

The Enterprise Objects Framework July 1994

1

The Enterprise Objects
Framework

Executive Summary

The NeXT Enterprise Objects Framework

couples relational databases with objects in the

NEXTSTEP application environment. Using the

EO Framework, developers can forge enterprise

data into something far more valuable: enterprise

objects. Enterprise objects, such as customer and

sales order, integrate business data with the

business policies that makes the data meaningful:

a customer credit object defines not only a credit

rating, but the rules by which it is computed.

Enterprise objects do not change the structure of

existing databases or threaten the applications

that depend on them. The EO Framework works

today with Oracle and Sybase databases, and its

design is open to others.

Enterprise objects are first class citizens of

the most respected object-oriented user and

developer environment: NEXTSTEP. They are

integrated with the Project Builder and Interface

Builder graphical development tools, they can be

reused in application after application; they can

be refined by subclassing. And they can be

distributed among heterogeneous servers with

NeXT’s Portable Distributed Objects system.

As is usual in the NEXTSTEP environment,

simple enterprise object applications can be

constructed without coding. Developers with

special requirements will find an accommodating

architecture “under the hood” that separates

functions so developers don’t have to understand

everything to do anything. Even the most

sophisticated applications can begin as simple

ones, getting the basics working first without

programming, then coding additional features

in easy-to-manage increments.

I. Business Perspective

This paper provides two views of the Enterprise

Objects Frameworks for two kinds of readers. This

Business Perspective section describes the business

advantages of the Enterprise Objects Framework.

The Technical Perspective section starting on page 5

describes development with the EO Framework and

some of its internal design and operation.

The Policy-data Split
Databases are excellent data stores. They are

fast and robust, they support concurrent and selective

access and data distribution. But enterprises don’t

run on just data. Data gets its meaning from associ-

ated business practices and policies. For example,

a customer credit rating (data) has little meaning

separate from the policy that determines credit

ratings. And a credit rating is erroneous if it has

been computed according to an obsolete policy.

With so many enterprises almost continuously

re-engineering their business practices, policy

changes are frequent. But it is hard to keep database

applications synchronized with the changes because

the data and the software representation of policy are

separated. Although the data is centrally stored, the

policy is often replicated across multiple database

programs and screens created with 4th generation

languages (4GLs). When the policy for computing

credit changes, how can one be sure that all screens

that compute credit ratings are updated? If they

aren’t, some ratings will be computed the new way,

some the old—with no way for users to tell the

difference. Policy isn’t policy when it’s inconsis-

tently applied.

Objects Fuse Policy and Data
Object-oriented software development has

entered the mainstream in the 1990s. One of its

major appeals is the fusing of policy (called

methods) with data (called instance variables) into

packages called objects (see Figure 1). In a customer

credit object, for example, a credit rating and the

method that computes it are inseparable. Changing

the policy changes the data the next time the object

is used. (Readers familiar with user interface button

objects may recall how a change to a button’s imple-

mentation takes effect in all applications that use it.)

Integrating policy and data makes software

easier to understand and modify because associated

policies and data are defined in a single source

Figure 1 An object fuses policies and data as methods
and instance variables

method

m

e
th

o
d

m
e
th

od

dataÿ



The Enterprise Objects Framework July 1994

2

file—no matter how many applications use the

object. Indeed, reuse is another attraction of objects;

an object that embodies policy and data can be used

by many applications, ensuring consistency across

enterprise functions and divisions. Integrating policy

and data can also increase user confidence by

ensuring that data is meaningful and trustworthy.

Another Gap: Relational Databases and
Objects

Many new object-oriented applications have

been successfully deployed in the past few years.

Hundreds of them have been based on NEXTSTEP.

But despite its potential for eliminating the policy-

data split, object-oriented development has had little

impact on enterprise information systems depart-

ments. These departments manage relational data-

bases, which are immensely valuable information

resources. These resources must be preserved

because critical applications depend on them. At the

same time, existing data could be employed to much

greater effect if it could be coupled with object-ori-

ented development. It is little surprise that consider-

able attention has, and is, being paid to bridging the

gap between objects and relational databases.

Bridging the gap is one thing, bridging it well is

another. NeXT’s Database Kit was an early effort,

one which provided the experience necessary to

develop its successor, the Enterprise Objects Frame-

work. Other approaches examine a database and

generate source code that inserts database records

into an object wrapper. This approach leaves devel-

opers with another kind of legacy: they have to

understand and maintain the generated code forever.

An alternative approach—the one used by the EO

Framework—is to generate objects dynamically at

run-time from developer-supplied definitions of data

and methods. Developers can change these defini-

tions at any time; the changes take effect the next

time the objects are created from the database. In the

EO Framework, the only code to be maintained is

the developer-written methods that capture business

policies.

Bridging the gap between databases and objects

alone will not ensure that quality applications can be

rapidly developed and rapidly adapted to changing

business conditions. Rapid application development

and adaptation requires more than objects. They

require a rich environment that supports all facets of

application development; an environment such as

NEXTSTEP.

What is the Enterprise Objects Framework?
NeXT’s Enterprise Objects Framework links the

strength of relational database storage with object-

oriented development and integrates them in the

world’s most respected object-oriented user and

development environment: NEXTSTEP.

Figure 2 summarizes how the Enterprise Objects

Framework transforms rows in a database table into

enterprise objects, and saves user changes to the

objects back to the database. An EO Framework-

based application is like any other NEXTSTEP

application; it may display multiple windows, for-

matted text fields, images, sounds, and so on. In

response to user actions, user interface objects

(buttons, and so on) send messages to the EO

Framework user interface layer. The user interface

layer communicates these actions to enterprise

objects, and directs the access layer to fetch new

objects and to save changed ones. The EO Frame-

work access layer creates enterprise objects in

memory from database rows and saves changes to

those objects back to the database. The access layer

communicates with the database server by means of

SQL, and does not alter the structure of the database.

To create an enterprise object, the access layer con-

sults a developer-supplied model, which specifies

database-to-object data correspondences.

Enterprise Objects are Reusable
Reuse has become a buzzword, but that doesn’t

diminish its validity. An excellent way to deploy new

applications faster is to do less work by reusing the

work of others. Data reuse is a familiar notion in the

database world, where the same tables are often used

by multiple applications. Code reuse is rare in con-

ventional database applications. Most code is tightly

bound to screens, rather than stored in common

libraries. Although stored procedures can be reused,

they are written in languages that have limited appli-

cability; they are not suited for serious math, for

example. Databases are principally storage engines,

not computation engines.

Enterprise objects, coupling methods and data,

allow both code and data to be reused. The same ven-

dor object, for example, can be used by manufactur-

ing, accounts payable, and tax reporting applications.

Moreover, enterprise objects support what might be

termed “selective reuse.” Suppose a business has

developed a class that represents a customer. That

class can be fully reused across many applications.



The Enterprise Objects Framework July 1994

3

But suppose as well that the business later decides to

treat residential customers differently from business

customers in a few ways.

To realize this new policy requires the addition

of ResidentialCustomer and BusinessCustomer

classes to the existing Customer class. Notice the

phrasing: “in addition to,” not “in place of”; that’s

because in most ways residential and business

customers are still just customers. With enterprise

objects, developers can define ResidentialCustomer

and BusinessCustomer as subclasses of Customer.

These subclasses automatically inherit the Customer

methods (policies); the only new programming they

need implements the differences between residential

and business. The new ResidentialCustomer and

BusinessCustomer subclasses reuse most of the

tested code of the Customer class. (Notice as well

how development of the new subclasses can proceed

incrementally; from the outset ResidentialCustomer

objects behave like Customer objects; their behavior

can be changed in small steps, one method at a

time.) Isn’t this the way programming is supposed

to be?

When people think of reuse they normally think

“reduced development time,” but there are other

advantages as well:

• Reused classes are more trustworthy than new

ones because they have been proven in other

applications.

• Reused classes mean consistent application of

policy across the enterprise.

Enterprise Object-based Applications are
Scalable

One drawback to the most common means of

database application development—4GLs—is their

single source of processor cycles: they must all come

from the client machine. The more compute-inten-

sive the application, the less responsive is its user

interface. The only way to improve response is to

upgrade the client machine.

In contrast, enterprise object-based applications

can be distributed across multiple servers, allocating

compute-intensive objects to servers built for the

purpose, leaving the client machines to mainly

manage the user interface. Enterprise objects, like

all NEXTSTEP objects, can be distributed to

NEXTSTEP-based servers with the Distributed

Objects facility. They can also be distributed to other

kinds of servers (for example, HP and Sun) that are

running NeXT’s Portable Distributed Objects

Figure 2 Data flows from database tables to enterprise
objects to the application user interface and back.

Employee Databaseÿ

nameÿ titleÿ mgrÿemp. #ÿ

36ÿ

304ÿ

150ÿ

Jillÿ Pres.ÿ

Jackÿ VP Salesÿ 36ÿ

Joanÿ Treas.ÿ 36ÿ

EOF User ÿ

Interface Layerÿ

Mgr:ÿ

Emp # 36ÿ

Mgr:ÿ

Emp # 304ÿ

Mgr:ÿ

Emp # 150ÿ

EOF Access Layerÿ Modelÿ

The Enterprise Objects Framework July 1994

4

software. It is not only enterprise objects that can be

distributed; the objects that constitute the enterprise

object framework can also be allocated to the

machines where they are executed most effectively.

Perfect NEXTSTEP Integration
Enterprise objects, and applications that use

them, are developed in the same NEXTSTEP

environment that has brought five-fold productivity

improvements to 100,000 customers. Enterprise

objects are full-fledged citizens of the NEXTSTEP

run-time environment; they can do anything that

other objects can do.

Figure 3 suggests what enterprise object-based

application development is like with the NEXT-

STEP Interface Builder. The snapshot was taken

about 10 minutes into the development of a simple

master-detail style employee application. In the

completed application, departments will be listed in

the upper table of the application window; clicking

on a department will list its employees in the table

beneath. Clicking on an employee will display his or

her photograph in the upper right corner of the

application window, and a graphical depiction of the

employee’s location in the lower part of the window.

All of the user interface objects in the applica-

tion window were created by dragging from UI

palettes, dropping on the window, then positioning

and resizing as in an object-oriented drawing

program. The developer has just connected the

Employee enterprise object icon in the File window

to the DepartmentName column of the employee

table, indicating by this gesture that Employee enter-

prise objects are the source of department names.

Although this is a simple application—essen-

tially displaying data from EOs—it will be devel-

oped without writing a line of code. It is a good

example of the power of object reuse: the Employee

EOs and the user interface and infrastructure objects

are supplied by the Interface Builder and the EO

Framework.

From the moment an Interface Builder-devel-

oped application is created, it is executable and can

be tested within Interface Builder itself. Developer-

supplied code takes the form of additional objects,

Figure 3 An EO Framework-based application in the early stages of construction with the NEXTSTEP Interface Builder

Palette of UI Objects

Application Menu

Application Window

Connecting a UI Object

to an Enterprise Object

File Window

Object Inspector

The Enterprise Objects Framework July 1994

5

which can be “wired together” like objects dragged

from Interface Builder palettes. Developer-supplied

objects and Interface Builder-supplied objects com-

municate with messages; there’s never any code to

merge when the user interface is changed. Thus, it’s

common for applications to be developed in easy-to-

manage increments: working in Interface Builder to

create the base application, manually adding

rudimentary application-specific classes, using the

Interface Builder to wire these to UI objects, and

fleshing out method implementations one at a time.

A Flexible, Extensible, Open Framework
“Out of the box” the Enterprise Objects

Framework is designed to accommodate a wide

range of relational database applications. But where

special needs exist, developers can change the behav-

ior of framework objects, can extend the framework

with new classes, can substitute their own objects for

framework objects, and can choose to incorporate

only parts of the framework in their applications.

Developers can adapt the framework to accommo-

date additional relational databases, or even data

sources that are not databases at all. New user inter-

face objects can be incorporated into applications

and the framework will use them like its own. As

always in NEXTSTEP, EO Framework classes can

be subclassed and methods can be re-implemented

if required.

II. Technical Perspective

This section answers a number of questions

developers may have about the Enterprise Objects

Framework:

• What’s involved in creating enterprise object

classes?

• Given some EO classes, how does application

development proceed?

• How does the EO framework work, and what

facilities does it provide for developers with

special requirements?

Readers with limited interests may wish to read

this section selectively.

Figure 4 The EOModeler helps developers map database attributes to enterprise object data

Model

Model Browser

showing database

records

Attribute Inspector

The Enterprise Objects Framework July 1994

6

Class Development
Well-designed enterprise objects are reusable

across many applications. Just as in the database

world, EO class design is often done separately from

application development. (All objects of one kind

are instances of the same class; a class definition

specifies the variables and methods within the class.)

A class definition describes two kinds of things,

variables and methods, which correspond to the data

and policies mentioned in the Business Perspective

section. The EO Framework creates an object

instance from a class definition, from a file called a

model, and from the data values in a database row.

Each row becomes one instance. The model

describes entities, each entity corresponding to a

database table. The entity is the key to object

creation because it describes the correspondence

between table columns and object variables: that the

value of the Balance variable, for example, comes

from the BALANCE column. The entity also names

the Objective C class definition which describes the

objects that will be created from the entity. The first

job of an EO Framework class developer is to create

an entity and tie it to a class definition. The second

job is to augment the class definition: to define its

methods and perhaps variables that are not obtained

from the database.

Modeling

A model is recorded in an ASCII file which can

be created with an editor by a program or with the

help of an EO Framework application called the

EOModeler.

Figure 4 shows the EOModeler in use. When

the EOModeler is started, it logs the user into the

database server, reads the database schema, and con-

structs an initial model. This is classical NEXTSTEP

development: the system generates a reasonable

first-cut which the developer customizes as necessary.

Models are expressed according to the entity-

relationship scheme popular in database textbooks;

entity-relationship modeling is independent of any

vendor’s database. A model consists of entities

which correspond to tables or views. An entity

consists of attributes (corresponding to columns),

and relationships (corresponding to joins between

primary keys and foreign keys).

The model window in Figure 4 lists entities in

the first column, and the attributes and relationships

of the Employee entity in the second. Relationships

are distinguished from attributes by > symbols.

Double-clicking on an attribute displays the

Attribute Inspector. The Inspector shows the

attribute’s name and type in the database, its name

in the class definition, and so on. Double-clicking

on a relationship displays the Relationship Inspector

which similarly displays the characteristics of the

relationship. Derived attributes (for example,

MarketValue = Shares * Price) which are not in

the database can be added to an entity, and columns

can be flattened across tables (effectively joining

columns from two tables).

To verify an entity specification, you can

direct the EOModeler to browse it. The EOModeler

displays a browser window with columns for each

attribute/relationship, and rows showing the

corresponding data fetched from the database. The

columns in the browser window can be resized and

moved, and the rows can be sorted.

Double-clicking on an entity brings up an Entity

Inspector. In this Inspector you can specify which

attributes make up the primary key and which

participate in locking. You also specify the name of

the enterprise object class associated with the entity.

The default class is a predefined one called

EOGenericRecord. An EOGenericRecord object

is a simple data-bearing object, essentially a data-

base record cast into a policy-free object. Its only

methods are those defined by the EO Framework to

get data into the object when it is created or updated,

and get data out of the object to display. Although

they do not bind policy to data, EOGenericRecords

are nonetheless useful. Sometimes data is enough;

EOs don’t have to have policy. And though you may

intend to ultimately give your EOs policy, character-

izing them initially as EOGenericRecords enables

you to verify that data is flowing from the database

to the Enterprise Objects to the user interface and

back to the database.

Augmenting a Class Definition

An entity specifies the “data part” of a class of

enterprise objects; the class definition specifies the

methods and additional variables that are not

obtained from the database. You create an enterprise

object class definition as you would any class defini-

tion, with the Interface Builder and Project Builder.

The EO Framework demands little of EO class

developers, the primary requirement being the

provision of two data transfer methods. The

framework transfers data into an EO (when it creates

one or updates it from the user interface) by sending

a takeValuesFromDictionary message. When the

The Enterprise Objects Framework July 1994

7

framework needs data from an EO, it sends a values-

ForKeys message. Default implementations of these

methods, sufficient for most classes, can be had by

reuse: by inheritance from the Object or NSObject

classes. The data transfer methods are described in

more detail in “Foundation Classes, Memory Man-

agement, and Dictionaries.”

An object that responds to takeValuesFromDic-

tionary and valuesForKey is an enterprise object that

carries policy-free data. The important methods for

an EO class are those that express business polices.

It’s up to business analysts and developers to define

and implement these methods.

Although the parts of a method that send and

receive messages must be written in Objective C,

these parts can call functions written in C or C++. If

you have a library of C functions that compute the

risks of currency fluctuations, or a group of C++

programmers who know how write the same, you

can employ the former or the work of the latter in

the core of your policy method implementations.

Building Applications
If you’ve ever built an application with NEXT-

STEP, you may want to skip this section; building

an application that uses enterprise objects is almost

identical to building one that doesn’t. The developer

uses the NEXTSTEP Project Builder and Interface

Builder to compose the application from user inter-

face and enterprise objects and to connect those

objects so they will send appropriates messages in

response to user actions. EO Framework connections

differ only slightly from those that NEXTSTEP

developers are already familiar with.

Although simple applications can be developed

solely by composition and connection, many will

also require coding. For example, an application

may need a user interface object that is not available

on a palette; perhaps a calendar that shows a date as

a circled number. Another example is an object that

displays a query panel, parses the user’s input, and

constructs an qualifier object which specifies the

criteria for fetching EOs. (A qualifier is the EO

Framework equivalent of an SQL “where” clause.)

The main steps to creating an EO-using

application are:

• Launch the Project Builder and direct it to create

a new application.

• Launch the Interface Builder and EOModeler.

• Drag entities from the EOModeler to the Interface

Builder file window.

Each entity you drag represents a class of enter-

prise objects to be used by your application.

(In Figure 3, the Department icon represents an

entity dragged from EOModeler.)

• Drag UI objects (windows, buttons, and so on)

from Interface Builder palettes to application

windows, and position, size, and label them.

The EO Framework adds a new palette to the

Interface Builder. The palette contains a UI object

called NXTableView which can display (for read-

ing or updating) EO data in tabular form, one row

per EO. (Figure 3 shows two NXTableViews.) The

palette also provides a UI object called NXImage-

View for displaying images represented in variety

of standard formats. (In Figure 3 an NXImage-

View is used to display an employee’s

photograph.)

• Code the classes that your application needs but

are not supplied by the EOModeler or Interface

Builder, and drag them into the Interface Builder

File window.

• Connect UI objects that display or control

enterprise objects to the corresponding entities.

For example, to make a button save all EOs,

control-drag from the button to the entity icon.

The EOController Inspector will appear, showing

a list of actions (methods) that the EOController

can perform; select the save action, and press the

Connect button. (An EOController coordinates the

interaction between UI objects and a class of

EOs; how this works is described in “The User In-

terface Layer.”)

Similarly, to connect a column in a NXTableView

to a variable in a class of EOs, control-drag from

the entity icon to the column (as is being done in

Figure 3). The EOController Inspector will display

a list of associations (described in “The User Inter-

face Layer”), each one standing for a variable in

the class associated with the entity. Select the

variable to be displayed in the column, then

press the Connect button.

• Set EOController attributes in the EOController

Inspector. These specify how undo is to work,

when user changes are applied to EOs, and when

EO changes are applied to the database.

• Direct Project Builder to compile and link the

application.

• Switch Interface Builder to test mode and exercise

the application.

The Enterprise Objects Framework July 1994

8

As is usual with NEXTSTEP, the above

activities need not be followed linearly. A developer

who prefers an incremental style can put together a

portion of the user interface, connect its objects to

simple policy-free enterprise objects, and test; then

refine the user interface and test again; then add

methods representing business policy to EOs, test

again, and so on.

Opening the Hood
This section describes aspects of the EO Frame-

work that most developers don’t need to know: how

the framework is designed and operates, and what

facilities it offers to developers with special require-

ments. For example:

• You can change the default behavior of EO Frame-

work objects by sending them messages. (The

framework both creates objects and is composed

of them.)

• You can exercise fine or coarse control over data-

base interaction—setting the scope of transactions,

even issuing your own SQL commands.

• You can build applications that use only some of

the EO Framework objects; for example, if you

write an application that has a command-line

interface, you have no need for EO Framework

user interface objects.

• You can extend the EO Framework to accommo-

date a type of database that isn’t supported by the

standard product, or a source of enterprise objects

that isn’t a database at all.

Architecture Overview
The architecture of the Enterprise Objects

Framework is divided into two connected layers

as shown in Figure 5. In each layer are framework

objects that, as one looks higher in the diagram,

provide a more abstract view of the underlying

database. In the top half of the diagram, the view is

strictly of enterprise objects; there is no suggestion

of an underlying database. The layered design, cou-

pled with the separation of concerns embodied in

the objects that comprise each layer, helps develop-

ers identify the facilities they want to use or adjust,

and—as important—to distinguish them from the

ones they do not want to affect.

Starting at the top, the user interface layer

interacts on one side with user interface objects

(text fields, buttons, and so on), and on the other with

a data source object. To the user interface layer, a

data source can supply, insert, and delete enterprise

objects. The data source distributed with the EO

Framework is connected by the access layer below

it to a relational database. Other data sources devel-

oped by third parties can be connected to other kinds

of stores. The access layer creates enterprise objects

from database rows and updates rows from EOs. An

application can interact with the objects in any layer

and in any combination.

Foundation Classes, Memory Management, and

Dictionaries

All layers of the EO Framework design use a

new class hierarchy called the Foundation classes,

a new way of managing memory, and a data packag-

ing mechanism known as dictionaries.

The Foundation classes comprise a versatile

collection of value classes, instances of which are

often found in enterprise objects. They include:

• NSString which provides the usual string opera-

tions and transparently supports unicode and C

representations of strings

• NSArray, for arrays of objects

• NSData, uninterpreted byte arrays that can be

used for BLOBs (binary large objects) or custom

data types

• NSNumber, for C numeric values

• NSDate, for representing dates in many formats

and calculating differences

Each class has a mutable and immutable ver-

sion, the latter’s methods exploiting the knowledge

that the value cannot change. Copying an immutable

NSString, for example, is reduced to returning an

Objective C id to the original NSString.

The Foundation’s new memory management

design is easier to use and less prone to memory

leaks than the conventional malloc/free approach.

Developers of objects that share an object don’t have

to establish conventions to ensure that the shared

object is properly freed. Yet the technique does not

exact the performance penalty of garbage collection.

If a method obtains a reference to an object

which it does not need past its current execution,

the method does nothing; the object is automatically

released when it is no longer needed by any object.

If a method needs an object for longer than its cur-

rent execution (for example, to store the object’s id

in an instance variable), it sends a retain message

to the object. When an object no longer needs a

retained object, it sends the object a release message.

Retained objects deallocate themselves when each

The Enterprise Objects Framework July 1994

9

retain message they have received has been coun-

tered by a release message; that is, when the object

is no longer needed by any other object.

Enterprise Object Framework objects use

objects called dictionaries to transmit data amongst

themselves and to and from EO objects. A dictionary

is a collection of key-value pairs. A key is a string

that names a value; a value is any object (an id in

Objective C).

A dictionary’s principal methods are:

• setObjectForKey, which takes a key and a value

and inserts them

• objectForKey, which takes a key and returns

a value

Dictionaries provide a generic way for EO

Framework objects to transmit any kind of named

data among themselves and enterprise objects. The

fact that a dictionary’s entries have names is also

valuable in debugging; well-chosen keys can make

a dictionary self-describing.

Dictionaries are widely used in the EO Frame-

work: the access layer reads database rows into

dictionaries and writes dictionary values into rows;

enterprise objects initialize their instance variables

from dictionaries, and supply the values of their

instance variables in dictionaries. For example,

when the framework wants an EO to update an

instance variable, it sends the EO a takeValuesFrom-

Dictionary message. For each key in the dictionary

that matches the name of an instance variable, the

EO updates the variable with the associated value.

Similarly, when the Framework wants a value from

an EO it sends valuesForKeys. The EO responds by

returning a dictionary containing the requested key-

value pairs. The default implementation of this

method allows EOs to return values from storage

or to compute them.

The User Interface Layer

At the heart of the user interface layer is the

class called EOController; an application that uses

this layer has one EOController for each class of

enterprise objects it uses. The EOController takes

the place of the “controller” object which is a hand-

coded component of most object-oriented applica-

tions: it ensures that data displayed on the screen is

consistent with the data held in the corresponding

enterprise objects. (Those familiar with the model-

view-controller paradigm from Smalltalk-80 will

Valuesÿ

Enterprise Objectsÿ

Dictionariesÿ

Database Rowsÿ

User Interfaceÿ

RDBMSÿ

EO Adaptorÿ

EO Databaseÿ

EOÿ

Associationsÿ

EOÿ

Controllerÿ

Access Layerÿ

Data Sourceÿ

User Interface ÿ

Layerÿ

EOÿ

Modelÿ

Figure 5 Simplified EO Framework architecture and
dataflow

The Enterprise Objects Framework July 1994

10

find that in the EO Framework, models correspond

to enterprise objects; views correspond to UI objects;

and controllers correspond to EOControllers.)

An EOController coordinates the following:

• tracking the selection as the user changes it

• distributing updates from user interface objects

to EOs

• distributing changes in EOs back to user interface

objects

For example, suppose one UI object shows

stock price, and another market value which the EO

computes as price times shares. If the user changes

the stock price, the new price must be transmitted

from the UI object to the underlying EO, and the

new market value computed by the EO must simi-

larly be transmitted to the other UI object. (If stock

price were simultaneously displayed in two UI

objects, the same steps would be required to update

the second one.)

In addition to coordinating the user interface,

an EOController sends messages to a data source to

fetch, insert, update, and delete EOs. An EOControl-

ler and its data source manage the EOs that corre-

spond to one entity.

An EOController maintains the ids of its EOs in

an array; one array element corresponds to the cur-

rent selection in the user interface. Instead of work-

ing directly with UI objects, an EOController works

with intermediary objects called EOAssociations.

There are different kinds of associations for different

kinds of UI objects, but all appear identical to a con-

troller. Adding a new user interface class requires

creating a corresponding association subclass, but

the EOController is untouched; it’s designed to

accommodate future user interface objects.

An EOAssociation acts as an adaptor between

an EOController and a user interface object. One

association links one user interface object to one

value of the EO class managed by an EOController.

“Value” here means as returned by a valuesForKeys

message. For example, one association would link a

text field labeled “Last Name” to an EO value called

LastName. If LastName were associated with a sec-

ond UI object, it would be by means of a second

EOAssociation.

An association maintains two items of state: a

key (as in key-value pair) and the id of its UI object.

When a UI object changes a value (say, a user

changes “Churchill” to “Roosevelt” and presses the

Return or Tab key), the following sequence occurs:

• The UI object sends a controlActed message to

its association.

• The association sends associationDidEdit to its

controller.

• The controller (by default) sends takeValuesFrom-

Dictionary to the EO, then updateObject and

saveObjects to the data source.

• The controller sends contentsDidChange to its

associations.

• Each association sends its key in a valuesForKeys

message to the current EO (the one that’s select-

ed). The association compares the value returned

by the EO with the value it last sent to its UI ob-

ject; if they are different, it sends an appropriate

update message to the UI object, for example,

setStringValue to a text field.

Besides interacting with the user interface, an

EOController sends fetchObjects, insertObject, up-

dateObject, deleteObject, and saveObjects messages

to the data source. It sends fetchObjects when

directed to, typically by a button in the user inter-

face. A fetch message can be accompanied by a

qualifier object which has the effect of an SQL

“where” clause.

By default, an EOController sends the other

messages immediately after performing a related

operation on an EO, sending a saveObjects message

after each insert, update, or delete. (A saveObjects

message results in a commitTransaction message in

the access layer.) The default approach keeps the

EOs and the database consistent. Alternatively, an

EOController can be directed to buffer data source

operations, sending a batch of them (ending with a

saveObjects) when it is sent a saveObjectsToData-

Source message. Buffering reduces database traffic

but lengthens the interval during which other

applications may make conflicting changes to the

same data.

Just as it can buffer data source operations, an

EOController can queue changes to EOs until it

receives a saveToObjects message, then deliver

them in a single takeValuesFromDictionary mes-

sage. Buffering EO changes in this manner is useful

for related changes that must be validated as a

whole, for example, date changes (an EO needs

both the new month and the new day to check

their compatibility).

The Enterprise Objects Framework July 1994

11

EOControllers also provide applications with

an undo facility. When sent an undo message, an

EOController reverses all EO changes back to the

previous saveObjectsToDataSource message, then

notifies the associations to redisplay.

The Data Source

A data source is a simple standard interface to a

store of enterprise objects. The data source provided

with the EO Framework provides an interface to the

framework’s access layer and ultimately to a rela-

tional database. The principal methods a data source

must respond to are fetchObjects, insertObject,

deleteObject, updateObject, and saveObjects. The

simplicity of the interface makes it possible for

developers to represent many kinds of stores as data

sources; a file or a non-relational database, for

example, could be a data source, and thus a source

of enterprise objects for the UI layer.

The EODatabaseDataSource, in addition to sup-

porting the data source protocol, insulates the user

interface layer from the complexities of database

transactions. If sent an insertObject, deleteObject, or

updateObject message and no transaction is open, it

creates one; all subsequent operations are part of the

same transaction until the EODatabaseDataSource

receives a saveObjects message, which it responds

to by committing the transaction.

Although the EODatabaseDataSource is most

often used with the UI layer, it can be used alone as

a high-level abstraction that enables developers to

retrieve, modify, and save objects with very little

code.

The Access Layer

Most applications can be written without con-

cern for the facilities provided by the EO Framework

access layer. But for those applications that need

them, the access layer’s objects are open to use by

developers. Here are some examples of what can be

done with the framework objects that comprise the

access layer:

• Use a database-specific feature that’s not exposed

in the EODatabaseDataSource interface, for exam-

ple, a stored procedure.

• Send a special SQL expression to a database.

• Throttle fetching to improve user interface respon-

siveness, that is, fetching a few rows at a time and

displaying them, then going back for more rows.

• Change the database update strategy from optimis-

tic to pessimistic locking.

The access layer is divided into a database level

and an adaptor level. The objects comprising these

levels are similar, differing mainly in the parameters

their methods take and return. The adaptor layer

transforms database rows into dictionaries and vice

versa. The database layer transforms dictionaries

into enterprise objects and vice versa.

Three principal kinds of objects are found in

the database level:

• EODatabase: a generic connection to a database

• EODatabaseContext: a transaction scope; there

can be many contexts per EODatabase; to run a

series of operations as a transaction, you create a

context, send it beginTransation, send insert-

Object, fetchObject, and so on, messages to a

channel (described next), and finally send commit-

Transaction to the context.

• EODatabaseChannel: a communication channel

to the database; there can be many channels per

context; channels provide the capability for

multiple concurrently executing operations in a

transaction if the database supports them.

Update strategies can be set on a per-transaction

basis by sending a setUpdateStrategy message to

the EODatabaseContext that’s controlling the

transaction of interest. Four strategies are available:

1.Update with optimistic locking (the default)

2.Update with pessimistic locking

3.Update with no locking (blind updating)

4.No update (the data is read-only)

The database layer uses the model to transform

dictionaries to enterprise objects and enterprise

objects to dictionaries. In addition to handling

addition to the dictionary-EO transformation, the

database layer provides:

• Relationship graphing: As the database level

creates enterprise objects, it arranges them in an

in-memory graph that corresponds to the relation-

ships defined in the model. Connections between

related objects are standard Objective C ids

(pointers to objects). As suggested in Figure 2,

a database table that represents a company’s

organization will, when loaded into memory as

enterprise objects, look like an organization chart

(if one could see objects in memory). Such a

graph is the natural representation of related

objects, and it’s created automatically.

The Enterprise Objects Framework July 1994

12

• Relationship faulting: unless directed otherwise,

the database level does not fetch related objects

until they are referenced; then it fetches them

automatically. In other words, database accesses

necessary to create related objects in the graph are

deferred until required and are then made implicit-

ly. The result is commonly better memory

utilization and less database traffic.

• Object uniqueing: If employee 1 is managed by

employee 5, and so is employee 2, uniqueing en-

sures that there is only one instance of employee

5 in memory and that both 1 and 2 point to it.

The result is consistency and better performance

as well: the database layer won’t fetch 5 if it’s

already in memory.

The adaptor level objects provide generic

relational database access, hiding, for example, the

dialects of SQL supported by different database

vendors. The adaptor level objects are analogous to

the database level objects; when you create a data-

base-level object it creates the corresponding adaptor

object. Adaptor level messages are analogous to data-

base-level messages except that instead of insertOb-

ject, the corresponding message is insertRow, and

so on.

Developers who are familiar with a particular

relational database’s client library can create an

adaptor for that database with about the same effort

required to write a database application—on the

order of a couple of thousand lines of code.

III. Conclusion

The linkage of relational databases and objects

is inevitable. There is no better way to store large

amounts of critical data than in a database. The

wealth of enterprise information that is already

captured in databases cannot be ignored, and should

not be ignored: it should be exploited.

As adept as they are at storing data, databases

do only that: they have no general-purpose computa-

tional facilities. Conversely, procedural code,

whether based on 4GLs or compiled languages,

leaves out the data. The best way to package busi-

ness information is to fuse data and policy in objects.

The question is not whether the storage technol-

ogy of databases will be linked to the software devel-

opment technology of objects. The question is how.

NeXT’s Enterprise Objects Framework is the

most comprehensive and versatile approach. It

does not change the databases on which existing

applications depend. It confers full privileges upon

enterprise objects. Its object creation and database

access machinery is encapsulated in other objects

which have been rigorously tested and never have to

be maintained. It supports all facets of development

with NEXTSTEP, the most respected object-oriented

application environment in the industry. It allows

simple applications to be constructed graphically

without coding, and more complex ones to be devel-

oped incrementally from simple ones. And for spe-

cial situations, it provides full access to the facilities

of its own object-oriented architecture.

 1993-94 NeXT Computer, Inc. All Rights Reserved. NeXT, the NeXT

logo, NEXTSTEP, Enterprise Objects, and Database Kit are trademarks

of NeXT Computer, Inc. All other trademarks mentioned belong to their

respective owners.

