13 EP 0 969 364 A2 14

shared data found on the same subagent may be
accessed with local references.

[0045] On the other hand, communication between
agents is performed by using a remote reference if the
object implements a Remote interface, or otherwise by
copying. Arrow C refers to an object 52¢ having a
Remote interface in another agent, so this reference is
valid, while arrow D refers to an object 54b without a
Remote interface in another agent, so this reference
would be invalid. In order to avoid creating this invalidity,
whenever an object without a Remote interface appears
as an argument or a return value of a procedure call, a
copy of the object should be passed. Communication
between agents is described in more detail below.

Object Space

[0046] Conceptually, tasks access data within an
agent through a global object space that defines a map-
ping between a remote reference to an object (e.g. the
name of the object) and the object's physical location on
a machine in the system.

[0047] FIG. 3 shows a conceptual, diagrammatic view
of the operation of an object space. A single agent,
Agent, spans two bases, Base1 and Base2, on two
machines, Machine1 and Machine2. When an object 55
is created in the Agent on Basel and Machinel, its
identity and location are recorded in Agent's object
space 70, together with a symbolic (or remote) refer-
ence 55' to object 55. Subsequent references to object
55 may be made using symbolic reference 55', which
are handled by the system by querying the object space
70 and resolving the symbolic reference 55' to the
appropriate physical location for object 55. Thus, object
space 70 enables transparent access to elements in
Agent which spans across multiple physical machines.
In particular, references in Base2 on Machine2 to object
55 on Machine1 may be made using the symbolic refer-
ence 55. Thus, references to data (regardless of
whether they are local to a base or found on another
base) do not require knowledge of the physical location
where the data resides.

[0048] In practice, the use of a globally-accessible
physical object space (such as shared memory) to
mediate all references to data within an agent is possi-
ble but may be prohibitively expensive. A more efficient
representation of the object space used by the present
invention uses global identifiers as the primary address-
ing technique for object spaces and will be discussed
below (see subsection entitled "Global Id").

Agent and Object Migration

[0049] A particularly useful feature of the present
invention is program mobility. The distributed agent sys-
tem of the present invention incorporates several user-
level migration methods for agents and objects, and one
system-level migration method for threads. Migration is

10

15

20

25

30

35

40

45

50

55

important to the invention since it is an important means
by which mobility is realized. Unlike other agent sys-
tems, the present invention, as a consequence of its dis-
tributed agent metaphor, allows any object, and not just
agents, to move freely about a network ensemble during
runtime. Thus, mobility is realized at both the agent and
the object level. Tasks and data may freely and dynam-
ically migrate among the machines in the network asso-
ciated with creating their agent. By allowing objects and
agents to migrate, the invention provides a degree of
adaptability and flexibility heretofore unachieved by the
prior art.

[0050] Agent migration causes an entire agent of the
present invention to be moved in a single atomic step.
When an agent consists of multiple threads executing
on different bases and an agent migration method is
called, all of these threads are preferably gathered at
one of the bases before migrating to the target base.
Object migration permits internal data and associated
threads to migrate. (Further details are provided below
in the section entitled "Runtime System.")

[0051] It should be noted that in certain situations,
some types of migration may be undesirable. To accom-
modate these scenarios, the invention provides an
"Anchored" property for use when instances of the class
implementing it are statically dependent on process-
specific objects, such as I/O ports or interface objects to
existing software. These objects should not migrate
even if the agent which encapsulates them does. The
invention also provides a "Pinned" property for objects,
which is similar to the Anchored property but expresses
a dynamic constraint. For example, when an object tem-
porarily requires significant communication to a specific
location, it can first migrate to that location, set a Pinned
property, and then communicate efficiently. During this
period, the object cannot be moved. If the object must
migrate again, its Pinned property must first be reset.
[0052] As noted above, agent migration results in all
of an agent's elements, such as objects and threads,
being moved except for anchored or pinned objects.
The invention provides for two types of agent migration:
weak migration and complete migration. Agent migra-
tion is illustrated in FIGS. 4A-4C. FIG. 4A shows an
agent 40j residing on a base 30j prior to migrating to a
target base 30k. Agent 40j contains several objects 50,
including several migratable objects 57 and an
anchored object 58.

[0053] FIG. 4B shows the results of agent 40j migrat-
ing under weak migration. In weak mode, anchored or
pinned objects remain at the original location and are
accessed with remote references in order to maintain
consistent values. Thus, as shown in FIG. 4B, after
migration agent 40j spans both base 30j and base 30k
(the portion of agent 40j on each base is a subagent).
Migratable objects 57 are moved to destination base
30k, but anchored object 58 remains at base 30j, and a
remote reference 59 is created within agent 40j on base
30k for accessing the anchored object on base 30;.



