
the mysteries of binding and propagating
by Dave Cottle

Have you ever wondered how a NetInfoä domain gets linked into a domain hierarchy? Or 
how clone servers really work? To find the answers to these questions, you need to delve 
into the inner workings of NetInfo. Take a deep breath and get ready to explore the 
wondrous world of binding and propagating. 

a look at the basics
First, a quick look at some basic information about NetInfo domains. For many, this will be 
a refresher. Here are the major points to keep in mind as you unravel these mysteries:

· The information in a NetInfo domain is stored in files contained in a subdirectory of 
/etc/netinfo. Each domain has its own directory named tag.nidb. All NeXTä 
computers have a directory for the local domain called local.nidb. Computers that 
serve additional domains have additional directories. 

· The daemon process netinfod (for NetInfo daemon) serves information from a specific 
domain. When you use ps to examine system processes, you see processes of the 
form netinfod tag, where tag matches the first part of the name of a directory under 
/etc/netinfo. The process netinfod local serves information from the database tagged 



local for the local domain. Computers that serve multiple domains run multiple 
netinfod processes. 

· NetInfo domains are organized into a hierarchy, with the root domain ("/") at the top 
level and local domains at the bottom level. Requests for information always begin in 
the local domain and are passed up the hierarchy until the information is found or the 
root domain is reached. 

· Information within a domain is organized into a hierarchy of NetInfo directories. The 
top-level NetInfo directory is also called root ("/"). 

· A clone NetInfo server provides access to a read-only copy of a domain.

Figure 1 shows a three-level hierarchy of NetInfo domains. Each domain is identified by 
name (within each box) and database tag (to the left of each box). This illustration shows 
no indication of which computer serves which domain, other than the local domains. If you 
trace the hierarchy from bottom to top, you can see that the host everest has access to 
the information in its local domain, the acctng domain, and the root domain ("/"). 

figure 1:    three-level NetInfo domain hierarchy

A48_3-level.tiff ¬



the serves property
The relationship between NetInfo domains in the domain hierarchy is determined by the 
serves property. Host entries are stored in the /machines directory of a domain, and it's 
here you'll find the serves property. The serves property identifies the domains served by 
the associated host. Figure 2 shows the partial contents of the domains in a two-level 
hierarchy made up of three computers: etna, olympus, and everest. The master server for 
the root domain is olympus, and everest is a clone server.

As you can see from the illustration, a serves property has values in the form domain/tag, 
which indicates that this host serves the domain domain from a database tagged tag. 
Domains can be designated with a relative name, where . means the current domain 
and .. means the parent domain.

For example, the host entry for olympus in the root domain indicates that it serves the 
domain olympus from a database tagged local, and also serves the current domain (.) 
from a database tagged network. 

Any given domain will have at least one host entry with a serves property for the current 
domain (./tag) and might have entries for the parent domain (../tag) or child domains 
(domain/tag).



binding
Equipped with this information, we can take a look at how the domain hierarchy is built at 
boot time. Here is exactly what happens:

1. As a NeXT computer boots, the daemon process nibindd (NetInfo binding daemon) 
is started. The nibindd process searches /etc/netinfo looking for subdirectories named 
tag.nidb. For each directory it finds, nibindd starts a netinfod process. 

In the example shown in figure 2, the nibindd daemon on etna finds only one 
subdirectory in /etc/netinfo-local.nidb. As a result, the single process netinfod local is 
started.

figure 2:    the serves property in a two-level domain hierarchy

A49_2-level.tiff ¬

2. As a netinfod process starts up, it searches the /machines directory in its NetInfo 
database looking for entries with a serves property that has a value in the form ../tag. 
A serves property with such a value indicates that the associated host serves the 
parent domain (..) from a database tagged tag.

On etna, the host entry /machines/broadcasthost in the local domain has a serves 



property with the value ../network. This indicates that broadcasthost serves the parent 
domain from a database tagged network.

3. For every host entry found with a serves property value ../tag, a bind request is 
sent to the associated Internet address. The bind request includes the tag of the 
parent domain, the tag of the current domain, and the Internet address of the host 
making the request.

The host etna sends a bind request to the Internet address for 
broadcasthost-255.255.255.255. This address is the special broadcast address, 
which means that the request will be sent to every computer on the local network 
(including etna).

4. The recipients of the bind request pass the message on to their nibindd daemon. 
The nibindd process checks to see if there is a netinfod process running that serves 
NetInfo data from a database that has a tag matching the parent domain tag in the 
bind request. If a match is found, the request is passed on to the appropriate netinfod 
process.

The nibindd process on olympus, as well as the one on everest, finds that there is 
indeed a netinfod process running for a database tagged network. 



5. The receiving netinfod process searches its own /machines NetInfo directory 
looking for entries that include the Internet address of the host making the request. 
The entry is also checked to see if it has a serves property with a value in the form 
domain/tag, where tag matches the tag of the domain that sent the bind request. If a 
host entry is found that meets these requirements, a message is sent back to the host 
that made the request, indicating that the receiving domain can serve as the parent of 
the requesting domain.

The netinfod process on olympus finds a host entry for etna with an Internet address 
that matches the one in the bind request. The serves property for this host entry has 
the value etna/local, which matches the tag in the bind request. All the requirements 
are met, so olympus sends a message to etna indicating that it can serve the parent 
domain. Because everest is serving an exact copy of the domain on olympus, the 
netinfod process finds the same information and also sends a message to etna.

6. The domain that initiated the request binds to the first server that responds. From 
then on, whenever information is needed from theparent domain, the request is sent 
directly to the server that responded first to the bind request. The first request is for 
the Internet addresses of all servers of the parent domain. The /machines directory of 
the parent domain is searched again, this time for serves properties with the value 
./tag, where tag is the tag of the parent domain. The host serving the child process 
stores the Internet addresses of all parent domain servers (including the one it's 



bound to) for possible future use.

In this case, etna binds to either olympus or everest, depending on which server 
responds first. Once bound, a search of the parent domain finds that the host entry for 
olympus has a serves property with the value ./network, as does the host entry for 
everest. The Internet address of each is returned to etna.

Here's the whole thing in a nutshell: When the server for a NetInfo domain is started, it 
searches its database for hosts that are potential servers of its parent domain. A request is 
sent to each potential parent server, asking if that server can act as the parent. The child 
domain binds to the first server that sends a positive response.

rebinding
As you might have suspected, that isn't the end of the story. Unless there's only a single 
server for the parent domain, a child domain rarely stays bound to its parent forever. 
Sometimes, a parent server gets bogged down with other activities and can't respond 
quickly enough to information requests. A parent server might also become unavailable if 
it's turned off or disconnected from the network. If a child sends a request and doesn't get 
a response within a set period of time, it sends out another bind request. This time, the 
request is sent to the Internet addresses that the child stored in the last step of the binding 
process. Again, whichever server responds first becomes the parent domain server (this 
might even be the same server as before, if it's able to respond quickly enough). 



An interesting side effect of the binding process is that a new clone server won't get used 
until the client computers are rebooted. Because the Internet addresses for all the parent 
domain servers are determined at boot time, any servers for the parent domain added 
after initial binding won't be recognized. 

One other situation can cause a domain to rebind to its parent: a write request. As long as 
the child requests only read access to information, it doesn't matter if it's bound to the 
master server or a clone. However, if it makes a write request (such as when a network 
user changes passwords), it must be bound to the master server. Remember, clones 
serve a read-only copy of the database. How does a clone know it's a clone? By 
examining the master property. Each NetInfo domain has a master property in the root 
directory. The value of this property identifies the master server of the domain. Looking at 
figure 2 again, you see that the value of the master property in the root domain is 
olympus/network. This indicates that the master copy of the domain is served by the host 
olympus from the database tagged network.

propagating
At this point you may find yourself wondering, "If a clone server only has read access to 
the database, how does it maintain consistency with the master server?" Good question. 
Whenever a request to the master server results in a change to the database, the request 
is immediately passed on to all clone servers, where the change is duplicated. 



Modifications to a domain are therefore propagated almost instantly.

"But," you say, "what if the clone server is unavailable for a time and misses some 
changes?" Another good question. Whenever the daemon process for a clone server is 
started, it compares its copy of the database with the copy on the master server (for the 
curious, it uses checksum). If it finds that its database doesn't match the master, it loads a 
complete copy of the master database into its own /netinfo directory. The same 
comparison is made at least every half hour. 

With all write requests being passed to clone servers and periodic consistency checks 
made, you can feel pretty secure that your clone databases will always be in sync with the 
master.

the nitty-gritty
So far, we've been talking about a child domain binding to its parent. Now it's time to come 
clean: That's still not the whole story. When we talk about a child domain binding to its 
parent, we're talking specifically about a netinfod process binding to its parent. Many other 
processes and programs on a NeXT computer need access to the parent NetInfo domain, 
and each can bind separately. 

For example, requests for information are handled by the lookupd daemon, which 
searches not only NetInfo but also the DNS and NIS. Because lookupd never writes 



information, it never needs to bind to the master domain server. In contrast, when you use 
PrintManager to export a printer to the network, the application must have write access to 
the appropriate domain. PrintManager must bind to the master server and can do so even 
if netinfod is bound to a clone server.

in conclusion
Now you've had a peek inside the mysterious world of NetInfo binding and propagating. 
You've seen how children find their parents, how clones come into play, and how the 
different databases are kept consistent. You might feel you're gotten too many details, but 
tuck the data away in the back of your mind. Knowledge of the underpinnings of NetInfo 
can come in handy when troubles arise (or when you want to impress your friends).


