27

object spaces are implemented. Every object within an
agent has a global id. The contents of this identifier are
sufficient to locate the object regardless of where it
resides in the system.

[0108] A global id preferably contains the following
data:

- Aninteger identifier;

- The subagent to which the instance belongs;

- "null" or the instance if it currently resides on the
local base; and

- A reference count and any other information
needed by the global garbage collector.

[0109] Forwarding pointers are needed if the object
migrates from its original home. References which
touch a forwarding pointer are updated to reflect the
object's new location.

(h) Communication Protocol

[0110] One example of an implementation of a com-
munication protocol suitable for the invention is dis-
cussed below. It should be noted, however, that other
suitable communication protocols may be devised
which are suitable for use in connection with the present
invention, and that the present invention is not limited by
the particular communication protocol set forth below.
[0111] This protocol was originally designed and
implemented for the Kali language, as described in H.
Cejtin et al., "Higher-Order Distributed Objects,” ACM
Transactions on Programming Languages and Systems
Vol. 17, No. 5, pp. 704-739 (1995), and is described in
U.S. Patent No. 5,745,703 entitled "Transmission Of
Higher-Order Objects Across A Network Of Heteroge-
neous Machines," issued April 28, 1998. Both of these
references are expressly incorporated herein. Much of
the Kali implementation can be used to implement the
communication protocol for the present invention.

(1) Shared Data Structures

[0112] Most instances exist on only a single subagent.
On all other subagents the instance is represented by a
remote reference that contains no fields or other data.
There are several exceptions to this rule: classes,
interned strings, and subagents.

[0113] Every subagent has a local copy of the static
data of any class. The values of any non-constant static
fields of a class are located on a single subagent.
[0114] All literal strings and string-valued constant
expressions have global identity. Each subagent has its
own copy of every interned string that it references.
Strings contain no mutable data, so no confusion arises.
[0115] The local representation of another subagent
must contain the information needed to communicate
with that subagent. Unlike classes and interned strings,
this data is local; it is not a copy of information found on

EP 0 969 364 A2

10

15

20

25

30

35

40

45

50

55

15

28

other subagents. The structure of a subagent is
described in the next section.

(2) Subagent Data

[0116] Every subagent instance has a global id. All
subagent instances preferably contain the following
fields:

- Aglobally-unique identifier;

- decode: a vector mapping ids to instance; and

- pending: a vector of mapping ids to partially trans-
mitted instances.

[0117] Fields in subagent instances that a particular
subagent is communicating with:

- base: the base on which the subagent resides;

- wait queue: a queue of threads waiting to for a con-
nection to be established; and

- in-port, out-port: ports for talking with the subagent.

(3) Communicating Instances

[0118] An instance is preferably transmitted as three
ids: that of the class of the instance, that of the subagent
that created the instance, and that of the instance itself.
If the instance was created by the local subagent and
has not been transmitted before, a global id must be
created for it and the instance added to the local suba-
gent's decode vector.

[0119] Note that all ids of subagent instances are
those of the local instance representing the subagent. A
particular subagent may be assigned different ids by
every other subagent on which it is known. Preferably,
by convention the id of the local subagent itself is zero.
[0120] The receiving subagent uses the three ids as
follows: the subagent id is looked up in the decode vec-
tor for the transmitting agent, and the instance id is
looked up in that subagent's decode vector. The class id
is used only if the second lookup fails.

[0121] For example, consider three subagents A, B,
and C, and that A has assigned id "3" to B. Further, B
has an instance |, to which it assigned id "2", that it has
sent to A. When subagent A sends a reference to | to
subagent C, it sends the ids "3" (for the subagent) and
"2" (for the instance). Subagent C then uses its decode
vector for subagent A to translate "2" into its subagent
instance for B, and then uses the decode vector in that
instance to translate the "3" into the local reference.
[0122] There are three problems that can arise with
the receiver: it may not have a local entry for the suba-
gent id; it may not have a local entry for the class id; and
it may not have a local entry for the instance id. If it is
missing the subagent id or the class id it can send a
request back to the transmitter asking for the missing
subagent's global identifier or the absolute name of the
class. Once the global identifier is received, either the

