
OpenStep Journal, Spring 1995 (Volume 1, Issue 1).
Copyright ã1995 by NeXT Computer, Inc. All Rights Reserved.

Writing Device Drivers
in an Object-Oriented World
Written by        Gary Staas

The Device Driver Kitäin NEXTSTEP 3.3 provides a set of Objective C classes
and functions for creating device driver objects. It contains much of the framework
for creating various types of drivers in NEXTSTEP, and it simplifies driver
development and debugging.

HARD TO HANDLE
Writing a device driver is difficult. Yet device drivers are essential components of an I/O
subsystem: They make up the software that directly controls the peripherals, including such
vital elements as disk drives. Of all operating system software, I/O software is some of the
most difficult to understand and write because it must coordinate such inherently
asynchronous events as interrupts and device requests. It must handle these requests very
carefully to avoid race conditionsÐin which results depend on precisely when requests and
interrupts occur, instead of being well-defined. Timing requirements for various hardware
devices demand extreme care. And every device driver is unique since each hardware
device is idiosyncratic.

Fortunately for NEXTSTEP developers, using the Driver Kit to write a driver can ameliorate

or even eliminate these difficulties. The Driver KitÐpart of NEXTSTEP Developer Release
3.3Ð provides a framework for developing device drivers under NEXTSTEP. The intent of the
Driver Kit designers was to make writing a driver with the Driver Kit very similar to developing
an application with the Application Kit.

In the Driver Kit paradigm, drivers are objects. The Driver Kit provides classes for particular
kinds of drivers, such as display device drivers. These classes generalize common device
driver elements and provide as much of a device driver's software as possible without
specifying a particular hardware device, furnishing these general capabilities in a form
suitable for NEXTSTEP and its underlying Mach operating system. In other words, the driver
writer fills in the hardware-dependent ªblanksº to complete much of the driver. The Driver Kit
developers have already done much of the work of writing a NEXTSTEP device driver for
you.

Furthermore, the Driver Kit provides the framework for a driver to fit into NEXTSTEP. You
typically don't have to explicitly interface your driver with the systemÐthe operating system
does this for you automatically. The end result is that writing a driver with the Driver Kit is
easier than writing the same type of driver under UNIX.

DRIVERS AS OBJECTS
Like other NEXTSTEP kits and frameworks, the Driver Kit is written in the Objective C
language, which supports object-oriented programming. This programming approach allows
code that's common to all driversÐor to a set of drivers such as SCSI bus driversÐto be
written once and inherited by subclasses.

The Driver Kit includes a set of device classes for various kinds of drivers. You implement a
driver by creating a subclass of the appropriate device class. A Driver Kit driver is an
objectÐan instance of this subclass you've defined.

Each Driver Kit device class has a set of methods. These methods (even those that do
nothing) provide a framework for you to build on. Classes and their methods all ignore
hardware-dependent aspects of a driver. Of course, most drivers must control real hardware,
so you must implement or override the Driver Kit methods to perform their intended functions
with your hardware. You essentially ªfill in the blanksº in the methods to develop much of
your driver.

You subclass the appropriate Driver Kit device class based on the device type, such as
display, network, sound, and so on. For example, the predefined Driver Kit device class
IOEthernet supplies the capabilities of a general driver for an Ethernet card. IOEthernet has
a set of methods that are useful to Ethernet drivers. You write an Ethernet card driver by
creating a subclass of IOEthernet. You then override certain methods in the IOEthernet
superclass by writing code that performs that method's functions, using the software interface
to your particular Ethernet card. In other words, you take the generic methods your subclass
inherits from IOEthernet and implement them specifically for your hardware.

DRIVER KIT PARADIGM SIMPLIFIES WRITING DRIVERS
To appreciate why writing a device driver is difficult, consider how standard UNIX drivers
are constructed.

UNIX Drivers
A UNIX driver typically has a ªtop halfº that's accessed through a system call interface. This
portion of the driver runs in the kernel on behalf of a user process. A user process makes an
I/O request by communicating with the top half, which initiates data transfers and manages
the driver state for the duration of the operation. The ªbottom halfº of the driver handles
interrupts caused by data transfer completion or other asynchronous events and must run at
the interrupt level. Interrupts are handled by the driver's interrupt handler, which may call top-

half routines at interrupt priorities.

 UNIXDriverHalves4.eps ¬

Figure 1:    UNIX driver structure

In this model, the driver has no control of key eventsÐI/O requests and interrupts. Since I/O
requests can occur at any time, multiple requests may attempt to access the same hardware
or data structures at the same time. If the driver writer isn't extremely careful, the driver may
be prone to race conditionsÐin which results depend on the order in which requests occur,
instead of being independent of each other.

Suppose, for example, the driver changes the hardware state to perform an I/O request when
the hardware is already executing another I/O request. In the case of a disk driver, the driver
might write a hardware register to initiate a disk controller seek operation when the disk is
already transferring data to memory from a previous disk read. The results are hardware-
dependent: The current transfer may be aborted, the seek request may be ignored, or both
operations may fail. In any case, the desired disk operations won't occur. All sorts of
scenarios like this are possible. Similarly, the driver might change a table for one I/O request
in the midst of another I/O request's alterations, throwing the table into disarray.

Handling an interrupt requires changing the state of hardware and data structures, and this
can interfere with I/O requests in a fashion similar to the above scenarios. Interrupts for one
I/O request are obviously not synchronized with the events of other I/O requests. UNIX
drivers
can't control when interrupts occur; they can only control when interrupts don't occur by
disabling them.

A driver must carefully coordinate changes to the hardware and data structure state. To avoid
I/O requests stepping on each other, the driver must employ techniques such as disabling
interrupts, changing processor priority, and using locks or semaphores. For instance, the

driver could disable interrupts whenever the top half modifies a data structure that an
interrupt handler might also changeÐto prevent the interrupt handler from modifying the
structure in the middle of the top half's modifications. Otherwise, the table may be placed in
an inconsistent stateÐthe result of the two different driver halves' changes muddling or
nullifying each other.

Although these techniques protect critical resources, they present other problems. For
instance, disabling interrupts has two disadvantages. For one, if a driver disables interrupts
for too long, performance may be reduced or the system may crash. For another, if a driver
disables interrupts and fails to reenable them, the system hangs. There are many ways in
which the top half and the bottom half of the driver can interfere with themselves and each
other. Failure to take all of these scenarios into consideration can result in very obscure
bugs. However, handling all these cases can produce very complex codeÐdifficult to write,
debug, understand, and maintain.

Let's see how Driver Kit drivers deal with or avoid these difficulties.

Driver Kit Drivers
Driver Kit drivers avoid the resource contention problems of conventional UNIX drivers in
several ways. First, each driver uses only one threadÐthe I/O threadÐto access its hardware
device. All I/O threads reside in a separate kernel task, called the I/O kernel task. By default,
there's only one I/O thread for each hardware device. Only one I/O thread deals with any
hardware resource at a time. There's no need to use locks or disable interrupts to protect
access to hardware and data structures. Limiting resource access to only one thread
simplifies driver design.

Second, a driver gets I/O requests from the user thread, the driver thread that's running in
the kernel on behalf of the user. Interface methods in the driver are invoked from the user
thread. These methods communicate requests to the I/O thread by sending it Mach

messages or by other techniques, and they enqueue commands for the I/O thread to
execute. In this way, the I/O thread can handle one request at a time, instead of being
subjected to a barrage of requests to access several resources at once. Interface methods
don't perform I/O requests directly, because only the I/O thread touches hardware and other
critical resources.

Third, the operating system kernel takes all interrupts and notifies the I/O thread via Mach
messages. The I/O thread intercepts a Mach interrupt message and notifies the driver with
an interruptOccurred or interruptOccurredAt: Objective C message. The driver can delay
responding to interrupts until it's ready to deal with them. The driver may have no interrupt
handler at all (although you can register your own interrupt handler if that's required). Drivers
run at the user or I/O thread levelÐnot at interrupt level. A driver doesn't need to run with
interrupts disabled since it controls when it processes interrupts.

DRIVER KIT SCOPE
You can write drivers with the Driver Kit's predefined classes for many kinds of devices,
including displays, network cards for Ethernet and Token Ring networks, SCSI controllers
and peripherals, and sound cards.

The Driver Kit supports drivers for various buses, independently of device type:

· ISA (Industry Standard Architecture)

· EISA (Extended Industry Standard Architecture, a superset of ISA)

· PCI (Peripheral Component Interconnect)

· PCMCIA (Personal Computer Memory Card International Association)

· VL-Bus (VESA Local Bus, where VESA stands for Video Electronics Standards

Association)

A driver may have multiple personalities: The same driver may support several kinds of
buses, depending on configuration parameters.

See NEXTSTEP In Focus, Summer/Fall 1994, for more information about various PC bus architectures.

DRIVER KIT COMPONENTS
The Driver Kit consists of a set of Objective C classes and protocols, C functions, and
utilities. Objective C classes and protocols provide the framework for writing drivers. Device
type classes provide the basic capabilities to write drivers for particular kinds of devices. For
instance, the IOEthernet class provides methods to write Ethernet card drivers. Other
Objective C classes help user-level programs configure and communicate with drivers.
IODeviceDescription objects, for example, encapsulate information about devices and are
used for communicating this information throughout the operating system. C functions
provide kernel services, such as memory and time management. These functions provide the
operating system services your driver needs. Utility programs and functions allow you to load
a driver into an already running system and help you test and debug your driver.

Driver Kit Classes
Figure 2 shows the various Driver Kit classes. Note that there are three main branches in
this hierarchy.

DriverKitClasses2.eps ¬

Figure 2:    Driver Kit Classes

IODeviceDescription and IOConfigTable objects provide information about a device for the

operating system kernel and drivers. An IOConfigTable object gets configuration information
from configuration tables, such as Default.table or Instance0.table. These tables specify
the driver's configurationÐwhat bus it uses, for instance. For every device in the system,
there's
an IODeviceDescription object, which encapsulates device configuration information (using
IOConfigTable objects) and other information. The kernel initializes a driver using its
associated IODeviceDescription object.

The device classesÐthe ones you subclass to create a driverÐare all subclasses of
IODevice,
the generic device driver class. IODirectDevice classes are used to create direct device
driversÐ drivers that actually manipulate hardware, such as display cards or SCSI bus
controllers. Indirect device drivers communicate with their associated device via a direct
driver. For example, the SCSI Tape and SCSI Disk drivers are indirect drivers.

For example, a SCSI disk driver communicates with the disk drive through a SCSI controller
driver, which controls the SCSI bus, as illustrated in Figure 3.

DriverConnections.eps ¬

Figure 3:    Communication and correspondence of drivers and devices, directly and indirectly

Figure 3 also shows the one-to-one correspondence between driver objects and hardware
devices. There's one IOSCSIController driver object for the SCSI controller, and one
IOSCSIDisk driver object for each disk attached to the controller. Note the lines of
communication: The IOSCSIDisk drivers talk to the disks through the IOSCIController driver.

Finally, some ancillary classes provide services for drivers. The IONetwork class, for
instance, provides capabilities, such as tallying packet statistics, to all network drivers,
whether they're Ethernet or Token Ring drivers.

Class Components
A large part of the effort of writing a Driver Kit driver goes into augmenting the instance
variables and methods your driver subclass inherits from its superclass. You add instance
variables to your subclass to fit the needs of the device. You might create such variables as
pointers to memory-mapped hardware registers; device state from volatile or write-only
registers; driver mode or state; I/O management variables, such as queue heads or data
buffer pointers; or any per-device private data that normally goes in a UNIX driver's ªsoftcº
structure.

Your subclass inherits methods from its superclass to perform such actions as instantiating
and initializing the driver object, getting and setting values of instance variables, sending
commands to hardware, and receiving notifications such as interrupts, I/O completions, and
timeouts (through the interruptOccurred method, for instance). You can override these
methods to customize them for your hardware, and you can add new methods, too.

For example, IODevice contains the probe: method, which all drivers must override. The
probe: method gets passed an IODeviceDescription object as its parameter. A probe:
implementation queries the hardware to determine whether it's present and functioning. If the
device verifications pass, probe: creates a driver instance, invokes IODirectDevice's
initFromDeviceDescription: method to initialize the driver instance, and returns YES.
Otherwise, probe: doesn't create an instance and returns NO.

Here's a skeleton of a probe: implementation for a direct device driver of the class MyClass.
Italicized text in angle brackets (<< >>) would be filled in with device-specific code.

+ (BOOL)probe:devDesc
{

MyClass *instance = [self alloc];
IOEISADeviceDescription

*deviceDescription = (IOEISADeviceDescription *)devDesc;

if (instance == nil)
return NO;

/* Check the device description to see that we have some
 * I/O ports, mapped memory, and interrupts assigned. */
if ([deviceDescription numPortRanges] < 1

|| [deviceDescription numMemoryRanges] < 1
|| [deviceDescription numInterrupts] < 1) {
[instance free];
return NO;

}

<< Perform more device-specific validation, for example, checking to make
sure the I/O port range is large enough. Make sure the hardware
is really there. Free the instance and return NO if anything is wrong. >>

return [instance initFromDeviceDescription:devDesc] != nil;

}

Driver Interface
You typically don't need to do anything to interface your driver with the operating system: The
kernel automatically finds the driver and uses its methods to communicate with the driver.
Most display, network, SCSI controller, and sound drivers are integrated into the system this
way.

A DISPLAY DRIVER EXAMPLE
To give a taste of device driver development with the Driver Kit, this section illustrates some
of the basics of writing a display driver. The directory /NextDeveloper/Examples/DriverKit
contains examples of display, network, SCSI, and audio devices. Video driver examples in
this directory are in the ATI, CirrusLogicGD542X, QVision, S3, and TsengLabsET4000

directories.

Display Class Capabilities
The Driver Kit has two classes for writing display drivers: IOFrameBufferDisplay for cards
that can linearly map the entire display frame buffer, and IOSVGADisplay for all other display
cards. Implementation-specific details, of course, depend on the video display hardware. A
driver writer needs to be intimately familiar with the hardware specification for any hardware
device they're writing a driver for.

The IOFrameBufferDisplay class supports several display modes. These include 2- and 8-bit
grayscale and 8-bit color. Sixteen-bit color is also supported, which uses 4 or 5 bits each for
red, green, and blue, but offers only 4096 colors in either case. In addition, 24-bit color is
supported, with 8 bits each for red, green, and blue. The IOSVGADisplay class supports only
2-bit grayscale display mode. Both classes support EISA, VL-Bus, PCI, and a limited number
of ISA display cards.

Defining the Subclass
You pick the display subclass depending on the capability of the display card. Then you add
instance variables for data unique to your device.

The ATI example in /NextDeveloper/Examples/DriverKit/ATI defines an
IOFrameBufferDisplay subclass in this way:

@interface ATI:IOFrameBufferDisplay
{
/* The flavor of ATI chipset that we have. */

ATIFlavor ati_flavor;

/* Setup parameters. */

const ATI_CRTCSetup *CRTControllerSetup;

 /* The information for the selected display mode. */
const IODisplayInfo *displayMode;

unsigned int _ATI_reserved[8];
}

± (void)enterLinearMode;
± (void)revertToVGAMode;
± initFromDeviceDescription: deviceDescription;
± setTransferTable:(const unsigned int *)table count:(int)count;
@end

Display Driver Basic Operations
The NEXTSTEP Window Server handles all graphics, which simplifies writing a Driver Kit
display driver. A display driver performs the following basic operations by overriding these
methods:

· Instantiating and initializing a driver object with probe: and initFromDeviceDescription:

· Selecting the display mode with selectMode:count:valid:

· Reconfiguring display hardware for the selected display mode with enterLinearMode

· Reverting to VGA display mode with revertToVGAMode

· Adjusting display brightness with setBrightness: if the display card supports this feature

Instantiating and initializing a driver object

Override the probe: method in IODevice. Your implementation should check that the display
hardware it expects is present and characterize it. In particular, probe: should check for the
presence of the graphics controller (CRTC) and determine its version. It should also

determine
the DAC type, the memory size, and the clock chip type, if necessary. PCI-based drivers'
probe: method should also check and set the frame buffer range address. If the hardware
checks pass, probe: should create an instance of IOFrameBufferDisplay or IOSVGADisplay,
initialize it with initFromDeviceDescription:, and return YES. Otherwise, probe: shouldn't
create an instance but instead send an appropriate diagnostic message and return NO.

Selecting a display mode

IOFrameBufferDisplay's selectMode:count:valid: method selects the display mode. This
method requires that you declare an IODisplayInfo array with one element per mode and
initialize it with display mode information, as in this example for a Compaq QVision Video
Adapter driver:

const IODisplayInfo QVisionModeTable[] = {
/* 0: QVision 1024 x 768 x 8 (Mode 0x38) @ 60Hz. */{

1024, 768, 1024, 1024, 60, 0,
IO_8BitsPerPixel, IO_OneIsWhiteColorSpace, "WWWWWWWW",
0, (void *)&Mode_38_60Hz,

},

/* 1: QVision 1024 x 768 x 8 (Mode 0x38) @ 66Hz. */
{

1024, 768, 1024, 1024, 66, 0,
IO_8BitsPerPixel, IO_OneIsWhiteColorSpace, "WWWWWWWW",
0, (void *)&Mode_38_66Hz,

},
}

The example display drivers that come with NEXTSTEP Developer 3.3 don't invoke probe: because they
were written before this method was available. Instead they use initFromDeviceDescription: to perform all
initialization tasks.

To indicate the valid display modes, declare an array of Boolean values with one element per
display mode and fill it appropriately. In the following example, italicized text delineated in
angle brackets should be filled in with driver-specific code:

BOOL validModes[QVisionModeTableCount];

for (k = 0; k < QVisionModeTableCount; k++) {
if (<< current hardware supports this mode >>)

validModes[k] = YES;
else

validModes[k] = NO;
}

During initialization, you would use this method to select a mode and handle the result, as
this code fragment illustrates:

mode = [self selectMode:QVisionModeTable count:QVisionModeTableCount
valid:validModes];

if (mode < 0) {
IOLog("%s: Sorry, cannot use requested display mode.\n",

[self name]);

/* Pick a reasonable default */
mode = DEFAULT_QVISION_MODE;

}

IOLog() is a logging function the Driver Kit supplies for debugging.

Reconfiguring display hardware for the selected display mode

Using the appropriate commands for your display hardware, reconfigure it for the selected
mode with the following operations (whose order is hardware-dependent, determined by the
display specification):

· Turn off the CRTC.

· Configure the CRTC.

· Configure the DAC.

· Configure the clock chip.

· Configure memory, if necessary.

· Restart the CRTC.

· Enable linear frame buffer mode, if applicable.

Reverting to VGA display mode

Override the revertToVGAMode method to return the adapter to the state it's in after a hard
reset. You would typically set VGA mode to 3. Here's an example of implementing this
method for an ATI Graphics Ultra Pro Video Adapter display card, from the ATIDriver Kit
example in /NextDeveloper/Examples/DriverKit/ATI/ATI_reloc.tproj/ATI.m:

± (void)revertToVGAMode
{

 /* Select VGA setup, re-enabling the VGA CRT controller. */
SelectShadowSet(0); /* Select VGA CRT configuration. */
reset_DAC();/* Restore DAC for VGA operation. */
[super revertToVGAMode];/* Let superclass do generic VGA stuff. */

}

Note that this method invokes revertToVGAMode to perform any general functions the
superclass's method provides. This driver defines the function SelectShadowSet() this way:

static void
SelectShadowSet(int set)
{

unsigned char v;

switch (set) {
case 0:

v = 2;
break;

case 1:
v = 3;
break;

case 2:
v = 7;
break;

default:
return;

}
outb(ADVFUNC_CNTL, v);

}

SelectShadowSet() selects the appropriate hardware value based on the function input. It
then writes the value to the memory-mapped address ADVFUNC_CNTL using the Driver Kit
function outb(), which writes a byte to an I/O port address. The address ADVFUNC_CNTL
and the value written to it are the values appropriate for an ATI Graphics card.

Adjusting display brightness

If the video hardware allows changing the display's brightness, implement
setBrightness:token: and use the setTransferTable:count: method to adjust it as desired.

If the DAC supports downloading a color palette, override setTransferTable:count: to
receive a gamma-corrected transfer table from the Window Server, or declare your own
table in a static array. Override setBrightness:token: and download the transfer table
to the DAC. For an example, look at an implementation of setGammaTable in
/NextDeveloper/Examples/DriverKit, such as in

QVision/QVision_reloc.tproj/QVisionDAC.m.

Finally, indicate that you've implemented a transfer table by setting a flag in a struct
you've defined:

displayInfo->flags |= IO_DISPLAY_HAS_TRANSFER_TABLE;

If the DAC doesn't support downloading a color palette, don't override these methods, but
set the flag to indicate there's no transfer table:

displayInfo->flags |= IO_DISPLAY_NEEDS_SOFTWARE_GAMMA_CORRECTION;

BUILDING, CONFIGURING, AND DEBUGGING DRIVERS
Every Driver Kit driver resides in a configuration bundle that contains all the files needed to
load and configure the driver: its relocatable code, configuration information, and other
information, such as help files. You can create driver bundles using Project Builder.

The Configure application allows you to add your device and configure its driver. Configure
takes information from the configuration tables and displays it in a configuration inspector
panel
where a user can modify it. If you have standard configuration parameters, you can use the
default inspector provided with the Driver Kit. You can load a driver into an already running
system
using the driverLoader command. driverLoader provides a variety of options for loading
and configuring a driver.

You can also use gdb as a source-level debugger on device drivers.

Once you've loaded the driver, the Driver Kit provides two different tools to debug it. The first,
the IOLog() function, allows you to output strings and parameters similarly to printf() and
deposits error or debugging messages in a file. You can place a call to IOLog() anywhere in

your driver either to get information about the driver state at that point or to indicate that the
driver reached that point during execution.

When timing is important, you can use the second tool, the Driver Debugging Module (DDM),
which allows you to view debugging information without altering the timing of the kernel. A
driver sends messages to DDM, which time stamps them and places them in a circular
buffer. With the DDMViewer application (in /NextDeveloper/Demos), you can specify which
information DDM stores in the event buffer and also display that buffer's information. DDM
provides a set of macros you can use in your driver to add debugging entries to the buffer,
similar to IOLog() calls.

SUMMARY
To write a device driver, driver writers add hardware-specific details to the Driver Kit
framework. The NEXTSTEP Driver Kit treats device drivers as objects. This paradigm lends
itself to reusing driver software for specific devices such as network cards. The Driver Kit
provides a framework for writing display, network, SCSI, and audio drivers. The main task of
the driver writer is to fill in details that depend on a specific hardware device. The developer
does this by subclassing the appropriate Driver Kit device class, adding instance variables as
needed, and overriding and implementing existing or new methods in the subclass.

Driver Kit drivers avoid complications typical drivers are prone to, such as resource
contention, by providing an I/O threadÐthe only thread to touch the hardware or data
structures. Driver requests are handled linearly, which simplifies design and implementation.
Similarly, the kernel handles interrupts and sends interrupt messages to the driver, which can
process interrupts at a convenient timeÐand avoid conflicts with other parts of the driver
altering the hardware or data state at the same time.

The Driver Kit also provides tools to facilitate building, loading, and debugging drivers. After
you've built your driver, you can load it into an already running system and debug it with a

variety of tracing tools.

Gary Staas is a writer in NeXT's Developer Publications group.

References

Closkey, Cynthia, ed. NEXTSTEP In Focus, Summer/Fall 1994. Redwood City, CA: NeXT Computer, Inc.,
1994. This issue contains several articles about various PC bus architectures, including PCI and PCMCIA.

Egan, Janet I., and Thomas J. Teixeira. Writing a UNIX Device Driver, second edition. New York: John Wiley
and Sons, 1992. An excellent general introduction to UNIX drivers.

Ferraro, Richard F. Programmer's Guide to the EGA and VGA Cards, second edition. Palo Alto, CA: Addison-
Wesley, 1990.

IBM Token-Ring Network Architecture Technical Reference. (SC30-3374-02.) This definitive and readable
manual describes a superset of the 802.5 specification. You can get it from IBM or from IBM dealers.

Information Technology-Local and Metropolitan Area Networks. Part 3: Carrier Sense Multiple Access with
Collision Detection (CSMA/CD) Access Method and Physical Layer Specifications. International Standard
ISO/IEC 8802-3; ANSI/IEEE Std. 802.3. This is the specification for 802.3.

Information Technology-Local and Metropolitan Area Networks. Part 5: Token Ring Access Method and
Physical Layer Specifications. International Standard ISO/IEC 8802-5; ANSI/IEEE Std. 802.5. This is the
specification for 802.5.

Kettle, Peter, and Steve Statler. Writing Device Drivers for SCO UNIX, A Practical Approach. Palo Alto, CA:
Addison-Wesley, 1993. This book includes some details of Intel hardware. It also contains a good reference
section.

NeXT Computer, Inc. Writing Device Drivers with the Driver Kit. Redwood City, CA: NeXT Computer, Inc.,
1994. Available on-line with NEXTSTEP Developer Release 3.3 in:
/NextLibrary/Documentation/NextDev/OperatingSystem/Part3_DriverKit

Shanley, Tom. EISA System Architecture, second edition. Richardson, TX: Mindshare Press, 1993.

Shanley, Tom. PCI System Architecture, second edition. Richardson, TX: Mindshare Press, 1993. This book
tells how to work with a version 2.0-compliant bus.

Shanley, Tom. PCMCIA System Architecture. Richardson, TX: Mindshare Press, 1994.

Shanley, Tom, and Don Anderson. ISA System Architecture, second edition. Richardson, TX: Mindshare
Press, 1993.

Tanenbaum, Andrew S. Computer Networks. Englewood Cliffs, NJ: Prentice Hall, 1981. This book contains
information on networking in general.

__
Next Article NeXTanswer #1992     Realities of Distributed Objects
Previous article NeXTanswer #1989 The Same, Yet Different: NEXTSTEP and OpenStep
Table of contents http://www.next.com/HotNews/Journal/OSJ/SpringContents95.html

