
% Revision 1.6 1993/03/29 04:09:56 bammi % V8 % % Revision 1.5 1992/11/16 23:36:35 bammi

% *** empty log message *** %

GCC for the Atari ST & TT
Using the GNU C-Compiler on the Atari ST & TT computers

26 May 1993

by Frank Ridderbusch

Copyright c© 1988, 1989, 1990 Free Software Foundation, Inc.

Copyright c© 1990, 1991, 1992 Frank Ridderbusch

Permission is granted to make and distribute verbatim copies of this manual provided the copyright

notice and this permission notice are preserved on all copies.

Permission is granted to copy and distribute modified versions of this manual under the conditions

for verbatim copying, provided also that the section entitled “GNU CC General Public License” is

included exactly as in the original, and provided that the entire resulting derived work is distributed

under the terms of a permission notice identical to this one.

Permission is granted to copy and distribute translations of this manual into another language,

under the above conditions for modified versions, <except that the section entitled “GNU CC

General Public License” and this permission notice may be included in translations approved by

the Free Software Foundation instead of in the original English.

GNU CC GENERAL PUBLIC LICENSE 1

GNUCCGENERALPUBLIC LICENSE

(Clarified 11 Feb 1988)

The license agreements of most software companies keep you at the mercy of those companies.

By contrast, our general public license is intended to give everyone the right to share GNU CC. To

make sure that you get the rights we want you to have, we need to make restrictions that forbid

anyone to deny you these rights or to ask you to surrender the rights. Hence this license agreement.

Specifically, we want to make sure that you have the right to give away copies of GNU CC, that

you receive source code or else can get it if you want it, that you can change GNU CC or use pieces

of it in new free programs, and that you know you can do these things.

To make sure that everyone has such rights, we have to forbid you to deprive anyone else of

these rights. For example, if you distribute copies of GNU CC, you must give the recipients all the

rights that you have. You must make sure that they, too, receive or can get the source code. And

you must tell them their rights.

Also, for our own protection, we must make certain that everyone finds out that there is no

warranty for GNU CC. If GNU CC is modified by someone else and passed on, we want its recipients

to know that what they have is not what we distributed, so that any problems introduced by others

will not reflect on our reputation.

Therefore we (Richard Stallman and the Free Software Foundation, Inc.) make the following

terms which say what you must do to be allowed to distribute or change GNU CC.

COPYING POLICIES

1. You may copy and distribute verbatim copies of GNU CC source code as you receive it, in

any medium, provided that you conspicuously and appropriately publish on each copy a valid

copyright notice “Copyright c© 1988 Free Software Foundation, Inc.” (or with whatever year

is appropriate); keep intact the notices on all files that refer to this License Agreement and to

the absence of any warranty; and give any other recipients of the GNU CC program a copy

of this License Agreement along with the program. You may charge a distribution fee for the

physical act of transferring a copy.

2. You may modify your copy or copies of GNU CC or any portion of it, and copy and distribute

such modifications under the terms of Paragraph 1 above, provided that you also do the

following:

GNU CC GENERAL PUBLIC LICENSE 2

• cause the modified files to carry prominent notices stating that you changed the files and

the date of any change; and

• cause the whole of any work that you distribute or publish, that in whole or in part

contains or is a derivative of GNU CC or any part thereof, to be licensed at no charge to

all third parties on terms identical to those contained in this License Agreement (except

that you may choose to grant more extensive warranty protection to some or all third

parties, at your option).

• You may charge a distribution fee for the physical act of transferring a copy, and you may

at your option offer warranty protection in exchange for a fee.

Mere aggregation of another unrelated program with this program (or its derivative) on a

volume of a storage or distribution medium does not bring the other program under the scope

of these terms.

3. You may copy and distribute GNU CC (or a portion or derivative of it, under Paragraph 2)

in object code or executable form under the terms of Paragraphs 1 and 2 above provided that

you also do one of the following:

• accompany it with the complete corresponding machine-readable source code, which must

be distributed under the terms of Paragraphs 1 and 2 above; or,

• accompany it with a written offer, valid for at least three years, to give any third party

free (except for a nominal shipping charge) a complete machine-readable copy of the

corresponding source code, to be distributed under the terms of Paragraphs 1 and 2

above; or,

• accompany it with the information you received as to where the corresponding source code

may be obtained. (This alternative is allowed only for noncommercial distribution and

only if you received the program in object code or executable form alone.)

For an executable file, complete source code means all the source code for all modules it

contains; but, as a special exception, it need not include source code for modules which are

standard libraries that accompany the operating system on which the executable file runs.

4. You may not copy, sublicense, distribute or transfer GNU CC except as expressly provided

under this License Agreement. Any attempt otherwise to copy, sublicense, distribute or transfer

GNU CC is void and your rights to use the program under this License agreement shall be

automatically terminated. However, parties who have received computer software programs

from you with this License Agreement will not have their licenses terminated so long as such

parties remain in full compliance.

5. If you wish to incorporate parts of GNU CC into other free programs whose distribution

conditions are different, write to the Free Software Foundation at 675 Mass Ave, Cambridge,

MA 02139. We have not yet worked out a simple rule that can be stated here, but we will often

permit this. We will be guided by the two goals of preserving the free status of all derivatives

of our free software and of promoting the sharing and reuse of software.

Contributors to GNU CC 3

Your comments and suggestions about our licensing policies and our software are welcome!

Please contact the Free Software Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, or call

(617) 876-3296.

NO WARRANTY

BECAUSE GNU CC IS LICENSED FREE OF CHARGE, WE PROVIDE ABSOLUTELY

NO WARRANTY, TO THE EXTENT PERMITTED BY APPLICABLE STATE LAW. EX-

CEPT WHEN OTHERWISE STATED IN WRITING, FREE SOFTWARE FOUNDATION, INC,

RICHARD M. STALLMAN AND/OR OTHER PARTIES PROVIDE GNU CC "AS IS" WITH-

OUT WARRANTY OF ANY KIND, EITHER EXPRESSED OR IMPLIED, INCLUDING, BUT

NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS

FOR A PARTICULAR PURPOSE. THE ENTIRE RISK AS TO THE QUALITY AND PER-

FORMANCE OF GNU CC IS WITH YOU. SHOULD GNU CC PROVE DEFECTIVE, YOU

ASSUME THE COST OF ALL NECESSARY SERVICING, REPAIR OR CORRECTION.

IN NO EVENT UNLESS REQUIRED BY APPLICABLE LAW WILL RICHARD M. STALL-

MAN, THE FREE SOFTWARE FOUNDATION, INC., AND/OR ANY OTHER PARTY WHO

MAY MODIFY AND REDISTRIBUTE GNU CC AS PERMITTED ABOVE, BE LIABLE TO

YOU FOR DAMAGES, INCLUDING ANY LOST PROFITS, LOST MONIES, OR OTHER SPE-

CIAL, INCIDENTAL OR CONSEQUENTIAL DAMAGES ARISING OUT OF THE USE OR IN-

ABILITY TO USE (INCLUDING BUT NOT LIMITED TO LOSS OF DATA OR DATA BEING

RENDERED INACCURATE OR LOSSES SUSTAINED BY THIRD PARTIES OR A FAILURE

OF THE PROGRAM TO OPERATE WITH ANY OTHER PROGRAMS) GNU CC, EVEN IF

YOU HAVE BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES, OR FOR ANY

CLAIM BY ANY OTHER PARTY.

Contributors toGNUCC

In addition to Richard Stallman, several people have written parts of GNU CC.

• The idea of using RTL and some of the optimization ideas came from the U. of Arizona Portable

Optimizer, written by Jack Davidson and Christopher Fraser. See “Register Allocation and

Exhaustive Peephole Optimization”, Software Practice and Experience 14 (9), Sept. 1984,

857-866.

• Paul Rubin wrote most of the preprocessor.

Contributors to GNU CC 4

• Leonard Tower wrote parts of the parser, RTL generator, RTL definitions, and of the Vax

machine description.

• Ted Lemon wrote parts of the RTL reader and printer.

• Jim Wilson implemented loop strength reduction and some other loop optimizations.

• Nobuyuki Hikichi of Software Research Associates, Tokyo, contributed the support for the

SONY NEWS machine.

• Charles LaBrec contributed the support for the Integrated Solutions 68020 system.

• Michael Tiemann of MCC wrote most of the description of the National Semiconductor 32000

series cpu. He also wrote the code for inline function integration and for the SPARC cpu and

Motorola 88000 cpu and part of the Sun FPA support.

• Jan Stein of the Chalmers Computer Society provided support for Genix, as well as part of

the 32000 machine description.

• Randy Smith finished the Sun FPA support.

• Robert Brown implemented the support for Encore 32000 systems.

• David Kashtan of SRI adapted GNU CC to the Vomit-Making System.

• Alex Crain provided changes for the 3b1.

• Greg Satz and Chris Hanson assisted in making GNU CC work on HP-UX for the 9000 series

300.

• William Schelter did most of the work on the Intel 80386 support.

• Christopher Smith did the port for Convex machines.

• Paul Petersen wrote the machine description for the Alliant FX/8.

Aside fromMichael Tiemann, who worked out the front end for GNU C++, and Richard Stallman,

who worked out the back end, the following people (not including those who have made their

contributions to GNU CC) should not go unmentioned.

• Doug Lea contributed the GNU C++ library. This includes support for streams, obstacks,

structured files, and other public service objects.

• Doug Schmidt has spent countless hours pursuing bugs in this compiler for sport. He also wrote

a perfect hash function generator in GNU C++ which was used to generate a replacement for

the keyword recognizer in the lexical analyzer for both GNU CC and GNU C++.

• Marc Shapiro and Phillipe Gautron helped me implement features needed for the SOR dis-

tributed object management environment.

• Dirk Grunwald made the collect program usable under COFF.

• Angel Li adapted GNU C++ to VMS.

• Ron Cole provided additional help getting GNU C++ working on COFF-based systems.

Introduction 5

• James Clark wrote a name demangler for the GNU C++ naming scheme, and integrated it with

the linker.

• Michael Powell and Jim Mitchell helped design the GNU C++ exception handling mechanism.

The following people contributed specially to the version for the Atari ST & TT.

• John R. Dunning did the original port to the Atari ST.

• Jwahar R. Bammi improved the port and the libraries.

• Eric R. Smith wrote lots of code for the libraries.

• David Boyce ported G++ 1.39.1 and the libg++ 1.39.0 to the ST.

• The following is a not necessarily complete list of people who either contributed code or bugfixes

to the libraries: Michal Jaegermann, Scott Kolodzieski, Andreas Schwab, Frank Celler, Edgar

Roeder, Kai-Uwe Bloem, Allan Pratt, Jens Tingleff, Thomas Koenig, Markus Nick. Apologies

to those I forgot to mention.

• Frank Ridderbusch compiled this manual specially for the Atari ST.

Introduction

This manual documents how to install and run the GNU C compiler on the Atari ST & TT

computers. It does not give an introduction in C or M68000 assembler. There is enough material on

both subjects available. The user, who is familiar with a C compiler, that runs on a U**x system,

should have no trouble at all to get GNU C running on the Atari ST. This manual was compiled

from existing GNU manuals and various bits and pieces from John R. Dunning and Jwahar R.

Bammi.

The sections, which describe the compiler driver, the preprocessor and the G++ compiler driver

are nearly verbatim copies of sections in the respective manuals. The original manuals (Using and

Porting GNU CC and The C Preprocessor), were written by Richard M. Stallman and Michal

D. Tieman (User’s Guide to GNU C++). All of these three documents are copyright c© The Free

Software Foundation. I modified these sections by removing material, which described features of

GNU C for systems like Vaxen or Suns. To keep this manual reasonably compact, I extracted only

the sections, which describe the supported command options (and predefined macros in case of the

preprocessor). If the user is interested in the extensions and details, which are implemented in

GNU C, he has to refer to the original manuals. Whether all described options are useful on the

Atari has to be decided.

Chapter 1: Installing GCC 6

The facts, which are presented in the assembler and utility sections are mostly derived from the

sources of the respective programs (from a cross compiler kit by J. R. Bammi based on GNU C

1.31), which were available to me. Other facts were gathered by try and error. So, these sections

may be a bit shaky.

The first version of this manual was based on GCC 1.37.1. Then, GCC 1.40 and G++ 1.39.1

became available. The most noticeable differences were some new options (‘-mint’, ‘-G’, ‘-z’) and

the extended symbol table format. In the beginning of 1992 the FSF released GCC 2.x. In this

release GCC and G++ were merged into one large package. At the time of this writing the current

version for the Atari is 2.2.2 with patchlevel 2. This manual doesn’t cover all new command line

options from GCC 2.2.2, but only the most valuable (in the authors opinion). The coverage of

GCC 2.x is not yet complete. Also, GAS 1.92 is pending.

Additionally two flavours of libraries are present. One version, which is now mostly maintained

by J.R.Bammi, is for the ST running the native TOS operating system. The other flavour is

maintained by E.R.Smith. This version is specially modified to support MiNT, the multitasking

TOS extension, also from E.R.Smith. It is the aim of both maintainers to keep the libraries in sync

as much as possible and possibly merge them together in the future.

The best place to look for all the components (binaries and sources) is at the moment the

Atari archive at terminator. The internet address for anonymous ftp is atari.archive.umich.edu

(141.211.164.8). Also a mail server called BART is active. Send a message with the word ‘help’

in it to the address atari@atari.archive.umich.edu and BART will explain himself. The maintainers

of this archive post a monthly message to the USENET newsgroup ‘comp.sys.atari.st’, which

explains, how to get things from the archive. The packaging of the files may be different as it is

explained below.

If you find any errors or typos in this manual or have any other comments, please let me know.

My email address is:

ridderbusch.pad@sni-usa.com
(Amerika (North & South))
ridderbusch.pad@sni.de
(Rest of world)
Frank Ridderbusch@pb.maus.de
(MausNet, a FIFO like network in Germany)

1 InstallingGCC

Chapter 1: Installing GCC 7

There are basically three components, which make up a basic compiling system and which have

to be installed. Each component is accessed via an environment variable. This three components

are:

The executables

These are accessed via the normal PATH variable, by which all other programs are found

and the variable GCCEXEC.

The header files

The preprocessor accesses the header files via the variable GNUINC. Any C++ header

files are accessed via GXXINC

The libraries

The linker finds the startup file and the required libraries via the variable GNULIB. The

C++ library also belongs into this directory.

All this stuff basically assumes that you’re using a CLI (command line interpreter). A really

good choice is Gulam, which has very nice set of features, but there are quite a number of other

CLI’s around, which also might do the job. If want as much U**x feeling as possible, you might

consider either ‘ash’, which is compatible to the Bourne shell (ported by Stefan Neuhaus), or

E.R.Smiths port of ‘tcsh’ or Scott Kolodzieskis port of BASH 1.12.

Apart from the CLI you definitely should get yourself a make utility. Again, good choices

here are either the GNU Make, which offers nearly the complete U**x make functionality on the

ST or the PDMAKE, which has only the core make functionality, but has on the other hand the

advantage, that it requieres fewer system resources.

I suggest the following directory structure on your disk partition:

‘\gnu\bin’

for all executable programs. The compiler driver finds the executables in this directory

by looking up the environment variable GCCEXEC.

‘\gnu\lib’

for the startup object modules and the libraries. The linker find the startup code and

the libraries in this directory by looking up the variable GNULIB.

‘\gnu\include’

for the header files. The preprocessor finds the include file in this directory by looking

up the environment variable GNUINC.

Chapter 1: Installing GCC 8

With earlier versions of GNU CC it was only allowed to put one path into the variables GNULIB

and GNUINC. GCC 1.37 and later allows you to put several paths into these variables, which are

separated by either a ‘,’ or a ‘;’. All the mentioned paths are searched in order to locate a specific

file. However the startup module ‘crt0.o’ is only looked for in the first directory specified in

GNULIB. If the preprocessor can’t find a include file in one of the directories specified by GNUINC, it

will also search the paths listed in GNULIB.

1.1 Installing the Executables

The compressed archive of the GNU C compiler binary distribution contains the ’common’

executables of the GNU compiler. That means the compiler driver (‘gcc.ttp’), the preprocessor

(‘gcc-cpp.ttp’), the main body (‘gcc-cc1.ttp’), the assembler (‘gcc-as.ttp’) and the linker

(‘gcc-ld.ttp’), but depending from where you got your GCC the packaging might be different.

The just mentioned programs are the absolute minimum. To be comfortable, you should get the

following support programs:

‘gcc-ar.ttp’

is the object library maintainer.

‘gdb.ttp’ is the GNU debugger 2.6 modified for the Atari ST. John Dunning did the original port

to the Atari. Since then Jwahar Bammi has extensively hacked it. GDB now uses DBX

debugging information in the object files. This requires an assembler with version 1.36

or greater.

‘sym-ld.ttp’

creates the symbol file needed with GDB.

‘gcc-nm.ttp’

prints the symbols of a GNU object library or an object file.

‘cnm.ttp’ prints the symbol table of a GEMDOS executable.

‘fixstk.ttp’

‘printstk.ttp’

are used to modify and print the current stack size of an executable.

‘toglclr.ttp’

TOS 1.4 users can toggle the clear above BSS to end of TPA flag for the GEMDOS

loader. A newer version of ‘toglclr.ttp’ also allows to toggle the loader bits, that

were introduced with TOS versions 2.x and 3.x.

‘size68.ttp’

This program list the values of the TEXT, DATA, and BSS sections of a ready to run

executable.

Chapter 1: Installing GCC 9

‘xstrip.ttp’

removes the symbol table from an executable.

All this files should go in ‘\gnu\bin\’ directory on your gnu disk. I personally keep my executa-

bles in the directory ‘e:\gnu\bin’. You should than extend the search path of your CLI to include

this directory or you move the compiler driver ‘gcc.ttp’ and the files, which are not invoked by

‘gcc.ttp’ (‘gcc.ttp’ calls ‘gcc-cpp.ttp’, ‘gcc-cc1.ttp’, ‘gcc-as.ttp’ and ‘gcc-ld.ttp’) into

the directory, where you keep your other executables. The next step is to actually define GCCEXEC.

‘gcc.ttp’ uses this variable to locate the preprocessor, compiler, assembler and the linker. GCCEXEC

contains a device/dir/partial-pathname, which not only consists of the directory, where the exe-

cutables are kept, but also a common prefix, which is ‘gcc-’. Assuming you also put the executables

in the directory as described above, GCCEXEC would contain ‘e:\gnu\bin\gcc-’. The value is the

same, you would give the compiler driver with the ‘-B’ option.

Then you should define a variable called TEMP. During compilation the output of the various

intermediate stages is kept here. The variable must not contain a trailing backslash. If you have

enough memory, TEMP should point to a ramdisk.

1.2 Installing the libraries

The next thing to do is to install the libraries. The distributed archive contains the following

libraries (again, the packaging may vary):

‘crt0.o’

‘gcrt0.o’ are the startup object modules. The file ‘gcrt0.o’ instead of ‘crt0.o’ is used, if the

sources files are compiled for execution profiling (the ‘-pg’ option).

‘gnu.olb’

‘gnu16.olb’

are the standard libraries, the usual ‘libc’ on other systems.

‘curses.olb’

‘curses16.olb’

are ports of the BSD curses.

‘gem.olb’

‘gem16.olb’

contain the Atari ST Aes/Vdi/FSM-GDOS bindings.

Chapter 1: Installing GCC 10

‘iio.olb’

‘iio16.olb’

contain the integer only ‘printf’ and ‘scanf’ functions.

‘pml.olb’

‘pml16.olb’

are the portable math libraries.

‘termcap.olb’

‘termcap16.olb’

are for the pure ‘termcap’ support.

‘widget.olb’

‘widget16.olb’

are a small widget based on ‘curses’

All these libraries go to a place described by the environment variable GNULIB. Again this

variable must not contain a trailing backslash. Staying with the above example, I’ve set the

variable to ‘e:\gnu\lib’. The libraries, which have a 16 in their names were compiled with the

‘-mshort’ option. This makes integers the same size as shorts.

If you like to write programs for MiNT, the TOS multitasking extension from E.R.Smith, you

might consider to replace ‘gnu.olb’, ‘gnu16.olb’, ‘iio.olb’ and ‘iio16.olb’ with the libraries

supplied by Eric Smith. The source and the binaries of these libraries can also be retrieved from

the Atari archive at terminator. The files are ‘mntlibxx.zoo’ for the sources and ‘mntolbxx.zoo’

for the binaries. They are found in the ‘mint’ directory. xx is the version number, currently 20.

Programs written with this libraries will also run under TOS, as long no MiNT specific features

have been used. (See Chapter 4 [The C-Compiler Driver], page 13, for more info on compiling

programs for MiNT (the ‘-mint’ option))

Another option is to have both sets of libraries installed. For this you have to rename the MiNT

libraries according to the following scheme:

• ‘crt0.o’ ⇒ ‘mcrt0.o’

• ‘gcrt0.o’ ⇒ ‘mgcrt0.o’

• ‘gnu.olb’ ⇒ ‘mint.olb’

• ‘gnu16.olb’ ⇒ ‘mint16.olb’

To select these files instead of the standard TOS versions and to activate the MiNT specific

portions of the header files you have to include the ‘-mint’ option in the ‘gcc.ttp’ command line.

Chapter 1: Installing GCC 11

1.3 Installing the Header Files

The last bit to install are the header files. They are contained in an archive of their own. The

preprocessor now knows about the variable GNUINC. Earlier version had to use the ‘-Iprefix’ option,

to get to the header files. According to the above examples, the files would be put in the directory

‘e:\gnu\include’. GNUINC has to be set accordingly.

If you like to write programs for MiNT, apart from the libraries you also need the MiNT specific

include files (also from the Atari archive). These are found in the archive ‘mntincxx.zoo’ in the

‘mint’ directory. xx matches the version number of the library. (See Chapter 4 [The C-Compiler

Driver], page 13, for more info on compiling programs for MiNT (the ‘-mint’ option)).

If you choose to have both sets of libraries installed you can keep the TOS specific header files

since they are compatible with the MiNT ones.

1.4 Gulam Notes

The programs, which come with the GCC distribution also understand filenames, which use the

slash (‘/’) as a separator. When Gulam is your favorite CLI you will stick to the backslashes, since

you otherwise lose the feature of command line completition.

If you are using Gulam, you can define ‘aliases’ to reach the executables under more common

names.

alias cc e:\gnu\bin\gcc.ttp
alias ar e:\gnu\bin\gcc-ar.ttp
alias as e:\gnu\bin\gcc-as.ttp
alias ld e:\gnu\bin\gcc-ld.ttp
. . .

Now you should be able to say ‘cc foo.c -o foo.ttp’ and the obvious thing should happen. If

you still have trouble, compare your settings with the ones from the sample file ‘gulam.g’. That

should give you the right idea.

One additional note to Gulam. ‘crt0.o’ is currently set up to understand the MWC/Atari

convention of passing long command lines (except it doesn’t look into the _io_vector part). Gulam

users should set ‘env_style mw’, if you want to give long args lines to ‘gcc.ttp’.

Chapter 3: Memory Requirements 12

To summarize the above, here are the settings from my ‘gulam.g’ initialization file. The usage of

UNIXMODE environment variable is explained in the file ‘unixmode.doc’, which is part of the library

sources. The GXXINC variable is for G++.

set env_style mw
setenv TEMP i:
setenv PATH e:\gnu\bin;<your other search paths here>
setenv GCCEXEC e:\gnu\bin\gcc-
setenv GNULIB e:\gnu\lib
setenv GNUINC e:\gnu\include
setenv GXXINC e:\gnu\g++-inc
setenv UNIXMODE ’d/brG’

2 InstallingG++

For the G++ installation apply the same rules as for the GCC installation. The G++ compiler

driver ‘g++.ttp’ and the actual compiler ‘gcc-cc1+.ttp’ belong into the same directory as the

GCC executables. The preprocessor is shared between G++ and GCC. The library ‘g++.olb’ goes

into the same directory as all the other libraries. Since G++ has a complete set of include files of it’s

own, they all should be copied into the directory ‘\gnu\g++-inc’. To let the preprocessor know,

where it can find the include files, the variable GXXINC is used.

The above is valid for G++ 1.xx. Since GCC and G++ were merge into one large package with

version 2.x, there is no longer a special compiler driver for G++. ‘gcc.ttp’ determines from the file

extension, whether the C or C++ compiler should be invoked. The file ‘gcc-cc1plus.ttp’ is the

actual C++ compiler. This file name is usually truncated to ‘gcc-cc1p.ttp’ in the 8+3 TOS file

system. What is said about the include files and the variable GXXINC is also true for G++ 2.x.

To actually use G++, some requirements have to be fulfilled. You need the GCC include files

and libraries with at least patch level 72. Additionally the linker ‘gcc-ld.ttp’ must have at least

patch level 22.

The library ‘g++.olb’ is at the moment not 100% 16bit clean. That means, there is at the

moment no version, which is compiled with the ‘-mshort’ option.

3 Memory Requirements

Chapter 4: Controlling the C-Compiler Driver (‘gcc.ttp’) 13

GCC loves memory. A lot. It loves to cons structures. Lots of them. Earlier versions probably

won’t run at all in less than 1 Meg; the version 1.36 of GCC will probably need 2 Meg. The

‘gcc-cc1.ttp’ had 1/2 meg stack, and needs it for compiling large files with optimization turned

on. Happily, it doesn’t need all that stack for smaller files, or even big files without the ‘-O’ option,

so it should be feasible to make a compiler with a smaller stack (with ‘fixstk.ttp’).

GCC versions 1.37 and later uses another scheme for memory allocation. The programs ‘gcc-

cpp.ttp’ and ‘gcc-cc1.ttp’ are setup for _stksize == -1L. This means, that an executable will

use all available memory, doing mallocs from internal heap (as opposed to the system heap via

Malloc), with SP initially set at the top, and heap starting just above the BSS. So if the compiler

runs out of memory, you probably need more memory (or get rid of accessories, tsr’s etc and try).

During my compilation of TEX 3.1 on my ST, I found that the size of a source file is not main

the limiting factor, but the size of a function. At that time my ST was equipped with 2.5 megs

of memory. About 512 Kb was used for ramdisk, cache and some auto folder programs. With

this configuration the maximum size of a function, which could be compiled, was about 14-20 KB

depending on how much code was inlined. Additionally I was able to compile GCC 1.40 and GAS

1.38 on my ST, but for this I had nearly disable every program in the auto folder. So, with GCC

1.40 you’re doing fine with at least 2.5 megs.

With GCC 2.2 you definitly need more memory. The compiler executable itself is about 850 Kb

in size. The C++ compiler is even larger (about 1.1 Mb). So, with GCC 2.2 you should have 4 Mb.

4 Controlling the C-CompilerDriver (‘gcc.ttp’)

The GNU C compiler uses a command syntax much like the U**x C compiler. The ‘gcc.ttp’

program accepts options and file names as operands. Multiple single-letter options may not be

grouped: ‘-dr’ is very different from ‘-d -r’.

When you invoke GNU CC, it normally does preprocessing, compilation, assembly and linking.

File names which end in ‘.c’ are taken as C source to be preprocessed and compiled; file names

ending in ‘.i’ are taken as preprocessor output to be compiled; compiler output files plus any input

files with names ending in ‘.s’ are assembled; then the resulting object files, plus any other input

files, are linked together to produce an executable.

Command options allow you to stop this process at an intermediate stage.

Chapter 4: Controlling the C-Compiler Driver (‘gcc.ttp’) 14

For example, the ‘-c’ option says not to run the linker. Then the output consists of object files

output by the assembler.

Other command options are passed on to one stage of processing. Some options control the

preprocessor and others the compiler itself. Yet other options control the assembler and linker;

these are not documented here, but you rarely need to use any of them.

Here are the options to control the overall compilation process, including those that say whether

to link, whether to assemble, and so on.

‘-o file’ Place output in file file. This applies regardless to whatever sort of output is being pro-

duced, whether it be an executable file, an object file, an assembler file or preprocessed

C code.

If ‘-o’ is not specified, the default is to put an executable file in ‘a.out’, the object file

‘source.c’ in ‘source.o’, an assembler file in ‘source.s’, and preprocessed C on standard

output.

‘-c’ Compile or assemble the source files, but do not link. Produce object files with names

made by replacing ‘.c’ or ‘.s’ with ‘.o’ at the end of the input file names. Do nothing

at all for object files specified as input.

‘-S’ Compile into assembler code but do not assemble. The assembler output file name is

made by replacing ‘.c’ with ‘.s’ at the end of the input file name. Do nothing at all

for assembler source files or object files specified as input.

‘-E’ Run only the C preprocessor. Preprocess all the C source files specified and output the

results to standard output.

‘-v’ Compiler driver program prints the commands it executes as it runs the preprocessor,

compiler proper, assembler and linker. Some of these are directed to print their own

version numbers.

‘-s’ The executable is stripped from the DRI compatible or extended symbol table. Certain

symbolic debuggers like ‘sid.prg’ work with this symbol table. Also the programs

‘printstk.ttp’ and ‘fixstk.ttp’ (See See Chapter 8 [The Utilities], page 44, for

more info) lookup the symbol ‘_stksize’ in this table.

‘-x’ This option directs the linker to discard all local labels while creating the symbol table

and write only those labels, which are marked global.

‘-G’ Instead of the standard DRI compatible symbol table, an extended symbol table is

written, which allows symbol names to be up to 22 characters long. Most of the utility

programs have been updated to work with this format. The most benefit you get with

‘gprof.ttp’ and ‘adb’ (the adb-like debugger, originally written for the Sozobon C

compiler by Johann Rueg and Don Dugger and later improved by Michal Jaegermann

(See See Chapter 9 [Debugging], page i, for additional info about debugging)).

Chapter 4: Controlling the C-Compiler Driver (‘gcc.ttp’) 15

‘-Bprefix’ The compiler driver program tries prefix as a prefix for each program it tries to run.

These programs are ‘gcc-cpp.ttp’, ‘gcc-cc1.ttp’, ‘gcc-as.ttp’ and ‘gcc-ld.ttp’.

For each subprogram to be run, the compiler driver first tries the ‘-B’ prefix, if any.

If that name is not found, or if ‘-B’ was not specified, the driver tries two standard

prefixes, which are ‘/usr/lib/gcc-’ and ‘/usr/local/lib/gcc-’. If neither of those

results in a file name that is found, the unmodified program name is searched for using

the directories specified in your ‘PATH’ environment variable.

You can get a similar result from the environment variable GCCEXEC. If it is defined,

its value is used as a prefix in the same way. If both the ‘-B’ option and the GCCEXEC

variable are present, the ‘-B’ option is used first and the environment variable value

second.

‘-z’ This option directs all output from ‘stderr’ to the file ‘compile.err’. So, all error

messages and warnings, which are printed during a compile run are written to this

file. The redirection is done by the compiler driver and is therefore only valid for

those programs, which are subsequently invoked by ‘gcc.ttp’. The ‘-z’ option was

introduced only very lately, so not every executable floating around might have it.

These options control the details of C compilation itself.

‘-ansi’ Support all ANSI standard C programs.

This turns off certain features of GNU C that are incompatible with ANSI C, such as

the asm, inline and typeof keywords, and predefined macros such as unix and vax

that identify the type of system you are using. It also enables the undesirable and

rarely used ANSI trigraph feature.

The ‘-ansi’ option does not cause non-ANSI programs to be rejected gratuitously. For

that, ‘-pedantic’ is required in addition to ‘-ansi’.

The macro __STRICT_ANSI__ is predefined when the ‘-ansi’ option is used. Some

header files may notice this macro and refrain from declaring certain functions or defin-

ing certain macros that the ANSI standard doesn’t call for; this is to avoid interfering

with any programs that might use these names for other things.

‘-traditional’

Attempt to support some aspects of traditional C compilers. Specifically:

• All extern declarations take effect globally even if they are written inside of a

function definition. This includes implicit declarations of functions.

• The keywords typeof, inline, signed, const and volatile are not recognized.

• Comparisons between pointers and integers are always allowed.

• Integer types unsigned short and unsigned char promote to unsigned int.

• Out-of-range floating point literals are not an error.

Chapter 4: Controlling the C-Compiler Driver (‘gcc.ttp’) 16

• All automatic variables not declared register are preserved by longjmp. Ordi-

narily, GNU C follows ANSI C: automatic variables not declared volatile may

be clobbered.

• In the preprocessor, comments convert to nothing at all, rather than to a space.

This allows traditional token concatenation.

• In the preprocessor, macro arguments are recognized within string constants in a

macro definition (and their values are stringified, though without additional quote

marks, when they appear in such a context). The preprocessor always considers a

string constant to end at a newline.

• The predefined macro __STDC__ is not defined when you use ‘-traditional’,

but __GNUC__ is (since the GNU extensions which __GNUC__ indicates are not

affected by ‘-traditional’). If you need to write header files that work differently

depending on whether ‘-traditional’ is in use, by testing both of these predefined

macros you can distinguish four situations: GNU C, traditional GNU C, other

ANSI C compilers, and other old C compilers.

‘-O’ Optimize. Optimizing compilation takes somewhat more time, and a lot more memory

for a large function. Without ‘-O’, the compiler’s goal is to reduce the cost of compila-

tion and to make debugging produce the expected results. Statements are independent:

if you stop the program with a breakpoint between statements, you can then assign a

new value to any variable or change the program counter to any other statement in the

function and get exactly the results you would expect from the source code.

Without ‘-O’, only variables declared register are allocated in registers. The resulting

compiled code is a little worse than produced by PCC without ‘-O’.

With ‘-O’, the compiler tries to reduce code size and execution time.Some of the ‘-f’

options described below turn specific kinds of optimization on or off.

‘-g’ Produce debugging information in the operating system’s native format (for DBX or

SDB). GCC on the Atari produces the DBX debugging format. GDB also works with

this debugging information.

Unlike most other C compilers, GNU CC allows you to use ‘-g’ with ‘-O’. The shortcuts

taken by optimized code may occasionally produce surprising results: some variables

you declared may not exist at all; flow of control may briefly move where you did

not expect it; some statements may not be executed because they compute constant

results or their values were already at hand; some statements may execute in different

places because they were moved out of loops. Nevertheless it proves possible to debug

optimized output. This makes it reasonable to use the optimizer for programs that

might have bugs.

‘-gg’ Produce debugging information in GDB’s own format. This option is no longer sup-

ported. Do not use it.

‘-w’ Inhibit all warning messages.

Chapter 4: Controlling the C-Compiler Driver (‘gcc.ttp’) 17

‘-W’ Print extra warning messages for these events:

• An automatic variable is used without first being initialized.

These warnings are possible only in optimizing compilation, because they require

data flow information that is computed only when optimizing. They occur only for

variables that are candidates for register allocation. Therefore, they do not occur

for a variable that is declared volatile, or whose address is taken, or whose size

is other than 1, 2, 4 or 8 bytes. Also, they do not occur for structures, unions or

arrays, even when they are in registers.

Note that there may be no warning about a variable that is used only to compute

a value that itself is never used, because such computations may be deleted by the

flow analysis pass before the warnings are printed.

These warnings are made optional because GNU CC is not smart enough to see

all the reasons why the code might be correct despite appearing to have an error.

Here is one example of how this can happen:

{
int x;
switch (y)

{
case 1: x = 1;
break;

case 2: x = 4;
break;

case 3: x = 5;
}

foo (x);
}

If the value of y is always 1, 2 or 3, then x is always initialized, but GNU CC

doesn’t know this. Here is another common case:

{
int save_y;
if (change_y) save_y = y, y = new_y;
. . .

if (change_y) y = save_y;
}

This has no bug because save_y is used only if it is set.

Some spurious warnings can be avoided if you declare as volatile all the functions

you use that never return.

• A nonvolatile automatic variable might be changed by a call to longjmp. These

warnings as well are possible only in optimizing compilation.

The compiler sees only the calls to setjmp. It cannot know where longjmp will be

called; in fact, a signal handler could call it at any point in the code. As a result,

Chapter 4: Controlling the C-Compiler Driver (‘gcc.ttp’) 18

you may get a warning even when there is in fact no problem because longjmp

cannot in fact be called at the place which would cause a problem.

• A function can return either with or without a value. (Falling off the end of the

function body is considered returning without a value.) For example, this function

would inspire such a warning:

foo (a)
{
if (a > 0)

return a;
}

Spurious warnings can occur because GNU CC does not realize that certain func-

tions (including abort and longjmp) will never return.

• An expression-statement contains no side effects.

In the future, other useful warnings may also be enabled by this option.

‘-Wimplicit’

Warn whenever a function is implicitly declared.

‘-Wreturn-type’

Warn whenever a function is defined with a return-type that defaults to int. Also warn

about any return statement with no return-value in a function whose return-type is

not void.

‘-Wunused’

Warn whenever a local variable is unused aside from its declaration, and whenever a

function is declared static but never defined.

‘-Wswitch’

Warn whenever a switch statement has an index of enumeral type and lacks a case

for one or more of the named codes of that enumeration. (The presence of a default

label prevents this warning.) case labels outside the enumeration range also provoke

warnings when this option is used.

‘-Wcomment’

Warn whenever a comment-start sequence ‘/*’ appears in a comment.

‘-Wtrigraphs’

Warn if any trigraphs are encountered (assuming they are enabled).

‘-Wall’ All of the above ‘-W’ options combined. These are all the options which pertain to usage

that we recommend avoiding and that we believe is easy to avoid, even in conjunction

with macros.

The other ‘-W. . .’ options below are not implied by ‘-Wall’ because certain kinds of

useful macros are almost impossible to write without causing those warnings.

Chapter 4: Controlling the C-Compiler Driver (‘gcc.ttp’) 19

‘-Wshadow’

Warn whenever a local variable shadows another local variable.

‘-Wid-clash-len’

Warn whenever two distinct identifiers match in the first len characters. This may

help you prepare a program that will compile with certain obsolete, brain-damaged

compilers.

‘-Wpointer-arith’

Warn about anything that depends on the “size of” a function type or of void. GNU

C assigns these types a size of 1, for convenience in calculations with void * pointers

and pointers to functions.

‘-Wcast-qual’

Warn whenever a pointer is cast so as to remove a type qualifier from the target type.

For example, warn if a const char * is cast to an ordinary char *.

‘-Wwrite-strings’

Give string constants the type const char[length] so that copying the address of one

into a non-const char * pointer will get a warning. These warnings will help you find

at compile time code that can try to write into a string constant, but only if you have

been very careful about using const in declarations and prototypes. Otherwise, it will

just be a nuisance; this is why we did not make ‘-Wall’ request these warnings.

‘-p’ Generate extra code to write profile information suitable for the analysis program prof.

This is useless on the Atari ST. Use -pg instead.

‘-pg’ Generate extra code to write profile information suitable for the analysis program

gprof.

‘-llibrary ’ Search a standard list of directories for a library named library, which is actually a

file named ‘$GNULIB\library.olb’. The linker uses this file as if it had been specified

precisely by name.

The directories searched include several standard system directories plus any that you

specify with ‘-L’.

Normally the files found this way are library files—archive files whose members are

object files. The linker handles an archive file by scanning through it for members

which define symbols that have so far been referenced but not defined. But if the file

that is found is an ordinary object file, it is linked in the usual fashion. The only

difference between using an ‘-l’ option and specifying a file name is that ‘-l’ searches

several directories.

‘-Ldir’ Add directory dir to the list of directories to be searched for ‘-l’.

‘-nostdlib’

Don’t use the standard system libraries and startup files when linking. Only the files

you specify (plus ‘gnulib’) will be passed to the linker.

Chapter 4: Controlling the C-Compiler Driver (‘gcc.ttp’) 20

‘-mmachinespec’

Machine-dependent option specifying something about the type of target machine.

These options are defined by the macro TARGET_SWITCHES in the machine description.

The default for the options is also defined by that macro, which enables you to change

the defaults.

These are the ‘-m’ options defined in the 68000 machine description:

‘-m68000’

‘-mc68000’

Generate output for a 68000. This is the default on the Atari ST.

‘-m68020’

‘-mc68020’

Generate output for a 68020 (rather than a 68000).

‘-m68881’ Generate output containing 68881 instructions for floating point.

‘-msoft-float’

Generate output containing library calls for floating point.

‘-mshort’ Consider type int to be 16 bits wide, like short int and causes the macro

__MSHORT__ to be defined. Using this option also causes the library ‘li-

brary16.olb’ to be linked. (Also See Section 6.2 [Predefined Macros],

page 33, for more info)

‘-mint’ Compile for MiNT (MiNT is not TOS). The macro __MINT__ is defined

and the linker links with the mint library ‘-lmint’ before linking with the

normal C library ‘-lgnu’. Also, the linker uses the startup file ‘mcrt0.o’

instead of the normal ‘crt0.o’. If ‘-mshort’ is also specified, then both

the macros __MSHORT__ and __MINT__ are defined and the linker links with

‘-lmint16 -lgnu16’.

‘-mnobitfield’

Do not use the bit-field instructions. ‘-m68000’ implies ‘-mnobitfield’.

‘-mbitfield’

Do use the bit-field instructions. ‘-m68020’ implies ‘-mbitfield’. This is

the default if you use the unmodified sources.

‘-mrtd’ Use a different function-calling convention, in which functions that take

a fixed number of arguments return with the rtd instruction, which pops

their arguments while returning. This saves one instruction in the caller

since there is no need to pop the arguments there.

This calling convention is incompatible with the one normally used on

U**x, so you cannot use it if you need to call libraries compiled with the

U**x compiler.

Chapter 4: Controlling the C-Compiler Driver (‘gcc.ttp’) 21

Also, you must provide function prototypes for all functions that take vari-

able numbers of arguments (including printf); otherwise incorrect code

will be generated for calls to those functions.

In addition, seriously incorrect code will result if you call a function with

too many arguments. (Normally, extra arguments are harmlessly ignored.)

The rtd instruction is supported by the 68010 and 68020 processors, but

not by the 68000.

‘-fflag’ Specify machine-independent flags. Most flags have both positive and negative forms;

the negative form of ‘-ffoo’ would be ‘-fno-foo’. In the table below, only one of the

forms is listed—the one which is not the default. You can figure out the other form by

either removing ‘no-’ or adding it.

‘-ffloat-store’

Do not store floating-point variables in registers. This prevents undesirable

excess precision on machines such as the 68000 where the floating registers

(of the 68881) keep more precision than a double is supposed to have.

For most programs, the excess precision does only good, but a few programs

rely on the precise definition of IEEE floating point. Use ‘-ffloat-store’

for such programs.

‘-fno-asm’

Do not recognize asm, inline or typeof as a keyword. These words may

then be used as identifiers.

‘-fno-defer-pop’

Always pop the arguments to each function call as soon as that function

returns. Normally the compiler (when optimizing) lets arguments accumu-

late on the stack for several function calls and pops them all at once.

‘-fstrength-reduce’

Perform the optimizations of loop strength reduction and elimination of

iteration variables.

‘-fcombine-regs’

Allow the combine pass to combine an instruction that copies one register

into another. This might or might not produce better code when used in

addition to ‘-O’. I am interested in hearing about the difference this makes.

(Only GCC and G++ 1.40).

‘-fforce-mem’

Force memory operands to be copied into registers before doing arithmetic

on them. This may produce better code by making all memory references

potential common subexpressions. When they are not common subexpres-

Chapter 4: Controlling the C-Compiler Driver (‘gcc.ttp’) 22

sions, instruction combination should eliminate the separate register-load.

I am interested in hearing about the difference this makes.

‘-fforce-addr’

Force memory address constants to be copied into registers before doing

arithmetic on them. This may produce better code just as ‘-fforce-mem’

may.

‘-fomit-frame-pointer’

Don’t keep the frame pointer in a register for functions that don’t need one.

This avoids the instructions to save, set up and restore frame pointers; it

also makes an extra register available in many functions. It also makes

debugging impossible.

On some machines, such as the Vax, this flag has no effect, because the stan-

dard calling sequence automatically handles the frame pointer and nothing

is saved by pretending it doesn’t exist. The machine-description macro

FRAME_POINTER_REQUIRED controls whether a target machine supports this

flag.

‘-finline-functions’

Integrate all simple functions into their callers. The compiler heuristically

decides which functions are simple enough to be worth integrating in this

way.

If all calls to a given function are integrated, and the function is declared

static, then the function is normally not output as assembler code in its

own right.

‘-fcaller-saves’

Enable values to be allocated in registers that will be clobbered by function

calls, by emitting extra instructions to save and restore the registers around

such calls. Such allocation is done only when it seems to result in better

code than would otherwise be produced.

This option is enabled by default on certain machines, usually those which

have no call-preserved registers to use instead.

‘-fkeep-inline-functions’

Even if all calls to a given function are integrated, and the function is

declared static, nevertheless output a separate run-time callable version

of the function.

‘-fwritable-strings’

Store string constants in the writable data segment and don’t uniquize

them. This is for compatibility with old programs which assume they can

Chapter 4: Controlling the C-Compiler Driver (‘gcc.ttp’) 23

write into string constants. Writing into string constants is a very bad

idea; “constants” should be constant.

‘-fcond-mismatch’

Allow conditional expressions with mismatched types in the second and

third arguments. The value of such an expression is void.

‘-fno-function-cse’

Do not put function addresses in registers; make each instruction that calls

a constant function contain the function’s address explicitly.

This option results in less efficient code, but some strange hacks that alter

the assembler output may be confused by the optimizations performed

when this option is not used.

‘-fvolatile’

Consider all memory references through pointers to be volatile.

‘-fshared-data’

Requests that the data and non-const variables of this compilation be

shared data rather than private data. The distinction makes sense only

on certain operating systems, where shared data is shared between pro-

cesses running the same program, while private data exists in one copy per

process.

‘-funsigned-char’

Let the type char be the unsigned, like unsigned char.

Each kind of machine has a default for what char should be. It is either

like unsigned char by default or like signed char by default. (Actually,

at present, the default is always signed.)

The type char is always a distinct type from either signed char or un-

signed char, even though its behavior is always just like one of those two.

Note that this is equivalent to ‘-fno-signed-char’, which is the negative

form of ‘-fsigned-char’.

‘-fsigned-char’

Let the type char be signed, like signed char.

Note that this is equivalent to ‘-fno-unsigned-char’, which is the negative

form of ‘-funsigned-char’.

‘-ffixed-reg’

Treat the register named reg as a fixed register; generated code should

never refer to it (except perhaps as a stack pointer, frame pointer or in

some other fixed role).

Chapter 4: Controlling the C-Compiler Driver (‘gcc.ttp’) 24

reg must be the name of a register. The register names accepted are

machine-specific and are defined in the REGISTER_NAMES macro in the ma-

chine description macro file.

This flag does not have a negative form, because it specifies a three-way

choice.

‘-fcall-used-reg’

Treat the register named reg as an allocatable register that is clobbered by

function calls. It may be allocated for temporaries or variables that do not

live across a call. Functions compiled this way will not save and restore

the register reg.

Use of this flag for a register that has a fixed pervasive role in the machine’s

execution model, such as the stack pointer or frame pointer, will produce

disastrous results.

This flag does not have a negative form, because it specifies a three-way

choice.

‘-fcall-saved-reg’

Treat the register named reg as an allocatable register saved by functions.

It may be allocated even for temporaries or variables that live across a call.

Functions compiled this way will save and restore the register reg if they

use it.

Use of this flag for a register that has a fixed pervasive role in the machine’s

execution model, such as the stack pointer or frame pointer, will produce

disastrous results.

A different sort of disaster will result from the use of this flag for a register

in which function values may be returned.

This flag does not have a negative form, because it specifies a three-way

choice.

‘-pedantic’

Issue all the warnings demanded by strict ANSI standard C; reject all programs that

use forbidden extensions.

Valid ANSI standard C programs should compile properly with or without this option

(though a rare few will require ‘-ansi’). However, without this option, certain GNU

extensions and traditional C features are supported as well. With this option, they are

rejected. There is no reason to use this option; it exists only to satisfy pedants.

These options control the C preprocessor, which is run on each C source file before actual

compilation. If you use the ‘-E’ option, nothing is done except C preprocessing. Some of these

options make sense only together with ‘-E’ because they request preprocessor output that is not

suitable for actual compilation.

Chapter 5: Controlling the C++-Compiler Driver (‘g++.ttp’) 25

‘-C’ Tell the preprocessor not to discard comments. Used with the ‘-E’ option.

‘-Idir’ Search directory dir for include files.

‘-I-’ Any directories specified with ‘-I’ options before the ‘-I-’ option are searched only for

the case of ‘#include "file"’; they are not searched for ‘#include <file>’.

If additional directories are specified with ‘-I’ options after the ‘-I-’, these directories

are searched for all ‘#include’ directives. (Ordinarily all ‘-I’ directories are used this

way.)

In addition, the ‘-I-’ option inhibits the use of the current directory as the first search

directory for ‘#include "file"’. Therefore, the current directory is searched only if it

is requested explicitly with ‘-I.’. Specifying both ‘-I-’ and ‘-I.’ allows you to control

precisely which directories are searched before the current one and which are searched

after.

‘-nostdinc’

Do not search the standard system directories for header files. Only the directories you

have specified with ‘-I’ options (and the current directory, if appropriate) are searched.

Between ‘-nostdinc’ and ‘-I-’, you can eliminate all directories from the search path

except those you specify.

‘-M’ Tell the preprocessor to output a rule suitable for make describing the dependencies

of each source file. For each source file, the preprocessor outputs one make-rule whose

target is the object file name for that source file and whose dependencies are all the files

‘#include’d in it. This rule may be a single line or may be continued with ‘\’-newline

if it is long.

‘-M’ implies ‘-E’.

‘-MM’ Like ‘-M’ but the output mentions only the user-header files included with ‘#include

"file"’. System header files included with ‘#include <file>’ are omitted.

‘-MM’ implies ‘-E’.

‘-Dmacro’ Define macro macro with the empty string as its definition.

‘-Dmacro=defn’

Define macro macro as defn.

‘-Umacro’ Undefine macro macro.

‘-T’ Support ANSI C trigraphs. You don’t want to know about this brain-damage. The

‘-ansi’ option also has this effect.

5 Controlling the C++-CompilerDriver (‘g++.ttp’)

Chapter 5: Controlling the C++-Compiler Driver (‘g++.ttp’) 26

The GNU C++ compiler uses a command syntax much like the AT&T C++ compiler. The

g++.ttp program accepts options and file names as operands. Multiple single-letter options may

not be grouped: ‘-dr’ is very different from ‘-d -r’.

When you invoke GNU C++, it normally does preprocessing, compilation, assembly and linking.

File names which end in ‘.c’, ‘.cc’, or ‘.C’ are taken as GNU C++ source to be preprocessed and

compiled; compiler output files plus any input files with names ending in ‘.s’ are assembled; then

the resulting object files, plus any other input files, are linked together to produce an executable.

Unlike C++, there is no ‘-F’ option. This is because GNU C++ is a native-code C++ compiler, not

a front-end pre-processor. The advantages of this organization are faster compilation speed, better

error-reporting capabilities, better opportunity for compiler optimization, and true source-level

debuggability with the GDB debugger (version 3.4 or higher).

Command options allow you to stop this process at an intermediate stage. For example, the ‘-c’

option says not to run the linker. Then the output consists of object files output by the assembler.

Other command options are passed on to one stage. Some options control the preprocessor

and others the compiler itself. Yet other options control the assembler and linker; these are not

documented here because the GNU assembler and linker are not yet released.

Here are the options to control the overall compilation process, including those that say whether

to link, whether to assemble, and so on. The options, which don’t have any text, behave exactly

as their GCC counterparts.

With GCC 2.x there is no independend compiler driver for C++. ‘gcc.ttp’ handles both cases.

One major difference between ‘g++.ttp’ from version 1.xx and ‘gcc.ttp’ from version 2.x is, that

you have to explicitly link with ‘g++.olb’. Therefore when you compile C++ programs with GCC

2.x you alway have to include -lg++ on the command line, when you create the final executable.

‘-o file’

‘-c’

It is intended that the compiler driver of GNU C++ will invoke the appropriate trans-

lator (or series of translators) for a given source file. Currently, the translators are

selected on the basis of their file extension. So that one driver can be used for many

different translators, it is important that these extensions be distinct. It is strongly

suggested that users become accustomed to using a ‘.cc’ file extension for GNU C++

code, to distinguish it from the ‘.c’ file extension already used for GNU CC code.

‘-S’

Chapter 5: Controlling the C++-Compiler Driver (‘g++.ttp’) 27

‘-E’

‘-v’

‘-s’

‘-x’

‘-G’

These options control the details of GNU C++ compilation itself.

‘-ansi’

With this option enabled, differences between GNU C++ and AT&T C++ are also

flagged. Because the C++ language definition and the ANSI draft differ on the inter-

pretation of syntactically identical constructs, it is unlikely that this flag could possibly

be of any real use. (For this reason, this flag is currently not fully implemented).

‘-traditional’

• The other aspects of ‘-traditional’ are equivalent to GCC.

• The predefined macro __cplusplus is defined to identify compilation for C++

2.0. C++ version 1.2 uses c_plusplus as its identifying macro. Since GNU C++

implements version 2.0 semantics, the former is defined, while the latter is not.

The macro __GNUG__ is also defined, so that features specific to GNU C++ can be

used conditionally.

‘-O’

‘-g’

‘-w’

‘-W’

‘-Wimplicit’

‘-Wreturn-type’

‘-Wunused’

‘-Wswitch’

‘-Wcomment’

‘-Wtrigraphs’

‘-Wall’

‘-Wshadow’

‘-Wid-clash-len’

‘-Wpointer-arith’

‘-Wcast-qual’

‘-Wwrite-strings’

Chapter 5: Controlling the C++-Compiler Driver (‘g++.ttp’) 28

‘-p’

‘-pg’

‘-llibrary ’

‘-Ldir’

‘-nostdlib’

‘-mmachinespec’

‘-m68020’

‘-mc68020’

‘-m68000’

‘-mc68000’

‘-m68881’

‘-msoft-float’

‘-mshort’

‘-mint’

‘-mnobitfield’

‘-mbitfield’

‘-mrtd’

‘-fflag’

‘-ffloat-store’

‘-fno-asm’

‘-fno-defer-pop’

‘-fstrength-reduce’

‘-fcombine-regs’

‘-fforce-mem’

‘-fforce-addr’

‘-fomit-frame-pointer’

‘-finline-functions’

‘-fdefault-inline’

If this option is enabled then member functions defined inside class scope

are compiled inline by default, i.e., you don’t need to add inline in front

of the member function name. By popular demand, this option is now the

default. To keep GNU C++ from inlining these member functions, specify

-fno-default-inline.

‘-fcaller-saves’

‘-fkeep-inline-functions’

Chapter 5: Controlling the C++-Compiler Driver (‘g++.ttp’) 29

‘-fwritable-strings’

‘-fcond-mismatch’

‘-fno-function-cse’

‘-fvolatile’

‘-fshared-data’

‘-funsigned-char’

‘-fsigned-char’

‘-ffixed-reg’

‘-fcall-used-reg’

‘-fcall-saved-reg’

‘-fstrict-prototype’

Consider the declaration int foo ();. In C++, this means that the function foo takes

no arguments. In ANSI C, this is declared int foo(void);. With the flag ‘-fno-

strict-prototype’, declaring functions with no arguments is equivalent to declar-

ing its argument list to be untyped, i.e., int foo (); is equivalent to saying int foo

(...);.

‘-felide-constructors’

Using this option instructs the compiler to be smarter about when it can elide con-

structors. With out this flag, GNU C++ and cfront both generate effectively the same

code for:

A foo ();
A x (foo ()); // x is initialized by ‘foo ()’, no ctor called here
A y = foo (); // call to ‘foo ()’ heads to temporary,

// y is initialized from the temporary.

Note the difference! With this flag, GNU C++ initializes ‘y’ directly from the call to

‘foo ()’ without going through a temporary.

‘-fall-virtual’

When the ‘-fall-virtual’ option is used, all member functions (except for construc-

tor functions and new/delete member operators) declared in the same class with a

“method-call” operator method have entries made for them in the vtable for the given

class. In effect, all of these methods become “implicitly virtual.”

This does not mean that all calls to these methods will be made through the vtable.

There are some circumstances under which it is obvious that a call to a given virtual

function can be made directly, and in these cases the calls still go direct.

The effect of making all methods of a class with a declared ‘operator->()()’ implicitly

virtual using ‘-fall-virtual’ extends also to all non-constructor methods of any class

derived from such a class.

Chapter 5: Controlling the C++-Compiler Driver (‘g++.ttp’) 30

‘-fthis-is-variable’

The incorporation of user-defined free store management into C++ has made assignment

to this an anachronism. Therefore, by default GNU C++ treats the type of this in a

member function of class X to be X *const. In other words, it is illegal to assign to

this within a class member function. However, for backwards compatibility, you can

invoke the old behavior by using ‘-fthis-is-variable’.

‘-fsave-memoized’

‘-fmemoize-lookups’

These flags are of use to get the compiler to compile programs faster using heuristics.

They are not on by default since they only do so about half the time. They other half

of the time programs compile more slowly (and take more memory).

The first time the compiler must build a call to a member function (or reference to a

data member), it must (1) determine whether the class implements member functions

of that name (2) resolve which member function to call (which involves figuring out

what sorts of type conversions need to be made), and (3) check the visibility of the

member function to the caller. All of this adds up to slower compilation. Normally, the

second time a call is made to that member function (or reference to that data member),

it must go through the same lengthy process again. This means that code like this

cout << "This " << p << " has " << n << " legs.\n";

makes six passes through all three steps. By using a software cache, a “hit” signif-

icantly reduces this cost. Unfortunately, using the cache introduces another layer of

mechanisms which must be implemented, and so incurrs its own overhead. The ‘-

fmemoize-lookups’ enables the software cache.

Because access privileges (visibility) to members and member functions may differ

from one function context to the next, may need to be flushed. With the ‘-fmemoize-

lookups’ flag, the cache is flushed after every function that is compiled. With the

‘-fsave-memoized’ flag, when the compiler determines that the context of the last

function compiled would yield the same access privileges of the next function to compile,

it preserves the cache. This really helps when defining many member functions for the

same class: with the exception of member functions which are friends of other classes,

each member function has exactly the same access privileges as every other, and the

cache need not be flushed.

‘-pedantic’

Attempt to support strict ANSI standard C. Since C++ invalidates a number of ANSI

constructions, this switch is of dubious value. Some attempt has been made to warn

about non-standard C++ features, however, even this is of uncertain value, as there

are two C++ standards currently in existence: the standard as documented by AT&T,

and the standard as implemented by the AT&T C++ compiler. Valid C++ programs

should compile properly with or without this switch. However, without this switch,

Chapter 6: The Preprocessor 31

certain useful or traditional constructs banned by the standard are supported. With

this switch, they are rejected. There is no reason to use this switch; it exists only to

satisfy curious pedants.

The options, which control the behaviour of the C preprocessor are the same as for GCC (See

Chapter 4 [The C-Compiler Driver], page 13, last section).

6 The Preprocessor

6.1 Invoking the C Preprocessor

Most often when you use the C preprocessor you will not have to invoke it explicitly: the C

compiler will do so automatically. However, the preprocessor is sometimes useful individually.

The C preprocessor expects two file names as arguments, infile and outfile. The preprocessor

reads infile together with any other files it specifies with ‘#include’. All the output generated by

the combined input files is written in outfile.

Either infile or outfile may be ‘-’, which as infile means to read from standard input and as

outfile means to write to standard output. Also, if outfile or both file names are omitted, the

standard output and standard input are used for the omitted file names.

Here is a table of command options accepted by the C preprocessor. Most of them can also be

given when compiling a C program; they are passed along automatically to the preprocessor when

it is invoked by the compiler.

‘-P’ Inhibit generation of ‘#’-lines with line-number information in the output from the

preprocessor. This might be useful when running the preprocessor on something that

is not C code and will be sent to a program which might be confused by the ‘#’-lines

‘-C’ Do not discard comments: pass them through to the output file. Comments appearing

in arguments of a macro call will be copied to the output before the expansion of the

macro call.

‘-T’ Process ANSI standard trigraph sequences. These are three-character sequences, all

starting with ‘??’, that are defined by ANSI C to stand for single characters. For

example, ‘??/’ stands for ‘\’, so ‘’??/n’’ is a character constant for Newline. Strictly

Chapter 6: The Preprocessor 32

speaking, the GNU C preprocessor does not support all programs in ANSI Standard C

unless ‘-T’ is used, but if you ever notice the difference it will be with relief.

You don’t want to know any more about trigraphs.

‘-pedantic’

Issue warnings required by the ANSI C standard in certain cases such as when text

other than a comment follows ‘#else’ or ‘#endif’.

‘-I directory ’

Add the directory directory to the end of the list of directories to be searched for

header files. This can be used to override a system header file, substituting your own

version, since these directories are searched before the system header file directories.

If you use more than one ‘-I’ option, the directories are scanned in left-to-right order;

the standard system directories come after.

‘-I-’ Any directories specified with ‘-I’ options before the ‘-I-’ option are searched only for

the case of ‘#include "file"’; they are not searched for ‘#include <file>’.

If additional directories are specified with ‘-I’ options after the ‘-I-’, these directories

are searched for all ‘#include’ directives.

In addition, the ‘-I-’ option inhibits the use of the current directory as the first search

directory for ‘#include "file"’. Therefore, the current directory is searched only if it

is requested explicitly with ‘-I.’. Specifying both ‘-I-’ and ‘-I.’ allows you to control

precisely which directories are searched before the current one and which are searched

after.

‘-nostdinc’

Do not search the standard system directories for header files. Only the directories you

have specified with ‘-I’ options (and the current directory, if appropriate) are searched.

‘-D name’ Predefine name as a macro, with definition ‘1’.

‘-D name=definition’

Predefine name as a macro, with definition definition. There are no restrictions on the

contents of definition, but if you are invoking the preprocessor from a shell or shell-like

program you may need to use the shell’s quoting syntax to protect characters such as

spaces that have a meaning in the shell syntax.

‘-U name’ Do not predefine name. If both ‘-U’ and ‘-D’ are specified for one name, the ‘-U’ beats

the ‘-D’ and the name is not predefined.

‘-undef’ Do not predefine any nonstandard macros.

‘-d’ Instead of outputting the result of preprocessing, output a list of ‘#define’ commands

for all the macros defined during the execution of the preprocessor.

‘-M’ Instead of outputting the result of preprocessing, output a rule suitable for make de-

scribing the dependencies of the main source file. The preprocessor outputs one make

rule containing the object file name for that source file, a colon, and the names of all

Chapter 6: The Preprocessor 33

the included files. If there are many included files then the rule is split into several

lines using ‘\’-newline.

This feature is used in automatic updating of makefiles.

‘-MM’ Like ‘-M’ but mention only the files included with ‘#include "file"’. System header

files included with ‘#include <file>’ are omitted.

‘-i file’ Process file as input, discarding the resulting output, before processing the regular

input file. Because the output generated from file is discarded, the only effect of ‘-i

file’ is to make the macros defined in file available for use in the main input.

6.2 Predefined Macros

The standard predefined macros are available with the same meanings regardless of the machine

or operating system on which you are using GNU C. Their names all start and end with double

underscores. Those preceding __GNUC__ in this table are standardized by ANSI C; the rest are

GNU C extensions.

__FILE__ This macro expands to the name of the current input file, in the form of a C string

constant.

__LINE__ This macro expands to the current input line number, in the form of a decimal integer

constant. While we call it a predefined macro, it’s a pretty strange macro, since its

“definition” changes with each new line of source code.

This and ‘__FILE__’ are useful in generating an error message to report an inconsis-

tency detected by the program; the message can state the source line at which the

inconsistency was detected. For example,

fprintf (stderr,
"Internal error: negative string length "

"%d at %s, line %d.",
length, __FILE__, __LINE__);

A ‘#include’ command changes the expansions of ‘__FILE__’ and ‘__LINE__’ to cor-

respond to the included file. At the end of that file, when processing resumes on the

input file that contained the ‘#include’ command, the expansions of ‘__FILE__’ and

‘__LINE__’ revert to the values they had before the ‘#include’ (but ‘__LINE__’ is then

incremented by one as processing moves to the line after the ‘#include’).

The expansions of both ‘__FILE__’ and ‘__LINE__’ are altered if a ‘#line’ command

is used.

__DATE__ This macro expands to a string constant that describes the date on which the prepro-

cessor is being run. The string constant contains eleven characters and looks like ‘"Jan

29 1987"’ or ‘"Apr 1 1905"’.

Chapter 6: The Preprocessor 34

__TIME__ This macro expands to a string constant that describes the time at which the pre-

processor is being run. The string constant contains eight characters and looks like

‘"23:59:01"’.

__STDC__ This macro expands to the constant 1, to signify that this is ANSI Standard C.

(Whether that is actually true depends on what C compiler will operate on the output

from the preprocessor.)

__GNUC__ This macro is defined if and only if this is GNU C. This macro is defined only when the

entire GNU C compiler is in use; if you invoke the preprocessor directly, ‘__GNUC__’ is

undefined.

__STRICT_ANSI__

This macro is defined if and only if the ‘-ansi’ switch was specified when GNU C

was invoked. Its definition is the null string. This macro exists primarily to direct

certain GNU header files not to define certain traditional U**x constructs which are

incompatible with ANSI C.

__VERSION__

This macro expands to a string which describes the version number of GNU C. The

string is normally a sequence of decimal numbers separated by periods, such as ‘"1.18"’.

The only reasonable use of this macro is to incorporate it into a string constant.

__OPTIMIZE__

This macro is defined in optimizing compilations. It causes certain GNU header files

to define alternative macro definitions for some system library functions. It is unwise

to refer to or test the definition of this macro unless you make very sure that programs

will execute with the same effect regardless.

__CHAR_UNSIGNED__

This macro is defined if and only if the data type char is unsigned on the target

machine. It exists to cause the standard header file ‘limit.h’ to work correctly. It

is bad practice to refer to this macro yourself; instead, refer to the standard macros

defined in ‘limit.h’.

__MSHORT__

This macro is defined, if ‘gcc.ttp’ is invoked with the ‘-mshort’ option, which causes

integers to be 16 bit. Please carefully examine the prototypes in the ‘#include <>’

headers for types before using ‘-mshort’.

__MINT__ This macros is defined, if ‘gcc.ttp’ is invoked with the ‘-mint’ option. This macros

activates some portions of the header files, which are MiNT specific. Up to version 8 of

the MiNT libraries and headers the header files of J.R.Bammi’s libraries are compatible

with the ones from Eric Smith’s library. Therefore if you were writing programs for

MiNT you could stick to Bammi’s headers and use the ‘-mint’ option. I don’t know,

if header files are still compatible with version 10 of the MiNT libraries.

Chapter 7: The GNU Assembler (GAS) 35

Apart from the above listed macros, there are usually some more to to indicate what type of

system and machine is in use. For example ‘unix’ is normally defined on all U**x systems. Other

macros describe more or less the type of CPU the system runs on. GNU CC for the Atari ST has

the following macros predefined.

• ‘atarist’

• ‘gem’

• ‘m68k’

Please keep in mind, that these macros are only defined, if the preprocessor is invoked from the

compiler driver ‘gcc.ttp’.

These predefined symbols are not only nonstandard, they are contrary to the ANSI standard

because their names do not start with underscores. However, the GNU C preprocessor would be

useless if it did not predefine the same names that are normally predefined on the system and

machine you are using. Even system header files check the predefined names and will generate

incorrect declarations if they do not find the names that are expected.

The ‘-ansi’ option which requests complete support for ANSI C inhibits the definition of these

predefined symbols.

6.3 Generating Dependency Information

The preprocessor has a not so well known feature, which lets you generate dependency informa-

tion for makefiles and write these dependencies directly into a file.

You already know about the options ‘-M’ and ‘-MM’ for the compiler driver and the preprocessor

(See Chapter 6 [The Preprocessor], page 31 for more info).

DEPENDENCIES OUTPUT SUNPRO DEPENDENCIES

7 TheGNUAssembler (GAS)

Most of the time you will be programming in C. But there may certain situations, where it is

feasible to write in assembler. Time is usually a main reason to dive into assembler programming,

Chapter 7: The GNU Assembler (GAS) 36

when you have to squeeze the last redundant machine cycle out of your routine, to meet certain

time limits. Another reason might be, that you have to do very low level stuff like fiddling with bits

in the registers of a peripheral chip. An example for low level stuff is the startup module ‘crt0.o’,

which is written in assembler.

If you already have some experience in assembler programming, you might miss the feature of

creating macros. This is not really a lack given the fact, that the assembler originated from an

U**x environment. Under this operating system there is a tools for nearly every purpose. If you

were in the need of an extensive macros facility, you would use the M4 macro processor. A GNU

version of the M4 macro processor exists. It should be no problem to port it to the Atari with

GCC. For some macro processing tasks you just as well use the C preprocessor. What I personally

miss is the ability to produce a listing, but this will be fixed with GAS 1.92.

One command line option was introduced only very lately. The changes for the option ‘-m68040’

were part of update 20, which Bammi released around end of April 1992. The assembler identifies

itself, when invoked with the ‘-v’ option with the string ‘GNU assembler version 1.38 atariST

PatchLevel 2’.

7.1 Invoking the Assembler

‘gcc-as.ttp’ supports the following command line options. The output is written to ‘a.out’

by default.

‘-G’ assembles the debugging information the C compiler included into the output. Without

this flag the debugging information is otherwise discarded.

‘-L’ Normally all labels, that start with a ‘L’ are discarded and don’t show up as symbols

in the object code module. They are local to that assembler module. If the ‘-L’ option

is given, all local labels will be included in the object code module.

‘-m68000’

‘-m68010’

‘-m68020’

‘-m68040’ These options modify the behavior of assembler in respect of the used CPU. The

M68020, for example, allows relative branches with 32-bit offset.

‘-ofilename’

writes the output to filename instead of ‘a.out’.

‘-R’ The information, which normally would be assembled into the data section of the

program, is moved into the text section.

Chapter 7: The GNU Assembler (GAS) 37

‘-v’ displays the version of the assembler.

‘-W’ suppresses all warning messages.

7.2 Syntax

The assembler uses a slightly modified syntax from the one you might know from other 68000

assemblers, which use the original Motorola syntax. The next sections trys to describe the syntax,

GAS uses.

The most obvious differences are the missing ‘.’ and the usage of the at sign (‘@’). The original

Motorola syntax uses the ‘.’ to separate the size modifier (b, w, l) from the main instruction. In

Motorola syntax one would write ‘move.l #1,d0’ to move a long word with value 1 into register

d0. With GAS you simple write ‘movel #1,d0’. The ‘@’ is used to mark an indirection equivalent

to the Motorola parentheses. To move a long word of value 1 to the location addressed by a0, you

have to write ‘movel #1,a0@’. The equivalent instruction expressed in Motorola syntax is ‘move.l

#1,(a0)’. The ‘#’ indicates immediate data in both cases.

7.2.1 Register Names and Addressing Modes

The register mnemonics are d0. . .d7 for the data registers and a0. . .a7 or sp for address register

and the stack pointer. pc is the program counter, sr the status register, ccr the condition code

register and usp the user stack pointer.

The following table shows the operands GAS can parse. (The first part part describe the used

abbreviations. The second part show the addressing modes with a equivalent C expression.)

numb: a 8 bit number

numw: a 16 bit number

numl: a 32 bit number

dreg: data register 0. . .7

reg: address or data register

areg: address register 0. . .7

apc: address register or PC

num: a 16 or 32 bit number

num2: a 16 or 32 bit number

Chapter 7: The GNU Assembler (GAS) 38

sz: w or l; if omitted, l is assumed.

scale: 1 2 4 or 8. If omitted, 1 is assumed.

Addressing Modes:

Immediate Data

#num --> NUM

Data- or Address Register Direct

dreg --> dreg
areg --> areg

Address Register Indirect

areg@ --> *(areg)

Address Register Indirect with Postincrement or Predecrement

areg@+ --> *(areg++)
areg@- --> *(--areg)

Address Register (or PC) Indirect with Displacement

apc@(numw) --> *(apc+numw)

Address Register (or PC) Indirect with Index (8-Bit Displacement)

(M68020 only)

apc@(num,reg:sz:scale) --> *(apc+num+reg*scale)
apc@(reg:sz:scale) --> same, with num=0

Memory Indirect Postindexed

(M68020 only)

apc@(num)@(num2,reg:sz:scale) --> *(*(apc+num)+num2+reg*scale)
apc@(num)@(reg:sz:scale) --> same, with num2=0
apc@(num)@(num2) --> *(*(apc+num)+num2)

(previous mode without an index reg)

Memory Indirect Preindexed

(M68020 only)

apc@(num,reg:sz:scale)@(num2) --> *(*(apc+num+reg*scale)+num2)
apc@(reg:sz:scale)@(num2) --> same, with num=0

Absolute Address

num:sz --> *(num)
num --> *(num) (sz L assumed)

Chapter 7: The GNU Assembler (GAS) 39

7.2.2 Labels and Identifiers

User defined identifiers are basically defined by the same rules as C identifier. They may contain

the digits 0. . .9, the letters A. . .z and the underscore and must not start with a digit. Identifier,

which end with a ‘:’ are labels. A special form of labels starts with a ‘L’ or consists of only a digit.

Both types are local labels, which disappear, when the assembly is complete (unless the ‘-L’ option

was specified). They can’t be used to resolve external references. The ‘L’ type label are referenced

by their name, just as any other label. The digit type labels form a special kind of local labels. You

might also call them temporary labels. They are especially useful when you have to create small

loops, which poll a peripheral or fill a memory area. They are referenced by appending either a ‘f’,

for a forward reference, or a ‘b’, for a backward reference, to the digit. Lets look at the following

example, which is used to split a memory area starting at 0x80000. All data on an even addresses

is copied to the area starting at 0x70000; all data from odd addresses goes to the area starting at

0x78000.

start:
lea 0x80000,a0
lea 0x70000,a1
lea 0x78000,a2
movel #0x7fff,d5

0: | label ‘0’ is defined
moveb a0@+,a1@+
moveb a0@+,a2@+
dbra d5,0b | reference of label ‘0’
. . .

The label ‘0’ is referenced 3 lines later by ‘0b’, since the reference is backward. You can use

the label ‘0’ again at a later time to construct more such loops. Since this temporary labels are

restricted to one digit in length, you can only build constructs, which use 10 temporary labels at

the same time.

7.2.3 Comments

The above example also shows, that comments start with a ‘|’. ‘#’ is also used to mark a

comments. The C compiler and the preprocessor generate lines, that start with a ‘#’.

Chapter 7: The GNU Assembler (GAS) 40

7.2.4 Numerical and String Constants

Numerical values are given the same way as in a C programs. By default number are taken to

be decimal. A leading ‘0’ denotes an octal and a ‘0x’ a hexadecimal value. Floating point numbers

start with a ‘0f’. The optional exponent starts with a ‘e’ or ‘E’.

String constants are equivalent to C defined. They are enclosed in ‘"’. Some special character

constants are defined by ‘\’ and a following letter. These characters are possible:

\b Backspace, Code 0x08

\t Tab, Code 0x09

\n Line Feed, Code 0x0a

\f Form Feed, Code 0x0c

\r Carriage Return, Code 0x0d

\\ Backslash itself

\" Double Quote itself

\number were number is a octal number with up to 3 digits specifying the character code.

7.2.5 Assignments and Operators

A ‘=’ is used to assign a value to a Symbol.

Lexp_frame = 8

This is equivalent to the ‘equ’ directive other assemblers use.

GAS supports addition (+), subtraction (-), multiplication(*), division (/), right shift (>), left

shift (<), and (&), or (|), not (!), xor (^) and modulo (%) in expressions. The order of precedence

is

Rank Examples
lowest 0 operand, (expression)

1 + -
2 & ^ ! |
3 * / % < >

Parentheses are used to coerce the order of evaluation.

Chapter 7: The GNU Assembler (GAS) 41

7.2.6 Segments, Location Counters and Labels

A program written in assembler language may be broken into three different segments; the

TEXT, DATA and BSS sections. Pseudo opcodes are used to switch between the sections. The

assembler maintains a location counter for each segment. When a label is used in the assembler

input, it is assigned the current value of the active location counter. The location counter is

incremented with every byte, that the assembler outputs. GAS actually allows you to have more

than one TEXT or DATA segment. This is so to ease code generation by high level compilers.

The assembler concatenates the different sections in the end to form continuous regions of TEXT

and/or DATA. When you do assembly programming by hand you would stick to the pseudo opcodes

‘.text’ or ‘.data’, which use text or data segment with number 0 by default.

7.2.7 Types

Symbol and Labels can be of one of three type. A Symbol is absolute; when it’s values is known

at assembly time. A assignment like ‘Lexp_frame = 8’ gives the symbol ‘Lexp_frame’ the absolute

value 8. A symbol or label, which contains an offset from the beginning of a section, is called

relocatable. The actual value of this symbol can only be determined after the linking process or

when the program is running in memory. The third type of symbols are undefined externals. The

actual value of this symbol is defined in an other program.

When different types of symbols are combined to form expressions the following rules apply:

(abs = absolute, rel = relocatable, ext = undefined external)

abs + abs => abs
abs + rel = rel + abs => rel
abs + ext = ext + abs => ext

abs - abs => abs
rel - abs => rel
ext - abs => ext
rel - rel => abs
(makes only sense, when both relocatable expression are relative to
same segment)

All other possible operators are only useful to form expressions with absolute values or symbols.

Chapter 7: The GNU Assembler (GAS) 42

7.3 Supported Pseudo Opcodes (Directives)

All pseudo opcodes start with a ‘.’. They are followed by 0, 1 or more expressions separated by

commas (depending on the directive). The following table omits the pseudo opcodes, which include

special information for debugging purposes (for GDB).

.abort aborts the assembly on the point.

.align integer

aligns the current segment in size to integer power of 2. The maximum value of integer

is 15. The lines

.text
some code . . .

.align 10 | 2^10 = 1024

.data
some more code . . .

.align 10 | 2^10 = 1024

will create text and data sections, which both have the size 1024, although the actual

code, that goes into the sections may be smaller.

.ascii string[,string,. . .]

includes the string(’s) in the assembly output.

.asciz string[,string,. . .]

This directive is the same as above, but additionally appends a ‘\0’ character to the

string.

.byte expr[,expr,. . .]

puts consecutive bytes with value expr into the output.

.comm identifier,integer

creates a common area of integer bytes in the current segment, which is referenced by

identifier. The identifier is visible from the outside of the module. It can therefore be

used to resolve external reference from other modules.

.data [integer]

switches to DATA section integer. If integer is omitted, data section 0 is selected.

.desc Whatsit good for ???

.double double[,double,. . .]

puts consecutive doubles with value double into the output.

.even sets the location counter of the current segment to the next even value.

.file

.line If a file is assembled, which was generated by a compiler or preprocessed by the C

preprocessor, the input may contain lines like ‘# 132 stdio.h’. These lines are change

by the assembler to the form

Chapter 7: The GNU Assembler (GAS) 43

.line 132

.file stdio.h

.fill count,size,expr

puts count areas with size into the output. Each area contains the value expr. size

may be an even number up to or equal to 8. The line

.fill 3, 4, 0xa5a

would put the following byte sequence in the output (‘|’ is only used to mark the size

of the area.)

00 00 0a 5a | 00 00 0a 5a | 00 00 0a 5a

.float float[,float,. . .]

puts consecutive floats with value float into the output.

.globl identifier[,identifier,. . .]

When labels or identifiers are assigned, they are only locally defined. The .globl

directive gives identifier external scope. The label can therefore be used to resolve

external references from other modules. identifier don’t have to be assigned in the

current module, but can be defined in another module.

.int expr[,expr,. . .]

puts consecutive integers (32 bit) with value expr into the output.

.lcomm identifier,integer

is basically the same as .comm, except that area is allocated in the BSS segment. The

scope of identifier is only local (only visible in the module, where it is defined).

.long expr[,expr,. . .]

same as int.

.lsym identifier,expr

sets the local identifier to the value of expr. The identifier is referenced by preceding

it with a ‘L’. (Lidentifier) (When I tried this, the linker threw a bomb. Trying again

crashed the system.)

.octa Whatsit good for ???

.org expr sets the location counter of the current segment to expr.

.quad Whatsit good for ???

.set identifier,expr

sets identifier to the value of expr. If identifier is not explicitly marked external by the

.globl directive, is has only local scope.

.short expr[,expr,. . .]

puts consecutive shorts (16 bit) with value expr into the output.

.space count, expr

puts count consecutive number of bytes with value expr into the output. The line

Chapter 8: The Utilities 44

.space 5,3

is equivalent to

.byte 3, 3, 3, 3, 3

The space directive is a special form of the fill directive.

.text [integer]

switches to TEXT section integer. If integer is omitted, text section 0 is selected.

.word expr[,expr,. . .]

same as .short.

8 TheUtilities

This chapter describes the programs, which don’t actually convert the source code into object

code, but instead combine several object code modules to a runnable program or an object code

library. Other programs can be used to print symbol information from either the object code or the

executable. The last group of utility programs modify the executables in terms of memory usage

and startup time.

8.1 The Linker ‘gcc-ld.ttp’

A linker combines several object modules and extracts modules from a library to produce a

runnable program. During this process all undefined symbol references are resolved. Additionally

all sections from the object modules, which belong to either the TEXT, DATA or BSS are moved

to the correct program segment. For example, all areas of all the object code modules, which have

the type TEXT, are moved to form one large TEXT section. The same applies to the DATA and

BSS sections.

For the most time you don’t have invoke the linker explicitly. The compiler driver does the job

for you. But in case you have to, the general syntax is:

gcc-ld [options] $GNULIB\crt0.o file.o -llibrary

The above syntax assumes, that the executable is produced from C source code, which normally

makes is necessary to link a startup module and a library. If an executable from a self contained

assembler text is to be created, the startup module ‘crt0.o’ and the library might be missing.

Chapter 8: The Utilities 45

‘gcc-ld.ttp’ creates a file ‘a.out’ by default. The linker can also append a DRI compatible or an

extended symbol table to the executable.

‘gcc-ld.ttp’ supports the following command line options.

‘-fload flags’

f (ld) Set the program load flags to load flags. The default program load flags is 7 (TT

ram, fastload).

‘-haltheap size’

Set the minalt size in the executable header to altheap size. The default value is

zero. Remember that value is specified in 128k units. What this means is (quoting

mintsrc/mem.c): If (flags & F ALTLOAD == 1), then we might decide to load in

alternate RAM if enough is available. "enough" is: if more alt ram than ST ram, load

there; otherwise, if more than (minalt+1)*128K alt ram available for heap space, load

in alt ram ("minalt" is the high byte of flags).

‘-llibrary ’ Search library to satisfy unresolved references. The environment variable GNULIB is

used to locate the library. GNULIB contains a ‘,’ or ‘;’ separated list of paths, each

path without a trailing slash or backslash.

‘-Ldirectory ’

Includes directory in the search path to locate a library.

‘-M’ During the linking process extensive information about the encountered symbols is

displayed.

‘-G’ Instead of the standard DRI compatible symbol table, an extended symbol table is

written, which allows symbol names to be up to 22 characters long. Most of the other

utility programs have been updated to work with this format. The most benefit you

get with ‘gprof.ttp’ and ‘szadb’ (the adb-like debugger, originally written for the

Sozobon C compiler by Johann Rueg and Don Dugger and later significantly improved

by Michal Jaegermann).

‘-ofilename’

The resulting output of the linking process is written to filename instead to ‘a.out’.

‘-s’ prevents the linker from attaching a symbol table to the executable.

‘-t’ During the linking process the files loaded and the modules extracted from a library

are displayed.

‘-x’ This option discards all local symbols from the DRI symbol table. All global symbols

are left in place.

Chapter 8: The Utilities 46

‘sym-ld.ttp’

‘sym-ld.ttp’ is a special version of the linker. His sole purpose is to create a special symbol file

used by the GNU debugger. The following example show the usage. (‘$’ is the prompt of a CLI,

‘*’ is the GDB prompt, ‘#’ marks a comment)

$ gcc -c -g foo.c # compile ‘foo.c’
$ gcc -o foo.prg foo.o -lgnu # link with normal ‘gcc-ld.ttp’
$ sym-ld -o foo.sym $(GNULIB)\crt0.o foo.o -lgnu

(or -lgnu16 if you use -mshort)
link with ‘sym-ld.ttp’ to get symbol file

$ gdb
* exec-file foo.prg # executable (‘gcc-ld.ttp’ linked Atari

executable)
* symbol-file foo.sym # symbols file (‘sym-ld.ttp’ ‘-o’ linked)
* run
* <start doing gdb commands here>
. . .

* q
$ # back

Note the line in the example, where ‘sym-ld.ttp’ is invoked. A library ‘gnugdb.olb’ is used to

create the symbol file. This is just like the normal library ‘gnu.olb’ except, that is was compiled

with the ‘-g’ option. If you don’t have this library, use the normal library (‘-lgnu’). In this case

you can’t single step through library functions at the source level. Also note, that ‘sym-ld.ttp’

is invoked without the ‘-r’ option. This option was only necessary for some very early versions of

‘gdb’.

For a bit more detailed info about debugging with ‘gdb’ turn to chapter See Chapter 9 [Debug-

ging], page i.

8.2 The Archiver ‘gcc-ar.ttp’

The archivers main purpose is to make things in programming life easier. The archiver combines

several object modules into one large library. At a later time the linker will then retrieve the modules

needed to resolve all references. Without the library you would have to supply all modules by hand

on the command line or the linker would have to search through all the files to resolve the references

(The library ‘gnu.olb’ contains around 150 modules).

The general syntax for invoking ‘gcc-ar.ttp’ is:

Chapter 8: The Utilities 47

gcc-ar option [position] library [module]

The option specifies the action to be taken on the library or a module of that library. option also

includes modifiers for the action. The optional position argument is a member of the library. It is

used, to mark a specific position in the library ; an ‘add’ operation would than place a new module

before or after that position. The next argument specifies the library. The recommended naming

convention for the creation of a new libraries is ‘library.olb’. If you don’t use this convention,

the compiler driver ‘gcc.ttp’ will have trouble to find them. module is usually an object code file

generated by the compiler.

‘gcc-ar.ttp’ supports the following command line options. If you don’t use a position the

named module is appended or moved to the end of the library

‘a’ The ‘add’, ‘replace’ or ‘move’ operation should place the module after position.

‘b’ The ‘add’, ‘replace’ or ‘move’ operation should place the module before position.

‘c’ If the specified library does not exist, it is silently created. Without this option ‘gcc-

ar.ttp’ would give you a notice, that it created a new library.

‘d’ deletes module from the library.

‘i’ This is the same as option ‘b’.

‘l’ This option is ignored. (Why is there in the first place ??)

‘m’ Move a member around inside the library.

‘o’ preserves the modification time of a module, that is extracted from the library.

‘p’ This option pipes the specified module directly to ‘<stdout>’.

‘q’ A quick append is performed.

‘r’ causes module to be replaced. If the named module is not already present, it is ap-

pended. This is also the default action, when no option is given.

‘s’ creates special member in the library called ‘__.SYMDEF’, which contains a directory of

the external names defined by all the other members.

‘t’ lists the members, that are currently in the library. If the option ‘v’ is also given,

additional information about file permissions, user- and group-id’s and last modification

date of the members are displayed. Of course, file permissions and user- and group-id’s

don’t make much sense on the Atari ST.

‘u’ If this option is given, an existing module in the library is only replaced, if the modifi-

cation time of the new module is newer than the modification time of the one already

in the library.

‘v’ gives you some additional information depending on the operation, that currently per-

formed.

‘x’ Extract module from the library.

Chapter 8: The Utilities 48

8.3 Listing Symbols

There are two programs available for printing symbols; each for symbols of a different kind.

‘gcc-nm.ttp’ list symbols in GNU object files and object libraries. ‘cnm.ttp’ lists symbols from a

DRI compatible or extended symbol table attached to an executable.

‘gcc-nm.ttp’

The output of ‘gcc-nm.ttp’ looks like the following sample:

00000870 b _Lbss
U _alloca

000003b4 t _glob_dir_to_array
00000532 T _glob_filename
00000248 T _glob_vector

U _malloc
0000086c D _noglob_dot_filenames

U _opendir
U _readdir

00000000 t gcc_compiled.

The first column displays the relative address of that symbol in the object file. If the symbol

has the type U (undefined external) the space in left blank. The next column shows the type of

the symbol. In general, symbols, which have an external scope (visible for other object module)

are marked with an uppercase letter. Symbols, which are local to the object file are marked with

lowercase letters. The following letters are possible:

‘C’ marks variables, which are defined in that source module, but not initialized. A decla-

ration like

int variable;

would create a line marked with a ‘C’. The first column would show the size of that

variable in bytes instead of the relative address in the object module.

‘b’ Variables, which are declared with

static int variable;

are displayed with a ‘b’.

‘D’ marks variables, which are initialized at declaration time. A declaration like

int variable = 1;

would show as a line with a ‘D’ in it.

Chapter 8: The Utilities 49

‘d’ Variables, which are initialized at declaration time declared are displayed with a ‘d’. A

declaration like

static int variable = 1;

would create a line marked with a ‘d’.

‘t,T’ mark text (in other words: actual program code). Functions in your C source, which

have the storage class static, would be displayed with a ‘t’. All other functions in

that source module, which are visible to other modules, would show up with a ‘T’.

‘U’ All functions, which are defined in other modules and referenced in this module, are

displayed with a ‘U’.

The last column shows the symbol name.

‘gcc-nm.ttp’ supports the following command line options.

‘-a’ In case a file is compiled with the ‘-g’ or ‘-gg’ option, special information for debugging

purposes is included in the object code. This information is listed by supplying the

‘-a’ option.

‘-g’ This option restricts the output to include only symbols, which have an external scope.

‘-n’ Without any options the output is sorted in ascii order. By supplying the ‘-n’, the

listing is sorted in numerical order by the addresses in first column.

‘-o’ If this option is given, every output line is preceded by a filename in the form ‘file:’,

naming the file in which the symbol appears. If the file to be listed, is an archive, the

line begins in the form ‘library(member):’.

‘-p’ The symbols are listed in the order as they appear in the object code module.

‘-r’ The output is sorted in reverse ascii order.

‘-s’ Archives may contain a special member called ‘__.SYMDEF’. Don’t ask me about it

purpose. Anyway, using this option show the content of this member.

‘-u’ Only undefined symbols are listed.

‘cnm.ttp’

‘cnm.ttp’ prints the symbols which are attached to an executable.

Chapter 8: The Utilities 50

8.4 Modifying the Executables

The programs, which are described in the following sections can be used to modify an already

existing executable, but this only works under the assumption, that the symbol table is still attached

to the executable. So, if you want to modify the memory usage of a program at a later time, you

should keep the unstripped executables around or use the command ‘xstrip.ttp’ and keep only

the _stksize symbol.

‘fixstk.ttp’

‘fixstk.ttp’ is used to modify the current stacksize of an executable. It does this by looking

up the symbol _stksize in the symbol table portion of the file and than changes the values of the

location where _stksize points to. The usage is:

fixstk size [filename]

size is the stacksize in Bytes, KBytes or MBytes. To specify size in Kbytes or Mbytes, append

a ‘K’ or a ‘M’ to the integer number.

For dumping applications like Scott Kolodzieski’s port of GNU Emacs 18.57 ‘fixstk.ttp’ looks

up the symbol _initial_stack instead of _stksize.

fixstk 128K gcc-as.ttp

sets the stacksize of ‘gcc-as.ttp’ to 128 Kbytes.

‘toglclr.ttp’

toglclr [-fload] [-frun] [-fram] files ...

‘-fload’ Toggle the ‘fast load’ flag.

‘-frun’ Toggle the ‘fast run’ flag.

‘-fram’ Toggle the ‘fast ram malloc’ flag.

If TOS launches an application, it clears all memory starting from the BSS section to the end

of the TPA. With earlier TOS versions (pre TOS 1.4) this could take quite a considerable amount

Chapter 8: The Utilities 51

of time. The clearing algorithm was improved during the different TOS releases, but it is still

used, although most of the existing programs don’t need a cleared memory. Well, most is not all;

therefore for compatibility sake the feature will stay in place.

With TOS 1.4 you can keep the GEMDOS loader from clearing all memory. The long word

with offset 0x16 in the program header is used to determine whether the memory should be cleared

or not. Setting the bit 0 of this longword to 1 prevents the loader from clearing all memory.

‘toglclr.ttp’ serves exactly that purpose, namely toggling this long word.

TOS 2.x and 3.x gave another two bits in the above mentioned longword a meaning. The ‘fast

run’ bit 1 is used to determine, if a program should be started in ordinary ST-ram (bit 1 = 0) or

in alternate ram. In case of the TT or the SST68030 from Dave Small, this is ram which is not

slowed down by any video hardware.

The ‘fast ram malloc’ bit 2 determines, if any subsequent malloc’s, which a program might do,

should be satisfied from slow ST-ram (bit 2 = 0) or from alterate ram. All these flags have been

introduced to increase compatibility between the different TOS versions.

‘xstrip.ttp’

‘xstrip.ttp’ removes the symbol table from a TOS executable file. The default behaviour,

which is to completely remove the symbol table, may be modified by specifying additional command

line optione. The systax for the xstrip command is

xstrip [-a] [-g] [-k] [-l names] files ...

‘-a’ Really remove all of the symbol table. Leave nothing.

‘-g’ This option causes ‘xstrip.ttp’ to keep all global symbols.

‘-k’ keeps the _stksize symbol, so that the stack size can be adjusted even for a nearly-

stripped GCC produced executables.

‘-l names’

keeps all symbols listed in a file names (one symbol per line).

Both ‘-k’ and ‘-l’ options convert the extended symbols into regular ones (DRI compatible).

8.5 Getting Information about Executables

Chapter 8: The Utilities 52

‘printstk.ttp’

‘printstk.ttp’ works basically the same way as ‘fixstk.ttp’, but displays the current value

at the location _stksize or _initial_stack. The usage is:

printstk [filename]

If filename is no specified it defaults to ‘.\gcc-cc1.ttp’. If ‘printstk.ttp’ is used on some

of the executables of the GCC distribution, you should see a value of ‘-1’, which means that all

available memory is used by the program (at least for the programs ‘gcc-cpp.ttp’ and ‘gcc-

cc1.ttp’).

‘size68.ttp’

‘size68.ttp’ is used to print information, which is found in the the header of an executable

program file. A sample output is shown in the following lines.

c:\ => size68 temacs
temacs:

text size 245884
data size 160604
bss size 11552
symbol size 36274
File is relocatable

BSS and high mem cleared on startup

The value of ‘text size’ is the actual size of the program code; the TEXT segment. The value

of ‘data size’ gives the size of initialized data; the DATA segment. For example, if you define a

variable ‘char array[10] = "foobar";’, the string ‘foobar’ is moved to the data segment during

the linking process. The value of ‘bss size’ is the size of the BSS segment. If you define a global

variable ‘char array[10];’, this variable ‘array’ would end up the BSS segment. The BSS segment

is initialized to zero from the GEMDOS loader, when the program is loaded into memory. The

memory usage during the programs runtime can’t simply be calculated by adding the three values,

since this doesn’t take into account the memory, which might be dynamically allocated.

The value of ‘symbol table’ is the size of the symbol table, which is appended to the three

segments. The symbol table is only used, when the program is invoked under the control of a

debugger. The symbol table doesn’t use up any memory, when the program is launched from the

Index of all Command Line Options i

desktop or a CLI. The next line says, that the program file is relocatable. As far as I know is

every program file relocatable on the ST. The last line indicates, that the BSS section and the all

available memory (‘high mem’) is cleared upon startup. On systems with lots of memory, this can

take quite a bit of time. You can keep the GEMDOS loader from clearing all memory by toggling

a bit in the header. See ‘toglclr.ttp’ for more info.

9 Debugging Programs

In general, you have two choices for debugging; machine and source level debugging. Most of

the time you will prefer the source level debugging.

This chapter is not ready yet. If you have some ideas, what should go into this section, please

tell me.

Concept Index

(Index is nonexistent)

Index of all Command LineOptions

(Index is nonexistent)

ii

Table of Contents

GNU CC GENERAL PUBLIC LICENSE 1

COPYING POLICIES . 1

NO WARRANTY .3

Contributors to GNU CC . 3

Introduction . 5

1 Installing GCC . 6

1.1 Installing the Executables . 8

1.2 Installing the libraries . 9

1.3 Installing the Header Files . 11

1.4 Gulam Notes . 11

2 Installing G++ . 12

3 Memory Requirements . 12

4 Controlling the C-Compiler Driver (‘gcc.ttp’) 13

5 Controlling the C++-Compiler Driver (‘g++.ttp’) . . 25

6 The Preprocessor . 31

6.1 Invoking the C Preprocessor . 31

6.2 Predefined Macros . 33

6.3 Generating Dependency Information . 35

7 The GNU Assembler (GAS) . 35

7.1 Invoking the Assembler . 36

7.2 Syntax .37

7.2.1 Register Names and Addressing Modes37

7.2.2 Labels and Identifiers . 39

7.2.3 Comments .39

7.2.4 Numerical and String Constants . 40

7.2.5 Assignments and Operators . 40

iii

7.2.6 Segments, Location Counters and Labels 41

7.2.7 Types . 41

7.3 Supported Pseudo Opcodes (Directives) . 42

8 The Utilities .44

8.1 The Linker ‘gcc-ld.ttp’ .44

‘sym-ld.ttp’ . 46

8.2 The Archiver ‘gcc-ar.ttp’ .46

8.3 Listing Symbols .48

‘gcc-nm.ttp’ . 48

‘cnm.ttp’ .49

8.4 Modifying the Executables . 50

‘fixstk.ttp’ . 50

‘toglclr.ttp’ . 50

‘xstrip.ttp’ . 51

8.5 Getting Information about Executables .51

‘printstk.ttp’ .52

‘size68.ttp’ . 52

9 Debugging Programs . i

Concept Index . i

Index of all Command Line Options . i

