
Q:    What are timer events useful for?    How are they different from timed entries?

A: These two different event-handling features are often confused because of the similarities of their 
names.    However, they are intended for different uses.    A timed entry is used for scheduling regular 
periodic activities in your application.    See ../AppKit/timed_entries.rtf for more information about timed 
entries.    A timer event is used in conjunction with a modal loop when an application must continue to 
do something even when no user events are being received.    Modal loops are used to temporarily 
circumvent the primary application loop.    The loop is triggered by an event such as a mouse down 
event, and is terminated when a specific event is encountered, such as a mouse up event.

The scroll buttons in the standard NeXT Scroller use a timer event in a modal loop to scroll 
continuously while the mouse button is held down.    When the Scroller receives a mouse down event 
on a scroll button, it begins to scroll the contents of the view.      While the user is simply holding down 
the mouse button, no events are generated.    The application must continue to scroll the view, even 
though the events have stopped.    This is when timer events come into play.    Once you start a timer, it 
will insert timer events into the queue at regular time intervals.    These events are ªdummyº events 
Ðthe user has not actually done something (moved the mouse, hit a key, let the mouse up, etc) but the 
event indicates that a certain time interval has passed since the last event.    Turn on the timer as the 
modal loop begins, and turn it off when the modal loop terminates.    (If you forget to turn it off, you may 
suffer performance problems because of the extra event processing!)      During the execution of the 
modal loop, you call getNextEvent: with the appropriate event mask to receive timer events as they 
are generated and do the desired processing for each one.      Here is an example of a modal loop 
which implements the scrolling behavior described above:



- mouseDown:(NXEvent *) thisEvent
{

int shouldLoop = YES;
int oldMask;
NXTrackingTimer myTimer;
NXEvent *nextEvent, lastEvent;

oldMask = [window addToEventMask:NX_LMOUSEDRAGGEDMASK];
lastEvent = thisEvent;
NXBeginTimer(&myTimer, 0.05, 0.05);

while (shouldLoop) {
nextEvent = [NXApp getNextEvent:(NX_LMOUSEUPMASK

| NX_LMOUSEDRAGGEDMASK
| NX_TIMERMASK)];

switch (nextEvent->type) {
case NX_LMOUSEUP:

shouldLoop = NO;
break;

case NX_LMOUSEDRAGGED:
lastEvent = *nextEvent;
break;

case NX_TIMER:
[self autoscroll:&lastEvent];
break;

default:
break;

}
}



NXEndTimer(&myTimer);
[window setEventMask:oldMask];
return self;

}

The code segment above was taken directly from the Concepts manual of the NeXT System Reference 
Manual.    For more complete information about modal loops and timer events, please read Concepts 
Chapter 7.

In /NextDeveloper/Examples/AppKit there are two example programs (ScrollDoodScroll and Draw) 
which show how to use timer events with modal loops and give you an impression as to why they are 
useful. 

Valid for 1.0, 2.0, 3.0

QA651


