
Page 2

Math:  What's the Use?

Valerie A. Miller
Department of Mathematics & Statistics
Georgia State University
Atlanta, GA  30303-3083

Abstract:  In this presentation we will discuss some of the different mathematics used in
generating graphics images, from basic Euclidean geometry to the basics of spline interpolation.

Introduction:

Behind all great (and not so great) computer graphics images and/or animations stands a great
lady.  Her name?  Mathematics.  Whether it is a spline or parametric equations that generate the
curve, the various geometries that provide the illusion of 3D, or the vector theory used in
reflections, rotations, and shading, just about all aspects of a computer generated image relies on
mathematics.  In this paper we will discuss some of the different mathematics used in generating
graphics images, from basic Euclidean geometry to the basics of spline interpolation.  We begin
with an overview of the simpler concepts in computer graphics, line drawing and
transformations.  In section 2 we examine how the illusion of 3D is created; in section 3 we will
examine the mathematics involved in lighting our scene; and finally, in section 4, we will
examine the creation of objects that do not have a simple geometric representation.

Section 1:  The Basics

Computer graphics techniques have always relied heavily on mathematics for their
implementation.  Simple line and conic drawing algorithms (e.g., BRES65, BRES77, PITT67,
and VANA84) show the importance of a thorough understanding of basic algebra, geometry and
multivariate calculus.  Calculus?  Yes, gradients are used to determine vectors perpendicular to
the tangents to conics other than circles.  This is used when determining which pixel to "turn on"
to create the most realistic-looking curve.  Even pattern filling and line clipping rely on these
basic concepts.  Then, of course, clipping requires knowledge of the widowing system and
coordinate systems in general.  So we're back to geometry again.  When creating an object to be
represented, a mathematical model representing this object must be created.  Whether it is a
simple two dimensional (2D) or three dimensional (3D) geometric figure or a more complicated
curve or surface, each object must have a mathematical representation.  This representation is
given in "real-world" coordinates, i.e., real values for which the mathematical model is valid.  To
create the graphics image to represent our object we must change the real-world coordinates
(window or user coordinates) of our object to the normalized device coordinates and/or the
viewport coordinates.  This change requires what is commonly referred to as a window-to-
viewport transformation.  This transformation of user coordinates (x

user
 ,y

user
) to normalized

device coordinates (x norm
, y

norm
) is a simple linear function that is a combination of scaling and

translation:



Page 3

Here, wx_min, wx_max wy_min, and wy_max, are the minimum and maximum window (user)
coordinates in the x and y directions and vx_min, vx_max , vy_min , and vy_max are the minimum and
maximum viewport coordinates in the x and y directions.

Once we have the ability to represent our object we may wish to change its position or size or
inclination.  Each of these transformations of an object, whether it is a translation, rotation, or
scaling is accomplished with the assistance of vectors and matrices, i.e., linear algebra.  Two-
dimensional (2D) transformations are accomplished as follows:

translation: 

scaling:

rotation about the origin: 
(counterclockwise rotation)

Here the point (x, y)
T
 belongs to the original object and the point (x', y')

T
 belongs to the

transformed object. To rotate about a point other than the origin, say point P, we first translate P
to the origin, rotate the object, and then translate back.

In order to treat all three transformations equally and to be able to easily compose them, we
extend our two dimensional object to a 3 dimensional representation -- we do this by creating
what are known as homogeneous coordinates: (x, y)

T
 à (x, y, 1)

T
.  This is done so that the

different functions that are to be applied to our object (or primitive) can be composed into one
matrix transformation and this one transformation is applied, rather than incurring the cost and
time of applying the separate transformations to the object.  The individual transformation
matrices now are:

translation:

( ) y_miny_miny_max
y_miny_max

y_minuser
norm vvv

ww

wy
y +−

−

−
=

( ) x_minx_minx_max
x_minx_max

x_minuser
norm vvv

ww

wx
x +−

−

−
=









+








=









y

x

d

d

y

x

y

x

'

'

















=








y

x

s0

0s

y'

x'

y

x
















 −
=








y

x

cossin

sincos

y'

x'

θθ
θθ

















100

d10

d01

y

x



Page 4

scale:

rotation:

When working with three dimensional objects, we simply extend our 2D ideas to 3D.  These
transformations are applied to similar homogeneous representations: (x, y, z)

T
à(x, y, z, 1)

T

translation:

scaling:

Rotations:
about z-axis:

about x-axis:

















100

0s0

00s

y

x















 −

100

0cossin

0sincos

θθ
θθ



















1000

d100

d010

d001

z

y

x



















1000

0s00

00s0

000s

z

y

x

















 −

1000

0100

00cossin

00sincos

θθ
θθ


















−

1000

0cossin0

0sincos0

0001

θθ
θθ



Page 5

222 cba ++ 22 cb +

about y-axis:

Finally, to handle the generic case of rotating by an angle θ about an arbitrary direction given by

the line segment beginning at P
1
 = (x

1
, y

1
, z

1
 )

T
  and ending at P

2
 =( x

2
 , y

2
 , z

2
 )

T
 we apply a

composition of transformations.  Set (a, b, c)
T
 = P

2
 - P

1
  and L = and p =

Step 1. Translate the line and the point to be rotated to align with the z-axis:

Step 2. Rotate the line around the x-axis until it is in the xz plane.  Note that right triangle 
trigonometry is used to determine the values for cos α = c/p and sin α = b/p.

Step 3.Rotate once more to put the line on the z-axis:

Step 4.Rotate through the desired angle θ:

















 −

1000

0cos0sin

0010

0sin0cos

θθ

θθ



















−
−
−

=−

1000

z100

y010

x001

T
1

1

1

P1


















−

=

1000

0c/pb/p0

0b/pc/p0

0001

R x

















 −

=

1000

0p/L0a/L

0010

0a/L0p/L

R y

















 −

=

1000

0100

00cossin

00sincos

R z

θθ
θθ



Page 6

Step 5.Reverse steps 3, 2, and 1 to place the point back to its relative position.

So, the final composed transformation is:

Section 2:  It's All an Illusion

The idea of trying to present the illusion of a three-dimensional picture on a two-dimensional
surface had its beginnings in the Renaissance.  The painters of the period utilized the idea of a
"point at infinity" to represent the place where parallel lines seem to intersect.  Mathematicians
in their attempts to prove Euclid's parallel postulate developed non-Euclidean geometries
[WYLI64, HART67] -- geometries that do not assume one or more of Euclidean Geometry's
postulates -- and as a result provided firm mathematical foundations for this idea of a "point at
infinity."  When we attempt to represent a three-dimensional object on a graphics device we are
utilizing these concepts. There are two types of projections that are commonly used to create
these representations:  perspective and parallel.  If the distance from the center of the projection
to the projection (or view) plane is finite then the projection is perspective; if the distance is
infinite, the projection is parallel.  Perspective projections do not preserve angles and distances,
while parallel projections do. Figure 1 provides an illustration of the two basic projection types.
Since it is the perspective projection that creates the more "realistic" representation, the illusion
of 3D, it is this projection method that we will discuss here.

Figure 1

We start by assuming that the projection plane is perpendicular to the z axis and is located at z =

d.  The center of projection is at the origin.  To determine the projection P
p
 = (x

p , yp
, z

p
)

T
 of a

point P = (x, y, z)
T
 we use similar triangles to get



















=



















−−−

1

z

y

x

TRRRRRT

1

z'

y'

x'

11 PxyzyxP

A

B

Projection Plane

A’

B’

Center of
Projection

Projectors

A

B

 Center of
Projection
at Infinity

Projection
Plane

B’

A’

z/d

y
y,

z/d

x
x pp ==



Page 7

and z
p
 = d.  The division by z causes the projection of more distant objects to be smaller than that

of closer objects.

A more general formulation was developed by N. Weingarten and the details can be found in
FOLE90.  We summarize this formulation here. We still assume that the  projection plane is
perpendicular to the z axis and is located at z = z

p
, but now the center of projection is a distance

Q from the point (0,0,z
p
)

T, the intersection of the projection plane with the z axis.  If the

normalized direction vector from (0,0,z
p
)

T
 to the center of projection is (d

x
, d

y
, d

z
)

T
 then it can be

shown that the projection P
p
 can be computed by

and

This matrix transformation provides a one-point perspective projection.  The vanishing point (or

the point at infinity) is given by (Qd
x
, Qd

y
, z

p
)

T
.

There are many variations of this type or projection, for example, those that allow for multiple
vanishing points.  A summary of the mathematical effort required to transform a three-
dimensional world coordinate into a two-dimensional device coordinate is given in Figure 2 and,
again, the details may be found in FOLE90.

Apply

normalizing

transformation

Clip against
  canonical
view volume

Project onto
  projection
     plane

Transform
into viewport
in 2D device
coordinates

3D world
coordinate
output primitives

2D device
coordinates

Figure 2

















































+−

+−

−

−

=



















1

z

y

x

1
Qd

z

Qd

1
00

z
Qd

z

Qd

z
00

d

d
z

d

d
10

d

d
z

d

d
01

W

Z

Y

X

z

p

z

z

2
p

z

p

z

y
p

z

y

z

x
p

z

x
















=

















=
Z/W

Y/W

X/W

z

y

x

P

p

p

p

p



Page 8

Section 3:  A Little Light on the Subject

When considering the lighting of a scene one must consider the interaction of light with the
surface of an object in the scene and model this interaction.  One must consider the light emitting
sources (a point source or distributed source) as well as the light reflecting sources (ambient light
or background light).  There are also two types of reflection to be considered:  diffuse and
specular.  In diffuse reflections, what incoming light that is not absorbed is reflected off the
surface in random directions, while in specular reflections the light reflects in a nearly fixed
direction without any absorption.

In order to compute the overall illumination of a given point P = (x, y, z)T, we need the
following information:
1. the direction of the light source L (there could be more than one):
2. the normal vector N
3. the reflection vector R (there could be more than one)
4. the viewing vector V

If S = (S
x
,S

y
,S

z
)

T
 is the position of the light source and E = (E

x
,E

y
,E

z
)

T
 is the position of the eye,

then L = S - P and V = E - P.  Each of L and V must be normalized, i.e., made to have length
one.  The computation of N and R can be complicated depending on the type of surface.  N and
R must also be nomalized.  Once L, V, N, and R have been determined then cosϕ = L·N and
cosθ = V·R and the Phong (PHON75) model of illumination can be computed by (POKO89):

where
 * = r, g, or b (for red, green, or blue)
Ia* = intensity of ambient light for *

kd* = diffuse reflectivity of *

ks = a constant that estimates the specular reflection coefficient (0 < ks < 1)

Ip* = intensity of point source of light for *

n = measure of "shininess" of the surface -- very shiny = large n ( > 150)
d = distance to the point source or distributed source of light

ϕ ϕ θ

eye
N

L
R

Figure 3

( )θϕ ncosk/dcoskIkII sdpda* **** ++=



Page 9

There are many other models that could be considered, for example, GOUR71, WARN83,
VERB84, and NISH85.

Section 4:  The Spline's the Thing

When trying to represent an object mathematically, quite often it is impossible to construct an
appropriate model using only simple geometric shapes.  If this is the case, then arbitrary curves
need to be created to model the object.  The curves of choice are splines and other parametric
curves.  These curves are used in animation to generate in-between frames, or to create curves
when only a few data points describing the curve are known.  Yet another application of these
curves is the generation of arbitrary surfaces.  Each of these applications has essentially the same
premise:  from a few data points, generate a smooth curve based on this data.  This curve should
be simple to compute and easy to modify if a change in data is necessary.

Parametric equations are used to represent curves that are not easily represented or are
impossible to be represented by a function.  Examples of this would be curves that have loops or
places of infinite slopes.  In this case we use a parameter, say t, and describe each variable x and
y as functions of t, x = x(t) and y = y(t), over some range of t.  If we are working in three
dimensions then each of x, y, and z would be parametrized.  The slopes of tangential lines for
parametric curves are simple to compute. For example,

 i.e. the chain rule of differentiation becomes simply a quotient.

Splines are piece-wise defined polynomial functions of, usually, low degree.  If you have data
points (x

0
, y

0
), ... (x

n
, y

n
), x

i
 's distinct, then the Natural Cubic Spline, S(x), will interpolate this

data (i.e., S(x
i
) = y

i ) and is given by cubic polynomials defined on each of the intervals [x
i
, x

i+1
],

i = 0,..., n-1.  To determine the coefficients of this spline, one must solve an (n-1)x(n-1)
tridiagonal linear system of equations.  This spline, though historically significant, is not very
useful in computer graphics.  A unique spline does not exist if there is a repeated x value and if a
data point needs to be changed then the entire spline will need to be recomputed.

To overcome these problems splines that do not necessarily interpolate the given data are used.
The most often used splines are the Bézier (BEZI70 and BEZI74) and uniform B-splines
(CURR47).  Splines can be defined for any degree though the cubic splines are usually
sufficiently robust to handle the smoothness requirements in graphics.

The uniform cubic B-spline, b, stretches over five data points, called knots.  The distances
between the knots are all taken as 1 and the point 0 is put in the middle of these five knots to
achieve symmetry.  Formally this is given by:

,
dt

dx
/

dt

dy

dx

dt

dt

dy

dx

dy
==



Page 10

If we need to draw a curve based on knots P
0
 = (x

0
, y

0
, z

0
), ... , P

n
 = (x

n
, y

n
 ,z

n
), then one way to

construct the approximating curve is to form the linear combination

where p
i
 stands for x

i
, y

i
, or z

i
.  The most convenient way to draw the B-spline curve is to use the

following formula.  This form expresses the value of C in any subinterval [P
i
,P

i+1
] with i not 0

nor n-1.

As the parameter u changes from 0 to 1 the formula generates the curve from P
i
 to P

i+1 
.

The other most commonly used cubic spline is the Bézier spline.  The main difference between
the two is that the Bézier curve is globally, not locally, controlled by the points P

i
.  Changing one

of the control points affects the entire Bézier curve, but its strongest affect in is the neighborhood
of the point.  The matrix formulation of the Bézier curve is given below:

To generate spline surfaces, one simply takes the Cartesian product of two splines.  For example,

( )

( ) ( )

( ) ( )

( )







































≤

≤≤
−

≤≤
−

+
−

−

≤≤−
+

−
+

−≤≤−
+

−≤

=

uif

uif
u

uif
uu

uif
uu

uif
u

uif

20

21
6

2

10
6

2

3

12

01
3

12

6

2

12
6

2
20

b(u)

3

33

33

3

∑
=

=
n

0i
ii (u)bpC(u)

[ ]




































−
−

−−

=

+

+

−

2i

1i

i

1i

23

p

p

p

p

0141

0303

0363

1331

1uuu
6

1
C(u)

[ ]




































−
−

−−

=

3

2

1

0

23

p

p

p

p

0001

0333

0363

1331

1uuuC(u)



Page 11

we define a B-spline surface b(u,v) = b(u)b(v).  The matrix formulation of this surface is given
by

where
U = (u

3
,u

2
,u,1), V = (v

3
,v

2
,v,1) and

A similar formulation for Bézier surfaces exists.

There are, of course, other splines and generalizations that can be used to model curves or
surfaces, e.g., Hermite, non-uniform B-splines, and Beta splines.  The interested reader is
referred to BART87.

Section 5:  Other Neat Stuff

We have only begun to scratch the surface of the different types of mathematics used in
computer graphics, and we have omitted many of the details of the concepts presented in this
paper.  For example, most of the calculus concepts involved in the illumination section were
omitted.  However, it should be fairly obvious that geometry, linear algebra and calculus play
fundamental roles in the representation and manipulation of images.  Other aspects of computer
graphics utilize often more complicated mathematics.  For example, antialiasing uses digital
signal processing and hence Fourier transforms, and physically based modeling requires the
solution of partial differential equations.  To truly understand fractals, complex arithmetic and a
little analysis will go a long way. In order to fully appreciate and understand the finer aspects of
computer graphics one must at least appreciate, if not understand, the finer aspects of
mathematics, as you would not have one without the other.

References:

BART87 Bartels, R. H., J. C. Beatty, B. A. Barsky, An Introduction to Splines for Use in
Computer Graphics and Geometric Modeling, Morgan Kaufmann Publishers, Inc.
1987.

BEZI70 Bézier, P., Emploi des Machines á Commande Numérique, Masson et Cie, Paris,
1970.  Translated by Forrest, A. R., and A. F. Pankhurst as Bézier, P., Numerical
Control -- Mathematics and Applications, Wiley, London, 1972.

TTVUMPM
36

1
v)S(u, =





















=



















−
−

−−

=

+++++−+

+++++−+

++−

+−+−−−−

2j2,i1j2,ij2,i1j2,i

2j1,i1j1,ij1,i1j1,i

2ji,1ji,ji,1ji,

2j1,i1j1,ij1,i1j1,i

pppp

pppp

pppp

pppp

Pand

0141

0303

0363

1331

M



Page 12

BEZI74 Bézier, P., "Mathematical and Practical Possibilities of UNISURF," in Barnhill,
R. E., and R. F. Riesenfeld, eds., Computer Aided Geometric Design, Academic
Press, New York, 1974.

BRES65 Bresenham, J. E., "Algorithm for Computer Control of a Digital Plotter," IBM
Systems Journal, 4(1), 1965, 25-30.

BRES77 Bresenham, J. E., "A Linear Algorithm for Incremental Digital Display of
Circular Arcs," Communications of the ACM, 20(2), February 1977, 100-106.

CURR47 Curry, H. B., and I. J., Schoenberg, "On Spline Distributions and Their Limits:
the Polya Distribution Functions," Bull. American Mathematical Society, 53,
Abstract 380t (1947), 109.

FOLE90 Foley, J. D., A. van Dam, S. K. Feiner, J. F. Hughes, Computer Graphics:
Principles and Practice, 2nd Edition, Addison-Wesley Publishing Company, Inc.,
1990.

GOUR71 Gouraud, H., "Continuous Shading of Curved Surfaces," IEEE Trans. on
Computers, C-20(6), June 1971, 623-629.

HART67 Hartshorne, R., Foundations of Projective Geometry, Benjamin/Cummings
Publishing Company, 1967.

NISH85 Nishita, T., I. Okamura, and E. Nakamae, "Shading Models for Point and Linear
Sources," ACM TOG, 4(2), April 1985, 124-146.

PHON75 Phong, B.-T., "Illumination for Computer Generated Images," Communications of
the ACM, 18(6), June 1975, 311-317.

PITT67 Pitteway, M. L. V., "Algorithm for Drawing Ellipses or Hyperbolae with a Digital
Plotter," Computer J., 10(3), November 1967, 282-289.

POKO89 Pokorny, C., C. F. Gerald, Computer Graphics:  The Principles Behind the Art
and Science, Franklin, Beedle & Associates, 1989.

VANA84 Van Aken, J. R., "An Efficient Ellipse-Drawing Algorithm," CG&A, 4(9),
September 1984, 24-35.

VERB84 Verbeck, C. P., and D. P. Greenberg, "A Comprehensive Light-Source
Description for Computer Graphics," CG & A, 4(7), July 1984, 66-75.

WARN83 Warn, D. R., "Lighting controls for Synthetic Images," SIGGRAPH 83, 13-21.

WYLI64 Wylie, C. R. Jr., Foundations of Geometry, McGraw-Hill Book Company, 1964.


