
Q:    What's a shlib, and how does it affect me?

A:    A shlib is a shared library.    It is a library that contains object code that several 
executable files may use simultaneously.      When a program is linked or compiled 
with a shared library, the library code that defines the external references are not 
copied into the object file.    Instead it binds the address to a branch table which 
points to the actual code.

Shared libraries help save disk storage because the a.out files don't contain copies of 
the archive.    It also saves memory at runtime because the a.out files point to one 
copy of the code.    It helps to keep all applications up to date, because when a 
shared library is replaced, all applications use the new version without needing to be 
recompiled.    Unfortunately,    it is harder to maintain a shared library because there 
are more things that need to remain constant in order for new versions to be 
compatible.



There are two parts in a shared library, the host library and the runtime library.    The 
host library gets linked in at compile time.    It's something like /usr/lib/libNeXT_s.a.    
(Note that there should also be a regular archive library that has all the profiling 
information in itÐ/usr/lib/libNeXT_p.a.)    The runtime or target library contains the 
branch table and the actual code.    It must be installed on the machine in order for 
the application to execute.    It's something like /usr/shlib/libNeXT_s.C.shlib.    In this 
particular case,    C is the version letter.

When compiled with -lNeXT_s, an a.out contains the name of the file that it needs to 
use at runtime.    The otool program, with the -L option, shows which runtime libraries 
it expects.    (See the otool man page.)

The first application that touches the shared library pulls it into memory.    All others 
after that point to that copy in memory.

QA402



Valid for 1.0, 2.0, 3.0


