Advanced SCSI Programming Interface

ASPI for Win32

Technical Reference
November 6, 2001

November 6, 2001 1 Adaptec

Copyright

Copyright © 1989-2001 Adaptec, Inc. All rightsreserved. No part of this publication may be reproduced, stored
inaretrieval system, or transmitted in any form or by any means, electronic, mechanical, photocopying,
recording or otherwise, without the prior written consent of Adaptec, Inc., 691South Milpitas Blvd., Milpitas, CA
95035.

Trademarks
Adaptec, the Adaptec logo, and AHA are trademarks of Adaptec, Inc. which may be registered in some
jurisdictions.

All other trademarks are owned by their respective owners.

Changes

The material in this document is for information only and is subject to change without notice. While reasonable
efforts have been made inthe preparation of this document to assure its accuracy, Adaptec, Inc. assumes no
liability resulting from errors or omissionsin this document, or from the use of the information contained herein.

Adaptec reserves the right to make changes in the product design without reservation and without notification
toitsusers.

Adaptec Warranties, Technical Support and Services

THE ADAPTEC SOFTWARE ISPROVIDED "AS1S'. THERE ARE NO WARRANTIES AND ADAPTEC
EXPRESSLY DISCLAIMSANY IMPLIED WARRANTY OF MERCHANTABILITY OR FITNESSFOR
PARTICULAR PURPOSE. Adaptec has no obligation to provide any modifications, improvements, updates,
training or support relating to the Adaptec Software. Any such matters, if applicable, shall be subject to mutual
written agreement between the parties.

For licensing information, please contact Adaptec's Diane McGee at (408) 957-4836 or
diane_mcgee@adaptec.com.

November 6, 2001 2 Adaptec

ASPI for Win32 Overview

The architecture of SCSI makesit possible to access awide variety of devices using asingle buslinked to ahost
computer with a SCSI host adapter. Support for peripheral devicesin Windows (98, ME, NT, 2000 and Windows
XP (32-hit)) is normally achieved through device specific driverslayered on top of the operating systems' native
SCSI support.

Because of the tremendous diversity of SCSI devices, no driver can support all SCSI peripherals. Instead,
separate drivers are needed for each major class of installed SCSI device. These drivers share the host adapter
hardware through the operating systems' native SCSI support. The native SCSI layers are different between
Windows 98/ME and Windows NT/2000/X P (32-bit). In addition, development and debugging of VxDs or kernel
mode drivers can be very difficult. The need for a standard SCSI programming interface to simplify SCS|
application devel opment and ease the porting of SCSI applications from one Win32 platform to another brought
ASPI for Win32 into existence.

The Advanced SCSI Programming Interface (ASPI) for Win32 was designed to increase compatibility and
simplify the connection of SCSI peripheral deviceslike tape, CD-ROM, WORM, magneto-optical, scanners, and
other devices. It definesaprotocol for SCSI applications (called ASPI modules) to submit 1/O requeststo a
single operating system driver (called the ASPI manager). Access to the operating system driver is made
through a Dynamic Link Library named WNASPI32.DLL.

Before Beginning

Before you begin your ASPI for Win32 development effort, be sure that you have a solid understanding of the
SCSI specifications. Much of your success in developing an ASPI module is dependent on your understanding
of these specifications. Here are sources for the specifications:

SCSI-1 and CCS: American National Standards Institute
25 West 43" Street, 4" .
NY, NY 10036
Phone: (212) 642-4900
Fax: (212) 398-0023

SCSl-2 and SCSI-3: Globa Engineering Documents
World Headquarters
15 Iverness Way East
Englewood, CO 80112-5776
Phone: (800) 854-7179
Phone: (303) 397-7956
Fax: (314) 726-6418
http://global .ihs.com/

SCS BBS (719) 574-0424
In addition, it is highly recommended that you acquire the technical reference manualsfor any SCSI hardware

which your ASPI module intends to support. These manuals can be obtained from the hardware manufacturer,
and they provide detailed information on which SCSI commands are supported and how they are implemented.

November 6, 2001 3 Adaptec

Programming Conventions

This specification contains function prototypes and structure definitions with the following data types:

Type Size (Bytes) Description

vanb N A Indicates lack of areturn value or lack of function arguments.

BYTE 1 Unsigned 8-bit value.

WRD 2 Unsigned 16-bit value.

DWRD 4 Unsigned 32-hit value.

LPVa D 4 Generic pointer. Used in SRB fields which require either a pointer to a
function or aWin32 handle (for example, SRB_Post Pr oc).

LPBYTE 4 Pointer to an array of BY TEs. Mainly used as a buffer pointer.

LPSRB 4 Generic pointer to one of the SRB_* structures defined below.

Unless otherwise noted, all multibyte fieldsfollow Intel's byte order of low bytefirst and end with the high byte.
For example, if thereisa2-byte offset field, the first byteisthe low byte of the offset while the second byte isthe
high byte of the offset.

All structure fields marked reserved must be set to zero, and structures must be packed! Packed meansthat byte
alignment is used on all structure definitions. Microsoft compilers allow byte packing to be set through the use
of “#pragma pack(1)” while Borland compilers allow packing to be set with “#pragmaoption-al”. Seeyour
compiler documentation for more information. Failureto pack structures and zero reserved fields can cause
system instability, including crashes.

All ASPI for Win32 functions are exported from WNASPI32.DLL using the ‘C’ calling convention (specificaly,
__cdecl asimplemented by Microsoft’s compilers). Withthe‘C’ calling convention the caller pushes the last
function argument on the stack first (the first argument has the lowest memory address), and the caller is
responsible for popping arguments from the stack.

Programming Guidelines

The following are some general guidelines to keep in mind while reading this specification and while writing
ASPI for Win32 applications:

If you are using explicit dynamic linking, remember that the ASPI for Win32 DLL is named WNASPI32.DLL
and not WINASPI.DLL. Makesureto call LoadLibrary appropriately.

ASPI for Win32 isfully re-entrant and permits overlapped, asynchronous I/0. ASPI modules can send
additional ASPI requests while others are pending completion. Be sure to use separate SRBsfor each ASPI
request.

For requests requiring data transfers, the direction bitsin the SRB_FI ags field must be set correctly.
Direction bits are no longer optional for datatransfers. Thismeansthat SRB_DI R_SCSI isnolonger a
valid setting. For requests not requiring data transfers, the direction bits are ignored.

Be sure that buffers are aligned according to the buffer alignment mask returned by the SC_HA | NQUI RY
command.

ASPI SCSI Request Blocks (SRBs) and data buffers do not need to be in page-locked memory. The ASPI
manager takes care of locking buffers and SRBs.

If anerror SS_BUFFER_TOO _BI Gisreturned by the SendASPI 32Conmand routine, you should break
the transfer down into multiple 64KBytetransfersor less. Another alternative isto use the
Get ASPI 32Buf f er/ Fr eeASPI 32Buf f er callsto allocate large transfer buffers.

If you send an ASPI request with posting (callbacks) enabled, the post procedure will always be called.

November 6, 2001 4 Adaptec

The CDB areahas been fixed in length at 16. Therefore, the sense data area no longer shifts location
depending on command length asin ASPI for Win16. If you are developing an application targeted only at
Win32, you no longer need to account for the “floating” sense buffer.

When scanning for devices, the SendASPI 32Conmmand may also return the statusSS_NO_DEVI CE in
the SRB_St at us field. Check for this exception in addition to the host adapter statusHASTAT _SEL_TO.

Error codes are located at the end of this technical reference.

November 6, 2001 5 Adaptec

Calling ASPI Functions

Applications which utilize ASPI for Win32 are known as ASPI modules. ASPI modules interact with ASPI
through WNASPI32.DLL whichisadynamic-link library with five entry points:

Entry Point Description

Get ASPI 32Support I nfo Initializes ASPI and returns basi ¢ configuration information.

SendASPI 32Command Submits SCSI Reguest Blocks (SRBs) for execution by ASPI.

Get ASPI 32Buf f er Allocates buffers which meet Win98/WinNT large transfer requirements.

Fr eeASPI 32Buf f er Releases buffers previously allocated with Get ASPI 32Buf f er .

Transl| at eASPI 32Address Translates ASPI HA/ID/LUN address triples to/from Windows 98
DEVNODEs.

In order to access these five functions, they must be resident in memory. Dynamic linking is the process by
which Windows loads dynamic-link libraries (DLLs) into memory and then resolves application references to
functionswithin those DLLs. There are two waysin which thisload/resolve sequence is handled: explicitly or
implicitly.

Explicit Dynamic Linking

Explicit dynamic linking occurs when applications or other DLLsexplicitly load aDLL using LoadLibrary and
then manually resolve referencesto individual DLL functionsthrough callsto GetProcAddress. Thisisthe
preferred method for loading and calling ASPI for Win32. Explicit dynamic linking allows complete control over
when ASPI isloaded and how load errors are handled. It also isthe only way to detect if the three newer ASPI
functions are available for usein an application.

Thefollowing block of codeisall that isrequired to load ASPI:
H NSTANCE hi nst VWASP| 32;

hi nst WNASPI 32 = LoadLi brary("WNASPI 32");

i f(!hinst WNASPI 32)

{
/1 Handle ASPI load error here. Wsually this involves the display of an
/1 informative message based on the results of a call to GetLastError().

}

Once avalid instance handle for ASPI is obtained, GetProcAddressis used to obtain addresses for each of the
ASPI for Win32 entry points:

November 6, 2001 6 Adaptec

DNRD (*pf nGet ASPI 32Supportinfo) (void);

DNRD (*pf nSendASPl 32Command) (LPSRB) ;

BOOL (*pfnGet ASPl 32Buf f er) (PASPI 32BUFF);

BOCL (*pfnFreeASPl 32Buf fer) (PASPI 32BUFF) ;

BOCL (*pfnTransl at eASPI 32Addr ess) (PDACRD, PDWORD) ;

pf nGet ASPI 32Support | nf o
);

pf nSendASPI 32Command

pf nGet ASPI 32Buf f er

pf nFr eeASPI 32Buf f er

pf nTr ansl at eASPI 32Addr ess

)

Get ProcAddress(hi nst WNASPI 32, " Get ASPI 32Suppor t | nf 0"

Get ProcAddress(hi nst WASPI 32, " SendASPI 32Comrmand”) ;
Get ProcAddress(hi nst WASPI 32, " Get ASPI 32Buffer");
Get ProcAddress(hi nst WNASPI 32, " FreeASPl 32Buffer");
Get ProcAddr ess(hi nst WNASPI 32, " Tr ansl| at eASPI 32Addr ess”

At this point there should be avalid address for each of the five functions. If you have an old version of ASPI
then the last three function addresses will be NULL. This case should be handled by disabling all use of new
featuresin your ASPI module. Itisalso good practiceto check pfnGetA SPI32Supportinfo and

pfnSendA SPI32Command for NULL aswell. These variableswill be NULL if thereisan error accessing the DLL.
If either of these two functions have NUL L addresses your application should cease its use of ASPI and unload
WNASPI32.DLL with acall to FreeLibrary.

Using the addresses returned from GetProcAddressisvery simple. Just use the variable name wherever you
would normally use afunction name. For example,

DWCRD dwASPI St at us = pf nGet ASPI 32Support I nfo() ;

will call the Get ASPI 32Support | nf o and place theresult in dwASPI Status. Of course, if one of these
function pointersisNULL and you make acall to it, your application will crash.

Implicit Dynamic Linking

Implicit dynamic linking occurs when a dependent DLL isloaded as aresult of loading another module. This
dependency can be established either by listing exported functions from the DLL in the IMPORTS section of a
“ DEF filelinked with the application.

Implicit dynamic linking is not recommended for three reasons:

Y ou cannot control when ASPI isloaded. Like anything else, ASPI consumes system resources. When you
useimplicit dynamic linking those resources are allocated as soon as the application starts, and they remain
alocated until the application shuts down. With explicit dynamic linking the application controls when (and
if) ASPI isloaded.

Y ou have no control over how load errors are reported to users. If ASPI isnot found during an implicit load
afairly ugly error message (sometimes two) is displayed by the operating system. If you use explicit loading
in conjunction with acall toSet Er r or Mode(SEM_NOOPENFI LEERRORBOX) then your application
can fully handle any load errors on its own.

Y our application cannot recover if it relies on new ASPI features and it isrun with an older version of ASPI.
If your application relieson Get ASPI 32Buf f er, FreeASPI 32Buffer, or

Transl at eASPI 32Addr ess, and then that function is not found in the loaded version of
WNASPI32.DLL, thentheload fails. By using explicit dynamic linking the application can ater its behavior
so that the functions are not used. For example, an application which “relies” on TranslateA SPI32A ddress
could simply disable Plug and Play support if the function isnot found inthe DLL.

November 6, 2001 7 Adaptec

GetASPI32Supportinfo

The Get ASPI 32Suppor t | nf o function returns the number of host adaptersinstalled and ensures that the
ASPI manager isinitialized properly. Thisfunction must be called once at initialization time, before
SendASPI 32Command is accessed.

DWRD Get ASPI 32Supportinfo(VAD);

Parameters

None.

Return Values

The DWORD return value is split into three pieces. The high order WORD isreserved and shall be setto 0. The
two low order bytes represent a status code (bits 15-8) and a host adapter count (bits 7-0).

If the call toGet ASPI 32Suppor t | nf o issuccessful, then the status byteis set to either SS_COMP or
SS_NO_ADAPTERS. If setto SS_COWP then the host adapter status will be non-zero. An error code of
SS_NO_ADAPTERS indicates that ASPI initialized successfully, but that it could not find any SCSI host
adapters to manage.

If the function fails the status byte will be set to oneof SS_| LLEGAL_MODE, SS_NO_ASPI ,
SS M SMATCHED COMPONENTS, SS | NSUFFI Cl ENT_RESOURCES, SS_FAI LED | NI T. Seethetable
of ASPI errors at the end of this manual for more information on each of the errors.

Remarks

The number of host adapters returned represents the logical bus count, not the true physical adapter count. For
host adapters with a single bus, the host adapter count and logical bus count areidentical.

Example

This example returns the current status of ASPI for Win32.

BYTE byHaCount;
BYTE byASPl & at us;
DNRD dwsupport | nf o;

dwSupport I nfo = Get ASPI 32Support I nfo();
byASPl St at us = H BYTE(LONRD dwSupportinfo));
byHaCount = LCBYTE(LONRD dwSupport | nfo));

if(byASPlStatus != SS GOWP & byASPlI Status != SS NO ADAPTERS)
{
/1 Handle ASPI error here. Wsually this involves the display

/1 of adialog box with an informative nmessage.

November 6, 2001 8 Adaptec

SendASPI32Command

The SendASPI 32Command function handles all SCSI I/0 requests. Each SCSI /O request is handled through
a SCSl Request Block (SRB) which defines the exact ASPI operation to be performed.

DWRD SendASPI 32Command(LPSRB psrb);

Parameters

psrb

All SRBs have a standard header, and the header contains a command code which defines the exact type of
SCSI /O being requested.

t ypedef struct

{
BYTE SRB Qm; /1 ASPl command code
BYTE SRB Status; /1 ASPl command status byte
BYTE SRB Hald; /1 ASPl host adapter nunber
BYTE SRB Fl ags; /1 ASPl request flags
DWRD SRB Hir _Rsvd; /1 Reserved, MJST =0

}

SRB Header ;

The SRB_Cmd field contains the command code for the desired SCSI 1/O operation. Thisfield can be set to
one of the following values.

Symbol Value Description

SC HA | NQU RY 0x00 Queries ASPI for information on specific host adapters.
SC CGET_DEV_TYPE 0x01 Requests the SCSI device type for a specific SCSI target.
SC EXEC SCSI_ Qv 0x02 Sends a SCSI command (arbitrary CDB) to a SCSI target.
SC ABCRT_SRB 0x03 Requests that ASPI cancel apreviously submitted request.
SC RESET DeV 0x04 SendsaBUS DEVICE RESET message to a SCSI target.

SC GET_D SK I NFO 0x06 Returns BIOS information for a SCS| target (Win98 only).
SC RESCAN SCSI_BUS 0x07 Requests arescan of a host adapter’s SCSI bus.

SC GETSET_TI MEQUTS 0x08 Sets SRB timeouts for specific SCSI targets.

The use of the remaining header fields varies according to the command type. Each of the commands along
with their associated SRBs are described in detail in the following sections.

Return Values

The above ASPI commands may be broken into two categories: synchronous and asynchronous. All of the
SRBs are synchronous except for SC_EXEC_SCSI _CMD and SC_RESET_DEV which are asynchronous.

Callsto SendASPI 32Comrand with synchronous SRBswill not return until execution of that SRB is complete.
Upon return the SRB_St at us field will be set to the same value which isreturned from
SendASPI 32Command.

Callsto SendASPI 32Command with asynchronous SRBs may return control to the caller before the submitted
SRB has completed execution. In this case the return value from thisfunction isSS_PENDI NG, and the caller
will have to use polling, posting, or event notification to wait for SRB completion. Once completed, the

SRB_St at us field contains the true completion status. Remember that while waiting for SRB completion, it is
always safe to submit additional SRBsto ASPI for execution.

November 6, 2001 9 Adaptec

See the “Waiting for Completion” and “ASPI for Win32 Errors’ sections for more information on
synchronous/asynchronous SRBs and the various error codes which can be returned either from this function or
within an SRB_St at us field.

November 6, 2001 10 Adaptec

SC_HA_INQUIRY

The SendASPI 32Conmmand function with command code SC_HA | NQUI RY is used to get information on the
installed host adapter hardware, including the number of host adaptersinstalled.

t ypedef struct

{
BYTE SRB Od; /1 ASPl command code = SC HA | NQU RY
BYTE SRB St at us; /1 ASPl command status byte
BYTE SRB Hal d; /1 ASPl host adapter nunber
BYTE SRB H ags; /!l Reserved, MJST =0
DNMRD SRB Hir_Rsvd; /!l Reserved, MJST =0
BYTE HA Count; /1 Nunber of host adapters present
BYTE HA SCSI I D, /1 SCSlI ID of host adapter
BYTE HA Manager | d[16] ; /1 String describing the manager
BYTE HA Identifier[16]; /1 String describing the host adapter
BYTE HA Uni que[16] ; /!l Host Adapter Uhi que paraneters
WRD HA Rsvdil; /!l Reserved, MJST =0

}

SRB HAl nqui ry, *PSRB HAl nqui ry;

SRB Fields

SRB_Cmd (Input)
Thisfield must contain SC_HA | NQUI RY (0x00).

SRB_Status (Output)
SC_HA | NQUI RY isasynchronous SRB. On return, thisfield isthe same asthe SendASPI 32Command
return value and is set to either SS_COMP or SS_| NVALI D_HA.

SRB_Hald (Input)
Thisfield specifieswhich installed host adapter the request isintended for. Host adapter numbers are
always assigned by the ASPI manager, beginning with zero. To determine the total number of host adapters
in the system set thisfield to 0 and then check the HA_Count value on return.
Get ASPI 32Support | nf o can also be used.

HA_Count (Output)

The number of host adapters detected by ASPI. For example, areturn value of 2 indicates that host adapters
#0 and #1 arevalid. The number of host adapters returned represents the logical bus count instead of the
true physical adapter count. For host adapters that support single bus only, the host adapter count and
logical bus count areidentical. For host adapters that support multiple buses, the host adapter count
represents the total logical bus count.
HA_SCSI_ID (Output)
The SCSI ID of the host adapter on the SCSI bus. SCSI adapters usually use ID 7 astheir SCSI ID.
HA_Managerld (Output)
The ASCII string “ASPI for Win32”. The string is padded with spaces to the full width of the buffer, and it
isnot null terminated.
HA_Identifier (Output)

An ASCII string describing the host adapter. The string is padded with spaces to the full width of the
buffer, and it isnot null terminated.

November 6, 2001 11 Adaptec

HA_Unique (Output)

Host adapter unique parameters as follows.

Size Offset

Description

WORD 0

Buffer alignment mask. The host adapter requires data buffer alignment
specified by this 16-bit value. A value of 0x0000 indicates no boundary
requirements (e.g. byte alignment), 0x0001 indicates word alignment, 0x0003
indicates double-word, 0x0007 indicates 8-byte alignment, etc. The 16-bit
value allows data buffer alignments of up to 65536-byte boundaries.
Alignment of buffers can be tested by logical ANDing (‘&' in‘C’) this
mask with the buffer address. If theresult is 0 the buffer is properly
aligned.

BYTE 2

Residual byte count. Set to Ox01 if residual byte counting is supported,
0x00if not. See“Remarks’ below for moreinformation.

BYTE 3

Maximum SCSI targets. Indicates the maximum number of targets (SCSI
IDs) the adapter supports. If thisvalueisnot set to 8 or 16, then it should
be assumed by the application that the maximum target count is 8.

DWORD 4

Maximum transfer length. DWORD count indicating the maximum transfer
size the host adapter supports. If this number islessthan 64KB then the
application should assume amaximum transfer count of 64K B.

Remarks

Residual byte length isthe number of bytes not transferred to, or received from, the target SCSI device. For
example, if the ASPI buffer length for a SCSI INQUIRY command is set for 100 bytes, but the target only returns
36 bytes; theresidual length is 64 bytes. If the ASPI buffer length for a SCSI WRITE command is set for 514
bytes but the target only takes 512 bytes, theresidual lengthis 2 bytes. ASPI modules can determineif the ASPI
manager supports residual byte length by checking byte 1 of the HA_Uni que field. See

SC_EXEC_SCsSI _CNVD for more information on enabling residual byte counting.

Example

This example sendsan SC_HA | NQUI RY to host adapter #1, and, if successful, records the maximum transfer
length supported by the host adapter.

DWCRD dwMaxTr ansf er Byt es;
SRB HAl nquiry srbHA nquiry;

nenset (&rbHAl nquiry, 0, sizeof (SRB HAInquiry));
srbHA nquiry. SRB O = SC HA | NQU RY;
srbHAl nquiry. SRB Hald = 1;

SendASPI 32Command((LPSRB) &rbHAI nquiry);
if(srbHA nquiry. SRB Status !'= SS QOW)

{

[l Error in HAnquiry. Mst likely SS I NVALID HA

Ret urn FALSE;
}

dwhvaxTr ansf er Byt es = *(DANORD *) (srbHA nqui ry. HA Unhi que + 4);

November 6, 2001

12 Adaptec

SC_GET DEV TYPE

The SendASPI 32Command function with command code SC_GET_DEV_TYPE enables you to identify the
devices available on the SCSI bus. A Win32 tape backup package, for example, can scan each target/LUN on
each installed host adapter |ooking for a device type corresponding to sequential access devices. This
eliminates the need for each Win32 application to duplicate the effort of scanning the SCSI bus for devices.

t ypedef struct

{
BYTE SRB Od; /1 ASPl conmmand code = SC GET_DEV _TYPE
BYTE SRB St at us; /1 ASPl command status byte
BYTE SRB Hal d; /1 ASPl host adapter nunber
BYTE SRB H ags; /!l Reserved, MJST =0
DNMRD SRB Hir_Rsvd; /!l Reserved, MJST =0
BYTE SRB Target ; /] Target's SCSl ID
BYTE SRB Lun; /1l Target's LUN nunber
BYTE SRB Devi ceType; /1l Target's peripheral device type
BYTE SRB Rsvdl; /!l Reserved, MJST =0
}

SRB @EWVBl ock, *PSRB @EVB ock;

SRB Fields
SRB_Cmd (Input)
Thisfield must contain SC_GET_DEV_TYPE (0x01).

SRB_Status (Output)

SC_CGET_DEV_TYPE isasynchronous SRB. Onreturn, thisfield isthe same asthe
SendASPI 32Command returnvalueandissetto SS_COWP, SS_| NVALI D_HA, or SS_NO _DEVI CE.

SRB_Hald (Input)
Thisfield specifieswhich installed host adapter the request is intended for.

SRB_Target (Input)
SCSI ID of target device.

SRB_Lun (Input)
Logica Unit Number (LUN) of target device.

November 6, 2001 13 Adaptec

SRB_DeviceType (Output)
The peripheral devicetype. Thevalueisone of the codes defined by the SCSI specification.

Symboal Value Description
DTYPE_DASD (0°(0 0] Direct-access device (e.g. magnetic disk)
DTYPE_SEQD ox01 Seguential-access device (e.g. magnetic tape)
DTYPE _PRNT ox02 Printer device
DTYPE_PROC ox03 Processor device
DTYPE_WORM x4 Write-once device (e.g. some optical disks)
DTYPE_CDROM Ox05 CD-ROM device
DTYPE_SCAN 0x06 Scanner device
DTYPE_OPTI OxQ07 Optical memory device (e.g. some optical disks)
DTYPE_JUKE ox08 Medium changer device (e.g. jukeboxes)
DTYPE_COMM ox09 Communication device
N/A Ox0A-0x0B Defined by ASC I T8 (Graphic arts pre-press devices)
N/A OXOC-Ox1E Reserved
DTYPE_UNKNOWN Ox1F Unknown or no devicetype

Example

This example scans the system for all CD-ROM drives (all targets must be at LUN #0). Please note that
MAX_HA | Dand MAX_TARGET _I D should be replaced with a host adapter count returned by

Get ASPI 32Support | nf o and atarget count retrieved fromaSC_HA | NQUI RY SRB performed within the
host adapter loop.

BYTE byHal d;
BYTE byTar get ;
SRB @DEVBl ock srb@EWB ock;

for(byHald = 0; byHald < MAX HA I D, byHal d++)
{
for(byTarget = 0; byTarget < MAX TARCET |ID, byTarget ++)
{
nenset (&rb@EVBl ock, 0, sizeof (SRB @EVB ock));
srb@EVB ock. SRB_ Ond = SC GET_DEV_TYPE
srb@EVB ock. SRB Hal d = byHal d;
srb@EVB ock. SRB Target = byTarget;

SendASPI 32Command((LPSRB) &r b@EVBl ock);
i f(srb@EVB ock. SRB Status != SS GOW) conti nue;

i f(srb@EVB ock. SRB Devi ceType == DIYPE_ CDROM)

{
/1 A D RMexists at HA 1D LUN = byHal d/ byTarget/ 0.

/1 Do whatever you want with it from herel

November 6, 2001 14 Adaptec

SC_EXEC_SCSI CMD

The SendASPI 32Comand function with command code SC_EXEC _SCSI _CMDis used to execute a SCSI
I/0 command. Once an ASPI client hasinitialized, virtually al 1/O is performed with this command.

t ypedef struct

{
BYTE SRB Qm;
BYTE SRB St at us;
BYTE SRB Hal d;
BYTE SRB H ags;
DNMRD SRB Hir_Rsvd;
BYTE SRB Target ;
BYTE SRB _Lun;
WRD SRB Rsvdl;
DWRD SRB Buf Len;
LPBYTE SRB Buf Poi nter;
BYTE SRB_Senselen;
BYTE SRB_(DBLen;
BYTE SRB HaStat ;
BYTE SRB TargSt at;
LPvGQ D SRB Post Proc;
BYTE SRB Rsvd2[20] ;
BYTE CDBByt €[16] ;
BYTE SenseAr ea] SENSE LEN+2] ;
}

SRB ExecSCSl Qmd, *PSRB_ExecSCSl Ond;

SRB Fields

SRB_Cmd (Input)

11
11
11
11
11
11
11
11
11
11
11
11
11
11
11
11
11
11

ASPl
ASPl

command code = SC EXEC SCSI_OWD
command status byte
ASPI host adapt er nunber
ASPl request flags
Reserved, MUST =0
Target's SCSl 1D
Target's LUN nunber
Reserved for Alignnent
Data Al ocation Length
Dat a Buffer Pointer
Sense Al l ocation Length
(DB Length

Host Adapter Status
Target Status

Post routine

Reserved, MUJST =0

SCS B

Request Sense buf fer

This field must contain SC_EXEC_SCSI _CVD (0x02).

SRB_Status (Output)

SC_EXEC_SCSI _CMDisan asynchronous SRB. Thisfield should not be examined until after the caller
haswaited for proper completion of the SRB (see “Waiting for Completion”). Once completed, thisfield may
be set to a number of different values. The most common valuesare SS_COVP or SS_ERR. SS_COWP
indicates successful completion while SS_ERR indicates the caller should examinethe SRB_HaSt at and
SRB_Tar gSt at fieldsfor moreinformation. See“ASPI for Win32 Error” for acomplete description of

possible error codes.

SRB_Hald (Input)

Thisfield specifies which installed host adapter the request isintended for. Host adapter numbers are
always assigned by the SCSI manager layer beginning with zero.

November 6, 2001

15

Adaptec

SRB_Flags (Input)
One or more of the following flags (note restrictions where they apply):

Symboal Value Description

SRB _PCBTI NG 0x01 Enable posting. See “Waiting for Completion” for more
information. Thisflag and SRB_EVENT_NOTI FY are
mutually exclusive.

SRB ENABLE RESI DUAL COUNT 0x04 Enablesresidual byte counting assuming it is supported.
Whenever adata underrun occursthe SRB_Buf Len field
is updated to reflect the remaining bytesto transfer.

SRBDRIN 0x08 Datatransfer isfrom SCSI target to host. Mutually
exclusivewithSRB_DI R_OUT.

SRB DR QJT 0x10 Datatransfer isfrom host to SCSI target. Mutually
exclusivewithSRB_DI R_| N.

SRB_EVENT_NOTI FY 0x40 Enable event notification. See“Waiting for Completion”

for moreinfomration. Thisflag and SRB_POSTI NGare
mutually exclusive.

SRB_Target (Input)
SCSI 1D of target device.
SRB_Lun (Input)
Logica Unit Number (LUN) of target device.

SRB_BufLen (Input)
Thisfield indicates the number of bytesto be transferred. If the SCSI command to be executed does not
transfer data (e.g., Test Unit Ready, Rewind, etc.), this field must be set to zero. If residual byte lengthis
supported (see“SC_HA | NQUI RY”) and selected (see SRB_FI ags above), thisfield is returned with the
residual number of bytes (usually 0).

SRB_BufPointer (Input)
Thisfield isapointer to the data buffer. If thereisno datato be transfered thisfield should be NULL.

SRB_SenseLen (Input)
Thisfield indicates the number of bytes allocated at the end of the SRB for sensedata. A request senseis
automatically generated if a check condition is presented at the end of a SCSI command. Please note that
under Windows NT it is not possible to reliably request more than 18 bytes of sense data.

SRB_CDBLen (Input)

Thisfield establishesthe length, in bytes, of the SCSI Command Descriptor Block (CDB). Thisvaueis
typicaly 6, 10, or 12. Seethe SCSI specification for more information on valid CDBs.

November 6, 2001 16 Adaptec

SRB_HasStat (Output)

Upon completion of the SCSI command, thisfield is set to the host adapter status. Do not examine this
statusbyteif SRB_St at us isset toSS_COVP. Itisonly to be considered valid if thereis unsuccessful
completion of the SRB.

Symbol Value Description

HASTAT_K 0x00 Host adapter did not detect an error.

HASTAT _TI MEQUT 0x09 Thetime allocated for a bus transaction ran out.
HASTAT_CCOMVAND Tl MEQUT 0x0B SRB expired while waiting to be processed.
HASTAT MESSACE REJECT 0x0D MESSAGE REJECT received while processing SRB.
HASTAT BUS RESET O0x0E A bus reset was detected.

HASTAT_PAR TY_ERRCR O0xOF A parity error was detected.

HASTAT REQUEST SENSE FAILE 0x10 The adapter failed in issuing a Request Sense after a check
D condition was reported by the target device.
HASTAT SEL. TO Ox11 Selection of target timed out.

HASTAT_DO DU 0x12 Data overrun.

HASTAT BUS FREE 0x13 Unexpected Bus Free.

HASTAT_PHASE ERR Ox14 Target Bus phase sequence failure.

SRB_TargStat (Output)
Upon completion of the SCSI command, thisfield is set to the final SCSI target status. Do not examine this
statusbyteif SRB_St at us isset toSS_COWP. Itisonly to be considered valid if thereis unsuccessful

completion of the SRB. Note that the table below only covers the most common result codes. Check the
SCSI specification for more information on these and other status byte codes.

Symbol Value Description

STATUS GOD 0x00 No target status.

STATUS _G-KOO\D 0x02 Check status (sense dataisin SenseArea).
STATUS BUSY 0x08 Specified Target/LUN isbusy.

STATUS RESCONF 0x18 Reservation conflict.

SRB_PostProc (Input)

If posting is enabled (SRB_POSTI NG) thisfield contains a pointer to afunction. The ASPI manager calls
this function upon completion of the SRB. If event notification isenabled (SRB_EVENT _NOTI FY) this
field contains ahandleto an event. The ASPI manager signals this event upon completion of the SRB. See
“Waiting for Completion” for more information.

CDBByte (Input)
Thisfield contains the CDB as defined by the target's SCSI command set. The length of the SCSI CDB is
specified inthe SRB_CDBLen field.

SenseArea (Output)

The SenseAreaisfilled with the sense data after a check condition (SRB_St at us == SS_ERRand
SRB TargStat == STATUS_CHKCOND). The maximum length of thisfield is specified in the
SRB_SenselLen field.

November 6, 2001 17 Adaptec

Example

This example sends a SCSI INQUIRY command to host adapter #0, target #5, LUN #0. When examining the code,
please note the following:

Manual-reset events are used. The ResetEvent isnot needed in this particular sample because we just
created the event, but it is good practice to put the reset immediately before every SendASPI 32Comrand
call to make sure you don’t enter the routine with an event signalled.

Because thisis an asynchronous SRB, we fully wait for completion before checking the SRB_St at us byte.
Also, we use dWASPI St at us instead of SRB_St at us to check for aSS_PENDI NGreturn for the same
reason.

Thereisan| NFI NI TE timeout on the Wai t For Si ngl eObj ect because SRB timeouts are not the same
asevent timeouts. Use SC_GETSET_TI MEOUT to associate a timeout with an SRB.

BYTE byl nqui ry[32] ;
DWCRD dwASPI S at us;
HANDLE hevent SRB;

SRB ExecSCSl Qmd sr bExec;

hevent SRB = O eateBEvent (NLL, TRUE, FALSE, NUL);
if(!'hevent SRB)
{

}

nenset (&rbExec, 0, sizeof (SRB_ExecSCS Omd));
srbExec. SRB Ond = SC EXEC SCSI_ QWD

srbExec. SRB Flags = SRB DR IN | SRB_EVENT_NOTI FY;
srbExec. SRB Target = 5;

srbExec. SRB Buf Len = 32;

srbExec. SRB Buf Poi nter = byl nquiry;

srbExec. SRB SenselLen = SENSE LEN

srbExec. SRB (DBLen = 6;

srbExec. SRB Post Proc = (LPVA D) hevent SRB;

sr bExec. CDBByt e[0] SCSl I NQU RY;

sr bExec. CDBByt e[4] 32;

/1 Couldn't get nanual reset event, put error handling code here!

Reset Event (hevenSRB) ;
dwASPI St at us = SendASPI 32Command((LPSRB) &sr bExec);
i f(dwASPl Status == SS PEND NG)

{
Wi t For Si ngl eChj ect (hevent SRB, INFIN TE);
}
i f(srbExec. SRB Status != SS COW)
{
/1l Error processing the SRB, put error handling code here.
}

November 6, 2001 18 Adaptec

SC_ABORT_SRB

The SendASPI 32Command function with command code SC_ABORT_SRB is used to request that a pending
SRB be aborted. It should beissued on any /0 request that has not completed if the application wishesto halt
execution of that request. Success of the abort command isnever assured.

t ypedef struct

{
BYTE SRB Od; /1 ASPl command code = SC ABCRT_SRB
BYTE SRB St at us; /1 ASPl command status byte
BYTE SRB Hal d; /1 ASPl host adapter nunber
BYTE SRB H ags; /!l Reserved, MJST =0
DNMRD SRB Hir_Rsvd; /!l Reserved, MJST =0
LPSRB SRB ToAbort; /!l Pointer to SRBto abort
}

SRB Abort, *PSRB Abort;

SRB Fields

SRB_Cmd (Input)
Thisfield must contain SC_ABORT_SRB (0x03).

SRB_Status (Output)

SC_ABORT_SRBisasynchronous SRB. On return, thisfield isthe same asthe SendASPI 32Conmand
return valueand isset toSS_COMP, SS_| NVALI D_HA, or SS_| NVALI D_SRB. Remember that areturn
of SS_COWP does not indicate that the SRB to be aborted has been halted. Instead, it indicatesthat an
attempt was made at aborting that SRB. If the SRB to be aborted completeswith SS_ABORTED then there
is positiveindication that the original SC_ABORT _SRB worked.

SRB_Hald (Input)

Thisfield specifies which installed host adapter the request is intended for. Host adapter numbers are
always assigned by the ASPI manager layer beginning with zero.

SRB_ToAbort (Input)

Thisfield contains a pointer to the SRB which isto be aborted. The actual failure or success of the abort
operation isindicated by the status eventually returned in this SRB.

Remarks

As stated above, the success of an SC_ABORT_SRB command isnever guaranteed. Asamatter of fact, the
situationsin which ASPI is capable of aborting an SRB already sent to the system are few and far between.

Theoriginal usefor SC_ABORT_SRB was to terminate |/O which had timed out under ASPI for DOS and ASPI
for Winl16. The nature of SC_ABORT_SRB under Win32 greatly reducesits usefulness. It isrecommended that
the SC_CGETSET_TI MEOUTS SRB be used to manage SRB timeoutsin all new ASPI modules.

November 6, 2001 19 Adaptec

SC_RESET DEV

The SendASPI 32Comand function with command code SC_RESET_DEV is used to send a SCSI Bus
Device reset to the specified target.

t ypedef struct

{
BYTE SRB Od; /1 ASPl command code = SC RESET_DEV
BYTE SRB St at us; /1 ASPl command status byte
BYTE SRB Hal d; /1 ASPl host adapter nunber
BYTE SRB H ags; /!l Reserved, MJST =0
DNMRD SRB Hir_Rsvd; /!l Reserved, MJST =0
BYTE SRB Target ; /] Target's SCSl ID
BYTE SRB Lun; /1l Target's LUN nunber
BYTE SRB Rsvdl[12]; /!l Reserved, MJST =0
BYTE SRB HaSt at ; /1 Host Adapter Status
BYTE SRB TargStat; /]l Target Status
LPVO D SRB Post Proc; /1 Post routine
BYTE SRB Rsvd2[36] ; /!l Reserved, MJST =0

}

SRB BusDevi ceReset, *PSRB BusDevi ceReset ;

SRB Fields

SRB_Cmd (Input)
Thisfield must contain SC_RESET_DEV (0x04).

SRB_Status (Output)
SC _RESET_DEV isan asynchronous SRB. Thisfield should not be examined until after the caller has
waited for proper completion of the SRB (see “Waiting for Completion”). Once completed, thisfield may be
set to anumber of different values. The most common valuesare SS_COVP or SS_ERR. SS_COWP
indicates successful completion while SS_ERR indicates the caller should examine the SRB_HaSt at and
SRB_Tar gSt at fieldsfor moreinformation. See“ASPI for Win32 Error” for a compl ete description of
possible error codes.

SRB_Hald (Input)
Thisfield specifieswhich installed host adapter the request isintended for. Host adapter numbers are
always assigned by the SCSI manager layer beginning with zero.

SRB_Target (Input)
SCSI 1D of target device.

SRB_Lun (Input)

Logical Unit Number (LUN) of target device. Thisfieldisignored by ASPI for Win32, since SCSI BUS
DEVICE RESET isdone on aper-target basis only.

November 6, 2001 20 Adaptec

SRB_HasStat (Output)

Upon compl etion of the SCSI command, thisfield is set to the host adapter status. Do not examine this
statusbyteif SRB_St at us issetto SS_COMP. Itisonly to be considered valid if there is unsuccessful
completion of the SRB.

Symbol Value Description

HASTAT_K 0x00 Host adapter did not detect an error.

HASTAT _TI MEQUT 0x09 Thetime alocated for a bus transaction ran out.
HASTAT_CCOMVAND Tl MEQUT 0x0B SRB expired while waiting to be processed.
HASTAT MESSACE REJECT 0x0D MESSAGE REJECT received while processing SRB.
HASTAT BUS RESET O0x0E A bus reset was detected.

HASTAT_PAR TY_ERRCR O0xOF A parity error was detected.

HASTAT REQUEST SENSE FAILE 0x10 The adapter failed in issuing a Request Sense after a check
D condition was reported by the target device.
HASTAT SEL. TO Ox11 Selection of target timed out.

HASTAT DO DU 0x12 Data overrun/underrun.

HASTAT BUS FREE 0x13 Unexpected Bus Free.

HASTAT_PHASE ERR Ox14 Target Bus phase sequence failure.

SRB_TargStat (Output)
Upon completion of the SCSI command, thisfield is set to the final SCSI target status. Do not examine this
statusbyteif SRB_St at us issetto SS_COMP. Itisonly to be considered valid if there is unsuccessful

completion of the SRB. Note that the table below only covers the most common result codes. Check the
SCSI specification for more information on these and other status byte codes.

Symbol Value Description

STATUS GOD 0x00 No target status.

STATUS _G-KOO\D 0x02 Check status (sense dataisin SenseArea).
STATUS BUSY 0x08 Specified Target/LUN isbusy.

STATUS RESCONF 0x18 Reservation conflict.

SRB_PostProc (Input)

If posting is enabled (SRB_POSTI NG) thisfield contains a pointer to afunction. The ASPI manager calls
this function upon completion of the SRB. If event notification isenabled (SRB_EVENT _NOTI FY) this
field contains ahandle to an event. The ASPI manager signals this event upon compl etion of the SRB. See
“Waiting for Completion” for more information.

Remarks

The Windows (98, ME, NT, 2000, XP (32-hit)) operating systems do not handle BUS DEVICE RESET properly at
the current time. For thisreason, SC_RESET_DEV calls are not guaranteed to function properly. The command
ispresent mainly to keep older code ported from Winl16 from failing.

November 6, 2001 21 Adaptec

SC_GET DISK_INFO

The SendASPI 32Command function with command code SC_GET_DI SK_| NFOis used to obtain
information about adisk type SCSI device. The information returned includes BIOS Int 13h control and
accessihility of the device, the drive' s Int 13h physical drive number, and the geometry used by the Int 13h
servicesfor the drive.

Note: Thiscommand is not valid for Windows NT/2000/X P (32-bit), which does not use the Int 13 interface.
t ypedef struct

{
BYTE SRB_Qm; /1 ASPI command code = SC (ET_D SK | NFO
BYTE SRB St at us; /1 ASPI command status byte
BYTE SRB Hal d; /1 ASPI host adapter nunber
BYTE SRB Fl ags; !/ Reserved
DNRD SRB HIr_Rsvd; !/ Reserved
BYTE SRB Tar get ; /l Target's SCSl 1D
BYTE SRB Lun; // Target's LWN nunber
BYTE SRB Dri veF ags; /1 Driver flags
BYTE SRB I nt 13HDxi vel nf o; // Host Adapter Status
BYTE SRB Heads; I/ Preferred nunber of heads translation
BYTE SRB Sectors; I/ Preferred nunber of sectors translation
BYTE SRB Rsvdl] 10]; !/ Reserved
}

SRB Get D skl nfo, *PSRB_Get Di skl nf o;

SRB Fields

SRB_Cmd (Input)
Thisfield must contain SC_GET_DI SK_| NFO (0x06).

SRB_ Status (Output)
SC_GET_DI SK_I NFOisasynchronous SRB. Onreturn, thisfield isthe same asthe
SendASPI 32Command return valueand isset to SS_COMP, SS_| NVALI D_HA, or SS_NO_DEVI CE, or
SS_I NVALI D_SRB.

SRB_Hald (Input)

Thisfield specifies which installed host adapter the request isintended for. Host adapter numbers are
always assigned by the ASPI manager layer beginning with zero.

SRB_Target (Input)
SCSI 1D of target device.
SRB_Lun (Input)
Logica Unit Number (LUN) of target device.

November 6, 2001 22 Adaptec

SRB_DriveFlags (Output)
Upon completion of the SCSI command thisfield is set asfollows:

Symboal Value Description

D SK_NOT_| NT13 0x00 Deviceisnot controlled by Int 13h services

D SK I NT13_AND DCs 0x01 Deviceisunder Int 13h control and is claimed by DOS
D SK I NT13 0x02 Deviceisunder Int 13h control but not claimed by DOS

SRB_Int13Drivelnfo (Output)
Upon completion of the SCSI command, the ASPI manager sets this field with the physical drive number that
Int 13h services assigned to the device. The valid drive numbers are 0x00 to OXFF. Thisfield isonly valid if
SRB_DriveFl ags issettoDl SK_| NT13_AND DOSor DI SK_| NT13.

SRB_Heads (Output)
Upon completion of the SCSI command, the ASPI manager sets thisfield to the number of headsthe Int 13h
servicesis using for this device' s geometry. The valid drive numbers are 0x00 to OxFF. Thisfield isonly
validif SRB_Dri veFl ags issettoDl SK_| NT13_AND_DOSor DI SK_| NT13.

SRB_Sectors (Output)

Upon completion of the SCSI command, the ASPI manager sets thisfield to the number of sectorsthe Int
13h servicesisusing for this device’ s geometry. The valid drive numbers are 0x00 to OxFF. Thisfield isonly
validif SRB_Dri veFl agsissetto DI SK | NT13_AND DOSor DI SK | NT13.

Example
This example obtains disk information from device LUN 0, SCSI ID 2, attached to host adapter 0.
SRB Get Di skinfo srbGet D skl nfo;
nenset (&rbGet D skinfo, 0, sizeof (SRB GetD skinfo));
srbGet D skl nfo. SRB Header. SRB Omd = SC GET_Dl SK | NFQ
srbGet D skl nfo. SRB Target = 2;

SendASPI 32Command((LPSRB) &rbGet O skinfo);
if(srbGetD sklnfo.SRB Status != SS COWP)

{
}

/1 Error handling GetD skinfo SRB. FError handling code goes here!

November 6, 2001 23 Adaptec

SC_RESCAN_SCSI_BUS

The SendASPI 32Command function with command code SC_RESCAN_SCSI _BUS is used to rescan the
SCSl bus specified by the host adapter number inthe SRB. It will instruct the I/O subsystem to rescanthe SCSI
bus and update both the system device map and the ASPI manager device tables.

t ypedef struct

{
BYTE SRB Od; /1 ASPl conmmand code = SC RESCAN SCSI _BUS
BYTE SRB St at us; /1 ASPl command status byte
BYTE SRB Hal d; /1 ASPl host adapter nunber
BYTE SRB H ags; /!l Reserved, MJST =0
DNMRD SRB Hir_Rsvd; /!l Reserved, MJST =0
}

SRB RescanPort, *PSRB_RescanPort;

SRB Fields

SRB_Cmd (Input)
Thisfield must contain SC_RESCAN_SCSI _ BUS (0x07).
SRB_Status (Output)
SC_RESCAN_SCsSI _BUS isasynchronous SRB. Onreturn, thisfield isthe same asthe
SendASPI 32Comrand return value and isset to SS_COMP, or SS_| NVALI D_HA.
SRB_Hald (Input)

Thisfield specifies which installed host adapter the request isintended for. Host adapter numbers are
always assigned by the ASPI manager layer beginning with zero.

Remarks

Under Windows NT/2000/X P (32-hit), the I/O subsystem does not rescan devices/IDsit already knows about.
Theimpact of thisisthat it will detect new devices but will not detect removal of devices or exchanging of
devices.

Under Windows 98/ME, there can be a substantial delay between the time arescan isinitiated with this
command and the time at which new devices are added or old devices are removed from the device map. The
best way to deal with thisisto rely on the Plug and Play messages in conjunction with

Transl at eASPI 32Addr ess, or to simply perform your own refresh five or ten seconds after the rescan
conmand isissued.

Thereisno way to force arescan of the entire system. It isup to the operating system to detect the arrival of
new host adapters (for example, PCMCIA) through Plug and Play, if it isavailable.

Example
The following example forces arescan of the SCSI bus attached to host adapter #0:

November 6, 2001 24 Adaptec

SRB RescanPort srbRescanPort ;
nenset (&rbRescanPort, 0, sizeof (SRB RescanPort));
srbRescanPort. SRB Ond = SC RESCAN SCSI_BUS;

SendASPI 32Command((LPSRB) &srbRescanPort) ;
i f(srbRescanPort.SRB Status != SS COW)

{
}

/1l Error issuing port rescan. FError handling code goes here.

November 6, 2001 25 Adaptec

SC_GETSET TIMEOUTS

The SendASPI 32Command function with command code SC_GETSET_TI MEOUTS enables you to set target
specific timeoutsin 1/2 second increments. Once set, atimeout appliesto all SCSI commands sent through the
SC_EXEC_SCsSI _CVD command. Timeouts are process specific, so two different applications may set different
timeouts for the same target. The SRB_Hal d, SRB_Tar get , and SRB_Lun fields may be set to awildcard
value to ease the setting of timeouts on multiple targets. Note that by default, all target timeouts are set to 30
hours (the maximum allowed).

t ypedef struct

{
BYTE SRB_Qm; /1 ASPI command code = SC (ETSET_TI MEQUTS
BYTE SRB St at us; /1 ASPI command status byte
BYTE SRB Hal d; /1 ASPI host adapter nunber
BYTE SRB Fl ags; /1 ASPI request flags
DNRD SRB HIr_Rsvd; /1 Reserved
BYTE SRB Tar get ; /1 Target's SCSI ID
BYTE SRB Lun; /1 Target's LUN nunber
DNRD SRB Ti meout ; /1 Tineout in half seconds
}

SRB Get Set Ti meout s, *PSRB_Get Set Ti neout s;

SRB Fields

SRB_Cmd (Input)
Thisfield must contain SC_GETSET_TI MEOUTS (0x08).

SRB_ Status (Output)

SC_GETSET_TI MEQUTS isasynchronous SRB. On return, thisfield isthe same asthe
SendASPI 32Command return valueand isset to SS_COMWP, SS_| NVALI D_HA, SS_NO_DEVI CE, or
SS_| NVALI D_SRB (bad flags, invalid timeout, etc.).

SRB_Hald (Input)
Thisfield specifieswhich installed host adapter the request isintended for If SRB_DI R_COUT issetin
SRB_FI ags then thisvalue may be awildcard (OxFF) indicating that the SRB_Tar get / SRB_Lun
combination on ALL host adapters should get new atimeout.

SRB_Flags (Input)
May be set to one and only one of the following two constants:

Synbol Val ue Description

SRBDRIN 0x08 SRB is being used to retrieve current timeout setting.
Wildcards are not allowed in the ASPI address fields

SRB DR QJT 0x10 SRB is being used to change the current timeout setting.

Wildcards are valid in the ASPI address fields.

SRB_Target (Input)
Thisfield indicatesthe SCSI ID of thetarget device. If SRB_DI R_OUT issetin SRB_Flags then thisvalue
may be awildcard (OxFF) indicating that ALL SCSI IDs of the passed SRB_Hal d/ SRB_Lun combination
should get a new timeout.

November 6, 2001 26 Adaptec

SRB_Lun (Input)
Thisfield indicates the Logical Unit Number (LUN) of thedevice. If SRB_DI R_OUT issetinSRB_FI ags

then this value may be awildcard (OxFF) indicating that ALL LUNSs of the passed
SRB_Hal d/ SRB_Tar get combination should get a new timeout.

SRB_Timeout (Input)
Target'stimout in half seconds. If SRB_DI R_OUT then this value holds the new timeout for the specified
target(s). If SRB_DI R _| Nthenthevalueisset by ASPI to the current timeout for the specified target. The
timeout can be from 0-216000 (30 hours) with 0 being an easier way of saying "max timeout" (again, 30
hours).

Remarks

Once atimeout is set for atarget, that timeout will be used on all SRBs passed to SendASPI 32Conmmand with
SC_EXEC_SCSI _CNMD. If one of these SRBs actually times out, then the SCSI buswill bereset (thisisNOT a
bus devicereset, but afull SCSI busreset). Thiscausesall of the SRBs executing on the bus to be cancelled,
and the miniport will set error codesin the SRBs as appropriate. It isup to the code which originally submitted
these SRBsto retry the commands as necessary (for example, if an ASPI request times out and the busisreset, a
file system command to another target could be cancelled, and it is up to the file system to retry the command).
In addition, the result placed in the SRB which times out depends on the error codes which the miniport placesin
the SRB. In the case of Adaptec controllers, the result codeisSS_ABORT. In other miniports, the result may be
SS_ERRwith ahost adapter status set to HASTAT_TI MEOUT or HASTAT_COVMAND_TI MEQUT, or it may be
some new error result not yet encountered. Sufficeit to say that the SRB which times out should return with an
error, and it is up to the higher level applications to perform retries of the SRB and any other SRB which may
have been affected by the associated bus reset.

When using event notification with timeouts, it isimportant to remember that the HEVENT used in the
SRB_Post Pr oc field hasan ENTIRELY SEPERATE timeout associated with it. In other words, the timeout
associated with an event is seperate from the timeout associated with an SRB. If you set atimeout on an SRB
and then set an infinite timeout in Wi t For Si ngl eObj ect onthe SRB event, then the SRB will STILL
TIMEOUT and signal completion of the SRB. Conversely, if you set a 30 hour timeout on the SRB and a5
second timeout on the event, the event will always go signaled before the SRB compl etes, and no cleanup of the
SRB on the bus will take place.

November 6, 2001 27 Adaptec

Examples

Thefirst exampleillustrates how wildcards work with set timeout. The main point here isthat the wildcards are
specific. In other words, setting the Hald to OxFF does not make SRB_Tar get / SRB_Lun "don't cares".

HA ID LN Device Affected

00 01 FF All of target 1'sluns on host adapter 0.

FF 00 FF All lunsontargetswith ID 0 on any host adapter.

FF FF 00 Lun O of all targets on any host adapter.

FF FF FF All targets on any host adapter with any lun number (everything).

Next isan examplein which all LUNs on target 5, host adapter 0 are set to 10 seconds:
SRB Get Set Ti meout s srbGet Set Ti neout s;

nenset (&rbGet Set Ti meout's, 0, sizeof (SRB_Get Set Ti neouts));
srbGet Set Ti neout s. SRB Ond = SC GETSET_TI MEQUTS

srbGet Set Ti neouts. SRB Fl ags = SRB DR QUT;

srbGet Set Ti meout s. SRB Target = 0x05;

srbGet Set Ti neout s. SRB Lun = OxFF;

srbGet Set Ti neout s. SRB Ti neout = 10*2;

SendASPI 32Command((LPSRB) &srbGet Set Ti neout s) ;
if(srbGetSetTimeouts. SRB Status !'= SS GOWP)
{

}

/1 Error setting tineouts. Put error handling code here.

November 6, 2001 28 Adaptec

GetASPI32Buffer

Get ASPI 32Buf f er allocates blocks of memory (up to 512KB) which are “ safe” for usein ASPI modules.
Under normal circumstances memory buffers from the stack or allocated with Virtual Alloc will be too physically
fragmented to allow atransfer greater than 64K B on bus-mastering host adapters. For those rare instances
where alargetransfer isrequired, Get ASPI 32Buf f er allowsabuffer to be allocated which will passall
operating system requirements for physical continuity.

BOCL Get ASPI 32Buf fer (PASPI 32BUFF pab) ;

Parameters

pab
Pointer to afilled out ASPI32BUFF structure.
t ypedef struct

{
LPBYTE AB Buf Pointer; /!l Pointer to the ASPl allocated buffer
DWRD AB Buflen; /1 Length in bytes of the buffer
DWRD AB ZeroFill; /1 Flag set to 1 if buffer should be
zer oed
DWRD AB Reserved,; /!l Reserved, MJST =0
}

ASPI 32BUFF, * PASPI 32BUFF;

AB_BufPointer (Output)

After asuccessful call (return value TRUE) thisfield contains the address of the large transfer buffer
which has been allocated for the application.

AB_BufLen (Input)

Set to the size, in bytes, desired for the transfer buffer. This must be less than or equal to 512KB and
should be greater than 64K B (athough there are no requirements on the low end).

AB_ZeroFill (Input)

Set thisflag to 1 if ASPI should clear the transfer buffer after allocation but before returning to the
caler. Leavetheflag setto Oif the memory can remain uninitialized.

Remarks
If you have experienced afailure to allocate a buffer, you may need to do one or al of the following:

1. Increase the non-paged pool size on your PC (allocate more RAM to non-paged pool),
2. Physicaly add more RAM to your PC.
3. Decrease the buffer size requested.

Thefirst thing to do isto increase the non-paged pool size.
1) How to increase the non-paged pool size?
i Run regedt32.exe (click Start »Run and type regedt32),

il Edit HKEY _LOCAL_MACHI NE\ SYSTEM Cur r ent Cont r ol Set\ Control\ &
Sessi onManager \ Menor yManagenent \ NonPagedPool Si ze

This parameter isaREG_DWORD (32 bits).

November 6, 2001 29 Adaptec

NOTE: If it is set to 0x00, the default minimum portion of RAM is allocated to non-paged pool.

iii. Set this parameter to Oxffffffff (the maximum portion of RAM isallocated to non-paged pool.) Reboot
the PC and try the application again.

NOTE: If GetASPI32Buffer still fails; you may not have enough physical RAM in the PC, and you
may need to physically install additional RAM.

If GetASPI32Buffer now works, then gradually decrease the non-paged pool size (by specifying the amount of
RAM allocated to non-paged pool) to optimize.

Tips

Set the NonPagedPool Size to 0x00100000 for 1 MegaByte; 0x00200000 for 2 MegaBytes; etc.

See the Microsoft Devel oper Network (MSDN) article Q126402 (www.microsoft.corm) for more information
regarding setting the non-paged pool size.

Return Values

Thisfunction returns TRUE if it successfully allocates alarge transfer buffer, and FAL SE otherwise. The caller
should assume that this call can fail, and should allow the code to work with smaller transfer buffers allocated
from VirtualAlloc (if at al possible).

Example
Thefollowing example allocates a 128K B buffer for use with ASPI.

ASPI 32BUFF ab;

nenset (&b, 0, sizeof (ASPl 32BUFF));
ab. AB Buf Len = 131072 u;

ab. AB ZeroFi |l = 1,

i f(! Get ASPI 32Buffer(&b))
{

}

/1l Unable to allocate buffer. Eror handling code goes here!

November 6, 2001 30 Adaptec

FreeASPI32Buffer

Fr eeASPI 32Buf f er releases memory previously allocated by a successful call go Get ASPI 32Buf f er .

BOCL FreeASPl 32Buf f er (PASPI 32BUFF pab);

Parameters

pab
Pointer to afilled out ASPI32BUFF structure.
t ypedef struct

{
LPBYTE AB Buf Pointer; /1l Pointer to the ASPl allocated buffer
DWMRD AB BuflLen; /1l Length in bytes of the buffer
DWRD AB ZeroFill; /!l Reserved, MJST =0
DWRD AB Reserved,; /!l Reserved, MJST =0
}

ASPI 32BUFF, * PASPI 32BUFF;

AB_BufPointer (Input)
Pointer to the buffer previously returned from a successful call to Get ASPI 32Buf f er . The address
must match exactly for the free to occur.

AB_BufLen (Input)

Set to the original size, in bytes, of the buffer allocated by a call to Get ASPI 32Buf f er. Thesize
must match exactly for the free to occur.

Return Values

Thisfunction returns TRUE if the memory allocated to the buffer has been released. FALSE isreturned if thereis
an error freeing the memory or if the passed in AB_BufPointer/AB_BufLen fields don’t match athose of a
previously allocated buffer.

November 6, 2001 31 Adaptec

TranslateASPI32Address

Tr ansl at eASPI 32Addr ess providestranslation between Windows 98 DEVNODEs and ASPI HA/ID/LUN
triples (or vice versa). Because DEVNODEs are associated with WM_DEVICECHANGE messages, it ispossible
to use thisfunction to associate ASPI target addresses with Plug and Play events.

BOCL Transl at eASPI 32Addr ess(PDWIRD pdwPat h, PDWIRD pdwDEVNCDE) ;

Parameters

pdwPath (Input/Output)

Pointer to a ASPI address“path.” The pathis simply apacked version of an ASPI addresstriple. Every
target addressin ASPI consists of ahost adapter identifier, a SCSI 1D, and a SCSI LUN. Each of these
values consists of aBY TE, so an ASPI address “path” isa DWORD encoded as OXOOHHIILL where HH is
the host adapter identifier, 11 isthe SCSI ID, and LL isthe SCSI LUN. Notethat if Il and LL are both OxFF
then the path represents a host adapter. Thisis necessary because host adapters have their own
DEVNODEsi n the Plug and Play subsystem.

pdwDEVNODE (Input/Output)

Pointer to a DWORD which contains aWindows 98 DEVNODE ID. This parameter controls the direction of
translation. If the DWORD contains a 0 (note that this doesnot mean that pdwDEVNODE isNULL) then
trandation isfromthe ASPI tripleto the DEVNODE. If the DEVNODE is non-zero then translation isfrom
the DEVNODE toan ASPI triple.

Return Values

TRUE if thereisasuccessful translation. FALSE isreturned if the parameters are invalid or if thereisno
translation between ASPI path and Windows 98 DEVNODE.

Remarks

In order for this scheme to work properly, applications should pay attention to WM_DEVICECHANGE messages
which utilizeDBT_DEVTYP_DEVNODE device change data. The device change datatype can be detected by
checking the dcbh_devicetype field in the DEV_BROADCAST_HEADER associated with device change events.
Review the Plug and Play documentation in Win32 for more information.

November 6, 2001 32 Adaptec

Example
The function below checks broadcast datafrom aWM_DEVICECHANGE message to see if the device change
message is related to an ASPI target (but not host adapter).

BOOL CheckFor ASPI Tar get Br oadcast (PDEV_BROADCAST HDR pHeader)
{

BOCL bSt at us;
DWRD dwrar get Pat h;
DNORD dWDEVNCDE;

PDEV_BROADCAST DEVNCDE pDevnodeDat a

i f(pHeader - >dbch_devi cet ype ! = DBT_DEVTYP_DEVNCDE)
{

}

pDevnodeDat a = (PDEV_BROADCAST DEVNCDE) pHeader ;
dWDEVNCDE = pDevnodeDat a- >dbcd_devnode;

return FALSE

bSt atus = Transl at eASPl 32Addr ess(&dwTar get Pat h, &IWDEVNCDE) ;
if('bStatus || ((dwlargetPath & OxFFFF u) == OxFFFH u))

{

return FALSE
}
return TRUE

November 6, 2001 3 Adaptec

Waiting for Completion

There are two types of SRBs sent to Send ASPI 32Comrand: synchronous and asynchronous. Synchronous
SRBs are aways complete when the call to SendASPI 32Conmand returns. Asynchronous SRBs, however,
may or may not be complete upon return from the Send ASPI 32Conmand call.

When called with an asynchronous SRB, the status return from SendASPI 32Command should be checked for
avalue of SS_PENDI NG. If the status codeisnot SS_PENDI NGthen the SRB iscompleteand it is safe to look
at its status codes, etc. If SS_PENDI NGisreturned then the SRB is still under the control of ASPI, and the
caller needsto wait for the SRB to compl ete before doing anything else with that SRB.

There are three ways of being notified that an asynchronous SRB has completed. The first and recommended
method uses event notification. The second method uses posting (a callback), and the third method uses
polling. All three completion methods are illustrated below using asimple INQUIRY command to host adapter
#0, SCSI ID #5, LUN #0.

November 6, 2001 K%} Adaptec

Event Notification

Event notification is an ideal mechanism for notifying ASPI clients of the completion of an ASPI request. ASPI
clients may efficiently block on this event until completion. Upon completion of arequest, the ASPI for Win32
manager will set the event to the signaled state. The ASPI client is responsible for making sure that the event is
amanual-reset style event which isnot in asignaled state when an ASPI request is submitted.

BYTE byl nqui ry[32] ;
DWRD dwASPI S at us;
HANDLE hevent SRB;

SRB ExecSCS Ol sr bExec;

hevent SRB = OreateEvent (NULL, TRUE, FALSE, NULL);
if('hevent SRB)
{

}

nenset (&rbExec, 0, sizeof (SRB_ExecSCS Q));
srbExec. SRB Omd = SC EXEC SCSI_ QWD

srbExec. SRB FHlags = SRB DR IN | SRB EVENT_NOII FY;
srbExec. SRB_Tar get 5;

srbExec. SRB Buf Len = 32;

srbExec. SRB Buf Poi nter = byl nquiry;

srbExec. SRB_SenselLen = SENSE LEN

srbExec. SRB_(DBLen = 6;

srbExec. SRB Post Proc = (LPVA D) hevent SRB;
srbExec. CDBByt e[0] SCSI _I NQU RY;

srbExec. CDBByt e[4] 32;

[/l GCouldn't get manual reset event, put error handling code here!

Reset Event (hevenSRB) ;
dwASPl St at us = SendASPI 32Command((LPSRB) &sr bExec) ;
if(dwASPl Status == SS PEND NG)

{
Vi t For Si ngl e(hj ect (hevent SRB, INFIN TE);
}
if(srbExec. SRB Status !'= SS COW)
{
/1l Error processing the SRB, put error handling code here.
}

November 6, 2001 35 Adaptec

Posting

Posting (or callbacks) may be used to receive notification that a SCSI request has completed. When posting is
used, ASPI for Win32 posts completion by passing control to a callback function. If you send an ASPI request
with posting enabled, the callback procedure will always be called. The post or callback routineiscalled asa
standard C function. Thecaller (in this case, the ASPI manager) cleans up the stack. The prototype for the
callback is below in the sample.

BYTE byl nqui ry[32] ;
SRB ExecSCS Ol sr bExec;

nenset (&rbExec, 0, sizeof (SRB_ExecSCS Q));
srbExec. SRB Omd = SC EXEC SCSI_QOWMD,

srbExec. SRB FHags = SRB DR IN | SRB PCSTI NG
srbExec. SRB Target = 5;

srbExec. SRB Buf Len = 32;

srbExec. SRB Buf Poi nter = byl nquiry;

srbExec. SRB_SenselLen = SENSE LEN

srbExec. SRB_ (DBLen = 6;

srbExec. SRB Post Proc = ASPI I nqui ryCal | back;
srbExec. CDBByt e[0] SCSI _I NQU RY;

srbExec. CDBByte[4] = 32;

SendASPI 32Command((LPSRB) &sr bExec);

/-k*

*** The code above is a separate thread of execution from

*** the code bel ow whi ch handl es the inquiry callback. Note that
*** the cal |l back usually signals the main thread of execution that
*** the an SRB it submtted has conpleted. In this case we aren’t
*** doi ng anything but checking for errors.

**/

VA D ASPI I nqui ryCal | back(SRB _ExecSCSI Qmd psr bExec)

{
i f(psrbExec->SRB Status '= SS OQOWP)

{
}

Il Error processing the SRB, put error handling code here.

November 6, 2001 36 Adaptec

Polling

Polling is another method of determining SCSI request completion. This method is not recommended because of
the large number of CPU cycles consumed while checking the status byte. After the command is sent and ASPI
for Win32 returns control back to the calling application, you can then poll the status byte waiting for the
command to complete. Note that this completion method isthe only oneto “break” the rule of not touching an
SRBsdata until after completion. With polling you must look at the SRB_St at us bytein order to tell when the
SRB iscomplete. You are still prohibited from accessing any other fields of the SRB.

BYTE byl nqui ry[32] ;
SRB ExecSCSl Qmd sr bExec;

nenset (&srbExec, 0, sizeof (SRB_ExecSCS Oml));
srbExec. SRB Omd = SC EXEC SCSI_OMD,

srbExec. SRB Flags = SRB DR IN
srbExec. SRB Target = 5;

srbExec. SRB Buf Len = 32;

srbExec. SRB_Buf Poi nter = byl nqui ry;

srbExec. SRB SenselLen = SENSE LEN

srbExec. SRB_ (DBLen = 6;

sr bExec. CDBByt e[0] SCSl _I NQU RY;

sr bExec. CDBByt e[4] 32;

SendASPI 32Conmmand((LPSRB) &sr bExec) ;
whi | e(srbExec. SRB Status == SS PENDING);

i f(srbExec. SRB Status !'= SS COWP)
{

}

/1 Error processing the SRB, put error handling code here.

November 6, 2001 37 Adaptec

ASPI for Win32 Errors

Each of these errors can be returned by ASPI for Win32 on either Windows 98/ME or Windows NT/2000/X P (32-

bit). The ASPI header filesthat wereincluded with the ASPI SDK may have codes defined which cannot be

returned by an actual ASPI implementation. These codes are in the header file to serve as placeholders for other

ASPI managers. They are not documented in thistable.

Symbol

Value

Description

SS_PENDI NG

0x00

Returned from SendASPI 32Comrand on

SC _EXEC_SCSl| _CMDand SC_RESET_DEV SRBsto
indicate that the command isin progress. Use polling,
posting, or event-notification (preferred) to wait for
completion.

SS_aow

0x01

Either returned from SendASPI 32Conmmand, or set in the
SRB_St at us field of the SRB header. Thisvalueindicates
successful completion of an SRB.

SS_ABCRTED

0x02

The current SRB was aborted either by the operating system
directly (for example, athird party does a hard reset of the
SCSl bus) or through a SC_ABORT _SRB.

SS ERR

0x04

Returned on SC_EXEC_SCSI _CMD callsif thereis ahost
adapter, SCSI bus, or SCSI target error. It indicatesthat the
caler should examine SRB_Tar gSt at and SRB_HaSt at
for additional information.

SS_INVALID O\D

0x80

The SRB_Cnd passed in an SRB isinvalid.

SS I NVALI D HA

0x81

The SRB_Hal d passedinan SRB isinvalid. Call
Get ASPI 32Support | nf o to determine the valid range of
host adaptersidentifiers.

SS_NO DEVI CE

0x82

Returned from callsto SendASPI 32Command, or setin the
SRB_St at us field of the SRB header. Thisvalueindicates
that there is no target present at the SCSI addressindicated in
the SRB. Note that thisisnot a selection timeout. The
operating system keeps atable of known devices and does
not permit commands to “ non-existent” devices. This code
could bereturned if an operating system rescan of the SCSI
busis required to detect a newly powered on device.

SS_I\VALI D_SRB

OxEO

An SRB sent to ASPI had avalid address and avalid
command byte, but it was somehow faulty in another way.
The exact cause of the failureis dependent on the SRB type.
For example, an SC_EXEC_SCSI _CVD SRB may fail if an
invalid flag issetinthe SRB_FI ags word, if abuffer length
is specified but thereisaNULL buffer pointer, or if ASPI
detects an SRB has been reused. In any case, the code
creating the SRB is faulty and needs to be analyzed.

SS BUFFER ALI GN

November 6, 2001

OxEL

SRB data buffers must meet alignment regquirements as
returned by SC_HA | NQUI RY SRBs. If atransfer buffer
does not meet those requirements, this error isreturned.

3 Adaptec

SS | LLEGAL_MDE

OxE2

An attempt was made to start ASPI for Win32 from Win32s.
ASPI for Win32 is a pure Win32 component and cannot be
run under the Windows 3.1x Win32 subsystem.

SS_NO ASPI

OxE3

WNASPI32.DLL is present on the system, but it could not
find it's helper driver. Under Windows 98/ME APIX.VXD is
the helper driver, and under Windows NT/2000/X P (32-hit)
ASPI32.SY Sisthe helper driver. Either the ASPI installation
isinvalid, or there are resource conflicts preventing ASPI
from starting.

SSFALED INT

OxE4

A general internal failure has occurred within ASPI. Thiscan
occur during initialization or at run-time. Thiserror should
only occur if basic Windows operating services begin to fail,
in which case the whole system is unstable.

SS ASPl_| S _BUSY

OxE5

Returned either from SendASPI 32Comrand, or setin the
SRB_St at us field of the SRB header. This code indicates
that ASPI did not have enough resources to complete the
requested SRB at the present time. Thisisdifferent from
SS | NSUFFI Cl ENT_RESOURCES inthat itisusually a
temporal condition, and the failed SRB may be retried at a
later time.

SS_BUFFER TOD Bl G

OxE6

Returned inthe SRB_St at us field of afailing SRB. The
code indicates that the buffer associated with the SRB did not
meet internal operating system constraints for avalid transfer
buffer. For example, abuffer >64KB on abus-mastering
controller will usually fail with this error becauseit is not
physically contiguous enough to be described by a
scatter/gather list.

SS_M SVATGHED COMPCNENTS

OxE7

ASPI for Win32 consists of three components under
Windows 98: WNASPI32.DLL, APIX.VXD, and
ASPIENUM.VXD. It consists of two components under
Windows NT: WNASPI32.DLL, ASPI32.SYS. Eachof these
components has a version number, and all the version
numbers on a particular platform must agree for ASPI to
function. Thiserror will only occur if the installation has
been corrupted, and components with different version
numbers have been installed on the system. The only fix for
thisisto remove all of the ASPI components for that
operating system, and then reinstall afull, consistent set of
ASPI drivers.

SS_NO_ADAPTERS

OxE8

Returned from Get ASPI 32Support | nf o if ASPI has
initialized successfully, but there are no host adapters on the
system. Itisstill possible that an adapter may become active
through Plug and Play, so alack of manageable host adapter
isno longer considered an error asit wasin previous
versions of ASPI.

SS I NSUFFI O ENT_RESORCES

OxE9

The error occurs only during initialization if there are not
enough system resources (memory, event handles, critical
sections, etc.) to fully initialize ASPI. If thiserror occursitis
likely that the system is critically low on memory.

November 6, 2001

39 Adaptec

