29

receiver already has an instance for the subagent (it
merely did not have the transmitter's id for it), or this is
the first time the receiver has heard of this subagent and
a new subagent instance is created.

[0123] If the receiver has no local entry for the
instance, its next step depends on the class of the
instance. If it is a subagent the receiver requests the
global identifier as above. If it is an interned string, then
the receiver asks the sender for the characters in the
string, and either uses or creates a local copy. In all
other cases the receiver can create a remote reference
to the instance without any further communication.

(4) Delayed Messages and Pending Instances

[0124] As explained above, a message may be
received which contains references to an unknown sub-
agent or interned string. Such messages are preferably
delayed until the relevant information arrives from the
sender. Other messages that refer to the same
unknown instance may arrive after a request for infor-
mation has been sent and before the reply is received.
These messages must also be delayed.

[0125] Information about received-but-unknown suba-
gents and interned strings are stored in the "pending”
vector in subagent instances. If a uid is not found in the
decode vector it is looked up in the pending vector. If
found there, a request for the instance's data has
already been sent, but the current message must be
delayed until the information arrives.

(i) Garbage Collection

[0126] Since objects within an agent are distributed
among a collection of machines, a global, asynchro-
nous garbage collection strategy is preferable. A
scheme of distributed reference counts is preferably
used to allow the identification of instances whose
remote references have been garbage collected. Each
global id contains a non-zero reference count. Sending
an instance to another subagent requires sending one
or more reference counts along with the three ids
described above. These reference counts are added to
those in the global id on the receiving subagent.

[0127] If an instance in a message has a global id
whose reference count is one, the sending subagent
must delay sending the message. It cannot send the
instance without a reference count and it must keep the
one that it has. Additional reference counts are
requested from the subagent that currently contains the
instance. Once they arrive, the message can be sent
along with some of the newly arrived reference counts.
When a global id is no longer referenced by a subagent,
its reference counts are sent back to the subagent con-
taining the instance. Once that subagent has received
all extant counts for the instance, the instance can be
reclaimed by the agent's local garbage collector.

EP 0 969 364 A2

10

15

20

25

30

35

40

45

50

55

16

30

Exemplary Uses For The Invention

[0128] As will be readily understood by one or ordinary
skill in the art, the distributed agent system of the
present invention clearly has wide applicability in the
field of distributed computing, and can be implemented
on a wide spectrum of network communication systems
from low-bandwidth, high latency communication over
modems to high-bandwidth, low-latency communica-
tions such as found in clusters of high performance
computers. As particular examples of such utility, the
present invention offers effective support for network-
centric application in which mobility is important. Such
applications may include mobile software assistants
capable of automatically retrieving and updating data on
a corporate intranet, and adaptable query engines that
execute queries and migrate database state among
machines in a network to optimize availability and band-
width. In addition, distributed applications which require
high performance, such as data mining, warehousing,
and search applications, will also benefit from use of the
present invention. The foregoing examples are to be
understood as being merely exemplary and merely
serve to illustrate but a few of the many and varied pos-
sible uses for the present invention.

[0129] While there has been described and illustrated
herein a distributed agent system which provides an
object-based encapsulation model (an agent) which
allows the processes and state of the agent to be dis-
tributed over multiple potentially heterogeneous
machines, enables transparent access of data resident
on another machine, and allows easy and efficient proc-
ess migration, in whole or in part, among distinct
machines, it will be apparent to those skilled in the art
that further variations and modifications are possible
without deviating from the broad teachings of the inven-
tion.

Claims

1. Adistributed software system for use with a plurality
of computer machines connected as a network, the
system comprising:

a plurality of bases, each base providing a local
address space and computer resources on one
of a plurality of computer machines;

at least one agent comprising a protection
domain, wherein the protection domain of the
at least one agent resides on at least one of the
plurality of bases;

a plurality of objects contained within the pro-
tection domain of the at least one agent, a first
object residing on a first base of the plurality of
bases and a second object residing on a sec-
ond base of the plurality of bases, wherein the
first object on the first base may access the
second object on the second base without



