2-29-2000

K eyBoar dEvent Behavior 1.0 eenies 200070200070
By Matthew Peterson

matthew@pinoko.berkeley.edu

I ntroduction
This set of behaviors provides a framework for capturing keyboard events.
To use this framework, place the main KeyBoardEvent behavior:

on the sprite that will function as your keyboard event handling sprite. Alone,
the keyboardEvent behavior is useless. Other behaviors must be added to tell
the KeyboardEvent behavior what keys to look out for. When one of the
polled keysis pressed a custom event is executed. The ID of this custom
event is set up by the user as a parameter in the keyboardEvent behavior.
The precise key that is pressed is determined by checking the global variable
WhichKeyN. The number in WhichKeyN will correspond to the ascii code for
the key pressed. If the AsciiArray behavior isalso present. A global array of
length 127 will be set up to map ascii numbers into characters. See examples
below.

Globa Variables:
1) KeyBoardOn -- Set to TRUE to poll the keyboard. (Initially set to false)
2) WhichKeyN -- The ascii number of the key pressed. Y ou may
use the accompanying asciiArray behavior to give
your scripts access to the ascii table.
3) oldKeyN -- The previous value of WhichKeyN.
4) 1sCap -- Isthe key pressed a capital letter or not.
5) Ascii[127] -- The standard ascii table (see appendix below)

Purpose

As wired movies become more sophistocated, it is increasing important to be
able to provide acomplete Ul. Right now, Quicktimeislacking inits ability to
handle keyboard input. The string functions are extremely limited (SetString,
and AppendString). Thereis aso no KeyPressed event. Thereisonly a
KeyPressed property that must be queried for each and every key you are
interested in. If you are interested in the whole keyboard, you must loop

through and test the KeyPressed property for every key. These behaviors
help you do this.

Some common uses: Entering text and numbers, Playing Midi notes,
keyboard commands.

Quick Reference

When the global variable KeyBoardOn is set to TRUE, the keyboard is polled
on each idle event. Which keys are tested is determined by which accessory
behaviors are added. If akey isfound to be pressed, the custom event (as
specified by the user in the behavior’ s parameters) is executed. Thisevent is
only executed when there is a change in the keys being pressed. So if | press
‘A’ down, the custom event will be executed once, no matter how long |
hold down the A key. The event is not executed upon keyUp (See Technical
Notes below for information on how to capture keyUp events).

Parameters:
1) On KeyPress Event |D: --- Set this parameter to the ID of the custom
event you want executed upon a key press.

Globa Variables.

1) KeyBoardOn -- Set to TRUE to poll the keyboard. Thisisinitialy set to
FALSE. Only set it to TRUE when you want to have keyboard
events. Polling the keyboard takes up idle event time.

2) WhichKeyN -- The ascii number of the key pressed. Y ou ma use the
accompanying asciiArray behavior to give scripts accessto the
ascii table. But in general it is sufficient to know that 48='0"' and
65="A". For letters, WhichKeyN is aways equal to the ascii
number of the Upper Case for that letter. If you want to know if
it was an Upper Case or a Lower Case letter, you must check
the ISCap Global Variable (see below).

When WhickKey = 0, thismeans no key is being pressed at the
moment.

3) oldKeyN -- The previous value of WhichKeyN.
Y ou can check if oldKeyN = 0 to determine if there was no key
being pressed as the current key was pressed.

4) 1sCap -- IsCap istrueif the shiftkey isdown, or the capsLock is down, but
not when both are down.

5) Astii[127] -- The standard ascii table. This gets set up when the AsciiArray
behavior is added to your sprite track. (See appendix)

NOTE: In the QuickTime Player Pro, many keyswill do something to your
movie. For instance, the delete key will delete the entire movie. The spacebar

will start the movie playing. The arrow keys will move forward and back
frames... This makes keyboard input from the Player rather dangerous. One
way around thisisto present the movie, and then the edit functions of the
Player are disabled.

Accessories.

LS PRO

= |
L etter Keys Add this behavior to the same sprite as the
KeyboardEvent behavior. Thiswill alow the Keyboard event behavior to poll
for keyboard presses. When aletter is pressed, WhichKeyN is set the the Ascii
number associated with the Upper Case of that letter. If you would like to
differentiate Upper and Lower case, check the IsSCap Global Variable. When
TRUE, the letter is upper case, when FALSE, it islower case. Add 32 to
WhichKeyN for the Lower Case characters. The reason | used Upper Case as
the default is because they are the appear first in the table, and if one wanted
to make a one-to-one mapping with images, it would be easier this way.

LS PRO

]
Number K eys. Add this behavior to the same sprite as the
KeyboardEvent behavior to have number keys tested. This also pollsthe
following symbols:

negative sign (-), comma(,), period(.), and colon(;)

LS5 PRO

i

E ControlK eys. Add this behavior to the same sprite as the

KeyboardEvent behavior to have the following control keys tested:
Tab, whickKkeyN =9

Delete, whickKeyN = 8

Return, whickKeyN = 13

Up arrow, whickKeyN = 200

Right arrow, whickKeyN = 201

Down arrow, whickKeyN = 202

L eft arrow, whickKeyN = 203

LS PRO

r

[HH AsciiArray. Add this behavior to set up the Global Variable ascii[127].
See the appendix below for alist of the valuesin this array.

If you want, you can modify this Behavior to reduce the size of this Array
down to 91, which is the minimum number to contain numerals and Upper
Case letters (You can, of course, make them lower case if you prefer). Use
AppendString() to concatinate strings out of ascii characters.

Example, (set mystring to “Hi”):

GlobalVars ascii[127] mystring

AppendString (mystring, ascii[72], mystring)
AppendString (mystring, ascii[105], mystring)

Reserved Variable Names for this Behavior:
GlobaVariables: KeyBoardOn , WhichKeyN, oldKeyN, 1sCap, Ascii

Note: Internal variables all start with “MP_" and thus should not overlap
with other variables.

Technical Notes:
This behavior hasits own ArcTan function, which it uses to calculate the
angle that points to the mouse location.

Revision History:
2-19-2000 Version 1.0 first written.
2-29-2000 Increased performance by placing key-checking code in the
same event.

Appendix (Ascii Table):

ascii[9] = kTabKey ascii[65] = "7"
ascii[10] = kLineFeedCharacter ascii[56] = "8"
ascii[13] = kCRLFCharacters ascii[57] = "9"
ascii[32] =" " ascii[58] = ":"

ascii[33] = "!" ascii[59] = ;"

ascii[34] = kDoubleQuoteCharacter ascii[60] = "<"
ascii[35] = "#" ascii[61] = "="
ascii[36] = "$" ascii[62] = ">"
ascii[37] = "%" ascii[63] = " 2"
ascii[38] = "&" ascii[64] = "@"
ascii[39] = """ ascii[65] = "A"
ascii[40] = "(" ascii[66] = "B"
ascii[41] = ")" ascii[67] = "C"
ascii[42] = "*" ascii[68] = "D"
ascii[43] = "+" ascii[69] = "E"
ascii[44] = "," ascii[70] = "F"
ascii[45] = "-" ascii[71] = "G"
ascii[46] = "." ascii[72] = "H"
ascii[47] = "/" ascii[73] = "I"

ascii[48] = "0" ascii[74] = "J"
ascii[49] = "1" ascii[75] = "K"
ascii[50] = "2" ascii[76] = "L"
ascii[51] = "3" ascii[77] = "M"
ascii[52] = "4" ascii[78] = "N”
ascii[53] = "5" ascii[79] = "O"
ascii[54] = "6" ascii[80] = "P"

ascii[81] ="
ascii[82] ="
ascii[83] ="
ascii[84] ="
ascii[85] ="
ascii[86] ="
ascii[87] ="
ascii[88] ="
ascii[89] ="
ascii[90] ="
ascii[91] ="
ascii[92] ="
ascii[93] ="
ascii[94] ="
ascii[95] = "_"
ascii[96] = "*"
ascii[97] ="
ascii[98] = "b"
ascii[99] = "c"
ascii[100] ="
ascii[101] ="
ascii[102] ="
ascii[103] ="

g.J-

= LAENSXgEs g Hd0rQ

Q - o g

ascii[104] ="
ascii[105] ="
ascii[106] ="
ascii[107] ="
ascii[108] ="
ascii[109] ="
ascii[110] ="
ascii[111] ="
ascii[112] ="
ascii[113] ="
ascii[114] ="
ascii[115] ="
ascii[116] ="
ascii[117] ="
ascii[118] ="
ascii[119] ="
ascii[120] ="
ascii[121] ="
ascii[122] ="
ascii[123] ="
ascii[124] ="
ascii[125] ="
ascii[126] ="

I M TTARANK X s <E 00T OS 3 TX= ==

