

1

•
•
•
•
•
•

• • • • • •

 Appendix I - QScript Reference

Introduction

Welcome to the LiveStage Professional QScript Reference Guide. This guide is

designed to help you and provide more detailed information on the various

QScript statements utilized by LiveStage Professional. It includes correct

Syntax, Descriptions and Examples of each statement to assist you in

understanding what they do and how to use them.

Conventions Used

language element

Text shown in this font must be entered exactly as

shown.

placeholder

Text shown in italics indicates a place holder that

you must replace with an appropriate value.

[optional]

Brackets indicate that the enclosed language

elements are optional. However, brackets in bold

are part of the syntax and must be entered as shown.

A | B | C

A vertical bar separates a group of elements from

which one must be chosen.

<>

Enclose a group of multiple choice elements.

2

Appendix I - QScript Reference

•
•
•
•
•
•

For example:

SetImageIndexTo(

index

)

[

min(

number

) max(

number

)
Wraparound

]

You can replace

index

 with any numeric expression you want, such as

SetImageIndexTo(1)

Here are some examples:

// causes the image index to increase by one and when
// it passes 10 it starts over at 1
SetImageIndexBy(1) MIN(1) MAX(10) Wraparound
// causes the image index to be set to the value of x
// and limited to a number from 8 to 10
SetImageIndexTo(x) MIN(8) MAX(10)

Appendix I - QScript Reference

 3

•
•
•
•
•
•

QScript Syntax

This section of the QScript Reference contains descriptions of the various types of

QScript syntactical constructs.

Data Specifiers

Data is the life blood of scripting languages. QScript is no exception. The following

section describes the syntax for specifying data within QScript.

Constants Definitions

Description

Constants, as the name implies, are data that can not be

altered when the script is executed. Constants are also called

“

Literals

”

. The following are some examples of constants in

QScript:

Example

1234

Numeric constant indicating the whole

number 1234

1234.56

Numeric constant indicating the real

number 1234.56

-1

Negative numeric constant indicating

the whole number -1

“Hi”

Text or String constant containing the

characters Hi

TRUE

Predefined boolean constant for TRUE

FALSE

Predefined boolean constant for FALSE

$”Image One”

The index of the image named

“

Image One

”

Constants can be used any place in a script where a number

or string is required.

See also

Numeric Expression, String Literal

4

Appendix I - QScript Reference

•
•
•
•
•
•

Numeric Expression Definitions

Description

A Numeric Expression is an expression that, when

evaluated, generates a numeric result. Numeric Expressions

are made up of numeric elements (i.e. numeric constants,

variables and properties) joined together with numeric

operators (i.e. +, -, *, /, etc.).

Numeric Expressions can be used any place in a script

where a numeric value is required.

Example

The following are examples of Numeric Expressions:

1 + 2 * 3

ThisSprite.ImageIndex + 1

ABS -1

See also

Constants, Operators, Properties, Variables

String Literal Definitions

Description

A String Literal is made up of text characters enclosed

within quotation marks (

“

). String Literals are used to

specify textual information any place within scripts where a

textual value is required.

Example

The following are examples of String Literals:

“Hello World!”

“http://www.totallyhip.com”

QT Version

4.0 or later

See also

Constants

Appendix I - QScript Reference

 5

•
•
•
•
•
•

Boolean Literal Definitions

Description

A Boolean Literal can be one of two values,

TRUE

 or

FALSE

. Boolean Literals can be used any place in a script

where a boolean value is required.

Example

SetVisible(TRUE)

See also

Constants

Defines Definitions

Description

A define is an abstract representation of a constant. Defines

allows you to assign a name to a number or string of

characters. Please refer to the section on the

“

Defines Tab

”

in Chapter 3 of the LiveStage Professional User Manual for

information on how to create your own custom defines.

By creating and using custom defines in your scripts, you

can centralize the location for your custom constant values.

For example:

In the Defines Tab:

kHomeURL = “http://www.totallyhip.com”

In the script:

GotoURL($kHomeURL)

The example above illustrates how defines are created and

used. In the first part of the example, a define is added to the

project in the Defines Tab to refer to a URL using the name

“

kHomeURL

”

.

In the second part of the example, the custom define

“

kHomeURL

”

 is used in a QScript Action that requires a

string parameter.

The kHomeURL custom define can be used throughout

the project. If you wish to change the value of the

“

kHomeURL

”

 custom define, you simply change it in the

6

Appendix I - QScript Reference

•
•
•
•
•
•

Defines Tab. Once you make the change in the Defines Tab,

every instance where

“

kHomeURL

”

 is used in your script

will now use the new value.

To refer to a define, put a

“

$

”

 in front of the its name. If the

name of the define has spaces in it, then the name must be

enclosed in quotes.

There are several defines created for you automatically.

These are:

ThisSpriteID

Set to the ID of the sprite containing

the script.

Images

Each image has a define created

that represents the image index.

Custom Handlers

Each custom event handler has a

define created that represents the

Handler ID for that handler.

Built-in Defines

There are also built-in defines for various numeric constants

used by QScript and QuickTime. You do not need to add a

$ in front of Built-in Defines.

The following is a list of the QScript Built-in Defines. For

more details on each of these built-in defines, please refer to

the QScript Actions where they are used elsewhere in the

QScript Reference.

Cursor IDs

kQTCursorOpenHand
kQTCursorClosedHand
kQTCursorPointingHand
kQTCursorRightArrow
kQTCursorLeftArrow
kQTCursorDownArrow
kQTCursorUpArrow
kQTCursorArrow

Drawing Modes Defines

srcCopy
srcOr
srcXor

Appendix I - QScript Reference

 7

•
•
•
•
•
•

srcBic
notSrcCopy
notSrcOr
notSrcXor
notSrcBic
blend
addPin
addOver
subPin
transparent
addMax
subOver
adMin
grayishTextOr
hilite
ditherCopy
graphicsModeStraightAlpha
graphicsModePreWhiteAlpha
graphicsModePreBlackAlpha
graphicsModeComposition
graphicsModeStraightAlphaBlend
graphicsModePreMulColorAlpha

Event IDs

kQTEventFrameLoaded
kQTEventIdle
kQTEventKey
kQTEventMouseClick
kQTEventMouseClickEnd
kQTEventMouseClickEndTriggerButton
kQTEventMouseEnter
kQTEventMouseExit
kQTEventMouseMoved
kQTEventListReceived
kQTEventMovieLoaded
kQTEventRequestToModifyMovie

Flash Mouse Transitions

kIdleToOverUp
kOverUpToIdle
kOverUpToOverDown
kOverDownToOverUp
kOverDownToOutDown
kOutDownToOverDown

8

Appendix I - QScript Reference

•
•
•
•
•
•

kOutDownToIdle
kIdleToOverDown
kOverDownToIdle

Key Code Defines

kReturnKeyCode
kEnterKeyCode
kTabKeyCode
kBackSpaceKeyCode
kDeleteKeyCode
kInsertKeyCode
kUpArrowKeyCode
kDownArrowKeyCode
kLeftArrowKeyCode
kRightArrowKeyCode
kEscapeKeyCode
kPageUpKeyCode
kPageDownKeyCode
kHomeKeyCode
kEndKeyCode

Key String Defines (Use KeyIsDown or string
comparisons only)

kReturnKey
kTabKey
kDeleteKey
kUpArrowKey
kDownArrowKey
kLeftArrowKey
kRightArrowKey
kDoubleQuoteCharacter
kLineFeedCharacter
kCRLFCharacters
kCRCharacter
kLFCharacter

Key Modifier Defines

kModifierActiveFlag
kModifierButtonState
kModifierCommandKey
kModifierShiftKey
kModifierAlphaLock
kModifierOptionKey
kModifierControlKey
kModifierRightShiftKey
kModifierRightOptionKey

Appendix I - QScript Reference

 9

•
•
•
•
•
•

kModifierRightControlKey

Key Modifier Flags (Used only with KeyIsDown)

kNone
kOptionKey
kShiftKey
kCommandKey
kControlKey
kCapsLockKey

Movie Looping Control Defines

kNoLoop
kLoop
kLoopPalindrome

Media Type Defines

kBaseMediaType
kFlashMediaType
kMPEGMediaType
kMusicMediaType
kQTVRQTVRType
kQTVRObjectType
kQTVROldPanoType
kQTVROldObjectType
kQTVRPanoramaType
kSpriteMediaType
kStreamingMediaType
kSkinMediaType
kSoundMediaType
kTextMediaType
kThreeDeeMediaType
kTimeCodeMediaType
kTweenMediaType
kVideoMediaType

Music Track Defines

kControllerModulationWheel
kControllerBreath
kControllerFoot
kControllerPortamentoTime
kControllerVolume
kControllerBalance
kControllerPan
kControllerExpression
kControllerLever1
kControllerLever2

10

Appendix I - QScript Reference

•
•
•
•
•
•

kControllerLever3
kControllerLever4
kControllerLever5
kControllerLever6
kControllerLever7
kControllerLever8
kControllerPitchBend
kControllerAfterTouch
kControllerPartTranspose
kControllerTuneTranspose
kControllerPartVolume
kControllerTuneVolume
kControllerSustain
kControllerPortamento
kControllerSostenuto
kControllerSoftPedal
kControllerReverb
kControllerTremolo
kControllerChorus
kControllerCeleste
kControllerPhaser
kControllerEditPart
kControllerMasterTune
kControllerMasterTranspose
kControllerMasterVolume
kControllerMasterCPULoad
kControllerMasterPolyphony
kControllerMasterFeatures

Numeric Defines

EPSILON_FLOAT
MIN_FLOAT
MAX_FLOAT
MIN_LONG
MAX_LONG
MIN_SHORT
MAX_SHORT
MAX_USHORT
PI or

π

QueryListServer Defines (QT5 or later)

kListQueryDebugTrace
kListQuerySendListAsKeyValuePairs
kListQuerySendListAsXML
kListQueryWantCallback

Appendix I - QScript Reference

 11

•
•
•
•
•
•

SendAppMessage Defines (QT5 or later)

kAppMsgDisplayChannels
kAppMsgRequestEnterFullScreen
kAppMsgRequestExitFullScreen
kAppMsgSoftwareChanged
kAppMsgWindowClose

State Defines

Movie Load States (QT5 or later)

kLoadStateError
kLoading
kLoaded
kPlayable
kPlaythroughOK
kComplete

Network States (QT5 or later)

kConnected
kNoNetwork
kNotConnected
kUncertain

Text Track Defines

Justification (QT5 or later)

kCenterJustify
kLeftJustify
kRightJustify

Text Display Flags (QT5 or later)

kDontDisplay
kDontAutoScale
kClipToTextBox
kUseMovieBGColor
kShrinkTextBoxToFIt
kScrollIn
kScrollOut
kHorizScroll
kReverseScroll
kContinuousScroll
kFlowHoriz
kContinuousKaraoke
kDropShadow
kAntiAlias
kKeyedText

12

Appendix I - QScript Reference

•
•
•
•
•
•

kInverseHilite
kTextColorHilite

Text Edit States (QT5 or later)

kDirectEditing
kNoEditing
kScriptEditing

Text Styles (QT5 or later)

kNormalFace
kBoldFace
kItalicFace
kUnderlineFace
kOutlineFace
kShadowFace
kCondenseFace
kExtendedFace

Text Fonts (QT5 or later)

kAthensFont
kCairoFont
kCourierFont
kGenevaFont
kHelveticaFont
kLondonFont
kLosAngelesFont
kMobileFont
kMonacoFont
kNewYorkFont
kSanFranciscoFont
kSymbolFont
kTimesFont
kTorontoFont
kVeniceFont

Text Search Defines (QT5 or later)

kSearchAgain
kSearchCaseSensitive
kSearchCurrentSample
kSearchReverse
kSearchWraparound

Appendix I - QScript Reference

 13

•
•
•
•
•
•

Example

SpriteOfID($ThisSpriteID).SetVisible(TRUE)

SetImageIndexTo($”Up Arrow Image.qif”)

ExecuteEvent($”Reset Game”)

QT Version

Various

See also

Constants

Preprocessor Directives

Preprocessor Directives are added to scripts to control the compilation of a project.

#debug Preprocessor Directives

Syntax #debug on | off

on | off Indicates if debug output is to be turned on or off

Description This directive turns on or off the output of QScript source

code to the Debugging Console.

Use this compiler directive to limit the amount of source

code that is sent to the Debugging Console by selectively

turning this directive on and off.

Example Use the following syntax to restrict the lines of script that

are sent to the Debugging Console:

#debug on

LocalVars myNum

myNum = 100

...

#debug on

// Compute the value of myNum

...

14 Appendix I - QScript Reference

•
•
•
•
•
•

#debug off

...

The above script sends only the script lines enclosed

between the “#debug on” and “#debug off” statements to

the Debugging Console.

#define Preprocessor Directives

Syntax #define defineName = defineValue

defineName the name of the value definition

defineValue the value of the value definition

Description This directive creates a Value Definition that associates a

name (defineName) with a value (defineValue).

Once defined, a Value Definition can be use anywhere

within the scope of the current script.

Value Definitions are designed to work with the #include

directive. Commonly used Value Definitions can be placed

in a script file external to the LiveStage Professional Project

and be included in the compilation process by the use of the

#include directive. This allows you to develop script

language segments that can be used in many projects.

To use a Value Definition in a QScript statement, add a $

to the front of the Value Definitions. For example:

#define kStartTime = 0

ThisMovie.GoToTime($kStartTime)

Appendix I - QScript Reference 15
•
•
•
•
•
•

Example Create Value Definitions in a file with the name of

defines.qsf :

#define kMyURL = “http://www.totallyhip.com”

...

Add the following line to the beginning of any script where

the Value Definitions in the file defines.qsf is to be used:

#include “defines.qsf”
GotoURL($kMyURL)

See also #include

#include Preprocessor Directives

Syntax #include “filename”

Description This directive specifies a file containing additional QScript

statements that are to be included at compilation time. This

allows code segments to be placed in external files (external

to the LiveStage Professional project) and shared between

multiple projects.

Note: The file specified must be saved in the Library folders (Global or
Local) as this is the only place where these include files can be
located.

Example #include “mycode.qsf”

See also #define

16 Appendix I - QScript Reference

•
•
•
•
•
•

#RegionFromImageFile Preprocessor Directives

Syntax #RegionFromImageFile(filename)

filename A string literal specifying the name of the image file

Description This directive is used to specify a region defined using an

image file. A black and white image file is supplied to

provide the shape of the clipping region. A black and white

image file must be used or the region created would be

invalid.

Note: The file specified must be saved in the Library folders (Global or
Local) as this is the only place where these files can be located.

Example ThisTrack.SetClipRegionTo(

#RegionFromImageFile(0,”myfile.pct”)

// Sets the clipping region to the

// region specified by the image file

See also #RegionFromRect

Appendix I - QScript Reference 17
•
•
•
•
•
•

#RegionFromRect Preprocessor Directives

Syntax #RegionFromRect(left, top, right,
bottom)

left, top Numeric literals specifying the coordinates for the top left

corner of the rectangle

right, bottom Numeric literals specifying the coordinates for the bottom

right corner of the rectangle

Description This directive is used to specify a rectangular region. The

parameters specify the location of the top left and bottom

right corners of the region.

Example ThisTrack.SetClipRegionTo(

#RegionFromRect(0, 0, 100, 100))

// Sets the clipping region to the rectangle

// Specified

See also #RegionFromImageFile

#StringFromFile Preprocessor Directives

Syntax #StringFromFile(filename)

filename A string literal specifying the name of the file

Description This directive specifies that a text file (specified) contains

the text used in a string literal. The preprocessor directive is

replaced with the contents of the specified file when the

script is compiled.

Note: The file specified must be saved in the Library folders (Global or
Local) as this is the only place where these files can be located.

Example ReplaceText(#StringFromFile(“mytext.txt”),

1, GetTextLength)

// Replace the text in the current text sample

// with the characters in “mytext.txt”

See also #include

18 Appendix I - QScript Reference

•
•
•
•
•
•

Targets

Most actions and properties require a target that specifies what is to execute the

action or what is to return a property. If no target is specified, or a partial target is

specified, then the default targets are used which are the current movie, track and

sprite that is executing the script. Targets consist of three portions, the movie, the

track within the movie and the sprite within the track. These can be completely or

partially specified. You can specify just the sprite, or just the sprite and the track or

just the track or just the movie. Whatever part of the target you do not specify will

be replaced with the default target.

Event Target Targets

Syntax ThisEvent

Description The ThisEvent target is used to access the temporary

QTList accessible during the execution of an event handler.

The temporary QTList attached to an event contains

information specific to the event handler currently being

executed.

The following are the layout of the event handler local

QTLists for the various built-in events:

Key Pressed:

<event>

<key>key value</key>

<modifiers>key modifier flags</modifiers>

<scancode>key scan code</scancode>

</event>

Appendix I - QScript Reference 19
•
•
•
•
•
•

List Received:

<event>

<listName>Name of the list</listName>

<list>

Contents of the returned list

...

</list>

</event>

Mouse Events (Click, Down, Enter, Exit, Moved, Up):

<event>

<where>

<h>X Position</h>

<v>Y Position</v>

</where>

</event>

All other events have empty temporary QTLists.

Example LocalVar theValue

SetString(theValue,

ThisEvent.GetListElementValue(““, 1))

// return the value of the first element in the

// event handler’s temporary list

QT Version 5.0 or later

See also List Properties and Actions

20 Appendix I - QScript Reference

•
•
•
•
•
•

Object Target Targets

Syntax ObjectNamed(name)
ObjectOfID(id)
ObjectOfIndex(index)

name A string literal specifying the name of the object.

id A numeric literal specifying the ID of the object.

index A numeric literal specifying the index of the object.

Description Objects within various Track (i.e. Sprite, QT3D, Flash, etc.)

can be targeted by using its name, ID or index and

corresponding Object target specifier.

Example

QT Version 5.0 or later

See also

Movie Target Targets

Syntax MovieOfID(id)
MovieNamed(name)
ThisMovie

id A numeric literal specifying the ID of the movie.

name A string literal specifying the name of the movie.

Description A movie can be targeted by using its ID or name to identify

it. You can set the name or ID of the movie in the Info tab of

the document window. In an html document you can also

specify the name or ID of the move as part of the embed tag.

You can do this using the free Plug-in Helper application

from the following URL:

http://www.apple.com/quicktime/

developers/tools.html

Appendix I - QScript Reference 21
•
•
•
•
•
•

or you can enter it yourself as follows:

<embed src=”mymovie.mov” moviename=”name” ...>

Example MovieOfID (1)

MovieNamed (“My Movie”)

QT Version 4.0 or later

See also

Movie Target (Parent Movies) Targets

Syntax RootMovie
ParentMovie

Description A child movie can use these to target the root movie, which

is the movie that contains all other child movies. The parent

movie is the movie that contains this child movie. Use these

only from within a child movie.

Example RootMovie.StartPlaying

ParentMovie.StartPlaying

QT Version 4.1 or later

See also Movie Target (Child Movies)

22 Appendix I - QScript Reference

•
•
•
•
•
•

Movie Target (Child Movies) Targets

Syntax ChildMovieTrackNamed(name)
ChildMovieTrackOfID(id)
ChildMovieTrackOfIndex(index)
ChildMovieNamed(movie_name)
ChildMovieOfID(movie_id)

name A string literal specifying the name of the movie track.

id A numeric literal specifying the ID of the movie track.

index A numeric literal specifying the index of the movie track.

movie_name A string literal specifying the name of the child movie.

movie_id A string literal specifying the ID of the child movie.

Description These all target a child movie in some way. They do not

target a track even though they mention tracks in their

names. The movie that is targeted will be the currently

loaded movie in the child movie track. If a movie is added

to the child movie list of a track, but it is not loaded, then it

can not be targeted because it does not exist yet. The targets

that mention a child movie track all target the currently

loaded movie in the child movie track specified. The targets

that specify the movie name and movie ID will target a child

movie that has the matching movie name or movie ID. This

name or ID can be set for a movie in the info tab when you

are creating the movie.

Example ChildMovieTrackNamed(“My Track”).StartPlaying

ChildMovieNamed(“My First Movie”).StartPlaying

QT Version 4.1 or later

See also Movie Target (Parent Movies)

Appendix I - QScript Reference 23
•
•
•
•
•
•

QD3DObject Target Targets

Syntax QD3DObjectNamed(name)

name A string literal specifying the name of the QD3D Object.

Description A QD3D Objects can be targeted by using its name.

Example

QT Version 3.0 or later

See also

Sample Target Targets

Syntax SpriteNamed(name)

name A string literal specifying the name of the sample.

Description A media sample can be targeted by using its name. You can

set the name of a media sample in the Sample Editor for

each of the editable track types.

Example LocalVars theTime

theTime = SampleNamed(“MySample”).StartTime

QT Version 4.0 or later

See also

24 Appendix I - QScript Reference

•
•
•
•
•
•

Sprite Target Targets

Syntax SpriteOfID(id)
SpriteOfIndex(index)
SpriteNamed(name)
ThisSprite

id A numeric literal specifying the ID of the sprite.

index A numeric literal specifying the index of the sprite.

name A string literal specifying the name of the sprite.

Description A sprite can be targeted by using its ID, index or name to

identify it. You can set the name and ID of the sprite from

the Sprite Editor within LiveStage Professional. The index

is set by LiveStage Professional.

Example SpriteOfID(1).SetVisible(FALSE)

SpriteNamed(“MySprite”).SetVisible(TRUE)

QT Version 3.0 or later

See also

Appendix I - QScript Reference 25
•
•
•
•
•
•

Track Target Targets

Syntax TrackOfIndex(index)
TrackNamed(name)
TrackOfID(id)
TrackOfType(type [, index])
ThisTrack

index A numeric literal specifying the index of the track.

name A string literal specifying the name of the track.

id A numeric literal specifying the ID of the track.

type A numeric constant specifying the type of the track.

Description A track can be targeted by using its index, ID, name or type

to identify it. The index and name of a track is shown in the

Tracks tab of the document window. The ID of the track is

set by QuickTime when the movie is created and is not

known until then, but it is usually the same as its index.

Example TrackOfIndex(1)

TrackNamed(“Picture Track 1”)

TrackOfID(1)

TrackOfType(kVideoMediaType)

TrackOfType(kTextMediaType, 2)

QT Version 3.0 or later

See also

26 Appendix I - QScript Reference

•
•
•
•
•
•

27

•
•
•
•
•
•

Functions

Functions are new to LiveStage Professional 3.0 and QuickTime 5. Functions

perform tasks that are independent of other objects in a LiveStage Professional

project. A function process values supplied via the parameter list and return a value.

The following example demonstrates the use of Functions:

LocalVars theSquareRoot
theSquareRoot = Sqr(4)

In the above example, “Sqr(4)” calculates the square root of the parameter “4”. The

result is assigned to the local variable “theSquareRoot”.

Functions are similar to Properties and can be used within expressions in place of

numeric and string literals.

28 Functions

•
•
•
•
•
•

Math Functions

ArcTan Math Functions

Syntax ArcTan(value)

value A numeric literal, variable or expression specifying the

input value.

Description This function calculates the Trigonometric ArcTan of the

supplied value.

Return Returns a numeric value in radians.

Example LocalVars theValue

theValue = ArcTan(0.5)

QT Version 5.0 or later

See also ArcTan2, Cos, Sin, Tan

ArcTan2 Math Functions

Syntax ArcTan2(y, x)

y A numeric literal, variable or expression specifying the y

component or a rectangular vector.

x A numeric literal, variable or expression specifying the x

component or a rectangular vector.

Description This function calculates the Trigonometric ArcTan2 of the

supplied rectangular vector. A rectangular vector is supplied

(y, x) which is used to return a full-range (-2 PI - 2 PI) angle

value.

Return Returns a numeric value indicating the angle in radians

calculated by the ArcTan2 function.

Example LocalVars theValue

theValue = ArcTan2(10, 10)

QT Version 5.0 or later

See also ArcTan, Cos, Sin, Tan

Functions 29
•
•
•
•
•
•

Cos Math Functions

Syntax Cos(angle)

angle A numeric literal, variable or expression specifying the

input angle in radians.

Description This function calculates the Trigonometric Cosine of the

supplied angle.

Return Returns a numeric value.

Example LocalVars theValue

// Calculate the Cosine of 90 degrees

theValue = Cos(0.5)

QT Version 5.0 or later

See also ArcTan, Sin, Tan

DegreesToRadians Math Functions

Syntax DegreesToRadians(degrees)

degrees A numeric literal, variable or expression specifying the

input value in degrees.

Description This function converts the specified value in degrees to the

equivalent value in radians.

Return Returns a numeric value.

Example LocalVars theValue

// Convert 360 degrees to radians

theValue = DegreesToRadians(2.0 * PI)

QT Version 5.0 or later

See also RadiansToDegrees

30 Functions

•
•
•
•
•
•

Exp Math Functions

Syntax Exp(value)

value A numeric literal, variable or expression specifying the

input value.

Description This function calculates the Exponential of the specified

value.

Return Returns a numeric value.

Example LocalVars theExponent

// Calculates the exponential

theValue = Exp(100.0)

QT Version 5.0 or later

See also Log, Sqr

Log Math Functions

Syntax Log(value)

value A numeric literal, variable or expression specifying the

input value.

Description This function calculates the Natural Logarithm of the

specified value.

Return Returns a numeric value.

Example LocalVars theLog

// Calculates the Log

theValue = Log(100.0)

QT Version 5.0 or later

See also Exp, Sqr

Functions 31
•
•
•
•
•
•

RadiansToDegrees Math Functions

Syntax RadiansToDegrees(radians)

radians A numeric literal, variable or expression specifying the

input value in radians.

Description This function converts the specified value in radians to the

equivalent value in degrees.

Return Returns a numeric value.

Example LocalVars theValue

// Convert 32 PI radians to degrees

theValue = RadiansToDegrees(32.0)

QT Version 5.0 or later

See also DegreesToRadians

32 Functions

•
•
•
•
•
•

Random Math Functions

Syntax Random(minimum, maximum)

minimum A numeric literal or variable specifying the lowest number

that can be returned.

maximum A numeric literal or variable specifying the highest number

that can be returned.

Description This function generates and returns a random numeric

value. The numeric value generated ranges from the

minimum to the maximum values specified as parameters.

Note: The Random function was reclassified a Math Function instead of
a General Property for LiveStage Professional 3.0.

Return Numeric value ranging from the specified minimum and

maximum values.

Example Random(1, 100)

// Generate a random number from 1 to 100

If (Random(1, 100) < 50)

// Script that will execute 50% of the time

EndIF

QT Version 3.0 or later

See also

Functions 33
•
•
•
•
•
•

Sin Math Functions

Syntax Sin(angle)

angle A numeric literal, variable or expression specifying the

input angle in radians.

Description This function calculates the Trigonometric Sine of the

supplied angle.

Return Returns a numeric value.

Example LocalVars theValue

// Calculate the Sine of 180 degrees

theValue = Sin(1.0)

QT Version 5.0 or later

See also ArcTan, Cos, Tan

Sqr Math Functions

Syntax Sqr(value)

value A numeric literal, variable or expression specifying the

input value.

Description This function calculates the Square Root of the specified

value.

Return Returns a numeric value.

Example LocalVars theSquareRoot

// Calculates the square root

theValue = Sqr(16)

QT Version 5.0 or later

See also Exp, Log

34 Functions

•
•
•
•
•
•

Tan Math Functions

Syntax Tan(angle)

angle A numeric literal, variable or expression specifying the

input angle in radians.

Description This function calculates the Trigonometric Tangent of the

supplied angle.

Return Returns a numeric value.

Example LocalVars theValue

// Calculate the Tangent of 45 degrees

theValue = Tan(0.25)

QT Version 5.0 or later

See also ArcTan, Cos, Sin

Functions 35
•
•
•
•
•
•

String Functions

StrLength String Functions

Syntax StrLength(string)

string A string literal or variable specifying the input string.

Description This function returns the length of the specified string.

Return Returns a numeric value.

Example LocalVars TheLength

// Calculates length of the string

TheLength = StrLength(“This is a test”)

QT Version 5.0 or later

See also StrCompare, StrConcat, SubString

StrCompare String Functions

Syntax StrCompare(string1, string2,
caseSensitive, diacSensitive)

string1 A string literal or variable specifying the first input string.

string2 A string literal or variable specifying the second input

string.

caseSensitive A boolean literal or variable specifying if the strings are to

be compared in a case sensitive manner.

diacSensitive A boolean literal or variable specifying if special handling

for diacritical marks and special characters is to be used.

Description This function compares the two input strings and returns

TRUE if the two strings are the same. Set

caseSensitive to TRUE if you want to find an exact

match. Set diacSensitive to TRUE if you are working

with strings containing diacritical marks and special

characters.

36 Functions

•
•
•
•
•
•

Return Returns a boolean value.

Example LocalVars theSame

// Compares the two supplied strings

theSame = StrCompare(“String1”, “STRING1”,

 TRUE, FALSE)
// theSame contains FALSE as the two strings are
// not the same using case sensitive comparison

QT Version 5.0 or later

See also StrConcat, StrLength, SubString

StrConcat String Functions

Syntax StrConcat(string1, string2)

string1 A string literal or variable specifying the first input string.

string2 A string literal or variable specifying the second input

string.

Description This function returns the concatenation of input strings.

Return Returns a string value.

Example LocalVars theString

// Concatenate two strings

SetString(theString,

StrConcat(“Part 1 “, “Part 2”))

// theString now contains the string

// “Part 1 Part 2”

QT Version 5.0 or later

See also StrCompare, StrLength, SubString

Functions 37
•
•
•
•
•
•

SubString String Functions

Syntax SubString(string, offset, length)

string A string literal or variable specifying the input string.

offset A numeric literal or variable specifying the offset from the

beginning of the string where the substring starts.

length A numeric literal or variable specifying the length of the

substring.

Description This function returns a portion of the input string. The

portion returned is controlled by the parameters offset

and length.

Return Returns a string containing the specified substring.

Example LocalVars theSub

// Get the first 2 characters of the string

SetString(theSub, SubString(“Hi there?”, 0, 2))

// theSub contains “Hi”

QT Version 5.0 or later

See also StrCompare, StrConcat, StrLength

38 Functions

•
•
•
•
•
•

39

•
•
•
•
•
•

Properties and Actions

When you script in LiveStage Professional, you are working with QuickTime

Objects such as Movies, Tracks, Samples, etc.

The way to access these QuickTime Objects is via Properties and Actions.

Properties

A property is a characteristic of an object. A car has a color, engine size, top speed.

These are all properties of the car. Most properties of objects in QuickTime movies

can only be changed by executing actions. They cannot be changed by assigning

values directly to the properties.

Here is the syntax for accessing a Property of a QuickTime Object in QScript:

target.property [(parameters...)]

target This is the specification indicating which

QuickTime Object the property is attached to.

. A . separates the two parts of the property access

syntax. This is the standard syntax for object

property access for contemporary scripting

languages.

property This is the name of the property that you want to

access.

[(parameters...)] Some properties accept parameters. These
parameters must be placed between parentheses at
the end of the property access statement.

40 Properties and Actions

•
•
•
•
•
•

Here are some examples of property access statements:

ThisMovie.MovieTime // Accesses the current movie time

SpriteOfIndex(1).ID // Accesses the sprite ID of the first sprite

You can use a property in any place that you would normally use a number. For

example:

LocalVars theMovieTime
// Save the current movie time in a local variable
theMovieTime = ThisMovie.MovieTime
// Goto the latest downloaded time in the movie
ThisMovie.GotoTime(ThisMovie.MaxLoadedTimeInMovie)

You can also use them in expressions. For example:

If (ThisMovie.MovieTime < ThisMovie.MaxLoadedTimeInMovie)
// Go to the latest downloaded time in the movie
// if we are not there already
EndIf

Properties and Actions 41
•
•
•
•
•
•

Actions

Action are commands issued to QuickTime Objects to direct them to perform a task.

Some Actions accept information in the form of parameters. Actions do not return a

result so they can not be used where you would normally use a number or a property.

Here is the syntax for accessing an Action of a QuickTime Object in QScript:

target.action [(parameters...)] [min(number)
max(number) wraparound]

target This is the specification indicating which

QuickTime Object the Action is attached to.

. A “.” separates the two parts of the action access

syntax. This is the standard syntax for object action

access for contemporary scripting languages.

action This is the name of the action that you want to

perform.

[(parameters...)] Some actions accept parameters. These parameters
must be placed between parentheses at the end of
the property access statement.

[min(number) max(number) wraparound]
Some Actions can have their parameters limited to a

range of values. This allows you to have a variable

contain the value and not have to check it to see if it

is in range. It also allows you to limit the range of

relative actions (those that end in “by”) so that the

resultant setting falls within the range. To do this

you need to add the optional min and max

keywords after the action. The ranges should be

enclosed in () and must be numeric literals or

constants and cannot be variables or expressions.

You can also add the wraparound keyword to any

relative action so that when the resultant setting

passes outside of its range it will then enter the

range at the opposite end. Actions that can use any

of these will show them in the syntax section of their

descriptions.

42 Properties and Actions

•
•
•
•
•
•

43

•
•
•
•
•
•

General Properties and Actions

The general Properties and Actions do not require that a target be specified. These

Properties and Actions accesses the properties and actions of the environment that

is playing the movie.

General Properties

ComponentVersion General Properties

Syntax ComponentVersion(type, subtype,
manufacturer)

type A string literal identifying the type of component.

subtype A string literal identifying the sub-type of the component.

manufacturer A string literal identifying the manufacturer of the

component.

Description This property returns the installed version number for the

component of the given type, subtype and manufacturer.

Each of the three parameters is a four character string literal.

Return Returns a numeric value indicating the installed version of

the component. Returns 0 if no component is installed.

Example If (ComponentVersion(“fire”, “”, “Appl”) > 2)

QT Version 4.0 or later

See also LoadComponent

44 General Properties and Actions

•
•
•
•
•
•

ConnectionSpeed General Properties

Syntax ConnectionSpeed

Description This property returns the speed of the current internet

connection in bits per second. A 14.4 modem speed would

be returned as 1400 for instance.

Return A numeric value indicating the speed of the current internet

connection in bits per second.

The following lists the connection speed reported for

various connection settings:

Setting Value

14.4 Kbps1400

28.8/33.6 Kbps2800

56 Kbps Modem/ ISDN5600

112 Kbps ISDN/DSL11200

256 Kbps ISDN/DSL25600

384 Kbps ISDN/DSL38400

512 Kbps ISDN/DSL51200

768 Kbps IDSN/DSL76800

1 Mbps Cable100000

1.5 Mbps T1150000

Internet/LAN2147483648

Example If (ConnectionSpeed < 28800)

QT Version 4.0 or later

See also

General Properties and Actions 45
•
•
•
•
•
•

CustomHandlerID General Properties

Syntax CustomHandlerID

Description This property returns a unique custom action handler ID.

Return A numeric value representing a unique custom action

handler ID.

Example

QT Version 5.0 or later

See also IsCustomHandlerOpen

IsCustomHandlerOpen General Properties

Syntax IsCustomHandlerOpen(handler_ID)

handler_ID A numeric value identifying the custom handler.

Description This property returns TRUE if the specified action handler

is open otherwise it returns FALSE.

Return Returns a boolean value of TRUE if the handler is open

otherwise it returns FALSE.

Example

QT Version 5.0 or later

See also CustomHandlerID

46 General Properties and Actions

•
•
•
•
•
•

GetEventKey General Properties

Syntax GetEventKey

Description This property returns the key code of the key that triggered

the KeyPressed Event.

Note: This property should only be used within the KeyPressed Event
handler otherwise the returned value may be invalid.

Key Code Defines
kReturnKeyCode
kEnterKeyCode
kTabKeyCode
kBackSpaceKeyCode
kDeleteKeyCode
kInsertKeyCode
kUpArrowKeyCode
kDownArrowKeyCode
kLeftArrowKeyCode
kRightArrowKeyCode
kEscapeKeyCode
kPageUpKeyCode
kPageDownKeyCode
kHomeKeyCode
kEndKeyCode

For key codes not defined in the above list, simply refer to
the key’s ASCII value.

Note: Do not use the Key String Defines with the GetEventKey property
as these constants define strings instead of key codes.

Return A numeric value indicating the key code when the
KeyPressed event was triggered.

Example LocalVars keyCode

keyCode = GetEventKey

QT Version 5.0 or later

See also GetEventMouseX, GetEventMouseY, GetEventModifiers,

GetEventScanCode

General Properties and Actions 47
•
•
•
•
•
•

GetEventModifiers General Properties

Syntax GetEventModifiers

Description This property returns the key modifiers at the time the

KeyPressed Event was triggered.

The following Modifier Key defines are available:

Modifier DefineMeaning
kModifierCommandKeyCommand key held
kModifierShiftKeyShift key held
kModifierAlphaLockCapsLock key held
kModifierOptionKeyOption key held
kModifierControlKeyControl key held
kModifierRightShiftKeyRight Shift key held
kModifierRightOptionKeyRight Option key held
kModifierRightControlKeyRight Control key held

The above modifier defines can be used together to specify

that two or more modifier keys are pressed at the same time

(i.e. kModifierCommandKey + kModifierShiftKey)

Note: This property should only be used within Mouse or Keyboard
Event handler otherwise the returned value may be invalid.

Return A numeric value indicating the key modifier state when the

Mouse or Keyboard event was triggered.

Example If (GetEventModifiers = (kModifierCommandKey +

kModifierShiftKey))

// Script executes only if the Command and Shift

// keys are pressed

EndIf

QT Version 5.0 or later

See also GetEventMouseY, GetEventModifiers, GetEventKey,

GetEventScanCode

48 General Properties and Actions

•
•
•
•
•
•

GetEventMouseX General Properties

Syntax GetEventMouseX

Description This property returns the X coordinate of the mouse when

the event was triggered. The coordinate returned is in the

coordinate space of the track.

Return A numeric value indicating the X position of the mouse.

Example LocalVars origMouseX

origMouseX = GetEventMouseX

QT Version 5.0 or later

See also GetEventMouseY, GetEventModifiers, GetEventKey,

GetEventScanCode

GetEventMouseY General Properties

Syntax GetEventMouseY

Description This property returns the Y coordinate of the mouse when

the event was triggered. The coordinate returned is in the

coordinate space of the track.

Return A numeric value indicating the Y position of the mouse.

Example LocalVars origMouseY

origMouseY = GetEventMouseY

QT Version 5.0 or later

See also GetEventMouseX, GetEventModifiers, GetEventKey,

GetEventScanCode

General Properties and Actions 49
•
•
•
•
•
•

GetEventScanCode General Properties

Syntax GetEventScanCode

Description This property returns the keyboard scan code of the key that

triggered the KeyPressed Event.

Note: This property should only be used within the KeyPressed Event
handler otherwise the returned value may be invalid.

Return A numeric value indicating the key scan code when the

KeyPressed event was triggered.

Example LocalVars scanCode

scanCode = GetEventScanCode

QT Version 5.0 or later

See also GetEventMouseX, GetEventMouseY, GetEventModifiers,

GetEventKey

GetMemoryFree General Properties

Syntax GetMemoryFree

Description This property returns the number of bytes of free memory

available.

Return A numeric value indicating the number of bytes of free

memory available.

Example LocalVars memoryFree

memoryFree = GetMemoryFree

QT Version 5.0 or later

See also

50 General Properties and Actions

•
•
•
•
•
•

GetNetworkStatus General Properties

Syntax GetNetworkStatus

Description This property returns the current Network Status.

The following Network Status defines are available:

Network StatusMeaning
kNoNetwork Network not available

kNotConnected Network available but not connected

kConnected Network available and connected

kUncertain Unknown Network availability

Return A numeric value indicating the Network Status.

Example If (GetNetworkStatus = kConnected)

// Launch URL only if already connect to

// to the network

GotoURL(“http://www.totallyhip.com”)

EndIf

QT Version 5.0 or later

See also

General Properties and Actions 51
•
•
•
•
•
•

GetSystemVersion General Properties

Syntax GetSystemVersion

Description This property returns the BCD (binary coded decimal)

encoded system version number.

Return A numeric value indicating the BCD encoded system

version number.

The following values are returned by various OS versions:

OS Value Returned
MacOS 8.x 2144

MacOS 9.x 2308

MacOS X 0

Windows 9x 65536

Windows NT 131072

Example

QT Version 5.0 or later

See also Version

GMTDay General Properties

Syntax GMTDay

Description This property returns the current day in GMT (Greenwich

mean time). The day is returned as a number from 1 to 31.

You can use this with the LocalDay property to determine

what time zone the user is in.

Return A numeric value specifying the current day in GMT.

Example LocalVars theDay

theDay = GMTDay

QT Version 4.0 or later

See also GMTMonth, GMTYear, LocalDay, LocalYear

52 General Properties and Actions

•
•
•
•
•
•

GMTHours General Properties

Syntax GMTHours

Description This property returns the current hour in GMT (Greenwich

mean time). The hour is returned as a number from 0 to 23.

You can use this with the LocalHours property to determine

what time zone the user is in.

Return A numeric value specifying the current hour in GMT.

Example LocalVars localHours

localHours = GMTHours

QT Version 4.0 or later

See also GMTMinutes, GMTSeconds, LocalHours, LocalMinutes,

LocalSeconds

GMTMinutes General Properties

Syntax GMTMinutes

Description This property returns the current minute in GMT

(Greenwich mean time). The minute is returned as a number

from 0 to 59. You can use this with the LocalMinutes

property to determine what time zone the user is in.

Return A numeric value specifying the current minute in GMT.

Example LocalVars localMins

localMins = GMTMinutes

QT Version 4.0 or later

See also GMTHours, GMTSeconds, LocalHours, LocalMinutes,

LocalSeconds

General Properties and Actions 53
•
•
•
•
•
•

GMTMonth General Properties

Syntax GMTMonth

Description This property returns the current month in GMT

(Greenwich mean time). The month is returned as a number

from 1 to 12. You can use this with the LocalMonth property

to determine what time zone the user is in.

Return A numeric value specifying the current month in GMT.

Example LocalVars theMonth

theMonth = GMTMonth

QT Version 4.0 or later

See also GMTDay, GMTYear, LocalDay, LocalMonth

GMTSeconds General Properties

Syntax GMTSeconds

Description This property returns the current second in GMT

(Greenwich mean time). The second is returned as a number

from 0 to 59.

Return A numeric value specifying the current seconds in GMT.

Example LocalVars localSeconds

localSeconds = GMTSeconds

QT Version 4.0 or later

See also GMTHours, GMTMinutes, LocalHours, LocalMinutes,

LocalSeconds

54 General Properties and Actions

•
•
•
•
•
•

GMTYear General Properties

Syntax GMTYear

Description This property returns the current year in GMT (Greenwich

mean time). The year is returned as a 4 digit number.

Return A numeric value specifying the current year in GMT.

Example LocalVars theYear

theYear = GMTYear

QT Version 4.0 or later

See also GMTDay, GMTMonth, LocalDay, LocalMonth

HandlerRef General Properties

Syntax HandlerRef

Description This property returns the ID of the sprite that is executing

this script. This is used when you create a sprite using the

MakeNewSprite action. When you call the MakeNewSprite

action you specify a sprite that contains the scripts for the

new sprite. When those scripts are executed for the new

sprite you can check this property to see what sprite is

executing them.

Return Numeric value that is the ID of the sprite executing this

script.

Example SpriteOfID(HandlerRef).SetVisible(FALSE)

QT Version 4.0 or later

See also MakeNewSprite

General Properties and Actions 55
•
•
•
•
•
•

IsRegistered General Properties

Syntax IsRegistered(version)

version A numeric literal or variable indicating the QuickTime

major version number to be tested (i.e. 5)

Description This property returns TRUE if the copy of QuickTime is

registered (i.e. QuickTime Pro).

Return Boolean value indicating TRUE if the specified version of

QuickTime Pro is being used.

Example If (IsRegistered(5))

// Script executes only if QT Pro version 5.x

// is begin used

EndIf

QT Version 5.0 or later

See also Registered

KeyIsDown General Properties

Syntax KeyIsDown(modifiers, key)

modifiers One of the modifier constants listed below.

key A string literal containing the key to be tested.

Description This property returns a boolean value of TRUE if the

keyboard key specified by the lowercase key is being held

down. Modifiers is used to specify keyboard modifier keys

(i.e. Shift key, Control key, etc.) that are held down in

conjunction with the key specified by key. Extra modifiers

can be pressed and TRUE will still be returned.

The following key string defines are available for

specialized keys:

Key String Define
kReturnKey
kTabKey
kDeleteKey

56 General Properties and Actions

•
•
•
•
•
•

kUpArrowKey
kDownArrowKey
kLeftArrowKey
kRightArrowKey
kDoubleQuoteCharacter
kLineFeedCharacter
kCRLFCharacters
kCRCharacter
kLFCharacter

Note: Don’t use these Key String Defines with the GetEventKey action.
This action works with key codes and not key strings.

The following modifier constants are available:

Key Modifier Flag Meaning
kNone No keyboard modifiers used

kOptionKey Option key held down

(Alt for Windows)

kShiftKey Shift key held down

kCommandKey Command key held down (Mac)

kControlKey Control key held down

kCapsLockKey Caps lock key held down

Note: Don’t use these Key Modifier Flags with the GetEventModifiers
action. This action works with a different set of key modifier flags
(see GetEventModifiers).

Multiple modifier constants can be specified by separating

them with the | operator .

Return Boolean value of TRUE if the specified key is held down,

FALSE otherwise.

General Properties and Actions 57
•
•
•
•
•
•

Example If (KeyIsDown(kNone, ‘a’) = TRUE)

// Script to execute if the “a” key is held down //

by itself

EndIf

If (KeyIsDown(kShiftKey, ‘a’) = TRUE)
// Script to execute if the “a” key is held down
// along with the shift key
EndIf

If (KeyIsDown(kShiftKey | kControlKey, ‘a’) = TRUE)
// Script to execute if the “a” key is held down
// along with the shift and control keys
EndIf

QT Version 3.0 or later

See also Boolean Literal, String Literal, Built-in Constants

LocalDay General Properties

Syntax LocalDay

Description This property returns the current day in local time. The day

is returned as a number from 1 to 31.

Return A numeric value specifying the current day in local time.

Example LocalVars localDayVar

localDayVar = LocalDay

QT Version 4.0 or later

See also GMTHours, GMTMinutes, LocalHours, LocalMinutes,

LocalSeconds

58 General Properties and Actions

•
•
•
•
•
•

LocalHours General Properties

Syntax LocalHours

Description This property returns the current hour in local time. The

hour is returned as a number from 0 to 23.

Return A numeric value specifying the current hour in local time.

Example LocalVars localHourVar

localHourVar = LocalHours

QT Version 4.0 or later

See also GMTMinutes, GMTHours, GMTSeconds, LocalMinutes,

LocalSeconds

LocalMinutes General Properties

Syntax LocalMinutes

Description This property returns the current minute in local time. The

minute is returned as a number from 0 to 59.

Return A numeric value specifying the current minute in local time.

Example LocalVars localMinutesVar

localMinutesVar = LocalMinutes

QT Version 4.0 or later

See also GMTMinutes, GMTHours, GMTSeconds, LocalMinutes,

LocalHours

General Properties and Actions 59
•
•
•
•
•
•

LocalMonth General Properties

Syntax LocalMonth

Description This property returns the current month in local time. The

month is returned as a number from 1 to 12.

Return A numeric value specifying the current month in local time.

Example LocalVars localMonthVar

localMonthVar = LocalMonth

QT Version 4.0 or later

See also GMTDay, GMTMonth, GMTYear, LocalDay, LocalYear

LocalSeconds General Properties

Syntax LocalSeconds

Description This property returns the current second in local time. The

second is returned as a number from 0 to 59.

Return A numeric value specifying the current second in local time.

Example LocalVars localSecondsVar

localSecondsVar = LocalSeconds

QT Version 4.0 or later

See also GMTMinutes, GMTHours, GMTSeconds, LocalMinutes,

LocalHours

60 General Properties and Actions

•
•
•
•
•
•

LocalYear General Properties

Syntax LocalYear

Description This property returns the current year in local time. The year

is returned as a 4 digit number.

Return A numeric value specifying the current year in local time.

Example LocalVars localYearVar

localYearVar = LocalYear

QT Version 4.0 or later

See also GMTDay, GMTMonth, GMTYear, LocalDay, LocalMonth

MouseButtonDown General Properties

Syntax MouseButtonDown

Description This property returns a boolean value of TRUE indicating

that the mouse button (left mouse button for Windows) is

pressed, otherwise it returns FALSE.

Return Boolean value of TRUE if the mouse button is pressed,

otherwise FALSE.

Example If (MouseButtonDown)

// do something when button is pressed

EndIf

QT Version 3.0 or later

See also Boolean Literal

General Properties and Actions 61
•
•
•
•
•
•

Platform General Properties

Syntax Platform

Description This property indicates what platform the movie is being

run on. Currently only the Macintosh and Windows

platforms are recognized.

Return A value of 1 is returned to indicate that the user is running

on a Macintosh and a value of 2 is returned to indicate that

they are running on a Windows machine.

Example If (Platform = 1)

 // its a Mac

EndIf

QT Version 4.0 or later

See also

Registered General Properties

Syntax Registered

Description This property returns TRUE if QuickTime is registered.

This means that the user has QuickTime Pro installed.

Return A boolean value of TRUE if QuickTime is registered

otherwise FALSE is returned.

Example If (Registered = TRUE)

 // do something

EndIf

QT Version 4.0 or later

See also IsRegistered, Version

62 General Properties and Actions

•
•
•
•
•
•

Subscription General Properties

Syntax Subscription(channel_name)

channel_name A string literal identifying the channel by its URL.

Description This property returns TRUE if the named channel is

currently subscribed to, otherwise it returns FALSE.

Channel subscriptions show up in the pull out tray in the

QuickTime player. Each channel is shown as an icon.

Return A boolean value of TRUE if the specified channel is

subscribed to otherwise FALSE is returned.

Example If (Subscription(“My Test Channel”) = TRUE)

QT Version 4.0 or later

See also AddSubscription, RemoveSubscription

TickCount General Properties

Syntax TickCount

Description This property returns the number of ticks (1/60 second) that

have elapsed since the machine was started. You can use this

for more accurate timing than you can get by using the idle

handler.

Return A numeric value specifying how many ticks (1/60 second)

have elapsed since the machine started up.

Example x = TickCount + 5

While (x > TickCount)

// do something for 5 ticks

EndWhile

QT Version 4.0 or later

See also

General Properties and Actions 63
•
•
•
•
•
•

Version General Properties

Syntax Version

Description This property returns the version of QuickTime installed.

You can use this to determine if you can execute QScripts

that require QuickTime 4 in order to work. You should only

use greater than or less than comparisons so that your scripts

will still work when a new version of QuickTime becomes

available.

Return A numeric value indicating QuickTime version number.

Example If (Version = 3)

// QuickTime 3

ElseIf (Version > 4)

// QuickTime version 4 or greater

EndIf

QT Version 4.0 or later

See also Registered

64 General Properties and Actions

•
•
•
•
•
•

General Actions

AddSubscription General Actions

Syntax AddSubscription(name, URL, pictures_URL)

name A string literal or variable containing the name of the

channel.

URL A string literal or variable containing the URL to the

channel.

pictures_URL A string literal or variable containing the URL to a picture

for the channel.

Description This action subscribes the user to the named channel with

the given URL. The name parameter designates what name

will be used for the subscription. The URL parameter refers

to the media which the user is subscribing to. The

pictures_URL parameter refers to a Gif image that is 33

x 28 pixels in size.

Example AddSubscription(“Hip”, “www.totallyhip.com”,

“www.totallyhip.com/channel.qif”)

QT Version 4.0 or later

See also String Literal, RemoveSubscription, SetString,

AppendString

General Properties and Actions 65
•
•
•
•
•
•

AppendString General Actions

Syntax AppendString(Variable_1, Variable_2,
Variable_Result)

Variable_1 A variable name as declared in a variable declaration.

Variable_2 A variable name as declared in a variable declaration.

Variable_Result A variable name as declared in a variable declaration.

Description This action sets the contents of the result variable to the

concatenation of Variable_1 and Variable_2. All three

parameters must be variable names.

Example LocalVars firstString, secondString

LocalVars resultString

SetString(firstString, “I am “)

SetString(secondString, “Locutous of Borg.”)

AppendString(firstString, secondString,

resultString)

In this case the result string will contain the string I am

Locutous of Borg.

QT Version 4.0 or later

See also String Literal, SetString

66 General Properties and Actions

•
•
•
•
•
•

ApplicationNumberAndString General Actions

Syntax ApplicationNumberAndString(number,
string)

number A numeric expression.

string A string literal or variable.

Description This action sends the number and string to the application

playing the movie.

Example The following statement causes the number 1 and the string

“Here I am !” to be sent to the application playing the

movie:

ApplicationNumberAndString(1, “Here I am!”)

QT Version 3.0 or later

See also Numeric Expression, String Literal, DebugStr

CloseThisWindow General Actions

Syntax CloseThisWindow

Description This action sends a message to the application playing the

movie (QuickTime Player) indicating that the current movie

window is to be closed.

Example

QT Version 5.0 or later

See also DisplayChannels, EnterFullScreen, ExitFullScreen,

SendAppMessage, SoftwareWasChanged

General Properties and Actions 67
•
•
•
•
•
•

DebugStr General Actions

Syntax DebugStr(message)

message A string literal or variable.

Description This action sends a string to the application playing the

movie. The parameter message contains the debug string to

send. The string can be no longer than 255 characters.

Example The following statement causes the string “Hello World!” to

be sent to the application playing the movie:

DebugStr(“Hello World!”)

QT Version 3.0 or later

See also String Literal, ApplicationNumberAndString

DisplayChannels General Actions

Syntax DisplayChannels

Description This action sends a message to the application playing the

movie (QuickTime Player) indicating that the QuickTime

TV channels should be displayed.

Example

QT Version 5.0 or later

See also CloseThisWindow, EnterFullScreen, ExitFullScreen,

SendAppMessage, SoftwareWasChanged

68 General Properties and Actions

•
•
•
•
•
•

EnterFullScreen General Actions

Syntax EnterFullScreen

Description This action sends a message to the application playing the

movie (QuickTime Player) indicating that the current movie

window is to enter full-screen mode.

Example

QT Version 5.0 or later

See also CloseThisWindow, DisplayChannels, ExitFullScreen,

SendAppMessage, SoftwareWasChanged

ExecuteAppleScript General Actions

Syntax ExecuteAppleScript(string)

string A string literal or variable that contains the text of the

AppleScript to execute.

Description This action is used only by LiveStage Professional at this

time. With it you can create Tool Movies that can be placed

in the Tools menu and used to control LiveStage

Professional.

Example ExecuteAppleScript(“quit”)

QT Version 4.0 or later

See also String Literal, Constants, SetString, AppendString

General Properties and Actions 69
•
•
•
•
•
•

ExecuteGenericScript General Actions

Syntax ExecuteGenericScript(cmd, args)

cmd A string literal or variable containing the command.

args A string literal or variable containing the arguments to be

passed into the command being executed.

Description It is up to the application that is playing the QuickTime

movie to interpret this command.

Example The following statement causes the command “DoAction”

to be sent to the application playing the movie:

ExecuteGenericScript(“DoAction”, “argument”)

QT Version 4.1 or later

See also ExecuteVBScript, ExecuteJavaScript, ExecuteLingoScript

ExecuteJavaScript General Actions

Syntax ExecuteJavaScript(cmd, args)

cmd A string literal or variable containing the command.

args A string literal or variable containing the arguments to be

passed into the command being executed.

Description It is up to the application that is playing the QuickTime

movie to interpret this command.

Example The following statement causes the command “DoAction”

to be sent to the application playing the movie:

ExecuteJavaScript(“DoAction”, “argument”)

QT Version 4.1 or later

See also ExecuteGenericScript, ExecuteVBScript,

ExecuteLingoScript

70 General Properties and Actions

•
•
•
•
•
•

ExecuteLingoScript General Actions

Syntax ExecuteLingoScript(cmd, args)

cmd A string literal or variable containing the command.

args A string literal or variable containing the arguments to be

passed into the command being executed.

Description It is up to the application that is playing the QuickTime

movie to interpret this command.

Example The following statement causes the command DoAction

to be sent to the application playing the movie:

ExecuteLingoScript(“DoAction”, “argument”)

QT Version 4.1 or later

See also ExecuteGenericScript, ExecuteJavaScript,

ExecuteVBScript

ExecuteProjectorScript. General Actions

Syntax ExecuteProjectorScript(cmd, args)

cmd A string literal or variable containing the command.

args A string literal or variable containing the arguments to be

passed into the command being executed.

Description It is up to the application that is playing the QuickTime

movie to interpret this command.

Example The following statement causes the command “DoAction”

to be sent to the application playing the movie:

ExecuteProjectorScript(“DoSoAction“argument”)

QT Version 4.1 or later

See also ExecuteGenericScript, ExecuteJavaScript,

ExecuteLingoScript

General Properties and Actions 71
•
•
•
•
•
•

ExecuteVBScript General Actions

Syntax ExecuteVBScript(cmd, args)

cmd A string literal or variable containing the command.

args A string literal or variable containing the arguments to be

passed into the command being executed.

Description It is up to the application that is playing the QuickTime

movie to interpret this command.

Example The following statement causes the command “DoAction”

to be sent to the application playing the movie:

ExecuteVBScript(“DoAction”, “argument”)

QT Version 4.1 or later

See also ExecuteGenericScript, ExecuteJavaScript,

ExecuteLingoScript

ExitFullScreen General Actions

Syntax ExitFullScreen

Description This action sends a message to the application playing the

movie (QuickTime Player) indicating that the current movie

window is to exit full-screen mode and return to the window

mode.

Example

QT Version 5.0 or later

See also CloseThisWindow, DisplayChannels, EnterFullScreen,

SendAppMessage, SoftwareWasChanged

72 General Properties and Actions

•
•
•
•
•
•

GoToURL General Actions

Syntax GoToURL(URL)

URL A string literal or variable that contains the URL to go to.

Description The GoToURL action is used to get content from either a

Web Address (Internet/LAN) or local storage (CD-ROM or

hard disk, etc.). Although its name indicates that its primary

purpose is for Web Addresses there is a great deal of

functionality incorporated into this action for non Web

based operations.

By using the GoToURL action you can have the default

system Web Browser display the specified URL, target a

frame in your Web Page, launch the QuickTime (c) Player,

etc. One caveat regarding this action is that all file

specifications must be fully qualified (i.e. no referential

paths).

This example will launch the default Web Browser on the

target system and display the contents of the Totally Hip

Web Site.

GoToURL(“http://www.totallyhip.com”)

You can also target a specific frame in the Web Browser (if

it is already running) by using the following syntax:

GoToURL(“<URL>T<Frame>”)

Where Frame is the frame name.

To have QuickTime open the URL in a new window use the

following GoToURL call.

GoToURL(“<URL>T<_blank>”)

A variation on the above tells QuickTime to open the URL

in the QuickTime Player.

GoToURL(“<URL>T<QuickTimePlayer>”)

Another variation tells QuickTime to open the URL in the

Default Web Browser.

GoToURL(“<URL>T<webbrowser>”)

General Properties and Actions 73
•
•
•
•
•
•

To reference a file using the GoToURL action you would

enter a call using a file specification. The syntax for the call

is:

GoToURL(“file:///<filename>”)

Where filename is the platform specific file path. On the

Mac this is volume:folder:file and on Windows it is

volume:\folder\file.

Example The following statement causes the default Web Browser to

be launched and selects www.totallyhip.com to be the

current URL.

GotoURL(“http://www.totallyhip.com”)

The following statement causes the specified URL

(www.totallyhip.com) to be loaded into the specified Frame

(SideBar):

GotoURL(“<http://www.totallyhip.com>T<SideBar>”)

QT Version 3.0 or later

See also String Literal, SetString, AppendString, SetStatusString

74 General Properties and Actions

•
•
•
•
•
•

LoadComponent General Properties

Syntax LoadComponent(component)

component A numeric literal indicating the ID of the component to

load.

Description This action causes the specified component to be loaded by

QuickTime. This action initiates the loading of the specified

QuickTime component. ComponentVersion should be

called at a later time to ensure that the specified component

is loaded.

This action allows the management of the automatic

component download process provided by QuickTime 5.

Example

QT Version 5.0 or later

See also ComponentVersion

RemoveSubscription General Actions

Syntax RemoveSubscription(URL)

URL A string literal or variable containing the URL to the

channel.

Description This action removes the subscription from the specified

URL. The user must be subscribed to the specified URL

already, otherwise no action is performed.

Example RemoveSubscription(“http://www.totallyhip.com”)

QT Version 4.0 or later

See also String Literal, AddSubscription

General Properties and Actions 75
•
•
•
•
•
•

SendAppMessage General Actions

Syntax SendAppMessage(message)

message An integer expression indicating the application message ID

to send.

Description This action sends the specified message ID to the

application playing the movie.

Available application message IDs
kAppMsgSoftwareChanged
kAppMsgRequestWindowClose
kAppMsgRequestExitFullScreen
kAppMsgDisplayChannels
kAppMsgRequestEnterFullScreen

Note: All of the above message IDs causes the QuickTime Player to
perform the specified task. If you are not using QuickTime Player
(QT 5 or later) to play the movie, your results will vary depending
on the level of support offered by your player application.

Example SendAppMessage(kAppMsgRequestWindowClose)

// Tells QuickTime Player to close

QT Version 5.0 or later

See also DisplayChannels, EnterFullScreen, ExitFullScreen,

SoftwareWasChanged, WindowThisClose

76 General Properties and Actions

•
•
•
•
•
•

SetCursor General Actions

Syntax SetCursor(cursor_ID)

cursor_ID ID of the cursor to use.

Description This action sets the current cursor. The available cursor IDs

are as follows:

kQTCursorOpenHand
kQTCursorClosedHand
kQTCursorPointingHand
kQTCursorRightArrow
kQTCursorLeftArrow
kQTCursorDownArrow
kQTCursorUpArrow
kQTCursorArrow

Example SetCursor(kQTCursorPointingHand)

QT Version 4.0 or later

See also String Literal, Constants, SetString, AppendString

SetStatusString General Actions

Syntax SetStatusString(status, Flags)

status A string literal or variable that contains the status string.

Flags Flags for the status string.

Description This action instructs the QuickTime plug-in to display the

status string in the status area of the browser. The flags

should be set to kStatusURL to indicate that this status

string is a URL link. You can set it to kStatusStreaming if

the string is a streaming status.

Example SetStatusString(“Loading…”, kStatusURL)

QT Version 4.0 or later

See also String Literal, Constants, SetString, AppendString

General Properties and Actions 77
•
•
•
•
•
•

SetString General Actions

Syntax SetString(Variable, String)

Variable A variable name as declared in a variable declaration.

String A string literal or numeric expression that will be converted

to a string.

Description This action sets the contents of the variable to the provided

string or numeric expression converted to a string.

Example LocalVars myString

SetString(myString, “I am Locutous of Borg”)

QT Version 4.0 or later

See also String Literal, AppendString, SetStatusString

SoftwareWasChanged General Actions

Syntax SoftwareWasChanged

Description This action sends a message to the application playing the

movie (MoviePlayer) indicating that the installed

QuickTime software has been updated.

Example

QT Version 5.0 or later

See also CloseThisWindow, DisplayChannels, EnterFullScreen,

ExitFullScreen, SendAppMessage

78 General Properties and Actions

•
•
•
•
•
•

79

•
•
•
•
•
•

Movie Properties and Actions

Movie properties and actions require a movie target. If no movie target is specified

then the current movie is considered to be the target. You can specify a movie target

by using MovieNamed(name) or MovieOfID(id) and pass in either the name of the

movie or its ID. See the section on targets for a complete description and some

examples of how to specify a target.

Movie Properties

GetDuration Movie Properties

Syntax GetDuration

Description This property returns the duration of the movie in the time

scale of the movie (typically 600 units per second).

Return A numeric value representing the duration of the movie.

Example LocalVars movieLengthInSeconds

movieLengthInSeconds = GetDuration / GetTimeScale

// Calculate the length of the movie in seconds

QT Version 5.0 or later

See also GetTimeScale

80 Movie Properties and Actions

•
•
•
•
•
•

GetHeight Movie Properties

Syntax GetHeight

Description This property returns the height of the movie in pixels.

Return A numeric value representing the height of the movie.

Example

QT Version 5.0 or later

See also GetWidth

GetLoadState Movie Properties

Syntax GetLoadState

Description This property returns the current Load State of the movie.

The following defines are available for the different load

states:

Load State Define Meaning
kLoading Movie is still loading

kPlayable Movie is now playable

kPlaythroughOK Movie has cached enough data to

play through to the end

kComplete Movie is completely loaded

kLoadStateError Load error

Return A numeric value indicating the Load State of the movie.

Example // Start playing the movie as soon as it is playable

If (GetLoadState = kPlayable AND MovieRate <> 0)

StartPlaying

EndIf

QT Version 5.0 or later

See also MaxLoadedTimeInMovie

Movie Properties and Actions 81
•
•
•
•
•
•

GetID Movie Properties

Syntax GetID

Description This property returns the ID of the movie. The movie ID of

a movie can be set in the Info tab of LiveStage Professional.

Return A numeric value indicating the ID of the movie.

Example LocalVars movieID

movieID = ThisMovie.GetID

// Retrieve the ID of the movie

QT Version 5.0 or later

See also GetName

GetName Movie Properties

Syntax GetName

Description This property returns the name of the movie. The movie

name of a movie can be set in the Info tab of LiveStage

Professional.

Return A string value indicating the name of the movie.

Example LocalVars movieName

movieName = ThisMovie.GetName

// Retrieve the name of the movie

QT Version 5.0 or later

See also GetID

82 Movie Properties and Actions

•
•
•
•
•
•

GetTimeScale Movie Properties

Syntax GetTimeScale

Description This property returns the Time Scale of the movie. This

value is typically 600 units per second. The value of all

movie and track durations are scaled by the Time Scale of

the movie.

For Example, a duration of 4 seconds in a movie with the

Time Scale of 600 would be represented as follows:

Scaled Duration = 4 seconds * 600 units per second = 2400

Return A numeric value representing the Time Scale of the movie.

Example LocalVars movieLengthInSeconds

movieLengthInSeconds = GetDuration / GetTimeScale

// Calculate the length of the movie in seconds

QT Version 5.0 or later

See also GetDuration

GetTrackCount Movie Properties

Syntax GetTrackCount

Description This property returns the number of tracks in the movie.

Return A numeric value indicating the number of tracks in the

movie.

Example LocalVars trackCount

// Disable all tracks in the movie

For trackCount = 1 to GetTrackCount

TrackOfIndex(trackCount).SetEnabled(FALSE)

Next

QT Version 5.0 or later

See also

Movie Properties and Actions 83
•
•
•
•
•
•

GetVariable Movie Properties

Syntax GetVariable(Address)

Address A numeric expression specifying the address of a movie

variable.

Description Gets the value of the variable that is located at the specified

address.

Movie variables (those variables created using MovieVars)

are stored within their own sprite track, nothing else is

placed into this track. This track always has the name

“Movie Variables” so that you can get and set variables in

this track from another movie. This allows for data transfer

from one movie to another.

The primary purpose of this command is to enable data

transfer between movies. Variables that specify an address

can be between the address range of 1 to 10,000. Non-

addressed variables are stored from the address 10,001 and

on.

To assign an address to a variable you would define it using

the following form:

MovieVars variable_name : address

The variable name is any valid identifier for your variable,

the address field will contain a number in the range of 1 —

10,000. This will ensure that variable is stored at that

location. The following gives an example of an array of 50

items which is located at address 200, thus the full address

range for the elements in the array would be 200 — 249.

MovieVars myArray[50]:200

Note that for more technical readers you may notice that you

can have variables defined in such a way that you actually

have different representations of your data. For example,

you can define two variables that access the same address

areas.

84 Movie Properties and Actions

•
•
•
•
•
•

MovieVars firstArray[50]:200

MovieVars secondVar:220

The example above creates two variables, the first being an

array containing 50 elements which are stored at address

200 on. The second variable points to address 220, thus

referring to item 21 in the array.

Return A value representing the content of the movie variable

specified.

Example x = MoveNamed(“Remote”).GetVariable(200)

QT Version 3.0 or later

See also SetVariable

GetWidth Movie Properties

Syntax GetWidth

Description This property returns the width of the movie in pixels.

Return A numeric value representing the width of the movie.

Example

QT Version 5.0 or later

See also GetHeight

IsMovieActive Movie Properties

Syntax IsMovieActive

Description This property returns TRUE if the movie is active.

Return A boolean value indicating the active state of the movie.

Example

QT Version 5.0 or later

See also

Movie Properties and Actions 85
•
•
•
•
•
•

MaxTimeLoadedInMovie Movie Properties

Syntax MaxLoadedTimeInMovie

Description This property returns an integer indicating the amount of the

movie that has been downloaded so far. The value returned

is in terms of the time scale of the movie (usually 600). To

calculate the loaded time in seconds, divide the value

returned by the time scale of the movie (usually 600).

Return Numeric value indicating the loaded time of the movie

using the time scale of the movie.

Example If (MaxTimeLoadedInMovie > SampleNamed(“My

Sample”).StartTime)

// Script executes only when the

// MaxTimeLoadedInMovie is greater than the

// start time of the Sample named “My Sample”

EndIf

QT Version 4.0 or later

See also MovieTime, GotoTime

MovieIsLooping Movie Properties

Syntax MovieIsLooping

Description This property returns a boolean value of TRUE if the movie

is set to loop when it reaches the end otherwise it returns

FALSE.

Return Boolean value of TRUE if the movie is set to loop otherwise

returns FALSE.

Example If (MovieIsLooping = TRUE)

// Script executes only when the movie is looping

EndIf

QT Version 3.0 or later

See also Boolean Literal, SetLoopingFlag

86 Movie Properties and Actions

•
•
•
•
•
•

MovieLoopIsPalindrome Movie Properties

Syntax MovieLoopIsPalindrome

Description This property returns a boolean value of TRUE if the movie

is set to loop in a palindrome mode otherwise it returns

FALSE. Palindrome looping mode plays the movie to the

end then plays it backwards until the beginning then repeats

the cycle.

Return Boolean value of TRUE if the loop mode of the movie is

Palindrome otherwise FALSE is returned.

Example If (MovieLoopIsPalindrome = TRUE)

// Script executes only when loop mode is

// Palindrome

EndIf

QT Version 3.0 or later

See also Boolean Literal, SetLoopingFlag

Movie Properties and Actions 87
•
•
•
•
•
•

MovieRate Movie Properties

Syntax MovieRate

Description This property returns the current playback rate of a movie.

The value returned is in terms of the normal playback speed

of the movie. Negative values indicate that the movie is

playing backward. The following lists the meaning of

possible Movie Rate values.

Movie Rate Meaning

1.0 Playing forward at normal speed.

0 Stopped.

-1.0 Playing backward at normal speed.

1.5 Playing forward at 1.5x normal speed.

-4.0 Playing backward at 4x normal speed.

Return Signed numeric value indicating the current playback rate

of the movie.

Example LocalVars theRate

theRate = MovieRate

QT Version 3.0 or later

See also SetRateTo, SetRateBy, StartPlaying, StopPlaying

88 Movie Properties and Actions

•
•
•
•
•
•

MovieTime Movie Properties

Syntax MovieTime

Description This property returns an integer indicating the current time

of the movie. The value returned is in terms of the time scale

of the movie (usually 600). To calculate the movie time in

seconds, divide the value returned by the time scale of the

movie (usually 600).

Return Numeric value indicating the current time of the movie

using the time scale of the movie.

Example If (MovieTime > SampleNamed(“My Sample”).StartTime)

// Script executes only when MovieTime is later

// than the start time of the Sample

// named “My Sample”

EndIf

QT Version 3.0 or later

See also GotoTime

MovieVolume Movie Properties

Syntax MovieVolume

Description This property returns the current volume level of a movie.

The value returned is between 0 and 255 with 0 indicating

silence and 255 indicating maximum volume. The volume

settings of the individual tracks are all proportional to this

master volume setting.

Return Numeric value between 0 and 255.

Example LocalVars theVolume

theVolume = MovieVolume

QT Version 3.0 or later

See also TrackVolume, SetMovieVolume

Movie Properties and Actions 89
•
•
•
•
•
•

Movie Actions

GetMovieURL Movie Actions

Syntax GetMovieURL(string_var)

string_var The name of a variable to receive the string value for the

URL.

Description This action retrieves the URL of the movie placing it in the

variable specified by the parameter string_var.

Obsolete - use GetParentMovieURL instead.

Example LocalVars theMovieURL

GetMovieURL(theMovieURL)

QT Version 4.0 or later

See also GotoURL, SetString, AppendString

GetParentMovieURL Movie Actions

Syntax GetParentMovieURL(string_var)

string_var This is the name of a string variable to receive the URL for

the parent movie.

Description This action retrieves the URL of the parent movie that

contains this child movie issuing the command. You can

then use this string to build a new URL relative to the parent

movie in order to load in other assets.

Example LocalVars urlString

GetParentMovieURL(urlString)

QT Version 4.1 or later

See also GetRootMovieURL

90 Movie Properties and Actions

•
•
•
•
•
•

GetRootMovieURL Movie Actions

Syntax GetRootMovieURL(string_var)

string_var This is the name of a string variable to receive the URL for

the root movie.

Description This action retrieves the URL of the root movie. You can

then use this string to build a new URL relative to the root

movie in order to load in other assets.

Example LocalVars urlString

GetRootMovieURL(urlString)

QT Version 4.1 or later

See also GetParentMovieURL

GoToBeginning Movie Actions

Syntax GoToBeginning

Description This action rewinds a movie to its beginning.

Example The following statement causes the current movie to be

rewound to the beginning:

GoToBeginning

QT Version 3.0 or later

See also GoToEnd, GotoTime, MovieTime

Movie Properties and Actions 91
•
•
•
•
•
•

GoToEnd Movie Actions

Syntax GoToEnd

Description This action goes to the end of the movie.

Example The following statement causes the current movie to go to

the end:

GoToEnd

QT Version 3.0 or later

See also GoToBeginning, GotoTime, MovieTime

GoToTime Movie Actions

Syntax GoToTime(time)

Time A numeric expression indicating the time in 600ths of a

second. You can enter times in your scripts as mm:ss.hhh,

(minutes:seconds.fraction of a second in 600ths).

Description This action jumps to a new time in the movie. To specify a

movie time of 2 seconds, you would have to specify 1200 (2

seconds x 600 units per second or 00:02.000).

Example The following statements cause the current movie to jump

to the 10 second position:

GoToTime(6000)

GotoTime(0:10.0)

The following statements cause the current movie to jump

to the 5.5 second position:

GoToTime(600 * 5.5)
GotoTime(0:5.300)

QT Version 3.0 or later

See also GotoBeginning, GotoEnd, MovieTime

92 Movie Properties and Actions

•
•
•
•
•
•

GoToTimeByName Movie Actions

Syntax GoToTimeByName(name)

Name A string literal specifying the name of a chapter in the

movie.

Description This action causes a movie to jump to the time of a chapter

mark with the specified name.

In order to use this action the movie must have been created

with chapter marks.

Example The following statement causes the current movie to jump

to the Introduction chapter mark:

GoToTimeByName(“Introduction”)

QT Version 3.0 or later

See also GotoTime, GotoBeginning, GotoEnd, MovieTime

MovieChanged Movie Actions

Syntax MovieChanged

Description This action causes a notification to be sent to the application

playing the movie indicating that the movie has been

changed.

This notification would cause QuickTime Player to update

its state.

Example

QT Version 3.0 or later

See also

Movie Properties and Actions 93
•
•
•
•
•
•

PopAndGotoLabeledTime Movie Actions

Syntax PopAndGotoLabeledTime(label)

Label A string literal specifying the label of a saved time.

Description This action sets the current time of the movie to the time

specified by the label. No action is performed if there is no

time that matches the specified label.

Example PopAndGotoLabeledTime(“Intro Sequence”)

QT Version 3.0 or later

See also PushCurrentTime, PushCurrentTimeWithLabel,

PopAndGotoTopTime

PopAndGotoTopTime Movie Actions

Syntax PopAndGotoTopTime

Description This action sets the current time of the movie to the last

saved time.

Example PopAndGotoTopTime

QT Version 3.0 or later

See also PushCurrentTime, PushCurrentTimeWithLabel,

PopAndGotoLabeledTime

PushCurrentTime Movie Actions

Syntax PushCurrentTime

Description This action saves the current time of the movie. The time

may be retrieved later with the PopAndGotoTopTime and

PopAndGotoLabeledTime commands.

Example PushCurrentTime

QT Version 3.0 or later

See also PushCurrentTimeWithLabel, PopAndGotoTopTime,

PopAndGotoLabeledTime

94 Movie Properties and Actions

•
•
•
•
•
•

PushCurrentTimeWithLabel Movie Actions

Syntax PushCurrentTimeWithLabel(label)

Label A string literal specifying the label for this saved time.

Description This action saves the current time of the movie and attaches

a label to it so that it may be referred to by name at some

later point.

Example PushCurrentTimeWithLabel(“Intro Sequence”)

QT Version 3.0 or later

See also PushCurrentTime, PopAndGotoTopTime,

PopAndGotoLabeledTime

SetLanguage Movie Actions

Syntax SetLanguage(language)

Language A numeric expression indicating the language to use.

Ranges from 0 (English) to 150 (Greenlandic).

Description This action sets the current language of the movie. This will

cause tracks with the same groups to have the track with the

matching language selected and enabled. If no track with the

correct language can be found then the language is not

changed.

Example SetLanguage(1) // set language to french

QT Version 3.0 or later

See also TrackEnabled

Movie Properties and Actions 95
•
•
•
•
•
•

SetLoopingFlags Movie Actions

Syntax SetLoopingFlags(flags)

Flags A numeric constant specifying the new looping flags.

Description This action sets the loop mode of a movie. The following are

possible loop mode settings and their associated define:

Define Loop Mode Description

kNoLoop Movie will play forward once and

stop.

kLoop Movie will play forward to the end

and then rewind and repeat.

kLoopPalindrome Movie will play forward to the end

then play backward until the

beginning is reached and then

repeat (ping pong).

Example The following statement causes the current movie to play

forever:

SetLoopingFlags(kLoop)

The following statement causes the current movie to play in

a ping pong fashion indefinitely:

SetLoopingFlags(kLoopPalindrome)

QT Version 3.0 or later

See also Defines, MoveIsLooping, MovieLoopIsPalindrome

96 Movie Properties and Actions

•
•
•
•
•
•

SetPlaySelection Movie Actions

Syntax SetPlaySelection(play)

Play A boolean literal of TRUE to indicate that only the selection

should play.

Description This action sets or clears the Play Selection mode of a

movie. The play parameter is either TRUE or FALSE.

A value of TRUE indicates that the movie will play only the

selection (see SetSelection and

SetSelectionByName. A value of FALSE will clear

the Play Selection mode and allow the entire movie to be

played.

Example The following statements will cause the selection from 2

seconds to 10 seconds in the current movie to be played:

SetSelection(0:2.0, 0:10.0)

SetPlaySelection(TRUE)

StartPlaying

QT Version 3.0 or later

See also SetSelection, TogglePlaySelection

Movie Properties and Actions 97
•
•
•
•
•
•

SetRateBy Movie Actions

Syntax SetRateBy(rate)<MIN(number) MAX(number)
wraparound>

Rate A numeric expression indicating the change in rate for the

movie.

Description This action causes the playback speed of a move to be

altered by the specified amount relative to the current

playback rate. The parameter rate can be positive or

negative (see SetRateTo above).

Example The following statement causes the playback speed of the

current movie to increase by 1 full normal speed forwards:

SetRateBy(1)

QT Version 3.0 or later

See also SetRateTo, StartPlaying, StopPlaying, MovieRate

98 Movie Properties and Actions

•
•
•
•
•
•

SetRateTo Movie Actions

Syntax SetRateTo(rate)<MIN(number) MAX(number)>

Rate A numeric expression indicating the new rate for the movie.

Description This action sets the playback speed of a movie. The

parameter Rate supplies the desired playback rate of the

movie. The following lists some possible rate values and

their meaning:

Rate Meaning

0 Movie is stopped

1 Normal speed forward

-1 Normal speed in reverse

Example The following statement causes the current movie track to

play at normal speed forwards:

SetRateTo(1)

The following statement causes the current movie track to

play at double speed in reverse:

SetRateTo(-2)

The following statement causes the current movie track to

stop:

SetRateTo(0)

QT Version 3.0 or later

See also StartPlaying, StopPlaying, SetRateBy, MovieRate

Movie Properties and Actions 99
•
•
•
•
•
•

SetSelection Movie Actions

Syntax SetSelection(start, end)

Start A numeric expression indicating the start time of the

selection.

End A numeric expression indicating the end time of the

selection.

Description This action specifies a selection within a movie. The two

parameters specify the start and end times of the selection.

The time values are in terms of the time scale of the movie

(see GoToTime above).

Example The following statements cause a selection from 2 seconds

to 10 seconds to be marked as the selection in the current

i.e.:

SetSelection(2 * 600, 10 * 600)

SetSelection(0:2.0, 0:10.0)

QT Version 3.0 or later

See also SetSelectionByName, GoToTime, SetPlaySelection,

TogglePlaySelection

100 Movie Properties and Actions

•
•
•
•
•
•

SetSelectionByName Movie Actions

Syntax SetSelectionByName(start, end)

Start A string literal indicating the start time by specifying a

chapter name.

End A string literal indicating the end time by specifying a

chapter name.

Description This action specifies a selection within a movie. The two

parameters specify the chapter names of the beginning and

end of the selection.

In order to use this action, the movie must have been created

with chapter marks.

Example The following statement causes a selection from the

beginning of the “Introduction” to the beginning of the

“Chapter 4” to be marked as the selection in the current

movie:

SetSelectionByName(“Introduction”, “Chapter 4”)

QT Version 3.0 or later

See also SetSelection, SetPlaySelection, TogglePlaySelection

Movie Properties and Actions 101
•
•
•
•
•
•

SetVariable Movie Actions

Syntax SetVariable(Address, Value)

Address A numeric expression specifying the address of a movie

variable.

Value A numeric expression specifying the value to store.

Description Sets the value of the variable that is located at the specified

address.

For detailed information on how variable address work you

should refer to the GetVariable documentation.

The address parameter specifies an address value between 1

and 10,000. These are all of the movie variables in the

movie.

The Value parameter contains the value that you want to

store at the specified address.

Example MovieNamed(“My Movie”).SetVariable(8, 32)

Sets the variable at address 8 to the value of 32.

QT Version 3.0 or later

See also GetVariable

102 Movie Properties and Actions

•
•
•
•
•
•

SetVolumeBy Movie Actions

Syntax SetVolumeBy(volume)<MIN(number) MAX(number)
wraparound>

Volume A numeric expression from -256 to 256 indicating the

change in the volume setting.

Description This action alters the volume level of the movie by the

specified amount. The parameter Volume supplies the value

with which the volume level is changed up (positive value)

or down (negative value).

Example The following statement causes the volume level of the

movie to increase by 25:

SetVolumeBy(25)

QT Version 3.0 or later

See also Numeric Expression, SetVolumeTo, MusicVolume

SetVolumeTo Movie Actions

Syntax SetVolumeTo(volume)<MIN(number) MAX(number)>

Volume A numeric expression from -256 (off) to 256 (full volume)

indicating the new volume setting.

Description This action sets the volume level of the movie. The volume

level of each track can be adjusted separately. The volume

level of the movie controls the overall volume setting. A

setting of 0 or less will mute the sound. You can use negative

volume settings to keep track of the previous volume

setting.

Example The following statement causes the volume of the movie to

be turned off:

SetVolumeTo(0)

QT Version 3.0 or later

See also Numeric Expression, SetVolumeBy, MusicVolume

Movie Properties and Actions 103
•
•
•
•
•
•

StartPlaying Movie Actions

Syntax StartPlaying

Description This action causes the movie to start playing at normal

speed. It is a shortcut for SetRateTo(1.0).

Example StartPlaying

QT Version 3.0 or later

See also SetRateTo, StopPlaying, SetRateBy, MovieRate

StepBackward Movie Actions

Syntax StepBackward

Description This action steps a movie backward a pre-determined period

of time. The movie will always step backward to the start

time of the previous visual sample.

Example The following statement causes the current movie to be

stepped backward:

StepBackward

QT Version 3.0 or later

See also StepForward, MovieTime

104 Movie Properties and Actions

•
•
•
•
•
•

StepForward Movie Actions

Syntax StepForward

Description This action steps a movie forward a pre-determined period

of time. The movie will always step forward to the start time

of the next visual sample.

Example The following statement causes the current movie to be

stepped forward:

StepForward

QT Version 3.0 or later

See also StepBackward, MovieTime

StopPlaying Movie Actions

Syntax StopPlaying

Description This action causes the movie to stop playing. It is a shortcut

for SetRateTo(0).

Example StopPlaying

QT Version 3.0 or later

See also SetRateTo, SetRateBy, StartPlaying, MovieRate

Movie Properties and Actions 105
•
•
•
•
•
•

TogglePlaySelection Movie Actions

Syntax TogglePlaySelection

Description This action toggles the Play Selection mode of a movie. If

the current Play Selection mode of a movie is TRUE, calling

TogglePlaySelection will change this to FALSE and vice

versa.

Example The following statements will cause the current movie to

turn off the Play Selection mode:

SetPlaySelection(TRUE)

TogglePlaySelection

QT Version 3.0 or later

See also SetPlaySelection, SetSelection, SetSelectionByName

106 Movie Properties and Actions

•
•
•
•
•
•

107

•
•
•
•
•
•

Track Properties and Actions

Track properties need to have a track and movie target specified. If no movie target

is specified then the current movie is considered to be the target. You can specify a

movie target by using MovieNamed(name) or MovieOfID(id) and pass in either the

name of the movie or its ID. If no track target is specified then the track that contains

the object that is currently executing the script is considered to be the target. You can

specify a track target by using TrackNamed(name), TrackOfID(id),

TrackOfIndex(index) or TrackOfType(type). See the section on targets for a

complete description and some examples of how to specify a target.

Track Properties are available for all track types within a movie.

Track Properties

GetDuration Track Properties

Syntax GetDuration

Description This property returns the duration of the movie in the time

scale of the movie (typically 600).

Note: The ThisTrack target must be used in conjunction with the
GetDuration property in order to obtain the duration of the track.
By default, if no target is specified, GetDuration returns the
duration of the movie.

108 Track Properties and Actions

•
•
•
•
•
•

Return A numeric value representing the duration of the movie.

Example LocalVars trackLen

trackLen = TrackOfIndex(1).GetDuration /

GetTimeScale

// Calculate the duration of track 1 in seconds

QT Version 5.0 or later

See also GetTimeScale

GetHeight Track Properties

Syntax GetHeight

Description This property returns the height of the Track.

Note: An explicit track target (i.e. TrackOfIndex(1)) must be used in
conjunction with the GetHeight property in order obtain the height
of the track. By default, if no target is specified, GetHeight returns
the width of the movie.

Return A numeric value representing the height of the track.

Example LocalVars trackHeight

// Get the height of track 1

trackHeight = TrackOfIndex(1).GetHeight

QT Version 5.0 or later

See also GetWidth

Track Properties and Actions 109
•
•
•
•
•
•

GetID Track Properties

Syntax GetID

Description This property returns ID of the track. The ID of a track is

assigned when the movie is loaded and therefore cannot be

set explicitly.

Return A numeric value indicating the ID of the track.

Example LocalVars trackID

trackID = TrackOfIndex(1).GetID

// Retrieve the ID of track 1

QT Version 5.0 or later

See also GetTrackName

GetName Track Properties

Syntax GetName

Description This property returns name of the track. The name of a track

can be set in the Property Window of the track in LiveStage

Professional.

Return A string value indicating the name of the track.

Example LocalVars trackName

trackName = TrackOfIndex(1).GetName

// Retrieve the name of track 1

QT Version 5.0 or later

See also GetID

110 Track Properties and Actions

•
•
•
•
•
•

GetWidth Track Properties

Syntax GetWidth

Description This property returns the width of the Track.

Note: An explicit track target (i.e. TrackOfIndex(1)) must be used in
conjunction with the GetWidth property in order obtain the width
of the track. By default, if no target is specified, GetWidth returns
the width of the movie.

Return A numeric value representing the width of the track.

Example LocalVars trackWidth// Get the width of the track

trackWidth = TrackOfIndex(1).GetWidth

QT Version 5.0 or later

See also GetHeight

TrackEnabled Track Properties

Syntax TrackEnabled

Description This property returns a boolean value of TRUE if the track

is enabled otherwise FALSE is returned. Only enabled

tracks are processed by QuickTime. If a visual track (i.e.

sprite track, video track, picture track, etc...) is enabled, it is

displayed in the window of the movie. If an audible track

(i.e. MIDI track, Instrument track, etc...) is enabled, it is

played when the movie is played.

Return Boolean value indicating TRUE if the track is enabled

otherwise FALSE is returned.

Example If (TrackOfID(2).TrackEnabled)

QT Version 3.0 or later

See also Boolean Literal, SetEnabled, ToggleEnabled

Track Properties and Actions 111
•
•
•
•
•
•

Track Actions

SetEnabled Track Actions

Syntax SetEnabled(enable)

Enable A boolean expression resulting in TRUE to enable the track.

Description This action enables or disables a track. A disabled track will

not draw, make sounds or have any wired actions executed.

Example The following statement enables the track:

TrackOfID(2).SetEnabled(TRUE)

QT Version 3.0 or later

See also ToggleEnabled, TrackEnabled

ToggleEnabled Track Actions

Syntax ToggleEnabled

Description This action disables the track if it enabled or enables it if it

is disabled.

Example The following statement causes the state of the current track

to be inverted:

ToggleEnabled

QT Version 3.0 or later

See also SetEnabled, TrackEnabled

112 Track Properties and Actions

•
•
•
•
•
•

113

•
•
•
•
•
•

Sample Properties and Actions

The sample properties must have the sample target specified. The sample must exist

in the current document and must be in one of the built-in tracks types.

Sample Properties

EndTime Sample Properties

Syntax EndTime

Description Returns the end time of the sample. This value is calculated

only when the script is compiled. This means that you can

not pass in a string value to get the end time of a sample

while your script is running.

Example GoToTime(SampleNamed(“My Sample”).EndTime)

QT Version 3.0 or later

See also GotoTime, StartTime

StartTime Sample Properties

Syntax StartTime

Description Returns the end time of the sample. This value is calculated

only when the script is compiled. This means that you can

not pass in a string value to get the start time of a sample

while your script is running.

Example GoToTime(SampleNamed(“My Sample”).StartTime)

QT Version 3.0 or later

See also GotoTime, EndTime

114 Sample Properties and Actions

•
•
•
•
•
•

115

•
•
•
•
•
•

Spatial Track Properties and Actions

Spatial Track properties and actions need to have a track and movie target specified.

If no movie target is specified then the current movie is considered to be the target.

You can specify a movie target by using MovieNamed(name) or MovieOfID(id) and

pass in either the name of the movie or its ID. If no track target is specified then the

track that contains the object that is currently executing the script is considered to

be the target. You can specify a track target by using TrackNamed(name),

TrackOfID(id), TrackOfIndex(index) or TrackOfType(type). See the section on

targets for a complete description and some examples of how to specify a target.

Spatial Tracks are tracks that have a visual representation in the movie. Spatial Track

Properties and Actions are available for all spatial track targets. The built-in spatial

track types are as follows:

Color Track Sprite Track

Effect Track Text Track

Flash Track Video Track

Movie Track VR Track

Picture Track

116 Spatial Track Properties and Actions

•
•
•
•
•
•

Spatial Track Properties

CanBeFocus SpatialTrack Properties

Syntax CanBeFocus

Description This property returns a boolean value indicating True if the

target track can accept keyboard focus.

New for QuickTime 5, a number of QuickTime Track types

can process the KeyPressed event. These tracks are the

Flash, Text and Sprite tracks.

By setting the “Accept Focus” property for these tracks, the

KeyPressed event will be triggered when the user types on

the keyboard.

The CanBeFocus property returns the “Accept Focus”

state of the target track.

Returns Boolean value indicating True if the “Accept Focus”

property is set for the target track.

Example If (CanBeFocus = true)

// Do something if the track can receive focus

Endif

QT Version 5.0 or later

See also IsFocus, SetFocus, EatKeyPressedEvent

Spatial Track Properties and Actions 117
•
•
•
•
•
•

IsFocus SpatialTrack Properties

Syntax IsFocus

Description This property returns a boolean value indicating True if the

target track is the current keyboard focus.

New for QuickTime 5, a number of QuickTime Track types

can process the KeyPressed event. These tracks are the

Flash, Text and Sprite tracks.

The IsFocus property returns True if the target track has

keyboard focus.

Returns Boolean value indicating True if the target track has the

keyboard focus.

Example If (IsFocus = true)

// Do something if the track has keyboard focus

Endif

QT Version 5.0 or later

See also CanBeFocus, SetFocus, EatKeyPressedEvent

118 Spatial Track Properties and Actions

•
•
•
•
•
•

MouseHorizontal SpatialTrack Properties

Syntax MouseHorizontal

Description This property returns the current horizontal coordinate of

the mouse pointer in the coordinate space of the track. The

returned value is in pixels. Each time the MouseHorizontal

property is accessed, the actual current horizontal

coordinate of the mouse pointer is returned. This means that

the value returned can change while the script is executing.

In order to ensure that the same MouseHorizontal return

value is used throughout the script, first assign the value to

a local variable before using it in calculations.

Returns Numeric value indicating the horizontal coordinate of the

mouse pointer in pixels.

Example LocalVars curMouseX

curMouseX = MouseHorizontal

QT Version 3.0 or later

See also MouseVertical

MouseVertical SpatialTrack Properties

Syntax MouseVertical

Description This property returns the vertical coordinate of the mouse

pointer in the coordinate space of the track. The returned

value is in pixels. Each time the MouseVertical property is

accessed, the actual current vertical coordinate of the mouse

pointer is returned. This means that the value returned can

change while the script is executing. In order to ensure that

the same MouseVertical return value is used throughout the

script, first assign the value to a local variable before using

it in calculations.

Spatial Track Properties and Actions 119
•
•
•
•
•
•

Returns Numeric value indicating the vertical coordinate of the

mouse pointer in pixels.

Example LocalVars curMouseY

curMouseY = MouseVertical

QT Version 3.0 or later

See also MouseHorizontal

TrackHeight SpatialTrack Properties

Syntax TrackHeight

Description This property returns a numeric value indicating the height

in pixels of the track. If the track is a non-visual track then

0 is returned.

Returns Numeric value indicating the height of the track in pixels.

Example LocalVars value

value = TrackHeight

QT Version 3.0 or later

See also TrackWidth, ResetMatrix, ScaleMatrixBy

120 Spatial Track Properties and Actions

•
•
•
•
•
•

TrackLayer SpatialTrack Properties

Syntax TrackLayer

Description This property returns a numeric value indicating the visual

layer of the track. Tracks with a higher layer number are

drawn first. This means that tracks with a higher number

appear behind tracks with a lower layer number.

Returns Numeric value indicating the visual layer of a track.

Example LocalVars value

// Get the track layer of the current track

value = TrackLayer

// Get the track layer of the specified track

value = TrackOfID(4).TrackLayer

QT Version 3.0 or later

See also SetLayerTo, SetLayerBy

TrackWidth SpatialTrack Properties

Syntax TrackWidth

Description This property returns a numeric value indicating the width

in pixels of the track. If the track is a non-visual track then

0 is returned.

Returns Numeric value indicating the width of the track in pixels.

Example LocalVars value

value = TrackWidth

QT Version 3.0 or later

See also TrackHeight, ResetMatrix, ScaleMatrixBy

Spatial Track Properties and Actions 121
•
•
•
•
•
•

Spatial Track Actions

EatKeyPressEvent Spatial Track Actions

Syntax EatKeyEvent

Description This action prevents the KeyPress event from being sent

back to the application playing the movie.

New for QuickTime 5, a number of QuickTime Track types

can process the KeyPressed event. These tracks are the

Flash, Text and Sprite tracks.

This action is used with KeyPressed event handlers.

Example EatKeyEvent

// Indicate that the key was handled

QT Version 5.0 or later

See also CanBeFocus, IsFocus, SetFocus

MoveMatrixBy Spatial Track Actions

Syntax MoveMatrixBy(X,Y)

X,Y An integer constant that specifies the amount to move the

matrix by in the x and y plane.

Description This action moves the track by the amount specified by the

X and Y parameters.

Example MoveMatrixBy(10,10)

QT Version 4.0 or later

See also MoveMatrixBy, MoveMatrixTo, ResetMatrix,

ScaleMatrixBy, SetMatrixTo, SetMatrixBy

122 Spatial Track Properties and Actions

•
•
•
•
•
•

MoveMatrixTo Spatial Track Actions

Syntax MoveMatrixTo(X,Y)

X,Y An integer constant that specifies where to move the matrix

to in the x and y plane.

Description This action moves the track to the position specified by the

X and Y parameters. It will also reset all other matrix

settings to normal, thus losing all scaling and rotation that

may have been applied to the matrix.

Example MoveMatrixTo(10,10)

QT Version 4.0 or later

See also MoveMatrixBy, MoveMatrixTo, ResetMatrix,

RotateMatrixBy, ScaleMatrixBy, SetMatrixTo,

SetMatrixBy

ResetMatrix Spatial Track Actions

Syntax ResetMatrix

Description This action resets the display matrix of the track which

removes any Spatial transformations that have been applied

to it. This is a useful way to start the matrix in a known state

before applying rotations or other transformations to it.

Example ResetMatrix

QT Version 4.0 or later

See also MoveMatrixBy, MoveMatrixTo, RotateMatrixBy,

ScaleMatrixBy, SetMatrixTo, SetMatrixBy

Spatial Track Properties and Actions 123
•
•
•
•
•
•

RotateMatrixBy Spatial Track Actions

Syntax RotateMatrixBy(angle, xloc, yloc)

Angle A numeric literal or expression that specifies the amount to

rotate the matrix by.

xloc, yloc A numeric literal or expression that specifies the center of

rotation

Description This action rotates the track by the amount specified around

the point specified by xloc, yloc.

Example RotateMatrixBy(5, 0, 0)

QT Version 5.0 or later

See also MoveMatrixBy, MoveMatrixTo, ResetMatrix,

ScaleMatrixBy, SetMatrixTo, SetMatrixBy

ScaleMatrixBy Spatial Track Actions

Syntax ScaleMatrixBy(X,Y)

X,Y A numeric constant that specifies the amount to scale the

matrix by in the x and y plane.

Description This action scales the track by the amount specified by the

X and Y parameters.

Example ScaleMatrixBy(2,0.5)

QT Version 4.0 or later

See also MoveMatrixBy, MoveMatrixTo, ResetMatrix,

RotateMatrixBy, SetMatrixTo, SetMatrixBy

124 Spatial Track Properties and Actions

•
•
•
•
•
•

SetClipRegionTo Spatial Track Actions

Syntax SetClipRegionTo(region)

region A region specification provided by using the

#RegionFromImageFile or #RegionFromRect

preprocessor directives.

Description This action sets the clipping region of the spatial track. The

region parameter is supplied by the preprocessor

directives #RegionFromImageFile or
#RegionFromRect. For more information on these

preprocessor directives, please refer to the section on

Preprocessor Directives.

Example ThisTrack.SetClipRegionTo(

#RegionFromRect(0, 0, 100, 100))

// Sets the clipping region to the rectangle

// specified

QT Version 3.0 or later

See also #RegionFromImageFile, #RegionFromRect

SetFocus Spatial Track Actions

Syntax SetFocus

Description This action sets the keyboard focus to the target track.

New for QuickTime 5, a number of QuickTime Track types

can process the KeyPressed event. These tracks are the

Flash, Text and Sprite tracks.

Example SetFocus

// Direct the keyboard focus to the this track

QT Version 5.0 or later

See also CanBeFocus, IsFocus, EatKeyPressedEvent

Spatial Track Properties and Actions 125
•
•
•
•
•
•

SetGraphicsModeBy Spatial Track Actions

Syntax SetGraphicsModeBy(Mode, Red_Color,
Green_Color, Blue_Color) <MIN(number)
MAX(number) wraparound>

Mode A constant indicating one of the graphic modes to use.

Red_Color A numeric constant indicating the brightness of the red

component.

Green_Color A numeric constant indicating the brightness of the green

component.

Blue_Color A numeric constant indicating the brightness of the blue

component.

Description This action changes the graphic mode the track uses to

render itself, by the specified amount. The parameter Mode

is a predefined constant indicating the graphic mode to set

(see SetGraphicsModeBy or see Appendix II for a list of the

graphic mode constants).

The parameters Red_Color, Green_Color and Blue_Color

are numeric constants specifying the amount each primary

colors is to change by. You can not actually change the mode

by a relative amount, only its red, green and blue

components.

Example The following statement changes the red, green and blue

components of the graphic mode of the current track by

1000:

SetGraphicsModeBy(srcCopy, 1000, 1000, 1000)

QT Version 3.0 or later

See also Numeric Expression, SetGraphicsModeTo

126 Spatial Track Properties and Actions

•
•
•
•
•
•

SetGraphicsModeTo Spatial Track Actions

Syntax SetGraphicsModeTo(Mode, Red_Color,
Green_Color, Blue_Color) <MIN(number),
MAX(number) >

Mode A constant indicating one of the graphic modes to use.

Red_Color A numeric constant indicating the brightness of the red

component

Green_Color A numeric constant indicating the brightness of the green

component.

Blue_Color A numeric constant indicating the brightness of the blue

component.

Description This action sets the graphic mode the track uses to render

itself. See the list below or Appendix II - Drawing Mode

Reference.

Available Drawing Modes

srcCopy
srcOr
srcXor
srcBic
notSrcCopy
notSrcOr
notSrcXor
notSrcBic
blend
addPin
addOver
subPin
transparent
addMax
subOver
adMin
grayishTextOr
hilite
ditherCopy
graphicsModeStraightAlpha
graphicsModePreWhiteAlpha
graphicsModePreBlackAlpha

Spatial Track Properties and Actions 127
•
•
•
•
•
•

graphicsModeComposition
graphicsModeStraightAlphaBlend
graphicsModePreMulColorAlpha

Example The following statement causes the graphic mode to be set

to transparent using black as the transparent color:

SetGraphicModeTo(transparent, 0, 0, 0)

QT Version 3.0 or later

See also Numeric Expression, SetGraphicsModeBy

SetLayerBy Spatial Track Actions

Syntax SetLayerBy(layer) <MIN(number) MAX(number)
Wraparound>

layer A numeric expression indicating the amount to change the

layer by.

Description This action changes the visual layer of a track by the amount

specified. Tracks with a higher number layer will draw first.

This means that they will appear behind tracks with a lower

layer number.

Example SetLayerBy(1) Min(10) Max(20)

QT Version 3.0 or later

See also Numeric Expression, SetLayerTo, TrackLayer

128 Spatial Track Properties and Actions

•
•
•
•
•
•

SetLayerTo Spatial Track Actions

Syntax SetLayerTo(layer)<MIN(number) MAX(number) >

layer A numeric expression indicating the layer.

Description This action sets the visual layer of a track. Tracks with a

higher number layer will draw first. This means that they

will appear behind tracks with a lower layer number.

Example SetLayerTo(1)

QT Version 3.0 or later

See also Numeric Expression,. SetLayerBy, TrackLayer

SetMatrixBy Spatial Track Actions

Syntax SetMatrixBy(m1, m2, m3, m4, m5, m6, m7,
m8, m9)

m1... m9 Numeric literals specifying the values for the individual

cells of a 3x3 matrix

Description This action increments the matrix of the Spatial Track using

the 9 parameters supplied.

The 9 parameters are arranged in a 3x3 matrix as follows:

Col. 1 2 3

Row

1 m1 m2 m3
2 m4 m5 m6
3 m7 m8 m9

Example

QT Version 3.0 or later

See also MoveMatrixBy, MoveMatrixTo, ResetMatrix,

RotateMatrixBy, ScaleMatrixBy, SetMatrixTo

Spatial Track Properties and Actions 129
•
•
•
•
•
•

SetMatrixTo Spatial Track Actions

Syntax SetMatrixTo(m1, m2, m3, m4, m5, m6, m7,
m8, m9)

m1... m9 Numeric literals specifying the values for the individual

cells of a 3x3 matrix

Description This action sets the matrix of the Spatial Track using the 9

parameters supplied.

The 9 parameters are arranged in a 3x3 matrix as follows:

Col. 1 2 3

Row

1 m1 m2 m3
2 m4 m5 m6
3 m7 m8 m9

Example SetMatrixTo(1, 0, 0,

0, 1, 0,

0, 0, 1)

QT Version 3.0 or later

See also MoveMatrixBy, MoveMatrixTo, ResetMatrix,

RotateMatrixBy, ScaleMatrixBy, SetMatrixBy

130 Spatial Track Properties and Actions

•
•
•
•
•
•

131

•
•
•
•
•
•

Flash Track Properties and Actions

Flash Track properties and actions need to have a track and movie target specified.

If no movie target is specified then the current movie is considered to be the target.

You can specify a movie target by using MovieNamed(name) or MovieOfID(id) and

pass in either the name of the movie or its ID. If no track target is specified then the

track that contains the object that is currently executing the script is considered to

be the target. You can specify a track target by using TrackNamed(name),

TrackOfID(id), TrackOfIndex(index) or TrackOfType(type). See the section on

targets for a complete description and some examples of how to specify a target.

Flash Tracks are also Spatial Tracks as they have a visual representation within the

movie. Thus the Spatial Track Actions and Properties are also available for Flash

Track Targets (see the section on Targets).

132 Flash Track Properties and Actions

•
•
•
•
•
•

Flash Track Properties

GetFlashVariable Flash Track Properties

Syntax GetFlashVariable(path, name)

path A string specifying the path to the variable.

name A string specifying the name of the variable.

Description This property returns specified Flash Track variable.

Use the path string of ““ to specify the root path in the Flash

Track.

Return The value of the specified variable in the Flash Track.

Example MovieVars flashVar

flashVar = GetFlashVariable(““, “MyVar”)

// Get the Flash variable “MyVar”

QT Version 5.0 or later

See also SetFlashVariable

Flash Track Properties and Actions 133
•
•
•
•
•
•

Flash Track Actions

GoToFrameNamed Flash Track Actions

Syntax GoToFrameNamed(name)

Name A string literal indicating the name of the frame to go to.

Description This action goes to a labeled frame with the specified name

in the Flash Track. This is done by setting the current time

in the movie to the time of the named frame in the Flash

Track.

Example GoToFrameNamed(“Intro”)

QT Version 4.0 or later

See also GoToFrameNumber, MovieTime

GoToFrameNumber Flash Track Actions

Syntax GoToFrameNumber(frame)

Frame An integer expression indicating the frame number to go to.

Description This action goes to the frame with the specified frame

number in the Flash Track. This is done by setting the

current time in the movie to the time of the indicated frame

in the Flash Track.

Note: Flash frames are numbered starting with 0 so to go to the 10th
frame, you must specify the number 9.

Example GoToFrameNumber(12)

This example goes to the 13th frame in the Flash Track.

QT Version 4.0 or later

See also GoToFrameNamed, MovieTime

134 Flash Track Properties and Actions

•
•
•
•
•
•

PerformFlashClick Flash Track Action

Syntax PerformFlashClick(path, buttonID,
transition)

path A string literal or variable specifying the path to the button

buttonID A numeric literal or variable specifying the ID of the button.

transition A numeric literal or variable specifying the mouse transition

type.

Description This action simulates a mouse click within the Flash Track.

A simulated mouse click is sent to the specified button.

Transition specifies the mouse transition type to send

with the simulated mouse click:

Mouse Transition Defines Value

kIdleToOverUp 0

kOverUpToIdle 1

kOverUpToOverDown 2

kOverDownToOverUp 3

kOverDownToOutDown 4

kOutDownToOverDown 5

kOutDownToIdle 6

kIdleToOverDown 7

kOverDownToIdle 8

Use the path string of ““to specify the root path in the Flash

Track.

Example PerformFlashClick(““,100, 128)

// Simulate a button click on button ID 100

// in the Flash track

QT Version 5.0 or later

See also GetFlashVariable, SetFlashVariable

Flash Track Properties and Actions 135
•
•
•
•
•
•

SetFlashVariable Flash Track Actions

Syntax SetFlashVariable(path, name, value,
focus)

path A string literal or variable specifying the path to the

variable.

name A string literal or variable specifying the name of the

variable.

value A string literal or variable specifying the value to set the

Flash Variable to.

focus A boolean literal or variable specifying if the focus is to be

changed.

Description This action sets the specified Flash Track variable to the

value in the parameters.

Use the path string of ““ to specify the root path in the Flash

Track.

Example SetFlashVariable(““, “MyVar”, “1234”, FALSE)

// Set the Flash variable “MyVar” to “1234”

QT Version 5.0 or later

See also GetFlashVariable

136 Flash Track Properties and Actions

•
•
•
•
•
•

SetPan Flash Track Actions

Syntax SetPan(X_Percent, Y_Percent)

X_Percent An integer constant specifying the percent to pan the Flash

Track along the horizontal plane.

Y_Percent An integer constant specifying the percent to pan the Flash

Track along the vertical plane.

Description This action pans the Flash Track by the specified x and y

percentages.

Example SetPan(25, 45)

QT Version 4.0 or later

See also SetZoom

SetZoom Flash Track Actions

Syntax SetZoom(Zoom_Factor)

Zoom_Factor An integer constant specifying the amount to zoom the

Flash Track by.

Description This action zooms the Flash Track by the zoom factor.

Example SetZoom(10)

QT Version 4.0 or later

See also SetPan

Flash Track Properties and Actions 137
•
•
•
•
•
•

SetZoomRect Flash Track Actions

Syntax SetZoomRect(Left, Top, Right, Bottom)

Left An integer constant specifying the left edge of the rectangle

to zoom to.

Top An integer constant specifying the top edge of the rectangle

to zoom to.

Right An integer constant specifying the right edge of the

rectangle to zoom to.

Bottom An integer constant specifying the bottom edge of the

rectangle to zoom to.

Description This action zooms the Flash Track to the specified rectangle.

Example SetZoomRect(10, 10, 110, 100)

This example will set a display area in the track that is offset

10 pixels in on the X and Y axis from the top left corner and

is 100 pixels high and wide.

QT Version 4.0 or later

See also SetZoom

138 Flash Track Properties and Actions

•
•
•
•
•
•

139

•
•
•
•
•
•

Movie Track Properties and Actions

Movie Track properties and actions need to have a track and movie target specified.

If no movie target is specified then the current movie is considered to be the target.

You can specify a movie target by using MovieNamed(name) or MovieOfID(id) and

pass in either the name of the movie or its ID. If no track target is specified then the

track that contains the object that is currently executing the script is considered to

be the target. You can specify a track target by using TrackNamed(name),

TrackOfID(id), TrackOfIndex(index) or TrackOfType(type). See the section on

targets for a complete description and some examples of how to specify a target.

Movie Tracks are also Spatial Tracks as they have a visual representation within the

movie. Thus the Spatial Track Actions and Properties are also available for Movie

Track Targets (see the section on Targets).

Movie Track Actions

AddChildMovie Movie Track Actions

Syntax AddChildMovie(id, URL)

id A numeric expression indicating the ID for this new child

movie.

URL A string or string variable containing the URL for the child

movie.

Description This action adds a new child movie to the child movie list

for the movie track. This does not load the movie or start it

downloading. You only need to do this once for any

140 Movie Track Properties and Actions

•
•
•
•
•
•

particular URL. If you are not creating the URL

dynamically in your script, then you should add the URL to

the movie list when you create the movie track.

Example AddChildMovie(1000, “www.xcom.com/test.mov”)

QT Version 4.1 or later

See also LoadChildMovie

LoadChildMovie Movie Track Actions

Syntax LoadChildMovie(id)

id The ID is a numeric expression and must match an ID of a

previously loaded child movie, or one added to the movie

list when the movie track was created.

Description This action causes the child movie that matches the ID to

start loading. The movie will display and optionally start

playing when enough of it has downloaded. You should not

immediately start the movie playing since it will not have

started downloading. You should use

MaxLoadedTimeInMovie to determine when some of the

movie has downloaded before starting it playing. Keep in

mind that only one movie is loaded at a time. Once you load

a movie, then the previously loaded movie is released and

discarded.

Example LoadChildMovie(1000)

QT Version 4.1 or later

See also AddChildMovie

Movie Track Properties and Actions 141
•
•
•
•
•
•

LoadChildMovieWithQTList Movie Track Actions

Syntax LoadChildMovieWithQTList(id, XML)

id A numeric expression indicating the ID of the child movie.

XML A string literal or variable containing an XML formated

string specifying the new elements that are to be loaded.

Description This action loads the supplied XML string into the QTList of

the specified child movie in the target movie track.

Example LocalVars myXML

// Load myXML with XML formated text

TrackNamed(“Movies”).LoadChildMovieWithQTLIst

(1, myXML)

QT Version 5.0 or later

See also QTList

RestartAtTime Movie Track Actions

Syntax RestartAtTime(time, rate)

time A numeric literal indicating the in the child movie to start

playing from.

rate A numeric literal or expression for the playback rate.

Description This action plays the target child movie starting at the

specified time and rate.

Example // Play the child movie from the beginning

ChildMovieNamed(“MyChild”).RestartAtTime(0, 1.0)

QT Version 4.1 or later

See also

142 Movie Track Properties and Actions

•
•
•
•
•
•

143

•
•
•
•
•
•

Music Track Properties and Actions

Music Track properties and actions need to have a track and movie target specified.

If no movie target is specified then the current movie is considered to be the target.

You can specify a movie target by using MovieNamed(name) or MovieOfID(id) and

pass in either the name of the movie or its ID. If no track target is specified then the

track that contains the object that is currently executing the script is considered to

be the target. You can specify a track target by using TrackNamed(name),

TrackOfID(id), TrackOfIndex(index) or TrackOfType(type). See the section on

targets for a complete description and some examples of how to specify a target.

Track Actions and Properties are also available for Music Track targets (see the

section on Targets).

Music Track Actions

PlayNote Music Track Actions

Syntax PlayNote(Instrument, Delay, Pitch,
Velocity, Duration)

Instrument The index of the instrument in the first sample of the target

instrument track.

Delay The Delay parameter specifies a delay before the note starts

playing. This value is measured in the movies Time Scale.

A standard movie has a time scale of 600 so specifying 600

for your delay will create a 1 second delay.

Pitch The Pitch parameter specifies the note’s frequency. Values

ranging from 0 to 127 are accepted, a value of 60 will

produce a middle C, 59 is a middle B, etc.

Velocity The Velocity parameter specifies the volume the note is to

be played at. Values for this parameter range from 0 (no

sound) to 100 (full volume).

144 Music Track Properties and Actions

•
•
•
•
•
•

Duration The Duration parameter specifies the length of time the note

will play for. This parameter operates like the Delay

parameter. It is measured in the movies Time Scale. Note

that instruments that naturally decay may not be obviously

affected by this value.

Description This action plays a note using the specified Music

Instrument. The parameters Instrument, Delay, Pitch,

Velocity and Duration are all Numeric Expressions

specifying how the note is to be played.

Musical instruments are added to a LiveStage Professional

project through the Instrument Media Sample window. To

add an instrument to the LiveStage Professional project,

click on the Add Built-in button at the bottom of the

Instrument Media Sample window. An instrument selection

dialog will be displayed allowing you to selection a MIDI

style instrument. You may also add digital audio clips as

instruments by dragging them into the instruments list in the

Instrument Media Sample window.

Example The following statement causes the note Middle C to be

played using the first musical instrument in the track named

Instruments 1 at half volume.

TrackNamed(“Instruments 1”).PlayNote(1, 0, 60, 100,

1000)

QT Version 3.0 or later

See also Numeric Expression, SetController

Music Track Properties and Actions 145
•
•
•
•
•
•

SetController Music Track Actions

Syntax SetController(Sample, Instrument, Delay,
Controller, Value)

Sample The index of the sample of the target instrument track that

contains the instrument to be altered.

Instrument The index of the instrument in the sample of the target

instrument track that is to be altered.

Delay The Delay parameter specifies a delay before the

SetController action takes place. This value is measured in

the movies Time Scale. A standard movie has a time scale

of 600 so specifying 600 for your delay will create a 1

second delay.

Controller A numeric constant indicating the controller to modify.

Value A numeric expression. This value has a different meaning

for each controller.

Description Controllers are used to modify the playback of an

instrument. They can adjust characteristics such as Pitch,

Blend, Pan, Reverb, etc. The setting of a controller is

performed by indicating the instrument to adjust, the

controller you want to modify and the value to set that

controller to.

Controller values control items such as pitch, blend and

reverb. The controller numbers used by QuickTime are

mostly identical to the standard MIDI controller numbers.

These are signed 8.8 values. The full range, therefore is —

128.00 to 127 + 127 / 128 (or 0x8000 to 0x7FFF). All

controls default to zero except for volume and pan. Pitch

bend is specified in fractional semitones, which eliminates

the restrictions of a pitch bend range. It can be bent as much

as desired, and whenever it is needed. The last 16 controllers

146 Music Track Properties and Actions

•
•
•
•
•
•

(113-128) are global controllers. Global controllers respond

when the part number is given as 0, indicating the entire

synthesizer.

List of Controller Definitions

kControllerModulationWheel
kControllerBreath
kControllerFoot
kControllerPortamentoTime
kControllerVolume
kControllerBalance
kControllerPan
kControllerExpression
kControllerLever1
kControllerLever2
kControllerLever3
kControllerLever4
kControllerLever5
kControllerLever6
kControllerLever7
kControllerLever8
kControllerPitchBend
kControllerAfterTouch
kControllerPartTranspose
kControllerTuneTranspose
kControllerPartVolume
kControllerTuneVolume
kControllerSustain
kControllerPortamento
kControllerSostenuto
kControllerSoftPedal
kControllerReverb
kControllerTremolo
kControllerChorus
kControllerCeleste
kControllerPhaser
kControllerEditPart
kControllerMasterTune
kControllerMasterTranspose
kControllerMasterVolume
kControllerMasterCPULoad
kControllerMasterPolyphony
kControllerMasterFeatures

Music Track Properties and Actions 147
•
•
•
•
•
•

Example

QT Version 3.0 or later

See also Numeric Expression, PlayNote

148 Music Track Properties and Actions

•
•
•
•
•
•

149

•
•
•
•
•
•

QD3D Object Properties and Actions

QD3D support in QuickTime is obsolete and may not be included in future releases

of QuickTime subsequent to version 5.0. MacOS X does not support QD3D objects.

QD3D Object Actions

RotateTo QD3D Object Actions

Syntax RotateTo(X, Y, Z)

X,Y,Z Numeric constants that specify the angles for each of the

three dimensions.

Description This action will rotate the object to a position in 3D space.

Example RotateTo(10.6, 0, 100)

QT Version 4.0 or later

See also TranslateTo, ScaleTo

150 QD3D Object Properties and Actions

•
•
•
•
•
•

ScaleTo QD3D Object Actions

Syntax ScaleTo(X, Y, Z)

X,Y,Z Numeric constants that specify the scale factors for each of

the three dimensions.

Description This action scales the object in 3D space by the amount

specified in X,Y,Z.

Example ScaleTo(0.5, 1, 1)

This example will scale the 3D object 50% on its width and

maintain full size in the Y and Z axis.

QT Version 4.0 or later

See also TranslateTo, RotateTo

TranslateTo QD3D Object Actions

Syntax TranslateTo(X, Y, Z)

X,Y,Z Numeric expression specifying the 3D position of the

object.

Description This action moves the object to the specified location in 3D

space.

Example TranslateTo(100, 100, 5)

This example will move the object to an X position of 100,

Y position of 100 and the Z position of 5.

QT Version 4.0 or later

See also ScaleTo, RotateTo

151

•
•
•
•
•
•

Sound Track Actions

Sound Track properties and actions need to have a track and movie target specified.

If no movie target is specified then the current movie is considered to be the target.

You can specify a movie target by using MovieNamed(name) or MovieOfID(id) and

pass in either the name of the movie or its ID. If no track target is specified then the

track that contains the object that is currently executing the script is considered to

be the target. You can specify a track target by using TrackNamed(name),

TrackOfID(id), TrackOfIndex(index) or TrackOfType(type). See the section on

targets for a complete description and some examples of how to specify a target.

Track Actions are also available for Sound Track targets (see the section on Targets).

Sound Track Properties

GetBass Sound Track Properties

Syntax GetBass

Description This property returns the current Bass setting of the target

sound track.

Returns Numeric value indicating the Bass setting of the sound

track.

Example LocalVars theBass

theBass = GetBass

QT Version 5.0 or later

See also SetBassTreble

152 Sound Track Actions

•
•
•
•
•
•

GetTreble Sound Track Properties

Syntax GetTreble

Description This property returns current Treble setting of the target

sound track.

Returns Numeric value indicating the Treble setting of the sound

track.

Example LocalVars theTreble

theTreble = GetTreble

QT Version 5.0 or later

See also SetBassTreble

TrackBalance Sound Track Properties

Syntax TrackBalance

Description This property returns the balance setting of the track. The

value returned is between –128 and 128. The value of –128

indicates that the balance is set to the left channel only while

a value of 128 indicates right channel only. A value of 0

indicates center balance.

Returns Numeric value indicating the balance setting of the track.

Example LocalVars theBalance

theBalance = TrackBalance

QT Version 3.0 or later

See also SetBalanceTo, SetBalanceBy

Sound Track Actions 153
•
•
•
•
•
•

TrackVolume Sound Track Properties

Syntax TrackVolume

Description This property returns the volume level of the track. The

value returned is between 0 (silence) and 255 (full volume).

This is different from MovieVolume since TrackVolume

returns only the volume of the specified track.

Returns Numeric value indicating the volume level of the track.

Example LocalVars theVolume

theVolume = TrackVolume

QT Version 3.0 or later

See also MovieVolume, SetVolumeTo, SetVolumeBy

154 Sound Track Actions

•
•
•
•
•
•

Sound Track Actions

SetBalanceBy Sound Track Actions

Syntax SetBalanceBy(balance)<MIN(number)
MAX(number) wraparound>

balance A numeric expression from –256 (left) to 256 (right)

indicating the change in sound balance from left to right for

the track.

Description This action alters the left to right balance of a track by the

specified amount. The parameter balance supplies the

amount the balance is to be altered by. A negative value will

shift the balance to the left while a positive value will shift

the balance to the right.

Example The following statement causes the balance of the current

track to shift to the left by 10%.

SetBalanceBy(-25)

QT Version 3.0 or later

See also Numeric Expression, SetBalanceTo, TrackBalance

Sound Track Actions 155
•
•
•
•
•
•

SetBalanceTo Sound Track Actions

Syntax SetBalanceTo(balance)

balance A numeric expression from –128 (left) to 128 (right)

indicating the sound balance from left to right for the track.

Description This action sets the sound balance for the track. The balance

can change from the left speaker at full volume and the right

speaker off all the way to the left speaker off and the right

speaker at full volume.

Example The following statement sets the left to right balance of the

current track to the center.

SetBalanceTo(0)

QT Version 3.0 or later

See also Numeric Expression, SetBalanceBy, TrackBalance

SetBassTrebleBy Sound Track Actions

Syntax SetBassTrebleBy(bass, treble)
<MIN(number) MAX(number) wraparound>

bass A numeric expression from -128 to 128 indicating the

amount to change the bass setting for the sound track by.

treble A numeric expression from -128 to 128 indicating the

amount to change the treble setting for the sound track by.

Description This action sets the Bass and Treble for the sound track.

Example The following statement sets the Bass of the sound track

sample by 10.

TrackNamed(“MySound”).SetBassTrebleBy(10, 0)

// Increase the bass setting by 10

QT Version 5.0 or later

See also GetBass, GetTreble, SetBassTrebleTo

156 Sound Track Actions

•
•
•
•
•
•

SetBassTrebleTo Sound Track Actions

Syntax SetBassTrebleTo(bass, treble)

bass A numeric expression from -128 to 128 indicating the

amount to change the bass setting for the sound track by.

treble A numeric expression from -128 to 128 indicating the

amount to change the treble setting for the sound track by.

Description This action sets the Bass and Treble for the sound track.

Example The following statement sets the Bass and Treble of the

sound track to neutral.

TrackNamed(“MySound”).SetBassTrebleTo(0, 0)

QT Version 5.0 or later

See also GetBass, GetTreble, SetBassTrebleBy

SetVolumeBy Sound Track Actions

Syntax SetVolumeBy(volume)<MIN(number)
MAX(number) wraparound>

Volume A numeric expression from -256 to 256 indicating the

change in the volume setting.

Description This action alters the volume level of the track by the

specified amount. The parameter Volume supplies the value

by which the volume level is changed up (positive value) or

down (negative value).

Example The following statement causes the volume level of the

current track to increase by 25:

SetVolumeBy(25)

QT Version 3.0 or later

See also Numeric Expression, SetVolumeTo, TrackVolume

Sound Track Actions 157
•
•
•
•
•
•

SetVolumeTo Sound Track Actions

Syntax SetVolumeTo(volume)<MIN(number)
MAX(number)>

Volume A numeric expression from -256 (off) to 256 (full volume)

indicating the new volume setting.

Description This action sets the volume level of the track. The volume

level of each track can be adjusted separately. The volume

level of the movie controls the overall volume setting. A

setting of 0 or less will mute the sound from the track. You

can use negative volume settings to keep track of the

previous volume setting.

Example The following statement causes the volume of the current

track to be turned off:

SetVolumeTo(0)

QT Version 3.0 or later

See also Numeric Expression, SetVolumeBy, TrackVolume

158 Sound Track Actions

•
•
•
•
•
•

159

•
•
•
•
•
•

Sprite Track Properties and Actions

Sprite Track properties and actions need to have a track and movie target specified.

If no movie target is specified then the current movie is considered to be the target.

You can specify a movie target by using MovieNamed(name) or MovieOfID(id) and

pass in either the name of the movie or its ID. If no track target is specified then the

track that contains the object that is currently executing the script is considered to

be the target. You can specify a track target by using TrackNamed(name),

TrackOfID(id), TrackOfIndex(index) or TrackOfType(type). See the section on

targets for a complete description and some examples of how to specify a target.

Sprite Tracks are also Spatial Tracks as they have a visual representation within the

movie. Thus the Spatial Track Actions and Properties are also available for Sprite

Track Targets (see the section on Targets).

Sprite Track Properties

GetIdleFrequency Sprite Track Properties

Syntax GetIdleFrequency

Description This property returns the idle frequency in movie time in

1/60 second increments.

Return Numeric value indicating the idle frequency.

Example LocalVars idleFreq

idleFreq = GetIdleFrequency

// Get the current track’s idle frequency

QT Version 5.0 or later

See also SetIdleFrequency

160 Sprite Track Properties and Actions

•
•
•
•
•
•

NumSprites Sprite Track Properties

Syntax NumSprites

Description This property returns the number of sprites in a sprite track.

If the track specified is not a sprite track then 0 is returned.

Return Numeric value indicating the number of sprites in the

specified sprite track.

Example IF (NumSprites > 100)

// Script executes only when the number of sprites is

// greater than 100

EndIf

QT Version 3.0 or later

See also MakeNewSprite, NewImages, SpriteOfIndex

NumImages Sprite Track Properties

Syntax NumImages

Description This property returns the number of images in a sprite track.

If the track specified is not a sprite track then 0 is returned.

Images are used by sprites to render their visual appearance.

Return Numeric value indicating the number of sprites in the

specified sprite track.

Example // Set the image of the current sprite to the

// last image in the sprite track

SetImageIndexTo(NumImages)

QT Version 3.0 or later

See also SetImageIndexTo, SetImageIndexBy, NumSprites

Sprite Track Properties and Actions 161
•
•
•
•
•
•

SpriteAtPoint Sprite Track Properties

Syntax SpriteAtPoint(x, y)

Description This property returns the ID of the sprite that is at the point

specified in the Sprite Track. The ID of the first sprite that

intersects this point (going from the topmost to the

bottommost sprite) is returned.

Return Numeric value indicating the ID the sprite that corresponds

to the supplied X,Y location.

Example

QT Version 5.0 or later

See also

162 Sprite Track Properties and Actions

•
•
•
•
•
•

Sprite Track Actions

MakeNewSprite Sprite Track Actions

Syntax MakeNewSprite(Sprite_ID, Handler_ID,
Image_Index, Visible, Layer)

Sprite_ID An integer expression specifying the ID of the new sprite.

Handler_ID An integer expression specifying the ID of the sprite that

will be used to handle events for the new sprite.

Image_Index An integer expression specifying the initial image index for

the new sprite.

Visible A boolean expression specifying the visible state of the new

sprite.

Layer An integer expression specifying the drawing layer for the

new sprite.

Description This action creates a new sprite with the given Sprite_ID.

The Handler_ID parameter indicates the sprite id of the

sprite that will contain the handlers for this sprite. Note that

you cannot use a sprite that was created with

MakeNewSprite as the handler sprite. When the new sprite

needs to handle an event, such as a Mouse Click event, the

sprite with the ID of Handler_ID will have its handler called

to handle the event. You can use the property

CustomHandlerID to get the ID of the new sprite that was

actually clicked on.

Example MakeNewSprite(100, 1, 3, TRUE, 1)

The above example will create a single sprite with the ID of

100 which uses sprite at ID 1 as its handler. The sprite will

use the image at index 3, is created visible and will be

placed on layer 1.

QT Version 4.0 or later

See also DisposeSprite, CustomHandlerID

Sprite Track Properties and Actions 163
•
•
•
•
•
•

DisposeSprite Sprite Track Actions

Syntax DisposeSprite(Sprite_ID)

Sprite_ID An integer expression specifying the ID of the sprite to

dispose of.

Description This action will dispose of the sprite that has the specified

ID. The sprite must have been previously created with

MakeNewSprite.

Example DisposeSprite(100)

The above example will dispose of the sprite that has ID

100.

QT Version 4.0 or later

See also MakeNewSprite

SetIdleFrequency Sprite Track Actions

Syntax SetIdleFrequency(frequency)

frequency An integer expression indicating the frequency of the idle

events in 1/60 second increments.

Description This action will change the idle frequency of the sprite

track. Idle Frequency determines how often the Idle Event

handlers are called by QuickTime.

Example SetIdleFrequency(1 * 60)

// Set the idle frequency of the track to once

// every second

QT Version 5.0 or later

See also

164 Sprite Track Properties and Actions

•
•
•
•
•
•

165

•
•
•
•
•
•

QTList Properties and Actions

A QTList is a flexible data storage mechanism that is attached to QuickTime Movies

and Tracks.

QTList Actions and Properties must be explicitly targeted when working with

QTLists attached to Tracks. The following targeting must be used when targeting

Tracks:

TrackNamed
TrackOfIndex
TrackOfType

QTList Actions and Properties without an explicit target will default to refer to the

QTList attached to the movie.

Please note that the target specifier ThisTrack does nothing when used with QTList

Actions and Properties and will always target the QTList of the movie.

QTLists can be used to store a wide variety of hierarchical information with a List

Enabled QuickTime Object. The data storage metaphor is similar to that of an XML

document. In fact, you can load all or part of a List using XML documents.

Elements in a QTList are addressed using a path string. The format of the path string

is as follows:

path_parent.path_child1.path_child2.path_child...

Each part of the path string is separated by a . character (similar to the Property

and Action access syntax). Each part of the path string specifies a branch in the

hierarchical structure of the list.

166 QTList Properties and Actions

•
•
•
•
•
•

For example, to access a particular date in a calendar, you would use the following

path:

year.2001.month.february.day.16

The above path string would be used to address a QTList Element for February 16,

2001. The List hierarchy for such a calendar list would look like this in XML format:

<year>
<2001>

<month>
<january>
</january>
<february>

<day>
<16>Some Data</16>

</day>
</february>
...

</month>
</2001>
...

</year>

The following is an example of how to create a List Element for February 14, 2001.

In the following examples, we will assume that the track we are using has the index

of 1:

TrackOfIndex(1).AddListElement(“year.2001.month.february.day”,
1, “14”)

In the above example, the path string of year.2001.month.february.day

specified the branch within the hierarchy of the QTList where the new element is to

be added. The 1 specified as the index indicates that the new element will be the first

element in this part of the hierarchy of the QTList. In the example hierarchy, the

index for the 16th would have been 1 prior to the new element being added. This

index changes to 2 after the element insertion.

Now that the new element has been added, you can now assign it a value:

TrackOfIndex(1).SetListElement(“year.2001.month.february.day.14”,
“Valentine’s Day”)

Executing the above line of script will set the element corresponding to February 14,

2001 to Valentine s Day .

QTList Properties and Actions 167
•
•
•
•
•
•

To retrieve the value of this element, use the following script:

LocalVars elementValue
elementValue = TrackOfIndex(1).GetListElementValue(

“year.2001.month.february.day.14”)

When the element is no longer needed, you can delete it using the following script:

elementValue = TrackOfIndex(1).RemoveListElements(
“year.2001.month.february.day”, 1, 1)

QTList Elements can also be accessed via their index number. For instance, in the

above example, To access the February element you can use the following path:

“year.2001.month[2]”

The [2] in the path designates the second element in the container element

month . You can thus iterate through the elements of the container element with a

FOR loop utilizing GetListElementCount to get the number of elements in the

container path (in this case year .2001.month). By assembling a path string that is

appended with [x] (where x is the index), you can step through each element.

QTLists can only be attached to List Enabled QuickTime Objects such as Movies

and Tracks. QTList properties and actions must be implicitly targeted as they do not

make use of default targets.

QTLists can be preloaded into the Movie and Tracks by utilizing the UI provided in

the Info Tab of the Document Window and in the Advanced Tab of the Track

Properties Dialogs.

168 QTList Properties and Actions

•
•
•
•
•
•

QTList Properties

GetListAsXML QTList Properties

Syntax GetListAsXML(path, start, end)

path A string literal or variable specifying the list path to the

element

start A numeric literal or variable specifying the first index

end A numeric literal or variable specifying the last index

Description This property returns an XML formatted string containing

the List elements specified by the path starting at index

start and ending with index end.

Note: The start and end index numbers must be within the valid
range of elements. Specifying an invalid index will cause an error.

Return An XML formatted string containing the list elements

specified.

Example LocalVars xmlString

LocalVars numElmt

numElmt = TrackOfIndex(1).GetListElementCount(

“year.2001.month.february.day”)

xmlString = TrackOfIndex(1).GetListAsXML(

“year.2001. month.february.day”,

1, numElemt)

// Get the XML string for all days in February

QT Version 5.0 or later

See also

QTList Properties and Actions 169
•
•
•
•
•
•

GetListElementCount QTList Properties

Syntax GetListElementCount(path)

path A string literal or variable specifying the list path to the

element.

Description This property returns the number of elements in the List

Element specified by the path.

Return A numeric value indicating the number of elements in the

specified List Element.

Example LocalVars numElmt

numElmt = TrackOfIndex(1).GetListElementCount(

“year.2001.month.february.day”)

// Get the number of days defined in February

QT Version 5.0 or later

See also

GetListElementName QTList Properties

Syntax GetListElementName(path, index)

path A string literal or variable specifying the list path to the

element.

index A numeric literal or variable specifying the index within the

specified element.

Description This property returns the name of element specified by the

path and index parameters.

Return A string value containing the name of the specified list

element.

Example LocalVars elmtName

SetString(elmtName,

TrackOfIndex(1).GetListElementName(

170 QTList Properties and Actions

•
•
•
•
•
•

“year.2001.month.february.day”, 1)

// Get the name of the first day in February

QT Version 5.0 or later

See also

GetListElementValue QTList Properties

Syntax GetListElementValue(path)

path A string literal or variable specifying the list path to the

element.

Description This property returns the value of the QTList Element

specified by the path.

Return A string value indicating the value stored in the specified

QTList Element.

Example LocalVars elmtValue

SetString(elmtValue,

TrackOfIndex(1).GetListElementValue(

“year.2001.month.february.day.14”))

// Get the value stored in February 14, 2001

QT Version 5.0 or later

See also

QTList Properties and Actions 171
•
•
•
•
•
•

QTList Actions

AddListElement QTList Actions

Syntax AddListElement(path, index, name)

path A string literal or variable indicating the list path to the

parent element for the new element.

index A numeric literal or variable specifying the index of the new

element to be added.

name A string literal or variable containing the name of the new

element.

Description This action adds a new list element at the specified location.

If the element addition is an insertion, all subsequent

elements with the same parent element are renumbered.

Example

QT Version 5.0 or later

See also

172 QTList Properties and Actions

•
•
•
•
•
•

ExchangeList QTList Actions

Syntax ExchangeList(URL, path)

URL A string literal or variable indicating the URL to send the

list to.

path A string literal or variable containing the list path to the

parent element.

Description This action calls the specified URL and sends the list

elements referred to by the parameter path as an XML

formatted parameter string. For example:

ExchangeList(“www.myurl.com/somecgi.cgi”, ““)

The above line of script will send the entire list converted to

XML format to the specified URL as a parameter:

www.myurl.com/somecgi.cgi
?qtlist=<qtlist> ... XML list content
... </qtlist>

Upon return, a List Received event is triggered for the track

which sent the ExchangeList action so that the received list

can be processed.

When the List Received event is triggered by a returned list

being sent by the server, the returned list is saved in the

temporary list of the event handler. To target the event s

local list, you must use the ThisEvent target specifier.

QTList Properties and Actions 173
•
•
•
•
•
•

The format or the local list of the List Received event is as

follows:

<event>

<listName>Name of the list</listName>

<list>

Contents of the returned list

...

</list>

</event>

Note: ExchangeList is an asynchronous action. This means that the
result of the ExchangeList action will not be available immediately
following the execution of the action. The completion of the
ExchangeList action is signaled by the triggering of the List
Received event in the target track.

Example // List Received Event Handler

MovieVars myList

SetString(myList, ThisEvent.GetListAsXML(

“event.list”, 1,

ThisEvent.GetListElementCount(“event.list”))

// Retrieve the returned list as an XML string

QT Version 5.0 or later

See also QueryListServer

174 QTList Properties and Actions

•
•
•
•
•
•

LoadListFromXML QTList Actions

Syntax LoadListFromXML(path, start, XML)

path A string literal or variable indicating the list path to the

parent element where the new elements from the XML

string is to be loaded.

start A numeric literal or variable specifying the index where the

new elements from the XML string is to be loaded.

XML A string literal or variable containing an XML formatted

string specifying the new elements that are to be loaded.

Description This action pastes the elements contained in the specified

XML formatted string into the list. The path and start

parameters specify the location where the new elements are

to be inserted.

Example

QT Version 5.0 or later

See also SetListFromURL

QTList Properties and Actions 175
•
•
•
•
•
•

QueryListServer QTList Actions

Syntax QueryListServer(URL, keyValuePairs,
flags, path)

URL A string literal or variable indicating the URL to send the

list to.

keyValuePairs A string literal or variable containing the key/value pairs to

be sent as parameters to the URL.

flags A numeric expression containing the flags used to control

the action taken.

path A string literal or variable containing the list path to the

parent element that will be sent as an XML parameter to the

URL.

Description This action calls the specified URL and sends the list

elements referred to by the parameter path as an XML

formatted parameter string. For example:

QueryListServer(“www.myurl.com/somecgi.cgi”,

“command=some_command“,

kListQuerySendListAsXML +

kListQuerySendListAsNameValuePairs,

““)

The above line of script will send the keyValuePairs

string as well as the entire list converted to XML format to

the specified URL as parameters. Here is what the above

action would generate as a complete URL from the supplied

parameters:

www.myurl.com/somecgi.cgi?command=some_
command
&qtlist=<qtlist> ... XML list content
... </qtlist>

176 QTList Properties and Actions

•
•
•
•
•
•

The available flags are as follows:

Flag Meaning
kListQuerySendListAsXML Send the list specified by

path as a parameter

kListQuerySendListAsKeyValuePairs

Send the string specified by

keyValuePairs as

parameters

kListQueryWantCallback Specify that a List Received

event is to be triggered by

returning data

kListQueryDebugTrace Send the complete URL

generated as a DebugStr to

the application running the

movie.

Note: These flags can be used together simply by adding them together
(e.g. kListQuerySendListAsXML +
kListQueryWantCallback will cause the supplied list to be
sent along with the URL. In addition, a List Received event will also
be received).

Also note neither keyValuePairs nor path are required.

Omitting the flags kListQuerySendListAsXML and

kListQuerySendListAsKeyValuePairs will

simply call the specified URL with no parameters.

Upon return, a List Received event is triggered for the track

which sent the QueryListServer action so that the received

list can be processed.

When the List Received event is triggered by a returned list

being sent by the server, the returned list is saved in the

temporary list of the event handler. To target the event’s

local list, you must use the ThisEvent target specifier.

QTList Properties and Actions 177
•
•
•
•
•
•

The format of the local list of the List Received event is as

follows:

<event>

<listName>Name of the list</listName>

<list>

Contents of the returned list

...

</list>

</event>

Note: QueryListServer is an asynchronous action. This means that the
result of the QueryListServer action will not be available
immediately following the execution of the action. The completion
of the QueryListServer action is signaled by the triggering of the
List Received event in the target track (if one is requested by using
the kListQueryWantCallback flag).

Example

QT Version 5.0 or later

See also ExchangeList

178 QTList Properties and Actions

•
•
•
•
•
•

RemoveListElement QTList Actions

Syntax RemoveListElement(path, start, end)

path A string literal or variable indicating the list path to the

parent element where the target elements are located

start A numeric literal or variable specifying the index of the first

element to be removed.

end A numeric literal or variable specifying the index of the last

element to be removed.

Description This action removes the specified elements from the

specified list path.

Example

QT Version 5.0 or later

See also

ReplaceListFromXML QTList Actions

Syntax ReplaceListFromXML(path, XML)

path A string literal or variable indicating the list path to the

parent element where the replacement operation is to take

place.

XML A string literal or variable containing an XML formatted

string containing element replacements.

Description This action replaces the elements within the specified parent

element (specified by path) with element names that

match those in the specified XML formatted string.

Example

QT Version 5.0 or later

See also

QTList Properties and Actions 179
•
•
•
•
•
•

SetListElement QTList Actions

Syntax SetListElement(path, value)

path A string literal or variable indicating the list path to the

element.

value A string literal or variable containing the new value of the

element.

Description This action sets the value of the specified QTList element.

Example

QT Version 5.0 or later

See also

SetListFromURL QTList Actions

Syntax SetListFromURL(URL, path)

URL A string literal or variable containing the URL where the

XML file is located.

path A string literal or variable indicating the list path to the

parent element where the new elements from the XML file

are to be loaded.

Description This action loads the elements contained in the specified

XML file into the list. The path parameters specify the

location where the new elements are to be inserted.

Note: SetListFromURL is a synchronous action. This means that the
action will complete its operation before proceeding to the next
command in the script (unlike asynchronous actions like
ExchangeList and QueryListServer).

Example SetListFromURL(“www.totallyhip.com/my.xml”, ““)

// Load the XML file “my.xml” to the root

// of the movie’s QTList

QT Version 5.0 or later

See also LoadListFromXML

180 QTList Properties and Actions

•
•
•
•
•
•

181

•
•
•
•
•
•

Sprite Properties and Actions

Sprite properties and actions need to have a sprite, track and movie target specified.

If no movie target is specified then the current movie is considered to be the target.

You can specify a movie target by using MovieNamed(name) or MovieOfID(id) and

pass in either the name of the movie or its ID. If no track target is specified then the

track that contains the object that is currently executing the script is considered to

be the target. You can specify a track target by using TrackNamed(name),

TrackOfID(id), TrackOfIndex(index) or TrackOfType(type). If no sprite target is

specified then the sprite executing the script is considered to be the target. You can

specify a sprite target by using SpriteNamed(name), SpriteOfID(ID) or

SpriteOfIndex(index). See the section on targets for a complete description and

some examples of how to specify a target.

Track and Spatial Track Properties and Actions are also available for Sprite Track

targets (see the section on Targets).

Sprite Properties

BoundsBottom Sprite Properties

Syntax BoundsBottom

Description As a sprite is moved, rotated, stretched and skewed, the

bounding rectangle of the sprite changes. BoundsBottom

returns the bottom of that bounding rectangle.

Return Numeric value indicating the bottom edge of the sprite.

Example If (BoundsBottom > 100)

QT Version 3.0 or later

See also MoveTo, MoveBy, BoundsLeft, BoundsRight, BoundsTop

182 Sprite Properties and Actions

•
•
•
•
•
•

BoundsLeft Sprite Properties

Syntax BoundsLeft

Description As a sprite is moved, rotated, stretched and skewed, the

bounding rectangle of the sprite changes. BoundsLeft

returns the left edge of that bounding rectangle.

Return Numeric value indicating the left edge of the sprite.

Example If (BoundsLeft > 100)

QT Version 3.0 or later

See also MoveTo, MoveBy, BoundsRight, BoundsTop,

BoundsBottom

BoundsRight Sprite Properties

Syntax BoundsRight

Description As a sprite is moved, rotated, stretched and skewed, the

bounding rectangle of the sprite changes. BoundsRight

returns the right edge of that bounding rectangle.

Return Numeric value indicating the right edge of the sprite.

Example If (BoundsRight > 100)

QT Version 3.0 or later

See also MoveTo, MoveBy, BoundsLeft, BoundsTop,

BoundsBottom

Sprite Properties and Actions 183
•
•
•
•
•
•

BoundsTop Sprite Properties

Syntax BoundsTop

Description As a sprite is moved, rotated, stretched and skewed, the

bounding rectangle of the sprite changes. BoundsTop

returns the top edge of that bounding rectangle.

Return Numeric value indicating the top edge of the sprite.

Example If (BoundsTop > 100)

QT Version 3.0 or later

See also MoveTo, MoveBy, BoundsLeft, BoundsRight,

BoundsBottom

FirstCornerX Sprite Properties

Syntax FirstCornerX

Description The corners of a sprite that is in its natural drawing state are

the top left corner (FirstCorner), top right corner

(SecondCorner), bottom right corner (ThirdCorner), and

bottom left corner (FourthCorner). Once the sprite has been

rotated and distorted, these corners will move to new

positions. FirstCornerX returns the current X coordinate of

the first corner.

Return Numeric value indicating the X coordinate of the first

corner.

Example If (FirstCornerX < 10)

QT Version 3.0 or later

See also ResetMatrix, Stretch

184 Sprite Properties and Actions

•
•
•
•
•
•

FirstCornerY Sprite Properties

Syntax FirstCornerY

Description The corners of a sprite that is in its natural drawing state are

the top left corner (FirstCorner), top right corner

(SecondCorner), bottom right corner (ThirdCorner), and

bottom left corner (FourthCorner). Once the sprite has been

rotated and distorted, these corners will move to new

positions. FirstCornerY returns the current Y coordinate of

the first corner.

Return Numeric value indicating the Y coordinate of the first

corner.

Example If (FirstCornerY < 10)

QT Version 3.0 or later

See also ResetMatrix, Stretch

FourthCornerX Sprite Properties

Syntax FourthCornerX

Description The corners of a sprite that is in its natural drawing state are

the top left corner (FirstCorner), top right corner

(SecondCorner), bottom right corner (ThirdCorner), and

bottom left corner (FourthCorner). Once the sprite has been

rotated and distorted, these corners will move to new

positions. FourthCornerX returns the current X coordinate

of the fourth corner.

Return Numeric value indicating the X coordinate of the fourth

corner.

Example If (FourthCornerX < 10)

QT Version 3.0 or later

See also ResetMatrix, Stretch

Sprite Properties and Actions 185
•
•
•
•
•
•

FourthCornerY Sprite Properties

Syntax FourthCornerY

Description The corners of a sprite that is in its natural drawing state are

the top left corner (FirstCorner), top right corner

(SecondCorner), bottom right corner (ThirdCorner), and

bottom left corner (FourthCorner). Once the sprite has been

rotated and distorted, these corners will move to new

positions. FourthCornerY returns the current Y coordinate

of the fourth corner.

Return Numeric value indicating the Y coordinate of the fourth

corner.

Example If (FourthCornerY < 10)

QT Version 3.0 or later

See also ResetMatrix, Stretch

GetSpriteName Sprite Properties

Syntax GetSpriteName

Description This property returns name of the sprite. The name of a

sprite can be set in the Sprite Track Sample Editor Window

in LiveStage Professional.

Return A string value indicating the name of the sprite.

Example LocalVars spriteName

spriteName = ThisSprite.GetSpriteName

// Retrieve the name of the sprite

QT Version 5.0 or later

See also ID

186 Sprite Properties and Actions

•
•
•
•
•
•

ID Sprite Properties

Syntax ID

Description This property returns a numeric value that uniquely

identifies the sprite. This is the value that would be supplied

to the Target specifier SpriteOfID. You can give your sprites

any ids that you desire and can use the id to do special

processing, like using the id to specify the pitch in the

PlayNote action.

Return Numeric value indicating the ID of the sprite.

Example SetImageIndexTo(ID) ̊

QT Version 3.0 or later

See also Targets, SpriteOfID

ImageIndex Sprite Properties

Syntax ImageIndex

Description This property returns the index of the image being used by

the sprite. Sprites use images to render their visual

appearance. Setting the image index to refer to another

image in the sprite track changes the appearance of the

sprite.

Return Numeric value indicating the image index being used by the

sprite.

Example If (ImageIndex = 3)

QT Version 3.0 or later

See also SetImageIndexTo, SetImageIndexBy, NumImages

Sprite Properties and Actions 187
•
•
•
•
•
•

ImageRegistrationPointX Sprite Properties

Syntax ImageRegistrationPointX

Description This property returns the X coordinate of the registration

point of the image used by the sprite. Each image in the

sprite track has a registration point. This value is the value

entered in the image property portion of the Images Tab in

the Sprite Sample editor window.

Return Numeric value indicating the X coordinate of the

registration point of the image being used by the sprite.

Example If (ImageRegistrationPointX = 0)

QT Version 3.0 or later

See also MoveTo, MoveBy

ImageRegistrationPointY Sprite Properties

Syntax ImageRegistrationPointY

Description This property returns the Y coordinate of the registration

point of the image used by the sprite. Each image in the

sprite track has a registration point. This value is the value

entered in the image property portion of the Images Tab in

the Sprite Sample editor window.

Return Numeric value indicating the Y coordinate of the

registration point of the image being used by the sprite.

Example If (ImageRegistrationPointY = 0)

QT Version 3.0 or later

See also MoveTo, MoveBy

188 Sprite Properties and Actions

•
•
•
•
•
•

Index Sprite Properties

Syntax Index

Description This property returns the index of the sprite. The index is the

order number of the sprite in the list of sprites in the sprite

track. This is the value that would be supplied to the Target

specifier SpriteOfIndex.

Return Numeric value indicating the index of the sprite in the sprite

list of the sprite track.

Example If (Index > 10)

QT Version 3.0 or later

See also Targets, SpriteOfIndex, NumSprites

IsVisible Sprite Properties

Syntax IsVisible

Description This property returns a boolean value of TRUE if the sprite

is visible otherwise FALSE is returned. Sprites that are not

visible still receive mouse events; they are just not drawn

when they are not visible.

Return Boolean value of TRUE if the sprite is visible otherwise

FALSE.

Example If (IsVisible = TRUE)

QT Version 3.0 or later

See also SetVisible, ToggleVisible

Sprite Properties and Actions 189
•
•
•
•
•
•

Layer Sprite Properties

Syntax Layer

Description This property returns a numeric value indicating the visual

layer of the sprite within the sprite track. Sprites with a

higher layer number are drawn first. This means that sprites

with a higher number appear behind sprites with a lower

layer number.

Return Numeric value indicating the layer of the sprite.

Example If (Layer < SpriteOfID(1).Layer)

QT Version 3.0 or later

See also SetLayerTo, SetLayerBy

SecondCornerX Sprite Properties

Syntax SecondCornerX

Description The corners of a sprite that is in its natural drawing state are

the top left corner (FirstCorner), top right corner

(SecondCorner), bottom right corner (ThirdCorner), and

bottom left corner (FourthCorner). Once the sprite has been

rotated and distorted, these corners will move to new

positions. SecondCornerX returns the transformed X

coordinate of the second corner.

Return Numeric value indicating the X coordinate of the second

corner.

Example If (SecondCornerX < 10)

QT Version 3.0 or later

See also ResetMatrix, Stretch

190 Sprite Properties and Actions

•
•
•
•
•
•

SecondCornerY Sprite Properties

Syntax SecondCornerY

Description The corners of a sprite that is in its natural drawing state are

the top left corner (FirstCorner), top right corner

(SecondCorner), bottom right corner (ThirdCorner), and

bottom left corner (FourthCorner). Once the sprite has been

rotated and distorted, these corners will move to new

positions. SecondCornerY returns the current Y coordinate

of the second corner.

Return Numeric value indicating the Y coordinate of the second

corner.

Example If (SecondCornerY < 10)

QT Version 3.0 or later

See also ResetMatrix, Stretch

ThirdCornerX Sprite Properties

Syntax ThirdCornerX

Description The corners of a sprite that is in its natural drawing state are

the top left corner (FirstCorner), top right corner

(SecondCorner), bottom right corner (ThirdCorner), and

bottom left corner (FourthCorner). Once the sprite has been

rotated and distorted, these corners will move to new

positions. ThirdCornerX returns the current X coordinate of

the third corner.

Return Numeric value indicating the X coordinate of the third

corner.

Example If (ThirdCornerX < 10) ̊

QT Version 3.0 or later

See also ResetMatrix, Stretch

Sprite Properties and Actions 191
•
•
•
•
•
•

ThirdCornerY Sprite Properties

Syntax ThirdCornerY

Description The corners of a sprite that is in its natural drawing state are

the top left corner (FirstCorner), top right corner

(SecondCorner), bottom right corner (ThirdCorner), and

bottom left corner (FourthCorner). Once the sprite has been

rotated and distorted, these corners will move to new

positions. ThirdCornerY returns the current Y coordinate of

the third corner.

Return Numeric value indicating the Y coordinate of the third

corner.

Example If (ThirdCornerY < 10)

QT Version 3.0 or later

See also ResetMatrix, Stretch

192 Sprite Properties and Actions

•
•
•
•
•
•

Sprite Actions

ClickOnCodec Sprite Actions

Syntax ClickOnCodec(X, Y)

X An integer expression indicating the X coordinate of the

location to simulate a mouse click.

Y An integer expression indicating the Y coordinate of the

location to simulate a mouse click.

Description This action causes the ripple codec to ripple as if the user

clicked at the point specified by the parameters X and Y.

Example The following statement passes the coordinate (10, 10) to

the ripple codec:

ClickOnCodec(10, 10)

QT Version 3.0 or later

See also Numeric_Constant, PassMouseToCodec

Sprite Properties and Actions 193
•
•
•
•
•
•

ExecuteEvent Sprite Actions

Syntax ExecuteEvent(Handler_ID)

Handler_ID An integer constant specifying the ID of the handler to call.

Description This action causes the specified event handler of a sprite to

be executed. There are constants defined for the built-in

event handlers so that you can call them too. You can also

use the pre-defined define instead of the handler ID like so:

ExecuteEvent($”My Handler”)

This approach may also be used to refer to a custom event

by name instead of its ID:

ExecuteEvent($”custom event name”)

Example The following statement causes the current sprite to execute

its custom event 1000:

ExecuteEvent(1000)

QT Version 3.0 or later

See also Numeric Expression, Defines

MoveBy Sprite Actions

Syntax MoveBy(X, Y)

X An integer expression indicating the X distance to move by.

Y An integer expression indicating the Y distance to move by.

Description This action causes a sprite to be moved by the specified

amount. You can use this in the idle event handler to cause

the sprite to steadily move around on the stage.

Example The following statement causes the current sprite to be

moved towards the top left by 1 pixel:

MoveBy(-1, -1)

QT Version 3.0 or later

See also Numeric Expression, MoveTo

194 Sprite Properties and Actions

•
•
•
•
•
•

MoveTo Sprite Actions

Syntax MoveTo(X, Y)

X An integer expression indicating the X coordinate of the

location to move the sprite to.

Y An integer expression indicating the Y coordinate of the

location to move the sprite to.

Description This action causes the registration point of a sprite to be

moved to the specified coordinates.

Example The following statement causes the current registration

point of sprite to be moved to the coordinate (0, 0):

MoveTo(0, 0)

QT Version 3.0 or later

See also Numeric Expression, MoveBy

PassMouseToCodec Sprite Actions

Syntax PassMouseToCodec

Description When the mouse is clicked on a sprite, you can call this

action to pass the mouse click on to the codec that is

rendering the image for the sprite. If this is the ripple codec,

this will cause a ripple effect to appear where the mouse was

clicked.

Example The following statement when placed in the Mouse Click

handler of a sprite will cause the ripple codec to ripple

where the mouse was clicked:

PassMouseToCodec

QT Version 3.0 or later

See also ClickOnCodec

Sprite Properties and Actions 195
•
•
•
•
•
•

ResetMatrix Sprite Actions

Syntax ResetMatrix

Description This action causes the display matrix of the sprite to be

reset, thus undoing any Spatial transformations that had

been applied to it.

Example ResetMatrix

QT Version 3.0 or later

See also Rotate, Scale

Rotate Sprite Actions

Syntax Rotate(Degrees)

Degrees An integer expression indicating the number of degrees to

rotate the sprite by.

Description This action causes a sprite to be rotated by the specified

number of degrees. You can only rotate the sprite to a

specific angle by first resetting its matrix by calling

ResetMatrix and then calling Rotate.

Example The following statement causes the current sprite to rotate

by 45 degrees counter clockwise:

Rotate(-45)

QT Version 3.0 or later

See also Numeric Expression, ResetMatrix

196 Sprite Properties and Actions

•
•
•
•
•
•

Scale Sprite Actions

Syntax Scale(X, Y)

X An integer expression indicating the amount to scale the

sprite in the horizontal direction.

Y An integer expression indicating the amount to scale the

sprite in the vertical direction.

Description This action causes a sprite to be scaled by the specified

amounts. Scale values smaller than 1 specify that the sprite

is to be shrunk while values greater than 1 enlarge the sprite.

Example The following statement causes the current sprite to be

expanded by 200%:

Scale(2, 2)

QT Version 3.0 or later

See also Numeric Expression, ResetMatrix

Sprite Properties and Actions 197
•
•
•
•
•
•

SetGraphicsModeBy Sprite Actions

Syntax SetGraphicsModeBy(Mode, Red_Color,
Green_Color, Blue_Color) <MIN(number)
MAX(number) wraparound>

Mode A constant indicating one of the graphic modes to use.

Red_Color A numeric constant indicating the brightness of the red

component.

Green_Color A numeric constant indicating the brightness of the green

component.

Blue_Color A numeric constant indicating the brightness of the blue

component.

Description This action changes the graphic mode a sprite uses to render

itself by the specified amount. The parameter Mode is a

predefined constant indicating the graphic mode to set (see

SetGraphicsModeBy see Appendix II for a list of the

graphic mode constants).

The parameters Red_Color, Green_Color and Blue_Color

are Numeric Expressions specifying the amount each

primary colors is to change by.

Example The following statement changes the red, green and blue

components of the graphic mode of the current sprite by

1000:

SetGraphicsModeBy(srcCopy, 1000, 1000, 1000)

QT Version 3.0 or later

See also Numeric Expression, SetGraphicsModeTo

198 Sprite Properties and Actions

•
•
•
•
•
•

SetGraphicsModeTo Sprite Actions

Syntax SetGraphicsModeTo(Mode, Red_Color,
Green_Color, Blue_Color) <MIN(number)
MAX(number)>

Mode A constant indicating one of the graphic modes to use.

Red_Color A numeric constant indicating the brightness of the red

component

Green_Color A numeric constant indicating the brightness of the green

component.

Blue_Color A numeric constant indicating the brightness of the blue

component.

Description This action sets the graphic mode a sprite uses to render

itself. The parameter Mode is a predefined constant

indicating the graphic mode to set. See the list below or

Appendix II - Drawing Mode Reference.

Available Drawing Modes

srcCopy
srcOr
srcXor
srcBic
notSrcCopy
notSrcOr
notSrcXor
notSrcBic
blend
addPin
addOver
subPin
transparent
addMax
subOver
adMin
grayishTextOr
hilite
ditherCopy
graphicsModeStraightAlpha
graphicsModePreWhiteAlpha

Sprite Properties and Actions 199
•
•
•
•
•
•

graphicsModePreBlackAlpha
graphicsModeComposition
graphicsModeStraightAlphaBlend
graphicsModePreMulColorAlpha

Example The following statement graphic mode to be set to

transparent using black as the transparent color:

SetGraphicModeTo(transparent, 0, 0, 0)

QT Version 3.0 or later

See also Numeric Expression, SetGraphicsModeBy

SetImageIndexBy Sprite Actions

Syntax SetImageIndexBy(index) <MIN(number)
MAX(number) wraparound>

Index A numeric expression indicating the amount to change the

image index by for the sprite.

Description This action alters the image index of a Sprite by the

specified amount. The parameter Index indicates the

amount to modify the image index of a sprite by.

Images in a LiveStage project can be referenced by their

Index numbers. Changing the image index of the sprite has

the effect of changing its appearance since setting a different

image index would cause a different image to be used in

rendering the Sprite. SetImageIndexBy can be used to

animate a Sprite using a series of images.

200 Sprite Properties and Actions

•
•
•
•
•
•

Example The following code fragment sets the current image index of

the sprite to the next image in a series of 5 images. This

example assumes that there is a Sprite and a series of 5

images in the LiveStage project with the index of 1 through

5.

In the Idle event handler of the Sprite enter the following

QScript statements:

SetImageIndexBy(1) MIN(1) MAX(5) wraparound

Export and run the movie. The result is a movie that

animates the 5 images that you have in the project in a

continuous loop.

QT Version 3.0 or later

See also Numeric Expression, SetImageIndexTo, ImageIndex

SetImageIndexTo Sprite Actions

Syntax SetImageIndexTo(Index) <MIN(number)
MAX(number)>

Index A numeric expression indicating the new image index to use

for the sprite.

Description This action sets the image index of a Sprite. The parameter

Index is indicates the new image index to set for the Sprite.

Images in a LiveStage project can be referenced by their

Index numbers or by using their name, which is pre-defined

to be its index. Changing the image index of a sprite has the

effect of changing its appearance since setting a different

image index would cause a different image to be used in

rendering the Sprite. SetImageIndexTo can be used to

animate a Sprite using a series of images.

Example The following code fragment sets the image index of the

current sprite to the next image in a series of 5 images. This

example assumes that there is a Sprite and a series of 5

images in the LiveStage project with the index of 1 through

5.

Sprite Properties and Actions 201
•
•
•
•
•
•

In the Frame Loaded event handler of the Sprite enter the

following QScript statements:

GlobalVars CurrentCel

CurrentCel = 0

In the Idle event handler of the Sprite enter the following

QScript statements:

GlobalVars CurrentCel

CurrentCel = CurrentCel + 1

SetImageIndexTo(CurrentCel) MIN(1) MAX(5)

Export and run the movie. The result is a movie that

animates the 5 images that you have in the project and halts

at the last image.

QT Version 3.0 or later

See also Numeric Expression, SetImageIndexBy, ImageIndex

SetLayerBy Sprite Actions

Syntax SetLayerBy(layer) <MIN(number) MAX(number)
Wraparound>

layer A numeric expression indicating the amount to change the

layer by.

Description This action changes the visual layer of a sprite by the

amount specified. Sprites with a higher number layer will

draw first. This means that they will appear behind sprites

with a lower layer number.

Example SetLayerBy(1) Min(10) Max(20)

QT Version 3.0 or later

See also Numeric Expression, layer, SetLayerTo

202 Sprite Properties and Actions

•
•
•
•
•
•

SetLayerTo Sprite Actions

Syntax SetLayerTo(layer)<MIN(number) MAX(number)>

layer A numeric expression indicating the layer.

Description This action sets the visual layer of a sprite. Sprites with a

higher number layer will draw first. This means that they

will appear behind sprites with a lower layer number.

Example SetLayerTo(1)

QT Version 3.0 or later

See also Numeric Expression, Layer

SetVisible Sprite Actions

Syntax SetVisible(Visible)

Visible A boolean expression that makes the sprite visible if TRUE.

Description This action shows or hides a Sprite. The Visible parameter

is a Boolean_Expression indicating that the sprite should be

shown (TRUE) or hidden (FALSE).

Example The following statement causes the current sprite to be

hidden:

SetVisible(FALSE)

QT Version 3.0 or later

See also Boolean_Expression, IsVisible, ToggleVisible

Sprite Properties and Actions 203
•
•
•
•
•
•

Stretch Sprite Actions

Syntax Stretch(X1, Y1, X2, Y2, X3, Y3, X4, Y4)

X1-X4 The x coordinate of each of the four corners of the sprite.

Y1-Y4 The y coordinate of each of the four corners of the sprite.

Description The Stretch action is a very powerful function that allows

you to manipulate the shape of a sprite. The parameters you

specify in the Stretch action represent the four corners of the

sprite. These start with the top left, top right, bottom right

and finally the bottom left.

This action causes a sprite to be skewed. The parameters

X1, Y1 through X4, Y4 specifying Numeric Expressions

containing a series of 4 points corresponding to the four

corners of the sprite specifying the new location of the

corners.

Although Stretch gives you a great deal of control of a

sprites shape there are a few quirks in QuickTime which can

make the stretch action operate in unexpected ways.

No Warped Corners Allowed.

Example

QT Version 3.0 or later

See also Numeric Expression, ResetMatrix

204 Sprite Properties and Actions

•
•
•
•
•
•

ToggleVisible Sprite Actions

Syntax ToggleVisible

Description This action toggles the visible state of a Sprite.

Example The following statements cause the current sprite to be

shown and then hidden:

SetVisible(TRUE)

ToggleVisible

QT Version 3.0 or later

See also SetVisible, IsVisible

205

•
•
•
•
•
•

Text Track Properties and Actions

Text Track properties and actions need to have a track and movie target specified. If

no movie target is specified then the current movie is considered to be the target. You

can specify a movie target by using MovieNamed(name) or MovieOfID(id) and

pass in either the name of the movie or its ID. If no track target is specified then the

track that contains the object that is currently executing the script is considered to

be the target. You can specify a track target by using TrackNamed(name),

TrackOfID(id), TrackOfIndex(index) or TrackOfType(type). See the section on

targets for a complete description and some examples of how to specify a target.

Track and Spatial Track Properties and Actions are available for Text Track targets.

Note: The target Text Track’s Edit State must be set to kScriptEditing using the
SetTextEditState action before you can alter the appearance or the data contained in the text
track (see SetTextEditState).

206 Text Track Properties and Actions

•
•
•
•
•
•

Text Track Properties

GetEditState Text Track Properties

Syntax GetEditState

Description This property returns current edit state of the target text

track.

The available edit states are:

kNoEditing
kDirectEditing
kScriptEditing

Return A numeric value indicating the current edit state of the

target text track.

Example

QT Version 5.0 or later

See also

GetIdleFrequency Text Track Properties

Syntax GetIdleFrequency

Description This property returns the idle frequency in movie time in

1/60 second increments.

Return Numeric value indicating the idle frequency.

Example LocalVars idleFreq

idleFreq = GetIdleFrequency

// Get the idle frequency of the current track

QT Version 5.0 or later

See also SetIdleFrequency

Text Track Properties and Actions 207
•
•
•
•
•
•

GetSelectionStart Text Track Properties

Syntax GetSelectionStart

Description This property returns numeric start position of the current

selection in the target text track.

Return A numeric value indicating the current selection start

position in the target text track.

Example

QT Version 5.0 or later

See also ReplaceText, GetSelectionEnd, GetText

GetSelectionEnd Text Track Properties

Syntax GetSelectionEnd

Description This property returns numeric end position of the current

selection in the target text track.

Return A numeric value indicating the current selection end

position in the target text track.

Example

QT Version 5.0 or later

See also ReplaceText, GetSelectionStart, GetText

208 Text Track Properties and Actions

•
•
•
•
•
•

GetText Text Track Properties

Syntax GetText(start, end)

start A numeric literal or variable specifying the location of the

first character position to retrieve.

end A numeric literal or variable specifying the locationof the

last character position to retrieve.

Description This action retrieves the specified selection of characters (as

defined by the parameters start and end).

The start and end specifies a selection of characters. In

order to specify the starting character, you must specify the

character position (1 based) of the character preceding the

start character of your selection (i.e. Specify 0 to select from

the first character). In order to specify the ending character,

you must specify the character position (1 based) of the

character following the last character in your selection.

Example LocalVars theString, theText

SetString(theString, “This is the first string”)

SetString(theText, GetText(0, 5))

// The resulting string now contains “this”

QT Version 5.0 or later

See also ReplaceText

Text Track Properties and Actions 209
•
•
•
•
•
•

GetTextBoxBottom Text Track Properties

Syntax GetTextBoxBottom

Description This property returns the location of the bottom of the text

box in the coordinates of the target text track.

Return A numeric value indicating location of the bottom edge of

the text box of the target text track.

Example

QT Version 5.0 or later

See also GetTextBoxLeft, GetTextBoxRight, GetTextBoxTop,

SetTextBox

GetTextBoxLeft Text Track Properties

Syntax GetTextBoxLeft

Description This property returns the location of the left side of the text

box in the coordinates of the target text track.

Return A numeric value indicating location of the left edge of the

text box of the target text track.

Example

QT Version 5.0 or later

See also GetTextBoxBottom, GetTextBoxRight, GetTextBoxTop,

SetTextBox

210 Text Track Properties and Actions

•
•
•
•
•
•

GetTextBoxRight Text Track Properties

Syntax GetTextBoxRight

Description This property returns the location of the right side of the text

box in the coordinates of the target text track.

Return A numeric value indicating location of the right edge of the

text box of the target text track.

Example

QT Version 5.0 or later

See also GetTextBoxBottom, GetTextBoxLeft, GetTextBoxTop,

SetTextBox

GetTextBoxTop Text Track Properties

Syntax GetTextBoxTop

Description This property returns the location of the top of the text box

in the coordinates of the target text track.

Return A numeric value indicating location of the top edge of the

text box of the target text track.

Example

QT Version 5.0 or later

See also GetTextBoxBottom, GetTextBoxLeft, GetTextBoxRight,

SetTextBox

Text Track Properties and Actions 211
•
•
•
•
•
•

GetTextLength Text Track Properties

Syntax GetTextLength

Description This property returns the number of characters in the target

text track.

Return A numeric value indicating the number of characters in the

target text track. The text length includes spaces.

Example

QT Version 5.0 or later

See also

212 Text Track Properties and Actions

•
•
•
•
•
•

Text Track Actions

EatKeyEvent Text Track Actions

Syntax EatKeyEvent

Description This action prevents the text track from processing the Key

Pressed event. This action must be called from within the

Key Pressed Event handler.

Example

QT Version 5.0 or later

See also

EnterText Text Track Actions

Syntax EnterText(character)

character A string literal or variable specifying the character to use.

Description This action replaces the current selection in the target text

track with the specified character.

This action is useful for simulating a text entry field using a

text track sample. As the characters are typed, the

KeyPressed event is triggered so that each character can be

sent to the text sample to simulate text entry.

Note: In order to use this action, you must first set the edit mode of the
Text Track to kScriptEditing (See SetTextEditState).

Example

QT Version 5.0 or later

See also SetSelection, GetSelectionStart, GetSelectionEnd

Text Track Properties and Actions 213
•
•
•
•
•
•

FindText Text Track Actions

Syntax FindText(string, red, green, blue,
flags)

string A string literal or variable containing the text to search for.

red A numeric literal specifying the red component of the found

text color.

green A numeric literal specifying the green component of the

found text color.

blue A numeric literal specifying the blue component of the

found text color.

flags A numeric literal or variable specifying the search settings.

Description This action searches and marks the specified text in the

target text track. string supplies the text to search for

while red, green, blue parameters supply the found text

color. The movie time will advance to the sample where the

text is found if the kSearchCurrentSample flag is not used.

The available search flags are:

kSearchCurrentSample

kSearchCaseSensitive

kSearchReverse

kSearchWraparound

kSearchAgain

The search flags may be used together by adding the

constants together (i.e. kSearchCaseSensitive +

kSearchReverse).

The selection will be set if the specified text was found so

that you can retrieve the start and end of the text in the target

text track.

Note: In order to use this action, you must first set the edit mode of the
Text Track to kScriptEditing (See SetTextEditState).

214 Text Track Properties and Actions

•
•
•
•
•
•

Example SetTextEditState(kScriptEditing)

FindText(“LiveStage”, 10000, 10000, 10000,

kSearchCaseSensitive + kReverse)

// Search backwards to find the word “LiveStage”

// and mark the text with a gray color

QT Version 5.0 or later

See also GetSelectionStart, GetSelectionEnd

HandleMouseClick Text Track Actions

Syntax HandleMouseClick

Description This action passes the mouse events to the text track

allowing it to make text selections and insertion point

changes.

This action is effective when the kScriptEditing flag is set

using the SetTextEditState action.

Example

QT Version 5.0 or later

See also SetTextEditState, GetEditState

Text Track Properties and Actions 215
•
•
•
•
•
•

ReplaceText Text Track Actions

Syntax ReplaceText(string, start, end)

string A string literal or variable containing the text used to replace

the specified selection.

start A numeric literal or variable specifying the location of the

first character to replace.

end A numeric literal or variable specifying the location of the

last character to replace.

Description This action replaces the specified selection of characters (as

defined by the parameters start and end) with the

characters in the supplied string.

Note: The character positions begin with 0. The end character index you
specify must be 1 greater than the character position. Thus in the
string “Hello World!”, you must specify 0 for start and 5 for end in
order to replace the word “Hello”.

Note: In order to use this action, you must first set the edit mode of the
Text Track to kScriptEditing (See SetTextEditState).

Example LocalVars theText

SetTextEditState(kScriptEditing)

SetString(theText, “This is the first string”)

ReplaceText(theText, 0, 1000)

// Replace the first 1000 characters in the

// Target text track with the value in theText

QT Version 5.0 or later

See also GetSelectionStart, GetSelectionEnd, GetText

216 Text Track Properties and Actions

•
•
•
•
•
•

ScrollText Text Track Actions

Syntax ScrollText(xdelta, ydelta)

xdelta A numeric literal or variable specifying the amount and

direction to scroll the text horizontally.

ydelta A numeric literal or variable specifying the amount and

direction to scroll the text vertically.

Description This action scrolls the text in the target text track. To scroll

the text in the reverse direction (i.e. scrolling from left to

right or scrolling top to bottom), specify a negative scroll

value.

Note: In order to use this action, you must first set the edit mode of the
Text Track to kScriptEditing (See SetTextEditState).

Example SetTextEditState(kScriptEditing)

ScrollText(-10, 0)

// Scroll the text from left to right by 10 pixels

QT Version 5.0 or later

See also SetTextScrollDelay

Text Track Properties and Actions 217
•
•
•
•
•
•

SetBackgroundColor Text Track Actions

Syntax SetBackgroundColor(red, green, blue)

red A numeric literal specifying the red component of the

background color.

green A numeric literal specifying the green component of the

background color.

blue A numeric literal specifying the blue component of the

background color.

Description This action sets the background color of the target text track.

Note: In order to use this action, you must first set the edit mode of the
Text Track to kScriptEditing (See SetTextEditState).

Example

QT Version 5.0 or later

See also SetTextColor

SetIdleFrequency Text Track Actions

Syntax SetIdleFrequency(frequency)

frequency An integer expression of the frequency of the idle events in

1/60 second increments.

Description This action will change the idle frequency of the text track.

Idle Frequency determines how often the Idle Event

handlers are called by QuickTime.

Example SetIdleFrequency(60)

// Set the idle frequency of the track to once

// every second

QT Version 5.0 or later

See also

218 Text Track Properties and Actions

•
•
•
•
•
•

SetSelection Text Track Actions

Syntax SetSelection(start, end)

start A numeric literal or variable specifying the location of the

first character in the selection.

end A numeric literal or variable specifying the location of the

last character in the selection.

Description This action selects the specified characters (as indicated by

the start and end parameters) in the target text track.

Note: The character positions begin with 0. The end character index you
specify must be 1 greater than the character position. Thus in the
string “Hello World!”, you must specify 0 for start and 5 for end in
order to select the word “Hello”.

Note: In order to use this action, you must first set the edit mode of the
Text Track to kScriptEditing (See SetTextEditState).

Example

QT Version 5.0 or later

See also GetSelectionStart, GetSelectionEnd, ReplaceText

Text Track Properties and Actions 219
•
•
•
•
•
•

SetTextAlignment Text Track Actions

Syntax SetTextAlignment(alignment)

alignment A numeric literal or variable indicating text alignment.

Description This action sets the text alignment for the current text

selection in the target text track.

The available text alignments are:

kCenterJustify

kLeftJustify

kRightJustify

Note: In order to use this action, you must first set the edit mode of the
Text Track to kScriptEditing (See SetTextEditState).

Example

QT Version 5.0 or later

See also SetTextFont, SetTextStyle, SetTextSize

220 Text Track Properties and Actions

•
•
•
•
•
•

SetTextBox Text Track Actions

Syntax SetTextBox(left, top, right, bottom)

left A numeric literal or variable specifying the location of the

bottom of the left side of the text box.

top A numeric literal or variable specifying the location of the

bottom of the top of the text box.

right A numeric literal or variable specifying the location of the

bottom of the right side of the text box.

bottom A numeric literal or variable specifying the location of the

bottom of the text box.

Description This action sets the text box coordinates of the target text

track.

Note: In order to use this action, you must first set the edit mode of the
Text Track to kScriptEditing (See SetTextEditState).

Example

QT Version 5.0 or later

See also GetTextBoxLeft, GetTextBoxTop, GetTextBoxRight,

GetTextBoxBottom

Text Track Properties and Actions 221
•
•
•
•
•
•

SetTextColor Text Track Actions

Syntax SetTextColor(red, green, blue)

red A numeric literal specifying the red component of the

foreground color.

green A numeric literal specifying the green component of the

foreground color.

blue A numeric literal specifying the blue component of the

foreground color.

Description This action sets the foreground color of the current text

selection.

Note: In order to use this action, you must first set the edit mode of the
Text Track to kScriptEditing (See SetTextEditState).

Example

QT Version 5.0 or later

See also SetBackgroundColor

222 Text Track Properties and Actions

•
•
•
•
•
•

SetTextDisplayFlags Text Track Actions

Syntax SetTextDisplayFlags(flags)

flags A numeric literal or variable indicating the display flags

setting.

Description This action sets the display flags of the target text track.

The available display flags are:

kDontDisplay
kDontAutoScale
kClipToTextBox
kUseMovieBGColor
kShrinkTextBoxToFIt
kScrollIn
kScrollOut
kHorizScroll
kReverseScroll
kContinuousScroll
kFlowHoriz
kContinuousKaraoke
kDropShadow
kAntiAlias
kKeyedText
kInverseHilite
kTextColorHilite

The above flags can be used together to set multiple flags at

the same time.

Note: In order to use this action, you must first set the edit mode of the
Text Track to kScriptEditing (See SetTextEditState).

Example SetTextEditState(kScriptEditing)

SetTextDisplayFlags(kScrollIn + kScrollOut +

kHorizScroll)

// Sets the flags to scroll in and out horizontally

QT Version 5.0 or later

See also

Text Track Properties and Actions 223
•
•
•
•
•
•

SetTextDropShadow Text Track Actions

Syntax SetTextDropShadow(xOffset, yOffset,
transparency)

xOffset A numeric literal or variable indicating the horizontal offset

of the dropshadow.

end A numeric literal or variable indicating the vertical offset of

the dropshadow.

transparency A numeric literal or variable indicating the degree of

transparency of the dropshadow.

Description This action sets the dropshadow parameters used for the

target text track.

Note: This action is valid only if the kDropShadow flag is set for the
target text track. (see SetTextDisplayFlags)

Note: In order to use this action, you must first set the edit mode of the
Text Track to kScriptEditing (See SetTextEditState).

Example

QT Version 5.0 or later

See also SetTextHilite, SetTextDisplayFlags

224 Text Track Properties and Actions

•
•
•
•
•
•

SetTextEditState Text Track Actions

Syntax SetTextEditState(state)

state A numeric literal or variable indicating the text edit state.

Description This action sets the text edit state of the target text track.

The available edit states are:

Edit StateMeaning

kNoEditing The target text track is not editable
by either a script or the user

kDirectEditing The target text track is editable by
the user but NOT by a script

kScriptEditing The target text track is editable by a
script but NOT the user

Example

QT Version 5.0 or later

See also GetEditState, HandleMouseClick

SetTextFont Text Track Actions

Syntax SetTextFont(fontID)

fontID A numeric literal or variable indicating the Font ID.

Description This action sets the font for the current selection in the target

text track.

The available font IDs are:

kAthensFont
kCairoFont
kCourierFont
kGenevaFont
kHelveticaFont
kLondonFont
kLosAngelesFont
kMobileFont
kMonacoFont
kNewYorkFont

Text Track Properties and Actions 225
•
•
•
•
•
•

kSanFranciscoFont
kSymbolFont
kTimesFont
kTorontoFont
kVeniceFont

Note: In order to use this action, you must first set the edit mode of the
Text Track to kScriptEditing (See SetTextEditState).

Example

QT Version 5.0 or later

See also SetTextStyle, SetTextSize

SetTextHilite Text Track Actions

Syntax SetTextHilite(start, end, red, green
blue)

start A numeric literal or variable indicating the start position of

the selection.

end A numeric literal or variable indicating the end position of

the selection.

red A numeric literal indicating the red component of the hilite

color.

green A numeric literal indicating the green component of the

hilite color.

blue A numeric literal indicating the blue component of the hilite

color.

Description This action hilites the specified selection of characters (as

defined by the start and end parameters) in the target text

track using the supplied color.

Note: In order to use this action, you must first set the edit mode of the
Text Track to kScriptEditing (See SetTextEditState).

226 Text Track Properties and Actions

•
•
•
•
•
•

Example

QT Version 5.0 or later

See also SetTextDropShadow

SetTextLinkColor Text Track Actions

Syntax SetTextLinkColor(index, red, green,
blue)

index A numeric literal or variable indicating the index number of

the hyper link.

red A numeric literal specifying the red component of the text

link color.

green A numeric literal specifying the green component of the text

link color.

blue A numeric literal specifying the blue component of the text

link color.

Description This action sets the specified hyper link color in the target

text track.

Note: In order to use this action, you must first set the edit mode of the
Text Track to kScriptEditing (See SetTextEditState).

Example

QT Version 5.0 or later

See also SetTextLinkStyle

Text Track Properties and Actions 227
•
•
•
•
•
•

SetTextLinkStyle Text Track Actions

Syntax SetTextLinkStyle(index, style)

index A numeric literal or variable indicating the index number of

the hyperlink.

style A numeric literal or variable indicating the Font Style.

Description This action sets the font style for the specified (index)

hyper link text in the target text track.

The available text styles are:

kNormalFace

kBoldFace

kItalicFace

kUnderLineFace

kOutlineFace

kShadowFace

kCondenseFace

kExtendFace

Note: In order to use this action, you must first set the edit mode of the
Text Track to kScriptEditing (See SetTextEditState).

Example

QT Version 5.0 or later

See also SetTextLinkColor

228 Text Track Properties and Actions

•
•
•
•
•
•

SetTextScrollDelay Text Track Actions

Syntax SetTextScrollDelay(delay)

delay A numeric literal or variable indicating amount of time

between scrolling in and scrolling out.

Description This action sets the amount of time that is spent between

scrolling in and scrolling out in the target text track. This

action works with the kScrollIn and kScrollOut flags used

with the SetTextDisplayFlags action.

When used with the kScrollIn or the kScrollOut display

flags, this action sets the amount of time the text is displayed

between the Scroll-in and Scroll-out transitions.

Note: In order to use this action, you must first set the edit mode of the
Text Track to kScriptEditing (See SetTextEditState).

Example

QT Version 5.0 or later

See also ScrollText

SetTextSize Text Track Actions

Syntax SetTextSize(size)

size A numeric literal or variable indicating the Font Point Size.

Description This action sets the font size in points for the current

selection in the target text track.

Note: In order to use this action, you must first set the edit mode of the
Text Track to kScriptEditing (See SetTextEditState).

Example

QT Version 5.0 or later

See also SetTextFont, SetTextStyle

Text Track Properties and Actions 229
•
•
•
•
•
•

SetTextStyle Text Track Actions

Syntax SetTextStyle(style)

style A numeric literal or variable indicating the Font Style.

Description This action sets the font style for the current selection in the

target text track.

The available text styles are:

kNormalFace
kBoldFace
kItalicFace
kUnderLineFace
kOutlineFace
kShadowFace
kCondenseFace
kExtendFace

Note: In order to use this action, you must first set the edit mode of the
Text Track to kScriptEditing (See SetTextEditState).

Example

QT Version 5.0 or later

See also SetTextFont

230 Text Track Properties and Actions

•
•
•
•
•
•

231

•
•
•
•
•
•

VR Track Properties and Actions

VR Track properties and actions need to have a track and movie target specified. If

no movie target is specified then the current movie is considered to be the target. You

can specify a movie target by using MovieNamed(name) or MovieOfID(id) and

pass in either the name of the movie or its ID. If no track target is specified then the

track that contains the object that is currently executing the script is considered to

be the target. You can specify a track target by using TrackNamed(name),

TrackOfID(id), TrackOfIndex(index) or TrackOfType(type). See the section on

targets for a complete description and some examples of how to specify a target.

VR Tracks are also Spatial Tracks as they have a visual representation within the

movie. Thus the Spatial Track Actions and Properties are also available for VR

Track Targets (see the section on Targets).

VR Track Properties

GetIdleFrequency Sprite Track Properties

Syntax GetIdleFrequency

Description This property returns the idle frequency in movie time in

1/60 second increments.

Return Numeric value indicating the idle frequency.

Example LocalVars idleFreq

idleFreq = GetIdleFrequency

// Get the current track’s idle frequency

QT Version 5.0 or later

See also SetIdleFrequency

232 VR Track Properties and Actions

•
•
•
•
•
•

ViewHorizCenter VR Track Properties

Syntax ViewHorizCenter

Description This property returns the horizontal view center.

Return A numeric value indicating the horizontal view center.

Example

QT Version 5.0 or later

See also ViewVertCenter

ViewVertCenter VR Track Properties

Syntax ViewVertCenter

Description This property returns the vertical view center.

Return A numeric value indicating the vertical view center.

Example

QT Version 5.0 or later

See also ViewHorizCenter

AreHotSpotsVisible VR Track Properties

Syntax AreHotSpotsVisible

Description This property returns TRUE if the HotSpots are shown.

Return A boolean value indicating TRUE if the HotSpots are

visible.

Example if (TrackNamed(“MyPano”).AreHotSpotsVisible = TRUE)

// Script executes only when hotspots are visible

EndIf

QT Version 5.0 or later

See also ShowHotSpots, HideHotSpots

VR Track Properties and Actions 233
•
•
•
•
•
•

PanAngle VR Track Properties

Syntax PanAngle

Description This property returns the side to side (Pan) angle of the VR

track. The value returned is between 0 and 360 degrees. The

pan angle of a VR track indicates the direction the track is

pointing.

Return Numeric value between 0 and 360 degrees indicating the

pan angle.

Example If (TrackOfID(3).PanAngle = 0)

// Script executes only when PanAngle is 0

EndIf

QT Version 3.0 or later

See also SetPanAngleTo, SetPanAngleBy

TiltAngle VR Track Properties

Syntax TiltAngle

Description This property returns the up and down (Tilt) angle of the VR

track. The value returned is -90 to 90 degrees. A value of 90

indicates that the VR track is tilted vertically upwards while

a value of -90 indicates that the track is tilted vertically

downwards. A value of 0 indicates the tilt angle is set to the

horizontal (no tilt).

Return Numeric value between -90 and 90 degrees.

Example If (TrackOfID(3).TiltAngle = 0)

// Script executes only when TiltAngle is 0

EndIf

QT Version 3.0 or later

See also SetTileAngleTo, SetTiltAngleBy

234 VR Track Properties and Actions

•
•
•
•
•
•

FieldOfView VR Track Properties

Syntax FieldOfView

Description This property returns the Field of View setting of the VR

track. Changing the Field of View changes the zoom factor

of the VR track.

Return Numeric value indicating the Field of View setting of the

VR track.

Example The following example zooms in by x2:

TrackNamed(“VR

Movie”).SetFieldOfViewTo(TrackNamed(“VR

Movie”).FieldOfView / 2)

The following example zooms out by x2:

TrackNamed(“VR
Movie”).SetFieldOfViewTo(TrackNamed(“VR
Movie”).FieldOfView * 2)

QT Version 3.0 or later

See also SetFieldOfViewTo, SetFieldOfViewBy

NodeID VR Track Properties

Syntax NodeID

Description This property returns the ID of the current Node in the VR

track. A node in a VR track contains the necessary data for

displaying a VR panorama. A unique ID identifies each

node in a VR track.

Return Numeric value indicating the ID of the current Node in the

VR track.

Example If (TrackOfID(3).NodeID = 21) ...

QT Version 3.0 or later

See also GotoNodeID

VR Track Properties and Actions 235
•
•
•
•
•
•

VR Track Actions

EnableHotSpot VR Track Actions

Syntax EnableHotSpot(HotSpot_ID, enable)

HotSpot_ID A numeric literal, expression or variable indicating the ID of

the VR hotspot to enable/disable.

enable A boolean literal, expression or variable indicating that the

hotspot is to be enabled or disabled

Description This action enables or disables the specified VR HotSpot.

Example ThisTrack.EnableHotSpot(101, FALSE)

// Disable the hotspot with the ID of 101

QT Version 5.0 or later

See also DisableHotspot

GoToNodeID VR Track Actions

Syntax GoToNodeID(Node_ID)

Node_ID An integer expression indicating the ID of the VR node to

go to.

Description This action sends a VR track to the specified Node. The

node ID of 2147483648 (hex 80000000) will go to the

previous node and the node ID of 2147483649 (hex

80000001) will go to the default node.

Example TrackNamed(“Room”). GoToNodeID(100)

QT Version 3.0 or later

See also Numeric Expression, NodeID

236 VR Track Properties and Actions

•
•
•
•
•
•

HideHotSpots VR Track Actions

Syntax HideHotSpots

Description This action hides the VR HotSpots for the current VR node.

Example ThisTrack.HideHotSpots

// Hide the hotspot

QT Version 5.0 or later

See also AreHotSpotsVisible, ShowHotSpots

SetFieldOfViewBy VR Track Actions

Syntax SetFieldOfViewBy(Angle) <MIN(number)
MAX(number) wraparound>

Angle A numeric expression indicating the change in the field of

view angle.

Description This action changes the Field of View of a VR track by the

specified amount. See the description in SetFieldOfViewTo

for an explanation of what the field of view is.

Example TrackNamed(“Room”).SetFieldOfViewBy(5)

QT Version 3.0 or later

See also Numeric Expression SetFieldOfViewTo, FieldOfView

SetFieldOfViewTo VR Track Actions

Syntax SetFieldOfViewTo(Angle) <MIN(number)
MAX(number)>

Angle A numeric expression indicating the field of view angle.

Description This action sets the Field of View of a VR track. The field

of view is the angle formed by a line connecting the bottom

of the image, to the view point, to the top of the image. A

VR Track Properties and Actions 237
•
•
•
•
•
•

larger field of view will distort the image but will allow you

to see more of it at once. The pan and tilt angles may be

adjusted to keep the image in view.

Example TrackNamed(“Room”).SetFieldOfViewTo(90)

QT Version 3.0 or later

See also Numeric Expression, FieldOfView, SetFieldOfViewBy

SetIdleFrequency Sprite Track Actions

Syntax SetIdleFrequency(frequency)

frequency An integer expression setting the new frequency of the idle

events in 1/60 second increments.

Description This action will change the idle frequency of the sprite

track. Idle Frequency determines how often the Idle Event

handlers are called by QuickTime.

Example SetIdleFrequency(1 * 60)

// Set the idle frequency of the track to once

// every second

QT Version 5.0 or later

See also

238 VR Track Properties and Actions

•
•
•
•
•
•

SetPanAngleBy VR Track Actions

Syntax SetPanAngleBy(Angle) <MIN(number) MAX(number)
wraparound>

Angle A numeric expression indicating the change in the pan

angle.

Description This action modifies the pan angle of a VR track. The

parameter Angle specifies the number of degrees to modify

the side to side angle of the VR track being displayed.

Example The following statement causes the VR track named

Room to pan continuously (if called from the Idle

Handler) to the right by 5 degrees wrapping around when

the angle reaches 360:

SetPanAngleBy(5) MIN(0) MAX(359) wraparound

QT Version 3.0 or later

See also Numeric Expression, SetPanAngleTo, PanAngle

SetPanAngleTo VR Track Actions

Syntax SetPanAngleTo(Angle) <MIN(number) MAX(number)>

Angle A numeric expression indicating the new pan angle.

Description This action sets the pan angle of a VR track. The parameter

Angle specifies the side to side angle of the VR track to

display.

Example The following statement sets the pan angle of the VR track

named Room to 0:

TrackNamed(“Room”).SetPanAngleTo(0)

QT Version 3.0 or later

See also Numeric Expression, SetPanAngleBy, PanAngle

VR Track Properties and Actions 239
•
•
•
•
•
•

SetTiltAngleBy VR Track Actions

Syntax SetTiltAngleBy(Angle)<MIN(number) MAX(number)
wraparound>

Angle A numeric expression indicating the change in the tilt angle.

Description This action modifies the tilt angle of a VR track. The

parameter Angle specifies the number of degrees to modify

the up and down angle of the VR track being displayed.

Example The following statement causes the VR track named

Room to tilt upwards continuously (if added to the Idle

Handler) by 5 degrees wrapping around when the angle

reaches 90:

SetTiltAngleBy(5) MIN(-90) MAX(90) wraparound

QT Version 3.0 or later

See also Numeric Expression, TiltAngle, SetTiltAngleTo

SetTiltAngleTo VR Track Actions

Syntax SetTiltAngleTo(Angle) <MIN(number)
MAX(number)>

Angle A numeric expression indicating the new tilt angle.

Description This action sets the tilt angle of a VR track. The parameter

Angle specifies the up and down angle of the VR track to

display.

Example The following statement causes the VR track named

Room to reset the tilt angle to 0 (horizontal):

TrackNamed(“Room”).SetTiltAngleTo(0)

QT Version 3.0 or later

See also Numeric Expression, SetTiltAngleBy, TiltAngle

240 VR Track Properties and Actions

•
•
•
•
•
•

ShowDefaultView VR Track Actions

Syntax ShowDefaultView

Description This action returns a VR track to its default view.

Example The following statement causes the VR track named

“Room” to return to its default view:

TrackNamed(“Room”).ShowDefaultView

QT Version 3.0 or later

See also SetFieldOfViewTo SetPanAngleTo SetTiltTo

ShowHotSpots VR Track Actions

Syntax ShowHotSpots

Description This action shows the VR HotSpots for the current VR node.

Example ThisTrack.ShowHotSpots

// Show the hotspots

QT Version 5.0 or later

See also AreHotSpotsVisible, HideHotSpots

• • • • • •
 Index

F

Flash Track Actions

GoToFrameNamed 133

GoToFrameNumber 133

PerformFlashClick 134

SetFlashVariable 135

SetPan 136

SetZoom 136

SetZoomRect 137

Flash Track Properties

GetFlashVariable 132

Functions

Math Functions

ArcTan 28

ArcTan2 28

Cos 29

DegreesToRadians 29

Exp 30

Log 30

RadiansToDegrees 31

Random 32

Sin 33

Sqr 33

Tan 34

String Functions

StrCompare 35

StrConcat 36

StrLength 35

SubString 37

G

General Actions

AddSubscription 64

AppendString 65

ApplicationNumberAndString 66

CloseThisWindow 66

DebugStr 67

DisplayChannels 67

EnterFullScreen 68

ExecuteAppleScript 68

ExecuteGenericScript 69

ExecuteJavaScript 69

ExecuteLingoScript 70

ExecuteProjectorScript 70

ExecuteVBScript 71

ExitFullScreen 71

GoToURL 72

LoadComponent 74

RemoveSubscription 74

SendAppMessage 75

SetCursor 76

SetStatusString 76

SetString 77

SoftwareWasChanged 77

General Properties

ComponentVersion 43

ConnectionSpeed 44

CustomHandlerID 45

GetEventKey 46

GetEventModifiers 47

GetEventMouseX 48

GetEventMouseY 48

GetEventScanCode 49

GetMemoryFree 49

GetNetworkStatus 50

242
•
•
•
•
•
•

GetSystemVersion 51

GMTDay 51

GMTHours 52

GMTMinutes 52

GMTMonth 53

GMTSeconds 53

GMTYear 54

HandlerRef 54

IsCustomHandlerOpen 45

IsRegistered 55

KeyIsDown 55

LocalDay 57

LocalHours 58

LocalMinutes 58

LocalMonth 59

LocalSeconds 59

LocalYear 60

MouseButtonDown 60

Platform 61

Registered 61

Subscription 62

TickCount 62

Version 63

L

LoadChildMovieWithQTList 141

M

Movie Actions

GetMovieURL 89

GetParentMovieURL 89

GetRootMovieURL 90

GoToBeginning 90

GoToEnd 91

GoToTime 91

GoToTimeByName 92

MovieChanged 92

PopAndGotoLabeledTime 93

PopAndGotoTopTime 93

PushCurrentTime 93

PushCurrentTimeWithLabel 94

SetLanguage 94

SetLoopingFlags 95

SetPlaySelection 96

SetRateBy 97

SetRateTo 98

SetSelection 99

SetSelectionByName 100

SetVariable 101

SetVolumeBy 102

SetVolumeTo 102

StartPlaying 103

StepBackward 103

StepForward 104

StopPlaying 104

TogglePlaySelection 105

Movie Properties

GetDuration 79

GetHeight 80

GetID 81

GetLoadState 80

GetName 81

GetTimeScale 82

GetTrackCount 82

GetVariable 83

GetWidth 84

IsMovieActive 84

MaxTimeLoadedInMovie 85

MovieIsLooping 85

MovieLoopIsPalindrome 86

MovieRate 87

MovieTime 88

MovieVolume 88

Movie Track Actions

AddChildMovie 139

LoadChildMovie 140

LoadChildMovieWithQTList 141

RestartAtTime 141

Music Track Actions

PlayNote 143

SetController 145

N

Numeric Expression 4

P

Preprocessor Directives 13

Proprocessor Directives

#debug 13

#define 14

#include 15

#RegionFromImageFile 16

#RegionFromRect 17

#StringFromFile 17

Q

QD3D Object Actions

RotateTo 149

ScaleTo 150

TranslateTo 150

QScript Syntax

Boolean Literal 5

Constants 3

Defines 5

String Literal 4

QTList Actions

AddListElement 171

ExchangeList 172

LoadListFromXML 174

QueryListServer 175

RemoveListElement 178

ReplaceListFromXML 178

SetListElement 179

SetListFromURL 179

QTList Properties

GetListAsXML 168

GetListElementCount 169

GetListElementName 169

GetListElementValue 170

S

Sample Properties

EndTime 113

StartTime 113

Sound Track Actions

SetBalanceBy 154

SetBalanceTo 155

SetBassTrebleBy 155

SetBassTrebleTo 156

SetVolumeBy 156

SetVolumeTo 157

Sound Track Properties

GetBass 151

GetTreble 152

TrackBalance 152

TrackVolume 153

Spatial Track Actions

EatKeyPressEvent 121

MoveMatrixBy 121

MoveMatrixTo 122

ResetMatrix 122

RotateMatrixBy 123

ScaleMatrixBy 123

SetClipRegionTo 124

SetFocus 124

SetGraphicsModeBy 125

SetGraphicsModeTo 126

SetLayerBy 127

SetLayerTo 128

SetMatrixBy 128

SetMatrixTo 129

Spatial Track Properties

CanBeFocus 116

IsFocus 117

MouseHorizontal 118

MouseVertical 118

TrackHeight 119

TrackLayer 120

TrackWidth 120

244
•
•
•
•
•
•

Sprite Actions

ClickOnCodec 192

ExecuteEvent 193

MoveBy 193

MoveTo 194

PassMouseToCodec 194

ResetMatrix 195

Rotate 195

Scale 196

SetGraphicsModeBy 197

SetGraphicsModeTo 198

SetImageIndexBy 199

SetImageIndexTo 200

SetLayerBy 201

SetLayerTo 202

SetVisible 202

Stretch 203

ToggleVisible 204

Sprite Properties

BoundsBottom 181

BoundsLeft 182

BoundsRight 182

BoundsTop 183

FirstCornerX 183

FirstCornerY 184

FourthCornerX 184

FourthCornerY 185

GetSpriteName 185

ID 186

ImageIndex 186

ImageRegistrationPointX 187

ImageRegistrationPointY 187

Index 188

IsVisible 188

Layer 189

SecondCornerX 189

SecondCornerY 190

ThirdCornerX 190

ThirdCornerY 191

Sprite Track Actions

DisposeSprite 163

MakeNewSprite 162

SetIdleFrequency 163

Sprite Track Properties

GetIdleFrequency 159

NumImages 160

NumSprites 160

SpriteAtPoint 161

T

Targeting

ChildMovieNamed 22

ChildMovieOfID 22

ChildMovieTrackNamed 22

ChildMovieTrackOfID 22

ChildMovieTrackOfIndex 22

MovieNamed 20

MovieOfID 20

ObjectNamed 20

ObjectOfID 20

ObjectOfIndex 20

ParentMovie 21

QD3DObjectNamed 23

RootMovie 21

SpriteNamed 23, 24

SpriteOfID 24

SpriteOfIndex 24

ThisEvent 18

ThisMovie 20

ThisSprite 24

ThisTrack 25

TrackNamed 25

TrackOfID 25

TrackOfIndex 25

TrackOfType 25

Targets 18

Text Track Actions 212

EatKeyEvent 212

EnterText 212

FindText 213

HandleMouseClick 214

ReplaceText 215

ScrollText 216

SetBackgroundColor 217

SetIdleFrequency 217

SetSelection 218

SetTextAlignment 219

SetTextBox 220

SetTextColor 221

SetTextDisplayFlags 222

SetTextDropShadow 223

SetTextEditState 224

SetTextFont 224

SetTextHilite 225

SetTextLinkColor 226

SetTextLinkStyle 227

SetTextScrollDelay 228

SetTextSize 228

SetTextStyle 229

Text Track Properties 206

GetEditState 206

GetIdleFrequency 206

GetSelectionEnd 207

GetSelectionStart 207

GetText 208

GetTextBoxBottom 209

GetTextBoxLeft 209

GetTextBoxRight 210

GetTextBoxTop 210

GetTextLength 211

TickCount 62

Track Actions

SetEnabled 111

ToggleEnabled 111

Track Properties

GetDuration 107

GetHeight 108

GetID 109

GetName 109

GetWidth 110

TrackEnabled 110

V

VR Track Actions 235

EnableHotSpot 235

GoToNodeID 235

HideHotSpots 236

SetFieldOfViewBy 236

SetFieldOfViewTo 236

SetIdleFrequency 237

SetPanAngleBy 238

SetPanAngleTo 238

SetTiltAngleBy 239

SetTiltAngleTo 239

ShowDefaultView 240

ShowHotSpots 240

VR Track Properties 231

AreHotSpotsVisible 232

FieldOfView 234

GetIdleFrequency 231

NodeID 234

PanAngle 233

TiltAngle 233

ViewHorizCenter 232

ViewVertCenter 232

246
•
•
•
•
•
•

	��� Appendix I - QScript Reference
	Introduction
	Conventions Used
	QScript Syntax
	Data Specifiers
	Constants
	Numeric Expression
	String Literal
	Boolean Literal
	Defines
	Built-in Defines
	Cursor IDs
	Drawing Modes Defines
	Event IDs
	Flash Mouse Transitions
	Key Code Defines
	Key String Defines (Use KeyIsDown or string comparisons only)
	Key Modifier Defines
	Key Modifier Flags (Used only with KeyIsDown)

	Movie Looping Control Defines
	Media Type Defines
	Music Track Defines
	Numeric Defines
	QueryListServer Defines (QT5 or later)

	SendAppMessage Defines (QT5 or later)
	State Defines
	Movie Load States (QT5 or later)
	Network States (QT5 or later)

	Text Track Defines
	Justification (QT5 or later)
	Text Display Flags (QT5 or later)
	Text Edit States (QT5 or later)
	Text Styles (QT5 or later)
	Text Fonts (QT5 or later)
	Text Search Defines (QT5 or later)

	Preprocessor Directives
	#debug
	#define
	#include
	#RegionFromImageFile
	#RegionFromRect
	#StringFromFile

	Targets
	Event Target
	Object Target
	Movie Target
	Movie Target (Parent Movies)
	Movie Target (Child Movies)
	QD3DObject Target
	Sample Target
	Sprite Target
	Track Target

	Functions
	Math Functions
	ArcTan
	ArcTan2
	Cos
	DegreesToRadians
	Exp
	Log
	RadiansToDegrees
	Random
	Sin
	Sqr
	Tan

	String Functions
	StrLength
	StrCompare
	StrConcat
	SubString

	Properties and Actions
	Properties
	Actions

	General Properties and Actions
	General Properties
	ComponentVersion
	ConnectionSpeed
	CustomHandlerID
	IsCustomHandlerOpen
	GetEventKey
	GetEventModifiers
	GetEventMouseX
	GetEventMouseY
	GetEventScanCode
	GetMemoryFree
	GetNetworkStatus
	GetSystemVersion
	GMTDay
	GMTHours
	GMTMinutes
	GMTMonth
	GMTSeconds
	GMTYear
	HandlerRef
	IsRegistered
	KeyIsDown
	LocalDay
	LocalHours
	LocalMinutes
	LocalMonth
	LocalSeconds
	LocalYear
	MouseButtonDown
	Platform
	Registered
	Subscription
	TickCount
	Version

	General Actions
	AddSubscription
	AppendString
	ApplicationNumberAndString
	CloseThisWindow
	DebugStr
	DisplayChannels
	EnterFullScreen
	ExecuteAppleScript
	ExecuteGenericScript
	ExecuteJavaScript
	ExecuteLingoScript
	ExecuteProjectorScript
	ExecuteVBScript
	ExitFullScreen
	GoToURL
	LoadComponent
	RemoveSubscription
	SendAppMessage
	Available application message IDs

	SetCursor
	SetStatusString
	SetString
	SoftwareWasChanged

	Movie Properties and Actions
	Movie Properties
	GetDuration
	GetHeight
	GetLoadState
	GetID
	GetName
	GetTimeScale
	GetTrackCount
	GetVariable
	GetWidth
	IsMovieActive
	MaxTimeLoadedInMovie
	MovieIsLooping
	MovieLoopIsPalindrome
	MovieRate
	MovieTime
	MovieVolume

	Movie Actions
	GetMovieURL
	GetParentMovieURL
	GetRootMovieURL
	GoToBeginning
	GoToEnd
	GoToTime
	GoToTimeByName
	MovieChanged
	PopAndGotoLabeledTime
	PopAndGotoTopTime
	PushCurrentTime
	PushCurrentTimeWithLabel
	SetLanguage
	SetLoopingFlags
	SetPlaySelection
	SetRateBy
	SetRateTo
	SetSelection
	SetSelectionByName
	SetVariable
	SetVolumeBy
	SetVolumeTo
	StartPlaying
	StepBackward
	StepForward
	StopPlaying
	TogglePlaySelection

	Track Properties and Actions
	Track Properties
	GetDuration
	GetHeight
	GetID
	GetName
	GetWidth
	TrackEnabled

	Track Actions
	SetEnabled
	ToggleEnabled

	Sample Properties and Actions
	Sample Properties
	EndTime
	StartTime

	Spatial Track Properties and Actions
	Spatial Track Properties
	CanBeFocus
	IsFocus
	MouseHorizontal
	MouseVertical
	TrackHeight
	TrackLayer
	TrackWidth

	Spatial Track Actions
	EatKeyPressEvent
	MoveMatrixBy
	MoveMatrixTo
	ResetMatrix
	RotateMatrixBy
	ScaleMatrixBy
	SetClipRegionTo
	SetFocus
	SetGraphicsModeBy
	SetGraphicsModeTo
	SetLayerBy
	SetLayerTo
	SetMatrixBy
	SetMatrixTo

	Flash Track Properties and Actions
	Flash Track Properties
	GetFlashVariable

	Flash Track Actions
	GoToFrameNamed
	GoToFrameNumber
	PerformFlashClick
	SetFlashVariable
	SetPan
	SetZoom
	SetZoomRect

	Movie Track Properties and Actions
	Movie Track Actions
	AddChildMovie
	LoadChildMovie
	LoadChildMovieWithQTList
	RestartAtTime

	Music Track Properties and Actions
	Music Track Actions
	PlayNote
	SetController

	QD3D Object Properties and Actions
	QD3D Object Actions
	RotateTo
	ScaleTo
	TranslateTo

	Sound Track Actions
	Sound Track Properties
	GetBass
	GetTreble
	TrackBalance
	TrackVolume

	Sound Track Actions
	SetBalanceBy
	SetBalanceTo
	SetBassTrebleBy
	SetBassTrebleTo
	SetVolumeBy
	SetVolumeTo

	Sprite Track Properties and Actions
	Sprite Track Properties
	GetIdleFrequency
	NumSprites
	NumImages
	SpriteAtPoint

	Sprite Track Actions
	MakeNewSprite
	DisposeSprite
	SetIdleFrequency

	QTList Properties and Actions
	QTList Properties
	GetListAsXML
	GetListElementCount
	GetListElementName
	GetListElementValue

	QTList Actions
	AddListElement
	ExchangeList
	LoadListFromXML
	QueryListServer
	RemoveListElement
	ReplaceListFromXML
	SetListElement
	SetListFromURL

	Sprite Properties and Actions
	Sprite Properties
	BoundsBottom
	BoundsLeft
	BoundsRight
	BoundsTop
	FirstCornerX
	FirstCornerY
	FourthCornerX
	FourthCornerY
	GetSpriteName
	ID
	ImageIndex
	ImageRegistrationPointX
	ImageRegistrationPointY
	Index
	IsVisible
	Layer
	SecondCornerX
	SecondCornerY
	ThirdCornerX
	ThirdCornerY

	Sprite Actions
	ClickOnCodec
	ExecuteEvent
	MoveBy
	MoveTo
	PassMouseToCodec
	ResetMatrix
	Rotate
	Scale
	SetGraphicsModeBy
	SetGraphicsModeTo
	SetImageIndexBy
	SetImageIndexTo
	SetLayerBy
	SetLayerTo
	SetVisible
	Stretch
	ToggleVisible

	Text Track Properties and Actions
	Text Track Properties
	GetEditState
	GetIdleFrequency
	GetSelectionStart
	GetSelectionEnd
	GetText
	GetTextBoxBottom
	GetTextBoxLeft
	GetTextBoxRight
	GetTextBoxTop
	GetTextLength

	Text Track Actions
	EatKeyEvent
	EnterText
	FindText
	HandleMouseClick
	ReplaceText
	ScrollText
	SetBackgroundColor
	SetIdleFrequency
	SetSelection
	SetTextAlignment
	SetTextBox
	SetTextColor
	SetTextDisplayFlags
	SetTextDropShadow
	SetTextEditState
	SetTextFont
	SetTextHilite
	SetTextLinkColor
	SetTextLinkStyle
	SetTextScrollDelay
	SetTextSize
	SetTextStyle

	VR Track Properties and Actions
	VR Track Properties
	GetIdleFrequency
	ViewHorizCenter
	ViewVertCenter
	AreHotSpotsVisible
	PanAngle
	TiltAngle
	FieldOfView
	NodeID

	VR Track Actions
	EnableHotSpot
	GoToNodeID
	HideHotSpots
	SetFieldOfViewBy
	SetFieldOfViewTo
	SetIdleFrequency
	SetPanAngleBy
	SetPanAngleTo
	SetTiltAngleBy
	SetTiltAngleTo
	ShowDefaultView
	ShowHotSpots

	��� Index
	F
	G
	L
	M
	N
	P
	Q
	S
	T
	V

