25

of an instance is preferably as follows:

- Theinstance's class
- (Integer hashCode)
- (Mutex)

- (Globalid)

- Theinstance's fields

[0095] Most objects are not hashed, locked, imported
or exported. Therefore, to reduce the size of these com-
mon objects these fields could be merged, at the cost of
a slight increase in the cost of accessing them.

[0096] All information common to the instances of a
particular class, including the data layout information
needed by the garbage collector and marshalling code,
is stored in the class.

(b) Arrays

[0097] For regularity, arrays are preferably repre-
sented as instances of a special array class. Each
instance has fields containing the array's type, size, and
elements. Array instances need to be handled specially
by the garbage collector because, unlike other
instances, the size of an array is not determined by the
array's class.

(c) Class

[0098] As shown in FIG. 17, a class object 210 may be
organized into five areas:

(1) Class-specific information for the garbage col-
lector (GC);
(2) Instance-specific information for the garbage
collector (GC);
(3) Data common to all classes;
(4) Instance and static method table; and
(5) Constants and static fields.

[0099] The following data is found in every class:

- Data layout information for this class;

- Data layout information for instances of this class,
including whether this is an array class;

- This class's superclass;

- Theinstance of class "Class" for this class;

- The class loader used to load this class;

- Initialization status; and

- Interface method table index.

[0100] The method tables are sequences of pointers
to code, one for each instance and static method in the
class. An instance is invoked by jumping to the code
found at the appropriate offset. Because instance
method code offsets must be the same for a class and
any subclasses, the instance method table begins at the
same offset in every class.

EP 0 969 364 A2

10

15

20

25

30

35

40

45

50

55

14

26

[0101] The name of the class and the interfaces it
implements are found in the Class instance. To speed
up casts and run-time type checking, each class could
also contain a succinct representation of its location in
the class hierarchy.

[0102] Although not shown in FIG. 17, the code for a
class's methods can contain pointers back to the class.
Preferably class objects and their code are not in the
heap. They are instead part of the class file, and are
created when the class file is loaded.

(d) Thread

[0103] Threads express execution states of programs
in runtime and may be instances of a thread class. In
addition to the standard fields for that class, each thread
contains a stack. This stack is a linked list of stack seg-
ments, each of which contain a sequence of stack
frames. An implementation of a frame contains a pointer
to size and type information for local variables and argu-
ments. This information is used to properly handle rou-
tine type checking, and is also used by the garbage
collector. It is possible to evaluate this information
dynamically if garbage collection occurs infrequently.

(e) Subagents

[0104] A subagent is the portion of an agent that
resides on a particular base. Instances within a suba-
gent are "local" to that subagent; all other instances are
"remote.” Subagents are represented as instances of a
subagent class. Their fields and methods are all related
to the communication protocol and are detailed in that
section.

(f) Remote References

[0105] References to instances that exist in other sub-
agents have much the same representation as local
instances. The class pointer does not point to the regu-
lar class, but instead to a copy of the class whose
method pointers point to RPC stubs for the methods.
Calling a method for a remote instance is identical to
calling a method in a local instance. This avoids the
need for testing the location of an object when doing a
method dispatch. Such a test is required when doing a
field reference for an instances other than self. Remote
references have no fields; they have a non-null global id.

(9) Global Id

[0106] A global identifier or "global id" records the
identity and current location of an instance that has
been seen by more than one base. The global identity of
the instance is determined by the base on which it was
created along with an integer identifier assigned by that
base.

[0107] Gilobal identifiers are the mechanism by which



