3 EP 0 969 364 A2 4

guages greatly weakens the utility of process mobility in
these languages.

Network-Centric, Object Based Languages

[0009] Recently, a shift to a new computational para-
digm has occurred. Instead of regarding the locus of an
executing program as a single address space physically
resident on a single processor, or as a collection of inde-
pendent programs distributed among a set of proces-
sors, the advent of concurrent, network-centric, object-
based languages, such as Java, has offered a compel-
ling alternative. See J. Gosling et al., The Java Lan-
guage Specification, Sun Microsystems, Inc. (1995),
which is expressly incorporated herein. By allowing con-
current threads of control to execute on top of a porta-
ble, distributed virtual machine, a network-aware
language like Java presents a view of computation in
which a single program can be seamlessly distributed
among a collection of heterogeneous processors.
Unlike distributed systems that require the same code
to be resident on all machines prior to execution, code-
mobile languages like Java allow new code to be trans-
mitted and linked to an already executing process. This
feature allows dynamic upload functionality in ways not
possible in traditional distributed systems.

[0010] Java incorporates computational units known
as "objects.” An object includes a collection of data
called instances variables, and a set of operations
called methods which operate on the instance variables.
Object state (i.e. the instance variables) is accessed
and manipulated from outside an object through publicly
visible methods. Because this object-oriented paradigm
provides a natural form of encapsulation, it is generally
well-suited for a distributed environment. Objects pro-
vide regulated access to shared resources and serv-
ices. In contrast to distributed glue languages,
distributed extensions of Java permit objects as well as
base types to be communicated. Moreover, certain
implementations, such as Java/RMI, also permit code to
be dynamically linked into an address space on a
remote site.

[0011] Since a primary goal of Java is to support code
migration (note that code migration is conceptually dis-
tinct from process mobility, since code migration makes
no assumption about the data to be operated by the
instructions in the code being migrated) in a distributed
environment, the language provides a socket mecha-
nism through which processes on different machines in
a distributed network may communicate. Sockets, how-
ever, are a low-level network communication abstrac-
tion. Applications using sockets must layer an
application-level protocol on top of this network layer.
The application-level protocol is responsible for encod-
ing and decoding messages, performing type-checking
and verification, and the like. This arrangement has
been found to be error-prone and cumbersome. Moreo-
ver, Java only supports migration of whole programs.

10

15

20

25

30

35

40

45

50

55

Threads of control cannot be transmitted among distinct
machines.

[0012] RPC provides one way of abstracting low-level
details necessary to use sockets. RPC is a poor fit, how-
ever, to an object-oriented system. In Java, for example,
communication takes place among objects, not proce-
dures per se. Java/RMI, described for example in A.
Wollrath et al., "Java-Centric Distributed Computing,”
IEEE Micro, Vol. 2, No. 72, pp. 44-53 (May 1997), is a
variant of RPC tailored for the object semantics defined
by Java's sequential core. Instead of using procedure
call as the basis for separating local and remote compu-
tation, Java/RMI uses objects. A remote computation is
initiated by invoking a procedure on a remote object. Cli-
ents access remote objects through surrogate objects
found on their own machines. These objects are gener-
ated automatically by the compiler, and compile to code
that handles marshalling of arguments and the like. Like
any other Java object, remote objects are first-class,
and may be passed as arguments to, or returned as
results from, a procedure call.

[0013] Java/RMI supports a number of features not
available in distributed extensions of imperative lan-
guages or distributed glue languages. Most important
among them is the ability to transfer behavior to and
from clients and servers. Consider a remote interface |
that defines some abstraction. A server may implement
this interface, providing a specific behavior. When a ¢li-
ent first requests this object, it gets the code defining the
implementation. In other words, as long as clients and
servers agree on a policy, the particular mechanism
used to implement this policy can be altered dynami-
cally. Clients can send behavior to servers by packaging
them as tasks which can then be directly executed on
the server. Again, if the procedure to be executed is not
already found on the server, it is fetched from the client.
Remote interfaces thus provide a powerful device to
dynamically ship executable content with state among a
distributed collection of machines. Java/RMI allows data
as well as code to be communicated among machines
in a Java ensemble. Such extensions permit Java pro-
grammers to view a computation not merely as a single
monolithic unit moving from machine to machine (such
as in the form of applets), but as a distributed entity, par-
titioned among a collection of machines. By using an
architecture-independent virtual machine, information
from one process can be sent to another without deep
knowledge of the machines on which each process is
executing or the underlying network infrastructure con-
necting these pieces together.

[0014] Java/RMI can be difficult to use, however.
Remote objects are implicitly associated with global
handles or uids, and thus are never copied across
nodes. However, any argument which is not a remote
object in a remote object procedure call is copied, in
much the same way as in RPC. As a result, remote calls
have different semantics from local calls even though
they appear identical syntactically. The fact that Java is



