
support bulletin volume 3, issue 1 winter 1993

optimizing virtual memory with swaptab
by Alan M. Marcum

In most cases, the default configuration of the NeXT virtual memory system is
all you need. Sometimes, though, a bit of customizing can improve a
system's performance. For an explanation of the swapfile configuration, the
virtual memory system's optimizer, and using multiple swapfiles, read on.

swapping or paging?
First, a little background about the two basic types of virtual memory
management: swapping and paging. In a swapping system, all the memory
used by a given process is either entirely in primary memory (in core) or not.
If a process needs main memory, some other process will be swapped out in

its entirety. In addition, typical swapping systems require the entire process's
memory to be contiguous. Many old UNIX systems used swapping,
especially those implemented on computers that didn't provide hardware
support for paging.

Figure 1 shows swapping, with three processes (A, B, D) in main memory
and one (C) swapped out to a secondary storage area, called the backing
store. In order for process C to be run, some other process must be swapped
out first, making room for all of C. This is true even if the unoccupied main
memory is larger than process C, because the unoccupied space is split into
pieces.

figure 1: swapping

Swap_1_Swapping.eps ¬

In a paging system, a process's address space is broken into pieces called

"pages." A page is treated as a single unit, and is either in core or not in core.
But pages are treated individually, and it's not required that all of a process's
pages be in core in order for the process to be run. When a page isn't in core,
an attempt to reference data on the page causes the hardware to generate a
page fault, which asks the operating system to page in the referenced page.

Figure 2 shows paging, with four processes (A, B, C, D), all partially in and
partially out of main memory. If page B762, on backing store, is referenced by
process B, a page fault will be generated, and that page will be paged in.

figure 2: paging

Swap_2_Paging.eps ¬
Some implementations of UNIX use a hybrid swapping-paging system, in
which an entire process that's been inactive for a while (as defined by the
system) can be swapped out. This frees primary memory and provides
paging for fine-grained memory management.

what about NeXTSTEP?
Despite the names of some files and commands, the NeXTSTEP Mach-
based operating system uses only paging, not swapping, to manage virtual
memory. Why, you may ask, are things called swaptab, swapfile, and
mach_swapon? Under UNIX, the virtual memory system was enabled using
the swapon command; the Mach group at Carnegie-Mellon University called
the corresponding Mach command mach_swapon and retained the "swap"
notation throughout.

where to find the backing store
On some UNIX implementations, a hard disk partition is designated
exclusively for holding data that doesn't fit in main memory. If this backing
store area is too small, the system will frequently crash, or at least be unable
to perform requested operations. If the backing store area is too large, disk
space is wasted.

If the backing store requirements of a system change, the amount of space
allocated to the backing store partition might need to be changed. In order to
change the amount of space allocated to the backing store partition, the disk
must be reformatted, reinitialized, or repartitioned, which involves a complete
disk backup and restore. This usually takes a great deal of time and can be
disastrous if done incorrectly.

Instead of a disk partition, Mach uses an ordinary file (or files) in the file
system for its backing store. This file can grow either to some preset limit or
until the entire disk is full. In either case that growth is dynamic, in response
to increased needs for memory. The file used for the virtual memory's
backing store can be designated by the system administrator. The
mach_swapon command is used to add new backing store files; the file
/etc/swaptab is consulted during boot-up to determine the default backing
store file.

inside /etc/swaptab
The format of /etc/swaptab is documented in the on-line UNIX manual pages.
Let's use the default swaptab as an example.

#
/etc/swaptab
#
/private/vm/swapfile lowat=16777216 # 16 Meg low water mark

Comments are preceded by the # character, terminated by a new line, and
may begin anywhere on a line. Multiple entries-that is, multiple noncomment
lines-are permitted.

There are two fields in each entry in swaptab (separated by spaces or tabs):
the name of the file to be used for backing store and a list of options for this
file. Multiple options are separated by commas and no spaces. The options
include the following:

option description
lowat=size Shrink the file to an initial size of size bytes, but don't grow it

if it's smaller than that. When reclaiming space in the file,
make the file no smaller than size bytes.

prefer Enable this file as a preferred paging area. Without this
option, space from all swapfiles is used concurrently; with
this option, nonpreferred swapfiles are used only after the
preferred swapfile is full.

noauto Do not enable this file when mach_swapon-a is called.

hiwat=size Use size as the maximum size of the file. If size is zero (the
default), the file will grow as large as needed until the
swapfile's file system is full.

nocompress Do not compress pages that are written to this file (see the
next section, "the swaptimizer").

compress Force compression to be used with this file.

The default swaptab says to page on /private/vm/swapfile, using a 16MB low-
water mark (16 MB is 16x1024x1024 bytes). To force compression to be used
with this file, but leave everything else alone, use the following entry:

/private/vm/swapfile lowat=16777216,compress # 16 Meg low water
mark

the swaptimizer
Also called the paging optimizer, the swaptimizer is a new feature of
NeXTSTEP Release 3 that compresses pages as they're being sent out to
the backing store file. The assumption is that it usually takes less time to
compress a page, write the compressed page, and read and decompress the

page, than it takes to write and read the unaltered page. The faster the CPU
is relative to the disk, the greater the potential benefit of enabling the
swaptimizer.

By default, the swaptimizer is enabled if main memory is less than or equal to
12 MB on monochrome computers and 16 MB on color computers. The
compress option in swaptab forces use of the swaptimizer regardless of the
amount of main memory.

By the way, when you enable the swaptimizer, you'll see an extra
fileapparently being created on your disk. This file will have the samename as
the backing store file being used by the swaptimizer, with .front appended.
This isn't really an extra file: It's a mount point used by the swaptimizer and
actually takes up no real space on your disk. The ratio of the apparent size of
the .front file and the size of backing store file provides a measure of the
effectiveness of the swaptimizer's compression.

working with multiple swapfiles
Note that the swaptimizer can only be used with one swapfile. If you enable
paging on multiple swapfiles, only the first one with compression enabled will
be compressed. To gain the maximum benefit from the swaptimizer with
multiple swapfiles, make sure the compressed file is also noted as preferred,
or pages sent to files that don't have compression enabled won't benefit from
turning on compression.

enabling the swaptimizer
When does it make sense to override the standard behavior of the
swaptimizer? First, you should know that NeXT did a fair amount of
performance testing on the swaptimizer and found that the defaults work well
in most situations. However, individual system use varies, so specific tuning
can improve performance.

How can you tell if a system runs faster with the swaptimizer enabled?

There's no simple formula. Whether your main processor is a 68030 or
68040, you'll probably rely on feel: Does it seem faster? If you want to take
the time to build more objective benchmarks, the thing to measure is total
elapsed time to perform typical operations under typical system load.

With a 68030-based computer, it's extremely rare that turning on the
swaptimizer will be of benefit. Why? With a 68030, it will typically take longer
to compress, write, read, and decompress a page than to write the unaltered
page. Given a 33 MHz 68040 with a NeXTdimension? board and a 660 MB
disk, though, it might pay to turn on the swaptimizer. (Regardless of how
much main memory is installed, the speed of the CPU, the large size of
screen images, and the relatively slow speed of the disk may make it
worthwhile.) Enabling the swaptimizer is frequently useful with color systems,
especially color Turbo systems.

Also, if you have a small disk, or a relatively small amount of free space
remaining on your disk, enabling the swaptimizer will decease the amount of

disk space the system uses for backing store.

The swaptimizer is rarely of benefit on a machine that's primarily a server of
some sort, except perhaps for image servers (fax and print servers). Further,
if the system is typically CPU bound, the extra CPU time needed to compress
and decompress pages takes away from the critical resource on that system-
namely, CPU time.

The swaptimizer makes more sense for some configurations than for others:

system configuration or use optimize?
68030 no
Turbo with 660 MB or 330 MB disk yes
Turbo with 400 MB disk probably
color probably
servers probably not

One more note: The system's default configuration and behavior have been
optimized for most situations. Changing the system's behavior from that
default will simply optimize for some other set of conditions, which might or
might not hold for your installation. The default choices were made based on
general, expected configurations and uses.

choosing to use multiple paging files
If you have only one disk, it's unlikely you'll want to use multiple paging files:
doing so will increase your work with negligible, if any, benefit. But if you have
more than one disk, you might want to consider using multiple paging files.

Let's say, for example, that you have a relatively fast 440 MB boot diskand a
slower external disk, such as a Maxtor 660. You have maybe 80 MB available
on the boot disk and a few hundred megabytes available on the external disk.
If you use only one paging file, your system will stop running if extensive
growth of the paging file fills the boot disk. If you have a second paging file in

use, with a high-water mark set on the first paging file, your system may slow
down, but it will keep running and just switch over to the second paging file.

Here's an example of a swaptab that implements this scheme. Assume that
the external disk is mounted on /external.

Primary file, 16MB low-water, 56MB high-water
/private/vm/swapfile lowat=16777216,hiwat=58720256,prefer
Secondary file, 1KB low-water
/external/swapfile lowat=1024

The normal primary swapfile, /private/vm/swapfile, is specified: The file will be
shrunk to 16 MB when the system starts, it will grow no larger than 56 MB,
and all paging will occur to this file until it fills. At that point, paging will shift
over to /external/swapfile, which will be shrunk to 1 kilobyte when the system
starts.

turning off the use of a swapfile
In all NeXTSTEP releases, once you enable paging on a file, you can't
disable paging to that file until you reboot the system.

improving performance
You'll want to put your primary swapfile on the fastest disk available. If you
have one fast disk and one slow disk, put the primary swapfile on the fast
disk. This is true whether your system uses that disk as a boot device or
simply as an extra storage device. The greater the performance difference
between the fast disk and any other disks, the more important it is to put the
primary swapfile on the fast disk.

For more about the details of your system's use of virtual memory, see the
UNIX manual page for vm_stat. When you think about playing around with
the virtual memory system, remember: You're making trade-offs. As the
caveat goes, "Your mileage may vary."

terminology
backing store    The disk, or other secondary storage device, used to hold
data that doesn't currently fit in primary memory.

in core    In primary memory.

page    A contiguous piece of virtual memory. In NeXTSTEP Mach, a page is
8 KB (8192 bytes).

page fault    A message sent by the hardware to the operating system when a
process references a page that isn't currently in core.

page (swap) in    Move a page (process) from backing store to primary
memory.

page (swap) out    Move a page (process) from primary memory to backing
store.

primary memory    A computer's main memory (RAM).

