15 EP 0 969 364 A2 16

Although the anchored or pinned objects remaining on a
base from which an agent has migrated might not be
accessed beyond a firewall as the agent migrates
across the firewall, these anchored or pinned objects
can reconnect to the agent if the agent returns to the
original base.

[0054] FIG. 4C shows the results of agent 40j migrat-
ing under complete migration. Complete migration dis-
cards all anchored or pinned objects on the original
base. Thus, as shown in FIG. 4C, agent 40j has moved
from base 30j to base 30k, taking migratable objects 57
with it. Anchored object 58 is discarded from base 30j.
A remote reference 59 to the discarded anchored object
58 would accordingly be invalid. Complete migration is
useful when an agent resides on a service provider
base, and the base does not permit the agent to leave
any objects behind when it migrates. Complete migra-
tion does not keep network-transparent accesses to all
objects, so some care must be taken when using com-
plete migration.

[0055] While agent migration moves an entire agent to
the destination base, base-specific agent migration just
moves objects in the specified base of the agent. This is
useful when an agent is distributed among several
bases and a programmer desires that objects in a par-
ticular base to move to another base. If these objects
move to a base already containing the agent, objects
residing on the base and objects moving to the base are
merged.

[0056] Object migration is the movement of an object
to another base, which may necessitate moving related
objects and threads as well. For example, threads asso-
ciated with a migrating object implicitly move to the base
to which the object migrates if they execute (or are cur-
rently executing) a method on that object. Threads or
other objects may freely migrate among machines. If the
object space associated with the agent within which the
threads are currently executing spans the target base,
migration is a simple matter of copying state into the
subagent on the target base. However, if no subagent
exists on the target base, a new one must be first cre-
ated before migration commences.

[0057] Bases are preferably managed by a server. A
server is a service provider that has a permanent
address, and handles service requests intended for
other bases that actually execute the services. For
example, as shown in FIG. 5, a server 60 may handle a
service request for an agent 40m to migrate to one of
several bases 30 managed by server 60.

[0058] As a consequence of the shared memory
abstraction provided by the agents of the present inven-
tion, tasks and data may freely migrate from one
machine to another within an agent. Migration is seman-
tics-preserving: moving threads or objects only has per-
formance implications. In other words, all objects have
global identity. The semantics and implementation of
the present invention thus provide greater uniformity of
expression and greater functionality than the prior art.

10

15

20

25

30

35

40

45

50

55

As noted above, due to the global object space of each
distributed agent, knowledge of the physical location or
address of an object is not necessary (i.e. need not be
manifested in the source program). Therefore, in order
for an object to migrate, it is only necessary to appropri-
ately update the object space for that object to reflect
the object's destination after migration. This same
mechanism makes partial migration (migration of less
than an entire agent, such as a subset of the objects or
tasks within the agent) feasible and highly effective in
the present invention.

[0059] Network transparency implies object mobility. A
mobile or movable object in the invention can be selec-
tively moved among subagents (where a subagent is
the portion of an agent resident on a particular base) by
a programmer. A mobile object which migrates from one
machine to another can still be accessed using its glo-
bal identity managed by the agent's object space. In
contrast to distributed shared memory systems, task
and data movement among machines can be explicitly
and selectively controlled by the programmer, and the
transparent access of such objects within an agent is
maintained regardless of the movement of the objects
among the machines but within the agent. In this sense,
the agent model presented in this invention is a signifi-
cant refinement over a distributed shared memory
model.

[0060] Moreover, in sharp contrast with the prior art
(where only total migration of an agent was possible,
and where no other agent knew the destination of a
migrated agent and could no longer communicate with it
without static references written into the source pro-
gram), the present invention allows any agent within the
system to access any other agent (or subagent) regard-
less of migration by merely consulting that agent's
object space.

[0061] An exemplary method for implementing the
network-centric migration of the present invention
among a network comprising a plurality of computer
machines is shown in FIG. 6. First, a plurality of object-
oriented classes, including an object class, a base
class, an agent class and a task class, are defined in a
step 80. Next, an object migrate method is defined in the
object class in a step 81. When called, the object
migrate method migrates a selected object instance to a
location specified with the base class (i.e. a base
instance). In a step 82, a task migrate method is defined
in the task class which, when called, migrates a
selected task instance to a location specified with the
base class. Similarly, in a step 83, an agent migrate
method is defined in the agent class which, when called,
migrates a selected agent process to a location speci-
fied with the base class.

[0062] After the migrate methods have been defined,
an agent process is instantiated according to the agent
class in a step 84. The agent process may include or
encapsulate task instances instantiated according to
the task class and object instances instantiated accord-



