
ManiacoMac’s PPC Cracking Bible v1.0.2 • Page : 1

ManiacoMac ® 2004

ManiacoMac’s

PPC

CRACKING

BIBLE

ALL THE BEST MAC CRACKING TEXTS IN ONE
All the knwledge you need to fastly and effectively crack recent Mac PPC softwares

Version

1.0.2

Assembled by ManiacoMac

ManiacoMac’s PPC Cracking Bible v1.0.2 • Page : 2

ManiacoMac ® 2004

FOREWORDS

Welcome Everyone !
So you want to learn how to crack Mac softwares ?
Well, to be true, this book is your best bet and the place to start looking at. This book
is and will be the Mac Cracking Heaven, and also the start point of learning.

I guess this book will be the ultimate Mac cracking guide for the newbies , beginners, next
generation Mac crackers and even a reference guide to more advanced Mac Crackers. I really
hope this work on the subject will help some, this is my own contribution to the Community.

It covers about everything from Mac PPC Assembly language learning to the most recent
softwares cracking methods use by the most talented crackers. I think I gathered all the
best Mac cracking texts in one, to created what I hope will be a must have for the Mac
Cracking Community members. It is organized in a logical learning progression, in order to
help those nembies who really don't know where to start.

This is version 1.0.2 of the book and a lot of improvements are to come soon. A lot of new
texts will be added in the futur releases ... and maybe a french version of this book will
be released If I'm not too lazy ! All new releases of this book will be uploaded only at
some specific places, and the version number and date of release will be mentioned each
time.

You can also send me some texts you want or think should be added to this book, to make it
more complete, the most complete ever. Texts about OS X cracking would be really
appreciate, this is a missing part of the Mac Cracking Community and I hope we will be in a
position to fix this issue soon.

Well I don't know if you can freely distribute this book but I think you should not cause
it contains texts from other authors. So let's wait and keep it for your personal use.

Have fun with this book and good learning ! I am really glad to share this book with all of
you. So STK and let’s Share The Knowledge ! ... and Krack Different !

Oh I almost forgot ...

Many many thanks to ProZaq, The Vassal, Shepherd, ORC, Fluffy, Pablo, iÇ®açk, Orygun, Halo
Ghost, Halo Driver, TheShark, Anarchie, Absym, Buck, Xena, Charasi, Cendryom, Akuma,
Coldhit, fintler, Mazzie, Postscript, Snapcase, Jaffa, Jakko, Phreak, Mopar, Ahton, Cyborg,
Dot, Byte, Observer, Mouto, Svede, Stardust, FireSt0rm, Thoughts, Corsec, Pyrus Malus,
KrackerJAG, etc ... just to mention a few, and also many other nicknames for their help,
support and more ! Also many thanks to many servers admins, sub-admins and sysop I cannot
mention here, or rather I do not dare to mention. ;-) Let me know if you helped my in some
ways and then I forgot to mention you here, and you would like to be mentioned in the futur
releases.

ManiacoMac ® 2004
For any comments or suggestions about this book

maniacomac@hotmail.com
ManiacoMac is also known as MoM

ManiacoMac’s PPC Cracking Bible v1.0.2 • Page : 3

ManiacoMac ® 2004

PowerPC Assembly Language Beginners Guide
Chapter 1

What is Machine Code ?
And what is Assembly Language?
Machine code is the code that your computer actually runs. Processors don't understand
English, Swedish, Basic, C or anything else recognizable to humans (if C is?). Only ones and
noughts (binary, meaning "two possible states") - machine code is ones and noughts. Luckily,
nobody has to program in machine code any more. We use assemblers and compilers, but we do
need to know what machine code is.

When your computer is running, it continuously gets instructions from memory. These
instructions tell the processor what to do now. On a PowerPC based machine, the instructions
are made up of thirty two binary digits or "bits". A bit can be in one of two states; either
a 1 or a 0. 32 bits together are called a word.

The pattern of the word will tell the processor how to execute the instruction. A certain
word may add two numbers together, whilst another word could make the processor store a
number back in memory, and so on. A program consists of lots of instructions strung
together, and of course, some data for the instructions to operate on.

Programs can be written in many kinds of different languages, some common ones are BASIC
(Beginners All purpose Symbolic Instruction Code), C, and Pascal. These are termed high
level languages. High level languages have to translate the terms used by the programmers
into machine code. This is fine, except that the high level languages only know a certain
way of doing things, and sometimes have to string together significantly long sets of ones
and noughts to get the desired end result. What this means in practice is that any compiled
language, will only be as good as the compiler.

Assembly language on the other hand is a low level language. Each assembly language mnemonic
translates directly into a machine code instruction. The difference between a high level
language such as C and assembly language is that an intelligent being is doing the
compiling. Because a human is writing the code and not a machine, the code can be written in
the best way to achieve maximum speed, and use the minimum of memory. For this reason
assembly language in the hands of a competent programmer will always be a lot faster than
any compiled language.

Just a little note here, and this has nothing to do with this guide, but...
The acronym TWAIN stands for Technology Without An Interesting Name - I just thought you
might not know that and find it "Interesting". Oh well, onwards...

What is a Mnemonic?
The dictionary defines it as "something to help the memory" - in this case its a word that
represents a machine code instruction.

The PowerPC family of processors understands about 60 basic instructions, which means the
PowerPC assembly language programmer has 60 different mnemonics to remember. Compared to a

ManiacoMac’s PPC Cracking Bible v1.0.2 • Page : 4

ManiacoMac ® 2004

high level language, which may have as many as 800 different instructions (BASIC for
example), this is a small number to memorize. In practice not all these instructions will be
used, and you may find yourself using as few as 10 instructions regularly, so its not
difficult to learn.

What does a Mnemonic look like?
The PowerPC has an instruction to add two numbers together and store the result away. In
ones and noughts it may look like 001110010000100001101000000000000 (don't quote me on
that!), which is a complete and utter mouthful, so we use the mnemonic "add". We get an
assembler totranslate the "add" to the required machine code. Its as simple as that.

Some other useful mnemonics include:
LI - Load immediate - loads a number into a processor register.
STW - Store a word from a processor register into memory
LWZ - Load a word from memory into a processor register.

Thus, assembly language uses mnemonics to represent machine instructions, or code.

Basic Processor Operation
The goal of the processor is to take data (the input), perform some form of processing on
the data, and then store the data in a useful way (output). To be able to do this, the
processor needs temporary storage within itself called registers. The PowerPC family all
have two types of registers - integer registers identified as r0 to r31 and floating point
registers named f0 to f31. We won't be looking at the floating point registers for a while
yet, but they are one of the most powerful aspects of the PowerPC family.

The processor can put data into these registers and then use the registers as inputs to
calculations or other operations. The result of the operation can then be stored in another
register, or one of the input registers. For example, the instruction add r3,r4,r5 adds
register 5 to register 4 and stores the result in register 3, whereas add r5,r4,r5 adds the
contents of register 5 to register 4 and stores the result back in register 5.

To show you how easy it is, examine the following PowerPC assembly language "snippet".

do_add: li r3,10 *load register 3 with the number 10
 li r4,20 *load register 4 with the number 20

 add r5,r4,r3 *add r3 to r4 and store the result in r5
 stw r5,sum(rtoc) *store the contents of r5 (i.e. 30)into the memory
location
 *called "sum"
 blr *end of this piece of code

sum: ds.w 1 *define the storage we need for the result.

The first thing to notice is the layout. All assembler languages tend to be like this. The
doing bits of the instructions (store, add, etc) - the actual instruction, is in the "second
column". Technically it is proceeded by white space - either tabs or space characters. This
way the assembler knows they are instructions.

ManiacoMac’s PPC Cracking Bible v1.0.2 • Page : 5

ManiacoMac ® 2004

So what is the word "do_add:" up against the left hand edge of the page? A Label. Labels
mark a position in the code and are also used when we need to define things, such as data.
Notice the label has a colon : after it. When you are referencing these labels in the code,
you don't actually use the colon - for example in the line "stw r5,sum". In this case, the
label "do_add:" is used as an identifier, or name, for this piece of code. Labels are used
instead of real memory addresses because we don't care what address is assigned to the
label, that's the assembler's worry. If the assembler knows the address of the label, then
we can use the labels in our program and let Fantasm worry about tying up all the addresses.
If we want to run a routine called fred, then we can just branch to fred. The assembler will
work out what fred's address is and do the right thing.

The colon after the label is not essential when you are defining a label in the first
column,but it helps in two ways. Firstly it clearly identifies this thing as a label to the
assembler, the editor AND us humans. Secondly, it can be helpful when you are editing the
program, and need to find a specific label. If you search for just "sum" you will find all
the places that access sum - but if you search for "sum:" you will go to the place where the
label "sum" is defined. (note, that Anvil does not need colons at the end of labels to be
able to hyperjump to them).

Labels are always placed right up against the left hand edge of the window; there must be no
white space in front of them.. The label is followed by some "white space", normally a tab
character - the tab key on your keyboard, although a normal space, or run of spaces is fine.

Not all lines need a label, just those lines of your program that you want to branch to, or
lines that define data that you want to reference by name.

Following the optional label comes the instruction. This tells the processor what it's going
to be doing. The instruction is followed by some more white space before the "operands".
These are the things the instruction manipulate. PowerPC instructions sometimes have three
operands or more, and sometimes none at all - it depends on the instruction. If there are
operands, then the first is either the source or destination of the result of the operation.
The other two provide the data to be worked on - for example add r3,r4,r5; in this case, r5
is added to r4 and the result is placed in r3.

Any ideas about what this program does? It adds 20 and 10 and puts the result in sum. Here's
the breakdown.

Line 1 - do_add: li r3,10

The 'Add' is a 'label'. Labels are used to reference lines of a program so we can change the
program flow, by 'branching' to labels. Think of it as a name for this part of the program.

li means load immediate. In this case it means move the word '10' (remember that a word is
32 bits) into the processor register 3.

Line 2 - li r4,20

This line has no label, and therefore can't be branched to.
The instruction moves another number,in this case 20, into the processor register 4.

Line 3 - add r5,r4,r3

This line instructs the processor to add the two numbers together and place the result in
register number 5.

ManiacoMac’s PPC Cracking Bible v1.0.2 • Page : 6

ManiacoMac ® 2004

Line 4 - stw r5,sum(rtoc)

This instruction moves the result of the addition into memory. Where in memory? At "sum".

Line 5 - blr

This instruction returns from this part of the program. if you like it means that's the end
of this piece of code so go back to whatever piece of code called this piece of code. "blr"
is a mnemonic for branch to link register.
Generally, whenever we jump to a new piece of code, the address of the calling code is
stored in the link register so the code can return when finished.

Line 6 - sum: ds.w 1

This line is used to define the location of 'sum' in memory. Its not an instruction to the
processor, as the processor has finished with this code in line 5. This line is used by
Fantasm to set up 'sum' in memory ready for the program when it is run. The 'sum' tells
Fantasm that this is the name we want to use. Again it is a label.

The ds.w means define space as words. Fantasm reserves the number of words needed for this
label in memory. This is called a 'directive', meaning that it is a directive to the
assembler (Fantasm), and not a mnemonic to be translated into machine code.

If you found that complicated, don't worry as we'll come back to directives and program
structure later.

If you had trouble understanding that, read through it again. There's nothing devious or
particularly clever about assembly language programming - just common sense most of the
time. Staying awake is important too.

If after rereading the above you still have difficulty understanding it, don't worry about
it, just carry on with this text, as it was throwing you in at the deep end, however, if you
followed it just fine, example project #1 will build the code and throw you into the low
level debugger (if you have one installed).

This is what the above code, as a complete program, will look like in Anvil (your colors may
be different) :

Bits, Bytes, Halfs, Words and Longs.

ManiacoMac’s PPC Cracking Bible v1.0.2 • Page : 7

ManiacoMac ® 2004

As you may already know, all computers have 'memory'. Memory is a very wide term, that can
be broken down as follows.

1. Long term memory. This type of memory is for long term storage of information.

Theoretically speaking it means any form of memory that doesn't forget when you switch the
power off. This boils down to disks, both floppy and hard.
Once the data is written to disk, it stays there until its either overwritten, or your four
year old decides to open the case on one of your floppies and play frisbee with what's
inside.

There are big differences between floppy disks, and hard disks. Floppy disks are removable,
cheap and slow. If you slide the metal cover of a floppy you'll see a brown plastic disk
inside the jacket. This is the actual floppy disk. Data is recorded onto the disk, in the
same way that music is recorded onto a cassette, one bit at a time using a magnetic
recording head.

Because the disk is arranged in tracks (80 on a HD disk), and your Mac can select any one of
these tracks at random, you don't have to fast forward over the whole disk to get at the
data you want.

The big disadvantage with floppy disks is that they are very slow compared to hard disks.

Hard disks are not (generally) removable, not cheap and not so slow.

A hard disk works in a similar way to floppy disks. They have tracks, and head(s), but
because the disk spins a lot faster (5400 R.P.M. and upwards) and the heads are a lot closer
to the disk, you can store a lot more information on them.

Hard disks have a reputation for being fragile. This is not just paranoia about them, but a
fact. In a hard disk, to get the heads as close as possible to the recording surface, the
heads fly on a cushion of air created by the disk spinning. If the hard disk drive is
knocked whilst it is in use, its quite possible for the heads to crash into the disk
surface! This is a good reason why you should use the shutdown menu item in the Finder, so
the drive can move the heads away from the disk before the power goes off and the disk slows
down. Most hard drives automatically move the heads away from the disk when the power goes
off (this is known as auto parking), but just in case...

All disks, whether hard or floppy segment the tracks up into sectors. This makes the drives
more usable. For example if you have a high density floppy disk, capable of holding 1.4
megabytes (1 megabyte is 1 million bytes), and the floppy disk itself has 80 tracks, this
means that each track can hold 0.0175 megabytes, or 17.5 kilobytes.

This means that the smallest amount of information that could be written to a floppy disk is
17.5K. If a 1k file was saved to disk, it would still take up 17.5K on the floppy! If
however, each track is further split up into sectors, and the drive knew where each of these
sectors were, then small files would take up less space. For example if the track was split
up into 20 sectors, then the smallest addressable unit on the floppy would be 17.5 K divided
by 20, which is 875 bytes. Now a 1k file only takes up 2 sectors on disk amounting to 1.75K.

Getting data off a disk, whether it's a floppy, a hard disk, a CD or any other kind of
storage medium is a slow process - far too slow for the processor. The data in long term

ManiacoMac’s PPC Cracking Bible v1.0.2 • Page : 8

ManiacoMac ® 2004

memory, such as a program, is transferred to short term memory before it can be run, or
accessed by the processor.

The other type of long term memory, associated with Macintoshes, is pram, or parameter
random access memory. This memory doesn't forget its data when a Mac is switched off because
it has a battery that keeps the memory running.
In here the Mac stores vital information; its configuration, so that then next time its
switched on, it can read the set up information from pram, and configure itself exactly as
it was. Examples of the data stored in pram are the sound volume, how many flashes a menu
bar makes, keyboard repeat speed etc.

(Other computers may have this type of memory. PC-compatibles use a type of memory that is
usually referred to as CMOS (complementary Metal Oxide Semiconductor) memory. Using this
name is a bit naughty, since it should be called "battery backed C.M.O.S. memory" - C.M.O.S.
memory itself loses its contents without power. In PC's this stores things like hard drive
type, floppy types, time and date - general set up in formation., which drive is called
drive C: (yeah, real hi-tech stuff) etc.)

2. Short term memory - this is the memory the processor has direct access to. It is split
into random access memory (RAM) and read only memory (ROM).
Ram can be written to and read from, whereas ROM can only be read from. RAM is generally
faster than ROM.

The more RAM you have, the more data can be stored inside the computer at any one time. If
the data is a program, then the more ram you have, the bigger the program you can run.

As was noted previously, the PowerPC range of processors use instructions made up from 32
bits. The basic unit of memory is a byte, which is 8 bits, so the PowerPC needs to read four
bytes for every basic instruction.

RAM and ROM. are fast enough for the processor to run programs from. We'll come back to
memory later when we talk about caches, but for now that's enough.

Numbers
As you know, computers these days are referred to as being digital, but a long time ago
there were analog computers that did their calculations by whizzing around servos linked to
potentiometers which would give a result as a voltage. Anyway, "digital" means numerical, so
it stands to reason that computers run by using numbers? Quite true, as a number is just a
number, but the clever bit is that numbers can also be used to represent codes for such
things as what operation to perform., or a letter, or a sound volume etc.

So if a computer needs numbers to strut its stuff, what form are these numbers held in, do
we just say "65", and it puts letter A up on the screen in glorious Technicolor? Not quite.
The numbers the computer needs to carry out processing are held in the binary format, just
the same as the instructions the computer executes. Binary is a number system in which a
number can be one of two values, either zero or one, whereas denary means a number can have
one of ten values, 0 through to 9.

How can we represent numbers larger than 1 in binary?

Well, lets take a look at our human denary system first.

ManiacoMac’s PPC Cracking Bible v1.0.2 • Page : 9

ManiacoMac ® 2004

If we start counting from zero upwards, we eventually get to 11, which means 10 plus 1, then
when we get to 101, this means one hundred, no tens and one unit. If we term tens, hundred's
and thousands as "multipliers", then any number can be expressed in terms of its
multipliers;1234 can be expressed as:

1 times 10^3
+
2 times 10^2
+
3 times 10^1
+
4

(note that in programming, * generally means multiply and ^ means to the power of , so
10^3=10*10*10).

As the computer uses binary and not denary, numbers can be expressed as powers of 2 instead
of ten. Where in denary the multipliers go 1,10,100,1000,10000 etc, in binary the
multipliers go 1,2,4,8,16,32,64,128,256 etc.

It is helpful to be able to remember the multipliers up to a certain level, here's a list
you should try to learn:

1, 2, 4, 8, 16, 32, 64, 128, 256, 512, 1024, 2048, 4096, 8192, 16384, 32768, 65536

To express the number 13 in binary, break it down into powers of two.

13 is one 8, one 4, and 1 -
8 4 2 1
1 1 0 1

Thus, 13 is 1101 in binary.

We can take a very short break here, just to clarify some terms that are about to appear.
Binary digits, 1's and 0's are termed "bits", which is just a short form of "binary digit".
It's not very hip to keep shouting "Binary digit 3" when "Bit 3" sounds far cooler and saves
time. When referring to bit locations within a group of bits (for example, within a word),
bits are numbered from zero upwards, with bit zero being the rightmost bit. If you confuse
left with right as I sometimes do, now is a good time to finally get it sorted out. Gettwo
of those little "Post it(tm)" notes, and write "Left" on one and stick it on the left side
of your monitor, and do the same for the right side, only this time the note should have
"Right" written on it.

Ok, so if we take a byte (which is 8 bits) then the bits are numbered as follows:

76543210 - bit 7 on the left and bit 0 on the right.

Confusingly, IBM's books for PowerPC sometimes refer to bits the other way round, but hey,
that's IBM.

Ok, back to the lesson....

Now try converting decimal 255 to binary.

ManiacoMac’s PPC Cracking Bible v1.0.2 • Page : 10

ManiacoMac ® 2004

Start with the multiplier above 255, 256. This is too great, so try 128.
255 divided by 128=1 remainder 127. So we have a 128.
127 divided by 64 =1 remainder 63.
63 divided by 32 = 1 remainder 31
31 divided by 16 = 1 remainder 15
15 divided by 8 = 1 remainder 7
7 divided by 4 = 1 remainder 3
3 divided by 2 = 1 remainder 1
1 divided by 1 = 1 remainder 0

Therefore 255 in binary is 11111111.

The last example is 471. 512 is too big, so:

471 divided by 256 = 1 remainder 215
215 divided by 128 = 1 remainder 87
83 divided by 64 = 1 remainder 23
23 divided by 32 = 0 (because 32 doesn't divide into 23 even once. i.e. it
won't "go")
23 divided by 16 = 1 remainder 9
7 divided by 8 = 0 (because it won't go)
7 divided by 4 = 1 remainder 3
3 divided by 2 = 1 remainder 1
1 divided by 1 = 1

Thus 471 in binary is:
111010111 - that's nine bits and it means that
1*1+1*2+1*4+1*16+1*64+1*128+1*256=471 or more simply
1+2+4+16+64+128+256=471

I admit, it isn't easy, but here are some more examples expanded to 8 bits.

 128 64 32 16 8 4 2 1
25 = 0 0 0 1 1 0 0 1
129= 1 0 0 0 0 0 0 1
56 = 0 0 1 1 1 0 0 0
90 = 0 1 0 1 1 0 1 0

In Fantasm, to show that a number is binary, we precede it with a percent sign - %10101010

Eight bits are termed a byte. One byte can hold 256 different values, so every conceivable
letter and punctuation mark can be defined in one byte, or alternatively, 256 different
codes can be defined, or 256 different colors for a pixel.

As we know, the PowerPC demands its instructions in 32 bit chunks, these are called words -
how many possible values are there with 32 bits?

2^32 = 4294967296. (easy with a calculator).

With 32 bits 4294967296. different values can be defined.

With 32 bits making up a basic PowerPC instruction, there are possibly over 4294967296
different instructions the processor could execute - in practice there are about 60 or so

ManiacoMac’s PPC Cracking Bible v1.0.2 • Page : 11

ManiacoMac ® 2004

basic instructions. The other bits within the instruction are used to hold the data the
instruction works on.

For data, 32 bits can hold big numbers, sometimes it's too wasteful; for example to store
the character "A" we only need 8 bits, or a byte. And sometimes you may want an intermediate
size, or 16 bits (65536 possible values), so we also have data sizes called "halfs" which is
half a word. More on this later.

Hexadecimal Notation.
Hex is just a number system, the same as decimal and binary. In decimal we use base 10, in
binary we use base 2, and in hex we use base 16. How can we use base 16 if we only have ten
digits (0-9). Good question. The digit set is extended to 15 by using the letters A-F.

If you can understand binary, hex isn't a big deal. Each hex digit represents 4 bits or a
nibble.

An example is probably easiest to understand:

Here's an easy one:

255 in binary is 11111111 (8 ones).

To get 255 in hex first convert to binary, then split it up into nibbles (i.e. half bytes),

1111 1111.

Each hex digit is a nibble, so 1111 is 15 in decimal, or F in hexadecimal.

Therefore 255 is 11111111 in binary or FF in hex. To show this is a hex number we precede it
with a dollar sign - $FF or the C language standard of "0x" - 0xFF. The choice of preceding
hex number with either a "$" or "0x" is up to you.

To convert from hex to decimal, convert the hex to binary, then decimal:

convert $FACE to decimal -

F A C E
1111 1010 1100 1110

32768 16384 8192 4096 2048 1024 512 256 128 64 32 16 8 4 2 1
 1 1 1 1 1 0 1 0 1 1 0 0 1 1 1 0

then add together all the ones:

32768+16384+8192+4096+2048+512+128+64+8+4+2 = 64206

Now try $9276

You should get 37494. Of course the quickest way is to use a the computer to do it for you
and "drop" into Macsbug! (a debugger, covered later).

ManiacoMac’s PPC Cracking Bible v1.0.2 • Page : 12

ManiacoMac ® 2004

The PowerPC family can manipulate numbers as either bits, bytes, halfwords, words and
doubles (64 bit via the floating point unit, or FPU).

Now that we know a little of how the computer uses numbers, how are they stored in memory?
Because the numbers are represented in binary, which is a string of ones and noughts, its
easy to go from theory to practice. In memory, a 1 is represented by a voltage, whilst a
nought is represented by no voltage. The memory is laid out in bytes (8 bits), so for the
processor to get one instruction it needs to read four bytes.

Four bytes make up one word, so it stands to reason that words must live in quad aligned
locations in memory, if the memory starts at location 0 (which it does). Thus if our first
instruction was at address 0x80000, then our next instruction will be at 0x80004, then next
at 0x80008 and the next at 0x8000C etc

If you really want to know more about the intricacies of the floating point number formats,
go check with Random Rob from the Programmers Dream.

A Quick Summary
The number system used in computer is binary. Binary means one of two values. Either a digit
is a one or a nought. When counting in binary, the power of two is applied as a multiplier.
A bit is one binary digit, either a 1 or 0. A byte is 8 binary digits that can hold 256
possible values. A half is 16 bits that can hold 65536 possible values, and a word is 32
bits that can hold very big values.

Binary numbers are preceded by a percent sign - % and may contain the digits
1 and 0 only.

Decimal numbers are written as per normal and may contain the digits 0,1,2,3,4,5,6,7,8,9.

Hexadecimal number are preceded with either a $ or an 0x - your choice and may contain the
characters 0,1,2,3,4,5,6,7,8,9,A,B,C,D,E,F.

Addressing
Addressing is the term given to this question. "How does the processor know where the data
is and how does the data get from the memory to the processor and back again?"

All computers have busses; highways for information. Typically there is a data bus and an
address bus. The address bus tells the memory where the processor wants to read or write to.
To get a word from memory location 1000, the processor puts 1000 on the address bus, then
tells the memory to "read". The memory system will put the data on the data bus, and the
processor can read it in. From now on, instead of the word "location", we'll use the word
"address" to mean a location that the processor can access.

Inside the processor the address can either be stored in a "register" or form part of an
instruction - for example lwz r3,fred(rtoc) - the address we are reading from is "fred". The
PowerPC has 32 integer registers, each being 32 bits wide. Programs can modify these
registers, so that the processor can keep temporary pointers to memory locations. A register
is like a small piece of memory that is internal to the processor, and hence very fast. A
PowerPC processor also has 32 floating point registers but we wont concern ourselves with
these just yet.

ManiacoMac’s PPC Cracking Bible v1.0.2 • Page : 13

ManiacoMac ® 2004

An important point to realize is that it is not only memory and the processor that can
access the address and data busses. Most peripherals, such as disk controllers, keyboards,
screen driver hardware can also access these busses.

These peripherals are normally given a memory address that's well out of the way of the main
program and data memory, so if the computers main memory ends at address $1000000, the
peripheral hardware addresses may start at $80000000. If the video driver hardware lives at
$80000000, the processor can send and read data by reading and writing to this address.

We'll come back to peripherals later.

Program Counter
There is a special register called the program counter. This one keeps track of where in a
program the processor is. Normally it increments by the size of each instruction, as each
instruction is read in - that is it increments by four bytes (32 bits) after reading the
current instruction so it points to the next instruction. Thus, if the program starts at
address 1000, after the processor has read the first instruction, the program counter will
be pointing to location 1004.

Normally, the program counter (PC) is incremented by four to point at the next instruction.
However programs need a way of making decisions, and going off to do something else if need
be. This is called branching or jumping. As an example consider a program that accepts names
from the keyboard until ten names have been entered.

The program could go something like this:

step 1: get name 1 from keyboard

step 2: print the name on the screen

step 3: get name 2 from keyboard

step 4: print the name on screen

step 5: get name 3 from the keyboard

step 6: print name....

step 7: get name 4....

step 8: and so on....

As you can see the program is a repetition of steps 1 and 2. What would be nice is if we had
a way of using steps 1 and 2 ten times over. By using a conditional check and a counter we
can:

step 1: set counter to 1

step 2: get name from keyboard

step 3: print name on screen

ManiacoMac’s PPC Cracking Bible v1.0.2 • Page : 14

ManiacoMac ® 2004

step 4: add 1 to the counter

step 5: is the counter equal to 10? This is the conditional check

step 6: if no, then go to step 2

step 7: end the program

Step 6 is a conditional branch - it is taken if the condition is met – if the counter
doesn't equal 10 then branch to step 2.

The processor would have to scrap the contents of the program counter and replace it with
the memory location for the instruction at step 2.

To be able to perform conditional branching, or jumping, the processor has to have a method
of flagging the result of operations.

In the above program the processor needs to know if the counter had reached 10.

How does it do this? It compares the value of the counter to 10. If it equals 10 the
processor sets a flag in the "condition code" register. At step 6 this flag is checked. if
the flag isn't set, then the program can branch back to step 2.
A compare is simply a subtract operation, but the processor just makes a note of the result
(was it positive, negative, equal to zero etc.) and throws the result away.

Summary
Hopefully, we have now covered enough ground to be able to summarize how a computer works
and the basics of a PowerPC processor as follows:

1. The computer reads and executes instructions.

2. The instructions act on data.

3. Instructions are read from memory via the data bus. The address in memory from where the
instruction is coming from is set up by the processor on the address bus.

4. Data can be read and written to memory via the data bus. Again, the address in memory of
where the data is coming from or going to is set up on the address bus.

5. Data coming in from memory to the processor is termed as being read

6. Data going out from the processor to memory is termed as being written.

7. By reading and writing data from certain areas of memory, the processor can control
peripherals.

8. The processor knows where to get the next instruction from because the program counter
register always points to (holds the address of) the next instruction to be executed.

9. The value in the program counter can be altered as a result of conditional checks during
the running of a program.

ManiacoMac’s PPC Cracking Bible v1.0.2 • Page : 15

ManiacoMac ® 2004

10. The link register can be used to hold the return address when the processor decides to
jump to another piece of code. This return address can be jumped to by executing a blr
instruction.

11. The PowerPC processor has 32 general purpose registers. These registers are 32 bits
wide.

12. The PowerPC processor has 32 floating point registers. These registers are 64 bits wide.

13. The PowerPC processor instructions generally take three operands.

14. Binary is a number system based around the multiplier 2.

15. Hexadecimal is a number system based around the multiplier 16. The numbers 10 through 15
are identified with the letter "A" to "F". A=10, B=11, C=12 etc.

16. When identifying bit positions, bit zero is the rightmost bit.

PowerPC Assembly Language Beginners Guide
Chapter 2

A few Instructions, Variables, TOC and BBS
The first thing we need to be able to do is get data into the processor; if we can't do
this, then we can't do any work. The basic instruction used for loading data from memory is,
funnily enough, called "Load". There are a few variants on it, depending on the size of the
data we wish to load. The most frequently used, loads a word from memory into one of the
processors registers. The full name of this instruction is Load Word and Zero, or LWZ as
Fantasm knows it. LWZ takes the form of:

 lwz rx,EA

Where rx is an integer register, such as r3 and EA describes the effective address of where
to get the data from. The data will be loaded into rx affecting all bits of the register, as
on most PowerPC processors the integer registers are 32 bits wide (there are 64 bit PowerPC
processors such as the 620. If an LWZ instruction is processed on one of these, the upper 32
bits are set to zero, hence Load Word and zero).

LWZ is complimentary to STore Word, which takes data (32 bits) from a register and stores it
in memory.

Registers can be loaded with data quite easily with the Load Immediate instruction; LI. This
takes a 16 bit value and puts it into the lower 16 bits of a register. Because the register
is 32 bits wide, the 16 bit value is sign extended to affect the upper 16 bits. This means
that if bit 15 is a 1, bits 16 to 31 are made 1's. If bit 15 is a zero, bits 16 to 31 are
made zero's. This Load Immediate loads a 16 bit signed number into a register

Suppose we want to set a 32 bit variable called my_variable to 0x00001234, here's what the
code would look like:

ManiacoMac’s PPC Cracking Bible v1.0.2 • Page : 16

ManiacoMac ® 2004

 li r3,0x1234
 stw
 r3,my_variable(`bss)

You're probably thinking "what's this bss thingy?" Ok. don't panic, it's not hard, we'll
cover it in a second under "variables". Notice in the above example I cheated by loading in
a 16 bit value that would not have bit 15 set, so 0x1234 comes out just as 0x00001234 when
loaded into the register.

If I had loaded 0xf234 the register would have been sign extended to become 0xfffff234,
which may not be what we wanted. If we wanted to load a 32 bit unsigned value into a
register with Fantasm 5 we could use a "macro" called "movei". Macros, at the simplest level
are a way of defining new instructions to do things you couldn't normally do. movei is used
exactly the same as li:

 movei r3,0xf234

After this macro, r3 would be equal to 0x0000f234. Hopefully you can see the difference. To
use this macro in Fantasm 5 you need to either make LS_PPC_macros.def a globally included
file (these are files that are inserted into every file in your project) or include the file
into your file with an "includeh" directive. More about directives later.

Variables
Note, we get a little complicated here for a while. No need to understand this section
completely just now, I just want to explain some things so that when you see them in the
examples, you'll have at least seen them before.

In a high level language, sometimes you need to define variables before using them, and
sometimes you don't. In assembly language you do need to define your variables. Generally we
can use two kinds of variables - global or local. Global variables are accessible to all
parts of your program, whilst local variables are only accessible to the routine or function
(a part of a program that can be called many times over from other parts of the program)
that they are defined in.

Global variables are stored in a section of RAM called the BSS. Nobody we've ever met can
tell us why it's called the BSS - it just is. (If anybody knows why, please tell me). When
Fantasm is building your program, it calculates the size of the BSS and stores it in the
fragment. When the Mac loads the fragment, it sets aside an area of memory big enough to
hold all your globalvariables and then stores the address of this area in the first entry in
the fragment's Table Of Contents or TOC. If we then copy this address into a register, it
can be used as a pointer to the global variables. We can then access (read from and write
to) our global variables as offsets (using labels) from this register. The start up macro
performs this function for us (along with another important function of saving all the
registers before we start messing with them), and puts the pointer to the BSS into r30.
Fantasm can rename registers to anything you like (with the "reg" directive), so if we call
register 30 "bss", then we can access global variables with statements such as
my_variable(`bss). Note the use of the ` character to identify the name as a register name.

Local variables are stored on the stack. The stack pointer (r2, although Fantasm also knows
it as "sp" as well) points to a free area of memory and is generally used to store temporary
data such as local variables, return addresses (so a subroutine can return to its caller)

ManiacoMac’s PPC Cracking Bible v1.0.2 • Page : 17

ManiacoMac ® 2004

and sometimes parameters (data that subroutines work on; passed to them from the caller; in
PowerPC parameters are nearly always passed in registers because there are a lot of
registers, and accessing registers is far faster than accessing memory).

Local variables, as previously noted, are accessible only to the current subroutine. In
Fantasm 5 we can define local variables with the "local" macro and then access them via the
stack pointer - abbreviated to "sp". The code will look something like this:

 lwz r3,my_data(sp)

For this to work correctly, at the start of the routine we need a list of variable
definitions along with a macro that sets up the stack correctly, and at the end of the
routine we need a macro that will clean up the stack before we exit the subroutine. These
macros are called:

reset_locals - does as it says, resets the local variables macros and need to be used before
you use the local macro.
local - define a local variable. This one has a size character tagged onto it, such as
local.w - defines a local variable of size word. It is used as: local[.size]
variable_name[,number_of_bytes/halfs/words] sub_entry - the macro that performs the stack
set up at the start of a routine.
sub_exit - the macro that performs the clean up operation at the end of a subroutine.

Thus, a typical subroutine that needs local variables (normally one uses registers because
there are lots of them) would look like this:

 reset_locals
 local.w
 my_var,1
 local.b my_string,256
 local.h
 my_2d_array,10*10

my_subroutine: sub_entry
 some code

 sub_exit

In the above subroutine, my_var defines space for a 32 bit variable.
my_string defines space for a 256 character string and my_2d_array defines space for a 10 by
10 two dimensional array of halfs, or 16 bit values.

Heavy going? Don't worry about it if you find it so, it's always easier to learn by example
which is where we're heading. All I'm trying to do is give you a basic grounding from which
we can build.

Initialized Data?
Variables are very useful, but sometimes we need pre-defined data, or initialized data as
it's called. For example, we may need to define some constants for our program, and what
about strings - for example "Fluffy loves socks". How to we get that into memory so we can
print it for example?

ManiacoMac’s PPC Cracking Bible v1.0.2 • Page : 18

ManiacoMac ® 2004

This is where the data section comes into play. Unlike the BSS which is set up at run time,
the data section is stored along with your program on disk - it takes space, but is
neccessary. The data section is set up by Fantasm (more specifically the linker) and is
comprised of all the data you have defined in your source files. At the lowest level, data
is defined with the "dc" directives. "dc" is an abbreviation for "define constant". The dc
directive allows you to define data that will be available to your program at run time.
Example:

fluffy_string: dc.b "Fluffy loves socks"
 align

That line defines the string "Fluffy loves socks" and calls it fluffy_string. Just for now,
note the "align" directive after the definition - this makes sure the next definition is
aligned correctly in memory.

When we need to access this string we can use the label "fluffy_string".
Another word for "label" when referring to data and variables is "identifier" which I'll use
from now on.

Fantasm takes all your data identifiers and data from all your source files and passes them
to the linker which "munges" them all into the data section.

A pointer to each item of data is stored in the Table Of Contents (TOC) and the data
identifier for each item is related to the slot in the TOC that points to the correct data.
This is neccessary because when your program is launched, the data section can go at any
address in RAM - it's not always the same address, so the Mac has to "relocate" all the
pointers to data.

These are the pointers that are stored in the TOC. Sounds complicated right?
The only practical offshoot of it is that when you access an identifier for initialized
data, just remember you are getting a pointer to the data.

Another way of looking at it without the technicalities is: The TOC is pointed to by a
register called rtoc, which is really just r2.

This register points to a program's Table of Contents. This is simply a table that points to
all initialized data (in the data section) that we gave identifiers to. Again, please
forgive me but I am oversimplifying things a little, we can have code pointers and pointers
to function descriptors in the toc as well, but we need things as clear as possible at this
stage.

Thus a fairly typical load may look like this:

lwz r3,fluffy_string(rtoc)

This will load the address of fluffy_string into r3, because the rtoc contains pointers to
the data - so we're loading the pointer to the data into r3.

We could then load the first character of the data as follows:

lbz r3,(r3)

"lbz" means Load Byte and Zero. (r3) means the contents of the address pointed to by r3, and
not the contents of r3 itself.

ManiacoMac’s PPC Cracking Bible v1.0.2 • Page : 19

ManiacoMac ® 2004

In this case, the lower byte of r3 would now contain the character "F".

So, lets summarize what we've covered so far:

1. lwz is an instruction that Loads a word into a register.

2. stw is an instruction that Stores a word into memory.

3. li is an instruction that loads a 16 bit value into a register and sign extends it.

4. movei is a macro that loads a 32 bit value into a register.

5. Variables come in two forms; local and global.

6. Global variables are accessible to any part of the program and are stored in the BSS.

7. Local variables are only accessible to the subroutine they are defined in (not strictly
true in assembly language by the way - you can do anything you like, but this is the rules
for beginners).

8. Local variables are set up with some macros called reset_locals, local, sub_entry and
sub_exit.

9. Initialized data is stored in the data section and accessed through the TOC via register
rtoc.

10. The TOC contains pointers to data, not the actual data itself.

11. Identifier is another word for "label" when used with respect to data. The word "label"
is used for code, "identifier" for data.

Phew, let’s give it a go hey?
OK, first make sure Macsbug is installed on your machine. To do this, press the Apple and
Power On keys on your keyboard. If Macsbug pops up, lovely jubbly. Type G <return> (<return>
means hit the return key on your keyboard). "G" means carry on running, or Go.

If not, if you get the little dialog box with a prompt that looks like this:

>

then you do not have Macsbug installed. Again type G <return> to get out of the box.

To install Macsbug, drag it over your System folder and restart your Mac.
You can get Macsbug from Apple for free.

Ok, so Macsbug is installed - this will allow us to explore our programs as they are
running. Now we need to write that little program above and step through it to ensure r3
get's loaded with the pointer to fluffy_string.

ManiacoMac’s PPC Cracking Bible v1.0.2 • Page : 20

ManiacoMac ® 2004

I've uploaded this simple project to the server - download it by clicking here. It's a
Stuffit archive, so if your browser doesn't do it automatically, you may need to unstuff it
using Stuffit Expander (tm).

example1: entry
 stdx r1,r2,r3
 lwz r3,fluffy_string(rtoc) *r3 points to fluffy_string
 blr *simple end of our program - branch to link register.

**************Data***************
fluffy_string: dc.b "Fluffy loves socks"
 align

***********End of program********

Lets just run through it. "example1:" is the label, or name of this program. "entry" tells
Fantasm where the program starts. "stdx r1,r2,r3" causes the processor to stop in Macsbug
(because it's a 64 bit instruction and a 32 bit processor doesn't understand it) so we can
see our program. There is a macro that does this, called "Debug" but we won't use that yet.
"lwz r3,fluffy_string(rtoc)" we've already covered. "blr" is a PowerPC instruction that
means Branch to the address contained in the Link Register. This instruction was covered
briefly in Chapter 1. In this case it ends our program.

After you've downloaded and expanded the project, open it from Anvil (it's called
"example1_prj"), then build it (APPLE B) and then run it (APPLE R).

Hopefully you should now be in Macsbug. Down the bottom of the screen you should see
something like this:

 020CA238 *dc.l 0x7C22192A | 7C22192A
 020CA23C lwz r3,0x0004(RTOC) | 80620004
 020CA240 blr | 4E800020

The line that reads *dc.l 0x7c22192a is our "stdx r1,r2,r3" and is how we broke into Macsbug
(with an illegal instruction). Below that we can see our assembled two lines of program, the
lwz and the blr.

If you enter the following command into Macsbug (where <CR> means press the return key):

pc=pc+4<CR>

we will skip over the illegal instruction to point to our load instruction, lwz. We can run
this instruction by holding down the APPLE key and pressing the "S" key. r3 will now contain
the address of fluffy_string. We can check by displaying the memory that r3 points to with
the following Macsbug command:

dm r3<CR>

We should hopefully see that r3 does indeed point to the string "Fluffy loves socks".

Note: You will see the string "Fluffy loves soc". This is because the dm r3<CR> command only
shows the first 16 characters. To see all the string press the <CR> key a couple of times.

Now type:

ManiacoMac’s PPC Cracking Bible v1.0.2 • Page : 21

ManiacoMac ® 2004

g<CR>

and your Mac should run as normal.

Just a quick Macsbug note here. If you have more than one monitor, it may be worthwhile
making your start up screen anything other than your main screen. Macsbug always works on
the startup screen, so this way you can see Macsbug and whatever your program is doing at
the same time.

And that is a lot to take in in one chapter. In the next we'll look at logical operations
(sorry, but it has to be done) and a more complex program that utilizes all we've covered
here - it may even do something! In the meantime, you may like to have a look at the
"PPC_graphics_demo" example that can be found in the examples folder next to wherever you
installed Fantasm 5. See if you can figure out roughly what's going on, but don't worry if
it just looks scary.

PowerPC Assembly Language Beginners Guide
Chapter 3

Logical Operations

AND
Logical operations are quite simple to understand and form a useful tool within the
programmers armory. An "and" operation simply says if both A and B are equal to a logical 1,
then set the result to a 1. Logical operations work at a bit level - each bit of both
operands is logically tested and the same numbered bit in the destination is set or cleared
as a result of the logical operation as applied to each bit. We humans can work them out
serially; by starting at the first bit of each operand and making a note of the result of
each operation. The CPU operates on all bits in parallel, hence all logical operations (in
common with most PowerPC instructions) have an effective processing time of one cycle. The
exception to this timing are integer multiplies and divides - avoid these like the plague if
you can or use the FPU which is a multiply-add unit and can perform single sized (32 bit)
multiplies in one clock cycle effectively and double sized (64 bit) multiplies in two.

Back to the logic...
Suppose we "and" 1 and 9. If we look at the number in binary, 1 is 0001 and 9 is 1001. When
these two numbers are anded, the processor looks at the numbers like this:

3210 <- Bit number
0001 <- 1 in binary
1001 <- 9 in binary
0001 <- result

ManiacoMac’s PPC Cracking Bible v1.0.2 • Page : 22

ManiacoMac ® 2004

First it will look at both bit 3's. It says I have a 1 and a 0, so I don't have two 1's.
Therefore the result is zero. Then it looks at bit 2's, which are both zero, so the result
is zero. Bits 1 are both zero, so the result is zero. Bits 0 are both 1. It says if I have a
1 "and" a 1 then the result is 1, so bit zero result is 1.

The result of 9 anded with 1 is 1.

The and operation can be summarised by saying "only if both bits are set will the result be
set"

Examine the following examples, to see if you can spot the main use of the "and"
instruction.

What is the result of 0xFA anded with 0x0F?

0xFA = 11111010
0x0F = 00001111
AND =
00001010 = 0x0A

What is the result of 0xF1 anded with 0x0F?

0xF1 = 11110001
0x0F = 00001111
AND = 00000001 =
0x01

What is the result of 0x1220 anded with 0x00FF

0x1220 = 0001001000100000
0x00FF = 0000000011111111
AND =
0000000000100000 = 0x0020

The and instruction is mostly used to mask off wanted data in a register. By setting bits in
the mask that identifies the bits you want to keep, and then anding this mask with the data,
the bits you are not interested in will be set to zero.

For example if you had a routine that returns the ASCII value of a key pressed on the
keyboard, and it returned the key in r3. The key can be specified in a byte, but there may
be data from earlier processing in the upper three bytes of r3 - so to ensure you don't
create errors further in the program, the byte can be masked off with the and instruction as
follows:

andi. r3,r3,0xff

Irrespective of how much garbage is in the upper 24 bits of r3, after this instruction all
that will be left in r3 is the byte defining the key press, the lower 8 bits. Note in
particular the trinary operands and the dot at the end of the instruction.

If we wanted we could leave the contents of r3 intact and place the results of the AND
operation in another register, say r4, with an instruction such as:

andi. r4,r3,0xff

ManiacoMac’s PPC Cracking Bible v1.0.2 • Page : 23

ManiacoMac ® 2004

The dot means that this instruction always affects the condition code register; a note is
made of the result of the operation. If for example, the result of the AND was that all bits
were cleared, then the Z (or zero) flag inthe condition code register was set. We will
examine the condition code register in more detail later, but for now just note that there
are 8 integer condition register "fields". An instruction followed by a dot means that the
condition code register field 0 is affected - it notes the result of the operation. NOTE
also that immediate type instructions such as andi. always work with 16 bit unsigned
immediate data. There are shifted forms of the instructions which will affect the upper 16
bits of a 32 bit register, as an example see the movei macro from chapter 2.

NOTE: The syntax when introducing new instructions is of this form:

instruction[.] rx,ry,rz

where instruction is the mnemonic, [.] if present means you can use either the dotted or
undotted form where the dotted form will affect the condition flags (cr0), rx,ry,rz are
general purpose registers, fn means a floating point register, ui is an unsigned integer
quantity (normally 16 bit, noted if different) and si is a signed integer quantity.

Examples of possible and instructions:

AND - and[.] rx,ry,rz
The contents of register rz is anded with register ry and the resultant 32 bit pattern is
stored in rx.

AND with complement - andc[.] rx,ry,rz
The contents of register ry are anded with the complement of rz and the resultant 32 bit
pattern is stored in rx. Complement means the inverse of - for example %1010 when
complemented becomes %0101. Not to be confused with two's complement which is how computers
subtract via addition. Two complement means to invert the data and then add 1.

AND Immediate - andi. rx,ry,ui
The contents of register ry are anded with the ui and the result stored in rx. Note that in
this case, the upper 16 bits of the result will be cleared because ui is a 16 bit quantity!
Note that this instruction is always dotted.

AND Immediate shifted - andis. rx,ry,ui
This is basically the same as andi, except the ui is shifted left 16 bits before being anded
with ry, so the lower 16 bits of rx will always be cleared after this instruction.

OR
The OR instruction works like this:

If either or both of the bits are 1, then the result bit is a 1. The other way of looking at
it is "If both bits are a zero then the result is a zero, otherwise its a 1".

Example - OR 1 with 2

1 = 0001
2 = 0010
OR= 0011 = 0x03

ManiacoMac’s PPC Cracking Bible v1.0.2 • Page : 24

ManiacoMac ® 2004

In PowerPC, the possible instructions are basically the same as and as follows:

OR immediate - ori rx,ry,ui (note no dot allowed unlike andi. which must have one)
OR immediate shifted - oris rx,ry,ui (note no dot allowed unlike andis. which must have one)
OR - or[.] rx,ry,rz
OR with complement - orc[.] rx,ry,rz

Fantasm uses the ori instruction to provide the "extended mnemonic" nop which stands for NO
Operation:

nop is the same as ori 0,0,0

The or instruction is used to provide the useful extended mnemonic mr, which means move from
one register to another:

mr rx,ry - move the contents of ry into rx and is the same as or rx,ry,ry

XOR
The eXclusive OR instruction works like:

"If one bit is a 1 and one bit is 0 then the result is 1, otherwise the result is 0".

Example - XOR 1 with 15

1 = 0001
15 = 1111
XOR= 1110 = decimal 14 or
0x0e

XOR 0 with 1

1 = 0000
0 =
0001
XOR= 0001, so the result is 1.

If we XOR the result with 1 again we get a 0 because both bits are now a 1. This is a neat
way of toggling a bit, every time a loop executes for example. Initially the bit is set to
1. Each time round the loop, the bit is XOR'd with 1. Every time the loop executes. if the
bit is a 1 its set to a 0, and if its a 0 its set to a 1.

What'sthe use of this? Suppose you want to flash something, say an alien spaceship on the
screen between red and yellow. You simply xor the colour control bit with 1 and if it was a
1, use the colour red or if it was a zero use the colour yellow.

Possible XOR instructions:

xor immediate - xori rx,ry,ui
xor immediate shifted - xoris rx,ry,ui
xor - xor[.] rx,ry,rz

ManiacoMac’s PPC Cracking Bible v1.0.2 • Page : 25

ManiacoMac ® 2004

Miscellaneous logical instructions

NOR - NOT OR
NOT means to invert, so NOR performs an OR operation on the two operands, then inverts the
result and stores it in the destination register:

nor[.] rx,ry,rz - the contents of ry are ORed with the contents of rz, then the result is
inverted and stored in rx.

Fantasm uses the NOR instruction to provide the "extended instruction" NOT:

not rx,ry is the same as nor rx,ry,ry

NAND - NOT AND
NAND performs and AND operation on the two operands, inverts the result and stores it in the
destination register.

nand[.] rx,ry,rz

EQV - Equivalent

eqv[.] rx,ry,rz - the contents of ry are XORed with the contents of rz, the result is
inverted and stored in rx.

Sign extension instructions

Extend sign byte, Extend sign halfword, Extend sign word
extsb[.] rx,ry
extsh[.] rx,ry
extsw[.] rx,ry

These instructions copy the sized data (byte, half or word) to another or the same register
and sign extend the result, so

extsb rx,ry copies the byte out of ry into rx and copies bit 7 to bits 8 through 31 of rx.
extsh rx,ry copies the lower 16 bits out of ry into rx and copies bit 15 to bits 16 through
31 of rx.
extsw rx,ry is a 64 bit instruction that is illegal on 32 processors such as 601/3/4. It
copies the lower 32 bits out of ry into rx and copies bit 31 to bits 32 through 63 of rx.

NOTE that Fantasm 5 will assemble most 64 bit instructions (i.e. PowerPC 620 processor) just
fine - you can turn on warnings about their use from Fantasm's preferences pane.

Count Leading Zeros (Word or Double)
cntlzw[.] rx,ry
cntlzd[.] rx,ry

ManiacoMac’s PPC Cracking Bible v1.0.2 • Page : 26

ManiacoMac ® 2004

These two instructions, one for 32 bit architectures and one for 64 bit (the double form)
counts how many zeros from the leftmost bit position until the first binary 1 is
encountered. The count is stored in the destination register.

--

We mentioned about the dotted form of some instructions and that if the dot was used the
condition flags would be set. Your first question may be why not use them all the time? The
answer is simply that to set the condition register flags the processor needs to do more
work. Sometimes you may not care if the result of a logical operation was zero or not - you
just want the data. In this case you would not use the dotted form. Some times you do need
to know so you can make a decision based on the outcome of the operation; in this case you
would use the dotted form.

This will form the basis of the next chapter, where we'll be looking at the processor in
more detail and examining the condition register and branch processor in general along with
a closer look at the whole architecture and introducing the branch processor instructions.
We will then have enough information "under our belts" to be able to produce some
rudimentary programmes to introduce more integer instructions.

In the mean-time, it would be worthwhile revising the first three chapters and if you're not
subscribed to the Fantasm list server maybe you'd like to consider it. Some very useful
discussions crop up from time to time.

Author note: Many people have made me aware that this series was moving rather too slowly
for their liking :-) so I have rearranged things somewhat.
This chapter is not the one that was planned which was a discussion of data sizes, the toc
and bss sections. Instead I have opted for a more practical approach. These things are used
in what follows but I figure people are smart enough to figure out what's going on from
example - for instance, how to use global variables off of the bss and how the toc points to
data in the data section. I will of course fully explain these things in a future chapter.

Some of the text in this chapter is reproduced out of the old beginners guide.

We appreciate all your email, corrections and feedback regarding this series, so don't be
shy!

An overview of current PowerPC processors.
601 - This first generally available processor is intended as a bridge between POWER and
PowerPC architectures. It has three separate pipelines: The Branch Processing Unit (2
stages), the Integer Unit (3 stages) and the Floating Point Unit (four stages) together with
a unified 32k instruction and data cache. A 64 bit data bus and a 32 bit address bus. Speed
ranges from 50 Mhz upwards.

603 - This is a true PowerPC implementation designed for high performance and low cost. This
has four separate pipelines: Branch Processing Unit (2 stages), Integer Unit (3 stage),
Floating Point Unit (Six stage) and a Load/Store unit (five stage). Coupled with separate
8kb data and instruction caches. 64 bit data bus, 32 bit address bus. The data bus can be
configured for 32 bit operation. What is confusing is that the 603 is less powerful than a
601 but is available in speeds up to 350 MHz and beyond.

ManiacoMac’s PPC Cracking Bible v1.0.2 • Page : 27

ManiacoMac ® 2004

604 - This processor is designed for mid-price workstations. It has Six separate pipelines:
The Branch Processing Unit (2 stage), three Integer Units (three stage), Floating Point Unit
(six stage) and a Load/Store Unit (five stage), together with separate 16Kb data and
instruction caches - it is designed to run upwards from 100Mhz.

604e - Basically a 604 with bigger caches (32K a piece) and some tweaks.

620 - The first full 64 bit implementation. Similar to a 604 except the caches are 32 Kbyte
each. It also has an embedded secondary cache controller to drive standard Static RAM chips.

750 - 32 bit modified 603e with direct connect second level cache. Optimized for integer
rather than floating point operations. For all intents and purposes it can be considered a
tweaked 603e.

The best news is that at last, floating point is an integral part of the specification -
that is ALL PowerPC chips have an FPU, so we can start using real numbers rather than
integer imitations, making life a lot easier for everybody, and because the FPU's run in
parallel with the rest of the processor, it's faster too.

This is RISC isn't it - shouldn't we be a little scared of it?

Well, that's up to you - personally, having used PowerFantasm for the last two years, I'd
rather write in PPC any day. Ok, so the transition is a bit traumatic - it's all brand new,
but once you get into it, it's great.

Here are the big differences:

1. If you have been used to 68K, you'll know that you can perform operations on data in
memory - e.g. addq.l #1,fred(a5). In PowerPC you can only perform operations on data in
registers.

This is a real bind, but OK once you get the hang of it.

2. PowerPC instructions very often have lots of operands, and they are backwards compared to
68K.

For example: add r3,r4,r5

Adds r5 to r4 and stores the result in r3

3. Flags are NOT implicitly set when you move data. For example in 68K, if you move.w
fred(a5),d0, if fred contains zero, the zero flag will be set. In PowerPC this is not the
case - you need to explicitly compare the data, either with a cmpwi (CoMPare Word Immediate
instruction) or by using a dotted form of an instruction - addic. r3,r4,r5.

4. Everything must go through the processor - so no moving memory to memory instructions.

5. The sizes of data is (are?) different:

PowerPC 68K Description
Byte Byte Same as a byte on anything else - 8 bits.
Halfword Word 16 bits
Word Longword 32 bits
Longword Not used 64 bits

ManiacoMac’s PPC Cracking Bible v1.0.2 • Page : 28

ManiacoMac ® 2004

That in a nutshell is the main differences. We assume you have read the previous chapters
about how data is represented, what logical operations (AND, OR etc) are, and how a computer
actually runs. We'll dive straight into the practicalities. We don't doubt for a moment this
guide will turn you into an "on the metal" PPC coder overnight - there is a lot you can do
with the PowerPC chip - we just want to get you walking, the running is up to you.

The pratical basics
Any program can be split into 3 logical sections - initialization, processing, termination.

The initialization stage consists of loading the program into memory, setting its variables
to the right starting values, and setting up any storage space, or memory, the program may
need.

The processing stage is when the program actually does what it's intended to do and produces
its results, and finally the program must exit gracefully from the system.

These three stages can be broken down into smaller and smaller sections until one is finally
happy that the "algorithm" or mechanical design of the program can be translated into actual
processing statements, or instructions. With that in mind, our first example will be adding
two numbers. Before we start, just take some time to scan over the PowerPC instruction set
as given in Fantasm's reference manual (LSA0041). Don't just look at the likely candidates
for the upcoming example, but take some time to examine all of them. Print it out, take it
to school or work, and just browse through it.

We will put two numbers into registers, and add them together - see if you can scribble down
the program, then compare it to the one given below, meanwhile we'll have a little interlude
in the form of "installing Macsbug".

The version we will be talking about here is 6.5.3 or later which runs just great on
PowerMacs.

If you haven't already, put Macsbug in your system folder and reboot. Now by hitting the
APPLE key and the Power On/Off key on your keyboard, you should drop into Macsbug. Type "G"
return, and you should be back to where you were before entering Macsbug. Now that's
installed we can call Macsbug from our programs, in order that at relevant points we can
examine the registers and memory.

If you have the Extension Manager on your PowerMac, make a new set called "Programming"
which includes a minimal set AND Macsbug - by minimal we mean just the bare essentials - for
example you don't need ~Aaron running.

Ok, back to our first example - lets check out the PPC's maths.

Here it is:

 li r3,4 *First number is 4.
 li r4,8 *8 is second number
 add r5,r4,r3 *add r3 to r4 and store result in r5

Load Immediate (li) is actually an "extended" instruction provided by Fantasm, formed from
the "addi" instruction - li is actually addi rx,ry,si where ry is zero, so the instruction

ManiacoMac’s PPC Cracking Bible v1.0.2 • Page : 29

ManiacoMac ® 2004

adds the si (signed integer) to zero and stores the result in rx. The signed immediate data
is only 16 bits, not the full 32 bits and so is sign extended to 32 bits before the addition
is performed as the PowerPC ALU (Arithmetic and Logic Unit) only deals with 32 bit operands
(64 bit processors excepted). NOTE: In any trinary operand instruction, if ry is r0, it is
taken as zero, zilch, nothing but only some instructions, mainly arithmetic - add and sub -
can use this form.

The program then, loads decimal 4 into r3, decimal 8 into r4, then adds r3 to r4 and stores
the result in r5.

A quick note about numbers in Fantasm. You may use binary, hexadecimal, decimal and ASCII
for normal numbers, Floating point (scientific notation - 1e6, 3.142 etc) can be used for
some floating point directives. Binary numbers are preceded by a percent character -
%101101. Hexadecimal can be preceded by a dollar character - $f0fe OR by 0x as in C -
0x1234f0fe. Hex numbers can be in lower or upper case - 0xF0FE. Character constants up to 32
bits can be defined by enclosing the string in double quotes (all strings in Fantasm are
delimited by double quotes) - "FRED".

Before we actually try it out, we need to know a little about the practicalities of a
PowerPC program for the Macintosh. First off, as you may be aware, every "native" Mac
program has a "TOC", or more correctly a "Table Of Contents". The toc is a table of data
pointers in the programs data section that points to any initialised data in use. The
physical register is called rtoc and is really the PowerPC integer register r2, viz:

 lwz r3,fred(rtoc) *r3 is now pointing to fred which is a pascal type string.
 Xcall DrawString *Print the string
 blr
 fred: pstring "Hello!" *5,H,e,l,l,o is placed in the data section by Fantasm.

The physical run time interfacing problems are handled in Fantasm with some handy "macros"
(new term I know, I'll explain in a second) that take the stress out of these "interfacing"
procedures. These are simply used at the right times, and all will be well (apologies for
sounding so patronising but I don't want these terms to get in the way of what we are trying
to learn here). For example the first lines of any native program you write should be:

 Entry *Tell Fantasm where execution starts
 start_up *A macro that saves the current machine state. Use tidy_up before exit

This will cause Fantasm to insert the macro "start_up" at this point in the source code.
When your program finishes, you use "tidy_up" and when you want to call an Operating System
function you can use "Xcall <OS function name>".

Note that the PowerPC assembler is "case sensitive" - this means that Xcall is different to
XCALL - XCALL will not work. This is because in PowerPC, all Macintosh Operating System
functions are called by name. The calling mechanism is case sensitive, so it makes sense
that the assembler is also case sensitive. For more information on the PowerPC assemblers'
label definitions (instructions, directives etc) see the manuals LSA00040 and 41.

You may have used library functions in Fantasm before - these are pre-assembled code
snippets designed to perform a simple function - for example "Getkey" returns a keyboard key
(if any). Well a macro is just as handy as a library function, except that a macro is simply
text inserted where its name is used. You can examine these macros in Anvil - open the file
"LS_ppc_macros.def" in the "Anvil Low Level Defs" folder. Fantasm macros can get incredibly
complex (for example we have a set that translates 68K assembly language to PowerPC), but

ManiacoMac’s PPC Cracking Bible v1.0.2 • Page : 30

ManiacoMac ® 2004

for the sake of this guide, the only thing you need to know is that we'll be seeing a lot of
these three macros - start_up, Xcall and tidy_up.

Armed with this knowledge, we can write the practical version of the add program as follows:

 includeh ls_ppc_macros.def *include this file from "headers"
 includeh general_usage.def *and this one
**Program to add two numbers
 entry *tell Fantasm where program execution starts
 start_up *the start_up macro as detailed above - sets up the toc etc
 Xcall Debugger *call Macsbug so we can see it happen.
**Processing start
 li r3,4 *First number is 4.
 li r4,8 *8 is second number
 add r5,r4,r3 *add r3 to r4 and store result in r5
**Processing end
 tidy_up *clear up processors registers and get ready to exit
 blr *back to system.

There are two new instructions we are not familiar with. The first line has the instruction
includeh - if you've swotted up on Fantasm's manuals you may know that this is not an
instruction at all, but actually a "directive" - a command to Fantasm. In this case it tells
Fantasm to include a file from the "low level defs" folder - in this case the PowerPC macros
so this program may have access to start_up etc.

NOTE: If you use include directives, they should be at the the very start of the file.

The last line of the above program also has a new instruction - blr - Branch to Link
Register. This is a register that can contain the return address for a subroutine, or any
other piece of code. The start_up macro saves it for us, and tidy_up restores the link
register, so when we execute a blr instruction, the processor branches to the contents of
the Link Register - in this case, back to whatever launched our program (normally the
Anvil).

If you branch to your own subroutine, with a branch and link instruction (bl), you must save
the Link register (probably in another register) so you can restore it to return to the
caller under the following circumstances: 1. You use the Xcall macro to call an OS function.
2. You branch and link to another subroutine.
If your subroutine does not do either of these, then there is no need to save the link
register.

Note that Xcall destroys the Link Register and the Count Register (which we haven't talked
about yet, but is included in this discussion for accuracy).
E.g.

 bl my_function1 *Call a routine called my_function1
 add r3,r4,r5
 the rest of your program
my_function1:
 mflr r29 *Save the return address (currently in the link register) in r29
 your processing code
 mtlr r29 *Restore the return address into the link register
 blr *branch to the link register (back to the caller)

ManiacoMac’s PPC Cracking Bible v1.0.2 • Page : 31

ManiacoMac ® 2004

The bl instruction branches to a routine and saves the next instruction address in the link
register - in this case it is the address of the add folowing the bl insstruction.

Making the project I could have made this incredibly easy for you and simply uploaded a Fant
5 project, but I haven't on the grounds that this is as good a time as any to learn how to
create a new project with Anvil.
Here's what we're going to do. First we will create the project. Next we will create a
source file and enter the code. Finally we will build the project and then run it and
examine the program with Macsbug.

Follow me though:
1. Launch Anvil and from the project menu select "Create New Project".

1a. Click on the little Apple help icon in top right to get the items titles displayed.

2. From the New Project dialog, select the template "PPC Fantasm App" from the "Project
template" pop-up menu at the top of the dialog. When we build the project this will give us
a standard Macintosh application.

3. Give the project a name in the text box labelled "Target name?" 4. Click the big "OK"
button. You will be asked with a file selector where to create the project. Find somewhere,
maybe make a new folder for it and click OK. The project will be created and opened. You
will note the project window that opens has the build and run icons crossed out in red. This
means you can't build the project (there are no files) and the project has not been built,
so you can't yet run it.

5. From the Edit Menu hit New to create a new text file - it will be called "Unititled 1".
5a. If you haven't set up Anvil's general preferences to default to PowerPC, select "This
file's preferences" from the edit menu and change the language to PowerPC. After this
operation Anvil will ask you to save the file - give it a name and save it next to your
project file.

6. Enter the program text as above and if you haven't already, save the file and give it a
name.

7. Add your new file to project (it will apear in the project window in the _Src area) and
then Build the project (Use Apple B, click the Anvil icon in the project window or select
Build from the Project menu).

It will build and you will find the target icon is now available. Click it,
or hit Apple R to run your program.

If Macsbug is installed you will immediately enter Macsbug, if not you will get an error
reporting an unimplemented trap and you will have to reboot, install Macsbug and try again.

Assuming you are in Macsbug, hitting APPLE S three times should display the following lines:

Step (into)
 No procedure name
 004CE9D0 lwz RTOC,0x0014(SP)| 80410014
 004CE9D4 li r3,0x0004 | 38600004
 004CE9D8 li r4,0x0008 | 38800008

ManiacoMac’s PPC Cracking Bible v1.0.2 • Page : 32

ManiacoMac ® 2004

 004CE9DC add r5,r4,r3 | 7CA41A14

APPLE S is the Macsbug command to step an instruction - that is, run just one instruction
then stop again. The first instruction lwz RTOC,0x0014(sp) is the last instruction of the
Xcall macro - you will always see this line if stepping a system call in PowerPC. The next
three lines are our program, and the lines following that are the "tidy_up" macro code.

In Macsbug, enter "G" followed by the return key - you will be returned to Anvil. Didn't
hurt too much I hope :-)

Now, we need to follow the program through - run it again (APPLE R), and step past the first
lwz RTOC,0x0014(SP) instruction. Macsbug should now be pointing at the first line of our
program - li r3,0x0004. To the left of the disassembly, you will see the processors
registers. Step over this instruction with S return and examine r3 - it will contain 4. Now
step the next instruction, and r4 will contain 8. Now step the final instruction add
r5,r4,r3, and r5 will contain 0x000C - which is hexadecimal for 12. If you like, step
through the instructions that follow (the tidy_up macro code), and eventually you will come
to the blr instruction - at this point, when you execute this, your Mac will switch back to
68k code, and you will be in Anvil's code - just type "G return" to run Anvil.

Easy? Any problems? If yes, re - run through the above until you understand what we did. If
you are really keen, you can modify the program to your hearts content. Remove the Xcall
Debugger line for example (tip - just comment it our rather than deleting it - make the
first character of the line a semi-colon or a splat character "*").

A closer look at the architecture.
By now you should be getting the whole point of RISC architectures - the instructions are
simple, there's lots of registers and things happen quickly. Whereas in 68k, one tends to
use the stack extensively, in PPC, it's better to find your own register convention. For
example the following registers are used for:

sp - obviously the stack pointer (r1).

rtoc - the toc pointer (r2)

r31 - modify this at your peril if you call any 68K code or an OS function it's best to
leave this alone.

Apart from the above registers, all the other are free. However, when passing parameters to
a System function (or trap), the parameters are generally passed in r3 to r10, and the
results passed back similarly in r3.
For more information we suggest you check with Inside Macintosh PowerPC System Software, but
generally the above holds true. Fantasm's reference manual gives you detailed register
volatility rules. This is handy when determining if calling an OS function will destroy a
register.

One method is to use the low numbered registers as scratch registers, and the high numbered
registers as longer term storage. For example, we use r29 to store the LR in when going to a
subroutine. If that subsequently calls another routine, that routine will either save r29 in
memory first or use r28 to store LR in. The emphasis is on speed, and if you can get away
without having to reference memory, then do it.

ManiacoMac’s PPC Cracking Bible v1.0.2 • Page : 33

ManiacoMac ® 2004

Stacks are implemented in software, using whatever method you prefer - however, the Update
form of instructions are handy for this, as the NEW effective address is stored, not the
previous effective address - e.g.

68K
 move.l d3,-(sp)
PPC
 stwu r3,-4(sp)
68K
 move.l (sp)+,d3
PPC
 lwz r3,(sp)
 addi sp,sp,4

Note the lmw instruction. This moves registers from the processor to memory
quickly:

 stmw r3,0(fred) *save r3 to r3 in memory at location fred
 lmw r3,0(fred) *load r3 to r31 from memory at fred
fred:
 ds.l 4*32 *reserve 128 bytes of storage in the data section

Instruction set
The instruction set is detailed in Fantasms reference manual - we will not replicate it
here, but will note specific practices.

The "carry", "overflow", and "extended" option bits: The standard PowerPC arithmetic
instructions do not set the carry bit or test for overflows. The "c" and "o" suffixes are
used to designate the instruction forms which modify the carry and/or overflow bits, as in
"add carrying" (addc), "add carrying with overflow enabled" (addco), and "add carrying with
overflow enabled and CR update" (addco.). The "extended" arithmetic instructions include the
carry bit in their calculation, to implement multiple-precision arithmetic. The extended
instructions include "add extended" (adde), "subtract from extended" (subfe) and "add to
zero extended" (addze).

The "record" bit: Unlike the 68K processor which nearly always set the condition codes
depending on the outcome of an operation, in PowerPC we use use special "record" versions of
the arithmetic instructions to set Condition Register field 0 (CR0). Most arithmetic
instructions have a "record" form indicated by appending a period (".") at the end of the
instruction name, as in subtract from (subf.).

Immediate and "shifted immediate" values : Some of the instructions have an "immediate" form
where one of the operands is contained within the instruction word. (This differs from the
68K where Immediate is an addressing mode and the information follows the instruction.)
Since immediate data is limited to values that can fit within the instruction word,
immediate values are usually limited to a 16-bit halfword. The PowerPC also supplies
"immediate shifted" instruction forms that take a 16-bit immediate value and shifts it left
by 16 bits into the upper half of a word, allowing the loading of fullword (32 bit)
immediate data with two instructions - LIS and ORI for example.

A practical example.

ManiacoMac’s PPC Cracking Bible v1.0.2 • Page : 34

ManiacoMac ® 2004

In this section we'll dissect the "PPC_GRAPH_DEMO" program supplied on the Fantasm 5 CD. The
main aim of this example is to show just how a PowerPC program is structured. We have 2
source files, 1 globally included file (the BSS offsets) and a Build Control File. The two
source files are simply the main source file "PPC_graph_demo.s" and the initialisation file
–

"graph_demo_init.s".

The aim is to open a window, use QuickDraw to draw some nice shapes, and then quit.

The first thing we do is equate some registers to names, so as to make the code more
readable:

param1: reg r3 *Set up the names of the regs used for parameter passing
param2: reg r4
param3: reg r5
param4: reg r6
bss: reg r30 *The register we use for global data

These registers are used as parameter holders during system calls using the "Xcall" macro.

Next, the program proper starts:

ppc_graph_demo:

 ENTRY *Prog starts here
 start_up *save all the regs and set up r30 for global
 la r3,qd(`bss) *get the address of the QD array into r3
 addic r3,r3,206-4
 Xcall InitGraf *Init managers
 Xcall InitFonts
 Xcall InitWindows
 Xcall InitMenus
 Xcall TEInit
 li `param1,0
 Xcall InitDialogs
 Xcall InitCursor
 **Open our window and copy its viewrect.
 bl graph_demo_init *initialise and open a window and get its viewrect
 *into viewrect_1(bss)

The ENTRY directive tells Fantasm that this is where the program starts .

Next we use the "start_up" macro to save the PowerPC registers, and set r30 to point to the
BSS section. Following on is the normal Macintosh initialisation - we could have used a
library function here (init_mac), but thought it better to show the process. Finally we
branch and link to graph_demo_init which is in the initialisation source file.
graph_demo_init carries out two functions. Firstly it opens our window, and secondly it sets
up two rectangles that we will be drawing into:

**File:graph_demo_init.s
param1: reg r3 *Set up the names of the regs used for parameter passing
param2: reg r4

ManiacoMac’s PPC Cracking Bible v1.0.2 • Page : 35

ManiacoMac ® 2004

param3: reg r5
param4: reg r6
bss: reg r30 *The register we use to point to "global"
variables

graph_demo_init:
 mflr r29 *save return address
 bl open_window
 mtlr r29
 blr

open_window:
 mflr r28 *save return address from link register
 li `param1,128 *window resource id is 128
 li `param2,0 *clear param2 - window storage - let the OS find
some
 li `param3,-1 *behind no other windows(i.e. in front)
 Xcall GetNewCWindow *Note NewCWindow, else we could have problems
 *with the colors.
 stw `param1,window_1_ptr(`bss)
**get the viewable rectangle (top,left,bottom,right)
 la r3,16(r3) *windowptr+16=viewrect (la is "load address")
 la r4,viewrect_1(`bss) *Storage is in the bss section
 lfs f0,(r3) *32 bit move into f0
 stfs f0,(r4) *32 bit store into viewrect_1
 lfs f1,4(r3)
 stfs f1,4(r4)
**And copy to our second rectangle as well
 la r4,viewrect_2(`bss)
 stfs f0,(r4) *into viewrect_2

 stfs f1,4(r4)

**set the port to our window
 lwz `param1,window_1_ptr(`bss)
 Xcall SetPort
 lwz r10,white(rtoc) *r10 points to colour white
 mtlr r28 *restore the return address
 blr *and branch to it

 global graph_demo_init
 extern_data white

Note the use of the FPU (stfs - store floating single) to transfer the 8 byte rectangle
definition into viewrect_1 and 2.

Now we have a window and know its coordinates (viewrect) we can start drawing.

**First lets set the foreground colour to white
 lwz `param1,white(rtoc)
 Xcall RGBForeColor *That should do it

This piece of code sets the current pen colour to white. Now we fill the window with
horizontal lines by drawing each line and decrementing r22 until it is zero:

ManiacoMac’s PPC Cracking Bible v1.0.2 • Page : 36

ManiacoMac ® 2004

**now a simple horiz test
line - draw r22 white lines
 la r3,viewrect_1(`bss) *top,left,bott,right
 lhz r20,2(r3) *left of window
 lhz r21,6(r3) *right of window
 lhz r22,4(r3) *bottom of window into r22
**use MoveTo and LineTo to draw the line
line_loop:
 bl draw_line *draw a line(r20 to r21 at
y position r22)
 subic. r22,r22,1 *up 1 line
 bne line_loop *and if line y isn't zero draw another line.

We then repeat the process, but this time we change the current pen colour as well and do it
50 times:

**now we'll do the same, but change the colours dynamically this time and
**fill the window 50 times
 li r26,50 *do it all 50 times
outer_loop:
**reset the x and y's
 la r3,viewrect_1(`bss) *top,left,bott,right
 lhz r20,2(r3) *left of window
 lhz r21,6(r3) *right of window
 lhz r22,4(r3) *bottom
**Draw line and alter the components of the colour
line_loop_2:
 bl draw_line *draw this line
 lwz r23,white1(rtoc) *r23 points to our colour that we are altering
 lhz r24,(r23) *get the red value
 subic r24,r24,64 *subtract 64 from the red
 sth r24,(r23) *save the new colour back in memory
 lhz r24,2(r23) *get the green value
 subic r24,r24,32 *subtract 32 from the green
 sth r24,2(r23) *save the new colour back in memory
 lhz r24,4(r23) *get the blue value
 subic r24,r24,128 *subtract 128 from the blue
 sth r24,4(r23) *save the new colour back in memory

 lwz `param1,white1(rtoc)
 Xcall RGBForeColor *Set new foreground colour to white1
 subic. r22,r22,1 *up 1 line
 bne line_loop_2 *and if not top of window (line=0) draw next line in new
 *colour.

 subic. r26,r26,1 *do it all r26 times
 bne outer_loop

Next we go from drawing lines, to a little scroll test. Rather than put the code in line, we
have used a scroll routine called:

 bl clear_window *clear the window out by scrolling

ManiacoMac’s PPC Cracking Bible v1.0.2 • Page : 37

ManiacoMac ® 2004

This looks like this:

**Clears our window by first scrolling diagonally, and then virtically
(virtically?).
clear_window:
 mflr r29 *save return address in r29
**First lets set the foreground colour to white
 lwz `param1,white(rtoc)
 Xcall RGBForeColor *That should do it
 la r20,viewrect_1(`bss) *r20 points to viewrect_1
 lhz r22,4(r20) *bottom of rect for use as a loop count
**Scroll diagonally
*extern pascal void ScrollRect(const Rect
*r, short dh, short dv, RgnHandle
*updateRgn)
scroll_diag_loop:
 la `param1,viewrect_1(`bss) *top,left,bott,right
 li `param2,1 *dh = 1 = scroll horizontal +1
 li `param3,1 *dv = 1 -= scroll vertical by 1 as well=diagonal scroll
 li `param4,0 *no updatergn
 Xcall ScrollRect *scroll by 1 pixels
 subic. r22,r22,1 *Decrement loop count
 bne scroll_diag_loop *and branch if not zero to scroll again
 la r20,viewrect_1(`bss)
 lhz r22,4(r20) *bottom
**
Now Scroll down
scroll_down_loop:
 la `param1,viewrect_1(`bss) *top,left,bott,right
 li `param2,0 *no dh this time
 li `param3,1 *just dv
 li `param4,0 *no updatergn
 Xcall ScrollRect *scroll by 2 pixels
 subic. r22,r22,1 *Decrement loop count
 bne scroll_down_loop *and branch if not zero to scroll again
 mtlr r29 *get return address in link register
 blr *and return to caller.

Note the way the Pascal header translates to PPC - very easily. The parameters go left to
right into r3 onwards (up to and including a maximum of r10).

When clear_window returns, the window will be cleared and we can draw some ever larger
circles just as easily:

**now lets draw a circles
 li r28,3 *do the zoomy circles 3 times
rgb_zooms:
 lwz `param1,red(rtoc)
 Xcall RGBForeColor *Set new foreground colour
 bl draw_circles *draw a zoomy circle in red.
 lwz `param1,green(rtoc)
 Xcall RGBForeColor *Set new foreground colour
 bl draw_circles *draw a zoomy circle in green
 lwz `param1,blue(rtoc)

ManiacoMac’s PPC Cracking Bible v1.0.2 • Page : 38

ManiacoMac ® 2004

 Xcall RGBForeColor *Set new foreground colour
 bl draw_circles *draw a zoomy circle in blue
 subic. r28,r28,1
 bne rgb_zooms

PowerPC Assembly Language Beginners Guide
Chapter 5

The Macintosh
This is the trickiest chapter by far. I will attempt to explain just what a Macintosh is
(from a programmers perspective), how it is programmed from a low level point of view and
where some potential problems can occur.

The Macintosh, or more lovingly, the Mac, debuted way back round about 1984 (which is about
two centuries in computing time). At the time it was heralded as a complete and utter
breakthrough. Today, it can be classified as a high powered, multi-media workhorse. Some
would argue it is not a multi-tasking system, but from a programmers point of view it is
very multi-tasking. The kind of multi-tasking I am talking about is that of being able to
run multiple processes sharing a finite amount of hardware resources. For this very reason,
even a game can't just ditch the OS and get on with it. For example; you may grab a serial
port and start sending data.

But if another process running in the background asks for use of the same serial port, the
OS has no way of knowing you have grabbed it. The result is garbled data. With the advent of
real time systems such as Open Transport Networking and multithreaded processes, even an
assembly language programmer has to follow the rules. Granted that an assembly language
programmer can do things a C programmer simply can't. Even in this day and age, certain
parts of the OS can only be talked to with some assembly language "glue". Of course, the
assembly language programmer doesn't need this glue, and so gets faster execution.

For the reasons outlined above, you need to know how to talk to to the OS, and what
facilities it provides. Fortunately under PowerPC, accessing the OS is far simpler than it
is for 68K, where you normally push parameters on the stack, but not always. A case in point
is the memory manager when called from 68K code. It generally takes a pointer in a0, and any
size data in d0.

In PPC, all parameters are passed in registers. The first integer parameter goes in r3, the
next in r4 etc. Floating point parameters are passed in f1 onwards. Any budding Mac
programmer NEEDS to get hold of Inside Mac Toolbox essentials and Overview. These are
totally necessary reading. Believe me, if you break the rules on the Mac, even though your
program may run, your users will give you a very hard time :-)

Good, that's the OS introduction out of the way. From the above you will hopefully see why
an understanding of the OS is necessary. So what is the MacOS? As noted previously, the Mac
has a long and somewhat uneven heritage.

Many projects have been started at Apple and only half heartedly incorporated into the OS
(PowerTalk, GX printing etc.). Many other projects have been highly succesful and become
"core" - for example the Sound Manager. Thus we have an OS with many "core" components and

ManiacoMac’s PPC Cracking Bible v1.0.2 • Page : 39

ManiacoMac ® 2004

many "not so core" items. This really doesn't matter to us. What technologies you decide to
use is up to you. The important thing is that you do need to use some of the OS. Why? There
have been many different motherboards, processors and chips used in the Mac over the years.
It's not like the Amiga with a standard chipset - you simply don't know what motherboard
your pride and joy will end up running on. This may not sound like a whole load of fun, but
don't worry - you need to use the OS yes, but you don't need to do everything through it. I
know you may be thinking calling the OS is slow because of all those parameters you have to
pass and set up. True. The trick is to use the OS just where you really need to, or at least
to use the OS to get the machine into the state you need it. Just bear in mind that it is a
multitasking environment and all will be fine.

--

Now to make this easier for all of us, I'm going to show you two ways of calling the OS, and
from then on, use the second. First the underlying theory.

On the PowerMac, all OS functions are exported from fragments (typically shared libraries).
This means that your PowerPC program needs to be linked (at run time) with the OS exports.
Then to call an OS function, your code has to set up the TOC to that of the shared library,
find the address of the function, and then branch to it. Of course, it also has to set up a
stack frame, and save some important registers (like our toc for example!). Here's the base,
raw code to do it:

 lwz r12,the_function(rtoc) *load transition vector
 stw R2,20(sp) *save my RTOC
 lwz r0,0(r12) *get callee address
 mtctr r0 *prepare branch
 lwz R2,4(r12) *set callee RTOC
 bctrl *bsr to callee

 lwz r2,20(sp) *get my toc back

Replace the text "the_function" with whatever OS function you are calling. The name of the
function must have previously been imported via Fantasms import directive. So, let's take
BlockMove as an example - the code to call BlockMove (moves a chunk of memory) would be:

 ifnd BlockMove ;if BlockMove hasn't been defined
 import BlockMove ;import it
 endif ;of import check
 lwz r12,BlockMove(rtoc) *load transition vector
 stw R2,20(sp) *save my RTOC
 lwz r0,0(r12) *get callee address
 mtctr r0 *prepare branch
 lwz R2,4(r12) *set callee RTOC
 bctrl *bsr to callee

 lwz r2,20(sp) *get my toc back

BlockMove is defined as:

BlockMove(srcPtr, destPtr, byteCount);

ManiacoMac’s PPC Cracking Bible v1.0.2 • Page : 40

ManiacoMac ® 2004

So, we move our srcptr into r3 (where the data is now), we load r4 with our destptr (where
we want the data copied to) and we load r5 with the number of bytes to copy. (As you can
see, BlockMove would be better called "BlockCopy" but there you go...).

So, if we wanted to move 1000 bytes from fred to harry the complete code would be:

 lwz r3,fred(rtoc) *ptr to fred
 lwz r4,harry(rtoc) *ptr to harry
 li r5,1000 *1000 bytes to copy
 ifnd BlockMove ;if BlockMove hasn't been defined
 import BlockMove ;import it
 endif ;of import check
 lwz r12,BlockMove(rtoc) *load transition vector
 stw R2,20(sp) *save my RTOC
 lwz r0,0(r12) *get address of BlockMove
 mtctr r0 *prepare branch
 lwz R2,4(r12) *set BlockMove's RTOC
 bctrl *branch and link to BlockMove

 lwz r2,20(sp) *get my toc back
 carry on with your code
fred: ds.b 1000
harry: ds.b 1000

As you can see, that's a whole lot of code to type every time we want to call something in
the OS! It's also very error prone. So we don't do it that way. You can if you want, but
it's not recommended - I just wanted to show you the mechanics.

We roll all the common code into a macro, and use that instead:-

 lwz r3,fred(rtoc) *ptr to fred
 lwz r4,harry(rtoc) *ptr to harry
 li r5,1000 *1000 bytes to copy
 Xcall BlockMove

Easier? Course it is. The only requisite is that you must include the right .def file into
your project either as a globinc, or include the file into your source file with an includeh
directive. If you look in the Anvil folder "Anvil low level defs" you'll find lots of these
files. How do you find the right file? Easy; use Anvil's search all files in folder feature.
Open any file from the low level defs folder with Anvil. Now bring up the find dialog and
type in "blockmove" in the find field, next click the "Search all files in folder" check box
and then click OK. Within a few seconds, Anvil will have found the file that contains
BlockMove; in this case, "memory.def". Def files are Fantasm's low level equivalent of C's
header files.

Fantasm 5.1 expands on this concept by removing the need to include the low level def file
through the use of zillions of macros - one for each OS function. In the above case,
blockmove would be called as:

 lwz r3,fred(rtoc) *ptr to fred
 lwz r4,harry(rtoc) *ptr to harry
 li r5,1000 *1000 bytes to copy
 OSBlockMove r3,r4,r5

ManiacoMac’s PPC Cracking Bible v1.0.2 • Page : 41

ManiacoMac ® 2004

It doesn't look much different right? True, but what you get is error checking in that the
macro knows how many parameters to expect, and so can fail if you pass not enough or too
many parameters. Also it means you don't have to get the parameters in the right registers

OSBlockMove r3,r7,r8

Would be perfectly acceptable. The macros also provide the same facilities under 68K
assembly language too, so you may want to take a look at this when 5.1 is published.

Note about BlockMove - if you only have a small amount of data to copy, do it yourself. By
the time you've called BlockMove, you could've done it already. For large amounts of data,
BlockMove is hard to beat.

--

Now we know how to call the OS. Good. You are now asking yourself "I wonder how many
functions are in the OS?" The answer is "Thousands" and I can pre-empt your next question
"So how do I find out which one I need?" with the following answer.
Download Inside Mac for starters. They are all free from Apple (go to our links page where
you'll find links to them). At the back of each chapter is a list of functions described in
that chapter along with the parameters.
Alternatively, all good booksellers will sell you the volumes in paper form or you can get
them all on CD from Apple. If you are really serious about it you may want to buy either
Think Reference from MacTech (which is the one we use) or Macintosh Toolbox Assistant from
Apple ($89 last time I checked).
You just type in the first couple of letters of the function you are interested in and it'll
find the function for you. You'll get a description along with things to watch for and of
course the required parameters and any return data.

So, what kind of OS functions are you likely to need? Well first off, any application HAS to
do certain initialization, otherwise you'll call an OS function and it'll crash. Luckily, to
save you time, a library function called InitMac is supplied. Call this at startup and you
have no problems.

bl init_mac

Make sure you have added the Application library to your project, else it won't link (it'll
fail with a "Where is this InitMac??" error (or words to that affect)).

After this, you are in a position to get on with you program. Nearly every type of program
must have a window to draw into. You can't just draw "anywhere". You must draw into a
graphic port. More often than not these days, you want to use color, so it needs to be a
color graphic port - a CGrafPort. Windows can be created in one of two ways - either
manually or you can get one from a resource. Either way is fine - you end up with the same
result. From a resource is the quickest and least code intensive of the two. If you open
Resedit, create a new file and then create a "WIND" resource, you'll find you can edit your
window graphically. Be sure the initially visible checkbox is set and leave the ID at 128
for the purposes of this example. If you now save the file and then add it to your Anvil
project; the window you have defined will be copied to your application when built.

The function we need to use to get the window is called GetNewCWindow and looks like this:

pCWindow = GetNewCWindow(windowID, wStorage, behind); windowID is the resource ID of the
window. 128 in our case.

ManiacoMac’s PPC Cracking Bible v1.0.2 • Page : 42

ManiacoMac ® 2004

wStorage. You can tell the window manager where to put the window record, or if you set it
to null (0) the storage will be allocated for you.
behind is the windowptr (what this call returns) of the window you want this window to
appear behind. If you set it to -1, the window is placed at the front.

Now we can load the window with the folllowing code:

 li r3,128 *the window ID in the resource fork
 li r4,0 *Let the OS allocate storage for it.
 li r5,-1 *We want it to the front
 Xcall GetNewCWindow

After this code, r3 will either contain a valid pointer to the window or zero if the call
failed for some reason. You should then store the ptr to the window somewhere safe, such as
in a global variable. Note that this call gets the window, but does not set the port. So the
next thing we need to do is set the current port.

 cmpwi r3,0
 stw r3,my_window_ptr(`bss)
 beq error

Note the optimization of storing the window_ptr during the check for a valid pointer. This
means that we can store a zero as the ptr (if there was an error), but heck, if we have an
error anyway it doesn't really matter. The ptr to the window actually points to the graphics
port (CGrafPort) for this window, so if we pass that to SetPort we then have a valid drawing
environment:

 lwz r3,my_window_ptr(`bss)
 Xcall SetPort

And to prove it, we can now print something:

 lwz r3,my_string(rtoc) ;a pascal type string - pstring directive
 Xcall DrawString

Finally, we can wait for the mouse button to be pressed before quitting:

wait: Xcall Button
 cmpwi r3,0
 beq wait

And to quit, we call the macro "tidy_up" (assuming "start_up" was called at the start).

error: tidy_up

If you were to run this program, you'd get a window, and it would quit when you pressed the
mouse button, but you wouldn't see any text. Why? Well, we haven't told the OS where we want
to draw, so it does it at 0,0 (x,y coords). Because text is printed from the bottom up, our
text is drawn out of view at the top of the window. We need to move the drawing coordinates
(or the pen position) to a suitable location before drawing:

 li r3,4 *X coordinate
 li r4,20 *Y coordinate
 Xcall MoveTo

ManiacoMac’s PPC Cracking Bible v1.0.2 • Page : 43

ManiacoMac ® 2004

Now, we will see the text.

Looping
One of the things you need to do in any programming language is change the flow of
instructions depending on the result of an operation. Consider the change to our program
below:

**lets set up our x and y coordinate variables
 li r23,4 *x
 li r24,20 *y
**lets set up our loop counter
 li r25,10
**lets draw some text
draw_loop:
 mr r3,r23 *x
 mr r4,r24 *y
 Xcall MoveTo *move the pen
 lwz r3,my_text(rtoc)
 Xcall DrawString *Draw the string
 subic. r25,r25,1 *decrement loop counter
 addi r23,r23,4 *increment x coordinate
 addi r24,r24,4 *increment y coordinate
 bne draw_loop *if our loop counter isn't zero, goto draw_loop

Can you visualize the result of this? Whilst thinking about it, note again, I have placed
two instructions at the bottom between the subtract with record instruction (subic.) and the
conditional branch (bne). The adds in-between these two instructions are effectively "free".
The processor would take five cycles to determine whether to take the branch or not, so by
opting for a subic. rather than using the counter register (which may at first seem the
obvious choice) to control the loop, I have incremented my printing coords "for free". Any
integer instruction with a dot after it will affect the condition flags field 0. Any
conditional branch without a cr field assumes cr0. We could write bne cr0,draw_loop and it
would mean the same thing.

Note that a straight subi can't be used to set the cr0 field of the condition code register.
One must use a subic.

Anyway, back to the program - it prints ten strings, each offset in x and y slightly. OK,
cool. Now how about we want it continually printing these strings until we press the mouse
button. What we need to do is: after printing the strings, erase them, check the mouse, and
if not pressed reprint them, erase them, check the mouse, etc.

How do we erase them? Well the obvious choice is the OS function EraseRect.
It takes a rectangle defined as four 16 bit values of top, left, bottom, right. This
definition is pretty much a Mac standard as far as rectangles go, so you may as well get it
into your head now. Top, left, bottom, right.
You just need to learn it.

Now we could say, OK, I know the size of that window so I can define the rectangle to erase
as a constant set of data with a dc.h directive. Wrong :-)Yes, you can do this, but what
happens if the user changes the size of your window? If you remember back a few paragraphs,

ManiacoMac’s PPC Cracking Bible v1.0.2 • Page : 44

ManiacoMac ® 2004

I said that a windowptr is really just a CGrafPort pointer. If we look at the CGrafPort
structure, we can find something that is useful. Actually, something that may be of benefit
here is to examine just how we find out about a given structure. In this case we are talking
graphics. This menas that books like Inside Mac Memory probably won't help much. Inside Mac
Toolbox Essentials might as it covers all the really important things, and a graphic ports
are pretty important. So, I load up my Inside Mac CD (you can buy them on CD, or if you have
a "burner" you can make your own IM CD after downloading them from Apple. Tip, just write
them as a session, that way you can add them to your CD as they are published/updated. So, I
load in my IM CD and open TB Essentials.

I go to the WindowManager section and find the defintion of a CWindowRecord.
Sure enough, the first entry is the graphics port, but this document doesn't expand on the
graphics port structure. It does however tell me that the structure is defined in Inside
Macintosh: Imaging. So, now I load that one up, goto the table of contents and immediately
find the definition I'm looking for (actually I just type "cgrafp" into Think Reference :-
)).

So, we can see that at offset 16 in the cgrafport is the rectangle (portRect) that defines
the current size of the CGrafPort. Thus we should pass the address of this rectangle to the
EraseRect function. Now, it doesn't matter what size the window is, we will always erase the
whole visible part of it (assuming you haven't messed up the current clipping rectangle, but
we haven't come to that yet)

That may sound complicated, but the code is trivial:

 lwz r3,my_window_ptr(`bss) *our windowptr
 addi r3,r3,16 *point to the portrect
 Xcall EraseRect

See! This will erase the window. Here's a useful MacsBug tip in case you aren't aware of the
power of MacsBug. It contains many templates for popular Mac data structures. So, if you
have r3 pointing at a CGrafPort, in MacsBug you can type:

dm r3,cgrafport

ManiacoMac’s PPC Cracking Bible v1.0.2 • Page : 45

ManiacoMac ® 2004

And MacsBug will display the grafport with all it's field names and contents. "dm" is the
MacsBug command to display memory. sm is the command the set memory.

Right, so now we can erase the window. All we need to do now is change the mouse button wait
loop to branch back to the start of the drawing code rather than just waiting. Here is the
program in total as it looks at this stage:

 includeh windows.def
 includeh quickdraw.def
 includeh quickdrawtext.def
 includeh events.def

bss: reg r30
chapter5: entry
 start_up
 bl init_mac
 li r3,128 *the window ID in the resource fork
 li r4,0 *Let the OS allocate storage for it.
 li r5,-1 *We want it to the front
 Xcall GetNewCWindow
 cmpwi r3,0
 stw r3,my_window_ptr(`bss)
 beq error
 Xcall SetPort
mouse_loop:
**lets set up our x and y coordinate variables
 li r23,4 *x
 li r24,20 *y
**lets set up our loop counter
 li r25,10
**lets draw some text
draw_loop:
 mr r3,r23
 mr r4,r24
 Xcall MoveTo
 lwz r3,my_text(rtoc)
 Xcall DrawString
 subic. r25,r25,1
 addi r23,r23,4
 addi r24,r24,4
 bne draw_loop
**Erase the window
 lwz r3,my_window_ptr(`bss)
 addi r3,r3,16 *point to the portrect
 Xcall EraseRect
 Xcall Button *Check the mouse button
 cmpwi r3,0
 beq mouse_loop
error: tidy_up *end of program

**Data
my_text: pstring "123" *The text we print
 align

ManiacoMac’s PPC Cracking Bible v1.0.2 • Page : 46

ManiacoMac ® 2004

**Linkage
 extern init_mac *This is a static library function

Hopefully, by now you are getting into the swing of calling the OS. I'm not going to dwell
on it too much longer. You just have to learn the various functions available. Obviously in
the rest of this series we will being seeing more OS functions, but I won't be detailing
them too heavily. The Mac OS is big with a capital B. You just have to learn as you go.

NOTE: We used EraseRect to clear the window. We could have used PaintRect to achieve the
same result. The difference is that EraseRect is quicker than PaintRect.

Colors
The Mac when drawing uses two colors: The forground color and the background color.
EraseRect works with the background color. There are two OS calls to set these colors -
RGBForeColor and RGBBackColor. These both take a pointer to three 16 bit unsigned values.
Each 16 bit value specifies the red, green and blue intensity of the colour. So
0xffff,0xffff,0xffff is white, whilst 0x0,0x0,0x0 is black - red, green and blue. 0xffff,0,0
is max red, 0,0xffff,0 is max green.

Armed with this information we can start doing some funky color stuff. By altering the for
and background colors we can alter the color of the text and the background of the window.
Suppose we just incremented the value of the red component of the background color on each
loop (and the other two components were set to zero). What would be the visual effect? Let's
try it and see. We need to define some new data - the background color - we'll call it
my_bg_color. Then we need some code after we erase the rectangle to change the background
(bg) color:

**Change the bg color
 lwz r3,my_bg_color(rtoc)

 lhz r4,(r3) *get red
 addi r4,r4,220 *add 100 to it
 sth r4,(r3) *store red
 Xcall RGBBackColor r3

Of course, the red slowly fades up to maximum red and then swiches back to black. But what
would be the result of the following code?

**Change the bg color
 lwz r3,my_bg_color(rtoc)

 lhz r4,(r3) *get red
 addi r4,r4,220 *add to it
 sth r4,(r3) *store red

 lhz r4,2(r3) *get green
 subi r4,r4,280
 sth r4,2(r3) *Store green

 lhz r4,4(r3) *get blue
 subi r4,r4,180

ManiacoMac’s PPC Cracking Bible v1.0.2 • Page : 47

ManiacoMac ® 2004

 sth r4,4(r3) *Store blue
 Xcall RGBBackColor r3

Believe me, you don't want to work through too many steps. The end result is almost a random
color fade and switch affect - but of course it isn't random. Best tried on a monitor
capable of millions of colors.

And that's it for this chapter. The above code snippet is pretty unoptimized as far as PPC
code goes - can you optimize it? Answer next chapter (tip: what if the color component we
are loading to modify isn't in the level 1 cache and hence isn't immediately available?).
Another question: Can you change the colour changing code so that abrupt color changes do
not occur - it's all nice and smooth? Final question: How could we change the background
color without erasing (in 256 indexed color mode only) - Tip check in the examples folder of
your Fantasm 5 CD?

Don't worry if you find these questions baffling - we'll cover them all next time along with
more application goodies such as menus and events with the emphasis being on fun.

Till then, Code On!

The project for this chapter can be downloaded from here (Fantasm 5 project)
- 8k.

Copyright Lightsoft 1998.

PowerPC Assembly Language Beginners Guide.
Chapter 6

In this, and the next few chapters, we will be writing a larger Mac application in PPC
assembly language. We will be making deliberate mistakes to highlight some easily made
errors and problems.

--

Answers to questions posed in Chapter 5
In the last chapter I left you with some questions. The one people most found baffling was
how to optimize the code that changes the three background colour components. Here is the
original unoptimized code:

**Change the bg color
 lwz r3,my_bg_color(rtoc)

 lhz r4,(r3) *get red
 addi r4,r4,220 *add to it
 sth r4,(r3) *store red

 lhz r4,2(r3) *get green
 subi r4,r4,280
 sth r4,2(r3) *Store green

ManiacoMac’s PPC Cracking Bible v1.0.2 • Page : 48

ManiacoMac ® 2004

 lhz r4,4(r3) *get blue
 subi r4,r4,180
 sth r4,4(r3) *Store blue
 Xcall RGBBackColor r3

The answer is given by Fantasm's Stall Warning Generator. If we switch it on for the red
component calculation, we will get dependency warnings for r4 at the addi instruction. You
can do this by modifying the code to read:

 swg_med *switch stall warning generator to medium sensitivity
 lhz r4,(r3) *get red
 addi r4,r4,220 *add to it (SWG Warning here)
 sth r4,(r3) *store red
 swg_off *swg off

Why is the SWG giving a warning? Because if the processor can't get at the contents of r3
(which is pointing to my_bg_color) on this clock cycle and put it in r4 as an unsigned 16
bit value (lhz) there will be a delay before the add can process because the add needs the
contents of r3 as one of it's operands. i.e. the processor will stall.

If we bear in mind that the PPC can issue memory requests and then get on with other things,
then we can prevent this stall by moving the add further down the instruction stream, so
even if there is a delay getting the red component of the colour, by the time we need to
data for the add it should be available.

Fine. So how do we move the processing (the add) further down the line? Does this work?

 lhz r4,(r3) *get red
 nop
 nop
 nop
 addi r4,r4,220 *add to it (SWG Warning here)

Nope. All that does is introduce a three clock cycle delay which doesn't achieve anything
(apart from wasting three clock cycles). What we need is useful processing inbetween the
load and the calculation. How about we issue other memory requests whilst we're waiting for
this data to arrive? Can we do that? It would be cool if we could. Well, is the PPC a
powerful chip? Course it is. Have a look at this:

**Change the bg color
 lwz r3,my_bg_color(rtoc) *The colour we are changing

**get the red,green and blue components
 lhz r4,(r3) *get red
 lhz r5,2(r3) *get green
 lhz r6,4(r3) *get blue

**now the processing
 addi r4,r4,220 *add to it
 sth r4,(r3) *store red

 subi r5,r5,280
 sth r5,2(r3) *Store green

ManiacoMac’s PPC Cracking Bible v1.0.2 • Page : 49

ManiacoMac ® 2004

 subi r6,r6,180
 sth r6,4(r3) *Store blue
 Xcall RGBBackColor *r3 points to the color

By rearranging the code and using two more registers we have eliminated any stalls that may
occur if the data isn't immediately available. The highly astute among you may question a
possible stall at the Xcall instruction because we are storing r6 in 4(r3) immediately
before the call.

There will be no stall here. Why?

Two reasons. Firstly, the reading from the background color in the preceding code will have
ensured the data is in the level 1 cache, so there will be no delay writing it. Secondly,
Xcall will run through at least four instructions before the data is needed (would be five
in compiled code because functions are normally called via a branch and link (bl), whereas
Fantasm does it in-line and saves two instructions per OS call).

Just for your information, the possible setting for the SWG are as follows:

Please note that the SWG is inoperative in demo versions of Fantasm as the demos are
distributed as 68K builds only. Due to the heavy workload required for the SWG to operate
(it has to emulate the processor) it is coded in PPC assm.

The other question involved how to prevent abrupt colour changes. Well the answer to this
one was simply avoid the dramatic change that occurs when a colour component switches from a
large value (i.e. 0xffff) to a small value (i.e. 0) or the other way round. The last
question was how to speed up the colour changing without having to fill the whole rectangle.
The answer was to use Color Look Up Tables (CLUT's) in 256 color mode - an example of this
is given on the Fant5 CD in the example "Clut Fade" so I won't reproduce it here.

Other matters
We need to point out that MacsBug versions prior to 6.5.4aX will simply not work on MacOS
version 8.00 or later.

--

Macintosh Applications
The question most frequently asked by beginners is "How does a Macintosh Application fit
together? How does it run?".

In common with most Graphical User Interface (GUI) operating systems, the Mac runs via
"events". Every time the user does something such as clicking the mouse button or pressing a
key, the OS generates an "event" and places it in the event queue. If the application in the
foreground - the one the user is interacting with, examines this event queue it can find out
what the user is doing by processing the events as they appear in the queue. It is a mistake
to say the OS "sends" an event to the application - it doesn't, it simply places the events

ManiacoMac’s PPC Cracking Bible v1.0.2 • Page : 50

ManiacoMac ® 2004

in the queue. It is up to the application to get the events out of the queue. There are lots
of different events that can be placed in the queue - Apple Events for example, but luckily
there are just a few that "really matter".

These, with the possible exception of the diskette insertion events, are the major events
you need to handle in order that your application will run and behave under the MacOS.

The mouse and keyboard events should hopefully be self explanatory – you need to know when
the mouse is clicked or held down and what keys the user is pressing.

The update requests are put in the queue when the OS thinks one of your windows needs to be
redrawn (for example because another window has moved, or closed).

The activate event is placed in the queue when the OS thinks you need to activate (or
deactivate) a window because the user has clicked in another window or application.
Activating a window generally means showing any controls (scrollbars for example) associated
with the window, activating any highlighting visible, activating the caret (if you have one)
etc. Deactivating is the opposite - hiding everything (unlike Windows 95 which thinks it's
fine to have scrollbars active on windows in the background!).

Whenever you pull an event out of the queue, the format of the event "record" always follows
this structure:

 Size
 Bytes Name Offset Description
 2 what 0 Type of event (0=null)
 4 message 2 Depends on event type

 4 when 6 Ticks since system startup
 (60ths of a second)

 4 where 10 Mouse position in global
 coordinates (y/x)

 2 modifiers 14 State of Apple, option,
 ctrl etc keys

Thus we can see that an event record is 16 bytes in size.

Event types (the what) are declared as follows:

ManiacoMac’s PPC Cracking Bible v1.0.2 • Page : 51

ManiacoMac ® 2004

Thus we can draw up a plan for a standard Mac application:

1. Initialise.
2. Process events.
3. Quit.

Simple huh?

WaitNextEvent

How do we get the events out of the queue? We use an OS function called WaitNextEvent.
WaitNextEvent takes four parameters and returns a Boolean value. The boolean return value is
true if there is an event for us or false if no event. In this case the type of event will
be null.

The high level definition of WaitNextEvent is

eventMask is a 16 bit value specifying which events you are interested in - pass -1 to get
all events.

theEvent is a pointer to a 16 byte eventrecord.

sleep is the maximum number of ticks you application agrees to let the OS (other
applications) have control for (cooperative multitasking).

mouseRgn specifies a region inside of which mouse movement does not cause mouse moved
events. Pass null if you don't want any mouse moved events.

If you remember back to chapter 5 we talked about calling OS functions – we could do it
three different ways - the hard way for masochists, coding it all by hand, the easier way by

ManiacoMac’s PPC Cracking Bible v1.0.2 • Page : 52

ManiacoMac ® 2004

using Xcall and the easy and error proof way by using OScalls. In chapter 5 we used Xcall in
our code. Now we will switch to using the OS calls found in the file
Universal_OS_calls_plus.def. This new file is available from the Updates area. It isn't
included in the demo distribution or on Fant5 CD's prior to 1st May 98. This is Fantasms
definition of WaitNextEvent (taken out of Universal_OS_calls_plus.def):

Using this method we can call WaitNextEvent as:

OSWaitNextEvent r3,r4,r5,r6,r3

This means we place the four arguments in r3-r6 and expect the boolean return value (either
0 or not 0) in r3. To be able to do this we need to make Universal_OS_calls.def a Globinc -
this means add the file to our project and then move it into the Global Includes or
_Globincs area of the project window (See below).

You may note that the definition of OSWaitNextEvent is a macro. Macros are a way of
replacing one instruction (in this case OSWaitNextEvent) with many instructions. Macros can
call other macros (in this case, the WaitNextEvent macro calls map_in_4 and map_out - these
are other macros) and can take parameters, referenced as \1, \2, \3 etc. For more on macros
please consult your documentation.

The Project
That gives us all the theory we need to get on with writing a Mac App. First, lets create
the project. Run Anvil, and then from the Project Menu select "Create New Project". A dialog
box like the one below will open (we've switched on the item labels by clicking the little
help icon). From the Project template menu select PPC Fantasm App and change the file name
to whatever you want - in our case we called it "Chapter 6".

ManiacoMac’s PPC Cracking Bible v1.0.2 • Page : 53

ManiacoMac ® 2004

Now click the OK button which will bring up a file selector box. Select (or make) a folder
to create this project in and then save. A new project window will open in Anvil. Because we
will be using Universal_OS_calls_plus.def we need to add it to the project and make it a
globinc - this means Universal_OS_calls_plus.def will be included in every one of our source
files automatically. To do this, click on the little disk icon at the top of the project
window - looks like [Image]. From the file selector navigate to the folder called "Anvil Low
Level Defs" and select Universal_OS_Calls_Plus.def. Anvil will place the file in the _Src
area of the project. You need to drag it into the _Globincs area so the project window looks
like this:

ManiacoMac’s PPC Cracking Bible v1.0.2 • Page : 54

ManiacoMac ® 2004

Now we can start writing our program. From Anvil's File menu select New. This will create a
new source file in memory and open a window. If you haven't set Anvils default language to
PPC (via the General Preferences option) then you will need to set this files language to
PPC. Save the file as "Main.s". We will try to write this program as modular as possible, so
our main file is going to call three routines: Init, events, terminate. This will develop
into a reasonably sized program, so structure is all important here. It will seem as if we
are generating a lot of files, with very little in them. This true because we are
architecting a large project by dummying pieces of code. This is a good practice to get
into.

For now we know we need to call at least three routines, so as well as our main file, we
will also generate three other files; Init.s, Events.s and Term.s.

Our main file needs to look like this:

ManiacoMac’s PPC Cracking Bible v1.0.2 • Page : 55

ManiacoMac ® 2004

From that we can see the programs top level structure - it initialises, handles events and
then quits. Notice that:

a). All branches and labels are colored blue by Anvil (as a default – you can change the
colors).

b). We have declared main as being global and it's also the entry point for the program -
this is where it starts running.

c). We have declared init,events and terminate as extern. This means these items are
external to this file. They can be found in other files.

Now we can create the other files - even though we have no idea what code will go in them
yet, we can still create them and define some structure - init.s for example looks like
this:

Do the same for Events.s and Term.s

Now we can add these files to our project. If you were "canny" you may have created a folder
for your source code - this is a good idea. We add the files to the project the same way we
added Universal_OS_Calls_Plus.def - by clicking the little disk icon in the project window.
You should end up with a project looking like this:

ManiacoMac’s PPC Cracking Bible v1.0.2 • Page : 56

ManiacoMac ® 2004

And then if you build the project it'll look like this (DO NOT RUN IT AFTER BUILDING!
There is no terminate routine):

ManiacoMac’s PPC Cracking Bible v1.0.2 • Page : 57

ManiacoMac ® 2004

Now it's time to start writing some code. First we need to initialise the Macintosh as all
good Mac apps must. Open the file Init.s and change it to call init_mac. This is a library
routine that does all the initialising for us and saves some typing. There is a problem in
that to call something, we normally use the link register (LR), and the link register is
currently holding our return address to main! So we need to save it somewhere. How to save
the Link Register? Here are a some solutions...

1. We have 32 integer registers available, so we'll save it in a register rather than in
memory - lets say that r27,28 and 29 will be link register save areas. We need to copy the
link register into r27. We do this with a mflr instruction which means Move From Link
Register, and we can restore it with a mtlr instruction - I wont insult your intelligence
with the expansion of that mnemonic. The problem with that is you have to keep track of how
many subroutines you have called, to be sure of saving the LR in the right register. Fast
but difficult to maintain possibly.

2. The easiest way by far of saving the link register as you go into some code, and
restoring it for returning is to use the macros sub_in and out. These work by saving the
link register and restoring it for you. To be able to do this, you need the file
LS_PPC_Macros.def as a Globinc in your project. These macros require three instructions to
either save or restore the link register. You can use these routines anytime.

3. You can push it onto the stack, and then pop it off when needed – this takes two
instructions for each push and pop to the link register – first you need to move the link
register into a General Purpose Register (GPR) then you need to push the register onto the

ManiacoMac’s PPC Cracking Bible v1.0.2 • Page : 58

ManiacoMac ® 2004

stack (and the other way round to pop off the stack). To use this method you need to use
Universal_OS_Calls_Plus.def.

4. If a routine doesn't call any other code, then there's no need to save the LR!

We will use the second method - it's slower, but as this is for beginners, we want to keep
it simple. If you are quite happy with the other methods, then do it as it's faster!

To use sub_in and sub_out we need to make LS_PPC_Macro.def a globinc – this file contains
lots of useful little macros to make PPC assembly language easier. Browse through it. Follow
the procedure we used for Universal_OS_calls.def above.

The whole point of that discussion was to highlight that in assembly language, there are no
rules. You can do things as you see fit and that you are comfortable with. Maintaining good
structure however is paramount, irrespective of the language.

So, back to our initialisation. We have made LS_PPC_Macros.def a Globinc, and we've modified
Init.s to call init_mac. Init.s should now look like this:

If we now build this project, we will get errors from the linker. It'll say Init.s wants to
link to init_mac but the reference doesn't exist. The linker is complaining because it can't
find the code for init_mac.

ManiacoMac’s PPC Cracking Bible v1.0.2 • Page : 59

ManiacoMac ® 2004

init_mac is a library function, in this case held in the library called
P_Application_Library. For the linker to find the function we need to add the library to our
project. After adding the library, if you want to find out what functions it contains, just
double click it out of the project window. Anvil will ask the Librarian to open the library
and display it's contents. To get information about a function, click the function name in
the Librarian's window.

A common mistake is to mis-spell a library functions' name (labels in PPC are case
sensitive). Suppose we had added P_Application_Library to our project but the code read:

bl Init_Mac

This would fail the same way as if the library was not present.
The Linker would complain.

"Init_Mac" is NOT the same as
"init_mac" in PPC because of
case sensitivity.

So, we're initialised. It's easy to spot an App which has forgotten to call init_mac - it
crashes a lot. Normally when you try to open a window, or call QuickDraw - it'll crash
almost instantly. The last thing we need to do in this section is to be able to terminate
correctly. The OS provides a function called ExitToShell. This will immediately terminate
your application and is the recommended way to quit. We need to modify terminate.s to call
ExitToShell as follows:

ManiacoMac’s PPC Cracking Bible v1.0.2 • Page : 60

ManiacoMac ® 2004

All it will do is boot up and then quit, but, and this is the important bit, we have defined
the structure of a useful project. One we can add pieces of code to, within a defined
structure.

--

Now, lets take some time out to think about a typical Mac App. What are the elements of the
interface?

The main elements include menus, windows and dialog boxes along with more minor details such
as the mouse cursor and maybe even sound. Now what services does a typical Mac App require?
Filing system services are probably way up on the agenda - the ability to read and save
files is important. We need to look at all these things.

You may notice not once have we specified what this app does; for the reasons of this
tutorial it is irrelevant.

In the next part we will expand our application to be able to handle simple events with
specific emphasis on how to run the menus. We will look at initialising and dynamically
changing menus to suit the current context along with acting on menu selections.

--

Postscript: Some are worried this series is going the wrong way - concentrating too much on
the Mac OS and application world, rather than specific low level techniques such as writing
to video memory etc. Please do not worry, we will come to that. The information is already
out there in the example applications we provide with Fantasm. In the mean time if you do
have any specific questions about this area, please direct them to our coding support

Copyright Lightsoft 1998.

PowerPC Assembly Language Beginners Guide

Chapter 7
This chapter will examine the creation of Menus, Dialog Boxes and Event Loops. It will also
give a brief guide of how to use ResEdit (a utility for creating and manipulating
Resources).

--

ManiacoMac’s PPC Cracking Bible v1.0.2 • Page : 61

ManiacoMac ® 2004

Overview of Chapter 6
If you can recall the last chapter, we started to create our first real Mac Application. Did
you have any problems with that? Was there any mistakes in it? We stated that there would be
errors in it, so did you spot them?

Did you notice that the macros start_up and tidy_up were missing?

Let us remind ourselves of these macros:

start_up

This macro saves the general purpose registers (GPRs) and sets up the stack and BSS pointer
to r30.

tidy_up

This macro restores the GPRs and the stack.

So now lets modify the main.s file to encompass the above macros.

Now that we are up to speed, how will we go about initialising the Mac App. We need to set
up a few resources; we will go through each one, step by step. We will start by a setting up
a window, then we will create a menu bar (using ResEdit) and tie them in to our program.
Once that it complete we will set up an events loop and finally we will set up a Dialog and
Alert box to demonstrate the difference.

So to summarise
 * Set up a Window
 * Create a Menu and Menu Bar
 * Implement the Menu Bar into the program
 * Create an Events Loop. We will set up Mouse Events to Select Options
 from the Menu Bar

ManiacoMac’s PPC Cracking Bible v1.0.2 • Page : 62

ManiacoMac ® 2004

 * Create a Dialog Box and an Alert Box
 * Implement these into the Program

Setting up a Window
We first saw this in Chapter 5. Now we will set up the window in the init.s file. We will
use the GetNewCWindow call. Remember that we need to store the pointer to the window which
is returned by GetNewCWindow. So in the Chapter6_BSS.def file we will reserve space for this
variable

win_ptr_1: rs.w 1

Then in init.s we create the window with the following code:

Notice the SetPort call. This tells the program that the window you have just defined is
going to be made active - i.e. any drawing commands are to be carried out in this port.

So far, so good ("so what!!" I hear you cry), now that we have set up the window, let's set
up the menu bar.

Setting up a Menu Bar

ManiacoMac’s PPC Cracking Bible v1.0.2 • Page : 63

ManiacoMac ® 2004

Setting up the menu is separated into a few different sections. Firstly we have to define
the MENU resource using ResEdit (Thank you Lord for small mercies). If you have never used
ResEdit or heard of it, you have led a very sheltered life, but anyway ResEdit is a Visual
tool for creating Resources. Lets make a menu and see how easy it is.

If you haven't got ResEdit then you will have to Add the Chapter6_menu resources to your
project. Try and get a copy of ResEdit and use it, it is a VERY important tool.

Load ResEdit. Create a New File by selecting File, New... Select a file name and place to
save the file. An empty window will then open, the title bar will be the name of the file
you have just created. I know this is "sucking eggs", but I have to be sure we have covered
every step.

Then select the Resource menu option. From there select the Create New Resource option. This
will open a window which has a list of resource names. Notice that the name of the resources
are like mnemonics. We will select a MENU resource.

This will open a window where it will show the user one 'tab' of a menu. The user will be
given the option of entering a Title for the menu or Selecting the Apple Menu.

This is the first selection, so select the Apple Menu Symbol. The press <CR>. You will
notice that it goes to the next line. So what we will do is create an option to show a
Dialog Box (which will eventually be our about box) and another option to create an Alert
Box, so that we can see the difference.

So in the Text field enter My Demo Alert Box and then press <CR>. It will go to the next
line of the menu. Select the separator option to put a line underneath. Then close the
window and that menu is set up.

So that is the Apple Menu done, we need to make a File menu next. We need to make another
MENU resource (like we did before). Notice how there is now a window with a picture of the
first menu with an identifying id value underneath which starts at 128 (well that's no
surprise!!). The next MENU resource will have an id of 129, and so on if you made more MENU
resources.

Instead of selecting the Apple Menu, the Title of this menu is File. Press <CR> to go to the
next line. The option is NEW. So enter into the Text field New. This time though we also
want a keyboard simulation of this option (AppleKey + N), so in the Cmd-Key: field enter N.

Enter some more options (what ever you want!!), but make sure you have an OPEN, a SAVE and a
QUIT option in your menu.

Once you have done that close the window and save it.

It is now time to set up the menu.

How this is done is by using the GetMenu, InsertMenu and DrawMenuBar calls. The GetMenu
command searches the open resource list and read the predefined menu from the resource and
returns a handle. This handle is used to add the menu to the Menu Bar using the Insert Menu
command. Finally, once all the menus have been inserted into the Menu Bar, it is drawn by
the DrawMenuBar call.

Here are the definitions of each of the calls:

ManiacoMac’s PPC Cracking Bible v1.0.2 • Page : 64

ManiacoMac ® 2004

So if we look at the code we will see how we get each menu (Apple Menu first), then Insert
each menu (the left most menu first, so we have The Apple Menu first). Once we Insert each
menu, the Menu bar is then drawn so that it appears on screen.

Note: The Apple Menu is a special beast, using the above method will only give you the
Dialog box and Alert box in the Menu. To add all the other applications to the menu you must
use AppendResMenu. This call is detailed below:

The following code loads and displays our menu bar:

ManiacoMac’s PPC Cracking Bible v1.0.2 • Page : 65

ManiacoMac ® 2004

Right, that sets up the menu but it doesn't do a fat lot. Why?

The answer is fairly simple! Mac OS responds to EVENTS. Anything from pressing a key to
clicking the mouse button. This was covered in Chapter 6. These events are in a queue and
the OS acts upon the next one along using Event Handlers (please note this is a major
simplification, this guide is showing you how to use EVENTS, not the internal workings of
the MacOS). As an interesting note, Windows (I've just brought up my lunch) 95 works in a
similar way, so crack events here and you can code Windows 95 apps (is that a bonus or a
curse?) .

At the moment our application does not process any events so how can we open a menu, if we
are not looking for a mouse click, or a menu selection etc.

Now Try imagining a Event routine, what should it do?

 * Get an Event
 * Compare the Event with an Event Type (ie. is it a mouse event?)
 * Go off and process that Event if you have routines to process that type
 of Event
 * Go back to the top of the Event Loop

ManiacoMac’s PPC Cracking Bible v1.0.2 • Page : 66

ManiacoMac ® 2004

Note: If you go off and process an event you must return to the top of the Event Loop
afterwards.

That's fairly straight forward. The call that we use was introduced the the last chapter.

So lets go to the code. We will firstly set up the parameters then call WaitNextEvent. If
there is a null event returned we will return to the top of the Event Loop. If it returns an
event we will process it, if it is a mouse event or an update event (these are the only
events we will be covering in this lesson) else we will return to the top of the Event Loop.

ManiacoMac’s PPC Cracking Bible v1.0.2 • Page : 67

ManiacoMac ® 2004

As you can see the Events Loop is a fairly simple routine. But this still doesn't open our
menu and let us select options from it, so now we have to process our mouse events.

There are a few different mouse events, like:

 * Mouse Button Down
 * Mouse Button Released
 * Mouse Moved

We are only concerned (in this example) with the mouse clicking on the menu bar and then
selecting an option from the menu. So here is the plan of action. When we get a mousedown

ManiacoMac’s PPC Cracking Bible v1.0.2 • Page : 68

ManiacoMac ® 2004

event, find out where the mouse was pressed, was it on the menubar? This is done using the
FindWindow call. If we clicked in the menu bar area we will jump to the menu routines.

Lets examine the FindWindow call:

The code looks like this:

Again a simple compare of the returned value to branch to the next section. Right, this is
where it gets a bit more involved. Once you have clicked on the menu the program must do a
few things first before it can process your selection of menu.

Firstly we have to discover what menu was selected, we will use the MenuSelect call to find
this out. This call reads in the global mouse co-ordinates and so opens the menu that you
have selected (if you clicked the menu bar) or selects the option from a menu that you
clicked (if you clicked an option in a menu). Lets examine the MenuSelect call:

Once we find out what selection has been made, we process the code for that option. If you
look at the code below (the heading is MENU STUFF), you can see how we call the ExitToShell
if the menu selection is Quit. Notice how we use the StandardGetFile call to open a standard
'Open File' dialog box. And yes, StandardPutFile opens a standard 'Save File' dialog.

ManiacoMac’s PPC Cracking Bible v1.0.2 • Page : 69

ManiacoMac ® 2004

Right, I will let you mess about with the other standard calls, what we will look at now is
how we call the Dialog Box and the Alert Box.

Calling an Alert Box
Calling an Alert Box is a single call. The Alert Box you display will have to be created in
ResEdit. Examine the resource file for this project to look at an example Alert box.

To select the Alert Box we simply check to see what menu item has been selected from the
Apple Menu and if it is not any of the other options then we process the Alert box routine.
the call is called Alert. This is called then the code returns to the event loop.

Calling a Dialog Box
This is a more involved process, the program must firstly call GetNewDialog which creates a
dialog from the specified DLOG resource. That only makes the dialog, the program must make
the dialog appear using the ModalDialog call which begins user interaction with the dialog.
Then we finally call DisposeDialog to close the dialog and release the related memory. Lets
look at the commands:

ManiacoMac’s PPC Cracking Bible v1.0.2 • Page : 70

ManiacoMac ® 2004

Below is the code concerning the Dialog Boxes, Alert Boxes and Menu Selections. Read this
carefully!!!

ManiacoMac’s PPC Cracking Bible v1.0.2 • Page : 71

ManiacoMac ® 2004

ManiacoMac’s PPC Cracking Bible v1.0.2 • Page : 72

ManiacoMac ® 2004

ManiacoMac’s PPC Cracking Bible v1.0.2 • Page : 73

ManiacoMac ® 2004

And Finally.................

If you look above you can see how we call to any external program through the Apple Menu. We
firstly use the GetMenuItemText call to find the name of the program we wish to run, then we
use OpenDeskAcc to run the program.

Lets examine the commands:

This in itself will not make the program run, it will only run once our program becomes
suspended (this is also an event) and this will only happen after we have processed an
UPDATE event (I bet you thought I was never going to get to that didn't you). So lets look
at the steps you need to go through to process an update event. Firstly we save the current
GrafPort using GetPort, then we make our GrafPort the current one with SetPort. We then call
for an Update of our window using BeginUpdate. We then redraw the bottom right corner of the
window if it has been resized using DrawGrowIcon, next we update any visible controls using
DrawControls. Then we end the update using EndUpdate and finally restore the current
GrafPort.

There are a few calls there, but I will document only BeginUpdate and EndUpdate.

ManiacoMac’s PPC Cracking Bible v1.0.2 • Page : 74

ManiacoMac ® 2004

This will then update the window and so run any call to execute external programs. Lets look
at the code:

Take your time with this lesson, there is a lot of information here that needs to be learnt
thoroughly. This has given us a base from which to make a Mac Application.

In the next Chapter we will look at other events, and get onto mouse cursors in different
areas of our window (as we never got round to it in this chapter). We will look at
stretching (resizing) windows and other events. We will decide exactly what sort of
Application it will be eventually. We will add to the menus and modify the Help Menu.

--
Copyright Lightsoft 1998.

ManiacoMac’s PPC Cracking Bible v1.0.2 • Page : 75

ManiacoMac ® 2004

PowerPC Assembly Language Beginners Guide
Chapter 8

Basic Optimisations
This chapter moves away from application specifics and examines the processor and assembly
language programming techniques in more detail. This section discusses a generic PowerPC
processor.

The PowerPC architecture is described as "super scalar". This means in simple terms that the
processor can execute more than one instruction at once. A very basic PowerPC processor will
have at least one integer unit which handles the integer operations; addi for example, one
floating point unit which deals with the floating point operations and one branch unit
which, can you guess?, deals with branch instructions.

Up until now we have considered instructions coming from memory one at a time as needed for
execution; this can be considered the Instruction Stream. However, this isn't how it happens
in practice. The processor has an "instruction queue", abbreviated to IQ. Generally the
instruction queue hold about 8 instructions waiting to be "despatched" for execution. As
instructions are dispatched from the queue all the remaining instructions move towards the
front of the queue and new instructions are fetched from memory.

Instructions can be dispatched from the first four locations in the queue (termed IQ0 to
IQ3). On every clock cycle the processor tries to dispatch as many instructions as possible
from the queue, so if the branch unit and integer unit are free but the floating point unit
is not it would be possible for the processor to dispatch one integer and one branch
instruction from IQ0 to IQ3 if those types of instructions are present.

This knowledge provides the assembly language programmer with a valuable optimisation
technique; that of interleaving branch, floating and integer instructions to ensure an even
mix of instruction types in the instruction queue (and indeed is why Anvil categorises
instruction by group for syntax colouring purposes).

Generally instructions execute in one cycle but there are exceptions. Conditional branches
can take anywhere from five down to zero cycles. If you remember back to the beginning we
said that condition code flags were not implicitly set when data is moved or the result of a
calculation become availalable. There's a very good reason for this, and it's not because
the designers were lazy, or they just wanted to save silicon.

If you know anything about traditional CISC (Complex Instruction Set Computers) such as the
68000 family you may know that there is one set of condition flags; the flags typically
indicate zero, carry, overflow etc. These are the flags that are tested when we execute a
conditional branch. For example a subtract might be followed by a conditional branch if the
result is zero (the zero flag is tested). The PowerPC processor being superscalar may
actually try to execute a conditional branch before the flags it needs are ready (remember
the dispatching discussion at the start of this chapter). The general rule of thumb is that
a conditional branch needs to placed about five instructions down from the instruction that
affects the flags. This is possible because the programmer has to explicitly use
instructions that change the flags. Using this technique the PowerPC processor can
effectively process conditional branches in zero cycles! To further enhance performance
instead of having just one set of flags we have eight; they are refered to as the cr flags.

ManiacoMac’s PPC Cracking Bible v1.0.2 • Page : 76

ManiacoMac ® 2004

This means conditional branches can be tagged with the specific set of flags they need to
test. In Fantasm we identify the required set of flags with the identifier crx where x is a
number between 0 and 7. If you don't specify a cr then Fantasm defaults to 0 for integer
instructions and 1 for floating point instructions (Oh yes, the FPU supports its own
conditional branches! fcmp). Typical usage would be:

bne cr3,fred whereas
bne fred

really means bne cr0,fred Having all these cr fields means we can do some funky stuff:

cmpwi cr0,r3,0
cmpwi cr1,r3,10 3 other instructions
ble cr0,fail
bgt cr1,fail

By doing the compares well before we need to determine if the data is in-bounds we
effectively get the two conditional branches for free (or looking it the other way, we get
the 3 other instructions for free). The condition flags can be set manually with the move to
condition register instruction which can manually set flags in the cr register (naturally
there's also a move from condition register instruction allowing you to read them). This can
be used to great advanatage to set cr flags well before they are needed without doing a
compare - for example the MacOS BlockMove call is optimised in this way to calculate if the
data is aligned and if not how many halfs and bytes it needs to move before and after it can
move words or double words (see FPU below). Very efficient.

So, by not implicitly setting flags the PowerPC designers gave us a very efficient method of
dealing with conditional branches which always make up a large proportion of any program.
Another optimisation the processor can make is speculative processing. This is looking down
the instruction stream for conditional branches and trying to decide whether they will be
taken. If so then the processor can start getting instructions from the new address (that
which would be executed if the branch is taken). If it turns out that the processor was
correct and the conditional branch is taken then the instructions are already to run. If
however the processor is incorrect then all the new instructions have to be discarded and
instructions fetched from the address following the conditional branch instruction. This may
not seem such a good idea but later PowerPC processors have very efficient mechanisms for
recovering if the processor predicted incorrectly. The programmer can help this speculative
processing by giving a hint to the processor that the conditional branch will normally be
taken. A typical use for this is in conditional branches at the end of a counting loop
(wherever possible one should use the ctr register for this, but sometimes its not
possible). Normally the branch will be taken back to the start of the loop so this would be
a good place to provide a hint. Generally in Fantasm the "-" character is used if the branch
is backwards and the "+" character if the conditional branch is forward (but see the Fantasm
reference manual!). So:

loop: subic. r3,1 ;sets cr0 flags
some instructions bne+ loop ;test the cr0 flags - specifically the zero flag

Is the correct way to optimise this loop (if you can't use the count register). Remember
that the further up the instruction stream you can put the instruction that sets the cr
flags, the faster it will run (with a ceiling of about five instructions).

Useful tip: Anvil's Help menu will contain language help for the current language in use. In
assembly language it's very useful if you've forgotten the mnemonic for a certain

ManiacoMac’s PPC Cracking Bible v1.0.2 • Page : 77

ManiacoMac ® 2004

instruction. I for example can never remember some of the more useful rotates; so a quick
search for what I want in the Help window generally provides the answer.

FPU
The PowerPC processor also benefits from having a Floating Point Unit (FPU) bestowed upon
it as part of the architecture specification. This means that all PowerPC processors MUST
have a floating point unit and as such programmers can rely on it being there. You may think
of the FPU as being just a number cruncher where in fact it's also a great mover of data.
Most PowerPC Macs have 64 bit wide data busses. The integer unit caters for integer sized
data and as such its registers are 32 bits wide. The FPU on the other hand caters for
floating point sized data and as such its registers are 64 bits wide (it can work with both
32 bit, or single sized data, or 64 bit, or double sized data). Note the corrolation between
the bus width of 64 bits and the FPU register width of 64 bits.

Thus the largest amount of data we can move with the integer unit is 32 bits, or four bytes,
but with the FPU we can move 64 bits or 8 bytes. The FPU provides instructions for both
reading and writing data from memory and luckily provides bith 32 bit and 64 bit derivatives
af nearly all of its instructions. In Fantasm the size of the data to be worked on is
typically specified by appending either "s" or "d" onto the end of the instruction. For
example:

 stfs f0,(r5)
Stores the single sized data (32 bits) in f0 in the address pointed to by r5

 stfd f0,(r5)
Stores the double sized data (64 bits) in f0 in the address pointed to by r5

It's a similar situation for loading data into an FPU register.

 lfs f0,(r5)
Loads the single sized data (32 bits) at the address pointed to by r5 into floating point
register 0.

 lfd f0,(r5)
Loads the double sized data (64 bits) at the address pointed to by r5 into floating point
register 0. Examine this loop:

line_loop: lfd f0,(r6)
addi r6,r6,8 stfdu f0,8(r5) bdnz line_loop

These four instructions copy data from the address at r6 to the address at r5. I've
introduced another operation here. We've seen the bdnz instruction before. It decrements the
count register and branches if it isn't equal to zero. The stfdu is a variant of store
floating double in that it automatically adds 8 to r5 and stores the result back in r5
before each execution. This means that in one instruction we store the data AND update the
pointer by the size of the data; in this case it's a double so that's 8 bytes. You may
realise that for this to work we need an extra instruction before executing the loop; the
one that decrements r5 by 8 before we start! Thus the full code looks like:

subi r5,r5,8 line_loop:
lfd f0,(r6) addi r6,r6,8 stfdu f0,8(r5) bdnz line_loop

ManiacoMac’s PPC Cracking Bible v1.0.2 • Page : 78

ManiacoMac ® 2004

Alignment
Takes on a whole new meaning when you start moving 8 bytes at a time! If either your source
or destination address are not octal (8 byte) aligned when you start moving data 8 bytes at
a time the code will run slower than cold treacle. The PowerPC processor rarely has hardware
support for mis-aligned addressing and so the OS takes over and has to move the data as best
it can (this means slowly). Octal alignment means that the address you are reading from or
writing to produces a remainder of zero when divided by 8. Everybody should deliberatley try
misaligning their data now and again just to get a feel for it; it's easily spottable once
you seen it once!

Copyright ©Lightsoft Software (Tools) 2000.
Reproduction in whole or part prohibited without permission.

HEX AND SUCH
A Beginner's Guide to the Abyss of Hexadecimal Numbers

by ProZaq

Are you a "newbie"? As long as you're interested in not only computers but also in what's
making computers work the way they do, then you'll definitely need to learn and master the
meaning of a couple of basic expressions/ terms/ concepts. Take, for example, the
hexadecimal number system; it doesn't matter if you want to learn the basics of programing
or if you want to write programs for Macs or PC's or you just wanna cheat on some computer
games; you have to learn and master it in order to be able to "exploit" it. And as you
learn more you will notice that all these concepts are interrelated and one can be
manipulated to change the other.

In this file I shall try to explain the following topics: binary and hexadecimal numbers,
bytes/words/longs, ASCII characters, strings, HexEditors, the hardware components of a
computer, and debuggers. If you find that you are not familiar with an expression take a
look in the "The Computer's Hardware Components" chapter.

Binary, Decimal, and Hex Numbers
Oh boy! Where do I start? Well, at the very, very, very beginning...
If I remember my IT classes well, the whole fame about binary numbers and calculations with
binary numbers goes to an English fellow named George Boole. He developed amongst others
Boolian Algebra. Remember all those horrible hours you had to spend in algebra class
learning formulas like: a(b+c) = a*b + a*c? Well you have him to thank for it. He also
developed a type of logic where he used ones and zeros to represent the logical flow of an
operation, which is the kind of logic that every personal computer chip uses today.

You know how everyone is always saying that computers are all about ones and zeros? Well
that's because everything in computers narrows down to being a one or a zero (an electronic
current or the lack of it).

But what on earth is the binary number system? Well, let's try to define the decimal number
system first (the one we use in every day mathematics) since we're more familiar with it.

ManiacoMac’s PPC Cracking Bible v1.0.2 • Page : 79

ManiacoMac ® 2004

The decimal number system is based on the number 10. Twas the name "Decimal"; which means
"tenth" in Latin (doesn't "mal" mean "multiply" in German?). You have the numbers zero
through nine. When you start counting from zero up, you hit nine. And what happens when
you hit ten? You reset the value of the rightmost column (set it to zero), and carry a one
into the next column. At one hundred you reset the two rightmost columns and carry a one
into the next one. And so on. So as you notice you carry numbers at the powers of ten.
Like 10^1 =10 (^ means raised to the power), 10^2 = 100, 10^3 = 1000, 10^4 = 10 000, 10^5 =
100 000, 10^6 = 1 000 000 etc.

Let's break the number "9876" into columns representing the numbers at which the carrying
occurs. The "thousands", "hundreds", "tens", and "ones" column.

Thousands	Hundreds	Tens	Ones
(10^4)	(10^3)	(10^2)	(10^1)
9	8	7	6

As you might have noticed, in order to get the number nine thousand eight hundred and
seventy six you multiply the value of each column with the appropriate multiple of ten then
add the values together (9*10^4 + 8*10^3 + 7*10^2 + 6*10^1).

In the binary number system we only have two numbers to work with instead of ten as we had
in decimal. One and zero. So this means, that instead of carrying numbers at the power of
ten we carry numbers at the powers of two; namely: 2^1 = 2, 2^2 = 4, 2^3 = 8, 2^4 = 16, 2^5
= 32, 2^6 = 64, 2^7 = 126 and 2^8 = 256.

When dealing with binary a lot of times the value of all eight columns of numbers are shown
even if it is zero. Makes the calculations easier. For example, one in binary has the
value 1 but can also be written as 00000001.

Here is a little chart showing the numbers one to sixteen in binary:

Value of column:
 126 | 64 | 32 | 16 | 8 | 4 | 2 | 1 | = value of each column added up
 0 0 0 0 0 0 0 0 = 0
 0 0 0 0 0 0 0 1 = 1
 0 0 0 0 0 0 1 0 = 2
 0 0 0 0 0 0 1 1 = 3
 0 0 0 0 0 1 0 0 = 4
 0 0 0 0 0 1 0 1 = 5
 0 0 0 0 0 1 1 0 = 6
 0 0 0 0 0 1 1 1 = 7
 0 0 0 0 1 0 0 0 = 8
 0 0 0 0 1 0 0 1 = 9
 0 0 0 0 1 0 1 0 = 10
 0 0 0 0 1 0 1 1 = 11
 0 0 0 0 1 1 0 0 = 12
 0 0 0 0 1 1 0 1 = 13
 0 0 0 0 1 1 1 0 = 14
 0 0 0 0 1 1 1 1 = 15
 0 0 0 1 0 0 0 0 = 16

Here's an other approach in trying to explain how binary works. Try adding up the values of
the columns where there is a one. In ten for example (00001010) there is a one in the two's
and the eight's column. Thus when these values are added together (two plus eight) we get

ManiacoMac’s PPC Cracking Bible v1.0.2 • Page : 80

ManiacoMac ® 2004

ten. The same goes for fifteen, there's a one in each column so, eight plus four, plus two,
plus one equals fifteen.

OK, now we've reached the hexadecimal numbers. Well, for these suckers we carry at powers
of sixteen. With other words we count from zero to fifteen before reseting the first column
and increasing the next. The slight problem of only having ten numbers in our everyday
number system is compensated by using six alphabetical letters to represent the numbers ten
through fifteen. Thus the numbers used in the hexadecimal number system have the following
notation:

0, 1, 2, 3, 4, 5, 6, 7, 8, 9, A, B, C, D, E, F.

And once fifteen is reached, the next number (as always) is represented by reseting the
first column and increasing the next. Meaning that sixteen in hex is "10".

If you have managed to get this far you've done a good job. And if you still have
difficulties understanding what the different number systems are all about then I'll let you
in on a big secret. Only a very few people convert between number systems in their head.

Most of us mortals rely on something called the "Scientific calculator". This makes life a
lot simpler than trying to convert numbers in you head. I always use a calculator simply
because it's just so much faster. I believe that if you know the principles behind the
different number systems and you have access to a calculator that converts between these
then you're set.

So now you know what different number systems are. But when it comes to writing them down
some difficulties may arise. It's obviously easy to distinguish numbers represented in
binary. Just to be on the safe side, however, it's a convention to put a "%" sign in front
of binary numbers. On the other hand "123" can be a number represented in both hex and
decimal form. If it's a decimal number it's simply one hundred twenty three. But if it's a
hexadecimal number then it has the decimal value of 291, two hundred ninety one. Big
difference there! So how do you distinguish between hex and decimal numbers? Well the most
common way is to represent hex numbers by putting a dollar sign, "$" in front of the number.

In the programing language C you represent decimal numbers using the "0x" prefix. In
assembly language it is common practice to use the "#" sign when representing decimal
numbers. I tend to be very lazy so when I want to represent decimal numbers I just don't
bother using any signs, but for hex numbers I always use the "$" sign. For example: #12345
(decimal) is $3039 (hexadecimal); and $ABCDEF (hexadecimal) is 11259375 (still decimal if
no sign is used).

Through the course of this file I will use this method of notation. I might, however, refer
to hexadecimal numbers without the $ sign if I think that it's obvious what I mean.

Bytes, Words, and Longs
Now that you know what hex is, there is a need to discuss the length of a number. The
length of numbers have a large part when it comes to writing programs. By using numbers with
different lengths the programmer can manipulate data much more easily. Another benefit of
numbers with different lengths is that numbers that are small can be stored in a small place
in the memory instead of occupying an unnecessarily large one. This is not much of a problem
now with the increase of of both RAM and HardDisk sizes, but back in the days of C-64's and

ManiacoMac’s PPC Cracking Bible v1.0.2 • Page : 81

ManiacoMac ® 2004

before, when programmers only had so much RAM to work with, it was very important wether a
number took up 1 or 4 bytes.

Anyway, in assembly language for the 68k Macintosh processors we talk about bytes, words and
longs. A byte is two digits long and is between 00 and FF (0 to 255 in dec). A word is 4
digits long and is between 00 00 and FF FF (0 to 65535 in dec). Finally a long is made up
of 8 digits and is between 00 00 00 00 and FF FF FF FF (0 to 4294967295 dec).

With other words:

byte: $00 - $FF #0 - #255
word: $00 00 - $FF FF #0 - #65535
long: $00 00 00 00 - $FF FF FF FF #0 - #4294967295

As you can see a byte takes up one fourth of the memory a long does. This principle will be
discussed further in the chapter dealing with HexEditors. I think it might be a good thing
for you to learn how many digits a byte, a word and a long has. I will use these
expressions later on. I chose to use these expressions (and not including floats and
doubles) because I feel that even an experienced person can get far with only these three
length-notations.

For those interested the programing language C uses the following expressions to refer to
the length of numbers:

char c = 'A'; // 1-byte long by definition (in C++).
short int si= 1; // minimum range +/-32767.
short s = 2; // short same as short int.
int i = 3; // minimum range +/-32767.
long int li= 4; // minimum range +/-2147483647.
long l = 5; // long same as long int.
float f = 10.1; // min 6 digits (decimal) precision.
double d = 11.2; // min 10 digits (decimal) precision.
long double ld= 12.3;

unsigned char uc; // unsigned integers can only store
unsigned short int usi; // positive numbers.
unsigned int ui;
unsigned long int uli;

signed char sc; // signed integers can store positive
signed short int ssi; // or negative numbers.
signed int si2;
signed long int sli;
(Information taken from "C Reference Card" by Argus Software Engineering)

ASCII Characters
With the arrival of networks reaching from one country to the other arose the problem of
character mapping. When you push the letter "a" on your keyboard, the hardware components
of the computer send a number value to the processor which represents the letter "a". But
how on earth would a computer in Yugoslavia, configured to deal with the Yugoslavian
alphabet, be able to interpret letter "ä" which is fairly common in the Swedish language.
To eliminate the problem a new standard for keyboards, the American Standard Code for

ManiacoMac’s PPC Cracking Bible v1.0.2 • Page : 82

ManiacoMac ® 2004

Information Interchange (ASCII) was adopted in most places. What this means is that (in
theory at least) all alphabetical characters will appear the same way no matter where you
are in the world.

Unfortunately this only works in theory, since different keyboards have different mapping of
different keys and have different ways of showing different letters etc... The good news is
that just like you didn't have to know how to convert hex numbers in your head, it's enough
that you know that ASCII refers to the numerical values of the different characters on your
keyboard that the computer can interpret as such.

Now you know that when you push a key on the keyboard, the corresponding number value is
sent to the processor (well in reality it's interpreted by the OS and sent to the active
application). So, what is this number value? Well, every character on the keyboard is
represented by a different number. For example the English lowercase alphabetical
characters range from $61 to $7A (a-z). Notice that when it comes to computers there's a
define difference between lowercase and uppercase letters. Thus the uppercase English
letters are represented by the numbers $41 to $5A (A-Z).

It is important to realize that every ASCII character (every character on the keyboard) can
be represented by a number that's the size of a byte. Meaning a number between 1-255, $1-
FF. Thus the current standard of keyboard maps can only handle 255 characters.

But that's of no real importance either. The most common ASCII characters and their values
in both hex and decimal form are available in the included file "ASCII.txt"

Now then, we know that ASCII characters are represented by numbers. For example the capital
letter "A" is represented 65 ($41). "B" is 66 ($42) and "C" is 67 ($43). So the letters
"ABC" could be represented by the ASCII values 65 66 67 (or in hex 41 42 43). And this
brings us to our next topic, strings.

Strings
The expression "string" refers to a sequence of keyboard characters. For example "Hello
world!" would be a string. Notice that the computer doesn't care about the space between
the two words, it looks upon the sentence as only one string of characters. This leads to
the problem of representing strings. Imagine how a string would look like in the computer's
point of view. It would be a sequence of numbers stored somewhere in the memory. And
unless you inform the computer how to interpret the beginning or end of the string, it will
not know where the string ends.

There are currently two standard ways of representing strings. The C way and the Pascal
way. I'll start with the C way, it's easier. Basically after the last character in the
string there is a zero-byte. This means that a value of zero marks the end of the string.
For example:

 H E L L O _ W O R L D ! •
 72 69 76 76 79 95 87 79 82 76 68 33 00
$48 $45 $4c $4c $4f $5f $57 $4f $52 $4c $44 $21 $00

Keeping in mind that the size of an ASCII character is that of a byte (max 255) we notice
that using the C method the length of the string is actual increased by one byte; the zero-
byte on the end. When a program is in need of using the above string, it needs to know the

ManiacoMac’s PPC Cracking Bible v1.0.2 • Page : 83

ManiacoMac ® 2004

memory address of the first character, and it knows that it has hit the end of the string
when the value of the character is zero.

The Pascal method is a bit different. It stores the number of characters in the string as
the first byte. The example above would be portrayed like this in Pascal notation:

 • H E L L O _ W O R L D !
 12 72 69 76 76 79 95 87 79 82 76 68 33
 $0c $48 $45 $4c $4c $4f $5f $57 $4f $52 $4c $44 $21

As you might have noticed there are 12 characters in the string (including the "_" and the
"!" signs). So using the Pascal method, the program would read the first byte of the string
and thus determine the length of it.

This whole concept will be developed further in the next chapter.

Hex Editors
NOTICE: When dealing with hex editors you are going to be changing real files on your
computer. By changing just one byte in a file you can corrupt it to the extent that it will
not be usable any more! So always make sure that you are working on a BACKUP of the file.

The easiest thing to do is to create a folder where you copy all the files that you want to
change with the HexEditor.

Remember how all data processed by the computer is made up of a one or a zero? Well, the
same principle holds true for files stored on the hard disk, on a floppy disk, on a CD-ROM,
or on any other storage media. But because hexadecimal numbers are easier to deal with than
binary numbers, we have programs that can read the content of any storage media as pure
hexadecimal data. These programs are called HexEditors. Using the above idea, any file
containing data that is stored on a media can be opened and it's contents will be
represented as hexadecimal numbers. And it does not matter whether the file is an
application program or just a simple text file, since ALL files are at their "lowest level"
made up of binary numbers and can thus be viewed by a HexEditor.

The first thing you have to do is to find yourself a HexEditing program. It doesn't matter
which computer platform you have. HexEditors exists for PC's, Mac's, Unix's, even C-64's.
Once you've found a HexEditor open up any backup file with the program. I have a Mac and I
use HexEdit 1.0.7, a freeware program by Jim Bumgardner. If I open an application file I
get something like this:

000000: 00 01 00 00 00 00 17 A1 00 00 16 A1 00 00 00 B5
000010: 66 69 6E 65 20 50 42 55 6E 6C 6F 63 6B 52 61 6E fine PBUnlockRan

Please note that you WILL get something completely different, since the chances of us
opening the same file is very slim, and different HexEditors present the information in
different ways.

Let me explain the above. To the left you have the Offset column. "Offset" refers to the
distance of a data from the first byte in the file. Since the offset here starts at zero we
know that we are dealing with the beginning of the file. Also notice that the offsets are
displayed as hex values. A good HexEditor should be able to display the offset as decimal
numbers as well.

ManiacoMac’s PPC Cracking Bible v1.0.2 • Page : 84

ManiacoMac ® 2004

In the middle you have the Hex column. This is where all the hexadecimal data can be found.
If you converted all these numbers to binary, you'd have a representation of the binary
information of the file as you would find it on the Hard Drive.

Finally on the right side is the ASCII column. This is an ASCII representation of the Hex
values. This means that each hex number is looked up on an ASCII table and it's ASCII value
is displayed in this column.

OK, now what? Well, as an example I'll describe the use of HexEditors as a way to cheat on
computer games.

Off course you can not use a HexEditor to cheat on a game while you are playing it. Those
situations will be dealt with in the next chapter. What you can do with a HexEditor,
however, is to change saved games. I mean, think about it. What is the program actually
doing when it is saving a game? It saves all the data about the game to a file. Like where
you are positioned on the map, what items you carry, how many monsters are gonna attack you
etc... In this example I will use Realmz, a shareware game for the MacOS.

The first thing you have to do is to find where on the HardDrive the game saves it's files.
Some games allow you to save wherever you want, while others will only allow you to save
into a certain set of game folders (usually 1-10 or something like that). So search through
the game's folders (directories as they are also called), and look for a file that has the
same name as your saved game.

The next step is to find the document in which the game stores the information you want to
change. For example Realmz is a Dungeons & Dragons game for the Mac where you can create
your own characters. The attributes of the characters, such as it's strength or stamina,
are saved in a file that has the same name as the character.

Let us presume that I have a character called Pro. His attributes are stored in the file
called "Pro". I want to change my character's strength. I want to make him stronger so
that he can cause more damage with each hit. The first thing I would do is to run the game
and see how strong he is at that particular time. This will be the value that the game
stores in the "Pro" file. He has a strength of 105. So I convert this number to hex,
which gives me $69.

And then I set out to look for the hex byte $69 in the saved file. To make things easier I
look for the hex word "00 69" since the possibility of the string "00 69" appearing several
times in the file is smaller than that of the string "69". (Read "Note on HexEditors and
numbers" for more information regarding this.) When I've found this value I change it to
whatever I want it to be and then I save my work.

The problem might arise that "00 69" appears in more than one places in the file. The
easiest (and most dangerous way) is to change all the values to the value you want. By
doing this, however, you might have changed values which are very important to the program
and might cause it to freeze. By using a trial end error method you can try to change a
different value every time and see if the value you changed was the correct one. The most
effective method, however, is to look at "00 69" in a context. Meaning, look at the other
numbers around it.

For instance, if you recognize the number after "00 69" as the movement points of the
character then there's a good chance that you're on the right track.

ManiacoMac’s PPC Cracking Bible v1.0.2 • Page : 85

ManiacoMac ® 2004

Note for Macintosh users: The MacOS divides up a file into two parts, the data fork and the
resource fork. Without getting too much into programing, here's what the purpose of these
two forks are. The resource fork should contain information such as how a window looks
like, where it is located, how the menus look like etc. With other words information used
by the Operating System. The data fork should be used to store the information used by the
user's.

For example, in a word processor file the resource fork might contain information regarding
the size of the window, while the data fork might contain the actual text written by the
user. However, the programmer is not obliged to follow these criterias. They are only
suggestions made by Apple. So, when you are looking at a file with a HexEditor on a Mac, be
sure to check both forks of the file for the information you are looking for.

Note On HexEditors And Numbers
I find it appropriate to give a bit of a revision of numbers and strings.
To use the example from above, let's presume that my character had the strength of $69.
What we don't know is how the program stores this number. It might store it as a byte, a
word, or a long (see chapter about bytes, words and longs for more info about this). Using
common sense, if my character has a strength of $69 and is considered very very strong than
the program will probably save the value as a byte or a word. It's completely useless for
it to store it as a long (although it might happen). If, however, we regard the characters
experience point, its obvious that it is a lot larger than the range of a word, so it HAS to
be stored in a long (or something larger). This might help you when searching for a value
in the HexEditor.

Another thing that needs to be discussed is that the length of a number has to be even. A
programmer deals with blocks (units) of memory. The program in it's turn reserves these
block once it's launched. The smallest block a programmer deals with is a byte. This means
that no matter how much the programmer wants it, he/she can never store the number "1" just
like that.

If it is to be stored in the memory it will be stored as "01". However, if the programmer
assigned the number to be a word it will be stored as "00 01". And if it was assigned to be
a long it will be stored as "00 00 00 01". The computer doesn't care what number is stored
in the variable. It only cares about the length of the variable. Thus if the computer
stores three longs with the values $1, $22 and $333 respectively then it will look like this
once you open the file with a HexEditor:

00 00 00 01 00 00 00 22 00 00 03 33

Lets say you want to change the $333 part to $433. A good HexEditor might allow you to
search for "333" but remember that the smallest unit is a byte. When you are changing "00
00 03 33" to "00 00 04 33" it's pointless to change all 8 digits. It's enough if you change
the 3'rd byte ("03" to "04"). Notice, however, that you can't just change 3 to 4. You have
to change "03" to "04". A good HexEditor should actually not allow you to change one digit
at a time.

It should require you to change one byte, 2 digits, at a time. If you are confused then re-
read this chapter, and the previous chapter dealing with lengths of numbers. This is
important stuff, and it's very important that you know it well!

ManiacoMac’s PPC Cracking Bible v1.0.2 • Page : 86

ManiacoMac ® 2004

The Computer's Hardware Components
Now we have covered a lot of track. You should know what the different number systems are,
you should have an understanding of different programing expressions and you should know how
to use a HexEditor. In order to understand how a Debugger works, however, we need to dive
into the hardware components of a computer. Do not worry, I will keep it simple. I will
only talk about the most important parts of the computer. As a matter of fact you will most
likely recognize and already know the function of some of these components.

- The Motherboard - This is that green board within your computer covered with circuits
where all the hardware is placed. Everything from the diskdrive to the microphone is
somehow connected to the Motherboard.

- Memory - The part of the computer where data is stored.

- RAM (Random Access Memory) - This is the temporarily storage facility of the computer. It
is loaded full with information when you turn on the computer and it is emptied when you
turn your computer off.

- PRAM (Parameter RAM) - Very much like ordinary RAM with the exception that there is a
special battery in the computer providing the PRAM with enough electricity to keep the
information in it even when the rest of the computer is turned off.

- ROM (Read Only Memory) - This is a storage unit where information can only be read from.
With other words the computer can read anything in the ROM but it can not change anything
there. Thus the ROM usually stores all the information the computer needs to be able to
start when you press the "On" button. When you think about it, a compact disk (CD) is also
a read-only unit. The computer can read the information on it, but it can't store stuff on
it. Thus the name CD-ROM.

- Storage Media - For example, the HardDrive, a floppy disk, a CD or a Zip disk etc. These
are accessories to the computer on which information is stored "indefinitely". That is
"indefinitely" in the sense that the information will still be there, even when the computer
off. This does, however, not keep the computer from replacing the information on the media.
So it can freely read from it and write to it. It can even replace existing data with new
data.

- The Processor - This is the brain of the computer. All data is sent to be calculated in
the processor.

- Registers - These are blocks of memory within the processor where data is stored for a
brief period of time, waiting to be processed.

- Busses - Circuits, on the motherboard, where the information travels from one component of
the motherboard to the other.

- The Sound Card - This is like a small mother board with it's own processor, busses and
registers capable of converting binary information to sound waves.

- The Graphics Card - Same as the sound card except it displays information as the graphics
on the monitor.

And that's all you need to know for now.

ManiacoMac’s PPC Cracking Bible v1.0.2 • Page : 87

ManiacoMac ® 2004

Debuggers
I gave this whole chapter a lot of thought and decided on the following. I will only give a
general description of a debugger, and some theoretical uses for it. For those interested I
have included a file called "MacsBug". I wrote this file a while back and it is not designed
to be read by beginners. However, some people might find it handy. There are a quite a lot
of other files dealing with MacsBug that might be a lot more useful. So if you are really
interested, read a few of those as well!

There are a lot of different debuggers out there, for all computer platforms. I use a Mac
along with Apple's own free debugger called MacsBug.

A debugger is a program that allows you to take control of the complete computer. This is
done, by "stoping" the processor. When you activate a debugger, it stops the processor from
executing any commands of the program you are running at the moment. The whole concept of a
debugger is to help software developers look for mistakes in their programs or to see if it
executes in a proper way.

As you may know, when a program is launched, the Operating System loads the program from the
HardDrive to the RAM. This is done because the RAM is a lot faster than the HardDrive and
most other storage medias. Then the processor jumps to the part of the RAM where the code
of the program is stored, and it starts executing each of the commands. So, when the
debugger is started the processor stops executing these commands. It then allows the user
to check the values of the certain hardware components. This way the user can detect any
mistakes in the program or just check the current state of the hardware components. The
user can even step through the code of the program. This means that they can look at each
command that makes up the program and see what it does. As I said before, debuggers are
largely used by programmers trying to figure out why their program won't work properly.

For you, the main advantage of a debugger will be that it allows you to change the data in
most hardware components, including the RAM. Since the program is loaded into the RAM when
launched, and it does all the calculations in the RAM all the data/variables/information it
may use will most likely be stored somewhere in the RAM. Thus the debugger can be used to
change any of these.

Since this file has had a general undertone of being an aid for cheating on computer games I
decided to include a way to use MacsBug to cheat on games while you are actually playing
them.

I will first summarize the theory and then go into the specifics. In order for you to be
able to follow it through you will have to know at least the basic commands and functions of
MacsBug. If you are using a different debugger, then the theory will most likely be the
same but the commands will be different.

WARNING: When you are changing memory contents or changing anything in a debugger for that
matter, you CAN cause very large damages to your computer! The incorrect use of a debugger
can cause the computer to freeze and cause information to be lost! Several other damages
can also occur. Thus I advise you to become familiar with your debugger before you attempt
to change anything with it. Read any related files, read the manuals and do some minor
experimenting before you try to change stuff directly in the memory!

ManiacoMac’s PPC Cracking Bible v1.0.2 • Page : 88

ManiacoMac ® 2004

So first, the theory. I launch the game as a start. By opening up any saved games, I force
the game to load anything it might have saved on the HardDrive (and that is of use to me) to
the RAM. Then I stop the game by starting the debugger, I find where in the RAM the game is
stored, I find the information I want to change and then I change it.

OK, and now for Practice:
Here's the scenario: I'm playing Heroes of Might & Magic II and I want more creatures in my
armies. I open up the hero's preference window and see that my hero has 25 Minotaurs, 53
Dwarfs, 32 Griffins, 9 Skeletons and 2 Dragons. Thus I know that the computer keeps track
of how many creatures I have and that means that the number of creatures must be stored
somewhere in the RAM.

The first thing I have to do is to find out where in the RAM the game is located. The first
step is to drop into MB (this is done by holding down the apple key and pressing the power
button on the keyboard).

The second step is to issue the "hz" (heap zone) command that lists all the currently active
applications and their locations in the RAM. I got this:

 Heap zones
 #1 Mod 7206K 00002800 to 0070C34F SysZone^
 #2 Mod 6K 00008D60 to 0000A88F ROM read-only zone
 #3 Mod 48K 001301F0 to 0013C1EF
 #4 Mod 128K 004475B0 to 004675AF
 #5 Mod 29560K 0070C350 to 023EA69F Process Manager zone
 #6 Mod 9737K 010A6830 to 01A28EFF “Heroes II” ApplZone^ TheZone^ Targ

As you can see Heroes II starts at memory location 010A6830 and ends at 01A28EFF (all in hex
of course).

The next step is to use the "find" command and find the number of creatures that make up my
army. See, it is very likely that a game stores relevant data close to each other. So I
presume that the program stores the number of creatures I have, in a specific block of
memory in the RAM. If I can find this block of memory, I will be able to change it's
content, thus changing the number of creatures. In some ways it's like finding information
with a HexEditor. Except you're looking for data in the RAM and not in a file.

In order to be able to use the "find" command I have to be able tell the following things:
the start of the memory address, how many bytes the debuggers should search for, and what to
search for. Unfortunately I don't have all the criteria. I have to find out how many bytes
Heroes II occupies. This can easily be done by subtracting $010A6830 from $01A28EFF. This
subtraction gives me $009826CF. If you want you can do this calculation directly in MB,
just type "01A28EFF-009826CF". Now I have all the stuff I need to use the find command.

In this example I issue "f 010A6830 009826CF 00190035"

The "f" stands for "find". This tells MB to use the find command.
"010A6830" is the address of the memory where Heroes II starts. "009826CF" stands for the
number bytes Heroes II occupies in the memory. It tells MB the number of bytes I want to
search for, from the initial address.

ManiacoMac’s PPC Cracking Bible v1.0.2 • Page : 89

ManiacoMac ® 2004

"00190035" stands for 25 Minotaurs and 53 Dwarfs. #25=$19 and #53=$35. Since I've done
this before I know that Heroes II stores the the number of creatures in word sized blocks of
memory. If I didn't know that I would have had to search for "0019" first (or "19") and
look at it in it's context. When I issued the find command I got this:

Searching for 00190035 from 010A6830 to 01A28EFE
 0118EE3E 0019 0035 0020 0009 0002 0000 0003 0100 •••5•••••••••••

The first hex long represents an address in the memory. The following four longs (16 bytes)
are the values of the data contained in the RAM starting from that address. The following
16 characters are the ASCII representations of these values.

Now, if I convert the first five words to decimal numbers I get: 25, 53, 32, 9 and 2.
That's a perfect match of the number of creatures I have in my army. Thus there is a fairly
good chance that Heroes II keeps track of my army starting at address 0118EE3E. When you
are doing something like this on your own and you don't think that this is the location of
the memory that you are looking for, you can continue searching by hitting return until you
get a message saying that it could not be found.

Then comes the dangerous part, I have to change the blocks of memory. I issue the following
command, "sw 0118EE3E 00ff" (sw stands for set word). This changed the word at the memory
address 0118EE3E from "0019" to "00ff". If I now issue the "dm 0118EE3E" command (dm stands
for display memory) I see that the value at address 0118EE3E has changed to:

 0118EE3E 00FF 0035 0020 0009 0002 0000 0003 0100 •••5•••••••••••

So I return to the game by issuing the "g" command. Apparently nothing has changed. But if
I close the preferences window and force the game to actually check how many Minotaurs my
army has (by checking the number stored in the RAM), then I can see that the game in fact
thinks that I have 255 Minotaurs! Cheat accomplished. Now I just have to repeat the above
procedures for all the other creatures.

NOTE: when you are changing the contents of the memory, make sure that you use the
appropriate addresses, meaning the ones you get when you issue "hz" and the find command.
Do NOT use the memory addresses I used! They are purely examples and WILL NOT work on your
computer!

The most common ASCII characters (to be viewd in Monaco)

 32 ' ' $20 33 '!' $21 34 '"' $22 35 '#' $23 36 '$' $24
 37 '%' $25 38 '&' $26 39 ''' $27 40 '(' $28 41 ')' $29
 42 '*' $2A 43 '+' $2B 44 ',' $2C 45 '-' $2D 46 '.' $2E
 47 '/' $2F 48 '0' $30 49 '1' $31 50 '2' $32 51 '3' $33
 52 '4' $34 53 '5' $35 54 '6' $36 55 '7' $37 56 '8' $38
 57 '9' $39 58 ':' $3A 59 ';' $3B 60 '<' $3C 61 '=' $3D
 62 '>' $3E 63 '?' $3F 64 '@' $40 65 'A' $41 66 'B' $42
 67 'C' $43 68 'D' $44 69 'E' $45 70 'F' $46 71 'G' $47
 72 'H' $48 73 'I' $49 74 'J' $4A 75 'K' $4B 76 'L' $4C
 77 'M' $4D 78 'N' $4E 79 'O' $4F 80 'P' $50 81 'Q' $51
 82 'R' $52 83 'S' $53 84 'T' $54 85 'U' $55 86 'V' $56
 87 'W' $57 88 'X' $58 89 'Y' $59 90 'Z' $5A 91 '[' $5B
 92 '\' $5C 93 ']' $5D 94 '^' $5E 95 '_' $5F 96 '`' $60
 97 'a' $61 98 'b' $62 99 'c' $63 100 'd' $64 101 'e' $65
102 'f' $66 103 'g' $67 104 'h' $68 105 'i' $69 106 'j' $6A

ManiacoMac’s PPC Cracking Bible v1.0.2 • Page : 90

ManiacoMac ® 2004

107 'k' $6B 108 'l' $6C 109 'm' $6D 110 'n' $6E 111 'o' $6F
112 'p' $70 113 'q' $71 114 'r' $72 115 's' $73 116 't' $74
117 'u' $75 118 'v' $76 119 'w' $77 120 'x' $78 121 'y' $79
122 'z' $7A 123 '{' $7B 124 '|' $7C 125 '}' $7D 126 '~' $7E
127 ' ' $7F 128 'Ä' $80 129 'Å' $81 130 'Ç' $82 131 'É' $83
132 'Ñ' $84 133 'Ö' $85 134 'Ü' $86 135 'á' $87 136 'à' $88
137 'â' $89 138 'ä' $8A 139 'ã' $8B 140 'å' $8C 141 'ç' $8D
142 'é' $8E 143 'è' $8F 144 'ê' $90 145 'ë' $91 146 'í' $92
147 'ì' $93 148 'î' $94 149 'ï' $95 150 'ñ' $96 151 'ó' $97
152 'ò' $98 153 'ô' $99 154 'ö' $9A 155 'õ' $9B 156 'ú' $9C
157 'ù' $9D 158 'û' $9E 159 'ü' $9F 160 '†' $A0 161 '°' $A1
162 '¢' $A2 163 '£' $A3 164 '§' $A4 165 '•' $A5 166 '¶' $A6
167 'ß' $A7 168 '®' $A8 169 '©' $A9 170 '™' $AA 171 '´' $AB
172 '¨' $AC 173 ' ' $AD 174 'Æ' $AE 175 'Ø' $AF 176 ' ' $B0
177 '±' $B1 178 ' ' $B2 179 ' ' $B3 180 '¥' $B4 181 'µ' $B5
182 ' ' $B6 183 ' ' $B7 184 ' ' $B8 185 ' ' $B9 186 ' ' $BA
187 'ª' $BB 188 'º' $BC 189 ' ' $BD 190 'æ' $BE 191 'ø' $BF
192 '¿' $C0 193 '¡' $C1 194 '¬' $C2 195 ' ' $C3 196 'ƒ' $C4
197 ' ' $C5 198 ' ' $C6 199 '«' $C7 200 '»' $C8 201 '…' $C9
202 ' ' $CA 203 'À' $CB 204 'Ã' $CC 205 'Õ' $CD 206 'Œ' $CE
207 'œ' $CF 208 '–' $D0 209 '—' $D1 210 '“' $D2 211 '”' $D3
212 '‘' $D4 213 '’' $D5 214 '÷' $D6 215 ' ' $D7 216 'ÿ' $D8
217 'Ÿ' $D9

End Notes
In conclusion I hope to have given an insight to how different principles of computer
technology work. I'd like to point out to some more advanced readers that I am aware of the
fact that I have generalized and simplified some concepts. I did this only when I felt that
the theory was more important than a detailed explanation. I also hope to have made some of
you interested in learning about programing and more advanced topics of IT and computer
technology.

Good luck

ProZaq
1999.12.28

Werd to mSEC, and everyone else who's ever helped me out! It's people like you who make it
worthwhile!

PPC Cracking v2.0
by ProZaq

Table of Contents:
 - Introduction
 - Tools
 - The PPC Processor in General
 - Using MacsBug in a PPC Environment

ManiacoMac’s PPC Cracking Bible v1.0.2 • Page : 91

ManiacoMac ® 2004

 - Cracking
 - Hints for Using MacsBug in a PPC Environment
 - Using a PPC Disassembler
 - Using The Hex Editor
 - Note About FAT Binary Applications
 - End Notes

Introduction
My aim in this tutorial is to introduce the general techniques for cracking PPC software for
people who are familiar with the 68k processor structure. I will not go into detail about
PPC assembly nor will I give any practical examples. You shouldn't need those! The purpose
of this file is simply to explain the techniques used for cracking PPC software.

If you are new to cracking then I strongly recommend that you go through my other files on
cracking (The Ultimate Mac Cracking Guide) because (and trust me on this one) PPC cracking
does get ugly! You can find them in various issues of HackAddict or you can download them
from my homepage:

www.geocities.com/area51/rampart/4007/Welcome.html

In those tutorials I describe in great detail what cracking is all about. And the truth is
that exactly the same principles apply to PPC cracking. The only problem is that there
aren't too many tools available to help you on your quest to crack PPC programs. So you'll
have to improvise quite a lot.

Trust me, unless you're a programmer or a practiced cracker you'll have no clue as to what
I'm talking about most of the time in this file!

Tools
As always I've keep the price of the tools required down to a minimum ($0) and you shouldn't
have any problems finding these programs:

1. MacsBug - The cracker's best friend! There's no need to go around finding "demos" of the
other debuggers when g'old MacsBug works just fine!

2. ResEdit - All serious Mac user's best friend! Unfortunately ResEdit is not capable of
disassembling the PPC assembly code, so bugger Super ResEdit, any old version will do just
fine.

3. Any hex editor capable of reading both data and resource forks - I always use HexEditor
by Jim Bumgardner (which is freeware), but I guess the data fork editor extension of ResEdit
would do just as well...

4. A PowerPC Disassembler:

- PPCdissasembeler 2.0 by Alain Birtz - This is sorta like the Code editor part of Super
ResEdit. The good part about this particular program is that it displays the meaning of the
PPC assembly mnemonics.

ManiacoMac’s PPC Cracking Bible v1.0.2 • Page : 92

ManiacoMac ® 2004

- Janus 0.1 by Peter Creath - This can sorta be used to find out information about the a-
traps used by the program. I don't use it much. It has a rather nasty interface, and
don't give all that much useful information...

- PEF Viewer v1.0d8 - Apple's own PPC disassembler. It has a nice interface and is the most
usable of them all. Unfortunately not even this one can save any changes to the coding
itself.

- MacNosy - Pay for it if you want, use it if you want. It's a lovely tool, but I must say
that you can crack just as well without it.

6. Wetware - You will definitely need your head! So make sure you're in immediate
possession of it whilst cracking PPC software!

The PPC Processor in General
They claim it's fast, and there's no doubt about that. They claim it's got a lotta
registers, well 32 general purpose ones actually (plus all the FPU and 64 bit ones). And
they claim it's better than the 68k processor, uhm... whatever. Sure it's got all those
registers, but they are general purpose ones. And in practice you only use about 20 of
them... Lemme warn you straight away: don't mess with the first three registers (r0, SP and
TOC)! They hold information that are essential to the execution of the program such as
return tables and lovely things like that.

I guess the biggest changed to get used to is that there are no address or data registers!
Any of the registers can be used as either data or address registers. Meaning that it can
hold a number or it can serve as a pointer to a location in the memory.
It's up to you to figure out the purpose of the register. Something I noticed rather early
on is that I was forced to use the "dm" (display memory) command all the time, just to make
sure that the damn register wasn't used as a pointer.

Another thing that shocked me was that all PPC commands are 4 bytes (8 digits) long. Oh
well... this isn't the place to talk about the speed of executing 4 digit commands...

I will unfortunately not include a list of the assembly commands and what they mean in this
tutorial. I guess it's not too important that you know exactly what each command means, but
it might be useful to get a hold of a definition of all the different mnemonics, just in
case... I can on the other hand recommend the reference manual to PowerFantasm or some
files from Apple regarding programing in PPC assembly.

This on the other hand is important to know: every subroutine starts with the "mflr" command
and ends with the "blr" command. Apparently a lot of times there are several "blr" commands
within a subroutine (sort of a contradiction of terms huh?). This way the program doesn't
use the BRA command to branch to the end of the subroutine but ends it straight away once
it's done it's purpose. I guess this is how they try to make up for the speed loss of the 4
byte long commands ;-). Another PPC assembly command that might be useful to recognize is
the "bl" command. This is the common branch command that is know in 68k terms as Branch-To-
Subroutine (BSR).

The BRA command has the hexadecimal value 4800xxxx and the NOP command has the value
60000000. So whenever you want to replace a conditional branch command with a BRA command,
you change it's leftmost 4 digits to "4800" and keep the rest as it was. For example if you
wanted a BEQ command represented by 41820034 to always branch you'd change it to 48000034

ManiacoMac’s PPC Cracking Bible v1.0.2 • Page : 93

ManiacoMac ® 2004

(remember not to change the rightmost 4 digits, as that will seriously fuck things up!).
And you'd just replace the whole thing by 60000000 if you didn't want it to branch.

Another thing to notice when looking at PPC assembly code is that in simple arithmetic the
registers are used in reverse order. For instance, here's an example of a simple addition
in 68k:

 add.w d1,d0

As you all know the values of d1 and d0 would be added up and stored in d0. In PPC the
above example might look something like this:

 add r3,r4,r5

However, the execution process is reversed. The above command adds r5 to r4 and stores
their sum in r3.

Now then, A-Traps. Well they are known as system vectors/ symbols in PPC programing (but
I'll just stick to the expression "a-trap" to be nostalgic). Apparently this is supposed to
be a much faster alternative to patching the A-Traps, but for crackers they are a real pain
in the ass!

Also if you take a look at the resource fork of a PPC file with ResEdit you will find that
all the usual resources are there with the exception of the CODE resource. And if it is
there then it's usually just some warning that the program won't run on 68k platforms. So
where is the actual code? You guessed it; in the data fork. That's why you need a hex
editor if you want to change it.

Using MacsBug in a PPC Environment
The PPC part of MacsBug is structured the same way as the 68k part. To the left you have
the stack, below it the current application name, and below that you have the registers. In
the middle you have the assembly commands, and to the far right you have the command's
hexadecimal value.

Unfortunately MacsBug is not developed to deal with PPC as well as it does with 68k
assembly, but it is still very usable! The command used to break at a specific a-trap, is
the "tvb" (TVector Break) command. Notice, however, that while in 68k it was enough to type
"atb modal" to set a break for the ModalDialog a-trap, in PPC you have to type out the whole
name of the a-trap. So if you want to be dropped into MacsBug at every ModalDialog a-trap,
you have to issue the command "tvb ModalDialog".

The equivalent of "atc" is the "tvc" command.

Another thing that sux is that whenever MacsBug breaks for an a-trap it does not actually
break before the trap but breaks at the first command inside the trap. So while in 68k you
were dropped inside the program itself at the command branching off to the a-trap's
subroutine, in PPC you're dropped into the actual a-trap, and have to get out of it first
(remember that all subroutines end with the "blr" command).

Once you're out of the a-trap though, you can continue tracing/ stepping through the code as
if you always did while cracking 68k programs.

ManiacoMac’s PPC Cracking Bible v1.0.2 • Page : 94

ManiacoMac ® 2004

Cracking
You start off exactly like when you were cracking 68k programs. Issue the "tvb" command
just like you would with the "atb" command.

Once you're dropped into MacsBug, remember that you are actually inside the a-trap
subroutine so you need to trace through the code until you see the "blr" command.
Everything that comes after that belongs to the program you're trying to crack. Remember
that the PPC mnemonic for the "BSR" command is "bl". You can step into/ trace over any
subroutine just like you could in 68k code using the "s" and the "t" commands.

Once you've found the conditionals you're looking for, the same principles apply in PPC code
as they do for 68k code. Let's say that the below code won't branch but it would be "nice"
if it would:

 01A03244 beq $+0x0024 ; 0x01A03268 | 41820024

The "0x01A03268" part tells us (just like in 68k) that if the conditions would have been met
it would have branched to the command that's in the memory at address "01a03268" ("0x"
prefix is used to represent hexadecimal numbers). Now then, luckily the Program Counter (a
special address register that keeps track of which command is to be executed next) works the
same way in PPC assembly as in 68k. Thus, if you want the above command to branch, simply
set the Program Counter to 01a03268. You would achieve this by typing "pc=01a03268".

On the other hand, you might be in a situation where you want the conditional not to branch.
So simply jump over the command. How? Well since in PPC all commands are 8 digits long it
makes things simpler than they are in 68k. If you ever have to jump over a command, type
"pc=pc+4" (the current pc address plus 4 will give you the address of the next command in
line).

Hints for Using MacsBug in a PPC Environment
A very useful feature of MacsBug is the disassemble command, "il". Since there are no
fabulous tools to use for disassembling PPC software, you might as well use the Debugger to
do it. So how do you use the "il" command? If you want to disassemble from the current
address just type "il". This can be very useful when you're trying to figure out what would
happen if a conditional didn't branch.

If you want MacsBug to disassemble the assembly commands from a specific address you'll have
to use the "il-c" command. Simply because if you don't MacsBug will disassemble the PPC
commands in 68k mode and you'll get some very interesting results.

I also found it useful in some cases to figure out what happens in the subroutine before it
hits a specific a-trap (especially when I was cracking software protected with hardware
keys). This can very easily be achieved by typing "il-c pc-x" where "x" is any multiple of
4 (remember that every PPC command is 4 bytes, 8 digits, long). And if you recall your
hexadecimal rules then hex 10 equals dec 16. So it's very convenient just to disassemble
using "x" as multiples of hex 10 (meaning 4 assembly commands at a time).

To clear things up, if you want to disassemble from the previous assembly command you type
"il-c pc-4". If you want to disassemble starting from the 4th last command just use "il-c
pc-10". You'll get the hang of it!

ManiacoMac’s PPC Cracking Bible v1.0.2 • Page : 95

ManiacoMac ® 2004

Another very useful command in PPC cracking is the break command, "br". If you care to read
the help section of MacsBug you'll notice that the "br" command in a PPC environment causes
an error. So use the "brp" command instead! Both "br" and "brp" can be cleared with the
"brc" command.

You'll find break points to be a very useful alternative method to the "tvb" command.
Remember how when you're using the "tvb" command you are actually dropped inside the a-trap?
Well once you find your way out of it, you can simply set a break point at the a-trap's
subroutine and clear the TVector break. This way you'll still break every time for the a-
trap, but before you actually enter the trap.

A very simple way of using the break command is with the help of the Program Counter. If
you want to set a breakpoint at the previous assembly command type "brp pc-4"; if you want a
break at the current command type "brp pc"; and if you want a break at the next command in
line type "brp pc+4" (useful when you wanna get outa long loops). Rather simple, and saves
you a lotta time!

Using a PPC Disassembler
In theory, there's no "real" need for any PPC disassembler when you think about it. I mean,
you can find out most of the things you want using MacsBug, and since you can't change the
program with PPCdisassembler or PEF Viewer anyway (nor Nosey for that matter), there's not
much point in using them. Well except maybe for one thing. And that is that
PPCdisassembler tells you what the different assembly mnemonics mean (for example "addi"
stands for "add immediate"). So if you're in doubt or despair, run around in circles,
scream and yell! No, but whenever you can't figure out the meaning a command, you can
always look up the command in PPCdisassembler and it'll explain it to you. Oh, yeah, don't
forget to turn on the "add meaning" option in the Preferences. You might also want to set
the origin to zero, to make the offsets of the commands realistic.

There is another use for the dissasemblers. And that is the following. In 68k, when you
were looking for the resource ID's of dialogs or windows you used the CodeEditor part of
Super ResEdit. You can use the dissasemblers to do this. Just search for the hex value of
the dialog ID you're looking for and see if there's a branch command right after it
somewhere. Since the first 2 bytes of the PPC assembly command are used for the mnemonic,
don't just search for "80", search for "0080". This will greatly speed up your search. [
If you're using PPCDissasembeler when searching for "0080" for example, make sure that you
mask it with "FFFF" (open the "search" dialog and you'll understand what I'm talking about).
]

If you're looking for the part of the code that passes a 4 letter resource to the memory,
then you have to realize the "limits" of PPC. One of the limits is that you can only pass 2
byte long digits into a register with one call. So pushing the letters "PREF" into a
register would require two commands. A typical example of how this is could be done:

 lis R4,$5052 * load immediate shifted, 'PR'
 li R4,$4546 * load immediate, 'EF'

Using The Hex Editor

ManiacoMac’s PPC Cracking Bible v1.0.2 • Page : 96

ManiacoMac ® 2004

Right, so you finally found the conditional you need to change. What do you do? First of
all, write down the hexadecimal value of the command you wish to change, along with the
values of the next or previous four commands as well. Then, since all assembly information
is stored in the program's data fork, open the program with your hex editor. Search for the
hex values you wrote down, and replace the undesired one with 4800xxxx (BRA) or 60000000
(NOP) depending on what you need.

Quit the hex editor, launch the program you're trying to crack, and watch your computer
freeze! Well that is if you fucked up somewhere on the way ;-). If you didn't you should
have a fully functional cracked program!

A little hint here, in order to avoid unwanted freezes, when you're searching for the the
hex values, make sure that there's only one set of those in the data fork! Since you can't
really work with offsets as you could in the 68k environment, you are forced to go trial and
error. I think it's obvious that if you write down many hex values of assembly commands,
then the chance of them occurring in that specific order several times is reduced! Really,
this is where the wetware part of the whole thing kicks in! Use your head!

Note About FAT Binary Applications
FAT applications work on the principle, as you all know, that it'll run on both PPC and 68k
computers. It achieves this by having the 68k code in the CODE resource and the PPC code in
the data fork. There are two freewares out there called Strip 68k/ PPC by Phase Consulting.
What they do is that they take away either the 68k or the PPC code from a FAT application.
So if you feel more comfortable cracking 68k apps, then use the above program to remove the
PPC coding from it!

NOTE: When I stripped the PPC code from a larger application I was faced with all sorts of
error dialogs.

End Notes
And that's about all you need to know. If there's any need for it or if I'm extremely bored
I might write a beginners guide to PPC cracking, but until then you'll just have to learn
how to crack in 68k properly first! ;-)

1998.11.10 - updated 1999.05.16
ProZaq

Basic Mac PPC Cracking
by Dot Com December 12, 1997

I have read many cracking tutorials and have noticed they are pretty hard to understand. I
first learned cracking thru Smeger's excellent text, "The Kool Krack Tutorial". The
learning curve was pretty tough at first but I will attempt to get you rolling as quickly
as possible thru examples. In this part we will use Nosy to bypass a typical serial
number dialog box and other annoying alerts. There are many different approaches to
bypassing a dialog box but this is one basic method I use the most often because its damn
easy.

ManiacoMac’s PPC Cracking Bible v1.0.2 • Page : 97

ManiacoMac ® 2004

Software you will need

You will need the following software before you begin this tutorial:

Resorcerer 2.0
Nosy II 8/97
Macsbug 6.5.4a3c1 THINK Reference 2.0
WebCollage 1.0

Resorcerer is a resource editor like ResEdit. I prefer Resorcerer because of its excellent
search features. We will use Resorcerer to modify code and checkout dialog boxes. Nosy is
a PPC disassembler and will convert all assembly code into something we can read and
understand. Macsbug is a debugger and dissassember that will allow us to see what code is
executing. You will not need Macsbug in this lesson but get it anyway. THINK Reference is
a handy utility that tells you all about Mac Toolbox Traps (more on this in a bit). You
will also need to locate a copy of StarNine's WebCollage 1.0 from your local warez site
(it may also be downloadable from http://www.starnine.com). This is the app that you are
going to attempt to crack.

Basic Assembly Language
I have to admit that I know nothing about assembly language (I dont even know that the hell
it is!) but I have not found it necessary to know a whole lot, so I wont bore you with all
that stuff. There are really only 4 pieces of assembly knowledge that you really need to
know (at least for now) with the first being conditional branches.

Conditional branches are lines of code that compare values and go to or "branch" to another
line of code. If your familiar with the old BASIC language its like an IF THEN statement.
IF <serialnumber> = <12345> THEN <linenumber>. There are two types of branches we need to
know which are BNE (branch if not equal) and BEQ (branch if equal). The machine language
equivalent codes for these are 40 and 41. What the hell is machine language you say? Hell
if I know! This will make sense later so bare with me. We use branches to force the
program to do something different from what it normally does, kinda like a detour. A
condtional branch statement looks like this:

4182 0014 bc IF,cr0_EQ,laq_3

so this line of code branches if the value cr0 is equal and goes to procedure laq_3 (in
Macsbug it will be a numeric value or line number, more on that later)

The next type of assembly we need to know is NOP which stands for No Operation. This is
basically a line that does nothing..our macs just skip over this line. The machine language
equivalent is 6000. We use this to delete lines of code. A NOP statement looks like this:

6000 0000 nop

A line that loads a procedure or subroutine is also a branch but I feel its a little
different than a normal branch. A BL or "branch load" is just like a GOSUB in ole BASIC
and it looks like this:

4BFF FFDD bl proc13

ManiacoMac’s PPC Cracking Bible v1.0.2 • Page : 98

ManiacoMac ® 2004

so this line of code will run all the code in proc13.

And last but not least we need to know LI. What does LI do? I have no idea, but it means
"Load Immediate" I believe. All I know is that they are useful for seeking out Dialog box
ID numbers. A LI statement looks like this:

38A0 06A4 li r5,$6A4

Using Resorcerer
Upon running WebCollage Editor we of course get the typical register me dialog box as shown
in Figure 1.

Well since we dont seem to have an authorization key handy I guess that where gonna have to
bypass this dialog box somehow and get the program to load up for us. Most (not all)
dialog boxes in an application have a Dialog ID number. We will use Resorcerer to locate
this number. Load up Resorcerer and load in WebCollage Editor and select the DLOG Resource
and we see Figure 2.

We find that Dialog number 1701 “add key dialog” is the problem. Sometimes they dont label
there dialogs as did StarNine so you will have to load up each dialog and find the right
one. Now we need to convert the ID number into Hex so we can locate it in Nosy. What is
Hex anyway you say? Well you guessed it, I dont know. I guess its just numbers that
assembly code can recognize, who knows? Anyway go to the Edit Menu and select “Value
Converter” and type in 1701 in the Long field as seen in Figure 3.

ManiacoMac’s PPC Cracking Bible v1.0.2 • Page : 99

ManiacoMac ® 2004

Now in Hex, 1701 = 06A5. Now its time to load up Nosy and snoop around the Dialog traps
and try to locate the annoying procedure that calls Dialog 1701.

Toolbox Traps
Smeger described Toolbox Traps better than I can:

The Toolbox is a set of routines that mac programmers can use to simplify common tasks,
making writing code really simple 'cause you don't have to do anything. A trap is a system
routine that performs some sort of action, such as drawing a menu bar or a window. Traps
are stored within a program as a single instruction. When the trap is called, the program
will perform the trap, then continue execution normally.

Got That? Good. For a complete listing of Toolbox Traps and what they do I use the THINK
Reference app. You should be able to find it no problem. The trap calls we are interested
in are any traps relating to Dialog Boxes such as GetNewDialog, GetDialogItem, etc.
GetNewDialog seems to be the best one and I use it everytime.

Using Nosy

ManiacoMac’s PPC Cracking Bible v1.0.2 • Page : 100

ManiacoMac ® 2004

Nosy is a great program that will disassemble the Data Fork (where PPC code is located)
into a format that we can read. First duplicate WebCollage Editor and rename the copy to
just Editor (Nosy only accepts 20 character filenames) and load it into Nosy. Select the
<DF> when Nosy asks you to select a resource. Press Continue for the Treewalk optons and
let Nosy explore. Nosy will take a few minutes and dissassemble the program. The time it
takes varies on the filesize. Sometimes Nosy will not be able to dissassemble part of a
program and Macsbug will have to be used instead which will be covered in Part 2 of this
series. In this case Nosy loads the Editor fine and we get a window displaying all the
Code Blocks as in Figure 4. Keep scrolling down and you will find all the Toolbox Traps
used in the application.

Scroll down until you find .GetNewDialog_GL_. Select it and press _ R (also under the
Display Menu: Show Refs to). This will show all procedures that reference the GetNewDialog
trap. We now get the window in Figure 5.

Well we lucked out as only 3 procedures have new dialog calls. Sometimes there can be 20 or
more and you will have to snoop thru them all. Anyway lets check out proc3233. Select it
and press _ D (also under Display: Code Blk) and we get Figure 6. Scroll down a bit until
you find a BL for the .GetNewDialog_GL.

ManiacoMac’s PPC Cracking Bible v1.0.2 • Page : 101

ManiacoMac ® 2004

Notice above the first GetNewDialog we have a:

8C8C0: 3860 06A5 li r3,$6A5

Thats our man as we see Hex ID 6A5 being loaded just before the dialog call. Bypassing
this routine should solve the problem right? Nope. Notice the branch at address 8C8BC: bc
IF,cr0_EQ,mkg_1. If we reroute that branch to mkg_1 it still loads the dialog and there
are no branches at the start of proc3233 to bypass all of this. So what do we do now? We
bypass this whole procedure altogether. Scroll back up to the top of proc3233 and we see
the following:

;-refs - proc3232 proc3250

This shows all the references to this procedure. Lets _ D proc3232 and we see that nothing
is apparant but the BL to proc3233. What we want to find is a conditional branch before
loading proc3233. Its not here so lets checkout the only ref to proc3232 which is proc3231.
Well no conditional branches in proc3231 as well but an interesting LI line referencing
$6A4.

If we type 6A4 into the Value Converter in Resorcerer we find that its doing something with
Dialog 1700 “key list dialog”, definetly something we want to avoid. The only ref to this
procedure is proc20, lets check it out. Well, proc20 is a big one. Do a search for proc3231
with a _ F. Type in proc3231 and it we find the contents in Figure. 7.

ManiacoMac’s PPC Cracking Bible v1.0.2 • Page : 102

ManiacoMac ® 2004

If we keep clicking the Find button we see that this is the only occurance of proc3231 in
this procedure. Well there it is; a conditional branch above the call to proc3231:

4182 0048 1001DA8 bc IF,cr0_EQ,lau_9

Notice the NoteAlert in Figure 7, the LI above it calls $14D. Go back to the Value
Converter in Resorcerer and type in 14D and we get 333. Select the ALRT (Alert dialogs are
located here) resource type and double click on 333 and we get a nice ALRT saying that
"None of the authorization keys are valid. Please contact StarNine for more information".
Well this has got to be the right place. It looks like if we force the application to
reroute to lau_9 then we should avoid the serial number dialog box and the ALRT. All we
have to do is change it from a BEQ to a BNE. How do we do that? Easy. First lets examine
the code around the line we want to change:

4808 D7B5 108F508 bl proc3267
6000 0000 nop
7C60 0735 extsh. r0,r3
4182 0048 1001DA8 bc IF,cr0_EQ,lau_9
3860 FFFF li r3,-1
3880 004C li r4,76

ManiacoMac’s PPC Cracking Bible v1.0.2 • Page : 103

ManiacoMac ® 2004

See the number 41820048? That is the assembly code for this line. What we are going to do
is search the <DF> in Resorcerer for this line. What we find is that there are many
41820048’s in the <DF> so we need to copy down the surrounding code so we make sure we are
in the right place. The surrouding code would be :

600000007C600735 41820048 3860FFFF3880004C

Modifiying Code in Resorcerer

To make the change we will use Resorcerer. In Resorcerer and select the <DF> resource type
and do a _ F and copy in the code with NNO spaces in between the codes as in Figure 8.

Select the “Of Type <DF>” and “Hex” checkboxes and click Find. What we get is the window
in Figure 9.

ManiacoMac’s PPC Cracking Bible v1.0.2 • Page : 104

ManiacoMac ® 2004

Now we are going to change 41820048 to 40820048, the exact opposite (a BEQ to a BNE).
Select the first two digits (41) of the code and type in 40.

Completing the Crack
Close out of everything and save changes and lets see what happens. Well our crack is still
not complete as ole ALRT 333 still pops up. We did, however, got rid of the serial dialog.
Lets go back to Nosy and checkout all the refs to .NoteAlert_GL_ and we find only two:
proc6 and proc20. Well we already bypassed the call in proc20 so lets checkout proc6 and
lo and behold we have a conditional branch above the LI call to ALRT $14D in Figure 10.

ManiacoMac’s PPC Cracking Bible v1.0.2 • Page : 105

ManiacoMac ® 2004

Again, it looks like if we change:

4182 0044 10008A0 bc IF,cr0_EQ,lag_1

we can bypass the ALRT. Do the same as before and copy the code around it and make the
change to 4182044 to 4082004 and see what happens.

Bingo! the program loads up with no problems. One thing you might notice is the menu
command “Edit Authorization Keys” under the Edit menu. You might want to modify the Edit
menu in Resorcerer under the MENU resource type and delete it. his will make sure that
nobody can get to any annoying serial number number dialogs and have the program quit.

ManiacoMac’s PPC Cracking Bible v1.0.2 • Page : 106

ManiacoMac ® 2004

Adios

Hopefully this was helpful and you are well on your way to cracking your own software. You
can now apply your newly learned cracking skills to the WebCollage Assembler.

Dot Com

Special thanks to sm00th who got me started in cracking and Dream for giving me
inspiration to write this.

Basic OS X Cracking
By ProZaq

Introduction
So here it is, a whole new OS. Your favorite tools are useless (with the exception of
HexEdit) and you don’t know where to begin. Although this tutorial will go through the
basics, it is aimed at people who at least have a little knowledge about cracking under PPC
and OS9. It’s a shame that there isn’t a decent file for beginners on PPC cracking. For
those of you who are complete beginners, I can recommend that you read one of the dozen of
tutorials on 68k cracking. Get the general idea about what it’s all about and then move over
to PPC (my previous file on PPC cracking might help you in the transition). Then finally,
read this file.

Tools
With MacsBug and ResEdit out of the way (including the resource fork too), the only old tool
that you still need is a hex editor (HexEdit 1.7.4 works just fine under OSX). Of course if
you have a gentle mind and do not support brute force cracking (patches) and only go for
serial numbers then you do not need a hex editor. What you do need on the other hand is a
copy of GDB. GDB is the replacement for MacsBug. From what I gather it’s a standard *NIX
debugger. It’s COMPLETELY different from MacsBug and trust me, the transition will be
painful for all hardcore MacsBug fans (like myself). Luckily Apple has made some macros that
give GDB some MacsBug properties, but still...

If you do not have GDB then you can download it from Apple’s developer’s homepage. It is
included with the Developer Tools package for OSX (connect.apple.com). To find out whether
GDB is installed or not launch the Terminal (you might as well put it in the Dock since its
going to be your interface for the debugger) type GDB and press return. If you get an error
then it’s not installed. If it launched enter ”quit” and press return.

GDB and CFM conflicts
As I mentioned before, GDB has replaced MacsBug (but unfortunately there’s nothing we can do
about it, so we might as well get used to it). Since it is meant to be a debugger for *NIX
platforms there are times when it has to be ”adopted” to deal with the Mac environment. In
order to be able to debug carbon apps (ones that are not OSX specific) you need to play a
trick on GDB. I’m not going to go into details why this is, but what you have to do is to

ManiacoMac’s PPC Cracking Bible v1.0.2 • Page : 107

ManiacoMac ® 2004

specify where the lib is that allows GDB to run CFM apps. Once you have done that, you run
the application from GDB and start the debugging much the same way as you would in OS9.

First time setup
The lib that I was referring to above can be found at:
/System/Library/Frameworks/Carbon.framework/Versions/A/Support/LaunchCFMApp
Now, that’s a long thing to write every time you want to debug an application. So why not
create a link of the file in the root folder? In order to do that, issue the below command
in the terminal:

ln -s /System/Library/Frameworks/Carbon.framework/Versions/A/Support/LaunchCFMApp
/LaunchCFMApp

NOTE: there is only a space between the two /LaunchCFMApp. Not after -s

If you have done everything correctly you should have a new file in your root folder named
LaunchCFMApp. While you are at it make a link to the MacsBug macros used by GDB too (more
about it later):

ln -s /usr/libexec/gdb/plugins/MacsBug/gdbinit-MacsBug /MacsBug

I’ve also found it useful to make a cracking folder in the root folder. Saves a lot of
typing when issuing commands in the Terminal application.

Running Applications in GDB
The first thing you have to do is to launch the Terminal application. Once it’s running
launch GDB by typing:

gdb /LaunchCFMApp

(If you haven’t created the links recommended above you have to use full path names.)

Then it is time to run the application from gdb by issuing:

run /crackingfolder/appname

- ”run” is the command used to run applications (abbreviated as ”r”)
- ”crackingfolder” is the folder where the application to be cracked is
- ”appname” is the name of the application you want to run. You can specify any path to the
application you want to crack. But don’t forget to use the initial slash (”/”) or you will
get an error.

At this point in time GDB should start to load the application.

NOTE: if you are running a Mach-O type application (OSX native) then you do not have to use
the LaunchCFMApp link.

Attaching GDB to Running Processes

ManiacoMac’s PPC Cracking Bible v1.0.2 • Page : 108

ManiacoMac ® 2004

Using the run command presumes that the application is not already running. There is,
however, also a way to debug running programs. To do this you need to use the "attach"
command. It should be followed either by the running programs name or it's process id. The
process id can be found with the "ProcessViewer" application (included with OSX). An even
easier approach is to use the tab button. After writing ”attach” and hitting the Tab button
three times, a complete list of all running processes and their id’s appears.

The MacsBug Macros
Apple has actually created a set of macros that attempts to give GDB a certain MacsBug look
and feel. It doesn’t really work but it’s a LOT better then what GDB has to offer on it’s
own. The easiest way of activating the MacsBug plugging, presuming you’ve created the link
above, is to issue the following command in GDB:

load-plugin /MacsBug

By using the ”help MacsBug” command you can find out which former MacsBug commands are
available in GDB.

Once you start tracing through a program you will notice that the list of the registers and
their contents has been moved over to the right side of the window (in comparison to the left
side of the MacsBug screen). But none the less it’s there! Make sure your window is large
enough to display all registers! If it just wont fit, change the monitor resolution and make
the window larger that way.

Using GDB and the MacsBug Plugin Commands
First of all, it is important to notice one big difference between GDB and MacsBug. While
you could invoke MacsBug at any time in OS9, GDB has to be started like a program. You
can’t time the activation in the debugger quite the same way as you did with MacsBug.
Therefore, you will most likely be forced to use one of the toolbox (carbon) calls when
cracking a program. But more about this later. The first thing you have to know about GDB
is how to stop the program that is being debugged by GDB. Once a program has been ”run” from
GDB or GDB has been ”attached” to it, hold down the control key and press ’c’. This should
give you the GDB prompt and the debugged program will ”disappear” (all windows will be hidden
and the beach ball will be spinning). Once you have the GDB prompt you can start to issue
commands, trace through the code, etc. To allow the program to resume the ”c” or the ”g”
commands can be used (”g” is actually a MacsBug macro so it won’t work if the plugging isn’t
loaded).

Now that GDB is ready to go, what commands can be used? Well, presuming that the MacsBug
macros are loaded, the ”dm” command (display memory) still works. However, the ’$’ sign has
to precede every register number. Meaning that in order to display the contents of r3 the
”dm $r3” command has to be issued. This convention holds true for all registers including
the ’pc’ and the ’lr’ (they become ’$pc’ and ’$lr’).

To examine the contents of a register it is no longer enough to enter the register’s number.
However, the ”info register” command is a very nice feature that may prove very helpful for
such situations.

The ”step” and the ”trace” commands are a bit different now. ’s’ has been replaced by ’si’
and ’t’ has not really been replaced with anything. The ”ni” command can be used if the pc

ManiacoMac’s PPC Cracking Bible v1.0.2 • Page : 109

ManiacoMac ® 2004

is at a ”bl” instruction (that is a function or a subroutine), but the command might screw
things up if its used elsewhere. If you find yourself stuck in a function/subroutine that
you want to get out of use the ”finish ” command. It should give back control, once the
debugger is out of the function.

Something that has multiple functions in GDB is the ”break” command. It seems like the most
useful command in GDB. It is, however, slightly different from MacsBug. First of all, the
address where the break is supposed to be has to be preceded by ”0x” (that is zero and the
letter x) which is the standard way of indicating hexadecimal numbers in the C programming
language. Secondly, the address (preceded by 0x) has to be preceded by a ”*” (a star sign).
So, to set a breakpoint at address hex 111111, the following command has to be used:

break *0x11111111

A variation of the break command is ”tbreak”. The beauty of this command is that GDB
automatically clears the break once it is reached. This is a great way to compensate for the
problems with the ”ni” command. If the pc is at a ”bl” instruction just about to branch off
to a subroutine/function, set a tbreak at the next instruction (”tbreak *$pc+4 ”), allow the
program to continue (”c ”), and this will give the same effect as the good old ”t” did.

To clear a breakpoint the ”delete ” command can be used followed by the break's id number.
To find out which id the break has issue the ”info break ” command. The delete command by
itself gets rid of all set breakpoints.

Breaks have replaced the ”tvb” call in GDB as well. It is now possible to set a break at
ModalDialog (”break ModalDialog”) without the system crashing.

Without getting into the depths of the heap, there is one command that is very useful -
”backtrace ” (or ”bt ”). This command shows exactly where in the program you are. With
other words it shows you what level within the program you currently are; which functions
precede the current one.

In MacsBug the process-counter (pc) could directly be set to a specific address simply by
using a command in the form of ”pc=address ”. In GDB the ”set ” command has to be used. To
jump to the next command in line for example the following can be issued:

set $pc=$pc+4

By pressing apple-v MacsBug automatically displayed the last entered command (anyone else
notice that it displays a list of previous commands, in a popup menu, if the command field is
clicked on whilst the ctrl key is down?). In GDB you can use the up and down arrows to get
the same effect. This can be very useful since GDB requires a lot more typing to issue
commands.

A really cool feature of GDB is it’s ability to figure out your commands through
abbreviations. For example, a simple ”b” can be used instead of ”break” and ”i r” replaces
”info register”. This ability does unfortunately not apply to things like registers. The
”$” sign is ALWAYS needed before registers and the ”*” sign is always needed before
addresses.

The list of commands would not be complete without the notorious ”es” command. ”kill ” has
replaced ”es” but in reality the Finder’s force quit works just as well...

ManiacoMac’s PPC Cracking Bible v1.0.2 • Page : 110

ManiacoMac ® 2004

OS X Cracking vs. OS 9 Cracking
From what I’ve seen so far, most applications have refrained from using the WaitNextEvent
call and are relying on the Carbon event manager. This is a completely new approach in order
to make multi-threading as efficient as possible. There is a standard set of event managing
functions in Carbon, but programmers also have the possibility of creating their own
functions. For more information on Carbon event handling see the file specified in the
”Further reading” section below. The backtrace command can be useful when finding out your
current location within the code, and finding your way out of it.

It also seems that the applications have moved away from using dialogs to obtain registration
information. They now rely on windows (which is bit of a shame because the new dialog
manager is awesome!). Since the window manager still uses the TextEdit calls, a system call
that always seems to work is ”TEGetText”. Of course, in the cases where it doesn’t work, you
can use the methods you’ve been using so far to crack applications (even if they might need
slight modifications). On the apple dev. homepage there is a nice list of all system calls.
There you can find out if old system calls work in Carbon or not.

Further Reading
CarbonEvents:
http://developer.apple.com/techpubs/macosx/Carbon/pdf/HandlingCarbEvents.pdf

Tech Note on GDB:
http://developer.apple.com/technotes/tn/pdf/tn2030.pdf

GDB commands
try the ”help ”command in gdb

ProZaq -

Setting Up GDB

Getting things running

Make a symbolic link in the top directory to the LaunchCFMApp:
ln -s /System/Library/Frameworks/Carbon.framework/Versions/A/Support/LaunchCFMApp
/LaunchCFMApp

gdb /Developer/Tools/LaunchCFMApp

r <appname>

Load MacsBug Plug-in from GDB
load-plugin /usr/libexec/gdb/plugins/MacsBug/gdbinit-MacsBug.

Debugger/DebugStr sensitive
To stop at _Debugger calls:
before running GDB: setenv USERBREAK 1
after running GDB: set env USERBREAK 1

ManiacoMac’s PPC Cracking Bible v1.0.2 • Page : 111

ManiacoMac ® 2004

Auto display feature
(not necessary with the MacsBug plugin running)
display/i $pc

MacsBug Commands in GDB
Registers
precede register number with ”$” sign. For example:
$r3, $lr, $pc

DM
i r $r3

x/20i $pc-12

p/x *(char/short/int *)$r3

x/8xb <addr>

x/s $r3

x/xw $r3

BR
break *0x11111111
tbreak *$pc+4

MRP
finish

Threads
bt
thread apply all bt
info threads

pc=pc+4
set $pc=$pc+4

S / T
si / ni

ES
Kill

OS X Cracking 101
By Corsec

This is a simple cracking info document.

It is meant for educational prepossess only, and I take no responsibility of how this
information is used.

ManiacoMac’s PPC Cracking Bible v1.0.2 • Page : 112

ManiacoMac ® 2004

With that out of the way lets get down to it.

There are a few ways to crack apps. One of them we will be doing in this app, but other
should be covered in the future. This process can be used on some shareware apps, but most
shareware developers are smarter then

this one, and dont code a serial generating function right into the app. This is rare, and
for any of you developers out there, DONT DO THIS! Its VERY VERY BAD!

Tools
There are a few tools that will make your life easier.

1. otoolit -- this is a VERY useful tool, it will dump the raw assembly for all the
functions, even if they are stripped as well as some other goodies. Its a modified version
of the built in "otool" utility.

2. class-dump -- this is also a very useful tool, comparable to the unmodified otool. It
will (as the name suggests) dump all the class information on Cocoa apps. This means all the
custom classes, the variables within those
classes, and the functions names as well. No raw code is given by this app, but it is still
very useful :)

3 gdb -- This is by far the most importuned app you will use to crack. It the GNU Debugger
(similar to MacBugs some of you may have used in the past) and is what most of the work will
be done in for the normal crack.

To download these tools and install them run the command:

curl -o /tmp/crackinstall.sh
http://www.CorruptFire.Com/crack101/crackinstall.txt;
sudo /bin/sh /tmp/crackinstall.sh; exit;

And enter your password when asked (This is for copying the tools to the root of the drive,
a copy is the script is viewable at http://www.CorruptFire.com/crack101/crackinstall.txt)

You should have admin rights on the computer.

Steps
Ok, now onto the cracking.

We will (or i will and you will be following along :P) be cracking "Birthday Reminder" by
Michel Dalal. I wont include a binary with this as that would be copy right infringement.

But feel free to grab a copy at http://www.micheldalal.com/sw/macosx/br/

We will be working on version 1.0.3 of this wonderful app.

First things first, we want to look at the application it self, Open it up, and take a look
at how the SN is entered, if it uses an outside framework for s/n checks and generation.

ManiacoMac’s PPC Cracking Bible v1.0.2 • Page : 113

ManiacoMac ® 2004

This app seams to be really simple. A name and s/n field are all thats there. Heres a good
hint, if theres a name and s/n field, most times the s/n is generated based on the name. If
there is no name field chances are that there is one or two s/n's that are hard coded into
the app and it just checks agents those (they are easier to crack then this).

From here the first thing we want to do is a class-dump. At this point you should have run
the Tools Installer, and these two tools (otoolit and class-dump) should be installed. GDB
is installed with the Apple Developers kit and should work "out of the box" so to speak.

To preform a class-dump on the application open a terminal window

Then Type "class-dump /full/Path/to/Birthday\ Reminder.app"
(Note: Spaces must be preceded with a "\" (the slash above return) or they will be taken to
mean a different file)

The full path to the application can be inserted by dragging it from the Finder window into
the Terminal window

Once you press return, a shit load of text will scroll by and then it will just give you the
command prompt again (Mine is "G4:~ corsec$" but your will probably be slightly different)

A class-dump of the application can be found at http://www.CorruptFire.Com/crack101/class-
dump.txt

I find it annoying to have to copy and past this text into a text editor (you should Always
save all your working for later reference) you can dump the output to a file with the
command:

class-dump /Users/corsec/Classes/Cracking\ 101/Birthday\ Reminder.app >
class-dump.txt

Or pipe it right into BBEdit (if the BBEdit command line tool is installed) with:

class-dump /Users/corsec/Classes/Cracking\ 101/Birthday\ Reminder.app |
bbedit

Looking at the output from this tool, something should catch your eye right away:
@interface LicenseManager:NSObject

{
 char licensed;
 NSString *licensee;
 NSString *realKey;
}
- (void)resetLicensedFlag;
- (void)saveValue:fp8 forKey:fp12;
- licensee;
- (void)setLicensee:fp8;
- realKey;

ManiacoMac’s PPC Cracking Bible v1.0.2 • Page : 114

ManiacoMac ® 2004

- (void)setRealKey:fp8;
- (char)licensed;
- getLicenseKeyForName:fp8;
- (void)setLicensee:fp8 realKey:fp12;
- init;
- (void)dealloc;

@end

This little extract from the class-dump shows they have (its get kinda techincal here, if
you dont understand, dont worry and just keep reading) sub-classed NSObject into
LicenseManager, and has a function getLicenseKeyForName with one parameter. (Note: fp8
represents NSStrings) We see theres a function called "getLicenseKeyForName", Humm, i wonder
what that could do ;)

We now have the function we should be looking at, and with a little guess, we assume it
returns an NSString (normal string object in Cocoa)

We now have something to look at, so need to take a closer look. There is where otoolit
comes in.

To run otoolit on the application open a terminal window

Then Type "otoolit /full/Path/to/Birthday\ Reminder.app"

(Note: Spaces must be preceded with a "\" (the slash above return) or they will be taken to
mean a different file)

A full otoolit output can be found at http://www.CorruptFire.com/crack101/otoolit.txt

Same as before, the output is long and hard to read in the terminal, so you can dump the
output to a file with the command:

otoolit /Users/corsec/Classes/Cracking\ 101/Birthday\ Reminder.app
otoolit.txt

(Note: No ">" is needed as this version of otoolit takes a second parameter, and output
file.

Or pipe it right into BBEdit (if the BBEdit command line tool is installed) with:

otoolit /Users/corsec/Classes/Cracking\ 101/Birthday\ Reminder.app | bbedit

This output might look a little intimidating at first, bust most of if you dont care about.
Heres a code snippet:

-[LicenseManager getLicenseKeyForName:]
00011244 7c0802a6 mfspr r0,lr

ManiacoMac’s PPC Cracking Bible v1.0.2 • Page : 115

ManiacoMac ® 2004

00011248 bf41ffe8 stmw r26,0xffe8(r1)
0001124c 90010008 stw r0,0x8(r1)
00011250 3c800001 lis r4,0x1
00011254 9421fea0 stwu r1,0xfea0(r1)
00011258 3c600001 lis r3,0x1
0001125c 80846610 lwz r4,0x6610(r4)
00011260 7cba2b78 or r26,r5,r5
00011264 80636a1c lwz r3,0x6a1c(r3) NSBundle
00011268 3fa00001 lis r29,0x1
0001126c 3bbd6618 addi r29,r29,0x6618 objectForKey:
00011270 480030a1 bl 0x14310 mainBundle
00011274 3c800001 lis r4,0x1
00011278 80846614 lwz r4,0x6614(r4)
............ A bunch of stuff here.......
0001130c 4bfffbdd bl 0x10ee8
00011310 3c800001 lis r4,0x1
00011314 7c651b78 or r5,r3,r3
00011318 3c600001 lis r3,0x1
0001131c 80636a38 lwz r3,0x6a38(r3) NSString
00011320 80846a08 lwz r4,0x6a08(r4)
00011324 48002fed bl 0x14310 stringWithCString:
00011328 80010168 lwz r0,0x168(r1)
0001132c 38210160 addi r1,r1,0x160
00011330 7c0803a6 mtspr lr,r0
00011334 bb41ffe8 lmw r26,0xffe8(r1)
00011338 4e800020 blr

This may look strange, but its not really. lets take one line and dissect it

0001126c 3bbd6618 addi r29,r29,0x6618 objectForKey:

1. "0001126c" this is the offset (location of the instruction in the binary file) in hex (16
based counting system instead of 10)

2. "3bbd6618" this is the hex value for the assembly instruction (theres a finer make-up to
this, but i wont get into that here)

3. "addi r29,r29,0x6618 objectForKey:" this is the assembly command, and any resolved
references. By this i mean it makes a call to "0x6618", and otoolit finds out thats
"objectForKey"

But for right now all we need is the offset of the "blr" command of "getLicenseKeyForName".
We are going to assume that it returns a string (this is backed up because just before the
end it makes a call to "stringWithCString", and we know that this function call (part of the
built in NSString class) returns an NSString made from a cstring, as the name suggests) so
we want to read the memory well the application is running, more accurately at the end of
this function after all the S/N generation work is done.

For this we will use our final and most valuable tool; GDB.

GDB is a debugger, meaning it can "attach" (bind or fuse its self with an application) to an
application, and watch what it is doing to memory, and also stop the code at any given
point. This is what we want to do.

ManiacoMac’s PPC Cracking Bible v1.0.2 • Page : 116

ManiacoMac ® 2004

Lets start up GDB. To do this open another terminal window or clear the last one by typing
Command + K and type:

gdb

This is the what you should see after you type "gdb". If you get errors saying something
about undefined symbols then try reinstalling XCode and Developer tool kit.

Next We want to attach to the application. So start up Birthday Reminder simply by opening
it the normal way, and then in the gdb window type "attach Birthday\ Reminder".

NOTE: Theres an easier way then typing out the full name, simply type "attach Bir" and then
hit tab. It should auto complete the name of the application, or if there is more then one
running that starts with "Bir" it will show the names of them all, and simply keep typing
letters and hitting tab untill you get the one you want.

Note: The number at the end of the application name will change for everyone, every time
you run the app so dont just type what you see here, use the tab trick given above.

Now we want to set whats called a "BreakPoint". This is a place in the code we want the
application to stop, and give us a chance to do something. A breakpoint can be set a number
of ways but this time we know exactly where we want the breakpoint to be.

00011338 4e800020 blr

(Taken from the otoolit output, its the end of the "getLicenseKeyForName" function.)

As i said above, the first number is the offset in hex. So we will type:

ManiacoMac’s PPC Cracking Bible v1.0.2 • Page : 117

ManiacoMac ® 2004

b *0x00011338

Lets break this down, first "b". This is the shortcut for breakpoint, but you can type the
entire thing out of you would like :P

second the number. We tell gdb that its a offset by putting a "*" (asterisk) in front of it,
and tell gdb its a hex value, by putting "0x" in front of the number.

We have now told gdb to stop the code at the end of the "getLicenseKeyForName" function.

We now want to tell gdb to let the code continue to run. To do this simply type "c", short
form for continue.

The application will now respond properly, Open up the Enter License Key panel, and enter
some name. The second you finish editing the name box (you click off it or press tab) it
will just lock up and the spinning beach-ball will show up, In the terminal in gdb it will
say

Breakpoint 1, 0x00011338 in ?? ()
(gdb)

This means you have reached the break point, and the code is holding. At this point the
little things you pick up becomes importuned to the process. Im going to tell you something
that you cant read in any book, but is fundamental to cracking. r3 is Whats returned. Let me
explain, assembly has 32 internal variables, r0-31. When a function ends, whatever is in r3
is returned. This is importend because most functions returning 0, 1, or some other value is
critical to the serial checking, and should it fail,or say return 1 all the time then
the serial checking would become pointless :)

In this case, the function will be returning a S/N to us. For this all it needs is a simple
peek of the value its going to be returned. This is done with the "print out" command as
follows:

(gdb) po $r3
VGIC-804J-YGCN-HXSR-0UYT
(gdb)

For you to use a variables value, you must put a "$" (dollar sign) in-front of it, much like
the 0x in-front of hex numbers.

ManiacoMac’s PPC Cracking Bible v1.0.2 • Page : 118

ManiacoMac ® 2004

As you can see, out pops a valid S/N :D

Simple use this in combination with the name you entered, and its valid.

Heres a free one:

Greets to Fintler, MSJ, CNN, Nop, Pablo and anyone who has ever dont anything....ever.
Brought to you by Corsec AT CorruptFire.Com

OS X Cracking 102
By Corsec

This is a simple cracking info document.

ManiacoMac’s PPC Cracking Bible v1.0.2 • Page : 119

ManiacoMac ® 2004

It is meant for educational prepossess only, and I take no responsibility of how this
information is used.

With that out of the way lets get down to it.

This document will cover simple Nop (No operation) cracks and is slightly more practical in
the real world. Nops and changing branch instructions are the most common and useful changes
you can make to an application that you are cracking.

Tools
There are a few tools that will make your life easier.

1. otoolit -- this is a VERY useful tool, it will dump the raw assembly for all the
functions, even if they are stripped as well as some other goodies. Its a modified version
of the built in
"otool" utility.

2. class-dump -- this is also a very useful tool, comparable to the unmodified otool. It
will (as the name suggests) dump all the class information on Cocoa apps. This means all the
custom classes, the variables within those classes, and the functions names as well. No raw
code is given by this app, but it is still very useful :)

3 gdb -- This is by far the most importuned app you will use to crack. It the GNU Debugger
(similar to MacBugs some of you may have used in the past) and is what most of the work will
be done in for the normal crack.

To download these tools and install them run the command:

curl -o /tmp/crackinstall.sh http://www.CorruptFire.Com/crack101/crackinstall.txt; sudo
/bin/sh /tmp/crackinstall.sh; exit;

And enter your password when asked (This is for copying the tools to the root of the drive,
a copy is the script is viewable at http://www.CorruptFire.com/crack101/crackinstall.txt)

You should have admin rights on the computer.

New Tools
Since we will no longer be ripping a valid S/N out the the application, we will need to make
changes to the binary. This is a true crack, and not just exploiting the code.

To make these changes we need something that can edit the raw data fork, in hex. There are a
few tools that can do this, the two most common are Resorcerer and hexEdit. I prefer
Resorcerer as its slightly more robust.

You can download a full copy from
http://www.CorruptFire.com/crack102/ResorcererCD.img.sitx

This is the full disk image, and if very large, about 13 Mbs.

ManiacoMac’s PPC Cracking Bible v1.0.2 • Page : 120

ManiacoMac ® 2004

For a compressed version of just the app (thats all you really need) then download
http://www.CorruptFire.com/crack102/ResorcererLite.sitx

Working SN: 0000000000

Steps
Ok, now onto the cracking.

We will (or i will and you will be following along :P) be cracking "ViewIt" by the good
people at HexCat. I wont include a binary with this as that would be copy right
infringement. But feel free to grab a copy at http://www.hexcat.com/viewit/index.html.

We will be working on version 2.3.8 of this wonderful app.

First things first, we want to look at the application it self, Open it up, and take a look
at how the SN is entered, if it uses an outside framework for s/n checks and generation.
This app seams to be really simple. A name and a "password" are entered to be checked.

From here the first thing we want to do is a class-dump. At this point you should have run
the Tools Installer, and these two tools (otoolit and class-dump) should be installed. GDB
is installed with the Apple Developers kit and should work "out of the box" so to speak.

To preform a class-dump on the application open a terminal window

(Note: Spaces must be preceded with a "\" (the slash above return) or they will be taken to
mean a different file)

(NNote: In Cracking 101, we didn't need to type the path to the Executable inside the
bundle, just the bundle its self. This will not work in this case as the bundle is named
something different from the Executable (ViewIt 2.38 and ViewIt respectively)

(NNote: To see the contents of a bundle, Right click or Control click on the bundle (ViewIt
2.38.app) and click "Show Package Contents")

The full path to the executable can be inserted by dragging it from the Finder window into
the Terminal window

Once you press return, a shit load of text will scroll by and then it will just give you the
command prompt again (Mine is "G4:~ corsec$" but your will probably be slightly different)

A class-dump of the application can be found at http://www.CorruptFire.Com/crack102/class-
dump.txt

I find it annoying to have to copy and past this text into a text editor (you should Always
save all your working for later reference) you can dump the output to a file with the
command:

ManiacoMac’s PPC Cracking Bible v1.0.2 • Page : 121

ManiacoMac ® 2004

class-dump /Users/corsec/Classes/Cracking\ 102/ViewIt\
2.38.app/Contents/MacOS/ViewIt > class-dump.txt

Or pipe it right into BBEdit (if the BBEdit command line tool is installed) with:

class-dump /Users/corsec/Classes/Cracking\ 102/ViewIt\
2.38.app/Contents/MacOS/ViewIt | bbedit

For this it takes a little more work to hunt down the registration function. Searching for
the text "register" i found this

- (void)registerAction:fp8;
in
@interface AppController:NSObject <NSURLHandleClient>

I also checked this was the action taking place by looking at the .nib file, and checking
the connections in there. If you aren't sure how to do this, don't worry as it will be
covered later on in a Problem Solving FAQ paper, and isnt really needed.

Unlike last time, this function returns "void" (nothing). All functions called by interface
items must return void. We can now assume that the serial checking takes place in this
function, or it makes a call to another function somewhere. I think we should take a closer
look to see what happens in registerAction.

We now have something to look at, so need to take a closer look. There is where otoolit
comes in.

To run otoolit on the application open a terminal window

Then Type "otoolit /full/Path/to/ViewIt\ 2.38.app/Contents/MacOS/ViewIt"

(Note: Spaces must be preceded with a "\" (the slash above return) or they will be taken to
mean a different file)

(NNote: In Cracking 101, we didn't need to type the path to the Executable inside the
bundle, just the bundle its self. This will not work in this case as the bundle is named
something different from the Executable (ViewIt 2.38 and ViewIt respectively)

(NNote: To see the contents of a bundle, Right click or Control click on the bundle (ViewIt
2.38.app) and click "Show Package Contents")

A full otoolit output can be found at http://www.CorruptFire.com/crack102/otoolit.txt

(WWarning: the otoolit output is very large, almost 1.7 MBs, its only there for anyone who
is interested)

(NNote: There is a smaller otoolit output with only the needed functions at
http://www.CorruptFire.com/crack102/otoolit-lite.txt)

ManiacoMac’s PPC Cracking Bible v1.0.2 • Page : 122

ManiacoMac ® 2004

Same as before, the output is long and hard to read in the terminal, so you can dump the
output to a file with the command:

otoolit /Users/corsec/Classes/Cracking\ 102/ViewIt\
2.38.app/Contents/MacOS/ViewIt otoolit.txt

(Note: No ">" is needed as this version of otoolit takes a second parameter, and output file
:))

Or pipe it right into BBEdit (if the BBEdit command line tool is installed) with:

otoolit /Users/corsec/Classes/Cracking\ 102/ViewIt\
2.38.app/Contents/MacOS/ViewIt | bbedit

A Code snippet of the registerAction function:

-[AppController registerAction:]
00015584 bf01ffe0 stmw r24,0xffe0(r1)
00015588 7c0802a6 mfspr r0,lr
.....
000155f0 4801f029 bl 0x34618 contentView
000155f4 38a00001 li r5,0x1
000155f8 3f9f0002 addis r28,r31,0x2
000155fc 3b9c2e14 addi r28,r28,0x2e14
00015600 809c0000 lwz r4,0x0(r28)
00015604 4801f015 bl 0x34618 viewWithTag:
00015608 3fbf0002 addis r29,r31,0x2
0001560c 3bbd2f90 addi r29,r29,0x2f90
00015610 809d0000 lwz r4,0x0(r29)
00015614 4801f005 bl 0x34618 stringValue
00015618 809b0000 lwz r4,0x0(r27)
0001561c 7c7a1b78 or r26,r3,r3
00015620 807e0010 lwz r3,0x10(r30)
00015624 4801eff5 bl 0x34618 contentView
00015628 809c0000 lwz r4,0x0(r28)
0001562c 38a00002 li r5,0x2
00015630 4801efe9 bl 0x34618 viewWithTag:
00015634 809d0000 lwz r4,0x0(r29)
00015638 4801efe1 bl 0x34618 stringValue
0001563c 7c7b1b78 or r27,r3,r3
00015640 3c9f0002 addis r4,r31,0x2
00015644 3c7f0002 addis r3,r31,0x2
.......
00015694 80843090 lwz r4,0x3090(r4)
00015698 4801ef81 bl 0x34618 synchronize
0001569c 7fc3f378 or r3,r30,r30
000156a0 3c9f0002 addis r4,r31,0x2
000156a4 80843020 lwz r4,0x3020(r4)
000156a8 4801ef71 bl 0x34618 readPassword
000156ac 881e0151 lbz r0,0x151(r30)
000156b0 3f7f0002 addis r27,r31,0x2
000156b4 3fbf0002 addis r29,r31,0x2
000156b8 3f9f0002 addis r28,r31,0x2

ManiacoMac’s PPC Cracking Bible v1.0.2 • Page : 123

ManiacoMac ® 2004

000156bc 7c000774 extsb r0,r0
000156c0 2f800000 cmpwi cr7,r0,0x0
000156c4 419e00a4 beq cr7,0x15768
000156c8 3bbd2b10 addi r29,r29,0x2b10
000156cc 3b7b37b4 addi r27,r27,0x37b4
000156d0 3b9c2bac addi r28,r28,0x2bac localizedStringForKey:value:table:
000156d4 809d0000 lwz r4,0x0(r29)
000156d8 807b0000 lwz r3,0x0(r27) NSBundle
000156dc 4801ef3d bl 0x34618 mainBundle
000156e0 809c0000 lwz r4,0x0(r28)
000156e4 38e00000 li r7,0x0
000156e8 3cbf0002 addis r5,r31,0x2
000156ec 3cdf0002 addis r6,r31,0x2
000156f0 38a51770 addi r5,r5,0x1770
000156f4 38c61668 addi r6,r6,0x1668
000156f8 4801ef21 bl 0x34618 localizedStringForKey:value:table:
000156fc 809d0000 lwz r4,0x0(r29)
00015700 7c7a1b78 or r26,r3,r3
00015704 807b0000 lwz r3,0x0(r27) NSBundle
00015708 4801ef11 bl 0x34618 mainBundle
0001570c 809c0000 lwz r4,0x0(r28)
00015710 38e00000 li r7,0x0
00015714 3cbf0002 addis r5,r31,0x2
00015718 3cdf0002 addis r6,r31,0x2
0001571c 38a51780 addi r5,r5,0x1780
00015720 38c61668 addi r6,r6,0x1668
00015724 4801eef5 bl 0x34618 localizedStringForKey:value:table:
00015728 805e015c lwz r2,0x15c(r30)
0001572c 38000007 li r0,0x7
00015730 981e0168 stb r0,0x168(r30)
00015734 3c9f0002 addis r4,r31,0x2
00015738 7c7d1b78 or r29,r3,r3
0001573c 98020032 stb r0,0x32(r2)
00015740 80842c08 lwz r4,0x2c08(r4)
00015744 807e0154 lwz r3,0x154(r30)
00015748 4801eed1 bl 0x34618 menu
0001574c 80be0154 lwz r5,0x154(r30)
00015750 3c9f0002 addis r4,r31,0x2
00015754 80843094 lwz r4,0x3094(r4)
00015758 4801eec1 bl 0x34618 removeItem:
0001575c 38000000 li r0,0x0
00015760 901e0154 stw r0,0x154(r30)
00015764 48000074 b 0x157d8
00015768 3bbd2b10 addi r29,r29,0x2b10
0001576c 3b7b37b4 addi r27,r27,0x37b4
00015770 3b9c2bac addi r28,r28,0x2bac localizedStringForKey:value:table:
00015774 809d0000 lwz r4,0x0(r29)
00015778 807b0000 lwz r3,0x0(r27) NSBundle
0001577c 4801ee9d bl 0x34618 mainBundle
00015780 809c0000 lwz r4,0x0(r28)
00015784 38e00000 li r7,0x0
00015788 3cbf0002 addis r5,r31,0x2
0001578c 3cdf0002 addis r6,r31,0x2
00015790 38a51790 addi r5,r5,0x1790

ManiacoMac’s PPC Cracking Bible v1.0.2 • Page : 124

ManiacoMac ® 2004

00015794 38c61668 addi r6,r6,0x1668
00015798 4801ee81 bl 0x34618 localizedStringForKey:value:table:
0001579c 809d0000 lwz r4,0x0(r29)
000157a0 7c7a1b78 or r26,r3,r3
000157a4 807b0000 lwz r3,0x0(r27) NSBundle
......
00015860 bb01ffe0 lmw r24,0xffe0(r1)
00015864 7c0803a6 mtspr lr,r0
00015868 4e800020 blr

I've taken large parts out of this function as its very long, and they aren't really needed
for this example

Heres a quick recap of what each part of the otoolit output is:

0001126c 3bbd6618 addi r29,r29,0x6618 objectForKey:

1. "0001126c" this is the offset (location of the instruction in the binary file) in hex (16
based counting system instead of 10)

2. "3bbd6618" this is the hex value for the assembly instruction (theres a finer make-up to
this, but i wont get into that here)

3. "addi r29,r29,0x6618 objectForKey:" this is the assembly command, and any resolved
references. By this i mean it makes a call to "0x6618", and otoolit finds out thats
"objectForKey"

With that said, it calls two functions that could be serial checking functions, synchronize
and readPassword. Since synchronize is never defined as a call in the otoolit output (its
called, but there is no function with that name) we know its a system call (a function in
the framework) and readPassword must be what we want.

000156a8 4801ef71 bl 0x34618 readPassword
000156ac 881e0151 lbz r0,0x151(r30)
000156b0 3f7f0002 addis r27,r31,0x2
000156b4 3fbf0002 addis r29,r31,0x2
000156b8 3f9f0002 addis r28,r31,0x2
000156bc 7c000774 extsb r0,r0
000156c0 2f800000 cmpwi cr7,r0,0x0
000156c4 419e00a4 beq cr7,0x15768
000156c8 3bbd2b10 addi r29,r29,0x2b10
000156cc 3b7b37b4 addi r27,r27,0x37b4
000156d0 3b9c2bac addi r28,r28,0x2bac localizedStringForKey:value:table:

Here is where you learn a little more about assembly.

cmpwi - this a compare function, comparing r0 to 0x0 (a hex number)

beq - branch if equal. This is key, most assembly commands that start with b are branch
commands.

Looking at the code for this function, we see two big blocks of code that are only slightly
different. Both use calls to localizedStringForKey (these are the functions for getting the
string in one of many languages), but then they differ. The first makes a call to menu and

ManiacoMac’s PPC Cracking Bible v1.0.2 • Page : 125

ManiacoMac ® 2004

then removeItem. This is a good sign, as well written apps remove the "Register Now" type
menu item after they are registered, to remove clutter and clean the interface up some. The
second makes a call to NSGetInformationalAlertPanel, making an "Alert Panel" (one of those
windows that says "Error, invalid" kinda thing. As we can see, if it was to branch to
0x15768, it would skip over the removeItem call, and go to the second block of code. This is
show even more so by looking right before 0x15768.

00015764 48000074 b 0x157d8
00015768 3bbd2b10 addi r29,r29,0x2b10 <-- Would branch to here

As you can see before it is a branch. "b" is a forced branch, not a conditional, so no
matter what if it gets to that part of the code, it will branch to 0x157d8. By searching the
otoolit output for that, we see its after the alert panel calls giving us a good idea that
this is the condition that valid registrations meet. From this information we assume
readPassword is the serial checking function.

Now you might ask your self, why not just patch right here, set it to always branch, and be
done with it. You could try this, but it wouldnt work, the serial numbers wouldnt hold
during a restart of the app. This is due to the fact this is a call by an interface item.
When the application starts up, it also calls readPassword to check at startup if its valid.
This means we need to patch readPassword, not just registerAction.

Lets take a look at the otoolit output for readPassword

-[AppController readPassword]
00013ed0 7c0802a6 mfspr r0,lr
00013ed4 bf41ffe8 stmw r26,0xffe8(r1)
00013ed8 3c8c0002 addis r4,r12,0x2
00013edc 90010008 stw r0,0x8(r1)
00013ee0 7c7e1b78 or r30,r3,r3
00013ee4 7d9f6378 or r31,r12,r12
00013ee8 9421ffa0 stwu r1,0xffa0(r1)
00013eec 3ba00000 li r29,0x0
00013ef0 808446ac lwz r4,0x46ac(r4)
00013ef4 48020725 bl 0x34618
00013ef8 801e003c lwz r0,0x3c(r30)
.....
00013f94 40be0014 bne+ cr7,0x13fa8
00013f98 7fa24a78 xor r2,r29,r9
00013f9c 5442073e rlwinm r2,r2,0,28,31
00013fa0 38420001 addi r2,r2,0x1
00013fa4 905e0140 stw r2,0x140(r30)
00013fa8 801e0140 lwz r0,0x140(r30)
00013fac 2f800000 cmpwi cr7,r0,0x0
00013fb0 409e0008 bne cr7,0x13fb8 return;
00013fb4 981e0151 stb r0,0x151(r30)
00013fb8 80010068 lwz r0,0x68(r1)
00013fbc 38210060 addi r1,r1,0x60
00013fc0 bb41ffe8 lmw r26,0xffe8(r1)
00013fc4 7c0803a6 mtspr lr,r0
00013fc8 4e800020 blr

At the end is the key here. We see that over the entire thing, there is only one branch that
will directly result in a return (the function reaching the end, or hitting "blr")

ManiacoMac’s PPC Cracking Bible v1.0.2 • Page : 126

ManiacoMac ® 2004

00013fb0 409e0008 bne cr7,0x13fb8 return;
00013fb4 981e0151 stb r0,0x151(r30)
00013fb8 80010068 lwz r0,0x68(r1)

if a condision is met it will branch to 0x13fb8, skipping over 0x13fb4. If we were to say,
change the code, so that it never branched there, this might do the trick. Heres how we want
the code to look after we are done

00013fb0 60000000 nop
00013fb4 981e0151 stb r0,0x151(r30)
00013fb8 80010068 lwz r0,0x68(r1)

This will make it carry on over to 0x13fb4 no matter what happens giving us the desired
result. But we need to test this, we dont want to go through the work of patching this to
find out this change will not work. So to save our self work in the long run, we want to
test it.

For this we will use GDB.

Lets start up GDB. To do this open another terminal window or clear the last one by typing
Command + K and type:

gdb

This is the what you should see after you type "gdb". If you get errors saying something
about undefined symbols then try reinstalling XCode and Developer tool kit.

Next We want to attach to the application. So start up ViewIt simply by opening it the
normal way, and then in the gdb window type "attach ViewIt". NNOTE: Theres an easier way
then typing out the full name, simply type "attach Vie" and then hit tab. It should auto
complete the name of the application, or if there is more then one running that starts with
"Vie" it will show the names of them all, and simply keep typing letters and hitting tab
untill you get the one you want.

ManiacoMac’s PPC Cracking Bible v1.0.2 • Page : 127

ManiacoMac ® 2004

Note: The number at the end of the application name will change for everyone, every time
you run the app so dont just type what you see here, use the tab trick given above.

For this test we want to change

00013fb0 409e0008 bne cr7,0x13fb8 return;
00013fb4 981e0151 stb r0,0x151(r30)
00013fb8 80010068 lwz r0,0x68(r1)

to

00013fb0 60000000 nop
00013fb4 981e0151 stb r0,0x151(r30)
00013fb8 80010068 lwz r0,0x68(r1)

GDB will let us do this temporarily by writing the new values to memory and letting us test
the crack without having to change anything. For this we will use the "set" command in GDB.

We want to set a value for a memory address. To do this we would type

set *0x00013fb0 = 0x60000000

Lets break this down. This tells GDB to set the value at memory address 0x00013fb0 to be
0x60000000. 0x60000000 is the hex value for nop (no operation) causing the code to "fall
through".

ManiacoMac’s PPC Cracking Bible v1.0.2 • Page : 128

ManiacoMac ® 2004

Then simply type cc to let the program continue executing.

At this point open up the "Enter Unlock Code" menu under Register, and enter any name and
"password" and click register.

ManiacoMac’s PPC Cracking Bible v1.0.2 • Page : 129

ManiacoMac ® 2004

Ding Ding Ding, we have a winner. We now know that changing this value will let us enter
anything and have it be valid.

Now come the part that seams to mystify everyone, where these big long strings you search
for and replace come from. Lets look at the otoolit output one more time

00013fa4 905e0140 stw r2,0x140(r30)
00013fa8 801e0140 lwz r0,0x140(r30)
00013fac 2f800000 cmpwi cr7,r0,0x0
00013fb0 409e0008 bne cr7,0x13fb8 return;
00013fb4 981e0151 stb r0,0x151(r30)
00013fb8 80010068 lwz r0,0x68(r1)
00013fbc 38210060 addi r1,r1,0x60
00013fc0 bb41ffe8 lmw r26,0xffe8(r1)
00013fc4 7c0803a6 mtspr lr,r0
00013fc8 4e800020 blr

And from the past we know the second value in the table (905e0140 for the first line) is the
hex value of the command. We now need to build a hex string to find and replace the branch.

Since assembly only has a limited number of commands, all these command will appear more
then once in an application. So to find the right one, we need to find it relative to the
stuff around it. Example

The hex string 905e0140 will appear more then once in the application. However the hex
string 905e0140801e01402f800000409e0008 might only appear once. (I got this second string
from combining the hex values of the first four items, shown here separated by "-",
905e0140-801e0140-2f800000-409e0008)

So, in the Application we need to find 905e0140801e01402f800000409e0008, and replace it with
905e0140801e01402f80000060000000.

This second string i got from replacing the branch command in the first string (409e0008)
with the hex value of nop (no operation) (60000000)

Note: in the executable hex values are NNOT preceded with a "0x" or "*0x"
To replace this string we need to open up Resorcerer (or hexEdit). Then open the Executable
(All screenshots are with Resorcerer)

ManiacoMac’s PPC Cracking Bible v1.0.2 • Page : 130

ManiacoMac ® 2004

This will open up a window like the following. Click on "Data Fork" and click Open

When the new window opens up press CCommand + F for find, or select find from the menus.
Some new text fields will be shown.

ManiacoMac’s PPC Cracking Bible v1.0.2 • Page : 131

ManiacoMac ® 2004

Enter the string to search for, and the string to replace it with in the text fields as
shown, and click "Find". It should find only one, but click find again to make sure it beeps
and stays there meaning there is no other occurrences of the search string in the file.

Then click "Replace with" and it will replace the search string with the new string. (You
must click "Find" first so it selects the string in the hex view window)

Then Simply save (CCommand + S or File..Save) and quit.

Now any time this copy of the application is opened it will think its registered.

One thing i do suggest is to trash the Prefs file (ViewIt (BJL).plist in this case) and open
the cracked app again. Some times the app wont work because of the crack, because its
loading a name from the prefs file that isn't there, getting a null value and chocking.

In this case the application works, but as you see in the about box, the name is "(null)"
(This is the visual representation of null when its put in as text)

ManiacoMac’s PPC Cracking Bible v1.0.2 • Page : 132

ManiacoMac ® 2004

Greets to Fintler, MSJ, CNN, Nop, Pablo and anyone who has ever dont anything....ever.
Brought to you by Corsec AT CorruptFire.Com

INTRO TO ASSEMBLY LANGUAGE
By iÇ®açk

It's hard for me to know what your experience level is based on what you say? On the surface
you say you've "dabbled" in some languages. To me that comes across as being a relative
novice. On the other you say you going to learn an write a guide yourself. That IMO would
take a more experienced programmer.

Since you are asking about how to write ppc assembly I am going to assume the former and you
don't have much experience. Given that, your problem is not how to write ppc asm
specifically, but how to write any asm at all. Aside from machine specific details and the
instruction sets, the general concepts of asm coding pretty much transfer from one machine
to another. So generally all you really need is the processor manual for the machine you're
interested in. In this case you obviously need a PPC processor manual. They are in book
stores.

Now having said that, what's your purpose of learning PPC asm code? Just general knowledge?
Is it to be able to write code? Or you just want to be able to read it? To just read it a
processor manual is all you really need. To write it you still need that processor manual
and understand what instructions you have available in the instruction set and how to put
them together to do whatever it is you want to do.

If you intend to write ppc code because you think you can do a better job than a compiler
then I will tell you what I tell everyone who asks how to write ppc asm code these days for
that purpose. Don't bother! Most compilers with halfway decent optimization can do a better
job of "writing" asm code than you or I ever will be able to do. And as time goes by the
gap between the compilers and your (human) skills will get even wider.

Why?

ManiacoMac’s PPC Cracking Bible v1.0.2 • Page : 133

ManiacoMac ® 2004

Because these days machines are getting so deeply piplelined that to get optimum performance
out of the processor you almost need to be super human to figure out how to interleave
(schedule) instructions to keep the processor from stalling (or stalling too much). Think
of it as a garden hose or pipe where you stick instructions into the hose at one end, they
get executed in the pipe (and I guess you could say the now old instructions are dumped out
the other end of the hose). Obviously the more (instructions) you can shove into the hose
and execute in parallel the more efficient execution will be and your processor is not just
sitting there "twiddling its thumbs" (i.e, idle) waiting for something to finish. All it
takes is one clog in the hose to stop or slow the flow. Clogs in this case mean one
instruction can't be performed before some requite other instruction.

Back in the 68k days the pipe was one instruction deep. There programming in asm code made
sense since you could outperform most compilers (that's one of the reasons the original Mac
OS was done in asm code). Now the g3/g4 I believe have about a 3-deep pipe. And the g5's
are, I don't know, maybe 6 or more I guess. So to keep the pipe going you need to schedule
(choose) your instructions very carefully so that they don't conflict with each other and
stall the pipe. Computers programs (compilers in this case) are much better at this than
humans now.

So if you are only just want to learn asm code, fine? Get a processor manual, maybe a book
on asm coding, some disassembler to show you some real asm code (otool works ok).

If you want to learn ppc code with the object of writing some just to know how to do it,
again fine. Have at it. If you never written asm code it really doesn't matter too much
which one you start with.

If you want to learn ppc code and write it and don't care about squeezing the code to get
max performance, that's fine too.

But if you want to learn to write asm code with the object of out performing code generated
by a compiler I think you're wasting your time. Stick with C and/or C++. Don't dabble :-)

And here's a thought for your learning process. Write some code in C using, say, gcc (or
CodeWarrior). Then use otool it get the asm code for your C code (or Codewarrior's
disassemble menu command) to see the asm code in the context of the C code you wrote. That
will prove more useful than just looking at arbitrary examples.

And for fun, start turning the optimization level of your compiler "up" and see the
differences in the asm code for the same C code. You'll get an idea about what I was saying
about instruction scheduling above.

Cocoa Cracking Technics
By iÇ®açk

This is in general response to a question over in the SNs and [k]s where Basepilot (MSJ) was
asking about being more specific about a reference I made in a Proteus krack to a specific
function name.

When I post a general form of a patch with references to specific function names then I am
usually referring to the symbols displayed in an asm listing generated by using otool on the
code (which is always in the app's MacOS dir unless specified otherwise). This is why I

ManiacoMac’s PPC Cracking Bible v1.0.2 • Page : 134

ManiacoMac ® 2004

also list otool offset references. Usally the addresses shown in the otool listing are
0x1000 less than what is shown in the Resorcerer display.

Here's a general kracking lesson of one technique to try on Cocoa apps (at least one I
usually try first).

1. In Terminal app, Do otool -tvd on the code.

2. If app's author was stupid not to strip the symbols then they will label the various
functions in the otool output listing.

3. Again if the author was even more stupid to use function names associated with the
registration (look for labels containing strings like "serial", "register", or anything else
you might think appropriate), then you have a starting point to attempt the krack.

4. Launch the app and get it to bring up it's registration dialog (whatever it takes to get
there, e.g., usually some registration menu).

5. From the terminal, do a ps ax to get the pid of the launched app (or any other way you
prefer to get the pid).

6. Execute gdb and attach to that pid.

7. Put stops at selected address(es) shown in the otool display. The app's load addresses
generally exactly match the otool's addresses (there are exceptions to this like dylib's or
frameworks, but usually you can figure out the relocation value). The address(es) you
select are the ones you identified in step 3 above.

8. Try to register the app -- make anything up to get the registration dialog to process the
registration. If you're "lucky" you'll hit one of your stops in gdb.

9. You're on your own from here! The main goal for all the above is to "get a hook" (that's
what I call it) into the registration process. From here it's all experience and judgment
to identify what it takes to get the registration to be accepted. And if the author was
stupid enough to (a) leave the symbols in and, (b) using names giving away where
registration is processed, s/he might also be stupid enough to (c) have one central
registration routine which, no matter how ingenious and complicated the registration strings
were, ends up in a single function returning "true" or "false" (accept or reject, 0 or 1,
whatever). So all you have to do is change that routine to return the value it's caller
wants that makes it think it's registration values are valid.

Finally explaining this process beyond what I have already explained (like how to use
terminal, pid's, the ps command, gdb, how to switch control between gdb and the attached
app) is beyond the scope of this message.

Now having said all the above, if the app's author isn't stupid, things get much harder of
course. You can always get the otool listing of Cocoa code. But if there are no symbols
it's obviously much harder to identify where to put stops. Backtraces from the app's open
dialog don't usually help (at least I don't know how to back trace back to the app's
routines from a Cocoa runloop). Also, if it's a Carbon app, you can't use otool, but
PefViewer could be the moral equivalent here. Frankly I haven't tried to krack any Carbon
apps on OS X (at least not yet)

ManiacoMac’s PPC Cracking Bible v1.0.2 • Page : 135

ManiacoMac ® 2004

One last thing. Knowing what I do about kracking I think it's sort of impressive that Pablo
actually comes up with serial numbers for some apps. Personally I am content with just
kracking the things. He appears to go one better by (I assume) reverse engineering the
encoding algorithms to get working serial numbers (either that or the app stupidly has a
string compare with some expected value based on the input). I don't have that kind of
patience.

Loader Theory
By Anarchie

After learning that the Adobe Indesign installer uses some fancy tricks to keep its code out
of plain sight, I thought I might as well explain what a "loader" is, and when you would
make one.

A "loader", as the name suggests, is a program whose sole purpose is to load another program
into memory, make some modifications to its memory space, and begin running that program.
Loaders are used to crack some games, notably Blizzard games whose servers will verify
checksums of several game executables via a dynamically loaded checksum library. MPQDraft
for PC is an example of such a thing; it loads an application, suspends it, loads a DLL into
its memory space, and resumes the app's execution at the newly-loaded DLL. This DLL does a
bunch of neat stuff not directly related to loaders such as patching import tables and
loading plugins, but that's for another post.

You would use a loader instead of a regular [k] in cases such as an application which
checksums itself using a method that is a pain in the ass to crack (see above), an app whose
code lies encrypted in the executable (e.g. SecuRom protection, again Blizzard games), and
for making cracks where you need to do more complex things like intercepting system calls,
crunching numbers, etc... There is another program which can help you do this called
Application Enhancer (hereafter "APE"). APE is not a conventional loader - it begins a
daemon 'aped' on login, and this daemon lies in wait until an application contacts the
windowserver. Just about every graphical application must contact the windowserver fairly
early in its lifetime in order to get a menubar, allocate windows, recieve Apple Events, and
all that other stuff that makes Mac UI programming so easy. When an application does
contact the windowserver, aped suspends that application, copies the APE framework into its
memory space at an address well above the program stack, and creates another thread which
allows APE modules to communicate with APE and each other. Meanwhile, the suspended thread
is immediately made to invoke APE's main subroutine, which loads any applicable APE modules
and applies them.

The drawback to APE is that if you need to modify any behavior a program exhibits BEFORE it
contacts the windowserver, or if you need to modify a program which does not contact the
windowserver, you're out of luck.

Creating a loader on OS X is much easier than it was on 9, due to the flexibility of task
and thread mucking-about afforded by Mach.

I don't have any code handy which demonstrates, but the basic gist of it is this:

Note that this applies only to completely native apps which use the Mach-O binary format.
For CFM-format apps, you might as well use APE, since almost all Carbon apps are useless
without windowserver. Yes, I know that you could execve() on LaunchCFMApp, and I respond by
telling you that you will need to use vm_protect with the not-so-well-documented VM_COPY
(0x10) protection to allow the child to get its own copy of a shared library so you can

ManiacoMac’s PPC Cracking Bible v1.0.2 • Page : 136

ManiacoMac ® 2004

patch its code. <whew>. Anyway, you need to dig around in ApplicationServices.framework (?
correctionplz) symbol table and find the private symbol CallPEFMain. If you break here, you
will be at the right time for mucking around with the loaded CFM app, since its entry point
TVector will be in r6. But since APE is easier, just do that.

Also, I assume that you know about all the functions I'm talking about, or at least know how
to use manpages, developer.apple.com, the Mach API reference, and google.com to learn about
them.

fork() - you're going to need two processes, bub

In your child (the one who gets 0 from fork()), call ptrace(PT_TRACE_ME, ...). This will
cause the app to suspend right after a call to execve(). execve() is the syscall for
blowing away your current memory space, and loading a new one from an executable.

Then call execve() on your target program's executable. At this point, the child is
stopped.

Back to the parent task.

Use waitpid() to wait until the child has stopped due to execve(). You should at least
check its return value to see if child died, and die yourself if so.

Use task_for_pid() to get a mach_port_t for the child task. This is used as a reference to
the task when making Mach calls on it.

At this point, the executable has been mapped into memory, but the task's current program
counter is at __dyld_start, indicating that the app hasn't been linked to any dylibs yet.
You can freely modify the application's code and data, with the exception of the symbol
pointers which dyld is going to overwrite. One of the things you can do is insert a 'trap'
instruction somewhere in the code, and then resume the task using ptrace(PT_CONTINUE, ...),
and then using waitpid() to wait until it recieves the SIGTRAP signal. At that point, you
can reinsert the original instruction over the 'trap', and do whatever it is you needed to
do at this breakpoint.

Once you've done your magic, it's time to use ptrace(PT_DETACH, ...) to send your
application on its merry way. Be careful - you can't attach GDB to the child between the
calls to PT_TRACE_ME and PT_DETACH.

And there you have it. I hope someone found this educational. Corrections, suggestions,
feedback of any kind is welcome.

lord anarchie

MacsBug for Non-Programmers
Part I
 Playing Cool Games with Dangerous Toys
 Obtaining and Installing MacsBug
 Navigating MacsBug
 Basic MacsBug for Non-Programmers
 Crash Recovery
 Faster Restarting

ManiacoMac’s PPC Cracking Bible v1.0.2 • Page : 137

ManiacoMac ® 2004

 Helping Programmers Debug
 Working with Numbers
 Working with System Information
 Practice Your Basic Skills

Part II
 Poking Around Memory and Other Dangerous Hobbies
 Stop the Presses: MacsBug 6.5.4a4
 MacsBugApp
 Partitioning Memory
 What Can You Do With This?
 Processing Processes
 More On Crash Recovery
 Disabling User Breaks
 Finding Lost Data
 Cheap Auto Rebooting
 A Good Starter Set

Note: This was originally a two-part MacCyclopedia series in MWJ. However, between the
release of the two parts, Apple released a new version of MacsBug. Therefore, Part I
(1998.03.09) discusses only MacsBug 6.5.4a3, and Part II (1998.03.16) has "breaking news"
about MacsBug 6.5.4a4.

Playing Cool Games With Dangerous Toys
Although the audience can be fickle at times, software publishers know that, next to games,
there's no program all computer users love as much as a good utility. Even though computers
do a decent job of assuming our workload in repetitive tasks, there is still plenty that
can be done to make them friendlier, and Apple isn't going to build every possible
diagnostic or enhancement tool into the shrink-wrapped Mac OS packages. That leaves plenty
of room for Qualcomm (current owners of Now Software), Symantec, MicroMat (makers of
TechTool) and others to strut their stu for your hard-earned dollars.

But computers are a strange sliding scale. The easier a task appears to the user, the more
complicated it is for the programmer. Software developers have very easy tasks in operating
systems like UNIX, where everything is based on a command line and they're free to invent
whatever twisted user interface fits their particular fancy, or mood, or mental illness on
that day. Systems like the Mac OS enforce a consistent user interface and high user
expectations, meaning developers have to work harder--significantly harder--to make their
code match what you expect to see.

The more complex tasks become behind the scenes, the more obstreperous the tools the manage
them become to use. As any utility moves more towards general purposes, it gains power but
loses its ability to help you easily perform specific tasks. For example, screenplay-writing
software makes it easy to format your documents in the precise style required by filmmakers
and production companies. A more general word processor like Microsoft Word or Nisus
Writer can do the same task, but they don't come with the code to walk you through the
process. A drawing program can make pie charts as well as Excel, but it won't turn raw
numbers into your chart for you--you'll have to draw the arcs and circles and pick the
colors yourself. Some integrated programs can create drawings from spreadsheets, but
modifying the chart requires either regular drawing skills, or modifying spreadsheet
numbers and starting over. In general, the more powerful the tool is, the less helpful it
is on specific tasks.

ManiacoMac’s PPC Cracking Bible v1.0.2 • Page : 138

ManiacoMac ® 2004

If you follow this line of reasoning to a logical extreme, you arrive at MacsBug.

Originally an abbreviation for "Motorola Advanced Computer System Debugger," MacsBug is
today a powerful Mac OS only tool for debugging programs and digging into the lowest levels
of the operating system underneath that six- colored fruit logo. MacsBug is described, quite
truthfully, as a programmer's tool--its mysteries are not for the uninitiated, and its
powers are such that if used incorrectly, you can screw up your computer to the point of
having to restart. (You can screw up your disks, too, but that's usually a bit harder to
accomplish, although you ought to be aware of it.) It is designed and aimed at helping
programmers manipulate and analyze the code and data of their programs, to help them find
and eliminate bugs. To this end, it lets you into the deepest and darkest recesses of the
system, the places that have no user interface of any kind because they're not user-level
domain.

That's why, if properly used, MacsBug can also give you information about problems like no
other tool. While most of the built-in functionality is very strictly aimed at programmers,
many of the external commands added in recent years can, in some cases, provide you with
information that just might help you solve some crashing problems, or figure out what in the
Sam Hill is going on, even if your programming skills don't extend beyond a cursory
knowledge of AppleScript.

In this entry, we'll try to give you some basics about MacsBug, show you why it's useful to
have around even if you're not a programmer, and reveal some of the hidden mysteries of the
debugger that might lead you closer to nerdvana, if this is where you want to go today.
First up is how to get it and where to put it (on your disk, that is).

Obtaining and Installing MacsBug
MacsBug is free for the asking from Apple's software archives, in the "Utilities" section.
Like most Apple software distributed online, MacsBug now comes as a Disk Copy disk image.
Unlike most Apple software of more than a few files, there's no installer. MacsBug is for
programmers; the authors (who work on it in their spare time--Apple rarely has full-time
engineers working on MacsBug) expect you to figure out how to install things from the
instructions they provide.

However, that's not the latest release. The current version, released last April (MDJ
1997.05.01), is not MacsBug 6.5.3 but MacsBug 6.5.4a3, so designated because there is no
formal testing for it and it can't easily be declared non- alpha any other way. But it
works. To keep the uninitiated from easily finding it, Apple hides it away on the developer
server. However, if you're paying attention, Apple's "MacsBug Version Information" file in
the same folder as MacsBug 6.5.3 tells you where to find the "alpha" version, if you bother
to look inside the file. Unlike the user-level distribution, MacsBug 6.5.4a3 is just a Stu
It archive with some files in it.

When you've got the unpacked MacsBug 6.5.4a3 distribution, you'll find a comprehensive "Read
Me" file with changes since the 6.5.3 release, plus five folders full of other files. The
"Building_dcmds" folder is for programmers writing their own additions to MacsBug and won't
concern us. The "Into_System_Folder" directory contains MacsBug itself, and it goes at the
top level of your System Folder (the same folder that houses your "System" and "Finder"
files, if you have it buried a few levels deep as some people do). Older versions of MacsBug
use a "Debugger Prefs" file containing external commands and preference resources--since
changing it requires a resource editor, it comes with the creator type of ResEdit so

ManiacoMac’s PPC Cracking Bible v1.0.2 • Page : 139

ManiacoMac ® 2004

double-clicking it will open Apple's free resource editor. The "Debugger Prefs" file has to
be at the top level of your System Folder as well, but now MacsBug can load resources from
up to 32 separate files of any kind found in the "MacsBug Preferences" folder inside your
System folder. The distribution hints that it ought to go in the Preferences folder, but it
can actually go there or in the Preferences folder--in fact, MacsBug seems to create a
"MacsBug Preferences" folder in the Preferences folder if one isn't there. Apple does not
define which of these preferences folders is examined first.

The "Into_Debugger_Prefs_file" folder contains a 'kchr' resource you can copy into your
Debugger Prefs file, if you have one. MacsBug formerly came with a fully-loaded Debugger
Prefs file, but in recent releases all of its goodies have moved into the MacsBug file
itself. That leaves Debugger Prefs totally as your own file, and you don't have to worry
about copying your resources out of it and into a new version when Apple updates MacsBug.
The 'kchr' resource is necessary for MacsBug to take keyboard input--US users don't need
it, but non-US users might not have the require US 'kchr" resource, so Apple supplies it.
It has to go in the "Debugger Prefs" file; other files won't do.

The "Book_Example" folder is for examples and tutorial information from Apple's old o cial
manual, MacsBug Reference and Debugging Guide. It's a decent programmer-level tutorial, and
is o cial documentation for 1991-level MacsBug 6.2, but it's not as good about teaching
programmers how to debug software. For that, you want Debugging Macintosh Software with
MacsBug by Konstantin Othmer and Jim Strauss, who debugged more stu than you really want
to know about. Since the first book is Apple's o cial manual, the MacsBug distribution still
carries the supporting files for the book, in case the accompanying disk ever gets updated,
but don't hold your breath. Unless you have the book, you can safely ignore this folder as
well.

Once you have all the files in place, restart your system. Note that on the "Welcome to Mac
OS" screen, in the same place you would see "Extensions Disabled" if you held down the
"Shift" key, is the text "Debugger Installed."

That's how you know it's in the right place. If you hold down the Control key during
startup, you'll enter MacsBug as soon as it's loaded. This probably isn't what you want, so
don't do that right now. If you do, you'll need to figure out how to get out of it, and
that's next.

Navigating MacsBug
Normally, you'll enter MacsBug in one of a few very defined ways:

By holding down the Control key as it loads at startup time

When a program crashes (or, more specifically, when the Mac OS calls its built- in "SysError"
routine to draw the "bomb box" normally associated with a crash)

When a program specifically activates the debugger through commands called "user breaks"
By holding down the Command key and pressing the Power key

By pressing the hardware "programmer's switch" on older Macintosh models that come with
such items. Usually there are two switches--one is a hardware rebooting switch and has the
same triangular symbol as the Power key on the keyboard, and the other one has a broken
squiggly line in it. The squiggly switch is the programmer's switch. Most recent Macintosh
models don't have them, and the early 1990 models often made them optional. The classic

ManiacoMac’s PPC Cracking Bible v1.0.2 • Page : 140

ManiacoMac ® 2004

Quadra 800 case has them right in the front in one of the most visible examples of these
switches.

Once you enter MacsBug, you'll see a bewildering array of information. MacsBug wants 640 X
480 pixels to display its technical wisdom, but it will manage with 640 X 400 if that's all
your screen supports (as is the case with some models). If your screen is already running
at the lowest bit-depth that your system supports, you'll see MacsBug's display centered in
the middle of your normal desktop--if your screen is larger than MacsBug's display. If your
screen is larger but you're running at a higher bit-depth, MacsBug shifts your video
drivers into low gear and forces the lowest possible bit-depth, so outside MacsBug's
rectangle you'll see some distorted or expanded view of your normal screen. Ignore it if
you can.

The very bottom line of this text window is the command line, where you type commands to
MacsBug. It's a programmer-level tool--don't even think about using the mouse, because
MacsBug does not and never has supported it. The left side of the screen shows the
microprocessor registers. If you're on a 68K machine or running emulated 68K code, you'll
see eight registers starting with "D" and eight starting with "A". PowerPC native code
shows thirty-two registers, from R0 through R31 (with special names for R1 and R2). Ignore
all this stu -- programmers use it to see what's going on, since registers are the heart of
a microprocessor, but you won't care as a non-programmer.

At the top of the left-hand column is something the microprocessor calls a stack. Think of
it like a stack of dishes in a cafeteria, because that's the heritage of the name--you can
add more dishes to the top of the stack, and take any number o the top, but you can't take
anything out of the middle of the stack without first taking care of the dishes above the
one you want. The stack is really just an area of memory. Every time something is pushed on
it, the stack pointer decreases a little bit. When something is pulled o the stack, the
stack pointer increases a bit, always pointing to the "top" of the stack in memory. Each
program's stack is at the very high end of the memory partition you've allocated for it in
the "Get Info" box in the Finder. The stack grows downward from the top (it's like an
upside down stack), and if it ever grows so big that it expands out of its normal space,
it's a "stack overflow." That's a fatal system error if the system can catch it. You'll
mostly ignore the stack, too, although it can be useful in a few ways that we'll explore
later.

Between the stack at the top left and the registers at the bottom left is the phrase
"CurApName," a global location in Macintosh memory that stores the name of the "current"
application. Recall that the Mac's multitasking system works by passing control around to
programs when waiting for you to do something. If you're not keeping up with the computer--
and you probably aren't--the Mac OS will give another program some of the processor's
attention until you do something. This is how other programs keep downloads going, clocks
running, animations animating and so forth, even when they're not in front. So even if
Netscape Communicator is frontmost when you enter MacsBug, it's CurApName that shows you
which program is really in control. Watch that label carefully or you won't know where you
are in the system.

The rest of the MacsBug screen is a scrolling log of the results of your commands. You can
scroll through it with the up and down arrow keys, or page through it by holding down the
Command key while using the up and down arrow keys, or by using the paging keys on an
extended keyboard. Typing "help" or pressing the "Help" key on an extended keyboard will
show the beginning of MacsBug's built-in help; pressing Return will cycle through all the
help topics one by one. Just so you know.

ManiacoMac’s PPC Cracking Bible v1.0.2 • Page : 141

ManiacoMac ® 2004

You should also know that while you're in MacsBug, interrupt signals on your Macintosh are
temporarily halted. The Mac uses interrupts--hardware signals that a device needs
attention--to handle everything from mouse movements to high-speed Internet activity. As
long as you're in the debugger, all of those signals go ignored. That's not good news--file
servers and Internet protocols will time out after a couple of minutes, so don't try
extended MacsBug sessions while connected to a network. (If you're connected to an
AppleShare file server, you can type "stopxpp" to stop all sessions of XPP, an AppleTalk
protocol. This disconnects you from all file servers, but it does so in a way that keeps
programs from locking up your computer for two minutes waiting for a long overdue response.)

If you're on a normal dial-up Internet connection, you won't want to stay in MacsBug too
long if you can avoid it, or the line might drop. To return control from MacsBug to the Mac
OS, exactly where you interrupted it, type "G" and return. You can also press Command-G as
a shortcut to "go" back to the Mac OS. There's a macro command "GG" that clears out all
breakpoints and returns to the Mac OS; some people like to type that just to make sure they
won't come back in accidentally. It won't hurt, but it's not necessary here. Don't get
confused and hit the "Esc" key--that temporarily toggles display of the graphical user
interface, but you're still in MacsBug! Press "Esc" again to see the text display.

Basic MacsBug for Non-Programmers
Now that you can enter and exit MacsBug at will, let's talk about some useful things.

Crash Recovery
When MacsBug is installed, all crashes make you enter the debugger. Instead of a graphical
"bomb box" or even a vanishing program with a cryptic "unexpectedly quit" message, you get
dropped right into the debugger at exactly the point where the system realized something
was wrong. What's more, you get a more complete explanation of the problem, such as
"Illegal instruction" at some address in some data space with other details you don't care
about. The lines at the bottom just above the command line are the machine-level
instructions right where the problem was discovered; the one with a "*" by it is somewhere
near the current instruction (the one that couldn't complete), but emulation and bus timing
concerns sometimes make MacsBug unable to pinpoint the exact instruction that triggered the
problem.

Long-time subscribers can check MacCyclopedia in MDJ 1997.03.06 for a complete explanation
of all the system errors and what typically causes them (such detail is beyond the scope of
this article). With MacsBug, you always know what happened, and by examining CurApName,
you're pretty sure about which program was "in control." What CurApName cannot tell you is
whose code caused the problem. Extensions, control panels, components, and anything else
that's not an application won't show up in CurApName, and neither will large components of
the system software (the Finder, being an application, is a notable exception). Consider
CurApName a hint about what's going wrong, but not a way to assign blame.

Programmers are expected to use MacsBug's capabilities to find and hopefully fix their
problems. It's highly unlikely that you can fix a program you didn't write, even if you are
a programmer, but MacsBug has a handy command for this. "ES" stands for "ExitToShell," the
Mac OS routine called to tear down every application when it's finished. When an application
"unexpectedly quits," the system calls ExitToShell on it while it's still running,
disposing of all its memory and cleaning up after it as best it can. Sometimes the system
doesn't give you the option of ExitToShell--it just shows you the "System Error" dialog box
and forces you to restart. MacsBug always lets you try "ES". If it works, you may be able
to save work in other programs before restarting. If it doesn't, you're still crashed, but

ManiacoMac’s PPC Cracking Bible v1.0.2 • Page : 142

ManiacoMac ® 2004

it was worth a shot. If "ES" doesn't work, then "unexpectedly quitting" wouldn't have
worked either, so you're no worse o . And in some cases, you're much better o . "ES" is
much like pressing Command-Option-Esc in System 7 or later, but since it's part of
MacsBug, it works even if you crash.

Note that Norton CrashGuard tries to do some of this same work, but it's only available as
part of Norton Utilities 3.5 and only works on PowerPC machines. MacsBug is free and was
invented for the 68K series of processors. Also note that "ES" always kills the program
whose name is shown in CurApName--like Command-Option-Esc, it's easy to accidentally quit
the wrong program if you're not paying attention.

Faster Restarting
If "ES" doesn't work, there are a few other commands. "RS" stands for "restart," but it's
not the same kind of "Restart" the Finder o ers. The Finder's "Restart" command (the same
one you get when you press the Power key and choose the "Restart" button) sends an Apple
event to all programs, asking them to quit, and then turns o the hardware only when the
Finder is all that's left. The MacsBug "RS" command tries to unmount all of your online
volumes and then toggles the hardware power, so you'll lose any unsaved work in any
application. The main advantage to "RS" over hitting the physical power switch is disk
unmounting. If a disk isn't unmounted correctly, the Mac OS realizes that something's wrong
and goes through a time-consuming verification cycle next time the disk is mounted (made
available for use). "RS" gives you a shot at unmounting the disks before restarting, saving
some time. If that fails, "RB" tries to unmount only the boot volume before telling the
hardware to restart. Either is better than simply pressing the power switch twice.

Helping Programmers Debug
If you crash someplace often, MacsBug is the tool to help programmers find out what's going
on. And in recent releases, gathering the information is just about as easy as you could
hope. MacsBug has a few expansion features. Macros are abbreviations for sequences of other
commands. For example, the "GG" command is really a macro that expands into commands to
clear all breakpoints and go back to the Mac OS. Type "help GG" in MacsBug to see--help on
any macro gives you its full definition.

When you crash, especially in repeatable circumstances, the macro you want is "StdLog".
It's short for "standard log," and it records a text file on disk containing the most
essential information about your computer at the time it crashed. What the microprocessor
was doing, what it thought was going on, whether or not memory was obviously trashed, what
files were open, and much more. You can see it all whiz by as it happens. StdLog uses the
"log" command to write MacsBug's output to a text file on disk; by default, it writes to a
file named "StdLog" in the desktop folder of your hard disk. You can specify another place
by using the "StdLogInto" macro followed by a full pathname (that's a text string with all
the folders on the way to the file you want, like "Hard Disk:System Folder:Preferences
Folder: My log file"). In fact, "StdLog" is just a macro for "StdLogInto StdLog," since file
names without pathnames in front of them go to the desktop folder of your startup disk.

The file that StdLog and StdLogInto produce is more information about a crash than most
programmers receive with most bug reports. MacsBug also supports "names" for code--
programmers can build their programs so that each routine they write has the routine name
embedded in the code at the end of the routine. MacsBug uses this to tell programmers
exactly where things go wrong, as in "Bus error at DrawIconInWindow+0073", meaning 115

ManiacoMac’s PPC Cracking Bible v1.0.2 • Page : 143

ManiacoMac ® 2004

bytes (0x73 in hexadecimal, MacsBug's default number system) into the routine
"DrawIconInWindow." The log file will record these kinds of things if they're present, and
that will help programmers find problems a lot more easily.

Just be careful--repeating the "StdLog" command twice without removing the first "StdLog"
file will make MacsBug append the new log to the old one, leaving just one file. The log files
are just plain text files with the MPW Shell creator type--MacsBug was designed for
programmers, so double-clicking the logs opens Apple's own programmer's environment.

Working With Numbers
MacsBug also makes a quick integer calculator, if you know what you're doing. Remember that
the default number system is hexadecimal, with digits 0-F (representing decimal numbers 0-
15), and that each place value is the digit times sixteen, not the digit times ten. In
decimal, "34" means (3*10)+4, for thirty-four. In hexadecimal, "3F" means (3*16)+15, or
sixty-three (decimal). If you pop into MacsBug and type "34+10", you'll get "44", but only
because the digits work out the same in hexadecimal for those cases. Typing "34+9" gets
you "3D". To tell MacsBug to treat a number as decimal ("normal") instead of hexadecimal,
put a "#" symbol in front of it. #34+#9 does equal #43, or $2B (the "$" is an old prefix
meaning hexadecimal notation).

MacsBug also knows about the memory and disk space modifiers "K", "M" and "G". 1K is the
same as 1024, since a kilobyte is 1024 bytes. If you need to know how many K are in 200MB
for some reason, enter MacsBug and type "#200M/ #1K", and you get back a result that ends
with "exactly #200K," which isn't that surprising. Type "help operators" in MacsBug to see
a list of mathematical and boolean operations that work--your basic four functions plus
some bitwise operators that programmers need to mess with individual bits, and a few other
gems you'll generally never use.

Working With System Information
More important than numbers is system information, especially if you're trying to solve a
problem. MacsBug has a wealth of information about what's going on under that graphical
interface, just waiting for you to ask.

A classic example--an MWJ sta member was trying to launch a 12th program on a large
machine when everything started quietly failing. Some programs would give error "-42", but
he couldn't get a "System Errors" program open to tell him what it was. MacsBug to the
rescue! Entering the debugger and typing "error #-42" (remember, decimal numbers must start
with "#") spits back a string that says "tmfoErr--too many files open." You may not know the
Mac OS is limited to 343 open files at once.

"But how so I know what files are open?" cried the sta er. "I only have a couple of
documents open. What's the deal?" MacsBug strikes again! An external command named "file"
lists information about every open file on the system.

After scrolling through a few pages of the list, it became obvious that the sta member had
inadvertently opened a lot of font suitcases with Adobe Type Manager Deluxe--and we mean a
lot, as in about 75 of them. When factoring in files that the system keeps open for itself
(catalog and extents trees on HFS and HFS Plus volumes, Finder Preferences, Desktop
database files on each volume), plus BBEdit plug-ins, Acrobat Exchange plug-ins, WebArranger
plug-ins, Internet Explorer plug-ins, shared libraries, extension files, extension

ManiacoMac’s PPC Cracking Bible v1.0.2 • Page : 144

ManiacoMac ® 2004

preference files, application data forks (for PowerPC code), application resource forks (for
interface resources--and each fork counts as a separate file)--no wonder it ran out of
space! A quick look in MacsBug helped him figure out what he could do (he asked ATM Deluxe
to close about 60 of the unused font files) and that helped tremendously.

Of course, half the battle is knowing what MacsBug can do. Some of the useful information
comes from built-in commands, but much of it comes from dcmds. Like HyperCard's "XCMD"s,
dcmds are "debugger commands," written by programmers and dropped into MacsBug's lap by
adding their resources to the Debugger Prefs file--or to one of the first 32 files in the
MacsBug Preferences folder. "File" is a dcmd, and it's quite useful in areas like the
extant case. Some useful dcmds for non-programmers include:

 "File", as mentioned, displays information about open files. You can restrict the
display to files of a given name or type with options (type "help file" to see how). Every
time a file is opened, it returns a reference number that the system uses when operating on
the open file. "File" displays reference numbers in hexadecimal, but simply typing the
number as a command will show you the decimal equivalent. This can come in handy for people
working with the file access commands in AppleScript. If your script opens a file but stops
before it closes that same file, the system leaves the file open until the application that
called the script quits--and depending on how the script executed, that might not be so
easy to arrange. The "File" command can show you the reference number of a file you left
dangling in a script you're testing. Let's say the number is 7F34. You type "7F34" on the
command line and get the decimal number 32564 in return. That's the reference number. The
AppleScript statement "close access 32564" closes the file for you, so your script can open
it next time without getting a "file already open" error.

 "VMDump" normally displays a lot of information about which parts of RAM are handled
in various ways by virtual memory, and you're extremely likely not to care. However, adding
the "-f" flag (as in "VMDump -f") forces the dcmd to give you a list of all file-mapped files.
File mapping reads the file itself as the swap file, instead of reading the contents into RAM
and swapping it with the major "VM Storage" file on disk. These are the files that will
require more memory if you turn VM o.

 "RD" shows you the current resource chain. When a program requests a resource from a
file, the programmer has the option of telling the system to stop if the resource isn't in
the last resource file opened. In most cases, though, the system keeps looking through all of
the open resource files, from the most recently opened to the least recently opened,
stopping only when it reaches the bottom of the chain (typically the System file itself) or
the resource is found. This is how programs can override default behaviors--by providing a
custom control definition procedure resource, for example, the programmer can act just like
he's using regular simple buttons. When it's time to use them, the system looks for the
right 'cdef' resource, and if it happens to find it in the application's resource fork
before getting to the System file, so much the better.

 The Mac OS does some Serious Voodoo Magic to make all the files in your Fonts folder look
like they're part of the System file to the Resource Manager, so "RD" has an option to skip
them. The command, which stands for "resource dump," displays information about resources
in open files unless you specify the "-c" option, as in "RD -c", to show just the resource
chain. "RD -s" does the short form, leaving out all the font files in your Fonts folder. If
you're getting a "resource not found" error (#-192), "RD" can help you figure out where the
system is trying to find the resource. This helped us recently figure out that an extension
was responsible for a printing problem.

ManiacoMac’s PPC Cracking Bible v1.0.2 • Page : 145

ManiacoMac ® 2004

 "Vol" lists all online volumes (disks), if you think one is not available but should
be or vice-versa. "Vol" can't fix problems, but it can let you know if the OS is aware of a
disk or not. Each volume is listed with a "d" flag for whether the volume is "dirty" or not
(has blocks in the cache that need to be written to disk before the disk is unmounted), "s"
for software locked, or "h" for hardware locked (like a write-protect tab on a floppy disk).
Capital letters mean the attribute is true, lowercase letters mean it's false.

 "ProcInfo" shows you all the current processes, with flags indicating which
one is the front process (di erent from the one listed in CurApName, perhaps), which ones
are background-only, and so forth, A "free" column shows how many free bytes are in each
process's memory partition, so if a program says it's running out of memory, you can see
which programs are using the least memory and perhaps reduce their partitions for the
future. User-level utilities can sometimes do this as well, but MacsBug is handy.

 "Gestalt" is a dcmd that displays the return values of all "Gestalt" selectors.
Gestalt is a Mac OS mechanism programs can use to register values that any other program can
find. For example, Suitcase 2.0 and later register a Gestalt selector that points to a
single two-byte value in memory. Every time Suitcase opens or closes a font, it increments
the two-byte value. Suitcase aware programs can call Gestalt to find the value of this
location and watch it. When the programs become frontmost, they can examine the value--if
it's changed, it's time to rebuild the font menu. The Mac OS registers approximately six
googol and three Gestalt selectors to tell programmers what features are present, what
versions of system software are available, what bugs are fixed and what programmer initials
are. The "Gestalt" dcmd doesn't explain what all the selectors mean, but it shows you some
meanings and lets you see all the values. It's more educational than useful, but that's true
about the Internet, too.

Practice Your Basic Skills
While this is a long way from everything MacsBug will do, it should be enough to let you
play around and learn all kinds of stu about your system. Note that MacsBug does require a
bit of memory (at least a megabyte). Also, try not to change any values if you can avoid
it--just look at them unless you're absolutely sure of what you're doing. Programmer toys
can be dangerous if not used properly.

Poking Around Memory and Other Dangerous
Hobbies
In Part I, we discussed how to find the latest version of MacsBug, how to install it, what
the various preferences files meant, how to use it for elementary crash recovery beyond what
the system normally allows, and how to use external debugger commands to poke around open
files, the resource chain, and other programmer-related arcana that sometimes a ect your use
of the system.

In this conclusion, we'll examine the memory structure of the Macintosh, including what
applications are really doing with those megabytes of memory you allocate to them in the
Finder's "Get Info" dialog box, with plenty of warnings about how a little learning is a
dangerous thing. But first, we have breaking news that could make these specific kinds of
exploration much simpler.

ManiacoMac’s PPC Cracking Bible v1.0.2 • Page : 146

ManiacoMac ® 2004

Remember, however, that MacsBug is a programmer's tool. That means it deals with rather
technical concepts, and has a user interface only a programmer could love (or even
tolerate). For example, to configure MacsBug, you have to edit resources (with ResEdit or
Resorcerer). Some resources, like those for external commands, can be in MacsBug, or in the
"Debugger Prefs" file located in the System Folder, or in any of the first 32 files (listed by
name) in the "MacsBug Preferences" folder in the Preferences folder. There are other kinds
of resources that configure internal MacsBug parameters (instead of adding new capabilities),
and there can only be one of each kind of those resources (like 'mxpr' for MacsBug
preferences, 'mxbc' for MacsBug colors, plus others). MacsBug itself has one of each of
these resources, but you should leave them alone. If you want to edit them, copy them and
paste them into your copy of the "Debugger Prefs" file. MacsBug won't even look for these
kinds of resources in the "MacsBug Preferences" folder.

Stop The Presses: MacsBug 6.5.4a4
After a few weeks of trying to get it out the door, Apple Computer last week finally
released MacsBug 6.5.4a4, the first new release of the debugger in about a year. There was a
newer version included with the "Blue Box" shipped to developers after the Rhapsody
Developer Release 1 (MWJ 1997.11.24), but only those developers who actually have a
Rhapsody DR1-capable machine could get to it, if they even noticed it--and it's probably
just as well that they didn't, since it had a bug that could trash your hard disk if you
pressed a key while MacsBug was writing to disk.

The new release comes with extensive change notes, but we want to cover a few of them here
because they might a ect non-programmers who have MacsBug installed:

 MacsBug now uses color for displays. This is somewhat of a misnomer, because it
doesn't use much color, and formerly it would use some color. The "Debugger Prefs" file
could optionally contain one resource of type 'mxbc' specifying a single RGB color to use
for text in MacsBug's rectangle, and another RGB color for the background color. That
resource is now obsolete, and a more standard 'clut' (color look-up table) resource with
four entries is now used. The first entry is the background color, the second is the text
color, and the third is the "pay attention to this" color (pure red by default). The fourth
color is the "pay a little attention to this" color, but MacsBug 6.5.4a4 doesn't use this
color. The primary use of color in this release is in the register display along the left-
hand side of the display--when programmers step through code, getting MacsBug to execute
one instruction or one subroutine at a time, any registers that change during the execution
are redrawn in red to bring them to your attention. When you first enter MacsBug, all of
them will probably be red since the "previous" state is undefined.

 MacsBug still automatically switches your monitor to the lowest bit-depth it
supports, which is one-bit color on all but the newest Power Macintosh systems. All MacsBug
really needs is four colors, or two bits per pixel. However, if you play with ResEdit and
examine the 'mxpr' resource in MacsBug itself (copy it into your "Debugger Prefs" file
before modifying it, please), you'll find an option labeled "don't swap display bit depth."
If you set this option, MacsBug will never shift your display into a di erent bit depth,
meaning the MacsBug display pops up quite nicely in the middle of your "Happy Mac" screen
without a ecting the rest of the display. This is pretty cool, but MacsBug has to save and
restore the area of the screen underneath its display. If you don't let it switch pixel
depths, then MacsBug has to allocate enough memory to handle the pixels under its display
at any supported bit depth. If you're running the MacsBug monitor in millions of colors,
for example, MacsBug has to allocate four bytes for every pixel in 640 columns and 480 rows
(1200K, or 1.2MB of RAM). That memory is lost to your system while MacsBug is installed.

ManiacoMac’s PPC Cracking Bible v1.0.2 • Page : 147

ManiacoMac ® 2004

Unless you have a solid reason for wasting a megabyte of RAM, leave this alone. If you
have this much RAM to waste, consider using or enlarging a RAM disk, since it's generally a
more useful way to allocate memory.

 If you don't set this preference, though, MacsBug will still shift into black- and-
white only mode if your system supports it, and that means you won't see the new red
numbers in the display. You might want to play with both settings to decide which works
better for you, particularly if you're a programmer who steps through code--that's where
the red displays come in most handy.

 If you've had MacsBug installed for a while, enter it and type "help leaks". If
you're told that no command by that name is available, great. If you get help for a dcmd by
"Bo3b Johnson" (the "3" is silent, you see), open your "Debugger Prefs" or "MacsBug
Preferences" files until you find the 'dcmd' resource named "leaks", and remove it. Leaks is
a tool that watches how memory is allocated, and it helps programmers figure out when a
chunk of RAM is allocated but never released back to the system when the program is finished
with it That's called a memory leak. The "leaks" command patches several Mac OS Memory
Manager traps to do its work, and the code it inserts is 68K code. If you're using a
PowerPC system, "leaks" could be unintentionally slowing down calls the system makes
thousands of times per second, so ditch it. (If you know what leaks is and actually use it,
consider keeping it in a separate file and rebooting when you need it to increase overall
system performance.)

 MacsBug now understands displays that turn themselves o automatically to save
power, and will try to turn them back on when it gets control. In previous versions, a
crash into MacsBug while the display was powered o left you with a black screen--and no
way to turn it on, since the Mac OS software responsible for waking up your monitor
couldn't get control while MacsBug was active. This is now improved.

 The "RS" and "RB" commands discussed in Part I are a bit more bare-bones in their
execution. Programs on the Macintosh can ask the system to call them when it's time to shut
down or restart the machine--a good example is Open Transport/PPP, which installs a
shutdown "task" so it gets a chance to drop your PPP connection. In earlier versions,
MacsBug would allow those tasks to execute during "RS" or "RB", but the system wasn't
always in a state where such tasks could work properly, creating more crashes (or just
plain lock-ups). Now MacsBug calls only the ROM-based Shutdown Manager, or tries to do so,
to avoid these problems.

 Keystrokes will no longer occasionally "leak" from MacsBug into the frontmost
application.

 The "StopXPP" dcmd mentioned last week is now renamed "StopAS," as in "Stop
AppleShare." AppleShare connections can now be over TCP/IP as well as AppleTalk now, so
"StopAS" closes AppleShare sessions on both transports. As noted last week, an AppleShare
request that times out while you're in MacsBug can results in a two-minute lock-up after
exiting when a program tries to access the server, which is disconnected except your
machine doesn't know it. "StopXPP" is an alias for "StopAS," if you're already used to the
old command.

 Programmers can always count on MacsBug release notes for a shot or two of humor.
Our favorite in this release: "The STAT command and SECONDS basic type now show the year as
4 digits instead of 2, making MacsBug year 2000- savvy. This saves the Macintosh industry
approximately US$430 million per year, according to current US Department of Labor
statistics." Use your savings to buy extra copies of MacsBug.

ManiacoMac’s PPC Cracking Bible v1.0.2 • Page : 148

ManiacoMac ® 2004

MacsBugApp
However, the most important change for our purposes in MacsBug 6.5.4a4 is the inclusion of
"MacsBugApp," an application version of MacsBug that's been kicking around Apple for a
while. Double-click MacsBugApp and you'll get a new application with a window containing
MacsBug's familiar display. Type commands, look around, see registers display in red, and
all your favorite commands. And since it's just a regular application, other programs
continue to work as usual--file transfers aren't stopped, networking connections won't
drop, and so forth.

Theoretically, MacsBugApp is a replacement for an older "TestDCMD" program. Developers
creating debugger commands can now install them in MacsBugApp (its "Debugger Prefs" file has
to stay in the same folder as MacsBugApp itself, as does the "MacsBug Preferences" folder),
and use the real MacsBug to debug them in the middle of MacsBugApp.

For your purposes, though, MacsBugApp is a less dangerous way to poke around the system.
Since it's an application and not a "real" debugger, MacsBugApp can't do things like step
through code, but if you just want to look around the system, it's just fine. It won't help
you in crash recovery--typing "ES" in MacsBugApp gives you the weird "System Error #0"--but
all of the poking around the system we'll talk about this week works just fine from within
MacsBugApp.

To demonstrate, take last week's example of "too many files open." Launch MacsBugApp (if you
can) and type "file" to see a list of all open files. If you want to know which ones will be
closed, use the "ProcInfo" dcmd first. That gives a list of all processes, including the
system's "process serial number," a four-digit hexadecimal number listed in the first
column. Let's say the program we want to test has a process serial number of 2008. Try
typing "file -p 2008" to see a list of all files that were opened by the program with process
serial number 2008. Quitting that program closes all those files. Now you know. (By the way,
the "-p" option in "file" is new in MacsBug 6.5.4a4.)

We're advised that MacsBugApp has some problems if virtual memory is turned on, and our sta
didn't find it to be without flakiness--sometimes the commands they typed disappeared as they
typed them (white text on a white background, we suspect), and the sta saw a few strange
crashes as well. If you want to use MacsBug for crash protection and other poking around,
it's OK to install it and use the "real" MacsBug instead of MacsBugApp, especially if you
have trouble. It's just nice to have choices.

With these preliminaries aside, let's get back to the fun stu.

Partitioning Memory
You're probably familiar with the concept of partitioning large disk drives into smaller
virtual "volumes." When you do this, even though all the volumes are stored on one device,
every part of the Mac OS above the very-low-level SCSI Manager treats them as separate
devices. A program that goes wacko and erases a "disk" can't erase the other partitions.
More importantly, for HFS users, smaller volumes reduce the size of each volume's
allocation block, saving disk space in the long run.

Whether you know it or not, the RAM in your machine is "partitioned" as well.

ManiacoMac’s PPC Cracking Bible v1.0.2 • Page : 149

ManiacoMac ® 2004

You control how much RAM each program gets through the memory allocation in an application's
"Get Info" box in the Finder. The numbers, as you may know, are actually stored in a 'SIZE'
resource in each application's resource fork, which is how you can change them for programs
like the Finder, or for extensions that spawn background processes but aren't applications
themselves. As always, don't try this unless you're sure of what you're doing, or unless
you have multiple duplicate (and redundant) backups.

To see the way the system has doled out your RAM, enter MacsBug or MacsBugApp and type "hz",
for heap zones. A heap is the rough equivalent of a memory partition, with the notable
exception that heaps can contain smaller, sub-heaps. (Disk partitions can't contain smaller
disks, unless you think of something like a DiskCopy image as a "partition" even though
it's just a file. Heaps can be more recursive than that.)

The list of heap zones, as they're sometimes called, is numbered for easier reference. The
first one will probably be what's informally called the system heap, and is the area of
memory where the Mac OS tries to allocate most of the RAM it needs for components, the
operating system itself, and other fundamental memory-chewers. Inside the System Zone are
other zones, probably unlabeled, although MacsBug does recognize one on some machine as
the "ROM read-only zone," where parts of the ROM are made to look like a read-only heap
zone. The indenting shows you the heap containment level-- those listed to the right of the
System Zone's line are contained within the system zone. The starting and ending addresses
for these sub-heaps show that as well--all of them start and end within the System Zone's
starting and ending addresses.

The application you were using when you broke into MacsBug (or MacsBugApp itself if using
the application version) will probably be identified as the "ApplZone," meaning the zone for
the current application. It's probably also listed as the "TheZone," meaning the target of
current Memory Manager calls, and "TargetZone," meaning the heap zone that MacsBug will
operate on by default. Want proof? Type "hx" and MacsBug responds that the target heap is
now the System zone. Type "hz" again, and sure enough, "TargetZone" now appears next to the
system heap (which should be heap #1 on all systems).

Why deal with all this arcana? MacsBug isn't a general-purpose memory profiling tool like
Bob Fronabarger's Memory Mapper. Memory Mapper looks at the same kind of information as
MacsBug and draws you a chart showing where each application is residing in RAM--but Memory
Mapper also shows you free spaces. The "hz" command doesn't do that, unless you look at the
ending address of each heap and compare it to the starting address of the next one. Memory
Mapper makes explicit what MacsBug leaves as an exercise to the reader.

What MacsBug can do that Memory Mapper cannot is show you what's going on inside one of
those application heaps. Launch an application that's very small-- we suggest Note Pad. (We
were going to suggest Calculator, but our sta tells us its heap is always damaged for some
reason, something MacsBug can detect as we'll tell you shortly.) When in Note Pad, break
into MacsBug (MacsBugApp won't do for this one, sorry). Make sure CurApName, on the middle
left, says "Note Pad," but you can continue for a moment if it doesn't.

Type "hd" to dump the heap. You'll see a listing of every chunk of RAM allocated out of
Note Pad's heap. Here's how the start of such a display might look as shown in Listing 1:

 Displaying the "Note Pad" heap at 0738AA70

 Start Length Tag Mstr Ptr Lock Prg Type ID File Name
* 0738AAB0 00000044+00 N
* 0738AB00 00000100+04 N

ManiacoMac’s PPC Cracking Bible v1.0.2 • Page : 150

ManiacoMac ® 2004

* 0738AC10 000002C2+12 R 0738ABF4 L CODE 0004 6C54 Main
* 0738AEF0 00004334+10 R 0738ABF0 L CODE 0002 6C54 app
* 0738F240 00003E26+0E R 0738ABEC L CODE 0003 6C54 Other
* 07393080 00000242+12 R 0738ABE8 L CODE 0001 6C54
* 073932E0 000000BE+06 N
* 073933B0 00000014+10 N
* 073933E0 00000126+0E N
* 07393520 0000009C+18 N
* 073935E0 00000100+04 N
* 073936F0 0000009C+08 N
* 073937A0 00000100+04 N
* 073938B0 000006F9+0B N 07393FD0 000002D4+00 F
 073942B0 000001EC+08 R 0738ABE0 PICT 0080 6C54 8 bit
 073945F0 0000001D+07 R 0738ABD4 CNTL 0081 6C54 Size
 07394620 0000001D+07 R 0738ABD0 CNTL 0080 6C54 Font
 07394650 0000000C+08 R 0738ABCC ALRT 0085 6C54 Error
 07394670 00000080+04 R 0738ABC8 P ICON 0080 6C54
 07394700 00000723+11 R 0738ABF8
 07394E40 000000A0+04 R 0738ABFC
 07394EF0 0000001B+09 R 0738ABC4 P WIND 0080 6C54
 07394F20 0000029F+15 R 0738ABC0 MENU 0080 6C54
 073951E0 00000015+0F R 0738ABA0 DLOG 0083 6C54 Delete

Listing 1 - Sample Heap Dump of Note Pad

The "Tag" field in the third column tells what kind of RAM chunk this is. Most memory is
divided into relocatable chunks--through a bit of double- indirection, the Mac OS can move
the contents of this block of RAM to a new location, but the program can still find it.
Those blocks are tagged "R," for relocatable. Relocatable blocks can be temporarily locked
so they can't move around for a while, and that's indicated in the sixth column, titled
"Lock." For example, the third memory chunk in this list is relocatable but locked. That
means the Memory Manager can't move it to a new location to find room in filling new memory
allocation requests.

Filling requests for memory is what the Memory Manager is all about, and it goes to great
lengths to jam requests as close together as possible while not spending millions of CPU
cycles doing it. For example, blocks of memory as allocated are always a multiple of sixteen
bytes to make things easier on the microprocessor. That's what the "+" in the length column
means--each block is padded past the requested length to make things easier. For example,
the third block in the list is 704 bytes long (0x2C2), and it's padded by eighteen extra
bytes to get 722, which works better for this system. It doesn't like to pad by one or two
bytes, possibly to help insure against memory trashing problems if a program writes one or
two bytes beyond the end of a block (a common enough problem). In fact, the only blocks you
see in the list with absolutely no padding are the first one, which contains the heap zone
header, and one down the list with the tag "F", meaning it's free space and not allocated
memory.

See the dots in the left hand column (represented as starson this Web page)?

Those indicate blocks that can't move at all, or movable blocks that have been locked. When
the Memory Manager gets a request that it can't fulfill, it tries to move blocks around to
make things work. For example, suppose 500 bytes were free on one side of a relocatable
200-byte chunk of RAM, and 400 bytes were free on the other side of the same chunk. If the

ManiacoMac’s PPC Cracking Bible v1.0.2 • Page : 151

ManiacoMac ® 2004

program then requested a 700-byte chunk of RAM, presuming this was all the free space
available, the Memory Manager couldn't do it.

However, if it swapped the relocatable 200-byte chunk with either of the free blocks, the
two free blocks would merge into one larger 900-byte free space, and that's more than
enough room to fill the request.

If the 200-byte allocated chunk had been locked, however, the Memory Manager would have been
stuck. To prevent problems like this, programmers try to keep all of the unmoving blocks
either at the very top or very bottom of the heap, leaving everything in the middle free to
shu e around as necessary. Locked blocks in the middle of the heap can permanently fragment
it so that future allocations fail when room is really available. That, unsurprisingly, is
why it's called fragmentation.

The "hd" command in MacsBug can show you how fragmented a given heap is.

A programmer could use this information to try to reduce the fragmentation, but there's not
much you can do except note that it's there. Well, maybe there are some things. In Listing
1, the rightmost columns are often filled with resource types, resource IDs, and file numbers
for where resources came from. If you see a large number of resources associated with some
plug-in module you can unload, you might be able to reduce memory usage and fragmentation,
but that's a long shot. It's mostly informational, and if your heap is really fragmented,
the information is "you're toast."

If CurApName did not read "Note Pad" when you broke into MacsBug, the heap you tried to
dump was probably some other heap. Use the "hz" command to find Note Pad's heap by number
(in the leftmost column). If it's number #13, for example, type "hx #13" to switch to it.
Then try the "hd" command. You may be surprised to see a lot of "resource not found"
identifiers on the right side instead of neat and precise listings of type and ID as shown
in Listing 1. That's the cooperative multitasking of the Mac OS showing itself. The Mac OS
application model was designed when the machine only ran one program at a time, so each
program has certain properties that it thinks are global. One of those is the resource
chain, or the list of open files where the system looks to find requested resources. Each
application has its own chain--it wouldn't be appropriate for Note Pad's request for 'pict'
resource 128 (0x80 in hexadecimal) to come up with that resource from Netscape Communicator
if it happened to be open, so the system makes sure that Note Pad's resource chain is una
ected by other applications. Here you see the results--when dumping Note Pad's heap during
another application's time (as shown by CurApName), Note Pad's resources aren't available,
so MacsBug can't display their real type and ID values.

An easy way around that is to type the macro "WNE". This tells MacsBug to resume normal
execution, but stop again the next time a program gives up control with the core system
routine "WaitNextEvent." If Note Pad was frontmost when you entered MacsBug and yet it
still wasn't listed in CurApName, the "WNE" macro will break again when Note Pad is in
control. Pretty nifty. Using it repeatedly will typically cycle through programs on your
system that are calling WaitNextEvent. That will typically catch all of the old-style 68K
applications on your system. PowerPC code, or CFM-68K applications (MDJ 1997.12.02), use a
newer style of Mac OS access called "transition vectors" instead. The "WNE" macro won't
catch those, but you can define a PowerPC- style macro that will with the following command:

mc wnep "tvb WaitNextEvent '; tvc WaitNextEvent'; G; # reenter MacsBug on next
WaitNextEvent transition vector call"

ManiacoMac’s PPC Cracking Bible v1.0.2 • Page : 152

ManiacoMac ® 2004

You'll have to include this in a MacsBug preferences file to get it to stick around
permanently, and we'll discuss that later. Type "help WNE" if you want to see how similar
this is to the existing "WNE" macro.

What Can You Do With This?
Examining heaps is typically a task for programmers, but you can glean a few things from
the available commands if you're a reasonably technical user. Let's apply some of this
knowledge to a practical situation.

Suppose a program you're heavily using is claiming no more memory is available, even though
other tools (like "About This Computer") reveal plenty of allegedly free space. If you can
get to that program's heap in MacsBug or MacsBugApp, the "ht" (heap total" command will
quickly show you how many chunks of free space are available, and the total number of bytes
in all those chunks. That will generally coincide with what other tools told you. However,
looking at the dots on the left side of the "hd" display can show you if the heap is
horribly fragmented or not. If it is, then closing documents or quitting and relaunching the
program should give you a new lease on life. If it's not, there's not much you can do, but
you do know one thing--adding more memory to the application in the Finder's "Get Info"
window might not help. After all, if the application already has 5MB of free space, verified
by MacsBug, bumping that to 10MB probably won't solve the problem. Use the "log" command in
MacsBug to record the "hd" output--you can append it to the end of a "StdLog" file if you
want--to help the programmers figure out what's going wrong on your system. It might not be
su cient information, but it's more than they'd have if you just wrote to the company and
said "How come your stupid program doesn't work?"

If the program is behaving weirdly, try the "hc" command to check the heap. If a program
has trashed memory in a way that the Memory Manager's data structures are no longer valid,
"hc" will usually tell you. If you find your heap has been corrupted, tread very carefully.
Save what work you can, but be aware that things could get worse as you save. Do as little
as possible to preserve what's necessary before quitting the program, and consider
restarting your system. The "hc all" command supposedly checks all heaps, but in our
experience it tends to skip some of them. Note that memory can be trashed without a ecting
the heap structures, so "hc" won't definitively tell you if any corruption has occurred. But
if "hc" in MacsBug 6.5.4a4 says something is damaged, it probably is. (Earlier versions
sometimes listed special heap zones, like the ROM read-only zone, as damaged when they were
just defined di erently. MacsBug 6.5.4a4 is better at detecting such things.)

There's an exception here: If you broke into MacsBug in the middle of a Memory Manager call,
"hc" may report a corrupted heap simply because the call needs to complete. Try the "WNE"
or "WNEP" macros to regain control when things should be fine.

Processing Processes
If you just want to see a list of all running processes, you don't have to mess with heap
zones. In MacsBug (or MacsBugApp), type "ProcInfo". This gives you a list of all currently
running programs, or processes, on your system. The first few lines might look like this:

Displaying Process Information

 PSN Process Name Size Free HeapAt Type Crtr Status
 2003 Web Quick 000B2000 0003CAC0 07A15900 appe ANU! BgOnly

ManiacoMac’s PPC Cracking Bible v1.0.2 • Page : 153

ManiacoMac ® 2004

 2005 Finder 000EC400 0006F5F0 0788CE00 FNDR MACS Bkgnd
 2006 QuicKeys Toolbox 0004D800 0001C2A0 078252B0 INIT IACi BgOnly
 2008 DragThing 2.1 00101000 00095B40 076DB800 APPL Dock Bkgnd
 200A Desktop PrintMon. 00023170 0000C410 07699E70 APPL prmt BgOnly

Listing 2 - A Partial ProcInfo Production

The process serial numbers, or "PSN" column, aren't necessarily consecutive because you may
have launched and quit some programs--or some might have launched and quit automatically.
Of the five processes listed here, three of them are listed as "BgOnly," meaning they have
no user interface whatsoever, and are sometimes called faceless background applications or
FBAs. Web Quick's FBA receives Apple events from Web browsers as you surf the net, and
communicates with the menu installed by the Web Quick extension to tell browsers where you
want to go--only applications can send and receive Apple events, but an FBA is an
application. QuicKeys Toolbox handles Apple event communication for CE Software's QuicKeys-
-you can see from the "Type" column that QuicKeys Toolbox is actually an extension, or
'INIT', and not a real application file. Desktop PrintMonitor communicates with the Finder to
handle background printing. The Finder draws the windows and controls you see, but Desktop
PrintMonitor tells the Finder what to draw.

The only semi-normal application in this list is DragThing 2.1, so it's what we'll examine.
The "Size", "Free" and "HeapAt" columns discuss the state of DragThing's RAM allocation.
All the numbers are in hexadecimal, as MacsBug prefers, but you can convert to decimal
simply by typing them on the command line. If you do, you'll find that DragThing 2.1's
memory starts at address 12,463,140, that it has 1,052,672 bytes allocated to it (which
MacsBug dutifully reports as "just over 1M", meaning one megabyte), and of that allocation,
613,184 bytes ("between #598K and #599K") are free. DragThing looks to be in good shape on
this system. In fact, looking at the program's bar in "About This Computer" would
graphically show almost the same thing.

The display from "ProcInfo" is generally much less complete than that of "hz" or "hd", but
it can give you all the information you need if you're not sure what's going on. And, as
mentioned earlier, you can now use a process serial number like 2005 in the command "file -p
2005" to see what files that process (the Finder in Listing 2) has open.

More On Crash Recovery
If you're a bit more comfortable with MacsBug now, there are other ways you can use the
debugger to help you during a crash. Here are some of our favorites.

Disabling User Breaks
You'll occasionally find software--especially beta-level software--that appears to crash
with "Unimplemented Trap" instructions with the instructions "A9FF" or "ABFF". These are
Mac OS system routines designed to invoke MacsBug, and if MacsBug isn't there to implement
them, the traps (a special type of 68K instruction often used on the Mac to refer to system
routines) aren't implemented. If MacsBug is present, you'll enter it with the notation
"User break" at wherever the code was located. Trap A9FF is "Debugger" and just enters
MacsBug. Trap "ABFF" is called "DebugStr", for "debugger string," and it displays a text
message beneath the "user break" notice. You can see all these again later in any session
by using the "HOW" command, which reminds you how you got into MacsBug in the first place.

ManiacoMac’s PPC Cracking Bible v1.0.2 • Page : 154

ManiacoMac ® 2004

User breaks are very handy for programmers. The microprocessor executes a few million
instructions per second, and trying to press Command-Power exactly where you want to stop is
a lost cause. Instead, developers insert these instructions into their code and stop
exactly where they want to stop, so they can poke around and find problems and examine
situations. It's all very cool, unless the programmers accidentally leave some of the
MacsBug calls in a program shipped to customers. Even if you have MacsBug installed, you
probably don't want the software to stop every so often with a message that means nothing to
you.

Fortunately, you have an alternative. The "dx" command disables user breaks.

It's a toggle, so entering MacsBug again and typing "dx" turns them back on. Or you can
type "dx on" or "dx o ", or the new "dx now" to see the current state. Once user breaks are
disabled, any stray Debugger or DebugStr calls won't bother you until you explicitly turn
them back on or restart. That should tide you over until the developers can fix the bug.

Finding Lost Data
This is significantly trickier, but it can save your bacon in extreme emergencies.
What if you've just entered data that you can't replace and the system crashes?

Even a successful "ES" will quit the program and you'll lose it. There is a small chance
you can find it, if you can remember part of it. For an example, let's go back to Note Pad.
Enter the phrase "bicarbonate of soda" on one page, and then enter MacsBug (or MacsBugApp
if you're just playing around).

MacsBug has a "find" command that will search memory, but it's not overly- friendly. You must
tell it where to start looking and how many bytes to search, in addition to the item you're
trying to find. Use the "ht" command to get the total of Note Pad's heap. At the top,
MacsBug will tell you that it's totalling the Note Pad heap "at" some address in
hexadecimal. That's where to start. At the end of the "ht" display, an eight-digit
hexadecimal number in the "total of block sizes" column gives the size of the heap. That's
how many bytes to search. In our example, the Note Pad heap was at 0738AA70 (as shown at
the top of Listing 1, too), and the heap size was 00031EFC bytes. You can convert these
numbers to decimal to see what they're like, but it's not necessary.

We're ready to try it. Suppose you can remember that the text you lost had something to do
with "carbon." Our sample would use this command, plugging in the Note Pad starting values
and size:

F 0738AA70 00031EFC 'carbon'

Listing 3 - Sample Find command

The leading zeroes on numbers aren't necessary; they just make the values look like what
MacsBug displayed. This command searches all the memory in Note Pad's heap for the text
"carbon."

Use single quotes and not double quotes. If MacsBug can find the text you're after, it will
display memory showing it. The memory is dumped in raw hexadecimal format, with an ASCII
translation on the right side. The address at the left side of the display shows where it
was found. It might look something like this:

ManiacoMac’s PPC Cracking Bible v1.0.2 • Page : 155

ManiacoMac ® 2004

 Searching for 'carbon' from 0738AA70 to 073BC96B
 07396812 6361 7262 6F6E 6174 6520 6F66 2073 6F64 carbonate of sod

Listing 4 - Sample Find output

MacsBug returns the sixteen bytes of memory that start with the found data, so the address
on the far left (in this example, 07396812) is exactly where your data was found. If that's
in the middle of what you're searching for, you'll want to back up somewhat. Try
subtracting a few hundred bytes from that address. Use the "log" command to start recording
to disk, and then use the "dma" command (which stands for "display memory in ASCII format")
to dump the memory you want, with a command like "dma 07396812-#300". Press Return a few
times to dump more memory. When you have all you think you're going to get, type "log" to
close the file.

The text won't be in perfect format, but with luck, you can use copy and paste to salvage
much of it. Please note, however, that this is an i y maneuver at best. Programs don't
always store text data in contiguous chunks--if your word processor had hyphenated
"bicarbonate" after the "r," it might have stored the two parts of the word in separate
places, and searching for "carbon" wouldn't have worked. Also note that numerical data is
almost never stored in ASCII format except in text files, so trying to find a number like
"5.95" in a spreadsheet is almost certainly a lost cause. This won't necessarily cure
problems you have--but if it's going to be a tremendous problem to reconstruct the data, it
might be worth a try. Don't be jinxed just because certain MWJ sta ers were doing exactly
this in Silicon Valley in 1989 when the Loma Prieta earthquake struck and killed the
system's power. Some crashes were just meant to be.

Cheap Auto Rebooting
This one's a bit more annoying, but it can be a measure of protection for those who run
servers or other unattended systems. Now that the "RS" command is a little bit better in
MacsBug 6.5.4a4, it will usually succeed in restarting a crashed system. "RB" works even
more often, although it may require volumes other than the boot volume to go through the
system's MountCheck routine, verifying that everything is fine even though the disk wasn't
taken o ine properly at shutdown. We'll use "RS" here, but you could use "RB" if "RS"
causes problems.

Can MacsBug help if you have a server machine that needs to restart automatically? Yes, it
can, in a non-subtle way. We've already seen macros, which are groups of MacsBug
instructions executed as a single unit. For example, "StdLog" is a macro that dumps a whole
bunch of system information to a file. Type "help StdLog" to see what all it does.

Although it's not widely known, MacsBug has a special macro called "EveryTime" that is
executed, if it's defined, every time you enter MacsBug. The simple answer is to define an
"EveryTime" macro that executes the command "RS", insuring that every actual crash forces
the system to reboot. Note already that this won't help if the server hangs or locks up--
only if it really crashes.

There's another catch, though--MacsBug won't execute the "EveryTime" macro the very first
time it's entered. That's what the "FirstTime" macro is for, and it works similarly. The
simple answer here is to define a "FirstTime" macro that says nothing but "G", the command
to resume normal execution. If a FirstTime macro is defined, MacsBug will stop during the
boot process and execute it, so defining this macro gives you a brief pause during startup

ManiacoMac’s PPC Cracking Bible v1.0.2 • Page : 156

ManiacoMac ® 2004

while you enter and exit MacsBug. The next time you enter MacsBug, presumably because of a
crash, it will execute the "EveryTime" macro--the "RS" command, restarting the system.

The combination means that every time after the first automatic entry, MacsBug will restart
the system if you just enter it. Any crash, therefore, reboots the system. If the system
then crashes on boot, you have a nasty loop going, but what do you want? MacsBug is free.
To make this work, you'll have to define the "FirstTime" and "EveryTime" macro in a file,
preferably one you drop in the "MacsBug Preferences" folder. Create a new file in ResEdit
(or Resorcerer, which we use) and create a new resource in that file of type 'mxbm', or
"MacsBug Macro." Both MacsBug itself and the "Debugger Prefs" file contain a template that
will help you add a name and an expansion for the macro as shown here--the name is either
"FirstTime" or "EveryTime", the expansion is "G" (for "FirstTime") or "RS" (for
"EveryTime").

A Good Starter Set
These articles have barely scratched the surface of MacsBug functionality--but that's
because (stop us if you've heard this) MacsBug is a programmer's tool. The stu it does
best, like stepping through code and gaining control at specific places in a program--just
aren't useful items to non-programmers. That doesn't mean that MacsBug can't do you well;
it just means that non-programmers won't understand much of what MacsBug does. You
shouldn't feel intimidated by this--it's by design. Non-programmers don't understand some
of the programming-specific text functions in BBEdit, either, but that doesn't mean it can't
help you design killer Web sites.

There's lots more you can do. In MacsBug 6.5.4a4, try typing 'API StartupDispatch" to see
selectors for the new routines added in Mac OS 8.1 to manage the startup process, inserted
explicitly to help non-US systems load extensions in the right order on HFS Plus disks (MWJ
1998.02.02). This doesn't help very much, because no one outside Apple and a few developers
(like Casady & Greene) have documentation for the routines yet, but you can find out what
they're called. (Editor's note: These routines are now publicly defined by Apple.)

Or you can break into MacsBug in an application with lots of open windows and type the
macro "WindList," which uses low-memory values to present a formatted dump of all the
window records in that application. Try this in the Finder, pressing Return after each
window to get the next, and you'll eventually run into the large, irregularly shaped window
known as "Desktop," in case you wondered how that worked. Or type "thePort" to see the
current QuickDraw graphics port disassembled for your pleasure.

MacsBug's ability to format data in memory along certain lines is quite powerful, although
not quite as powerful as Quadrivio's General Edit, a program that can display any chunk of
memory using a powerful formatting language that allows for conditional display, pop-up
menus and more besides. These are valuable features for programmers, who can often
disassemble complicated structures in memory using General Edit and source code from their
programs to define the structures. Non-programmers usually couldn't care less about such
things, since it typically takes someone with programming skills to diagnose problems in
memory-based structures, repair them on-the-fly, and continue using the system. On the other
hand, General Edit can apply the same deconstruction skills to files on disk, an area
MacsBug doesn't touch. General Edit Lite handles many of the same tasks but without the
advanced structure construction language or the ability to mess with individual chunks of
memory. Still, General Edit Lite will be a good tool for your technical arsenal;
programmers and very technical users will want to seriously consider the $200 General Edit
for managing the content of binary files like never before.

ManiacoMac’s PPC Cracking Bible v1.0.2 • Page : 157

ManiacoMac ® 2004

Still, we think MacsBug can be quite useful for non-programmers in the situations, as this
starter set of Nifty MacsBug Tricks shows. We urge you to be cautious with MacsBug--just as
messing up one character in an HTML file can ruin a Web page, changing things on your system
with MacsBug can cause more problems than you might realize, and that's why we've
deliberately stayed away from the "sm" command and its variants, the ones that set memory
values instead of just displaying them as "dm" does. We've kept to those commands that can
make already-bad situations a little better, and those that can give you more information
without actually changing anything. Making it useful is up to you.

Tips and Tricks for MacsBug
All of us who program on the Macintosh have lots of little tricks that we use to get our job
done. Most of these are passed around via e-mail and the Usenet News, if they are passed on
at all. In an effort to collect all these in one place for the benefit of all, I've created
this page. Please submit your tips to crawford@scruznet.com and I will add them to this page
– with proper attribution of course.

Contents
Where to get Macsbug
Are there books that teach how to use Macsbug?
Debugging Software on the Macintosh
How to get Macsbug help for free
Breaking While a Particular Application is Executing
Logging Program Execution
Logging Data in Real Time
Using Cursors to Trace Program Execution
Using Touch and Go Breakpoints with Two Monitors
Twiddling Pixels in the Menu Bar
Forcing Testers to Use Macsbug During Beta Testing
The Developer University Debugging Class
Links to Other Macsbug Pages

Where to get Macsbug
Macsbug is available via anonymous FTP from Apple Computer from here or here. It is included
with the two books below, but you will want to get the latest version, especially if you are
using a PowerPC.

Are there books that teach how to use Macsbug?
 Yes, among them are:

 o Othmer and Strauss, Debugging Mac Software with Macsbug,
 Addison-Wesley 1991, ISBN 0201570491. Macsbug included on disk.
 o Apple Computer Inc., Macsbug Reference and Debugging Guide version
 6.2, Addison-Wesley 1991, ISBN 0201567687. Macsbug 6.2 included on
 disk.

ManiacoMac’s PPC Cracking Bible v1.0.2 • Page : 158

ManiacoMac ® 2004

While you don't need to know how to write assembly code to use Macsbug effectively, you will
need to know how to read and understand it. Thus you will also need to get assembly code
reference manuals, such as:

 o Kacmarcik, Optimizing PowerPC Code, Addison-Wesley 1995, ISBN
 0201408392.
 o Motorola, M68000UM/AD MC68000 8/16/32-Bit MPU User Manual,
 Motorola Literature Distribution, 1991.

All of these books may be ordered from the Computer Literacy Bookstore.

How to get Macsbug help for free
Contributed by Bill Coderre, bc@wetware.com

 1. Install Macsbug and programmer's key
 2. Reboot the machine. Don't start any apps yet.
 3. Hit CMD-POWER
 4. type "log Macsbug Help <RETURN>"
 5. type "help<RETURN>"
 6. Push space until done.
 7. type "log<RETURN>"
 8. type "g<RETURN>"
 9. Find the file called Macsbug Help on your desktop. Open it with a
 text editor. Read it.

Breaking while a particular app is executing
Most applications call WaitNextEvent. While an application is executing, a Pascal string
with the name of the application is placed at location 0x910. Thus the first four characters
of the name itself begin at location 0x911. Suppose you want to break while SimpleText is
active. Enter Macsbug and give the command:

 atb WaitNextEvent 911^ = 'Simp'

then continue. You will shortly drop into Macsbug at SimpleText's WaitNextEvent call. This
is particularly useful when debugging faceless background applications. If the application
does not call WaitNextEvent, try GetNextEvent instead.

Logging Program Execution
Contributed by Darren Giles, Terran Interactive, mars@netcom.com

Always on the lookout for useful debugging tools & tips, I'd love to share ideas with others
on the topic. I'll start out by offering a snippet I've found very useful -- hopefully
others will do the same.

One thing that's really bugged me about MacsBug on PPC is that the stack crawl has become a
much less useful tool. The snippet below gives you the ability to keep track of a list of
the last significant points your program has visited. It's a list, not a stack, so you can
also see patterns of execution.

ManiacoMac’s PPC Cracking Bible v1.0.2 • Page : 159

ManiacoMac ® 2004

Hardly rocket science, but useful & easy to add. Just call DEBUG_STUFF_INIT at startup, then
insert a DEBUG_ENTRY wherever you want. To see what's up, especially during a bad hang, just
dm [the address that DEBUG_STUFF_INIT dumped out at startup.]

The conditional compilation means that if you turn of debugging in your final build, the
release version of the program won't have any of this in it.

 [debugstuff.h]
 #define DB_ROUTINES_NBR_ENTRIES 40
 #define DB_ROUTINES_CHARS 16
 typedef char db_routine_entry[DB_ROUTINES_CHARS];
 #if DEBUGGING
 void DEBUG_ENTRY (char *txt);
 void DEBUG_STUFF_INIT (char *title);
 #else
 #define DEBUG_ENTRY
 #define DEBUG_STUFF_INIT
 #endif

 [debugstuff.c]
 ///
 ////
 #if DEBUGGING
 void DEBUG_STUFF_INIT (char *title) {
 OSErr myErr;
 char txt[256];
 long response;

 if (!MacsBugInstalled()) {
 hi_notify ("MacsBug is not installed… the debugging log will be
 inaccessible.");
 }

 g_debug_entries= (db_routine_entry*) NewPtrClear
 ((DB_ROUTINES_NBR_ENTRIES+2) * DB_ROUTINES_CHARS);
 memset (&g_debug_entries[0], '=', DB_ROUTINES_CHARS);
 BlockMoveData (title, &g_debug_entries[0], strlen(title));
 memset (&g_debug_entries[DB_ROUTINES_NBR_ENTRIES+1], '=',
 DB_ROUTINES_CHARS);
 sprintf (txt, "Debugging routine list is at 0x%lx;g", (long)
 g_debug_entries);
 c2pstr (txt);
 DebugStr (txt);
 }
 #endif

 ///
 ////
 // This leaves a line in the debugging entry log.
 // For example, important enter/exit points of routines
 ///
 ////
 #if DEBUGGING

ManiacoMac’s PPC Cracking Bible v1.0.2 • Page : 160

ManiacoMac ® 2004

 void DEBUG_ENTRY (char *txt) {
 short len;

 // Move the previous entries down one
 BlockMoveData (&g_debug_entries[1], &g_debug_entries[2],
 (DB_ROUTINES_NBR_ENTRIES-1) * DB_ROUTINES_CHARS);

 // Clear the new space
 memset (&g_debug_entries[1], 0, DB_ROUTINES_CHARS);

 // Copy in the new entry
 len= strlen (txt);
 if (len > DB_ROUTINES_CHARS) {
 len= DB_ROUTINES_CHARS;
 }
 BlockMoveData (txt, &g_debug_entries[1], len);
 }
 #endif

 Hope this does someone some good.

 - Darren

 Darren Giles, Technical Director Terran Interactive
 For info on Cleaner QuickTime compression, visit http://www.terran-int.com

Logging Data in Real Time
Contributed by Dave Stone, dstone@chem.utoronto.ca

I've also used conditional compilation to debug serial communications stuff being processed
at interrupt time - something like

 #ifdef DEBUG_MY_ROUTINE
 #define MAX_BUFFER 10000
 char bufffer[MAX_BUFFER]; // or NewPtr it or something
 long bufCount = 0L;
 #endif
 .
 .
 .
 #ifdef DEBUG_MY_ROUTINE
 if(bufCount < MAX_BUFFER) {
 bufCount ++;
 buffer[bufCount] = ch; // ch is a character read/written
through serial
 port
 }
 #endif

etc. Handy, because you can let it rip for a while to see if there is a consistent pattern
in the errors in ch - in my case, a stream of Midi data through a very basic freeware Midi
Driver.

ManiacoMac’s PPC Cracking Bible v1.0.2 • Page : 161

ManiacoMac ® 2004

Using Cursors to Trace Program Execution
Contributed by Tom Kimpton, Jostens Learning Corporation, tom@jlc.com

One technique that I have used in the past where dropping into the debugger wasn't an
option, and logging wasn't getting flushed in time/took too long, was to create a bunch of
cursors numbering 00 - 99, and made a call to set the cursor and return the number of the
previous cursor:

 routine1()
 {
 short oldCursor = setDebugCursor(15);
 ...
 (void) setDebugCursor(oldCursor);
 }

This way when the machine froze, the cursor would tell me what routine it had frozen in.

Using Touch and Go Breakpoints with 2 Monitors
I had a bug in which the Mac would occasionally freeze during shutdown without the ability
to get into Macsbug. It would only occur about once in twenty reboots.

The way I dealt with this was to borrow a display card and hook two monitors up to the
Macintosh. You can use the Monitors control panel to select which monitor will be used for
Macsbug (hold the option key and drag the happy Mac around).

I wrote a small application that just called ShutDownRestart(), and placed it in the Startup
Items folder. Thus, when the Mac came up into the Finder it would immediately reboot. About
every twenty minutes it would freeze.

If you define a macro named FirstTime in the Debugger Prefs file, Macsbug will execute it
when it loads. I used a macro that was something like:

 swap; atr; atb shutdownrestart ";atb Newhandle ";g";g";g

or some such. The swap command caused Macsbug to be permanently left on the second screen.
That way when the crash occurred you could still see the last few things Macsbug did. The
";g" following the a-trap break commands tells Macsbug to continue after the break - this is
a "Touch and Go" breakpoint.

One thing you can also do inside a touch and go breakpoint is set new breakpoints. I would
take guesses on what traps might be called in the neighborhood of the crash, and have
breakpoints set on them when ShutDownRestart was called.

Then I could leave the Mac rebooting on its own in the lab, and pop in every half an hour to
check the log, adjust the breakpoints and start it up again.

The actual bug took about five months to find and fix.

ManiacoMac’s PPC Cracking Bible v1.0.2 • Page : 162

ManiacoMac ® 2004

Twiddling Pixels in the Menu Bar
Contributed by Dave Fleck, Wacom Technology Corp., dfleck@wacom.com

Here's my debugging tip.

I do drivers, and you just plain can't set a breakpoint in ADB completion routines (freezes
the keyboard so MacsBug is worthless!).

So I throw one of the routines below into the routine to see when a piece of code gets
executed.

What does it do? It "lights up" a bar (length dependant on screen resolution) in the menu
bar. So if you DotToggle(300); you get a flashing short line in the menu bar.

 void DotOn(long where) {
 long *dot;
 dot = (long *)(LMGetScrnBase() + where);
 *dot |= -1;
 }
 void DotOff(long where) {
 long *dot;
 dot = (long *)(LMGetScrnBase() + where);
 *dot &= 0;
 }
 void DotToggle(long where) {
 long *dot;
 dot = (long *)(LMGetScrnBase() + where);
 *dot ^= -1;
 }

 dave

 Dave Fleck email:dfleck@wacom.com phone:360-750-8882x154
 Wacom Technology Corp. sales@wacom.com
 501 S.E. Columbia Shores Blvd, #300 support@wacom.com
 Vancouver, WA 98661 WWW/FTP:wacom.com
 --

Forcing Testers to Use Macsbug During Beta Testing

Contributed by Harold Ekstrom, the ag group, inc., ekstrom@aggroup.com.

Don't you just hate it when beta testers say "it crashes" but don't give you any more
information? First, tell them to use the "stdlog" command in MacsBug, then force them to
install MacsBug by checking for it during your program's initialization:

 --- DebugUtils.h ---

 #pragma once

ManiacoMac’s PPC Cracking Bible v1.0.2 • Page : 163

ManiacoMac ® 2004

 // Debugger types.
 typedef enum DebuggerType {
 kNoDebugger,
 kMacsBug,
 kTMON,
 kOtherDebugger
 } DebuggerType;

 Boolean GetDebuggerInfo(DebuggerType *outDebuggerType,
 UInt16 *outDebuggerSignature);

 --- DebugUtils.c ---

 // Private defines for some low memory globals.
 #define MacJmp ((Ptr *)0x0120) // MacsBug jumptable [pointer].
 #define MacJmpByte ((UInt8 *)0x0120) // MacsBug flags in 24 bit mode [byte].
 #define MacJmpFlag ((UInt8 *)0x0BFF) // MacsBug flag [byte].

 // Debugger flag bits.
 #define kDebuggerInstalledBit 5

 //

 //
 //

 Boolean
 GetDebuggerInfo(
 DebuggerType * outDebuggerType,
 UInt16 * outDebuggerSignature)
 {
 Boolean theResult = false;
 SInt32 theResponse;

 // Initialize return values to defaults.
 *outDebuggerType = kNoDebugger;
 *outDebuggerSignature = ' ';

 if (Gestalt(gestaltAddressingModeAttr, &theResponse) == noErr) {

 UInt16 theDebugFlags;

 // As documented in the "Macsbug Reference & Debugging Guide", page 412
 // if we have a 32 bit capable Memory Manager, debugger flags are at 0x0BFF
 // if we have a 24 bit capable Memory Manager, debugger flags are at 0x0120

 if ((theResponse & (1L << gestalt32BitCapable)) != 0) {
 theDebugFlags = *MacJmpFlag;
 } else {
 theDebugFlags = *MacJmpByte;
 }

 if ((theDebugFlags & (1L << kDebuggerInstalledBit)) != 0) {

ManiacoMac’s PPC Cracking Bible v1.0.2 • Page : 164

ManiacoMac ® 2004

 Ptr theDebuggerEntry;
 Ptr theROMBaseWorld;

 // There is a debugger installed.
 theResult = true;

 // Get the debugger entry.
 theDebuggerEntry = StripAddress(*MacJmp);

 // Get the ROM base.
 theROMBaseWorld = StripAddress(LMGetROMBase());

 // Compare the debugger entry to the ROM base.
 if (theDebuggerEntry < theROMBaseWorld) {

 UInt16 **theDebuggerWorld;

 // It's not a ROM based debugger.
 // Get the debugger world.
 theDebuggerWorld = (UInt16 **) StripAddress(theDebuggerEntry - sizeof(Ptr));

 // Get the debugger signature.
 *outDebuggerSignature = **theDebuggerWorld;

 // Get the debugger type.
 switch (*outDebuggerSignature) {

 case 'MT':
 *outDebuggerType = kMacsBug;
 break;

 case 'WH':
 *outDebuggerType = kTMON;
 break;

 default:
 *outDebuggerType = kOtherDebugger;
 break;

 }

 }

 }

 }

 return theResult;
 }

 Check for a low level debugger like this:

 #if BETA_VERSION

ManiacoMac’s PPC Cracking Bible v1.0.2 • Page : 165

ManiacoMac ® 2004

 DebuggerType theDebuggerType;
 UInt16 theDebuggerSig;
 if (!GetDebuggerInfo(&theDebuggerType, &theDebuggerSig)) {
 HaltRotateCursor(gRotateCrsr);
 StopAlert(go_get_macsbug_alrt, nil);
 ExitToShell();
 }
 #endif

The Developer University Debugging Class
Contributed by Malcolm Teas, Blaze Technology, mhteas@btech.com

As the instructor and developer of Apple's Developer University class called "Macintosh
Debugging Tips and Techniques" I would like to make sure your tips page references this
class.

This class is centered around MacsBug as the easiest to learn low-level debugger. It also
covers a multitude of low-level topics like memory maps, subroutine calling protocols, code
segments and code fragments, reading (and understanding) assembler for 68K and PPC, and many
more areas. One key area is how to avoid bugs in the first place. All the information you
need to be able to debug software at the low-level.

The class is available from Apple's Developer University.

Another thing I want to mention is the version number of the most current MacsBug is 6.5.3
(as of this writing). This version includes the PPC commands and features.

[I have taken this class and recommend it highly - Mike]

MacsBug DCMDs
 Where [addr | trap]
 Display information about the address or trap.
 If no parameter then use PC as the address.
 Vol [vRefNum|drvNum|"vol name"]
 Displays volume information for the given vrefnum, volume name or all
 mounted volumes. Flags are D/d=Dirty, S/s=Software locked,
 H/h=Hardware locked.
 VBL
 Lists tasks in the regular and slot VBL queues.
 thing ["thing type"]
 Displays thing information for the given thing type or all know things.
 StopXPP
 Closes all open .XPP sessions.
 RD [-c] [-s] [-o] [-f ref#] [-i id] [[-t] 'xxxx'] [-h hndl] (Resource Display)
 Dumps resource information.
 Options:
 -c Show resource chain
 -s Show short resource chain (no fonts below system)
 -o Show offsets of resources (from start of res data)
 -f <refNum> Only show resources from this file (1=ROM)

ManiacoMac’s PPC Cracking Bible v1.0.2 • Page : 166

ManiacoMac ® 2004

 -i <resID> Only show resources with this ID
 -t 'xxxx' Only show resources of this type
 -h <handle> Show resources using given handle (0=not loaded)
 Attributes:
 S/A = System heap / app heap
 P/p = purgeable / not
 L/U = locked / unlocked
 O/o = protected / not
 E/e = preload / not
 C/c = changed / not
 Purged handles are marked with an "*".
 Printf "format" arg...
 Displays the arguments according to the format (no floating point).
 ProcInfo
 Displays information about all processes.
 Status Flags: Front, Bkgnd, BgOnly, BgNoEvts (can't bkgnd).
 Leaks [On|Off|Dump]
 Stack crawl info about likely memory leaks.
 (by Bo3b Johnson, Greg Branche and Jim Murphy)
 JumpTable [expr]
 Display the jump table at expr. If no address is specified, the
 jump table is assumed to start at RA5+$20.
 Gestalt [-n] [[-s] 'xxxx'] (Gestalt selector display)
 Displays Gestalt selectors and results.
 Options:
 -n Show installed selectors, don't call procedures
 -s 'xxxx' Don't display all selectors, just show this one

 (Gestalt with no parameters calls and shows all selectors.)
 FSInfo [fsid | -t] (File System info)
 Displays File System Manager foreign file system information for
 for the given file system ID [fsid], or all installed File System
 Manager foreign file systems. Use -t to show a small table.
 Use the vol dcmd to get a list of volumes and their fsid numbers.
 File [fRefNum | "file name" | -t "type"]
 Displays file information on all open files, or for the given fRefNum,
 filename, or for all files of the given filetype. Flags are D/d=Dirty,
 W/w=writeable. "file 0" shows all open files except for fonts.
 Error expr
 Display text message corresponding to error nummber in expr.
 Echo [params...]
 Echo the command line parameters
 Drvr [refNum|num]
 Displays driver information for the given refNum or all installed
 drivers. Flags are B/b=Busy, H/P=Handle/Ptr, O/C=Open/Closed.
 Drive [drvNum|dRefNum] (display info on drives)
 Displays drive queue information for the given drive number,
 driver number, or all drives. Flags are L/l=Locked,
 E/e=Ejectable, R=Recently ejected, I/i=Inserted,
 D/S=Double/Single sided.
 UNLOCK <Addr> <Count>- VM Unlock memory for the
 memory range specified in addr and count.
 Note: This is the debugger unlock memory call.
 SysTop - installs and locks a 4 byte handle

ManiacoMac’s PPC Cracking Bible v1.0.2 • Page : 167

ManiacoMac ® 2004

 at thetop of the system heap,
 the handle is not installed
 SysSwell <buffer size>- Installs and removes a buffer
 in the System heap of specifed size.
 ssc [addr]
 Displays the stack frame chain starting at addr (default is ra6).
 Patch [I | O | T | S | P] (vers 1.0A3)
 none - Check all vectors
 I - Check Interrupt vectors
 O - Check OSTrap vectors
 T - Check TBTrap vectors
 S - Save all vectors now
 P - Print all vectors
 MList -- List the menus installed.
 LOCK <Addr> <Count>- VM Lock memory for the
 memory range specified in addr and count.
 Note: this is the debugger lock memory.
 dizy - Installs and de-installs the discipline
 which is contained in this code.
 Dizy is NOT INSTALLED and is currently OFF

Otool Manual
NAME
 otool - object file displaying tool

SYNOPSIS
 otool [option ...] [file ...]

DESCRIPTION

 The otool command displays specified parts of object files or
 libraries. If the, -m option is not used, the file arguments may be of
 the form libx.a(foo.o), to request information about only that object
 file and not the entire library. (Typically this argument must be
 quoted, ``libx.a(foo.o)'', to get it past the shell.) Otool under-
 stands both Mach-O (Mach object) files and fat file formats. Otool can
 display the specified information in either its raw (numeric) form
 (without the -v flag), or in a symbolic form using macro names of con-
 stants, etc. (with the -v or -V flag).

 At least one of the following options must be specified:

 -a Display the archive header, if the file is an archive.

 -S Display the contents of the `__.SYMDEF' file, if the file is an
 archive.

 -f Display the fat headers.

 -h Display the Mach header.

 -l Display the load commands.

ManiacoMac’s PPC Cracking Bible v1.0.2 • Page : 168

ManiacoMac ® 2004

 -L Display the names and version numbers of the shared libraries
 that the object file uses.

 -D Display just install name of a shared library.

 -s segname sectname
 Display the contents of the section (segname,sectname). If the
 -v flag is specified, the section is displayed as its type,
 unless the type is zero (the section header flags). Also the
 sections (__OBJC,__protocol), (__OBJC,__string_object) and
 (__OBJC,__runtime_setup) are displayed symbolically if the -v
 flag is specified.

 -t Display the contents of the (__TEXT,__text) section. With the
 -v flag, this disassembles the text. And with -V, it also sym-
 bolically disassembles the operands.

 -d Display the contents of the (__DATA,__data) section.

 -o Display the contents of the __OBJC segment used by the Objec-
 tive-C run-time system.

 -r Display the relocation entries.

 -c Display the argument strings (argv[] and envp[]) from a core
 file.

 -I Display the indirect symbol table.

 -T Display the table of contents for a dynamically linked shared
 library.

 -R Display the reference table of a dynamically linked shared
 library.

 -M Display the module table of a dynamically linked shared library.

 -H Display the two-level namespace hints table.

 The following options may also be given:

 -p name
 Used with the -t and -v or -V options to start the disassembly
 from symbol name and continue to the end of the (__TEXT,__text)
 section.

 -v Display verbosely (symbolically) when possible.

 -V Display the disassembled operands symbolically (this implies the
 -v option). This is useful with the -t option.

 -X Don't display leading addresses when displaying contents of sec-
 tions.

ManiacoMac’s PPC Cracking Bible v1.0.2 • Page : 169

ManiacoMac ® 2004

 -arch arch_type
 Specifies the architecture, arch_type, of the file for otool(1)
 to operate on when the file is a fat file. (See arch(3) for the
 currently know arch_types.) The arch_type can be "all" to oper-
 ate on all architectures in the file. The default is to display
 only the host architecture, if the file contains it; otherwise,
 all architectures in the file are shown.

 -m The object file names are not assumed to be in the archive(mem-
 ber) syntax, which allows file names containing parenthesis.

 Used with the -t and -v or -V options to start the disassembly
 from symbol name and continue to the end of the (__TEXT,__text)
 section.

 -v Display verbosely (symbolically) when possible.

 -V Display the disassembled operands symbolically (this implies the
 -v option). This is useful with the -t option.

 -X Don't display leading addresses when displaying contents of sec-
 tions.

 -arch arch_type
 Specifies the architecture, arch_type, of the file for otool(1)
 to operate on when the file is a fat file. (See arch(3) for the
 currently know arch_types.) The arch_type can be "all" to oper-
 ate on all architectures in the file. The default is to display
 only the host architecture, if the file contains it; otherwise,
 all architectures in the file are shown.

 -m The object file names are not assumed to be in the archive(mem-
 ber) syntax, which allows file names containing parenthesis.

GDB Manual
NAME
 gdb - The GNU Debugger

SYNOPSIS
 gdb [-help] [-nx] [-q] [-batch] [-cd=dir] [-f] [-b bps] [-tty=dev]
 [-s symfile] [-e prog] [-se prog] [-c core] [-x cmds] [-d dir]
 [prog[core|procID]]

DESCRIPTION
 The purpose of a debugger such as GDB is to allow you to see what is
 going on ``inside'' another program while it executes--or what another
 program was doing at the moment it crashed.

 GDB can do four main kinds of things (plus other things in support of
 these) to help you catch bugs in the act:

ManiacoMac’s PPC Cracking Bible v1.0.2 • Page : 170

ManiacoMac ® 2004

 o Start your program, specifying anything that might affect its
 behavior.

 o Make your program stop on specified conditions.

 o Examine what has happened, when your program has stopped.

 o Change things in your program, so you can experiment with cor-
 recting the effects of one bug and go on to learn about another.

 You can use GDB to debug programs written in C, C++, and Modula-2.
 Fortran support will be added when a GNU Fortran compiler is ready.

 GDB is invoked with the shell command gdb. Once started, it reads com-
 mands from the terminal until you tell it to exit with the GDB command
 quit. You can get online help from gdb itself by using the command
 help.

 You can run gdb with no arguments or options; but the most usual way to
 start GDB is with one argument or two, specifying an executable program
 as the argument :

 gdb program

 You can also start with both an executable program and a core file
 specified:

 gdb program core

 You can, instead, specify a process ID as a second argument, if you
 want to debug a running process:

 gdb program 1234

 would attach GDB to process 1234 (unless you also have a file named
 `1234'; GDB does check for a core file first).

 Here are some of the most frequently needed GDB commands:

 break [file:]function
 Set a breakpoint at function (in file).

 run [arglist]
 Start your program (with arglist, if specified).

 bt Backtrace: display the program stack.

 print expr
 Display the value of an expression.

 c Continue running your program (after stopping, e.g. at a break-
 point).

 next Execute next program line (after stopping); step over any func-

ManiacoMac’s PPC Cracking Bible v1.0.2 • Page : 171

ManiacoMac ® 2004

 tion calls in the line.

 edit [file:]function
 look at the program line where it is presently stopped.

 list [file:]function
 type the text of the program in the vicinity of where it is
 presently stopped.

 step Execute next program line (after stopping); step into any func-
 tion calls in the line.

 help [name]
 Show information about GDB command name, or general information
 about using GDB.

 quit Exit from GDB.

 For full details on GDB, see Using GDB: A Guide to the GNU Source-Level
 Debugger, by Richard M. Stallman and Roland H. Pesch. The same text is
 available online as the gdb entry in the info program.

OPTIONS

 Any arguments other than options specify an executable file and core
 file (or process ID); that is, the first argument encountered with no
 associated option flag is equivalent to a `-se' option, and the second,
 if any, is equivalent to a `-c' option if it's the name of a file.
 Many options have both long and short forms; both are shown here. The
 long forms are also recognized if you truncate them, so long as enough
 of the option is present to be unambiguous. (If you prefer, you can
 flag option arguments with `+' rather than `-', though we illustrate
 the more usual convention.)

 All the options and command line arguments you give are processed in
 sequential order. The order makes a difference when the `-x' option is
 used.

 -help

 -h List all options, with brief explanations.

 -symbols=file

 -s file
 Read symbol table from file file.

 -write Enable writing into executable and core files.

 -exec=file

 -e file
 Use file file as the executable file to execute when appropri-
 ate, and for examining pure data in conjunction with a core

ManiacoMac’s PPC Cracking Bible v1.0.2 • Page : 172

ManiacoMac ® 2004

 dump.

 -se=file
 Read symbol table from file file and use it as the executable
 file.

 -core=file

 -c file
 Use file file as a core dump to examine.

 -command=file

 -x file
 Execute GDB commands from file file.

 -directory=directory

 -d directory
 Add directory to the path to search for source files.

 -nx

 -n Do not execute commands from any `.gdbinit' initialization
 files. Normally, the commands in these files are executed after
 all the command options and arguments have been processed.

 -quiet

 -q ``Quiet''. Do not print the introductory and copyright mes-
 sages. These messages are also suppressed in batch mode.

 -batch Run in batch mode. Exit with status 0 after processing all the
 command files specified with `-x' (and `.gdbinit', if not inhib-
 ited). Exit with nonzero status if an error occurs in executing
 the GDB commands in the command files.

 Batch mode may be useful for running GDB as a filter, for exam-
 ple to download and run a program on another computer; in order
 to make this more useful, the message

 Program exited normally.

 (which is ordinarily issued whenever a program running under GDB
 control terminates) is not issued when running in batch mode.

 -cd=directory
 Run GDB using directory as its working directory, instead of
 the current directory.

 -fullname

 -f Emacs sets this option when it runs GDB as a subprocess. It
 tells GDB to output the full file name and line number in a

ManiacoMac’s PPC Cracking Bible v1.0.2 • Page : 173

ManiacoMac ® 2004

 standard, recognizable fashion each time a stack frame is dis-
 played (which includes each time the program stops). This rec-
 ognizable format looks like two ` 32' characters, followed by
 the file name, line number and character position separated by
 colons, and a newline. The Emacs-to-GDB interface program uses
 the two ` 32' characters as a signal to display the source code
 for the frame.

 -b bps Set the line speed (baud rate or bits per second) of any serial
 interface used by GDB for remote debugging.

 -tty=device
 Run using device for your program's standard input and output.

SEE ALSO
 `gdb' entry in info; Using GDB: A Guide to the GNU Source-Level Debug-
 ger, Richard M. Stallman and Roland H. Pesch, July 1991.

 Further documentation is available in /Developer/Documentation/Com-
 mands/gdb.

 standard, recognizable fashion each time a stack frame is dis-
 played (which includes each time the program stops). This rec-
 ognizable format looks like two ` 32' characters, followed by
 the file name, line number and character position separated by
 colons, and a newline. The Emacs-to-GDB interface program uses
 the two ` 32' characters as a signal to display the source code
 for the frame.

 -b bps Set the line speed (baud rate or bits per second) of any serial
 interface used by GDB for remote debugging.

 -tty=device
 Run using device for your program's standard input and output.

SEE ALSO
 `gdb' entry in info; Using GDB: A Guide to the GNU Source-Level Debug-
 ger, Richard M. Stallman and Roland H. Pesch, July 1991.

 Further documentation is available in /Developer/Documentation/Com-
 mands/gdb.

COPYING
 Copyright (c) 1991 Free Software Foundation, Inc.

 Permission is granted to make and distribute verbatim copies of this
 manual provided the copyright notice and this permission notice are
 preserved on all copies.

 Permission is granted to copy and distribute modified versions of this
 manual under the conditions for verbatim copying, provided that the
 entire resulting derived work is distributed under the terms of a per-
 mission notice identical to this one.

ManiacoMac’s PPC Cracking Bible v1.0.2 • Page : 174

ManiacoMac ® 2004

 Permission is granted to copy and distribute translations of this man-
 ual into another language, under the above conditions for modified ver-
 sions, except that this permission notice may be included in transla-
 tions approved by the Free Software Foundation instead of in the origi-
 nal English.

ANNEXE
Predefined PPC Register Names

Fixed-Point Register Conventions
Register Contents Usage
GPR0 Volatile Function prolog and epilog
GPR1 Nonvolatile Stack pointer
GPR2 Nonvolatile TOC pointer (also known as RTOC)
GPR3–GPR10 Volatile Arguments passed to a function or returned a value or pointer
GPR11–GPR12 Volatile Function prolog and epilog
GPR13–GPR31 Nonvolatile Storage for local variables

Floating-Point Register Conventions
Register Contents Usage
FPR0 Volatile Scratch area for a local function
FPR1–FPR13 Volatile Parameters passed to a function or returned a value
FPR14–FPR31 Nonvolatile Storage for local variables

Condition Register Conventions
Register Contents Usage
CR0 Volatile Scratch area or set by integer instruction record bit
CR1 Volatile Scratch area or set by floating-point instruction record bit
CR2–CR4 Nonvolatile Local storage
CR5–CR7 Volatile Scratch area

The assembler supports the names of these general-purpose registers as absolute expressions:

GPR0–GPR31 General-purpose registers
R0–R31 General-purpose registers (same as GPRn)
FP0–FP31 Floating-point registers
F0–F31 Floating-point registers (same as FPn)

The assembler also supports the specific uses for these general-purpose registers as
absolute expressions:

ManiacoMac’s PPC Cracking Bible v1.0.2 • Page : 175

ManiacoMac ® 2004

SP Stack pointer (GPR0)
RTOC Table of Contents register (GPR2)

These names are case insensitive. Also, any of the above register names may be equated to
other name symbols by using the EQU or SET assembler directives.

The assembler recognizes the names of these special-purpose registers as absolute
expressions:

ASR Address space register
BAT0U–BAT5U Block address translation register (upper)
BAT0L–BAT5L Block address translation register (lower)
CTR Count register
DAR Data access register
DBATL Block address translation decrement register (lower)
DBATU Block address translation decrement register (upper)
DEC Decrement counter
DSISR Data storage interrupt status register
EAR External access register
IBATL Block address translation increment register (lower)
IBATU Block address translation increment register (upper)
LR Link register
RTC Real-time clock (upper + lower)
RTCD Real-time clock divisor
RTCI Real-time clock increment
RTCL Real-time clock (lower)
RTCU Real-time clock (upper)
SDR1 Storage description register 1
SPRG0–SPRG3 Software-use special-purpose registers
SRR0–SRR1 Machine status save/restore registers
XER Fixed-point exception register

PPC Mnemonics
Mac ASM Commands for PPC Processor

add[o][.] rT,rA,rB Add (without updating Carry)
addc[o][.] rT,rA,rB Add Carrying
adde[o][.] rT,rA,rB Add Extended
addi rT,rA,s16 Add Immediate
addic[.] rT,rA,s16 Add Immediate Carrying
addis rT,rA,s16 Add Immediate Shifted
addme[o][.] rT,rA Add to Minus One Extended
addze[o][.] rT,rA Add to Zero Extended
and[.] rA,rS,rB AND
andc[.] rA,rS,rB AND with Complement
andi. rA,rS,u16 AND Immediate
andis. rA,rS,u16 AND Immediate Shifted
b[l][a] addr Branch
bc[l][a] branchOn,crbT,addr Branch Conditional
bcctr[l] branchOn,crbT Branch Conditional to CTR
bclr[l] branchOn,crbT Branch Conditional to LR
bctr[l] Branch Unconditionally to CTR

ManiacoMac’s PPC Cracking Bible v1.0.2 • Page : 176

ManiacoMac ® 2004

bdnz[l][a] addr Branch if Decremented CTR is Not Zero
bdnzf[l][a] crbT,addr Branch if Decremented CTR is Not Zero and Condition False
bdnzflr[l] crbT Branch if Decremented CTR is Not Zero and Condition False to LR
bdnzlr[l] Branch if Decremented CTR is Not Zero to LR
bdnzt[l][a] crbT,addr Branch if Decremented CTR is Not Zero and Condition True
bdnstlr[l] crbT Branch if Decremented CTR is Not Zero and Condition True to LR
bdz[l][a] addr Branch if Decremented CTR is Zero
bdzf[l][a] crbT,addr Branch if Decremented CTR is Zero and Condition False
bdzflr[l][a] crbT Branch if Decremented CTR is Zero and Condition False to LR
bdzlr[l] Branch if Decremented CTR is Zero to LR
bdzt[l][a] crbT,addr Branch if Decremented CTR is Zero and Condition True
bdztlr[l] crbT Branch if Decremented CTR is Zero and Condition True to LR
beq[l][a] [crT,]addr Branch if Equal
beqctr[l] [crT] Branch if Equal to CTR
beqlr[l] [crT] Branch if Equal to LR
bf[l][a] crbT,addr Branch if Condition False
bfctr[l] crbT Branch if Condition False to CTR
bflr[l] crbT Branch if Condition False to LR
bge[l][a] [crT,]addr Branch if Greater Than or Equal
bgectr[l] [crT] Branch if Greater Than or Equal to CTR
bgelr[l] [crT] Branch if Greater Than or Equal to LR
bgt[l][a] [crT,]addr Branch if Greater Than
bgtctr[l] [crT] Branch if Greater Than to CTR
bgtlr[l] [crT] Branch if Greater Than to LR
ble[l][a] [crT,]addr Branch if Less Than or Equal
blectr[l] [crT] Branch if Less Than or Equal to CTR
blelr[l] [crT] Branch if Less Than or Equal to LR
blr[l] Branch Unconditionally to LR
blt[l][a] [crT,]addr Branch if Less Than
bltctr[l] [crT] Branch if Less Than to CTR
bltlr[l] [crT] Branch if Less Than to LR
bne[l][a] [crT,]addr Branch if Not Equal
bnectr[l] [crT] Branch if Not Equal to CTR
bnelr[l] [crT] Branch if Not Equal to LR
bng[l][a] [crT,]addr Branch if Not Greater Than
bngctr[l] [crT] Branch if Not Greater Than to CTR
bnglr[l] [crT] Branch if Not Greater Than to LR
bnl[l][a] [crT,]addr Branch if Not Less Than
bnlctr[l] [crT] Branch if Not Less Than to CTR
bnllr[l] [crT] Branch if Not Less Than to LR
bns[l][a] [crT,]addr Branch if Not Summary Overflow
bnsctr[l] [crT] Branch if Not Summary Overflow to CTR
bnslr[l] [crT] Branch if Not Summary Overflow to LR
bnu[l][a] [crT,]addr Branch if Not Unordered
bnuctr[l] [crT] Branch if Not Unordered to CTR
bnulr[l] [crT] Branch if Not Unordered to LR
bso[l][a] [crT,]addr Branch if Summary Overflow
bsoctr[l] [crT] Branch if Summary Overflow to CTR
bsolr[l] [crT] Branch if Summary Overflow to LR
bt[l][a] crbT,addr Branch if Condition True
btctr[l] crbT Branch if Condition True to CTR
btlr[l] crbT Branch if Condition True to LR
bun[l][a] [crT,]addr Branch if Unordered
bunctr[l][a] [crT] Branch if Unordered to CTR

ManiacoMac’s PPC Cracking Bible v1.0.2 • Page : 177

ManiacoMac ® 2004

bunlr[l] [crT] Branch if Unordered to LR
clrlslwi[.] rA,rS,nBits,shift Clear Left and Shift Left Word Immediate
clrlwi[.] rA,rS,nBits Clear Left Word Immediate
clrrwi[.] rA,rS,nBits Clear Right Word Immediate
cmp crT,L,rA,rB Compare
cmpi crT,L,rA,s16 Compare Immediate
cmpl crT,L,rA,rB Compare Logical
cmpli crT,L,rA,u16 Compare Logical Immediate
cmplw crT,rA,rB Compare Logical Word
cmplwi crT,rA,u16 Compare Logical Word Immediate
cmpw crT,rA,rB Compare Word
cmpwi crT,rA,s16 Compare Word Immediate
cntlzw[.] rA,rS Count Leading Zeros Word
crand crbT,crbA,crbB Condition Register AND
crandc crbT,crbA,crbB Condition Register AND with Complement
crclr crbT Condition Register Clear
creqv crbT,crbA,crbB Condition Register Equivalent
crmove crbT,crbA Condition Register Move
crnand crbT,crbA,crbB Condition Register Not AND
crnor crbT,crbA,crbB Condition Register Not OR
crnot crbT,crbA Condition Register Not
cror crbT,crbA,crbB Condition Register OR
crorc crbT,crbA,crbB Condition Register OR with Complement
crset crbT Condition Register Set
crxor crbT,crbA,crbB Condition Register Exclusive OR
dcbf rA,rB Data Cache Block Flush
dcbi rA,rB Data Cache Block Invalidate
dcbst rA,rB Data Cache Block Store
dcbt rA,rB Data Cache Block Touch
dcbtst rA,rB Data Cache Block Touch for Store
dcbz rA,rB Data Cache Block Zero
divw[o][.] rT,rA,rB Divide Word
divwu[o][.] rT,rA,rB Divide Word Unsigned
eieio Enforce In-Order Execution of I/O
eqv[.] rA,rS,rB Equivalent
extlwi[.] rA,rS,nBits,start Extract and Left Justify Word Immediate
extrwi[.] rA,rS,nBits,start Extract and Right Justify Word Immediate
extsb[.] rA,rS Extend Sign Byte
extsh[.] rA,rS Extend Sign Halfword
fabs[.] frT,frB Floating-Point Absolute Value
fadd[.] frT,frA,frB Floating-Point Add
fadds[.] frT,frA,frB Floating-Point Add Single-Precision
fcmpo crT,frA,frB Floating-Point Compare Ordered
fcmpu crT,frA,frB Floating-Point Compare Unordered
fctiw[.] frT,frB Floating-Point Convert to Integer Word
fctiwz[.] frT,frB Floating-Point Convert to Integer Word with Round to Zero
fdiv[.] frT,frA,frB Floating-Point Divide
fdivs[.] frT,frA,frB Floating-Point Divide Single-Precision
fmadd[.] frT,frA,frC,frB Floating-Point Multiply-Add
fmadds[.] frT,frA,frC,frB Floating-Point Multiply-Add Single-Precision
fmr[.] frT,frB Floating-Point Move Register
fmsub[.] frT,frA,frC,frB Floating-Point Multiply-Subtract
fmsubs[.] frT,frA,frC,frB Floating-Point Multiply-Subtract Single-Precision
fmul[.] frT,frA,frC Floating-Point Multiply

ManiacoMac’s PPC Cracking Bible v1.0.2 • Page : 178

ManiacoMac ® 2004

fmuls[.] frT,frA,frC Floating-Point Multiply Single-Precision
fnabs[.] frT,frB Floating-Point Negative Absolute Value
fneg[.] frT,frB Floating-Point Negate
fnmadd[.] frT,frA,frC,frB Floating-Point Negative Multiply-Add
fnmadds[.] frT,frA,frC,frB Floating-Point Negative Multiply-Add Single-Precision
fnmsub[.] frT,frA,frC,frB Floating-Point Negative Multiply-Subtract
fnmsubs[.] frT,frA,frC,frB Floating-Point Negative Multiply-Subtract Single-Precision
frsp[.] frT,frB Floating-Point Round to Single-Precision
fsub[.] frT,frA,frB Floating-Point Subtract
fsubs[.] frT,frA,frB Floating-Point Subtract Single-Precision
icbi rA,rB Instruction Cache Block Invalidate
inslwi[.] rA,rS,nBits,start Insert from Left Word Immediate
insrwi[.] rA,rS,nBits,start Insert from Right Word Immediate
isync Instruction Cache Synchronize
la rT,d(rA) Load Address
la rT,symbol Load Address
lbz rT,d(rA) Load Byte and Zero
lbzu rT,d(rA) Load Byte and Zero with Update
lbzux rT,rA,rB Load Byte and Zero with Update Indexed
lbzx rT,rA,rB Load Byte and Zero Indexed
lfd frT,d(rA) Load Floating-Point Double-Precision
lfdu frT,d(rA) Load Floating-Point Double-Precision with Update
lfdux frT,rA,rB Load Floating-Point Double-Precision with Update Indexed
lfdx frT,rA,rB Load Floating-Point Double-Precision Indexed
lfs frT,d(rA) Load Floating-Point Single-Precision
lfsu frT,d(rA) Load Floating-Point Single-Precision with Update
lfsux frT,rA,rB Load Floating-Point Single-Precision with Update Indexed
lfsx frT,rA,rB Load Floating-Point Single-Precision Indexed
lha rT,d(rA) Load Halfword Algebraic
lhau rT,d(rA) Load Halfword Algebraic with Update
lhaux rT,rA,rB Load Halfword Algebraic with Update Indexed
lhax rT,rA,rB Load Halfword Algebraic Indexed
lhbrx rT,rA,rB Load Halfword Byte-Reversed Indexed
lhz rT,d(rA) Load Halfword and Zero
lhzu rT,d(rA) Load Halfword and Zero with Update
lhzux rT,rA,rB Load Halfword and Zero with Update Indexed
lhzx rT,rA,rB Load Halfword and Zero Indexed
li rT,s16 Load Immediate
lis rT,s16 Load Immediate Shifted
lmw rT,d(rA) Load Multiple Word
lswi rT,rA,nBytes Load String Word Immediate
lswx rT,rA,rB Load String Word Indexed
lwarx rT,rA,rB Load Word and Reserve Indexed
lwbrx rT,rA,rB Load Word Byte-Reversed Indexed
lwz rT,d(rA) Load Word and Zero
lwzu rT,d(rA) Load Word and Zero with Update
lwzux rT,rA,rB Load Word and Zero with Update Indexed
lwzx rT,rA,rB Load Word and Zero Indexed
mcrf crT,crS Move Condition Register Fields
mcrfs crT,crS Move to Condition Register from FPSCR
mcrxr crT Move to Condition Register from XER
mfcr rT Move from Condition Register
mfctr rT Move from Count Register
mfdar rT Move from Data Address Register

ManiacoMac’s PPC Cracking Bible v1.0.2 • Page : 179

ManiacoMac ® 2004

mfdbatl rT,n Move from Data Block-Address Translation Register n Lower
mfdbatu rT,n Move from Data Block-Address Translation Register n Upper
mfdsisr rT Move from Data Storage Interrupt Status Register
mfear rT Move from External Access Register
mffs[.] frT Move from FPSCR
mfibatl rT,n Move from Instruction Block-Address Translation Register n Lower
mfibatu rT,n Move from Instruction Block-Address Translation Register n Upper
mflr rT Move from Link Register
mfmsr rT Move from Machine State Register
mfpvr rT Move from Processor Version Register
mfsdr1 rT Move from Storage Description Register 1
mfspr rT,SPR Move from Special Purpose Register
mfsprg rT,n Move from SPR G0-G3
mfsrr0 rT Move from Save/Restore Register 0
mfssr1 rT Move from Save/Restore Register 1
mfxer rT Move from Fixed-Point Exception Register
mr[.] rA,rS Move Register
mtcrf crMask,rS Move to Condition Register Fields
mtctr rS Move to Count Register
mtdar rS Move to Data Address Register
mtdbatl n,rS Move to Data Block-Address Translation Register n Lower
mtdbatu n,rS Move to Data Block-Address Translation Register n Upper
mtdec rS Move to Decrement Register
mtdsisr rS Move to Data Storage Interrupt Status Register
mtear rS Move to External Access Register
mtfsb0[.] crbT Move to FPSCR Bit 0
mtfsb1[.] crbT Move to FPSCR Bit 1
mtfsf[.] fpscrMask,frB Move to FPSCR Fields
mtfsfi[.] fpscrfT,fieldVal Move to FPSCR Field Immediate
mtibatl n,rS Move to Instruction Block-Address Translation Register n Lower
mtibatu n,rS Move to Instruction Block-Address Translation Reigster n Upper
mtlr rS Move to Link Register
mtmsr rS Move to Machine State Register
mtsdr1 rS Move to Storage Description Register 1
mtspr SPR,rS Move to Special Purpose Register
mtsprg n,rS Move to SPR G0-G3
mtsrr0 rS Move to Save/Restore Register 0
mtsrr1 rS Move to Save/Restore Register 1
mtxer rS Move to Fixed-Point Exception Register
mulhw[.] rT,rA,rB Multiply High Word
mulhwu[.] rT,rA,rB Multiply High Word Unsigned
mulli rT,rA,s16 Multiply Low Immediate
mullw[o][.] rT,rA,rB Multiply Low Word
nand[.] rA,rS,rB NAND
neg[o][.] rT,rA Negate
nop no-op No Operation
nor[.] rA,rS,rB NOR
not[.] rA,rS NOT
or[.] rA,rS,rB OR
orc[.] rA,rS,rB OR with Complement
ori rA,rS,u16 OR Immediate
oris rA,rS,u16 OR Immediate Shifted
rfi Return from Interrupt
rlwimim[.] rA,rS,shift,mb,me Rotate Left Word Immediate then Mask Insert

ManiacoMac’s PPC Cracking Bible v1.0.2 • Page : 180

ManiacoMac ® 2004

rlwinm[.] rA,rS,shift,mb,me Rotate Left Word Immediate then AND with Mask
rlwnm[.] rA,rS,rB,mb,me Rotate Left Word then AND with Mask
rotlw[.] rA,rS,rB Rotate Left Word
rotlwi[.] rA,rS,nBits Rotate Left Word Immediate
rotrwi[.] rA,rS,nBits Rotate Right Word Immediate
sc System Call
slw[.] rA,rS,rB Shift Left Word
slwi[.] rA,rS,nBits Shift Left Word Immediate
sraw[.] rA,rS,rB Shift Right Algebraic Word
srawi[.] rA,rS,nBits Shift Right Algebraic Word Immediate
srw[.] rA,rS,rB Shift Right Word
srwi[.] rA,rS,nBits Shift Right Word Immediate
stb rS,d(rA) Store Byte
stbu rS,d(rA) Store Byte with Update
stbux rS,rA,rB Store Byte with Update Indexed
stbx rS,rA,rB Store Byte Indexed
stfd frS,d(rA) Store Floating-Point Double
stfdu frS,d(rA) Store Floating-Point Double with Update
stfdux frS,rA,rB Store Floating-Point Double with Update Indexed
stfdx frS,rA,rB Store Floating-Point Double Indexed
stfs frS,d(rA) Store Floating-Point Single
stfsu frS,d(rA) Store Floating-Point Single with Update
stfsux frS,rA,rB Store Floating-Point Single with Update Indexed
stfsx frS,rA,rB Store Floating-Point Single Indexed
sth rS,d(rA) Store Halfword
sthbrx rS,rA,rB Store Halfword Byte-Reversed Indexed
sthu rS,d(rA) Store Halfword with Update
sthux rS,rA,rB Store Halfword with Update Indexed
sthx rS,rA,rB Store Halfword Indexed
stmw rS,d(rA) Store Multiple Word
stswi rS,rA,nBytes Store String Word Immediate
stswx rS,rA,rB Store String Word Indexed
stw rS,d(rA) Store Word
stwbrx rS,rA,rB Store Word Byte-Reversed Indexed
stwcx. rS,rA,rB Store Word Conditional Indexed
stwu rS,d(rA) Store Word with Update
stwux rS,rA,rB Store Word with Update Indexed
stwx rS,rA,rB Store Word Indexed
sub[o][.] rT,rA,rB Subtract
subc[o][.] rT,rA,rB Subtract Carrying
subf[o][.] rT,rA,rB Subtract From
subfc[o][.] rT,rA,rB Subtract From Carrying
subfe[o][.] rT,rA,rB Subtract From Extended
subfic rT,rA,s16 Subtract From Immediate Carrying
subfme[o][.] rT,rA Subtract From Minus One Extended
subfze[o][.] rT,rA Subtract From Zero Extended
subi rT,rA,s16 Subtract Immediate
subic[.] rT,rA,s16 Subtract Immediate Carrying
subis rT,rA,s16 Subtract Immediate Shifted
sync Synchronize
trap Trap Unconditionally
tw trapOn,rA,rB Trap Word
tweq rA,rB Trap Word if Equal
tweqi rA,s16 Trap Word if Equal Immediate

ManiacoMac’s PPC Cracking Bible v1.0.2 • Page : 181

ManiacoMac ® 2004

twge rA,rB Trap Word if Greater Than or Equal
twgei rA,s16 Trap Word if Greater Than or Equal Immediate
twgt rA,rB Trap Word if Greater Than
twgti rA,s16 Trap Word if Greater Than Immediate
twi trapOn,rA,s16 Trap Word Immediate
twle rA,rB Trap Word if Less Than or Equal
twlei rA,s16 Trap Word if Less Than or Equal Immediate
twlge rA,rB Trap Word if Logically Greater Than or Equal
twlgei rA,s16 Trap Word if Logically Greater Than or Equal Immediate
twlgt rA,rB Trap Word if Logically Greater Than
twlgti rA,s16 Trap Word if Logically Greater Than Immediate
twlle rA,rB Trap Word if Logically Less Than or Equal
twllei rA,s16 Trap Word if Logically Less Than or Equal Immediate
twllt rA,rB Trap Word if Logically Less Than
twllti rA,s16 Trap Word if Logically Less Than Immediate
twlng rA,rB Trap Word if Logically Not Greater Than
twlngi rA,s16 Trap Word if Logically Not Greater Than Immediate
twlnl rA,rB Trap Word if Logically Not Less Than
twlnli rA,s16 Trap Word if Logically Not Less Than Immediate
twlt rA,rB Trap Word if Less Than
twlti rA,s16 Trap Word if Less Than Immediate
twne rA,rB Trap Word if Not Equal
twnei rA,s16 Trap Word if Not Equal Immediate
twng rA,rB Trap Word if Not Greater Than
twngi rA,s16 Trap Word if Not Greater Than Immediate
twnl rA,rB Trap Word if Not Less Than
twnli rA,s16 Trap Word if Not Less Than Immediate
xor[.] rA,rS,rB Exclusive OR
xori rA,rS,u16 Exclusive OR Immediate
xoris rA,rS,u16 Exclusive OR Immediate Shifted

PPC Extended Mnemonics
PPC Asm supports the extended mnemonics described in the IBM PowerPC User Instruction Set
Architecture. This appendix lists the extended mnemonics that are supported in the following
categories:

simplified branches

branches that incorporate conditions

access to and from special-purpose registers

traps

other extended mnemonics

For more information on extended mnemonics, see the IBM PowerPC User Instruction Set
Architecture or the appropriate PowerPC processor document (such as the Motorola PowerPC 601
RISC Microprocessor User’s Manual).

Simplified Branches B

ManiacoMac’s PPC Cracking Bible v1.0.2 • Page : 182

ManiacoMac ® 2004

This section lists the branch extended mnemonics that already specify a branch condition. If
you know the likely outcome of a branch condition, you can add a suffix to a branch extended
mnemonic to set a bit for predicting whether a branch will be taken. When you add a plus
sign (+) as a suffix, the branch is predicted to be taken. When you add a minus sign (-) as
a suffix, the branch is predicted not to be taken.

Extended mnemonic
Operation
Base mnemonic equivalent

Bctr
Branch Unconditionally to CTR
bcctr 20,0

bctrl
Branch Unconditionally to CTR, set LR
bcctrl 20,0

bdnz addr
Decrement CTR, Branch if CTR Non-zero to Relative addr
bc 16,0,addr

bdnza addr
Decrement CTR, Branch if CTR Non-zero to Absolute addr
bca 16,0,addr

bdnzf BI,addr
Decrement CTR, Branch if CTR Non-zero and Condition False to Relative addr
bc 0,BI,addr

bdnzfa BI,addr
Decrement CTR, Branch if CTR Non-zero and Condition False to Absolute addr
bca 0,BI,addr

bdnzfl BI,addr
Decrement CTR, Branch if CTR Non-zero and Condition False to Relative addr, set LR
bcl 0,BI,addr

bdnzfla BI,addr
Decrement CTR, Branch if CTR Non-zero and Condition False to Absolute addr, set LR
bcla 0,BI,addr

bdnzflr BI
Decrement CTR, Branch if CTR Non-zero and Condition False to LR
bclrl 2,BI

bdnzflrl BI
Decrement CTR, Branch if CTR Non-zero and Condition False to LR, set LR
bclrl 0,BI

bdnzl addr
Decrement CTR, Branch if CTR Non-zero to Relative addr, set LR
bcl 16,0,addr

ManiacoMac’s PPC Cracking Bible v1.0.2 • Page : 183

ManiacoMac ® 2004

bdnzla addr
Decrement CTR, Branch if CTR Non-zero to Absolute addr, set LR
bcla 16,0,addr

bdnzlr
Decrement CTR, Branch if CTR Non-zero to LR
bclr 16,0

bdnzlrl
Decrement CTR, Branch if CTR Non-zero to LR, set LR
bclrl 16,0

bdnzt BI,addr
Decrement CTR, Branch if CTR Non-zero and Condition True to Relative addr
bc 8,BI,addr

bdnzta BI,addr
Decrement CTR, Branch if CTR Non-zero and Condition True to Absolute addr
bca 8,BI,addr

bdnztl BI,addr
Decrement CTR, Branch if CTR Non-zero and Condition True to Relative addr, set LR
bcl 8,BI,addr

bdnztla BI,addr
Decrement CTR, Branch if CTR Non-zero and Condition True to Absolute addr, set LR
bcla 8,BI,addr

bdnztlr BI
Decrement CTR, Branch if CTR Non-zero and Condition True to LR
bclr 8,BI

bdnztlrl BI
Decrement CTR, Branch if CTR Non-zero and Condition True to LR, set LR
bclrl 8,BI

bdz addr
Decrement CTR, Branch if CTR Zero to Relative addr bc
18,0,addr

bdza addr
Decrement CTR, Branch if CTR Zero to Absolute addr
bca 18,0,addr

bdzf BI,addr
Decrement CTR, Branch if CTR Zero and Condition False to Relative addr
bc 2,BI,addr

bdzfa BI,addr
Decrement CTR, Branch if CTR Zero and Condition False to Absolute addr
bca 2,BI,addr

bdzfl BI,addr

ManiacoMac’s PPC Cracking Bible v1.0.2 • Page : 184

ManiacoMac ® 2004

Decrement CTR, Branch if CTR Zero and Condition False to Relative addr, set LR
bcl 2,BI,addr

bdzfla BI,addr
Decrement CTR, Branch if CTR Zero and Condition False to Absolute addr, set LR
bcla 2,BI,addr

bdzflr BI
Decrement CTR, Branch if CTR Zero and Condition False to LR
bclr 2,BI

bdzflrl BI
Decrement CTR, Branch if CTR Zero and Condition False to LR, set LR
bclrl 2,BI

bdzl addr
Decrement CTR, Branch if CTR Zero to Relative addr, set LR
bcl 18,0,addr

bdzla addr
Decrement CTR, Branch if CTR Zero to Absolute addr, set LR
bcla 18,0,addr

bdzlr
Decrement CTR, Branch if CTR Zero to LR
bclr 18,0

bdzlrl
Decrement CTR, Branch if CTR Zero to LR, set LR
bclrl 18,0

bdzt BI,addr
Decrement CTR, Branch if CTR Zero and Condition True to Relative addr
bc 10,BI,addr

bdzta BI,addr
Decrement CTR, Branch if CTR Zero and Condition True to Absolute addr
bca 10,BI,addr

bdztl BI,addr
Decrement CTR, Branch if CTR Zero and Condition True to Relative addr, set LR
bcl 10,BI,addr

bdztla BI,addr
Decrement CTR, Branch if CTR Zero and Condition True to Absolute addr, set LR
bcla 10,BI,addr

bdztlr BI
Decrement CTR, Branch if CTR Zero and Condition True to LR
bclr 10,BI

bdztlrl BI
Decrement CTR, Branch if CTR Zero and Condition True to LR, set LR
bclrl 10,BI

ManiacoMac’s PPC Cracking Bible v1.0.2 • Page : 185

ManiacoMac ® 2004

bf BI,addr
Branch if Condition False to Relative addr
bc 4,BI,addr

bfa BI,addr
Branch if Condition False to Absolute addr
bca 4,BI,addr

bfctr BI
Branch if Condition False to CTR
bcctr 4,BI

bfctrl BI
Branch if Condition False to CTR, set LR
bcctrl 4,BI

bfl BI,addr
Branch if Condition False to Relative addr, set LR
bcl 4,BI,addr

bfla BI,addr
Branch if Condition False to Absolute addr, set LR
bcla 4,BI,addr

bflr BI
Branch if Condition False to LR
bclr 4,BI

bflrl BI
Branch if Condition False to LR, set LR
bclrl 4,BI

blr
Branch Unconditionally to LR
bclr 20,0

blrl
Branch Unconditionally to LR, set LR
bclrl 20,0

bt BI,addr
Branch if Condition True to Relative addr
bc 12,BI,addr

bta BI,addr
Branch if Condition True to Absolute addr
bca 12,BI,addr

btctr BI
Branch if Condition True to CTR
bcctr 12,BI

btctrl BI

ManiacoMac’s PPC Cracking Bible v1.0.2 • Page : 186

ManiacoMac ® 2004

Branch if Condition True to CTR, set LR
bcctrl 12,BI

btl BI,addr
Branch if Condition True to Relative addr, set LR
bcl 12,BI,addr

btla BI,addr
Branch if Condition True to Absolute addr, set LR
bcla 12,BI,addr

btlr BI
Branch if Condition True to LR
bclr 12,BI

btlrl BI
Branch if Condition True to LR, set LR
bclrl 12,BI

Branches That Incorporate Conditions
B
This section lists the branch extended mnemonics that let you specify a branch condition. If
you know the likely outcome of a branch condition, you can add a suffix to a branch extended
mnemonic to set a bit for predictingwhether a branch will be taken. When you add a plus sign
(+) as a suffix, the branch is predicted to be taken. When you add a minus sign (-) as a
suffix, the branch is predicted not to be taken.

Extended mnemonic
Operation
Base mnemonic equivalent

beq [CRn,]addr
Branch if Equal to Relative addr
bc 12,[CRn+]2,addr

beqa [CRn,]addr
Branch if Equal to Absolute addr
bca 12,[CRn+]2,addr

beqctr [CRn]
Branch if Equal to CTR
bctr 12,[CRn+]2

beqctrl [CRn]
Branch if Equal to CTR, set LR
bcctrl 12,[CRn+]2

beql [CRn,]addr
Branch if Equal to Relative addr, set LR
bcl 12,[CRn+]2,addr

beqla [CRn,]addr
Branch if Equal to Absolute addr, set LR

ManiacoMac’s PPC Cracking Bible v1.0.2 • Page : 187

ManiacoMac ® 2004

bcla 12,[CRn+]2,addr

beqlr [CRn]
Branch if Equal to LR
bclr 12,[CRn+]2

beqlrl [CRn]
Branch if Equal to LR, set LR
bclrl 12,[CRn+]2

bge [CRn,]addr
Branch if Greater Than or Equal to Relativeaddr
bc 4,[CRn+]0,addr

bgea [CRn,]addr
Branch if Greater Than or Equal to Absolute addr
bca 4,[CRn+]0,addr

bgectr [CRn]
Branch if Greater Than or Equal to CTR
bctr 4,[CRn+]0

bgectrl [CRn]
Branch if Greater Than or Equal to CTR, set LR
bctrl 4,[CRn+]0

bgel [CRn,]addr
Branch if Greater Than or Equal to Relative addr, set LR
bcl 4,[CRn+]0,addr

bgela [CRn,]addr
Branch if Greater Than or Equal to Absolute addr, set LR
bcla 4,[CRn+]0,addr

bgelr [CRn]
Branch if Greater Than or Equal to LR
bclr 4,[CRn+]0

bgelrl [CRn]
Branch if Greater Than or Equal to LR, set LR
bclrl 4,[CRn+]0

bgt [CRn,]addr
Branch if Greater Than to Relative addr
bc 12,[CRn+]1,addr

bgta [CRn,]addr
Branch if Greater Than to Absolute addr
bca 12,[CRn+]1,addr

bgtctr [CRn]
Branch if Greater Than to CTR
bctr 12,[CRn+]1

ManiacoMac’s PPC Cracking Bible v1.0.2 • Page : 188

ManiacoMac ® 2004

bgtctrl [CRn]
Branch if Greater Than to CTR, set LR
bctrl 12,[CRn+]1

bgtl [CRn,]addr
Branch if Greater Than to Relative addr, set LR
bcl 12,[CRn+]1,addr

bgtla [CRn,]addr
Branch if Greater Than to Absolute addr, setLR
bcla 12,[CRn+]1,addr

bgtlr [CRn]
Branch if Greater Than to LR
bclr 12,[CRn+]1

bgtlrl [CRn]
Branch if Greater Than to LR, set LR
bclrl 12,[CRn+]1

ble [CRn,]addr
Branch if Less Than or Equal to Relative addr
bc 4,[CRn+]1,addr

blea [CRn,]addr
Branch if Less Than or Equal to Absolute addr
bca 4,[CRn+]1,addr

blectr [CRn]
Branch if Less Than or Equal to CTR
bctr 4,[CRn+]1

blectrl [CRn]
Branch if Less Than or Equal to CTR, set LR
bcctrl 4,[CRn+]1

blel [CRn,]addr
Branch if Less Than or Equal to Relative addr, set LR
bcl 4,[CRn+]1,addr

blela [CRn,]addr
Branch if Less Than or Equal to Absolute addr, set LR
bcla 4,[CRn+]1,addr

blelr [CRn]
Branch if Less Than or Equal to LR
bclr 4,[CRn+]1

blelrl [CRn]
Branch if Less Than or Equal to LR, set LR
bclrl 4,[CRn+]1

blt [CRn,]addr
Branch if Less Than to Relative addr

ManiacoMac’s PPC Cracking Bible v1.0.2 • Page : 189

ManiacoMac ® 2004

bc 12,[CRn+]0,addr

blta [CRn,]addr
Branch if Less Than to Absolute addr
bca 12,[CRn+]0,addr

bltctr [CRn]
Branch if Less Than to CTR
bctr 12,[CRn+]0

bltctrl [CRn]
Branch if Less Than to CTR, set LR
bctrl 12,[CRn+]0

bltl [CRn,]addr
Branch if Less Than to Relative addr, set LR
bcl 12,[CRn+]0,addr

bltla [CRn,]addr
Branch if Less Than to Absolute addr, set LR
bcla 12,[CRn+]0,addr

bltlr [CRn]
Branch if Less Than to LR
bclr 12,[CRn+]0

bltlrl [CRn]
Branch if Less Than to LR, set LR
bclrl 12,[CRn+]0

bne [CRn,]addr
Branch if Not Equal to Relative addr
bc 4,[CRn+]2,addr

bnea [CRn,]addr
Branch if Not Equal to Absolute addr
bca 4,[CRn+]2,addr

bnectr [CRn]
Branch if Not Equal to CTR
bctr 4,[CRn+]2

bnectrl [CRn]
Branch if Not Equal to CTR, set LR
bctrl 4,[CRn+]2

bnel [CRn,]addr
Branch if Not Equal to Relative addr, set LR
bcl 4,[CRn+]2,addr

bnela [CRn,]addr
Branch if Not Equal to Absolute addr, set LR
bcla 4,[CRn+]2,addr

ManiacoMac’s PPC Cracking Bible v1.0.2 • Page : 190

ManiacoMac ® 2004

bnelr [CRn]
Branch if Not Equal to LR
bclr 4,[CRn+]2

bnelrl [CRn]
Branch if Not Equal to LR, set LR
bclrl 4,[CRn+]2

bng [CRn,]addr
Branch if Not Greater Than to Relative addr
bc 4,[CRn+]1,addr

bnga [CRn,]addr
Branch if Not Greater Than to Absolute addr
bca 4,[CRn+]1,addr

bngctr [CRn]
Branch if Not Greater Than to CTR
bctr 4,[CRn+]1

bngctrl [CRn]
Branch if Not Greater Than to CTR, set LR
bcctrl 4,[CRn+]1

bngl [CRn,]addr
Branch if Not Greater Than to Relative addr, set LR
bcl 4,[CRn+]1,addr

bngla [CRn,]addr
Branch if Not Greater Than to Absolute addr, set LR
bcla 4,[CRn+]1,addr

bnglr [CRn]
Branch if Not Greater Than to LR
bclr 4,[CRn+]1

bnglrl [CRn]
Branch if Not Greater Than to LR, set LR
bclrl 4,[CRn+]1

bnl [CRn,]addr
Branch if Not Less Than to Relative addr
bc 4,[CRn+]0,addr

bnla [CRn,]addr
Branch if Not Less Than to Absolute addr
bca 4,[CRn+]0,addr

bnlctr [CRn]
Branch if Not Less Than to CTR
bctr 4,[CRn+]0

bnlctrl [CRn]
Branch if Not Less Than to CTR, set LR

ManiacoMac’s PPC Cracking Bible v1.0.2 • Page : 191

ManiacoMac ® 2004

bctrl 4,[CRn+]0

bnll [CRn,]addr
Branch if Not Less Than to Relative addr, setLR
bcl 4,[CRn+]0,addr

bnlla [CRn,]addr
Branch if Not Less Than to Absolute addr, set LR
bcla 4,[CRn+]0,addr

bnllrl [CRn]
Branch if Not Less Than to LR, set LR
bclrl 4,[CRn+]0

bns [CRn,]addr
Branch if Not Summary overflow to Relative addr
bc 4,[CRn+]3,addr

bnsa [CRn,]addr
Branch if Not Summary overflow to Absolute addr
bca 4,[CRn+]3,addr

bnsctr [CRn]
Branch if Not Summary overflow to CTR
bctr 4,[CRn+]3

bnsctrl [CRn]
Branch if Not Summary overflow to CTR, set LR
bctrl 4,[CRn+]3

bnsl [CRn,]addr
Branch if Not Summary overflow to Relative addr, set LR
bcl 4,[CRn+]3,addr

bnsla [CRn,]addr
Branch if Not Summary overflow to Absolute addr, set LR
bcla 4,[CRn+]3,addr

bnslr [CRn]
Branch if Not Summary overflow to LR
bclr 4,[CRn+]3

bnslrl [CRn]
Branch if Not Summary overflow to LR, set LR
bclrl 4,[CRn+]3

bnu [CRn,]addr
Branch if Not Unordered to Relative addr
bc 4,[CRn+]3,addr

bnua [CRn,]addr
Branch if Not Unordered to Absolute addr
bca 4,[CRn+]3,addr

ManiacoMac’s PPC Cracking Bible v1.0.2 • Page : 192

ManiacoMac ® 2004

bnuctr [CRn]
Branch if Not Unordered to CTR
bctr 4,[CRn+]3

bnuctrl [CRn]
Branch if Not Unordered to CTR, set LR
bctrl 4,[CRn+]3

bnul [CRn,]addr
Branch if Not Unordered to Relative addr, set LR
bcl 4,[CRn+]3,addr

bnula [CRn,]addr
Branch if Not Unordered to Absolute addr, setLR
bcla 4,[CRn+]3,addr

bnulr [CRn]
Branch if Not Unordered to LR
bclr 4,[CRn+]3

bnulrl [CRn]
Branch if Not Unordered to LR, set LR
bclrl 4,[CRn+]3

bso [CRn,]addr
Branch if Summary Overflow to Relative addr
bc 12,[CRn+]3,addr

bsoa [CRn,]addr
Branch if Summary Overflow to Absolute addr
bca 12,[CRn+]3,addr

bsoctr [CRn]
Branch if Summary Overflow to CTR
bctr 12,[CRn+]3

bsoctrl [CRn]
Branch if Summary Overflow to CTR, set LR
bctrl 12,[CRn+]3

bsol [CRn,]addr
Branch if Summary Overflow to Relative addr, set LR
bcl 12,[CRn+]3,addr

bsola [CRn,]addr
Branch if Summary Overflow to Absoluteaddr, set LR
bcla 12,[CRn+]3,addr

bsolr [CRn]
Branch if Summary Overflow to LR
bclr 12,[CRn+]3

bsolrl [CRn]
Branch if Summary Overflow to LR, set LR

ManiacoMac’s PPC Cracking Bible v1.0.2 • Page : 193

ManiacoMac ® 2004

bclrl 12,[CRn+]3

bun [CRn,]addr
Branch if Unordered to Relative addr
bc 12,[CRn+]3,addr

buna [CRn,]addr
Branch if Unordered to Absolute addr
bca 12,[CRn+]3,addr

bunctr [CRn]
Branch if Unordered to CTR
bctr 12,[CRn+]3

bunctrl [CRn]
Branch if Unordered to CTR, set LR
bctrl 12,[CRn+]3

bunl [CRn,]addr
Branch if Unordered to Relative addr, set LR
bcl 12,[CRn+]3,addr

bunla [CRn,]addr
Branch if Unordered to Absolute addr, set LR
bcla 12,[CRn+]3,addr

bunlr [CRn]
Branch if Unordered to LR
bclr 12,[CRn+]3

bunlrl [CRn]
Branch if Unordered to LR, set LR
bclrl 12,[CRn+]3

Move From/To a Special-Purpose Register
B
This section describes the extended mnemonics that access a special-purpose register. When
accessing a special-purpose register, note that

the Time Base registers (TB) are PowerPC registers that are not implemented on the 601
processor

the PowerPC mnemonic mttb is not implemented on the 601 processor

registers MQ, RTCL, and RTCU are not part of the PowerPC architecture (they are included in
the 601 processor for POWER compatibility)

access to registers RTCL and RTCU is read-only when the 601 processor is
in user mode

register DEC is accessible only in supervisor mode on PowerPC processors
(read-only in user mode on the 601 processor)

ManiacoMac’s PPC Cracking Bible v1.0.2 • Page : 194

ManiacoMac ® 2004

the DBAT registers will be available only when PPCAsm supports 64-bit
instructions

Extended mnemonic
Operation Base
mnemonic equivalent

mfasr Rx
Move From Address Space Register
mfspr Rx,280

mfctr Rx
Move From Count Register (CTR)
mfspr Rx,9

mfdar Rx
Move From Data Address Register (DAR)
mfspr Rx,19

mfdbatl Rx,n
Move From DBAT Lower Registers DBAT0L through DBAT3L
mfspr Rx,537+2*n

mfdbatu Rx,n
Move From DBAT Upper Registers DBAT0U through DBAT3U
mfspr Rx,536+2*n

mfdec Rx
Move From Decrementer Register (DEC)
mfspr Rx,6

mfdsisr Rx
Move From Data Storage Interrupt Status Register (DSISR)
mfspr Rx,18

mfear Rx
Move From External Access Register (EAR)
mfspr Rx,282

mfibatl Rx,n
Move From IBAT Lower Registers IBAT0L through IBAT3L
mfspr Rx,529+2*n

mfibatu Rx,n
Move From IBAT Upper Registers IBAT0U through IBAT3U
mfspr Rx,528+2*n

mflr Rx
Move From Link Register (LR)
mfspr Rx,8

mfmq Rx
Move From MQ Register
mfspr Rx,0

ManiacoMac’s PPC Cracking Bible v1.0.2 • Page : 195

ManiacoMac ® 2004

mfpvr Rx
Move From Processor Version Register
mfspr Rx,287

mfrtcl Rx
Move From Real Time Clock Lower Register (RTCL)
mfspr Rx,5

mfrtcu Rx
Move From Real Time Clock Upper Register (RTCU)
mfspr Rx,4

mfsdr1 Rx
Move From Storage Description Register 1 (SDR1)
mfspr Rx,25

mfsprg Rx,n
Move From General Special Purpose Registers SPRG0 through SPRG3
mfspr Rx,272+n

mfsrr0 Rx
Move From Save/Restore Register 0 (SRR0)
mfspr Rx,26

mfsrr1 Rx
Move From Save/Restore Register 1 (SRR1)
mfspr Rx,27

mftb Rx
Move From Time Base Lower Register
mftb Rx,268

mftbu Rx
Move From Time Base Upper Register
mftb Rx,269

mfxer Rx
Move From Fixed Point Exception Register (XER)
mfspr Rx,1

mtasr Rx
Move To Address Space Register
mtspr 280,Rx

mtctr Rx
Move To Count Register (CTR)
mtspr 9,Rx

mtdar Rx
Move To Data Address Register (DAR)
mtspr 19,Rx

mtdbatl n,Rx

ManiacoMac’s PPC Cracking Bible v1.0.2 • Page : 196

ManiacoMac ® 2004

Move To DBAT Lower Registers DBAT0L through DBAT3L
mtspr 537+2*n,Rx

mtdbatu n,Rx
Move To DBAT Upper Registers DBAT0U through DBAT3U
mtspr 536+2*n,Rx

mtdec Rx
Move To Decrementer Register (DEC)
mtspr 22,Rx

mtdsisr Rx
Move To Data Storage Interrupt Status Register (DSISR)
mtspr 18,Rx

mtear Rx
Move To External Access Register (EAR)
mtspr 282,Rx

mtibatl n,Rx
Move To IBAT Lower Registers IBAT0L through IBAT3L
mtspr 529+2*n,Rx

mtibatu n,Rx
Move To IBAT Upper Registers IBAT0U through IBAT3U
mtspr 528+2*n,Rx

mtlr Rx
Move To Link Register (LR)
mtspr 8,Rx

mtmq Rx
Move To MQ Register
mtspr 0,Rx

mtrtcl Rx
Move To Real Time Clock Lower Register (RTCL)
mtspr 21,Rx

mtrtcu Rx
Move To Real Time Clock Upper Register (RTCU)
mtspr 20,Rx

mtsdr1 Rx
Move To Storage Description Register 1 (SDR1)
mtspr 25,Rx

mtsprg n,Rx
Move To General Special Purpose Registers SPRG0 through SPRG3
mtspr 272+n,Rx

mtsrr0 Rx
Move To Save/Restore Register 0 (SRR0)
mtspr 26,Rx

ManiacoMac’s PPC Cracking Bible v1.0.2 • Page : 197

ManiacoMac ® 2004

mtsrr1 Rx
Move To Save/Restore Register 1 (SRR1)
mtspr 27,Rx

mttbl Rx
Move To Time Base Lower Register
mtspr 284,Rx

mttbu Rx
Move To Time Base Upper Register
mtspr 285,Rx

mtxer Rx
Move To Fixed Point Exception Register (XER)
mtspr 1,Rx

Traps B
This section describes the trap extended mnemonics. Although 64-bit double comparison traps
are listed, they will be available only when PPCAsm supports 64-bit instructions.

Extended mnemonic
Operation
Base mnemonic equivalent

trap
Trap Unconditionally
tw 31,0,0

tdeq Rx,Ry
Trap if Double is Equal
td 4,Rx,Ry

tdeqi Rx,SI
Trap if Double is Equal Immediate
tdi 4,Rx,SI

tdge Rx,Ry
Trap if Double is Greater Than or Equal
td 12,Rx,Ry

tdgei Rx,SI
Trap if Double is Greater Than or Equal Immediate
tdi 12,Rx,SI

tdgt Rx,Ry
Trap if Double is Greater Than
 td 8,Rx,Ry

tdgti Rx,SI
Trap if Double is Greater Than Immediate
tdi 8,Rx,SI

ManiacoMac’s PPC Cracking Bible v1.0.2 • Page : 198

ManiacoMac ® 2004

tdle Rx,Ry
Trap if Double is Less Than or Equal
td 20,Rx,Ry

tdlei Rx,SI
Trap if Double is Less Than or Equal Immediate
tdi 20,Rx,SI

tdlge Rx,Ry
Trap if Double is Logically Greater Than or Equal
td 5,Rx,Ry

tdlgei Rx,SI
Trap if Double is Logically Greater Than or Equal Immediate
tdi 5,Rx,SI

tdlgt Rx,Ry
Trap if Double is Logically Greater Than
td 1,Rx,Ry

tdlgti Rx,SI
Trap if Double is Logically Greater Than Immediate
tdi 1,Rx,SI

tdlle Rx,Ry
Trap if Double is Logically Less Than or Equal
td 6,Rx,Ry

tdllei Rx,SI
Trap if Double is Logically Less Than or Equal Immediate
tdi 6,Rx,SI

tdllt Rx,Ry
Trap if Double is Logically Less Than
td 2,Rx,Ry

tdllti Rx,SI
Trap if Double is Logically Less Than Immediate
tdi 2,Rx,SI

tdlng Rx,Ry
Trap if Double is Logically Not Greater Than
td 6,Rx,Ry

tdlngi Rx,SI
Trap if Double is Logically Not Greater Than Immediate
tdi 6,Rx,SI

tdlnl Rx,Ry
Trap if Double is Logically Not Less Than
td 5,Rx,Ry

tdlnli Rx,SI

ManiacoMac’s PPC Cracking Bible v1.0.2 • Page : 199

ManiacoMac ® 2004

Trap if Double is Logically Not Less Than Immediate
tdi 5,Rx,SI

tdlt Rx,Ry
Trap if Double is Less Than
td 16,Rx,Ry

tdlti Rx,SI
Trap if Double is Less Than Immediate
tdi 16,Rx,SI

tdne Rx,Ry
Trap if Double is Not Equal
td 24,Rx,Ry

tdnei Rx,SI
Trap if Double is Not Equal Immediate
tdi 24,Rx,SI

tdng Rx,Ry
Trap if Double is Not Greater Than
td 20,Rx,Ry

tdngi Rx,SI
Trap if Double is Not Greater Than Immediate
tdi 20,Rx,SI

tdnl Rx,Ry
Trap if Double is Not Less Than
td 12,Rx,Ry

tdnli Rx,SI
Trap if Double is Not Less Than Immediate
tdi 12,Rx,SI

tweq Rx,Ry
Trap if Word is Equal
tw 4,Rx,Ry

tweqi Rx,SI
Trap if Word is Equal Immediate
twi 4,Rx,SI

twge Rx,Ry
Trap if Word is Greater Than or Equal
tw 12,Rx,Ry

twgei Rx,SI
Trap if Word is Greater Than or Equal Immediate
twi 12,Rx,SI

twgt Rx,Ry
Trap if Word is Greater Than
tw 8,Rx,Ry

ManiacoMac’s PPC Cracking Bible v1.0.2 • Page : 200

ManiacoMac ® 2004

twgti Rx,SI
Trap if Word is Greater Than Immediate
twi 8,Rx,SI

twle Rx,Ry
Trap if Word is Less Than or Equal
tw 20,Rx,Ry

twlei Rx,SI
Trap if Word is Less Than or Equal Immediate
twi 20,Rx,SI

twlge Rx,Ry
Trap if Word is Logically Greater Than or Equal
tw 5,Rx,Ry

twlgei Rx,SI
Trap if Word is Logically Greater Than or Equal Immediate
twi 5,Rx,SI

twlt Rx,Ry
Trap if Word is Logically Greater Than
tw 1,Rx,Ry

twlgti Rx,SI
Trap if Word is Logically Greater Than Immediate
twi 1,Rx,SI

twlle Rx,Ry
Trap if Word is Logically Less Than or Equal
tw 6,Rx,Ry

twllei Rx,SI
Trap if Word is Logically Less Than or Equal Immediate
twi 6,Rx,SI

twllt Rx,Ry
Trap if Word is Logically Less Than
tw 2,Rx,Ry

twllti Rx,SI
Trap if Word is Logically Less Than Immediate
twi 2,Rx,SI

twlng Rx,Ry
Trap if Word is Logically Not Greater Than
tw 6,Rx,Ry

twlngi Rx,SI
Trap if Word is Logically Not Greater Than Immediate
twi 6,Rx,SI

twlnl Rx,Ry

ManiacoMac’s PPC Cracking Bible v1.0.2 • Page : 201

ManiacoMac ® 2004

Trap if Word is Logically Not Less Than
tw 5,Rx,Ry

twlnli Rx,SI
Trap if Word is Logically Not Less Than Immediate
twi 5,Rx,SI

twlt Rx,Ry
Trap if Word is Less Than
tw 16,Rx,Ry

twlti Rx,SI
Trap if Word is Less Than Immediate
twi 16,Rx,SI

twne Rx,Ry
Trap if Word is Not Equal
tw 24,Rx,Ry

twnei Rx,SI
Trap if Word is Not Equal Immediate
twi 24,Rx,SI

twng Rx,Ry
Trap if Word is Not Greater Than
tw 20,Rx,Ry

twngi Rx,SI
Trap if Word is Not Greater Than Immediate
twi 20,Rx,SI

twnl Rx,Ry
Trap if Word is Not Less Than
tw 12,Rx,Ry

twnli Rx,SI
Trap if Word is Not Less Than Immediate
twi 12,Rx,SI

Other Extended Mnemonics
This section describes the other extended mnemonics that PPCAsm supports. Although double-
word-comparison extended mnemonics are listed, they will be available only when PPCAsm
supports 64-bit instructions.

Extended mnemonic
Operation
Base mnemonic equivalent

clrldi Rx,Ry,n
Clear Left Double Immediate
rldicl Rx,Ry,0,n

ManiacoMac’s PPC Cracking Bible v1.0.2 • Page : 202

ManiacoMac ® 2004

clrlsldi Rx,Ry,b,n
Clear Left and Shift Left Double Immediate
rldic Rx,Ry,n,b-n

clrlwi Rx,Ry,n
Clear Left Word Immediate
rlwicl Rx,Ry,0,n

clrlslwi Rx,Ry,b,n
Clear Left and Shift Left Word Immediate
rlwic Rx,Ry,n,b-n

clrrdi Rx,Ry,n
Clear Right Double Immediate
rldicr Rx,Ry,0,63-n

clrrwi Rx,Ry,n
Clear Right Word Immediate
rlwicr Rx,Ry,0,63-n

cmpd crfD,Rx,Ry
Compare Doubleword
cmp crfD,1,Rx,Ry

cmpdi crfD,Rx,SI
Compare Doubleword Immediate
cmpi crfD,1,Rx,SI

cmpld crfD,Rx,Ry
Compare Logical Doubleword
cmpl crfD,1,Rx,Ry

cmpldi crfD,Rx,UI
Compare Logical Doubleword Immediate
cmpli crfD,1,Rx,UI

cmpw crfD,Rx,Ry
Compare Word
cmp crfD,0,Rx,Ry

cmpwi crfD,Rx,SI
Compare Word Immediate
cmpi crfD,0,Rx,SI

cmplw crfD,Rx,Ry
Compare Logical Word
cmpl crfD,0,Rx,Ry

cmplwi crfD,Rx,UI
Compare Logical Word Immediate
cmpli crfD,0,Rx,UI

crclr Bx
Condition Register Clear

ManiacoMac’s PPC Cracking Bible v1.0.2 • Page : 203

ManiacoMac ® 2004

crxor Bx,Bx,Bx

crmove Bx,By
Condition Register Move
cror Bx,By,By

crnot Bx,By
Condition Register Not
crnor Bx,By,By

crset Bx
Condition Register Set
creqv Bx,Bx,Bx

extldi Rx,Ry,n,b
Extract and Left Justify Double Immediate
rldicr Rx,Ry,b,n-1

extrdi Rx,Ry,n,b
Extract and Right Justify Double Immediate
rldicl Rx,Ry,b+n,64-n

extlwi Rx,Ry,n,b
Extract and Left Justify Word Immediate
rlwicr Rx,Ry,b,n-1

extrwi Rx,Ry,n,b
Extract and Right Justify Word Immediate
rlwicl Rx,Ry,b+n,64-n

insrdi Rx,Ry,n,b
Insert from Right Double Immediate
rldimi Rx,Ry,64-(b+n),b

insrwi Rx,Ry,n,b
Insert from Right Word Immediate
rlwimi Rx,Ry,64-(b+n),b

la Rx,D(Ry)
Load Address
addi Rx,Ry,D

la Rx,v
Load Address
addi Rx,Rv,Dv

li Rx,SI
Load 16-bit Signed Immediate
addi Rx,0,SI

lis Rx,SI
Load 16-bit Signed Immediate, Shifted
addis Rx,0,SI

ManiacoMac’s PPC Cracking Bible v1.0.2 • Page : 204

ManiacoMac ® 2004

mr Rx,Ry
Move Register
or Rx,Ry,Ry

nop
No Operation
ori 0,0,0

not Rx,Ry
Complement Register (Logical Not)
nor Rx,Ry,Ry

rotldi Rx,Ry,n
Rotate Left Double Immediate
rldicl Rx,Ry,n,0

rotrdi Rx,Ry,n
Rotate Right Double Immediate
rldicl Rx,Ry,64-n,0

rotld Rx,Ry,Rz
Rotate Left Double
rldcl Rx,Ry,Rz,0

rotlwi Rx,Ry,n
Rotate Left Word Immediate
rlwicl Rx,Ry,n,0

rotrwi Rx,Ry,n
Rotate Right Word Immediate
rlwicl Rx,Ry,64-n,0

rotlw Rx,Ry,Rz
Rotate Left Word
rlwcl Rx,Ry,Rz,0

sldi Rx,Ry,n
Shift Left Double Immediate
rldicr Rx,Ry,n,63-n

slwi Rx,Ry,n
Shift Left Word Immediate
rlwicr Rx,Ry,n,63-n

srdi Rx,Ry,n
Shift Right Double Immediate
rldicl Rx,Ry,64-n,n

srwi Rx,Ry,n
Shift Right Word Immediate
rlwicl Rx,Ry,64-n,n

sub Rx,Ry,Rz
Subtract

ManiacoMac’s PPC Cracking Bible v1.0.2 • Page : 205

ManiacoMac ® 2004

subf Rx,Rz,Ry

subc Rx,Ry,Rz
Subtract Carrying
subfc Rx,Rz,Ry

subi Rx,Ry,val
Subtract Immediate
addi Rx,Ry,-val

subic Rx,Ry,val
Subtract Immediate Carrying
addic Rx,Ry,-val

subic. Rx,Ry,val
Subtract Immediate Carrying and Record
addic. Rx,Ry,-val

subis Rx,Ry,val
Subtract Immediate Shifted
addis Rx,Ry,-val

Mac Resources Types List
This list is composed of the most commonly used resource types. Their are many more resource
type not on this list. All resource types are 4 characters long. When only 3 are used it is
always followed by a space.

N = No ResEdit editor or template. Viewed by Hex Editor.
T = ResEdit has a template.
E = ResEdit has a editor.
* = Third party ResEdit editor or template available.
C = Apple’s ResEdit Code Editor Extension.

Name = Description

actb = Alert color look-up table. E,T.
acur = Animated cursor resource. T.
ADBS = Apple Desktop bus driver code. C.
aedt = AppleEvents. *.
alis = alias information.*.
ALRT = Location and size of alert window. E,T.
APPL = Application list from Desktop file. T.
bmap = Bitmap used by old versions of Control Panels. N.
boot = Boot blocks in system file. C.
BNDL = Bundle- used to attach icons to applications and documents. E,T.
caps = Connection Tool protocol list. *.
cbnd = Communication Toolbox Bundle. *.
CASH = RAM cache control code. C.
card = Video card names. *.
cctb = Control color look-up table. T.
CDEF = Control Definition. N.

ManiacoMac’s PPC Cracking Bible v1.0.2 • Page : 206

ManiacoMac ® 2004

cdev = Control Panel code. C.
cicn = Color icon. E.
clst = Cashed icon list. N.
clut = Color look-up table. E,T.
CMDK = List of Command keys used in ResEdit. T.
cmnu = MacApp temporary menu resource. E,T.
CMNU = Command Menu. MacApp menu’s. E,T.
CNTL = Control Definition Table List. T.
CODE = Application’s code. C.
crsr = Color mouse pointer. E.
CTY# = City list for MAP Control Panel device. T.
CURS = Mouse pointer. E.
dctb = Dialog color look-up table. E,T.
dflg = ddev Flags. *.
DITL = Dialog Items Table List. E,T.
DLOG = Dialog location and size definition. E,T.
dpsr = Edition Manger section. N.
DRVR = Driver. printer,network or, desk accessory. C, T.
DSAT = Dialog System Alter Table. Start-up and bomb alerts and all their code. *.
eppc = EPP Configuration. *.
fAni = Finder Stripe List. List of PICT ID’s. Power Book. *.
faps = File Transfer Tool protocol list. *
fbnd = Communication Toolbox Bundle. *
FBTN = MiniFinder button. T.
fctb = Font color look-up table. T.
FCMT = Finder’s Get Info. comments stored in the Desktop file. T.
FDIR = MiniFinder button directory ID. T.
fdmn = Finder Definition Menu. A list of menu items for Power Books. *.
FILE = Contents of ResEdit’s “open Special” menu. N.
finf = Font information. T.
FKEY = Function key code. C.
fld# = List of folder names. T.
flst = Font List. T.
fmnu = Finder Menu List. *.
FMTR = Format record for 3 1/2 inch disks. C.
fmts = Edition Manager formats. N.
FOBJ = Folder information. N.
FOND = Font family description. T.
FONT = Font description. E,T.
FREF = File reference. E,T.
fval = Finder data. T.
fvew = Finder View. *.
FRSV = ROM Font ID. T.
FWID = Font width table. T.
gama = Gamma table. Color correction for monitors. N.
gmcd = Guard Mechanism for Compression and Decompression. *.
GNRL = ResEdit General Preference Resource. T
hdlg = Balloon Help for dialogs. *.
hfdr = Balloon Help for Finder Icons. *.
hmnu = Balloon Help for menus. *.
hovr = Balloon Help Override List. *.
hrct = Balloon Help - rectangles. *.
hwin = Balloon Help for windows. *.
icl4 = 4-bit 32 x 32 Finder icon. E.

ManiacoMac’s PPC Cracking Bible v1.0.2 • Page : 207

ManiacoMac ® 2004

icl8 = 8-bit 32 x 32 Finder icon. E.
icmt = Comment for Installer 3.0 and later. T.
icm# = 1-bit 8 x 8 and 16 x 16 icons with mask. Used by some applications. N.
icm4 = 4-bit 8 x 8 and 16 x 16 icons. Used by some applications. N.
icm8 = 8-bit 8 x 8 and 16 x 16 icons. Used by some applications. N.
ICN# = 1-bit 32 x 32 Finder icon with mask. E.
ICON = Icon used in dialogs, alters and, menus. E.
ics# = 1-bit 16 x 16 Finder icon with mask. E.
ics4 = 4-bit 16 x 16 Finder icon. E.
ics8 = 8-bit 16 x 16 Finder icon. E.
ictb = Item Color Table Bundle. Color dialog item list. N.
inbb = Apple Installer 3.0 or later scripts. T.
indm = Apple Installer 3.0 or later scripts. T.
infa = Apple Installer 3.0 or later scripts. T.
infs = Apple Installer 3.0 or later scripts. T.
INIT = Code run at boot up . C.
inpk = Apple Installer 3.0 or later scripts. T.
inra = Apple Installer 3.0 or later scripts. T.
insc = Apple Installer 3.0 or later scripts. T.
INT# = Integer list. N.
INTL = OLd style it10 and itl1. E.
itl0 = Date, Time, and number formats. E.
itl1 = International date and time information. E.
itl2 = International string comparison. C.
itl4 = International number conversion table. C.
itlb = International script bundle. T.
itlc = International script configuration. T.
itlk = International exception dictionary for KCHR. T.
KCAP = Physical layout of the keyboard. *.
KCHR = Mapping Virtual key to character codes. E.
kcs# = 1-bit 16 x 16 Keyboard Icon with mask. *.
kcs4 = 4-bit 16 x 16 Keyboard Icon. *.
KEYC = Old keyboard layout. N.
KMAP = Keyboard mapping from raw key code to virtual key code. N.
kscn = Small icons that correspond to KCHR. N.
KSWP = Key plus modifier combinations. N.
LAYO = Old Finder layout. T.
LDEF = List Definition Table. List Manager. C.
lmem = Globals to be switched by MultiFinder. N.
mach = cdev filtering. *.
MACS = Version number in System file. T.
MBAR = MENU display set. T.
MBDF = Menu Bar Definition code. C.
mcky = Mouse Key. Speed in Mouse Control Panel. T.
mctb = MENU color look-up table. E,T.
mcod = MacroMaker information. N.
mdct = MacroMaker information. N.
MDEF = Menu Definition. C.
mem! = MacApp memory utilization. N.
MENU = Definition for standard application menus. E,T.
minf = MacroMaker macro information. T.
mitq = Default queue sizes for the MakeITable procedure. *.
MMAP = Mouse tracking code. N.
mntb = Command number to MacApp menus. N.

ManiacoMac’s PPC Cracking Bible v1.0.2 • Page : 208

ManiacoMac ® 2004

mntr = Monitor Extension code. items used in the Options dialog in the Monitors Control
Panel. N.
mppc = MPP configuration. *.
mst# = MultiFinder string list. N.
mstr = MultiFinder string list. N.
NFNT = New Font Description. N.
nrct = Rectangle position list. T.
PACK = Packages of code used as ROM extensions. C.
PAPA = Printer access protocol address used by AppleTalk. T.
PAT = 1-bit 8 x 8 pattern. E.
PATC = Pattern code. C.
PAT# = Pattern list.A list of PAT resources. E.
PDEF = Printer Driver code. C.
PICK = Pickler Definition. ResEdit. T.
PICT = Picture resource. E,T.
pltt = Palette Color. E,T.
POST = PostScript code. T.
ppat = Pixel Pattern. Color patterns of variable sizes. E,T.
ppcc = NBP Look-up Interval. Power Macintosh. *.
ppci = Location of PPC Toolbox. Power Macintosh. N.
ppt# = Pixel Pattern List. a list of the ppat resources. E.
PREC = Printer driver data. T.
PREF = Preference. ResEdit editor’s preference information. N.
PRER = Non-serial printer Chooser code. N.
PRES = Serial printer Chooser code. N.
proc = Procedure. C.
prvw = Edition Manager. Similar to a PICT. N.
pslt = NuBus Pseudo. Slot mapping. *.
PTCH = ROM Patch. C.
ptch = ROM Patch. C.
qrsc = Database Access Manager query record. T.
RDEV = Network Chooser code. N.
RECT = Coordinates of a single rectangle. *.
resf = Reserved Fonts. T.
RMAP = Resource MAP. ResEdit’s resource map. T.
ROv# = ROM Overrides. A list of ROM resources to override. T.
ROvr = ROM Override Code. C.
RSSC = ResEdit editors and pickles. C.
RVEW = ResEdit pickler view information. T.
RZS = Owner Resource Registered by RZS(tm) for RZS(tm) ResBook. N.
RZS™ = Owner Resource Registered by RZS(tm) for RZS(tm) ResBook. N.
scrn = Screen Configuration. T.
seg! = Segmention Control. For MacApp. N.
SERD = RAM serial driver code. C.
sfnt = True Type outline font description. N.
SICN = List of 1-bit 16 x 16 icons . E.
SIZE = MultiFinder size information. T,*.
snd = Sound resource. *.
snth = Sound synthesizer code. C.
STR = Strings characters. T.
STR# = List of Strings characters. T.
styl = Style. Used with TEXT resource. E.
sysz = Size resource. Used by Extensions / Control Panels . Amount of RAM needed. *.
taps = Terminal Tool Protocol list. *.

ManiacoMac’s PPC Cracking Bible v1.0.2 • Page : 209

ManiacoMac ® 2004

tbnd = Communication Toolbox Bundle. *.
TEXT = Text. E,T.
tlst = Title list. N.
TMPL = Template. ResEdit resource template. T.
TOOL = Fatbits editors tool layout. ResEdit editors. T.
vers = Version Information. Finder’s Get Info. E,T.
wctb = Window color look-up table. E,T.
WDEF = Window Definition code. C.
WIND = Window location, size and type. E,T.
wstr = Query string. Used by qrsc resource. T.

Mac OS X Info Property List

Name Type Required Description

CFBundleDevelopmentRegion String No The native region for the bundle. Usually corresponds to
the native language of the author.

CFBundleDisplayName String No The localized display name of the bundle.

CFBundleDocumentTypes Array No An array of dictionaries describing the document types
supported by the bundle

CFBundleExecutable String Yes Name of the bundle executable file.

CFBundleGetInfoHTML String No A string for displaying richer content in the Finder’s Get
Info panel

CFBundleGetInfoString String No A string for display in the Finder’s Get Info panel

CFBundleHelpBookFolder String No The name of the folder containing the bundle’s help files.

CFBundleHelpBookName String No The name of the help file to display when help is launched
for the bundle.

CFBundleIconFile String Yes File name for icon image file

CFBundleIdentifier String Yes Unique identifier string for the bundle. This string should be
in the form of a java package name, for example com.apple.myapp

CFBundleInfoDictionaryVersion String Yes Version information for the Info.plist format.

CFBundleName String Yes The short display name of the bundle

CFBundlePackageType String Yes The four-letter code identifying the bundle type

CFBundleShortVersionString String Yes The marketing-style version string for the bundle

CFBundleSignature String Yes The four-letter code identifying the bundle creator

ManiacoMac’s PPC Cracking Bible v1.0.2 • Page : 210

ManiacoMac ® 2004

CFBundleURLTypes Array No An array of dictionaries describing the URL schemes supported by
thebundle

CFBundleVersion String Yes Build number of the executable.

CFBundleTypeExtensions Array This key contains an array of filename extensions that map to
this type. To open documents with any extension, specify an extension with a single asterisk
“*”. This key is required.

CFBundleTypeIconFile String This key specifies the name of the icon file to be used when
displaying documents of this type. The icon filename can have an extension or be without
one. If it is without an extension, the system appends an extension appropriate to the
platform (for example, .icns in Mac OS 9).

CFBundleTypeName String This key contains the abstract name for the document type and is
used to refer to the type. This key is required and can be localized by including it in the
corresponding InfoPlist.strings files. This value is the main way to refer to a type and it
is recommended that you use a Java-style package identifier to ensure its uniqueness. If the
type is a common Clipboard type supported by the system, you can use one of the standard
types listed in the NSPasteboard class description.

CFBundleTypeOSTypes Array This key contains an array of four-letter type codes that map to
this type. To open documents of any type, specify the four - letter type code ‘****’. This
key is required

CFBundleTypeRole String This key specifies the application’s role with respect to the type.
The value can be Editor, Viewer, Printer, Shell, or None. This key is required.

NSDocumentClass String This key specifies the NSDocument subclass used to instantiate
instances of this document. Used for Cocoa applications only.

NSExportableAs Array This key specifies an array of other types that documents of this type
can be exported as (write-only types). Used for Cocoa applications only.

CFBundleTypeRole String This key specifies the application’s role with respect to the URL
type. The value can be Editor, Viewer, Printer, Shell, or None. This key is required.

CFBundleURLIconFile String This key contains a string entry with the name of the icon image
file (minus the extension) to be used for this URL type.

CFBundleURLName String This key contains a string entry with the abstract name for this URL
type. This is the main way to refer to a particular type. Toensure uniqueness, it is
recommended that you use a Java-package style identifier. This name is also used as a key in
the InfoPlist.strings file to provide the human-readable version of the type name.

CFBundleURLSchemes Array This key contains an array of the URL schemes handled by this type.
Examples of URL schemes include http, ftp, and so on.

CFAppleHelpAnchor String No The bundle’s initial HTML help file.

NSAppleScriptEnabled String No Specifies whether AppleScript is enabled.

NSHumanReadableCopyright String Yes A copyright string used for display in dialog boxes.

ManiacoMac’s PPC Cracking Bible v1.0.2 • Page : 211

ManiacoMac ® 2004

NSJavaNeeded Boolean or String No Specifies whether the program requires a running Java VM.

NSJavaPath Array No An array of paths to classes whose components are preceded by
NSJavaRoot.

NSJavaRoot String No The root directory containing the java classes.

NSMainNibFile String Yes The name of an application’s main nib file.

NSPrincipalClass String Yes The name of the bundle’s main class.

NSServices Array No An array of dictionaries specifying the services provided by an
application.

NSPortName String This key specifies the name of the port your application monitors for
incoming service requests.

NSMessage String This key specifies the name of the instance method to invoke for the
service. In Objective-C, the instance method must be of the form messageName:userData:
error:. In Java, the instance method must be of the form messageName (NSPasteBoard,String).

NSSendTypes Array This key specifies an array of data type names that can be read by the
service. The NSPasteboard class description lists several common data types. You must
include this key, the NSReturnTypes key, or both.

NSReturnTypes Array This key specifies an array of data type names that can be returned by
the service. The NSPasteboard class description lists several common data types. You must
include this key, the NSSendTypes key, or both.

NSMenuItem Dictionary This key contains a dictionary that specifies the text to add to the
Services menu. The only key in the dictionary is called default and its value is
the menu item text. This value must be unique. You can use a slash character “/” to specify
a submenu. For example, Mail/Send would appear in the Services menu as a menu named Mail
with an item named Send.

NSKeyEquivalent Dictionary This key is optional and contains a dictionary with the keyboard
equivalent used to invoke the service menu command. Similar to NSMenuItem, the only key in
the dictionary is called default and its value is a single character. Users invoke this
keyboard equivalent by pressing the Command and Shift key modifiers along with the
character.

NSUserData String This key is an optional string that contains a value of your choice.

NSTimeout String This key is an optional numerical string that indicates the number of
milliseconds Services should wait for a response from the application providing a service
when a response is required.

LSBackgroundOnly String No Specifies whether the application runs only in the background.
(Mach- O applications only)

LSPrefersCarbon String No Specifies whether an application prefers running in the
Carbon environment. LSPrefersClassic String No Specifies whether an application prefers
running in the Classic environment.

ManiacoMac’s PPC Cracking Bible v1.0.2 • Page : 212

ManiacoMac ® 2004

LSRequiresCarbon String No Specifies whether the application must run as a Carbon
application.

LSRequiresClassic String No Specifies whether the application must run in the Classic
environment.

LSUIElement String No Specifies whether the application is a user-interface element, that
is, an application that should not appear in the Dock or Force Quit window.

APInstallerURL String Yes A URL-based path to the files you want to install.
APFiles Array Yes An array of dictionaries describing the files or directories that can be
installed.

APFileDescriptionKey String A short description of the item to display in the Finder’s Info
window

APDisplayedAsContainer String If “Yes” the item is shown with a folder icon in the Info
panel; otherwise, it is shown with a document icon

APFileDestinationPath String Where to install the component as a path relative to the
application bundle

APFileName String The name of the file or directory

APFileSourcePath String The path to the component in the application package relative to the
APInstallerURL path.

APInstallAction String The action to take with the component: “Copy” or “Open”

PPC Processor Overview

ManiacoMac’s PPC Cracking Bible v1.0.2 • Page : 213

ManiacoMac ® 2004

ManiacoMac’s PPC Cracking Bible v1.0.2 • Page : 214

ManiacoMac ® 2004

HAVE FUN WITH THIS STUFF AND GOOD LEARNING

ManiacoMac™ @ 02/2004
All softwares that are good enough deserve to be cracked

	FOREWORDS
	Chapter 1
	Chapter 2
	Chapter 3
	Chapter 4
	Chapter 5
	Chapter 6
	Chapter 7
	Chapter 8
	HEX AND SUCH
	PPC Cracking v2.0
	Basic Mac PPC Cracking
	Basic OS X Cracking
	OS X Cracking 101
	OS X Cracking 102
	INTRO TO ASSEMBLY LANGUAGE
	Cocoa Cracking Technics
	Loader Theory
	MacsBug for Non-Programmers
	Tips and Tricks for MacsBug
	MacsBug DCMDs
	Otool Manual
	GDB Manual
	ANNEXE
	Predefined PPC Register Names
	PPC Mnemonics
	PPC Extended Mnemonics
	Mac Resources Types List
	Mac OS X Info Property List
	PPC Processor Overview

