
NXApp, Summer 1994. Volume 1, Issue 3. Copyright ã1994 by NeXT Computer, Inc.    All Rights Reserved.

Sneak Preview: The New Foundation Kit

written by    NeXT Developer Publications

The Foundation Kit is a new set of Objective C classes that provides useful
primitive
object classes, and introduces several paradigms to avoid confusion in common
situations and introduce consistency across class hierarchies.

INTRODUCTION
The Foundation Kit defines a base layer of Objective C classes for OpenStepä. In addition to
providing useful primitive object classes, it introduces paradigms that define functionality not
covered by the Objective C language. The Foundation Kit is designed with these goals in
mind:

´ Provide a small set of basic utility classes

´ Make software development easier by introducing consistent conventions
 for things such as deallocation

´ Support Unicode strings, object persistence, and object distribution

´ Provide a level of operating system independence, to ensure portability

The Foundation Kit includes the root object class; classes representing basic data types
such as strings and byte arrays, and collections of other objects; and classes representing
system information such as dates and communication ports between applications.

The Foundation Kit introduces several paradigms to avoid confusion in common situations
and to introduce a level of consistency across class hierarchies. This is done with some
standard policies, such as that for object ownership (that is, who's responsible for disposing
of objects), and with Objective C protocols like NSEnumerator. These new paradigms reduce

the number of special and exceptional cases in the API, and allow you to code more
efficiently by reusing the same mechanisms with various kinds of objects.

Some of these design goals (especially the last one) are longer-term and haven't been completely achieved
in the first release of Foundation Kit. For example, although applications can work with Unicode strings,
there's no support for displaying text in Unicode's wide range of characters or for getting Unicode input from
the user.

FOUNDATION KIT CLASSES AND PROTOCOLS
The OpenStep class hierarchy is rooted in the Foundation Kit's NSObject class (see Figure
7). The remainder of the Foundation Kit consists of several related groups of classes as well
as a few individuals. Most of the groups form what are called class clustersÐabstract classes
that work as umbrella interfaces to a versatile set of private subclasses. NSString and
NSMutableString, for example, act as brokers for instances of various private subclasses
optimized for different kinds of storage needs. Depending on the method you use to create a
string, an instance of the appropriate optimized class will be returned to you. See ªClass
Clustersº for a full treatment of this concept.

F0.eps ,

Figure 7:    The Foundation Kit class inheritance hierarchy

The first group of classes handles object storage. They hold arrays of objects or bytes, or
store objects by key. The NSValue and NSNumber classes allow you to store arrays of
simple C data values in an NSArray or other storage object.

The next group of classes represents text strings and characters. The NSCharacterSet
classes represent various groupings of characters in the NSString and NSScanner classes.
The NSString classes represent text strings and provide methods for searching, combining,
and comparing strings. An NSScanner is used to scan numbers and words from an NSString
object.

NSAutoreleasePools are used to implement the delayed-release feature of the Foundation
Kit, as described in ªObject Ownership and Automatic Disposal.º

The NSDate and NSTimeZone classes store times and dates. They offer methods for
calculating dates and time differences, for displaying dates and times in many formats, and
for adjusting times and dates based on location in the world.

The Foundation Kit defines only a few protocols, the most significant of which is the
NSObject
protocol. It declares the methods that any object must implement to be considered a ªfirst-
classº object. The other protocols include NSCopying and NSMutableCopying, which declare
methods for making copies of objects. The two separate protocols allow for making
immutable or mutable copies of objects that may or may not be mutable.

Final determination of which classes are public and private hasn't yet been made. You may see header files
for other classes in the Foundation Kit header file directory and some classes listed here may not appear in
the header files.

OBJECT OWNERSHIP AND AUTOMATIC DISPOSAL
Note As a preface to this discussion, note that in Foundation you implement a dealloc
method instead of a free method. dealloc is always invoked indirectly through release,
which you use in place of free. So, you speak of ªreleasingº an object instead of ªfreeingº it.
These terms and
methods will be introduced in a new Objective C document.

In an Objective C program objects are constantly creating and disposing of other objects.
Much
of the time an object creates things for private use and can dispose of them as it needs.
However, when an object passes something to another object through a method invocation,
the lines of ownershipÐand responsibility for disposalÐblur. Suppose, for example, that you
have a Gadget object that contains a number of Sprocket objects, which another object
accesses with this method:

± (NSArray *)sprockets

This declaration says nothing about who should release the returned array. If the Gadget
object returned an instance variable, it's responsible; if the Gadget created an array and
returned it, the recipient is responsible. This problem applies both to objects returned by a
method and objects passed in as arguments to a method.

Ideally a body of code should never be concerned with releasing something it didn't create.
The Foundation Kit therefore sets this policy: If you create an object you alone are
responsible for releasing it. If you didn't create the object, you don't own it and shouldn't
release it.

When you write a method that creates and returns an object, then, that method is
responsible
for releasing the object. It's clearly not fruitful to dispose of an object before the recipient of
the object gets it, however. What's needed is a way to mark an object for later release, so
that it will be properly disposed of after the recipient has had a chance to use it. The
Foundation Kit provides just such a method.

Marking objects for disposal
The autorelease method, defined by NSObject, marks the receiver for later release. By
autoreleasing an objectÐthat is, by sending it an autorelease messageÐyou declare that
you don't need the object to exist beyond the scope you sent autorelease in. When your
code completely finishes executing and control returns to the application object (that is, at
the end of the event loop), the application object releases the object. The sprockets
methods above could be implemented in this way:

± (NSArray *)sprockets
{

NSArray *array;

array = [[NSArray alloc] initWithObjects:mainSprocket,
 auxiliarySprocket, nil];

return [array autorelease];
}

When another method gets the array of Sprockets, that method can assume that the array
will be disposed of when it's no longer needed, but can still be safely used anywhere within
its scope (with certain exceptions; see ªValidity of Shared Objectsº). It can even return the
array to its invoker, since the application object defines the bottom of the call stack for your
code. The autorelease method thus allows every object to use other objects without
worrying about disposing of them.

Note Just as it's an error to release an object after it's already been deallocated, it's an error
to send so many autorelease messages that the object would later be released after it had
already been deallocated. You should send release or autorelease to an object only as
many times as are allowed by its creation (one) plus the number of retain messages you
have sent it (retain messages are described in the next section).

Retaining objects
There are times when you don't want a received object to be disposed of; for example, you
may need to cache the object in an instance variable. In this case, only you know when the
object is no longer needed, so you need the power to ensure that the object is not disposed
of while you are still using it. You do this with the retain method, which stays the effect of a
pending autorelease (or preempts a later release or autorelease message). By retaining an
object you ensure that it won't be deallocated until you're done with it. For example, if your
object allows its main Sprocket to be set, you might want to retain that Sprocket like this:

± (void)setMainSprocket:(Sprocket *)newSprocket
{

[mainSprocket autorelease];
mainSprocket = [newSprocket retain]; /* Claim the new Sprocket. */
return;

}

Now, setMainSprocket: might get invoked with a Sprocket that the invoker intends to keep
around, which means your object would be sharing the Sprocket with that other object. If that
object changes the Sprocket, your object's main Sprocket changes. You might want that, but
if your Gadget needs to have its own Sprocket the method should make a private copy:

± (void)setMainSprocket:(Sprocket *)newSprocket
{

[mainSprocket autorelease];
mainSprocket = [newSprocket copy]; /* Get a private copy. */
return;

}

Note that both of these methods autorelease the original main Sprocket, so they don't need
to check that the original main Sprocket and the new one are the same. If they simply

released the original when it was the same as the new one, that Sprocket would be released
and possibly deallocated, causing an error as soon as it was retained or copied. Although
they could store the old main Sprocket and release it later, that kind of code tends to be
slightly more complex. For example:

± (void)setMainSprocket:(Sprocket *)newSprocket
{

Sprocket *oldSprocket = mainSprocket;
mainSprocket = [newSprocket copy];
[oldSprocket release];
return;

}

Validity of shared objects
The Foundation Kit's ownership policy limits itself to the question of when you have to
dispose of an object; it doesn't specify that any object received in a method must remain
valid throughout that method's scope. A received object nearly always becomes invalid when
its owner is released, and usually becomes invalid when its owner reassigns the instance
variable holding that object. Any method other than release that immediately disposes of an
object is documented as doing so.

For example, if you ask for an object's main Sprocket and release the object, you have to
consider the main Sprocket gone, because it belonged to the object. Similarly, if you ask for
the main Sprocket and then send setMainSprocket: you can't assume that the Sprocket you
received remains valid:

Sprocket *oldMainSprocket;
Sprocket *newMainSprocket;

oldMainSprocket = [myObject mainSprocket];

/* If this releases the original Sprocket... */
[myObject setMainSprocket:newMainSprocket];

/* ...then this causes the application to crash. */
[oldMainSprocket anyMessage];

setMainSprocket: may release the object's original main Sprocket, possibly rendering it

invalid. Sending any message to the invalid Sprocket would then cause your application to
crash. If you need to use an object after disposing of its owner or rendering it invalid by some
other means, you can retain and autorelease it before sending the message that would
invalidate it:

Sprocket *oldMainSprocket;
Sprocket *newMainSprocket;

oldMainSprocket = [[[myObject mainSprocket] retain] autorelease];
[myObject setMainSprocket:newMainSprocket];
[oldMainSprocket anyMessage];

Retaining and autoreleasing oldMainSprocket guarantees that it will remain valid
throughout your scope, even though its owner may release it when you send
setMainSprocket:.

Summary
Now that the concepts behind the Foundation Kit's object ownership policy have been
introduced, they can be expressed as a short list of rules:

´ If you allocate, copy, or retain an object, you are responsible for releasing the newly
created object with release or autorelease. Any other time you receive an object, you're
not responsible for releasing it.

´ A received object is normally guaranteed to remain valid within the method it was received
in. That method may also safely return the object to its invoker.

´ If you need to store a received object in an instance variable, you must retain or copy it.

´ Use retain and autorelease when needed to prevent an object from being invalidated as
a normal side-effect of a message.

CLASS CLUSTERS
The Foundation Kit's architecture makes extensive use of class clusters. Class clusters
group a number of private, concrete subclasses under a public, abstract superclass. The
grouping of classes in this way simplifies the publicly visible architecture of an object-
oriented kit without reducing its functional richness.

Simple concept, complex interface
To illustrate the class cluster architecture and its benefits, consider the problem of
constructing a class hierarchy that defines objects to store numbers of different types (chars,
ints, floats, doubles). Since numbers of different types have many features in common
(they can be converted from one type to another and can be represented as strings, for
example), they could be represented by a single class. However, their storage requirements
differ, so it's inefficient to represent them all by the same class. This suggests the
architecture shown in Figure 8.

F2_SimpleHeirarchy.eps ¬
Figure 8:    A simple hierarchy for number classes

Number is the abstract superclass that declares in its methods the operations common to its
subclasses. However, it doesn't declare an instance variable to store a number. The
subclasses declare such instance variables and share in the programmatic interface
declared by Number.

So far, this design is relatively simple. However, if the commonly used modifications of these
basic C types are taken into account, the diagram looks more like the one in Figure 9.

F3_CompleteHeirarchy.eps ¬

Figure 9:    A more complete number class hierarchy

The simple conceptÐcreating a class to hold number valuesÐcan easily burgeon to over a
dozen classes. The class cluster architecture presents a design that reflects the simplicity of
the concept.

Simple concept, simple interface
Applying the class cluster design to this problem yields the hierarchy shown in Figure 10
(private classes are in gray).

881924_F4_ClassCluster.eps ¬

Figure 10:    Class cluster architecture applied to number classes

Users of this hierarchy see only one public class, Number, so how is it possible to allocate
instances of the proper subclass? The answer is in the way the abstract superclass handles
instantiation.

Creating instances
The abstract superclass in a class cluster must declare methods for creating instances of its
private subclasses. It's the superclass's responsibility to dispense an object of the proper
subclass based on the creation method that you invokeÐyou don't, and can't, choose the
class of the instance.

In the Foundation Kit, you generally create an object by invoking a + className... method or
the alloc... and init... methods. Taking the Foundation Kit's NSNumber class as an example,
you could send these messages to create number objects:

NSNumber *aChar = [NSNumber numberWithChar:'a'];
NSNumber *anInt = [NSNumber numberWithInt:1];
NSNumber *aFloat = [NSNumber numberWithFloat:1.0];
NSNumber *aDouble = [NSNumber numberWithDouble:1.0];

(This style of instantiation creates objects that will be deallocated automaticallyÐsee ªObject
Ownership and Automatic Disposalº earlier in this article for more information. Many classes
also provide the standard alloc... and init... methods to create objects that require you to
manage their deallocation.)

Each object returnedÐaChar, anInt, aFloat, and aDoubleÐmay belong to a different private
subclass (and in fact does). Although each object's class membership is hidden, its interface
is public, being the interface declared by the abstract superclass, NSNumber.

You could consider the aChar, anInt, aFloat, and aDouble objects to be instances of the
NSNumber class, since they're created by NSNumber class methods and accessed through
instance methods declared by NSNumber. However, this isn't precisely correct, as explained
above, so this documentation uses a shorthandÐa lowercase version of the class nameÐto
refer to such objects. Thus, the aChar, anInt, aFloat, and aDouble objects are called number
objects.

Class clusters with multiple public superclasses
In the example above, one abstract public class declares the interface for multiple private
subclasses. This is a class cluster in the purest sense. It's also possible, and often desirable,
to have two (or possibly more) abstract public classes that declare the interface for the
cluster. This is evident in the Foundation Kit, which includes the clusters listed in Figure 11.

Class cluster Public superclasses Name of instance
NSData NSData data object

NSMutableData mutable data object
NSArray NSArray array object

NSMutableArray mutable array object
NSDictionary NSDictionary dictionary object

NSMutableDictionary mutable dictionary object
NSString NSString string object

NSMutableString mutable string object
NSValue NSValue value object

NSNumber number object
Figure 11:    Abstract public classes for class clusters

Other clusters of this type also exist, but these clearly illustrate how two abstract nodes
cooperate in declaring the programmatic interface to a class cluster. In each of these
clusters, one public node declares methods that all cluster objects can respond to, and the
other node declares methods that are appropriate only for cluster objects that allow their
contents to be modified.

This factoring of the cluster's interface helps make an object-oriented kit's programmatic
interface more expressive. For example, imagine a Book object that declares this method:

- (NSString *)title;

The Book object could return its own instance variable or create a new string object and
return thatÐit doesn't matter. It's clear from this declaration that the returned string can't be
modified. Any attempt to modify the returned object will elicit a compiler warning.

Creating subclasses within a class cluster
The class cluster architecture involves a trade-off between simplicity and extensibility:
Having a few public classes stand in for a multitude of private ones makes it easier to learn

and use the classes in a kit but somewhat harder to create subclasses within any of the
clusters. However, if it's rarely necessary to create a subclass, then the cluster architecture is
clearly beneficial. Clusters are used in the Foundation Kit in just these situations.

If you find that a cluster doesn't provide the functionality your program needs, then a
subclass may be in order. For example, imagine that you want to create an array object
whose storage is file-based rather than memory-based as in the NSArray class cluster. Since
you are changing the underlying storage mechanism of the class, you'd have to create a
subclass.

On the other hand, in some cases it might be sufficient (and easier) to define a class that
embeds within it an object from the cluster. Let's say that your program needs to be alerted
whenever some data is modified. In this case, creating a simple cover for a data object that
the Foundation Kit defines may be the best approach. An object of this class could intervene
in messages that modify the data, intercepting the messages, acting on them, and then
forwarding them to the embedded data object.

In summary, if you need to manage your object's storage, create a true subclass. Otherwise,
create a composite object, one that embeds a standard Foundation Kit object in an object of
your own design. The sections below give more detail on these two approaches.

A true subclass
A new class that you create within a class cluster must:

· Be a subclass of the cluster's abstract superclass

· Declare its own storage

· Override the superclass's primitive methods

Since the cluster's abstract superclass is the only publicly visible node in the cluster's
hierarchy, the first point is obvious. This implies that the new subclass will inherit the cluster's
interface but no instance variables, since the abstract superclass declares none. Thus the
second point: The subclass must declare any instance variables it needs. Finally, the
subclass must override any method it inherits that directly accesses an object's instance
variables. Such methods are called primitive methods.

A class's primitive methods form the basis for its interface. For example, take the NSArray

class, which declares the interface to objects that manage arrays of objects. In concept, an
array stores a number of data items, each of which is accessible by index. NSArray
expresses this abstract notion through its two primitive methods, count and objectAtIndex:.
With these methods as a base, other methodsÐderived methodsÐcan be implemented, for
example:

´ lastObject Find the last object by sending the array object this message:
[self objectAtIndex:[self count] ±1]

´ containsObject Find an object by repeatedly sending the array object an objectAtIndex:
message, each time incrementing the index until all objects in the array have been

tested

The division of an interface between primitive and derived methods makes creating
subclasses easier. Your subclass must override inherited primitives, but having done so can
be sure that all derived methods that it inherits will operate properly.

The primitive-derived distinction applies to the interface of a fully initialized object. The
question of how init... methods should be handled in a subclass also needs to be addressed.

In general, a cluster's abstract superclass declares a number of init... and + className
methods. As described in ªCreating Instancesº earlier in this article, the abstract class
decides which
concrete subclass to instantiate based on your choice of init... or + className method. You
can consider that the abstract class declares these methods for the convenience of the
subclass.
Since the abstract class has no instance variables, it has no need of initialization methods.

Your subclass should declare its own init... (if it needs to initialize its instance variables) and
possibly + className methods. It should not rely on any of those that it inherits. To maintain
its link in the initialization chain, it should invoke its superclass's designated initializer within
its own designated initializer method. (See the NEXTSTEP Object-Oriented Programming
and the Objective C Language manual for a discussion of the designated initializers.) Within
a class
cluster, the designated initializer of the abstract superclass is always init.

True subclasses: an example
An example will help clarify the foregoing discussion. Let's say that you want to create a

subclass of NSArray, named MonthArray, that returns the name of a month given its index
position. However, a MonthArray object won't actually store the array of month names as an
instance variable. Instead, the method that returns a name given an index position
(objectAtIndex:) will return constant strings. Thus, only 12 string objects will be allocated,
no matter how many MonthArray objects exist in an application.

The MonthArray class is declared as:

#import <NSFoundationKit/NSFoundationKit.h>
@interface MonthArray : NSArray
{
}

+ array;
- (unsigned)count;
- objectAtIndex:(unsigned)index;

@end

Note that the MonthArray class doesn't declare an init... method since it has no instance
variables to initialize. For convenience, it declares the array method so that users can easily
create autoreleased instances. The count and objectAtIndex: methods simply cover the
inherited primitive methods, as described above.

The implementation of the MonthArray class looks like this:

#import "MonthArray.h"

@implementation MonthArray

static NSString *Months[] = { @"January", @"February", @"March",
@"April", @"May", @"June", @"July", @"August", @"September",
@"October", @"November", @"December" };

+ array
{

return [[[self alloc] init] autorelease];
}

- (unsigned)count

{
return (sizeof(Months) / sizeof(Months[0]));

}

- objectAtIndex:(unsigned)index
{

if (index < [self count]) {
return Months[index];

}
NSRaise(NSRangeException, @"*** %s: index (%d) beyond bounds

0 to %d)", sel_getName(_cmd), index, [self count] - 1);
return nil; /* Should never get here */

}

@end

Since MonthArray overrides the inherited primitive methods, the derived methods that it
inherits will work properly without being overridden. NSArray's lastObject, containsObject:,
sortedArrayUsingSelector:, objectEnumerator, and other methods work without problems
for MonthArray objects.

A composite object
By embedding a private cluster object in an object of your own design, you create a
composite object. This composite object can rely on the cluster object for its basic
functionality, intercepting only messages that it wants to handle in some particular way.
Using this approach reduces the amount of code you must write and lets you take advantage
of the tested code provided by the Foundation Kit.

Figure 12 shows how one might view a composite object:

F5_CompositeObj.eps ¬

Figure 12:    Embedding a cluster object
The composite object must declare itself to be a subclass of the cluster's abstract node. As a
subclass, it must override the superclass's primitive methods. It can also override derived
methods, but this isn't necessary since the derived methods work through the primitive ones.

Using NSArray's count method as an example, the intervening object's implementation of a

method it overrides can be as simple as:

- (unsigned)count
{

return [embeddedObject count];
}

However, your object could put code for its own purposes in the implementation of any
method it overrides.

An intervening object: an example
To illustrate the use of an intervening object, imagine you want a mutable array object that
tests changes against some validation criteria before allowing any modification to the array's
contents. The example that follows describes a class called ValidatingArray, which contains a
standard mutable array object. ValidatingArray overrides all of the primitive methods
declared in its superclasses, NSArray and NSMutableArray. It also declares the array,
validatingArray, and init methods, which can be used to create and initialize an instance:

#import <foundation/foundation.h>

@interface ValidatingArray : NSMutableArray
{

NSMutableArray *embeddedArray;
}

+ array;
+ validatingArray;
- init;
- (unsigned)count;
- objectAtIndex:(unsigned)index;
- (void)addObject:object;
- (void)replaceObjectAtIndex:(unsigned)index withObject:object;
- (void)removeLastObject;
- (void)insertObject:object atIndex:(unsigned)index;
- (void)removeObjectAtIndex:(unsigned)index;

@end

The implementation file shows how, in a ValidatingArray's init method, the embedded object

is created and assigned to the embeddedArray variable. Messages that simply access the
array but don't modify its contents are relayed to the embedded object. Messages that could
change the contents are scrutinized (here in pseudocode) and relayed only if they pass the
hypothetical validation test.

#import "ValidatingArray.h"

@implementation ValidatingArray

- init
{

embeddedArray = [[NSMutableArray array] retain];
return self;

}

+ array
{

return [self validatingArray];
}

+ validatingArray
{

return [[[self alloc] init] autorelease];
}

- (unsigned)count
{

return [embeddedArray count];
}

- objectAtIndex:(unsigned)index
{

return [embeddedArray objectAtIndex:index];
}

- (void)addObject:object
{

if (/* modification is valid */) {
[embeddedArray addObject:object];

}

}

- (void)replaceObjectAtIndex:(unsigned)index withObject:object;
{

if (/* modification is valid */) {
[embeddedArray addObject:object];

}
}
- (void)removeLastObject;
{

if (/* modification is valid */) {
[embeddedArray removeLastObject];

}
}
- (void)insertObject:object atIndex:(unsigned)index;
{

if (/* modification is valid */) {
[embeddedArray insertObject:object atIndex:index];

}
}
- (void)removeObjectAtIndex:(unsigned)index;
{

if (/* modification is valid */) {
[embeddedArray removeObjectAtIndex:index];

}

The Developer Publications group writes all of NeXT's developer-related publications and creates examples
for NEXTSTEP kits and frameworks. In addition, the group works with the software engineers to help ensure
high-quality, consistent, and clean APIs and user interfaces. They can be reached by e-mail at
DevPubs_feedback@next.com; they welcome comments and suggestions on this and all other
NEXTSTEP developer documentation.
__
Next Article NeXTanswer #1998        A Methodology for Message-Based Undo and Animation
Previous article NeXTanswer #2002 An Introduction to the Enterprise Objects
Framework
Table of contents http://www.next.com/HotNews/Journal/NXapp/Summer1994/ContentsSummer1994.html

