23 EP 0 969 364 A2 24

Base B. After all migration steps are finished, the mem-
ory block for the Subagent A on Base A is released, and
the agent resumes as Subagent A' on the Base B as
shown in FIG. 11E. In this example, Machine A and
Machine B may be heterogeneous. Machine dependen-
cies in the structure of tasks and objects are resolved by
the runtime system, and in particular by the task and
object serializers.

[0087] FIGS. 12A and 12B depict an example of par-
tial agent migration, in which a part of an agent residing
on a base is sent to another base, and in which remain-
ing parts of the agent continue to reside on their current
bases. In this example, as shown in FIG. 12A, an Agent
comprises two subagents, Subagent A1 and Subagent
A2, which reside on two bases, Base A and Base B,
respectively. Partial migration of the Agent is requested,
by which only Subagent A1 is requested to migrate from
Base A to a Base C, while Subagent A2 remains on
Base B. A serialization process for Subagent A1 is per-
formed in a manner similar to that shown in FIGS. 11A-
11E and described above. After the partial migration as
shown in FIG. 12B, Subagent A1 has migrated from
Base A to Base C as Subagent A1', and the entire agent
therefore resides on both Base B and Base C.

[0088] FIGS. 13A and 13B depict an example of whole
agent migration, in which all parts of an agent migrate to
a target base. In this example, as shown in FIG. 13A, an
Agent comprises two subagents, Subagent A1 and
Subagent A2, which reside on two bases, Base A and
Base B, respectively. Subagent A1 residing on Base A
executes a whole agent migrate method, requesting
migration of the entire Agent to which Subagent A
belongs to a Base C. Another portion of the Agent,
namely Subagent A2, happens to reside on another
base, namely Base B. As a result of whole agent migra-
tion, both Subagent A and Subagent B migrate to Base
C and are merged into a single subagent, Subagent A3,
as shown in FIG. 13B.

[0089] FIGS. 14A and 14B show an example of object
migration. An Agent comprising a single subagent, Sub-
agent A1, resides on a Base A as shown in FIG. 14A.
Subagent A1 includes an object memory containing an
object, Object O1. A programmer requests that Object
O1 migrate from Base A to Base B. Object O1 is serial-
ized and sent to Base B using the Base A runtime sys-
tem and communication system. The Base B
communication system receives the serialized Object
01, and if there is no subagent associated with the
Agent on Base B, then the Base B runtime system cre-
ates a new memory block for a new subagent, Subagent
A2, as shown in FIG. 14B. In this example, the Agent
resides on both Base A and Base B after the migration
of Object O1, and a forwarding object "r" is created in
Subagent A1’ to Object O1 on Base B to maintain net-
work-transparent references to Object O1 even after the
object migration.

[0090] FIGS. 15A and 15B depict one example of
remote object access in the context of agent migration.

10

15

20

25

30

35

40

45

50

55

13

In this example, as shown in FIG. 15A, a first agent,
Agent A, resides on Base A and includes a Subagent
A1 having a reference object R which refers to an
Object O1, which is found within a second agent, Agent
B, residing on Base B. Agent B migrates to a third base,
Base C, after which Agent B comprises a Subagent B1
on Base B and a Subagent B2 on Base C as shown in
FIG. 15B. A forwarding object "r" is created in Subagent
B1 on Base B, so that Base A can access the Object O1
even after the Agent B migrates to Base C, as also
shown in FIG. 15B.

[0091] FIGS. 16A and 16B depict another example of
remote object access in the context of agent migration.
In this example, as shown in FIG. 16A, a first agent,
Agent A, resides on Base A and includes a subagent
having an Object O1. A second agent, Agent B, resides
on Base B and includes a subagent having a reference
object R referring to the Object O1 on Base A. Agent B
migrates to a third base, Base C, after which Agent B
comprises a single subagent which now resides on
Base C as shown in FIG. 16B. A new reference object R’
is created within Agent B on Base C for maintaining
consistent access to the Object O1 residing on Base A.

Runtime Data Structure

[0092] Instances in the present invention are prefera-
bly allocated from a heap. To keep preferable 64-bit val-
ues aligned properly, all objects are preferably
maintained with 64-bit alignment. On byte-addressable
machines this allows up to three low-order bits to be
used as tags. For regularity, run-time data structures are
implemented as instances of the invention whenever
possible.

[0093] Both the garbage collector and the code that
marshals messages need to distinguish pointers from
data and to determine the sizes of objects in memory.
The marshalling code also needs additional information.
For example, it must be able to distinguish between
interned and uninterned strings. Floating point numbers
may need to be convened when moving data between
dissimilar machines, so the marshalling code must be
able to locate them as well.

(a) Instance

[0094] Besides its own fields, each instance preferably
includes its class, an integer "hashCode" and a mutex.
If the instance has ever been exported from the base on
which it was created it also contains a global id. Most
Java implementations derive an instance's hash value
from the location of the object in memory. Because the
present invention moves objects between bases,
changing their location in memory as it does so, the
hash value needs to be stored within the instance itself.
The hashCode, mutex, and global id are created as
needed; a newly created instance has none of them. As
shown in the "Instance” block 200 of FIG. 17, the layout



