19 EP 0 969 364 A2 20

Communication Between Agents

[0071] An agent of the present invention communi-
cates with another agent by invoking interface methods
of remote objects, for example in much the same way as
Java's RMI. First, an interface that extends a Remote
interface is defined with the signatures of instance
methods that may be called from remote agents. Sec-
ond, a class that implements the above interface is
defined with the implementation of the methods. Third,
an instance object created from the above class is
recorded in either the agent's own registry or the global
registry agent. Fourth, a remote agent looks up an
object in the registry and receives the object reference
to the actual object. Finally, the remote agent may call
the instance method of the remote object in the RPC
model, which is always applied to the remote method
calls across agents.

[0072] Once the object reference is passed to the
remote agent, the remote instance call may pass more
remote object references via arguments to the remote
agent and get another remote reference in a return
value, so separate agents can be tightly coupled with
many object references. The arguments and the return
values are passed by reference when the objects imple-
ments a Remote interface. Otherwise, they are passed
by value (a deep copy of the original). When objects are
copied, the consistency of the field values in the objects
is not maintained across agents.

Dynamic Linking

[0073] The present invention allows new class defini-
tions (i.e. code) to be dynamically injected into a running
program. This feature allows applications to incremen-
tally enhance their functionality without requiring their
reexecution. The structure of the class loader that pro-
vides this feature is similar to related mechanisms found
in other languages that provide dynamic linking of new
code structures (e.g. Scheme or Java). However, the
introduction of a distributed object space raises issues
not relevant in previous work.

[0074] Due to the distributed object semantics of the
present invention, an agent has more than one class
loader that control how and where to load classes. The
first class loader that is created at the beginning of exe-
cution is preferably linked to the base where the agent
starts to run, so that user-defined classes are loaded
from the base by default. However, when an object
migrates to a new base where the object's class has not
yet been loaded, the class cannot be loaded from this
new base but must be transferred from the source base
(on which the object was originally created) to the desti-
nation base.

[0075] Class loaders also manage class objects.
Though it is not necessary that all class objects reside
on the same base as the class loader, the class loader
must know if a class object is already created, or where

10

15

20

25

30

35

40

45

50

55

11

the actual class objects are, so that it can observe the
rule that each class has only one class object for a class
loader. If a user-defined class file is located in a specific
local disk that is different from the base on which an
agent starts to run, and a programmer wishes to load
the class, the programmer may use a base-dependent
class loader.

[0076] FIGS. 8A-8C show three cases of class load-
ing. FIGS. 8A and 8B show two cases of object migra-
tion to a base where the corresponding class file is not
loaded, while FIG. 8C illustrates new class object crea-
tion.

[0077] FIG. 8A shows migration of an object in core
library classes. Core class libraries may be considered
as representing system classes not modifiable by the
programmer. The core class files may always be loaded
from a local disk. As shown in FIG. 8A, Base1 holds a
class loader and a class object (Class1) and an
instance of this class. When this instance moves to
Base2, the class file containing the code for this object's
methods must be loaded. To do so, the following steps
are performed. After the object migrates (arrow A), a
remote reference to the defining class found on Base1
is created on Base2 (arrow B). Similarly, a remote refer-
ence to the class loader is also created (arrow C). Since
Class1 is a core class, it can be loaded from a disk local
to the machine on which Base2 is found (arrow D) and
linked to the instance of Class1 (arrow E).

[0078] FIG. 8B depicts object migration in a user-
defined class. In this case, the class file must be loaded
from the disk in which the class file exists, or from the
source base of the migration, because the source base
must have the class file. FIG. 8B illustrates the latter
example. Base1 holds a class loader and a class object
(Class2) and an instance of this class. When the Class2
instance migrates to Base2 (arrow A), remote refer-
ences to the class object (arrow B) and the class loader
(arrow C) are established. The remote reference to the
class loader (arrow C) allows future dynamic linking of
class files created on Base1 to be transparently loaded
onto Base2. The remote reference to the class object
(arrow B) is required because the class object may hold
global state information. The class file containing
method definitions is then copied (arrow D) from Base1
to Base2. The instance object is then linked to this class
file (arrow E).

[0079] Finally, FIG. 8C depicts the creation of a new
class object. Here, a computation on Base2 makes a
reference to a new class. Base1 holds a class loader
and a class object (Class3). The class loader on Base2
is simply a remote reference (arrow A) to the class
loader on Base1. The class loader loads the class file
from a file system owned by Basel (arrow B) onto
Base2's local file system (arrow C). A new instance of
the Class3 object is then created on Base2. A new
instance of the Class3 class itself is also created on
Base2. Since there must be unique reference to a given
class object in the system, a remote reference to the



