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Abstract

We introduce a variation ohierarchical z-buffering that is highly optimized for
conservative occlusionculling and show how itan beapplied todramaically reduce
bandwidth requirements within a z-buffer pipeline. The algorithm is employed
within a conservative culling stige of the pipeline that receives transformed
geometry, uses optimized hierarchical z-buffering tocull occluded geometry, and
passes visiblegeometry on to an ordinary z-bufferendering stage. Optimizations to
the tiling algorithm and z-pyramid employed byhierarchical z-buffering enable
conservative culling to be performed areat deal more efficiently than with the
standard algorithm. Other innovations relate to very efficient culling of occluded
bounding boxes and a&imple way to tradeoff image quality for rendering speed. The
method will work effectively on virtually any polygonal model that can bdraversed
in approximately front-to-back order. On very deeplyoccluded sceneshat wetested,
the method reducedthe depth complexity of primitives that need to berendered to
approximately two.

1 INTRODUCTION

Recent years have witnessedemarkable advances inthe performance of
inexpensive z-buffer acceleratorswhich in turn has fueled demand forhigh-
performance rendering of increasinglycomplex scenes. Growing complexityaises
the relative importance ofocclusion culling, by which we meanculling of occluded
geometry prior to rasterization. The purpose of occlusion culling is tachieve output
sensitivity, where ideal output-sensitive performance depends onthe visible
complexity of the sceneand isindependent ofoverall scene complexity. If &igh
degree of outputsensitivity is achieved,very complex scenes can beendered in
real-time, provided of coursdhat their actualvisible complexity istractable.

Our objective is to devisehighly output-sensitive occlusion culling for z-buffer
systems that works effectively omeneral models, leverages standardz-buffer
rendering hardware,and has asimple scene-managementinterface. We achievethis
by modifying and optimizing the hierarchical visibility algorithm [GKM93], or HV
for short. HV renders ascene that isorganized in nested bounding boxes by
traversing the boxesfront to back, culling occluded boxes asthey are encountered,
and rendering the primitives in visible boxes with hierarchical z-buffering This
algorithm ishighly output sensitive because ahly needs to rendethe primitives in
visible boxes and hierarchical z-buffering tiles individual primitives very
efficiently. However, makers ofz-buffer hardware have been slow to adopt the
algorithm because amplementing hierarchical z-buffering in hardware requires a
major architectural revision, and b) scene management iscomplicated by
communication delays incurred when box-visibility tests are performed by tiling
hardware and by the need to antain the scene model in nested boxes. Our
objective is to overcome theseshortcomings while retaining the efficiency and
generality ofthe original algorithm.

In order to utilize standard z-buffering rendering hardware, weadd aseparate
culling stage to the pipeline that culls occluded primitives and passesvisible
primitives on to standard rendering hardwarelhe culling stageemploys avariation



of hierarchical z-buffering that is highly optimized for conservative culling.
Optimized hierarchical z-buffering employs naodified z-pyramid that usescoverage
masks in finest-leveltiles to reduce storagerequirements 10-fold. In combination
with tiling optimizations, this modified z-pyramid reducesthe traffic in z values
required to perform conservativeculling approximately 10-fold over standard
hierarchical z-buffering.

To simplify scene mmaagement, wemake the “tip” of the z-pyramid accessible to
the host, which enables fast software culling ofoccluded bounding boxes. This
eliminates communication delays associated withbox-visibility tests, which are so
efficient that there is no need to nebbxes in a spatialhierarchy.

As with the original HV algorithm, achieving high output sensitivity only
requires that the scene beprocessed approximately front to back. Generally
speaking, complying with this requirement ismuch easier thansatisfying the
scene-management requirements afther occlusion-culling methods. We
demonstrate through simulationthat our architecture achieves high output
sensitivity for general models with respect toclassic bandwidth bottlenecks in z-
buffer pipelines, traffic in geometric data and z values. On very complend deeply
occluded models that we tested, tlalling stge reduced the depth complexity of
primitives that needed to be rendered &pproximately two.

We also show that a simple change to the propagation procedure for
hierarchical z-buffering enables error-bounded non-conservativeculling with a
“quality knob” mechanism that tradesoff image quality for rendering speed.

2 PREVIOUS WORK

Occlusion culling for z-buffer systems presents multiple challenges: output
sensitivity, generality, simplicity, and effective use ofhardware accelerators. Here
we examine some existing occlusion-culling methods in the context of these
objectives.

First we consider the hierarchical visibility algorithm [GKM93] on which the
innovations explored irthis article are based. Hierarchical visibility (HV) maintains
the scene model in aspatial hierarchy (e.g., an octree) and adepth image in a z-
pyramid. A scene isendered with arecursive subdivision procedure epinning at
the hierarchy’s root node which determines the visibility of a node’s bounding box
with respect tothe z-pyramid. Such avisibility query will be abbreviated v-query.
If the box is
visibl
e
Error!

For thelimited class of models that can be effectivelyrganized as‘rooms with
portals,” occlusion culling is arelegantly solved problem [Air90,Tel92,Fun93]. Ral-
time rendering systems with software culling stages that feedz-buffer hardware
have been deonstrated by Teller [Tel92] and Funkhouser and Sequin [Fun93].
Furthermore, geometry that will be coming into view can beanticipated with this
method, so delays caused by pagingthd scene model can be avoided. Howevehis
approach does not cullgeneral models effectively, which motivates the search for a
more generalmethod.

Another way to accelerate object-space culling is incorporate the v-query
operation into az-buffer acceleratorthat reports whether aportal or bounding box
is visible. Some Kubota [Tit93] and Hewlett-Packard [Sco98] workstations have this
feature. Although hardware v-queryeffectively accelerates rendering #ome cases,
this method is muchless effective than culling with a z-pyramid when portals or
bounding boxes overlapdeeply, as shown bgimulation insection 6.



Another culling methodthat exploits z-buffer hardware is toreate anocclusion
image of foreground occluders which is thenused for culling when the scene is
rendered [Zha97,Zha98]. One clever feature is to controlnon-conservave culling
with the opacity ofthe occlusion image. The main strength ofthis method is that it
improves the performance ofexisting z-buffer accelerators. However, rendering in
two passes adds complexity, effectiveness depends on beingable to selectefficient
foreground occluders,and it iseasier toimplement non-conservative culling when
the system maintains a z-pyramid, as describedsention 4.3.

Model simplification (e.g. [Hop96]) and geometric compression(e.g. [Dee94]) are
complimentary strategies for reducing geometry and memory traffic that can be
used incombination with occlusion culling.

3 BANDWIDTH REQUIREMENTS FOR VISIBILITY COMPUTATIONS

Before introducing the proposed architecture wereview block diagrams of
visibility components within aconventional z-buffer architecture, Arch_ZB in
figure 1a, and the analogous architecture for hierarchical visibility, Arch_HV in
figure 1b, and summarize bandwidth generated by visibility computatiomgithin
these architectures. With Arch_ZB geometry traffic consists ofall on-screen
primitives (possibly excepting backfacing ones), which are transformed toimage
space and scarconverted into az-buffer. The z-traffic this generates (i.e., z-buffer
memory traffic) is proportional toscene depthcomplexity (DC), falling betweenDC+1
and 2xDC, depending orhe traversal order oprimitives.

With Arch_HV, the scene manager maintains the scene model in a spatial
hierarchy and runs the HValgorithm (summarized inthe preceding section), with
execution alternating between v-quengsts onbounding boxes, results of which are
reported on a feedbackconnection, and rendering of primitives in visible boxes.
Geometry traffic consists of visible boxes andtheir children and the primitives in
visible boxes. Z-traffic consists ofthe z-pyramid values accessedduring hierarchical
tiling of these boxesand primitives.

These properties make Arch_HV highly output sensitive, asconfirmed by
simulations in section 6 which show, for example, that for frames of adeeply
occluded scene that weendered, averagez-traffic remained within a factor o01.5 of
the ideal performance for z-buffering ofone read and onevrite per image sample.
More generally, the simulations show that for both geometry and z-traffic,
Arch_HV’s bandwidth consumption is dramaticallylower than Arch_ZB’'s when
processing deeply occludedscenes.

Despite these big advantages in relative performance, there are practical
drawbacks to implementingArch_HVin hardware, foremost among thenthe cost of
a major architectural revision which would scrap hugevestments inthe design of
scan-conversion hardware. Secondly, if v-queryests onbounding boxes initiated by
the scene manager are performed by hardware residing on bais, communication
delays will hamper performance. Finally, maintaining the scenemodel in aspatial
hierarchy of nested bounding boxes complicates scene management and is
problematic for some applications programs.

The architecture we propose addresses theseconcerns by employing
conventional scan-conversionhardware inits rendering stage, bymaking values in
the “tip” of the z-pyramid accessible tthe scene manager sdhat box culling can be
performed in software onthe host, and bydispensing with nesting ofbounding
boxes. In addition, separating culling from rendering enables hierarchical z-
buffering to be highly optimized for conservative culling
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4 OPTIMIZED MULTI-STAGE OCCLUSION CULLING

Figure 1c showsthe occlusion-culling architecture Afch_OHV) that wepropose
to leverage conventional z-buffer hardware, simplify scene management, and
perform highly output-sensitiverendering ofgeneral models. Thephilosophy of
this architecture is tomaximize the cost effectiveness ofculling operations by
culling in three stages, Were computation and bandwidth costs rise progressively
from stage to stage and the full cost ddfinitive visibility computations igaid only
when necessary.

First, most occluded bounding boxes areefficiently culled in software by the
scene manager using a concise pyramid of wgalues called thez-tip. Next, an
optimized conservative culling stage which receives only the primitives in
potentially visible boxes, culls most occluded primitives using a compactariation of
a z-pyramid called azm-pyramid Finally, the rendering stage only needs torender
the visible and nearly visible primitives it receivesfrom the culling stage.

In more detail, scenesre processedwith a modified version of HVthat assumes
that scene primitives are organized in bounding bas, which need not benested.
Preferably, the scene manager processeshe bounding boxes in front-to-back order.
Each box istested for visibility against the z-tip. If this test fails to cull &ox, the
primitives it contains are sent hrough the pipeline, where they are transformed to
image space before arriving #te culling stage.

Using anoptimized variation of hierarchicalz-buffering, the culling stage tiles
primitives one-by-oneinto azm-pyramid. Periodically,the coarsest levels othe zm-
pyramid -the z-tip - are copied to the scenenanager toenable box culling on the
host. If tiling does notshow that gprimitive is occluded, the primitive is passed on to
the rendering stage where it isendered with conventional z-buffer hardware.

4.1 Optimized Hierarchical Z-Buffering for Conservative Culling



Here we describe optimizations tchierarchical z-buffering that enable the
culling stage to perform conservative culling with far less work than the
hierarchical polygon tiling algorithm presented irfGre96a]. When modified for z-
buffering by substituting a-pyramid for the “coverage pyramid,” the algorithm of
[Gre96a] tiles polygons by Warnock-style subdivision[War69], performing polygon-
cell overlap tests with “triage” coverage masksand performing hierarchical
occlusion tests with the z-pyramid. Actually, this variation is not described in
[Gre96a], but adapting the algorithm for z-buffering is straightforward, agust
outlined. Although this algorithm culls occluded polygons very efficiently, it needs
to subdivide tothe image-sample level where a polygon is visibleperforming one z
read and one mrite at each visible sample on thpolygon. Moreover, definitive
visibility computations require maintaining a full-precision depth value for each
image sample.

With conservative culling, however, such definitive computations are not
necessary, and we exploit this fact tagreatly reduce computation, z-traffic, and
storage requirements. Our method employs a novebata structure, a z-pyramidwith
coverage masks, which weall azm-pyramidfor short gmP), which reducesstorage
requirements and z-traffic 10-fold while accelerating tiling computations and
retaining high culling efficiency.

As shown in figure 2, a zm-pyramid has tlstructure of an ordinaryz-pyramid
with NxN decimation, except that eachfinest-level NxN tile is stored aswo z values
and acoverage mask instead of anNxN array of zvalues. As shown infigure 3, z
value zfar_of_tileindicates the farthest zfor the whole tile, a maskindicates samples
that have been covered byne or morepolygons sincezfar_of tile was established,
and zfar_of maskis the farthest zvalue of these samples.The A-buffer [Car84] also
uses coverage masks to expeditgrocessing within image tiles, but thedata structure
we use ismuch more compact and specifically adaptedfor conservative culling.
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Structure of the “zm-pyramid” employed by the culling stage. Schematic side view of a finest-level tile in the zm-pyramid.

In figure 3, supposethat a zfar value for thetile (zfar_of_tile has been
established before proceséng polygons Pland P2. When P1 isencountered, the mask
of visible samplesthat it covers is createdand zfar_of_mask is set tothe zfar value of
these samples. Next, when P2 is processed, since it covetge tile collectively with
the stored mask, a new zfar value eéstablished for the tile, which is written to
zfar_of_tile(this is the oldvalue for zfar_of_mask The tile’s maskis set to P2'smask
and zfar_of masks set to P2's zfavalue.

In all, there are five cases that need to hmwnsidered whenupdating atile
record, which are schematically shown in figure 4 where dashed linesindicate



whether the zfar value of the visible samplesovered bythe polygon isnearer or
farther than zfar_of_maskand whether the polygon’s visible samples covethe tile
in combination \ith the stored mask The example offigure 3 corresponds taase C4.
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Figure 4
Schematic side views of finest-level tiles in the zm-pyramid showing
how tile records are updated when a visible polygon is encountered.

To reduce storagerequirements further, low-precision zvalues are employed
throughout the zm-pyramid. Asshown in figure 2,use of 16-bit values in a zm-
pyramid with 4x4 decimation requiresonly approximately 3.1 bits perimage sample.

In addition to conservingz-traffic, culling with azm-pyramid saves agreat deal
of computation because sample-by-sample depth comparisons are not necessary
within finest-level tiles. Rather, visibility operationsare performed with coverage
masks incombination with depth comparisons involving amost three depth values:
zfar_of_tile, zfar_of _mask,and the zfarvalue ofthe polgon’s visible sanples.

Surprisingly, this simple data structure culls very effectively. Although
zfar_of_tiledoes notadvance adar at some tiles as it would in standard z-pyramid,
what matters is overall statisticaberformance, and asconfirmed by simulations in
section 6, even wherthe average screersize of polygons issmall and many tiles are
covered bythree of morepolygons, the zm-pyramid specified in figure Zulled with
an efficiency of approximately 90%, as efficiency is defined in section 6.
Incidentally, other simulations reported isection 6show that for the models we
tested, efficient culling required maintaining sample-by-sample occlusion
information. The alernative of culling with a “low-resolution z-pyramid,” for
example a z-pyramid missingit's finest level, culled a much lowerfraction of
occluded polygons.



4.2 Early Termination of Tiling

Another tiling optimization that can be exploited forconseavative culling is
“early termination” of tiling in situations where subdivision tohe finest level
cannot advance zalues more than some threshold distance, call it zdelta. As
illustrated in figure 5, ifthe znear value of apolygon that covers atile is farther
than the tile’'s zfar value offset byzdelta,the culling stage assumes that thgolygon
is visible and stopstiling in that region of the screen. Early termination reduces
computation and z-traffic significantly while hardly impairing culling efficiency.
The method saves workwhether conservative culling is performed with a zm-
pyramid or a standardz-pyramid.

znear of polygon
farthest z

Zfar of tile l
v = polygon ¢ P

A
<

(ot tile ) 1 - %— tile B
not finest leve finest level

—»¥ sdelta |<— (finest level) S
| #

next-to-farthest z

Figure 5 Figure 6
With “early termination” of tiling, tiling stops Propagating the next-to-the-farthest z value
when continuing cannot advance z values through the pyramid may result in culling
more than a threshold distance, zdelta. objects that are visible at only one sample.

4.3 A “Quality Knob” for Non-Conservative Culling

When a scene i¢oo complex to ender atthe desired frame rate, evenwhen
occlusion culling is performed,one way toaccelerate rendering is toperform non-
conservativeculling of geometry that is only “slightly visible.” Here wedescribe a
very simple way to trade off image quality for rendering speed in systemsthat
maintain a conventionalz-pyramid.

Zhang et al. perform non-conservative culling by rendering foreground
occluders into a hierarchical occlusion map (HOM), which is then used forimage-
space culling [Zha97,Zha98]. Aggressiveness oftulling can be specified with an
opacity value.

Non-conservative culling can be performed much more efficiently when the
system maintains a z-pyramid,because implementation only requires changing the
procedure for propagating aalues hrough the pyramid. When hierarchical tiling
determines visible samples wthin afinest-level NxN tile, instead ofpropagating the
tile’'s farthest z value through the z-pyramid [GKM93], we propagate the Eth-to-the-
farthestz value, where E is aerror limit which can beset toany value from zero to

N2-1. With this simple change, tiling with standard hierarchical z-buffering will
cull primitives within regions ofthe screen wherethey are visible at E orfewer
samples withinany finest-level tile, and theoutput image will have E orfewer errors
within any NxNtile of samples. By anerror at animage sample we mean that its
color differs from astandard z-bufferimage.

For exampe, figure 6 shows dinest-level 4x4 tile which has beencovered by a
polygon P. Assumingthat the error limit is one, thenext-to-the-farthest walue will
be propagatedwhen P isprocessed,which will later result in culling bounding box B
within the tile, eventhough B is visible abne image sample, labeled.



This non-conservative culling method provides a simple “quality lkb” that

enables sacrificing image quality in exchange for faster rendering. If Eis 0, a
standard error-free z-buffeimage iscreated, if E is 1 therewill be at most oneerror
in any NxN tile of samples in the output imageand so forth. In practice, the

usefulness ofthis method depends omow much acceleration isgained and how
much image quality issacrificed. The tradeoff isgood when the depth image of a
scene contains numerous “pinholes,’because E or fewerpinholes within afinest-
level tile will be “plugged” automatically. The quality knob is a usefulmechanism
for acertain class of scenegroducing approximateimages considerably faster than
standard hierarchical z-buffering. It &so possible to apply this method tulling
with  a zm-pyramid (rather than a conventional z-pyramid) by propagating
zfar_of _maskrather thanzfar_of tile when the bit count of the maskis lessthan or
equal to E,although culling will be less aggressive for agiven value of E.

Comparing this approach tonon-conservative culling with Zhang’'s method
[Zha97][Zzha98], thechief advantage isthat it is not necessary toselect andrender
foreground occluders in a separateendering pass. In addition, since az-pyramid
contains actual sample-by-sample wzalues for all primitives rendered thus far, it
culls ahigher fraction ofoccluded geometry than armHOM. Finally, Zhang's method
does not provide as much local control over image quality becausethe opacity
parameter controls averageerror within regions ofthe screen but not distribution
of error, which can result inculling of visible objects which cover entire NxN tiles
in the output image.
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Approximate front-to-back traversal Culling with the tip of the z-pyramid.

can be facilitated by sorting bounding
boxes into depth buckets.

4.4 Efficient Box-Culling in Software on the Host

Approximate front-to-back traversal obcene geometry is crucial toachieving
the high output sensitivity of the HV algorithm. To accomplish this without
maintaining nested boxesthe scene manager groups primitives into boxes andsorts
the boxes into “depth buckets” based on the depth ofheir nearest vertex, as
schematically illustratedfor axis-aligned boxes in figure 7, and then traverses the
buckets front toback. This method is astraightforward implementation detail that
may haveprecursors inother systems.

To test abounding box for occlusion bythe z-tip, the scene manager computes
its screen bounding box and determines a&near value by computing the depth of the



box’s nearestcorner. Next, the snallest MxN-cell region inpyramid that encloses the
box is determined, and if the box'sznearvalue isbehind the z-tip value at eaclcell

that thebox overlaps,the box isculled. Similar box culling methods are described in
[GKM93] and [Zha98]. The process is illustrated in figures &md 8b for a boxwithin a

2x2-cell region inthe coarsest4x4 tile in the z-tip. Inpractice, weuse 4x4regions, SO
up to 16 depthcomparisons are made per box.

The novel idea here isenabling the scene manager to harnessthe power of
hierarchical culling with a z-pyramid without paying the cost ofactually creating
the pyramid, which requires tiling primitives. Rather, z-tip values are copiedrom
the culling stage, which consumes very ittle bandwidth, particularly if values are
copied only whenthey change.

As indicated in figure 8a, when the root value in the z-tipchanges, this
advances the far clipping plane, enabling culling of boxes behintie new FAR value
(e.g. box B) with asimple cull-to-frustum test.

4.5 “Look Ahead” Computations

Now we consider an optional“look-ahead” feature ofthe conservative culling
stage thatreduces pagingdelays in scenes here the model istoo complex tofit in
main memory and the scene model is not compatible with established precomputed
visibility methods [Air90,Tel92,Fun93]. Ithe culling stage includes a second‘look-
ahead zm-pyramid” (or z-pyramid) asshown in figure 1c, it is possible todetermine
what bounding boxes arelikely to come into view byestimating where the view
frustum islikely to be in the near future and tiling the corresponding “look-ahead
frame.” These ook-ahead computationscreate only a zm-pyramidand not the
corresponding image. Maintaining aseparate look-ahead zm-pyramid enabldsese
computations to be interleavedwith rendering ofordinary frames. The method
assumes thatoounding boxes are stored immain memory but the primitives inside
them may be in slowermemory. With this interleaved approach,when abox in a
look-ahead frame is visiblebut its primitives are not available, the culling stage
resumes work on arthe current frame while missingprimitives are fetched. Look-
ahead cormutations may be assigned low priority so they will be performed only
when the processor and culling stage are not busy withmore-pressing tasks. The
effectiveness othe method will vary according toframe-to-frame coherence in the
motion sequenceand thenumber of look-aheadframes generated.

5 ARCHITECTURAL CONTEXT

Now we consider different architectural contexts for the proposed culling
architecture, as aoftware culling stage (figure 9a), or as ahardware clling stage
on a graphics card (figure 9b) or integrated with a processor having a&-buffer
pipeline (figure 9c).

5.1 Software Culling on aHost Processor

First we consider the system offigure 9a where hierarchical culling is
performed in software on ahost processor. The processor performs scene
management and culling, and sendspotentially visible polygons to aonventional z-
buffer accelerator. Inthis case, theprocessor can access theculling stage’'s zm-
pyramid (ZmP) directly, so there is noeed tomaintain the z-tip separately. This is
also true when the culling stge and z-buffer renderer are integrated with the
processor, asliagrammed infigure 9c.

Within the software culling stage, tiling can beerformed very efficiently with
hierarchical polygon tiling where polygon-cell overlap tests are performed with
coverage masks as described [(Bre96a]. This use of maskdovetails neatly with the
use of masks in thezm-pyramid. The 10-fold reduction in z-traffic resulting from
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using a zm-pyramid (@mpared with a traditional z-pyramid) is @&ig advantage that
would be expected to improveerformance substantially.

Software Culling Host with Rendering on
on Host Processor Graphics Card Processor
'____I I_'_Er_'_ [— — — — ——
aphics I
| HOST rost! Card ] HOST
| ! I I
78 7B |
>
I \<L(E| REND SM f’ X&S REND'IEII I SsM B x&s REE‘D I
| v 3] ! 1LED v
|
% I zB Lo Pl 25 I I ZmpP . I
z-tip g
zt|p I |AGP I | z-tip I
l— — — o N E R I
Figure 9a Figure 9b Figure 9c

5.2 Hardware Implementations of the Culling Stage

Next we consider systems here the culling stige isimplemented inhardware,
for example on araphics card asshown in figure 9b or agart of ahardware z-
buffer pipeline integrated with a processor as shown in figure9c. The basic
subdivision algorithm for hierarchical polygontiling is described in[Gre96a], which
can be modified for herarchical z-buffering aslready described. 4x4 tiles are a
good choice for tile size becausethey are srall enough for high utilization and large
enough toamortize the overhead of memoryaccess. It isstraightforward tomodify
the recursive tiling algorithm for tile-based processing and memory access by
maintaining astack oftile records.

Next, we describe ahierarchical method for accelerating computation of the
linear equations defining a polygon ithe context oftiling into a conventional z-
pyramid. This approach can also beadapted tatiling into azm-pyramid.

With custom hardware, hierarchical polygon tiling can be performed very
efficiently by hierarchically evaluating apolygon's edge and depth equations.
Within NxN tiles at the finest-level ofthe z-pyramid it is necessary tevaluate the
polygon’s linear equations on amxN grid of samples points. For example, teiangle
is defined by three edgequations ofthe form Ax + By + C and aepth equation of the
form z = Ax + By + C(A, B, and C in the two equations are distinct, of course).
Although these equations could be evaluated atall 16 grid points in parallel, this
requires 128 multipliers which would consume considerablechip real estate.

To circumvent the need for general-purpose multiplication when these
equations are evaluated, weuse the hierarchical method illustrated in figure 10. I n
set-up computations, coefficients dahe edge anddepth equations of a polygon are
computed relative tothe cmrdinate frame (scaled as shown) of the smalleshclosing
z-pyramid tile, which is where tiling commences. When the tile is recursively
subdivided, the edge anddepth equations are transformed tothe child tile’'s
coordinate frame usingthe formulas infigure 10. In these formulas,the expression
Axt + Byt + C (where (xt,yt) isthe origin of the child tile) hasalready beencomputed
at the parent tile, and since N is @ower of two, evaluation requiresonly shifting. A
similar algorithm for accelerating evaluation dinear equations on @ixel grid is
presented iMFuc85].
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y
A Edge Equation
parenttile: Ax+By+C =0
8 child tile: Ax + By +C' =0
7 where C’ = N(Axt + Byt + C)
6
x'  Depth Equation
4 —> parenttile: z=Ax+By +C
child tile: z=AX +BYy +C’
2 where A’ = AN
L, « B’ =B/N
C' =Axt+Byt+C
2 0 2 4 6 8 >
Figure 10

Hierarchical evaluation of edge and depth equations. Coefficients are computed
in the coordinate frame where tiling begins. When child tiles are processed, edge
and depth equations are transformed to the child coordinate frame using the
indicated formulas.

The advantage ofthis method is thatedge and depth equations need to be
evaluated only at small integers (e.g., between Oand 8 in 4x4 tiles), rathethan the at
full range of sample coordinates ofthe image. Hence, terms Aand By can be
evaluated with custom logic that is areat deal more compactthan the multipliers
that would otherwise be required.This method is compatiblewith jitter if jittering is
restricted tosamples on an “oversize'integer grid within a pixel, say a 32x32grid.
Note that atcoarser levels of the pyramid it is necessary tevaluate eachedge and
depth equation atonly one corner of eachcell. Depth equations are evaluated at the
corner where the polygon’'s plane is nearest, whicltorresponds tdhe quadrant of
the screen projection of aackfacing normal to the polygon. Similarly, the
“normal” to an edgeindicates which corner of aell should besubstiuted into the
edge’s equation.

This method oftransforming equations from parent tochild tile can also be
applied to Gouraudinterpolation and interpolation oftexture coordinates. Actually, it
can beapplied toany polynomial equation in Ndimensions.

6 SIMULATION RESULTS

We implemented a high-levelsoftware simulator programmed in C inorder to
compare bandwidth requirements for three z-buffer architectures: z-buffering
(Arch_ZzB), hierarchical visibility Arch_HV), and the proposed architecture having
an optimized culling stage @Arch_OHV). Our primary test model was apublicly
available model of a skyscraper consisting ofcubicles alternating with open
staircases, arranged inlattice of cubic modules. Each cubic module consists 6f336
polygons organized in an octree as described [GKM93]. Octree boxescontain an
average ofapproximately 25polygons, stored inrandom order. Polygontessellation
is an artifact of radiosity coputations and isunrelated tothe octree subdivision,
except atthe coarsest levels. The modular nature ofthe model is aconvenience that
facilitates controlling model complexity, and it does notaffect simulation results
significantly.

This model wasemployed because it is good example of ageneral model that
challenges visibility algorithms. Unlike typical architectural models having highly
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constrained room-to-roomyvisibility or game environments that are designed to
simplify visibility computations, this model’s opengeometry makes it possible to see
deep into thescene, creating complex occlusionrelationships and making it apoor

candidate for methods whichprecompute room-to-roomvisibility.

The simulator generated1024x1024-pixel images opolygonal scees with 4x4
jittered samples withineach pixel. Z-pyramids and zm-pyramids were organized in
4x4 tiles. When golygon was hierarchically tiled, the first culling operation tested
the visibility of its bounding box in the smallest enclosing 2x2-cell region of the
pyramid.

For each of the threearchitectures the simulator measured workload ahree
classic bottlenecks inthe graphics pipeline: a) geometry_ traffic the number of
polygons and bounding boxes (if any) sent though the pipeline, b) per-samplez-
traffic: the average number of readand writes of z values per image sampland c)
rendered_depth: the depth complexity of polygons processed lhe rendering stage.
To assess theimpact of depth complexity onperformance wegenerated the six
versions ofthe modelshown in figure 11, which have depth complexities @.0, 6.6,
9.8, 16.0, 27.7, and 53.2 wheriewed with the amera parameters ofigure 11.

DC 3.0 DC 6.6 DC 9.8 DC 16.0 DC 27.7 DC 53.2

Figure 11

The six scenes used for the bandwidth simulations of Graph 1. Depth
complexity (DC) varies from 3.0 to 53.2.

In Graph 1,Bandwidth Graphs the horizontal axes plot log ofaverage depth
complexity of the scene, with thesix vertical lines representing the six scenes of
figure 11. The vertical axes inthese graphs are alsolog-scale, indicating geometry
traffic, z-traffic, and rendered_depth For Arch_ZBand Arch_HYV, z-traffic refers to
the z-traffic generated within the rendering stage, so the termsz-traffic and
rendered_deptlare closely related. For Arch_OHYV, z-traffic refers toz-traffic within
the culling stage only,and tosimplify the graphs, z-buffer traffic generatedvithin
the rendering stage is notrepresented. Chart 1,Description of Bandwidth Graphs
describes what each of the curves represents and should bereferred to in
interpreting the following results.

6.1 Relative Performance of Z-Buffering and Hierarchical Visibility

First we observe the dramatic bandwidth reductions & rch_HV compared with
Arch_ZB With geometry traffic, Arch_ZBneeds tosendall front-facing primitives
inside the view frustum, but Arch_HVonly needs to send visibldounding boxes and
their children and the primitives in visible boxes (only front-facing primitives for
this model). The deeper the scene, the greater the relative advantage,with geometry
traffic reduced by arorder of magnitude atscene depth 16.

Likewise, Arch_HV generates far less z-traffic and rendered_depth again
roughly anorder of magnitude less atscene depthl6. With Arch_HYV, z-traffic stays
within a factor of 1.5 of the ideal bandwidth for z-buffering of one read and one
write per image sample (bold dashed line in thletraffic graph), and likewise,
rendered_depthstays within a factor of1.3 of the ideal performancecorresponding
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to the depth complexity of polygons which are visible in the output imagebold
dashed line in the rendered depth graph).

6.2 Performance of Optimized Hierarchical Visibility

Now that the performance ofthe standard HV algorithm has beenestablished,
we use this as haseline tomeasure the relative performance ofArch_OHVin which
(a) the scene manager culls bounding boxes using the z-tip, (b) aconservative
culling stge culls mostremaining occluded geometry using optimized hierarchical
z-buffering, and (c) aconventional z-buffer rendering stage establishes definitive
sample-by-sample visibility for the remaining visible and nearly visible primitives.
In the simulation ofArch_OHYV, bounding boxes wvhere traversed front tdack and
every box thatintersected the view frustum was tested forvisibility against the z-tip
(finest level: 64x64)using the testillustrated in figure 8. The culling stage employed
the zm-pyramid specified in figure 2,and to reduce tiling comutations weused
“early termination” with a zdelta value of 5% of thedistance betweenthe near and
far clipping planes.

The efficiency of culling with Arch_OHVis apparent inthe z-traffic panel of
Graph 1. For ourtest scenes, whichrange from simple to complex, thislog-scale
graph shows that optimizedhierarchical z-buffering performed within Arch_OHV
(curve OHV) generates only about 10% of the z-traffic generated bystandard
hierarchical z-buffering (curve HV), and between .5% and 3% of the z-traffic
generated by traditional z-buffering. These low figures show that conservative
culling can beperformed with a great deal lesswork than definitive sample-by-
sample visibility computations, and that ouroptimized culling methods accomplish
this objective.

Multi-Stage Culling Performance for Scene with Depth Complexity 16

Scene Manager Culling Efficiency: 95%, Bandwidth Cost: between 1 and 16 z accesses

Culling Stage Culling Efficiency: 90%, Bandwidth Cost: .246 z accesses per sample

Rendering Stage Rendering Stage  Culling Efficiency: 100%, Bandwidth corresponds to DC of 2.02

Figure 12

Figure 12summarizes culling performance for the scene with depthl6. The
scene manager culled bounding boxes using the z-tip (having 4x4, 16x16,and 64x64
levels), performing between &nd 16depth compari®ns per box. This culled 95% of
occluded boxes. Values in the z-tighanged 5,160times in the carse ofrendering
the scene, sahe total amount of information which needs to be copied the host was
only about 10K bytes (each wzalue is 16bits). Thesefigures indicate that software
culling of bounding boxes onthe host is fast an&ffective.

The aulling stage culled occludedprimitives with an efficiency of 90%, by
which we meanthat if the culling stage performed visibility tests definitively, the
depth ofpolygons sent torendering sige would be90% of the corresponding figure
for this conservative culling stage. Thisefficiency is achieved with only .246 z
accesses per image sample usinbe zm-pyramid. This low bandwidth figure
indicates the high efficiency of optimized hierarchicalz-buffering.

The rendering «ge performs definitive z-buffering on polygons whose
collective depth averages 2.02, which is within a factor of1.3 of the depth of
polygons which are actually visible in the output image. Summing up, at a
bandwidth cost of approximately .25 accesses per image sampldrch_OHVreduces
the effective depth ofthis scene8-fold, from 16 t02.02.
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6.3 Relative Performance of Z-Buffering and Arch_OHYV

Now we summarize the relative performance ofArch_ZBand Arch_OHV. For our
test scenes, Graph 2 comparegeometry traffic, z-traffic, andrendered depthfor the
two architectures, Wwere the OHV curves have beemormalized as a fraction of the
ZB curves, whichare repesented bythe top line. For our tesmnodels, 2xreduction in
rendered_depthoccurs at scene deptB.5, 4x occurs atepth 7.7, 8x occurs atdepth
17, and 16x occurs atdepth 33. The corresponding depths for reduction in
geometry_trafficare 5.4, 10.2, 14, and 19Assuming that one of thesequantities is the
actual bottleneck in the system, thesefigures offer a rough estimate ofactual
performance increasesthat could beexpected. Z-traffic within the culling stage is so
low that it isunlikely to be abottleneck.

Figure 13 Figure 14

Optimized hierarchical visibility (Arch_OHV) generates less traffic in z values rendering the scene on the
right (depth complexity 41.5) than ordinary z-buffering generates rendering the scene on the left (depth
complexity 3.0). The culling stage within Arch_OHV generates only .58 z accesses per image sample
and it reduces the depth complexity of primitives that need to be rendered to 2.28.

To verify that our basic conclusions are also valid forscenes withoutlarge
foreground occluders wealso ran simulations onthe scene offigure 14 and plotted
Arch_HV performance inblue circles and Arch_OHYV performance inred circles in
Graph 1,placing these circles on dashed lines at dep#l.5, the average depth
complexity of this scene. Note that geometry traffic and rendered depth for
Arch_OHVare nearly as low ador Arch_HV, and thatz-traffic for Arch_OHVremains
a great deal lower thafior Arch_HV.

It is revealing toobserve that traditional z-buffering generatesmore z-traffic
rendering figure 13 (same aseft-hand panel of figure 11) than Arch_OHVgenerates
in both the culling and rendering stages whenrendering figure 14, even though the
latter scene has 13.8 timdke depth complexity. Interms ofbandwidth generated by
conservative visibility operations inthe culling stage, the z-traffic generated by
rendering figure 14 with optimized HV is only aboutl/7 of that generated by z-
buffering figure 13.

Next, simulation of hierarchical z-buffering without box culling (curve HZ)
showed that z-traffic increasesonly slightly compared with the HV curve, remaining
within a factor of1.65 of the ideal bandwidth of one read and onevrite per image
sample. Aswith Arch_ZB we used the octree to cull to the vigiwstum and traverse
the scene inapproximately front-to-back order, but of carse hierarchical z-
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buffering does notrequire organizing primitives in boundingboxes. Theproblem
with hierarchical z-buffering without culling of bounding boxes is thatall on-
screen front-facing polygons must be sentthrough the pipeline, sogeometry_traffic
is likely to be abottleneck.

To assess themportance of traversal order, we also simulated avariation of
hierarchical visibility in which bounding boxes were taversed in randomorder
instead of front toback. The resulting curves, labeledRAND, show that evenwith
random traversal,geometry_trafficand rendered_depth are reduced substantially
compared with Arch_ZB

We repeatedthe simulations presented iGraph 1for point-sampled images and
determined that the geometry traffic and rendered depth curves were nearly
identical, but that thez-traffic curves for OHV were higher byapproximately afactor
of two (but still many times lower than the corresponding HVcurves). Wealso
simulated z-traffic assuming tile-based agss toz-buffers and z-pyramids, which
raised overall z-traffic but did not significantly change the relative performance of
the three architectures.

6.4 Ineffectiveness of Alternative Culling Methods

To show the limitations of box culling by traditional scan conversion, we
substituted traditional z-bufferscan conversion for hierarchical z-buffering within
Arch_HV. In this case,geometry traffic and rendered depth are the same as for HV
but z-traffic is a great deal higher, asindicated by curve ZBbc (“Z-Buffer box
culling”). Despite thefront-to-back traversal of octree boundindoxes, exploiting
box nesting, stoppingthe scanconversion atthe first visible sample,and adjusting
construction ofthe octree tomaximize performance,z-traffic was a greatdeal higher
than when culling with a z-pyramid, becausebounding boxes overlap deeply on the
screen and hierarchical culling is much more efficient. In short, for general
models, box culling can be performed much more efficiently with hierarchical z-
buffering than with traditional z-buffer scan conversion.

To determine if it is necessaryfor the culling stage’s z-pyramid to maintain
occlusion information atthe full-resolution ofthe output image, wdmplemented a
low-resolution tiling algorithm that maintained just one zvalue at each pixel in the
oversampled image andoverwrote apixel’'s z value only if apolygon covered the
entire pixel. This tilingalgorithm was substituted into Arch_HV and the sceneswere
rendered with front-to-back traversal ofthe octree. We found that thé'low-
resolution” z-pyramid describedabove does notcull effectively, resulting inmuch
higher geometry traffic and rendered depth This experiment indicates that
efficient culling of general models does require maintaining occlusion information
on individual imagesamples.

7 CONCLUSION

We have analyzedtwo classic bottlenecks in z-buffer pipelines, traffic in
geometric data and depth values, and shown that processing scenes with the
hierarchical visibility algorithm can dramatically reduce bandwidth requirements
compared to aHrnative methods. However, thisapproach has not been widely
adopted by makers of hardware z-buffer pipelinesbecause itrequires amajor
architectural revision and scene management iscomplicated by communication
delays associated with box culling and the need tonaintain a spatialhierarchy.

This article introduces architectural innovations and optimizations that
overcome theseproblems. Using these methods, it is possible to attamearly the
performance ofthe standard HV algorithm without modifying rendering hardware,
without incurring delays when boxes are culled, andvithout maintaining aspatial
hierarchy. Scene management igreatly simplified becauseall that is required to
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achieve good performance isapproximate front-to-back traversal ofhe scene. For
virtually any scenetraversed inthis way, culling will reduce the depth complexity of
primitives that need to berendered toapproximatelytwo. Moreover, culling is
performed extremely efficiencyusing optimizations tohierarchical z-buffering that
reduce the traffic in z values generated byconservative culling by 10-fold compared
with the standard algorithm. Taken together, these properties indicate that the
proposed architecture could extend real-time rendering to amuch broader class of
scenes.
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