21 EP 0 969 364 A2

Class3 object created on Base2 is established on
Base1 (arrow D). Hence, future references to Class3 ini-
tiated on Base1 will refer to static fields and methods
found in the Class3 class object resident on Base2.

Runtime System

[0080] The runtime system manages a data structure
of a base and provides special functions described in
this invention by the inventors. As FIG. 9 shows, each
base is attached to a corresponding runtime system
that provides certain management functions and com-
munication support. A single communication system
may be used to serve all of the runtime systems on a
particular machine. An agent may comprise a plurality
of subagents, each of which resides on separate bases.
In this case, subagents in the separate bases are con-
nected with the communication system supported by
the runtime system or systems found on their respective
bases.

[0081] FIG. 10 depicts subcomponents in a base and
its runtime system in detail. A base includes a plurality
of data blocks, including class files, object memory, task
memory and subagent control storage. The object
memory stores all objects in a subagent, including refer-
ence objects that refer to remote objects outside the
subagent. The object memory is managed by an object
manager in a runtime system and pointed to by an
object table in the subagent control storage. The task
memory stores thread frames, used by the task exe-
cuter to manage task execution. Class files hold pro-
gramming code that is accessed by the task executer.
The subagent control storage stores management infor-
mation for a subagent. An agent ID in the subagent con-
trol storage identifies the specific agent to which the
subagent belongs (that is, the agent of which the suba-
gent is a part). An object table in the subagent control
storage points to an object memory in the subagent. A
task stack in the subagent control storage points to a
task memory to maintain the subagent's execution
states.

[0082] An agent manager manages subagents in a
base, using subagent control storage and communicat-
ing with a task executer that instantiates agents, exe-
cutes programs in the class files, instantiates objects in
the object memory, and manages execution task stacks
in the task memory. Since both tasks and objects can
migrate freely within an agent and among subagents
residing on different bases, some mechanism must be
available to transmit object and task state among
machines of potentially different types (i.e. heterogene-
ous machines). Serialization is a process wherein a
complex data structure (such as a tree or graph) with
internal pointers is transformed into a flat object (such
as an array). Pointers in the original are replaced with
indices in the flattened representation and reinstanti-
ated as pointers on the receiving agent. An implementa-
tion of a serializer is straightforward, requiring only

10

15

20

25

30

35

40

45

50

55

12

22

special care to ensure that cycles in the input structure
are properly recognized.

[0083] The task executer also communicates with a
task serializer, to which the executer makes requests to
serialize task objects, and a remote access controller, to
which the executer makes requests to call remote meth-
ods. Details of one implementation of the remote
access controller are described below (in the section
entitled "Runtime Data Structure™). An object manager
implements the object space discussed above by man-
aging objects in the object memory, and in particular by
instantiating objects, reclaiming garbage objects, and
making requests for serializing objects to an object seri-
alizer. A communication system mediates interaction
among bases in machines connected to the network.
[0084] While agent and object migration issues have
been generally discussed above (see section entitled
"Agent and Object Migration™), the participation of the
runtime system in such migration is highlighted in the
following additional discussion.

[0085] FIGS. 11A-11E show an example sequence of
agent migration. As shown in FIG. 11A, an agent com-
prising a single Subagent A may reside on a Base A on
a Machine A on the left side of the diagram. A Base A
task executer is instructed to execute an agent migrate
method on the agent comprising Subagent A to migrate
Subagent A to Base B on Machine B. The Base A task
executer requests a Base A agent manager to obtain
agent control data for Subagent A and send it to a
Machine A communication system. The agent control
data comprises header information about the migrating
agent, along with its tasks and objects. Next, the Base A
task executer requests a Base A task serializer to seri-
alize task objects within Subagent A in task memory,
and the Base A task serializer sends the serialized
tasks to the Machine A communication system. Simi-
larly, objects are also serialized and sent to the Machine
A communication system by the Base A object manager
and object serializer. As shown in FIG. 11B. the
Machine A communication system then sends the seri-
alized objects, serialized tasks and agent control data
for Subagent A over the network to the communication
system for Machine B.

[0086] After the Machine B communication system
receives the agent migration data for Subagent A
(including the agent control data, serialized tasks and
serialized objects), a Base B agent manager allocates a
memory block for Subagent A on Base B (denoted Sub-
agent A’), and creates a subagent control storage on
Base B for Subagent A'. Machine B task executer and
object manager also create task objects and data
objects in Base B task memory and object memory,
respectively. After Subagent A’ is thus instantiated on
Base B, a class request is sent from Base B to Base A
over the network as shown in FIG. 11C. As shown in
FIG. 11D, Base A responds to the class request by
sending over the network to Base B class files for the
agent which are necessary for resuming the agent on



