
Macintosh Technical Notes 
#19: How To Produce Continuous Sound Without "Clicking"

See also: The Sound Driver
The File Manager
The Vertical Retrace Manager

Written by: Ginger Jernigan 4/18/85

This technote describes how to use the Sound Driver to produce continuous
sound without the "click" that the driver produces when it starts a sound.

If you have tried using the Sound Driver to produce sound you probably noticed that one
StartSound call produces sound for a comparatively short time. So, to produce longer sounds
the obvious thing to do is to make consecutive calls to StartSound. This, however, produces
an annoying "click" everytime StartSound is executed. This technote describes how to use the
Sound Driver to produce continuous sound without the "click", and provides a little more
background information about how the Sound Driver works.

How Does The Sound Driver REALLY Work

In order to better understand how to modify the output of the Sound Driver, we need to know
more about how sound is produced. For this discussion we will use the free form synthesizer
as our example. The process used for the other synthesizers is very similar.

To produce sound, the first thing we do is set up the sound buffer. For the free form
synthesizer this consists of the the FFSynthRec, which includes the following fields:

Mode: The mode for the free form synthesizer is FFMode.
Count: Count is a fixed point number used for sampling the wave form.
Waveform: This is the array of values that define the wave form.

To set up the buffer, use the example in the Sound Driver section of Inside Macintosh, page
11. Once you set up your buffer you then call StartSound. StartSound will in turn set up a
parameter block where iobuffer contains your buffer (in our case FFSynthRec); the iorefnum
is -4; iocompletion points to your completion routine; and ioreqcount is equal to the size of
your buffer. Once the parameter block is set up it then calls the Write trap. (If you are using
assembly language or a third party development system that doesn't support StartSound,
these are the steps you would take to start the sound yourself.)

When the Sound Driver gets the parameter block it reads the mode from the buffer to find out
which synthesizer to use to interpret the buffer. It then installs itself into the Vertical Retrace
queue, samples the waveform according to the count given, and then loads the specified
bytes into the high (even) bytes of the sound/disk speed buffer. As it indexes through the
waveform array using count it increments the ioactcount field in the parameter block and
checks it against the ioreqcount to make sure it doesn't exceed the wave form array. If the

Technical Note #19 page of 4 How To Produce Sound Without "Clicking"1

ioactcount and ioreqcount aren't equal on the next vertical retrace, then it fills the buffer
again. If they are equal and the buffer isn't filled, the rest of the buffer is filled with zeros.

Technical Note #19 page of 4 How To Produce Sound Without "Clicking"2

How To Avoid The Embarassing "Click"

The click happens after the _Write call occurs, while the driver is setting up for the production
of sound. Therefore, the trick is to make only one call to start the sound, then change the
information in the paramater block while the Sound Driver is still producing sound.

The first step is to take care of the parameter block setup and the PBWrite (_Write) call
yourself, instead of letting StartSound do it for you. The reason is that you need to have easy
access to the parameter block in order to change the ioactcount field. The Sound Driver uses
ioactcount to keep track of where it is in the sound buffer. So, when we want the sound to
start over again, instead of calling _Write again we fool the Sound Driver into thinking it is
actually starting at the beginning of the buffer by setting ioactcount to 0.

To set up the sound buffer and the parameter block here's an example. Again, we are using
free form sound.

{$U-}
{$R-}
{$M+}
{$L+}
Program Soundtest;

{$L-}
uses
{$U Obj/MemTypes } MemTypes,
{$U Obj/QuickDraw } QuickDraw,
{$U Obj/OSIntf } OSIntf,
{$U Obj/ToolIntf } ToolIntf,
{$U Obj/PackIntf } PackIntf,
{$U Obj/SaneLib } SANE; { Just in case we want to do any SANE stuff }
{$L+}

VARmyHandle : handle;
MyFFPtr : FFSynthPtr;
Buffsize : integer;
i,j : integer;
Parmblock : parmblkptr;
err : oserr;

BEGIN
FlushEvents(everyevent, 0);

{ First we set up the sound buffer information }
Buffsize := 30000; { The total size of the buffer is 30000 }
myHandle := NewHandle(buffsize); { Make a new handle of that size }

Technical Note #19 page of 4 How To Produce Sound Without "Clicking"3

HLock(myhandle); { Lock it. We don't want it to move on us }
MyFFPtr := FFSynthPtr(MyHandle^); { Force a type coercion on the contents of the

handle to an FFSynthPtr }
MyFFPtr^.mode := FFMode; { Set the mode to free form synthesizer }
MyFFPtr^.Count := $00010000; { Set the count to 1 - remember this is in

fixed-point notation }
 j := 0; { The waveform is zero based }
WHILE j<=buffsize-7 DO BEGIN { The -6 is for mode and count, and -1 is because

we're zero based }
FOR i := 0 to 255 DO BEGIN

MyFFPtr^.wavebytes[j] := i; { Stuff the waveform with values }
j := j+1; { Increment wave index }

END;
END;
SetSoundVol(6); { Set the sound volume }

{ Then we allocate the parameter block }
ParmBlock := ParmBlkPtr(NewPtr(SizeOf(ParamBlockRec)));
WITH Parmblock^ DO BEGIN { And set up the parameter block with ... }

iocompletion := nil; { No completion routine }
iorefnum := -4; { Refnum is -4 as per Inside Macintosh }
iobuffer := ptr(MyFFPtr); { The buffer is set to point to my sound buffer }
ioreqcount := buffsize; { The required count is set to the size of the

buffer }
END;
err := PBWrite(Parmblock,true); { OK - now write it asynchronously}

After this point the Sound Driver starts filling the buffer and sound is produced as discussed
above. The sound is produced asynchronously in order to allow our program to keep on
running during the sound generation. To restart the sound you want to change the
ioactcount after the buffer has been filled (and after the Vertical Retrace task has
incremented ioactcount) and before the last pass at filling the sound/disk speed buffer.

The trick is to make sure the change to ioactcount happens at the right time. If you change it
too early, then the Vertical Retrace task will increment it after you have changed it, thus
resetting it to where it was before. If you change it too late it will finish the waveform and stop
the sound whether you want it too or not. The best way to take care of this timing problem is
to install your own Vertical Retrace task in the queue before or after the sound task. The task
would look something like this:

IF ParmBlock^.ioactcount >= 29960 THEN BEGIN
 {the 29960 is from the formula (count*370)*Trunc(waveform/(count*370)). This should

 be before the last pass through the waveform. }
ParmBlock^.ioactcount := 0;
MyFFPtr^.count := MyFFPtr^.count + $00000500; { Let's increment the count for

fun}
END;

If the routine is in the vertical retrace queue then you avoid the "critical section". This is when
the sound code and your code are trying to change the same value at the same time. You
want to avoid this. Really.

Changing The Sound Information

Notice that we also changed the count parameter in the buffer. Since ioactcount is now 0 it
will begin at the beginning of the waveform the next time is needs to stuff the sound/disk
speed buffer. Since we have changed the count(sampling rate), it will use the new value to
sample the waveform on the next pass.

Technical Note #19 page of 4 How To Produce Sound Without "Clicking"4

If you need to change the values in the waveform, there are two methods. The first is to
change the current waveform. To do this, you would, for example, check to see if ioactcount
is half of ioreqcount, and start stuffing at the beginning of the buffer. Be careful, though,
because you can stuff the waveform faster than the values are sampled. Then, before the
last pass at filling the sound/disk speed buffer change the ioactcount so it will start at the
beginning of your new wave form.

The second method is to fill a different waveform while you are producing sound and when
you change ioactcount, you assign the second buffer into iobuffer. Make sure the mode
and count are correct in the second buffer.

Technical Note #19 page of 4 How To Produce Sound Without "Clicking"5

