
NEXTSTEP In Focus, Summer 1993 (Volume 3, Issue 3). 
Copyright ã1993 by NeXT Computer, Inc.    All Rights Reserved.

The NetInfo Lookup ServerÐlookupd
Alan M. Marcum

Relatively few processes communicate directly with NetInfo. Yet, many processes 
need information that resides in NetInfo. How do these processes get that 
information? They use an intermediary: lookupd.

This article explains what lookupd is and what it does, and gives you some tips on 
spotting and fixing problems that involve it.

WHAT IS LOOKUPD?

lookupd is a daemon that simplifies the tasks of the UNIX library routines that need 
system and network administration information. These routines, such as getpwuid(), 
gethostbyname(), and getgrent(), are principally part of the C library (also known as 
libc). They access information like user names, computer addresses, and group IDs. 

lookupd gets information from NetInfo, the DNS, NIS, and the UNIX system files. 
(The UNIX system files are actually accessed as part of consulting NIS.) It uses 
Mach messages and SunRPCs to provide information to callers, usually libc 
routines.

NeXT created lookupd to avoid rewriting all the libc routines any time a new 
information service is added. If, for example, we wanted client processes to get 
network administration information from a relational database, we could modify 
lookupd so it referenced the information in the database. This would be easier than 
modifying all the appropriate libc routines to give them relational database access.

In addition to providing a centralized data access service, lookupd also caches 
some information. This caching improves system responsiveness and decreases 



network traffic.

Figure 1 shows how lookupd is used. Most client processes that need information 
get it through the libc routines. Those routines call lookupd, which gets information 
from NetInfo, the DNS, NIS, and (through NIS) the UNIX system files. Note, though, 
that lookupd doesn't prevent some client processes from accessing the information 
sources directly. Furthermore, even though most access to lookupd is through libc, 
clients can also invoke lookupd's services directly.

Fig1_Lookup_4Sources.eps ¬

Figure 1:    Clients get NetInfo, DNS, and NIS information directly or through libc 
and lookupd.

In this figure, the first client process could be one like sendmail. sendmail calls libc 
to resolve host names, NetInfo to get configuration information, and the DNS to look 
up MX records. It also consults NIS in response to NIS map access directives in its 
configuration file. 

The last process in the figure might be one like    loginwindow, which uses libc to 
do things    like look up user names. loginwindow also communicates directly with 
lookupd for cache management.

When searching for information, lookupd consults its information sources in the 
following order: 

1. lookupd's cache

2. The NetInfo domain hierarchy

3. The DNS, if appropriate

4. NIS 

This search order applies in all of NeXT's releases through NEXTSTEP 3.1. To find 
out about the DNS see Albitz and Liu 1992, and Nemeth, Snyder, and Seebass 
1989; to find out about NIS see Nemeth, Snyder, and Seebass 1989, and Stern 
1991.



LOOKUPD CACHING

There are various types of lookupd caches, and each type is flushed and refreshed 
differently. The following sections provide details.

Password entries cache

One of the caches maintained by lookupd holds the information used by the 
getpwent() library routine. This routine lists the users known to the system (see 
Computer Systems Research Group 1986 and the UNIX manual pages). lookupd 
can optionally cache the information it provides to getpwent(). The cache is enabled 
by default.

lookupd uses a ªlazy refreshº on this cache. By default, lookupd loads the cache 
when it starts, normally at boot time. It then refreshes the cache only if the cache is 
referenced. At regular intervals, lookupd checks to see whether the cache has 
been referenced, and reloads it if it has. In addition, if the cache is referenced after 
a periodic check, lookupd sends the old data to the caller, then refreshes the 
cache. (See the lookupd(8) UNIX manual page.)

To gain some perspective about this cache, consider that NEXTSTEP uses 
getpwent() only to complete a partial user name. For example, you can invoke this 
function in Workspace Manager's Finder by typing ~ followed by a partial user 
name, and pressing the Escape key. For example, if smarco is a user name, type 
ª~smarº, then press Escape. The Finder completes the name for you if the prefix 
you supplied is unique.

Logged-in user cache

The user information for the currently logged-in user and the root user are cached 
when someone logs in through loginwindow. lookupd refreshes this cache every 
20 minutes and whenever the logged-in user changes his or her password. It clears 
the cache when the user logs out.

Local host information

The host informationÐhost name and Internet addressÐfor the local computer are 
cached when lookupd starts. If these change, lookupd must be restarted, typically 



by rebooting the computer.

Printers

Information regarding available network printers is also cached by lookupd. Each 
time the printer database is accessed through lookupd, lookupd verifies the 
validity of the cache by comparing the current checksums of the source databases 
with the checksums from when the cache was last loaded. If the cache is out of 
date, lookupd reloads it and sends the new data to the caller. If the cache is 
current, lookupd just sends the data from the cache.

UNIX Groups

The cache for UNIX groups is maintained and consulted just like that for printers. It's 
referenced by the getgrent() library routine, but not by getgrnam() or getgrgid().

Other hosts

lookupd maintains a one-record cache for information about computers other than 
the local computer. The cache contains the most recently referenced host name and 
Internet address. lookupd accesses the cache in response to calls to 
gethostbyname(), but not for calls to gethostbyaddr().

Mount points

The cache for mount pointsÐlocations for imported file systemsÐis like the cache for 
printers. It's accessed for calls to getmntent().

LOOKING IT UP WITH LOOKUPD

Now let's examine what happens when an application makes a call to a library 
routine that provides system administration information. For this example, assume 
the application calls gethostbyname() to get information about a particular computer. 
The remote computer is Tute.EDU and is outside Rhino Aviation's network.

First, the application invokes gethostbyname(). This executes code in libc; the libc 
code checks to see if NetInfo is running. It is, so the libc code sends a Mach 



message to lookupd, requesting that a gethostbyname() operation be performed.

When it receives the Mach message, lookupd first checks to see if the request is 
for information about the local computer. It isn't, so lookupd then checks to see if 
the last host name referenced was Tute.EDU. If it was, lookupd would return the 
information from the cache. For this example, though, let's assume some other 
computer was referenced last.

Next lookupd consults NetInfo to get the information. This results in an 
NI_LOOKUPREAD SunRPC message to the local NetInfo serverÐnetinfod local. 
Since the information isn't in NetInfo, this call returns an error and lookupd repeats 
the process, ascending the NetInfo domain hierarchy. This may require locating an 
appropriate NetInfo server, and so could require connecting or binding. (See 
ªNetInfo Binding and Connecting.º)

Since the information isn't in NetInfo and the application process is requesting 
machine-related information, eventually lookupd consults the DNS, using the 
normal resolver library routines. In this example, it finds the information in the DNS. 
It then returns the host information for Tute.EDU, using a Mach message, to the 
gethostbyname() libc routine. The libc routine then returns the information to the 
client application.

If the information hadn't been available from the DNS, then lookupd could have 
checked NIS, using the normal NIS semantics. At Rhino, though, NIS isn't used, so 
lookupd always stops with the DNS.

MANAGING LOOKUPD

Ordinarily, you may not have to deal with lookupd directly, so you don't need to do 
anything to manage it. However, if you want to know what lookupd is doing over 
time, it can log all requests it handles. You can also restart it if it's running into 
problems or if you need to refresh caches or tallies. The following sections explain 
how to work with lookupd.

Logging lookupd requests

Beginning in NEXTSTEP Release 3.0, lookupd can log information about requests 



it receives. You can set the logging option for lookupd in the system startup script 
/etc/rc. Logging is described fully in the UNIX manual pages under lookupd(8).

For example, the arguments -L file cause lookupd to log information about requests 
it receives to the specified file. Logged information includes the called procedure, 
the number of calls to the procedure since lookupd started, the time required to 
process this request, and the total time consumed by all instances of this type of 
request. (Times are in microseconds.) When appropriate, the argument to the call is 
also logged, and the argument is prefixed with an asterisk if the data was retrieved 
from the cache. Figure 2 shows an example of lookupd logging output.

getservbyname            Ncalls: 1     Elapsed: 78    Total time: 78
gethostbyname (rhino)    Ncalls: 1     Elapsed: 32    Total time: 32
getservbyname (ntp)      Ncalls: 2     Elapsed: 108   Total time: 186
getmntent                Ncalls: 1     Elapsed: 3384  Total time: 3384
gethostbyname (sabre)    Ncalls: 2     Elapsed: 18    Total time: 50
gethostbyname (ranger)   Ncalls: 3     Elapsed: 51    Total time: 101
gethostbyname (*ranger)  Ncalls: 4     Elapsed: 0     Total time: 101
setpwent                 Ncalls: 1     Elapsed: 24    Total time: 24
getpwnam (smarco)        Ncalls: 5     Elapsed: 28    Total time: 46
setloginuser (672)       Ncalls: 1     Elapsed: 64    Total time: 64
getpwnam (*smarco)       Ncalls: 6     Elapsed: 1     Total time: 47
getmntent (*)            Ncalls: 3     Elapsed: 39    Total time: 3461
gethostbyname (ranger)   Ncalls: 5     Elapsed: 38    Total time: 406
getpwnam (*smarco)       Ncalls: 7     Elapsed: 0     Total time: 47
getpwuid (*67)           Ncalls: 8     Elapsed: 1     Total time: 27
initgroups (smarco)      Ncalls: 1     Elapsed: 239   Total time: 239
getgrent                 Ncalls: 1     Elapsed: 1407  Total time: 1407
getpwuid (*0)            Ncalls: 9     Elapsed: 0     Total time: 41
getpwnam (*root)         Ncalls: 8     Elapsed: 0     Total time: 353
gethostbyaddr            Ncalls: 1     Elapsed: 32    Total time: 32
getpwuid (22)            Ncalls: 10    Elapsed: 27    Total time: 68
gethostbyaddr            Ncalls: 2     Elapsed: 12    Total time: 44
getservbyport            Ncalls: 1     Elapsed: 49    Total time: 49

Figure 2:    Logged information about lookupd

Note that since lookupd is invoked by /etc/rc at system boot time, you have to 
modify /etc/rc and restart the system to enable logging. You can't turn logging on 
and off dynamically in either NEXTSTEP Release 3.0 or Release 3.1.



Restarting lookupd

Sometimes, you might want to restart lookupd. For example, you might want to 
force a cache to refresh, change the NetInfo servers being used, or reset the totals 
reported by the logging feature. You restart a lookupd daemon by sending it a 
ªhang-upº signal, also called a SIGHUP. 

To do this, first find the lookupd process ID number, using ps for example. Then, 
run the following command as root, substituting the process ID number for pid:

kill -HUP pid

This kills and automatically restarts lookupd.

If you were instead to try to restart lookupd by terminating it and rerunning the 
program, your computer would hang, because the library functions would be unable 
to contact the new instance. (If you ever find yourself in this state, reboot the 
computer.)

Note: The document references in this and other articles in this issue refer to the 
books and articles listed in ªNEXTSTEP Networking References.º 


