10

15

20

25

30

WO 99/05594 PCT/GB98/02237

57

It is also necessary however for the user to provide domain specific code
to implement task functionality. That is, the user must provide code for all of the
functions for computing costs for a primitive task, and for providing callbacks 555
to control external systems. This is done using the code generation editor 360.

This is the only place where the developer needs to define any executable
code. CABS can define prototypes for these functions and aiso.provides an APl
library 380 for use by developers in their code production.

The output of CABS 100, in the form of software agents, is distributed to
the user environment via scripts 390. Existing systems can then be linked to the
agents using an APl of a wrapper class, defined by the system, which wraps code

inherited from the component library together with the user-supplied data.

5. DEBUGGING AND VISUALISATION

It is difficult to create any single program, even a program which interacts
with no other programs, which has no faults or errors in it. It is an order of
magnitude more difficult to analyse and debug distributed software which contains
multiple agents. The behaviours that emerge from the overall distributed software
may not be at all what was expected. Further, the communication is often at such
a high level that it is not possible to look directly at data involved. Even an object
based system can be designed to allow the programmer to look at the actual data
involved in a sequence of events but agents, using message-based communication,
may simply not enable the programmer to do so.

Clearly, it is important to analyse what is going wrong so that it can be
corrected. Approaches used in singular ‘agent’ applications may be used but are
frequently inadequate in analysing and debugging distributed -software systems.
For example, fault analysis can be done as a “post mortem” exercise where the
data is stored at the time of failure which later provides a “snap shot” of the
prevailing circumstances, from which an attempt can be made to find out what
caused the failure. A known debugger, described in international patent
application No: W093/24882 in the name of the present applicant, shows how
such data can be captured in a history file which can later be ‘played’, ‘replayed’,

‘rewound’, ‘fast forwarded’, etc. - video style.

SUBSTITUTE SHEET (rule 26)

