
Q: Why does fcntl(fd, F_SETLK, &lockstruct) give EINVAL?

Q:    What is the preferred method of file locking?

A:    The current release of    Sun's NFS file system has a number of problems regarding file 
locking.    Sun has implemented a "first crack" at solving the problems associated with 
extending Unix's file locking to NFS.    NeXT decided, upon looking at this, that there were 
too many hidden deadlock conditions inherent in the implementation to release.    Instead, 
the current version of fcntl(2) will fail with EINVAL if the directives F_GETLK or F_SETLK are 
used. These directives will work when a new version of NFS file locking is available,    in our 
4.0 release.

In the mean time, if a file locking system is necessary for your application, the best system to 



use is to write out a file whenever your application accesses a file for writing. The easiest 
thing to do is to create a file of the same name with an added extension, like "LCK" for 
instance.    Your application should check to see if this file exists before opening a file,    and 
create the lock file, if one doesn't exist. 

Here's one idea: if you open(2) a file with both CREATE and EXCLUSIVE turned on, then 
open(2) will return an error if the file exists, and will create the file if it doesn't.    Something 
like

#include <sys/file.h>
int fd;

fd = open(lockfile, O_CREAT | O_EXCL, 0600);



if (fd < 0) { /* Something didn't work */
if (errno != EEXIST) { /* Real error occurred */

perror("Open failed");
exit(1);

} 
else { /* Lock file is there */

/* await lock release */
}

}
else /* Things are OK */

This still has some problems when systems crash with files open, or the if the Workspace 
exits with your application still running.    To deal with this,    your application should erase 
these lock files (with the unlink(2) system call, for example) in an appDidTerminate: method. 



Also, when one of these lock files exist, you should display an alert panel asking if the user 
would like to override the lock.

For applications that run on a single machine (without any network file access) you can use 
flock(2)if you are concerned that your application may be run multiple times on the same 
machine.    This scheme works for network files too, when that support is added.

Note: the fcntl(2) directives not associated with file locking: 

F_{DUP,SET,GET}FD
F_{GET,SET}FL
F_{GET,SET}OWN



work fine.

QA590

Valid for 1.0, 2.0, 3.0, 3.1


