17 EP 0 969 364 A2 18

ing to the object class. The agent instantiated in step 84
is distributed among the plurality of computer machines
of the network, so the task instances and object
instances, like the agent process itself, may similarly be
distributed among the computer machines of the net-
work. In a step 85, the object migrate method, task
migrate method and agent migrate method are per-
formed within the agent process. It should be noted that
the methods performed during step 85 need not be per-
formed in any particular order, and each may be per-
formed multiple times, if desired. Moreover, only some
of the migrate methods may be defined and performed,
if desired.

Method Call Models

[0063] In an object-oriented language, an object
defines a collection of data and operations called meth-
ods or procedures to manipulate that data. A method
call invokes a method on some arguments. In a distrib-
uted object-oriented language like that used in the
present invention, a method call may span machine
boundaries: that is, the machine where the call is made
may be different than the machine where the object con-
taining the called method resides.

[0064] The present invention provides two different
ways or protocols for executing methods. These two
protocols derive from the fact that the caller of a method
and the callee object may not be physically located on
the same machine. Before describing these two calling
protocols, it is useful to first explain fast and slow access
modes to objects. In the fast access mode, an object
field is accessed without checking and dereferencing
the object's identity in the object space. Such an opera-
tion is only valid if the object is guaranteed to be present
on the caller's base. In this case, the object is accessed
through an ordinary addressing scheme. In the slow
access mode, an object's global location must be
checked via the object space and dereferenced every
time one of its components is accessed.

[0065] In order to utilize these two access modes, the
present invention defines the following two calling proto-
cols:

(1) An "RPC Model" (remote procedure call model)
utilizes the fast access mode. A method runs on the
base where the self object that owns the method
resides, so that field accesses of the object can
always be done in fast mode. No dereferencing of
the object's global identity is required.

(2) An "Invoker Model" realizes the slow access
mode. A method runs at the caller base and does
not require that the self object be on the same
base, so field accesses require dereferencing
before actually accessing. The invoker model
allows code to be run at the calling or called loca-
tion; that is, on different machines within the same
agent.

10

15

20

25

30

35

40

45

50

55

10

[0066] Although the use of one or the other of these
protocols impacts efficiency; neither of the two protocols
influences program behavior.

[0067] The RPC Model and Invoker Model are illus-
trated in FIG. 7. A single agent spans two bases, Base1
and Base2. A method mO() is running on Base2.
Method m0() calls a method x.m1() which is associated
with an object x on Base1. Under the RPC model, com-
putation in method m0() moves from Base2 to Basel
where object x and the associated method x.m1()
resides. That is, the method x.m1() executes on Base1
though it was called by a method running on Base2.
Field accesses, such as the statement "this.vi = 0;",
can be performed as a local computation requiring no
communication between the bases. After method x.m1(
) is completed, control return to method mO() on Base2.
Next, a second method, x.m2(), associated with object
x on Base1 is called under the invoker model. A remote
reference to object x is created on Base2, and method
x.m2() is run on Base2 rather than on Basel. Field
accesses, such as the statement "this.y = 0;", require
initiation of a communication event between Base1 and
Base2.

[0068] Special cases for method calls include con-
structor methods or instance methods of a class imple-
menting either an Anchored or a Remote interface. A
constructor method is always called in the RPC model,
since it might have location-dependent initialization.
The instance native method to anchored objects must
always be called in the RPC model, since the semantics
of the instances are dependent on their locations. The
interface method to a remote object is called in one of
the bases on which the agent that has the actual object
resides.

[0069] Programmers may also explicitly specify a
base where an invoker method call should be executed
using a method name with an '@[base]' expression,
although the invoker method is executed in a caller base
by default. In this call, the caller base, the base on which
the instance resides, and the base on which the method
is executed might be different, but this does not raise an
error since the instance methods and fields are always
accessed using the slow access mode.

[0070] The language of the present invention prefera-
bly assumes the following default behavior:

(1) Unless specified otherwise, methods are always
called in the invoker model.

(2) When a programmer specifies an RPC method
modifier to a method, the method directly accesses
instance fields of self objects in the fast mode,
though realization of this protocol requires execu-
tion to move to the base where the associated
object resides.

(3) RPC modifiers can also be applied to static
methods. In this case, static methods are called at
the location where the class object is, and then the
methods access static fields in the fast mode.

