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OPTIMIZED HIERARCHICAL OCCLUSION CULLING FOR Z-BUFFER SYSTEMS
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A b s t r a c t

We introduce a variation of hierarchical z-buffering that is highly optimized f o r
conservative occlusion culling and show how it can be applied to d ramatically r e d u c e
bandwidth requirements within a z-buffer pipeline.  The algorithm is employed
within a conservative culling stage of the pipeline that receives t r a n s f o r m e d
geometry, uses optimized hierarchical z-buffering to cull occluded geometry, a n d
passes visible geometry on to an ordinary z-buffer rendering stage.  Optimizations t o
the tiling algorithm and z-pyramid employed by hierarchical z-buffering e n a b l e
conservative culling to be performed a great deal more efficiently than with t h e
standard a lgorithm.  Other innovations relate to very efficient culling of occluded
bounding boxes and a simple way to trade off image quality for rendering speed.  T h e
method will work effectively on virtually any polygonal model that can be t r a v e r s e d
in approximately front-to-back order.  On very deeply occluded scenes that we tested,
the method reduced the depth complexity of primitives that need to be rendered t o
approximately two .

1  INTRODUCTION
Recent years have witnessed remarkable advances in the performance o f

inexpensive z-buffer accelerators, which in turn has fueled demand fo r h i g h -
performance rendering of increasingly complex scenes.  Growing complexity ra i ses
the relative importance of occlusion cu l l ing, by which we mean culling of occluded
geometry prior to rasterization.  The purpose of occlusion culling is to achieve ou tpu t
sens i t iv i ty, where ideal output-sensitive performance depends on the v i s ib le
complexity of the scene and is independent of overall scene complexity.  If a h i g h
degree of output sensitivity is achieved, very complex scenes can be rendered i n
real-time, p rovided of course that their actual visible complexity is t ractable.

Our objective is to devise highly output-sensitive occlusion culling for z - b u f f e r
systems that works effectively on general models, leverages standard z - b u f f e r
rendering hardware, and has a simple scene-management interface.  We achieve t h i s
by modifying and optimizing the hierarchical visibility a lgor i thm [GKM93], or HV
for short.  HV renders a scene that is organized in nested bounding boxes b y
traversing the boxes front to back, cu l l i ng  occluded boxes as they are encoun te red ,
and rendering the primitives in visible boxes with hierarchical z -bu f f e r i ng.  Th is
algorithm is highly output sensitive because it only needs to render the primitives i n
visible boxes and hierarchical z-buffering tiles individual primitives v e r y
efficiently.  However, makers of z-buffer hardware have been slow to adopt t h e
algorithm because a) implementing hierarchical z-buffering in hardware requires a
major architectural revision, and b) scene management is compl icated b y
communication delays incurred when box-visibility tests are performed by t i l i n g
hardware and by the need to maintain the scene model in nested boxes.   Our
objective is to overcome these shortcomings while retaining the efficiency a n d
generality of the original a l go r i t hm .

In order to utilize standard z-buffering rendering hardware, we add a sepa ra te
culling stage to the pipeline that culls occluded primitives and passes v is ib le
primitives on to standard rendering hardware.  The culling stage emp loys  a v a r i a t i o n
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of hierarchical z-buffering that is highly optimized for conservative cu l l i ng .
Optimized hierarchical z-buffering employs a modified z-pyramid that uses c o v e r a g e
masks in finest-level tiles to reduce storage requirements 10-fold.  In combina t ion
with tiling optimizations, th is  modified z-pyramid reduces the traffic in z va lues
required to perform conservative culling approximately 10-fold over s tanda rd
hierarchical z - b u f f e r i n g .

To simplify scene m anagement, we make the “tip” of the z-pyramid accessible t o
the host, which enables fast software culling of occluded bounding boxes.  Th is
eliminates communication delays associated with box-visibility tests, which are so
efficient that there is no need to nest boxes in a spatial h ie ra rchy .

As with the original HV algorithm, achieving high output sensitivity o n l y
requires that the scene be processed approximately front to back.  Genera l l y
speaking, complying with this requirement is much easier than sat is fying t h e
scene-management requirements of other occlusion-culling methods.  We
demonstrate through simulation that our architecture achieves high ou tpu t
sensitivity for general models with respect to classic bandwidth bottlenecks in z -
buffer pipelines, traffic in geometric data and z values.  On very complex and deep ly
occluded models that we tested, the culling stage reduced the depth complexity o f
primitives that needed to be rendered to approximately t w o .

We also show that a simple change to the propagation procedure f o r
hierarchical z-buffering enables error-bounded non-conservative culling with a
“quality knob”  mechanism that trades off image quality for rendering speed .  

2  PREVIOUS WORK
Occlusion culling for z-buffer systems presents multiple challenges: ou tpu t

sensitivity, generality, simplicity, and effective use of hardware accelerators.  H e r e
we examine some existing occlusion-culling methods in the context of t h e s e
object ives.

First we consider the hierarchical visibility a lgor i thm [GKM93] on which t h e
innovations explored in this article are based.  Hierarchical visibility (HV) m a i n t a i n s
the scene model in a spatial hierarchy (e.g., an octree) and a depth image in a z -
pyramid.  A scene is rendered with a recursive subdivision procedure beginning a t
the hierarchy’s root node which determines the visibility of a node’s bounding box
with respect to the z-pyramid.  Such a visibility query will be abbreviated v - q u e r y.
If the box i s
v i s ib l
e
Error!

For the limited class of models that can be effectively organized as “rooms w i t h
portals,” occlusion culling is an elegantly solved problem [Air90,Tel92,Fun93].  Rea l -
time rendering systems with software culling stages that feed z-buffer h a r d w a r e
have been demonstrated by Teller [Tel92] and Funkhouser and Sequin [Fun93].
Furthermore, geometry that will be coming into view can be anticipated with t h i s
method, so delays caused by paging of the scene model can be avoided.  However, t h i s
approach does not cull general models effectively, which motivates the search for a
more general m e t h o d .

Another way to accelerate object-space culling is to incorporate the v - q u e r y
operation into a z-buffer accelerator that reports whether a portal or bounding box
is visible.  Some Kubota [Tit93] and Hewlett-Packard [Sco98] workstations have t h i s
feature. Although hardware v -query effectively accelerates rendering in some cases,
this method is much less effective than culling with a z-pyramid when portals o r
bounding boxes over lap deeply, as shown by s imulat ion in section 6 .



3

Another culling method that exploits z-buffer hardware is to create an occ lus ion
image of foreground occluders which is then used for culling when the scene i s
rendered [Zha97,Zha98].  One clever feature is to control non -conse rva tive c u l l i n g
with the opacity of the occlusion image.  The main strength of this method is that i t
improves the performance of existing z-buffer accelerators.  However, rendering i n
two passes adds complexity, effectiveness depends on being able to select e f f i c i en t
foreground occluders, and it is easier to implement non-conservative culling w h e n
the system maintains a z-pyramid, as described in section 4 .3 .

Model simplification (e.g. [Hop96]) and geometric compression (e.g. [Dee94]) a r e
complimentary strategies for reducing geometry and memory traffic that can b e
used in combination with occlusion cu l l ing.

3  BANDWIDTH REQUIREMENTS FOR VISIBILITY COMPUTATIONS
Before introducing the proposed architecture we review block diagrams o f

visibility components within a conventional z-buffer architecture, Arch_ZB i n
figure 1a, and the analogous architecture for hierarchical visibility, Arch_HV i n
figure 1b, and summarize bandwidth generated by visibility computations w i t h i n
these architectures.  With Arch_ZB, geometry t ra f f i c  consists of all o n - s c r e e n
primitives (possibly excepting backfacing ones), which are transformed to i m a g e
space and scan converted into a z-buffer.  The z- t ra f f ic this generates (i.e., z - b u f f e r
memory traff ic)  is proportional to scene depth complexity (DC), falling between DC+1
and 2xDC, depending on the traversal order of pr imi t ives.

With Arch_HV, the scene manager maintains the scene model in a spat ia l
hierarchy and runs the HV algorithm (summarized in the preceding section), w i t h
execution al ternating between v-query tests on bounding boxes, results of which a r e
reported on a feedback connection, and rendering of primitives in visible boxes.
Geometry traffic consists of visible boxes and their children and the primitives i n
visible boxes.  Z-traff ic consists of the z-pyramid values accessed during h i e r a r c h i c a l
tiling of these boxes and pr imi t ives.

These properties make Arch_HV highly output sensitive, as confirmed b y
simulations in section 6 which show, for example, that for frames of a deep ly
occluded scene that we rendered, average z-traff ic remained within a factor of 1.5 o f
the ideal performance for z-buffering of one read and one write per image sample .
More generally, the simulations show that for both geomet ry and z- t ra f f ic,
Arch_HV’s bandwidth consumption is dramatically lower than Arch_ZB’s w h e n
processing deeply occluded scenes.

Despite these big advantages in relative performance, there are p rac t i ca l
drawbacks to implementing Arch_HV in hardware, foremost among them the cost o f
a ma jor architectural revision which would scrap huge investments in the design o f
scan-conversion hardware.  Secondly, if v-query tests on bounding boxes initiated b y
the scene manager are performed by hardware residing on a bus, commun ica t i on
delays will hamper performance.  Finally, maintaining the scene model in a spat ia l
hierarchy of nested bounding boxes complicates scene management and i s
problematic for some applications p rog rams .  

The architecture we propose addresses these concerns by e m p l o y i n g
conventional scan-conversion hardware in its rendering stage, by making values i n
the “tip” of the z-pyramid accessible to the scene manager so that box culling can b e
performed in software on the host, and by dispensing with nesting of b o u n d i n g
boxes.  In addition, separating culling from rendering enables hierarchical z -
buffering to be highly optimized for conservative cu l l i ng

.
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4  OPTIMIZED MULTI-STAGE OCCLUSION CULLING
Figure 1c shows the occlusion-culling architecture (Arch_OHV) that we p ropose

to leverage conventional z-buffer hardware, simplify scene management, a n d
perform highly output-sensitive rendering of general models.  The philosophy o f
this architecture is to maximize the cost effectiveness of culling operations b y
culling in three stages, where computation and bandwidth costs rise p rog ress i ve l y
from stage to stage and the full cost of definitive visibility computations is paid o n l y
when necessa ry .  

First, most occluded bounding boxes are efficiently culled in software by t h e
scene manager using a concise pyramid of z values called the z-tip.  Next, a n
optimized conservative culling stage, which receives only the primitives i n
potentially visible boxes,  culls most occluded primitives using a compact variation o f
a z-pyramid called a zm-pyramid.  Finally, the rendering stage only needs to r e n d e r
the visible and nearly visible primitives it receives from the culling s tage .

In more detail, scenes are processed with a modified version of HV that assumes
that scene primitives are organized in bounding boxes, which need not be nested.
Preferably, the scene manager processes the bounding boxes in front-to-back o rde r .
Each box is tested for visibility against the z-tip.  If this test fails to cull a box, t h e
primitives it contains are sent through the pipeline, where they are transformed t o
image space before arriving at the culling s tage .

Using an optimized variation of hierarchical z-buffering, the culling stage tile s
primitives one-by-one into a  zm-pyramid.  Periodically, the coarsest levels of the z m -
pyramid - the z-t ip - are copied to the scene manager to enable box culling on t h e
host.  If tiling does not show that a primitive is occluded, the primitive is passed on t o
the rendering stage where it is rendered with conventional z-buffer h a r d w a r e .

4.1  Optimized Hierarchical Z-Buffering for Conservat ive C u l l i n g
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Here we describe optimizations to hierarchical z-buffering that enable t h e
culling stage to perform conservative culling with far less work than t he
hierarchical polygon tiling algorithm presented in [Gre96a].  When modified for z -
buffering by substituting a z-pyramid for the “coverage pyramid,” the algorithm o f
[Gre96a] tiles polygons by Warnock-style subdivision [War69], performing p o l y g o n -
cell overlap tests with “triage” coverage masks and performing h i e r a r c h i c a l
occlusion tests with the z-pyramid.  Actually, this variation is not described i n
[Gre96a], but adapting the algorithm for z-buffering is straightforward, as j us t
outlined.  Although this algorithm culls occluded polygons very efficiently, it n e e d s
to subdivide to the image-sample level where a polygon is visible, performing one z
read and one z write at each visible sample on the polygon.  Moreover, de f in i t i ve
visibility computations require maintaining a full-precision depth value for e a c h
image sample .

With conserva t ive cu l l ing, however, such definitive computations are n o t
necessary, and we exploit this fact to greatly reduce computation, z- t raf f ic, a n d
storage requirements.  Our method employs a novel data structure, a z-pyramid w i t h
coverage  masks, which we call a zm-pyramid for short (ZmP), which reduces s to rage
requirements and z- t ra f f ic 10-fold while accelerating tiling computations a n d
retaining high culling e f f i c i e n c y .  

As shown in figure 2, a zm-pyramid has the structure of an ordinary z -py ramid
with NxN decimation, except that each finest-level NxN tile is stored as two z va lues
and a coverage mask instead of an NxN array of z values.  As shown in figure 3, z
value zfar_of_t i le indicates the farthest z for the whole tile, a mask indicates samples
that have been covered by one or more polygons since zfar_of_t i le was establ ished,
and zfar_of_mask is the farthest z value of these samples.  The A-buffer [Car84] a lso
uses coverage masks to expedite processing within image tiles, but the data s t r u c t u r e
we use is much more compact and specifically adapted for conservative cu l l ing.

Record for a 4x4 tile
in the finest level.

•  zfar_of_tile  (16 bits)
•  mask  (16 bits)
•  zfar_of_mask  (16 bits)

4x4 arrays of 16-bit z values

Structure of the “zm-pyramid” employed by the culling stage.

only 3.1 bits
per image sample

Figure 2 Figure  3

4x4 tile at 
finest level

zfar_of_tile zfar_of_mask

P1

P2

mask

P2’s mask

P2’s zfar

Schematic side view of a finest-level tile in the zm-pyramid.

In figure 3, suppose that a zfar value for the tile (zfar_of_t i le) has b e e n
established before processing polygons P1 and P2.  When P1 is encountered, the m a s k
of visible samples that it covers is created and zfar_of_mask is set to the zfar value o f
these samples.  Next, when P2 is processed, since it covers the tile collectively w i t h
the stored mask, a new zfar value is established for the tile, which is written t o
zfar_of_t i le (this is the old value for zfar_of_mask).  The tile’s mask is set to P2’s m a s k
and zfar_of_mask is set to P2’s zfar va lue.  

In all, there are five cases that need to be considered when updating a t i l e
record, which are schematically shown in figure 4 where dashed lines ind ica te
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whether the zfar value of the visible samples covered by the polygon is nearer o r
farther than zfar_of_mask and whether the polygon’s visible samples cover the t i l e
in combination with the stored mask.  The example of figure 3 corresponds to case C 4 .

zfar_of_tile zfar_of_mask

5 Update Cases
C5C4C3C2C1

mask

Case C1

zfar_of_tile
zfar_of_mask

(unchanged)

Case C2

Case C4  Case C5Case C3

zfar_of_tile
zfar_of_mask

zfar_of_tile
(unchanged)

zfar_of_mask

zfar_of_tile

zfar of poly zfar of poly zfar of poly

zfar_of_tile
(unchanged)

zfar_of_mask
(unchanged)

zfar of poly zfar of poly

Figure  4

Schematic side views of finest-level tiles in the zm-pyramid showing
how tile records are updated when a visible polygon is encountered.

To reduce storage requirements further, low-precision z values are employed
throughout the zm-pyramid.  As shown in figure 2, use of 16-bit values in a z m -
pyramid with 4x4 decimation requires only approximately 3.1 bits per image sample .  

In addition to conserving z-traff ic, culling with a zm-pyramid saves a great dea l
of computation because sample-by-sample depth comparisons are not n e c e s s a r y
within finest-level tiles.  Rather, visibility operations are performed with c o v e r a g e
masks in combination with depth comparisons involving at most three depth va lues:
zfar_of_tile, zfar_of_mask, and the zfar value of the polygon’s visible samples .

Surprisingly, this simple data structure culls very effectively.  A l t h o u g h
zfar_of_t i le does not advance as far at some tiles as it would in a standard z -pyramid ,
what matters is overall statistical performance, and as confirmed by simulations i n
section 6, even when the average screen size of polygons is small and many tiles a r e
covered by three of more polygons, the zm-pyramid specified in figure 2 cul led w i t h
an efficiency of approximately 90%, as efficiency is defined in section 6.
Incidentally, other simulations reported in section 6 show that for the models w e
tested, efficient culling required maintaining sample-by-sample occ lus ion
information.  The alternative of culling with a “low-resolution z-pyramid,” f o r
example a z-pyramid missing it’s finest level, culled a much lower fraction o f
occluded polygons.
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4.2  Early Terminat ion of T i l i n g
Another tiling optimization that can be exploited for conservative culling i s

“early termination” of tiling in situations where subdivision to the finest l eve l
cannot advance z values more than some th resho ld  distance, call it zdelta.  As
illustrated in figure 5, if the znear value of a polygon that covers a tile is f a r t h e r
than the tile’s zfar value offset by zdelta, the culling stage assumes that the p o l y g o n
is visible and stops tiling in that region of the screen.  Early termination reduces
computation and z-traffic significantly while hardly impairing cu l l ing e f f i c iency .
The method saves work whether conservative culling is performed with a z m -
pyramid or a standard z -py ramid .

next-to-farthest z

farthest z

Figure 6

P

s
Btile

(not finest level)

polygon

Figure 5

zdelta   

znear of polygon

zfar of tile

tile
(finest level)

With “early termination” of tiling, tiling stops 
when continuing cannot advance z values
more than a threshold distance, zdelta.

Propagating the next-to-the-farthest z value
through the pyramid may result in culling
objects that are visible at only one sample.

4.3  A “Quality Knob” for Non-Conservat ive C u l l i n g
When a scene is too complex to render at the desired frame rate, even w h e n

occlusion culling is performed, one way to accelerate rendering is to perform n o n -
conserva t i ve culling of geometry that is only “slightly visible.”  Here we describe a
very simple way to trade off image quality for rendering speed in systems t h a t
maintain a conventional z -py ram id .

Zhang et al. perform non-conservative culling by rendering f o r e g r o u n d
occluders into a hierarchical occlusion map (HOM), which is then used for i m a g e -
space culling [Zha97,Zha98].  Aggressiveness of culling can be specified with a n
opacity va lue .

Non-conservative culling can be performed much more efficiently when t h e
system maintains a z-pyramid, because implementation only requires changing t h e
procedure for propagating z values through the pyramid .  When hierarchical t i l i n g
determines visible samples w ithin a finest-level NxN tile, instead of propagating t h e
tile’s farthest z value  through the z-pyramid  [GKM93], we propagate the Eth- to - the-
farthest z value, where E is an error l imit  which can be set to any value from zero t o
N2-1.  With this simple change, tiling with standard hierarchical z-buffering w i l l
cull p r imi t ives within regions of the screen where they are visible at E or f e w e r
samples within any finest-level tile, and the output image will have E or fewer e r r o r s
within any NxN tile of samples.  By an error at an image sample we mean that i t s
color differs from a standard z-buffer i m a g e .  

For example, figure 6 shows a finest-level 4x4 tile which has been covered by a
polygon P.  Assuming that the error limit is one, the next-to-the-farthest z value w i l l
be propagated when P is processed, which will later result in culling bounding box B
within the tile, even though B is visible at one image sample, labeled s.  
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This non-conservative culling method provides a simple “quality knob” t h a t
enables sacrificing image quality in exchange for faster rendering.  If E is 0, a
standard error-free z-buffer image is created, if E is 1 there will be at most one e r r o r
in any NxN tile of samples in the output image, and so forth.  In practice, t h e
usefulness of this method depends on how much acceleration is gained and h o w
much image quality is sacrificed.  The tradeoff is good when the depth image of a
scene contains numerous “pinholes,” because E or fewer pinholes within a f i n e s t -
level tile will be “plugged” automatically.  The quality knob is a useful m e c h a n i s m
for a certain class of scenes, producing approximate images considerably faster t h a n
standard hierarchical z-buffering.  It is also possible to apply this method to c u l l i n g
with a zm-pyramid (rather than a conventional z-pyramid) by p r o p a g a t i n g
z fa r_o f_mask rather than zfar_of_tile when the bit count of the mask is less than o r
equal to E, although culling will be less aggressive for a given value of E .

Comparing th is approach to non-conservative culling with Zhang’s me thod
[Zha97][Zha98], the chief advantage is that it is not necessary to select and r e n d e r
foreground occluders in a separate rendering pass.  In addition, since a z -py ramid
contains actual sample-by-sample z values for all primitives rendered thus far, i t
culls a higher fraction of occluded geometry than an HOM.  Finally, Zhang’s me thod
does not provide as much local control over image quality because the opac i ty
parameter controls average error within regions of the screen but not d is t r ibu t ion
of error, which can result in culling of visible objects which cover entire NxN t i les
in the output i m a g e .

   

Figure 7
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Figure 8

Culling with  the tip of the z-pyramid.Approximate front-to-back traversal
can be facilitated by sorting bounding
boxes into depth buckets.

4.4  Efficient Box-Cull ing in Software on the H o s t
Approximate front-to-back traversal of scene geometry is crucial to a c h i e v i n g

the high output sensitivity of the HV algorithm.  To accomplish this w i t hou t
maintaining nested boxes, the scene manager groups primitives into boxes and so r ts
the boxes into “depth buckets” based on the depth of their nearest ver tex, a s
schematically illustrated for axis-aligned boxes in figure 7, and then traverses t h e
buckets front to back.  This method is a straightforward implementation detail t h a t
may have  precursors in other sys tems .

To test a bounding box for occlusion by the z-tip, the scene manager computes
its screen bounding box and determines a znear value by computing the depth of t h e
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box’s nearest corner.  Next, the smallest M x N -cell region in pyramid that encloses t h e
box is determined, and if the box’s znear value is behind the z-tip value at each ce l l
that the box  over laps, the box is culled.  Similar box culling methods are described i n
[GKM93] and [Zha98].  The process is illustrated in figures 8a and 8b for a box within a
2x2-cell region in the coarsest 4x4 tile in the z-tip.  In practice, we use 4x4 regions, so
up to 16 depth comparisons are made per box .  

The novel idea here is enabling the scene manager to harness the power o f
hierarchical culling with a z-pyramid without paying the cost of actually c r e a t i n g
the pyramid, which requires tiling pr imi t ives.  Rather, z-tip values are copied f r o m
the culling stage, which consumes very little bandwidth, particularly if values a r e
copied only when they c h a n g e .

As indicated in figure 8a, when the root value in the z-tip changes, t h i s
advances the far clipping plane, enabling culling of boxes behind the new FAR v a l u e
(e.g. box B) with a simple cull-to-frustum test.

4.5  “Look Ahead” C o m p u t a t i o n s
Now we consider an optional “look-ahead” feature of the conservative c u l l i n g

stage that reduces paging delays in scenes where the model is too complex to fit i n
main memory and the scene model is not compatible with established p recompu ted
visibility methods [Air90,Tel92,Fun93].  If the culling stage includes a second “ look-
ahead zm-pyramid” (or z-pyramid) as shown in figure 1c, it is possible to d e t e r m i n e
what bounding boxes are likely to come into view by estimating where the v i e w
frustum is likely to be in the near future and tiling the corresponding “ look-ahead
frame.”  These look-ahead computations create only a zm-pyramid and not t h e
corresponding image.  Maintaining a separate look-ahead zm-pyramid enables t h e s e
computations to be interleaved with rendering of ordinary frames.  The me thod
assumes that bounding boxes are stored in main memory but the primitives i ns ide
them may be in slower memory.  With this interleaved approach, when a box in a
look-ahead frame is visible but its primitives are not available, the culling s tage
resumes work on an the current frame while miss ing primitives are fetched.  Look-
ahead computations may be assigned low priority so they will be performed o n l y
when the processor and culling stage are not busy with more-pressing tasks.  T h e
effectiveness of the method will vary according to frame-to-frame coherence in t h e
motion sequence and the number of look-ahead frames genera ted .

5  ARCHITECTURAL CONTEXT
Now we consider different architectural contexts for the proposed c u l l i n g

architecture, as a software culling stage (figure 9a), or as a hardware c ulling s tage
on a graphics card (figure 9b) or integrated with a processor having a z - b u f f e r
pipeline (figure 9 c ) .

5.1  Software Culling on a Host P r o c e s s o r
First we consider the system of figure 9a where hierarchical culling i s

performed in software on a host processor.  The processor performs s c e n e
management and culling, and sends potentially visible polygons to a conventional z -
buffer accelerator.  In this case, the processor can access the culling stage’s z m -
pyramid (ZmP) directly, so there is no need to maintain the z-tip separately.  This i s
also true when the culling stage and z-buffer renderer are integrated with t h e
processor, as diagrammed in figure 9 c .

Within the software culling stage, tiling can be performed very efficiently w i t h
hierarchical polygon tiling where polygon-cell overlap tests are performed w i t h
coverage masks as described in [Gre96a].  This use of masks dovetails neatly with t h e
use of masks in the zm-pyramid.  The 10-fold reduction in z-traffic resulting f r o m
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using a zm-pyramid (compared with a traditional z-pyramid) is a big advantage t h a t
would be expected to improve performance substant ia l ly .

SM

z-tip

HOST

ZB

ZB
REND IMCS

e.g. 
AGP

Host with
Graphics Card

Graphics
Card

ZB

ZB
RENDCS

ZmP

SM

z-tip

HOST

X&S

Software Culling
on Host Processor

IM

ZB

ZB
RENDCSSM

z-tip

HOST

Rendering on 
Processor

IM

Figure 9a Figure 9cFigure 9b

X&S
X&S

ZmPZmP

5.2  Hardware Implementat ions of the Culling S t a g e
Next we consider systems where the culling stage is implemented in h a r d w a r e ,

for example on a graphics card as shown in figure 9b or as part of a hardware z -
buffer pipeline integrated with a processor as shown in figure 9c.  The bas i c
subdivision algorithm for hierarchical polygon tiling is described in [Gre96a], w h i c h
can be modified for hierarchical z-buffering as already described.  4x4 tiles are a
good choice for tile size because they are small enough for high utilization and l a r g e
enough to amortize the overhead of memory access.  It is straightforward to mod i fy
the recursive tiling algorithm for tile-based processing and memory access b y
maintaining a stack of tile records .

Next, we describe a hierarchical method for accelerating computation of t h e
linear equations defining a polygon in the context of tiling into a conventional z -
pyramid.  This approach can also be adapted to tiling into a zm-pyramid .

With custom hardware, hierarchical polygon tiling can be performed v e r y
efficiently by hierarchically evaluating a polygon’s edge and depth equat ions .
Within NxN tiles at the finest-level of the z-pyramid it is necessary to evaluate t h e
polygon’s linear equations on an NxN grid of samples points.  For example, a t r i a n g l e
is defined by three edge equations of the form Ax + By + C and a depth equation of t h e
form z = Ax + By + C (A, B, and C in the two equations are distinct, of course) .
Although these equations could be evaluated at all 16 grid points in parallel, t h i s
requires 128 multipliers which would consume considerable chip real estate.

To circumvent the need for general-purpose multiplication when t h e s e
equations are evaluated, we use the hierarchical method illustrated in figure 10.  I n
set-up computations, coefficients of the edge and depth equations of a polygon a r e
computed relative to the coordinate frame (scaled as shown) of the smallest e n c l o s i n g
z-pyramid tile, which is where tiling commences.  When the tile is r e c u r s i v e l y
subdivided, the edge and depth equations are transformed to the child t i le ’s
coordinate frame using the formulas in figure 10.   In these formulas, the express ion
Axt + Byt + C (where (xt,yt) is the origin of the child tile) has already been computed
at the parent tile, and since N is a power of two, evaluation requires only shifting.  A
similar algorithm for accelerating evaluation of linear equations on a pixel grid i s
presented in [Fuc85] .
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(xt,yt) Depth Equation          

parent tile:  z = Ax + By + C         
child tile:    z = A’x’ + B’y’ + C’          
where          A’ = A/N         

         B’ = B/N         
         C’ = Axt + Byt + C         

Edge Equation          
parent tile:  Ax + By + C  = 0         
child tile:    Ax’ + By’ + C’ = 0         
where    C’ = N(Axt + Byt + C)         

Hierarchical evaluation of edge and depth equations.  Coefficients are computed   
in the coordinate frame where tiling begins.  When child tiles are processed, edge 
and depth equations are transformed to the child coordinate frame using the          
indicated formulas.               

Figure 10     

The advantage of this method is that edge and depth equations need to b e
evaluated only at small integers (e.g., between 0 and 8 in 4x4 tiles), rather than the a t
full range of sample coordinates of the image.  Hence, terms Ax and By can b e
evaluated with custom logic that is a great deal more compact than the mu l t i p l i e rs
that would otherwise be required.  This method is compatible with jitter if jittering i s
restricted to samples on an “oversize” integer grid within a pixel, say a 32x32 g r i d .
Note that at coarser levels of the pyramid it is necessary to evaluate each edge a n d
depth equation at only one corner of each cell.  Depth equations are evaluated at t h e
corner where the polygon’s plane is nearest, which corresponds to the quadrant o f
the screen projection of a backfacing normal to the polygon.  Similarly, t h e
“normal” to an edge indicates which corner of a cell should be subst ituted into t h e
edge’s equat ion.

This method of transforming equations f rom parent to child tile can also b e
applied to Gouraud interpolation and interpolation of texture coordinates.  Actually, i t
can be applied to any polynomial equation in N d imens ions .  

6  SIMULATION RESULTS
We implemented a high-level software simulator programmed in C in order t o

compare bandwidth requirements for three z-buffer architectures: z - b u f f e r i n g
(A r c h _ Z B), hierarchical visibility (Arch_HV), and the proposed architecture h a v i n g
an optimized culling stage (Arch_OHV).  Our primary test model was a pub l i c l y
available model of a skyscraper consisting of cubicles alternating with o p e n
staircases, arranged in a lattice of cubic modules.  Each cubic module consists of 9,336
polygons organized in an octree as described in [GKM93].  Octree boxes contain a n
average of approximately 25 polygons, stored in random order.  Polygon tessel la t ion
is an artifact of radiosity computations and is unrelated to the octree subdiv is ion,
except at the coarsest levels.  The modular nature of the model is a convenience t h a t
facilitates controlling model complexity, and it does not affect simulation resu l t s
s ign i f i can t l y .  

This model was employed because it is a good example of a general model t h a t
challenges visibility algorithms.  Unlike typical architectural models having h i g h l y
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constrained room-to-room visibility or game environments that are designed t o
simplify visibility computations, this model’s open geometry makes it possible to s e e
deep into the scene, creating complex occlusion relationships and making it a p o o r
candidate for methods which precompute room-to-room visibi l i ty.  

The simulator generated 1024x1024-pixel images of polygonal scenes with 4x4
jittered samples within each pixel.  Z-pyramids and zm-pyramids were organized i n
4x4 tiles.  When a polygon was hierarchically tiled, the first culling operation tested
the visibility of its bounding box in the smallest enclosing 2x2-cell region of t h e
py ramid .

For each of the three architectures the simulator measured workload at t h r e e
classic bottlenecks in the g r a phics pipeline: a) geometry_t ra f f i c: the number o f
polygons and bounding boxes (if any) sent through the pipeline, b) per-sample z -
traf f ic : the average number of reads and writes of z values per image sample, and c )
rendered_depth: the depth complexity of polygons processed by the rendering s tage.
To assess the impact of depth complexity on performance we generated the s ix
versions of the model shown in figure 11, w hi c h  have depth complexities of 3.0, 6.6,
9.8, 16.0, 27.7, and 53.2 when viewed with the camera parameters of figure 11 .

      

Figure 11

DC 3.0 DC 6.6 DC 9.8 DC 16.0 DC 27.7 DC 53.2

The six scenes used for the bandwidth simulations of Graph 1.  Depth 
complexity (DC) varies from 3.0 to 53.2.

In Graph 1, Bandwidth Graphs, the horizontal axes plot log of average d e p t h
complexity of the scene, with the six vertical lines representing the six scenes o f
figure 11.  The vertical axes in these graphs are also log-scale, indicating g e o m e t r y
t raf f ic , z- t raf f ic, and rendered_depth.  For Arch_ZB and Arch_HV, z- t ra f f ic refers t o
the z-traffic generated within the rendering stage, so the terms z-traffic a n d
rendered_depth are closely related.  For Arch_OHV, z-traffic refers to z-traffic w i t h i n
the culling stage only, and to simplify the graphs, z-buffer traffic generated w i t h i n
the rendering stage is not represented.  Chart 1, Description of Bandwidth Graphs,
describes what each of the curves represents and should be referred to i n
interpreting the following resu l t s .

6.1  Relative Performance of Z-Buffer ing and Hierarchical  V i s i b i l i t y
First we observe the dramatic bandwidth reductions of Arch_HV compared w i t h

Arch_ZB.  With geometry t ra f f ic , Arch_ZB needs to send all front-facing p r im i t i ves
inside the view frustum, but Arch_HV only needs to send visible bounding boxes a n d
their children and the primitives in visible boxes (only front-facing primitives f o r
this model).  The deeper the scene, the greater the relative advantage, with g e o m e t r y
traff ic  reduced by an order of magnitude at scene depth 1 6 .

Likewise, Arch_HV generates far less z- t ra f f ic and rendered_depth, a g a i n
roughly an order of magnitude less at scene depth 16.  With Arch_HV, z- t ra f f ic s tays
within a factor of 1.5 of the ideal bandwidth for z-buffering of one read and o n e
write per image sample (bold dashed line in the z- t ra f f ic graph), and l ikewise,
rendered_depth stays within a factor of 1.3 of the ideal pe r fo rmance c o r r e s p o n d i n g
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to the depth complexity of polygons which are visible in the output image (bo ld
dashed line in the rendered depth g raph ) .

6.2  Performance of Optimized Hierarchical V i s i b i l i t y
Now that the performance of the standard HV algorithm has been establ ished,

we use this as a basel ine to measure the relative performance of Arch_OHV in w h i c h
(a) the scene manager culls bounding boxes using the z-tip, (b) a conse rva t i ve
culling stage culls most remaining occluded geometry using optimized h i e r a r c h i c a l
z-buffering, and (c) a conventional z-buffer rendering stage establishes de f in i t i ve
sample-by-sample visibility for the remaining visible and nearly visible p r imi t i ves .
In the simulation of Arch_OHV, bounding boxes where traversed front to back a n d
every box that intersected the view frustum was tested for visibility against the  z - t ip
(finest level: 64x64)  using the test illustrated in figure 8.  The culling stage employed
the zm-pyramid specified in figure 2, and to reduce tiling computations we used
“early termination” with a zdelta value of 5% of the distance between the near a n d
far clipping p l a n e s .

The efficiency of culling with Arch_OHV is apparent in the z- t ra f f ic panel o f
Graph 1.  For our test scenes, which range from simple to complex, this log-sca le
graph shows that optimized hierarchical z -bu f fering performed within Arch_OHV
(curve OHV) generates only about 10% of the z- t ra f f ic generated by s tanda rd
hierarchical z-buffering (curve HV), and between .5% and 3% of the z - t ra f f i c
generated by traditional z-buffering.  These low figures show that conse rva t i ve
culling can be performed with a great deal less work than definitive samp le -by -
sample visibility computations, and that our optimized culling methods accomp l i sh
this ob jec t ive .  

S.M.

Culling
Stage

Rendering Stage

Multi-Stage Culling Performance for Scene with Depth Complexity 16

Scene Manager    Culling Efficiency: 95%,  Bandwidth Cost: between 1 and 16 z accesses

Rendering Stage    Culling Efficiency: 100%, Bandwidth corresponds to DC of 2.02

Culling Stage         Culling Efficiency: 90%,  Bandwidth Cost: .246 z accesses per sample

Figure 12

Figure 12 summarizes culling performance for the scene with depth 16.  T h e
scene manager culled bounding boxes using the z-tip (having 4x4, 16x16, and 64x64
levels), performing between 1 and 16 depth compar isons per box.  This culled 95% o f
occluded boxes.  Values in the z-tip changed 5,160 times in the course of r e n d e r i n g
the scene, so the total amount of information which needs to be copied to the host w a s
only about 10K bytes (each z va lue is 16 bits).  These figures indicate that so f tware
culling of bounding boxes on the host is fast and ef fect ive.

The culling stage culled occluded primitives with an efficiency of 90%, b y
which we mean that if the culling stage performed visibility tests definitively, t h e
depth of polygons sent to rendering stage would be 90% of the corresponding f i g u r e
for this conservative culling stage.  This efficiency is achieved with only .246 z
accesses per image sample using the zm-pyramid.  This low bandwidth f i g u r e
indicates the high efficiency of optimized hierarchical z -bu f fe r ing .  

The rendering stage performs definitive z -bu ffering on polygons w h o s e
collective depth averages 2.02, which is within a factor of 1.3 of the depth o f
polygons which are actually visible in the output image.  Summing up, at a
bandwidth cost of approximately .25 accesses per image sample, Arch_OHV r educes
the effective depth of this scene 8-fold, from 16 to 2 .02.
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6.3  Relative Performance of Z-Buffering and A r c h _ O H V
Now we summarize the relative performance of Arch_ZB and Arch_OHV.  For o u r

test scenes, Graph 2 compares geometry t ra f f ic , z- t raf f ic, and rendered depth for t h e
two architectures, where the OHV curves have been normalized as a fraction of t h e
ZB curves, which are represented by the top line.  For our test models, 2x reduction i n
rendered_depth occurs at scene depth 3.5, 4x occurs at depth 7.7, 8x occurs at d e p t h
17, and 16x occurs at depth 33.  The corresponding depths for reduction i n
geometry_traf f ic are 5.4, 10.2, 14, and 19.  Assuming that one of these quantities is t h e
actual bottleneck in the system, these figures offer a rough est imate of ac tua l
performance increases that could be expected.  Z-traf f ic within the culling stage is so
low that it is unlikely to be a bot t leneck.

Figure 13 Figure 14

Optimized hierarchical visibility (Arch_OHV) generates less traffic in z values rendering the scene on the
right (depth complexity 41.5) than ordinary z-buffering generates rendering the scene on the left (depth 
complexity 3.0).  The culling stage within Arch_OHV  generates only .58 z accesses per image sample
and it reduces the depth complexity of primitives that need to be rendered to 2.28.

To verify that our basic conclusions are also valid for scenes without l a r g e
foreground occluders we also ran simulations on the scene of figure 14 and plot ted
Arch_HV performance in blue circles and Arch_OHV performance in red circles i n
Graph 1, placing these circles on dashed lines at depth 41.5, the average d e p t h
complexity of this scene.  Note that geometry traffic and rendered depth f o r
Arch_OHV are nearly as low as for Arch_HV, and that z-traff ic for Arch_OHV r e m a i n s
a great deal lower than for Arch_HV.  

It is revealing to observe that traditional z-buffering generates more z - t ra f f i c
rendering figure 13 (same as left-hand panel of figure 11) than Arch_OHV g e n e r a t e s
in both the culling and rendering stages when rendering figure 14, even though t h e
latter scene has 13.8 times the depth complexity.  In terms of  bandwidth generated b y
conservative visibility operations in the culling stage, the z- t ra f f ic generated b y
rendering figure 14 with optimized HV is only about 1/7 of that generated by z -
buffering figure 1 3 .

Next, simulation of hierarchical z-buffering without box culling (curve HZ)
showed that z-traffic increases only slightly compared with the HV curve, r e m a i n i n g
within a factor of 1.65 of the ideal bandwid th of one read and one write per i m a g e
sample.  As with Arch_ZB, we used the octree to cull to the v iew frustum and t r a v e r s e
the scene in approximately front-to-back order, but of course hierarchical z -
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buffering does not require organizing primitives in bounding boxes.  The p r o b l e m
with hierarchical z-buffering without culling of bounding boxes is that all o n -
screen front-facing polygons must be sent through the pipeline, so geomet ry_ t ra f f i c
is likely to be a bot t leneck.

To assess the importance of traversal order, we also simulated a variation o f
hierarchical visibility in which bounding boxes were traversed in random o r d e r
instead of front to back.  The resulting curves, labeled RAND, show that even w i t h
random t raversa l , geomet ry_ t ra f f i c and rendered_depth are reduced subs tan t ia l l y
compared with Arch_ZB.  

We repeated the simulations presented in Graph 1 for point-sampled images a n d
determined that the geometry t ra f f i c  and rendered depth curves were n e a r l y
identical, but that the z-traff ic curves for OHV were higher by approximately a f a c t o r
of two (but still many times lower than the corresponding HV curves).  We also
simulated z- t ra f f ic assuming tile-based access to z-buffers and z-pyramids, w h i c h
raised overall z-traf f ic but did not significantly change the relative performance o f
the three a rch i t ec tu res .

6.4  Ineffect iveness of Al ternat ive Culling M e t h o d s
To show the limitations of box culling by traditional scan conversion, w e

substituted traditional z-buffer scan conversion for hierarchical z-buffering w i t h i n
Arch_HV.  In this case, geometry t ra f f i c  and rendered depth are the same as for HV
but z- t ra f f ic is a great deal higher, as indicated by curve ZBbc (“Z-Buffer box
culling”).  Despite the front-to-back traversal of octree bounding boxes, exp lo i t ing
box nesting, stopping the scan conversion at the first visible sample, and ad jus t ing
construction of the octree to maximize performance, z-traff ic was a great deal h i g h e r
than when culling with a z-pyramid, because bounding boxes overlap deeply on t h e
screen and hierarchical culling is much more efficient.  In short, for g e n e r a l
models, box culling can  be performed much more efficiently with hierarchical z -
buffering than with traditional z-buffer scan c o n v e r s i o n .

To determine if it is necessary for the culling stage’s z-pyramid to m a i n t a i n
occlusion information at the full-resolution of the output image, we implemented a
low-resolution tiling algorithm that maintained just one z value at each pixel in t h e
oversampled image and overwrote a pixel’s z value only if a polygon covered t h e
entire pixel.  This tiling algorithm was substituted into Arch_HV and the scenes w e r e
rendered with front-to-back traversal of the octree.  We found that the “ low-
resolution” z-pyramid described above does not cull effectively, resulting in m u c h
higher geometry t ra f f i c and rendered depth.  This experiment indicates t h a t
efficient culling of general models does require maintaining occlusion i n f o r m a t i o n
on individual image samples .

7  CONCLUSION
We have analyzed two classic bottlenecks in z-buffer pipelines, traffic i n

geometric data and depth values, and shown that p rocess ing  scenes with t h e
hierarchical visibility algorithm can dramatically reduce bandwidth r e q u i r e m e n t s
compared to alternative methods.  However, this approach has not been wide ly
adopted by makers of hardware z-buffer pipelines because it requires a m a j o r
architectural revision and scene management is complicated by commun ica t i on
delays associated with box culling and the need to maintain a spatial h ie rarchy .

This article introduces architectural innovations and optimizations t h a t
overcome these problems.  Using these methods, it is possible to attain nearly t h e
performance of the standard HV algorithm without modifying rendering h a r d w a r e ,
without incurring delays when boxes are culled, and without maintaining a spat ia l
hierarchy.  Scene management is greatly simplified because all that is required t o



16

achieve good performance is approximate front-to-back traversal of the scene.  Fo r
virtually any scene traversed in this way, culling will reduce the depth complexity o f
primitives that need to be rendered to approx imate ly two.  Moreover, culling i s
performed extremely efficiency using optimizations to h i e r archical z-buffering t h a t
reduce the traffic in z values generated by conservative culling by 10-fold compared
with the standard algorithm.  Taken together, these properties indicate that t h e
proposed architecture could extend real-time rendering to a much broader class o f
scenes .
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