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Bonus Chapter 23

The Lowdown on Artificial
Intelligence

In This Chapter
Finding out about artificial intelligence

Understanding simple deterministic algorithms

Making your game creature follow a pattern or script

Getting an overview of behavioral state systems

Using memory and learning to enhance your game’s artificial intelligence

Discovering neural networks and genetic algorithms

his chapter is going to answer a lot of questions on the art of making
game creatures and objects seem as if they are thinking. In fact, depend-

ing on how you look at the issue, artificial intelligence is not at all artificial.
It is an intelligence based on logic, mathematics, probability, and memory. If
you read this entire chapter, you will be able to write code and algorithms to
make your game creatures perform in a reasonable manner and do almost
anything that “professional” games do.

Introduction to Artificial Intelligence
Artificial intelligence (AI ), in the most academic sense of the word, has
come to mean building a piece of hardware or writing computer software
that allows the machine to “think” or process information in a fashion
somewhat similar to the way humans do. A few years ago, applications in AI
were just starting to surface; today, AI and other related fields, such as
artificial life-forms and intelligent agents, are maturing at an exponential rate.
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Today, right now, systems exist that are basically “alive” as far as anyone
can define life. A number of companies have created artificial life-forms that
live, die, explore, get sick, reproduce, evolve, get depressed, get hungry, and
so on — all within the virtual domain of the computer. This kind of technol-
ogy has been made possible by the following developments:

Artificial neural networks: Crude approximations of a human brain
network

Genetic algorithms: A set of techniques and suppositions that are used
for evolution of software systems based on biological paradigms

Sound far out? It is, but the technology is real, and it’s only going to get
more advanced. Remember, cloning a human was once considered science
fiction; now that’s well within the realm of possibility.

Getting back to Earth, you aren’t going to create anything as complex as
state-of-the-art AI for your games. This chapter looks at the most simplistic
and fundamental techniques game programmers use to create intelligent
creatures — or, at least, creatures that seem intelligent. In fact, many game
programmers are still very behind on AI technology and haven’t begun to
really embrace all the possibilities in the field. I suspect that AI and related
technologies are going to make the same kind of impact on the gaming world
that the Doom graphics technology made a few years back.

Truthfully, 3D graphics are starting to slow down. Game creatures are
looking pretty real these days, but they still act pretty dumb. The next
super-cool game is going to be one that not only looks good but, more
importantly, offers characters that think and are as cunning and devious as
the best of us.

As you read the following pages and experiment with the accompanying
programs, remember that all these techniques are just that: techniques.
There isn’t a right way or a wrong way, just a way that works. If the com-
puter tank can kick your player’s butt, then that’s all you need. If it can’t,
then you need to do more.

Regardless of how primitive the underlying AI techniques are, the human
players will always imagine more detail and project personalities of their
own onto your virtual opponents. This concept is key: The player will
believe that the objects in the game are plotting, planning, and thinking, as
long as they look like they are. Get it?

I cover three types of useful game AI for game characters (such as alien
invaders) or items (such as asteroids) in this chapter:

Deterministic algorithms: Predetermined behaviors, random or
otherwise
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Patterns and scripts: Series of actions determined by various inputs,
from you or (unknowingly) from the player

State machines: Behaviors based on conditions and results of game play

Neural Networks: Models of computation based on biological brain
functions

From now on in the chapter, I refer to anything that has to do with making
game creatures act intelligently — software, algorithms, and techniques —
as an AI.

Simple Deterministic Algorithms
Deterministic algorithms are behaviors that are predetermined or pro-
grammed. For example, take a look at the AI for the asteroids in Star Ferret
(as shown in Figure 23-1).

  
 

     

Figure 23-1:
The

asteroid’s
AI.

The process is very simple. The AI creates an asteroid and then sends it in a
random direction at a random velocity (mostly downward). The following
code shows this type of intelligence:

asteroid_x += asteroid_x_velocity;

asteroid_y += asteroid_y_velocity;

The asteroids have one mission: to follow their course. Granted, the AI is
simple — the asteroids don’t process any outside input, make course
changes, and so on. But the asteroids do “know” how to explode, so in a
sense they are intelligent. However, their intelligence is rather deterministic
or predictable.
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This deterministic intelligence is the first kind of AI that I want to explain —
the simple, predictable, programmable kind. In this class of AI, a number of
techniques were born in the Pong/Pac Man era.

Random motion
Just one step above moving an object in a straight line or curve is moving
an object randomly or changing its properties randomly (as shown in
Figure 23-2). For example, suppose that you want to model an atom, fly, or
something similar that doesn’t have a lot of brains but does have a fairly
predictable behavior — to bounce around in an erratic way without much
thought. ( Well, at least the behavior looks that way.)

Figure 23-2:
Random-

motion AI.

As a starting AI model, try the following code to model a fly brain:

fly_x_velocity = -8 + rand()%16;

fly_y_velocity = -8 + rand()%16;

Then you can move the fly around for a few cycles:

int fly_count = 0; // fly’s “new thought” counter

// fly in the same direction for 10 ticks of time

while(++fly_count < 10)

{

fly_x+=fly_x_velocity;

fly_y+=fly+y_velocity;

} // end while

// insert similar code to pick a new direction and loop
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In this example, the fly picks a random direction and velocity, moves that
way for a moment, and then picks another. That sounds like a fly to me! Of
course, you may want to add even more randomness, such as changing how
long the motion occurs rather than fixing it at 10 cycles. In addition, you
may want to weigh certain directions more heavily. For example, when you
select the new direction, you may want to lean toward westward directions
rather than eastward to simulate the breeze.

In any case, you can see that it’s possible to make some creature seem
intelligent with very little code. As a working example, check out
PROG23_1.CPP and the executable PROG23_1.EXE on the CD. It’s an example
of the fly brain in action.

Random motion is a very important part of behavioral modeling of intelli-
gent creatures. I live in Silicon Valley, and I can attest that the people driving
on the roads around here make random lane changes and even drive in the
wrong direction, just like the brainless motion of a fly.

Tracking
Although random motion can be interesting and totally unpredictable, it’s
rather boring because no matter what, it works the same way: randomly. If
you want to add excitement to your games, consider the next step up on the
AI ladder: algorithms that perceive something in the environment and then
react to it in some manner. For an example, I have chosen tracking algorithms.
A tracking AI senses the position of the object being tracked and then
changes the trajectory of the AI object so that it moves toward the object.

The tracking can be “brute force” by literally vectoring directly toward the
object or a more realistic model of turning toward the object much like a
heat-seeking missile (see Figure 23-3).

Figure 23-3:
Tracking
methods.
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For an example of the brute force method ( because the heat-seeking
method takes a little more physics modeling than I want to show right now),
take a look at the following algorithm:

// given: player is at player_x, player_y

// and game creature is at

// monster_x, monster_y

// first test x-axis

if (player_x > monster_x)

   monster_x++;

if (player_x < monster_x)

   monster_x--;

// now y-axis

if (player_y > monster_y)

   monster_y++;

if (player_y < monster_y)

   monster_y--;

If you dropped the preceding AI into a simple demo, the player would be
tracked down as if the monster were the Terminator! The code is simple, but
effective. This code is much the same way that the Pac Man AI was written.
Of course, Pac Man could only make right-angle turns and had to move in a
straight line and avoid obstacles, but this AI is in the same ballpark.

For an example, check out PROG23_2.CPP and the executable
PROG23_2.EXE on the CD. You control a ghost with the keyboard arrow keys
and a bat tries to hunt down the ghost.

Evasion
Starting to get little quantum disturbances in your brain? That is, are you
getting some ideas? Good! The next AI technique provides a way for the
creatures in the game to get away from you. Making an evasion AI that
mimics the action of a powered-up Pac Man chasing ghosts is simple. In fact,
you already have the code! The preceding tracking code is the exact oppo-
site of what you want; just flip the equalities around in the code and presto!
You have an evasion algorithm. Here’s the code after the inversions:

// given: player is at player_x, player_y

// and game creature is at

// monster_x, monster_y

// first, test x-axis

if (player_x  < monster_x)

   monster_x++;
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if (player_x > monster_x)

   monster_x--;

// now y-axis

if (player_y <  monster_y)

   monster_y++;

if (player_y > monster_y)

   monster_y--;

You may have noticed that the preceding code doesn’t include a conditional
for equal to (==). This omission is because I don’t want the object to move
in this case. I want the object to sit on the player. If you want to, you can
process the case when the positions are equal in a different way.

Now you can create a fairly impressive AI system with just random motion,
chasing, and evasion. In fact, you have enough to make a Pac Man brain.
Not what AI researchers would call impressive, but good enough to sell
100 million copies, so not too bad! To check out evasion in action, run
PROG23_3.CPP and the executable PROG23_3.EXE on the CD. It is basically
the same as PROG23_2.CPP, but with the evasion AI rather than the
tracking AI.

Patterns and Scripts
Algorithmic and deterministic algorithms such as those I cover in the last
section are great, but sometimes you need to make a game creature follow a
sequence of steps or a script of sorts.

For example, when you start your car (or get on your bike, whatever the
case may be), you perform a specific sequence of steps:

1. Get the keys out of your pocket.

2. Put the key in the car door.

3. Open the door.

4. Get in the car.

5. Close the door.

6. Put the key in the ignition.

7. Turn the key to start the car.

Or if you’re Bill Gates, you just say: “To the opera, James.”
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My point: A sequence occurs that you don’t think much about; you just
replay it every time. Of course, if something goes wrong, you may change
your sequence (such as pressing the gas pedal, or jump-starting the car
because you left the lights on last night).

Patterns are an important part of intelligent behavior, and even the epitome
of intelligent creatures on this planet — people — uses them. Of course, if
any nonhuman, alien life-forms are reading this, please don’t take that as an
insult.

Basic patterns
The complexity of creating patterns for game creatures depends on the
game creature itself. For example, motion-control patterns are very simple
to implement. Suppose that you are writing a shoot-’em-up game similar to
Phoenix or Galaxian. The alien attackers must perform a left-right pattern
and then, at some point, attack you with a specific attack pattern. This kind
of pattern or scripted AI can be achieved using a number of different tech-
niques, but I think that the easiest technique to illustrate the process is
based on interpreted motion instructions (as shown in Figure 23-4).

Each motion pattern is stored as a sequence of directions or instructions, as
shown in Table 23-1.

Table 23-1 A Hypothetical Pattern Language Instruction Set
Meaning Value

GO_FORWARD 1

GO_BACKWARD 2

TURN_RIGHT_90 3

TURN_LEFT_90 4

SELECT_RANDOM_DIRECTION 5

STOP 6

Along with each directional instruction may be another operand or piece of
data that further qualifies the instruction, such as how long to perform the
task. Therefore, the pattern language instruction format may look like:

[INSTRUCTION], [OPERAND]
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INSTRUCTION stands for a number from the list in Table 23-1 (encoded as a
single number usually), and OPERAND stands for another number that helps
further define or modify the behavior of the instruction. With this simple
instruction format, you can create a program (sequence of instructions) that
defines the pattern. Then you can write an interpreter that feeds from a
source pattern and controls the game creature appropriately.

For example, suppose that your pattern language is formatted with the first
number being the instruction itself, and the second number indicating how
long to perform the motion in cycles. Creating a square pattern with a spin
and stop (as shown in Figure 23-5) would be easy.

Figure 23-4:
The pattern

engine.

Figure 23-5:
Detailed

square
pattern.
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Here’s an example of that detailed square pattern in [INSTRUCTION,
OPERAND] format:

int num_instructions = 6; // number of instructions in script pattern

// the following holds the actual pattern script

int square_stop_spin[

1,30, 4,1, // go forward then turn right

1,30, 4,1, // go forward and turn right

1,30, 4,1, // go forward and turn right

1,30, // go forward and finish square

6,60, // stop for 60 cycles

4,8, }; // spin for 8 cycles

Of course, you may want to use a better data structure than an array. For
example, you can use a class or structure containing a list of records in
INSTRUCTION, OPERAND format along with the number of instructions. This
way, you can very easily create an array of these structures, each containing
a different pattern, and then select a pattern and pass it to the pattern
processor very efficiently.

To process the pattern instructions, all you need is a big switch() state-
ment that interprets each instruction and instructs the game creature to do
what it is supposed to do, like this:

// points to first instruction (2 words per instruction)

int instruction_ptr = 0;

// first extract the number of cycles

int cycles = square_stop_spin[instruction_ptr+1];

// now process instruction

switch(square_stop_spin[instruction_ptr])

{

case GO_FORWARD:  // move creature forward...

break;

case GO_BACKWARD: // move creature backward...

break;

case TURN_RIGHT_90: // turn creature 90 degrees right...

break;

case TURN_LEFT_90:  // turn creature 90 degrees left...

break;

case SELECT_RANDOM_DIRECTION: // select random dir...

break;

case STOP: // stop the creature

break;

} // end switch
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// advance instruction pointer (2 words per instruction)

instruction_ptr+=2;

// test whether end of sequence has been detected...

if (instruction_ptr > num_instructions*2)

   { /* sequence over */ }

And of course, you would add the logic to track the cycle counter and make
the motion happen.

There’s one catch to all this pattern stuff: reasonable motion. Because the
game object is feeding off of a pattern, it may decide to select a pattern that
forces the object to smash into something. If the pattern AI doesn’t take this
possibility into consideration, then patterns will be followed blindly. Thus,
you must have a feedback loop with your pattern AI (as with any AI for that
matter) that instructs the AI that it has done something illegal, impossible,
or unreasonable, and it must reset to another pattern or strategy (as shown
in Figure 23-6).

Stop for a minute to think about the power of patterns. With them, you can
record hundreds of moves and flight patterns. You can create in minutes and
play back patterns that would be nearly impossible to create in any reason-
able amount of time using other AI techniques. By using patterning, you can
make a game creature look as if it is extremely intelligent. This is one of the
AI techniques used by nearly all games, including most fighting games such
as TeKeN, Soul Blade, and Mortal Kombat.

Furthermore, you don’t need to stop with motion patterns. You can use
patterns to control weapon selection, animation control, and so on. There’s
no limit to what you can apply patterns to.

Figure 23-6:
Pattern

engine with
feedback

control.
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For an example of patterns in action, take a look at PROG23_4.CPP and its
executable PROG23_4.EXE. It demonstrates a monster that moves around
using a number of patterns and that periodically selects a new random
pattern.

Patterns with conditional logic
Patterns are cool, but they are extremely deterministic. That is, once the
player has memorized a pattern, the game’s challenge is over. The player
can always beat your AI because he or she knows what’s going to happen
next.

The solution to this problem and to others that pop up with patterns is to
add a bit of conditional logic that selects patterns based on more than
random selection — based on the conditions of the game world and the
player himself. Take a look at Figure 23-7 to see this abstractly.

Figure 23-7:
Patterns

with
conditional

logic.

Patterns with conditional logic give one more level of abstraction to your AI
model. You can select patterns that within them have conditional branches,
as well as the patterns being selected based on conditional logic. For
example, you may add a new instruction to the pattern language that is a
conditional, such as the following:

TEST_DISTANCE 7

The TEST_DISTANCE conditional may work by testing the distance that the
player is to the object performing the pattern. If the distance is too close or
too far, the pattern AI engine may change what the object is doing to create
a seemingly more intelligent opponent.
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For example, you can insert a TEST_DISTANCE instruction every few instruc-
tions in a standard pattern like this:

TURN_RIGHT_90, GO_FORWARD, STOP, ...TEST_DISTANCE,
...TURN_LEFT_90,...TEST_DISTANCE, ... GO_BACKWARD

The pattern does its thing, but every time a TEST_DISTANCE instruction is
encountered, the pattern AI uses the operand following the TEST_DISTANCE
instruction as a measure to test the player’s position. If the player is getting
too far away, then the pattern AI stops the current pattern and branches to
another pattern or, better yet, switches to a deterministic tracking algorithm
to get closer to the player. Take a look at the following code:

if (instruction_stream[instruction_ptr] == TEST_DISTANCE)

{

// obtain distance; note that on the test

// instructions the operand is no

// longer a time or cycle count

// but becomes context-dependent

int min_distance = instruction_stream[instruction_ptr];

// if statement to test whether player is too far

if (Distance(player, object) > min_distance)

{

// set system state to switch to track

ai_state = TRACK_PLAYER;

// or you can insert code that just switches to

// another pattern and waits for

// the object to possibly get closer

} // end if

} // end if

Of course, you can perform conditional tests of almost limitless complexity
in the pattern script. In addition, you may want to create patterns on the fly
and use them, for example, to mimic the player’s motion. You can sample
what the player does each time she kills one of your game characters and
then use the same tactic against her!

In conclusion, technology like this (much more sophisticated, of course) is
used in many sports games, such as football, baseball, and hockey, as well
as action and strategy games. It enables the game objects to make predict-
able moves — but if they need to change their minds, they can.

As an example, PROG23_5.CPP and its executable PROG23_5.EXE illustrate
the conditional technique. You control a bat creature with the arrow keys,
and an AI skeleton is on the screen. The skeleton performs randomly
selected patterns until you get too far away; then it gets lonely and chases
you because it wants your attention. Reflect on what I just said. . . . I’m
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describing a codependent skeleton. In fact, I placed an emotional motive
on 100 lines of computer code. But isn’t that what it seems like from a
spectator’s point of view?

Behavioral State Systems
If you’ve read this book from the first page to here, you have seen quite a
few finite state machines ( FSMs) in various forms — a blinking light, the
main event loop state machine, and so on. Now, I want to formalize how
FSMs generate AIs that exhibit intelligence.

To create a truly robust FSM, you need two properties:

A reasonable number of states that each represent a different goal or
motive

Lots of input to the FSM, such as the state of the environment and the
other objects

The need for a reasonable number of states is easy enough to understand
and appreciate. Humans have hundreds, if not thousands, of emotional
states that direct our motives and goals. And within each of these emotional
states, we may have further substates. The point is, a game character
should be able to act as if it is motivated by emotion. At the very least, the
character should move around in a free manner. For example, you may set
up the following states:

State 1: Move forward.

State 2: Move backward.

State 3: Turn.

State 4: Stop.

State 5: Fire weapon.

State 6: Chase player.

State 7: Evade player.

States 1 to 4 are straightforward, but states 5, 6, and 7 may need substates
to be properly modeled; I mean, states 5, 6, and 7 may need more than one
phase. For example, chasing the player may involve turning and then moving
forward. ( Take a look at Figure 23-8 to see the concept of substates.)
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However, don’t think that substates must be based on states that exist; they
may be totally artificial for the state in question. My point in this discussion
on states is that the game object needs to have enough variety to do intelli-
gent things. If the only two states are Stop and Forward, there isn’t going to
be much action! ( Did you ever have one of those stupid remote-control cars
that only had two directions: forward and reverse in a left turn?)

Moving on to the second property of robust FSM AIs, you need to have
feedback or input from the other objects in the game world and from the
player and environment. Entering a state and running it until completion is
pretty dumb. The state may have been intelligently selected 100 millisec-
onds ago, but now events have changed and the AI needs to respond to the
player’s most recent action. Thus, the FSM needs to track the game state
and, if needed, be preempted from its current state into another one.

If you take these ideas into consideration, you can create an FSM that
models commonly experienced behaviors such as aggression, curiosity, and
so on. In the following sections, you can see how this approach works with
some concrete examples, beginning with simple state machines and follow-
ing up with more advanced personality-based FSMs.

Figure 23-8:
A master
FSM with

substates.
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Using simple state machines
At this point, you should be seeing a lot of overlap in the AI techniques. For
example, the pattern techniques are based on state machines at the lowest
level that perform the actual motion or effect. What I want to do now is take
state machines to another level and talk about high-level states that can be
implemented with simple conditional logic, randomness, and patterns. In
essence, I want to create a virtual brain model that directs and dictates the
action of the “creature” that it is controlling.

You can better understand what I’m talking about if you model a few behav-
iors with the aforementioned techniques. Then, on top of these behaviors,
you can place a master FSM to run the show and set the general direction of
events and goals.

Most games are of the conflict genre. Whether conflict is the main idea of
the game or its underlying theme, in many games the player is running
around destroying the enemies and blowing things up. Hence, you can arrive
at a few behaviors that a game creature may need to survive, given the
constant onslaught of the human opponent. Take a look at Figure 23-9, which
illustrates the relationship of the following states:

Master state 1: Attack.

Master state 2: Retreat.

Master state 3: Move randomly.

Master state 4: Stop or pause for a moment.

Master state 5: Look for something, such as food, energy, light, dark, or
other computer-controlled creatures.

Master state 6: Select a pattern and perform it.

Right off, you can see the difference in these states in comparison to the
previous examples (in the introduction to this section). These states are
much higher level, and definitely contain possible substates and/or further
logic to make happen. So, analyzing the states from the simplest to the most
complex: States 1 and 2 can be accomplished by using a deterministic
algorithm. States 3 and 4 are nothing more than a couple of lines of code.
State 6 is very complex because the creature must be able to perform
complex patterns controlled by the master FSM. Finally, state 5 could be yet
another deterministic algorithm or may be a mix of deterministic algorithms
along with preprogrammed search patterns that are successful.
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As you can see, the AI is getting fairly sophisticated. You want to model a
creature from the top down — first thinking of how complex you want the AI
of the creature to be and then implementing each state and algorithm.

If you refer to Figure 23-9, you see that in addition to the master FSM that
selects the states themselves, another part of the AI model is doing the
selection. This part represents the “will” or “agenda” of the creature. You
can implement this module in a number of ways, such as random selection,
conditional logic, and so on. But for now, just know that the states must be
selected in an intelligent manner based on the current state of the game.

The following code fragment implements a crude version of the master state
machine I discuss earlier in this subsection. Of course, the code is only
partially functional because a complete AI would cover many pages, but the
most important structural elements are there. Fill in all the blanks and
details, generalize, and drop it into your code. For now, just assume that the
game’s world consists of the AI creature and the player. Here’s the code:

// these are the master states

#define STATE_ATTACK  0 // attack the player

#define STATE_RETREAT 1 // retreat from player

#define STATE_RANDOM  2 // move randomly

#define STATE_STOP    3 // stop for a moment

Figure 23-9:
Building a

better brain.

  
 

     

(continued)
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#define STATE_SEARCH  4 // search for energy

#define STATE_PATTERN 5 // select a pattern and execute it

// variables for creature

int creature_state = STATE_STOP, // state of creature

    creature_counter = 0,   // used to time states

    creature_x       = 320, // position of creature

    creature_y       = 200,

    creature_dx      = 0,   // current trajectory

    creature_dy      = 0;

// player variables

int player_x = 10,

    player_y = 20;

// main logic for creature

// process current state

switch(creature_state)

{

case STATE_ATTACK:

          {

          // step 1: move toward player

          if (player_x > creature_x) creature_x++;

          if (player_x < creature_x) creature_x--;

          if (player_y > creature_y) creature_y++;

          if (player_y < creature_y) creature_y--;

          // step 2: fire cannon, which has

          // 20 percent probability to hit

          if ((rand()%5)==1)

               Fire_Cannon();

   } break;

case STATE_RETREAT:

           {

    // move away from player

           if (player_x > creature_x) creature_x--;

           if (player_x < creature_x) creature_x++;

           if (player_y > creature_y) creature_y--;

           if (player_y < creature_y) creature_y++;

           } break;

case STATE_RANDOM:

   {

           // move creature in random direction

           // that was set when this state was entered

           creature_x+=creature_dx;

           creature_y+=creature_dy;

   } break;

(continued)
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case STATE_STOP:

            {

            // do nothing!

            } break;

case STATE_SEARCH:

            {

            // pick an object to search for, such as

            // an energy pellet, and then track it

            // as you would the player

if (energy_x > creature_x) creature_x--;

            if (energy_x < creature_x) creature_x++;

            if (energy_y > creature_y) creature_y--;

            if (energy_y < creature_y) creature_y++;

            } break;

case STATE_PATTERN:

            {

            // continue processing pattern

            Process_Pattern();

            } break;

default: break;

} // end switch

// update state counter and test whether a state

// transition is in order

if (--creature_counter <= 0)

    {

    // pick a new state, use logic, random, script, etc.

    // for now just random

    creature_state = rand()%6;

    // now depending on the state, we might need some

    // setup code goes here...

if (creature_state == STATE_RANDOM)

        {

        // set up random trajectory

        creature_dx = -4+rand()%8;

        creature_dy = -4+rand()%8;

        } // end if

    // perform setups on other states if needed

    // set time to perform state, use appropriate method...

// at 30 fps, 1 to 5 seconds for the state

    creature_counter = 30 + 30*rand()5;

    } // end if
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In the beginning of this code block, the current state is processed. This task
involves local logic, algorithms, and even function calls to other AIs, such as
pattern processing. After the state has been processed, the state counter is
updated and the code tests to see whether the state is complete. If so, then
a new state is selected. Furthermore, if the new state needs setup, then the
setup is performed. Finally, a new state count is selected using a random
number, and the cycle continues.

A lot of improvements can be made. For example, you can mix the state
transitions with the state processing. And you may want to use much more
involved logic to make state transitions and decisions.

Adding more personality
Personality is nothing more than a set of predictable behaviors. For ex-
ample, I have a friend that has a very “tough guy” personality. I can guaran-
tee that, if you say something he doesn’t like, he’ll probably let you know
with a swift blow to the head. Furthermore, he’s very impatient and doesn’t
like to think much. On the other hand, I have a friend that’s very small and
wimpy. He has learned that, due to his size, he can’t speak his mind because
he may get smacked. He has developed a much more passive personality.

Of course, human beings are a lot more complex than the previous ex-
amples, but these are still good descriptions of those people. Thus, you can
model personality types using logic and probability distributions that track
a few behavioral traits and place a probability on each. Then this probability
graph can make state transitions. Take a look at Figure 23-10 to see what I’m
talking about.

Figure 23-10:
Personality
distribution

for states.
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This model contains these four states or behaviors:

State 1: Attack

State 2: Retreat

State 3: Stop

State 4: Random

Now, instead of randomly selecting a new state, you can create a probability
distribution that defines the “personality” of each creature based on these
states. For example, Table 23-2 describes my friends Rex (the tough one)
and Joel (the wimpy one).

Table 23-2 Personality Probability Distributions
State Rex p(x) Joel p(x)

Attack 50% 15%

Retreat 20% 40%

Stop 5% 30%

Random 25% 15%

The hypothetical data seems to make sense. Rex likes to attack without
thinking, and Joel likes to run if he can and thinks much more. In addition,
Rex isn’t that much of a planner, so he often acts randomly — smashing
walls and eating glass. However, Joel knows what he is doing most of the
time.

Of course, the entire example was totally fictitious, but I bet that you have a
picture of Rex and Joel in your head, or you know people like them. There-
fore, my supposition is true: The outward behaviors of a person define, at
least in a general way, their personality as perceived by others. Thus,
behavioral simulation is a very important asset to your AI modeling and
state selection.

To use this technique, simply set up a table consisting of 20 to 50 entries,
with each entry as a state. Then fill the table with desired probabilities.
When you select a new state, you’ll get one that has a little personality in it.
For example, here’s Rex’s probability table in the form of a 20-element array,
which means that each element has a 5-percent weight:

int rex_pers[20] =

          {1,1,1,1,1,1,1,1,1,1,2,2,2,2,3,4,4,4,4,4}
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In addition to this technique, you may want to add a radius of influence. This
term means that, based on some variable such as distance to the player or
some other object, the program switches probability distributions (as
shown in Figure 23-11). As the figure illustrates, whenever the game creature
gets too far away from the player, the creature switches to a nonaggressive
search mode rather than the aggressive combat mode it’s in whenever it’s in
close quarters to the player.

Memory and Learning
The last elements of a good AI are memory and learning. As the AI-controlled
creatures in your game run around, they are controlled by state machines,
conditional logic, patterns, random numbers, probability distributions, and
so on. However, the creatures always “think” on the fly. They never look at
their past history to help them make a decision.

For example, what if a creature is in attack mode, and the player keeps
dodging to the right, and the creature keeps missing? The creature should
track the player’s motions and remember that the player moves right during
every attack, and then the creature should change its targeting a little.

Figure 23-11:
Switching

personality
probabilities

based on
distance.
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For another example, imagine that your game forces creatures to find
ammunition, just like the player must, to make the game more realistic.
However, every time the creature wants ammo, it has to search randomly for
it (maybe with a pattern). But wouldn’t it be more realistic if the AI-controlled
creature could “remember” locations in which it found ammo last and try
that position first?

These are just a couple of examples of using memory and learning to make a
game AI seem more intelligent. Frankly, implementing memory is easy to do,
but few game programmers ever do it, because they don’t have time or they
believe that the results aren’t worth the effort. No way!

Memory and learning in a game program are very cool, and your players will
notice the difference, so it’s worth trying to find areas in which simple
memory and learning can be implemented with reasonable ease and have a
visible effect on the AIs decision making.

All right, so that’s the general motive for you to use memory, but how do
you do it? The method depends on the situation. For example, take a look at
Figure 23-12, which shows a map of a game world with a record attached to
each room.

Figure 23-12:
Using

geographical-
temporal
memory.
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The records in the figure store the following information:

Kills

Damage from player

Ammo found

Time in room

Now every time the creature processes its AI to have a more robust selec-
tion process (that is based on memory and learning), you would refer to the
record of events within the creature’s memory for the room. For example,
when the creature enters a room, you can make a quick check to see
whether the creature has sustained a great deal of damage in the room. If so,
you can have it back out and try another room.

On the other hand, the creature may run out of ammo; instead of hunting
randomly for it, the creature can scan through its memory of all the rooms it
has visited and see which one had the best ammo lying around. Of course,
for the memory to work, the AI has to continually update the memory every
few cycles with new information, but that part is simple.

In addition, you can let creatures exchange information! For example,
suppose that one creature bumps into another in a hallway; then they can
merge memory records so that they both know of each others’ travels. Or
maybe, the creature that is stronger performs a force upload on the weaker
creature, because it obviously has a better set of probabilities and experience.

The kinds of game innovations you can do with memory and learning are
unlimited. The tricky part is working them into the AI in a fair manner. For
example, letting the game AI “see” the whole world and memorize it is unfair.
The AI should have to explore the game world just like the player does.

A lot of game programmers like to use bit strings or vectors to memorize
data. This method is much more compact, and it’s easy to flip single bits
simulating memory loss or degradation.

Making Your Very Own Frankenstein
Earlier sections in this chapter show you a few techniques to get you started
with AI, but you may not know which technique to use in a particular
situation or how to mix different techniques to make new models. Here are
some basic guidelines:

Use simple deterministic AIs for objects that have simple behaviors to
begin with, such as rocks, missiles, and so on.
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For objects that are supposed to be smart but are more a part of the
environment rather than the main action (such as birds that fly around
or a spaceship that flies by once in a while), use a deterministic AI
coupled with patterns and a bit of randomness.

For your important game characters that the player interacts with, you
definitely need FSMs coupled with the other supporting techniques.
However, some creatures don’t have to be as smart as others; the FSMs
for your basic creatures don’t need to have probability distributions for
personality coupled with memory for learning.

Finally, the main computer-controlled character(s) in the game should
be very smart. Integrate everything. The AI should be state-driven with
a lot of conditional logic, probability, and memory that is used to
control state transitions. In addition, the AI should be able to change
from one state to another even when the state hasn’t come to comple-
tion — if conditions arise that make a change necessary.

Basically, you don’t need to go all out programming AI for a randomly
moving rock; but for a tank that plays against the player, you should invest
the time and effort. A model that works well for me is as follows:

I like to make an AI that has at its highest level a set of conditionals and
probabilities that select states. The states emulate a number of behav-
iors, and usually there are about five to ten.

I like to use memory to track key elements in the game and use them to
make better decisions. Also, I like to throw random generators in a lot
of the decisions, even if those decisions are totally simple. This ap-
proach adds a little uncertainty to the AI.

I definitely like to have scripted patterns available to create the illusion
of complex thought. However, again, I throw random events into the
patterns themselves. For example, my AI moves into a pattern state and
selects a circle, but sometimes as it’s creating the circle, it makes an
egg shape! The point of this randomness is that people aren’t perfect,
and sometimes we make mistakes. This random quality is very impor-
tant in game AI, so a lot of virtual coin tosses in the code help to shake
things up.

And, finally, a very complex system can evolve from very simple constitu-
ents. In other words, even though the AI for each individual creature may
not be that complex, their own interaction will create an emergent behav-
ioral system that seems to go beyond its programming. Thus, it’s important
to help facilitate this evolution with some kind of sharing or merging of
information or states between creatures whenever they get close enough or
at specific intervals.
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Neural Networks, Genetic Algorithms,
and Other Esoteric Topics for $1,000

We’re on the brink of the 21st century, and it’s about time for computers to
really start thinking. The technologies of neural nets, genetic algorithms, and
fuzzy logic are going to make this idea a reality very soon. Maybe we won’t
like the results — Sky Net, Cylons, or maybe something worse — but every
computer scientist in the world knows that it’s only a matter of time. Maybe
video games are the first place that advanced AI will be used, so read on.

Artificial neural networks
Artificial neural networks have been a popular topic for theory and specula-
tion, but the reality seemed elusive. Well, those days are gone. I can tell you
for a fact that in the past three to five years, humankind has made leaps and
bounds in the area of artificial neural networks. Not because a major break-
through has occurred, but because people are finding an interest in them,
experimenting with them, and using them. In fact, a number of games use
extremely advanced neural networks: Creatures, Dogz, Fin Fin, and others.

A neural network is a model of our brain. Our brain consists of 10 to 100
billion brain cells. Each of these cells can both process information and
send information. Figure 23-13 is a biological model of a human brain cell
containing three main parts: the soma, axon, and dendrites. The soma is the
main cell body and performs the processing, and the axon transmits the
signal to the dendrites which then pass the signal to other neurons.

Figure 23-13:
A biological

neuron.
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Each neuron has a fairly simple function: to process input and fire or not to
fire. Firing means sending an electrochemical signal. So, basically, neurons
have a number of inputs and a single output (that may be distributed), and
some rule that it uses to process the inputs and generate an output. The
rules for processing are extremely complex and beyond the little space I
have in this book, but suffice it to say that a summation of signals occurs,
and the results of the summation cause the neuron to fire.

Well, that’s great, but how can you use this information to make games
think? Well, instead of trying to accomplish something as bold as thought or
consciousness, maybe you can begin by creating computer models for
simple memory, pattern recognition, and learning. I recommend this ap-
proach because our organic brains are very good at these tasks, and their
digital counterparts are very bad. So it’s intriguing to explore a biological
computer to perform these tasks. Implementations of simple biological
computing models are exactly what artificial neural networks — or simply
neural networks — are. They are simple digital models that can process
information in parallel similar to the way our brains function.

Take a look at the most basic kinds of artificial neuron or neurode. The
first artificial neural networks were created in 1943 by electrical engineers
W. McCulloch and W. Pitts, who wanted to model electronic hardware after
the human brain. So they came up with what they called a neurode. Today,
the form of the neurode hasn’t changed much, as shown in Figure 23-14.

Figure 23-14:
Basic

artificial
neurons.



CD PDF File ______________________________________________________28

Neurodes ad nauseam
The neurode consists of a number of inputs
X(i ) that are scaled by weights w (i ), summed
up, and then processed by an activation func-
tion. This activation function may be a simple
threshold as in the McCulloch-Pitts (MP)
model or a more complex step, linear, or expo-
nential function. But in the case of the MP
model, the sum is compared to threshold value
θ (theta). If the sum is greater than theta, then
the neurode fires; otherwise it doesn’t. So
mathematically, you have:

McCulloch-Pitts Neurode Summation
Function:
n

Output Y = ∑ Xi * wi

i =1

General Neurode with Bias:

n

Output Y = B*b + ∑ Xi * wi

i =1

To see how a basic neurode works, assume
that two inputs X1, and X2 can take on the

binary values 0 and 1. Then set the threshold
at 2 and w1=1 and w2=1. The summation func-
tion looks like this:

Y = X1*w1 + X2*w2

Then compare the result to the threshold theta
of 2. If Y is greater than or equal to 2, then the
neurode fires and outputs a 1.0; otherwise it
outputs a 0. The following truth table shows
what this single neurode network does.

X1 X2 Sum Y Final Output

0 0 0 0

0 1 1 0

1 0 1 0

1 1 2 1

If you stare at the truth table for a moment,
you’ll realize that it basically represents an
AND circuit. Cool, huh! So a simple little
neurode can perform an AND operation. In
fact, by using neurodes, you can build any
logic circuit you want to. For example, the fol-
lowing figure shows an OR and an XOR.
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Real neural networks are very complex, of course. Neural nets can consist of
multiple layers, complex activation functions, and hundreds or thousands of
neurodes, but if you read the sidebar, you can understand their fundamental
building block. Neural networks will continue to bring an unprecedented
new level of competition and AI to games. Soon, games will be able to make
decisions, learn, and even come up with creative solutions to problems
based on making pseudo-random attempts.

Because this is such an important area of interest and I don’t have time to
properly cover it here, I include on the CD an article on neural networks that
I wrote a while ago. This information gives you a more solid foundation on
the topic. It covers all the various types of networks, shows you learning
algorithms, and illustrates just what they can do. It’s called NETWARE.ZIP
and is in Microsoft Word 95 format. As a bonus, NETWARE.ZIP includes a
number of programs that will enable you to create some simple neural nets.

Genetic algorithms
Genetic algorithms are a method of computing that relies on biological
models to evolve solutions (if you’re reading this, Dr. Koza, don’t have a
heart attack). Nature is great at evolution, and genetic algorithms try to
capture some of the essence of natural selection and genetic evolution in
computer models to help solve problems that normally couldn’t be solved
by standard means of computing.

Basically, genetic algorithms work like this. You string together a number of
informational indicators into a bit vector just like a strand of DNA (as shown
in Figure 23-15). This bit vector represents the strategy or coding of an
algorithm or solution. You need a few of these bit vectors to begin. Then you
process the bit string and whatever it represents by some objective func-
tion. The results are it’s score. This score is used to compare various
strategies to each other.

Hence, a bit vector is really a concatenation of various control variables or
settings for some algorithm. You must come up with a few experimental sets
of values to start with. Then you run each set, and you get the score of each
set. You find that out of the five you created manually, two of them did really
well, and the other three did really bad. Now here’s where the genetic
algorithm comes in.
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You could just tweak from this point, knowing that you’re on the right track.
Or you could let genetic algorithms do the task for you. What you do is mix
the two solutions or control vectors together to create two new offspring (as
shown in Figure 23-16). To add a little bit of uncertainty, flip a bit here and
there during the crossover process to simulate mutation. Then try your new
solutions along with the last generation’s best solutions and see what
happens with the scores. Pick the best results out of the generation and do
the process again. This is the process of genetic evolution. Amazingly, the
best possible solution will slowly evolve, and the result may be something
you never imagined.

The key idea about genetic algorithms is that they try new ideas, and they
can search a very large search space that normally you couldn’t manually
search one-by-one. This search space coverage property is due to the fact
that mutations occur that represent completely random evolutionary
events. These mutations may or may not be better adapted.

Figure 23-15:
Binary

encoding of
genetic

information.

Figure 23-16:
Digital

reproduction.
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So how do you use this information in a game? There are millions of ways I
can think of off the top of my head, but I’m giving you just one to get you
started. You can use the probability settings of your AI as the genetic source
for digital DNA. Then you can merge and evolve the probabilities of the
game creatures that have survived the longest, thus giving the best traits to
future generations. Of course, you would only do this when you need to
spawn a new creature, but you get the idea.

Fuzzy logic
Fuzzy logic is the last technology I’m going to cover and perhaps one of the
most interesting. Fuzzy logic should really be referred to as fuzzy set theory.
In other words, fuzzy logic is a method of analyzing sets of data so that the
elements of the sets can have partial inclusion.

Most people are accustomed to crisp logic, in which something is either
included or it isn’t. For example, if I were to create the sets child and adult, I
would fall into the adult category and my three-year-old nephew would be
part of the child category.

Fuzzy logic, on the other hand, allows objects to be contained within a set
even if they aren’t totally in the set. For example, I may say that I am 10
percent part of the child set and 100 percent part of the adult set. Similarly,
my nephew may be 2 percent part of the adult set and 100 percent part of
the child set. These are fuzzy values. Also, you’ll notice that they don’t have
to add up to 100 percent; they can be more or less.

The cool thing about fuzzy logic is that it enables you to make decisions that
are based on fuzzy or error-ridden data, and the decisions are usually
correct. With a crisp logic system, you can’t do this. If you’re missing a
variable or input, then the analysis won’t work. But a fuzzy system can still
function and function well, just like a human brain.

I mean, how many decisions do you make each day that feel fuzzy to you?
You don’t have all the facts, but you’re still fairly confident of the decision.
This is fuzzy logic and its application to game AI is obvious in the areas of
decision making, behavioral selections, and input/output filtering.
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Bonus Chapter 24

Game Programming Potpourri
In This Chapter

Choosing data structures

Writing a good algorithm

Understanding optimization theory

Creating a demo

Writing a save-game feature

Implementing multiple players

n this chapter, I cover all those little details that slip through the cracks
in any game programming book. I discuss everything from writing games

so they can be saved, to making demos, to optimization theory! I think that
this chapter will answer any further questions that you may have. If it
doesn’t, e-mail me at necron@slip.net, and I’ll answer it!

Data Structures
Probably one of the most frequent questions I’m asked is this: What kind of
data structures should be used in a game? My answer: Use the fastest, most
efficient data structure possible for the task at hand. Note, however, that in
most cases, the task at hand doesn’t require the most advanced, complex
data structures that computer science has to offer. Rather, try to keep things
simple. When it comes to games in Windows, speed is more important than
memory these days. So sacrifice memory before you sacrifice speed!

In the following sections, I cover some of the most common data structures
used in games and give you some insight into when to use them.
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Static structures and arrays
The most basic of all data structures is, of course, a single occurrence of a
data item such as a single structure or class. For example:

typedef struct PLAYER_TYP // tag for forward references

        {

        int state; // state of player

        int x,y;   // position of player

        // more fields here...

        } PLAYER, *PLAYER_PTR;

In C++, you don’t need to use typedef on structure definitions to create a
type, as in C; a type is automatically created for you when you use the
keyword struct.

PLAYER player_1, player_2; // create a couple of players

In this case, a single data structure along with two statically defined records
does the job. On the other hand, if the game calls for three or more players,
using an array like this is probably a good idea, because you can process all
the players with a simple loop:

PLAYER players[20]; // the players of the game

Okay, great, but what if you don’t know the number of players or records
until the game runs? When this situation arises, I figure out the maximum
number of elements that the array would have to hold in the most demand-
ing case. If the number is less than or equal to 256 and each element is
reasonably small ( less than 256 bytes) then I usually statically allocate it
and use a counter to count how many of the elements are active at any time.

You may think that this process is a waste of memory, and it is; but a
preallocated array of a fixed size is easier and faster for the processor to
traverse than a linked list or a more dynamic structure. My point: If you
know the number of elements ahead of time and that number is small, go
ahead and preallocate it or malloc() the memory at start up.

Don’t get carried away with static arrays. Suppose that you have a 4K
structure and you will need from 1 to 256 static records. Allocating 1MB of
memory — in case the number may increase to 256 at some point — is a
poor strategy.
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Linked lists
Arrays are fine for simple data structures that can be precounted or esti-
mated at compilation or start up, but data structures that can grow or
shrink during run-time should use some form of linked list. Figure 24-1
depicts a standard abstract linked list. A linked list consists of a number of
nodes, with each node containing information and a link to the next node in
the list.

Figure 24-1:
A linked list.

Linked lists are cool because you can insert or delete a node anywhere in
the list (see Figure 24-2). The capability of a linked list to insert and delete
nodes (and, therefore, information) during run-time makes them very
attractive as a data structure for games.

Figure 24-2:
Inserting

into a
linked list.
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The only bad thing about linked lists is that you must traverse them node-
by-node to find what you are looking for. For example, suppose that you
want the 15th element in an array; you can access it like this:

players[15]

But with linked lists, you need a traversal algorithm (which is a method to
visit each node in the list) to traverse the list to find the 15th element. In the
worst case, the searching of linked lists can take a number of iterations
equal to the length of the list, represented mathematically as O(n) — read
“big O of n.” Of course, you can employ optimizations and secondary data
structures to maintain a sorted indexed list that allows access almost as fast
as the simple array.

Creating a linked list
For an example of a simple linked list, take a look at how to create a linked
list, add a node, delete a node, and search for an item with a given key.
Here’s the basic node:

typedef struct NODE_TYP

   {

   int id;         // ID number of this object

   int x,y;        // position of object

   int color;      // color of object

   NODE_TYP *next; // this is the link to the next node

                   // more fields go here

   } NODE, *NODE_PTR;

Then to start the list off, you need a head pointer and a tail pointer that
points to the head and tail of the list, respectively. However, because the list
is empty, the pointers start off pointing to NULL.

NODE_PTR head = NULL,

tail = NULL;

Traversing a linked list
Ironically, traversing a linked list is the easiest of all operations. To traverse
a linked list, follow these steps:

1. Start at the head pointer.

2. Visit the node.

3. Link to the next node.

4. If the node is not NULL, then go to Step 2.
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And here’s the code:

void Traverse_List(NODE_PTR head)

{

// this function traverses the linked list and prints out

// each node

// first test whether head is null

if (head==NULL)

   {

   printf(“\nLinked List is empty!”);

   return;

   } // end if

// traverse while nodes

while (head!=NULL)

      {

      // visit the node, print it out, or whatever...

      printf(“\nNode Data: id=%d”, head->id);

      printf(“\nx=%d, y=%d”,head->x, head->y);

      printf(“\ncolor=%d\n”,head->color);

      // advance to next node (simple!)

      head = head->next;

      } // end while

} // end Traverse_List

Pretty cool, huh? In the next subsection, I explain how to add a node.

Adding a node (insertion)
The first step in adding a node is to create it. You can use either of two
approaches:

Send the new data elements to the insertion function and let it build up
a new node.

Build up a new node and then pass it to the insertion function.

Both methods achieve the same result. You can choose from a number of
ways to insert a node into a linked list. The brute force method is to add it
to the front or the end. This approach is fine if you don’t care about the
order; but if you want the list to remain sorted, use a more intelligent
insertion algorithm that maintains order in either ascending or descending
order. This process makes searching much faster.

For simplicity’s sake, I took the easy way out and inserted at the end of the
list, but inserting with sorting is not that much more complex. You first need
to scan the list, find the location at which the new element should be
inserted, and then insert the new element. Your only problem will be
keeping track of the pointers and not losing any nodes or links.
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Here’s the code to insert a new node at the end of the list (a bit more
difficult than the front of the list). Notice the special cases for empty lists
and lists with a single element.

// access the global head and tail to make code easier;

// in real life, you may choose to use ** pointers and

// modify head and tail in the function

NODE_PTR Insert_Node(int id, int x, int y, int color)

{

// this function inserts a node at the end of the list

NODE_PTR new_node = NULL;

// Step 1: create the new node

new_node = malloc(sizeof(NODE)); // in C++ use new operator

// fill in fields

new_node->id = id;

new_node->x  = x;

new_node->y  = y;

new_node->color = color;

new_node->next = NULL; // good practice

// Step 2: find the current state of the linked list

if (head==NULL) // case 1

   {

   // finding an empty list means using the simplest case

   head = tail = new_node;

   // return new node

   return(new_node);

   } // end if

else

if ((head != NULL) && (head==tail)) // case 2

   {

   // you have exactly one element; this code is really

   // just a little finesse...

   head->next = new_node;

   tail = new_node;

   // return new node

   return(new_node);

   } // end if

else // case 3

   {

   // in case 2 or more elements are in list,

   // simply move to end of the list and add

   // the new node
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   tail->next = new_node;

   tail = new_node;

   // return the new node

   return(new_node);

   } // end else

} // end Insert_Node

As you can see, the code is rather simple, but it is easy to mess up because
you are dealing with pointers, so be careful! Also, the astute programmer
very quickly realizes that, with a little thought, cases 2 and 3 can be com-
bined; however, the preceding code is easier to follow than the code which
combines cases 2 and 3.

Deleting a node
Deleting a node is the most complex of all linked-list operations, or at least
up there in the record books.

The problem with deletion is that in most cases you want to delete a specific
node. The node may be at the head, tail, or in the middle; therefore, you
must write a very general algorithm that takes all these cases into consider-
ation. If you’re careful, deletion isn’t a problem; but if you don’t take all the
cases into consideration and test them, you’ll be sorry!

Now that you’re scared of the linked-list police, here’s the code to delete a
node from a fictitious linked list using the id as the key:

// this function will modify the globals

// head and tail (possibly)

int Delete_Node(int id) // node to delete

{

// this function deletes a node from

// the linked list given its ID

NODE_PTR curr_ptr = head, // used to search the list

         prev_ptr = head; // previous record

// test whether a linked list to delete from is present

if (!head)

    return(-1);

// traverse the list and find node to delete

while(curr_ptr->id != id)

     {

     // save this position

     prev_ptr = curr_ptr;

     curr_ptr = curr_ptr->next;

     } // end while

(continued)
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// at this point we have found either the node

// or the end of the list

if (curr_ptr == NULL)

    return(-1); // couldn’t find record

// the record was found, so delete it, but be careful;

// there are a number of cases to test for

// need to test cases

// case 1: one element

if (head==tail)

   {

   // delete node

   free(head);

   // fix up pointers

   head=tail=NULL;

   // return id of deleted node

   return(id);

   } // end if

else // case 2: front of list

if (curr_ptr == head)

   {

   // move head to next node

   head=head->link;

   // delete the node

   free(curr_node);

   // return id of deleted node

   return(id);

   } // end if

else // case 3: end of list

if (curr_ptr == tail)

   {

   // fix previous pointer to point to null

   prev_ptr = NULL;

   // delete the last node

   free(curr_ptr);

   // point tail to previous node

   tail = prev_ptr;

   // return id of deleted node

   return(id);

   } // end if

(continued)
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else // case 4: node is in middle of list

   {

   // connect the previous node to the next node

   prev_ptr->next = curr_ptr->next;

   // now delete the current node

   free(curr_ptr);

   // return id of deleted node

   return(id);

   } // end else

} // end Delete_Node

Note that the code contains a lot of special cases. Each is simple, but you
have to think of every possible scenario — which I hope that I did!

Finally, you may have noticed the drama in the code when deleting nodes
from the interior of the list. The problem occurs because, once a node is
traversed, you can’t get back to it. Therefore, I had to keep track of a
previous NODE_PTR to keep track of the last node.

This problem can be solved along with others by using what is called a
double linked list (as shown in Figure 24-3). The cool thing about a double
linked list is that you can traverse in both directions from any point, and
insertions and deletions are much easier. And the only change to the data
structure is another link field, as shown (in bold) in the following code:

typedef struct NODE_TYP

   {

   int id;    // ID number of this object

   int x,y;   // position of object

   int color; // color of object

   NODE_TYP *next; // link to the next node

   NODE_TYP *prev; // link to previous node

   // more fields go here

   } NODE, *NODE_PTR;

Figure 24-3:
A double

linked list.
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Trees
The next class of advanced data structures are trees. Take a look at
Figure 24-4 to see a number of different treelike data structures.

Figure 24-4:
Some tree

topologies.

Trees were invented to help with searching and storing large amounts of
data. The most popular kind of tree is the binary tree or B-tree. The binary
tree is a tree data structure emanating from a single root that is composed of
a collection of nodes. Each node has one or two child nodes descending
from it — hence, the term binary. Moreover, we talk of the order or number
of levels of a tree, meaning how many layers (or levels) of nodes. For
example, the tree in Figure 24-5 is a three-level tree.

Figure 24-5:
A three-

level tree.



________________________ Bonus Chapter 24: Game Programming Potpourri 11
The interesting thing about trees is how fast the information can be
searched. Most B-trees use a single search key to order the data in the tree.
Then a searching algorithm searches the tree for the data.

For example, suppose that you want to create a B-tree that contains records
of game objects, each with a number of properties. You can use the time of
creation as the key. Here’s the data structure that you would use to hold a
single node:

typedef struct TNODE_TYP

   {

   int time;  // time of creation

   int x,y;   // position of object

   int color; // color of object

   NODE_TYP *right; // link to right node

   NODE_TYP *left;  // link to left node

   } TNODE, *TNODE_PTR;

Notice the similarity between the tree node and the linked-list node (cov-
ered in the earlier subsection “Linked lists”). The only difference is really
the way you use the data structure and build up the tree.

Continuing with the example, suppose that I have five objects with the
following creation times: t={0,25,3,12,10}. Figure 24-6 depicts two different
B-trees that contain this data. However, a number of topologies exist that
would maintain the properties of a B-tree.

In Figure 24-6, I use the convention that any right child is greater than or
equal to its parent and any left child is less than its parent. You can use a
different convention as long as you stick to it.

  
 

     

Figure 24-6:
B-tree

encoding of
data set

(0,25,3,12,10).
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Unfortunately, I don’t have time to cover the code for creating, searching,
and working with B-trees, so you’ll have to get a book or do some more
research if you’re interested (try Programs and Data Structures In C, by
Leendert Ammeraal, Wiley Press). But I can tell you what B-trees bring to
game programming.

Binary trees can hold enormous amounts of data, and that data can be
quickly searched by using a binary search. This property is a manifestation
of the binary structure of the tree. For example, if you have a tree with a
million nodes, then at most it will take you 20 comparisons to find any
desired record! Is that crazy or what? The reason for such a small number of
comparisons is that at each iteration of your search (as you compare the
key you are looking for against the current node you are visiting), you cut
half the nodes out of the search space.

The above statement about search time is only true for balanced trees (trees
that have an equal number of right and left children per level). If a tree is
totally unbalanced, it degrades into a linked list and search time degrades
into a linear function.

The next cool thing about B-trees is that if you take a branch (a subtree) and
process it separately, the branch maintains the properties of a B-tree.
Therefore, if you know where to look, you can search only the branch for
whatever it is you’re looking for.

When do you use B-trees? I suggest that you use treelike structures when
the problem or data is treelike to begin with. If you find yourself drawing out
the problem and you see branches to the left and right, then a tree is
definitely for you. For example, in Bonus Chapter 23 on artificial intelligence,
I speak of creating memories for the game characters. A tree structure
would be perfect for memory. Each node could represent a room, and the
children off of each node could represent the various objects that exist in
each room.

Algorithmic Xtasy
Algorithm design and algorithmic analysis are complex subjects and usually
are senior-level computer science material, but I can at least touch upon
some common-sense techniques and ideas to help you out when you start
writing more complex algorithms — because brute-force, sloppy program-
ming just isn’t good enough in many cases.

A good algorithm is better than all the assembly language or optimization
in the world. For example, just by re-ordering your data, you can reduce
the amount of time necessary to search for a data element by orders of
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magnitude. So the moral of the story is to select a good solid algorithm that
fits the problem and the data, but at the same time to pick a data structure
that can be accessed and manipulated with a good algorithm. I mean, if you
always use linear arrays, you’re never going to get better than linear search
time (unless you use secondary data structures); but if you use sorted
arrays, you can get logarithmic search time.

The first step to writing good algorithms is having some clue about how to
analyze them. The art of analyzing algorithms is called asymptotic analysis
and is usually calculus-based, so I’m just going to skim some of the concepts.

The basic idea of analyzing an algorithm is to compute how many times the
main loop is executed for n elements, whatever n means. Of course, how
long each execution takes plus the overhead of setup can also be important
after you have a good algorithm, but the first place to start is the general
counting of how many times. Take a look at two examples:

for (int index=0; index<n; index++)

    {

    // do work, 50 cycles

    } // end for index

In this case, the loop is going to execute for n iterations, thus the execution
time is of the order n, or O(n). As explained in the earlier section called
“Linked lists,” Big O is a very rough upper estimate of execution time. You
can be more precise in this case because you know that the inner computa-
tion takes 50 cycles; so the total execution time is:

n*50 cycles

Right? Wrong! If you are going to count cycles, then you had better count the
cycles that it takes for the loop itself. This calculation consists of an initial-
ization of a variable, a comparison, an increment, and a jump for each
iteration. Adding in these factors, you end up with something like this:

Cyclesinitialization+(50+Cyclesinc+Cyclescomp+Cyclesjump)*n

This estimate is much more accurate. Of course, Cyclesinc, Cyclescomp, and
Cyclesjump, are the number of cycles for the increment, comparison, and
jump, respectively, and are each around 1 to 2 cycles on a Pentium-class
processor. Therefore, in this case, the loop itself contributes just as much to
the overall time of the inner loop as does the work performed by the loop!

Loop overhead is a key point. For example, many game programmers write a
pixel-plotting function as a function instead of a macro or inline code.
Because a pixel-plotting function is so simple, the call to the function takes
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more time than the pixel plotting! So make sure that you do enough work
within your loop to warrant the usage of a loop in the first place. If the work
within the loop “drowns” out the loop mechanics, then you should be okay.

The following code example has a much worse running time than n:

// outer loop

for (i=0; i<n; i++)

    {

    // inner loop

    for (j=1; j<2*n; j++)

{

        // do work

        } // end for j

    } // end for i

In this code block, I’m assuming that the “work” part takes much more time
than the actual code that supports the loop mechanics, so I’m not interested
in the loop mechanics. What I am interested in is how many times this loop
executes. The outer loop executes n times and the inner loop 2×n–1 times;
thus the total amount of time the inner code will be executed is:

n×(2×n–1) = 2×n2–n

Look at these two terms for a moment. The 2×n2 term is the dominant term
and will drown out the n term as n gets larger (see Figure 24-7).

Figure 24-7:
Rates of

growth for
the term of

2×n2n.
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For a small n — for example, when n equals 2 — the n term is relevant:

2×(2)2–2 = 6

In this case, the n term contributed to subtracting 25 percent of the total
time away. But take a look at what happens when n gets larger; for example,
when n equals 1,000.

2×(1,000)2–1,000 = 1,999,000

In this case, the n term contributes a decrease of only .05 percent; hardly
important. Thus, you can see that the dominant term is indeed the 2×n2

term, or more simply the n2 itself. Therefore, this algorithm is O(n2). This
result is very bad. Algorithms that run in n2 time will just kill you — well, at
least will kill the performance of your code — so if you come up with an
algorithm like this, then try, try again!

That’s it for asymptotic analysis; the bottom line is that you must be able to
roughly estimate the run-time of your loops. This estimation will help you
pick out the best algorithms and recode areas that need work.

Optimization Theory
No other programming has the kind of performance requirements that
games do. Video games have always pushed the limits of hardware and
software and will continue to do so. The reason for this: Enough is never
enough. Game programmers always want to add one more creature, effect,
or sound, as well as increase or improve the AI. Therefore, optimization is of
the utmost importance. In this section, I cover some optimization tech-
niques to get you started. If you are interested in reading more about this
subject, a number of good books on the subject are available (try Black Art
of 3D Game Programming, by André LaMothe; Waite Group Press).

Using your head
The first key to writing optimized code is understanding the compiler, data
types, and the way your C/C++ is finally transformed into executable ma-
chine language. The best idea is to use simple programming and simple data
structures. The more complex and contrived your code is, the more difficult
time the compiler is going to have converting to machine code and, thus,
the slower your code is going to execute (in most cases). Here are some
basic rules to keep in mind:
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Use 32-bit wide data as much as possible; 8-bit data may take up less
space, but Intel processors like 32-bit data are optimized to access it.

Use inline functions for small functions that you call a lot.

Use globals as much as possible without making ugly code.

Avoid floating-point numbers for addition and subtraction.

Use integers whenever possible, even though the floating point proces-
sor is almost as fast as the integer processor. Integers are exact, so if
you don’t need decimal accuracy, use integers.

Align all data structures to 32-byte boundaries. You can do this manu-
ally or with compiler directives on most compilers.

Never pass data to functions as value if the data is anything other than
a simple type; always use a pointer.

Don’t use the register keyword in your code. Although Microsoft says
that this keyword makes faster loops, it starves the compiler of regis-
ters and ends up making horrible code.

If you’re a C++ programmer, then it’s okay for you to use classes and
virtual functions; just don’t go crazy with inheritance and layers of
software.

The Pentium-class processors use an internal data and code cache. Be
aware of this arrangement and try to keep the size of your functions
relatively small so they can fit into the cache (16K to 32K). In addition,
when you store data, store it in the way it will be accessed. This
method minimizes cache thrashing and main memory or secondary
cache access, which is ten times slower than the internal cache.

Be aware that Pentium-class processors have RISC-like cores, and they
like simple instructions, allowing two or more instructions to execute in
more than one execution unit. Don’t write contrived code on a single
line. Writing simpler code lines is better, even though you can mash the
same functionality on the same line.

Working mathematical sorcery
Because a great deal of game programming is mathematical in nature, it pays
to know advanced ways to perform math functions. You can use a number of
general tricks and methods to enhance math performance and speed up
operations.

The first I cover briefly is fixed-point math, which is an advanced subject,
and I refer you to my other book, The Black Art of 3D Game Programming
( published by Waite Group Press) for a more complete treatise on this topic.
However, here is a list of math tricks you can use to speed up operations:
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With regard to data types, always use integers with integers and floats
with floats. Conversion from one to another kills performance. Hence,
hold off on the conversion of data types to the very last minute.

Integers can be multiplied by any power of 2 by shifting to the left. And
likewise, they can be divided by any power of 2 by shifting to the right.
Multiplication and division other than by power of 2 is accomplished
by using sums or subtractions of shifts. For example, 640 is not a power
of two, but 512 and 128 are, so here’s the best way in C code to multiply
a number by 640 using shifts:

product=(n<<7) + (n<<9); // n*128 + n*512 = n*640

If you use matrix operations in your algorithms, then make sure that
you take advantage of the sparseness of those operations.

When you create constants, make sure that they have the proper casts,
so that the compiler doesn’t reduce them to integers or interpret them
incorrectly. The best idea is to use the C++ const directive; for example:

const float f=12.45;

Avoid square roots, trigonometric functions, or any complex math-
ematical functions. In general, find a simpler way to accomplish the
operation by taking advantage of certain assumptions or making
approximations. However, you can always make a lookup table as
shown in the section “Appreciating lookup tables.”

If you have to zero out a large array of floats, use a memset() like this:

memset((void*)float_array,0,sizeof(float)*num_floats);

However, you can only use memset() in this situation, because floats
are encoded in IEEE format and the only value that is the same in both
integer and float values is 0.

When you perform mathematical calculations, see if you can reduce the
expressions manually before coding them. For example, n×(f+1)÷
is equivalent to (f+1) because the multiplication and division of n
cancel out.

If you perform a complex mathematical operation and you need it again
a few lines down in the code, then cache it; for example:

// compute term that is used in more

// than one expression

float n_squared = n*n;

// use term in two different expressions

pitch = 34.5*n_squared+100*rate;

magnitude = n*squared / length;
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And last, but not least, make sure that you set the compiler options to
use the floating point processor and create code that is fast (runs the
quickest) rather than small (takes up the least amount of RAM ).

Unrolling the loop
The next optimization trick is loop unrolling, which was one of the best
optimizations possible back in the 8- and 16-bit days, but today it can
backfire on you.

Unrolling the loop means to take apart a loop which iterates some number
of times and to manually code each line as the loop would have mechani-
cally. Here’s an example:

// loop before unrolling

for (int index=0; index<8; index++)

    {

    // do work

    sum+=data[index];

    } // end for index

The problem with this loop is that the “work” section takes less time than
the loop does for the increment, comparison, and jump. Hence, the loop
code itself doubles or triples the amount of time the code requires!

To fix this problem with the code, unroll the loop like this:

// the unrolled version

sum+=data[0];

sum+=data[1];

sum+=data[2];

sum+=data[3];

sum+=data[4];

sum+=data[5];

sum+=data[6];

sum+=data[7];

This approach is much better.

However, consider these two caveats to the code listed above:

If the loop body is much more complex than the loop mechanics itself,
then you really don’t need to unroll it. For example, if you are comput-
ing square roots in the “work” section of the loop, then a few more
cycles in each iteration isn’t going to help you.
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Pentium processors have internal caches, and unrolling a loop too
much may cause it to be unable to fit in the internal cache. This situa-
tion is disastrous and will bring your code to a halt. I suggest unrolling
(if appropriate) 8 to 32 times, depending on the situation.

Appreciating lookup tables
This is my personal favorite optimization. Lookup tables are precomputed
values of some computation that you know you will perform during run-
time. You simply compute all possible values at startup and then run the
code.

For example, suppose that you need the sine and cosine of the angles from 0
to 359 degrees. Computing them by using sin() and cos() would kill your
math performance if you use the floating point processor; but by utilizing a
lookup table, your code can compute sin() or cos() in a few cycles
because the process involves just grabbing the number from a lookup table.
Here’s an example:

// storage for look up tables

float SIN_LOOK[360];

float COS_LOOK[360];

// create lookup table

for (int angle=0; angle < 360; angle++)

    {

    // convert angle to radians because the math library

    // uses rads instead of degrees

    // remember that 2*pi rads are in 360 degrees

    float rad_angle = angle * (3.14159/180);

    // fill in the remaining entries in lookup tables

    SIN_LOOK[angle] = sin(rad_angle);

    COS_LOOK[angle] = cos(rad_angle);

    } // end for angle

As an example of using the lookup table, here’s the code to draw a circle of
radius 10:

for (int ang = 0; ang<360; ang++)

    {

    // compute the next point on circle

    x_pos = 10*COS_LOOK[angle];

    y_pos = 10*SIN_LOOK[angle];

    // plot the pixel

    Plot_Pixel((int)x_pos+x0, (int)y_pos+y0, color);

    } // end for ang
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Of course, lookup tables take up memory, but they are well worth it. If you
can precompute a set of values that you’ll need in your code, then put the
set in a lookup table. That’s my motto. (And if you have a hard time believ-
ing that the really cool and complex games today don’t use lookup tables,
think again; how do you think that Doom and Quake work?)

Using assembly language
The final optimization I want to talk about is using assembly language.

So you have the killer algorithm and all your data structures are good, but
you just want a little bit more oomph to your code’s speed. Hand-crafted
code written in assembly language doesn’t make code go 1,000 times faster
with 32-bit processors like it did with 8- and 16-bit processors, but it can get
you 2 to 10 times more speed, and that result is definitely worth it.

However, make sure that you only try to convert sections of your game that
need converting. Don’t mess with converting the menu program to assem-
bly, because that’s a waste of time. Use a profiler or similar analysis program
to see where all your game’s CPU cycles are being eaten up ( probably in the
graphics sections) and then target those for conversion to assembly language.

In the old days (a few years ago), most compilers didn’t have inline assem-
blers, and if they did, the inline assemblers were awful and supported very
few features of an external assembler. Today, the inline assemblers that
come with Microsoft, Borland, or Watcom compilers are really good and just
about as full featured as a standalone assembler for small jobs that range
from a few dozen lines to a couple hundred. Therefore, I suggest using the
inline assembler in your compiler if you want to do any assembly language.

Here’s how you invoke the inline assembler in Microsoft Visual C++ 2.0+:

_asm

{

[assembly language code here]

} // end asm

The cool thing about the inline assembler is that it enables you to use
variable names that have been defined by C/C++. For example, here’s how to
write a 32-bit memory fill function using inline assembly language:

void qmemset(void *memory, int value, int num_quads)

{

// this function uses 32-bit assembly language based



________________________ Bonus Chapter 24: Game Programming Potpourri 21
// on the string instructions to fill a region of memory

_asm

   {

   CLD                // clear the direction flag

   MOV EDI, memory    // move pointer into EDI

   MOV ECX, num_quads // ECX hold loop count

   MOV EAX, value     // EAX hold value

   REP STOSD          // perform fill

   } // end asm

} // end qmemset

To use the new function, all you do is this:

qmemset(&buffer, 25, 1000);

And 1,000 quads would be filled with the value 25 starting at the address of
buffer.

If you’re not using Microsoft Visual C++, then take a look at your particular
compiler’s Help file to see the exact syntax needed for inline assembly. In
most cases, the changes to the prior code block are an underscore here and
there and nothing more.

Making Demos
So you’ve got this killer game and you need a demo mode. You can use two
main methods to implement a demo mode:

Play the game yourself, record your own moves, and then play the
moves back.

Use an AI player that plays the game unattended.

Recording game play turns out to be the most common choice, because
writing an AI player that can play as well as a human is difficult. In addition,
it’s difficult to let the AI demo player know that it needs to make a good
impression on potential buyers by playing the game in a “cool” way. The next
sections take a brief look at how each of these methods are implemented.
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Prerecorded
To record a demo, follow these steps:

1. Record the state of all the input devices each cycle as you create the
demo.

2. Write the data to a file.

3. Play back the demo as if it were the input of the game.

Take a look at Figure 24-8 to see this point graphically. The idea is to create
your demo so that the game doesn’t know whether the input is from the
keyboard (input device) or from a file, so it simply plays the game back.

For this process to work, you need to have a deterministic game. This term
means that if you play the game again and do the exact same moves, then
the game creatures will also respond the same way. As well as recording
the input devices, you must record the initial random-number seed as well,
so that the starting state of a game is recorded as well as the input. This
step ensures that the game will play back in the exact same way as you
recorded it.

Figure 24-8:
Demo

playback.
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To record a game, the best approach is to not sample the input at time
intervals, but to sample the input at each frame. Therefore, if the game is
played on a slower or faster computer, the playback data won’t get out of
synchronization with the game. Here are the steps your code should follow:

1. Create a general input record.

2. Merge all the input devices into the single record each cycle.

3. As the game runs, write each input record to a file (one for each
frame).

Also, at the beginning of the file, I place any state information or random
numbers that I played the demo with, so that these values can be loaded
back in.

For example, the playback file may look something like this:

Initial State Information

Frame 1: Input Values

Frame 2: Input Values

Frame 3: Input Values . . .

Frame N: Input Values

After you have the file, you reset the game and simply start it up. Then you
read the file as if it were the input devices. The game doesn’t know the
difference and simply plays!

The single mistake that you can make in creating the demo is sampling the
input at the wrong time when you write records. Make absolutely certain
that the input you sample and record is the actual input that the game uses
for that frame. A common mistake newbies make is to sample the input for
the demo mode at a point in the event loop before or after the normal input
is read. Hence, you are sampling different data! It’s possible that the play
may have the fire button down in one part of the event loop and not in
another; thus you must sample at the same point you normally read the
input for the game.

AI controlled
The second method of recording a game is by writing an AI bot that plays,
much like people do for Internet games such as Quake. The bot plays the
game while in demo mode as if it were one of the AI characters in the game.
The only problem (other than the technical complexity) is that the bot may
not necessarily show off all the cool rooms, weapons, and so on, because it
doesn’t know that it’s making a demo. On the other hand, the cool thing
about having a bot play is that each demo is different and the attract mode
of the game will never get boring.
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Implementing a bot to play your game is like using any other AI character:
You connect it to the input port of your game and override the normal input
stream (refer to Figure 24-8). Then you write the AI algorithms for the bot
and give it some main goals, such as finding its way out of the maze or
killing everything in sight. Finally, you simply let the bot loose to demo until
the player wants to play.

Saving the Game
One of the biggest pains in the butt is writing a save-game feature. This task
is one that all game programmers do last and do by the seat of their pants,
in most cases. The key is to write your game with the idea that you want to
give the player a save-game option at some point, so that you don’t dig
yourself into a corner.

To save a game at any point in the game means to record the state of every
single variable in the game and the state of every single object in the game.
Therefore, you must record in a file all global variables along with the state
of every single object.

The best way to approach this task is by adopting an object-oriented
thought process. Instead of writing a function that writes out the state of
each object and all the global variables, teach each object how to write and
read its own state to a disk file.

Then to save a game, all you need to do is write the globals and create a
simple function that requests each game object to write its own state. To
load the game back in, all you need to do is read the globals back into the
system and load the state of all the objects back into the game.

This way, if you add another object or object type, the loading/saving
process is localized in the object itself, rather than strewn about all over the
place in your code.

Implementing Multiple Players
The last little tidbit of game programming legerdemain is implementing
multiple players. Of course, if you want to implement a networked game,
that’s a whole other story, but DirectPlay makes the communication part
easy at least. However, if all you want to do is let two or more players play
your game at the same time or by taking turns, then that flexibility requires
nothing more than extra data structures and a bit of housekeeping.



________________________ Bonus Chapter 24: Game Programming Potpourri 25
Taking turns
Implementing turn-taking is simple and difficult at the same time. The task is
simple because if you can implement one player, then implementing two or
more is nothing more than having more than one player record. But the task
is difficult because you must save the game for each player when switching
players. Hence, you need to implement a save-game option if you want to
allow for turn-taking. Obviously, the players shouldn’t know that the game is
being saved as they take turns, but that’s what’s really going on.

Here’s a list of the steps to allow two players to play, one after the other:

1. Start game; player 1 begins.

2. Player 1 plays until she dies.

3. The state of player 1’s game is saved, and player 2 begins.

4. Player 2 plays until he dies.

5. The state of player 2’s game is saved.

Here comes the transition.

6. The previously saved game of player 1 is reloaded and player 1
continues.

7. Go back to Step 2.

As you can see, Step 5 is where the action starts happening and the game
starts pinging back and forth between players. And if you want more than
two players, you simply play them one at a time until you’re at the end of
the list and then you start over.

Appearing on-screen at the same time
Playing two or more players on the same screen is a little more difficult than
swapping, because you have to write the game a little more generally as far
as game play, collision, and interaction between the players goes. Moreover,
now that two or more players are on the screen at the same time, you must
allocate a specific input device for each player. This device is usually a
joystick for each player, or maybe one player uses the keyboard and one
uses the joystick.

The other problem with putting two or more players on the screen at the
same time is that some games just don’t work well with two players at the
same time. For example, if the game is a scrolling game, one player may
want to go one way while the other wants to go another way. This dilemma
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can cause a conflict, and you’ll have to think about it as you program. Thus,
the best games for implementing more than one player are games that are
single-screen, such as fighting games or other games in which the players
stay relatively near each other.

If you want to allow the players to roam around freely, you can always
generate more than one view — create a split-screen display (as shown in
Figure 24-9). The only problem with a split-screen display is the split-screen
display! You must generate two or more views of the game. This step can be
technically challenging, moreover, because the players may not be able to
see what’s going on if the screen is too small to accommodate two views.
The bottom line is this: If you can pull it off, then it’s a cool option.

Figure 24-9:
Split-screen

game
display.
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