NEXTSTEP

Title: EOFaults and Infinite Loops

Entry Number:
Last Updated: 19 Apr 1995
Document Revision:

Keywords:

Question

Q: I am creating EOFault instances, and | find that sometimes when | trigger the fault, my process hangs. The
backtrace looks like this:

#712
#713
#714
#715
#716
#717
#718
#719
#720
#721
#722
#723
#724
#725
#726
#727
#728
#729
#730
#731
#732
#733

0x5006cla
0x5006c4c
0x7817756
Oxe024a56
0x7816d92
0x5006cla
0x5006c4c
0x7817756
0xe024a56
0x7816d92
0x5006cla
0x5006c4c
0x7817756
Oxe024a56
0x7816d92
0x5006cla
0x5006c4c
0x7817756
Oxe024a56
0x7816d92
0x5006cla
0x490a in

in
in
in
in
in
in
in
in
in
in
in
in
in
in
in
in
in
in
in
in
in

- [AppDelegate createFaultForObject:]

AppDelegate.m:48

what's up?

EOF, EOFault, infinite loop

_objc msgForward ()

objc msgSendv ()

-[NSInvocation invokeWithTarget:] ()

-[EOObjectFault forwardInvocation:] ()

- [NSObject (ForwardInvocation) forward::] ()
_objc msgForward ()

objc msgSendv ()

- [NSInvocation invokeWithTarget:] ()

-[_EOObjectFault forwardInvocation:] ()

- [NSObject (ForwardInvocation) forward::] ()
_objc msgForward ()

objc msgSendv ()

- [NSInvocation invokeWithTarget:] ()

-[EOObjectFault forwardInvocation:] ()

- [NSObject (ForwardInvocation) forward::] ()
_objc msgForward ()

objc msgSendv ()

-[NSInvocation invokeWithTarget:] ()

-[EOObjectFault forwardInvocation:] ()

- [NSObject (ForwardInvocation) forward::] ()
_objc msgForward ()

(self=0x185e38, cmd=0xab4b,

sender=0x1324c4)

at

Answer

A: If you create a fault for an object that is already in the uniquing tables, when the object "faults” or is triggered you will
get an infinite loop as seen here. The solution is to check and see if the object is in the uniquing tables before creating
the fault, and if it is, return the object itself rather than creating a fault.

There are two uniquing tables, one in the EODatabase and one in the EODatabaseContext. The EODatabaseContext
has its own table for objects that are inserted and before the transaction is committed. So for the period of time after the

insert and before the commit, you need to go to the EODatabaseContext's uniquing tables. You access the tables with
the objectForPrimaryKey:entity: method.

A convenient category on EOFault can be written that encapsulates this behavior:

+ safeObjectFaultWithPrimaryKey: (NSDictionary *)keyDict
entity: (EOEntity *)entity
databaseChannel: (EODatabaseChannel *)channel
zone: (NSZone *)zone

// check first to see if this object has already been fetched or inserted
id value = [[channel databaseContext] objectForPrimaryKey:keyDict entity:entity];

// return an EOFault only if the object has not been uniqued
if (!'value)
{
value = [EOFault objectFaultWithPrimaryKey:keyDict entity:entity
databaseChannel:channel zone:zone];

}

return value;

}

When you want to create an EOFault instance, use this category in place of EOFault's
+objectFaultWithPrimaryKey:entity:databaseChannel:zone:.

Valid for: EOF 1.0, EOF 1.1, NEXTSTEP 3.2 Developer, NEXTSTEP 3.3 Developer

