsComparison with Other MethodsComparison with Other Methods
Table 1 gives a short comparison with the other mentioned methods.

ConclusionConclusionConclusionConclusionConclusion
A method was presented to find a color table selection for displaying an
image on a screen. The picture quality of this “octree quantization” is as
good as that for existing methods. The expense in terms of memory and
execution time, however, lies significantly below the expense of those
algorithms, especially in terms of the memory occupied, which is inde-
pendent of the image complexity. The method is therefore well suited for
microcomputers, too.

See also Mapping RGB Triples onto Four Bits (233)

55
3D GEOMETRY

GRAPHICS GEMS I Edited by ANDREW S. GLASSNER 297

V.1 USEFUL 3D GEOMETRY V.1 V.1 V.1 V.1 V.1UUUUUSEFULSEFULSEFULSEFULSEFUL33333D GEOMETRYD GEOMETRYD GEOMETRYD GEOMETRYD GEOMETRY
Andrew S. G!assnerXerox PARCPalo Alto, California

Record Sphere: [
center: C,
radius: r
] (see Fig. 1a)

A sphere will be represented in upper case roman (A, B).

Record Plane: [
normal: N,
offset: d
] (see Fig. 1b)

A Plane will be represented in upper case italic (J, K).

 V3 Distance from Point to Plane
d ← V3 Distance from Point (P) to Plane (J) (see Fig. 2)

Q ← V3 Nearest Point on Plane (J) to Point (P)
d ← V3 Distance between Point (P) and Point (Q)

V3 Nearest Point on Plane to Point
Q ← V3 Nearest Point on Plane (J) to Point (P) (see Fig. 3)

1. Q is on plane J, so JN ⋅ Q + Jd = 0.
2. The vector Q – P is parallel to JN, so Q–P = kJN for some k:
Q= P–kJN.
3. Plug Q from 2 into 1: JN ⋅ P – JN ⋅ kJN + Jd = 0

4. Solve 3 for k:

k = Jd + JN ⋅ P

JN ⋅ JN

5. Plug k into 2 and find Q:

Q ← P – (

Jd + JN ⋅ P
JN ⋅ JN

) JN .

GRAPHICS GEMS I Edited by ANDREW S. GLASSNER 298

V.1 USEFUL 3D GEOMETRY

Figure 3.

Figure 1.

 Figure 2.

GRAPHICS GEMS I Edited by ANDREW S. GLASSNER 299

V.1 USEFUL 3D GEOMETRY

V3 Point on Plane Nearest the Origin
P ← V3 Point on Plane (J) Nearest the Origin

P ← Nearest Point on Plane (J) to Point (0)

V3 Intersection of Line and Plane
P ← V3 Intersection of Line (l) and Plane (J)

Plug in the expression for points on l into those on J.
(lU + lVt)⋅ JΝ + Jd = 0
Now solve for t and plug back into the line equation.

t ← –
Jd + lU ⋅JN







iv ⋅JN

P ← lU + lVt
V3 Normalize

A ← V3 Normalize (A)

A ← A

V3 Length A()

V3 Dot
d ← V3 Dot(A, B)

d ← ΑxBx + AyBy + AzBz
V3 Length

d ← V3 Length (A)

 d ← A ⋅ A
 V3 Intersection of Sphere and Line
P1, P2 ← V3 Intersection of Sphere (S) and Line (l)

G ← lU − Sc

a ← lV⋅lV
b ← 2(lV⋅G)
c ← (G ⋅ G) – S r2
d ← b2 – 4ac
if d < 0

then “no intersection”
 else

P1 ← (–b+ d)/2a
P2 ← (–b– d)/2a

GRAPHICS GEMS I Edited by ANDREW S. GLASSNER 300

V.1 USEFUL 3D GEOMETRY
V3 Point on Sphere Nearest Point

Q ← V3 Point on Sphere (S) Nearest Point (P)
Q ← SC + Sr*V3 Normalize(P – SC)

V3 Line through Two Points
l ← V3 Line through Two Points (A, B)

lU ← Α
lV ← V3 Normalize(B – A)

 V3 Distance from Point to Line
d ← V3 Distance from Point (P) to Line (l)

Q ← V3 Point on Line (l) Closest to Point (P)
d ← V3 Distance from Point (P) to Point (Q)

 V3 Point on Line Closest to Point
Q ← V3 Point on Line (l) Closest to Point (P)

1. P lies on a plane with normal lV: P⋅ lV + d = 0
2. Find this plane and intersect it with the line:
JN ← lV

 Jd ← – (P ⋅ lV)
Q ← V3 Intersection of Line (l) and Plane (J)

 V3 Point on Line Nearest the Origin
Q ← V3 Point on Line (l) Nearest the Origin

Q ← V3 Point on Line (l) Closest to Point (0)

 V3 Distance between Point and Point
d ← V3 Distance between Point (P) and Point (Q)

d ← V3 Length(P – Q)

 V3 Parameter of Point on Line from Point to Point
a ← V3 Parameter of Point (P) on Line from Point (Q) to Point (R)
 V3 Distance from Point (P) to Point (Q)

 V3 Distance from Point (P) to Point (Q + R)
 V3 Projection of Vector onto
V ← V3 Projection of Vector D onto Plane J
 V ← D – (D ⋅ JN)JN

See also Useful 2D Geometry (3)

 a ←

301GRAPHICS GEMS I Edited by ANDREW S. GLASSNER 301

V.2 AN EFFICIENT BOUNDING SPHEREV.2V.2V.2V.2V.2
AAAAAN EFFICIENTN EFFICIENTN EFFICIENTN EFFICIENTN EFFICIENTBBBBBOUNDINGOUNDINGOUNDINGOUNDINGOUNDINGSSSSSPHEREPHEREPHEREPHEREPHERE

Jack RitterVersatec, Inc.Santa Clara, California

This gem is a method for finding a near-optimal bounding sphere for any
set of N points in 3D space. It is Order (N), and extremely fast. The
sphere calculated is about 5% bigger than the ideal minimum-radius
sphere.

The algorithm is executed in two passes: the first pass finds two points
that are close to maximally spaced. This pair describes the initial guess
for the sphere. The second pass compares each point to the current
sphere, and enlarges the sphere if the point is outside. The algorithm is as
follows:

1. Make one (quick) pass through the N points. Find these six points:
The point with minimum x , the point with maximum x,
The point with minimum y , the point with maximum y,
The point with minimum z , the point with maximum z.

This gives three pairs of points. Each pair has the maximum span for its
dimension. Pick the pair with the maximum point-to-point separation
(which could be greater than the maximum dimensional span). Calculate
the initial sphere, using this pair of points as a diameter.

2. Make a second pass through the N points: for each point outside
the current sphere, update the current sphere to the larger sphere passing
through the point on one side, and the back side of the old sphere on the
other side. Each new sphere will (barely) contain the old sphere, plus the
new point, and usually some other outsiders as well. The number of
updates needed will be a tiny fraction of N. In testing each point against
the current sphere, the square of its distance from the current sphere’s

302GRAPHICS GEMS I Edited by ANDREW S. GLASSNER 302

V.2 AN EFFICIENT BOUNDING SPHERE
center is compared to the square of the current sphere’s radius, to avoid
doing a sqrt() calculation.

The following pseudo code compares a point (x, y, z) with the current
sphere [center = (cenx, ceny, cenz), and radius = rad]. If (x, y, z) is
outside the current sphere, (cenx, ceny, cenz) and rad are updated to
reflect the new sphere. The current square of the radius is maintained in
rad sq:

given x, y, z, cenx, ceny, cenz, rad, and rad_sq

dx ← x – cenx;
dy ← y – ceny;
dz ← z – cenz;
old_to_p_sq ← dx*dx + dy*dy + dz*dz;
do economical r**2 test before calc sqrt
if (old_to_p_sq > rad_sq)

then
Point is outside current sphere. update.
old_to_p ← old_ to_ p_ sq ;
rad ← (rad + old_to_p)/2.0;
update square of radius for next compare
rad_sq ← rad*rad;
old_to_new ← old_to_p–rad;
cenx ← (rad*cenx + old_to_new*x)/old_to_p;
ceny ← (rad*ceny + old_to_new*y) / old_to_p;
cenz ← (rad*cenz + old_to_new*z) / old_to_p;
end

The following two tests were run on a Sun 3/50 workstation (68020
with MC68881 floating point co-processor).

Case 1Case 1Case 1Case 1Case 1
A spherical volume centered at the origin with a radius of 128, was
randomly populated with 10,000 points. Five of these were forced to be
at the edge of the sphere. This means that the optimal sphere should have

303GRAPHICS GEMS I Edited by ANDREW S. GLASSNER 303

V.2 AN EFFICIENT BOUNDING SPHERE
a radius of 128. Results: center = (3, 5, 4); radius = 133 (4% > ideal);
processor time: 1.8 seconds.

CASE 2CASE 2CASE 2CASE 2CASE 2
A cubic volume with a half-edge length of 128 was randomly populated
with 10,000 points. Included were the eight corner points. This means
that the ideal radius = 3∗128 = 222. Note: this is close to the worst
case for this algorithm, because an orthogonally aligned box means that
no corners will be found in the initial guessing phase. (A box rotated by
any angle around any axis would allow corners to be found initially.)
Results: center = (5, 21, 2); radius = 237 (7% > ideal); processor time:
1.8 seconds.

A full C version of this algorithm can be found in the appendix.

See Appendix 2 for C Implementation (723)

304GRAPHICS GEMS I Edited by ANDREW S. GLASSNER 304

V.3 INTERSECTION OF TWO LINES IN THREE-SPACEV.3V.3V.3V.3V.3
IIIIINTERSECTION OFNTERSECTION OFNTERSECTION OFNTERSECTION OFNTERSECTION OFTTTTTWO LINES INWO LINES INWO LINES INWO LINES INWO LINES INTTTTTHREE-SPACEHREE-SPACEHREE-SPACEHREE-SPACEHREE-SPACE

Ronald GoldmanUniversity of WaterlooWaterloo, Ontario, Canada

Let each line be defined by a point Pk and a unit direction vector Vk,
k = 1,2. Then we can express each line parametrically by writing

L1(t) = P1 + V1t and L2(s) = P2 + V2s.

 The intersection occurs when L1(t) = L2(s) or equivalently when

P1 + V1t = P2 + V2s

 Subtracting Pl from both sides and crossing with V2 yields

 (Vl × V2)t = (P2 – Pl) × V2.

 Now dotting with (Vl × V2) and dividing by |V1 × V2|
2 give us

 t = Det{(P2 – Pl) , V2, Vl × V2}/|Vl × V2|
2.

 Symmetrically, solving for s, we obtain

s = Det{(P2 – Pl), Vl, Vl × V2}/|Vl × V2|
2.

 Two important observations follow:

 • If the lines are parallel, the denominator |Vl × V2|
2 = 0.

 • If the lines are skew, s and t represent the parameters of the points of
 closest approach.

GRAPHICS GEMS I Edited by ANDREW GLASSNER 305

IIIIINTERSECTION OFNTERSECTION OFNTERSECTION OFNTERSECTION OFNTERSECTION OFTTTTTHREE PLANESHREE PLANESHREE PLANESHREE PLANESHREE PLANES
Ronald Goldman University of WaterlooWaterloo, Ontario, Canada

Let each plane be defined by a point Pk and a unit normal, vector Vk,
k = 1, 2, 3. Then the unique point of intersection can be written in closed
form as

PInt = { (Pl ⋅ Vl)(V2 × V3) + (P2 ⋅ V2)(V3 × Vl)

 + (P3 ⋅ V3)(Vl × V2)}/Det(Vl, V2, V3).

If two of the given planes are parallel there is no intersection. In this case
the denominator Det(Vl, V2, V3) is zero.

V. 4V. 4V. 4V. 4V. 4

306GRAPHICS GEMS I Edited by ANDREW GLASSNER 306

VVVVV
MMMMMAPPING SUMMARYAPPING SUMMARYAPPING SUMMARYAPPING SUMMARYAPPING SUMMARY

Projecting a sphere onto the plane is not an easy problem.
Cartographers, interested in making maps for navigation, have
long known that one must make a variety of tradeoffs in such a
projection. You may want to preserve distances, angles, head-
ings, or areas, but you can’t preserve them all at once.

Many styles of map projection have been developed for
different goals: political boundaries, water navigation, land nav-
igation, area calculation, and so on. The following two Gems
discuss a variety of projections appropriate for computer graph-
ics. They are useful for topics ranging from texture mapping to
spherical function rendering.

V.5 DIGITAL CARTOGRAPHY FOR COMPUTER GRAPHICS

GRAPHICS GEMS I Edited by ANDREW S. GLASSNER 307

VVVVV.....55555
DDDDDIGITAL CARTOGRAPHY FORIGITAL CARTOGRAPHY FORIGITAL CARTOGRAPHY FORIGITAL CARTOGRAPHY FORIGITAL CARTOGRAPHY FORCCCCCOMPUTER GRAPHICSOMPUTER GRAPHICSOMPUTER GRAPHICSOMPUTER GRAPHICSOMPUTER GRAPHICS

Alan W. PaethUniversity of WaterlooWaterloo, Ontario, Canada

OverviewOverviewOverviewOverviewOverview
The mapping of a sphere onto a plane arises often in computer graphics.
Direct applications include the automation of traditional map-making.
Here the sphere represents a world globe and the plane represents the
chart. Indirect applications include the creation of environment maps
(Greene, 1986) or specialized applications such as the fireworks simula-
tion that concludes this Gem. Most references on this topic lie at the
subject’s extreme points: on the specifics of practical cartography or on
the mathematical theory of conformal mapping. This entry seeks the
middle ground with emphasis on ease of computation. Cartographic
terms (appearing in italics) and mathematical notation—particularly re-
garding spherical trigonometry—are employed preferentially.

Projection PropertiesProjection PropertiesProjection PropertiesProjection PropertiesProjection Properties
As the sphere cannot be developed onto a flat sheet (unlike a cylinder,
cone, or plane of projection) distortions must necessarily be introduced in
forming a chart, taking the form of local scale changes on both axes. A
mathematical categorization of local scale changes reveals three principle
and distinct projection classes: conformal, equal-area, and equidis-
tant. Classes are exclusive with the first two of primary importance and
of opposing nature. Conformality implies that small areas on the chart
have true local scale. As a consequence all conformal projections pre-
serve angles, but when used at global scales suffer severe distortion of

V.5 DIGITAL CARTOGRAPHY FOR COMPUTER GRAPHICS

GRAPHICS GEMS I Edited by ANDREW S. GLASSNER 308

shape. Common applications at both large and small scales include
nautical charts and municipal maps, respectively. Equal-area maps allow
the depiction of large land masses with reduced distortion of shape; exact
area preservation makes them attractive for thematic census or statistical
maps. Conversely, they suffer angular distortions of local scale. Equidis-
tant projections maintain true scale along select curves; these and spe-
cialized projections seek a middle ground between the shape and angle
distortions present in the first two classes. They are commonly employed
for depicting areas of global extent in pleasing fashion. All proper maps
can render a small, central portion of the globe with vanishingly small
distortion as the earth’s curvature then becomes negligible.

First PrinciplesFirst PrinciplesFirst PrinciplesFirst PrinciplesFirst Principles
Coordinates for a point P on a sphere of radius R centered about the
origin O are most often given in terms of spherical coordinates (R, λ, φ).
Here the z axis pierces the sphere at its north and south poles. Planes
containing the origin O cut the sphere forming great circles of radius R
—other planes of intersection form small circles of lesser radius. The
xy plane perpendicular to the polar axis contains the equator, a great
circle that bisects the sphere into a north and south hemisphere. Cartog-
raphy universally employs λ to define longitude as the counterclockwise
angular measure between the x axis and vector OP projected onto the xy
plane. This is a bearing measure, which serves an identical function to
the angle θ used in computer graphics to measure 2D rotation about the
origin. Similarly, φ defines latitude or angular distance between OP and
the z axis such that points on the equator have zero latitude and points at
the north and south poles lie at +π or –π radians, respectively. This is
an azimuth measurement specific to 3D spherical coordinates. The
complementary colatitude (χ) measures the angle from the + z axis:
χ = π/2 – φ. Colatitude thus expresses great circle distance from this
pole.

Spherical coordinate triples define a unique point in three-space; prin-
ciple arguments are restricted to the range –π ≤ λ < π and – π/2 ≤
φ ≤ π/2. For rendering using conventional graphics software these may
be mapped into Cartesian 3D world coordinates by changing from spheri-

V.5 DIGITAL CARTOGRAPHY FOR COMPUTER GRAPHICS

GRAPHICS GEMS I Edited by ANDREW S. GLASSNER 309

cal to rectangular form:

x = R × cos λ × cos φ

y = R × sin λ × cos φ

z = R × sin φ.

Viewed at a finite distance the globe appears as under the perspective
projection. The limiting case with view at infinity simplifies the foreshort-
ening process, yielding the orthographic projection (Fig. 5a) in which
exactly one hemisphere is depicted. Although not immediately conceptu-
alized as map projections, both are members of the azimuthal family
described later. The inverse mapping is

R = x 2 + y 2 + z2

λ = tan–1

y

x

φ = tan–1

z

x 2 + y 2
.

In this form the atan2() function common in many subroutine libraries
may be used to ensure proper four-quadrant operation.

Direct Charting of DatabasesDirect Charting of DatabasesDirect Charting of DatabasesDirect Charting of DatabasesDirect Charting of Databases
Geographic databases provide merely (φ, λ) latitude and longitude coor-
dinate pairs, with R the derived distance from the earth’s center to mean
sea level by using a standardized reference geoid. For many purposes R
may be set to the mean equatorial earth radius, a semimajor axis of length
6378.160 km. (True geodesy employs higher-order standard models to
account for the oblate figure of the Earth; a polar flattening of 1/298.25
yields an approximation for R with maximum elevation error less than
100 meters). For purposes of exposition only unit spheres are considered
in what follows.

V.5 DIGITAL CARTOGRAPHY FOR COMPUTER GRAPHICS

GRAPHICS GEMS I Edited by ANDREW S. GLASSNER 310

Longitude 180W to 0E (grid 10) Latitude: 0N to 90N (grid 10)
Cylindrical Equidistant

Figure 1. Equirectangular cylindrical projection.

Too often, a vector plot used to proof a cartographic data set uses the
simple projection

x ← s × λ

y ← s × φ,

which is implicit when executing commands of the form plotxy (λ, φ).
Here s is a constant scale factor for both axes used to fit the data to the
chart dimensions. The resulting cylindrical equirectangular map (see
Fig. 1) represents the sphere at small scales and then only near the
equator—many cartographers do not consider it a proper map. Fortu-
nately, simple remedies exist.

Cylindrical MapsCylindrical MapsCylindrical MapsCylindrical MapsCylindrical Maps
Maps of the cylindrical family allow a direct mapping of longitude lines,
or meridians, onto equally spaced, vertical chart lines. Geometrically,
this suggests projecting the globe onto an encasing vertical cylinder and
then unwrapping to form a plane. Maps of this form are well-suited to
computer graphics because the mapping function M2: (φ, λ) → (y, x)

V.5 DIGITAL CARTOGRAPHY FOR COMPUTER GRAPHICS

GRAPHICS GEMS I Edited by ANDREW S. GLASSNER 311

becomes one-dimensional M1: (φ) → (y) with λ scaled directly onto x,
thereby simplifying the derivation of both forward and inverse projec-
tions. Cylindrical maps support clipping of λ in world coordinates when
plotting on a surface of uniform width (a rectangular page or display).
Mapping of screen (chart) coordinates back onto (φ, λ) is also straightfor-
ward, suggesting simplified direct selection and editing of the underlying
cartographic data set.

On the globe the relative longitude scale shifts as a function of latitude.
This effect accounts for the reduced distance between meridians (lines
of constant longitude) measured along parallels of constant latitude.
Because scales agree at the equator (where one degree is defined as sixty
nautical miles) the scale ratio is 1: 1 and decreases to zero at either pole:
cos (φ) or sin (χ) defines this ratio. Thus, a rectangular chart for a local
region may use the adjusted scale

y ← s × λ

y ← s × φ × sec φ cen ,

thereby providing an aspect ratio correct for a chosen parallel φ cen and
arbitrary chart scale s. This forms the modified cylindrical equidistant
projection, which underlies many street and municipal maps. Note that a
scaling of cos φ along the x axis would also form a proper local aspect
ratio (see Sanson’s Sinusoid, below) but would alter the spacing of the
parallels, which must be uniform for any cylindrical projection. By em-
ploying a secant multiplier, scale increases at high latitude: an arctic
explorer looping the North Pole quickly traverses the chart’s x extent;
the y scale must accordingly be large. As this ratio is constant for the
entire chart, trigonometric calculations need not appear in the innermost
code loop performing the coordinate projection. Although computation-
ally fast and more pleasing in appearance than direct coordinate plotting,
the map is unsuited for large regions.

Mercator ProjectionMercator ProjectionMercator ProjectionMercator ProjectionMercator Projection
In the previous example, conformality was achieved along a chosen
parallel by increasing the scale by sec φ to offset the cos φ change in
aspect. By treating vertical scale change continually a map may be

V.5 DIGITAL CARTOGRAPHY FOR COMPUTER GRAPHICS

GRAPHICS GEMS I Edited by ANDREW S. GLASSNER 312

constructed as a montage of narrow strips having small φ (vertical)
extent but with λ extent encircling the sphere. Away from the equator at
y = 0, successive strips are joined together by offsetting them a distance
sec φ d φ to accommodate the continuous change in scale. This graphi-
cally depicts the integral y = ∫ sec φ d φ, which forms the basis of the
Mercator projection. Solution of the integral and Taylor series expansion
yields the inverse Gudermannian function and its arcfunction:

y = gd–1 φ



 = logetan φ

2
 + π

4












= φ +
1

6
φ 3 +

1

24
φ 5 +

61

5040
φ 7 + O φ 9()

φ = gd y() = 2 tan–1 ey() –

π
4







= y + 1

6 y3 − 1
24 y5 + 61

5040 φ 7 + O y9()

Because of conformality, true headings (the angle formed between a
ground tack and a globe meridian) form true angles on conformal maps.
Because the Mercator is additionally cylindrical, chart meridians are
oriented in rectilinear fashion. Thus, lines of constant heading (called
loxodromes or rumb lines) may be plotted directly, explaining the
projection’s almost universal application in nautical charts. Despite these
benefits, the map has the disadvantage of excessive distortion at high
latitudes (see Fig. 2). Mercator was revolutionary in deriving a useful
projection through analytic means. In particular, there is no simple
geometrical model that depicts the projection’s construction.

Sanson—Flamsteed SinusoidalSanson—Flamsteed SinusoidalSanson—Flamsteed SinusoidalSanson—Flamsteed SinusoidalSanson—Flamsteed Sinusoidal
This simple projection may be obtained by choosing the central meridian
as the axis of constant spacing, or y = s × φ. Adjustment of the x axis
yields a map that preserves area—a valuable property. Because the
mapping function may once again be modeled as a one-dimensional

V.5 DIGITAL CARTOGRAPHY FOR COMPUTER GRAPHICS

GRAPHICS GEMS I Edited by ANDREW S. GLASSNER 313

Longitude:140E to 40W (grid 10) Latitude: 0N to 90N (grid 10)
Mercator Conformal

Figure 2. Mercator cylindrical projection.

function M1: (λ) → (x) the useful properties of world-coordinate clipping
(now on a vertical extent of constant height) and inverse mapping may
again be claimed.

Consider a rectangular map of equally spaced parallels in which the
central parallel represents the equator. At high latitudes the chart paral-
lels represent small circles of reduced radius cos φ. The area of a strip
bounded by two near parallels appears constant on the rectangular chart:
the true globe area has decreased by an amount cos φ because of
reduction in the bounding parallels’ circumferential length. Reducing the
x scale of the chart by this factor maintains constant area between chart
and globe. The resulting form resembles the modified cylindrical projec-
tion except that the sliding scale factor is now applied to the x axis:

x ← s × λ × cos φ

y ← s × φ.

This projection owes its name to the sinusoids that form the map edge
and reference meridians (see Fig. 3) and can be derived as the limiting

V.5 DIGITAL CARTOGRAPHY FOR COMPUTER GRAPHICS

GRAPHICS GEMS I Edited by ANDREW S. GLASSNER 314

Longitude:60W to 120E (grid 12.5) Latitude: 25S to 90N (grid 12.5)
Sanson’s Sinusoidal

Figure 3. Sanson–Flamsteed equal-area projection.

case of Bonne’s general projection of equispaced chart parallels. The
sinusoidal projection is useful in replacing the polar discontinuity of
cylindrical projections with a zero: the chart is bounded and depicts one
hemisphere. Though attributed to Sanson, this chart was well-known to
Mercator.

Azimuthal ProjectionsAzimuthal ProjectionsAzimuthal ProjectionsAzimuthal ProjectionsAzimuthal Projections
In this family a plane is placed tangent to the sphere and rays extended
from a point of projection define a correspondence between points of
intersection on the sphere and the chart. The projections are derived in
polar form: spherical trigonometry provides a means of changing the
underlying coordinate system, thus defining the point of tangency. With
the North Pole serving as the point of tangency corresponding to the
chart center, all great circles through this point (globe meridians) project

V.5 DIGITAL CARTOGRAPHY FOR COMPUTER GRAPHICS

GRAPHICS GEMS I Edited by ANDREW S. GLASSNER 315

as radials through the chart center. Polar bearing θ of chart radials is thus
taken directly from the globe: θ = λ. Distance away from the chart center
ρ is defined using the angular measure for colatitude: ρ = χ = π/2 – φ.
By applying the well-known polar to rectangular conversion formulae
x = r cos θ, y = r sin θ, the entire family may be characterized by suit-
able choice of r as a function of ρ, which maps angular distance away
from the globe’s pole onto radial distance away from the chart center.
This yields the program code:

polar azimuth projection of (φ, λ) onto (x, y)

ρ ←

π
2

 – φ colatitude: N Pole is 0 degrees; Equator 90

θ ← λ (more complex for oblique projections)
r ← f(ρ) length of chart radial
x ← r × cos θ convert (r, θ) polar chart
y ← r × sin θ coordinates into rectangular (x, y)

Reverse mapping from chart to spherical coordinates is accomplished
by converting from rectangular to polar form and then applying the
inverse function ρ = f–1(r). These function pairs are tabulated in Fig. 4,
with short descriptions following. Note that for all functions f(x) ≈
f–1(x) ≈ x when x ≈ 0; this may be verified through Taylor expansion.
Sample azimuthal plots appear in Figs. 5a and 5b.

The gnomonic or central projection is neither conformal nor area
preserving. By placing the ray origin at the sphere’s center, all straight
lines on the chart are geodesics—great circle paths of shortest distance
—because any two projected rays define both the chart line and a plane
that cuts the sphere through its center. Distortion grows to infinity along

Name r = f(ρ) ρ = f(r)

Gnomonic tan ρ tan–1 r
Stereographic 2 tan(ρ/2) 2 tan–1 r/2
Equidistant ρ r
Equal-Area 2 sin(ρ/2) 2 sin–1 r/2
Orthographic sin ρ sin–1 r

Figure 4. Azimuthal projection parameters.

V.5 DIGITAL CARTOGRAPHY FOR COMPUTER GRAPHICS

GRAPHICS GEMS I Edited by ANDREW S. GLASSNER 316

Longitude: 90E (grid 15) Latitude: 0N (grid 15) Longitude: 80.6W (grid 10) Latitude: 43.5N (grid 10)

Orthographic (transverse) Stereographic (oblique)

Figure 5. Azimuthal projections.

a hemisphere, requiring the omission or clipping of coordinates when
ρ ≥ π/2. R. Buckminster Fuller created a dymaxion gnomonic projec-
tion by centrally projecting the sphere onto an inscribing icosahedron,
allowing great-circle routes to remain lines (albeit broken when crossing
the edge between two non-conterminous faces) when developed as a
sheet of 20 broken triangles.

The stereographic map places the point of projection at the tangent
point’s opposite pole or antipode. It is remarkable in being both confor-
mal and circle preserving: circles of any radius (lines when the radius of
curvature → ∞) map freely between the chart and sphere. This feature
may obviously be exploited in mixed proximity testing and clipping using
both world and device coordinates. Because it renders an entire sphere
onto a plane, it finds general scientific use in modeling spherically
distributed point sets, as in crystallography. An example appears in Fig.
5b; note in particular that globe meridians (small circles) are nonconcen-
tric circles on the chart.

The azimuthal equidistant projection equates r with colatitude (a
rare case in which an angle measure appears directly and not as a
trigonometric argument), thereby yielding a map that gives simultaneous
bearing and radial distance for great-circle travel away from the chart

V.5 DIGITAL CARTOGRAPHY FOR COMPUTER GRAPHICS

GRAPHICS GEMS I Edited by ANDREW S. GLASSNER 317

center. It finds application in the computation of heading and distance, as
when aligning antennas for transoceanic broadcast—electromagnetic ra-
diation follows geodesics.

The azimuthal equal-area projection employs a simple scale change
to account for the area contributions of successive annuli away from the
chart center as r changes incrementally. It resembles the globular
projection derived for simplicity of construction that has been imprinted
billions of times on journals of the National Geographic Society.

Spherical Coordinate TransformationSpherical Coordinate TransformationSpherical Coordinate TransformationSpherical Coordinate TransformationSpherical Coordinate Transformation
Azimuth projections have little value when projected merely at the North
Pole. Spherical trigonometry may be employed to reorient the underlying
polar coordinate system about a new tangent point (φ0, λ0). By applying
coordinate transformations arbitrarily, the aspect of any projection may
be changed from normal to oblique. As a special case, orientation at 90
degrees yields transverse projections (Figures 5a, 5b). The following
equations reexpress the points (φ, λ) about the reference point (φ0, λ0) in
terms of angular distance and radial bearing (ρ, θ) as required by the first
two lines of the generic azimuthal pseudo-code. These formulae are also
encountered when mapping from astronomical (φ, λ) pairs onto the
celestial sphere in terms of horizon (compass) angle and elevation for an
observer at a given location, or when computing great-circle distances
and initial heading.

ρ = cos–1 [sin φ sin φ0 + cos φ cos φ0 cos (λ – λ0)]

θ = sin–1

sin φ – sin φ 0 cos ρ
cos φ 0 sin ρ









 ,

in which θ’s supplement (π – θ) or (180° – θ) is used when (λ – λ0) < 0.
This form maps latitude and longitude into counterclockwise bearing (longitude)
and distance (colatitude). When employed to give conven-
tional latitude or clockwise bearing, angular arguments α must be ad-
justed by use of angular complements: π/2 – α; in many cases this is

V.5 DIGITAL CARTOGRAPHY FOR COMPUTER GRAPHICS

GRAPHICS GEMS I Edited by ANDREW S. GLASSNER 318

made implicit by reversing the roles of cos and sin. Subroutine implemen-
tation further requires cos–1 and sin–1 routines with full four-quadrant
operation, that is, routines that return a properly signed angle.

General ProjectionsGeneral ProjectionsGeneral ProjectionsGeneral ProjectionsGeneral Projections
Azimuth maps may be generalized by moving the point of projection off
the globe. This generality ultimately leads back to the perspective and
orthographic projections. These and the cylindrical projections belong to
the conics, the largest family of maps. Geometrically, a cone encircling a
sphere possesses a central, symmetric point. Moving this apex onto the
sphere flattens the cone into a tangential circle. Moving the apex to
infinity creates a cylinder. The conic family includes pairs of both confor-
mal and equal-area projections. The more accurate projections—the
Lambert Conformal Conic and Albers—employ a secant cone, which
cuts the globe at two standard parallels, thereby better fitting the
sphere. The Lambert finds almost universal application in aeronautical
sectionals, since it is conformal and represents great circle routes in
nearly straight lines. H. C. Albers’ projection is ideally suited to the
depiction of continental land masses of large longitudinal extent and
frequently appears in atlases of North America. (See also Albers Equal
Area Conic Map Projection on page 321.)

Further generalization yields the polyconics, whose rendering was
virtually intractable before the invention of the computer. The latter
represent the broadest projection class in which x = f(φ, λ) and y =
g(φ, λ). While excellent for problems of applied cartography, such forms
are often both computationally intensive and lacking any closed-form
inverses, leaving them unsuitable for direct application to problems
arising in computer graphics. Instead, we return to a simple projection
and related application.

Cylindrical Equal AreaCylindrical Equal AreaCylindrical Equal AreaCylindrical Equal AreaCylindrical Equal Area
This projection is obtained by wrapping a unit cylinder around a unit
sphere and projecting parallels of latitude directly outward along planes
normal to the polar axis. This geometrical derivation yields the pseudo-

V.5 DIGITAL CARTOGRAPHY FOR COMPUTER GRAPHICS

GRAPHICS GEMS I Edited by ANDREW S. GLASSNER 319

code

x ← s × λ

y ← s × sin φ .

As the cylinder is tangent along the equator, this thin region preserves
area and angle. In regions of increasing latitude, the spherical shell
located between parallels is a projected area, which is foreshortened by
an amount cos φ on the cylinder, thereby reducing the chart area along
the y axis. However, this loss is perfectly offset by the increase in the
chart’s representation of each parallel’s circumferential length, which
grows by cos φ as described for Sanson’s sinusoidal projection.

As a consequence of this infinitesimal equation, a unit sphere and unit
cylinder have identical surface area (known to the Greeks before Newton’s
calculus). As a quick check, the sphere’s area is 4π r2 (or 4π steradians
for a unit sphere). Similarly, the cylinder has unwrapped area w × h with
w = 2 π r and h = 2r giving 4π r2, in agreement. Being both cylindrical
and computationally efficient, this projection—first attributed to Lambert
—is another candidate to supplant the all-too-common direct plotxy(λ, φ)
approach.A Practical ApplicationA Practical ApplicationA Practical ApplicationA Practical ApplicationA Practical Application
Consider the rendering of an exploding fireworks shell, whose fragments
show no underlying directional bias—the flame trails suggest a dandelion.
How are the fragment vectors generated? Consider a stationary shell
exploding at the origin (the type loathed by leather-clad pyrotechnicians)!
Fragments have an equal likelihood in piercing an encompassing sphere
—their flux density is equal per unit area. An equal-area projection (map)
of the penetration will be a two-dimensional scatter plot with constant
density. Turning the problem around, plotting random points of linear
distribution along two independent axes of a 2D equal-area projection
and then using the inverse projection forms a uniform spherical distribu-
tion.

The projection of choice is cylindrical (one axis of transformation is
linear), suggesting the above cylindrical equal-area projection. Its inverse
transformation is λ = u and φ = sin–1 v giving a chart running from
–π/2 to +π/2 in u and from –1 to +1 in v. Here (φ, λ) are on the
sphere and (u, v) are chart coordinates generated along their intervals

V.5 DIGITAL CARTOGRAPHY FOR COMPUTER GRAPHICS

GRAPHICS GEMS I Edited by ANDREW S. GLASSNER 320

using a conventional random() routine with suitable offset and scaling.
The inverse map forms corresponding (φ, λ) values. Finally, the (x, y, z)
location of a particle is derived by conversion from spherical to rectangu-
lar coordinates:

x = R cos λ cos φ = R cos u cos sin–1 v

y = R sin λ cos φ = R sin u cos sin–1 v

z = R sin φ = R sin sin–1 v.

With sin–1 x = cos–1 1 − x 2, the first two equations may be further
simplified. R = 1 places the points in spherical distribution on a unit
sphere about the origin. This yields the program code:

Distribute random points (x, y, z) uniformly on the unit sphere
with results also in (φ, λ) polar coordinates.
random() returns a random, uniform distribution on the range [0..1].

λ ← π × (2 × random () – 1) [– π..π]
z ← 2 × random () – 1 [– 1..1]
s ← 1 − z2

x ← s × cos λ
y ← s × sin λ
φ ← atan2(z, s) conventional four-quadrant tan–1

The code distributes points linearly along the z axis because parallel
cross-sections through a spherical shell generate annuli of equal edge
area, as explained above. Axial bearing to x and y also form a linear
distribution. The square root term scales the spatial distribution from
cylindrical into spherical coordinates. With this tool in hand, one can
immediately extend the fireworks model without further regarding the
specifics of the underlying projection. Extensions might include frag-
ments of randomized mass distribution with radial velocities in inverse
proportion (thus conserving the center of mass), or parabolic fragment
trajectories for particles of appreciable mass.

321

V.6 ALBERS EQUAL-AREA CONIC MAP PROJECTION

GRAPHICS GEMS I Edited by ANDREW S. GLASSNER 321

V.6 ALBERS EQUAL-AREA CONIC MAP PROJECTIONV.6V.6V.6V.6V.6
AAAAALBERS EQUAL-AREALBERS EQUAL-AREALBERS EQUAL-AREALBERS EQUAL-AREALBERS EQUAL-AREACCCCCONIC MAP PROJECTIONONIC MAP PROJECTIONONIC MAP PROJECTIONONIC MAP PROJECTIONONIC MAP PROJECTION

Paul D. BameHewlett-PackardColorado Springs, Colorado

Map projections are used to show a portion of a sphere or ellipsoid,
usually earth, in two dimensions in some reasonable way—they usually
try to reduce a specific type of distortion. Different projection algorithms
are suited to different types of maps. The Albers projection described
here is a popular and suitable projection for North America—particularly
the continental United States. Check with the U.S. Geological Survey
Bulletin (Snyder, 1984) for details of other projection algorithms and
their use.

The Albers projection is a particular way to project a sphere or ellipsoid
onto a cone. The cone is then “unrolled,” yielding the projected coordi-
nates. Because the earth is an ellipsoid rather than a sphere, the calcula-
tions are pretty painful.

Imagine intersecting a cone with the earth so that the intersection is
two circles of constant latitude (see Fig. 1). The latitudes of these circles
of intersection are called northlat and southlat in the albers_setup
routine and called “standard parallels,” by USGS. Each point on the earth
is projected onto the cone as if a normal from the surface of the cone at
each point were intersected with the earth. At the standard parallels the
normal is of zero length and the map projection has least distortion.
Distortion increases with distance from these latitudes.

The standard parallels are usually chosen to be between the northern
and southern limits of the map to be plotted so that the distortion is about
equal everywhere. The standard parallels may span the equator but may
not be equidistant from it. In addition to the standard parallels, a center

322

V.6 ALBERS EQUAL-AREA CONIC MAP PROJECTION

GRAPHICS GEMS I Edited by ANDREW S. GLASSNER 322

Figure 1. Cone-ellipsoid intersection.

point (denoted by originlon and originlat) must be chosen for the
projection in Fig. 2.

Projecting maps of the southern hemisphere is discussed in USGS. One
simple method of projecting maps entirely in the southern hemisphere is
to invert the sign of latitudes and projected Y values.

323

V.6 ALBERS EQUAL-AREA CONIC MAP PROJECTION

GRAPHICS GEMS I Edited by ANDREW S. GLASSNER 323

Figure 2. Continental United States projection. Dashed lines show standard parallels
and cross marks the center of the projection.

 USGS Standard Parallels

Region North Parallel South Parallel

Continental USA 45.5 29.5
North America 60.0 20.0
Alaska 65.0 55.0
Hawaii & Phillipines 18.0 8.0

ImplementationImplementationImplementationImplementationImplementation
Implementing map projections is similar to implementing hash tables.
One usually consults a reference, finds the appropriate algorithm, and
translates the reference pseudo-code into the language of choice. De-
tailed understanding is often not required. Detailed description of the
formulae presented here is not given. Those interested might derive the
simpler spherical Albers projection and certainly should obtain USGS,
from which most of the notation and math was taken.

324

V.6 ALBERS EQUAL-AREA CONIC MAP PROJECTION

GRAPHICS GEMS I Edited by ANDREW S. GLASSNER 324

Two functions are used repeatedly in the calculations. The first, de-
noted by q ← F(lat), is given a latitude and produces q:

q←(1−e2) sin(lat)
1−e2sin2(lat)

− 1
2e

ln 1−e sin(lat)
1+ e sin(lat)




























,

where e is the eccentricity of the earth, which for the Clarke ellipsoid is
0.0822719. The following function denoted by m ← G(lat), produces m
given a latitude:

m ← cos

lat
1 − e 2sin2 lat()









 .

Both these functions have common and repeated terms and run-time ma
be saved by precomputing and reusing these terms. Also note that in the
formulae to follow, m values are always squared before use, which
suggests modifying G(lat) to produce m2 rather than m. For clarity,
none of these enhancements are made here.

Several values are usually precomputed from the projection parameters
to save compute time. These values are lon0, the longitude at the center
of the map; n, the “cone constant”; C and ρ0—see USGS for specific
definitions. The albers_setup routine calculates these values.

albers_setup(northlat,southlat,originlat,originlon).

begin

end;

lon0 ← originlon

q1 ← F southlat()
m1 ← G southlat()
q2 ← F northlat()

m2 ← G northlat()
q0 ← F originlat()
n ←

m1
2 − m2

2

q2 − q1

C ← m1
2 + nq1

ρ0 ←
C − nq0

n

325

V.6 ALBERS EQUAL-AREA CONIC MAP PROJECTION

GRAPHICS GEMS I Edited by ANDREW S. GLASSNER 325

After this setup has been performed, the following routine is used to
project each [lon, lat] pair to a Cartesian [x, y] pair:

albers_project(lon,lat,x,y)

begin

q ←F lat





q ←n lon− lon0






r ← C−nq
n

x and y are in terms of earth radii. Multiply each by earth’s
radius in miles (kilometers) to convert to miles (kilometers)

x ← ρ sin θ()
y ← ρ0 − ρ cos θ()

end;

See Appendix 2 for C Implementation (726)

326

I.2 USEFUL TRIGONOMETRY

GRAPHIC GEMS I Edited by DAVID KIRK 326

BBBBBOXES ANDOXES ANDOXES ANDOXES ANDOXES ANDSPHERESSPHERESSPHERESSPHERESSPHERESSUMMARYSUMMARYSUMMARYSUMMARYSUMMARY
Many computer graphics applications involve rectangles and
circles or boxes and spheres. The rectangle is common because
it is the shape commonly assumed for a pixel; in 3D, the box
corresponds to a popular voxel shape. The circle arises from
the use of radially symmetric sampling and reconstruction fil-
ters, and the desire to render circles. Spheres are a popular
shape for use as geometric primitives and bounding volumes.

Often one simply needs to know if a given rectangle and
circle (or box and sphere) overlap. If the exact geometry of
overlap is needed it may then be computed. A 2D algorithm for
rectangles and circles was presented in the chapter on 2D
Geometry. The following two Gems discuss the problem in 3D.

The first Gem provides an algorithm for scan-converting a
sphere into an array of 3D voxels. This algorithm begins with
the object, and the result is a list of boxes that are intersected.
This technique may be adapted to other shapes, such as cylin-
ders and cones. One would probably use it in an environment
where a regular grid of voxels already existed, and membership
was needed for each of a variety of primitives.

The second Gem is a more direct solution for a sphere and a
given box. It is appropriate when the boxes are of different
sizes, such as an adaptively subdivided space. It may also be
applied to 3D ell ipses, and generalized easily to higher dimen-
sions.

See also Fast Circle-Rectangle Intersection Checking (51); Fast
Ray-Box Intersection (395); A Simple Method for Box-Sphere
Intersection Testing (335); Ray Tracing Gems

V.7 SPHERES-TO-VOXELS CONVERSION

GRAPHICS GEMS I Edited by ANDREW S. GLASSNER 327

SSSSSPHERES-TO-VOXELSPHERES-TO-VOXELSPHERES-TO-VOXELSPHERES-TO-VOXELSPHERES-TO-VOXELSCCCCCONVERSIONONVERSIONONVERSIONONVERSIONONVERSION
Claudio Montani and Roberto ScopignoConsiglio Nazionale delle RicerchePisa, Italy

The use or prototyping of volumetric representation schemes based on
three-dimensional cells—typical examples are the cubic frame buffer
(Kaufman and Bakalash, 1988) or the octree (Meagher, 1982)
schemes—often requires the availability of efficient routines for convert-
ing elementary solid objects into cells.

In this note we present a conversion algorithm from spheres to voxels.
It accepts as input the definition of a sphere (in terms of its radius and
center) and returns the set of voxels completely or partially contained
into the space bounded by the surface of the sphere, that is, a 3D scan
conversion of the sphere.

Based on the well-known Bresenham method for the discretization of a
circle (Bresenham, 1977), our conversion algorithm can be easily ex-
tended to cylinders or cones, in which the main axis is parallel to either of
the Cartesian axes.

The procedure Circle describes Bresenham’s algorithm for the rasteri-
zation of the first (positive) quadrant of an origin-centered circle of radius
R (R is an integer). Because of the symmetry of the circle, considering
the first quadrant only is not restrictive, neither is referring to an origin-
centered circle. The detailed analysis and explanation of this algorithm
can be found in Rogers (1985). The pixels located by the algorithm for a
circle of radius R = 8 are shown in Fig. 1.

Circle (R):
 begin

x ← 0; y ← R;
 ∆ ← 2(1 – R);

V.7V.7V.7V.7V.7

V.7 SPHERES-TO-VOXELS CONVERSION

GRAPHICS GEMS I Edited by ANDREW S. GLASSNER 328

Figure 1.

limit ← 0;
Pixel (x,y); Pixel(x, y) lights the pixel having (x, y) coordinate
while y ≥ limit do

begin
if ∆ < 0

then begin
 δ ← 2∆ + 2y − 1;

 if δ > 0
 then begin

 x ← x + 1; y ← y − 1;
 ∆ ← ∆ + 2x − 2y + 2;
 end;

 else begin
 x← x +1;
 ∆ ←∆+2x + 1
 end;

 end;
else if ∆ > 0

V.7 SPHERES-TO-VOXELS CONVERSION

GRAPHICS GEMS I Edited by ANDREW S. GLASSNER 329

 Pixel(x,y);
 end;
 end loop;
end Circle;

The algorithm for the conversion from spheres to voxels applies
Bresenham's method twice: first divide the sphere into horizontal slices,
then discretize the slices. Though we will consider an origin-centered
sphere, one can easily translate voxel coordinates with respect to the
center.

The procedure Sphere(R) discretizes the first quadrant of the circle,
with radius R, obtained by intersecting the origin-centered sphere with
the plane Z = 0 (see Fig. 2). The abscissa of the rightmost pixel of each
line Y = y will represent the radius of the circle being discretized, which
lies on the XZ plane of height y. Then, the procedure Slice is called before
the y coordinate changes, that is, on the rightmost pixel of each
line.

Sphere (R):
begin

x ← 0; y ← R;
∆ ← 2(1 – R); limit ← 0;
while y ≥ limit do

then begin
δ ← 2∆ – 2x – 1;
if δ > 0

then begin
y ← y – 1;
∆ ← ∆ – 2y + 1;
end;

else begin
x ← x + 1; y ← y – 1;
∆ ← ∆ + 2x – 2y + 2;
end;

end;
else begin

 x ← x + 1; y ← y–1;
 ∆ ← ∆ + 2x – 2y + 2;

 end;

V.7 SPHERES-TO-VOXELS CONVERSION

GRAPHICS GEMS I Edited by ANDREW S. GLASSNER 330

Figure 2.

begin
if ∆ < 0

then begin
δ ← 2∆ + 2y–1;
if δ >0

then begin
Slice(x, y);
x ← x + l; y ← y – l;
∆ ← ∆ + 2x – 2y + 2;
end;

else begin
x ← x + l;
∆ ← ∆ + 2x + 1;
end;

end;
else if ∆ > 0

V.7 SPHERES-TO-VOXELS CONVERSION

GRAPHICS GEMS I Edited by ANDREW S. GLASSNER 331

while y ≥ 2 limit do

then begin
δ ← 2∆ – 2x – 1;
if δ > 0

then begin
Slice(x, y);
y ← y – l;
∆ ← ∆ – 2y + 1;
end;

else begin
Slice(x, y);
x ← x + l; y ← y – l;
∆ ← ∆ + 2x – 2y + 2;
end;

end;
else begin

Slice(x, y);
x ← x + l; y ← y – l;
∆ ← ∆ + 2x – 2y + 2;
end;

end;
endloop;

end Sphere;

The procedure Slice(r, y) discretizes the first quadrant of the circle of
radius r belonging to the plane Y= y. For each pixel determined by the
procedure, the routine Track(x ,y, z) is called. In turn, the latter calls
Voxel(x, y, z) on the indices of the voxels belonging to the interval from
(x, y, –z) to (x, y, z). As is the case of the Pixel routine used by the
Circle procedure, the Voxel routine is implemention-dependent: the
voxel coordinates could be stored, used to set an element in the cubic
frame buffer, or used to build an octree.

 Slice(r, y):
 begin
 x ← 0; z ← r;
 ∆ ← 2(1 – r); limit ← 0;
 Track(x, y, z);
 while z > limit do
 begin

 if ∆ < 0

V.7 SPHERES-TO-VOXELS CONVERSION

GRAPHICS GEMS I Edited by ANDREW S. GLASSNER 332

then begin
 δ ← 2∆ + 2z – 1;
 if δ > 0
 then begin
 x ← x + l; z ← z – l;
 ∆ ← ∆ + 2x – 2z + 2;
 Track(x,y,z);
 Track(– x,y,z);
 end;
 else begin
 x ← x + l; ∆ ← ∆ + 2x + 1;
 Track(x, y, z);
 Track(–x, y, z);
 end;
 end;
else if ∆ > 0
 then begin
 δ ← 2∆ – 2x – 1;
 if δ > 0
 then begin
 z ← z – 1;
 ∆ ← ∆ − 2z + 1;
 end;
 else begin
 x ← x + l; z ← z – l;
 ∆ ← ∆ + 2x – 2z + 2;
 Track(x, y, z);
 Track(–x, y, z);
 end;
 end;
 else begin
 x ← x + l; z ← z – l;
 ∆ ← ∆ + 2x – 2z + 2;
 Track(x, y, z);
 Track(– x, y, z);

end;

 endloop;
 end Slice;

end;

V.7 SPHERES-TO-VOXELS CONVERSION

GRAPHICS GEMS I Edited by ANDREW S. GLASSNER 333

Figure 3.

Due to the symmetry of the sphere, if x ≠ 0 the procedure Slice calls
Track also on the point (–x, y, z), while if y ≠ 0 the procedure Track
invokes Voxel also on the list of voxels in the interval from (x, –y, –z)
to (x, –y, z).

It is worth noting that Slice does not call Track in case of vertical
displacement; in fact, in this situation, the list of corresponding voxels
has just been determined. In Fig. 3 the sets of voxels produced by the
algorithm for the generic (x, y, z) point are depicted.

Track(x, y, z):
 begin
 for k: integer ← – z, k ← k + 1, k < z do
 Voxel (x, y, k);
 endloop
 if y ≠ 0
 then
 for k: integer ← – z, k ← k + 1, k < z do
 Voxel(x, –y, k);
 endloop;

 end Track;

V.7 SPHERES-TO-VOXELS CONVERSION

GRAPHICS GEMS I Edited by ANDREW S. GLASSNER 334

While an O(R3) number of voxels is returned, the computational cost of
the algorithm is proportional to R2(R being the radius of the sphere), with
a small proportionality constant. This is true for two reasons: one is because
the Sphere and Slice procedures only work on the positive quadrants of the
circles to be discretized; the other is that the activation of Sphere with radius
R causes the activation of Slice R time with parameter r (the radius of a
slice) such that 1 < r ≤ R.

V.8 A SIMPLE METHOD FOR BOX-SPHERE INTERSECTION TESTING

GRAPHICS GEMS I Edited by ANDREW S. GLASSNER 335

AAAAA SIMPLE METHOD FOR SIMPLE METHOD FOR SIMPLE METHOD FOR SIMPLE METHOD FOR SIMPLE METHOD FORBBBBBOX – SPHEREOX – SPHEREOX – SPHEREOX – SPHEREOX – SPHEREIIIIINTERSECTION TESTINGNTERSECTION TESTINGNTERSECTION TESTINGNTERSECTION TESTINGNTERSECTION TESTING
James ArvoApollo Systems Division of Hewlett-PackardChelmsford, Massachusetts

IntroductionIntroductionIntroductionIntroductionIntroduction
There are a number of computer graphics applications in which it is
necessary to determine whether a sphere intersects an axis-aligned paral-
lelepiped, or “box.” In two dimensions this arises when rasterizing
circles, which are two-dimensional spheres, into rectangular viewports,
which are two-dimensional boxes. The intersection test is used to deter-
mine whether any portion of the circle is indeed visible before rasterizing.
In three dimensions this operation may arise in spatial subdivision tech-
niques that identify “voxels,” or 3D boxes, pierced by the surfaces of
various objects. If spheres are among the objects, or are used as bounding
volumes for other objects, we need to test for 3D box-sphere intersec-
tion.

This note describes a simple method for detecting intersections of
n-dimensional boxes with n-dimensional spheres taken as either surfaces
or solids. Applications for n > 3 are not addressed here, though the
algorithm works in any dimension. For greatest generality all algorithms
shown below take the dimension of the space, n, as an input parameter,
though typical implementations would be optimized for either two or
three dimensions.

Solid ObjectsSolid ObjectsSolid ObjectsSolid ObjectsSolid Objects
Suppose we wish to determine whether a solid n-dimensional box, B,
intersects a solid n-dimensional sphere with center C and radius r. Here

V.8V.8V.8V.8V.8

V.8 A SIMPLE METHOD FOR BOX-SPHERE INTERSECTION TESTING

GRAPHICS GEMS I Edited by ANDREW S. GLASSNER 336

“solid” means that we include the interior as well as the boundary.
Denote C by (C1, . . . , Cn) and B by the closed intervals [B1

min ,B1

max],
. . . , Bn

min , Bn
max[]. We can perform this test by finding the point P on or in

the box that is closest to the center of the sphere. If the distance between
this point and C is no greater than r, then the box intersects the sphere.
Thus, if the point P [Rn minimizes the distance function

dist(P)= (C1 −P)2 + ...+(Cn −Pn)2 ,

subject to the constraints

then the solids intersect if and only if dist(P) # r. As a simplification we
will eliminate the square root by computing squared distances and com-
paring with r2 . It is a simple matter to find the P that minimizes the
square of Eq. 1 because each term of the sum is nonnegative and can be
minimized independently. If the ith coordinate of the sphere center
satisfies the ith constraint, that is, if Bi

min ≤ Ci ≤ Bi
max , then setting

Pi = Ci reduces this term to zero. Otherwise, we set Pi equal to either

 Bi
min or Bi

max depending on which is closer. Summing the squares of the
distances produces the minimum total squared distance. The algorithm in
Fig. 1 uses this principle to determine whether a solid box intersects a
solid sphere. The input parameters are the dimension n, box B, sphere

boolean function SolidBox_SolidSphere(n, B, C, r)
begin

 dmin ← 0;
for i ← 1 . . . n do

if
else

if
endloop;

if dmin ≤ r2 then return [True]
else return [False];

 end;

Figure 1. An algorithm for intersecting a solid n-dimensional box with a solid n–dimen-
sional sphere.

(1)

(2)

 Ci < Bi
minthen dmin ←dmin +(Ci −Bi

min)2 ;

 Ci > Bi
maxthen dmin ←dmin +(Ci −Bi

max)2 ;

 Bi
min ≤ Pi ≤ Bi

max for i = 1,...,n,

V.8 A SIMPLE METHOD FOR BOX-SPHERE INTERSECTION TESTING

GRAPHICS GEMS I Edited by ANDREW S. GLASSNER 337

center C, and sphere radius r. The function value is returned as “True” if
the objects intersect and “False” otherwise.

Hollow ObjectsHollow ObjectsHollow ObjectsHollow ObjectsHollow Objects
If we wish to make either or both of the objects hollow and test only their
surfaces, we can do so by regarding total inclusion of one object inside
the other as nonintersection. For instance, if we wish to test whether the
surface of the sphere intersects the solid box, we can add a test for
whether the box is entirely contained within the sphere and regard this as
nonintersection. This is shown in the algorithm of Fig. 2, in which we’ve
added the computation of the square distance from C to the farthest
point of B. If this value, denoted dmax , is less than r2 , the entire box is
inside the sphere and there is no intersection.

The approach is different if we wish to disregard the interior of the box.
Here the constraints of Eq. 2 still hold but in order for the point P to be
on the boundary of the box we require the additional constraint that

 Pi = Bi
min or Pi = Bi

max for some i. In the algorithm of Fig. 1 we see that
this holds unless Ci ∈(Bi

min ,Bi
max) for all i . In this case we need to

determine whether moving P to the nearest face of the box places it

boolean function SolidBox_HollowSphere(n, B, C, r)
begin

dmax ← 0;
dmin ← 0;

for i ← 1 . . . n do
a ← (Ci – Bi

min)2

b ← (Ci – Bi
max)2;

dmax ← dmax + max(a, b);
if Ci Ò Bi

min , Bi
max[] then dmin ← dmin + min(a,b);

endloop;

if r2 [[dmin, dmax] then return [True]
else return [False];

end;
Figure 2. An algorithm for intersecting a solid n-dimensional box with a hollow
n-dimensional sphere.

V.8 A SIMPLE METHOD FOR BOX-SPHERE INTERSECTION TESTING

GRAPHICS GEMS I Edited by ANDREW S. GLASSNER 338

(3)

boolean function HollowBox_SolidSphere(n, B, C, r)
begin

dmin ← 0
dface ← infinity

 for i ← 1 . . . n do
 t ← min((Ci– Bi

min)2,(Ci – Bi
max)2);

 if Ci [[Bi
min ,Bi

max] then dface ← min(dface,t);
 else begin
 dface = 0;
 dmin ← dmin + t;
 end
 endloop;
 if dmin + dface ≤ r2 then return [True]
 else return [False];

 end;

Figure 3. An algorithm for intersecting a hollow n-dimensional box with a solid n-
dimensional sphere.

outside the sphere. In Fig. 3 we have modified the algorithm to compute
the smallest such adjustment, denoted dface.We add this to the minimum
distance between the box and C, and if the result remains less than r2,
the surface of the box intersects the solid sphere. The approaches in Fig.
2 and Fig. 3 can be combined to test for intersection between a hollow
box and a hollow sphere.

Generalizing to EllipsoidsGeneralizing to EllipsoidsGeneralizing to EllipsoidsGeneralizing to EllipsoidsGeneralizing to Ellipsoids
We can easily generalize this idea to work with axis-aligned ellipsoids,
that is, ellipsoids that result from scaling a sphere differently along the
coordinate axes. We can specify such a ellipsoid in n-space by its center,
C[Rn, and a “radius” for each axis, a1, . . . , an. The point P ∈ Rn

is on or in such an ellipsoid if and only if

C1 − P1

α1







2

 + ⋅ ⋅ ⋅ + Cn − Pn

αn







2

≤ 1.

 is on or in such an ellipsoid if and only if

V.8 A SIMPLE METHOD FOR BOX-SPHERE INTERSECTION TESTING

GRAPHICS GEMS I Edited by ANDREW S. GLASSNER 339

boolean function SolidBox_SolidEllipsoid(n, B, C, α)
begin
 dmin ← 0;
 for i ← 1 ... n do

 if Ci < Bi
min then

dmin ← dmin +

Ci − Bi
min

α i







2

;

 else

 if Ci > Bi
max then

dmin ← dmin + Ci − Bi
max

α i













2

;

 endloop;

 if dmin ≤ 1 then return [True]
 else return [False];
 end;

Figure 4. An algorithm for intersecting a solid n-dimensional box with a solid n-dimen-
sional axis-aligned ellipsoid.

Modifying the algorithm in Fig. 1 to handle this type of ellipsoid results
in the algorithm shown in Fig. 4. Here the scalar input parameter r has
been changed to the array α. Modifications for either hollow boxes or
hollow ellipsoids are analogous to those previously described.

See Appendix 2 for C Implementation (730)

66
3D RENDERING

343

VI.1 3D GRID HASHING FUNCTION

GRAPHICS GEMS I Edited by ANDREW S. GLASSNER 343

VI.1VI.1VI.1VI.1VI.1
33333D GRID HASHINGD GRID HASHINGD GRID HASHINGD GRID HASHINGD GRID HASHINGFFFFFUNCTIONUNCTIONUNCTIONUNCTIONUNCTION

Brian WyvillUniversity of CalgaryCalgary, Alberta, Canada

For various applications in computer graphics it is often necessary to sort
objects into a 3D grid of cubes or voxels according to their position in
space. One way of keeping track of which objects are stored in which
voxels is simply to keep a 3D array of voxels in memory. Voxel grids
don’t have to be very large before this becomes impractical, since the size
of the array goes up as the cube of the sides. Sometimes it is convenient
to store the grid at a variety of resolutions; this is done using an octree.
The tree divides into eight branches at every node. This corresponds to
cutting the cube (node) along three orthogonal planes into eight sub-
cubes. A node is subdivided if it is required to examine its contents in
greater detail. If great depth is required, octrees can also use large
amounts of memory. If many of the voxels are empty or the level of detail
is known at the start, a table of pointers can be used to represent the grid.
Each location in the table represents a group of neighboring voxels; a
linked list allows access to the voxels in the group. Each voxel within the
group points to a list of objects to be found in that particular voxel. The
problem is how to make a good hash function that can be computed from
the x, y, z location of the object to be stored. The function really acts as
a sorting mechanism to distinguish groups of neighboring objects.

344

VI.1 3D GRID HASHING FUNCTION

GRAPHICS GEMS I Edited by ANDREW S. GLASSNER 344

Computing the Hash FunctionComputing the Hash FunctionComputing the Hash FunctionComputing the Hash FunctionComputing the Hash Function
If the object position is characterized by the origin, an integer coordinate
triple, (x, y, z), then the address in the hash table can be computed by
combining the most significant few bits of each of x, y, and z. The table
contains a relatively small number of entries, each one representing a
group of voxels. Objects with the same hash address are in fact near
neighbors, which are in the same group but not necessarily the same
voxel.

To compute the address from the (x, y, z) triple it is necessary to know
the length of the table and the number of voxels. For example, if the
world is to be divided into a cube 256 voxels on a side then 256*256*256
(16,777,216) locations would be required to store the entire table. If the
table was to be only 4096 locations in length, a table address could be

Figure 1. Finding a 12-bit address from x, y, z. In this example x, y, and z are
shown as 1-byte values.

345

VI.1 3D GRID HASHING FUNCTION

GRAPHICS GEMS I Edited by ANDREW S. GLASSNER 345

stored in four bits for each dimension. (addressed 0 to 4095). To ensure
that an out-of-bounds index is not computed, x, y, and z must lie within
a predefined range of positive values. For example, if range is set to 256
(8 bits) and the hash address is 12 bits then the top 4 bits of each of x, y,
and z are used to compute this address. A bit mask is used to select the
most significant four bits from the bottom eight bits of an x, y, z integer;
in this example the mask is set to (11110000) (octal 360). (see Fig. 1). In the
C example RANGE is set to 256, NBITS to 4.

Note that the following conditions must hold:

 log2(RANGE) ≤ NBITS,

MIXINT ≥ RANGE

0 ≤ x ≤ RANGE – 1

0 ≤ y ≤ RANGE – 1

0 ≤ z ≤ RANGE – 1

2 to the power NBITS*3 gives the length of the table.

See also Ray Tracing (383)

See Appendix 2 for C Implementation (733)

346

VI.2 BACKFACE CULLING

GRAPHICS GEMS I Edited by ANDREW S. GLASSNER 346

VI.2VI.2VI.2VI.2VI.2
BBBBBACKFACE CULLINGACKFACE CULLINGACKFACE CULLINGACKFACE CULLINGACKFACE CULLING

Jeff HultquistNASA Ames Research CenterMoffett Field, California

Convex polygonal objects can be drawn rapidly by testing each face for
visibility. We can construct the database for each shape so that the
vertices around each face are listed in a counterclockwise order (such an
object is called oriented).

Once all of the vertices of such an object are mapped into the two-
dimensional screen coordinates, the visible faces will be “wrapped” in
one direction, and the invisible faces will be wrapped in the other. We can
test the wrapping direction of a face by taking adjacent vectors BA and
BC, which lie along two edges of that face. The cross-product of these
two edges is a vector that will point either into or out of the screen,
depending on the wrapping direction.

To determine which edges of a convex oriented polygonal object are
visible, we can test the visibility of each face. An edge shared by two
visible faces is itself visible. An edge that aligns with only one visible face
is on the silhouette of the object. All other edges are hidden from view.

This test can be used to determine which edges are visible on a convex,
closed, and oriented object. First associate with each edge a “visibility
count” initialized to zero, then examine each face of the object. Use the
wrapping test described above to determine if the polygon is facing into
or out of the screen. If it is facing out of the screen, then increment the
visibility count for each of its edges. Once all of the faces have been
processed, the visibility count for each edge will 0, 1, or 2. Edges with a

347

VI.2 BACKFACE CULLING

GRAPHICS GEMS I Edited by ANDREW S. GLASSNER 347

count of 2 are fully visible, whereas a 1 indicates an edge that defines the
silhouette of the object. Edges with a count of zero are fully obscured.

See also Scan Conversion Summary (75)

Figure 1.

348

VI.3 FAST DOT PRODUCTS FOR SHADING

GRAPHICS GEMS I Edited by ANDREW S. GLASSNER 348

VI.3VI.3VI.3VI.3VI.3
FFFFFAST DOTAST DOTAST DOTAST DOTAST DOTPPPPPRODUCTS FORRODUCTS FORRODUCTS FORRODUCTS FORRODUCTS FORSSSSSHADINGHADINGHADINGHADINGHADING

Mark LeeAmoco Production CompanyTulsa, Oklahoma
As images become more sophisticated, the illumination models used in
generating the images are also generally more sophisticated. These illumi-
nation models become more and more expensive to compute. This article
describes a method of reusing some of the computations to save on the
total number of arithmetic operations necessary for evaluating the illumi-
nation model.

Several direction vectors are needed when using current illumination
models. The following is a glossary of the vectors to be used in this article
(see Fig. 1):

 L—the vector that points in the direction of the light source,

 V—the vector that points in the viewing direction,

 N—the normal to the reflecting or refracting surface,

 H—the normal to an imaginary surface that would reflect light per-
 fectly from L to V,

 H′—the normal to an imaginary surface that would refract light per-
 fectly from L to V,

 Hu—an unnormalized form of H,

 H′u—an unnormalized form of H′.

The vectors N, L, V, H, and H′ are assumed to have unit length. Also,
all of these vectors are assumed to be oriented pointing away from the

349

VI.3 FAST DOT PRODUCTS FOR SHADING

GRAPHICS GEMS I Edited by ANDREW S. GLASSNER 349

 Figure 1. Geometry for the reflection and refraction of light.

surface. H is used whenever L and V lie on the same side of the surface
[(N ⋅ V)(N ⋅ L) > 0] and H′ is used whenever L and V lie on opposite
sides of the surface [(N ⋅ V)(N ⋅ L) < 0].

Generally, the vectors V, L, and N are known at the time the illumina-
tion model is invoked. The vectors H and H′ are usually generated within
the illumination model to calculate the values N ⋅ H, N ⋅ H′, V ⋅ H, and
V ⋅ H’ for use in computing the facet distribution function, D, the facet
self-shadowing factor, G, and the Fresnel reflectance, F (Blinn, 1977;
Cook and Torrance, 1982). Generally, however, by the time the terms D,

350

VI.3 FAST DOT PRODUCTS FOR SHADING

GRAPHICS GEMS I Edited by ANDREW S. GLASSNER 350

F, and G are to be evaluated, the terms N ⋅ L and N ⋅ V have been
generated for use by other parts of the illumination model (diffuse
reflectance, vector orientation and so forth). By utilizing the terms N ⋅ L
and N ⋅ V, the vectors H and H′ need not be explicitly created. The
remainder of this article will discuss calculating N ⋅ H, N ⋅ H′, V ⋅ H, and
V ⋅ H′ given L, V, N, N ⋅ L, and N ⋅ V.

Let’s start by examining the case of the reflection of light (see Fig. la).
Remember, H is the normal to an imaginary surface that would reflect
light perfectly from L to V. H is defined as

H = L + V
L + V

,

(Cook, 1982; Glassner et al., 1989; Hall, 1989). The terms N ⋅ H and
V ⋅ H could be calculated by first forming the vector H, and then calculat-
ing N ⋅ H and V ⋅ H directly. However, by using previously calculated
information, namely N ⋅ L and N ⋅ V, the number of arithmetic operations
may be decreased.

Define H and Hu (the unnormalized form of H) as follows:

H
u = L + V and H = Hu

Hu

.

Remember, Hu = Hu ⋅ Hu() , which means that

Hu ⋅ Hu = L + V() ⋅ L + V()
= L ⋅ V() + 2 L ⋅ V() + V ⋅ V()

= 2 L ⋅ V() + 2

∴ Hu = 2 L ⋅ V




 + 2.

351

VI.3 FAST DOT PRODUCTS FOR SHADING

GRAPHICS GEMS I Edited by ANDREW S. GLASSNER 351

Now the factors N ⋅ H and V ⋅ H can be rewritten as follows:

N ⋅ H = N ⋅
Hu

Hu









 V ⋅ H = V ⋅

Hu

Hu











Now, compare the number of arithmetic operations needed by the two
methods to calculate N ⋅ H and V ⋅ H. First, define V = (vx, vy, vz),
L = (lx, ly, lz), N = (nx, ny, nz) and H = (hx, hy, hz).

Direct algorithm, given, L, N, V, N ⋅ L and N ⋅ V
hx ← lx + vx
hy ← ly + vy
hz ← lx + vz

b ← hx∗h x




 + hy∗hy






 + hz∗hz()

ndoth ← [(nx∗ hx) + (ny∗hy) + (nz∗hz)]/b
vdoth ← [(vx∗hx) + (vy∗hy) + (vz∗hz)]/b

New algorithm, given, L, N, V, N ⋅ L and N ⋅ V
a ← (lx∗vx) + (ly∗vy) + (lz∗vz) + 1
b ←
ndoth ← [ndotl + ndotv]/b
vdoth ← a/b

This implementation of the direct algorithm requires 9 additions/sub-
tractions, 11 multiplications/divisions, and 1 square root, whereas the
implementation of the new algorithm requires only 5 additions/subtrac-

=
N ⋅ Hu()

Hu

=
N ⋅ L + V()[]

Hu

=
N ⋅ L() + N ⋅ V()[]

Hu

=
N ⋅ L() + N ⋅ V()[]

2 L ⋅ V() + 2

=
V ⋅ Hu()

Hu

=
V ⋅ L + V()[]

Hu

=
L ⋅ V() + V ⋅ V()[]

Hu

=
L ⋅ V() + 1[]

2 L ⋅ V() + 2
.

a + a

352

VI.3 FAST DOT PRODUCTS FOR SHADING

GRAPHICS GEMS I Edited by ANDREW S. GLASSNER 352

tions, 5 multiplications/divisions, and 1 square root (for scalar-based
machines). The difference comes from making more use of previously
calculated information.

Now, let’s examine the case of the refraction of light (see Fig. 1b). Let
ni be the index of refraction for the medium of incidence and nt be the
index of refraction for the medium of transmittance. From Hall (1989)
and Glassner et al. (1989), H′ can be formulated as

and

Note, however, that

′H =

– L +
V + L
nt

ni

 − 1



































L +
V + L
nt

ni

 − 1



































 =

−

nt

ni

 L + V

nt

ni

 − 1

















nt

ni

 L + V

nt

ni

 − 1

if ni < nt,

if ni > nt.

− ni

nt







− nt

ni

 L − V










− ni

nt







nt

ni

 − 1










 =

ni

nt

 V + L

ni

nt

 − 1

,

′H =

 V +
L + V
ni

nt

 − 1



































V +
L + V
ni

nt

 − 1

















 =

ni

nt

 V + L

ni

nt

 − 1

















ni

nt

 V + L

ni

nt

 − 1

353

VI.3 FAST DOT PRODUCTS FOR SHADING

GRAPHICS GEMS I Edited by ANDREW S. GLASSNER 353

which proves that all of these formulations of H′ are really one and the
same; therefore, we will choose

′H =

ni

nt

 V + L

ni

nt

 – 1



















ni

nt

 V + L

ni

nt

 – 1

Unlike H, H′ does not exist for all configurations of L and V. The first
exception occurs when ni = nt. In this case, H′ exists only when L and V
are parallel to each other and point in opposite directions, in which case,
H′ = V; therefore, N ⋅ H′ = N ⋅ V and V ⋅ H′ = 1 when H′ exists.

The second exception occurs when the law of refraction does not hold.
Refraction is governed by Snell’s law, which states that ni sin θi = nt sin θt

 where θi is the angle of incidence and θt is the angle of transmittance.
Since – 1 ≤ sin θ ≤ 1 and ni, nt > 1, there exist ni, nt θi, θt such that
Snell’s law cannot be satisfied. Another constraint is that θi and θt must
lie in the range [0, π /2].

Suppose that ni < nt. Rearranging Snell’s law gives sin θ i =
(nt/ni)sin θ t. Obviously, the right-hand side of the equation can get
larger than 1, whereas the left-hand side of the equation cannot. The
point where 1 = (nt/ni)sin θt is called the critical angle, θc. Beyond this
angle, total internal reflection occurs; therefore, the region of existence
for H′ is 0 ≤ θt ≤ θcfor ni < nt.

Now, from Fig. 2, the angle between V and L is (π /2 – θi) + π /2 + θt.
Using the facts that

− cos π
2

+ θt






 ≤ − cos π

2
 + θt + π

2
− θi













– L ⋅ V = − cos π
2

 + θt + π
2

 − θi












,

sin θt = − cos π
2

 + θt







354

VI.3 FAST DOT PRODUCTS FOR SHADING

GRAPHICS GEMS I Edited by ANDREW S. GLASSNER 354

we can derive the following:

ni

nt

 = sin θt

= – cos π

2 + θt()
≤ − cos

π
2

 + θ t +
π
2

 − θ i














= – L ⋅ V

∴ ni

nt

≤ = – L ⋅ V

Also, (ni/nt) < (nt/ni).
Suppose now that nt < ni. Rearranging Snell’s law gives (ni/nt)sin θi

= sin θt. The critical angle occurs at (ni/nt)sin θi = 1.

Figure 2.

355

VI.3 FAST DOT PRODUCTS FOR SHADING

GRAPHICS GEMS I Edited by ANDREW S. GLASSNER 355

 Figure 3.

From Fig. 3, the angle between V and L is (π /2 – θt) + π /2 + θi.
Using the facts that

sin θi = − cos
π
2

 + θ i







we can derive the following:

nt

ni

 = sin θi

= − cos π

2
 + θ i







≤ − cos π

2
 + θ i + π

2
 − θ t













 = − L ⋅ V

∴ nt

ni

 ≤ − L ⋅ V

Also, (nt/ni) < (ni/nt)

– cos

π
2

 + θ i







 ≤ – cos
π
2

 + θ i +
π
2

– θ t













– L ⋅ V = – cos

π
2

 + θ i +
π
2

– θ t













,

356

VI.3 FAST DOT PRODUCTS FOR SHADING

GRAPHICS GEMS I Edited by ANDREW S. GLASSNER 356

Combining the results for the cases ni < nt and nt < ni, H′ exists if
min ((ni/nt),(nt/ni)) ≤ – L ⋅ V.

The terms N ⋅ H′ and V ⋅ H′ could be calculated by first forming the
vector H′, and then calculating N ⋅ H′ and V ⋅ H′ directly. However, by
reusing N ⋅ L and N ⋅ V, the number of arithmetic operations may be
decreased.

Define H′ and H′u (the unnormalized form of H′) as

Take a look at the expression (ni/nt)
2 + 2(ni/nt)(L ⋅ V) + 1. Since

(ni/nt)
2 + 1 > 0, only L ⋅ V could be less than zero. The expression

2(ni/nt)(L ⋅ V) is smallest when L ⋅ H′ = – 1. Now, assuming ni ≠ nt

=
1

ni

nt

 − 1

















2

ni

nt







2

V ⋅ V() + 2
ni

nt

 L ⋅ V() + L ⋅ L()












=
1

ni

nt

 − 1

















2

ni

nt







2

 + 2
ni

nt

 L ⋅ V() + 1












=
1

ni

nt

 − 1

ni

nt







2

 + 2
ni

nt

 L ⋅ V() + 1

H′u ⋅ H′u

′H =

′H u

′H u

.

 ∴ ′H u

H′u

=

ni

nt

 V + L

ni

nt

 − 1

















 ⋅

ni

nt

 V + L

ni

nt

 − 1

















and

=

ni

nt

 V + L

ni

nt

 − 1

357

VI.3 FAST DOT PRODUCTS FOR SHADING

GRAPHICS GEMS I Edited by ANDREW S. GLASSNER 357

and L ⋅ V = –1,

Therefore, (ni/nt)
2 + 2(ni/nt)(L ⋅ V) + 1 > ∀ni ≠ nt and no check

need be made for the square root of a negative number.
Now, the dot products N ⋅ H′ and V ⋅ H′ can be reformulated as

= 1
′Hu

 N ⋅

ni

nt

 V + L

ni

nt

 – 1































=
1

′Hu
ni

nt

 – 1






ni

nt

 N ⋅ V() + N ⋅ L()









N ⋅ ′H = N ⋅

′Hu

′Hu







=

N ⋅ ′H u()
′H u

=

ni

nt







2

− 2 ni

nt

 + 1

ni

nt







2

+ 2 ni

nt

 L ⋅ V() + 1

=

ni

nt

 − 1





2

 > 0.

358

VI.3 FAST DOT PRODUCTS FOR SHADING

GRAPHICS GEMS I Edited by ANDREW S. GLASSNER 358

= 1

ni

nt

 − 1






1

ni

nt

 − 1

ni

nt







2

 + 2
ni

nt

 L ⋅ V() + 1

×

ni

nt

 N ⋅ V() + N ⋅ L()









= 1

ni

nt

 − 1






ni

nt







2

 + 2
ni

nt

 L ⋅ V() + 1

×

ni

nt

 N ⋅ V() + N ⋅ L()









sign

= 1

ni

nt

 − 1






1

ni

nt

 − 1

ni

nt







2

 + 2
ni

nt

 L ⋅ V() + 1

×

ni

nt

 V ⋅ V() + L ⋅ V()









and

=
1

′Hu
ni

nt

 – 1






ni

nt

 V ⋅ V() + V ⋅ L()









=
1

′Hu
 V ⋅

ni

nt

 V + L

ni

nt

 – 1



































=

V – ′Hu()
′Hu

V ⋅ ′H = V ⋅

′Hu

′Hu







359

VI.3 FAST DOT PRODUCTS FOR SHADING

GRAPHICS GEMS I Edited by ANDREW S. GLASSNER 359

Once again, compare the number of arithmetic operations needed by
the two methods to calculate N ⋅ H′ and V ⋅ H′. Define H′ = (h’x, h’y, h’z)

Direct algorithm, given L, N, V, N ⋅ L, and N ⋅ V
ldotv ← [(lx ∗ vx) + (ly ∗ vy) + (lz ∗ vz)]
if (ni = nt)

then if (ldotv = –1)
then begin

H′ ← V
ndoth′ ← ndoth
vdoth′ ← 1.0
end

else FLAG ← null
else begin

a ← ni/nt
if (– ldotv ≥ min(a, nt/ni))

then begin
d ← a – 1
h′x ← [(a∗vx) + lx]/d
h′y ← [(a∗vy) + ly]/d
h′z ← [(a∗vz) + lz]/d

b ←

′hx ∗ ′hx() ′hy ∗ ′hy() ′hz ∗ ′hz()
ndoth′ ← [(nx ∗ h′x) + (ny ∗ h′y) + (nz ∗ h′z)]/b
vdoth′ ← [(vx ∗ h′x) + (vy ∗ h′y) + (vz ∗ h′z)]/b
end

else FLAG ← null
end

New algorithm, given L, N, V, N ⋅ L, and N ⋅ V

Idotv ← [(lx ∗ vx) + (ly ∗ vy) + (lz ∗ vz)]
if (ni = nt)

= 1

ni

nt

 − 1






ni

nt







2

 + 2
ni

nt

 L ⋅ V() + 1

×

ni

nt

 + L ⋅ V()







.

sign

360

VI.3 FAST DOT PRODUCTS FOR SHADING

GRAPHICS GEMS I Edited by ANDREW S. GLASSNER 360

then if (ldotv = –1)
then begin

ndoth′ ← ndoth
vdoth′ ← 1.0
end

else FLAG ← null
else begin

a ← ni/nt
if (– ldotv ≥ min(a, nt/ni))

then begin
b ← [(a + ldotv + ldotv) ∗ a] + 1
if(a > 1)

then b ← b
else b ← – b

ndoth′ ← [(a ∗ ndotv) + ndotl]/b
vdoth′ ← (a + ldotv)/b
end
else FLAG ← null

end

If FLAG = null, then H′, N ⋅ H′, and V ⋅ H′ do not exist.
This implementation of the direct algorithm requires in the worst but

most common case, 12 additions/subtractions, 22 multiplications/divi-
sions, and 1 square root, whereas the implementation of the new algo-
rithm requires only 7 additions/subtractions, 9 multiplications/divisions,
and 1 square root. Once again, the difference comes from making more
use of previously computed information.

See also Scan Conversion Summary (75)

361GRAPHIC GEMS I Edited by ANDREW S. GLASSNER 361

VI.4 SCANLINE DEPTH GRADIENT OF A Z-BUFFERED TRIANGLEVI.4VI.4VI.4VI.4VI.4
SSSSSCANLINE DEPTH GRADIENTCANLINE DEPTH GRADIENTCANLINE DEPTH GRADIENTCANLINE DEPTH GRADIENTCANLINE DEPTH GRADIENTOF AOF AOF AOF AOF A Z- Z- Z- Z- Z-BUFFERED TRIANGLEBUFFERED TRIANGLEBUFFERED TRIANGLEBUFFERED TRIANGLEBUFFERED TRIANGLE

Kelvin ThompsonNth Graphics, Ltd.Austin, Texas
Given a triangle with Z depth values at its vertices and basic geometry as
shown in Fig. 1: if we render each scanline of the triangle in the direction
shown, then for each increment in the X direction, the Z depth will
change by

dz
dx

=
z2 − z1() y3 − y1





 − z3 − z1





 y2 − y1()

x2−x1() y3 − y1




 − x3 − x1





 y2 − y1()

That is, this is the Z slope of the triangle with respect to X. This slope
can be used with a Bresenham’s-like, DDA, or parallel-rendering algo-
rithm (Swanson and Thayer, 1986; Niimi et al., 1984).

The ratio above can also be used for Gouraud rendering. On systems
with color look-up tables, you simply replace the Z values with color
index values. On full-color systems you effectively need to have three
parallel calculations—one for each color—in place of each Z calculation.

ProofProofProofProofProof
We calculate the X/Z slope by extending edge

p1p2 to point

p4 , which

is horizontal with point

p3 (see Fig. 2).

362GRAPHIC GEMS I Edited by ANDREW S. GLASSNER 362

VI.4 SCANLINE DEPTH GRADIENT OF A Z-BUFFERED TRIANGLE

By Construction y4 = y3 and

so

x4 = x2 − x1

y2 − y1

y3 − y1() + x1 , and z4 = z2 − z1

y2 − y1

y3 − y1() + z1 .

x4 − x1

y4 − y1

= x2 − x1

y2 − y1

, and
z4 − z1

y4 − y1

= z2 − z1

y2 − y1

,

 Figure 2.

 Figure 1.

363GRAPHIC GEMS I Edited by ANDREW S. GLASSNER 363

VI.4 SCANLINE DEPTH GRADIENT OF A Z-BUFFERED TRIANGLE

Hence the Z slope with respect to X is

z4 − z3

x4 − x3

 =

z2 − z1

y2 − y1

y3 − y1() + z1 − z3

x2 − x1

y2 − y1

y3 − y1() + x1 − x3

=

z2 − z1() y3 − y1() − z3 − z1() y2 − y1()
x2 − x1() y3 − y1() − x3 − x1() y2 − y1() .

See also Scan Conversion Summary (75)

364

VI.5 SIMULATING FOG AND HAZE

GRAPHICS GEMS I Edited by ANDREW S. GLASSNER 364

 σ dl = σd0
d∫

VI.5VI.5VI.5VI.5VI.5
SSSSSIMULATINGIMULATINGIMULATINGIMULATINGIMULATINGFFFFFOG AND HAZEOG AND HAZEOG AND HAZEOG AND HAZEOG AND HAZE

Andrew S. GlassnerXerox PARCPalo Alto, California

One popular model for fog and haze is as a contrast-reducing medium.
The fog is assigned an overall color, usually a light gray. The farther an
object is from the viewer, the lower its contrast with respect to this fog
color. We can approximate this contrast reduction on a point-by-point
basis.

Suppose that the fog has RGB color F, and point P on some object has
color K (this is the color of P after all surface-dependent shading has
been performed; that is, this is the color of the light radiated from P
toward the viewer, measured at P). We can push the object color toward
the fog color by interpolating the two: K′ ←lerp(α, K, F). When α = 0,
the object is not at all colored by the fog; when α = 1, the color has
shifted to that of the fog.

The choice of α is governed by the properties of the fog. Assume that
the fog is of constant density throughout the environment. Let d be the
distance from the viewer at V to the point P being shaded, and σ be
the density of fog per unit distance. Then the total fog between V
and P is , so the proportion of fog we encounter along a
sight line is linear with the distance to the point. A useful (though not very
realistic) technique is to say that until distance dnear there should be no
fog effect, and that after distance dfar nothing but fog should be visible.
Then, since the fog density is constant, we can write α as a simple linear
blend from dnear to dfar, so α = clamp(0, 1, (d – dnear)/(dfar – dnear)).

For example, suppose our colors are described in RGB, with object
color K = (.1, .8, .3) and fog color F = (.6, .6, .6). If dnear= 50, dfar

365

VI.5 SIMULATING FOG AND HAZE

GRAPHICS GEMS I Edited by ANDREW S. GLASSNER 365

= 550, and d = 100, then α = 0.1. Thus, the color we’d use for the
point is K ′ ← K + [0.1 (F – K)] = (.1, .8, .3) + [.05, –.02, .03] =
(.15, .78, .33). The approach here is equally applicable to more sophisti-
cated color models than RGB.

In an environment where reflections and transmissions are visible, one
may wish to apply contrast reduction to the transmitted and reflected
light as well, simulating the dissipation of this light as it travels from one
object to another. This is appropriate in both ray tracing and radiosity
programs.

A popular technique in vector graphics is depth cuing, where the
intensity of a stroke is diminished as a linear function of its distance from
the viewer. This is a special case of the approach described here, using
black as the fog color. Often in these systems dnear and dfar are set to
the minimum and maximum depth component of all strokes in the scene.

Using a dark blue or black fog color is also appropriate for nighttime
haze.

This note has presented a very simple model for fog and haze, appro-
priate for a quick hack or a special effect. More realistic and sophisticated
models may be found in Blinn (1982), and Kajia and Von Herzen (1984).

See also Shadow Attenuation for Ray Tracing Transparent Ob-
jects (397)

366

 VI.6 INTERPRETATION OF TEXTURE MAP INDICES

GRAPHICS GEMS I Edited by ANDREW S. GLASSNER 366

VI.6VI.6VI.6VI.6VI.6
IIIIINTERPRETATION OF TEXTURE MAPNTERPRETATION OF TEXTURE MAPNTERPRETATION OF TEXTURE MAPNTERPRETATION OF TEXTURE MAPNTERPRETATION OF TEXTURE MAPINDICESINDICESINDICESINDICESINDICES

Andrew S. GlassnerXerox PARCPalo Alto, California

A typical rendering problem is to find the average value within some
region of a texture map. Since this task can occur for every pixel (and in
some Z-buffer systems, potentially many times per pixel), we would like
to find this average as efficiently as possible. Several techniques have
been proposed, such as the mip-map (Willams, 1983) for square regions,
sum tables (Crow, 1984) for rectangular regions, refined sum tables for
quadrilateral regions (Glassner, 1984), and the elliptically weighted aver-
age filter (Green and Heckbert, 1986) for elliptic regions.

In this note we restrict our attention to rectangular regions. Our
problem is to find the average value within some axis-aligned rectangle of
texture. Such a rectangle may be described by the points at opposite ends
of one of its diagonals; in this note we choose these to be the points
nearest and farthest from the origin of the texture coordinate system.

We define the texture to be available on the Cartesian product of the
half-open intervals [0, 1) in U and [0, 1) in V. We diagram this in Fig. 1,
using a solid line and a shaded pattern for available texture, and a dashed
line for the boundary of the open intervals.

Figure 1. The fundamental texture cell, from [0,0] to (1,1).

367

 VI.6 INTERPRETATION OF TEXTURE MAP INDICES

GRAPHICS GEMS I Edited by ANDREW S. GLASSNER 367

Figure 4. Two possible interpretations of polygon 3 in Figure 2. The texture is only
specified by the rectangle corners (0, 0) and (.75, .9).

There are many ambiguities that can arise when one defines a texture
rectangle with only two texture coordinates. For example, suppose we
have an open, four-sided cylinder with v = 0 at the bottom and v = .9 at
the top, and U running around the upper vertices from 0 to 0.75 in equal
steps, as in Fig. 2.

Consider the three rectangles labeled 0, 1, and 2. Figure 3 shows the
images of these rectangles in texture space.

Now consider rectangle 3 near the bottom of the image. It has texture
coordinates with extremes (0, 1) in V and (0, .75) in U. The (u, v)
extremes of this rectangle in texture space are then (0, 0) and (.75, .9).

Figure 3. The texture-space images of polygons 0, 1, and 2 in Figure 2.

Figure 2. A textured cylinder.

a b

368

 VI.6 INTERPRETATION OF TEXTURE MAP INDICES

GRAPHICS GEMS I Edited by ANDREW S. GLASSNER 368

Figure 4 shows two interpretations of mappings these points directly into
texture space.

The first interpretation simply shows the region formed by those
corners, but it’s hardly a narrow slab like the other rectangles. We want
the texture to wrap in little pieces around the cylinder, but the interpreta-
tion in Fig. 4a will cause the texture to fly all the way around, backwards,
on the last piece. This looks very bad.

One common solution to this problem is to wrap texture space as a
two-torus, and find the smallest rectangle on that surface. Thus, the right
side of the texture is taped to the left side, and the top is taped to the
bottom, as in many video games. Alternatively, we may wrap in only one
direction, forming a cylinder. Then Fig. 4b is indeed the smallest rectan-
gle on the cylinder, given our two points. Of course, we never actually
construct the cylinder or torus; rather, the program checks the area of the
possibilities. Of these rectangles the one with the smallest area is chosen.

A similar problem comes up when the texture coordinates are outside
the unit square. Some applications might produce objects with texture
coordinates of unknown extent; this can happen when a texture function
is scaled up to replicate the texture on an object’s surface. We would still
like to render such objects sensibly. Before we can come up with an
algorithm, though, we need to decide what it should mean to specify a
texture coordinate such as (1.3, 4.5).

There are many solutions to this problem. The texture could be treated
as the fundamental cell for any of the symmetry groups with exclusively
two- or four-fold symmetry. We could also devise complicated procedural
answers. A really good analysis of this problem and the pros and cons of
the different solutions makes for some interesting thinking. For simplicity
in this article, we will just replicate the texture over the plane without
transformation, as in Fig. 5.

You may prefer to reflect or rotate the texture as you repeat it.
The general idea is to determine if the desired texture spans one or

more unit squares (we will call the texture-space unit square a cell). If
the texture covers more than one cell we will find the contribution from
each cell and add the contributions together. Each cell will be easy, since
its coordinates will be within the unit square.

We begin with four texture coordinates as input: (u1, v2), (u2,v2),
(u3, v3), and (u4, v4). From these we find the smallest axis-aligned box
that encloses them all. Call the point on this enclosing box nearest the

369

 VI.6 INTERPRETATION OF TEXTURE MAP INDICES

GRAPHICS GEMS I Edited by ANDREW S. GLASSNER 369

Figure 5. Replicating a single texture cell to create a larger texture.

origin S (for small), and the point farthest L (for large). We define two
points, S′ and L′, and a translation vector D, which we will use to build S
and L:

1. S′ ← (min(ui), min(vi))

2. L′ ← (max(ui), max(vi))

3. D ← (frac(S′u), frac(S′v))

4. S ← S′ – D

5. L ← L′ – D

Steps 3 and 4 build S by translating S′ into the unit square; L is then
constructed in step 5 by translating L′ by the same amount. So now
0 ≤ Su, Sv < 1.

Next we will determine the sorts of cells that are overlapped by S and
L. Figure 6 gives a decision tree for each of the nine different sorts of
situations that can arise. A cell drawn with a solid circle in it means that
there are one or more instances of that cell.

The tree in Fig. 6 contains rather more nodes than it must. For
example, all four leaves in the lower left are of the same form: four
corners plus one or more other pieces. If we‘re willing to redefine a solid
circle to mean zero or more of these pieces, we can write a much smaller
tree, as in Fig. 7.

370

 VI.6 INTERPRETATION OF TEXTURE MAP INDICES

GRAPHICS GEMS I Edited by ANDREW S. GLASSNER 370

Figure 6. A decision tree for determining how different types of cells should be used to
create a replicated texture. Each solid dot indicates one or more instances of that type of
cell.

Figure 7. A simplified form of Figure 6, where each dot represents zero or more
instances of that type of cell.

371

 VI.6 INTERPRETATION OF TEXTURE MAP INDICES

GRAPHICS GEMS I Edited by ANDREW S. GLASSNER 371

This tree shows 16 different types of cells at the leaves. Our only
remaining tasks are to find how many of the optional ones exist at each
leaf with optional cells, and the geometry of each of these 16 different
types of cells. Let us attack these problems in order.

Consider the rightmost leaf in Fig. 7—there are no optional cells, and
the whole rectangle is in the unit texture square, so we’re done.

Move left to the leaf with three cells stacked vertically. Consider that
the bottom of the bottommost cell is v = 0, and the top of that cell is
v = 1. If the V coordinate of point L is less than 2, then there are no
intermediate cells, but otherwise there is one such cell for each additional
integer increment of the top coordinate. Remember that we named the
coordinate farthest from the origin L—in our left-handed system, this is
the upper-right point. So the number of optional cells in the middle is
floor(Lv) – 1.

Move left in the tree to the cell with the three horizontal cells. The same
reasoning we just went through applies, but swap U and V. Thus, the
number of center cells is floor(Lu) – 1.

Move now to the far-left leaf. There are four corner cells always there.
Then we must consider the cells in the center of the top and bottom rows.
This situation is analogous to the leaf immediately to the right, except
now we must remember that there are floor(Lu) – 1 pairs of cells. The
same argument holds for the center of the left and right columns;
there are floor(Lv) – 1 pairs of these. The number of center cells is
simply the product of the extensions of the two sides (floor(L u) – 1)
(floor(Lv) – 1).

Now that we know how many of each kind of cell we need to find the
sum, we need to be able to find the rectangle described by each cell. This
is not too hard if we reason about one cell type at a time. If the cell
contains the lower-left corner of the box, that point is point S. If it
contains the upper-right corner, then the coordinates of that point in the
unit square are F = (frac(Lu) , frac(Lv))—remember that the optimal
cells just discussed handle the integer parts of L. Although we have been
careful about saying that the lines u = 1 and v = 1 are actually not part
of our texture, most programs are happy to handle such values. I’m going
to take advantage of this freedom now. In the following tables I often use
the coordinates u = 1 or v = 1, rather than present the cell geometries
as open intervals, which would then start to get messy (both logically and
arithmetically). Figure 8 provides a summary of the 16 types of cells;
their associated coordinates are given in Table 1.

372

 VI.6 INTERPRETATION OF TEXTURE MAP INDICES

GRAPHICS GEMS I Edited by ANDREW S. GLASSNER 372

Figure 8. The different types of cells and their names.

Table 1. Texture Sampling

Cell Type Occupied Region

C: (Su, Sv)(Lu, Lv)
F (0, 0)(1, 1)
TE: (Su, Sv)(Lu, 1)
BE: (Su, 0)(Lu, Lv)
LE: (0, Sv)(Lu, Lv)
RE (Su, Sv)(1, Lv)
UL: (0, Sv)(Lu, 1)
LR (Su, 0)(1, Lv)
LL: (0, 0)(Lu, Lv)
UR: (Su, Sv)(1, 1)
LW: (0, 0)(Lu, 1)
BW: (0, 0)(1,Lv)
RW: (Su, 0)(1, 1)
TW: (0, Sv)(1, 1)
V: (Su, 0)(Lu, 1)
H: (0, Sv)(1, Lv)

373

 VI.6 INTERPRETATION OF TEXTURE MAP INDICES

GRAPHICS GEMS I Edited by ANDREW S. GLASSNER 373

These are all the tools necessary to write a program that can integrate
any axis-aligned rectangle.

We can express the algorithm formed by the decision tree above in
pseudo-code:

map (S, L) {S and L are two input points in the 2d UV system.
 Su ≤ Lu, Sv ≤ Lv.

This returns the sum of all samples in that rectangle; divide by the area of the
rectangle for the average value.

We use the function GetSum (type, S, L) which takes a cell type and the
two original input points and returns the sum of all samples in that types of cell
in that rectangle.

vc ← floor (Lv) – 1 The number of vertical cells in tall strips.
hc ← floor (Lv) – 1 The number of horizontal cells in wide strips.
if Lu ≥ 1 then

if Lv ≥ 1 then
sum ← GetSum(UR, S, L) + GetSum(UL, S, L) +

GetSum(LR, S, L) + GetSum(LL, S, L)
if vc > 0 then sum ← sum +

[vc∗(GetSum(LW, S, L) + GetSum(RW, S, L))]
if hc > 0 then sum ← sum +

[hc∗(GetSum(TW, S, L) + GetSum(BW, S, L))]
if hc∗vc > 0 then sum ← sum +[(hc∗vc)∗GetSum(F, S, L)]

else
sum ← GetSum(LE, S, L) + GetSum(RE, S, L)
if hc > 0 then sum ← sum + [hc∗GetSum(H, S, L)]

else
if Lv ≥ 1 then

sum ← GetSum(TE, S, L) + GetSum(BE, S, L)
if vc > 0 then sum ← sum + [vc*GetSum(V, S, L)]

else
sum ← GetSum(C, S, L)

return[sum]
}

374

 VI.6 INTERPRETATION OF TEXTURE MAP INDICES

GRAPHICS GEMS I Edited by ANDREW S. GLASSNER 374

GetSum(type, S,L) {
We assume a routine GetSumTableRectangle which will take two points

A and B, Au ≤ Bv, Av ≤ Bv, and returns the average value in the rectangle
formed by A and B.

TexturePoint A, B;
select type from

C: begin A ← (Su, Sv); B ← (Lu, Lv); end;
F: begin A ← (0, 0); B ← (1, 1); end;
TE: begin A ← (Su, Sv); B ← (Lu, 1); end;
BE: begin A ← (Su, 0); B ← (Lu, Lv); end;
LE: begin A ← (0, Sv); B ← (Lu, Lv); end;
RE: begin A ← (Su, Sv); B ← (1, Lv); end;
UL: begin A ← (0, Sv); B ← (Lu, 1); end;
LR: begin A ← (Su, 0); B ← (1, Lv); end;
LL: begin A ← (0, 0); B ← (Lu, Lv); end;
UR: begin A ← (Su, Sv); B ← (1, 1); end;
LW: begin A ← (0, 0); B ← (Lu, 1); end;
BW: begin A ← (0, 0); B ← (1, Lv); end;
RW: begin A ← (Su, 0); B ← (1, 1); end;
TW: begin A ← (0, Sv); B ← (1, 1); end;
V: begin A ← (Su, 0); B ← (Lu, 1); end;
H: begin A ← (0, Sv); B ← (1, Lv); end;
endselect;

return [GetSumRect(A,B)];
};

As I mentioned at the start, you may want to reflect or rotate the
texture as you tile the plane. You'll need to keep track of the right
transformation at each cell. It's then a simple matter to either reflect or
rotate the indices to the correct form.

The bookkeeping necessary to make sure this all come out straight
over repeated cells is not trivial, but it's not particularly hard—just
messy. Figure 9 shows the eight transformations with their geometric and
algebraic meanings.

375

 VI.6 INTERPRETATION OF TEXTURE MAP INDICES

GRAPHICS GEMS I Edited by ANDREW S. GLASSNER 375

Figure 9. There are eight ways to rigidly transform a square cell. Each has a simple
interpretations in terms of transformed texture coordinates.

See also Multidimensional Sum Tables (376)

376

VI.7 MULTIDIMENSIONAL SUM TABLES

GRAPHICS GEMS I Edited by ANDREW S. GLASSNER 376

VI.7VI.7VI.7VI.7VI.7
MMMMMULTIDIMENSIONALULTIDIMENSIONALULTIDIMENSIONALULTIDIMENSIONALULTIDIMENSIONALSSSSSUM TABLESUM TABLESUM TABLESUM TABLESUM TABLES

Andrew S. GlassnerXerox PARCPalo Alto, California

Sum tables were introduced to computer graphics by Crow (1984) as a
technique for rapidly integrating rectangular areas of texture. They are
popular for two-dimensional texture mapping, where they are used to find
the average texture value in some rectangular region. You can find them
discussed in the statistics literature as joint cumulative probability distri-
bution functions on n variables (Ross, 1976).

One may generalize the sum table method to an arbitrary number of
dimensions, in order to find the average value within a rectangular box of
any number of sides. I needed the average value in 3D boxes when
building an interactive slicing program. The user moved a slicing plane
through a 3D volume of intensity values, and I constantly updated a
display with the grayscale “slice” of the volume represented by the
current position of the plane. There wasn’t enough time to render this
image at full resolution and still stay interactive, so I rendered the image
at low resolution (originally 32 by 32 samples, where each sample was a
big box on the screen). I wanted each of these samples to represent the
average density in the 3D box spanned by four points on the 3D sample
grid; a 3D sum table was just the right technique to find these averages
quickly.

Let’s briefly review the two-dimensional sum table. Given a sampled
input I(x, y), a sum table S(x, y) is built from the samples of I so that
S(x, y) = I(j, k). Thus, each point on the sum table is the sum
of all intensities in the box formed by that point and the origin.

To find the average value in some rectangle with corners UR (upper-
right), UL (upper-left), LR (lower-right), and LL (lower-left), we first find
the sum of all values in that box, and then divide by the area of the box.

 k =0

y∑j=0

x∑

377

VI.7 MULTIDIMENSIONAL SUM TABLES

GRAPHICS GEMS I Edited by ANDREW S. GLASSNER 377

The beauty of sum tables is that you can quickly find the total value in
that region by computing

Sum of samples in box = S(UR) – S(UL) – S(LR) + S(LL). (1)

So then the average value may be found by

Average = (Sum of samples in box)/(Area of box). (2)

Why does Eq. 1 work? Figure 1 suggests a pictorial explanation. The
box we want can be found by finding the sum at UR, and by then
removing the extraneous area to the left and below of LL by removing the
sums at UL and LR. But we have implicitly removed the area that is both
to the left and below of LL two times, so we explicitly add it back in once,
so it is only subtracted from the total once.

Equation 1 can also help us build the sum table in the first place. The
brute-force way to build a sum table is to loop through all the pixels
below and to the left of each sample you want to compute. A smarter way
to go is to pretend you wanted to find the sum in the box formed by the
sample at (x, y) and its neighbors immediately left, below, and below-left:

S(x, y) – S(x – 1, y) – S(x, y – 1) + S(x – 1, y – 1) = I(x, y). (3)

Figure 1. The sum of all values in a rectangle may be found by combining the sum table
value at the four corners.

378

VI.7 MULTIDIMENSIONAL SUM TABLES

GRAPHICS GEMS I Edited by ANDREW S. GLASSNER 378

We don’t have to divide the sum because the area of this box is exactly
1. We can just rewrite this for S(x, y):

S(x, y) = I(x, y) + S(x – 1, y) + S(x, y – 1) – S(x – 1, y – 1). (4)

This shows that we can use the previously filled-in entries in the sum
table and the image itself to help build new entries.

A common technique for generalizing something is to see what happens
when you go one dimension higher, and then see if you can find the
arbitrary case by induction. Let’s try this and move from 2D to a 3D sum
table.

Figure 2 shows a three-dimensional sum table and a box we would like
to sample (for clarity in the figure we have suppressed the space beyond
point P). Suppose that the point P is at (x, y, z), and the opposite
diagonal Q is at (x – ∆x, y – ∆y, z – ∆z). In Figure 3a we have shown
the eight octants of the original 3D image as defined by the planes of the
box we’re investigating. Figure 3b labels each of the eight octants created
Figure 3. Figure 3a shows the eight octants in 3D created by the box in Fig.
2. Figure 3b provides labels for these octants. Figure 3c labels the eight
vertices of the sampled box.

Figure 2. In 3D, the near corner Q and far corner P define the diagonal of a box of 3D
texture.

379

VI.7 MULTIDIMENSIONAL SUM TABLES

GRAPHICS GEMS I Edited by ANDREW S. GLASSNER 379

Figure 3. Figure 3a shows the eight octants in 3D created by the box in Fig. 2. Figure 3b
provides labels for these octants. Figure 3c labels the eight verti ces of the sampled box.

by the planes of this box; note that the box we wish to sample is labeled
F. Figure 3c labels the vertices of the box.

We would like to find the sum of all samples in box F. Suppose that we
have built a sum table in three dimensions. To clarify how the table is
built, we will say that Σn is the sum of all samples in box n. Then we can
write each Si (the value of the sum table at vertex i) as a sum of these

380

VI.7 MULTIDIMENSIONAL SUM TABLES

GRAPHICS GEMS I Edited by ANDREW S. GLASSNER 380

octant sums:
S1 = ΣC + ΣA
S2 = ΣC + ΣA + ΣΒ + ΣD
S3 = ΣC
S4 = ΣC + ΣD
S5 = ΣC + ΣA + ΣΕ + ΣG
S6 = ΣC + ΣB + ΣΑ + ΣD + ΣΕ + ΣF + ΣG
S7 = ΣC + ΣG
S8 = ΣC + ΣD + ΣG+ ΣH

Now that we have a 3D sumtable, we need to know how to combine the
values at the vertices of the box to find, the ΣF sum of the values in
octant F. The correct combination is given by

ΣF = Sl – S2 – S3 + S4 – S5 + S6 + S7 – S8. (5)

If we divide ΣF by its volume we get the average value in that box.
We can now state our generalization of sum table methods, which says

that you can find the total value inside any box by finding the sum table
values at each vertex and then combining those sum table values. But the
correct coefficients are important; we would like to find a simple way to
determine which sum table values need to be added and which need to be
subtracted—Eq. 5 was simply produced out of thin air.

Look back at Fig. 1, where we wanted the value at the upper-right
corner of the box. We started by adding the sum table value at that point,
and then subtracted off the values at each of the two vertices of the box
that were one step away from our sample point, and then added back the
vertex of the box that was two steps away.

Now look at Figs. 2 and 3 and Eq. 5, and observe that we did exactly
the same thing for the 3D box. S6 itself was added, vertices that were one
step away from S6 were subtracted, vertices two steps away were added,
and vertex S3 (the only vertex three steps away) was subtracted.

What’s going on? Intuitively, each time we take a step we’re cleaving
away a half-space of sums. When we take two steps we’re restoring some
of the space that was removed more than once. When we step again, we
compensate for too many subtractions by adding some spaces back in,
and so on.

In d dimensions, you can easily enumerate all the points in a d-dimen-
sional box by generating all the binary numbers from 0 to 2d-1. Each bit

381

VI.7 MULTIDIMENSIONAL SUM TABLES

GRAPHICS GEMS I Edited by ANDREW S. GLASSNER 381

position corresponds to an axis. You can interpret a zero bit as telling you
to stay put, and a one bit as instructing you to move along the corre-
sponding axis. You then look up the sum table value S at the point you’ve
constructed. If you moved along an even number of axes then you add S
into your running sum; if you moved along an odd number of axes then
you subtract it.

In the following pseudo-code, we find the average value in some box in
a d-dimensional space. P is the location of the box corner farthest from
the origin, represented by an array of d numbers. The box we want to
sample has side lengths given by the entries in an array sideLength[]—see
Fig. 4 for an illustration of this setup. We assume that there’s a function
SumTable[], which will take as input a point and return the value of the
sum table at that n-dimensional point.

Find-sum-at(P, sideLength[], d) {
sum ← 0
for i ← 0, 2d–1 do

Q ← P
for j ← 0, d do check each axis for movement

mask ← 2j

if i bit-and mask then { move along this axis?
count ← count + 1;
Qj ← Qj – sideLength[j];
};

endloop;
if count mod 2 = 0

then sum ← sum + SumTable[Q];
else sum ← sum – SumTable[Q];

endloop;
return(sum);
};

There are all kinds of nice symmetry patterns to be found in the points
generated, their coefficients, and the volumes they sample.

See also Interpretation of Texture Map Indices (366)

77
RAY TRACING

385

VII.1 A SIMPLE RAY REJECTION TEST

GRAPHICS GEMS I Edited by ANDREW S. GLASSNER 385

VII.1VII.1VII.1VII.1VII.1
AAAAA SIMPLE SIMPLE SIMPLE SIMPLE SIMPLERRRRRAY REJECTION TESTAY REJECTION TESTAY REJECTION TESTAY REJECTION TESTAY REJECTION TEST

Jack RitterVersatec, Inc.Santa Clara, California

Here is a simple method for fast ray tracing that can trivially reject eye
rays that don’t intersect with objects in the scene.

For each object: Compute its axis-aligned 3D bounding box. Project the
box’s eight corners onto the screen and find the 2D bounding box that
surrounds them. This box should be in screen space. (Tighter bounding
polyhedra could be used as well.)

To test a ray against an object, check if the pixel through which the ray
passes is in the object’s 2D box. If not, reject it.

This is much faster than doing a 3D distance check of the ray against
the object’s bounding volume.

The benefit would be most pronounced in scenes that don’t involve a
lot of reflection and refraction, since these phenomena generate rays that
don’t originate from the eye. However, the early development stage of any
ray tracer will benefit from this technique, since frequent initial bugs
necessitate many renderings, and any speed-up will save time, particu-
larly if only opaque objects are considered at first.

This 2D box scheme can be used to calculate automatically the field-
of-view (fov) angle of the synthetic camera construct used in most 3D
systems. The user must define the camera’s location, the “look-at” point,
and the “up” point, but the lens’s angle can be automatically computed
so as to encompass the whole scene. Here, fov is actually the half-angle
from the center of the scene to the screen’s edge, in radians.

Assume the center of the screen is at (0, 0). The method is as follows:
pick an initial fov known to encompass the scene. A fov of 60 degrees

386

VII.1 A SIMPLE RAY REJECTION TEST

GRAPHICS GEMS I Edited by ANDREW S. GLASSNER 386

(meaning the edge-to-edge angle is 120 degrees) should suffice for all but
the most severely distorted scenes. Calculate the camera based on this.
Make a dry run through the scene, without rendering.

For each object in the scene, just calculate the 2D bounding box, as
described above. Find the edge of the box farthest away from the screen’s
center, and call this distance max_edge.

Pick the maximum max_edge, for the whole scene. Call it max_
max_edge. Calculate the distance from the eye to the screen’s center.
Call it eye_to_screen. The new fov will be

fov = arctan(max_max_width/eye_to_screen).

Now you can run through the data again and render, using fov; all objects
will be in the picture, with a little border to spare. Note, eye_to_screen
must be in the same units as max_max_width. The conversion is
dependent on the particular camera model being implemented. The
screen’s aspect ratio is not a factor.

A more refined variation of the ideas presented here was published in
Bronsvoort et al. (1984).

See also Efficient Generation of Sampling Jitter Using Look-up
Tables (64); Fast Line–Edge Intersections on a Uniform Grid
(29); Transforming Axis-Aligned Bounding Boxes (548)

387

RAY SUMMARY

GRAPHICS GEMS I Edited by ANDREW S. GLASSNER 387

RRRRRAY–OBJECTAY–OBJECTAY–OBJECTAY–OBJECTAY–OBJECTIIIIINTERSECTION SUMMARYNTERSECTION SUMMARYNTERSECTION SUMMARYNTERSECTION SUMMARYNTERSECTION SUMMARY

The intersection of a ray and an object is perhaps the most
critical step when ray tracing. Because it is at the heart of the
inner loop of any ray tracing algorithm, a ray/object intersec-
tion algorithm should be as efficient as possible. There are
many strategic and tactical methods available for optimizing
various ray/object intersections; the following Gems present a
few of those techniques.

See also Efficient Generation of Sampling Jitter Using Look-up
Tables (64); Fast Line-Edge Intersections on a Uniform Grid
(29); Transforming Axis-Aligned Bounding Boxes (548)

388

 VII.2 INTERSECTION OF A RAY WITH A SPHERE

GRAPHICS GEMS I Edited by ANDREW S. GLASSNER 388

VII.2VII.2VII.2VII.2VII.2
IIIIINTERSECTION OF ANTERSECTION OF ANTERSECTION OF ANTERSECTION OF ANTERSECTION OF ARAY WITH A SPHERERAY WITH A SPHERERAY WITH A SPHERERAY WITH A SPHERERAY WITH A SPHERE

Jeff HultquistNASA Ames Research CenterMoffett Field, California

Intersecting a ray with a sphere is one of the simplest of problems. When
viewed in the plane defined by the ray and the center of the sphere, the
geometry of the problem looks like that presented in Fig. 1.

We need to find the point P at which the ray first intersects the sphere.
We observe that

v2+ b2 = c2

d2 + b2 = r2

d =

r2 – c2 – v2()

If we let V be the unit vector in the direction of the ray, then the point of
intersection can be found like so . . .

  →
v = EO ⋅ V;
disc = r2 – ((EO ⋅ EO) – v2)
if(disc < 0)
 then no intersection
 else begin
 d = disc;
 P = E + (v–d)V;
 end;

 →  →

389

 VII.2 INTERSECTION OF A RAY WITH A SPHERE

GRAPHICS GEMS I Edited by ANDREW S. GLASSNER 389

Figure 1.

See also Efficient Generation of Sampling Jitter Using Look-up
Tables (64); Fast Line-Edge Intersections on a Uniform Grid
(29); Transforming Axis-Aligned Bounding Boxes (548)

390

 VII.3 AN EFFICIENT RAY-POLYGON INTERSECTION

GRAPHICS GEMS I Edited by ANDREW S. GLASSNER 390

VII.3VII.3VII.3VII.3VII.3
AAAAAN EFFICIENTN EFFICIENTN EFFICIENTN EFFICIENTN EFFICIENTRRRRRAY-POLYGONAY-POLYGONAY-POLYGONAY-POLYGONAY-POLYGONIIIIINTERSECTIONNTERSECTIONNTERSECTIONNTERSECTIONNTERSECTION

Didier BadouelIRISA, Rennes, France

Using a ray tracing method with polygonal databases, we must define a
fast algorithm to compute ray-polygon intersection. The following algo-
rithm is quite similar to but faster than the barycentric approach de-
scribed in Snyder and Barr (1987).

The goal of the algorithm is first to determine if a ray goes through the
polygon, and then to determine the coordinates of the intersection point
and parameters, to localize this point with respect to the polygon’s
vertices. These parameters are used to compute the interpolated normal
at this point, and can be used also to compute the entry of a texture map.

First Step: Intersecting the Embedding PlaneFirst Step: Intersecting the Embedding PlaneFirst Step: Intersecting the Embedding PlaneFirst Step: Intersecting the Embedding PlaneFirst Step: Intersecting the Embedding Plane
This step is common with the other intersection algorithms but can be
presented again. A polygon is described by its vertices Vi (i [[(0, . . . ,
n–1}, n ≥ 3). Let xi, yi, and zi the coordinates of the vertex Vi. The
normal of the plane containing the polygon, N, is computed with the
cross product:

N = V0V1 × V0V2.

For each point P of the plane, the quantity P ⋅ N is constant. This
constant value is computed by the dot product d = –V0 ⋅ N. The implicit

 → →  →

391

 VII.3 AN EFFICIENT RAY-POLYGON INTERSECTION

GRAPHICS GEMS I Edited by ANDREW S. GLASSNER 391

representation of the plane,

N ⋅ P + d = 0, (1)

is computed once, and then stored in the polygon description.
Let the parametric representation of the ray be

r(t) = Ο + Dt. (2)

The evaluation of the parameter t corresponding to the intersection point
can be obtained using the equations (1) and (2):

t = – d + N ⋅Ο

N ⋅D
. (3)

This calculation requires 12 floating operations and three tests:

• If polygon and ray are parallel (N ⋅ D = 0), the intersection is rejected.

• If the intersection is behind the origin of the ray (t ≤ 0), the intersec-
tion is rejected.

• If a closer intersection has been already found for the ray (t > tray),
the intersection is rejected.

Second Step: Intersecting the PolygonSecond Step: Intersecting the PolygonSecond Step: Intersecting the PolygonSecond Step: Intersecting the PolygonSecond Step: Intersecting the Polygon
A parametric resolution is now presented. This solution is based on
triangles. If a polygon has n vertices (n > 3), it will be viewed as a set of
n – 2 triangles. For this reason, the resolution is restricted to convex
polygons. The point P (see Fig. 1) is given by

V0P = αV0V1 + βV0V2.

The point P will be inside the triangle (∆ V0 Vl V2) if
α ≥ 0, β ≥ 0, and α + β ≤ 1.

Equation (4) has three components:

 xP – x0 = α(xl – x0) + β(x2 – x0)
 yP – y0 = α(yl – y0) + β(y2 – y0) (5)
 zP – z0 = α(z l – z0) + β(z2 – z0).











 →  → →

392

 VII.3 AN EFFICIENT RAY-POLYGON INTERSECTION

GRAPHICS GEMS I Edited by ANDREW S. GLASSNER 392

Figure 1. Parametric representation of the point P.

A solution exists and is unique. To reduce this system, we wish to
project the polygon onto one of the primary planes, either xy, xz, or yz.
If the polygon is perpendicular to one of these planes, its projection onto
that plane will be a single line. To avoid this problem, and to make sure
that the projection is as large as possible, we find the dominant axis of the
normal vector and use the plane perpendicular to that axis. As in Snyder
and Barr (1987), we compute the value i0,

0 if Nx = max(Nx, |Ny, Nz)
1 if Ny = max(Nx, |Ny, Nz)
2 if Nz = max(Nx, |Ny, Nz).

Consider il and i2 (il and i2 [{0,1,2}), the indices different from io.
They represent the primary plane used to project the polygon Let (u, v)
be the two-dimensional coordinates of a vector in this plane; the coordi-
nates of V0P, V0V1, and V0V2, projected onto that plane, are

 u0 = Pi1
 – V0 i1 u1 = V1i1

 – V0 i1 u2 = V2 i1
 – V0 i1

 v0 = Pi2 – V0 i2 v1 = V1i2
 – V0 i2 v2 = V2 i2

 − V0 i2

Equations 5 then reduces to

u0 = α.ul + β.u2
v0 = α.vl + β.v2

i0 =

 →  →  →









.

393

 VII.3 AN EFFICIENT RAY-POLYGON INTERSECTION

GRAPHICS GEMS I Edited by ANDREW S. GLASSNER 393

The solutions are

α =
det u0 u2

v0 v2











det u1 u2

v1 v2











β =
det

u1 u0

v1 v0







det
u1 u2

v1 v2







The interpolated normal from the point P may be computed by

Np = (1 – (α + β))N0 + αN1 + βN2.

Pseudo-Code for a RayPseudo-Code for a RayPseudo-Code for a RayPseudo-Code for a RayPseudo-Code for a Ray–Triangle IntersectionTriangle IntersectionTriangle IntersectionTriangle IntersectionTriangle Intersection
0: point; Origin of the ray
D: vector; Direction of the ray
P: point; Intersection point
V: array[0..2] of point; Polygon vertices

P ← 0 + Dt;
i1 and i2 are in the polygon description.
u0 ← P[i1] – V[0][i1];
v0 ← P[i2] – V[0][i2];
u1 ← V[1][i1] – V[0][i1];
u2 ← V[2][i1] – V[0][i1];
v1 ← V[1][i2] – V[0][i2];
v2 ← V[2][i2] – V[0][i2];
if u1 = 0

 then β ← u0/u2;
 if 0 ≤ β ≤ 1

then α ← (v0 – βpv2)/v1;
else β ← (v0pu1 – u0pv1)/(v2pu1 – u2pv1);

 if 0 ≤ β ≤ 1
then α ← (u0 – /βpu2)/ul;

The values α and β are the interpolation parameters.
return (α ≥ 0 and β ≥ 0 and (α + β) ≤ 1)

See also Efficient Generation of Sampling Jitter Using Look-up
Tables (64); Fast Line–Edge Intersections on a Uniform Grid
(29); Transforming Axis–Aligned Bounding Boxes (548)

See Appendix 2 for C Implementation (735)

and

394

VII.4 FAST RAY-POLYGON INTERSECTION

GRAPHICS GEMS I Edited by ANDREW S. GLASSNER 394

VII.4VII.4VII.4VII.4VII.4
FFFFFAST RAY-POLYGONAST RAY-POLYGONAST RAY-POLYGONAST RAY-POLYGONAST RAY-POLYGONIIIIINTERSECTIONNTERSECTIONNTERSECTIONNTERSECTIONNTERSECTION

Andrew WooSAS Institute Inc.Don Mills, Ontario, Canada

In many rendering programs, the polygon tends to be the main primitive
available to model complex surfaces. In addition, many surfaces that arc
expressed in some complex form (such as quadric, parametric, and
implicit surfaces) are often broken down to polygons during the rendering
stage for the simple reason that most systems can easily and efficiently
render polygons. Thus, special attention should be paid to ray-polygon
intersections.

In ray tracing, ray-polygon intersection involves two processes: inter-
section against the plane on which the polygon lies, and a check if the
intersection point on the plane is inside the polygon. If each polygon has
associated with it a bounding box (parallel to the axes), we can use this
bounding box to speed up ray-polygon intersection: after the intersection
with the plane, if the point intersected lies outside the bounding box, then
the inside-outside check can again be avoided. This check basically acts
as an approximate inside-outside test and requires only an additional six
comparisons at worst.

This quick check can be used as a secondary culler for your favorite
intersection culler in ray tracing, especially when the candidate set of
objects to be intersected is large. I have tested this method against a
uniform voxel traversal algorithm with the ray bounding box check
(which requires bounding boxes for the objects, anyway), and it pays off
handsomely.

See also Efficient Generation of Sampling Jitter Using Look-up
Tables (64); Fast Line–Edge Intersections on a Uniform Grid
(29); Transforming Axis-Aligned Bounding Boxes (548)

395

 VII.5 FAST RAY-BOX INTERSECTION

GRAPHICS GEMS I Edited by ANDREW S. GLASSNER 395

VII.5VII.5VII.5VII.5VII.5
FFFFFAST RAY-BOXAST RAY-BOXAST RAY-BOXAST RAY-BOXAST RAY-BOXINTERSECTIONINTERSECTIONINTERSECTIONINTERSECTIONINTERSECTION

Andrew WooSAS Institute, Inc.Don Mills, Ontario, Canada

A fast intersection scheme with the bounding box is proposed. It assumes
that parallel planes form the box, where each set is parallel to one axis.
This approach is very similar to the bounding box evaluation discussed by
Haines (1989), except that it cuts down on the number of floating point
operations and returns the intersection point with the box, which is
required under some circumstances—for instance, in voxel traversal—to
identify the first voxel that the ray pierces.

Assume we are working in 3D. We first search for three candidate
planes that the ray can possibly intersect, that is, we cull away back
facing planes forming the box. From these three candidate planes, the
maximum of the hit distances with the candidate planes must be the
closest plane the ray hits (with the condition that the hit is inside the box;
otherwise there is no hit).

As an example, in 2D, let x1, x2, y1, y2 be the boundaries of the box
(see Fig. 1). In this case, with the ray origin in the lower-right corner, the
candidate planes are x2 and y1. tx and ty hit distances are then
calculated from the ray origin to x2 and y1, respectively. Since tx > ty,
x2 is the closest plane hit by the ray.

396

 VII.5 FAST RAY-BOX INTERSECTION

GRAPHICS GEMS I Edited by ANDREW S. GLASSNER 396

Figure 1.

See also Efficient Generation of Sampling Jitter Using Look-up
Tables (64); Fast Line–Edge Intersections on a Uniform Grid
(29); Transforming Axis-Aligned Bounding Boxes (548)

See Appendix 2 for C Implementation (736)

tx

ty

397

VII.6 SHADOW ATTENUATION FOR RAY TRACING TRANSPARENT OBJECTS

GRAPHICS GEMS I Edited by ANDREW S. GLASSNER 397

VII.6VII.6VII.6VII.6VII.6SSSSSHADOW ATTENUATION FORHADOW ATTENUATION FORHADOW ATTENUATION FORHADOW ATTENUATION FORHADOW ATTENUATION FORRRRRRAY TRACINGAY TRACINGAY TRACINGAY TRACINGAY TRACINGTTTTTRANSPARENT OBJECTSRANSPARENT OBJECTSRANSPARENT OBJECTSRANSPARENT OBJECTSRANSPARENT OBJECTS
Andrew PearceAliasToronto, Ontario, Canada

This trick attempts to avoid constant intensity shadows from transparent
objects when ray tracing. It’s loosely based on Sweeney’s (1984) trick for
ambient light.

In reality, light transmitted through a transparent object produces
caustics in the object’s shadow. Unfortunately, traditional ray tracing
does not take this effect into account. Recently researchers have attacked
this problem in several ways; by backwards ray tracing (Arvo, 1986),
which involves tracing rays from a point light source, through the trans-
parent object, and recording the resulting illumination as it falls on the
occluded surface; by pencil tracing (Shinya et al., 1987), where bundles
of rays are traced from a point light source, through an optical
system—the transparent object—to create illuminance polygons on the
occluded surfaces; and by grid pencil tracing (Shinya et al, 1989), which
is similar to pencil tracing except the illuminance polygons are scan
converted into an illuminance map to avoid aliasing problems, and the
light source may be an area source.

All of these techniques produce very impressive images, but they
require a lot of effort to implement. An alternative, which ignores caus-
tics, is to attenuate the light based on the distance a shadow ray travels
through a transparent object and on the object’s optical depth (the
object’s transparency). Unfortunately, this approach may require a power
and/or an exponential function; it does not allow for the light to appear
focused in one particular region; it requires remembering all of the
shadow intersections, since they may be found in no specific order, and a
sense of optical medium must be determined for the shadow ray.

398

VII.6 SHADOW ATTENUATION FOR RAY TRACING TRANSPARENT OBJECTS

GRAPHICS GEMS I Edited by ANDREW S. GLASSNER 398

A trick I prefer is to attenuate the intensity of the light source based on
the cosine of the incident angle of the shadow ray with the transparent
object at each intersection along the shadow ray. The amount of attenua-
tion is controlled by a scale value, which has a range from 0.0 to 1.0. The
rationale for this trick is that shadows from glasses of water or crystal
balls tend to focus light more toward the center of the shadow where the
angle between the light rays and the surface normal is small. This is not
always true; the focus can be totally outside of the shadow altogether,
usually seen from objects with a high index of refraction. This trick is
good enough to fool the eye on objects with small indices of refraction,
such as glass ashtrays, plastic marbles, or bottles of beer.

The new transparency term multiplier (tm) is calculated

tm = MAX[0, 1 + (
r
S ⋅

r
N)ts] ,

where

r
S is the normalized shadow ray direction vector

r

N is the surface normal vector (facing the eye)

ts is the scale factor for the effect (0.0 to 1.0).

The actual transparency value (kt) for the object is assumed to lie in
the range 0.0 to 1.0. The final transparency value for the object (′kt

) is
computed

 ′kt
 = kttm

If ts = 0.0, the shadow will be of constant intensity (equivalent to the
transparency of the object) regardless of the angle of incidence.
If ts = 1.0, the shadowing will be complete when the angle between

r
N and

r
S is 90 degrees; the shadowing will be equivalent to the transparency of
the object when the angle between

r
N and

r
S is 180 degrees.

The term tm is computed for every transparent surface intersected by
the shadow ray and factored into ′kt

, which is initialized to 1.0 for the
shadow ray. Of course all of this work is wasted if the shadow ray strikes

399

VII.6 SHADOW ATTENUATION FOR RAY TRACING TRANSPARENT OBJECTS

GRAPHICS GEMS I Edited by ANDREW S. GLASSNER 399

an opaque surface, which is why Haines’ idea of testing opaque objects
for shadowing before checking transparent objects should be used in
conjunction with this technique.

Setting ts = 0.6 works well in most cases. This trick can be used in
conjunction with integrating transparency over the distance traveled
through the object, resulting in a detailed shadow.

See also Simulating Fog and Haze (364); Efficient Generation
of Sampling Jitter Using Look-up Tables (64); Fast Line-Edge
Intersections on a Uniform Grid (29); Transforming Axis-Aligned
Bounding Boxes (548)

88NUMERICAL ANDPROGRAMMINGTECHNIQUES

403

ROOT FINDING SUMMARY

GRAPHICS GEMS I Edited by ANDREW S. GLASSNER 403

RRRRROOT FINDINGOOT FINDINGOOT FINDINGOOT FINDINGOOT FINDINGSSSSSUMMARYUMMARYUMMARYUMMARYUMMARY

Finding the roots of an equation is a common task in computer
graphics. In 3D, the operation is very common in ray tracing,
when object/ray intersections are computed using the implicit
form for an object; the intersections of the object and ray are
then represented by the zeros of the equation formed by plug-
ging the explicit form of the ray into the explicit form of the
object. In 2D, some applications of root-finding include the
determination of bounding boxes and accurate tracing of curves.

The following Gems discuss numerical root finding. Linear
and quadratic equations are trivial, and the solutions well-
known. Cubic and quartic equations may also be solved analyti-
cally, but it takes some care to make sure the solution is stable;
the first Gem addresses that question.

The second and third Gems are more general numerical
solutions, which are designed to find the zeros of a function
efficiently and robustly.

See also Ray Tracing (383); Distance Measures Summary (423)

404

VIII.1 CUBIC AND QUARTIC ROOTS

GRAPHICS GEMS I Edited by ANDREW S. GLASSNER 404

VIII.1VIII.1VIII.1VIII.1VIII.1
CCCCCUBIC ANDUBIC ANDUBIC ANDUBIC ANDUBIC ANDQQQQQUARTIC ROOTSUARTIC ROOTSUARTIC ROOTSUARTIC ROOTSUARTIC ROOTS

 Jochen SchwarzeISA GmbHStuttgart, Federal Republic of Germany

The ray-object intersection used in ray tracing requires the solution of
cubic and quartic equations as soon as more complex objects like splines
and tori are to be supported. Iterative algorithms are often slow and
numerically unstable. Start values and the number of noncomplex roots
are hard to determine.

An approach to finding cubic and quartic roots analytically is presented
in the following. Sample code in C shows a possible implementation with
intermediate variables and case decisions for time efficiency. It uses
double precision arithmetic; no complex numbers and operations are
required.

Solution of the CubicSolution of the CubicSolution of the CubicSolution of the CubicSolution of the Cubic
A cubic equation of the form

c3x
3 + c2x

2 + c1x + c0 = 0

is first divided by c3, giving the normal form

x3 + Ax2 + Bx + C = 0

Substitution of

x = y –

A
3

405

VIII.1 CUBIC AND QUARTIC ROOTS

GRAPHICS GEMS I Edited by ANDREW S. GLASSNER 405

eliminates the quadratic term, yielding

y3 + 3py + 2q = 0.

Using Cardano’s Formula (G. Cardano, 1501-1576), the determinant is

D = q2 + p3

 u, v = − q ± D3 ,

and the roots are
y1 = u + v

y2,3 = –

u + v
2

 ±
3

2
u − v()i.

Three cases can be distinguished:

D > 0: one real (yl), two conjugated complex values (y3, y3)

D = 0: two real values, y2 = y3

D < 0: three different real values.

In the case of D < 0 (the so-called casus irreducibilis) trigonometric
substitution helps to find all three solutions without the need for complex
arithmetics:

cos ϕ = – q
–p3

y1 = 2 –p cosϕ
3

y2,3 = – 2 –p cosϕ ±π
3

.

Resubstitution yields the correct values for x.

406

VIII.1 CUBIC AND QUARTIC ROOTS

GRAPHICS GEMS I Edited by ANDREW S. GLASSNER 406

Solution of the QuarticSolution of the QuarticSolution of the QuarticSolution of the QuarticSolution of the Quartic
A quartic equation,

c4x
4 + c3x

3 + c2x
2 + c1x + c0 = 0,

is divided by c4:

x4 + Ax3 + Bx2 + Cx + D = 0,

and substitution of

x = y –

A
4

eliminates the cubic term

y4 + py2 + qy + r = 0.

The resolvent cubic is then

z3 −

p
2

z2 – rz +
rp
2

 –
q2

8
 = 0.

With z being one root of the above equation, the roots of the quartic can
be obtained by solving the two quadratic equations

 y
2 ± y 2z − p + z m z2 − r = 0.

Resubstitution yields the correct values for x.

ImplementationImplementationImplementationImplementationImplementation
The three functions SolveQuadric(), SolveCubic(), and SolveQuartic()
take both an array of coefficients and an array of solutions as parameters.
They return the number of noncomplex solutions and put the roots into
the second array. Double and triple solutions are detected in the code but
are returned only once.

407

VIII.1 CUBIC AND QUARTIC ROOTS

GRAPHICS GEMS I Edited by ANDREW S. GLASSNER 407

Incorrect results produced by floating point precision errors have the
most serious effects with small numbers around zero. A function
IsZero() is required for such values to be recognized. The extent of the
appropriate epsilon surrounding EQN_EPS should be set accordingly.

Intermediate variables are used to avoid redundant floating point oper-
ations. More optimization could be done by checking for division by one,
and other special cases. The IsZero() function could be inline coded if
supported by the compiler.

The presented solution for cubic and quartic roots allows easy imple-
mentation and adaption. It is sufficiently fast and accurate to meet the
requirements of graphics applications.

See Appendix 2 for C Implementation (738)

408

VIII.2 A BEZIER CURVE-BASED ROOT-FINDER

GRAPHICS GEMS I Edited by ANDREW S. GLASSNER 408

VIII.2VIII.2VIII.2VIII.2VIII.2
A A A A A BÉZIERBÉZIERBÉZIERBÉZIERBÉZIERCCCCCURVE-BASEDURVE-BASEDURVE-BASEDURVE-BASEDURVE-BASEDRRRRROOT-FINDEROOT-FINDEROOT-FINDEROOT-FINDEROOT-FINDER

Philip J. SchneiderUniversity of GenevaGeneva, Switzerland

IntroductionIntroductionIntroductionIntroductionIntroduction
Mathematics, especially geometry and linear algebra, is fundamental to
computer graphics. One important class of problems that arises fre-
quently is that of finding the root or roots of functions—for example
finding the intersection of a ray with a torus or the intersection of two
curves. More often than not, the polynomials one must solve are of high
enough degree that no closed-form solution exists. This Gem describes an
algorithm for finding all the roots of such higher-order equations. This
algorithm was developed in the context of an interactive two-dimensional
curve-drawing system (Schneider, 1983), and was originally used to solve
the problem described in “Solving the Nearest-Point-On-Curve Problem”
in this volume. Variants on this root-finding algorithm have apparently
been discovered independently by a number of researchers, but it appears
to be relatively unknown.

The root-finding algorithm presented here is a variant of the bisection
method. By exploiting certain characteristics of Bézier curves, we are
able to find all the roots of equations with no closed form. A common
approach to problems such as these is to use Newton-Raphson iteration,
a method that begins with an initial “guess” at a solution, and iteratively
converges on the root. Unfortunately, texts describing Newton iteration
usually begin their explanation with a phrase such as, “Assume you have
an initial guess u. . . .” The method described here, on the other hand,
needs no such initial guess, and works recursively to find the root or

409

VIII.2 A BEZIER CURVE-BASED ROOT-FINDER

GRAPHICS GEMS I Edited by ANDREW S. GLASSNER 409

roots. The basic method can be stated quite briefly:

1. Convert the equation to Bernstein-Bézier form.

2. Find the roots of the equation by finding the intersection(s) of the
 resulting Bézier curve with the horizontal 0-axis.

Conversion to Bernstein–Bézier formConversion to Bernstein–Bézier formConversion to Bernstein–Bézier formConversion to Bernstein–Bézier formConversion to Bernstein–Bézier form
Functional curves have the general form y = f(x), where f is some
polynomial. This can be recast as a parametric polynomial:

Graph(t) = (x(t), y(t))

 = (X,Y).

The question is now: what is the Bézier control polygon for Graph? That
is, we seek control points Vi = (xi, yi) in the plane that satisfy

X ,Y() = Vi

i=0

n

∑ Bi
n t().

The x and y components are independent, so the above vector-valued
equation is really two scalar equations:

X = xi
i=0

n

∑ Bi
n t()

Y = yi
i=0

n

∑ Bi
n t().

By the linear precision property of Bézier curves (Boehm et al, 1984; Farin,
1988), we know that we can rewrite the function as

Graph t() =

i
n

, yi




i=0

n

∑ Bi
n t().

410

VIII.2 A BEZIER CURVE-BASED ROOT-FINDER

GRAPHICS GEMS I Edited by ANDREW S. GLASSNER 410

That is, the control points of the Bernstein-Bézier form of Graph are
spaced evenly in the interval [0, 1] (the x direction, if you will).

So, it remains to determine the coefficients of Y, which will correspond
to the y component of the control points of the Bernstein-Bézier form of
Graph. This is relatively straightforward. What follows is a description of
a method due to Lane (1989) for converting from the power basis to
Bézier basis. Given

we want Yi{ }0
n such that

A simple algorithm for the conversion is:

for j: integer ← 1, j + 1, while j ≤ n do
begin

d ← 1;
e ← c;
for i: integer ← n, i – 1, while i ≥ j do

begin
Yi ← dYi + eYi – 1;
d ← d – c;
e ← e + c;
end;

endloop;
end;

endloop;

Then, {Yi }0
n are the desired coefficients, and the final form of the equation

P(t) =

i=o

n

o iA ti , t ∈ [0,1],

P(t) =

i=o

n

o n
i()ti (1 – t)n – i .

c ←

1
n + 1 – j() ;

411

VIII.2 A BEZIER CURVE-BASED ROOT-FINDER

GRAPHICS GEMS I Edited by ANDREW S. GLASSNER 411

is:

The attentive reader may object that the range of the polynomial above is
fixed at [0, 1]. For polynomials that do not naturally fall into this form,
one may apply the Cauchy criterion (Collins and Loos, 1976) to find the
root bounding interval, and then map this onto the [0, 1] interval.

Finding the RootsFinding the RootsFinding the RootsFinding the RootsFinding the Roots
An example of a fifth-degree curve for which we must find the roots is
shown in Fig. 1. The roots of the polynomial are exactly those values of
t where the Bernstein-Bézier curve crosses the horizontal axis (the t-axis).
In general, the values of coefficients of arbitrary polynomials given in
power basis form provide no intuition regarding the shape of the func-
tional curve, and are of little direct help in finding roots. However, the
values of coefficients (that is, control points) of Bézier curves are very
intuitively related to the shape of the curve. We can exploit several
characteristics of Bézier curves in order to help us find the roots. These

Figure 1. A fifth-degree polynomial in Bézier form.

Graph (t) = o

i = 0

n i
n

, Yi




 Bi

n (t).

412

VIII.2 A BEZIER CURVE-BASED ROOT-FINDER

GRAPHICS GEMS I Edited by ANDREW S. GLASSNER 412

characteristics are as follows:

1. The convex hull property—the curve itself will always lie within the
convex hull of the control points.

2. The variation-diminishing property—the curve is an approximation
to the control polygon that is “smoother” than the control polygon.
More specifically, any straight line will intersect the curve at most as
many times as the straight line intersects the control polygon.

3. Repeated subdivision of the curve yields control points that converge
on the curve itself in the limit.

These observations lead to a simple recursive algorithm, which appears
in Fig. 2. The algorithm starts by counting the number of sign changes in
the list of Bézier control points (the coefficients)—this corresponds to the
number of times the control polygon crosses The t-axis. By Descartes’
Law of Signs, and the variation-diminishing property of Bézier curves, we
know that the number of roots in an interval will be less than or equal to
the number of such crossings. If there are no sign changes, the Bézier

FindRoots (V)
V: array[0..n] of point; Control points of Bezier representation

begin
if (control polygon does not cross t-axis)
 then return NoRoots;
else if ((control polygon crosses t-axis once) and

(control polygon is flat enough or recursion limit reached))
then return (t-intercept of chord from V[0] to V[n] as the root)

else begin
subdivide the Bezier curve V at midpoint, using deCasteljau’s algorithm;
FindRoots(left half);
FindRoots(right half);
return (all solutions thereby generated);
end;

end;
end.

Figure 2. The root-finding algorithm.

413

VIII.2 A BEZIER CURVE-BASED ROOT-FINDER

GRAPHICS GEMS I Edited by ANDREW S. GLASSNER 413

curve cannot the t-axis, and there are no roots, so we just return. If there
is one sign change, we check if the Bézier control polygon is flat enough
or if we have reached the recursion depth limit. By “flat enough,”
we mean that the control polygon is close enough to a straight line so that
we can approximate the root in that region by taking the intersection of a
chord from the first to last control points with the t-axis as the root—this
exploits the convex hull and variation-diminishing properties.

When there is more than one sign, there may be more than one root in
the interval. In this case, we subdivide the current control polygon in the
center of the current interval using deCasteljau’s algorithm—this gives us
two new Bézier curves, each of which represent exactly half the current
curve. We then call FindRoots recursively on each new subcurve. The
roots found at the “bottom” of each recursive call are gathered together,
and make up the set of roots for the original equation.

Whether we subdivide at any particular recursive depth due to the
control polygon not being flat enough or because there is more than one
t-axis crossing, subdivision creates smaller and smaller subcurves. Be-
cause each subcurve resulting from an application of deCasteljau’s algo-
rithm is shorter than the curve from which it came from, and because the
new control points converge toward the curve, the algorithm can be
viewed as “homing in” on the point at which the curve itself crosses the
t-axis.

As stated earlier, we can stop the recursion when the control polygon
of the current polynomial is flat enough; that is, when the control polygon
is close enough to a line segment (and crosses the t-axis just once), the
root can be approximated by the point of intersection of the t-axis and a
line segment drawn from the first to the last control points. Our problem
now is to determine how flat is flat enough for a specified acceptable
error. For a control polygon crossing just once, (see Fig. 3 for an
example), we can define a bounding box whose top and bottom are
parallel to the line connecting the first and last control points, and whose
ends are perpendicular to the top and bottom. Then, the error of the
solution is then bounded by half the distance between the points at which
the bounding box intercepts the t-axis (or one or both endpoints of the
interval [0, 1], if the intersection point(s) lie outside this interval). When
the error of the solution is within the desired precision of the root
approximation, we compute the intersection of the line from the first to
last with the t-axis, and return. Because we are doing binary subdivision

414

VIII.2 A BEZIER CURVE-BASED ROOT-FINDER

GRAPHICS GEMS I Edited by ANDREW S. GLASSNER 414

Figure 3. Bounding box for a fifth-degree polynomial

of the fifth-degree polynomial, and because the t-values are bounded
between 0 and 1, we can easily compute the relationship between the
depth of the recursive subdivision and the desired error. At the top level
(before any subdivision), the interval is [0,1] and the expected error is
0.5. Each binary subdivision therefore cuts the expected error in half, so
we merely stop the recursion when we have reached a depth correpond-
ing to the base 2 logarithm of the desired error bound. For example, if
our desired precision is

1
128 , or

1
27 , we set our depth limit to 7 (assuming

the “top level” is considered to have depth 1).
A variation on this algorithm can be used to provide an initial bound

and guess for using Newton-Raphson iteration. Note that our algorithm
here finds an interval in which a root exists (when there is one t-axis
crossing). An initial guess might be the use the midpoint of such an
interval or the intersection method described earlier. This may be an

415

VIII.2 A BEZIER CURVE-BASED ROOT-FINDER

GRAPHICS GEMS I Edited by ANDREW S. GLASSNER 415

essential modification if one wishes to find roots of very high-degree
functions, because excessive repeated subdivision of high-degree Bézier
curves tends to accumulate floating-point errors, which can lead to
imprecise roots.

A C implementation of this algorithm appears in the appendix, in the
file point_on_curve.c. The routine of interest is FindRoots; the argu-
ments to this routine are the control points of the Bézier curve, the
degree of the curve, an array of real numbers in which to store the root(s)
it finds, and the current recursive depth. The routine returns the number
of roots found. In that sample implementation, the degree of the root-
finder is fixed at 5 for simplicity.

 See Appendix 2 for C Implementation (787)

416

VIII.3 USING STURM SEQUENCES TO BRACKET REAL ROOTS OF POLYNOMIAL EQUATIONS

GRAPHICS GEMS I Edited by ANDREW S. GLASSNER 416

VIII.3VIII.3VIII.3VIII.3VIII.3
UUUUUSING STURM SEQUENCES TOSING STURM SEQUENCES TOSING STURM SEQUENCES TOSING STURM SEQUENCES TOSING STURM SEQUENCES TOBBBBBRACKET REAL ROOTSRACKET REAL ROOTSRACKET REAL ROOTSRACKET REAL ROOTSRACKET REAL ROOTSOOOOOF POLYNOMIAL EQUATIONSF POLYNOMIAL EQUATIONSF POLYNOMIAL EQUATIONSF POLYNOMIAL EQUATIONSF POLYNOMIAL EQUATIONS

D. G. Hook, P. R. McAreeThe University of MelbourneParkville, Melbourne, Australia
IntroductionIntroductionIntroductionIntroductionIntroduction
The polynomial

y = anxn + an–1 xn–1 + ⋅⋅⋅ + a1x + a0 ≡ f(x)

with real coefficients a0, a1, . . . , an is a continuous graph on the (x,y)–
plane whose real roots correspond to the values of x where f(x) touches
or crosses the axis y = 0. Recall that a polynomial of degree n has n
roots, and that these may be real or complex and they need not be
distinct. In his treatise Mém. présentes par divers savants , Charles
Sturm, (1835) detailed a method for finding the exact number of real
roots of f(x) = 0 in the interval a < x < b. The approach provides a
convenient and computationally efficient technique for bracketing roots
of f(x) = 0. Once a root is bracketed, root polishing techniques, such as
bisection, false position, Brent’s method, and Newton-Raphson, can be
used to obtain accurate estimates.

The Theorem of SturmThe Theorem of SturmThe Theorem of SturmThe Theorem of SturmThe Theorem of Sturm
Sturm’s Theorem: There exists a set of real polynomials f1(x),
f2(x), . . ., fm(x) whose degrees are in descending order, such that if b > a,
the number of distinct real roots of f(x) = 0 in the interval x = a to x = b
is given by the difference N = s(a) – s(b), where s(a) and s(b) are the
number of sign changes in the sequence f, f1, f2,. . ., fm at x = a and
x = b respectively.

417

VIII.3 USING STURM SEQUENCES TO BRACKET REAL ROOTS OF POLYNOMIAL EQUATIONS

GRAPHICS GEMS I Edited by ANDREW S. GLASSNER 417

Thus, to determine the number of distinct real roots of f(x) = 0 in the
interval (a, b), it suffices to establish the difference in the number of sign
changes in the Sturm sequence of f(x) between limits x = a and x = b.
The real roots of f(x) = 0 obviously fall in the interval (–∞,+ ∞).
Applying the Sturm theorem to this interval gives the total number of
such roots, while applying the Sturm theorem to the intervals (–∞, 0) and
(0, +∞) yields, respectively, the number of negative and the number of
positive real roots of f(x) = 0.

Of the variety of methods for constructing the Sturm sequence of the
polynomial f(x), we give the most widely used (see, for example,
Turnbull, 1957 or Wilkinson, 1988). Set f1(x) = f(x) and f2(x) = f’(x).
Then set f3(x). equal to the remainder, with its sign reversed, of the
division f1(x)/f2(x). Subsequent terms in the sequence are found using
the same process of polynomial division. In general if the members fk—1
and fk have been found, fk+l will be the remainder after dividing fk—1
by fk and reversing its sign. This process of polynomial division is
continued until the remainder term becomes a constant.

Every polynomial f(x) with real coefficients has a Sturm sequence that
will yield the total number of distinct real roots of f(x). If f(x) has
repeated roots each member of the sequence f, f1, f2,. . ., fm will share a
greatest common multiplier G = (x – α)p(x – β)q . . . , where powers
p, q, . . . are integers. The members of the Sturm sequence can be written
f1 = Gφ1, f2 = Gφ2,. . ., fm = Gφm, where

φ = (x – α)(x – β) . . . (x – λ).

The repeated roots α, β, . . . can be found by other methods (for example,
synthetic division) after all of the distinct roots have been found.

ExampleExampleExampleExampleExample
The polynomial

f(x) = x3 + 3x2 – 1

418

VIII.3 USING STURM SEQUENCES TO BRACKET REAL ROOTS OF POLYNOMIAL EQUATIONS

GRAPHICS GEMS I Edited by ANDREW S. GLASSNER 418

has the following Sturm sequence:

f1 = x3 + 3x2 – 1, f2 = 3x2 + 6x, f3 = 2x + 1, f4 = 9/4.

The table below shows the signs for each member of the Sturm
sequence at different values of x. From it we see that the polynomial
f(x) has three real roots α, β, γ, which satisfy the following inequalities:

–3 < α < –2, –1 < β < 0, 0 < γ < 1.

f1(x) f2(x) f3(x) f4(x) sign changes
x = –∞ – + – + 3
x = –3 – + – + 3
x = –2 + 0 – + 2
x = –1 + – – + 2
x = 0 – 0 + + 1
x = +l + + + + 0
x = +∞ + + + + 0

Constructing the Sturm SequenceConstructing the Sturm SequenceConstructing the Sturm SequenceConstructing the Sturm SequenceConstructing the Sturm SequenceAlgorithm A (Driving Algorithm)Algorithm A (Driving Algorithm)Algorithm A (Driving Algorithm)Algorithm A (Driving Algorithm)Algorithm A (Driving Algorithm)
Given a polynomial

f(x) = a[n]xn + a[n – l]xn – l + ⋅⋅⋅ + a[l]x + a[0],

create the Sturm sequence f1, f2,. . . fm.

A1 Set f1, equal to f(x), and set f2 equal to f’(x).

A2 For k = 0, l , . . . , order(f2), set f2[k] = f2[k]/abs(f2[order(f2)])

A3 Set k = 3. While order(fk) Þ 0, do algorithm B (which takes
parameters fk – 2, fk – 1, and sets fk), do step A4, set k = k + 1. Set
fk[0] = – fk[0]. Stop.

419

VIII.3 USING STURM SEQUENCES TO BRACKET REAL ROOTS OF POLYNOMIAL EQUATIONS

GRAPHICS GEMS I Edited by ANDREW S. GLASSNER 419

A4 (reverse the signs of the coefficients of the polynomial and
normalize against the leading coefficient .) For j = 0,1, . . . ,
order(fk), set fk[j] = –fk[j]/abs(fk[order(fk)]).

Algorithm B (Pseudo-division of polynomials toAlgorithm B (Pseudo-division of polynomials toAlgorithm B (Pseudo-division of polynomials toAlgorithm B (Pseudo-division of polynomials toAlgorithm B (Pseudo-division of polynomials togive remainder)give remainder)give remainder)give remainder)give remainder)
Given polynomials

u(x) = u[m]xm + u[m – 1]xm–1 + ⋅⋅⋅ +u[1]x + u[0],

v(x) = v[n]xn + v[n – 1]xn–1 + ⋅⋅⋅ +v[1]x + v[0],

where v[n] = ± 1.0 and m > n > 0, this algorithm finds polynomial
r(x), which is the remainder of the polynomial division u(x)/v(x).

B1 Copy u(x) into r(x).

B2 If v[Order(v)] < 0.0, do steps B3, B4; otherwise do steps B5, B6.
Stop.

B3 k = Order(u) – Order(v) – 1. While k ≥ 0 do r[k] = –r[k],
k = k – 2. Do step B4 for k = Order(u) – Order(v), Order (u)
– Order(v) –1, . . . ,0

B4 j = Order(v) + k – 1, Order(v) + k – 2, . . . , k, r[j] = –r[j] –
r[Order(v) + k]v[j – k].

B5 Do step B6, for k = Order(u) – Order(v), Order(u) – Order(v)
– 1, . . . , 0

B6 j = Order(v) + k – 1, Order(v) + k – 2, . . . , k, r[j] = r[j] –
r[Order(v) + k]v[j – k].

Counting the Sign ChangesCounting the Sign ChangesCounting the Sign ChangesCounting the Sign ChangesCounting the Sign ChangesAlgorithm CAlgorithm CAlgorithm CAlgorithm CAlgorithm C
Given the Sturm sequence f1, f2,. . ., fm, count the number of sign
changes for the sequence at a given x. S is the number of sign changes.

420

VIII.3 USING STURM SEQUENCES TO BRACKET REAL ROOTS OF POLYNOMIAL EQUATIONS

GRAPHICS GEMS I Edited by ANDREW S. GLASSNER 420

C1 Set S = 0. Do steps C2, C3 for k = 2, 3, . . . , m. Stop.

C2 If x = + ‘

a = fk - 1 [order(fk - 1)], b = fk[order(fk)].

If x = – ‘

if order (fk - 1) is odd, a = –fk - 1 [order(fk - 1)],
otherwise a = fk - 1 [order(fk - 1)],

if order (fk) is odd, b = –fk [order(fk)],
otherwise b = fk [order (fk)].

if x = 0.0

a = fk - 1[0], b = fk[0]

otherwise

a = fk - 1(x), b = fk(x).

C3 If a ⋅ b < 0.0 or a = 0.0, S = S + 1.

Some operations in this algorithm can be avoided if we make use of the
following characteristics of Sturm sequences (Turnbull, 1957; Wilkinson,
1988):

1. Contiguous members of the sequence cannot evaluate to zero at the
same value of x.

2. If fk = 0, the signs of fk – 1 and fk + 1 are equal in magnitude but
opposite in sign.

Consequently, there are circumstances when the polynomial fk + 1 does
not need to be evaluated once the value of fk – 1 is known.

Method of BisectionMethod of BisectionMethod of BisectionMethod of BisectionMethod of Bisection
The Sturm method can be used to isolate any real root of f(x) = 0—say
the kth in order of decreasing values—using the method of bisection.

421

VIII.3 USING STURM SEQUENCES TO BRACKET REAL ROOTS OF POLYNOMIAL EQUATIONS

GRAPHICS GEMS I Edited by ANDREW S. GLASSNER 421

Suppose we have an interval (a,b) such that

b > a; s(a) – s(‘) ≥ k; s(b) – s(‘) < k.

By the Sturm theorem, the interval (a, b) must contain the kth root, λk Of
f(x) = 0. Repeated bisection of the interval (a, b) will isolate λk to an
interval (ap, bp), of width (b – a)/sp after p steps, and provided s(ap)
– s(bp) = 1, λk will be the only distinct real root of f(x) in this interval.
Algorithm D below, is based on the analysis by Wilkinson (1988).

Algorithm D (Bisection Method)Algorithm D (Bisection Method)Algorithm D (Bisection Method)Algorithm D (Bisection Method)Algorithm D (Bisection Method)
Given a Sturm sequence for the polynomial f(x) and an interval (a, b)
known to contain the kth root of f(x) = 0, this algorithm isolates an
interval that contains only the kth root.

Dl Determine s(a), s(b) . Do steps D2, D3 until s(a) – s(b) = 1.
Stop.

D2 set c = (a + b))/2 and determine s(c).

D3 if s(c) – s(∞) ≥k set a = c, otherwise set b = c.

The time taken by algorithm D is independent of the separation of the
roots of f(x) = 0 and is exceptionally stable even when the roots are
pathologically close. Algorithm D could be used to find λ k to any desired
accuracy; once an interval containing the root has been isolated, however,
faster convergence is possible using the known information about f(x) at
each step. Bracketing methods, such as classical bisection, false position,
and Brent’s method, are more stable than open methods, such as
Newton-Raphson and the secant method. Note that classical bisection
relies on f(x) changing sign across any interval containing an odd
number of real roots. It should not be confused with algorithm D.

ConclusionsConclusionsConclusionsConclusionsConclusions
We have used algorithms A, B, C, and D in a ray tracer that renders
algebraic surfaces of arbitrary order. The points where each ray intersects

422

VIII.3 USING STURM SEQUENCES TO BRACKET REAL ROOTS OF POLYNOMIAL EQUATIONS

GRAPHICS GEMS I Edited by ANDREW S. GLASSNER 422

the surface correspond to the real roots of a polynomial whose order is
the same as the surface. These polynomials are frequently ill-conditioned.
In this application we used the modified false position algorithm to polish
the roots. It converges in almost quadratic time, is extremely stable, and
is generally faster than adaptive methods (such as Brent’s method) when
the polynomial is unpredictable. In similar situations we recommend it.

Sturm’s method can also be used to find the complex roots of a
polynomial. The approach is detailed in Pinkert (1976).

See Appendix 2 for C Implementation (743)

423

DISTANCE MEASURES SUMMARY

GRAPHICS GEMS I Edited by ANDREW S. GLASSNER 423

DDDDDISTANCE MEASURESISTANCE MEASURESISTANCE MEASURESISTANCE MEASURESISTANCE MEASURESSSSSSUMMARYUMMARYUMMARYUMMARYUMMARY
Calculating distance is an important and common operation in
computer graphics. Often an exact answer is not important. For
example, suppose you are writing a 2D drawing program, and
you are contemplating writing the code to do selection: the user
clicks the mouse, and the nearest object is selected. Since the
operation is interactive, you do not need an exact solution for
the distance to each nearby object; taking the minimum of
estimated distances is probably good enough. If the wrong
object is occasionally selected, the user may move closer to the
one desired and click again.

A 3D application for an approximate distance metric could be
tracing the path of a moving, charged particle through a volume
filled with static charged particles. Only those static charges
closer than some threshold (determined by their charge) will
influence the moving particle; an approximate distance is
enough to determine if a charge is “close enough” to influence
the moving particle. More common applications in 3D include
an extension of the 2D example to a 3D drawing program;
determining “near” implicit functions for testing in a ray trac-
ing system; and finding candidates for collision detection in a
dynamics system.

The following Gems present distance approximations in 2D
and 3D. Note that you can generalize a 2D distance metric
d = f(d1, d2) to 3D by writing d3 = f(d1, f(d2, d3)), and then
expanding the result for d3. This process may be iterated to
higher dimensions if needed.

See also Root Finding Summary (403)

424

VIII.4 A HIGH SPEED LOW PRECISION SQUARE ROOT

GRAPHICS GEMS I Edited by ANDREW S. GLASSNER 424

VIII.4VIII.4VIII.4VIII.4VIII.4AAAAA HIGH SPEED HIGH SPEED HIGH SPEED HIGH SPEED HIGH SPEED,,,,,LLLLLOW PRECISIONOW PRECISIONOW PRECISIONOW PRECISIONOW PRECISIONSSSSSQUARE ROOTQUARE ROOTQUARE ROOTQUARE ROOTQUARE ROOT
Paul Lalonde and Robert DawsonDalhousie University,Halifax, Nova Scotia, Canada

Traditional methods for evaluating square roots using iterative methods
are often too slow for use either in interactive systems or when large
numbers of square roots must be evaluated. Often, particularly in com-
puter graphics, the precision required is much less than that computed.
For instance, the sqrt() function in most C library implementations
returns a double precision result, even when passed a single precision
operand.

When only a few digits of accuracy are required a faster approach can
be used. The technique is to use the most significant bits of the mantissa
as an index into a table of square roots. By using this looked-up value and
halving the exponent, a low-precision square root function can be built
that runs much faster than iterative methods.

A review of floating point formats is in order. A floating point number in
binary is of the form 26 ee...ep 6 mm...m, where m and e represent
bits. All floating point numbers can be expressed in normalized form, in
which a number takes the form eeeeeeee 6 1.mmmmmmm. Since any
floating point number can be normalized, most systems assume normal-
ization and store only the fractional part. For illustrative purposes we will
consider a floating point type with an eight-bit exponent, one-bit sign,
and seven-bit mantissa, stored in the form [2^]e7e6e5e4e3e2e1e0[*] 6
[1.]m6m5m4m3m2m1m0.

 2m ⋅n = 2
m

2 n

Equation 1 shows that the operation of taking a square root of a
floating point number reduces to halving the exponent and finding the

(1)

425

VIII.4 A HIGH SPEED LOW PRECISION SQUARE ROOT

GRAPHICS GEMS I Edited by ANDREW S. GLASSNER 425

e ← exponent(V)
i ← mantissa(V)

if (e bit-and 1) the exponent is odd
 set the high bit of i

e ← e/2 divide e by two–recall equation 1
(This division must preserve sign)

j ← T[i]

U ← 2ep1.j

Figure 1.

square root of the mantissa. As an odd exponent cannot be divided by 2,
we break the number into an even exponent e7e6e5e4e3e2e10, and a
quaternary mantissa, e0m6m5m4m3m2m1m0, in the range [1..4).
The sign bit of the mantissa is ignored, but may be used to flag an error if
negative. This stores all the values of [1..4) with no loss of information
from the original floating point representation.

A look-up table is created during the application’s initialization, which
stores the square roots of the values 2^e0*1.m6m5m4m3m2m1m0.

build_table(precision: integer, table: array [0..2precision+l] of integer)
i, j: integer;
f, sf: real;

begin
for i: integer ← 0, 2precision–1

f ← 1.i
table[i] ← mantissa(

 f);
f ← 2*1.i
table[i + 2precision] ← mantissa(

 f);
endloop;

end
Figure 2.

426

VIII.4 A HIGH SPEED LOW PRECISION SQUARE ROOT

GRAPHICS GEMS I Edited by ANDREW S. GLASSNER 426

Once the table, T, is built, the algorithm to find a square root, U, of a
given floating point number V is as follows. Let p be the required
precision in bits, and i be an integer p + 1 bits wide. Pseudo-code to
build the table is given in Fig. 2. Pseudo-code for extracting the square
root is shown in Fig. 1. Sample code illustrating this process is shown in
the appendix. This code is in no way optimal. An assembler implementa-
tion of a similar algorithm executed almost five times faster than the C
implementation. Note that we are halving the exponent as a signed
variable; a simple shift right will not preserve the sign bit.

This whole process, once the table is generated, can be performed with
one bitwise and, two bitwise ors, one bitwise test and five shift opera-
tions. Clearly this is faster than any iterative square root process. The
main disadvantages are the time required to build the table of square
roots, which adds to the application’s start-up time, and the memory
required to store the table. For n bits of precision, 2n + 1 words of
memory are required. For example, a seven-bit table requires 256 bytes.

Similar techniques can be used for other periodic and logarithmically
periodic functions.

See Appendix 2 for C Implementation (756)

427

VIII.5 A FAST APPROXIMATION TO THE HYPOTENUSE

GRAPHICS GEMS I Edited by ANDREW S. GLASSNER 427

VIII.5VIII.5VIII.5VIII.5VIII.5AAAAA FAST FAST FAST FAST FASTAAAAAPPROXIMATION TO THEPPROXIMATION TO THEPPROXIMATION TO THEPPROXIMATION TO THEPPROXIMATION TO THEHHHHHYPOTENUSEYPOTENUSEYPOTENUSEYPOTENUSEYPOTENUSE
Alan W. PaethUniversity of WaterlooWaterloo, Ontario, Canada

OverviewOverviewOverviewOverviewOverview
A fast approximation to the hypotenuse (Pythagorean distance) h=
(x2 + y2)1/2 and its related approximation error is derived. The method
is useful in providing accept/reject distance tests in 2D graphics. These
are commonly used in providing “gravity fields” or other proximity tests
for circle or ellipse selection (see concluding code).

DerivationDerivationDerivationDerivationDerivation
When forming a boolean proximity test for a known distance d, the
inequality may be rewritten in the form d2 ≥ x2 + y2 thereby removing
the square root. A useful approximation for h should do likewise and
ideally dispense with multiplication as well. To derive such a form,
consider (without loss of generality) the case x > y > 0. Next, normalize
the test:

h = x x2

x2 + y2

x2 = x 1 + y
x











2

 = x + 1
2 x

y












2

 – 1
8 x

y












4

 + O x
y













6










.

The last form is the direct Taylor expansion. Retaining terms through
the quadratic gives h′ = x (1 +

1

2
(y/x)2) with cubic accuracy. This

form is commonly employed in libraries offering a high-precision hypot

428

VIII.5 A FAST APPROXIMATION TO THE HYPOTENUSE

GRAPHICS GEMS I Edited by ANDREW S. GLASSNER 428

as the conventional form is prone to severe loss of accuracy: for |y| < |x|
it holds that y2 , x2 and the sum within the radicand discards much of
y’s original precision.

Factoring the expansion as h′ = x + 1/2 ⋅ y ⋅ (y/x) and then further
approximating by considering (y/x) ≈ 1 (when it. in fact lies on the range
[0..1]) yields the valuable approximation h′ = x + –

1
2 y. The error is not as

great as may be expected because the oversize constant approximation to
(y/x) is in part offset by the Taylor series truncation, since the first
omitted term is negative. By discarding the original assumption that
x > y > 0, this may be rewritten as

h & h′ = max(|x|, |y|) + 1/2 ⋅ min(|x|, |y|).

For many languages, minimum and maximum operations involve costly
conditional logic. Operation count may be reduced by noting that
max(a, b) + min(a, b) = a + b for all a and b yielding the well-known
form

h & h′ = |x| + |y| – 1/2 ⋅ min(|x|, |y|).

Note that the code is symmetric about the axis x = y = 1 within the
first quadrant. Absolute value operations on the input arguments allow for
four-quadrant operation, yielding isometric distance lines of eight-fold
symmetry (see Fig. 1) in close relation with the circular Euclidean norm.

Figure 1. Equations of (approximate) unit distance.

,

429

VIII.5 A FAST APPROXIMATION TO THE HYPOTENUSE

GRAPHICS GEMS I Edited by ANDREW S. GLASSNER 429

integer function idist(integer: x1, y1, x2, y2)
begin

min: integer;
if (x2 ← x2 – x1) < 0 then x2 ← –x2;
if (y2 ← y2 – y1) < 0 then y2 ← –y2;
if x2 > y2 then min ← y2 else min ← x2;
return [x2 + y2 – rshift(min, 1)];
end

Figure 2. Approximate vector length.

For greatest speed the 1/2 ⋅ |y| scaling operation may be replaced by a
single bit shift right. As this operation is on nonnegative quantities,
concerns regarding rounding direction and arithmetic versus logical shift-
ing vanish. The code is of general use when presented as the distance
between two points, as in Fig. 2 above. Calls of the form idist(x1, y1, 0, 0)
provide vector length by measuring point-origin distance with little added
expense.

Error AnalysisError AnalysisError AnalysisError AnalysisError Analysis
Consider the locus of points at unit distance from the origin (cos θ, sin θ)
within the first octant (cos θ > sin θ). The deviation between this ideal arc
and the approximated distance is then dev(θ) = cos θ +

1
2 sin θ – 1. Dif-

ferentiation locates the points of minimum and maximum deviation at
2 sin θ = cos θ. The minimum lies at θ = 0 where the functions h(0, 1) =
h′(0, 1) = 1 are in perfect agreement. The maximum (found by dividing
both terms by cosθ) lies at θ ≈ 26.5° at the point (cos tan-1(1/2),
sin tan-l(1/2)). Substitution into the approximate hypotenuse equation
for h ′ yields the vector length (5/4) cos tan-1(1/2) = (5/2) sin tan-1

(1/2) =
1
2 5 ≈ 1.118. Thus, vector estimates are too large by a worst-

case value of no more than 12%, but are never small. Note that this is a
relative error as calculations were in reference to an exact unit vector.
Scaling h’ by an overall value of 94% splits the difference in error but
discards the valuable property h′(x, y) ≥ h(x, y) for all x and y. When
coded in integer precision, the quantized relative error may be smaller

430

VIII.5 A FAST APPROXIMATION TO THE HYPOTENUSE

GRAPHICS GEMS I Edited by ANDREW S. GLASSNER 430

integer function PntOnCirc(integer: xp, yp, xc, yc, r)
 begin

returns true IF a test point (xp, yp) is to within a
pixel of the circle of center (xc, yc) and radius r;
see also C source comments

 d: integer ← idist(xp, yb, xc, yc);
 if r > d then return[0]; far-in
 if 9 × r < 8 x (d – 1) then return[0]; far-out

full test: r < hypot(xp – xc, yp – yc) < r + 1
 xp ← xp – xc;
 yp ← yp – Yc;
 d ← xp + yp

2;
 if d < r2 then return[0]; near–in
 r ← r + 1
 if d > r2 then return[0]; near–out
 return[1]; WITHIN
 end

Figure 3. Point-on-circle test.

than its theoretic bound because of the loss of one bit of precision
inherent in the halving operation. While maintaining the containment
property, this effect must nonetheless be accounted for in carefully
crafted program code (See C-language source comments).

If slightly greater accuracy is desired at the cost of one multiplication,
the 1/2 ⋅ min term may be scaled downwards to provide a tighter fit
(Fig. 1, left). The optimal scale factor occurs when this value is 0.414 +
< 2 – 1 = tan(p/8). Note that this brings both methods into agree-
ment at h(1, 1) = h′(1, 1) = 2 so that the approximation is now exact at
eight principle compass points. This change moves the angle for worst-
case deviation from 26.5° + to the symmetric portion of the octant at
p/8 radians (22.5°). The worst-case error is then reduced to cos(p/8) +
tan(p/8) sin(p/8) = sec(p/8) < 1.0824. This change maintains the
valuable property h’(x, y) ≥ h(x, y) with equality holding iff |x| = |y|
or x = 0 or y = 0. For many applications the multiplication is not worth
the marginal gain in accuracy.

2

431

VIII.5 A FAST APPROXIMATION TO THE HYPOTENUSE

GRAPHICS GEMS I Edited by ANDREW S. GLASSNER 431

Given the bounded nature of the estimate, a bracketing interval test
may be made in which points either too near and too far from a reference
length are discarded. A range check of this nature is used as a circle pick
mechanism within the “Lemming” portable graphics editor (Paeth, 1988).
Here the approximation is used to discard unlikely selection candidates
quickly without resorting to multiplication unless necessary, while yield-
ing no concessions to accuracy (see Fig. 3).

Note that all arguments are integers and that no intermediate floating
point calculations appear. As the final squaring operations double the
number of bits in integers xp, yp, and r, 16-bit architectures will require
integer variables of 32-bit precision to accommodate arguments with
values outside of the byte range (6 127).

See also A Fast 2D Point-on-Line Test (49); Trigonometric
Functions at Select Points (18)

See Appendix 2 for C Implementation (758)

432

VIII.6 A FAST APPROXIMATION TO 3D EUCLIDIAN DISTANCE

GRAPHICS GEMS I Edited by ANDREW S. GLASSNER 432

VIII.6VIII.6VIII.6VIII.6VIII.6AAAAA FAST FAST FAST FAST FASTAAAAAPPROXIMATION TOPPROXIMATION TOPPROXIMATION TOPPROXIMATION TOPPROXIMATION TO3D 3D 3D 3D 3D EUCLIDIAN DISTANCEEUCLIDIAN DISTANCEEUCLIDIAN DISTANCEEUCLIDIAN DISTANCEEUCLIDIAN DISTANCE
Jack RitterVersatec, IncSanta Clara, Califonia

This Gem is a fast approximation to 3D Euclidian distance

dx ∗ dx + dy ∗ dy + dz ∗ dz 




. It could be used in ray tracing for

quickly calculating ray versus bounding volume distances, or object to
object distances in general.

It takes advantage of the fact that the sum of the lengths of the three
components of a 3D vector is a rough approximation of the vector ’s
length. This way of measuring distance is also called “Manhattan dis-
tance.”

If the vector has only one nonzero component, the Manhattan distance
is exactly correct. This is the best case. The worst case is where all three
components are equal in length (d): then the Manhattan distance will be
d + d + d = 3 ∗ d, where the true Euclidian distance is 3 ∗ d. The
worst case is off by a factor of 3/ 3 ≈ 1.7. The algorithm below
compromises between these extreme conditions, giving a maximum error
much less than 1.7. The algorithm is as follows:

1. Find these three values: ABS(dx), ABS(dy), ABS(dz).

2. Sort them (3 compares, 0–3 swaps).

3. Approximate distance = max + (1/4)med + (1/4)min.

This approximation is accurate within 6 13%.
Two successively more refined step 3 formulae are

max + (5/16)med + (1/4)min (has 69%error)
 max + (11/32)med + (1/4)min (has 68% error).

433

VIII.6 A FAST APPROXIMATION TO 3D EUCLIDIAN DISTANCE

GRAPHICS GEMS I Edited by ANDREW S. GLASSNER 433

In all cases, the coefficients are fractions whose demoninators are
powers of 2. This avoids division. The numerators can be calculated by
shifting and adding , avoiding multiplication. This allows very simple fixed
point arithmetic, which is faster than the 3D Euclidian calculation, even with
a floating point coprocessor.

If the vector components are floating point values, they may need to be
scaled before being converted to integers. If the maximum length vector
we would expect is 100 or more, for example, then no scaling need be
done; a span of 100 is enough resolution, given that we are only accurate
to ±8% to begin with. If the span is, say, 1.0, then we need to scale up.

More generally, this algorithm is an alternative to finding the square
root of the sum of three squares, which need not mean distance, or
anything spatial at all.

Here is pseudo-code for the 13% version, where scaling is needed. A
scale of 1024 is used, which can be accomplished by shifting by 10. This
means that the code contains no multiplies, divides, or square roots, and
is all in fixed point.

approx_length_13(dx, dy, dz) :real
dx, dy, dz: real;
begin

maxc, medc, minc: integer:
Convert the reals to scaled integers.
maxc ← abs (1shift(dx, 10));
medc ← abs (1shift(dy, 10));
minc ← abs (1shift(dz, 10));
Sort. Need only find max.
if maxc < medc

then swap(maxc, medc);
if maxc < minc

then swap(maxc, minc);
Compute 1/4 of med & min in 1 step.
medc ← medc + minc;
maxc ← maxc + rshif(medc, 2);
return ((real) rshift(maxc,10));
end

434

VIII.7 FULL PRECISION CONSTANTS

GRAPHICS GEMS I Edited by ANDREW S. GLASSNER 434

VIII.7VIII.7VIII.7VIII.7VIII.7
FFFFFULL-PRECISIONULL-PRECISIONULL-PRECISIONULL-PRECISIONULL-PRECISIONCCCCCONSTANTSONSTANTSONSTANTSONSTANTSONSTANTS

Kelvin ThompsonNth Graphics, LtdAustin, Texas

Most extended-precision floating point formats store the equivalent of
14-16 decimal digits of precision (see “Converting between Bits and
Digits” in this volume); many of us have trouble remembering this many
digits in some important constants. Here are some constants whose
precision should satisfy any floating point format.

π ≈ 3.1415926535897932384626433832795028841971693993751

 2 ≈ 1.4142135623730950488016887242096980785696718753769

 3 ≈ 1.7320508075688772935274463415058723669428052538104

loge2 ≈ 0.693147180559945309417232121458176568075500134360255

Another way to get full precision in a constant is simply to use a
math library routine to initialize a global variable, then use that variable
as a constant. A pseudo-code example follows:

pi: real ← 3*acos(0.5).

(Unfortunately, some math libraries aren’t accurate to full precision.)

435

VIII.8 CONVERTING BETWEEN BITS AND DIGITS

GRAPHICS GEMS I Edited by ANDREW S. GLASSNER 435

VIII.8VIII.8VIII.8VIII.8VIII.8
CCCCCONVERTING BETWEENONVERTING BETWEENONVERTING BETWEENONVERTING BETWEENONVERTING BETWEENBBBBBITS AND DIGITSITS AND DIGITSITS AND DIGITSITS AND DIGITSITS AND DIGITS

Kelvin ThompsonThe University of Texas at Austin

Problem statementProblem statementProblem statementProblem statementProblem statement
Find out how many binary bits correspond to a given number of decimal
digits . . . or vice versa.

SolutionSolutionSolutionSolutionSolution
If b is the number of bits and d the number of digits, satisfy the relation

2b = 10d.

Solving for each variable in terms of the other, we get

b = d ⋅ 1og2 10 ≈ d ⋅ 3.3219280948873623478703

d = b ⋅ log10 2 ≈ b ⋅ 0.301029995663981195213739.

ExampleExampleExampleExampleExample
The IEEE single-precision floating point format has 23 bits of precision;
this is equivalent to about 6.9 decimal digits of precision.

436

VIII.9 STORAGE–FREE SWAPPING

GRAPHICS GEMS I Edited by ANDREW S. GLASSNER 436

VIII.9VIII.9VIII.9VIII.9VIII.9
SSSSSTORAGE-FREE SWAPPINGTORAGE-FREE SWAPPINGTORAGE-FREE SWAPPINGTORAGE-FREE SWAPPINGTORAGE-FREE SWAPPING

Brian WyvillUniversity of CalgaryCalgary, Alberta, Canada

I first noticed this little Gem in some C code written by my brother, Geoff
Wyvill. It is often the case that the values of two variables have to be
swapped. The usual way that this is done is to declare a temporary
variable to store the value of one of the two items to be swapped, then
overwrite the variable with the value of the other. The idea of this Gem
is to use three exclusive or operations to avoid declaring a temporary
variable. The following pseudo-code does this:

a ← a xor b;
b ← b xor a;
a ← a xor b;

This is best illustrated by example:

Value of a Value of b
5 6

a ← a xor b (101 xor 110 = 011) 3 6
b ← b xor a (110 xor 011 = 101) 3 5
a ← a xor b (011 xor 101 = 110) 6 5

This method will work regardless of the data type of the variables to be
swapped since it is good for any bit pattern. In C a macro can be defined

437

VIII.9 STORAGE–FREE SWAPPING

GRAPHICS GEMS I Edited by ANDREW S. GLASSNER 437

whose arguments can be of any type:

define SWAP(a, b) {a↑ = b; b↑ = a; a↑ = b;}

Using a macro not only saves storage, but also avoids the overheads of a
function call.

See also Median Finding on a 3 × 3 Grid (171)

438

VIII.10 GENERATING RANDOM INTEGERS

GRAPHICS GEMS I Edited by ANDREW S. GLASSNER 438

VIII.10VIII.10VIII.10VIII.10VIII.10
GGGGGENERATINGENERATINGENERATINGENERATINGENERATINGRRRRRANDOM INTEGERSANDOM INTEGERSANDOM INTEGERSANDOM INTEGERSANDOM INTEGERS

Andrew S. GlassnerXerox PARCPalo Alto, California

Suppose you want to generate a random integer n from the range [l, h].
You would like to have equal probability of getting any integer in the set
{l, l + 1, l + 2, . . . , h – 1, h}. The typical way to do this is to start with a
random-number generator that returns a floating point number in the
range [0, 1]; call this real number u.

To convert u to the range [l, h] you might be tempted to simply scale
u into the new range by using the expression n ← round[l + (h – l) u].
This would be a bad idea. To see why, consider the fragment of the real
number line shown in Fig. 1, where l = 3 and h = 5. Then [l + (h – l)u]
will be in the closed interval [3, 5]. When you take the integer part of this,
you’re likely to get only 3 or 4; you will get 5 only when u = 1.0, which
should be a rare event. What you really want in this example is to scale u
into the open interval (2.5, 5.5), as shown in Fig. 2. Then when you round
to the nearest integer you’ll be equally likely to get 3, 4, or 5. To simulate
this open interval, offset the ends of the original range by an amount ∆
slightly smaller than 0.5; perhaps 0.4999.

So to compute a random integer n in the range [l, h] from a random
real u in the range [0, l], choose a number ∆ slightly smaller than 0.5,

Figure 1. The closed interval [3, 5]. Rounding points in this interval will virtually never
return 5.

439

VIII.10 GENERATING RANDOM INTEGERS

GRAPHICS GEMS I Edited by ANDREW S. GLASSNER 439

Figure 2. The open interval (2.5, 5.5). Rounding points in this interval you are equally
likely to get 3, 4, or 5.

create two new temporary variables l′ ← l – ∆ and h′ ← h + ∆, and use
the formula n ← round[l′ + (h′ – l′)u].

See also A Digital “Dissolve” Effect (221)

440

VIII.11 FAST 2D-3D ROTATION

GRAPHICS GEMS I Edited by ANDREW S. GLASSNER 440

VIII.11VIII.11VIII.11VIII.11VIII.11
FFFFFAST 2DAST 2DAST 2DAST 2DAST 2D-3D -3D -3D -3D -3D ROTATIONROTATIONROTATIONROTATIONROTATION

Jack RitterVersatec Inc.Santa Clara, California

This Gem shows a way to rotate a point around the origin quickly and
accurately. The rotation can be in 2D or 3D. In general, rotated coordi-
nates (X′, Y′) are derived from (X, Y) by

X′ ← X* cos(θ) – Y* sin(θ)

Y′ ← X* sin(θ) + Y* cos(θ). (1)

The problem is that computing sin() and cos() is very costly. The
method described here makes use of a precomputed table of sine values,
scaled such that 16-bit fixed point multiplies can be used. No floating
point calculations or trig functions are used.

The table is defined for the first quadrant, to save storage. Rotations in
the other three quadrants can be transformed into first quadrant rotations
by reflection and/or transposition.

You generate the table with any desired resolution. Let’s say you want
to be able to rotate a point in increments of degrees. This means that the
table will have 91 entries (the number of gradations + 1). The table is
pregenerated via the following technique:

for i = 0, + 1, i ≤ 90
table[i] ← 16384*sin(i*DtoR)
endloop

The last entry in the table, table[90], will hold the maximum value: 16384.
This means that the table can be held in 16-bit words.

441

VIII.11 FAST 2D-3D ROTATION

GRAPHICS GEMS I Edited by ANDREW S. GLASSNER 441

From Eq. 1, we see that to compute X′ and Y′, we need to compute
four terms: X*cos, Y*sin, X*sin, and Y*cos. Each of these four is of the
form “coordinate*sin(θ)” or “coordinate*cos(θ).′′ Thus, we need only to
know how to calculate these two forms.

The algorithm is as follows:

To calculate the form “coordinate ∗ sin(θ)′′:
index ← θ
value ← Rshift (coordinate ∗ table [index], 14)

To calculate the form “coordinate ∗ cos(θ)′′:
index ← θ
value ← Rshift (coordinate ∗ table [90 – index], 14)

In each case, the multiply by the table value occurs before the right shift
of 14, which corrects for the scaling. The multiply creates an intermediate
32-bit value. The final value is 16 bits. The table, as well as the input
coordinate values, must be 16-bit words, so that integer multiplies are
generated.

The cos(θ) form differs from the sin(θ) form only in that the indexing is
from the end of the table. This is why there must be 91 entries.

If you successively accumulate θ, as in a tumbling object, you must
wrap around from 0 to 360, or from 360 to 0, depending on whether θ is
being incremented or decremented. Wrap-around is clumsy in the 90
gradation case. If the table holds 128 gradations, for example, instead of
90, wrap around is trivial:

θ ← θ + ∆θ increment, possibly causing wrap.
θ ← θ bit-and 511 correct for wrap.

∆ θ can be positive or negative.
The table has only 16 bits of accuracy. Successive rotations may

eventually cause an object to deform. For higher accuracy, use 32-bit
values. On the 68020, for example, you would do a “quad word” multiply
(any 32-bit processor has some way to hold an intermediate 64-bit
product).

See also Rotation Tools (465); Rotation Matrix Methods Sum-
mary (455); Bit Patterns for Encoding Angles (442)

442

VIII.12 BIT PATTERNS FOR ENCODING ANGLES

GRAPHICS GEMS I Edited by ANDREW S. GLASSNER 442

VIII.12VIII.12VIII.12VIII.12VIII.12
BBBBBIT PATTERNS FORIT PATTERNS FORIT PATTERNS FORIT PATTERNS FORIT PATTERNS FOREEEEENCODING ANGLESNCODING ANGLESNCODING ANGLESNCODING ANGLESNCODING ANGLES

Ken ShoemakeXerox MRCPalo Alto, California

The question often arises of what units to use for angles, and most folks
only consider two choices: radians and degrees. There is another choice,
however, which is often used for computer music.

You can use a fixed-point fraction of 2π, or 360 degrees—it’s the same
either way. The implicit binary point is just above the high-order bit. This
notation melds perfectly with two’s complement integer arithmetic. The
high-order bit can be viewed as either a sign bit or a fraction bit; plus and
minus 180 degrees are indistinguishable, both being represented by
(0).100000. As you increment an angle, it naturally wraps around at 360
degrees. All your bits are meaningful; each angle has a unique bit pattern.

The two high bits tell you which quadrant you’re in, and make it cheap
to use a quarter wave look-up table for sines and cosines.

Instead of deciding between degrees and radians, you use a natural unit
that varies between 0 and 1, and one that makes sense.

Here are some examples to give you the idea.

See also Rotation Tools (465); Rotation Matrix Methods Sum-
mary (455); Fast 2D-3D Rotation (440)

443

 VIII.13 BIT INTERLEAVING FOR QUAD-OR OCTREES

GRAPHICS GEMS I Edited by ANDREW S. GLASSNER 443

VIII.13VIII.13VIII.13VIII.13VIII.13
BBBBBIT INTERLEAVING FORIT INTERLEAVING FORIT INTERLEAVING FORIT INTERLEAVING FORIT INTERLEAVING FORQQQQQUAD- OR OCTREESUAD- OR OCTREESUAD- OR OCTREESUAD- OR OCTREESUAD- OR OCTREES

Clifford A. ShafferVirginia TechBlacksburg, Virginia

The linear quad—or octree is an alternative to the traditional tree structure
based on explicit pointers to nodes. The linear representation can reduce
the total storage requirements for a quadtree. It stores only the leaves
from the original tree structure, in the order that those nodes would be
visited during a traversal of the tree. The internal nodes and pointers of
the explicit tree are replaced by position descriptors describing the path
from the root of the tree to the leaf node. Alternatively, the linear
representation can be viewed as storing square blocks from the image in
a sorted list. The sort key is obtained by bit interleaving the coordinates
of the upper-left corner of each such block.

Below is pseudo-code for bit interleaving 2D coordinates (a similar
process can be used for three dimensions). The result is a 32-bit address
code, whose lower four bits tell the size of the block represented by that
address. You could also view the address as a series of two-bit codes, with
each code telling which way to branch in a quadtree to reach the node. In
that case, the lower four bits tell the number of branches to take. Thus, a
32-bit code can store addresses for quadtrees with 15 levels (counting the
root), equivalent to a 2D image with 214 x 214 pixels. In 3D, a 32-bit code
word can represent an address in a 29 pixel cube; higher resolution would
require a longer code word.

Since the bit interleaving function is heavily used in a linear quad—or
octree system, its efficiency is crucial. The code presented here makes
use of look-up tables. The general approach to creating the interleaved
value is to break the 32-bit work into 4 bytes, and use look-up tables to
calculate directly the value of each byte from the corresponding four bits

444

 VIII.13 BIT INTERLEAVING FOR QUAD-OR OCTREES

GRAPHICS GEMS I Edited by ANDREW S. GLASSNER 444

of the two input coordinates. Following the interleaving code are func-
tions to extract the x, y, and depth values from an interleaved address.
Note that MAX_DEPTH defines how big the interleaved value can be,
that is, how may levels the tree may have. Any particular tree has an
actual value (max_depth) that corresponds to the resolution of that
tree’s image. The alternative is to interpret all x and y values in terms of
the maximum possible resolution (2 MAX_DEPTH). MAX_DEPTH also has
the effect of limiting the size of the x and y coordinate values—in our
case, only the lower 14 bits are used.

macro MAX_DEPTH 14; Maximum possible depth
byteval is the look-up table for coordinate interleaving. Given a four-bit
portion of the (x, y) coordinates, return the bit interleaving. Notice that this
table looks like the order in which the pixels of a 16 x 16 Pixel image would
be visited.

[0, 1, 4, 5, 16, 17, 20, 21, 64, 65, 68, 69, 80, 81, 84, 85] ,
[2, 3, 6, 7, 18, 19, 22, 23, 66, 67, 70, 71, 82, 83, 86, 87] ,
[8, 9, 12, 13, 24, 25, 28, 29, 72, 73, 76, 77, 88, 89, 92, 93] ,
[10, 11, 14, 15, 26, 27, 30, 31, 74, 75, 78, 79, 90, 91, 94, 95] ,
[32, 33, 36, 37, 48, 49, 52, 53, 96, 97,100,101,112,113,116,117],
[34, 35, 38, 39, 50, 51, 54, 55, 98, 99,102,103,114,115,118,119],
[40, 41, 44, 45, 56, 57, 60, 61,104,105,108,109,120,121,124,125],
[42, 43, 46, 47, 58, 59, 62, 63,106,107,110,111,122,123,126,127],
[128,129,132,133,144,145,148,149,192,193,196,197,208,209,212,213],
[130,131,134,135,146,147,150,151,194,195,198,199,210,211,214,215],
[136,137,140,141,152,153,156,157,200,201,204,205,216,217,220,221],
[138,139,142,143,154,155,158,159,202,203,206,207,218,219,222,223],
[160,161,164,165,176,177,180,181,224,225,228,229,240,241,244,245],
[162,163,166,167,178,179,182,183,226,227,230,231,242,243,246,247],
[168,169,172,173,184,185,188,189,232,233,236,237,248,249,252,253],

[170,171,174,175,186,187,190,191,234,235,238,239,250,251,254,255]] ;

bytemask is the mask for byte interleaving—mask out the nonsignificant bit
positions. This is determined by the depth of the node. For example, a node
of depth 0 is at the root. Thus, there are no branches and no bits are
significant. The bottom four bits (the depth) are always retained. Values are
described in hexidecimal notation.

byteval: array [0 . . . 15][0 . . . 15] of integer ← [

445

 VIII.13 BIT INTERLEAVING FOR QUAD-OR OCTREES

GRAPHICS GEMS I Edited by ANDREW S. GLASSNER 445

bytemask: array [0..MAX_DEPTH] of integer ← [0xf,

0xc000000f, 0xf000000f, 0xfc00000f, 0xff00000f,
0xffc0000f, 0xfff0000f, 0xfffc000f, 0xffff000f,
0xffffc00f, 0xfffff00f, 0xfffffc0f, 0xffffff0f,
0xffffffcf, 0xffffffff];

integer interleave(x, y, depth, max_depth)
Return the interleaved code for a quadtree node at depth depth whose
upper left hand corner has coordinates (x, y) in a tree with maximum depth
max_depth.
begin

addr: integer; Assumes 32-bit integers.
Scale x, y values to be consistent with maximum coord size and depth of

tree.
x ← lshift(x, MAX_DEPTH-max_depth);
y ← lshift(y, MAX_DEPTH-max_depth);

Calculate the bit interleaving of the x, y values that have now been
appropriately shifted, and place this interleave in the address portion of addr.
Note that the binary representations of x and y are being processed from
right to left.

addr ← depth;
addr ← addr bit-or lshift(byteval[y bit-and 03][x bit-and 03], 4);
addr ← baddr bit-or

lshift(byteval[rshift(y, 2) bit-and 0xf][rshift(x, 2) bit-and 0xf], 8);
addr ← addr bit-or

lshift(byteval[rshift(y, 6) bit-and 0xf][rshift(x, 6) bit-and 0xf], 16);
addr ← addr bit-or

lshift(byteval[rshift(y, 10) bit-and 0xf][rshift(x, 10) bit-and 0xf], 24);
addr ← addr bit-and bytemask[depth];
return (addr);
end;

446

 VIII.13 BIT INTERLEAVING FOR QUAD-OR OCTREES

GRAPHICS GEMS I Edited by ANDREW S. GLASSNER 446

The next two arrays are used in calculating the (x, y) coordinate of the
upper left-hand corner of a node from its bit interleaued address. Given an
eight-bit number, the arrays return the effect of removing every other bit (the
y bits precede the x bits).
xval:array[0..255] of integer ← [

[0, 1, 0, 1, 2, 3, 2, 3, 0, 1, 0, 1, 2, 3, 2, 3],
[4, 5, 4, 5, 6, 7, 6, 7, 4, 5, 4, 5, 6, 7, 6, 7],
[0, 1, 0, 1, 2, 3, 2, 3, 0, 1, 0, 1, 2, 3, 2, 3],
[4, 5, 4, 5, 6, 7, 6, 7, 4, 5, 4, 5, 6, 7, 6, 7],
[8, 9, 8, 9, 10, 11, l0, 11, 8, 9, 8, 9, 10, 11, 10, 11],
[12, 13, 12, 13, 14, 15, 14, 15, 12, 13, 12, 13, 14, 15, 14, 15],
[8, 9, 8, 9, 10, 11, l0, 11, 8, 9, 8, 9, 10, 11, 10, 11],
[12, 13, 12, 13, 14, 15, 14, 15, 12, 13, 12, 13, 14, 15, 14, 15],
[0, 1, 0, 1, 2, 3, 2, 3, 0, 1, 0, 1, 2, 3, 2, 3],
[4, 5, 4, 5, 6, 7, 6, 7, 4, 5, 4, 5, 6, 7, 6, 7],
[0, 1, 0, 1, 2, 3, 2, 3, 0, 1, 0, 1, 2, 3, 2, 3],
[4, 5, 4, 5, 6, 7, 6, 7, 4, 5, 4, 5, 6, 7, 6, 7],
[8, 9, 8, 9, 10, 11, l0, 11, 8, 9, 8, 9, 10, 11, 10, 11],
[12, 13, 12, 13, 14, 15, 14, 15, 12, 13, 12, 13, 14, 15, 14, 15],
[8, 9, 8, 9, 10, 11, l0, 11, 8, 9, 8, 9, 10, 11, 10, 11],
[12, 13, 12, 13, 14, 15, 14, 15, 12, 13, 12, 13, 14, 15, 14, 15]]

[0, 0, 1, 1, 0, 0, 1, 1, 2, 2, 3, 3, 2, 2, 3, 3],
[0, 0, 1, 1, 0, 0, 1, 1, 2, 2, 3, 3, 2, 2, 3, 3],
[4, 4, 5, 5, 4, 4, 5, 5, 6, 6, 7, 7, 6, 6, 7, 7],
[4, 4, 5, 5, 4, 4, 5, 5, 6, 6, 7, 7, 6, 6, 7, 7],
[0, 0, 1, 1, 0, 0, 1, 1, 2, 2, 3, 3, 2, 2, 3, 3],
[0, 0, 1, 1, 0, 0, 1, 1, 2, 2, 3, 3, 2, 2, 3, 3],
[4, 4, 5, 5, 4, 4, 5, 5, 6, 6, 7, 7, 6, 6, 7, 7],
[4, 4, 5, 5, 4, 4, 5, 5, 6, 6, 7, 7, 6, 6, 7, 7],
[8, 8, 9, 9, 8, 8, 9, 9, 10, 10, 11, 11, 10, 10, 11, 11],
[8, 8, 9, 9, 8, 8, 9, 9, 10, 10, 11, 11, 10, 10, 11, 11],
[12, 12, 13, 13, 12, 12, 13, 13, 14, 14, 15, 15, 14, 14, 15, 15],
[12, 12, 13, 13, 12, 12, 13, 13, 14, 14, 15, 15, 14, 14, 15, 15],
[8, 8, 9, 9, 8, 8, 9, 9, 10, 10, 11, 11, 10, 10, 11, 11],
[8, 8, 9, 9, 8, 8, 9, 9, 10, 10, 11, 11, 10, 10, 11, 11],
[12, 12, 13, 13, 12, 12, 13, 13, 14, 14, 15, 15, 14, 14, 15, 15],{[
[12, 12, 13, 13, 12, 12, 13, 13, 14, 14, 15, 15, 14, 14, 15, 15]]

yval:array[0..255] of integer ← [

447

 VIII.13 BIT INTERLEAVING FOR QUAD-OR OCTREES

GRAPHICS GEMS I Edited by ANDREW S. GLASSNER 447

integer getx(addr, max_depth)
Return the x coordinate of the upper left-hand corner of addr for a tree
with maximum depth max_depth.

begin
x: integer;
x ← xval[rshift(addr, 4) bit-and 0xf]; do bottom two bits.
x ← x bit-or lshift(xval[rshift(addr, 8) bit-and 0xff]], 2); next four bits.
x ← x bit-or lshift(xval[rshift(addr, 16) bit-and 0xff]], 6); next four bits.
x ← x bit-or lshift(xval[rshift(addr, 24) bit-and 0xff]], 10); top four bits.
x ← rshift(x, MAX_DEPTH–max_depth); scale to tree depth.

return (x);
end;

integer getx(addr, max_depth)

Return the y coordinate of the upper left hand corner of addr for a tree with
maximum depth max_depth.

begin
y: integer;
y ← yval[rshift(addr, 4) bit-and 0xf]; do bottom two bits.
y ← y bit-or lshift(yval[rshift(addr, 8) bit-and 0xff]], 2); next four bits.
y ← y bit-or lshift(yval[rshift(addr, 16) bit-and 0xff]], 6); next four bits.
y ← y bit-or lshift(yval[rshift(addr, 24) bit-and 0XffI], 10); top four bits.
y ← rshift(y, MAX_DEPTH–max_depth); scale to tree depth.

return (y);
end;

integer getdepth(addr)
Return the depth of the node. Simply return the bottom four bits.

begin
return (addr bit-and 0xf);
end;

See Appendix 2 for C Implementation (759)

448

VIII.14 A FAST HSL-TO-RGB TRANSFORM

GRAPHICS GEMS I Edited by ANDREW S. GLASSNER 448

Sv ≡ V – MIN
V

,

VIII.14VIII.14VIII.14VIII.14VIII.14AAAAA FAST FAST FAST FAST FASTHHHHHSL-TO-RGBSL-TO-RGBSL-TO-RGBSL-TO-RGBSL-TO-RGBTTTTTRANSFORMRANSFORMRANSFORMRANSFORMRANSFORM
Ken FishkinPixar, Inc.San Rafael, California

Three common color spaces used in computer graphics are RGB, HSV,
and HSL color space. RGB color space is by far the most common, and is
practically the lingua franca of computer graphics color spaces: its axes
(R, G, and B) refer to the amount of red, green, and blue light that a pixel
emits. The other two are perceptual color spaces, whose axes represent
more perceptual qualities: the hue, the saturation, and the value or
lightness.

The use of HSV and HSL color spaces for computer graphics arose at
almost the same time. HSV was first proposed by Smith (1978), and HSL
by the Core committee (Graphics Standards Planning Committee, 1979).
The HSV-to-RGB and RGB-to-HSV transformations are simple and fast.
While the RGB-to-HSL transformation is also simple and fast, the HSL-to-
RGB transformation is about twice as slow, and now nearly as simple, as
the HSV-to-RGB transformation.

This Gem fills in the ␣“ missing link,” supplying an improved HSL-to-RGB
transformation that is nearly the same as the HSV-to-RGB transformation.
It does this by “massaging” the HSV-to-RGB transformation into an
HSL-to-RGB transformation.

Hue (H) is defined the same in the two systems. Value (V) and
lightness (L) are defined as

 V ; MAX(R, G, B), and L ; (MIN + MAX)/2.

Saturation is defined differently: “HSV Saturation” SV is defined as

449

VIII.14 A FAST HSL-TO-RGB TRANSFORM

GRAPHICS GEMS I Edited by ANDREW S. GLASSNER 449

while “HSL Saturation” SL is defined as

SL ≡ MAX – MIN
MAX + MIN

 if L ≤ 1 2,

≡ MAX – MIN
2 – MAX – MIN

 if L > 1 2.

This Gem just computes V and Sv from L and SL, and then does
standard HSV to RGB, with a little strength reduction and common
subexpression elimination thrown in.

A pseudo-code description of the algorithm follows:

given H, SL, L on [0 ⋅ ⋅ ⋅ 1], compute R, G, B on [0 ⋅ ⋅ ⋅ 1]

if L ≤ 1
2

then v ← L (1.0 + SL);
else v ← L + SL – L ⋅ SL;

if v = 0
then R ← G ← B ← 0.0;
else begin

min ← 2L – v;
Sv ← (v – min) /v;
H ← 6H; map onto [0 ⋅ ⋅ ⋅ 6)
sextant: int ← floor(H);
fract: real ← H – sextant;
vsf: real ← v ⋅ Sv ⋅ fract;
midl; real ← min + vsf;
mid2: real ← v – vsf;
[R, G, B] = select sextant from

0: [v, mid1, min];
1: [mid2, v, min];
2: [min, v, min1];
3: [min, mid2, v];
4: [mid1, min, v];
5: [v, min, mid2];
endcase;

end

See also Mapping RGB Triples onto Four Bits (233)
See Appendix 2 for C Implementation (763)

99
MATRIX TECHNIQUES

453

 IX.1 MATRIX IDENTITIES

GRAPHICS GEMS I Edited by ANDREW S. GLASSNER 453

IX.1IX.1IX.1IX.1IX.1
MMMMMATRIX IDENTITIESATRIX IDENTITIESATRIX IDENTITIESATRIX IDENTITIESATRIX IDENTITIES

Kelvin ThompsonThe University of Texas at Austin

Below are some matrix identities that are useful for a number of pur-
poses: constructing and decomposing transforms; optimizing matrix mul-
tiplication routines (see “Fast Matrix Multiplication” in this volume); and
understanding the subtleties of matrix concatenation.

a b c 0
d e f 0
g h i 0
0 0 0 1



















1 0 0 0
0 1 0 0
0 0 1 0
x y z 1



















 =

a b c 0
d e f 0
g h i 0
x y z 1



















1 0 0 0
0 1 0 0
0 0 1 0
x1 y1 z1 1



















1 0 0 0
0 1 0 0
0 0 1 0
x2 y2 z2 1


















 =

1 0 0 0
0 1 0 0
0 0 1 0
x1 y1 z1 1



















+

1 0 0 0
0 1 0 0
0 0 1 0
x2 y2 z2 1



















454

 IX.1 MATRIX IDENTITIES

GRAPHICS GEMS I Edited by ANDREW S. GLASSNER 454

a b c 0
d e f 0
g h i 0
0 0 0 1



















x 0 0 0
0 y 0 0
0 0 z 0
0 0 0 1



















 =

ax by cz 0
dx ey fz 0
gx hy iz 0
0 0 0 1



















x 0 0 0
0 y 0 0
0 0 z 0
0 0 0 1



















a b c 0
d e f 0
g h i 0
0 0 0 1



















 =

ax bx cx 0
dy ey fy 0
gz hz iz 0
0 0 0 1



















The identities below simply say that (1) the product of two linear
matrices is a linear matrix, and (2) the product of two affine matrices is
an affine matrix.

? ? ? 0
? ? ? 0
? ? ? 0
0 0 0 1



















? ? ? 0
? ? ? 0
? ? ? 0
0 0 0 1



















 =

? ? ? 0
? ? ? 0
? ? ? 0
0 0 0 1



















(1)

? ? ? 0
? ? ? 0
? ? ? 0
? ? ? 1



















? ? ? 0
? ? ? 0
? ? ? 0
? ? ? 1



















 =

? ? ? 0
? ? ? 0
? ? ? 0
? ? ? 1



















(2)

See also Transformation Identities (485)

455

ROTATION MATRIX METHODS SUMMARY

GRAPHICS GEMS I Edited by ANDREW S. GLASSNER 455

RRRRROTATION MATRIXOTATION MATRIXOTATION MATRIXOTATION MATRIXOTATION MATRIXMMMMMETHODS SUMMARYETHODS SUMMARYETHODS SUMMARYETHODS SUMMARYETHODS SUMMARY

Matrix techniques form the heart of geometric transformations
used in computer graphics. A good grounding in linear algebra
can help a programmer navigate through the various types of
projections and transformations in common use. Typically a
user should be shielded from the mathematics of matrix manip-
ulations, which are just a convenient mechanism for accom-
plishing certain goals. A good command of matrix techniques
can help a programmer write systems that insulate the user
from the underlying representation.

The following Gems present a variety of matrix techniques
that help in various rotation tasks. Matrix methods for 3D
rotation are considered difficult or abstruse by many program-
mers, but this does not have to be. The following Gems provide
some basic tools and fundamentals that can help you master the
application of matrices in computer graphics.

See also Rotation Tools (465); Bit Patterns for Encoding An-
gles (442); Fast 2D-3D Rotation (440)

456

IX.2 TRANSFORMING AXES

GRAPHICS GEMS I Edited by ANDREW S. GLASSNER 456

IX.2IX.2IX.2IX.2IX.2
TTTTTRANSFORMING AXESRANSFORMING AXESRANSFORMING AXESRANSFORMING AXESRANSFORMING AXES

Kelvin ThompsonThe University of Texas at Austin

Problem StatementProblem StatementProblem StatementProblem StatementProblem Statement
Sometimes an interactive 3D application needs to know roughly which
way a set of transformed coordinate axes are pointing on the screen. For
example, the application may want to know if the x-axis of a given
modeling space is pointing into or out of the screen after the axis
undergoes a sequence of modeling and viewing transforms; this could
help the application understand the orientation of an object on the
screen. Even if the application knows only the net transform for the
object, it can still calculate the approximate orientation of the object’s
axes quite efficiently.

SolutionSolutionSolutionSolutionSolution
Given an arbitrary 4 × 4 matrix A = [aij] that transforms 3D points in
an “input” space to 3D points in an “output” screen space in the usual
manner,

xin y in zin 1[]
a11 a12 a13 a14

a21 a22 a23 a24

a31 a32 a33 a34

a41 a42 a43 a44



















 = α β γ ω[] (1)

xout =

α
ω

, yout =
β
ω

, zout =
γ
ω

. (2)

457

IX.2 TRANSFORMING AXES

GRAPHICS GEMS I Edited by ANDREW S. GLASSNER 457

Table 1. General Direction Ratios.

Figure 1 shows six “general directions” in screen space (“toward” and
“away” are directly in and out of the screen). To determine the general
direction of an “input” axis after it is transformed to the screen space,
we check the sign of the appropriate ratio in Tables 1 or 2. Generally we
use Table 1; however, if ai4 is zero for some entry in Table 1 (i ≠ 4,
since a44 should never be zero), then we use the corresponding entry in
Table 2.

If the “output” space is the usual left-handed eye space, with the eye
looking toward positive z, sign conventions are as follows: if a given
quotient is negative, the transformed axis is pointing in the upper direc-
tion indicated at the top of the column; if the quotient is positive, the axis
points toward the lower direction. (For example, if a quotient in the
middle column is negative, then the corresponding axis is pointing down.)

Figure 1. General directions.

458

IX.2 TRANSFORMING AXES

GRAPHICS GEMS I Edited by ANDREW S. GLASSNER 458

If we subtract the transformed origin from the transformed x vector, we
get

xa13 + a43

xa14 + a44 .

xa13 + a43

xa14 + a44 .
 −

a43

a44

. (3)

Table 2. Zero-Case Direction Ratios.

On the other hand, if the “output” space is a right-handed eye space,
with the eye looking toward negative z, the positions of the “toward” and
“away” labels need to be swapped (or the sign tests in the first column
reversed).

We don’t have to do any floating-point division to determine the signs
of the ratios. The sign of each quotient can be determined by the XOR of
the sign bits of the dividend and divisor.

ProofProofProofProofProof
Let us take the case of whether the x-axis points toward or away from the
viewer. All vectors along the x-axis take the form [x 0 0 1], and we will
want to look at the z coordinate of the transformed vector. Doing the
arithmetic from Eqs. (1) and (2), we see that the transformed z coordi-
nate will be

If we now let x approach positive infinity, and apply L’Hospital’s rule

Similarly, the transformed origin [0 0 0 1], has a z coordinate of a43 / a44 .

459

IX.2 TRANSFORMING AXES

GRAPHICS GEMS I Edited by ANDREW S. GLASSNER 459

a13

a14

 −
a43

a44

 =
a13a44 − a43a14

a14a44

,

where appropriate, this becomes

which is exactly the upper-left entry in Table 1. If this ratio is negative,
the transformed x-axis points in the negative z direction; if it is positive,
it points toward positive z.

Next, if a14 is zero, we simply use x = 1 in Eq. 3 and get al3/a44,
which agrees with Table 2. Derivations of other entries in the table are
similar.

460

IX.3 FAST MATRIX MULTIPLICATION

GRAPHICS GEMS I Edited by ANDREW S. GLASSNER 460

m_out[0][0] ← m1[0][0] ∗ m2[0][0]+
m1[0][1] ∗ m2[1][0]+
m1[0][2] ∗ m2[2][0]+
m1[0][3] ∗ m2[3][0].

IX.3IX.3IX.3IX.3IX.3
FFFFFAST MATRIXAST MATRIXAST MATRIXAST MATRIXAST MATRIXMMMMMULTIPLICATIONULTIPLICATIONULTIPLICATIONULTIPLICATIONULTIPLICATION

Kelvin ThompsonThe University of Texas at Austin

Problem StatementProblem StatementProblem StatementProblem StatementProblem Statement
Speed up routines that multiply matrices, perhaps at the expense of code
size and readability.

SolutionsSolutionsSolutionsSolutionsSolutions
First, remove unnecessary floating point operations. If you are multiply-
ing matrices that you know contain 1’s or 0’s in certain positions, remove
multiplication and addition by the appropriate terms. It may be useful to
write special routines for multiplying affine and linear matrices—see
“Matrix Identities” in this volume.

Second, unwind loops. Routines like V3MatMu1 in the Vector C Library
are compact, but they waste unnecessary time updating loop variables
and performing array look-ups. Such programs run faster when written as
a strict sequence of operations with constant-valued indices into arrays.
For example, pseudo-code to multiply two general 4 × 4 matrices would
contain a sequence of sixteen assignments similar to

461

IX.3 FAST MATRIX MULTIPLICATION

GRAPHICS GEMS I Edited by ANDREW S. GLASSNER 461

(It may not be necessary to unwind loops if you know your compiler is
smart enough to unwind or vectorize loops for you.)

Finally, when programming in C, use register pointers (see “How to
Use C Register Variables to Point to 2D Arrays” in this volume); many C
compilers won’t use registers unless you explicitly tell them to do so.

462

IX.4 A VIRTUAL TRACKBALL

GRAPHICS GEMS I Edited by ANDREW S. GLASSNER 462

IX.4IX.4IX.4IX.4IX.4
AAAAA VIRTUAL TRACKBALL VIRTUAL TRACKBALL VIRTUAL TRACKBALL VIRTUAL TRACKBALL VIRTUAL TRACKBALL

Jeff HultquistNASA Ames Research CenterMoffett Field, California

This simple code is the heart of a virtual manipulator that mimics a
trackball. Using the mouse, a user can select any point on the trackball
and rotate the entire scene about the center of rotation. The variables
oldMouse and newMouse hold the successive positions of the cursor in
object coordinates. The trackball is centered at point C and has radius r
(see Fig. 1).

Figure 1.

463

IX.4 A VIRTUAL TRACKBALL

GRAPHICS GEMS I Edited by ANDREW S. GLASSNER 463

ray0 ← [[oldMouse.x, oldMouse.y, 0], [0,0,l]];
ray1 ← [[newMouse.x, newMouse.y, 0], [0,0,l]];

 P0 ← intersectSphere(ray0, C, r);

 P1 ← intersectSphere(rayl, C, r);
V0 ← (P0 – C)/(P0 – C);
V1 ← (Pl – C)/(P1 – C);
A ← V0 × V1;
α ← arcsin (A)
if (V0 ⋅ V1 < 0)

then α ← α + π /2;
rotateAboutAxis(A, α);

464

IX.5 MATRIX ORTHOGONALIZATION

GRAPHICS GEMS I Edited by ANDREW S. GLASSNER 464

IX.5IX.5IX.5IX.5IX.5
MMMMMATRIXATRIXATRIXATRIXATRIXOOOOORTHOGONALIZATIONRTHOGONALIZATIONRTHOGONALIZATIONRTHOGONALIZATIONRTHOGONALIZATION

Eric RaibleCampbell , California

It is often the case when successively composing rotations that the
resulting matrix becomes nonorthogonal. This leads to skewing and
scaling effects. Although there are several common algorithms to re-
orthogonalize matrices (for example, Gram Schmidt), I prefer the follow-
ing.

We reorthogonalize the matrix R by computing an approximation to a
correction matrix C = (RTR)–1/2 , which, if premultiplied by R, would
give an orthogonal matrix. (To see that RC is indeed orthogonal, it
suffices to show that (RC)

T = (RC)
−1 , since the inverse of an orthogonal

matrix is also its transpose. This is easily done.)
It is difficult to find C directly, so we instead find an approximation to

C by computing the matrix analog to Taylor Series expansion of
(1 + x)

−1 2 about x = 0.
Since R is close to orthogonal, RTR will be close to the identity matrix,

and X = RTR – I will be close to the zero matrix. Thus, we can
compute C by doing the Taylor expansion of C = (RTR)–1/2

= [I + (RTR – I)]–1/2 = [I + X]–1/2 about X = 0I, to give us

C = I – (1/2)X + (3/8)X2 – (5/16)X3 + 0(X4).
There are two ways of increasing the accuracy of this approximation.

The first is to increase the number of terms (the next ones are 35/128,
–63/256, 231/1024, and –429/2048). The second is to repeat this
procedure (and using only the first two or three terms). Exactly which
approach to take depends on how the loop that evaluates C is coded, and
how far the original matrix is from orthogonal. A little experimentation
should determine the best approach for your application.

See Appendix 2 for C Implementation (765)

465

 IX.6 ROTATION TOOLS

GRAPHICS GEMS I Edited by ANDREW S. GLASSNER 465

IX.6IX.6IX.6IX.6IX.6
RRRRROTATION TOOLSOTATION TOOLSOTATION TOOLSOTATION TOOLSOTATION TOOLS

Michael E. PiqueResearch Institute of Scripps ClinicLa Jolla, California

Here are some facts and techniques you’ll want to have at hand when
working with rotations. This section uses the following conventions: row
vectors go on the left and are post-multiplied by matrices on the right;
points are row vectors.

True for any 3 × 3 rotation matrix R:

• R is normalized: the squares of the elements in any row or column
sum to unity, or +1.

• R is orthogonal: the dot product (sum of the products of correspond-
ing elements) of any pair of rows is zero, likewise the dot product of
any pair of columns.

• The rows of R represent the coordinates in the original space of unit
vectors along the coordinate axes of the rotated space.

• The columns of R represent the coordinates in the rotated space of
unit vectors along the coordinate axes of the original space.

• The determinant of R is +1. (Reflection matrices have determinants of
–1.)

466

 IX.6 ROTATION TOOLS

GRAPHICS GEMS I Edited by ANDREW S. GLASSNER 466

Converting between Matrix andConverting between Matrix andConverting between Matrix andConverting between Matrix andConverting between Matrix andAxis-Amount RepresentationsAxis-Amount RepresentationsAxis-Amount RepresentationsAxis-Amount RepresentationsAxis-Amount Representations
The only rotation matrix generating formula you’ll ever need: the matrix
that rotates about an arbitrary axis through the origin is

R = rotation_about_axis_by_angle(axis, θ)

=

tx 2 + c txy + sz txz − sy

txy − sz ty 2 + c tyz + sx

txz + sy tyz − sx tz 2 + c



















,

where x, y, and z are the components of a unit vector (use V3Normal-
ize function) along the axis, θ is the angular amount of rotation, and
s = sinθ, c = cosθ, t = 1 – cosθ. See Rogers and Adams (1976), or any
classical mechanics text for the derivation. See Barry et al. (1971) for
hints on doing this using only integer arithmetic.

When the rotation angle is small, approximate sin θ by θ (in radians,
don’t forget) and cos θ by 1:

R =

1 zθ −yθ
zθ 1 xθ
yθ −xθ 1
















.

One way of interpreting this approximation is as the product of succes-
sive rotations about the three coordinate axes, with angles small enough
that the order in which the rotations are applied makes no significant
difference. The vector sum of these three increments implicitly defines an
axis and magnitude of rotation.

To find the axis and angle of a rotation, given the matrix, find θ from

 cosθ = (R[0][0] + R[1][1] + R[2][2] – 1)/2;

467

 IX.6 ROTATION TOOLS

GRAPHICS GEMS I Edited by ANDREW S. GLASSNER 467

then providing sinθ ≠ 0,

axis.x =

R 1[] 2[] − R 2[] 1[]
2 sin θ

axis.y =

R 2[] 0[] − R 0[] 2[]
2 sin θ

axis.z =

R 0[] 1[] − R 1[] 0[]
2 sin θ

.

See Pars (1965). There is a unique solution except that a negative
rotation amount about a reversed axis yields the same matrix, as of
course do multiples of 360° added to the amount. The axis is undefined
when the angular amount is zero or a multiple of 360°.

NestingNestingNestingNestingNesting
The effect of multiple rotations is cumulative, and dependent on their
order of application. After a rotation, A, is applied to an object the object
is considered rotated by A from its original (unspecified) orientation. If
the object is subjected to a second rotation B whose direction (axis)
turns with rotation A, then rotation B is nested within rotation A. The
object’s final position and orientation then depends on both rotations.
The instantaneous relation between any two spaces can always be com-
pletely described by a single translation combined with a single rotation.
The translation part is the amount by which the origin of B is moved
from the origin of A: the coordinates of B’s origin in space A, repre-
sented here by the vector bTa, in which the subscript letters indicate the
names of the spaces. The rotation part of the relation is bRa, the rotation
of space B with respect to space A.

Nesting space G within space F by rotation gRf means calculating the
relationship gRa between space G and a reference space A, sometimes
called composition or concatenation. We always define the relation in
the parent space’s coordinate system.

468

 IX.6 ROTATION TOOLS

GRAPHICS GEMS I Edited by ANDREW S. GLASSNER 468

To nest space G inside space F, describe the orientation of F with
respect to some reference space A by the 3 × 3 matrix fRa and the
orientation of G with respect to F by gRf . Describe the origin point of F
in space A by the 1 × 3 row translation vector fTa and the origin point
(pivot point) of G in F by gTf. Then the orientation of G with respect to
A is gRa = (gRf)(fRa), a matrix times a matrix, and the origin of G with
respect to A is gTa = (fTa) + (gTf)(f Ra), a vector plus a vector.

Letting Rl, R2, and R3 be any transformations and the symbol ‘s’
represent the nesting operation, nesting is associative: (R1sR2)sR3 =
R1s(R2sR2). When calculating multilevel nesting, this permits evaluat-
ing intermediate results in the order that allows the most reuse of
relations common to several nesting chains. Note that the innermost
space is on the left of the list and the outermost on the right, when
following the post-multiplication convention. Mnemonic: the innermost
space is closest to the point being transformed, the vector that will go at
the left of the concatenated matrices.

Transformation InversesTransformation InversesTransformation InversesTransformation InversesTransformation Inverses
Given the rotation and translation relationship of space C with respect to
space B, cRb and cTb, we can write the inverse relationship, that of B
with respect to C , as: bRc = (cRb)

–1 = (cRb)
T and bTc = (cTb)-1 =

–(bTc)(bRc). It is convenient that the inverse of the rotation component
is just its transpose.

To handle inverses mixed with nesting, (R1sR2)–1 = R2 –1sR1–1;
and in general (R1sR2s ⋅ ⋅ ⋅ Rn)–1 = Rn–1s ⋅ ⋅ ⋅ R2–1sR1–1.

Iteration: Applying and Accumulating ChangesIteration: Applying and Accumulating ChangesIteration: Applying and Accumulating ChangesIteration: Applying and Accumulating ChangesIteration: Applying and Accumulating Changesto a Matrixto a Matrixto a Matrixto a Matrixto a Matrix
A change matrix specifies the direction and amount of a change to a
transformation matrix: M←MC. When applied repeatedly, numerical
error accumulates and the matrix must be reconclitioned every dozen or
so updates. Tountas and Katz (1971) renormalize the matrix at the end of

469

 IX.6 ROTATION TOOLS

GRAPHICS GEMS I Edited by ANDREW S. GLASSNER 469

each cycle or by renormalizing the rows and columns in alternate cycles.
Since the rows and columns are almost unit vectors, they approximate
the normalization factor 1/ x2 + y2 + z2 by the faster 1/ (0. 5 +
0.5(x2 + y2 + z2)).

When the user ’s hand moves a control device, the image of the object
controlled by the device should move in the same direction. To achieve
such kinesthetic correspondence, one must compensate for the effects of
nesting. For example, a simple y mouse-motion or z-axis dial rotation
would become translations and rotations about arbitrary 3D directions
after the viewing direction compensation. See Britton et al. (1978) and
Pique (1986) for details and worked examples.

In brief, store the device increment (mouse movement, dial change, . . .)
into a 3D vector motion and rotate it backwards by the current viewing
matrix before applying it to the object’s old modelling matrix to yield the
new modelling matrix:

Note motion is the V3Length function. This is the scalar
amount of the motion: the translation distance or the rotation angle.

modelling_translation ← (motion)(viewing_rotationT) + modelling_translation
modelling_rotation ← renormalize_matrix((modelling_rotation) rotation_about_axis_

by_angle((motion)(viewing_rotationT), |motion|))

470

IX.7 MATRIX INVERSION

GRAPHICS GEMS I Edited by ANDREW S. GLASSNER 470

IX.7IX.7IX.7IX.7IX.7
MMMMMATRIX INVERSIONATRIX INVERSIONATRIX INVERSIONATRIX INVERSIONATRIX INVERSION

Richard CarlingIndependent Graphics ConsultantBedford, Massachusetts

This Gem demonstrates how to calculate the inverse and adjoint of a
4-by-4 matrix.

Computation of the inverse of a matrix M(M–1) is an important step in
many image synthesis algorithms. Typically the projection of objects from
world space to image space is accomplished with a transformation ma-
trix. The inverse of this projection may be represented by the inverse of
the transformation matrix.

The inverse matrix is used freely in computer graphics papers and
published algorithms, but routines for its calculation are usually left to
the reader. There are several methods for calculating the inverse of a
matrix; the one presented here is one of the easiest to follow, though it is
not the fastest. If the inverse of a matrix larger than 4-by-4 is needed or
if speed is critical, other methods of calculating the inverse may be more
suitable.

A common use of the inverse matrix is in texture mapping applications,
where screen coordinates need to be mapped back onto the surface of an
object in world space. The inverse is also useful in ray tracing, when one
wishes to intersect a parametrically defined object. Rather than actually
transform the object from it’s parametric space into world space, the ray
is inverse-transformed into the object’s canonical space, where the inter-
section is typically easier and faster. One example of this technique is
described in Blinn (1989).

The inverse is also useful for transforming from one device space to
another. For example, the shadow map technique of Williams (1978)
requires transforming a point in screen space to a 3D coordinate system

471

IX.7 MATRIX INVERSION

GRAPHICS GEMS I Edited by ANDREW S. GLASSNER 471

defined by the light source. In this algorithm, a depth buffer is con-
structed by rendering the scene from the point of view of the light source.
To determine if a particular point is in shadow, one finds its line of sight
in the coordinate system of the light source, and looks up (from the depth
buffer) the nearest surface visible from the light in that direction. If the
point in question is farther from the light than the stored object, it is
blocked by that object and is in shadow. This calculation requires taking
a screen space coordinate and transforming it first into world space, and
then into the space of the light source for look-up in the depth buffer.

The adjoint matrix (M*) is similar to the inverse, except for a scaling
factor. In particular, M* = (1/det(M))M–1 (each element ad ij =
invij/det), where det is the determinant of the original matrix. If the
matrix is singular, then det = 0, so there is no inverse matrix. However,
computing the adjoint does not require the determinant. The two main
advantages of the adjoint are that it always exists, and that it is easier and
faster to calculate than the inverse.

The distinction between the adjoint and the inverse may be demon-
strated by observing the transformation of a vector. Suppose one calcu-
lates a vector V’ by transforming an input V by a matrix M: V’ = VM. We
can post-multiply V’ by M–1 to recover V: V” = V’M–1 = V. Suppose
instead we use the adjoint, then V” = V’M* = VMM* =
VM(1/det(M))M–1 = (1/det(M))V. Thus, using the adjoint rather than
the inverse gets us back to the original input vector, but it has been
scaled by 1/det(M). A common use for the adjoint is for transforming
surface normals, which typically must be rescaled to unit length after
transformation, anyway, so there is no penalty for this scaling created by
use of the adjoint.

See Appendix 2 for C Implementation (766)

472

IX.8 MATRICES AND TRANSFORMATIONS

GRAPHICS GEMS I Edited by ANDREW S. GLASSNER 472

IX.8IX.8IX.8IX.8IX.8
MMMMMATRICES ANDATRICES ANDATRICES ANDATRICES ANDATRICES ANDTTTTTRANSFORMATIONSRANSFORMATIONSRANSFORMATIONSRANSFORMATIONSRANSFORMATIONS

Ronald GoldmanUniversity of Waterloo,Waterloo, Ontario, Canada

People often struggle to find the 4 × 4 matrices for affine or projective
transformations that are not relative to the origin or the coordinate axes,
but rather relative to some arbitrary points or lines. Often they proceed
by transforming the problem to the origin and coordinate axes, finding
the transformation matrix relative to this canonical position, and then
transforming back to an arbitrary location. All this extra work is unneces-
sary. Here we describe the 4 × 4 matrices for the following transforma-
tions:

• Translation

• Rotation

• Mirror Image

• Scaling
—Uniform
—Nonuniform

• Projections
—Orthogonal
—Parallel
—Perspective

Each of these transformations in any arbitrary position can be defined
in terms of three basic matrices: the tensor product, the cross product,
and the identity matrix. We include the definitions of these basic building
blocks along with the affine and projective transformation matrices.

473

IX.8 MATRICES AND TRANSFORMATIONS

GRAPHICS GEMS I Edited by ANDREW S. GLASSNER 473

NotationNotationNotationNotationNotation
a. Identity

b. Tensor Product

v ⊗ w =
v1w1 v1w2 v1w3

v2w1 v2w2 v2w3

v3w1 v3w2 v3w3

 =
v1

v2

v3















 ∗ w1 w2 w3()

c. Cross Product

ObservationsObservationsObservationsObservationsObservations
a. u*I = u

b. u*(v ⊗ w) = (u ⋅ v)w

c. u*(wx_) = wxu

TranslationTranslationTranslationTranslationTranslation
 w = translation vector

I =
1 0 1
0 1 0
0 0 1

wx_ =
0 w3 –w2

–w3 0 w1

w2 –w1 0

T w() =

I 0
w 1

474

IX.8 MATRICES AND TRANSFORMATIONS

GRAPHICS GEMS I Edited by ANDREW S. GLASSNER 474

RotationRotationRotationRotationRotation
L = Axis line

w = Unit vector parallel to L
Q = Point on L

Θ = Angle of rotation
R (w, Θ) = (cos Θ) I + (1 – cos Θ)w ⊗ w + (sin Θ)wx_

R w,Θ ,Q() =

R w,Θ() 0
Q – Q * R w,Θ() 1

Mirror ImageMirror ImageMirror ImageMirror ImageMirror Image
S = Mirror plane

n = Unit vector perpendicular to S
Q = Point on S

M n,Q() =

I − 2 n ⊗ n() 0
2 Q ⋅ n()n 1

ScalingScalingScalingScalingScaling
 Q = Scaling origin
 c = Scaling factor
 w = Unit vector parallel to scaling direction

a. Uniform scaling

S(Q,c) =

cI 0
(1 – c)Q 1

475

IX.8 MATRICES AND TRANSFORMATIONS

GRAPHICS GEMS I Edited by ANDREW S. GLASSNER 475

b. Nonuniform scaling

ProjectionProjectionProjectionProjectionProjection
S = Image plane

n = Unit vector perpendicular to S

Q = Point on S

w = Unit vector parallel to projection direction

R = Perspective point

a. Orthogonal projection

b. Parallel projection

c. Perspective projection

Persp n,Q, R() =

R – Q() ⋅ n[]I – n ⊗ R – t n

Q ⋅ n()R R ⋅ n

S(Q,c, w) =

I – (1 - c)(w ⊗ w) 0
(1 – c)(Q ⋅ w)w 1

Pproj n,Q, w() =

I – n ⊗ w()/ w ⋅ n() 0
Q ⋅ n()/ w ⋅ n()[]w 1

Oproj n,Q() = I – n ⊗ n 0

Q ⋅ n()n 1

476

IX.9 EFFICIENT POST-CONCATENATION OF TRANSFORMATION MATRICES

GRAPHICS GEMS I Edited by ANDREW S. GLASSNER 476

IX.9IX.9IX.9IX.9IX.9EEEEEFFICIENTFFICIENTFFICIENTFFICIENTFFICIENTPPPPPOST-CONCATENTION OFOST-CONCATENTION OFOST-CONCATENTION OFOST-CONCATENTION OFOST-CONCATENTION OFTTTTTRANSFORMATION MATRICESRANSFORMATION MATRICESRANSFORMATION MATRICESRANSFORMATION MATRICESRANSFORMATION MATRICES
Joseph M. CychoszPurdue UniversityW. Lafayette, Indiana

IntroductionIntroductionIntroductionIntroductionIntroduction
Presented in this paper are the computations required for efficient, direct,
post-concatenation of standard 4 × 4 transformation matrices. The use of
post-concatenated transformation matrices has a wide variety of applica-
tions, notably in computer graphics. This paper compares the costs of
computing the resulting transformation through direct post-concatena-
tion, versus using a standard 4 × 4 matrix multiply.

Post-concatenation of transformation matrices is used extensively in
computer graphics, as well as other applications that require the hierar-
chical transformation of points, lines, and surfaces in three-space. A
detailed explanation of the use of concatenated transformation matrices
can be found in several sources, including Foley and Van Dam (1982) and
Gasson (1983). Two examples of their use are the viewing of hierarchi-
cally constructed models, and the computation of end effector position
and orientation of robotic arms. Shown in Fig. 1 is an example of a 3D
transformation resulting from the concatenation of several individual
transformation matrices that translate the vertical bar to the origin, rotate
it 90° counterclockwise, and then translate it back.

Typical implementations of the post-concatenation computation first
construct the transformation matrix, then form the product of the trans-
formation matrix with the current transformation matrix, and finally copy
the resulting matrix onto the current transformation matrix, thereby
yielding a new current transformation matrix. Figure 2 depicts the coded

477

IX.9 EFFICIENT POST-CONCATENATION OF TRANSFORMATION MATRICES

GRAPHICS GEMS I Edited by ANDREW S. GLASSNER 477

 Figure 1. Example use of concatenated transformation matrices.

implementation of a rotation about the x-axis using this approach. This
type of implementation not only requires a full matrix multiply but also
extra computation in forming the transformation and in copying the
resulting matrix. A more efficient method would perform the post-con-
catenation directly on the current transformation matrix.

function rotx (M,a)
M: matrix4; Current transformation matrix
a: real; Angle of rotation about the x axis
begin

T: matrix4 ← I; ident (T)
T[1][1] = T[2][2] = cos (a);
T[1][2] = sin (a);
T[2][1] = –T[1][2];
R: matrix4 ← M × T; mmult (R, M, T)
M ← R mcopy (M, R)
end

Figure 2. Typical implementation of a transformation operation.

478

IX.9 EFFICIENT POST-CONCATENATION OF TRANSFORMATION MATRICES

GRAPHICS GEMS I Edited by ANDREW S. GLASSNER 478

Direct Post-ConcatenationDirect Post-ConcatenationDirect Post-ConcatenationDirect Post-ConcatenationDirect Post-Concatenation
Presented in this section are the computations required for direct post-
concatenation of standard transformations onto the current transforma-
tion matrix. By relying on the sparseness of the transformation matrix
(that is, the number of zero and one elements in the matrix), direct
post-concatenation can be performed efficiently by computing only the
elements of the current transformation matrix that actually change. In the
following examples the transformation matrix is shown on the right, while
the appropriate pseudo-code fragment for post-concatenating the matrix
to the current transformation is shown on the left. The current transfor-
mation matrix, represented by M in the code fragments, is not shown. It
is assumed to be a general 4 3 4 matrix (that is, matrix4).

x-axis rotation:

c: real ← cos (a); s: real ← sin (a):
for i: integer ← 0, i ← i + 1 while i < 4 do

t: real ← M[i][1];
M[i][1] ← tc – M[i][2] s;
M[i][2] ← ts + M[i][2] c,
endloop;

y-axis rotation
c: real ← cos (a); s: real ← sin (a);
for i: integer ← 0. i ← i + 1 while i < 4 do

t: real ← M[i][0];
M[i][0] ← tc + M[i][2] s;
M[i][2] ← M[i][2] c–ts;
endloop;

z-axis rotation

c: real ← cos (a); s: real ← sin (a);
for i: integer ← 0, i ← i + 1 while i < 4 do

t: real ← M[i][0];
M[i][0] ← tc + M[i][1] s;
M[i][1] ← ts—M[i][1] c;
endloop;

Rx(a) =
1 0 0 0
0 cos(a) sin(a) 0
0 –sin(a) cos(a) 0
0 0 0 1

Ry(a) =
cos(a) 0 –sin(a) 0

0 1 0 0
sin(a) 0 cos(a) 0

0 0 0 1

Rz(a) =
cos(a) sin(a) 0 0

–sin(a) cos(a) 0 0
0 0 1 0
0 0 0 1

479

IX.9 EFFICIENT POST-CONCATENATION OF TRANSFORMATION MATRICES

GRAPHICS GEMS I Edited by ANDREW S. GLASSNER 479

scaling:

for i: integer ← 0, i ← i + 1 while i < 4 do
M[i][0] ← M[i][0] sx;
M[i][1] ← M[i][1] sy;
M[i][2] ← M[i][2] sz;
endloop;

translation:

for i: integer ← 0, i ← i + 1 while i < 4 do

M[i][0] ← M[i][0] + M[i][3] tx;
M[i][1] ← M[i][1] + M[i][3] ty;
M[i][2] ← M[i][2] + M[i][3] tz;
endloop;

perspective:
(along z-axis, image plane at origin, eye at z = d)

f: real ← –1/d;
for i: integer ← 0, i ← i + 1 while i < 4 do

M[i][3] ← M[i][3] + M[i][2] f;
M[i][2] ← 0;
endloop

Table 1. Operational Cost Comparison.

Sxyz(sx ,sy ,sz) =
sx 0 0 0
0 sy 0 0
0 0 sz 0
0 0 0 1

Txyz(tx ,ty ,tz) =
1 0 0 0
0 1 0 0
0 0 1 0
tx ty tz 1

Pz(d) =
1 0 0 0
0 1 0 0
0 0 0 –1/d
0 0 0 1

480

IX.9 EFFICIENT POST-CONCATENATION OF TRANSFORMATION MATRICES

GRAPHICS GEMS I Edited by ANDREW S. GLASSNER 480

Table 2. Computational Comparison for Various CPUs.

481

IX.9 EFFICIENT POST-CONCATENATION OF TRANSFORMATION MATRICES

GRAPHICS GEMS I Edited by ANDREW S. GLASSNER 481

Computational Cost ComparisonComputational Cost ComparisonComputational Cost ComparisonComputational Cost ComparisonComputational Cost Comparison
The direct methods require considerably less computation than a stan-
dard 4 × 4 matrix multiply. Table 1 compares the operational costs of
direct post-concatenation with that of standard matrix multiplication.
Table 2 compares the computational costs for each of the transformations
for a variety of computers. Each type of transformation has three columns
for each of the CPUs. The first column shows the CPU time in seconds
required using a standard 4 × 4 matrix multiply to perform the concate-
nation; the second column shows the CPU time for direct concatenation;
and the third shows the speedup of the direct approach over the standard
approach. The CPU time reported represents the time required to per-
form 10,000 concatenation operations.

See Appendix 2 for C Implementation (770)

1100
MODELING ANDTRANSFORMATIONS

485

X.1 TRANSFORMATION IDENTITIES

GRAPHICS GEMS I Edited by ANDREW S. GLASSNER 485

X.1X.1X.1X.1X.1
TTTTTRANSFORMATIONRANSFORMATIONRANSFORMATIONRANSFORMATIONRANSFORMATIONIIIIIDENTITIESDENTITIESDENTITIESDENTITIESDENTITIES

Ned GreeneApple ComputerCupertino, California

IntroductionIntroductionIntroductionIntroductionIntroduction
3D graphics systems usually perform coordinate transformations with
4 × 4 matrices created by concatenating primitive geometric transforma-
tions such as rotation and translation. Algebraic manipulation of transfor-
mation expressions is crucial to a variety of problems that arise in
modeling and motion specification. Often it is necessary, for example, to
reorder transformations or to find equivalent parameter sets for different
representations of the same transformation. Some problems of this type
are simple and intuitive, but often this is not the case, since solution may
involve algebraic manipulation of 3 × 3 or 4 × 4 matrices having coeffi-
cients that are trigonometric expressions. This collection of identities is
intended to make working with transformation expressions easier and
more intuitive.

NotationNotationNotationNotationNotation
Primitive geometric transformations are specified as follows:

Tu,v,w(A,B,C) translate A in u, B in v, C in w
(subscripts u, v, w encompass the six possible
combinations of x, y, and z)

Ru(D) rotate by angle D about axis u

486

X.1 TRANSFORMATION IDENTITIES

GRAPHICS GEMS I Edited by ANDREW S. GLASSNER 486

Su,v,w(E,F,G) scale u axis by E, v axis by F, w axis by G
(subscripts u, v, w encompass t.he six possible
combinations of x, y, and z)

Ku, v(J) skew u axis relative to v axis by angle J,
– π /2 < J < π /2

P(θ,N,F) perspective transformation where θ is the vertical view
angle (0 < θ < π), N is the z coordinate of the near
clipping plane, and F is the z coordinate of the far
clipping plane.

In keeping with the usual conventions in computer graphics, the xyz
coordinate frame is right-handed, direction of rotations is established by
the right-hand rule, and points are represented by row matrices. Thus,
mapping a point from a local to a global coordinate system is done as
follows:

[xGyGzGwG] = [xGyGzL1]|M|,

where M is a concatenation of transformation matrices. 4 × 4 matrix
expressions for the above primitive transformations are given in the
appendix.

Transformation IdentitiesTransformation IdentitiesTransformation IdentitiesTransformation IdentitiesTransformation Identities
Throughout this paper u, v, w, are arbitrary distinct coordinate axes. For
identities that depend on the handedness of the coordinate frame, two
versions are given with the right-hand version labelled (#R) and the
left-hand version labelled (#L). Since we are assuming that the xyz axes
are a right-handed coordinate frame, u, v, w is a right-handed coordinate
frame for (u = x, v = y, w = z), (u = y, v = z, w = x), and (u = z,
v = x, w = y). The three other combinations of axes, (u = z, v = y,
w = x), (u = y, v = x, w = z), and (u = x, = z, w = y) are left-
handed coordinate frames.

487

X.1 TRANSFORMATION IDENTITIES

GRAPHICS GEMS I Edited by ANDREW S. GLASSNER 487

Reversing the order of translation and scaling is simple and intuitive:

Tu,v,w(A,B,C)Su,v,w(D,E,F) = Su,v,w(D,E,F)Tu,v,w(AD,BE,DF)
(1)

Su,v,w(A,B,C)Tu,v,w(D,E,F)

= Tu,v,w(D/A,E/B,F/C)Su,v,w(A,B,C),

A ≠ 0, B ≠ 0, C ≠ 0. (2)

The following rules for exchanging the order of translation and rotation
are related to formulas for rotating a 2D point:

Tu,v,w(A,B,C)Ru(D)

=Ru(D)Tu,v,w(A,B cos(D) – C sin(D), C cos(D) + B sin(D))

(3R)

Tu,v,w(A,B,C)Ru(D)

= Ru(D)Tu,v,w(A,B cos(D) + C sin(D) , C cos(D) – B sin(D))
(3L)

Ru(A)Tu,v,w(B,C,D)

= Tu,v,w(B,C cos(A) + D sin(A), D cos(A) – C sin(A))Ru(A)

(4R)

Ru(A)Tu,v,w(B,C, D)

=Tu,v,w(B,C cos(A) – D sin(A), D cos(A) + C sin(A))Ru(A).

(4L)

488

X.1 TRANSFORMATION IDENTITIES

GRAPHICS GEMS I Edited by ANDREW S. GLASSNER 488

The order of translation and skewing can be easily reversed:

Tu,v,w(A,B,C)Ku,v(D)

= Ku,v(D)Tu,v,w(A + B tan(D), B,C), – π/2 < D < π/2 (5)

Ku,v(A)Tu,v,w(B,C,D)

= Tu,v,w(B – C tan(A),C,D)Ku,v(A), – π/2 < A < π/2. (6)

 Rotation and isotropic scaling commute:

Ru(A)Sx,y,z(B, B, B) = Sx,y,z(B, B, B)Ru(A). (7)

This identity shows that even when angles are normalized to a standard
interval (say, –π to π), there are always at least two parameter sets of
rotation angles that generate the same rotation:

Ru(A) Rv(B) Rw (C) = Ru(π + A) Rv(π – B) Rw (π + C). (8)

Special cases involving rotation of π or π/2 (see also Rule 20).

Ru(π) = Su,v,w(1,–1,–1) (9)

 Ru(π)Rv(π) = Rw(π) (10)

Ru(A)Rv(π) = Rv(π)Ru(–A) (11)

 Ru(π/2)Rv(A) = Rw(–A)Ru(π/2) (12R)

 Ru(π/2)Rv(A) = Rw(A)Ru(π/2) (12L)

 Ru(–π/2)Rv(A) = Rw(A)Ru(–π/2) (13R)

 Ru(–π/2)Rv(A) = Rw(–A)Ru(–π/2) (13L)

489

X.1 TRANSFORMATION IDENTITIES

GRAPHICS GEMS I Edited by ANDREW S. GLASSNER 489

A rotation can be expressed as three skews:

 Ru(A) =Kv,w(–A/2)Kw,v(atan(sin(A)))Kv,w(–A/2),

–

π
2

< A <
π
2

(14R)

 Ru(A) = Kv,w(A/2)Kwv(–atan(sin(A)))Kv,w(A/2),

–

π
2

< A <
π
2

(14L)

A paper on image rotation by Paeth (1986) is based on this identity which
was independently discovered by Heckbert (Greene, 1983).

A rotation can also be expressed as a combination of skews and scales:

Ru(A) = Su,v,w(1,1/cos(A),cos(A))Kw,v(B)Kv,w(–A)

= Su,v,w(l,cos(A), l/cos(A))Kv,w(–B))Kw,v(A),

–

π
2

< A < π
2

 B = atan(sin(A)cos(a)) (15R)

Ru(A) = Su,v,w(1,1/cos(A), cos(A))Kw,v(–B)Kv,w(A)

 = Su,v,w(1,cos(A), 1/cos(A))Kv,w(B))Kw,v(–A),

– π

2
< A < π

2
 B = atan(sin(A)cos(A)) (15L)

Skewing and isotropic scaling commute:

Sx,y,z(A,A,A)Ku,v(B) = Ku,v(B)Sx,y,z(A,A,A). (16)

The order of skewing and anisotropic scaling can be reversed:

 Su,v,w(A,B,C,)Ku,v(D) = Ku,v(E)Su,v,w(A,B,C),

A ≠ 0, – π /2 < D < π /2

E = atan(B tan(D)/A). (17)

490

X.1 TRANSFORMATION IDENTITIES

GRAPHICS GEMS I Edited by ANDREW S. GLASSNER 490

A special case for which skewing and anisotropic scaling commute
follows:

Su,v,w (A, 1, 1)Kv,w(B) =Kv,w(B)Su,v,w(A,1,1) (18).

The following identity shows that anisotropic scaling following rotation
introduces skew:

Ru(A)Su,v,w(B,C,D)

= Kw,v(H)Kv,w(G)Su,v,w(B,E,F)Ru(A), A ≠ 0,

–

π
2

 < A <

–

π
2

Q = (C – D)/(tan(A) + cot(A))

F = C + (D – C)/(1 + tan2(A))

E = (Q(D – C)sin(A)cos(A)

+F(D sin2(A) + C cos2(A)))/F

G = –atan((C – D)/(E(tan(A) + cot(A))))

H = –atan((C – E)cos(A)/(Qcos(A) + Fsin(A)))) (19R)

For a left-handed coordinate frame, the signs of G and H are reversed.
Two special cases follow, for which rotation and anisotropic scaling

commute:

Su,v,w(A,B,C)Ru(π) = Ru(π)Su,v,w(A,B,C) (20)

 Su,v,w(A,1,1)Ru(B) = Ru(B)Su,v,w(A, 1, 1). (21)

491

X.1 TRANSFORMATION IDENTITIES

GRAPHICS GEMS I Edited by ANDREW S. GLASSNER 491

A skew can be expressed as two rotations and a scale:

Ku,v(A) = Rw(B)Su,v,w(C,D,1)Rw(E), – π /2<A< π /2

C =
tan(A) ± 4 + tan2 (A) ()/ 2

D = 1/C

B = – atan(C)

E = B + π /2 (22R)

For a left-handed coordinate frame, the sign of A is reversed.
 Identities for exchanging the order of skews follow:

Ku,v(A)Ku,w(B)

= Ku,w(B)Ku,v(A), – π /2 < A < π /2, – π /2 < B < π /2 (23)

Ku,v(A)Ku,v(B)

= Ku,v(B)Ku,v(A) = Ku,v(atan(tan(A) + tan(B))),

–

π
2

 < A <

π
2

 ,

–

π
2

 < B <

π
2

. (24)

Expressions involving perspective follow:

P(A, B, C) = P(D, B, C)Sx,y,z(E, E, 1) = Sx,y,z(E, E, 1)P(D, B, C)

E = tan(D/2)/tan(A/2), 0 < A < π , 0 < D < π , 0 < B < C.

(25)

The previous identity shows that changing camera angle is equivalent to
a 2D zoom.

DP(A, B, C) = Ss,y,z(D, D, D)P(A, BD, CD), D > 0. (26)

Matrix expressions on the two sides of the equation differ by scale factor
D, so from the standpoint of transforming homogeneous coordinates,
P(A, B, C) is equivalent to Sx,y,z(D, D, D)P(A, BD, CD).

492

X.1 TRANSFORMATION IDENTITIES

GRAPHICS GEMS I Edited by ANDREW S. GLASSNER 492

AppendixAppendixAppendixAppendixAppendix
Identities are based on the following matrix representations of primitive
transformations. We assume a right-handed coordinate frame, rotation
according to the right-hand rule, that points are represented as row
matrices, and that points rotate in a fixed coordinate frame.

translation scaling
 Tx,y,z(A,B,C) Sx,y,z(A,B,C)

1 0 0 0
0 1 0 0
0 0 1 0
A B C 1

















A 0 0 0
0 B 0 0
0 0 C 0
0 0 0 1

















1 0 0 0
0 cos A sin A 0
0 – sin A cos A 0
0 0 0 1

















cos A 0 – sin A 0
0 1 0 0

sin A 0 cos A 0
0 0 0 1

















cos A sin A 0 0
– sin A cos A 0 0

0 0 1 0
0 0 0 1

















1 0 0 0
tan A 1 0 0

0 0 1 0
0 0 0 1

















1 0 0 0
0 1 0 0

tan A 0 1 0
0 0 0 1

















1 0 0 0
0 1 0 0
0 tan A 1 0
0 0 0 1

















a 0 0 0
0 a 0 0
0 0 b 1
0 0 c 0

















x rotation y rotation
 Rx(A) Ry(A)

z rotation
Rz(A)

skew x with skew y with
respect to y respect to x

Kx,y(A) Ky,x(A)

skew x with skew z with
respect to z respect to x

Kx,z(A) Kx,z(A)

skew y with skew z with
respect to z respect to y

 Ky,z(A) Kz,y(A)

perspective
P(A,B,C)

1 tan A 0 0
0 1 0 0
0 0 1 0
0 0 0 1

















1 0 tan A 0
0 1 0 0
0 0 1 0
0 0 0 1

















1 0 0 0
0 1 tan A 0
0 0 1 0
0 0 0 1

















493

X.1 TRANSFORMATION IDENTITIES

GRAPHICS GEMS I Edited by ANDREW S. GLASSNER 493

where a = 1/tan(A/2)

b = (C + B)/(C – B)

c = 2BC/(B – C).

The perspective matrix transforms the viewing volume—the region of
the viewing pyramid between the clipping planes—to a cube extending
from –1 to 1 on each axis.

AcknowledgementsAcknowledgementsAcknowledgementsAcknowledgementsAcknowledgements
Most of the research for this paper was done at the New York Institute of
Technology in 1983. I would like to thank former colleagues Paul
Heckbert and Pat Hanrahan for their help at that time. In addition,
Paul Heckbert contributed identities (14) and (22) and reviewed this
manuscript.

See also Matrix Identities (453)

494

X.2 USING QUATERNIONS FOR CODING 3D TRANSFORMATIONS

GRAPHICS GEMS I Edited by ANDREW S. GLASSNER 494

X.2X.2X.2X.2X.2
FFFFFIXED-POINTIXED-POINTIXED-POINTIXED-POINTIXED-POINTTTTTTRIGONOMETRY WITHRIGONOMETRY WITHRIGONOMETRY WITHRIGONOMETRY WITHRIGONOMETRY WITHCCCCCORDIC ITERATIONSORDIC ITERATIONSORDIC ITERATIONSORDIC ITERATIONSORDIC ITERATIONS

Ken TurkowskiApple ComputerCupertino, California

Introduction to the Introduction to the Introduction to the Introduction to the Introduction to the CORDICCORDICCORDICCORDICCORDIC Technique Technique Technique Technique Technique
CORDIC is an acronym that stands for COordinate Rotation Dlgital
Computer, and was coined by Volder (1959). Its concepts have been
further developed to include calculation of the Discrete Fourier Trans-
form (Despain, 1974), exponential, logarithm, forward and inverse circu-
lar and hyperbolic functions, ratios and square roots (Chen, 1972; Walther,
1971), and has been applied to the anti-aliasing of lines and polygons
(Turkowski, 1982).

It is an iterative fixed-point technique that achieves approximately one
more bit of accuracy with each iteration. In spite of merely linear
convergence, the inner loop is very simple, with arithmetic that consists
only of shifts and adds, so it is competitive with (and even outperforms)
floating-point techniques with quadratic convergence, for the accuracy
typically required for two-dimensional raster graphics.

CCCCCORDICORDICORDICORDICORDIC Vector Rotation Vector Rotation Vector Rotation Vector Rotation Vector Rotation
To rotate a vector [x, y] through an angle θ , we perform the linear
transformation

′x ′y[] = x y[] cosθ sinθ
–sinθ cosθ






. (1)

495

X.2 USING QUATERNIONS FOR CODING 3D TRANSFORMATIONS

GRAPHICS GEMS I Edited by ANDREW S. GLASSNER 495

If this transformation is accomplished by a sequence of rotations θ i
 such

that

 (
θ = θ i ,

i
∑ (2)

t22
we then have

′x ′y[] = x y[] cosθ i sinθ i

−sinθ i cosθ i





i

∏ , (3)

where the product is performed on the right with increasing i. We next
factor out a cos θ i

 from the matrix:

′x ′y[] = x y[] cosθ i
i

∏
1 tanθ i

–tanθ i 1














= cosθ j

j
∏


x y[] 1 tanθ i

–tanθ i 1




i

∏ . (4)

Then we constrain the θ i
’s such that

 tan θi 6 i2
–i, (5)

where the sign is chosen for each i so that Eq. 2 is fulfilled to the desired
accuracy. We arrive at

′x ′y[] = cos(tan −1 2− j)
j

∏


 x y[] m i

1 ± i2
– i

2 – i 1




i

∏








=

1
1 + 2 –2 jj

∏








 x y[] 1 ± i2
– i

m i2
– i 1





i

∏ . (6)

496

X.2 USING QUATERNIONS FOR CODING 3D TRANSFORMATIONS

GRAPHICS GEMS I Edited by ANDREW S. GLASSNER 496

Figure 1

Eq. 6 is even simpler than it looks. The factor in braces is a constant for
a fixed number of iterations, so it may be precomputed. The matrix multi-
plications are nothing more than shifts and adds (or subtracts).

The convergence of this product is guaranteed in an interval greater
than –90° < θ < 90° when i starts out at 0, although it converges faster
when i begins at –1 (that is, the first shift is upward, the rest downward).
Typical convergence is illustrated in Fig. 1 using approximately 16 bit
registers. Note that no new bits of accuracy are added after about 16
iterations, but until that point, approximately one bit of accuracy is added
per iteration.

The scale factor converges two bits per iteration and is accurate to 16
bits after 9 iterations, so the limit value could be safely used for all
practical numbers of iterations, and has the value 0.2715717684432241
when i starts at –1, and the value 0.6072529350088813 when i starts
at 0.

The recommended algorithm is then

′x ′y[] = 0.27157177 x y[]

i = –1

N – 2

∏
1 ± i2

– i

m i2
– i 1






, (7)

or in words, start with the largest subangle and either add it or subtract
it in such a way as to bring the desired angle closer to zero, and perform the

497

X.2 USING QUATERNIONS FOR CODING 3D TRANSFORMATIONS

GRAPHICS GEMS I Edited by ANDREW S. GLASSNER 497

matrix multiplication corresponding to that subrotation with shifts and
adds (or subtracts). Continue on in the manner for the specified number
of iterations. Multiply the result by the constant scale factor.

Note that two extra bits are needed at the high end due to the scale
factor. It is difficult to assess the error due to finite word length, but
32-bit registers work well in practice. Expect to have about 2–3 LSB’s of
noise, even if 32 iterations are performed.

If the original vector was [r 0], rotation by θ performs a polar-to-rect-
angular conversion. If r is 1, it generates sines and cosines. Rectangular-
to-polar conversion can be accomplished by determining the sense of the
rotation by the sign of y at each step.

See also Trig Summary (12); Rotation Matrix Methods Sum-
mary (455); Bit Patterns for Encoding Angles (442); Fast 2D–3D
Rotation (440); Using Quaternions for Coding 3D Transforma-
tions (498)

See Appendix 2 for C Implementation (773)

498GRAPHICS GEMS I Edited by ANDREW S. GLASSNER 498

X.3 USING QUATERNIONS FOR CODING 3D TRANSFORMATIONSX.3X.3X.3X.3X.3UUUUUSING QUATERNIONSSING QUATERNIONSSING QUATERNIONSSING QUATERNIONSSING QUATERNIONSFFFFFOR CODING 3DOR CODING 3DOR CODING 3DOR CODING 3DOR CODING 3DTTTTTRANSFORMATIONSRANSFORMATIONSRANSFORMATIONSRANSFORMATIONSRANSFORMATIONS
Patrick-Gilles MaillotSun Microsystems, Inc.Mountain View, California

IntroductionIntroductionIntroductionIntroductionIntroduction
This paper presents some fundamentals of a mathematical element called
a quaternion. A theoretical study emphasizes the characteristic proper-
ties of these elements and the analogy that can be made between the
geometrical interpretation of 3D transformations and the subgroup of
unit quaternions.

We also give a practical application of quaternions for the coding of 3D
transformations and some basic algorithms for orthogonal coordinate
systems displacements.

Quaternions were introduced in 1843 by Sir William R. Hamilton. They
are useful primarily in the coding of natural movements in a 3D space, as
it has been realized in the PATK3D software (Maillot, 1983), or to
perform movements along parametric curves (Shoemake, 1985). Quater-
nions may also be used when coding transformations in Constructive
Solid Geometry (CSG) trees as used in MCAD systems or applications, as
well as when coding the hierarchical transformation trees of visualization
software, such as proposed by the PHIGS (PHIGS, 1987) standard.

This paper describes a way to code and evaluate 3D transformations
using a different method than coding 4 × 4 matrices. The initial re-
searches on the material presented here have been conducted at the
University Claude Bernard, Lyon I, France. In 1983, the graphic group
was working on formalization of scene composition and natural move-
ments coding in space. Some mathematical demonstrations presented

499GRAPHICS GEMS I Edited by ANDREW S. GLASSNER 499

X.3 USING QUATERNIONS FOR CODING 3D TRANSFORMATIONS
here are due to E. Tosan (Tosan, 1982), who is a mathematician re-
searcher of the computing sciences group.

A mathematical definition of the quaternion division ring, Q, is pro-
posed to demonstrate some of the particularities and properties of the
quaternions, as well as the definition of the operations that can be applied
to them.

The analogy that can be made between this algebraic element and the
geometry of 3D transformations will be described. This is constructed
over a subgroup of quaternions having a particular property.

Some examples of code are proposed that show two basic transforma-
tions involving only some simple algebraic computations.

Definition of the QuaternionsDefinition of the QuaternionsDefinition of the QuaternionsDefinition of the QuaternionsDefinition of the Quaternions
A quaternion is a mathematical element noted

q = c + xi + yj + zk,

with c, x, y, z: real numbers, and i, j, K: imaginary numbers. It is also
written in condensed notation:

q = c + u,

with u = xi + yj + zk called the pure part of the quaternion, and c the
real part of the quaternion.

Let us supply Q, the set of quaternions, with two operations: addition,

q + q′ = (c + c′) + (x + x′)i + (y + y′)j + (z + z′)k

and multiplication, defined on the base {1, i, j, k}:

i2 = j2 = k2 = –1

ij = k, ji = –k; jk = i, kj = –i; ki = j, ik = –j.

500GRAPHICS GEMS I Edited by ANDREW S. GLASSNER 500

X.3 USING QUATERNIONS FOR CODING 3D TRANSFORMATIONS
If we develop the multiplication, we obtain:

qq′ = (c + xi + yj + zk)(c′ + x′i + y′j + z′k)

 = (cc′ – xx′ – yy′ – zz′) + (yz′ – y′z + cx′ + c′x)i

 + (zx′ – z′x + cy′ + c′y) j + (xy′ – x′y + cz′ + c′z)k.

Or, if we use the condensed notation,

 qq′ = (c + u)(c′ + u′)

= (cc′ – u ⋅ u′) + (u × u′ + 〈cu′〉 + 〈c′u〉),

with

 u ⋅ u′ = xx′ + yy′ + zz′: inner product.

 〈cu〉 = cxi + cyj + czk

 u × u′ = (yz′ – zy′, zx′ – xz′, xy′ – yz′): cross product.

NotesNotesNotesNotesNotes
• If we write u = sN and ú = ś N, with s and ś being real numbers,

and N = (Nx, Ny, Nz) a unit vector of R3, so that |N|2 = 1, we find the
product of complex numbers, with N instead of the imaginary num-
ber i.

Then

 qq′ = (c + sN)(c′ + s′N)

= (cc′ – ss′N ⋅ N) + (N × N + 〈cs′N〉 + 〈c′sN〉)

= (cc′ – s′s) + 〈(cs′ + c′s)N〉.

501GRAPHICS GEMS I Edited by ANDREW S. GLASSNER 501

X.3 USING QUATERNIONS FOR CODING 3D TRANSFORMATIONS
• If we write q = q′ = N, or c = c′ = 0 and s = s′ = 1, we finally find

N2 = –ss′N ⋅ N = –1.

Properties of the QuaternionsProperties of the QuaternionsProperties of the QuaternionsProperties of the QuaternionsProperties of the Quaternions
The addition of quaternions has an identity element,

0 = 0 + 0i + 0j + 0k,

and an inverse element,

–q = – c – xi – yj – zk.

The multiplication of quaternions has an identity element,

1 = 1 + 0i + 0j + 0k.

The quaternions have some conjugate elements,

q = c + u;
 q = c – u.

It is possible to define a magnitude for q by applying the hermitian
inner product of q into q :

q q = (c2 + u ⋅ u) + (u × u – 〈cu〉 + 〈cu〉)

 = c2 + x2 + y2 + z2

 = q q = |q|2, magnitude of q.

The quaternions have some inverse elements:

q–1 = 1

q
2 q.

The multiplication is not commutative. If it was commutative, we would

502GRAPHICS GEMS I Edited by ANDREW S. GLASSNER 502

X.3 USING QUATERNIONS FOR CODING 3D TRANSFORMATIONS
have had

qq′ = q′q.

Then,

(c + u)(c′ + u′) = (c′ + u′)(c + u)

⇒ u × u’ = u’ × u ⇒ u × u’ = 0.

The multiplication is distributive over the addition:

q(v + w) = qv + qw (v + w)q = vq + wq.

In conclusion, we may write that

• Q is closed under quaternion addition.
• Q is closed under quaternion multiplication.
• (Q, +, ⋅) is a division ring.

Properties of the Set of Unit QuaternionsProperties of the Set of Unit QuaternionsProperties of the Set of Unit QuaternionsProperties of the Set of Unit QuaternionsProperties of the Set of Unit Quaternions
This paragraph focuses on the subset quaternions of unit magnitude.
These are the particular quaternions that are of interest in this applica-
tion.

Let us consider the quaternions so that |q| = l, or c2 + u ⋅ u = 1, and
c2 + s2 = l, (if u = sN); then we can write any unit quaternion as
q = cos(θ) + sin(θ)N.

Then, for this particular set of quaternions,

• The multiplication of the conjugate of two quaternions is the conjugate
of the multiplication of the quaternions.

 q ′q = (cc′ – u ⋅ u′) – (u × u′ + 〈cu′〉 + 〈c′u〉)

 ′q q = (c′ – u′)(c – u)

= (cc′ – u′ ⋅ u) + ((-u′) × (-u) – 〈cu′〉 – 〈c′u〉)

= (cc′ – u ⋅ u′) – (u × u′ + 〈cu′〉 + 〈c′u〉)

= q ′q

503GRAPHICS GEMS I Edited by ANDREW S. GLASSNER 503

X.3 USING QUATERNIONS FOR CODING 3D TRANSFORMATIONS

→

→→

• The magnitude of the multiplication of two quaternions is the multipli-
cation of the magnitudes of the quaternions.

 |qq′|2 = (qq′)(q ′q)

 = qq′ ′q q = q|q′|2 q

 = |q|2|q′|2

• If two quaternions have a magnitude of 1, then the product of these
two quaternions will also have a magnitude of 1.

|q| = |q′| = 1 ⇒ |qq′| = 1

(cos(θ) + sin(θ)N)(cos(φ) + sin(φ)N) = cos(θ + φ) + sin(θ + φ)N

• The conjugate of a unit quaternion is its inverse.

|q| = 1 ⇒ q–1 = q

The set of unit quaternions is a multiplicative subgroup of the non-null
quaternions.

Rotations in a Rotations in a Rotations in a Rotations in a Rotations in a 3D3D3D3D3D Space Space Space Space Space
Rotations can be expressed using a geometrical formulation. Figure 1
graphically presents the rotation of a vector around a given axis.

Let P′ = Rot(a,N)(P) be the transformation of point P by the rotation
of angle θ around the axis N. We can write:

H = OH

P′ = OP′ = OH + HP′ = H + U′

P′ = OP′ = OH + HP′ = H + U,

→

→ →→

504GRAPHICS GEMS I Edited by ANDREW S. GLASSNER 504

X.3 USING QUATERNIONS FOR CODING 3D TRANSFORMATIONS

Figure 1. Geometrical representation of a rotation.

and then,

U = P – H.

In the plane formed by (PHP′), we can set

U′ = cos(θ)U + sin(θ)V,

with U ⊥ V, V ⊥ N, and |V| = |U|, that is to say, V = N × U =
N × (P – H) = N × P. On the (O, N) axis, OH is the projection of OP
on N, and then OH = H = N (N ⋅ P), which gives the formulas

 OP′ = H + U′ = N(N ⋅ P) + (cos(θ)U + sin(θ)V)

= N(N ⋅ P) + cos(θ)(P – N(N ⋅ P) + sin(θ)N × P

= cos(θ)P + (1 – cos(θ))N(N ⋅ P) + sin(θ)N × P.

→
→

→

→

505GRAPHICS GEMS I Edited by ANDREW S. GLASSNER 505

X.3 USING QUATERNIONS FOR CODING 3D TRANSFORMATIONS
This can be written in a matrix formulation:

Rot(θ,N) = cos(θ)I3 + (1 – cos(θ))NTN + sin(θ)AN ,

with

N = N1 , N2 , N3[], I3 =

1 0 0
0 1 0
0 0 1
















, AN =

0 N3 –N2

–N3 0 N1

N2 –N1 0

















The geometry formulation presented above can be expressed in an
algebraic formulation:

Let p = (0, v) = xi + yj + zk be a pure quaternion.

Let q = (c, u) be a unit quaternion.

We can define

 Rq(p) = qp q

= (c, u)p(c, – u)

= (c, u)(0, v)(c, – u)

= (c, u)(v ⋅ u, – v × u + 〈cv〉)

= (c(v ⋅ u) – u ⋅ (–v × u) – c(u ⋅ v), u × (–v × u)

+ 〈c(u × v)〉 + 〈c(–v × u + 〈cv〉)〉 + (v ⋅ u)u)

= (0, – u × (u × v) + 〈2c(u × v)〉 + 〈c2v〉 + (v ⋅ u)u)

= (0, (u ⋅ v)u – 〈(u ⋅ u)v〉 + 〈2c(u × v)〉

 + 〈c2v〉 + 〈(v ⋅ u)u〉)

= (0, 〈(c2 – u ⋅ u)v〉 + 〈2(v ⋅ u)u〉 + 〈2c(u × v)〉).

506GRAPHICS GEMS I Edited by ANDREW S. GLASSNER 506

X.3 USING QUATERNIONS FOR CODING 3D TRANSFORMATIONS
And because q is a unit quaternion, that is, q = (c, u) = (c, sN) with
c = cos(θ) and s = sin(θ),

Rq(p) = (0,〈(c2 – s2)v〉 + (2s2(N ⋅ v)N,) + 〈2sc(N × v)〉)

= (0, 〈cos(2θ)v〉 + 〈(1 – cos(2θ))(N ⋅ v)N〉

 + 〈sin(2θ)(N × v)〉)

Rq can be interpreted as the rotation of angle 2θ around the axis
N = Nli + N2j + N3k. As a reciprocity, Rot(q,N) is represented by the
quaternion

 q = cos(θ/2) + sin(θ/2)N

N = Nli + N2 j + N3k

NotesNotesNotesNotesNotes
Rqq′ = Rq + Rq′

 Rqq′(p) = (qq′)p(q ′q)

 = q(q′p q) ′q

 = Rq(Rq′(p))

 Rqq′ = Rq + Rq′ .

If we state that –π ≤ θ ≤ π, then –π/2 ≤ θ/2 ≤ π/2, and then

–q = –cos(θ/2) – sin(θ/2)N = cos(–θ/2) + sin(–θ/2)(–N)

 R–q = Rot(–θ,–N) = Rot(θ,N) .

507GRAPHICS GEMS I Edited by ANDREW S. GLASSNER 507

X.3 USING QUATERNIONS FOR CODING 3D TRANSFORMATIONS
The algebraic formulation can be directly used in computing the dis-

placement of orthonormal (orthogonal and normalized) coordinate sys-
tems.

If we make an analogy between the points P = [x, y, z] of a nonhomo-
geneous space with the pure quaternions p = xi + yj + zk, it is possible
to represent the displacements Tr (U)+ + Rot (θ ,N)of the space with the
following functions:

p → p′ = M(u, r)(p) = u + rp r ,

with p, p′, u being pure quaternions, and r a unit quaternion.
We can write

Tr(U) = M(u, 1): p′ = p′ + u

 Rot(θ,N) = M(0, r) = M(0, cos(θ/2) + sin(θ/2)N)

 Id = M(0, 1): Identity transform.

We can also define the property

M(u, r) + M(u′,r′)(p) = u + r(u′ + r′p r ′) r

M(u, r) + M(u′,r′)(p) = (u + ru′ r) + (rr′)p(r ′r)

M(u, r) + M(u′,r′)(p) = M(u + ru′ r , rr′) .

We have defined a multiplication * over the elements (u, r):

(u, r) ∗ (u′, r′) = (u + ru′ r, rr′)

 M(u, r) ∗ M(u′,r′) = M(u, r) + M(u′,r′).

We can now evaluate displacements in a 3D space using only algebraic
elements (u, r).

508GRAPHICS GEMS I Edited by ANDREW S. GLASSNER 508

X.3 USING QUATERNIONS FOR CODING 3D TRANSFORMATIONS

Figure 2. Movement from one orthonormal base to another.

By setting the initial coordinate system to Id, we can represent the
movements of orthonormal bases (see Fig. 2).

R′ = R + Tr(V) + Rot(θ, N)

(u′, r′) = (u, r) ∗ (v, cos(θ/2) + sin(θ/2)N

We can also represent series of displacements as explained in Fig. 3.

(u, r) = (u0, r0) ∗ (vl, sl) ∗ (v2, s2) ∗ . . . ∗ (vn, sn),

where (vi, si) = (vi, cos(θi/2) + sin(θi/2)N) represents the transforma-
tion Tr(V) + Rot(θ, N) .

Figure 3. Series of movements from one orthonormal base to another.

509GRAPHICS GEMS I Edited by ANDREW S. GLASSNER 509

X.3 USING QUATERNIONS FOR CODING 3D TRANSFORMATIONS
NotesNotesNotesNotesNotes
Let R0 and R1 be two given orthonormal bases. The transformation from
R0 to R1 has an algebraic representation:

(u1,r1) = (u0,r0) * (v,s)

(v,s) = (u0,r0)
–1 ∗(u1,r1)

(v,s) = (– r 0u 0r0, r 0)*(u1,r1)

(v,s) = (– r 0(u1– u0)r0, r 0,r1)

Algorithmic ImplementationAlgorithmic ImplementationAlgorithmic ImplementationAlgorithmic ImplementationAlgorithmic Implementation
The use of quaternions is a good way of coding 3D transformations. It
requires less space than a 4 × 4 matrix (only 7 elements instead of 16)
and the functions that are necessary for the implementation of a pre-
/post-translation or a pre-/post-rotation are short and simple to code.

The pseudo-code examples that follow have been implemented in the
PATK3D software, and have already been presented in a FORTRAN-like
code (Maillot, 1986). A C language version is given in the appendix
section. In the PATK3D package, the observer ’s position is initially
[1,0,0], looking at the point [0, 0, 0]. There are three primitives that
control the position and visualization direction of the observer.

• The first one sets the observer at a given position, [x, y, z], and
initializes the visualization direction to be in the X decreasing, that is,
looking in the X decreasing direction.

• Another primitive can be used to set the visualization direction while
not changing the observer position. It only needs a point in 3D, which
is equivalent to saying: look at the point [x, y ,z].

• The last primitive is more general and gives to the PATK3D user the
capability of moving in the 3D space using a displacement descriptor.

510GRAPHICS GEMS I Edited by ANDREW S. GLASSNER 510

X.3 USING QUATERNIONS FOR CODING 3D TRANSFORMATIONS
This descriptor is coded as a string where the user specifies a series of
movements such as: forward 10, turn right 20 degrees, pitch 30
degrees, and so on.

Once all the observer ’s movements are described by the user, a 4 × 4
matrix is calculated using the observer’s resulting quaternion. This matrix
is accumulated with the other matrices of the visualization pipeline to
produce the final matrix used in the single model-coordinate-to-device-
coordinate transformation.

The functions presented here deal only with the kernel part of the
observer ’s position and visualization direction primitives. We define the
following structures:

P: point ← [– 1.0, 0.0, 0.0] is used to keep trace of the observer’s position. It
actually codes the orthonormal world coordinate base in respect to the
observer.

Q: array [0..3] of real ← [1.0, 0.0, 0.0, 0.0] is the quaternion itself. The first
element, Q[0], keeps the real part of the quaternion, while the three other
elements represent the components of the pure part of the quaternion.

M: matrix4 is the matrix that will be calculated from P and Q. M will be
coded like this:

M =

1 tx ty tz
0 m1,1 m1,2 m1,3

0 m2,1 m2,2 m2,3

0 m3,1 m3,2 m3,3



















The set_obs_position primitive sets new values for the observer ’s eye’s
position in the space.

name: set_obs_position(position: point)
begin

Set the values of the eye’s position.
The position here represents the position of the orthonormal base
in respect to the observer.
P ← –position;
Set the visualization to be in the decreasing x-axis.
Q ← [1.0, 0.0, 0.0, 0.0];
end;

511GRAPHICS GEMS I Edited by ANDREW S. GLASSNER 511

X.3 USING QUATERNIONS FOR CODING 3D TRANSFORMATIONS
P and Q (Fig. 4) have the following values:

P: [– 2.0,0.0,0.0] ,

Q: [1.0,0.0,0.0,0.0].

The translate_quarternion function computes translation movements
for a given quaternion. i is the axis of the translation, while x is the
parameter that characterizes the translation for the quaternion. w should
be set to – 1 if the observer moves in respect to the scene, or to 1 if the
scene moves in respect to the observer.

name: translate_quaternion(x: real, i,w: integer)
begin

j, k: integer;
A,B,D,E,F:real;

Does the observer move in respect to the scene?
if w < 0 then P[i – 1] ← P[i – 1] – x;
else begin

The scene moves in respect to the observer.
Compute the successor axis of i [1, 2, 3];
and then the successor axis of j [1, 2, 3];
j ← i + 1;
if j > 3 then j ← 1;
k ← j + 1;
if k > 3 then k ← 1;
A ← Q[j]; B ← Q[k]; F ← Q[0]; E ← Q[i];
P[i – 1] ← P[i – 1] + x*(E*E + F*F – A*A – B*B);
D ← x + x;
P[j – 1] ← P[j – 1] + D*(E*A + F*B);
P[k – 1] ← P[k – 1] + D*(E*B + F*A);
end;

 end;

512GRAPHICS GEMS I Edited by ANDREW S. GLASSNER 512

X.3 USING QUATERNIONS FOR CODING 3D TRANSFORMATIONS

Figure 4. A simple graphic scene, and the user’s screen.

Figure 5. The result of a translation of vector [0, 0, 1].

513GRAPHICS GEMS I Edited by ANDREW S. GLASSNER 513

X.3 USING QUATERNIONS FOR CODING 3D TRANSFORMATIONS
P and Q (Fig. 5) get the following values:

P: [– 2.0, 0.0, – 1.0] ,

Q: [1.0, 0.0, 0.0, 0.0].

The rotate_quaternion function computes rotation based movements
for a given quaternion. i is the axis number of the rotation, while x and y
are the parameters that characterize the rotation for the quaternion. w
follows the same rule as for translate_quaternion. x and y are typically
the cosine and sine of the half-rotation angle.

name: rotate_quaternion(x, y: real, i, w: integer)
begin

j, k: integer;
E, F, R1 : real;
Compute the successor axis of i [1, 2, 3,] and j [1, 2, 3];
j ← i + 1;
if j ← 3 then j ← 1;
k ← j + 1;
if k > 3 then k ← 1;
E ← Q[i];
Q[i] ← E*x + w*y*Q[0];
Q[0] ← Q[0]*x – w*y*E;
E ← Q[j];
Q[j] ← E*x + y*Q[k];
Q[k] ← Q[k]*x – y*E;
if w < 0 then begin

Compute a new position if the observer moves in respect to the scene.
j ← j – 1; k ← k – 1;
R1 ← x*x – y*y;
F ← 2.*x*y;
E ← P[j];
P[j] ← E*R1 + F*P[k];
P[k] ← P[k]*R – F*E;
end;

end;

514GRAPHICS GEMS I Edited by ANDREW S. GLASSNER 514

X.3 USING QUATERNIONS FOR CODING 3D TRANSFORMATIONS
P and Q (Fig. 6) get the following values:

P: [–2.24, 0.0, 0.0],

Q: [0.97, 0.0, 0.23, 0.0].

The evaluate_matrix primitive (re)computes the matrix correspond-
ing to the observer ’s position and visualization direction given by P and
Q. The method presented here is the direct application of the mathemati-
cal formulae. Faster ways to evaluate the matrix can be found.

name: evaluate_matrix()
begin

e, f: real;
r:array [0..3] of real;
i, j, k: integer;
We will need some square values!
for i: integer ← 0, i < 4 do

r[i] ← Q[i]*Q[i];
i ← i + l;
endloop;

Compute each element of the matrix.
j is the successor of i (in 1, 2, 3), where k is the successor of j.
for i: integer ← 1, i < 4 dO

j ← i + l;
if j > 3 then j ← 1;
k ← j + l;
if k > 3 then k ← 1;
e ← 2.*Q[i]*Q[j];
f ← 2.*Q[k]*Q[0];
M[j][i] ← e – f;
M[i][j] ← e + f;
M[i][i] ← r[i] + r[0] – r[j] – r[k];
M[0][i] ← P[i – 1];
M[i][0] ← 0.0;
endloop;

M[0][0] ← 1.0;
end;

515GRAPHICS GEMS I Edited by ANDREW S. GLASSNER 515

X.3 USING QUATERNIONS FOR CODING 3D TRANSFORMATIONS

Figure 6. The result of a rotation angle – 26.57 degrees around the y–axis to look at the
point [0, 0, 0].

As an example, the matrix resulting from P and Q values of Fig. 6 is
given below.

M =
1.0 –2.24 0.0 0.0
0.0 0.89 0.0 0.45
0.0 0.0 1.0 0.0
0.0 –0.45 0.0 0.89

















See also Rotation Matrix Methods Summary (455); Bit Patterns
for Encoding Angles (442); Fast 2D–3D Rotation (440); Fixed-
Point Trigonometry with CORDIC Iterations (494)

See Appendix 2 for C Implementation (775)

516

X.4 3D VIEWING AND ROTATION USING ORTHONORMAL BASES

GRAPHICS GEMS I Edited by ANDREW S. GLASSNER 516

X.4X.4X.4X.4X.4
33333D VIEWING ANDD VIEWING ANDD VIEWING ANDD VIEWING ANDD VIEWING ANDRRRRROTATION USINGOTATION USINGOTATION USINGOTATION USINGOTATION USINGOOOOORTHONORMAL BASESRTHONORMAL BASESRTHONORMAL BASESRTHONORMAL BASESRTHONORMAL BASES

Steve CunninghamCalifornia State University, StanislausTurlock, California

This note discusses the general viewing transformation and rotations
about a general line. It contrasts the common textbook approach to this
problem with an approach based on orthonormal bases from linear
algebra and shows that a straightforward piece of mathematics can
improve the implementations of viewing and rotation transformations in
actual work.

The common approach to viewing and general rotation operations
treats these as a translation followed by a sequence of rotations about the
coordinate axes in model space, and seems to go back to Newman and
Sproull (1979). The viewing transformation requires three of these rota-
tions, whereas the general rotation requires four. The entries in these
rotation matrices are trigonometric functions of angles which are not
readily seen, though the actual computations rarely use the trig functions;
the entries are computed from the components of vectors derived from
the translated eye vector as the rotations proceed. See Newman and
Sproull for more details; this same approach has been used in Hearn and
Baker (1986) and other books. Some books, such as Foley and Van Dam
(1982) discuss a (U, V, N) viewplane coordinate system such as we build
below, but still use rotations to build the actual viewing transformation.

The approach we suggest was developed independently but is not
original to this note. It appears in Berger (1986), where it seems a bit
obscure, as well as in Salmon and Slater (1987), where it is developed
more formally, but is not widely known. No graphics texts seem to use
this approach to general rotations in 3-space. The approach is straightfor-
ward: after the usual translation of the view reference point to the origin,

517

X.4 3D VIEWING AND ROTATION USING ORTHONORMAL BASES

GRAPHICS GEMS I Edited by ANDREW S. GLASSNER 517

use the eye point and up point in the viewing information to compute an
orthonormal basis (U, V, N) for 3-space for which the eye vector is one
component (the z-axis analogue) and the up vector is projected onto
another (the y-axis analogue). Then the viewing transformation is simply
a change of basis and its matrix is directly written from the orthonormal
(U, V, N) basis. The general rotation is much the same, with the up vector
taken randomly, and the desired rotation applied after the initial viewing
transformation; the inverse of the viewing transformation is then applied.

The advantages of the orthonormal basis approach are twofold: there is
a logical basis for the approach, which comes naturally from linear
algebra, and the computation involves fewer steps. I have found that
students can apply these ideas in their own code more quickly and
accurately than they can using the traditional approach.

The New ApproachThe New ApproachThe New ApproachThe New ApproachThe New Approach
Consider a standard setup for 3D viewing (there are variations, but this
uses standard information common to them all):

• A view reference point VRP

• An eye point EP

• An “up point” UP

From these we compute two vectors:

• An eye vector EV as the vector from VRP to EP

• An up vector UV as the vector from VRP to UP,

and we have the situation shown in Fig. 1.
The new process starts in the same way as the standard process: by

defining a translation to move the view reference point to the origin. This

518

X.4 3D VIEWING AND ROTATION USING ORTHONORMAL BASES

GRAPHICS GEMS I Edited by ANDREW S. GLASSNER 518

Figure 1. A standard viewing environment.

has the standard matrix form

 T0=

1 0 0 0
0 1 0 0
0 0 1 0

−xv −yv −zv 0



















Next compute the orthonormal basis for the space as seen by the
viewer, as follows:

1. Normalize EV and call the result N.

2. Normalize UV and continue to call the result UV.

3. Compute Vl orthogonal to N by setting Vl = UV – (N ⋅ UV)N, (as
shown in Fig. 2).

4. Normalize Vl and call the result V.

5. Compute the cross product U = V × N.

This creates a new coordinate system within the original model space
that represents the coordinates of the desired viewing space. This coordi-
nate system is shown in Fig. 3.

519

X.4 3D VIEWING AND ROTATION USING ORTHONORMAL BASES

GRAPHICS GEMS I Edited by ANDREW S. GLASSNER 519

Figure 2. Orthogonalizing UV and N.

Then the change of basis from (X, Y, Z)-space to (U, V, N)-space
(assuming that matrices multiply on the right of their operands) has U as
its first row, V as its second row, and N as its third row. The inverse of
this matrix is the transformation from (U, V, N)-space to (X, Y, Z)-space
and provides the construction of the rotation part of the matrix M of the
viewing transformation. Since U, V, and N are orthonormal, this inverse
is the transpose of the matrix above; the first three rows of M have U as
the first column, V as the second column, N as the third column, and the
rest are zero. Finally, the viewing transformation is T0M. It is easier to
compute than the standard transformation and is as efficient to apply (if
all three rotations are computed and multiplied together) or more efficient

Figure 3. The UVN coordinate.

520

X.4 3D VIEWING AND ROTATION USING ORTHONORMAL BASES

GRAPHICS GEMS I Edited by ANDREW S. GLASSNER 520

(if the rotations are applied separately). The actual matrix of this transfor-
mation is the output of the BuildViewTransform function below.

Rotations about a General LineRotations about a General LineRotations about a General LineRotations about a General LineRotations about a General Line
The usual approach to a rotation by an angle α about a general line is to
move the line so it goes through the origin (a translation), rotate the line
into the XZ-plane, rotate the resulting line to align with the z-axis,
perform the desired rotation by α now, reverse the two earlier rotations,
and then reverse the translation. This requires five rotations and two
translations, and suffers from the same difficulties as the viewing transfor-
mation: the angles are not easy to see and the computations are obscure.

The approach above to the viewing transformation extends easily to
these rotations. The line is assumed to be given by a point P =
(xp, yp, zp) and a direction vector D = kA,B,Cl. Then the plane per-
pendicular to the line at the given point has equation

A(x – xp) + B(y – yp) + C(z – zp) = 0.

Let T be the translation that moves P to the origin. Pick any point
Q = (x,y,z) in the plane and let UP = (x – xp, y – yp, z – zp), as
shown in Fig. 4. Let N be the result when D is normalized, and let V be

Figure 4. The setup for general rotations.

521

X.4 3D VIEWING AND ROTATION USING ORTHONORMAL BASES

GRAPHICS GEMS I Edited by ANDREW S. GLASSNER 521

.

appendix) if the last translation step is omitted.

BuildViewTransform(VRP, EP, UP, T)
Input: points VRP, EP, UP as in the text
Output: transformation matrix T
Compute vector N ← EP – VRP and normalize N
Compute vector V ← VP – VRP
Make vector V orthogonal to N and normalize V
Compute vector U ← V × N (cross product)
Write the vectors U, V, and N as the first three rows of the
 first, second, and third columns of T, respectively,
Compute the fourth row of T to include the translation of
 VRP to the origin

See Appendix 2 for C Implementation (778)

the result when UP is normalized. Then compute U as in the viewing
transformation to complete the (U, V, N) triple, and build the change-of-
basis matrix M with U, V, and N as the first, second, and third columns,
respectively.

Now let R be the matrix of the rotation by α about the z-axis, and let
N and S be the (trivially computed) inverses of M and T, respectively.
Then the matrix of the rotation by Q about the line is TMRNS, which
requires fewer matrices and less computation than the traditional method
of rotation about the coordinate axes. There is another benefit for
students and for floating-point speed: it uses no trigonometric functions
except those in the matrix R.

Pseudo-Code for Constructing thePseudo-Code for Constructing thePseudo-Code for Constructing thePseudo-Code for Constructing thePseudo-Code for Constructing theViewing TransformationViewing TransformationViewing TransformationViewing TransformationViewing Transformation
The following pseudo-code produces the matrix for the viewing transfor-
mation with the three standard view specification points as input. It is
expanded into actual C code in an appendix. No pseudo-code is given for
the general rotation, since the matrices M and N of the previous section
are easily computed by the pseudo-code above (and the code in the

522

 X.5 THE USE OF COORDINATE FRAMES IN COMPUTER GRAPHICS

GRAPHICS GEMS I Edited by ANDREW S. GLASSNER 522

X.5X.5X.5X.5X.5
TTTTTHE USE OFHE USE OFHE USE OFHE USE OFHE USE OFCCCCCOORDINATE FRAMES INOORDINATE FRAMES INOORDINATE FRAMES INOORDINATE FRAMES INOORDINATE FRAMES INCCCCCOMPUTER GRAPHICSOMPUTER GRAPHICSOMPUTER GRAPHICSOMPUTER GRAPHICSOMPUTER GRAPHICS

Ken TurkowskiApple ComputerCupertino, California
IntroductionIntroductionIntroductionIntroductionIntroduction
Coordinates have no meaning without reference to their corresponding
basis vectors (and origin). When we express one set of basis vectors (and
origin) with respect to another, we establish a new coordinate frame in
terms of the old. This coordinate frame can also be used to transform the
coordinates in one frame to those of another.

We will see that coordinate frames are easy to construct and can
simplify the construction of coordinate transformations without the ex-
plicit use of trigonometry.

Vectors and PointsVectors and PointsVectors and PointsVectors and PointsVectors and Points
We will need to distinguish between 3D vectors and 3D points. A vector
has a magnitude and a direction, but does not have a location, whereas a
point has only a location, and no magnitude or direction. A vector cannot
be moved, but it can be scaled and rotated. A point cannot be scaled or
rotated, although it can be moved; a group of points can, however, be
rotated or moved relative to each other. A linear transformation is
appropriate for vectors, whereas an affine transformation is appropriate
for points. There is a unique origin in a vector space, but an origin is
arbitrary in an affine (point) space. These properties are summarized in

523

 X.5 THE USE OF COORDINATE FRAMES IN COMPUTER GRAPHICS

GRAPHICS GEMS I Edited by ANDREW S. GLASSNER 523

When points and vectors are represented by three components, they
can be distinguished only by context. We may sometimes represent them
by four coordinates (x, y, z, w), in what is called homogeneous coordi-
nates. We interpret a 4-vector as a point in 3D by its projection onto the
hyperplane w = 1, that is, (x/w, y/w, z/w). The indeterminate form at
w = 0 is resolved by taking the limit as w approaches 0 from above: the
point approaches infinity in a particular direction; hence the vector
interpretation.

By convention, we will represent points as homogeneous 4-vectors with
w = 1 whenever possible. For example, we represent the point 1 unit
along the x-axis as

[1 0 0 1],

whereas the x-axis (a vector) itself is represented as

[1 0 0 0].

In nonhomogeneous coordinates, they are both represented as

[1 0 0],

so only context can distinguish them.

the table below:

Attribute Vector Point

represents magnitude and direction location

origin unique arbitrary

transformation linear affine
scale move
rotate

524

 X.5 THE USE OF COORDINATE FRAMES IN COMPUTER GRAPHICS

GRAPHICS GEMS I Edited by ANDREW S. GLASSNER 524

Coordinate FramesCoordinate FramesCoordinate FramesCoordinate FramesCoordinate Frames
We shall usually represent a coordinate frame for three-dimensional
points with a 4 × 3 matrix:

F =

X

Y

Z

O



















=

Xx Xy Xz

Yx Yy Yz

Zx Zy Zz

Ox Oy Oz



















.

This establishes a local reference frame within a more global frame by
representing the local origin and the x-, y-, and z-axes in terms of the
global coordinates in the rows of the matrix. In particular,

O = [Ox O y Oz] ,
(2)

is a point that represents the origin of the local coordinate frame,
represented in the coordinates of the global reference frame.

The local x-axis,
 X = [Xx Xy Xz] , (3)

is a vector (not a point), with both magnitude and direction.
Similar sorts of interpretations are appropriate for the y- and z-axes.

There is no requirement that the vectors X, Y, and Z be mutually
orthogonal, although they should be linearly independent.

The matrix representation of this coordinate frame is more than just a
convenient representation; it is in fact related to the more familiar 4 × 4
graphics transformation matrix (Newman and Sproull, 1979):

F4 =

 0
F 0
 0
 1



















 =

X 0
Y 0
Z 0
0 1



















 =

Xx Xy Xz 0
Yx Yy Yz 0
Zx Zy Zz 0
Ox Oy Oz 1



















,
 (4)

where the 0's and 1 in the right column underscore the interpretation
X, Y, and Z as vectors, and O as a point.

(1)

525

 X.5 THE USE OF COORDINATE FRAMES IN COMPUTER GRAPHICS

GRAPHICS GEMS I Edited by ANDREW S. GLASSNER 525

A 4-vector with w = 0, will not be affected by the translation portion
(bottom row) of a 4 × 4 matrix transformation, whereas the 4-vector with
w ≠ 0 will.

We illustrate the effect of a coordinate transformation on the homoge-
neous representation of the x-axis (a vector) with a 4 × 4 matrix multi-
plication:

1 0 0 0[]
Xx Xy Xz 0
Yx Yy Yz 0
Zx Zy Zz 0
Ox Oy Oz 1



















= Xx Xy Xz 0[].

With the fourth component zero, we see that a vector transforms into a
vector, and not just any vector: the x-axis transforms into the vector
[Xx Xy Xz 0], the top row of the transformation matrix. It is easy to
see that the y-and z-axes transform into the second and third rows of the
matrix, respectively.

The transformation of the origin (a point) yields

0 0 0 1[]
Xx Xy Xz 0
Yx Yy Yz 0
Zx Zy Zz 0
Ox Oy Oz 1



















= Ox Oy Oz 1[],

the bottom row of the matrix. This is consistent with the definition we
gave it earlier.

Since the transformation of an arbitrary vector

Vx Vy Vz 0[]
Xx Xy Xz 0
Yx Yy Yz 0
Zx Zy Zz 0
Ox Oy Oz 1



















=[VxXx + VyYx + VzZx VxXy + VyYy + VzZy

 VxXz + VyYz + VzZz 0] (7)

(6)

(5)

526

 X.5 THE USE OF COORDINATE FRAMES IN COMPUTER GRAPHICS

GRAPHICS GEMS I Edited by ANDREW S. GLASSNER 526

doesn’t depend at all on the last row (translation), we will generally omit
it, as well as the last column, to obtain the familiar 3 × 3 linear transfor-
mation matrix for 3D vectors:

Vx Vy Vz[]
Xx Xy Xz

Yx Yy Yz

Zx Zy Zz

















= [VxXx + VyYx + VzZx VxXy + VyYy + VzZy VxXz + VyYz + VzZz]
(8)

We will use this as the intrinsic coordinate frame for 3D vectors,
whereas the 4 × 3 matrix (see Eq. 1) will be used as the intrinsic
coordinate frame for 3D points, where we extend the operations of linear
algebra to affine algebra as follows:

Px Py Pz[]
Xx Xy Xz

Yx Yy Yz

Zx Zy Zz

Ox Oy Oz



















 = [PxXx + PyYx + PzZx + Ox PxXy + PyYy+PzZy+Oy

PxXz+PyYz+ PzZz + Oz]. (9)

This definition is consistent with the treatment of 3D points as homoge-
neous 4-vectors, as in Eq. 6.

We now show some examples of how the use of coordinate frames
can simplify tremendously problems in computer graphics.

527

 X.5 THE USE OF COORDINATE FRAMES IN COMPUTER GRAPHICS

GRAPHICS GEMS I Edited by ANDREW S. GLASSNER 527

Examples: Using Coordinate FramesExamples: Using Coordinate FramesExamples: Using Coordinate FramesExamples: Using Coordinate FramesExamples: Using Coordinate Framesto Solve Problemsto Solve Problemsto Solve Problemsto Solve Problemsto Solve Problems
Example 1: Find the simple plane rotation that aligns the x-axis to the
y-axis.

If the x-axis [1, 0] rotates into the y-axis [0, 1], the y-axis rotates into
the negative x-axis [– 1, 0]. Therefore, the desired transformation is

R90 =

X

Y








 =

Xx Xy

Yx Yy









 =

 0 1
 – 1 0









 (10)

Example 2: Find the simple plane rotation that aligns the x-axis to the
direction [1, 1].

From the previous example, we know that the new y-axis must be
aligned with [1 1]R90 = [–1 1], so that the desired matrix is

R45 =

X

Y








 = 1

2

 1 1
 – 1 1









.

The normalization factor come about because the Euclidean norm of
each of the two rows is 2 . Without this, the transformation would
enlarge vectors as well as rotate them.

Example 3: Find the simple plane rotation that rotates an arbitrary
normalized vector V into another normalized vector W.

We approach this by first rotating V to align it to the x-axis, then
rotating it to align it to W. In order to determine the first rotation, it is
easier to specify the rotation from the x-axis to V, and then invert it.

Rotating the x-axis to V is accomplished by the matrix

RV =

V

VR90









 =

Vx Vy

–Vy Vx









.

Since this is an orthogonal matrix (all pure rotations are orthogonal), its

528

 X.5 THE USE OF COORDINATE FRAMES IN COMPUTER GRAPHICS

GRAPHICS GEMS I Edited by ANDREW S. GLASSNER 528

(11)

 14

M = N × V

N × V
 =

0 1 –1[] × 1 1 1[]
0 1 –1[] × 1 1 1[] = 1

6
2 –1 –1[],

inverse is equal to its transpose:

RV

–1 =
V

VR90













T

=
Vx –Vy

Vy Vx









.

The rotation from the x-axis to W is found similary:

RW =

W

WR90









 =

Wx Wy

–Wy Wx









.

Therefore, the desired transformation is the concatenation

RV→W = RV

–1RW = V
VR90







T W
WR90






 =

Vx –Vy

Vy Vx











Vx Vy

–Wy Wx











=

VxWx + VyWy VxWy – VyWx

–(VxWy – VyWx) VxWx + VyWy











Example 4: Find the skewing transformation suitable for italicizing
letters by 14 unit in x for every unit in y.

We basically just want to remap the y-axis to [14 1] while the x-axis
remains the same:

K =

1 0
1









.

Example 5: Find the rotation that takes the vector (1/ 3)[1 1 1] onto
the x-axis, through the plane that contains them both.

The axis of rotation can be obtained as

N = V × X

N × V
 =

1 1 1[] × 1 0 0[]
1 1 1[] × 1 0 0[] = 1

2
0 1 –1[],

where X is the x-axis. An orthogonal third vector can be obtained by
crossing this with the given vector:

529

 X.5 THE USE OF COORDINATE FRAMES IN COMPUTER GRAPHICS

GRAPHICS GEMS I Edited by ANDREW S. GLASSNER 529

R z90 =

0 1 0
–1 0 0
0 0 1





















(12)

These three vectors then make up an orthonormal coordinate frame:

Q =
V
M
N












 =

1
3

1
3

1
3

2
6

–
1
6

–
1
6

0
1
2

–
1
2























.

This transformation takes the x-axis onto the vector (1/ 3)[1 1 1],
and takes the z-axis onto the axis of rotation. In order to simplify the
rotation, we would like to have the inverse of this, namely, to transform the
axis of rotation onto the z-axis. Since Q is an orthogonal matrix, its
inverse is simply the transpose:

Q–1 = QT =

1
3

2
6

0

1
3

–
1
6

1
2

1
3

1
6

–
1
2























.

It can be verified that the vector (1/ 3)[1 1 1] maps onto the x-axis,
that the axis of rotation, (1/ 2)[0 1 –1], maps onto the z-axis, and
that the x-axis maps onto

X' =

1
3

2
6

0





.

A simple rotation about the z-axis in this frame would have the y-axis
map into

Y ' = X ' R z90 = –

2
6

1
3

0




,

where

530

 X.5 THE USE OF COORDINATE FRAMES IN COMPUTER GRAPHICS

GRAPHICS GEMS I Edited by ANDREW S. GLASSNER 530

is the 3D analog of Eq. 10, and rotates the x-axis onto the y-axis around
the z-axis. Putting this together into a transformation, we have

R =

1
3

2
6

0

–
2
6

1
3

0

0 0 1























We then need to go back to our original frame by using Q; the composite
transformation is

T = QT RQ =

1
3

2
6

0

1
3

–
1
6

1
2

1
3

–
1
6

–
1
2























1
3

2
6

0

–
2
6

1
3

0

0 0 1























×

1
3

1
3

1
3

2
6

–
1
6

–
1
6

0
1
2

–
1
2

























=

1
3

–
1
3

–
1
3

1
3

1
2 3

 +
1
2

1
2 3

 −
1
2

1
3

1
2 3

 –
1
2

1
2 3

 +
1
2























,

.

531

 X.5 THE USE OF COORDINATE FRAMES IN COMPUTER GRAPHICS

GRAPHICS GEMS I Edited by ANDREW S. GLASSNER 531

a somewhat formidable expression. No trigonometry per se has been used
for this derivation—only cross products, vector normalization, and matrix
multiplication. We generalize this in the next example.

Example 6: Find the rotation that takes an arbitrary normalized vector V
to another normalized vector W, through the plane that contains them
both.

Generalizing our experience with Example 3 and Example 5, we have
the matrix that transforms V onto the x-axis, and the axis of the plane of
rotation onto the z-axis:

QT =

V
M
N













T

,

where

N =

V × W
 V × W

is the axis of rotation, and

M =

N × V
 N × V

is the third vector that completes a dextral orthogonal basis. The image of
W in QT is:

 W´ = WQT. (16)

The transformation that rotates the x-axis (that is, the image of V) onto
W’ (the image of W)is

R =
W′

W′R z90

Z














,

where

Z = [0 0 1]

(13)

(14)

(15)

(17)

532

 X.5 THE USE OF COORDINATE FRAMES IN COMPUTER GRAPHICS

GRAPHICS GEMS I Edited by ANDREW S. GLASSNER 532

is the z-axis. The desired transformation is then

 Rv → w= QTRQ. (18)

Example 7: For a general transformation on a set of points, suppose that
we would like to scale the x-axis by 2, the y-axis by 3, the z-axis by 4,
and we want to reorient the object described in terms of those points so
that the new x-axis points in the direction (1/ 3)[1 1 1], the y-axis
points in the direction [1 0 0], and the z-axis points in the direction
(1 2)[0 1 –1], and further, that the whole object be shifted in
position by [10 20 –27].

Just copying these specifications into a 4 × 3 matrix, we get

T =

2
3

2
3

2
3

3 0 0

0 4
2

– 4
2

10 20 –27























.

Note that this transformation is more complex than others that we have
encountered before, and would be virtually impossible to describe in
terms of elementary rotation, scaling, skewing, and translation opera-
tions, yet it was extremely simple to describe and implement in terms of a
coordinate frame.

533

X.6 FORMS, VECTORS, AND TRANSFORMS

GRAPHICS GEMS I Edited by ANDREW S. GLASSNER 533

X.6X.6X.6X.6X.6FFFFFORMSORMSORMSORMSORMS,,,,,VVVVVECTORS, ANDECTORS, ANDECTORS, ANDECTORS, ANDECTORS, ANDTTTTTRANSFORMSRANSFORMSRANSFORMSRANSFORMSRANSFORMS
Bob WallisWeitek CorporationSunnyvale, California

IntroductionIntroductionIntroductionIntroductionIntroduction
The modern concept of a tensor as a linear machine that contracts forms
with vectors to produce scalars is an excellent mental model for dealing
with certain types of graphics problems. It helps to eliminate much of the
confusion that exists in dealing with questions such as how surface
normals, Bézier control points, and so on, are affected by geometrical
transformations.

Many graphics programmers tend to get confused when attempting to
perform operations such as the rendering of bicubic patches, lighting
calculations, and so forth, in different coordinate systems. The following
is a tutorial that describes a way of thinking about mathematical quanti-
ties, such as polynomial coefficients and surface normals, which the
author has found useful in problems involving coordinate system transfor-
mations. The key point is that all arrays of numbers are not necessar-
ily vectors.

The Modern View of a TensorThe Modern View of a TensorThe Modern View of a TensorThe Modern View of a TensorThe Modern View of a Tensor
Older books on tensors seem obsessed with their transformation proper-
ties, classifying them as covariant and contravariant. The modern concept
(Misner et al., 1973) is that a tensor is sort of a dot product machine that
accepts as inputs two different types of mathematical quantities, vectors
and forms. It contracts these via an inner product to produce a scalar

534

X.6 FORMS, VECTORS, AND TRANSFORMS

GRAPHICS GEMS I Edited by ANDREW S. GLASSNER 534

quantity, which should be invariant to coordinate system changes. While
the full-blown generality of modern differential geometry is definitely
overkill for dealing with simple graphics problems, the concept of sepa-
rating forms and vectors is very helpful in avoiding mathematical blun-
ders when dealing with coordinate system transformations. For example,
in evaluating the homogeneous line equation

p = αx + βy + γ = 〈αβγ〉 [x y 1] point on line if p = 0

〈αβγ〉 = wj ; j = 1,2,3 1-form of plane equation coefficients

[x y 1] = vj ; j = 1,2,3 vector, (1)

It is important to recognize that the surface normal, or array of plane
equation coefficients (Greek letters) is a different sort of mathematical
object than the [x y 1] (Roman letters) vector. When we change coordi-
nate systems, the vital thing to remember is that the scalar output of the
tensor, p in Eq. l, should remain invariant. Different disciplines have
different notations for segregating forms and vectors. Quantum mechan-
ics uses the bra-ket notation; some tensor books use subscripts and
superscripts. Most graphics programmers use column vectors and row
vectors, but in the nomenclature of this paper, what is normally called a
column vector really isn’t a vector at all, but a 1-form. For most practical
problems in graphics, it is sufficient to use conventional subscript nota-
tion. However, one must be very careful about which index is summed

over which. For example, expressing Eq. 1 in index notation we have

p =

wjvj =∑ wi Iij∑ vj = wiTij
–1()∑ T jkvk()

p = ′wj ′vj∑ invariant in primed coords

vj′ = T jkvk∑ how to transform vector

wj′ = wi∑ Tij
–1 how to transform 1-form.

In the above, I is the identity transform (Kroneker ’s delta), and there is
an implied summation over any repeated index. In most literature on

535

X.6 FORMS, VECTORS, AND TRANSFORMS

GRAPHICS GEMS I Edited by ANDREW S. GLASSNER 535

tensors, the summation sign is also implied. The advantage of writing
everything down with index notation (instead of row and column vectors,
for instance) is that it extends easily to higher-dimensional problems,
minimizes the likelihood of blunders such as an inappropriate matrix
transpose, and can be translated directly to nested for loops when
coding up the result.

Triangular InterpolantsTriangular InterpolantsTriangular InterpolantsTriangular InterpolantsTriangular Interpolants
As a further example of the difference between 1-forms and vectors,
consider the problem of linear interpolation within a triangle. This typi-
cally comes up in tiling surfaces that have been tesellated into triangles.
Here, it becomes necessary to interpolate z-depth and/or intensity at
each pixel within the triangle. If the interpolator is viewed as a contrac-
tion between a group of three forms and a dual group of three vectors, it
is possible to write down the correct answer by inspection.

Figure 1 illustrates one way of viewing 1-forms. Consider the density of
a 1-form at a particular point x, y to be the scalar you get when you

Figure 1.

536

X.6 FORMS, VECTORS, AND TRANSFORMS

GRAPHICS GEMS I Edited by ANDREW S. GLASSNER 536

contract it with [x, y, 1]. These are indicated in the figure as waves of
increasing density (darkness), which sweep across the triangle whose
vertices (in this example) are at [6, 11], [17, 6], [2, 1]. The 1-forms are the
duals of the basis vectors for the triangle, and as such, the ith 1-form
starts with a density of 0, and hits a density of exactly 1 when it rolls over
the ith vertex of the triangle. It is 0 at the other two vertices. This is
really just a fancy way of saying that the vertices of the triangle and its
associated 1-forms are inverses of one another. That is, invert the matrix
whose rows are the triangle’s vertices, and you get a matrix whose
columns are the dual l-forms.

vij =

6 11 1
17 6 1
2 1 1













ω ij = (1/130)

–5 10 –5
15 –4 –11
–5 –16 151













Iik = wij∑ vjk Orthogonality

wij = vij
–1 Inverse of 3 × 3 matrix

These 3 forms (which always sum to 〈0, 0, 1〉) are precisely the blend-
ing functions required for our interpolator. All one has to do is weight the
ith form by the value we would like to have at the ith vertex of the
triangle, and add the blending functions together:

zi desired value at ith vertex

Ωi = ϖij∑ zj form to interpolate [x, y, 1].

The problem could have been reduced to two dimensions by locating
the coordinate system origin at one of the triangle’s vertices, but the
geometrical interpretation given here would be the same in either case.
The above interpolator is sometimes seen under the name of barycentric
coordinates.

537

X.6 FORMS, VECTORS, AND TRANSFORMS

GRAPHICS GEMS I Edited by ANDREW S. GLASSNER 537

The determinant of the v matrix tells us the handedness and area of the
triangle. If a 3D triangle is viewed nearly edge-on, the 2D projection
becomes a sliver, and the determinant approaches 0. This would seem to
cause numerical range problems for the interpolator, but if it is imple-
mented with integer math, and its output is ignored for points outside the
triangle, 2’s complement overflows and underflows don’t matter. How-
ever, if the determinant does reach 0, the problem has to be recast as
interpolating along a line.

As a further example, consider the problem of subdividing parametric
polynomial curves:

µj = [1 u u2 u3 . . .] parameter of curve, u = [0, 1]

Mij = blending functions of curve

Zij = jth compoenet of ith control point

pj = [x y z] output point

pm =
 µ i MijZjm =∑ µ iTij()∑ T jk

–1MklZlm() = ′µ i∑ Mij ′Zjm

Zim′ = Mij
–1Tjk

–1Mkl()∑ Zlm = SilZlm∑

For the specific case of a cubic Bézier subdivided in two, the upper half
is a reparametrization of the u parameter such that

u′ = 2u – 1 maps [0.5, 1] → [0, 1]

The T, M, S matrices are:

Tij =

1 –1 1 –1
0 2 –4 6
0 0 4 –12
0 0 0 8

















Mij =

1 0 0 0
–3 3 0 0

3 –6 3 0
–1 3 –3 1

















Sij = (1/8)

1 3 3 1
0 2 4 2
0 0 4 4
0 0 0 8

















538

X.6 FORMS, VECTORS, AND TRANSFORMS

GRAPHICS GEMS I Edited by ANDREW S. GLASSNER 538

Although this well-known result can be derived by more elegant means,
the brute-force matrix approach is just as easy for any type or degree of
curve, and for any linear subdivision. All the algebraic work is in the
matrix inverse.

It should be emphasized that unless the M blending functions of the
curve add to unity (as was the case for the triangular interpolant), the
control points don’t have any geometrical vector significance, since they
lose invariance with the origin of the coordinate system. See Goldman
(1985) for an excellent discussion of these types of issues.

Cramer’s Rule and Adjoint Matrices
A very useful tool in dealing with problems such as those discussed here
is a utility for inverting matrices using exact integer arithmetic. The
approaches described here can then be applied directly without any
tedious algebra, and used to provide insight toward a more closed-form
solution (if needed).

Since computational efficiency is of no concern, the much-maligned
Cramer’s Rule is ideally suited for this. If done in integer arithmetic, it is
free of roundoff error, is easy to code, and will always produce an adjoint,
even if the matrix is singular. A sample collection of routines set up to
solve the Bézier subdivision example is provided in the appendix.

See Appendix 2 for C Implementation (780)

539

 X.7 PROPERTIES OF SURFACE-NORMAL TRANSFORMATIONS

GRAPHICS GEMS I Edited by ANDREW S. GLASSNER 539

X.7X.7X.7X.7X.7
PPPPPROPERTIES OFROPERTIES OFROPERTIES OFROPERTIES OFROPERTIES OFSSSSSURFACE-NORMALURFACE-NORMALURFACE-NORMALURFACE-NORMALURFACE-NORMALTTTTTRANSFORMATIONSRANSFORMATIONSRANSFORMATIONSRANSFORMATIONSRANSFORMATIONS

Ken TurkowskiApple ComputerCupertino, California

Why Is a Normal Vector Not Just a DifferenceWhy Is a Normal Vector Not Just a DifferenceWhy Is a Normal Vector Not Just a DifferenceWhy Is a Normal Vector Not Just a DifferenceWhy Is a Normal Vector Not Just a Differencebetween Two Points?between Two Points?between Two Points?between Two Points?between Two Points?
In Fig. 1a, we illustrate a rectangle and its normals, Ni, that have been
modeled as straight line segments. Figure 1b shows an affine transforma-
tion of the rectangle and its normals, where the endpoints of the straight
line segments representing the normals have been transformed in the
same way as other points that make up the rectangle. Note that these
so-called normal vectors are no longer perpendicular to the surface. This
occurs because we applied an anisotropic transformation, that is, one
that is not equal in all directions.

Is this the type of behavior that we expect from normal vectors? I think
not. This leads us to believe that normals behave differently under
transformations than the surfaces to which they correspond. The transfor-
mations are related, though, by the requirement that the surfaces and
their normals remain orthogonal. We use this property to derive the
normal transformation matrix from the point transformation matrix.

Transformation of Normal Vectors under AffineTransformation of Normal Vectors under AffineTransformation of Normal Vectors under AffineTransformation of Normal Vectors under AffineTransformation of Normal Vectors under AffineModeling TransformationsModeling TransformationsModeling TransformationsModeling TransformationsModeling Transformations
Given a planar surface, a tangent vector can be expressed as the differ-
ence between two points on the surface

T1 = P1 – P0. (1)

540

 X.7 PROPERTIES OF SURFACE-NORMAL TRANSFORMATIONS

GRAPHICS GEMS I Edited by ANDREW S. GLASSNER 540

Figure 1.

The normal to the surface can be calculated from

 N = T1 × T2, (2)

for any two noncolinear tangent vectors T1 and T2.
If a surface is not planar, the tangents and normal can still be defined

systematically. For a parametric surface (that is, x, y, and z as a function
of u and v), we have

Tu =

∂ x, y, z()
∂u

, Tv =

∂ x, y, z()
∂v

, N = Tu × Tv, (3)

while for an implicit surface described by f(x, y, z) = 0, we have

N = ∇f (x, y, z), (4)

with a tangent represented by any nonzero vector such that

 T ⋅ N = 0. (5)

Regardless of the type of surface, we know that Ihe normal is orthogonal
to the tangent by construction, so that

T ⋅ N = TNT = 0. (6)

541

 X.7 PROPERTIES OF SURFACE-NORMAL TRANSFORMATIONS

GRAPHICS GEMS I Edited by ANDREW S. GLASSNER 541

When a surface is transformed by the affine modeling matrix M,

 ̃ ′p = p̃M, (7)
where

M =

M00 M01 M02 0
M10 M11 M12 0
M20 M21 M22 0
M30 M31 M32 1
















, (8)

and ̃p is a representative of a set of points (in homogeneous coordinates)
that define the surface, then the tangent vector is transformed by the
matrix MT:

T′ = TMT, (9)

where

 MT =

M00 M01 M02

M10 M11 M12

M20 M21 M22











 (10)

is the submatrix of M that excludes translations, as can be verified by
applying Eq. 1, Eq. 8, and Eq. 7.

In order to have the relation between tangent and normal vectors hold,
we apply Eq. 6:

 T ⋅ N = TMTMT
–1NT = (TMT) ⋅ (NMT

–1T) = T′ ⋅ N′ = 0, (11)

or

N′ = NMN = NMT
–1T, (12)

which implies that the normal vector is transformed by the transpose of
the inverse of the tangent’s transformation matrix. This is a well-known
theorem of tensor algebra, where T is called a covariant tensor of rank 1,
and N is a contravariant tensor of rank 1.

542

 X.7 PROPERTIES OF SURFACE-NORMAL TRANSFORMATIONS

GRAPHICS GEMS I Edited by ANDREW S. GLASSNER 542

Certain types of modeling transformations give rise to simple represen-
tations of the normal transformation matrix. Translations do not affect the
normal or tangent transformations, so these two are the identity transfor-
mation. Below, we give examples of other special transformations.

Isotropic TransformationsIsotropic TransformationsIsotropic TransformationsIsotropic TransformationsIsotropic Transformations
Often, a modeling transformation consists of uniform (isotropic) scaling.
This type of transformation has the following representative tangent
matrix

MT =

s 0 0
0 s 0
0 0 s












, (13)

where s is a nonzero scalar. The inverse transpose of this matrix (suitable
for transforming normals) is

 MN = MT
–1T =

1
s

0 0

0
1
s

0

0 0
1
s























 =

1
s2 MT, (14)

a scalar multiple of the tangent transformation matrix.

Orthogonal TransformationsOrthogonal TransformationsOrthogonal TransformationsOrthogonal TransformationsOrthogonal Transformations
In the case where MT is an orthogonal matrix (that is, the modeling
matrix M is composed only of rotations and translations), its inverse is
simply the transpose; since the transpose of the transpose of a matrix is
the original matrix itself, normals are transformed by the same matrix as

543

 X.7 PROPERTIES OF SURFACE-NORMAL TRANSFORMATIONS

GRAPHICS GEMS I Edited by ANDREW S. GLASSNER 543

the tangents, and hence,

MN = MT. (15)

Composition of TransformationsComposition of TransformationsComposition of TransformationsComposition of TransformationsComposition of Transformations
If a modeling transformation is composed of a concatenation of simpler
transformations, the composite normal transformation is just the concate-
nation of the corresponding simpler normal transformations. That is, if

MT = MT1MT2. . .MTk, (16)

then

MN = MN1MN2. . .MNk. (17)

This can be verified by substitution of Eqs. 16, 17, and 12 into Eq. 11.

Transformations of Metric PropertiesTransformations of Metric PropertiesTransformations of Metric PropertiesTransformations of Metric PropertiesTransformations of Metric Properties
In Euclidean space, the L2 norm of a vector is given by

 V 2
 = V ⋅ V = VVT . (18)

Under the transformation

V = WA, (19)

we have

 W 2
 = WA() WA()T = WAATWT = WGWT , (20)

where the matrix

G = AAT (21)

544

 X.7 PROPERTIES OF SURFACE-NORMAL TRANSFORMATIONS

GRAPHICS GEMS I Edited by ANDREW S. GLASSNER 544

is known as the first fundamental matrix (Faux and Pratt, 1979) or
metric tensor, and represents the fact that the space is in general
non-Euclidean, that is, the length of a vector in this space is not simply
the square root of the sum of the squares of the components of the
vector. Such a space is called a Riemannian space, and comes about
because the modeling matrix A is not in general isotropic (scaling is not
equal in all dimensions).

In a Euclidean space, G = 1 (the identity matrix), and the norm
becomes the familiar Euclidean one.

Applications to Computer Graphics:Applications to Computer Graphics:Applications to Computer Graphics:Applications to Computer Graphics:Applications to Computer Graphics:Back-Face CullingBack-Face CullingBack-Face CullingBack-Face CullingBack-Face Culling
Performance in a computer graphics display system can be improved if
polygons facing away from the view point are removed before scan-con-
version. This is facilitated with an operation involving the plane equation
of the polygon in question:

Nxx + Nyy + Nzz – d = N ⋅ P – d = 0, (22)

where

N = [Nx Ny Nz] (23)
is the outward-facing normal to the polygon,

 P = [x y z] (24)

is any point on the plane of the polygon, and d is the closest distance of
the plane to the origin, measured in the direction of the normal—positive
if the normal points toward the origin from the plane, and negative if it
points away.

Back-facing polygons can be identified by

 N ⋅ E – d < 0, (25)

545

 X.7 PROPERTIES OF SURFACE-NORMAL TRANSFORMATIONS

GRAPHICS GEMS I Edited by ANDREW S. GLASSNER 545

where E is the view point. This can also be represented as

 ̃N ⋅ ̃E < 0, (26)

where

 ̃N = [Nx Ny Nz –d] and ̃E = [Ex Ey Ez 1] (27)

represent the plane and view point in homogeneous coordinates.
Suppose now that the polygon is defined in a coordinate system

different than the “world,” coordinate system. This is commonly called
modeling space, and usually has an affine transformation M relating it to
world space as in Eq. 7 by

 ̃Pw = ̃Pm M. (28)

If the plane equation is given in modeling space, we can transform the
view point into modeling space and do the back-face culling there:

 ̃N ⋅ ̃EM–1 < 0. (29)

We can alternatively do the culling in world space by noting that

 ̃N ⋅ ̃EM–1 = ̃N (̃EM–1)T = ̃NM–1T ̃E T = (̃NM–1T) ⋅ ̃E , (30)

so we can transform the plane from modeling to world space with the
inverse transpose of the full modeling matrix.

Either way, we need to invert the modeling matrix, whether we do the
back-face culling in modeling or world space.

Applications to Computer Graphics: ShadingApplications to Computer Graphics: ShadingApplications to Computer Graphics: ShadingApplications to Computer Graphics: ShadingApplications to Computer Graphics: Shading
When computing shading in a simple three-dimensional graphics system,
it is sometimes advantageous to transform a directional light vector I
from the world space into the modeling space. Central to the Lambert

546

 X.7 PROPERTIES OF SURFACE-NORMAL TRANSFORMATIONS

GRAPHICS GEMS I Edited by ANDREW S. GLASSNER 546

shading computation, for example, is the calculation of the dot product:

 d =

NwIw
T

Nw Iw

. (31)

In a typical scan-conversion system, the light vector is normalized once
when the light is placed in the scene, and doesn’t need to be normalized
again. The surface normal, however, is usually interpolated from the
polygon’s vertex normals, so it needs to be renormalized at every pixel in
the polygon. (This is true if the normals are linearly interpolated in a
Cartesian space. If the normals are interpolated on the surface of a
sphere, using spherical coordinates or quaternions, no renormalization is
required.)

Applying the normal transformation rule (Eq. 12), we get the equivalent
relation in modeling space:

 d =

NwIw
T

Nw Iw

 =
NmMNIw

T

NmMN Iw

 =
Nm ⋅ IwMN

T()
NmMN Iw

, (32)

which implies that we need to transform only one vector (the light vector)
instead of all of the polygon’s vertex normals. But wait! There’s a pesky
transformation in the denonominator as well. Looking back to Eq. 20, we
find that

NmMN = NmMNMN

T Nm
T = NmGNm

T , (33)

where G is the first fundamental matrix of the Riemannian modeling
space.

Normalizing the surface normal at each pixel costs:

Modeling space: one 3 × 3 matrix–vector multiplications
and one 3-vector dot product

World space: one 3-vector dot product

Since one matrix-vector multiplication is composed of three dot prod-
ucts, it costs three extra dot products per pixel to do the shading
calculations in modeling space. Thus, it seems like it is always advanta-
geous to do the shading calculations in world space.

547

 X.7 PROPERTIES OF SURFACE-NORMAL TRANSFORMATIONS

GRAPHICS GEMS I Edited by ANDREW S. GLASSNER 547

There is another reason not to compute shading in model space: the
components of the vector as normalized by Eq. 33 do not necessarily
have a magnitude less than or equal to one. This is an important
consideration if the shading calculations are to be done in fixed-point
because the magnitudes need to be bounded. For a given unit of energy
(power consumption multiplied by time), fixed-point computations are
always faster than floating-point, so high-performance graphics systems
especially need to perform shading in world space.

If one can be assured, however, that all scaling will be isotropic, it is
possible to save a few matrix-vector multiplications per polygon by
subsuming the scale factor in Eq. 14 into the transformed light vector,
thereby guaranteeing a Euclidean norm and bounded vector magnitudes.
However, the increased flexibility afforded by nonrestricted modeling
matrices far outweighs any performance improvement afforded by shad-
ing in modeling space.

ConclusionsConclusionsConclusionsConclusionsConclusions
Normals are transformed by the inverse transpose of the modeling trans-
formation.

Anisotropic transformations make metric computations (distance,
length, norm) more complex: three extra 3-vector dot products.

It is slightly more advantageous to perform back-face culling in model-
ing space. The extra cost in world space is one multiplication and one
4 × 4 matrix transpose.

It costs three extra 3-vector dot products per pixel to perform shading
computations in modeling rather than world space if anisotropic scaling
is allowed. It costs (n – 1) extra 3 × 3 matrix-vector multiplications per
polygon in world space.

Unless the interface to the graphics library prevents anisotropic scaling
(none currently do), the shading software should accommodate it. This is
accomplished most efficiently and robustly in world space.

548

X.8 TRANSFORMING AXIS-ALIGNED BOUNDING BOXES

GRAPHICS GEMS I Edited by ANDREW S. GLASSNER 548

X.8X.8X.8X.8X.8TTTTTRANSFORMINGRANSFORMINGRANSFORMINGRANSFORMINGRANSFORMINGAAAAAXIS-ALIGNEDXIS-ALIGNEDXIS-ALIGNEDXIS-ALIGNEDXIS-ALIGNEDBBBBBOUNDING BOXESOUNDING BOXESOUNDING BOXESOUNDING BOXESOUNDING BOXES
James ArvoApollo Systems Divisionof Hewlett-PackardChelmsford, Massachusetts

A very common type of three-dimensional bounding volume is the axis-
aligned box, a parallelepiped with each face perpendicular to one coordi-
nate axis. The appeal of this shape is its simplicity. It is ubiquitous in ray
tracing because it is among the simplest objects to test for ray intersec-
tion. It is also widely used to accelerate the rendering of display lists by
facilitating quick visibility tests for collections of drawing primitives.

In both contexts it is frequently necessary to construct a bounding box
of an object to which an affine transformation has been applied, typically
by means of a 3 × 3 modeling matrix, M, followed by a translation, T.
A simple and frequently acceptable means of constructing such a box is
to transform the bounding box of the original object and enclose the
resulting arbitrary parallelepiped by an axis-aligned box. This is equiva-
lent to transforming the eight vertices of the original box and finding the
extrema of the resulting coordinates. Since each point transformation
requires nine multiplies and nine adds, this would entail 144 arithmetic
operations and a minimum of 21 compares. This naive approach is
wasteful because it ignores the information embodied in the cube’s
symmetry. We will show how to take advantage of this information.

We address two common methods of encoding a bounding box, B. The
first is the use of three intervals, [Bx

min,Bx
max], [By

min,By
max]

[Bz
min, Bz

max]. Aside from ordering, this is equivalent to storing two
opposing vertices. The second method is to store the box center,
(Bx

cent, By
cent, Bz

cent), and the box half-diagonal, (Bx
diag,By

diag,Bz
diag), which

is the positive vector from the center of the box to the vertex with
the three largest components. Both of these representations are amenable
to very efficient transformation.

549

X.8 TRANSFORMING AXIS-ALIGNED BOUNDING BOXES

GRAPHICS GEMS I Edited by ANDREW S. GLASSNER 549

The algorithm shown in Fig. 1 transforms box A, encoded as intervals,
into another axis-aligned box, B, of the same form. The algorithm is
based on the following observation. To compute a component of the
transformed box, say, the maximum along the ith axis, we need only
consider which of the eight vertices produces the maximal product with
the ith row of the matrix. There are two possibilities for each component
of the potential vertex: the minimum or the maximum of the interval for
that axis. By forming both products for each component and summing the
largest terms, we arrive at the maximal value. The minimal value is found
by summing the smaller terms. The translation component of the matrix
does not influence these choices and is simply added in.

The algorithm shown in Fig. 2 transforms box A, now encoded as a
center and half-diagonal vector, into another axis-aligned box, B, of the
same form. In this form the new center, Bcent, is obtained by simply
applying the affine transformation to Acent. The ith component of the
new half-diagonal, Bi

diag, is obtained by selecting the signed half-

procedure Transform_Interval_Box(M,T,A,B)
begin

for i = 1...3 do

Start with a degenerate interval at Ti to account for translation.
Bi

min ← Ti;
Bi

max ← Ti;

Add in extreme values obtained by computing the products of the
mins and maxes with the elements of the i’th row of M

for j = 1. . .3 do
a ← Mi,j ∗ Aj

min;
b ← Mi,j ∗ Aj

max;
Bi

min ← Bi
min + min(a, b);

Bi
max ← Bi

max + max(a, b);
endloop;

endloop;
end;

Figure 1. An algorithm for transforming an axis-aligned bounding box, A, stored as
three intervals into another box, B, of the same form.

550

X.8 TRANSFORMING AXIS-ALIGNED BOUNDING BOXES

GRAPHICS GEMS I Edited by ANDREW S. GLASSNER 550

procedure Transform_CenterDiag_Box(M,T,A,B)
begin

for i = 1. . .3 do

Initialize the output variables by zeroing the new half-diagonal
and setting the new center equal to the translation T.

Bi
cent ← Ti;

Bi
diag ← 0;

Compute the i’th coordinate of the center by adding Mi,∗, ⋅ Acent,
and the i’th coordinate of the half-diagonal by adding |Mi,∗| ⋅ Adiag.

for j = 1. . .3 do
Bi

cent ← Bi
cent + M i, j ∗ Aj

cent;
Bi

diag ← Bi
diag + |M i,j| ∗ Aj

diag;
endloop;

endloop;
end;

Figure 2. An algorithm for transforming an axis-aligned bounding box, A, stored as
a center and a half-diagonal into another box, B, of the same form.

diagonal of A, which results in the maximal product with the ith row of
M. Here “signed” means allowing each component to be either positive
or negative independently. This generates all eight half-diagonals of box
A, pointing from Acent to each vertex. We achieve the maximum product
with the row of M by making each of its three terms positive, negating
the negative elements of M. Because Acent is a positive vector, this is
equivalent to taking the absolute value of each element of M, as shown in
Fig. 2.

The cost of both of these algorithms is only 36 arithmetic operations
and 9 compares. Note that in the first algorithm both min(a,b) and
max(a ,b) can be computed with one compare, and in the second
algorithm each absolute value is counted as one compare.

See Appendix 2 for C Implementation (785)

551

I.2 USEFUL TRIGONOMETRY

GRAPHIC GEMS I Edited by ANDREW S. GLASSNER 551

CCCCCONSTRUCTINGONSTRUCTINGONSTRUCTINGONSTRUCTINGONSTRUCTINGSHAPES SUMMARYSHAPES SUMMARYSHAPES SUMMARYSHAPES SUMMARYSHAPES SUMMARY

There are many approaches to constructing geometric shapes.
One may begin with a small set of geometric primitives, such as
polygons and quadric surfaces, and combine them using some
or all of the constructive solid geometry operators. One may
create a shape using free-form deformation of a simpler initial
shape. Other techniques for creating 3D objects abound in the
literature and commercial products.

The Gems in this section provide some techniques useful for
some of these approaches. Rather than algorithms for shape
construction, these Gems provide some of the essential pieces
used by such algorithms to create shapes from contours,
determine surface normals, or orient reference frames. These
methods may then be coupled with other procedures to form
powerful shape synthesis tools.

552

 X.9 DEFINING SURFACES FROM SAMPLED DATA

GRAPHICS GEMS I Edited by ANDREW S. GLASSNER 552

X.9X.9X.9X.9X.9DDDDDEFININGEFININGEFININGEFININGEFININGSSSSSURFACES FROMURFACES FROMURFACES FROMURFACES FROMURFACES FROMSSSSSAMPLED DATAAMPLED DATAAMPLED DATAAMPLED DATAAMPLED DATA
Mark HallRice UniversityHouston, Texas

The ProblemThe ProblemThe ProblemThe ProblemThe Problem
This article will describe how to create surface descriptions from regu-
larly spaced data values on a three-dimensional grid.

Many disciplines deal with a scalar data field whose values are known
on a regular three-dimensional grid as depicted in Fig. 1. Examples are
seismic data, electron microscopy data, NMR and CT scan data, and
barometric pressure. It is often useful to look at surfaces defined as a
collection of points with a given value. The surface is called a level set.
For example, CT scan data records material densities. Bone has a differ-
ent density than the softer tissues around it. Finding the boundary
between bone and soft tissue results in a surface representation of the
bone. Another example of a familiar level set is a single line of barometric
pressure on a weather map.

AssumptionsAssumptionsAssumptionsAssumptionsAssumptions
The original data is considered to be samples of a continuous field
function over space. Having a continuous function is important because it
allows inferences about the surface location. If the data values are
floating point numbers, the chance that a data value will be exactly equal
to the desired level is negligible. If two samples of a continuous function
bracket the level set value (one is more and one is less), there must be a
member of the level set on any path between the two sample points.

553

 X.9 DEFINING SURFACES FROM SAMPLED DATA

GRAPHICS GEMS I Edited by ANDREW S. GLASSNER 553

Figure 1. Function values known at corner nodes.

A second assumption about the data values is that the distance between
samples is small enough to avoid aliasing. In simple terms the samples
must be spaced closely enough to detect the smallest feature in which you
are interested. This is the three-dimensional equivalent of the Nyquist
sampling theorem for one-dimensional signals. If the samples are too far
apart, accurate reconstruction of the surfaces generally will not be
possible.

MethodsMethodsMethodsMethodsMethods
Three examples of surface-finding techniques are found in Wyvill et al.
(1986), Lorenson and Cline (1987), and Bloomenthal (1988). This article
will describe similarities in the techniques.

The basic idea is to look at a “cube” for which we know the function
value at each corner. We compare the corner values to the desired
surface value, the level. For any cube with at least one corner value above

554

 X.9 DEFINING SURFACES FROM SAMPLED DATA

GRAPHICS GEMS I Edited by ANDREW S. GLASSNER 554

Figure 2. Adjacent nodes define contours in one, two, and three dimensions.

and one corner value below the level, we know that the surface exists
inside the cube.

Consider scaling the corner values by subtracting the desired level from
each sampled value. Then the desired level set is composed of points with
value zero. For a given cube edge, if the endpoints are of opposite sign,
the surface must pass through the edge. The exact location of the surface
vertex is determined by assuming that the field values along an edge
linearly interpolate the corner values. For a cube face, if the surface
intersects edges on the face, the surface must intersect the face as well.
The cube face intersections can be combined to from a representation of
the surface inside the cube, as shown in Fig. 2. All three methods perform
a variation of these steps to define polygonal representations of a surface
within each cube.

Figure 3. An example.

555

 X.9 DEFINING SURFACES FROM SAMPLED DATA

GRAPHICS GEMS I Edited by ANDREW S. GLASSNER 555

Figure 4. Bloomenthal’s solution of the example.

As an example, the cube in Fig. 3 has seven positive vertices and a
single negative vertex. Bloomenthal’s (1988) method would be given one
of the surface vertices as a starting point, as in Fig. 4. From that point,
the algorithm proceeds toward the positive corner, and then clockwise on
the face to the “right,” as defined by the travel direction. When another
surface vertex is encountered, a polygon edge is added and the process
repeats until all surface vertices have been found.

Bloomenthal’s method differs from the other two in that it is an
algorithmic approach while the others are table-driven. It has the addi-

Figure 5. Wyvill’s seven cases (from Wyvill et al., 1986).

556

 X.9 DEFINING SURFACES FROM SAMPLED DATA

GRAPHICS GEMS I Edited by ANDREW S. GLASSNER 556

Figure 6. Wyvill solution of the example.

tional benefit of allowing adaptive refinement of the cubic mesh around
regions of high surface curvature. That is, more sample points can be
used around certain areas of the surface. For cases where additional field
values can be generated, this allows a better surface fit.

Wyvill et al.’s method (1986) is based on considering the corner values
of each face. There are only seven possible face configurations, as shown
in Fig. 5. Note that the difference between case F and case G is the value
at the center of the face. An average of the corner values is usually
sufficient for the center value. Under Wyvill’s method, each visible face of
the cube would be an example of case D, as shown in Fig. 6. The three
edges create the corners of a triangle in the cube.

Lorenson and Cline’s method (1987) looks at the signs of all the
corners in a cube. They number the cube vertices and edges as in Fig. 7.

Figure 7. Lorenson and Cline’s (1987) edge and vertex numbering.

557

 X.9 DEFINING SURFACES FROM SAMPLED DATA

GRAPHICS GEMS I Edited by ANDREW S. GLASSNER 557

The vertex signs create an index into a look-up table. The table describes
the triangles formed by each pattern of vertex signs. Our example would
be described by the index 11111011 binary, or 251 decimal. Entry 251
would describe a single triangle formed by vertices on edges 2, 3, and 12.

There is a problem with the last method. It is possible for adjoining
cubes to have an inconsistent interpretation of their shared face (Dürst,
1988). An example is the difference between cases F and G in Wyvill’s
notation. A hole in the surface can result from these different interpreta-
tions. In practice, this problem seldom arises.

558

X.10 DEFINING SURFACES FROM CONTOUR DATA

GRAPHICS GEMS I Edited by ANDREW S. GLASSNER 558

X.10X.10X.10X.10X.10DDDDDEFININGEFININGEFININGEFININGEFININGSSSSSURFACES FROMURFACES FROMURFACES FROMURFACES FROMURFACES FROMCCCCCONTOUR DATAONTOUR DATAONTOUR DATAONTOUR DATAONTOUR DATA
Mark HallRice UniversityHouston, Texas

Problem StatementProblem StatementProblem StatementProblem StatementProblem Statement
Given a set of two-dimensional contours of an object, create a set of
polygons in three dimensions describing the object.

The problem with finding polyhedra from a selection of two-dimen-
sional contours is that there is in general no way to join contours together
correctly. When the individual contours are defined, all the connectivity
information is limited to the contour plane. There is no information about
the relationship between adjacent contours. At best, heuristic rules can be
used to recreate the connectivity between successive contour layers. But
there is no way to use the contours to recreate the correct connections in
all cases.

Examples of DifficultiesExamples of DifficultiesExamples of DifficultiesExamples of DifficultiesExamples of Difficulties
The hardest problem in reconstructing a surface from planar contours
concerns how to deal with branching. Finding polygons to connect a
single contour to several closed contours on the next level is difficult. In
more general terms, the contours or their enclosed regions on successive
levels may not have the same topology.

Figure 1 demonstrates the branching problem. One level contains a
single contour. The next contour level contains three distinct contours. It
is not obvious how to joint the two contour levels with polygons. Figure 2
depicts another problem. One contour level contains a single closed

559

X.10 DEFINING SURFACES FROM CONTOUR DATA

GRAPHICS GEMS I Edited by ANDREW S. GLASSNER 559

Figure 1.

Figure 2.

curve. The adjacent contour contains several, one enclosing the other.
Figure 3 shows another difficulty that can arise. One contour level
contains a closed curve. The next contour level contains a single contour
line. There is no obvious method of defining a surface between the two
contour levels.

MethodsMethodsMethodsMethodsMethods
There are several methods that work for some situations. A relatively
simple configuration occurs when each contour level contains a single

Figure 3.

560

X.10 DEFINING SURFACES FROM CONTOUR DATA

GRAPHICS GEMS I Edited by ANDREW S. GLASSNER 560

Figure 4. Simple case—a single closed contour on each level.

closed curve. The algorithms of Fuchs et al. (1977) or Ganapathy and
Dennehy (1982) work well for this simple case. They seek positions on
the adjacent contours that are near each other to define corners of
polygons spanning the contour levels, as shown in Fig. 4.

In more complicated cases, the method of Anjyo et al. (1987) often
works, but not always. It tries to transform each pair of adjacent contour
levels into a number of the simple situations solved above. The algorithm
assumes that each level defines a number of closed areas called regions.
For a pair of levels, the upper and lower regions are tested against each
other to determine how the regions overlap. Each region has associated
with it a value, which is the number of regions from the other level
overlapping the region. Call this number the count of a region. A region
with count zero is a local minimum or maximum, so the surface is defined
as the enclosed region. A pair of regions that overlap only each other
define the simple situation of Fig. 4. Regions that have count greater than
one are involved in branching, as depicted in Fig. 5. The region L
overlaps two regions U1 and U2 in the next contour level. The algorithm
seeks to divide region L into regions L1 and L2 as in Fig. 6. Each pair
(L1, U1) and (L2, U2) can then be handled easily. The crux of the
problem is how to find a good place to split L. The article is vague about
how to go about the splitting process.

Figure 5. An example of branching.

561

X.10 DEFINING SURFACES FROM CONTOUR DATA

GRAPHICS GEMS I Edited by ANDREW S. GLASSNER 561

Figure 6. Branching converted to several simple cases.

For data in the form of a scalar quantity known over a three-dimen-
sional grid, the methods developed to find polygonal approximations to
implicit surfaces work well.

See also Defining Surfaces from Sampled Data (552)

562

X.11 COMPUTING SURFACE NORMALS FOR 3D MODELS

GRAPHICS GEMS I Edited by ANDREW S. GLASSNER 562

X.11X.11X.11X.11X.11
CCCCCOMPUTING SURFACEOMPUTING SURFACEOMPUTING SURFACEOMPUTING SURFACEOMPUTING SURFACENNNNNORMALS FOR 3D MODELSORMALS FOR 3D MODELSORMALS FOR 3D MODELSORMALS FOR 3D MODELSORMALS FOR 3D MODELS

Andrew S. GlassnerXerox PARCPalo Alto, California

IntroductionIntroductionIntroductionIntroductionIntroduction
In this note we focus on polygonal approximations to smooth surfaces.
Such surfaces may be made to appear smooth rather than faceted, using
smooth-shading techniques such as those proposed by Gouraud (1971b)
and Phong (1973). These techniques require a surface normal to be
defined at each vertex in the model. This note discusses some methods
for generating such normals.

Swept ContoursSwept ContoursSwept ContoursSwept ContoursSwept Contours
We begin with an important special class of shape: swept contours.
Examples of these shapes are prisms and surfaces of revolution. Such
shapes are defined by a planar curve (or contour), which is then trans-
lated along a path or rotated about an axis, as shown in Fig. 1. If our
input consists only of the contour, how might we find a surface normal for
points on the swept-out surface?

Reducing the dimension of a problem is often a good way to simplify its
analysis. An easy way to eliminate one dimension for this problem is to
generate normals for just the 2D contour curve, and then transform those
normals with the curve as the contour is swept (see “Properties of

563

X.11 COMPUTING SURFACE NORMALS FOR 3D MODELS

GRAPHICS GEMS I Edited by ANDREW S. GLASSNER 563

Figure 1. A contour, and the results of translation along a straight line and rotation
about an axis.

Surface-Normal Transformations” in this volume). We now need only find
planar normals to the planar contour.

Figure 2 shows a contour and a distinguished point P for which we
wish to find a normal; we discuss three approaches. Technique A finds the
normals of the two segments adjacent to P, and averages those (Fig. 2a).
Technique B finds the line joining the two vertices adjacent to P, and uses
the normal of that line as the normal at P (Fig. 2b). Both of these
approaches are implicitly using the Mean Value Theorem, which guaran-
tees that somewhere between two points on a continuous curve, the curve
obtains a slope parallel to the line through those points. We can take a

564

X.11 COMPUTING SURFACE NORMALS FOR 3D MODELS

GRAPHICS GEMS I Edited by ANDREW S. GLASSNER 564

more direct, constructive approach to this result. Recall that the deriva-
tive of a curve at a point may be computed as the limit of the slope of a
line that passes on either side of that point; that is,

df
dx x0() ≈

f x0 + e() – f x0 – e()
x0 + e() – x0 – e()

.

Let us directly compute x0 + e and x0 – e as those points that are
some small distance e away from P along the lines joining P; these are
on the circle of radius e centered at P. Then the slope of that line may be
used as the average slope at P, as shown in Fig. 2c. The choice of e may
be made somewhat arbitrarily; about 1/2 the distance along the shorter
of the two edges has worked well for me. Note that this is a distance
along the nonzero edges radiating from P; the next defined point after P
may be P itself (this can happen when one wishes to define a double
point for an interpolated curve).

Figure 2. Different methods for computing the vertex normal on a contour.

565

X.11 COMPUTING SURFACE NORMALS FOR 3D MODELS

GRAPHICS GEMS I Edited by ANDREW S. GLASSNER 565

33333DDDDD Polyhedra Polyhedra Polyhedra Polyhedra Polyhedra
The more general problem of computing normals at vertices of arbitrary
3D polyhedra may also be approached in several ways. By far the most
common approach is that suggested by Gouraud (1971), which simply
averages the normal of each polygon that shares that vertex (see Fig. 3).

We may adapt the latter two techniques of the previous section, but
there is a problem. In 2D, we found two points that together determined
a unique line; this is because only two edges could leave a vertex in a
profile curve. In 3D, we need exactly three points to determine a plane. If
a vertex has three edges radiating from it, we may find the vertex on the
far end of each edge, pass a plane through these points, and use the plane
normal as the vertex normal (see Fig. 4a). The problem with this ap-
proach is that many vertices will have more or less than three edges. If a
vertex has only two edges, the two neighboring vertices do not determine
a unique plane; if a vertex has more than three edges, there typically will
be no single plane that will pass through all the neighbor vertices. One

Figure 3. Computing a vertex normal by averaging neighbor polygon normals.

566

X.11 COMPUTING SURFACE NORMALS FOR 3D MODELS

GRAPHICS GEMS I Edited by ANDREW S. GLASSNER 566

Figure 4. Different methods for computing the vertex normal on a polyhedron.

approach in this latter case is to find the least-squares solution to the
points, resulting in the plane that most nearly interpolates the points (Fig.
4b). Techniques for finding this plane are well-known; see Lawson and
Hanson (1974).

This approximate solution may also be applied to a more local approxi-
mation of the derivative, found by traveling only some distance along
each edge sharing P (Fig. 4c).

In practice, the simple averaging of the normals of adjacent polygons
works quite well, as long as the polygons interpolate the surface “rea-
sonably.” (It is interesting to consider just what that word means in this
context.) If the polygons are a poor approximation to the surface, then I
think that flattened silhouettes and badly approximated intersections with
other surfaces will usually be more objectionable symptoms than poor
shading. These latter effects may be alleviated with the technique of
Max (1989).

567

X.12 CALCULATION OF REFERENCE FRAMES ALONG A SPACE CURVE

GRAPHICS GEMS I Edited by ANDREW S. GLASSNER 567

CCCCCALCULATION OFALCULATION OFALCULATION OFALCULATION OFALCULATION OFRRRRREFERENCE FRAMESEFERENCE FRAMESEFERENCE FRAMESEFERENCE FRAMESEFERENCE FRAMESAAAAALONG A SPACE CURVELONG A SPACE CURVELONG A SPACE CURVELONG A SPACE CURVELONG A SPACE CURVE
Jules BloomenthalXerox PARCPalo Alto, California

Three-dimensional space curves can represent the path of an object or
the boundary of a surface patch. They can also participate in various
free-form geometric constructions. For example, the generalized cylin-
der (a cylinder with arbitrary cross-sections along a central, space curve
axis) is used in computer graphics to good effect. Establishing reference
frames for the cross-sections of a generalized cylinder, or for any other
geometric use, is the subject of this Gem.

We restrict the central axis to the familiar three-dimensional cubic
curve, which we represent by its polynomial coefficients, the three-dimen-
sional vectors A, B, C, and D. A point P on the curve is computed
according to its parametric position, t:

P = At3 + Bt2 + Ct + D.

When constructing a polygonal generalized cylinder, each cross-section
must be aligned properly with its neighbors so that the structure does not
twist. This alignment is usually provided by a reference frame, a point
and three orthogonal vectors that define position and orientation along
the central axis of the cylinder (see Fig. 1).

One of the more intuitive reference frames is due to Frenet (see Fig. 2);
the frame consists of a unit length tangent, T, to the central axis; a
principal normal, N; and a binormal, B. T is computed simply as the unit
length velocity vector, V; V is the derivative of the curve

V = 3At2 + 2Bt + C.

X.12X.12X.12X.12X.12

568

X.12 CALCULATION OF REFERENCE FRAMES ALONG A SPACE CURVE

GRAPHICS GEMS I Edited by ANDREW S. GLASSNER 568

Figure 1. Polygons resulting from twisting reference frames.

The principal normal is often defined to be in the direction of curvature,
K = V × Q × V/|V|4. Q is the acceleration of the curve, that is, the
derivative of velocity, 6At + 2B. Thus,

T = V/|V|, N = K/|K|, and B = T × N.

The Frenet frame is convenient because it can be analytically computed
at arbitrary points along the curve. Unfortunately, it is undefined wher-
ever the curvature is degenerate, such as at points of inflection or along
straight sections of curve. Worse, the curvature vector can suddenly
reverse direction on either side of an inflection point, inflicting a violent
twist in a progression of Frenet frames.

This problem was discussed by Shani and Ballard (1984), who pro-
posed an iterative solution to minimize torsion, that is, rotation around
the tangent to a curve. This technique was used to compute reference
frames for the tree branches in J. Bloomenthal (1985).

Figure 2. Curvature (left) and a Frenet frame (right).

569

X.12 CALCULATION OF REFERENCE FRAMES ALONG A SPACE CURVE

GRAPHICS GEMS I Edited by ANDREW S. GLASSNER 569

Papers by Klok (1986) and M. Bloomenthal (1988) discuss rotation
minimizing frames in some detail. They both observe that a rotation
minimizing frame does not necessarily produce the intuitively desired
result; in the case of a helical curve, for example, the Frenet frame
appears more desirable.

The idea behind rotation minimizing frames is to define an initial
reference frame at the beginning of the curve and then propagate the
frame along the curve using small, local rotations. This method is immune
to degeneracies in the curvature vector; it does not, unfortunately, permit
analytical computation of a reference frame.

The first frame usually can be computed using curvature, as illustrated
in Fig. 2. If the curvature is degenerate, then N can be any unit length
vector perpendicular to T. Given the initial frame, subsequent frames are
generated, in order, by computing P and T at the new location on the
curve. The old reference frame is then rotated such that the old T aligns
itself with the new T. The rotation creates a new N and B, which, with the
new P and T, define a new reference frame. The axis of rotation is
given by T0 × T1 and α = cos–1((T0 ⋅ T1)/(|T0 | |T1 |). In Fig. 3,
{P0, T0, N0, B0} becomes {P1, T1, N1, B1}.

As the curve becomes relatively straight, the difference between T0 and
T1 becomes small. If T0 = T1, their cross-product is undefined and no
axis is available to perform the rotation: this is not a problem, because
the amount of rotation is zero.

Figure 3. Computing a reference frame from the previous frame.

570

X.12 CALCULATION OF REFERENCE FRAMES ALONG A SPACE CURVE

GRAPHICS GEMS I Edited by ANDREW S. GLASSNER 570

Although the tangent is needed to compute the reference frame, only
the point P, normal N, and binormal B are needed to transform the
cross-section into the plane defined by N and B.

If (Cx, Cy) is on the cross-section (Fig. 4), (Px + CxNx + CyBx, Py +
CxNy + Cy By, Pz + CxNz + CyBz) is a three-dimensional point properly
positioned on the surface of the generalized cylinder. This is conveniently
expressed in matrix form:

Psurface = [Cx, Cy, 1][M], where M =

Nx Ny Nz

Bx By Bz

Px Py Pz
















.

Figure 4. Positioning and orienting a cross-section.

Note that the results depend on the distance between successive
reference frames. Reference frames a small distance apart will, naturally,
follow the path of the curve more closely. With large distances it is
possible to miss turns of the curve; such an error is then propagated
along the curve. Implementors may find it advantageous to create several
intermediate reference frames in order to establish one at a desired
location. Also, a cross-section at the beginning of a closed curve will not
necessarily align with the cross-section at the end of the curve.

Figure 5 was created with the technique described here; note that the
cross-sections change as they progress along the curve. Also, there are
more cross-sections where the curvature is relatively high. The number of
cross-sections can also depend on the change in cross-sections (whether
radius or shape).

571

X.12 CALCULATION OF REFERENCE FRAMES ALONG A SPACE CURVE

GRAPHICS GEMS I Edited by ANDREW S. GLASSNER 571

Figure 5. A generalized cylinder with changing cross-sections.

1111
CURVES ANDSURFACES

575

 XI.1 PLANAR CUBIC CURVES

GRAPHICS GEMS I Edited by ANDREW S. GLASSNER 575

XI.1XI.1XI.1XI.1XI.1
PPPPPLANAR CUBIC CURVESLANAR CUBIC CURVESLANAR CUBIC CURVESLANAR CUBIC CURVESLANAR CUBIC CURVES

Andrew S. GlassnerXerox PARCPalo Alto, California

I find that planar cubic curves pop up all over the place in computer
graphics. They're useful for all sorts of interpolation and blending in
modeling and animation. For example, a good slow-in/slow-out curve for
motion control may be built from a cubic. Simple cubics are also useful
tools for interactive drawing programs, and they can be used as filters to
modulate some scalar parameter.

Let's focus just on 1D curves. Suppose that we write our cubic as
y = f(x). To define a cubic you need to provide four parameters—these
can then be turned into the four coefficients of f so f(x) can be
evaluated at any x. The way I specify such a cubic is to provide the (x, y)
coordinates and the slope of the curve at the start and the end of an
interval. Suppose the interval goes from xL (low) to xH (high). The input
consists of the points (xL, yL) and (xH, yH) and the associated slopes mL

and mH at those points (see Fig. 1):

f(xL) = yL f(xH) = yH

f'(xL) = mL f'(xH) = mH,

where f ’ is the derivative of f. Calculation of the coefficients is much
easier if we map the input interval [xL, xH] to the interval [0, 1]. Since
this will change the scaling of the axes relative to each other, we need to
adjust the values of the slopes as well. We will define a new function g,

576

 XI.1 PLANAR CUBIC CURVES

GRAPHICS GEMS I Edited by ANDREW S. GLASSNER 576

Figure 1. Specifying a cubic curve with two points and corresponding slopes.

which will mimic f over the unit interval (see Fig. 2):

g(0) = yL = y0 g(1) = yH = y1

g'(0) = mL

∆x
∆y

 = m0

g' 1() = mH

∆x
∆y = m1,

where ∆x = xH – xL and ∆y = yH – yL. (We have renamed the y and
m values with the subscripts 0 and 1 to emphasize that they are the
values for g, not f.) Our function g and its derivative g′ look like this:

g(x) = ax3 + bx2 + cx + d

g'(x) = 3ax2 + 2bx + c

Examination shows that g(0) = d, and since by definition g(0) = y0,
we have d = y0. Similar reasoning holds for g’(0) = c = m0. We can find

 Figure 2. Remapping the curve into the unit interval [0, 1] requires scaling the slopes.

577

 XI.1 PLANAR CUBIC CURVES

GRAPHICS GEMS I Edited by ANDREW S. GLASSNER 577

a and b by simultaneously solving g(1) and g′(1). The resulting coeffi-
cients are summarized below:

a = m0 + m1 + 2(y0 – y1)

b = 3(y1 – y0) – m1 – 2m0

c = m0

d = m1.

An important special case is when y0 = 0 and y1 = 1; this arises when
one is interpolating between two values smoothly. The above coefficients
then simplify to

a = m0 + m1 – 2

b = 3 – m1 – 2m0

c = m0

d = y0.

An even more special case is when m0 = m1 = 0. This is useful when
you want first-order continuity between a series of interpolated values
that are held constant between transitions (see Fig. 3). To blend from
value v0 to v1, let α go from 0 to 1, and calculate vα = lerp(f(α), v0, v1).

Figure 3. Interpolating between constant segments uses endpoint derivatives of 0.

578

 XI.1 PLANAR CUBIC CURVES

GRAPHICS GEMS I Edited by ANDREW S. GLASSNER 578

Figure 4. Clamping the input range to (xL, xH) is equivalent to holding the endpoint
values constant outside the interval, so the curve doesn’t fly off to extreme values.

The coefficients for the process are given by

a = –2

b = 3

c = d = 0

Incidentally, another good way to do this sort of interpolation is to use
a piece of the cosine curve. (Again using the interval [0, 1], you could use
g(x) = 1 – ([cos(π x) + 1]/2.)

To evaluate f(x), we remap the input to the unit interval and find the
value of g:

f x() = g

x – xL

xH – xL






.

This indirect approach is much easier than solving for the cubic
directly on the input range. If you evaluate f outside the interval
[xL, xH], you may find that it quickly shoots off into huge positive or
negative numbers. Typically one clamps the input domain in this case
(see Fig. 4):

f x() = g clamp xL , xH ,

x – xL

xH – xL












.

579

X1.2 EXPLICIT CUBIC SPLINE INTERPOLATION FORMULAS

GRAPHICS GEMS I Edited by ANDREW S. GLASSNER 579

XI.2XI.2XI.2XI.2XI.2
EEEEEXPLICIT CUBIC SPLINEXPLICIT CUBIC SPLINEXPLICIT CUBIC SPLINEXPLICIT CUBIC SPLINEXPLICIT CUBIC SPLINEIIIIINTERPOLATION FORMULASNTERPOLATION FORMULASNTERPOLATION FORMULASNTERPOLATION FORMULASNTERPOLATION FORMULAS

Richard RasalaNortheastern UniversityBoston, Massachusetts

IntroductionIntroductionIntroductionIntroductionIntroduction
This article will show how to compute the uniform cubic spline that
passes through a sequence of points: P0, Pl,. . .,Pi, Pi+1,. . . . For each i,,
we will construct additional Bézier control points Qi and Ri such that
the cubic Bézier curve defined by the four control points Pi, Qi, Ri, Pi+1
is the spline segment between Pi and Pi+1. For background information
on splines and on the Bézier representation of a cubic polynomial, see
Bartels et al. (1987) or Farin (1988).

The spline smoothness conditions (based on agreement of first and
second derivatives) yield two sets of equations:

Pi – Ri-1 = Qi – Pi (1)

Pi – 2Ri-1 + Qi-l = Ri – 2Qi + Pi. (2)

The first equations suggest that we introduce as fundamental quantities
the difference vectors or “tangents”:

Di = Pi – Ri-1 = Qi – Pi (3)

Then, using simple algebra, we can eliminate the Q’s and R’s from Eqs. 1
and 2 to obtain a set of equations that relate the D’s directly to the P’s:

Di+l + 4Di + Di–1 = Pi+l – Pi–1 (4)

580

X1.2 EXPLICIT CUBIC SPLINE INTERPOLATION FORMULAS

GRAPHICS GEMS I Edited by ANDREW S. GLASSNER 580

The heart of the computation becomes finding expressions for the D’s
given the P’s. We must break up the discussion into two separate cases:
closed loops and open curves.

Closed LoopsClosed LoopsClosed LoopsClosed LoopsClosed Loops
The key to finding expressions in the closed loop case is to exploit the
symmetries in the equations. We assume that there are n points
P0 . . . Pn–1 in the loop and that the spline curve wraps around from Pn–1
to P0. We extend the notation so that for 0 ≤ i < n: Pi-n = Pi+n = Pi

and Di–n = Di+n = Di. The equations (4) are valid for 0 ≤ i < n. Thus,
there are n equations for the n unknowns D i. These equations are
invariant under “rotational” permutation of the indices. Thus, with proper
notation, the expression for Di in terms of the Pj’s must involve coeffi-
cients that are independent of i. In addition, “reflection” of the indices
about i will reverse the direction of each vector Di while interchanging
symmetric points Pj. Thus, in the expression for Di, the coefficients of
points Pj symmetric relative to i must have opposite signs.

To exploit these remarks on symmetry, we need one additional nota-
tion. If n is odd, let n = 2m + 1, and, if n is even, let n = 2m + 2.
Then, we can compute each Di by an expression of the following form:

= ak
k =1

m

∑ Pi+k – Pi−k().

It remains to explain how to compute the coefficients ak. The rule
depends on whether n is odd or even. If n is odd,

ak = –fm–k/fm

where

f0 = 1, f1= –3, and fj = –4fj-1 – fj-2 for j ≥ 2.

If n is even,

ak = gm–k/gm

Di

581

X1.2 EXPLICIT CUBIC SPLINE INTERPOLATION FORMULAS

GRAPHICS GEMS I Edited by ANDREW S. GLASSNER 581

Table 1. The Quantities fj and gj.

Tables 2. Interpolation Coefficients for Closed Loops of n Points with n Odd.

Table 3. Interpolation Coefficients for Closed Loops of n Points with n Even.

where

g0 = 1, g1 = –4, and gj = –4gj-1– gj–2 for j ≥ 2.

The values of the sequences fj and gj for small j are given in Table 1.
The numerical values of the corresponding coefficients ak are given in
Tables 2 and 3. These tables can be stored in a spline computation
routine and used for the special cases 3 < n < 14. By n = 15, the

582

X1.2 EXPLICIT CUBIC SPLINE INTERPOLATION FORMULAS

GRAPHICS GEMS I Edited by ANDREW S. GLASSNER 582

coefficients ak for 1 ≤ k ≤ 7 have converged within four-decimal accu-
racy to constant values that are independent of the parity of n. In
addition, the coefficient a7 is already so small that higher coefficients can
be ignored in computation of splines for graphics displays. Thus, for
n ≥ 15, Di can be computed by a fixed formula, which uses only the
seven difference vectors (Pi+k – Pi–k) corresponding to 1 ≤ k ≤ 7.

Open CurvesOpen CurvesOpen CurvesOpen CurvesOpen Curves
The key to finding expressions in the open curve case is to reduce the
computation to the closed loop case. We will define a degenerate closed
loop that folds back upon itself in such a way that certain tangents in the
closed loop are equal to the desired tangents in the original open curve.
For convenience of notation, we assume that there are n + 1 points
P0 . . . Pn in the open curve. The endpoints P0 and Pn are special and
there are only n – 1 constraint equations corresponding to D i with
0 < i < n. Thus, the initial and final tangent vectors D0 and Dn are
undetermined and may be freely chosen. In practice, these tangent
vectors are often taken to be zero but we need not assume this.

It turns out that the vectors Di for 0 < i < n can be expressed simply
in terms of the points Pi for 0 < i < n and the points Q0 = P0 + D0 and
Rn–1 = Pn – Dn. To capture this we introduce the following notation:

T0 = P0 + D0 Tn = Pn – Dn Ti = Pi for 0 < i < n.

We extend the points T0 . . . Tn to a degenerate closed loop of 2n points
by “reflecting back” from Tn using the definition

T2n–i = Ti for 0 < i < n.

By comparison of the equations for the original open curve and the new
degenerate closed loop, it is easy to see that Di is also the tangent at Ti

in the degenerate closed loop. Thus, the formula of the preceding section

583

X1.2 EXPLICIT CUBIC SPLINE INTERPOLATION FORMULAS

GRAPHICS GEMS I Edited by ANDREW S. GLASSNER 583

Table 4. Interpolation Coefficients for Open Curves of n + 1 Points

may be used. To do this, set

T–i = Ti for 0 < i < n,

and set m = n – 1. Then, we can compute each Di by an expression of
the following form:

Di = ak

k =1

m

∑ Ti+k – Ti – k().

In this formula, 2m = 2n – 2 points appear even though there are only
n + 1 distinct T’s. Thus, most points occur in this formula twice, once as
original points and once as reflected points. The coefficients ak are
already familiar from the even-order closed loop case and may be tabu-
lated as shown in Table 4. Of course, Table 4 is identical to Table 3
except for the first column. Thus, in practice, one should probably store
the coefficient tables indexed by m rather than by n.

RemarksRemarksRemarksRemarksRemarks
The formulas in this article are related to formulas of Schoenberg (1973).
There, Schoenberg treats only the open curve case and uses a B-spline
basis rather than Bézier cubics. His formulas are more complex than ours
because Bézier cubics appear to be a better choice of basis and because

584

X1.2 EXPLICIT CUBIC SPLINE INTERPOLATION FORMULAS

GRAPHICS GEMS I Edited by ANDREW S. GLASSNER 584

no advantage is taken of reducing the open curve case to the closed loop
case.

The coefficients ak in the expression for Di decrease by roughly a
factor of four as k increases. This decrease is so rapid that for practical
purposes Di is influenced by at most seven pairs of points on either side
of Pi. This estimate is in fact somewhat pessimistic. If all points Pi lie
within a square of size 1024, then each Di is influenced by at most five
pairs of points on either side of Pi. Thus, interpolating splines exhibit
“semilocal” control . . . a change in one Pj affects only a relatively small
number of nearby Di.

The formulas for D i are quite easy to program. In addition, if one Pj is
later changed, it is trivial to incrementally update each affected Di.

585

XI.3 FAST SPLINE DRAWING

GRAPHICS GEMS I Edited by ANDREW S. GLASSNER 585

XI.3XI.3XI.3XI.3XI.3
FFFFFAST SPLINE DRAWINGAST SPLINE DRAWINGAST SPLINE DRAWINGAST SPLINE DRAWINGAST SPLINE DRAWING

Julian GomezMacroMind, Inc.San Francisco, California

Splines are often expressed as the matrix product

[T] [C] [G], (1)

where [T] = [t3 t2 t 1], [C] is the coefficient matrix for the spline
basis, and [G] is the geometry matrix of control points. For cubic splines,
both [C] and [G] are 4 × 4 matrices. A common method of generating the
spline involves first evaluating t over the range [0, 1] in equal increments
to generate an array of vectors; that is, the ith entry of the array would
be the product [ti

3 ti
2 ti 1] [C] [G]. Generally, ti = i · ∆t. The second

step is handing the array to the graphics software to be drawn as a vector
list through the current transformation matrix [M].

A faster method involves extending Eq. 1 to include [M] in the product

[T] [C] [G] [M]. (2)

To draw the spline it is then necessary simply to calculate [T] for ti and
draw that vector. In pseudo-code this would look like the following:

Push();
PreMultiply(G);
PreMultiply(C);
for i ← 0; i ≤ nChords; i ← i + 1

T[0] ← 1;
T[1] ← t;
T[2] ← T[1] ∗ t;

586

XI.3 FAST SPLINE DRAWING

GRAPHICS GEMS I Edited by ANDREW S. GLASSNER 586

T[3] ← T[2] ∗ t;
if i = 0 then MoveTo(T); else DrawTo(T);
t ← t + ∆t;
endloop;

Pop();

This technique combines the spline drawing operation with the geomet-
rical transformation, at the cost of two matrix multiplies, for which the
hardware is presumably optimized, anyway. Since all operations are done
at the same time it eliminates the time, space, and code required to
generate this temporary array.

See also Line Drawing Summary (98)

587

XI.4 SOME PROPERTIES OF BÉZIER CURVES

GRAPHICS GEMS I Edited by ANDREW S. GLASSNER 587

XI.4XI.4XI.4XI.4XI.4
SSSSSOME PROPERTIES OFOME PROPERTIES OFOME PROPERTIES OFOME PROPERTIES OFOME PROPERTIES OFBÉBÉBÉBÉBÉZIER CURVESZIER CURVESZIER CURVESZIER CURVESZIER CURVES

Ronald GoldmanUniversity of WaterlooWaterloo, Ontario, Canada

Most of the properties of Bézier curves can be derived from the
de Casteljau evaluation algorithm (see Fig. 1). Here we show how quickly
to differentiate Bézier curves and how easily to convert between the
Bézier and monomial form.

NotationNotationNotationNotationNotation
Let B(t) be the Bézier curve with control points P0, . . . , Pn. Then by
definition

B t() =
k
n()k∑ tk 1 − t()n−k Pk .

Let M(t) be the monomial curve with coefficients C0, . . . , Cn. Then we
define

M t() =
k
n()k∑ Ckt

k .

Notice that to the standard monomial form, we have added the binomial
coefficient k

n() . This will make all our algorithms simpler later on. To
convert from this version of the monomial form to the standard monomial
form is very easy; simply multiply Ck by k

n() .

588

XI.4 SOME PROPERTIES OF BÉZIER CURVES

GRAPHICS GEMS I Edited by ANDREW S. GLASSNER 588

Figure 1. De Casteljau algorithm.

RemarksRemarksRemarksRemarksRemarks
We shall illustrate all of our algorithms in figures for cubic curves, but
these algorithms work quite generally for polynomials of arbitrary
degree n.

Much the same algorithms (evaluation, differentiation, and conversion)
will work for B-spline curves if we replace the de Casteljau algorithm for
Bézier curves by the de Boor algorithm for B-spline curves.

Bézier CurvesBézier CurvesBézier CurvesBézier CurvesBézier Curves
1. The de Casteljau Evaluation Algorithm for Bézier Curves (Fig. 1).

Let

pk
0 t() = Pk k = 0, . . . , n

pk
r t() = 1 – t()pk –1

r –1 t() + tpk
r −1 t() k = r , . . . , n

589

XI.4 SOME PROPERTIES OF BÉZIER CURVES

GRAPHICS GEMS I Edited by ANDREW S. GLASSNER 589

Then the Bézier curve with control points P0, . . . , Pn is given by

B(t) = pn
n (t).

We illustrate this algorithm for cubic Bézier curves in Fig. 1. Here the
control points are placed at the base of a triangular array and the
recursion is illustrated by labeling the arrows with the coefficients (1 – t)
and t. The final result, that is, a point on the curve at parameter value t,
emerges at the apex of the triangle.

2. Differentiation of Bézier Curves (Fig. 2).
Let

pk
0 t() = Pk k = 0, . . . , n

pk
r t() = – pk –1

r –1 t() + pk
r −1 t() r = 1, . . . , m

pk
r t() = 1 – t()pk –1

r –1 t() + tpk
r −1 t() r = m + 1, . . . , n

Then

B m() t() = n!/ n – m()!{ }pn

n t()

Here the point is that to differentiate a Bézier curve, all we need to do is

Figure 2. Differentiation algorithm.

590

XI.4 SOME PROPERTIES OF BÉZIER CURVES

GRAPHICS GEMS I Edited by ANDREW S. GLASSNER 590

Figure 3. Monomial evaluation algorithm.

to differentiate the de Casteljau algorithm. But to differentiate the de
Casteljau algorithm m times, we need only differentiate the coefficients t
and (1 – t) in m levels of the algorithm and multiply the final result by
n!/(n – m)!; we need not differentiate the terms pk

r t() at all! In fact,
though we chose to differentiate the first m levels of the algorithm, we
could actually differentiate any m levels and still get the correct answer.
We illustrate this differentiation algorithm by finding the first derivative of
a cubic Bézier curve in Fig. 2. (Remember that the result at the apex of
the triangle must be multiplied by n = 3.) Notice that all we did is
differentiate the labels on the first levels of the de Casteljau algorithm of
Fig. 1.

Curves in Monomial FormCurves in Monomial FormCurves in Monomial FormCurves in Monomial FormCurves in Monomial Form
3. Evaluation Algorithm for Curves in Monomial Form (Fig. 3).
Let

pk
0 t() = Pk k = 0, . . . , n

pk
r t() = pk –1

r –1 t() + tpk
r −1 t() k = r , . . . , n

591

XI.4 SOME PROPERTIES OF BÉZIER CURVES

GRAPHICS GEMS I Edited by ANDREW S. GLASSNER 591

Then the monomial curve with coefficients P0, . . . , Pn is given by

M t() = pn

n t().

Notice that this algorithm is just the de Casteljau algorithm for Bézier
curves with the coefficient (1 – t) replaced by 1. This algorithm works
because the monomials k

n()tk are the same as the Bernstein basis func-
tions k

n()tk 1 – t()n– k , except that (1 – t) is replaced by 1. This evaluation
algorithm is much less efficient than evaluation by Horner’s method. We
illustrate it here only because our conversion algorithms are based on this
evaluation technique.

4. Differentiation Algorithm for Curves in Monomial Form.
Let

pk
0 t() = Pk k = 0, . . . , n

pk
r t() = pk

r –1 t() r = 1, . . . , m

pk
r t() = pk –1

r –1 t() + tpk
r −1 t() r = m + 1, . . . , n

Then

M m() t() = n!/ n – m()!{ }pn

n t().
This differentiation algorithm mimics the differentiation algorithm for
Bézier curves. That is, only the coefficients 1 and t are differentiated. This
technique works because

tn = ttn-1 and (tn)’ = ntn-1.

That is, to differentiate tn, we differentiate t and multiply the result by n.

Conversion between Bézier and Monomial FormConversion between Bézier and Monomial FormConversion between Bézier and Monomial FormConversion between Bézier and Monomial FormConversion between Bézier and Monomial Form
5. Conversion from Monomial to Bézier Form (Fig. 4).
Let the monomial coefficients be P0, . . . , Pn, and let

pk
0 t() = Pk k = 0, . . . , n

pk
r t() = pk –1

r –1 t() + pk
r −1 t() k = r , . . . , n

592

XI.4 SOME PROPERTIES OF BÉZIER CURVES

GRAPHICS GEMS I Edited by ANDREW S. GLASSNER 592

Figure 4. Conversion from monomial to Bézier form.

Then the Bézier control points Q0, . . . , Qn are given by

 Qk = pk
k t().

Notice that this algorithm is just the evaluation algorithm for monomial
form with 1 substituted for t. Also the diagram is just Pascal’s triangle in
reverse (Fig. 4).

6. Conversion from Bézier to Monomial Form (Fig. 5).
Let the Bezier control points be Q0, . . . , Qn, and let

pk
0 t() = Pk k = 0, . . . , n

pk
r t() = – pk –1

r –1 t() + pk
r −1 t() k = r , . . . , n

Then the monomial coefficients P0, . . . , Pn are given by

 Pk = pk
k t().

Notice that this algorithm is just the differentiation algorithm for Bézier
curves where we have differentiated every level of the recursion. Also the
diagram is just forward differencing (Fig. 5).

593

XI.4 SOME PROPERTIES OF BÉZIER CURVES

GRAPHICS GEMS I Edited by ANDREW S. GLASSNER 593

Figure 5. Conversion from Bézier to monomial form.

ObservationObservationObservationObservationObservation
We can also convert from Bézier to monomial form by dividing a Bézier
curve by either tn or (1 – t)n. That is, if we let u = t/(1 – t), then

 B t()/ 1 – t()n = k
n()k∑ tk 1 − t()n−k Pk / 1 – t()n = k

n()k∑ uk Pk .

Thus, we can evaluate B(t)/(1 – t)n by applying Horner’s method to

 k
n()k∑ ukpk , and we can then retrieve B(t) by multiplying the result by

(1 – t)n. This procedure is faster than converting directly to monomial
form using the algorithm described above. Again this method illustrates
the close connection between the Bézier and monomial form. This tech-
nique can be used to derive properties of the Bernstein polynomials
and Bézier curves. For example, that the Bernstein polynomials

 k
n() tk(1–t)n–k,k=0,... ,n form a basis and satisfy Descartes’ Law of

Signs follows easily from the corresponding facts about the monomial
basis k

n()uk,k=0,...,n, by applying this conversion procedure.

See also A Bézier Curve–Based Root-Finder (408)

594

XI.5 TUTORIAL ON FORWARD DIFFERENCING

GRAPHICS GEMS I Edited by ANDREW S. GLASSNER 594

XI.5XI.5XI.5XI.5XI.5
TTTTTUTORIAL ONUTORIAL ONUTORIAL ONUTORIAL ONUTORIAL ONFFFFFORWARD DIFFERENCINGORWARD DIFFERENCINGORWARD DIFFERENCINGORWARD DIFFERENCINGORWARD DIFFERENCING

Bob WallisWeitek CorporationSunnyvale, California

IntroductionIntroductionIntroductionIntroductionIntroduction
A collection of mathematical tools and tricks for reasoning about forward
differencing algorithms is presented.

Forward differencing provides a very fast technique for evaluating
polynomials at uniformly spaced intervals. Although recursive subdivision
has many advantages, it is less efficient when implemented on RISC
processors because of all the load/store traffic involved in the stack
operations. The basic tools for deriving forward differencing DDAs come
from the field of numerical analysis. They are Newton’s forward formula,
Stirling’s numbers, and a technique known as subtabulation.

Del Del Del Del Del Operator and the Operator and the Operator and the Operator and the Operator and the DDADDADDADDADDA
If we evaluate the cubic polynomial

 yk = 5 + 4k + 3k 2 + 2k 3 = ai∑ k i (1)

at k = 0, 1, 2.. and tabulate the forward differences:

∆1yk = yk+1 – yk first forward difference

∆2yk = ∆1yk+1 – ∆1yk second forward difference

∆3yk = ∆2yk+1 – ∆2yk, third forward difference

595

XI.5 TUTORIAL ON FORWARD DIFFERENCING

GRAPHICS GEMS I Edited by ANDREW S. GLASSNER 595

we obtain the table:

k y ∆1 ∆2 ∆3

0 5 9 18 12
1 14 27 30 12
2 41 57 42 12
3 98 99 54 12
4 197 153 66
5 350 219
6 569

The DDA algorithm exploits this pattern by running the above construc-
tion backwards to reconstruct the polynomial from its forward differ-
ences. For example, the code fragment below will reproduce the y
column of the above table exactly.

y0 ← 5
∆1y0 ← 9
∆2y0 ← 18
∆3y0 ← 12
k ← 0
until finished do
 yk+l ← yk + ∆1yk
 ∆1yk+l ← ∆1yk + ∆2yk
 ∆2yk+l ← ∆2yk + ∆3y0
 k ← k + 1
endloop

Newton’s Formula and Factorial PolynomialsNewton’s Formula and Factorial PolynomialsNewton’s Formula and Factorial PolynomialsNewton’s Formula and Factorial PolynomialsNewton’s Formula and Factorial Polynomials
There is an easy way to convert between the polynomial coefficients of
Eq. (1) (5, 4, 3, 2) and the associated DDA coefficients (5, 9, 18, 12). It
involves converting ordinary polynomials to factorial polynomials,

596

XI.5 TUTORIAL ON FORWARD DIFFERENCING

GRAPHICS GEMS I Edited by ANDREW S. GLASSNER 596

which are defined as follows:

k(l) = k

k(2) = k(k – 1)

k(3) = k(k – 1)(k – 2)

k(n) = k(k – 1) . . . (k – n + 1)

Polynomials in this form permit discrete analogs of Taylor ’s formula,
derivatives, and so on. For example, the del operator applied to a
factorial power behaves exactly like a continuous derivative:

∆k(n) = nk(n – l).

The counterpart of Taylor ’s formula is Newton’s formula:

yk = k j() / j !()∆ j y0 .

j=0

n

∑

For example, converting the polynomial in Eq. 1 to this form yields

yk = 5 + 9k + 18k (k – 1)/2 + 12k (k – 1) (k – 2)/6.

The mathematics of finite differences is full of elegant recurrences, and
surprising inversion formulas. Since these are well-described elsewhere
(Scheid, 1968; Ralston, 1965; Graham et al., 1989), this tutorial will use
a different approach. This is basically the brute-force matrix inverse
method presented in “Forms, Vectors, and Transformations” in this
volume.

597

XI.5 TUTORIAL ON FORWARD DIFFERENCING

GRAPHICS GEMS I Edited by ANDREW S. GLASSNER 597

We can convert from ordinary powers to k to factorial polynomials of
k using Stirling’s numbers of the first kind. The first six of these ex-
pressed as matrix transforms are

1 k 1 k 2 k 3 k 4 k 5[]

1 0 0 0 0 0
0 1 –1 2 –6 24
0 0 1 –3 11 –50
0 0 0 1 –6 35
0 0 0 0 1 –10
0 0 0 0 0 1

























= k 1∑ Sij = 1 k 1() k 2() k 3() k 4() k 5()[].
The inverse relationship uses Stirling’s numbers of the second kind:

1 k 1() k 2() k 3() k 4() k 5()[]

1 0 0 0 0 0
0 1 1 1 1 1
0 0 1 3 7 15
0 0 0 1 6 25
0 0 0 0 1 10
0 0 0 0 0 1

























= k i()∑ Sij
–1 = 1 k 1 k 2 k 3 k 4 k 5[].

If we use this to convert from a polynomial in power series format,
such as Eq. (1), to one in the form of Newton’s formula (Eq. (2)), we can
just read off the DDA coefficients we want. Introducing a diagonal facto-
rial matrix F, whose ii entry is i!, we can derive the desired result by
starting with a power series, and introducing matched pairs of transforms
that keep the relationship invariant. However, one must be very careful
which indices are summed over rows, and which are summed over
columns:

yk = α m∑ k m = k m∑ Imnα n = k m∑ SmnFno
–1() FopSpq

–1α q()

yk = k i() / i !()∑ Cijα j().

598

XI.5 TUTORIAL ON FORWARD DIFFERENCING

GRAPHICS GEMS I Edited by ANDREW S. GLASSNER 598

Comparing this to Ralston (1965), we have

 ∆
i y0 = Cij∑ α j = FijSjk

–1()∑ α k .

The resulting C matrix, up to N = 5, is

1 0 0 0 0 0
0 1 1 1 1 1
0 0 2 6 14 30
0 0 0 6 36 150
0 0 0 0 24 240
0 0 0 0 0 120

























1
α 1

α 2

α 3

α 4

α 5

























 =

1
∆1y0

∆ 2 y0

∆ 3y0

∆ 4 y0

∆ 5y0

























Using this, we can easily convert the (5, 4, 3, 2) 1-form (see “Forms,
Vectors, and Transformations” in this volume) of power series coeffi-
cients in Eq. 1 to the (5, 9, 18, 12) 1-form of DDA coefficients. The same
method can be used to derive conversions between any pair of formats
that are related by linear weights of their coefficients.

In the case of Bézier format, the del operator becomes involved in a
rather amazing fashion. It turns out that if we convert a curve from Bézier
format to power series format, the coefficients end up being related to the
forward differences of the control points (vectors in bold type):

 Zj = jth control point

 f(t) =

j
N()

j=0

N

∑ tj (1 – t)N–j Zj Bézier form

=

t j
j
N()

j=0

N

∑ ∆jZ0 power series form

so it is an easy manner to convert Bézier to power series, and then apply
the C matrix.

.

599

XI.5 TUTORIAL ON FORWARD DIFFERENCING

GRAPHICS GEMS I Edited by ANDREW S. GLASSNER 599

Determining the Step SizeDetermining the Step SizeDetermining the Step SizeDetermining the Step SizeDetermining the Step Size
If we have a polynomial in a continuous variable t = [0, 1], then to use
the DDA method, we have to decide how many samples we want in the
interval. If this is N, our discrete variable becomes

h = 1/N N steps from 0 → 1

k = t/h = Nt. continuous → discrete

An example of the effect of decreasing step sizes on the rendering of an
outline font is shown in Fig. 1.

A simple geometrical argument can be used to derive a relationship
between step size and error. It is based on the assumption that the curve
can be treated as if it were locally circular (see Fig. 2).

A reasonable strategy for selecting h is to pick a value such that the
maximum error in pixel space between the exact curve and its piecewise
linear approximation is less than some tolerance:

R2 = (ds/2)2 + (R – e)2. Pythagorean theorem

Ignoring e2, this reduces to

e = ds2/(8R). error from finite step size (3)

Figure 1.

600

XI.5 TUTORIAL ON FORWARD DIFFERENCING

GRAPHICS GEMS I Edited by ANDREW S. GLASSNER 600

Figure 2.

Denoting vector quantities in bold type,

v = df/dt first derivative = velocity of curve

 ds/dt = |v| change in arc length with respect to t (4)

 a = dv/dt second derivative = acceleration of curve

 1/R = |v|3/|v × a| from differential geometry (5)

dt = h time step same as step size (6)

 e = h2|v × a|/(8|v) combining (3), (4), (5), (6) (7)

Equation 7 gives us a fairly tight error bound as long as the “locally
circular” assumption holds. However, when curves have cusps the veloc-
ity goes to zero, and Eq. 5 becomes meaningless. A more conservative
bound that works with cusps can be derived as

|v × a| ≤ |v||a| (8)

 e = h2|a|/8. combining (7), (8) (9)

Equation 9 turns out to be a standard result from numerical analysis
(Scheid, 1986; Ralston, 1965). Applying this to the case of a cubic Bézier

601

XI.5 TUTORIAL ON FORWARD DIFFERENCING

GRAPHICS GEMS I Edited by ANDREW S. GLASSNER 601

curve is easy:

 Z j = jth control point

a(t) = 6[(1 – t) ∆2Z0 + t∆2Z1] acceleration

Since the magnitude of a is a linear function of t, the max must occur at
either t = 0 or t = 1.

e = (3/4)h2 max(|∆2Z0|,|∆2Z1|) for a cubic Bézier (10)

Subdividing Forward DifferencesSubdividing Forward DifferencesSubdividing Forward DifferencesSubdividing Forward DifferencesSubdividing Forward Differences
Prior to the publication of Lien et al. (1987), it was not widely recognized
that you could change the step size without completely recalculating the
forward differences, thus giving DDA algorithms some of the advantages
of recursive subdivision. The technique has actually been known for a
long time in the field of numerical analysis (Scheid, 1986; Ralston, 1965),
but was disguised under the name of subtabulation.

In Lien et al., the step size is halved until the pixel space increment is
less than a pixel. This section will describe a slightly different approach,
in which the step size is reduced until the error of Eq. 9 is less than some
tolerance, yielding a piecewise linear approximation to the curve. The
advantage of combining the step estimator with the calculation of the
DDA coefficients is that the same quantities are involved in both computa-
tions.

The subdivision formulae may be derived using the same matrix tech-
nique as used in section 4:

 yk = k j() / j !()∆ j∑ y0 = k l∑ SlmFmn
–1 ∆ ny0 .

If we want to transform the step size, this is the same as transforming the
k parameter:

 k′ j = kiTij∑ .

602

XI.5 TUTORIAL ON FORWARD DIFFERENCING

GRAPHICS GEMS I Edited by ANDREW S. GLASSNER 602

Some simple manipulations give us a transformation matrix that con-
verts DDA coefficients from one step size to another:

∆ t

i = C∑ ij
∆ j = FmnSno

–1TopSpq Fqr
–1()∑ ∆ r .

For the case of a cubic, and a halving of h, the relevant matrices are

Sij =

1 0 0 0
0 1 –1 2
0 0 1 –3
0 0 0 1



















 Fij =

1 0 0 0
0 1 0 0
0 0 2 0
0 0 0 6



















Tij =

1 0 0 0
0 2 0 0
0 0 4 0
0 0 0 8



















 Cij = 1/16()

16 0 0 0
0 8 –2 1
0 0 4 –2
0 0 0 2



















.

For a quintic polynomial, the result is

Cij = 1/ 256()

256 0 0 0 0 0
0 128 –32 16 –10 7
0 0 64 –32 20 –14
0 0 0 32 –24 18
0 0 0 0 16 –16
0 0 0 0 0 8

























.

For the cubic case, the final result is very simple, and can be expressed in
terms of del operators as

∆1/2
3 = ∆ 3 / 8

∆1/2
2 = ∆ 2 / 4 – ∆1/2

3

∆1/2
1 = ∆1 – ∆1/2

2()/ 2.
(11)

It should be pointed out that there exist much more elegant ways to
derive the above relationships. They involve the calculus of the del
operator, and result in very nice closed form solutions. See Scheid (1968)
and Ralston (1965). The advantage of the matrix approach is that it puts

603

XI.5 TUTORIAL ON FORWARD DIFFERENCING

GRAPHICS GEMS I Edited by ANDREW S. GLASSNER 603

all the algebra into the matrix inverse routine, and provides a uniform
tool to attack a wide variety of problems.

Implementation for Bézier CubicsImplementation for Bézier CubicsImplementation for Bézier CubicsImplementation for Bézier CubicsImplementation for Bézier Cubics
Once the forward differences of the Bézier control points have been
calculated, the conversion from Bézier format to DDA format, for h = 1,
is easy:

∆1f0 = 3(∆1Z0 = ∆2Z0) + ∆3Z0 first DDA forward diff.

∆2f0 = 6(∆2Z0 + ∆3Z0) second DDA forward diff.

∆3f0 = 6∆3Z0. third DDA forward diff.

Equation 10 may then be used to calculate the error for this (unity) step
size. The recursion of Eq. 11 can then be applied repeatedly, each time
reducing the error by a factor of (1/4). When this is below the error
tolerance (or we hit a min step size), we can drop directly to the inner
DDA loop.

A major concern with any DDA scheme is the control of accumulated
roundoff error (Chang et al, (1989). The binary subdivision of Eq. 11 is
very attractive in this regard because all the divides are by powers of two,
so the resultant coefficients can be represented without error (given a
binary fraction with enough bits to the right of the decimal point).

If coded in assembler on a 32-bit CPU with lots of registers, the most
straightforward technique is to use 64-bit double precision adds for the
DDA, putting the binary decimal point between the most and least
significant words. This results in a very fast inner loop, capable of
producing up to 1024 points per curve, with no roundoff.

Another alternative is to use three linked Bresenham-type DDAs, main-
taining separate fractional parts. This has the advantage that it will work
for nonbinary subdivisions, but results in a much bigger inner loop.

For a small number of steps, roundoff is less of a concern, and a single
precision DDA is usually sufficient.

604

XI.6 INTEGRATION OF BERNSTEIN BASIS FUNCTIONS

GRAPHICS GEMS I Edited by ANDREW S. GLASSNER 604

XI.6XI.6XI.6XI.6XI.6
IIIIINTEGRATION OFNTEGRATION OFNTEGRATION OFNTEGRATION OFNTEGRATION OFBBBBBERNSTEIN BASIS FUNCTIONSERNSTEIN BASIS FUNCTIONSERNSTEIN BASIS FUNCTIONSERNSTEIN BASIS FUNCTIONSERNSTEIN BASIS FUNCTIONS

Ronald GoldmanUniversity of WaterlooWaterloo, Ontario, Canada

We can use the de Casteljau algorithm to integrate the Bernstein basis
functions

 Bk
n t() = k

n()tk 1 – t()n– k .

If we read the de Casteljau algorithm from the apex down, the functions
at the nodes are the Bernstein basis functions, where the degree n
functions reside in order on the nth level of the diagram. We illustrate
this principle in Fig. 1 for n = 3.

This diagram is just a consequence of the well-known recurrence

 Bk
n t() = 1 – t()Bk

n–1 t() + tBk –1
n–1 t().

In fact Fig. 1 is simply an illustration of this recurrence.
Now suppose that we wish to integrate some basis function Bk

n t(). The
procedure is simply to extend the diagram down one more level from

 Bk
n t() to where Bk

n+1 t() and Bk +1
n+1 t() would ordinarily reside. Then through the

two new nodes draw lines parallel to the two new opposing edges and clip
the diagram below these edges. Summing the leaf nodes either to the upper
left or the upper right and dividing by (n + 1) yields the desired integral.

We illustrate this algorithm in Figs. 2 and 3 for the basis function

 B1
3 t() . Referring to Fig. 3, we have

 B1
3∫ t()dt = α0

3 t() + α1
4 t(){ } / 4,

605

XI.6 INTEGRATION OF BERNSTEIN BASIS FUNCTIONS

GRAPHICS GEMS I Edited by ANDREW S. GLASSNER 605

Figure 1. Bernstein basis functions.

Figure 2. Integration, step 1: Extend the diagram and draw the clipping lines.

606

XI.6 INTEGRATION OF BERNSTEIN BASIS FUNCTIONS

GRAPHICS GEMS I Edited by ANDREW S. GLASSNER 606

Figure 3. Integration, step 2: Clip the diagram.

and

 B1
3∫ t()dt = γ 2

2 t() + γ 2
3 t() + γ 2

4 t(){ }/ 4.

Notice, therefore, that

a

0

3 t() + a
1

4 t(){ } – γ
2

2 t() + γ
2

3 t() + γ 2
4(t){ } = constant

 Much the same technique works for integrating the B-splines.

607

XI.7 SOLVING THE NEAREST-POINT-ON-CURVE PROBLEM

GRAPHICS GEMS I Edited by ANDREW S. GLASSNER 607

XI.7XI.7XI.7XI.7XI.7
SSSSSOLVING THOLVING THOLVING THOLVING THOLVING THEEEEENNNNNEAREST-POINT-ON-CURVEEAREST-POINT-ON-CURVEEAREST-POINT-ON-CURVEEAREST-POINT-ON-CURVEEAREST-POINT-ON-CURVEPPPPPROBLEMROBLEMROBLEMROBLEMROBLEM

Philip J. SchneiderUniversity of GenevaGeneva, Switzerland

IntroductionIntroductionIntroductionIntroductionIntroduction
Consider the following scenario: you have an interactive curve-drawing
system that maintains a piecewise Bézier representation of the curves
appearing on the screen. The user can manipulate the curves by selecting
control points and moving them about, by adding or deleting curves, and
so on. However, the user has no direct “handle” onto the curve itself—he
or she cannot select points on the curve directly. The ability to manipu-
late curves freely would allow the user to select points on the curve at
which to further subdivide the curve, interactively trace along the curve
with a mouse, find the point on a curve closest to some other point on the
screen (for example, a vertex of a triangle), find the distance from such a
point to the curve, and so on. Unfortunately, the “space” to which the
user has access is the world of Cartesian coordinates (window coordi-
nates, or some real two-dimensional space mapped onto the screen),
while the “space” of the Bézier curve is that of the parametric domain of
the curve. This Gem presents an algorithm for solving this problem.

This algorithm was developed in the context of an interactive two-
dimensional curve-drawing system (Schneider, 1988), which maintained a
piecewise cubic Bézier representation of free-form curves; these were
generated by fitting the parametric curves to digitized points input (that
is, “sketched in”) by the user. (See “An Algorithm For Automatically
Fitting Digitized Curves” in this volume.)

608

XI.7 SOLVING THE NEAREST-POINT-ON-CURVE PROBLEM

GRAPHICS GEMS I Edited by ANDREW S. GLASSNER 608

Problem StatementProblem StatementProblem StatementProblem StatementProblem Statement
The basic problem can be stated in this manner: given a parametric curve
Q and a point P, both in the plane, find the point on the curve closest to
P (that is, find the parameter value t such that the distance from P to
Q(t) is a minimum). Our approach begins with the geometric observation
that the line segment (whose length we wish to minimize) from P to Q(t)
is perpendicular to the tangent of the curve at Q(t), as shown in Fig. 1.
The equation we wish to solve for t is

 [Q(t) – P] · Q’(t) = 0. (1)

In our particular case, curve Q is a cubic Bernstein-Bézier polynomial,

Q t() = Vi

i=0

n

∑ Bi
n t(), t ∈ 0,1[],

where the Vi, are the control points. The Bernstein polynomials of degree
n are defined by

 Bi
n t() = i

n()ti 1 – t()n– i , i = 0, . . . , n,

where i
n() is the binomial coefficient n!/(n – i)!i!. The tangent curve Q’

Figure 1. Distance from an arbitrary point to a parametric curve.

609

XI.7 SOLVING THE NEAREST-POINT-ON-CURVE PROBLEM

GRAPHICS GEMS I Edited by ANDREW S. GLASSNER 609

for the above curve Q can also be represented in Bernstein-Bézier form:

Conversion of Bézier FormConversion of Bézier FormConversion of Bézier FormConversion of Bézier FormConversion of Bézier Form
We are dealing with cubics, so polynomial Q is of degree three, and Q’ is
of degree two. Q – P is also of degree three, so the polynomial described
by Eq. 1 is (in general) of degree five. Thus, we can restate our problem
as one of finding the roots of this fifth-degree polynomial. There is no
closed-form solution for solving this problem, so we must turn to some
other technique to find the roots (see “A Bézier Curve-Based Root-
Finder” in this volume). The basic technique is first to convert the
equation to Bernstein-Bézier form, and then to use a recursive algorithm
to find the roots. The remainder of this Gem describes the conversion of
this fifth-degree equation to Bernstein-Bézier form, to which one can
then apply the previously mentioned root-finder.

We can rewrite Eq. 1 as a single polynomial of degree five. Let

Q1(t) = Q(t) – P (2)

Q2(t) = Q’(t). (3)

Then, Eq. (1) can be written

Q1(t) ⋅ Q2(t) = 0. (4)

Expanding Eq. (2),

Q1(t) = Q(t) – P

= Vi
i=0

n

∑ Bi
n t() – P

= ci
i=0

n

∑ Bi
n t(),

where ci = Vi – P.

′Q (t) = n (Vi+1 – Vi)Bi

n– i(t).
i=0

n–1

∑

610

XI.7 SOLVING THE NEAREST-POINT-ON-CURVE PROBLEM

GRAPHICS GEMS I Edited by ANDREW S. GLASSNER 610

Expanding Eq. (3),

Q2 t() = n Vi+1 – Vi()

i=0

n−1

∑ Bi
n–1

= di

i=0

n–1

∑ Bi
n–1 ,

where di = n(Vi+1 – Vi). Then, Eq. (4) can be written as

= ci

i=0

n

∑ Bi
n t() ⋅ dj

j=0

n−1

∑ Bj
n–1 t()

= ci

j=0

n−1

∑
i=0

n

∑ ⋅ djBi
n t()Bj

n–1 t()

= ci

j=0

n−1

∑
i=0

n

∑ ⋅ dj i
n() 1 – t()n− i t i

 j
n−1() 1 – t()n−1– j t j

= ci

j=0

n−1

∑
i=0

n

∑ ⋅ dj i
n() j

n−1() 1 – t() 2n–1()– i+ j() ti+ j

= ci

j=0

n−1

∑
i=0

n

∑ ⋅ dj

i
n() j

n− i()
 i+ j
2n−1() Bi+ j

2n–1 t()

= ci

j=0

n−1

∑
i=0

n

∑ ⋅ dj zi , jBi+ j
2n–1 t()

= wi , j

j=0

n−1

∑
i=0

n

∑ Bi+ j
2n–1 t(),

where zi,j = i
n() j

n− i()/ i+ j
2n−1(), and wi,j = ci ⋅ djzi,j.

0

611

XI.7 SOLVING THE NEAREST-POINT-ON-CURVE PROBLEM

GRAPHICS GEMS I Edited by ANDREW S. GLASSNER 611

Note that the Wi,j are not two-dimensional coordinates—they are real
numbers, and thus represent only one component of the Bézier control
points for this function (the y component, if you will). The other compo-
nent, x, for each control point wi,j is i + j/n + (n – 1); this is ex-
plained further in “A Bézier Curve-Based Root-Finder.” At this point, we
have the equation in the desired Bernstein-Bézier form, and can apply
the method found in the Gem mentioned earlier.

C code implementing the conversion described here, and the root-find-
ing algorithm associated with it, may be found in the appendix in the file
“point_on_curve.c.” For simplicity, this sample implementation is for
cubic curves only—generalization should be relatively straightforward.
The example case specifies a single cubic Bézier curve and an arbitrary
point, and computes the point on the curve nearest that arbitrary point.
The routine ConvertToBezierForm creates the fifth-degree Bézier equa-
tion, which is passed to the routine FindRoots. FindRoots will then
return from zero to three roots, which we evaluate to find the points on
the curve. By comparing the distances from those points on the curve to
the arbitrary point, and also considering the endpoints of the curve, we
can find our desired result—the point on the curve closest to the arbitrary
point, and also its parameter value.

See also A Fast 2D Point-on-Line Test (49)

See Appendix 2 for C Implementation (787)

612

XI.8 AN ALGORITHM FOR AUTOMATICALLY FITTING DIGITIZED CURVES

GRAPHICS GEMS I Edited by ANDREW S. GLASSNER 612

XI.8XI.8XI.8XI.8XI.8
AAAAAN ALGORITHM FORN ALGORITHM FORN ALGORITHM FORN ALGORITHM FORN ALGORITHM FORAAAAAUTOMATICALLY FITTINGUTOMATICALLY FITTINGUTOMATICALLY FITTINGUTOMATICALLY FITTINGUTOMATICALLY FITTINGDDDDDIGITIZED CURVESIGITIZED CURVESIGITIZED CURVESIGITIZED CURVESIGITIZED CURVES

Philip J. SchneiderUniversity of GenevaGeneva, Switzerland

IntroductionIntroductionIntroductionIntroductionIntroduction
A new curve-fitting method is introduced. This adaptive algorithm auto-
matically (that is, with no user intervention) fits a piecewise cubic Bézier
curve to a digitized curve; this has a variety of uses, from drawing
programs to creating outline fonts from bitmap fonts. Of particular
interest is the fact that it fits geometrically continuous (G1) curves, rather
than parametrically continuous (C1) curves, as do most previous ap-
proaches.

Curve fitting has been the subject of a fair amount of attention, even
before computer graphics came along. The term spline comes from
drafting jargon: to draw a smooth curve passing through a set of points,
the draftsman would place a weight (also a term that has survived into
CAGD methods) on each point, and then place a flexible wooden strip
(the spline) onto the weights. The spline had slots running lengthwise,
which fitted onto the top of the weights, allowing the spline to assume a
“natural” and smooth shape. Pavlidis (1983) notes that theories of
mechanical elasticity can be used to show that such spline curves exhibit
C2 continuity, and are equivalent to piecewise cubic polynomial curves.
Because of this, piecewise polynomial curves are referred to as splines,
and such curves have been used to mathematically interpolate discrete
data sets. Readers interested in interpolation should consult any numeri-
cal analysis text, such as Conte and deBoor (1972), or Bartels et al.
(1987).

613

XI.8 AN ALGORITHM FOR AUTOMATICALLY FITTING DIGITIZED CURVES

GRAPHICS GEMS I Edited by ANDREW S. GLASSNER 613

This article discusses a method for approximation of digitized curves
with piecewise cubic Bézier segments. Such an algorithm is useful in
interactive drawing systems, converting bitmapped or otherwise digitized
figures (such as fonts) to a parametric curve representation, and the like.

Many techniques have been brought to bear on the problem of this type
of curve-fitting: splines (Reinsch, 1967; Grossman, 1970); purely geomet-
ric methods (Flegal cited in Reeves, 1981); B-splines (Yamaguchi, 1978;
Wu et al., 1977; Giloi, 1978; Lozover and Preiss, 1981; Yang et al.,
1986; Dierckx, 1982; Vercken et al., 1987; Ichida et al., 1977; Chong,
1980); hermite polynomials (Plass and Stone, 1983); hyperbolic splines in
tension (Kozak, 1986; Schweikert, 1966; Cline, 1974); cubic splines in
tension (Cline, 1974; Dube, 1987; Schweikert, 1966); conic sections
(Bookstein, 1979); conic splines (Pavlidis, 1983); conic arcs and straight-
line segments (Albano, 1974); and circular arcs and straight-line seg-
ments (Piegl, 1986). A more detailed description of these solutions may
be found in Schneider (1988) and Reeves (1981).

However, each of these approaches has some shortcoming—some of
the earlier methods apply only to scalar functions, many require a great
deal of intervention by the user, some produce representations that are
inappropriate for free-form curves (for example, circular arcs and
straight-line segments), and all of the parametric polynomial methods but
Plass and Stone’s (1983) produce curves that are parametrically continu-
ous, but they note of their method that “. . . it sometimes does not
converge at all.”

Bézier CurvesBézier CurvesBézier CurvesBézier CurvesBézier Curves
The curve representation that is used in this algorithm in approximating
the digitized curve is the Bézier curve. Accordingly, we briefly review the
basics: the curves known as Bézier curves were developed (indepen-
dently) in 1959 by P. de Casteljau and in 1962 by P. Bézier. Numerous
references exist; see Boehm et al., (1984) and Davis (1975). A Bézier
curve of degree n is defined in terms of Bernstein polynomials:

Q t() = ViBi

n

i=0

n

∑ t(), t ∈ 0,1[],

614

XI.8 AN ALGORITHM FOR AUTOMATICALLY FITTING DIGITIZED CURVES

GRAPHICS GEMS I Edited by ANDREW S. GLASSNER 614

Figure 1. A single cubic Bézier segment.

where the Vi are the control points, and the Bi
n t() are the Bernstein

polynomials of degree n.

 Bi
n t() = i

n()ti 1 − t()n− i , i=0,...,n,

where i
n() is the binomial coefficient n!/(n – i)!i!. See Fig. 1 for an

example of a cubic Bézier curve. Bézier curves generally are evaluated
using a recursive algorithm due to de Casteljau. The algorithm is based on
the recursion property of Bernstein polynomials:

 Bi
n t() = 1 − t()Bi−1

n−1 + tBi−1
n−1 t().

The kth derivative of a Bézier curve is given by

dk

dtk
Q t() =

n!
n – k()!

∆ k

i=0

n−k

∑ ViBi
n−k t(),

where ∆1Vi = ∆Vi = Vi+1 – Vi, and where ∆kVi = ∆kVi+1 – ∆k-1Vi,

615

XI.8 AN ALGORITHM FOR AUTOMATICALLY FITTING DIGITIZED CURVES

GRAPHICS GEMS I Edited by ANDREW S. GLASSNER 615

Figure 2. G1 continuity condition for cubic Bézier curves.

(Watkins, 1987; Boehm et al, 1984). Thus, for t = 0 (the left endpoint),

dk

dtk
Q 0() =

n!
n – k()! ∆ kV0 .

For k = 1,

dQ
dt

 = Q' t() = n Vi+1 – Vi()
i=0

n−1

∑ Bi
n−1 t(),

which makes more obvious the fact that the tangent vector direction (at
the left of the segment) is determined by the line segment from V0 to V1.
A similar condition holds for the right end.

The implication of this fact is that to enforce continuity at the joints,
the second-to-last control point of one segment must be collinear with the
last control point (which is also the first control point of the adjoining
segment) and the second control point of the adjoining segment. See Fig.
2 for an example; the second control point of the right-hand segment
(the one with control points Wi) must be located along the half-line
labeled WV.

616

XI.8 AN ALGORITHM FOR AUTOMATICALLY FITTING DIGITIZED CURVES

GRAPHICS GEMS I Edited by ANDREW S. GLASSNER 616

Any sort of complete treatment of continuity conditions is well beyond
the scope of this article—interested readers may wish to consult DeRose
(1985). Briefly, we note that if the distance between the control point on
the left side of the joint and the shared control point is equal to the
distance between the shared control point and its neighbor on the right,
the tangent vectors will be equal in magnitude and direction. This condi-
tion is known as parametric continuity, denoted C1. However, for many
applications, this is too restrictive—notice that for the joint to appear
smooth, all that is required is that only the tangent directions be
equivalent, a condition known as geometric continuity, denoted G1.
Getting back to the figure, this implies that the shared control point and
its two neighbors need only be colinear—the respective distances do not
affect the appearance of smoothness at the joint. The curve-fitting algo-
rithm exploits this extra degree of freedom—we employ a least-squares
fitting method, which sets these distances so that the error (that is,
distance) between the digitized points of the fitted curve is minimized.
This has several advantages: first, we can fit the curve with fewer
segments; second, parametrically continuous curves correspond to the
family of curves drawn by the motion of a particle that moves at a
continuous velocity. This is a too much of a restriction for bitmapped
fonts, for example; for hand-drawn curves, the restriction is patently
wrong.

Fitting the CurveFitting the CurveFitting the CurveFitting the CurveFitting the Curve
Following Plass and Stone (1983), a parametric curve Q(t) can be
thought of as the projection of a curve in X, Y, t space onto the X–Y
plane. Then, we can think of the problem as finding the curve in X, Y, t
space whose projection best approximates the digitized curve in the X–Y
lane. “Best” is defined in terms of minimization of the sum of squared
distances from the digitized curve to the parametric curve.

We state without proof that the curves defined by the projections of the
3-space curve on the X–t and Y–t planes are single-valued (scalar)
curves. Thus, if one could devise some scheme relating the X and Y
coordinates of each point, one could apply a conventional least-squares
function-fitting technique, with the addition constraints of tangent vector
direction considered, in X and Y simultaneously. As we are working with

617

XI.8 AN ALGORITHM FOR AUTOMATICALLY FITTING DIGITIZED CURVES

GRAPHICS GEMS I Edited by ANDREW S. GLASSNER 617

Figure 3. The distance from P to Q(t).

parametric representations, the “scheme” relating the X and Y coordi-
nates is the parametric value t associated with each point. As none are
provided, we must look for a way to estimate accurately a value of t for
each digitized point. A traditional approach to this problem is to use
chord-length parameterization.

Once each point has an associated t-value, we can fit a cubic Bézier
segment to the set of points (a process described later), and compute the
error by comparing the distances between each digitized point pk and the
point with parametric value tk on the generated curve.

The square distance between a given point P and a point Q(t) on a
parametric curve Q is

dist = iP – Q(t)i. (1)

Refer to Fig. 3 for a diagram of this. The general problem can be stated in
this manner: given a set of points in the plane, find a curve that fits those
points to within some given tolerance. In our case, the curve with which
we wish to approximate the points is a cubic Bernstein-Bézier curve, and
our fitting criterion is to minimize the sum of the squared distances from
the points to their corresponding points on the curve. Formally, we wish
to minimize a function S, where S is defined by

S = di − Q ui()[]2

i=1

n

∑ (2)

= di − Q ui()[]

i=1

n

∑ ⋅ di − Q ui()[], (3)

618

XI.8 AN ALGORITHM FOR AUTOMATICALLY FITTING DIGITIZED CURVES

GRAPHICS GEMS I Edited by ANDREW S. GLASSNER 618

where di are the (x, y) coordinates of the given points, and ui is the
parameter value associated with di.

In the next set of equations, the following definitions hold:

• V0 and V3, the first and last control points, are given—they are set to
be equal to the first and last digitized points in the region we are trying
to fit.

• ̂t l and ̂t 2 are the unit tangent vectors at V0 and V3, respectively.

• Vl = α1 ̂t 2 + V0, and V2 = α2 ̂t 2 + V3; that is, the two inner control
points are each some distance α from their the nearest end control
point, in the tangent vector direction.

Recall that as we are enforcing G1 continuity, V1 and V2 can be placed
anywhere along the half-lines defined by ̂t 1 and ̂t 2, respectively. Our
problem can be defined as finding α1, and α2 to minimize S. That is, we
wish to solve these two equations for α1, and, α2 thereby determining the
remaining two control points (that is, V1 and V2) of the cubic Bézier
segment:

∂S
∂α 1

 = 0 (4)

∂S
∂α 2

 = 0. (5)

Expanding Eq. (4),

∂S
∂α 1

 = 2 di − Q ui()[]
i=1

n

∑ ⋅
∂Q ui()

∂α 1

.

Expanding the second term, we get

∂Q ui()
∂α 1

 =
∂

∂α 1

V0B0
3 ui() + α 1t̂1 + V0()B1

3 ui()(

 + α 2t̂2 + V3()B2
3 ui() + V3B3

3 ui())

 = t̂1B1
3 ui().

619

XI.8 AN ALGORITHM FOR AUTOMATICALLY FITTING DIGITIZED CURVES

GRAPHICS GEMS I Edited by ANDREW S. GLASSNER 619

Thus,

∂S
∂α 1

 = 2 di − Q ui()[]
i=1

n

∑ ⋅ t̂1B1
3 ui() = 0.

Rearranging, we get

B1

3

i=1

n

∑ ui()Q ui() ⋅ t̂1 = t̂1
i=1

n

∑ B1
3 ui() ⋅ di .

For convenience, define

Ai ,1 = t̂1B1
3 ui().

Then,

Q

i=1

n

∑ ui() ⋅ Ai ,1 = di
i=1

n

∑ ⋅ Ai ,1 . (6)

Expanding Q(ui),

Q

i=1

n

∑ ui() ⋅ Ai ,1

= Ai ,1

i=1

n

∑ ⋅ V0B0
3 ui() + α 1Ai ,1 + V0B1

3 ui()(

+ α 2Ai ,2 + V3B2
3 ui() + V3B3

3 ui())

= Ai ,1

i=1

n

∑ ⋅ V0B0
3 ui() + α 1 Ai ,1

2

i=1

n

∑ + Ai ,1
i=1

n

∑ ⋅ V0B1
3 ui()

+ α 2 Ai ,1

i=1

n

∑ ⋅ Ai ,2 + Ai ,1
i=1

n

∑ ⋅ V3B2
3 ui() + Ai ,1 ⋅ V3B3

3 ui()
i=1

n

∑

Equation (6) becomes

Ai ,1
2

i=1

n

∑



 α 1 + Ai ,1

i=1

n

∑ ⋅ Ai ,2




 α 2

= di − V0B0

3 ui() + V0B1
3 ui() + V3B2

3 ui() + V3B3
3 ui()()()

i=1

n

∑ ⋅ Ai ,1

620

XI.8 AN ALGORITHM FOR AUTOMATICALLY FITTING DIGITIZED CURVES

GRAPHICS GEMS I Edited by ANDREW S. GLASSNER 620

Similarly, for ∂S/ ∂α 2 ,

Ai ,1 ⋅ Ai ,2
i=1

n

∑



 α 1 + Ai ,2

2

i=1

n

∑



 α 2

= di − V0B0
3 ui() + V0B1

3 ui() + V3B2
3 ui() + V3B3

3 ui()()()
i=1

n

∑ ⋅ Ai ,2

If we represent the previous two equations by
 c1,1α 1 + c1,2α 2 = X1

 c2,1α 1 + c2,2α 2 = X2 ,
we need only solve

 c2,1

c1,1 c2,2

c1,2() α 2

α1() = X2

X1





for α1 and α2. If we let

= c2,1

c1,1 c2,2

c1,2() = C1 C2()

- = X2

X1



 ,

Then, using Cramer’s Rule, the solution to

 α 2

α1() = #−1 -

is

α 1 =

det - C2()
det C1 C2()

α 1 =

det C1 -()
det C1 C2()

621

XI.8 AN ALGORITHM FOR AUTOMATICALLY FITTING DIGITIZED CURVES

GRAPHICS GEMS I Edited by ANDREW S. GLASSNER 621

Our algorithm that attempts to fit a single cubic Bézier segment to a set
of points appears in Fig. 4. We begin by computing approximate tangents
at the endpoints of the digitized curve. This can be accomplished by
fitting a least-squares line to the points in the neighborhood of the
endpoints, or by averaging vectors from the endpoints to the next n
points, and so on. Next, we assign an initial parameter value ui to each
point di, using chord-length parameterization. At this point, we use the
technique described to fit a cubic Bézier segment to the points—the first
and last control points are positioned at the first and last digitized points
in the region we are working on, and the inner two control points are
placed a distance α1 and α2 away from the first and last control points, in
the direction of the unit tangent vectors previously computed. We then
compute the error between the Bézier curve and the digitized points,
noting the point that is the farthest distance from the curve. If the fit is
acceptable, we draw or otherwise output the curve. If the fit is not
acceptable, we could break the digitized points into two subsets at the
point of greatest error, compute the unit tangent vector at the point of
splitting, and recursively try to fit Bézier curves to these two new
subcurves. Consider, though, that our initial chord-length parameteriza-
tion is only a very rough approximation; if we had a better parameteriza-
tion of the points, we might have been able to fit the curve without further
recursive processing. Fortunately, there is a technique available to us.
Referring back to Eq. 1, our t is that chord-length-generated approximate
parameter. We can use Newton-Raphson iteration to get a better t—in
general, the formula is

t ← t −

f t()
f ' t() . (7)

Referring back to Fig. 3, we wish to solve

[Q(t) – P] Q′(t) = 0 (8)

for t. In our case, then, we reduce the t for each point by

Q1t ⋅ Q2t
Q1 t() ⋅ Q2 t()[]' . (9)

622

XI.8 AN ALGORITHM FOR AUTOMATICALLY FITTING DIGITIZED CURVES

GRAPHICS GEMS I Edited by ANDREW S. GLASSNER 622

FitCurve(d, e)
d :array[] of point; Array of digitized points
e :double; User-specified error

begin
Compute ̂t l and ̂t 2, the unit tangent

vectors at the ends of the digitized points;
FitCubic(d, ̂t l, ̂t 2, e);

end
FitCubic(d, ̂t l, ̂t 2, e)

d : array[] of point; Array of digitized points

 ̂t l, ̂t 2 : vector; Endpoint tangents
e : double; User-specified error

begin
Compute chord-length parameterization of digitized points:
Fit a single cubic Bezier curve to digitized points:
Compute the maximum distance from points
to curve:
if error < e

then begin
DrawBezierCurve:
return;
end;

if error < ψ
then begin

for i: integer ← 0. i – 1. while i < maxIterations do
begin

Reparameterize the points:
Fit a single cubic Bezier curve to digitized points:
Compute the maximum distance from points to
curve:
if error < e

then begin
DrawBezierCurve:
return;
end

end
endloop

else begin

Compute unit tangent at point of maximum error:
Call FitCubic on the “left” side:
Call FitCubic on the “right” side:

end
end

end

Figure 4.

623

XI.8 AN ALGORITHM FOR AUTOMATICALLY FITTING DIGITIZED CURVES

GRAPHICS GEMS I Edited by ANDREW S. GLASSNER 623

Figure 5. Use of the iterative process to improve the fitting of the cubic.

This technique was first used by Grossman (1970) and later by Plass and
Stone (1983) in their algorithms. This iteration can greatly improve the fit
of the curve to the points: see Fig. 5, for an example of the process.

Newton-Raphson iteration is fairly inexpensive and tends to converge
rather quickly. Thus, one might want to attempt this improvement every
time. However, if the initial fit is very poor, it may be best not even to
attempt the improvement. So, we compare the error to some value ψ,
which we set to some small multiple or power of the user-specified error
e. This value ψ is implementation-dependent, but is easy to determine
empirically. Additionally, since the incremental improvement decreases
quickly with each successive iteration, we set a limit on the number of
attempts we make (the author found that a value of four or five is
appropriate). Finally, we note that while this Newton-Raphson iteration is
cheap, the associated fitting attempts are not. The astute reader may
notice, then, that we have placed more emphasis on minimizing the
number of segments generated than on execution speed. Even so, the
algorithm is generally more than fast enough for interactive use, even
with a very large number of points to fit. In addition, it is very stable—
the author has not seen a case when the algorithm failed to converge quickly
on a satisfactory and correct fit.

One final note: the least-squares mathematics fails when there are only
two points in the digitized subcurve to be fitted. In this case, we adopt a

Chord-Length
parameterization

One Iteration Two Iterations Three Iterations

624

XI.8 AN ALGORITHM FOR AUTOMATICALLY FITTING DIGITIZED CURVES

GRAPHICS GEMS I Edited by ANDREW S. GLASSNER 624

Figure 6. A digitized glyph, showing the original samples and the fitted curves.

method from Schmitt et al., (1986), and plane the inner two control
points at a distance from the outer two control points equal to one-third
of the distance between the two points, along the unit tangents at each
endpoint.

Examples of the fitting algorithm being applied to a digitized font and
to a hand-sketched curve appear in Figs. 6 and 7. The large dots indicate
the cubic Bézier control points—the filled dots are the first and last
control points in each curve (which are shared with the curve’s neighbors),
and the hollow dots are the “inner” control points.

Implementation NotesImplementation NotesImplementation NotesImplementation NotesImplementation Notes
Several points should be made with respect to implementation. First, the
implementor may want to preprocess the digitized data prior to calling
the fitting routine. Such preprocessing might include: removing coinci-

625

XI.8 AN ALGORITHM FOR AUTOMATICALLY FITTING DIGITIZED CURVES

GRAPHICS GEMS I Edited by ANDREW S. GLASSNER 625

Figure 7. A hand-sketched curve, showing the original samples and the fitted curves.

dent and/or nearly coincident data points, filtering the points with a little
convolution (makes tangent computation more reliable), and locating
corners. By “corners” we mean regions in the digitized curve where there
should be a discontinuity; such points can be located by looking at the
angle created by a point and its neighbors. These corners divide the
original curve into a number of distinct subcurves, each of which can be
fitted independently. Second, negative α values occasionally are gener-
ated when the points are very irregularly spaced. In this case, one can
either split the points and try to fit each subcurve, or employ the heuristic
mentioned earlier.

A sample C implementation of the algorithm is included in the ap-
pendix, in the file fit_cubic.c. Inputs to the routine FitCurve are the
array of digitized points, their number, and the desired (squared) error
value. When Bézier curves are generated, the routine DrawBezierCurve
is called to output the curve; this routine must be supplied by the
implementor, and simply consists of drawing or otherwise outputting the
curve defined by the control points with which it is called.

626

XI.8 AN ALGORITHM FOR AUTOMATICALLY FITTING DIGITIZED CURVES

GRAPHICS GEMS I Edited by ANDREW S. GLASSNER 626

ConclusionConclusionConclusionConclusionConclusion
We have presented an adaptive, automatic algorithm for fitting piecewise
cubic Bézier curves to digitized curves. This algorithm elegantly parallels
adaptive subdivision for curve evaluation, and shares with that technique
that characteristic that regions of lower curvature are more coarsely
refined than those of higher curvature. Advantages over previous ap-
proaches are complete automaticity, geometric continuity, stability, and
extreme ease of implementation.

See Appendix 2 for C Implementation (797)

627

REFERENCES

GRAPHIC GEMS I Edited by DAVID KIRK 627

REFERENCESREFERENCESREFERENCESREFERENCESREFERENCES

ACM Transactions on Graphics (1987). Color Plates 15–18. 6(3), 235. (Proper Treat-
ment of Pixels as Integers)

Albano, A. (1974). “Representation of Digitized Contours in Terms of Conic Arcs and
Straight-Line Segments,” Computer Graphics and Image Processing. 3 , 23–33. (An
Algorithm for Automatically Fitting Digitized Curves)

Anjyo, K., Ochi, T., and Usami, Y. (1987). “A Practical Method of Constructing Surfaces in
Three-dimensional Digitized Space,” The Visual Computer. 3, 4–12. (Defining Sur-
faces from Contour Data)

Arvo, J. (1986). “Backward Ray Tracing,” SIGGRAPH Course Notes, 12 . (Shadow
Attenuation for Ray Tracing Transparent Objects)

Arvo, J., and Kirk, D. (1987). “Fair Play,” SIGGRAPH ‘87 Film Show Contribution,
Midnight Movie Group, Apollo Computer, Inc. (Efficient Generation of Sampling Jitter
Using Look-up Tables)

Arvo, J., and Kirk, D. (1987). “Fast Ray Tracing by Ray Classification,” Computer
Graphics. 21(4), 55–64. (Efficient Generation of Sampling Jitter Using Look-up Tables)

Bao, P. G., and Rokne, J. G. (1990). “Quadruple-Step Line Generation,” Computers and
Graphics. 13(4). (Symmetric Double Step Line Algorithm)

Barry, C. D., Ellis, R. A., Graesser, S. M., and Marshall, G. R. (1971). “A Computer
Program for Modelling Molecular Structures,” Proceedings 1991 IFIP, 1552–1558.
(Rotation Tools)

Bartels, R. H., Beatty, J. C., and Barsky, B. A. (1987). An Introduction to Splines for Use
in Computer Graphics and Geometric Modeling. Morgan Kaufman, Los Altos, Calif.
(Explicit Spline Interpolation Formulas; Fast Spline Drawing; An Algorithm for Auto-
matically Fitting Digitized Curves)

Beeler, M., Gosper, R. W., and Schroppel, R. (1972). “HAKMEM,” Massachusetts Institute
of Technology Artificial Intelligence Laboratory Report AIM-239. (A Fast Algorithm for
General Raster Rotation)

628

REFERENCES

GRAPHIC GEMS I Edited by DAVID KIRK 628

Berger, M. (1986). Computer Graphics with Pascal. Benjamin/Cummings, Menlo Park,
Calif. (3D Viewing and Rotation Using Orthonormal Bases)

Bergman, L., Fuchs, H., Grant, E., and Spach, S. (1986). “Image Rendering by Adaptive
Refinement,” Computer Graphics (SIGGRAPH). 20(4), 29–37. (Recording Animation
in Binary Order for Progressive Temporal Refinement)

Blaker, J. W. (1971). Geometric Optics—The Matrix Theory. Marcel Dekker, New York.
(A Fast Algorithm for General Raster Rotation)

Blinn, J. F. (1977). “Models of Light Reflection for Computer Synthesized Pictures,”
Computer Graphics. 11(2). (Fast Dot Products for Shading)

Blinn, J. F. (1982). “A Generalization of Algebraic Surface Drawing,” ACM Transactions
on Graphics. 1(3).

Blinn, J. F. (1982). “Light Reflections Functions for Simulation of Clouds and Dusty
Surfaces,” Computer Graphics (SIGGRAPH). 16(3). (Simulating Fog and Haze)

Blinn, J. F. (1989). “Optimal Tubes-Jim Blinn’s Corner,” IEEE Computer Graphics and
Applications. Sept., 8–13. (Matrix Inversion)

Bloch, N. J. (1987). Abstract Algebra with Applications. Prentice-Hall, Englewood Cliffs,
N.J. (Periodic Tilings of the Plane on a Raster Grid)

Bloomenthal, J. (1985). “Modeling the Mighty Maple,” Proceedings of SIGGRAPH 1985,
Computer Graphics 19(3), 305–311. (Calculation of Reference Frames along a Space
Curve)

Bloomenthal, J. (1988). “Approximation of Sweep Surfaces by Tensor Product B-Splines,”
University of Utah Technical Report WCS-88-008. (Calculation of Reference Frames
along a Space Curve)

Bloomenthal, J. (1988). “Polygonalization of Implicit Surface,” Computer Aided Geomet-
ric Design. 5, 341–355. (Defining Surfaces from Sampled Data)

Boehm, W., Farin, G., and Kahman, J. (1984). “A Survey of Curve and Surface Methods in
CAGD,” Computer-Aided Geometric Design. 1, 1–60 (A Bézier Curve-Based Root-
Finder; An Algorithm for Automatically Fitting Digitized Curves)

Bookstein, F. L. (1979). “Fitting Conic Sections to Scattered Data,” Computer Graphics
and Image Processing. 9, 56–71. (An Algorithm for Automatically Fitting Digitized
Curves)

Bowyer, A., and Woodwark, J . (1983). A Programmer ’s Geometry. Butterworth’s,
London. (Useful 2D Geometry; Useful 3D Geometry)

Bresenham, J. E. (1965). “Algorithm for Computer Control of a Digital Plotter,” IBM
Systems Journal. 4(1) , 25–30. Reprinted in Interactive Computer Graphics, edited
by H. Freeman, IEEE Computer Society, 1980. (Digital Line Drawing; Symmetric
Double Step Line Algorithm)

Bresenham, J. E. (1977). “A Linear Algorithm for Incremental Digital Display of Circular
Arcs,” CACM. 20, 100–106. (Spheres-to-Voxels Conversion)

Britton, E. G., Lipscomb, J. S., and Pique, M. E. (1978). “Making Nested Rotations

629

REFERENCES

GRAPHIC GEMS I Edited by DAVID KIRK 629

Convenient for the User,” Computer Graphics (SIGGRAPH). 12(3), 222–227. (Rota-
tion Tools)

Bronsvoort, W. F., van Wijk, J. J., and Jansen, F. W. (1984). “Two Methods for Improving
the Efficiency of Ray Casting in Solid Modelling,” Computer-Aided Design. 16(1),
51-55. (A Simple Ray Rejection Test)

Burn, R. P. (1982). A Pathway into Number Theory. Cambridge University Press,
Cambridge, England. (Periodic Tilings of the Plane on a Raster Grid)

Burn, R. P. (1985). Groups, A Path to Geometry. Cambridge University Press, Cam-
bridge, England. (Periodic Tilings of the Plane on a Raster Grid)

Campbell, G., De Fanti, T. A., et al. (1986). “Two Bit/Pixel Full Color Encoding,”
Computer Graphics (SIGGRAPH). 16(3), 297–307. (A Simple Method for Color Quanti-
zation: Octree Quantization)

Carpenter, L. (1984). “The A-Buffer, an Antialiased Hidden Surface Method,” Computer
Graphics. (Fast Anti-Aliasing Polygon Scan Conversion)

Catmull, E. (1978). “A Hidden-Surface Algorithm with Anti-Aliasing,” Computer Graph-
ics. (Fast Anti-Aliasing Polygon Scan Conversion)

Catmull, E., and Smith, A. R. (1980). “3-D Transformations of Images in Scanline Order,”
ACM Computer Graphics (SIGGRAPH). 14(3), 279–285. (A Fast Algorithm for General
Raster Rotation)

Chang, S., Shantz, M., and Rocchetti, R. (1989). “Rendering Cubic Curves and Surfaces
with Integer Adaptive Forward Differencing,” Computer Graphics (SIGGRAPH). 23(3).
(Tutorial on Forward Differencing)

Chen, T. C. (1972). “Automatic Computation of Exponentials, Logarithms, Ratios and
Square Roots,” IBM J. Res. Dev. 380–388. (Trigonometry with CORDIC Iterations)

Cheng, F., and Jiaan, W. C. (1986). “Finding the Intersection Points of a Line with a
Polygon and Its Applications,” Proceedings of 1986 ACM 14th Annual Computer
Science Conference: CSC’86. (Two-Dimensional Clipping: A Vector-Based Approach)

Chong, W. L. (1980). “Automatic Curve Fitting Using an Adaptive Local Algorithm,” ACM
Transactions on Mathematical Software. 6(1), 45–57. (An Algorithm for Automati-
cally Fitting Digitized Curves)

Clearly, J. G., Wyvill, B., Birtwistle, G. M., and Vatti, R. (1983). “Multiprocessor Ray
Tracing,” Technical Report No. 83/128/17, Dept. of Computer Science, University of
Calgary. (Efficient Generation of Sampling Jitter Using Look-up Tables)

Cline, A. K. (1974). “Scalar- and Planar-Valued Curve Fitting Using Splines under
Tension,” Communications of the ACM. 17, 218–223. (An Algorithm for Automatically
Fitting Digitized Curves)

Collins, G. E., and Loos, R. (1976). “Polynomial Root Isolation by Differentiation,” ACM
Symposium on Symbolic and Algebraic Computation, 15–25. (A Bézier Curve-Based
Root-Finder)

Conte, S. D., and deBoor, C. (1972). Elementary Numerical Analysis. McGraw-Hill. (An
Algorithm for Automatically Fitting Digitized Curves)

630

REFERENCES

GRAPHIC GEMS I Edited by DAVID KIRK 630

Cook, R. L. (1983). “Antialiased Point Sampling,” Technical Memo No. 94, Lucasfilm, Ltd.
(Efficient Generation of Sampling Jitter Using Look-up Tables)

Cook, R. L. (1986). “Stochastic Sampling in Computer Graphics,” ACM Transactions on
Graphics. 5(1), 51–72. (Efficient Generation of Sampling Jitter Using Look-up Tables)

Cook, R. L., Carpenter, L., and Catmull, E. (1987). “The Reyes Image Rendering Architec-
ture,” Computer Graphics. 21(4), 95–102. (Efficient Generation of Sampling Jitter
Using Look-up Tables)

Cook, R. L., Porter, T., and Carpenter, L. (1984). “Distributed Ray Tracing,” Computer
Graphics. 18(3), 137–145. (Efficient Generation of Sampling Jitter Using Look-up
Tables)

Cook, R. L., and Torrance, K. E. (1982). “A Reflectance Model for Computer Graphics,”
ACM Trans. Graph. 1(1), 7–24. (Fast Dot Products for Shading)

Coxeter, H. S. M. et al. (1987). M. C. Escher: Art and Science. Elsevier Science.
(Periodic Tilings of the Plane on a Raster Grid)

Coxeter, H. S. M. (1948). Regular Polytropes. Methuen and Co., Ltd., London. (A Digital
“Dissolve” Effect)

Crow, F. C. (1977). “The Aliasing Problem in Computer-Generated Shaded Images,”
Communications of the ACM. (Fast Anti-Aliasing Polygon Scan Conversion)

Crow, F. C. (1984). “Summed-Area Tables for Texture Mapping,” Computer Graphics
(SIGGRAPH). 18(3). (Interpretation of Texture Map Indices; Multidimensional Sum
Tables)

Davis, P. J. (1975). Interpolation and Approximation. Dover Publications, New York.
(An Algorithm for Automatically Fitting Digitized Curves)

DeRose, A. D. (1985). “Geometric Continuity: A Parameterization Independent Measure of
Continuity of Computer Aided Geometric Design,” Ph.D. thesis, University of California,
Berkeley. (An Algorithm for Automatically Fitting Digitized Curves)

Despain, A. M. (1974). “Fourier Transform Computers Using CORDIC Iterations,” IEEE
Trans. Comput. C-23(10), 993-1001. (Trigonometry with CORDIC Iterations)

Dierckx, P. (1982). “Algorithms for Smoothing Data with Periodic and Parametric Splines,”
Computer Graphics and Image Processing . 20, 171–184. (An Algorithm for Automat-
ically Fitting Digitized Curves)

Dippé, M. A. Z., and Wold, E. H. (1985). “Antialiasing through Stochastic Sampling,”
Computer Graphics. 19(3), 61–67. (Efficient Generation of Sampling Jitter Using
Look-up Tables)

Dippé, M. E., and Swensen, J. (1984). “An Adaptive Subdivision Algorithm and Parallel
Architecture for Realistic Image Synthesis,” Computer Graphics. 18(3), 149–158.
(Efficient Generation of Sampling Jitter Using Look-up Tables)

Dube, R. P. (1987). “Preliminary Specifications of Spline Curves,” IEEE Transactions on
Computers. C-28(4), 286-290. (An Algorithm for Automatically Fitting Digitized
Curves)

Duff, T. (1985). “Compositing 3D Rendered Images,” Computer Graphics. (Fast Anti-
Aliasing Polygon Scan Conversion)

631

REFERENCES

GRAPHIC GEMS I Edited by DAVID KIRK 631

Dürst, M. J. (1988). “Additional Reference to Marching Cubes,” Computer Graphics.
22(2), 72–73. (Defining Surfaces from Sampled Data)

Farin, G. (1988). Curves and Surfaces for Computer Aided Geometric Design. Aca-
demic Press. (A Bézier Curve-Based Root-Finder; Explicit Cubic Spline Interpolation
Formulas)

Faux, I., and Pratt, M. (1979). Computational Geometry for Design and Manufacture.
Ellis Horwood Ltd., Chichester, West Sussex, England. (Properties of Surface Normal
Transformations)

Fishkin, K. P., and Barsky, B. A. (1985). “An Analysis and Algorithm for Filling Propaga-
tion,” Proc. Graphics Interface ‘85, 203–212. (A Seed Fill Algorithm; Filling a Region
in a Frame Buffer)

Floyd, R. W., and Steinberg, L. (1975). “An Adaptive Algorithm for Spatial Gray Scale,”
Society for Information Displays. International Symposium Digest of Technical Pa-
pers, p. 36. (A Digital “Dissolve” Effect)

Foley, J. D., and Van Dam, A. (1982). Fundamentals of Interactive Computer Graphics.
Addison-Wesley, Reading, Mass. (Fast Scan Conversion of Arbitrary Polygons; A Digital
” Dissolve” Effect; Efficient Post-Concatenation of Transformation Matrices; 3D Viewing
and Rotation Using Orthonormal Bases)

Fuchs, H., Kedem, Z. M., and Uselton, S. P. (1977). “Optimal Surface Reconstruction from
Planar Contours,” Communications of the ACM. 20(10), 693–702. (Defining Surfaces
from Contour Data)

Ganapathy, S., and Dennehy, T. G. (1982). “A New General Triangulation Method for
Planar Contours,” Computer Graphics. 16(3), 69–75. (Defining Surfaces from Contour
Data)

Gasson, P. C. (1983). Geometry of Spatial Forms. Ellis Horwood Ltd., Chichester, West
Sussex, England. (Efficient Post-Concatenation of Transformation Matrices)

Giloi, W. K. (1978). Interactive Computer Graphics. Prentice-Hall, Englewood Cliffs,
N.J. (An Algorithm for Automatically Fitting Digitized Curves)

Glassner, A. S. (1984). “Adaptive Precision in Texture Mapping,” Computer Graphics
(SIGGRAPH). 20(4). (Interpretation of Texture Map Indices)

Glassner, A. S., et al. (1989). An Introduction to Ray Tracing. Academic Press, London.
(Fast Dot Products for Shading)

Goldman, R. N. (1985). “Illicit Expressions in Vector Algebra,” ACM Transactions on
Graphics. 4(3). (Forms, Vectors, and Transforms)

Gouraud, H. (1971a). “Continuous Shading of Curved Surfaces,” IEEE Transactions on
Computer. (Reprinted in H. Freeman, ed., Interactive Computer Graphics, IEEE
Computer Society.) (Computing Surface Normals for 3D Models)

Gouraud, H. (1971b). “Computer Display of Curved Surfaces,” IEEE Transactions
C-20(6), 623. (Computing Surface Normals for 3D Models)

Graham, R. L., Knuth, D. E., and Patashnik, O. (1989). Concrete Mathematics. Addison-
Wesley, Reading, Mass. (Rendering Fat Lines on a Raster Grid; Tutorial on Forward
Differencing)

632

REFERENCES

GRAPHIC GEMS I Edited by DAVID KIRK 632

Graphics Standards Planning Committee (1979). “Status Report of the Graphics Stan-
dards Committee,” Computer Graphics. 13(3). (A Fast HSL-to-RGB Transform)

Greene, N. (1983). “Transformation Identities,” Technical Report No. 14, New York
Institute of Technology Computer Graphics Lab. (Transformation Identities)

Greene, N. (1986). “Environment Mapping and Other Applications of World Projection,”
IEEE Computer Graphics and Applications. 6(11), 21–29. (Digital Cartography for
Computer Graphics)

Greene, N., and Heckbert, P. (1986). “Creating Raster Omnimax Images from Multiple
Perspective Views Using the Elliptical Weighted Average Filter,” IEEE Computer
Graphics & Applications. (Interpretation of Texture Map Indices)

Grossman, M. (1970). “Parametric Curve Fitting,” The Computer Journal. 14(2),
169–172. (An Algorithm for Automatically Fitting Digitized Curves)

Gupta, S., and Sproull, R. F. (1981). “Filtering Edges for Gray-Scale Displays,” Computer
Graphics. 15(3), 1–5. (Area of Intersection: Circle and a Half-Plane; Vertical Distance
from a Point to a Line)

Hall, R. A. (1989). Illumination and Color in Computer Generated Imagery. Springer-
Verlag, New York. (Fast Dot Products for Shading)

Hearn, D., and Baker, M. P. (1986). Computer Graphics. Prentice-Hall, Englewood Cliffs,
N.J. (3D Viewing and Rotation Using Orthonormal Bases)

Heckbert, P. S. (to appear). “An Algorithm for In-Place Filtered Zoom.” (A Fast Algorithm
for General Raster Rotation)

Heckbert, P. S. (1982). “Color Image Quantization for Frame Buffer Display,” ACM
Computer Graphics (SIGGRAPH). 16(3), 297–307. (A Digital “Dissolve” Effect; Proper
Treatment of Pixels as Integers; A Simple Method for Color Quantization: Octree
Quantization)

Heckbert, P. S. (1984). “Techniques for Real-Time Frame Buffer Animation,” Computer
FX ‘84 Conference, London. (Mapping RGB Triples onto Four Bits)

Heckbert, P. S. (1989). ” Fundamentals of Texture Mapping and Image Warping,” Master ’s
thesis, UCB/CSD 89/516, Dept. of Computer Science, University of California at
Berkeley. (Generic Convex Polygon Scan Conversion and Clipping)

Higgins, T. M., and Booth, K. S. (1986). “A Cell-Based Model for Paint Systems,”
Proceedings, Graphics Interface, ‘86, Canadian Information Processing Society,
82-90. (A Fast Algorithm for General Raster Rotation)

Hobby, J. D. (1985). “Digitized Brush Trajectories,” Report No. STAN-CS-85-1070, Dept.
of Computer Science, Stanford University. (Rendering Fat Lines on-a Raster Grid)

Holden, A. (1971). Shapes, Space, and Symmetry. Columbia University Press, New
York. (A Digital “Dissolve” Effect)

Holladay, T. M. (1980). “An Optimum Algorithm for Halftone Generation for Displays and
Hard Copies,” Proc. Soc. Inf. Display. 21, 185–192. (Periodic Tilings of the Plane on
a Raster Grid)

Huang, T. S., ed. (1980). “Two-Dimensional Digital Signal Processing II, Transforms and

633

REFERENCES

GRAPHIC GEMS I Edited by DAVID KIRK 633

Median Filters,” in Topics in Applied Physics (43). Springer-Verlag, Berlin. (Median
Findings on a 3 × 3 Grid)

Ichida, K., Kiyono, T., and Yoshimoto, F. (1977). “Curve Fitting by a One-Pass Method
with a Piecewise Cubic Polynomial,” ACM Transactions on Mathematical Software.
3(2), 164–174. (An Algorithm for Automatically Fitting Digitized Curves)

Ingalls, D. H. H. (1978). “The Smalltalk-76 Programming System: Design and Implemen-
tation,” Fifth ACM Symp. Prin. Prog. Lang., 9–16. (A Fast Algorithm for General
Raster Rotation)

Jakson, C. L., and Tanimoto, S. L. (1980). “Octrees and Their Use in Representing
Three-Dimensional Objects,” Computer Graphics and Image Processing. 14(3),
249–270. (A Simple Method for Color Quantization: Octree Quantization)

Jarvis, J. F., Judice, N., and Nike, N. H. (1976). “A Survey of Techniques for the Display
of Continuous Tone Pictures on Bilevel Displays,” Computer Graphics and Image
Processing. 5(1), 13–40 (A Simple Method for Color Quantization: Octree Quantization)

Joblove, G. H., and Greenberg, D. (1978). “Color Spaces for Computer Graphics,” ACM
Computer Graphics (SIGGRAPH). 12(3), 20–25. (A Digital “Dissolve” Effect)

Johnson, J. R. (1989). Introduction to Digital Signal Processing. Prentice Hall, Engle-
wood Cliffs, N.J. (A Fast Algorithm for General Raster Rotation)

Kajiya, J., and Von Herzen, B. P. (1984). “Ray Tracing Volume Densities,” Computer
Graphics (SIGGRAPH). 18(3). (Simulating Fog and Haze)

Kajiya, J. T. (1986). “The Rendering Equation,” Computer Graphics. 20(4), 269-278.
(Efficient Generation of Sampling Jitter Using Look-up Tables)

Kaufman, A., and Bakalash, R. (1988). “Memory and Processing Architecture for 3D
Voxel-Based Imagery,” IEEE Computer Graphics and Applications. 18(11), 10-23.
(Spheres-to-Voxels Conversion)

Kindle, J. (1950). Analytic Geometry. Schaum’s Outline Series, McGraw-Hill, New York.
(Useful 2D Geometry)

Klok, F. (1986). “Two Moving Coordinate Frames for Sweeping along a 3D Trajectory,”
Computer Aided Geometric Design. 3. (Calculation of Reference Frames along a
Space Curve)

Knowlton, K. (1980). “Progressive Transmission of Grey-Scale and Binary Pictures by
Simple, Efficient, and Lossless Encoding Schemes,” Proc. IEEE. 68(7), 885–896.
(Recording Animation in Binary Order for Progressive Temporal Refinement)

Knuth, D. E. (1981). The Art of Computer Programming—Seminumerical Algorithms,
Vol. 2, (2nd ed.). Addison-Wesley, Reading, Mass. (Efficient Generation of Sampling
Jitter Using Look-up Tables)

Knuth, D. E. (1981). Art of Computer Programming, Vol. 2, Fundamental Algorithms.
Addison-Wesley, Reading, Mass. (Periodic Tilings of the Plane on a Raster Grid)

Kornfeld, C. (1977). “The Image Prism: A Device for Rotating and Mirroring Bitmap
Images,” IEEE Computer Graphics and Applications. 7(5), 25. (A Fast Algorithm for
General Raster Rotation)

634

REFERENCES

GRAPHIC GEMS I Edited by DAVID KIRK 634

Kozak, J . (1986). “Shape Preserving Approximation,” Computers in Industry. 7 ,
435-440. (An Algorithm for Automatically Fitting Digitized Curves)

Krieger, R. A. (1984). “3-D Environments for 2-D Animation,” Math Essay, University of
Waterloo, Ontario. (A Fast Algorithm for General Raster Rotation)

Lane, J. (1989). Personal communication. (A Bézier Curve-Based Root-Finder)

Lawson, C. L., and Hanson, R. J. (1974). Solving Least-Squares Problems. Prentice-Hall,
Englewood Cliffs, N.J. (Computing Surface Normals for 3D Models)

L’Ecuyer, P. (1988). “Efficient and Portable Combined Random Number Generators,”
Communications of the ACM. 31(6), 742–749. (Efficient Generation of Sampling Jitter
Using Look-up Tables)

Lee, M. E., Redner, R. A., and Uselton, S. P. (1985). “Statistically Optimized Sampling for
Distributed Ray Tracing,” Computer Graphics. 19(3), 51–72. (Efficient Generation of
Sampling Jitter Using Look-up Tables)

Levoy, M. S. (1981). “Area Flooding Algorithms,” presented at SIGGRAPH ‘82 2D
Animation Tutorial. (Filling a Region in a Frame Buffer)

Lien, S., Shantz, M., and Pratt, V. (1987). “Adaptive Forward Differencing for Rendering
Curves and Surfaces,” Computer Graphics (SIGGRAPH). 21(4). (Tutorial on Forward
Differencing)

Limb, J. O., Rubinstein, C. D., and Thompson, J. E. (1977). ” Digital Coding of Color Video
Signals—A Review,” IEEE Trans. Communication. 25(11), 1349–1385. (A Digital
“Dissolve” Effect)

Lorenson, W., and Cline, H. (1987). “Marching Cubes: A High Resolution 3D Surface
Construction Algorithm,” Computer Graphics. 21(4), 163-169. (Defining Surfaces
from Sampled Data)

Lozover, 0., and Preiss, K. (1981). “Automatic Generation of a Cubic B-Spline Represen-
tation for a General Digitized Curve.” In Encarancao, J. L., ed., Eurographics ‘81.
North-Holland. (An Algorithm for Automatically Fitting Digitized Curves)

Maillot, P.-G. (1983). PATK3D: Logiciel intéractif de visualisation d’objets en 3
dimensions, Université Claude Bernard, Lyon I, Lyon, France. (Using Quaternions for
Coding 3D Transformations)

Maillot, P.-G. (1986). Contribution à l’étude des systénes graphiques, architectures
logicielle et matérielle, Ph.D. Thesis. Université Claude Bernard, Lyon I, Lyon, France.
(Using Quaternions for Coding 3D Transformations)

McKeown, K. R., and Badler, N. I. (1980). “Creating Polyhedral Stellations,” ACM
Computer Graphics (SIGGRAPH). 14(3), 19-24. (A Digital “Dissolve” Effect)

Max, N. (1989). “Smooth Appearance for Polygonal Surfaces,” Visual Computer. Vol. 5,
160-173. (Computing Surface Normals for 3D Models)

Meagher, D. (1982). “Geometric Modelling Using Octree Encoding,” Computer Graphics
and Image Processing. 19(2), 129–147. (A Simple Method for Color Quantization:
Octree Quantization; Spheres-to-Voxels Conversion)

Misner, C. W., Thorne, K. S., and Wheeler, J. A. (1973). Gravitation. Freeman. (Forms,
Vectors, and Transforms)

635

REFERENCES

GRAPHIC GEMS I Edited by DAVID KIRK 635

Morton, (1986). “A Digital Dissolve for Bit-Mapped Graphics Screens,” Dr. Dobb’s
Journal. (A Digital ” Dissolve” Effect)

Newell, M. E., and Sequin, C. H. (1980). “The Inside Story on Self-Intersecting Polygons,”
Lambda. 1(2), 20–24. (Fast Scan Conversion of Arbitrary Polygons)

Newman, W. M., and Sproull, R. F. (1979). Principles of Interactive Computer Graph-
ics. McGraw-Hill, New York. (A Fast Algorithm for General Raster Rotation (first ed.); A
Digital “Dissolve” Effect; 3D Viewing and Rotation Using Orthonormal Bases (second
ed.); The Use of Coordinate Frames in Computer Graphics)

Nicholl, T. M., Nicholl, R. A., and Lee, D. T. (1987). “An Efficient New Algorithm for 2-D
Line Clipping,” ACM Computer Graphics. 21(4), 253–261. (Two-Dimensional Clip-
ping: A Vector-Based Approach)

Niimi, H., et al. (1984). “A Parallel Processor System for Three-Dimensional Color
Graphics,” Computer Graphics (SIGGRAPH). 20(4), 95–101. (Scanline Depth Gradient
of a Z-Buffered Triangle)

Nishimura, H., Ohno, H., Kawata, T., Shirakawa, I., and Omura, K. (1983). “LINKS-1: A
Parallel Pipelined Multimicrocomputer System for Image Creation,” Conference Pro-
ceedings of the 10th Annual International Symposium on Computer Architecture,
SIGGARCH, 387–394. (Efficient Generation of Sampling Jitter Using Look-up Tables)

Oppenheim, A. V., and Schaeffer, R. W. (1975). Digital Signal Processing. Prentice-Hall,
Englewood Cliffs, N.J. (Filters for Common Resampling Tasks)

Paeth, A. W. (1986). “Design and Experience with a Generalized Raster Toolkit,”
Proceedings, Graphics Interface ‘86, Canadian Information Processing Society, Van-
couver. (Median Finding on a 3 × 3 Grid; A Digital ” Dissolve” Effect; Proper Treatment
of Pixels as Integers)

Paeth, A. W. (1986a). “A Fast Algorithm for General Raster Rotation,” Proceedings,
Graphics Interface ‘86, Canadian Information Processing Society, Vancouver. 77-81.
(A Fast Algorithm for General Raster Rotation; Transformation Identities)

Paeth, A. W. (1986b). “The IM Raster Toolkit—Design, Implementation, and Use,”
University of Waterloo Technical Report CS-86-65. (Median Finding on a 3 × 3 Grid; A
Fast Algorithm for General Raster Rotation; A Digital “Dissolve” Effect; Proper Treat-
ment of Pixels as Integers)

Paeth, A. W. (1987). “The IM Raster Toolkit—Design, Implementation, and Use,” Insti-
tute for Computer Research Report UW/ICR 87–03. (Median Finding on a 3 × 3 Grid; A
Fast Algorithm for General Raster Rotation; A Digital “Dissolve” Effect; Proper Treat-
ment of Pixels as Integers)

Paeth, A. W. (1988). ” Lemming Editor, ” IRIS Software Exchange. Summer 1988 (1), 17.
(A Fast 2D Point-on-Line Test; A Fast Approximation to the Hypotenuse)

Paeth, A. W. (1989a). “Algorithms for Fast Color Correction,” Proceedings of the SID
(Society for Information Display). 30(3), 169–175. (Proper Treatment of Pixels as
Integers)

Paeth, A. W. (1989b). “Algorithms for Fast Color Correction,” University of Waterloo
Technical Report CS-89-42. (Proper Treatment of Pixels as Integers)

636

REFERENCES

GRAPHIC GEMS I Edited by DAVID KIRK 636

Paeth, A. W. (to appear). ”Color Cubes and Color Polyhedra and Color Mapping.”
(A Digital “Dissolve” Effect)

Paeth, A. W. (to appear). ” Fast Median Finding Using Exchange Networks,” University of
Waterloo Technical Report CS-90. (Median Finding on a 3 × 3 Grid)

Pars, L. A. (1965). A Treatise on Analytical Dynamics. John Wiley and Sons, New York.
(Rotation Tools)

Pavlidis, T. (1983). “Curve Fitting with Conic Splines,” ACM Transactions on Graphics.
2, 1–31. (An Algorithm for Automatically Fitting Digitized Curves)

PHIGS. (1987). Programmer ’s Hierarchical Interactive Graphics System (PHIGS)
ISO, DIS 9592-1. (Using Quaternions for Coding 3D Transformations)

Piegl, L. (1986). “Curve Fitting Algorithm for Rough Cutting,” Computer-Aided Design.
18(2), 79–82. (An Algorithm for Automatically Fitting Digitized Curves)

Pinkert, J. R. (1976). “An Exact Method of Finding Roots of a Complex Polynomial,”
ACM Transactions on Mathematics. 2(4). (Using Sturm Sequences to Bracket Real
Roots of Polynomial Equations)

Pique, M. E. (1987). “Semantics of Interactive Rotations,” Proceedings of 1986 Work-
shop on 3D Graphics, 259–269. (Rotation Tools)

Plass, M., and Stone, M. (1983). “Curve-Fitting with Piecewise Parametric Cubics,”
Computer Graphics. 17(3), 229–239. (An Algorithm for Automatically Fitting Digitized
Curves)

Phong, B.-T. (1973). “Illumination for Computer-Generated Images,” Univ. of Utah
Comput. Sci. Dept. UTE’C-CSC 73, 129. (Computing Surface Normals for 3D Models)

Porter, T., and Duff, T. (1984). “Composing Digital Images,” ACM Computer Graphics
(SIGGRAPH). 18(3), 253–259. (A Fast Algorithm for General Raster Rotation; Alpha
Blending)

Press, W. H. (1988). Numerical Recipes in C: The Art of Scientific Computing.
Cambridge University Press. (Efficient Generation of Sampling Jitter Using Look-up
Tables)

Ralston, A. (1965). A First Course in Numerical Analysis. McGraw-Hill. (Tutorial on
Forward Differencing)

Reeves, W. T. (1981). “Quantitative Representations of Complex Dynamic Shapes for
Motion Analysis,” Ph.D. thesis, University of Toronto. (An Algorithm for Automatically
Fitting Digitized Curves)

Reinsch, C. H. (1967). “Smoothing by Spline Functions,” Numerische Mathematik. 10,
177–183. (An Algorithm for Automatically Fitting Digitized Curves)

Rogers, D. F. (1985). Procedural Elements for Computer Graphics. McGraw-Hill, New
York. (Spheres-to-Voxels Conversion; Concave Polygon Scan Conversion)

Rogers, D. F., and Adams, J. A. (1976). Mathematical Elements for Computer Graph-
ics. McGraw-Hill, New York. (Rotation Tools)

Rokne, J. G., Wyvill, B., and Wu, X. (1990). “Fast Line Scan-Conversion,” ACM Transac-
tions on Graphics. In press. (Symmetric Double Step Line Algorithm)

637

REFERENCES

GRAPHIC GEMS I Edited by DAVID KIRK 637

Ross, S. (1976). A First Course in Probability. Macmillan. (Multidimensional Sum
Tables)

Salmon, R., and Slater, M. (1987). Computer Graphics: Systems and Concepts.
Addison-Wesley, Reading, Mass. (3D Viewing and Rotation Using Orthonormal Bases)

Scheid, F. (1968). Schaum’s Outline of Numerical Analysis. McGraw-Hill. (Tutorial on
Forward Differencing)

Schmitt, F. J. M., Barsky, B. A., and Du, W. H. (1986). “An Adaptive Subdivision Method
for Surface-Fitting from Sampled Data,” Proceedings of SIGGRAPH ‘86, 179–188. (An
Algorithm for Automatically Fitting Digitized Curves)

Schneider, P. J. (1988). “Phoenix: An Interactive Curve Design System Based on the
Automatic Fitting of Hand-Sketched Curves,” Master ’s thesis, University of Washington.
(A Bézier Curve-Based Root-Finder; Solving the Nearest-Point-on-Curve Problem; An
Algorithm for Automatically Fitting Digitized Curves)

Schoenberg, I. J. (1973). Cardinal Spline Interpolation. SIAM. (Explicit Cubic Spline
Interpolation Formulas)

Schumaker, R. A., Brand, R., Gilliland, M., and Sharp, W. “Study for Applying Computer
Generated Images to Visual Stimulation,” AFHRL-TR-69-14, U.S. Air Force Human
Resources Laboratory. (A Digital “Dissolve” Effect)

Schweikert, D. G. (1966). “An Interpolation Curve Using a Spline in Tension,” J. Math.
Phys. 45, 312–317. (An Algorithm for Automatically Fitting Digitized Curves)

Sedgewick, R. (1983). Algorithms. Addison-Wesley, Reading, Mass. (Two-Dimensional
Clipping: A Vector-Based Approach)

Shani, U. (1980). “Filling Regions in Binary Raster Images: A Graph-Theoretic Approach,”
SIGGRAPH ‘80 Conference Proceedings, 321–327. (Filling a Region in a Frame
Buffer)

Shani, U., and Ballard, D. H. (1984). “Splines as Embeddings for Generalized Cylinders,”
Computer Vision, Graphics, and Image Processing. 27 . (Calculation of Reference
Frames along a Space Curve)

Shapira, A. (1990). “Source Code for Terrain Visibility Programs,” Computational
Geometry Lab. Technical Report #90-0418, ECSE Dept., Rensselaer Polytechnic
Institute. (Fast Line-Edge Intersections on a Uniform Grid)

Shinya, M., Saito, T., and Takahashi, T. (1989). “Rendering Techniques for Transparent
Objects,” Proc. Graphics Interface, 173–182. (Shadow Attenuation for Ray Tracing
Transparent Objects)

Shinya, M., Takahashi, T., and Naito, S. (1987). “Principles and Applications of Pencil
Tracing,” Computer Graphics (SIGGRAPH). 21(4), 45–54. (Shadow Attenuation for
Ray Tracing Transparent Objects)

Shoemake, K. (1985). “Animating Rotation with Quaternion Curves,” ACM, Siggraph
‘85. 19(3) 245–254. (Using Quaternions for Coding 3D Transformations)

Sloan, K. R., Jr., and Tanimoto, S. L. (1979). “Progressive Refinement of Raster Images,”
IEEE Trans. on Computers. C-28(11), 871–874. (Recording Animation in Binary
Order for Progressive Temporal Refinement)

638

REFERENCES

GRAPHIC GEMS I Edited by DAVID KIRK 638

Sloan, K. R., Jr., and Brown, C. M. (1979). “Color Map Techniques,” Computer Graphics
and Image Processing. 10(4), 297–317. (Mapping RGB Triples onto Four Bits)

Smith, A. R. (1978). “Color Gamut Transform Pairs,” ACM Computer Graphics
(SIGGRAPH). 12(3), 12–19. (A Digital “Dissolve” Effect; Proper Treatment of Pixels as
Integers; A Fast HSL-to-RGB Transform)

Smith, A. R. (1979). “Tint Fill,” SIGGRAPH ‘79 Proceedings, 279–283. (A Seed Fill
Algorithm)

Smith, A. R. (1982). “Fill Tutorial Notes,” presented at SIGGRAPH ‘82 2D Animation
Tutorial. (Filling a Region in a Frame Buffer)

Smith, A. R. (1987). “Planar 2-Pass Texture Mapping and Warping,” ACM Computer
Graphics (SIGGRAPH). 21(4), 263–272. (A Fast Algorithm for General Raster Rotation)

Snyder, J . P. (1984). Map Projections Used by the U.S. Geological Survey. U.S.
Government Printing Office, Washington, D.C. (Albers Equal-Area Conic Map Projec-
tion)

Snyder, J. M., and Barr, A. H. (1987). “Ray Tracing Complex Models Containing Surface
Tessellations,” ACM Computer Graphics. 21(4). (An Efficient Ray-Polygon Intersec-
tion)

Sturm, C. (1835). “Mém. Présentés par Divers Savants,” à l’Acad. Royale des Sciences de
l’Institut de France, t. 6, Paris. (Using Sturm Sequences to Bracket Real Roots of
Polynomial Equations)

Sutherland, I. E., and Hodgman, G. W. (1974). “Reentrant Polygon Clipping,” Communi-

cations of the ACM. 17(1), 32–42. (Generic Convex Polygon Scan Conversion and
Clipping; Two-Dimensional Clipping: A Vector-Based Approach; Fast Anti-Aliasing Poly-
gon Scan Conversion)

Swanson, R. W., and Thayer, L. J. (1986). “A Fast Shaded-Polygon Renderer,” Computer
Graphics (SIGGRAPH). 20(4), 95–101. (Scanline Depth Gradient of a Z-Buffered
Triangle)

Sweeney, M. (1984). “The Waterloo CGL Ray Tracing Package,” Master ’s thesis, Dept. of
Computer Science, University of Waterloo. (Shadow Attenuation for Ray Tracing Trans-
parent Objects)

Tosan, E. (1982). Quaternions et rotations dans l’espace. Tutorial notes. Université
Claude Bernard, Lyon I, Lyon, France. (Using Quaternions for Coding 3D Transforma-
tions)

Tountas, C., and Katz, L. (1971). “Interactive Graphics in Molecular Biology: Real-time
Three-dimensional Rotations of Images and Image Fragments,” Proceedings Summer
Computer Simulation Conference. 1, 241–247. (Rotation Tools)

Turkowski, K. E. (1982). “Anti-Aliasing through the Use of Coordinate Transformations,”
ACM Trans. Graphics 1(3), 215–234. (Trigonometry with CORDIC Iterations)

Turkowski, K. E. (1986). “Anti-Aliasing in Topological Color Spaces,” ACM Computer
Graphics. (SIGGRAPH). 20(3), 307–314. (A Digital “Dissolve” Effect)

Turnbull, M. A. (1957). Theory of Equations, fifth edition (reprint of original 1927 text).

639

REFERENCES

GRAPHIC GEMS I Edited by DAVID KIRK 639

Oliver and Boyd, Edinburgh. (Using Sturm Sequences to Bracket Real Roots of Polyno-
mial Equations)

Van Wyck, C. J. (1984). “Clipping to the Boundary of a Circular-Arc Polygon,” Computer
Vision, Graphics, and Image Processing. 25, 383–392. (Two-Dimensional Clipping: A
Vector-Based Approach)

Vercken, C., Potier, C., and Vignes, S. (1987). “Spline Curve Fitting for an Interactive
Design Environment,” in Theoretical Foundations of Computer Graphics and CAD.
NATO. (An Algorithm for Automatically Fitting Digitized Curves)

Volder, J. E. (1959). “The CORDIC Trigonometric Computing Technique,” IRE Trans.
Electron. Comput. EC-8(3), 330–334. (Trigonometry with CORDIC Iterations)

Walther, J. S. (1971). “A Unified Algorithm for Elementary Functions.” In Proceedings of
AfiPS 1971 Spring Joint Computer Conference, Vol. 38, pp. 379–385. AfiPS Press,
Arlington, Virginia. (Trigonometry with CORDIC Iterations)

Watkins, M. A. (1987). “Degree Reduction of Bézier Curves and Surfaces,” Master ’s
thesis, University of Utah. (An Algorithm for Automatically Fitting Digitized Curves)

Weiman, C. F. R. (1989). “Continuous Anti-Aliased Rotation.and Zoom of Raster Images,”
ACM Computer Graphics (SIGGRAPH). 23(3), 291. (A Fast Algorithm for General
Raster Rotation)

Whitted, T., and Weimer, D. M. (1981). “A Software Testbed for the Development of 3D
Raster Graphics Systems,” 1(1), 43–58. (Generic Convex Polygon Scan Conversion and
Clipping)

Wilkinson, J. H. (1988). The Algebraic Eigenvalue Problem (reprint of original 1965
edition). Claredon Press, Oxford. (Using Sturm Sequences to Bracket Real Roots of
Polynomial Equations)

Williams, L. (1978). “Casting Curved Shadows on Curved Surfaces,” Computer Graphics
(SIGGRAPH). 12, 270–274. (Matrix Inversion)

Williams, L. (1983). “Pyramidal Parametrics,” Computer Graphics (SIGGRAPH). 17(3).
(Interpretation of Texture Map Indices)

Wolberg, G., and Boult, T. E. (1989). “Separable Image Warping with Spatial Lookup
Tables,” ACM Computer Graphics (SIGGRAPH). 23(3), 369–377. (A Fast Algorithm
for General Raster Rotation)

Wu, S. C., Abel, J. F., and Greenburg, D. P. (1977). “An Interactive Computer Graphics
Approach to Surface Representation,” Communications of the ACM. 20(10), 703–712.
(An Algorithm for Automatically Fitting Digitized Curves)

Wu, X., and Rokne, J. G. (1987). “Double-Step Incremental Generation of Lines and
Circles,” Computer Vision, Graphics and Image Processing. 37, 331–334. (Symmet-
ric Double Step Line Algorithm)

Wyvill, G., McPheeters, C., and Wyvill, B. (1986). “Data Structure for Soft Objects,” The
Visual Computer. 2, 227-234. (Defining Surfaces from Sampled Data)

Yamaguchi, F. (1978). “A New Curve Fitting Method Using a CRT Computer Display,”

640

REFERENCES

GRAPHIC GEMS I Edited by DAVID KIRK 640

Graphics and Image Processing, 425–437. (An Algorithm for Automatically Fitting
Digitized Curves)

Yang, M., Kim, C., Cheng, K., Yang, C., and Liu, S. (1986). “Automatic Curve Fitting with
Quadratic B-Spline Functions and Its Applications of Computer-Aided Animation,”
Computer Vision, Graphics, and Image Processing. 33, 346–363. (An Algorithm for
Automatically Fitting Digitized Curves)

Yellot, J. I., Jr. (1983). “Spectral Consequences of Photoreceptor Sampling in the Rhesus
Retina,” Science. No. 221, 382–385. (Efficient Generation of Sampling Jitter Using
Look-up Tables)

Zwikker, C. (1963). Advanced Geometry of Plane Curves. Dover Publications, New
York. (Useful 2D Geometry)

641641

 INDEX

Gaussian filter, 150–153
Gaussian 1/2 filter frequency response, 163
Gaussian 1/ 2 filter frequency response,

164
half-phase filter frequency response,

162–163
interpolation and decimation, 147–148
interpolation by factor of two with Lanczos2

sinc function, 158–159
interpolation with Gaussian 1/2 filter,

152–154, 156
interpolation with Gaussian 1/ 2 filter,

154–156
Lanczos2 sinc functions frequency response,

164–165
Lanczos-windowed sinc functions, 156–158
sinc function, 156–157
tent filter, 149–150
zero-phase filter frequency response, 162

cone plus cosine, 145–146
Gaussian filter, 144–145
minimizing bumpy sampling, 144–146

Area, triangles, 20
Area of intersection

circle and half-plane, 38–39
circle and thick line, 40–42
two circles, 43–46

Axes, transforming, 456–459
Axis-aligned bounding boxes, transformation,

548–550
Axis-amount representation, conversion with

matrix, 466–467
Azimuthal equal-area projection, 317

A-buffer, 76
Active edge list, 92–93
Addresses, precalculating, 285–286
Adjoint matrices, 538
Affine modeling transformations, normal vectors,

539–542
Albers equal–area conic map projection, 321–325
Alpha blending, 210–211
Alpha buffer, 218
Alpha compositing operators, 211
Altitudes, triangles, intersection, 22
Angles

encoding, bit patterns, 442
sum and difference relations, 16

Animation, recording, 265–269
double-framed order, 265–266

Anti-aliased lines, rendering, 105–106
Anti-aliasing, 37, see also Area of intersection

advanced, algorithm, 194–195
pixel, 73
polygon scan conversion, 76–83

Anti-aliasing filters, 143
common resampling tasks, 147–165

box filter, 149
choices of filters, 148
comparative frequency responses, 161
comparison of filters, 151–152
continuous, sampled, and discrete signals,

147
decimation with Lanczos2 sinc function,

160–161

A

IIIIINDEXNDEXNDEXNDEXNDEX

642642

 INDEX

Bumpy sampling, anti-aliasing filters that
minimize, 144–146

C

Canonical fill algorithm, 279
Cardano’s Formula, 405
Cartesian color cubes, 254–255
Cartesian products

color pixels, 254–256
extensions, 256

Cartography, see Digital cartography
Cartesian triple, factoring into, 255–256
Cell occupancy, for different grid sizes, 262
Center of gravity, triangles, 20–21
Central projection, 315
Change matrix, interation, 468–469
Channel, frame buffer, 217–218
Chord-length parameterization, 617, 621
Circle

area of intersection
with half-plane, 38–39
with thick line, 40–42
two circles, 43–46

Bresenham’s algorithm, 327–329
drawing, shear algorithm, 192–193
integral radius, on integral lattices, 57–60
intersection

with line, 2D, 5–6
with rectangle, fast checking, 51–53

tangent line
perpendicular to line, 8–9
to two circles, 2D, 7–8
2D, 5

2D, 4-5
Circumcenter, triangles, 20–23
Circumradius, triangles, 20–23
Class numbers, 115–116
Clipping

generic convex polygons, 84–86
2D, see Two-dimensional clipping

Closed loops, cubic spline interpolation formulas,
580–582

Color cube, 233–234, 254–255
Color map, 216–218

manipulation, l-to-l pixel transforms,
270–274

Color pixels, Cartesian products, 254–256
Color quantization, see Octree quantization
Color solid, four-bit, 235–236

Azimuthal equidistant projection, 316–317
Azimuthal projections, 314–317

B

Backface culling, 346–347, 544–545
Banding, 263
Bernstein basis functions, integration, 604–606
Bernstein-Bézier, equation conversion to,

409–411
Bernstein polynomials, 613–614
Beveling, 107–113
Bézier curve-based root-finder, 408–415

bounding box, 413–414
conversion to Bernstein-Bézier form, 409–411
finding roots, 411–415
root-finding algorithm, 412–413

Bézier curves, 613–616, see also Cubic Bézier
curves

de CastelJau Evaluation Algorithm, 587–589
differentiation, 589–590
fitting to digitized curve, 616–624
monomial evaluation algorithm, 590–591
notation, 587
properties, 587–593
in terms of Bernstein polynomials, 613–614

Bézier form, conversion, 609–611
from monomial form, 591–592
to monomial form, 592–593

Binary order, animation recording, 266–269
Bisection, Sturm sequences, 420–421
BitBlt, generalized, algorithm, 193–194
Bits

conversion with digits, 435
interleaving, quad–and octrees, 443–447
patterns, encoding angles, 442

Bounding box
axis-aligned, transformation, 548–550
fifth-degree polynomial, 413–414

Bounding sphere, 301–303
Box, 326

intersection with ray, fast, 395–396
Box filter, 149, 180
Box-sphere intersection testing, 335–339
Branching, 558–561
Bresenham’s algorithm, 101

spheres-to-voxels conversion, 327–329
Bresenham’s Line Algorithm, 105–106

643643

 INDEX

Color table, filling, 290–291
Complexity analysis, RGB triples, 244
Computational cost, jitter generation, 67–68
Concave polygon scan conversion, 87–91
Cone-ellipsoid intersection, 321–322
Cone plus cosine, 145–146
Constants, full precision, 434
Continuity conditions, cubic Bézier curves,

615–616
Continuous image, 246
Continuous signals, 147
Contour data, defining surfaces from, 558–561
Contours

defining, 554
swept, 562–564

Contrast enhancement transform, 197–198,
201–202, 270–271, 274

Convex decompositions, polygons, 97
Coordinate frames, 522–532

matrix representation, 524
problem solving examples, 527–532
vectors and points, 522–523, 526

Coordinate Rotation Digital Computer, see
CORDIC

Coordinates, homogeneous and
nonhomogeneous, 523

CORDIC, vector rotation, 494–497
Corner value, 553–554
Cosine

angles between lines, 2D, 11
in exponentials, 15

Cramer ’s Rule, 538
Cross product, matrix, 473
Cross-section, positioning and orienting, 570
Cubic Bézier curves, 579, 614

continuity conditions, 615–616
forward differencing, 600–601, 603

Cubic curves, planar, 575–578
Cubic roots, 404–407
Cubic spline interpolation formulas, 579–584

closed loops, 580–582
open curves, 582–583

Cuboctahedron, 237
Culling, backface, 346–347, 544–545
Curvature vector, 568
Curves

fitting, see Digitized curve fitting
open, cubic spline interpolation formulas,

582–583
Cylinder

with changing cross-sections, 570–571

generalized, reference frames, 567
Cylindrical equal area, 318–319
Cylindrical equirectangluar map, 310
Cylindrical maps, 310–311

D

Databases, direct charting, 309–310
Data value, 30
DDA algorithm, 595
de Casteljau Evaluation Algorithm, 587–589,

604–605
Decimation, 148

Gaussian 1/2 filter, frequency response, 163
Gaussian 1/ 2 filter, frequency response, 164
Lanczos2 sinc functions, frequency response,

164–165
by factor of four, 161
by factor of three, 160
by factor of two, 158–159

by two, frequency response
half-phase filters, 162–163
Lanczos2 sinc functions, 164–165
zero-phase filters, 162

Del operator, 594–595, 598
DeMoivre’s Theorem, 15
Depth buffer, 218
Depth cuing, 365
Differentiation algorithm, Bézier curves,

589–590
Digital cartography, 307–320

azimuthal projections, 314–317
cylindrical equal area, 318–319
cylindrical equirectangluar map, 310
cylindrical maps, 310–311
direct charting of databases, 309–310
first principles, 308–309
general projections, 318
Mercator projection, 311–313
orthographic projection, 309, 316
practical application, 319–320
projection properties, 307–308
Sanson-Flamsteed sinusoidal projection,

312–314
spherical coordinate transformation, 317–318

Digital dissolve effect, 221–232
case study, 229–231
faster mapping, 227–228
first attempt, 223–224
further research, 231–232

644644

 INDEX

Embedding plane, intersection with ray, 390–391
Enlargement, monochrome images, smoothing,

166–170
Euclidian distance, 3D, fast approximation,

432–433

F

Factorial polynomials, 595–596
Fast fill algorithm, precalculating addresses,

285–286
Fast lines, rendering on raster grid, 114–120

Hobby’s polygonal pens, 114–117
software implementation, 117–120

Fat lines, rendering on raster grid, 114–120
Fermat primes, 18
Fill algorithms, 278–284

canonical, 279
optimal, 281–282
processing shadows, 280–281

Filter windows, 194–195
First fundamental matrix, 543–544
Fixed-point trigonometry, CORDIC, 494–497
Fog, simulating, 364–365
Font rendering, three-pass algorithm, 193
Forms

differences with vectors, 533–535
triangular interpolants, 535–538

Forward differencing, 594–603
Bézier cubics implementation, 603
DDA algorithm, 595
Del operator, 594–595, 598
factorial polynomials, 595–596
locally circular assumption, 599–600
Newton’s formula, 596–598
step size determination, 599–601
subdividing, 601–603

Frame buffer, 215–216
associated color map, 217
fill algorithms, 278–284
plane, 217–218

Frenet frame, 567–568
Full-precision constants, 434

G

Gamma correction function, 199, 203–206, 270,
273

Digital dissolve effect (Cont’d)
optimizations, 230–231
randomly traversing 2D array, 221–222
scrambling integers, 222–223

Digital line drawing, 99–100
Digitized curve fitting, automatic, algorithm,

612–626
chord-length parameterization, 617, 621
implementation notes, 624–625
Newton-Raphson iteration, 621–623
scalar curves, 616

Digits, conversion with bits, 435
Direction ratios, 456–457
Discrete image, 246
Discrete signals, 147
Discriminator, 101
Dissolve algorithm, 225–227
Distance, approximate, 423
Distance measures

approximate vector length, 429
equations of unit distance, 428
fast approximation to 3D Euclidian distance,

432–433
fast approximation to hypotenuse, 427
full-precision constants, 434
high speed, low precision square root,

424–426
Distance variable, 105
Dithering, ordered, 176–178
Dithering matrix, 177
Dot products, for shading, 348–360

direct algorithm, 351–352, 359
directing vectors, 348
new algorithm, 351-352, 359–360
reflection of light, 349–352
refraction, 353–354
Snell’s law, 353–354

Double-angle relations, 17
Double-framed order, 265–266
Double speed Bresenham’s, 101–102
Dual solids, 236–237
Dymaxion gnomonic projection, 316

E

Ellipsoid
intersection with cone, 321–322
box-sphere intersection testing, generalizing,

338-339

645645

 INDEX

Gaussian filter, 144–145, 150–153
Gaussian 1/2 filter

frequency response, 163
interpolation, 152–154, 156

Gaussian 1/ 2 filter
frequency response, 164
interpolation, 154–156

General direction ratios, 457
Geodesics, 315
Geometric continuity, 615–616
Gnomonic projection, 315

n-gon, 18
Gouraud shading, 84
Graph labels, nice numbers, 61–63
Gray interior points, 244

H

Half-angle relations, 16
Half-phase filters, frequency response,

decimation by two, 162
Half-plane, area of intersection, with circle,

38–39
Half-space testing, 240–241
Hardware, scrambling integers in, 222–223
Hashing function, 3D grid, 343–345
Haze, simulating, 364–365
Hexagonal construction, 238
Hobby’s polygonal pens, 114–117
Hollow objects, box-sphere intersection testing,

337–338
Homogeneous coordinates, 523
HSL Saturation, 449
HSL-to-RGB transform, fast, 448–449
HSV Saturation, 448
Hue Saturation Value, 239–240
Hypotenuse

fast approximation, 427–431
derivation, 427–429
error analysis, 429–431

triangles, 57–59

I

Identity, matrix, 473
In center, triangles, 20–21
In radius, triangles, 20–21

Integers, scrambling, 222–223
Interpolation, 148

by factor of two, Lanczos2 sinc function,
158–159

formulas, cubic spline, 579–584
Gaussian filter, 150–153
Gaussian 1/2 filter, 152–154, 156
Gaussian 1/ 2 filter, 154–156
tent filter, 149–150

Interpolation coefficients
closed loops, 581
open curves, 583

Isotropic transformations, normal vector, 542
Iteration, rotation tools, 468

J

Jitter, generation, 64–74
computational cost, 67–68
error analysis, 72
sampling properties evaluation, 69–72

Jitter function
use in ray tracing, 72–74
using look-up tables, 65–67

L

Lanczos2 sinc function
decimation, 160–161
frequency response, 164–165
interpolation by factor of two, 158–159

Lanczos-windowed sinc functions, 156–158
Lattice, integral, integral radius circle on, 57–60
Law of Cosines, 13
Law of Sines, 13
Law of Tangents, 13
Level set, 552
Line

area of intersection, thick, with circle, 40–42
distance to point, 10
intersection

calculation, polygons, 128
with circle, 5–6
point of, 2D, 11
3D, 304

tangent
to circle, 5

646646

 INDEX

Line (Cont ‘d)
to circle and perpendicular to line, 8–9
to two circles, 7–8

vertical distance to point, 47–48
Linear congruential generators, 67
Linear feedback shift register, 222
Line drawing, 98

anti-aliasing lines, 105–106
digital, 99–100
fat lines on raster grid, 114–120
filling in bevel joints, 107–113
symmetric double step line algorithm,

101–104
two-dimensional clipping, 121–128

Line-edge intersections, uniform grid, 29–36
Line structures, 2D, 3–4
Locally circular assumption, 599–600
Look-up table, nonlinear pixel mappings, 253

M

Manhattan distance, 432
Mapping, see Digital Cartography

nonlinear pixels, 251–253
original colors onto representatives, 291
3D, 306

Maps, cylindrical, 310–311
Matrix identities, 453–454
Matrix inversion, 470–471
Matrix multiplication, fast, 460–461
Matrix orthogonalization, 464
Median cut algorithm, 288
Median filtering, 171–172
Median finding, 3 × 3 grid, 171–175

element exchange, 172–175
minmax, 173–174

Mercator projection, 311–313
Meridians, 310–311
Metric properties, transformations, 543–544
Metric tensor, 543–544
Mirror image, transformation matrices, 474
Modeling, affine transformations, 539–542
Modified cylindrical equidistant projection, 311
Mollweide’s Formula, 13
Monochrome enlargements, smoothing, 166–170

pattern within rules, 169
rules, 166–167

Monomial evaluation algorithm, Bézier curves,
590–591

Monomial form, conversion
from Bézier form, 592–593
to Bézier form, 591–592

Multidimensional sum tables, 376–381
d-dimensional, 380–381
three-dimensional, 378–380
two-dimensional, 376–377

Multiple-angle relations, 17

N

Nearest-point-on-curve problem, 607–611
Bézier form conversion, 609–611
problem statement, 608–609

Nesting, 467–468
Newton-Raphson iteration, digitized curve

fitting, 621–623
Newton’s Formula, 14, 596–598
Nice numbers, for graph labels, 61–63
Nolid, 238
Nonhomogeneous coordinates, 523
Nonlinear pixel mappings, 251–253
Normal buffer, 257–258
Normal coding, 257–264

encoding methods, 258–263
improving, 263–264
index number, 260
principles, 258–259

normal buffer, 257–258
Normal map, 260
Normal vector, 539–540
Normals, see Surface normals
Null transform, 196–197

O

Octree, 288
bit interleaving, 443–447

Octree quantization, 287–293
algorithm, 289
color table filling, 290–291
evaluation of representatives, 289–290
improvements, 291–292
mapping onto representatives, 291
memory and computational expense, 292–293
principle, 288

1-to-1 pixel transforms, 196–209
color-map manipulation. 270–274

647647

 INDEX

contrast enhancement transform, 197–198,
201–202, 270–271, 274

gamma correction function, 199, 203–206,
270, 273

null transform, 196–197
photo-inversion transform, 196, 198, 270–271
quantization transform, 196–197, 199, 270,

272
sawtooth transform function, 203, 207–209

Open curves, cubic spline interpolation formulas,
582–583

Ordered dithering, 176–178
Orthogonalization, matrix, 464
Orthogonal loops, 105
Orthogonal projection, transformation matrices,

475
Orthogonal transformations, normal vectors,

542–543
Orthographic projection, 309, 316
Orthonormal base

movement from one to another, 508
3D viewing and rotation using, 516–521

general rotations, 520–521
new approach, 517–520
UVN coordinate system, 518–519
viewing transformation, pseudo-code, 521

P

Parallelogram approximation, 183–184
Parallel projection, transformation matrices, 475
Parametric continuity, 616
Peano curve, 28
Perimeter, triangles, 20
Periodic plane tesselation, 129–130
Perpendicular bisectors, intersection, triangles,

22–23
Perspective projection, transformation matrices,

475
Photo-inversion transform, 196, 198, 270–271
Pixel coordinates, 246–248

continuous, 246
converting, 247–248
discrete, 246
along unit axis, 250

Pixel integers, 249–256
Cartesian product extensions, 256
color pixels and Cartesian products, 254–256
factoring into Cartesian triple, 255–256

nonlinear pixel mappings, 251–253
proper interpretation, 249–251

Pixel mappings, nonlinear, 251–253
Planar cubic curves, 575–578
Plane

crystallographic groups, 129–133
embedding, intersection with ray, 390–391
frame buffer, 217–218
intersection of three, 305
periodic tilings on raster grid, 129–139

wallpaper groups, 129–133
Point

distance to line, 10
vertical, 47–48

generating random, triangles, 24–28
mutual visibility, 30–31
3D, 522–523, 526

Point-on-line test, 49–50
Polygonal pens, 114–117
Polygons

intersection
calculation, 128
fast scan conversion, 96
with ray, 390–394

random point, 24–28
texture-space images, 366–367
from twisting reference frames, 567–568

Polygon scan conversion, 76–83
algorithm, 77–82
background, 76–77
concave, 87–91
fast, 92–97

active edge lists, 92–93
convex decompositions, 97
intersecting polygons, 96
traffic between registers and memory, 92
x-transition table, 93–95
y extrema and memory requirements, 95–96

generic, and clipping, 84–86
implementation notes, 82–83
reducing code redundancy, 84
vertices during scan conversion, 78–79

Polygon stretching, 127–128
Polyhedra, 3D, 565–566
Polynomial equations, bracketing real roots, see

Sturm sequences
Popularity algorithm, 288
Post-concatenation, transformation matrices,

476–481
Power relations, 15
Product relations, 16

648648

 INDEX

Projection
Albers equal-area conic map, 321–325
azimuthal, 314–317
general, 318
Mercator, 311–313
properties, digital cartography, 307–308
Sanson-Flamsteed sinusoidal, 312–314
transformation matrices, 475

Proximity testing, 237–239
Pythagorean relation, 57
Pythagorean theorem, 599
Pythagorean triangles, prime, 58

Q

Quadtrees, bit interleaving, 443–447
Quantization techniques, comparison, 293
Quantization transform, 196–197, 199, 270, 272
Quartic roots, 406–407
Quaternions, 498–515

algorithmetic implementation, 509–515
definition, 499–500
movements from one orthonormal base to

another, 508
properties, 501–502
rotations in 3D space, 503–506
set of unit, properties, 502–503

R

Random, see also Jitter
integers, generation, 438–439
points in triangles, 24–28

Raster grid
periodic tilings of plane, see Plane, periodic

tilings on raster grid
rendering fat lines, 114–120

Raster rotation, fast algorithm, 179–195
advanced anti-aliasing, 194–195
arbitrary rotation, 186–187
circle drawing, 192–193
comparisons, 190–191
font rendering, 193
further work, 195
generalized BitBlt, 193–194
history, 191–192
implementation, 187–190
parallelogram approximation, 183–184

rational rotation, 184–186
rotation through shearing, 181–183
statement of problem, 180

Raster shearing, 179, 183–184
Rational rotation, 184–186
Ray, intersection with sphere, 388–389
Ray-box intersection, fast, 395–396
Ray-object intersection, 387
Ray-polygon intersection, 390–394
Ray rejection test, 385–386
Ray tracing

algorithm, 64
intersection of ray and sphere, 388–389
jitter function use, 72–74
ray-object intersection, 387
ray-polygon intersection, 390–394
ray rejection test, 385–386
transparent objects, shadow attenuation,

397–399
Ray-triangle intersection, 393
Real roots, bracketing, see Sturm sequences
Rectangle, intersection with circle, fast checking,

51–53
Recursion property, Bernstein polynomials, 614
Reference frames

calculation along space curve, 567–571
rotation minimizing frames, 569
twisting, polygons-from, 567–568

Reference geoid, 309
Refraction, Snell’s law, 353–354
Regions, 560
Resampling, see Anti-aliasing
RGB, transform from HSL, 448–449
RGB triples, mapping onto four bits, 233–245

algorithm design, 241–242
Cartesian quantization versus polyhedra,

244–245
complexity analysis, 244
cuboctahedron, 237
dual solids, 236–237
eight-point color cube, 233–234
four-bit color solid, 235–236
gray interior points, 244
half-space testing, 240–241
hexagonal construction, 238
nolid, 238
proximity testing, 237–239
related methods, 239–240
rhombic dodecahedron, 236
three versus four bits, 243–244

649649

 INDEX

Rhombic dodecahedron, 236
Root finding, 403

Bézier curve-based, see Bézier curve-based
root-finder

cubic, 404–407
quartic, 406–407

Root-finding algorithm, 412–413
Rotation

bit patterns for encoding angles, 442
fast 2D-3D, 440–441
about general line, orthonormal bases,

520–521
geometrical representation, 503–504
raster, see Raster rotation
3D space, see also Orthonormal base

quaternions, 503–506
transformation matrices, 474

Rotation matrix, 180
Rotation matrix methods, 455

fast matrix multiplication, 460–461
matrix inversion, 470–471
matrix orthogonalization, 464
rotation tools, 465–469
transforming axes, 456–459
virtual trackball, 462–463

Rotation minimizing frames, 569
Rotation tools, 465–469

converting between matrix and axis-amount
representations, 466–467

iteration, 468
nesting, 467–468
transformation inverses, 468

S

Sampled data, defining surfaces from, 552–557
Sampled signals, 147
Sampling Theorem, 147
Sanson-Flamsteed sinusoidal projection,

312–314
Sawtooth transform function, 203, 207–209
Scaling, transformation matrices, 474–475
Scan conversion, 75

algorithm, polygon, 77–82
arbitrary polygons, 92–97
concave polygon, 87–91
generic polygon and clipping, 84–86
polygon, see Polygon scan conversion

Scanline depth gradient, Z-buffered triangle,
361–363

Seed fill algorithm, 275–277
Shading, fast dot products, 348–360
Shadows, 278

attenuation for ray tracing transparent objects,
397–399

filling, 280–281
Shape construction, 551
Shared chord, 44
Shearing

algorithm, 188
raster rotation through, 181–183
scan-line, 187–190

Shear matrices, 181
Shuffle generator, 66
Sinc function, 156–157

Lanczos2
decimation by, 160–161
interpolation by factor of two, 158–159

Lanczos-windowed, 156–158
Sine, in exponentials, 15
Smoothing algorithm, monochrome

enlargements, 166–170
Snell’s law, refraction, 353–354
Software, scrambling integers in, 223
Solid objects, box-sphere intersection testing,

335–337
Space curve, reference frame calculation,

567–571
Span, 278
Special effects

contrast enhancement, 197–198, 201–202,
270–271, 274

dissolve, see Digital dissolve effect
photo-inversion, 196, 198, 270–271

Sphere, 326
box-sphere intersection testing, 335–339
intersection with ray, 388–389

Spheres-to-voxels conversion, 327–334
Spherical coordinate transformation, 317–318
Splines, 585–586
Square root, high speed, low-precision, 424–426
Stereographic map, 316
Stirling’s numbers, 597
Storage-free swapping, 436–437
Sturm sequences, 416–422

characteristics, 420
counting sign changes, 419
driving algorithm, 418–419

650650

 INDEX

Sturm sequences (Cont’d)
example, 417–418
method of bisection, 420–421
pseudo-division of polynomials, 419
Sturm’s Theorem, 416–417

Sturm’s Theorem, 416–417
Subpixel coordinates, 77–78
Subtabulation, 601
Sum tables, multidimensional, see

Multidimensional sum tables
Surface normals, 3D models, 562–566
Surface-normal transformations, 539–547

affine modeling transformations, 539–542
backface culling, 544–545
composition, 543
isotropic transformations, 542
orthogonal transformations, 542–543
shading, 545–547
transformations of metric properties, 543–5

Surfaces, defining
from contour data, 558–561
from sampled data, 552–557

assumptions, 552–553
methods, 553–557

Swapping, storage-free, 436–437
Swept contours, 562–564
Symmetric double step line algorithm, 101–104

double speed Bresenham’s, 101–102
line drawing, 101
using symmetry, 102–104

T

Temporal refinement
progressive, recording animation in binary

order, 265–269
Tensor

modern view, 533–535
product, matrix, 473

Tent filter, 149–150
Texture cell, 366–367

types, 371–372
Textured cylinder, 366–367
Texture map indices, interpretation, 366–376

algorithm, 373–375
decision tree, 369–371
replicating cells to create larger texture, 369

rigid transformation of square cell, 374–375
texture space as two-torus, 367–368
types of cells, 371–372

Texture-space images, polygons, 366–367
Three-dimensional geometry, 297–300, see also

Digital cartography
backface culling, 346–347
boxes, 326
intersection of three planes, 305
intersection of two lines, 304
mapping, 306
spheres, 326
spheres-to-voxels conversion, 327–334
3D grid hashing function, 343–345

Three-dimensional grid, defining surfaces from
sampled data, 552–557

Three-dimensional models, surface normals,
562–566

Tick marks, 61–63
Tilings, periodic, plane on raster grid, 129–139
Trackball, virtual, 462–463
Transformation

axis-aligned bounding boxes, 548–550
3D, coding, see Quaternions

Transformation identities, 485–493
anisotropic scaling following rotation, 490
commuting

rotation and anisotropic scaling, 490
rotation and isotropic scaling, 488
skewing and isotropic scaling, 489

exchanging order
of skews, 491
of translation and rotation, rules, 487

matrix representations of primitive
transformations, 492–493

reversing order
skewing and anisotropic scaling, 489
translation and scaling, 487
translation and skewing, 488

rotation expressed as
combination of skews and scales, 489
three skews, 489

skew expressed as two rotations and a scale,
491

Transformation inverses, 468
Transformation matrix, 472–475

DDA coefficient conversion between step sizes,
602

mirror image, 473

651651

 INDEX

notation, 472, 485–486
observations, 472
post-concatenation, 476–481

computational cost comparison, 479–481
direct, 478–479
implementation, 476–477
primitive transformations, 492–493
projection, 474
rotation, 473
scaling, 473–474
translation, 472

Transforming axes, 456–459
Transition table, 93–95
Translation, transformation matrices, 473
Transparent objects, ray tracing, shadow

attenuation, 397–399
Transpose of the inverse, 541
Triangles, 20–23

area, 20
in center, 20–21
center of gravity, 20–21
circumcenter, 20–23
circumradius, 20–23
generating random points, 24–28
hypotenuse, 57–59
intersection

of altitudes, 22
of perpendicular bisectors, 22–23
with ray, 393

perimeter, 20
prime pythagorean, 58
in radius, 20–21

Triangular interpolants, 535–538
Trigonometry

angle sum and difference relations, 16
DeMoivre’s Theorem, 15
double-angle relations, 17
fixed-point, CORDIC, 494–497
functions, 18–19
sums and differences, 14
half-angle relations, 16
inverse functions, 14
Law of Cosines, 13
Law of Sines, 13
Law of Tangents, 13
Mollweide’s Formula, 13
multiple-angle relations, 17
Newton’s Formula, 14
power relations, 15

product relations, 16
sines and cosines in exponentials, 15

Two-dimensional array, randomly traversing,
digital dissolve effect, 221–222

Two-dimensional clipping, 121–128
algorithm, 124–126
approximation error, 186
basic considerations, 123–124
implementation, 126–127
integers and vectors, 121–122

Two-dimensional geometry, 3–11, see also
Triangles

circles, 4–5
cosine of angle between lines, 11
distance from point to line, 10
intersection of circle and line, 5–6
lines tangent

to circle and perpendicular to line, 8–9
to two circles, 7–8

line structures, 3–4
point of intersection between lines, 11
point-on-line test, 49–50
triangles, 20–23

Two-dimensional rendering, circles of integral
radius on integer lattices, 57–60

U

Uniform grid, line-edge intersections, 29–36
Uniform quantization, 288
Unimodular transforms, 135
Unit quaternions, set, properties, 502–503
UVN coordinate system, 518–519

V

Vector rotation, CORDIC, 494–497
Vectors

differences with forms, 533–535
normal, see Normal vectors
3D, 522–523, 526
triangular interpolants, 535–538

Vertex normal, computing, 563–565
Vertical distance, point to line. 47–48

652652

 INDEX

Viewing, 3D, see Orthonormal base
Viewing transformation, pseudo-code, 521
Virtual trackball, 462–463
Visibility algorithm, 30–31
Voxel subdivision, 3D grid hashing function, 343

W

Wallpaper groups, tiling in raster grids, 133–139
Wide line bevel joints, algorithm for filling in,

107–113
Winding number transitions, 94–95
Write-only write mask, reading, 219–220

X

X-transition table, 93–95

Y

Y extrema, polygon fast scan conversion, 95–96

Z
Z-buffered triangle, scanline depth gradient,

361–363
Zero-phase filters, frequency response,

decimation by two, 162

	Graphics Gems
	Cover
	Copyright
	About the Cover
	Contents
	Preface
	Introduction
	Mathmatical Notations
	Pseudo-Code
	Contributors

	I 2D Geometry
	1-Useful 2D Geometry
	Trig Summary
	2-Useful Trigonometry
	3-Trigonometric Functions at Select Points
	4-Triangles
	5-Generating Random Points in Triangles
	6-Fast Line-Edge Intersections on a Uniform Grid
	Anti-Aliasing Summary
	7-Area of Intersection
	8-Area of Intersection: Circle and a Thick Line
	9-Area of Intersection: Two Circles
	10-Vertical Distance from a Point to a Line
	11-A Fast 2D Point-on-Line Test
	12-Fast Circle-Rectangle Intersection Checking

	II 2D Rendering
	1-Circles of Integral Radius on Integer Lattices
	2-Nice Numbers for Graph Labels
	3-Efficient Generation of Sampling Jitter Using Look-Up Tables
	Scan Conversion Summary
	4-Fast Anti-Aliasing Polygon Scan Conversion
	5-Generic Convex Polygon Scan Conversion and Clipping
	6-Concave Polygon Scan Conversion
	7-Fast Scan Conversion of Arbitrary Polygons
	Line-Drawing Summary
	8-Digital Line Drawing
	9-Symmetric Double Step Line Algorithm
	10-Rendering Anti-Aliased Lines
	11-An Algorithm for Filling in 2D Wide Line Bevel Joints
	12-Rendering Fat Lines on a Raster Grid
	13-Two-Dimensional Clipping: A Vector-Based Approach
	14-Periodic Tilings of the Plane on a Raster Grid

	III Image Processing
	Anti-Aliasing Filters Summary
	1-Convenient Anti-Aliasing Filters that Minimize “Bumpy” Sampling
	2-Filters for Common Resampling Tasks
	3-Smoothing Enlarged Monochrome Images
	4-Median Finding on a 3x3 Grid
	5-Ordered Dithering
	6-A Fast Algorithm for General Raster Rotation
	7-Useful 1-to-1 Pixel Transforms
	8-Alpha Blending

	IV Frame Buffer Techniques
	1-Frame Buffers and Color Maps
	2-Reading a Write-Only Write Mask
	3-A Digital “Dissolve” Effect
	4-Mapping RGB Triples Onto Four Bits
	5-What are the Coordinates of a Pixel?
	6-Proper Treatment of Pixels as Integers
	7-Normal Coding
	8-Recording Anim. in Binary Order for Progressive Temporal Refinement
	9-1-To-1 Pixel Transforms Optimized Through Color-Map Manipulation
	10-A Seed Fill Algorithm
	11-Filling A Region in a Frame Buffer
	12-Precalculating Addr. for Fast Fills, Circles, and Lines
	13-Color Quantization: Octree Quantization

	V 3D Geometry
	1-Useful 3D Geometry
	2-An Efficient Bounding Sphere
	3-Intersection of Two Lines in Three-Space
	4-Intersection of Three Planes
	V Mapping Summary
	5-Digital Cartography for Computer Graphics
	6-Albers Equal-Area Conic Map Projection
	Boxes and Spheres Summary
	7-Spheres-to-Voxels Conversion
	8-A Simple Method for Box-Sphere Intersection Testing

	VI 3D Rendering
	1-3D Grid Hashing Function
	2-Backface Culling
	3-Fast Dot Products for Shading
	4-Scanline Depth Gradient of a Z-Buffered Triangle
	5-Simulating Fog and Haze
	6-Interpretation of Texture Map Indices
	7-Multidimensional Sum Tables

	VII Ray Tracing
	1-A Simple Ray Rejection Test
	VII Ray-Object Intersection Summary
	2-Intersection of a Ray with a Sphere
	3-An Efficicent Ray-Polygon Intersection
	4-Fast Ray-Polygon Intersection
	5-Fast Ray-Box Intersection
	6-Shadow Attenuation for Ray Tracing Transparent Objects

	VIII Numerical and Programming Techniques
	Root Finding Summary
	1-Cubic and Quartic Roots
	2-A Bézier Curve-based Root-Finder
	3-Using Sturm Sequences to Bracket Real Roots of Polynomial Equations
	Distance Measures Summary
	4-A High Speed, Low Precision Square Root
	5-A Fast Approximation to the Hypontenuse
	6-A Fast Approximation to 3D Euclidian Distance
	7-Full-Precision Constants
	8-Converting Between Bits and Digits
	9-Storage-Free Swapping
	10-Generating Random Integers
	11-Fast 2D-3D Rotation
	12-Bit Patterns for Encoding Angles
	13-Bit Interleaving for Quad- or Octrees
	14-A Fast HSL-to-RGB Transform

	IX Matrix Techniques
	1-Matrix Identities
	Rotation Matrix Methods Summary
	2-Transforming Axes
	3-Fast Matrix Multiplication
	4-A Virtual Trackball
	5-Matrix Orthogonalization
	6-Rotation Tools
	7-Matrix Inversion
	8-Matrices and Transformations
	9-Efficient Post-Concatention of Transformation Matrices

	X Modelling and Transformations
	1-Transformation Identities
	2-Fixed-Point Trigonometry with Cordic Iterations
	3-Using Quaternions for Coding 3D Transformations
	4-3D Viewing and Rotation Using Orthonormal Bases
	5-The Use of Coordinate Frames in Computer Graphics
	6-Forms, Vectors, and Transforms
	7-Properties of Surface-Normal Transformations
	8-Transforming Axis-Aligned Bounding Boxes
	Constructing Shapes Summary
	9-Defining Surfaces from Sampled Data
	10-Defining Surfaces from Contour Data
	11-Computing Surface Normals for 3D Models
	12-Calculation of Reference Frames Along a Space Curve

	XI Curves and Surfaces
	1-Planar Cubic Curves
	2-Explicit Cubic Spline Interpolation Formulas
	3-Fast Spline Drawing
	4-Some Properties of Bézier Curves
	5-Tutorial on Forward Differencing
	6-Integration of Bernstein Basis Functions
	7-Solving the Nearest-Point-on-Curve Problem
	8-An Algorithm for Automatically Fitting Digitized Curves

	References
	Index
	A
	B-C
	C-D
	D-G
	G-L
	L-O
	O-P
	P-R
	R-S
	S-T
	T-V
	W-Z

