11 EP 0 969 364 A2 12

on multiple processors if the underlying operating sys-
tem allows processes to execute on multiple proces-
sors, as is possible on shared-memory multiprocessors.
Additionally, multiple bases may run on the same
machine. For example, in FIG. 1, bases 30b and 30c are
shown running on the same machine 10b.

[0038] Each agent 40 is a mobile software component
that serves as both a global object space and a protec-
tion domain. An agent 40 manages a set of objects that
all reside in the same consistent and unique object
space. Each agent 40 encapsulates a collection of
objects, including simple objects (such as data objects)
as well as a collection of threads or concurrently execut-
ing tasks. Each agent 40 runs on one or more bases 30,
and several agents 40 or several parts of agents may
simultaneously reside on the same base 30. Thus,
agents of the present invention may reside on one or
more bases and also on one or more distinct machines.
Accordingly, an agent's state may itself be distributed
over a collection of distinct machines. The details of
components necessary to implement such agents are
described below in the section entitied "Runtime Data
Structure.”

[0039] The agent metaphor allows programmers to
write mobile code systems that perform their tasks in
autonomous ways. Unlike prior art agents, the agents of
the present invention encapsulate both concurrent, dis-
tributed tasks and data. In other words, an agent's state
may be truly distributed within a network. References to
data within an agent do not require knowledge of the
physical location where the data resides, so objects
within agents may be accessed in a network-transpar-
ent manner. As a result, network-centric software is ren-
dered easy to write and maintain. Because references
among objects within an agent are location- or network-
transparent, the agents of the present invention can be
thought of as providing a "shared memory" abstraction
in a distributed network environment. Moreover, the
agents of the present invention also offer enhanced
modularity and protection facilities by providing encap-
sulation of tasks and data which preferably prohibits
transparent access of tasks and data in one agent from
other agents as will be discussed in greater detail
below.

[0040] Moreover, multiple agents may be created
within a network system, and the distribution of agents
and even portions of agents (called "subagents”)
among the machines of the network may be altered
dynamically through migration as will be discussed in
more detail below. Further, since each agent can con-
tain multiple tasks, a single mobile software component
(the agent) can execute tasks simultaneously on differ-
ent, potentially heterogeneous, machines, thereby ena-
bling greater concurrency within a single mobile
software component.

10

20

25

30

35

40

45

50

55

Communication Between Objects

[0041] With regard to communication between objects
within the same agent ("intra-agent communication”),
the encapsulation provided by each agent and the
potentially distributed nature of each agent of the
present invention provides important benefits. In partic-
ular, objects within a particular agent's object space
may be transparently accessed by other objects in the
same agent regardless of which base (and therefore
regardless of which machine) they reside on. In other
words, an object can access any other object in the
same agent whether that object is on the same or some
other machine in the network and without manifest
knowledge of the physical location where that object
resides.

[0042] Communication between objects residing in
different agents ("interagent communication”) is prefer-
ably governed as follows. All objects are assigned glo-
bal identifiers. However, only those objects which
implement a special "Remote"” interface can be
accessed from outside the agent to which they belong.
When a objects implementing a Remote interface are
passed as arguments to remote procedures, remote ref-
erences to the objects are supplied. When other objects
(i.e. objects not implementing a Remote interface)
appear as arguments, copies of these objects are
passed. The semantics of such a Remote interface may
be similar to the Java/RMI specification, for example.
[0043] The above-described intra-agent and intera-
gent communication arrangements are generally illus-
trated in FIG. 2. In the figure, two bases 30b and 30¢ are
located on machine 10b, and agent 40a resides on mul-
tiple bases 30a and 30b running on distinct machines
10a and 10b, respectively. Each agent 40 includes one
or more objects 50. Objects implementing a Remote
interface are represented by a rectangle containing
cross-hatching and are designated by reference
numeral 52, while objects not implementing a Remote
interface are represented by a solid black rectangle and
are designated by reference numeral 54. Remote refer-
ences to objects are represented by an unshaded rec-
tangle and are designed by the reference numeral 56.
Arrows represent dependencies between references
and the object the reference.

[0044] Communication across bases but within an
agent is performed by remote reference, as shown by
arrows A and B in FIG. 2, in which any kind of object
may be accessed and modified consistently. A remote
reference can be thus viewed as merely a stub to the
actual object it references. This implementation guaran-
tees that access of a remote reference will entail com-
munication with the machine on which the object
actually resides, and such communication may serve to
access relevant data or initiate a new computation. As
noted above, the portions of a single agent found on
separate bases are known as subagents. Within a sub-
agent (that is, within an agent on the same base),



