1 EP 0 969 364 A2 2

Description

FIELD OF THE INVENTION

[0001] The present invention relates to the field of dis-
tributed and parallel computer software programming,
and in particular to a software system including distrib-
uted agents which exhibits enhanced process mobility
and communication and facilitates the construction of
network-centric applications suited for both homogene-
ous and heterogeneous network environments.

BACKGROUND

[0002] Indistributed computer systems, emphasis has
traditionally been placed on issues concerning the par-
titioning and transmission of data among a collection of
distinct computers or "machines.” Typically, these sys-
tems allow code to be distributed and accessed in one
of two ways. For example, in client-server systems,
each machine holds code controlling the resources
found on that machine. In others, the same code image
is found on all machines. In either case, some form of
message-passing is used to invoke operations on
remote sites.

[0003] Traditionally, process mobility (i.e. moving exe-
cuting processes from one machine to another) has not
been an issue of significant importance. In client-server
based systems, process mobility is essentially irrele-
vant; tasks are heavyweight (i.e. contain a large amount
of state) and control resources resident on a particular
machine. In systems where all machines share the
same code image, process mobility may be used to help
performance by improving locality and load-balancing.
However, tasks typically execute heavyweight proce-
dures, making task migration infeasible. Moreover, an
efficient task migration policy that has simple, well-
understood semantics has not been achieved to date.
[0004] Recently, process mobility is becoming
increasingly important to the implementation of distrib-
uted computer systems. Enhanced process mobility
allows computations to dynamically reconfigure them-
selves, taking advantage of improved data locality, and
reducing the number of non-local communication
events initiated. Several distributed system models have
been developed to provide a certain measure of proc-
ess mobility.

Imperative Glue Systems

[0005] Imperative "glue” systems have been devel-
oped which generally operate as seamless extensions
to an existing imperative programming language and
add distribution and communication support to the exist-
ing language. Unfortunately, computation in imperative
languages involves frequent modifications to shared
global data, which is exactly what a distributed program
needs to avoid. Two basic approaches have been devel-

10

20

25

30

35

40

45

50

55

oped to deal with this problem: distributed shared mem-
ory (or "DSM") and remote procedure call (or "RPC").
[0006] With DSM, while the distributed nature of the
computation is largely invisible to the programmer,
implementation complexity is greater than in a system
which uses message-passing explicitly. All data is con-
ceptually associated with a global address. Thus, the
machine where a thread executes no longer influences
the behavior of the program: dereferencing a global
address may involve a remote communication to the
machine "owning" the contents of that address. While
DSM provides a mechanism to implement parallel dia-
lects of imperative languages in a distributed environ-
ment, programmers have little control in specifying how
coherence and consistency are realized. In particular,
issues of process mobility become largely irrelevant
since the distribution of data and tasks is implicitly han-
dled by the implementation, and not explicitly managed
by the program. While DSM simplifies programming, it is
likely to be more effective when combined with mecha-
nisms to explicitly control distribution and communica-
tion.

[0007] RPC provides a way of breaking a program into
discrete parts, each of which runs in its own address
space. Unlike DSM, RPC communication is explicit in
the program, so programmers have complete control
over costs. However, the semantics of RPC are sub-
stantially different from that of an ordinary procedure
call. In particular, when a procedure P makes an RPC
call to a procedure Q, the arguments to Q are mar-
shaled and shipped to the machine where the computa-
tion should be performed. Stub generators on
procedures linked to the application program are
responsible for handling representation conversion and
messaging. Arguments passed to a remote procedure
are passed by copying. Thus, side effects to shared
structures can no longer be used for communication
between caller and callee. As a result, imperative pro-
grams must be substantially modified to run in a distrib-
uted environment wusing RPC. Consequently,
programming a distributed agent system using RPC
semantics is significantly more complex and subtle than
sequential programming on a serial machine.

[0008] Process mobility, the ability to migrate a thread
of control (or task) along with its associated state, is
especially difficult. The imperative nature of these lan-
guages means that a large percentage of data found in
programs must be global. Without using RPC, commu-
nication among processes must be via side effect, and
not via allocation and copy. Thus, the advantages of
having mobile processes is greatly mitigated. Concep-
tually, processes are highly mobile in these languages
because they carry no state, but because they must fre-
quently reference global (shared) data, process migra-
tion becomes useful only if the data they access moves
along with the process requiring them. Given that global
data is likely to be shared among several processes, the
implicit coupling of data and code in imperative lan-



