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Bonus Chapter 23

The Lowdown on Artificial
Intelligence

In This Chapter
Finding out about artificial intelligence

Understanding simple deterministic algorithms

Making your game creature follow a pattern or script

Getting an overview of behavioral state systems

Using memory and learning to enhance your game’s artificial intelligence

Discovering neural networks and genetic algorithms

his chapter is going to answer a lot of questions on the art of making
game creatures and objects seem as if they are thinking. In fact, depend-

ing on how you look at the issue, artificial intelligence is not at all artificial.
It is an intelligence based on logic, mathematics, probability, and memory. If
you read this entire chapter, you will be able to write code and algorithms to
make your game creatures perform in a reasonable manner and do almost
anything that “professional” games do.

Introduction to Artificial Intelligence
Artificial intelligence (AI ), in the most academic sense of the word, has
come to mean building a piece of hardware or writing computer software
that allows the machine to “think” or process information in a fashion
somewhat similar to the way humans do. A few years ago, applications in AI
were just starting to surface; today, AI and other related fields, such as
artificial life-forms and intelligent agents, are maturing at an exponential rate.
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Today, right now, systems exist that are basically “alive” as far as anyone
can define life. A number of companies have created artificial life-forms that
live, die, explore, get sick, reproduce, evolve, get depressed, get hungry, and
so on — all within the virtual domain of the computer. This kind of technol-
ogy has been made possible by the following developments:

Artificial neural networks: Crude approximations of a human brain
network

Genetic algorithms: A set of techniques and suppositions that are used
for evolution of software systems based on biological paradigms

Sound far out? It is, but the technology is real, and it’s only going to get
more advanced. Remember, cloning a human was once considered science
fiction; now that’s well within the realm of possibility.

Getting back to Earth, you aren’t going to create anything as complex as
state-of-the-art AI for your games. This chapter looks at the most simplistic
and fundamental techniques game programmers use to create intelligent
creatures — or, at least, creatures that seem intelligent. In fact, many game
programmers are still very behind on AI technology and haven’t begun to
really embrace all the possibilities in the field. I suspect that AI and related
technologies are going to make the same kind of impact on the gaming world
that the Doom graphics technology made a few years back.

Truthfully, 3D graphics are starting to slow down. Game creatures are
looking pretty real these days, but they still act pretty dumb. The next
super-cool game is going to be one that not only looks good but, more
importantly, offers characters that think and are as cunning and devious as
the best of us.

As you read the following pages and experiment with the accompanying
programs, remember that all these techniques are just that: techniques.
There isn’t a right way or a wrong way, just a way that works. If the com-
puter tank can kick your player’s butt, then that’s all you need. If it can’t,
then you need to do more.

Regardless of how primitive the underlying AI techniques are, the human
players will always imagine more detail and project personalities of their
own onto your virtual opponents. This concept is key: The player will
believe that the objects in the game are plotting, planning, and thinking, as
long as they look like they are. Get it?

I cover three types of useful game AI for game characters (such as alien
invaders) or items (such as asteroids) in this chapter:

Deterministic algorithms: Predetermined behaviors, random or
otherwise
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Patterns and scripts: Series of actions determined by various inputs,
from you or (unknowingly) from the player

State machines: Behaviors based on conditions and results of game play

Neural Networks: Models of computation based on biological brain
functions

From now on in the chapter, I refer to anything that has to do with making
game creatures act intelligently — software, algorithms, and techniques —
as an AI.

Simple Deterministic Algorithms
Deterministic algorithms are behaviors that are predetermined or pro-
grammed. For example, take a look at the AI for the asteroids in Star Ferret
(as shown in Figure 23-1).

  
 

     

Figure 23-1:
The

asteroid’s
AI.

The process is very simple. The AI creates an asteroid and then sends it in a
random direction at a random velocity (mostly downward). The following
code shows this type of intelligence:

asteroid_x += asteroid_x_velocity;

asteroid_y += asteroid_y_velocity;

The asteroids have one mission: to follow their course. Granted, the AI is
simple — the asteroids don’t process any outside input, make course
changes, and so on. But the asteroids do “know” how to explode, so in a
sense they are intelligent. However, their intelligence is rather deterministic
or predictable.
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This deterministic intelligence is the first kind of AI that I want to explain —
the simple, predictable, programmable kind. In this class of AI, a number of
techniques were born in the Pong/Pac Man era.

Random motion
Just one step above moving an object in a straight line or curve is moving
an object randomly or changing its properties randomly (as shown in
Figure 23-2). For example, suppose that you want to model an atom, fly, or
something similar that doesn’t have a lot of brains but does have a fairly
predictable behavior — to bounce around in an erratic way without much
thought. ( Well, at least the behavior looks that way.)

Figure 23-2:
Random-

motion AI.

As a starting AI model, try the following code to model a fly brain:

fly_x_velocity = -8 + rand()%16;

fly_y_velocity = -8 + rand()%16;

Then you can move the fly around for a few cycles:

int fly_count = 0; // fly’s “new thought” counter

// fly in the same direction for 10 ticks of time

while(++fly_count < 10)

{

fly_x+=fly_x_velocity;

fly_y+=fly+y_velocity;

} // end while

// insert similar code to pick a new direction and loop
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In this example, the fly picks a random direction and velocity, moves that
way for a moment, and then picks another. That sounds like a fly to me! Of
course, you may want to add even more randomness, such as changing how
long the motion occurs rather than fixing it at 10 cycles. In addition, you
may want to weigh certain directions more heavily. For example, when you
select the new direction, you may want to lean toward westward directions
rather than eastward to simulate the breeze.

In any case, you can see that it’s possible to make some creature seem
intelligent with very little code. As a working example, check out
PROG23_1.CPP and the executable PROG23_1.EXE on the CD. It’s an example
of the fly brain in action.

Random motion is a very important part of behavioral modeling of intelli-
gent creatures. I live in Silicon Valley, and I can attest that the people driving
on the roads around here make random lane changes and even drive in the
wrong direction, just like the brainless motion of a fly.

Tracking
Although random motion can be interesting and totally unpredictable, it’s
rather boring because no matter what, it works the same way: randomly. If
you want to add excitement to your games, consider the next step up on the
AI ladder: algorithms that perceive something in the environment and then
react to it in some manner. For an example, I have chosen tracking algorithms.
A tracking AI senses the position of the object being tracked and then
changes the trajectory of the AI object so that it moves toward the object.

The tracking can be “brute force” by literally vectoring directly toward the
object or a more realistic model of turning toward the object much like a
heat-seeking missile (see Figure 23-3).

Figure 23-3:
Tracking
methods.
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For an example of the brute force method ( because the heat-seeking
method takes a little more physics modeling than I want to show right now),
take a look at the following algorithm:

// given: player is at player_x, player_y

// and game creature is at

// monster_x, monster_y

// first test x-axis

if (player_x > monster_x)

   monster_x++;

if (player_x < monster_x)

   monster_x--;

// now y-axis

if (player_y > monster_y)

   monster_y++;

if (player_y < monster_y)

   monster_y--;

If you dropped the preceding AI into a simple demo, the player would be
tracked down as if the monster were the Terminator! The code is simple, but
effective. This code is much the same way that the Pac Man AI was written.
Of course, Pac Man could only make right-angle turns and had to move in a
straight line and avoid obstacles, but this AI is in the same ballpark.

For an example, check out PROG23_2.CPP and the executable
PROG23_2.EXE on the CD. You control a ghost with the keyboard arrow keys
and a bat tries to hunt down the ghost.

Evasion
Starting to get little quantum disturbances in your brain? That is, are you
getting some ideas? Good! The next AI technique provides a way for the
creatures in the game to get away from you. Making an evasion AI that
mimics the action of a powered-up Pac Man chasing ghosts is simple. In fact,
you already have the code! The preceding tracking code is the exact oppo-
site of what you want; just flip the equalities around in the code and presto!
You have an evasion algorithm. Here’s the code after the inversions:

// given: player is at player_x, player_y

// and game creature is at

// monster_x, monster_y

// first, test x-axis

if (player_x  < monster_x)

   monster_x++;
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if (player_x > monster_x)

   monster_x--;

// now y-axis

if (player_y <  monster_y)

   monster_y++;

if (player_y > monster_y)

   monster_y--;

You may have noticed that the preceding code doesn’t include a conditional
for equal to (==). This omission is because I don’t want the object to move
in this case. I want the object to sit on the player. If you want to, you can
process the case when the positions are equal in a different way.

Now you can create a fairly impressive AI system with just random motion,
chasing, and evasion. In fact, you have enough to make a Pac Man brain.
Not what AI researchers would call impressive, but good enough to sell
100 million copies, so not too bad! To check out evasion in action, run
PROG23_3.CPP and the executable PROG23_3.EXE on the CD. It is basically
the same as PROG23_2.CPP, but with the evasion AI rather than the
tracking AI.

Patterns and Scripts
Algorithmic and deterministic algorithms such as those I cover in the last
section are great, but sometimes you need to make a game creature follow a
sequence of steps or a script of sorts.

For example, when you start your car (or get on your bike, whatever the
case may be), you perform a specific sequence of steps:

1. Get the keys out of your pocket.

2. Put the key in the car door.

3. Open the door.

4. Get in the car.

5. Close the door.

6. Put the key in the ignition.

7. Turn the key to start the car.

Or if you’re Bill Gates, you just say: “To the opera, James.”
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My point: A sequence occurs that you don’t think much about; you just
replay it every time. Of course, if something goes wrong, you may change
your sequence (such as pressing the gas pedal, or jump-starting the car
because you left the lights on last night).

Patterns are an important part of intelligent behavior, and even the epitome
of intelligent creatures on this planet — people — uses them. Of course, if
any nonhuman, alien life-forms are reading this, please don’t take that as an
insult.

Basic patterns
The complexity of creating patterns for game creatures depends on the
game creature itself. For example, motion-control patterns are very simple
to implement. Suppose that you are writing a shoot-’em-up game similar to
Phoenix or Galaxian. The alien attackers must perform a left-right pattern
and then, at some point, attack you with a specific attack pattern. This kind
of pattern or scripted AI can be achieved using a number of different tech-
niques, but I think that the easiest technique to illustrate the process is
based on interpreted motion instructions (as shown in Figure 23-4).

Each motion pattern is stored as a sequence of directions or instructions, as
shown in Table 23-1.

Table 23-1 A Hypothetical Pattern Language Instruction Set
Meaning Value

GO_FORWARD 1

GO_BACKWARD 2

TURN_RIGHT_90 3

TURN_LEFT_90 4

SELECT_RANDOM_DIRECTION 5

STOP 6

Along with each directional instruction may be another operand or piece of
data that further qualifies the instruction, such as how long to perform the
task. Therefore, the pattern language instruction format may look like:

[INSTRUCTION], [OPERAND]
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INSTRUCTION stands for a number from the list in Table 23-1 (encoded as a
single number usually), and OPERAND stands for another number that helps
further define or modify the behavior of the instruction. With this simple
instruction format, you can create a program (sequence of instructions) that
defines the pattern. Then you can write an interpreter that feeds from a
source pattern and controls the game creature appropriately.

For example, suppose that your pattern language is formatted with the first
number being the instruction itself, and the second number indicating how
long to perform the motion in cycles. Creating a square pattern with a spin
and stop (as shown in Figure 23-5) would be easy.

Figure 23-4:
The pattern

engine.

Figure 23-5:
Detailed

square
pattern.
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Here’s an example of that detailed square pattern in [INSTRUCTION,
OPERAND] format:

int num_instructions = 6; // number of instructions in script pattern

// the following holds the actual pattern script

int square_stop_spin[

1,30, 4,1, // go forward then turn right

1,30, 4,1, // go forward and turn right

1,30, 4,1, // go forward and turn right

1,30, // go forward and finish square

6,60, // stop for 60 cycles

4,8, }; // spin for 8 cycles

Of course, you may want to use a better data structure than an array. For
example, you can use a class or structure containing a list of records in
INSTRUCTION, OPERAND format along with the number of instructions. This
way, you can very easily create an array of these structures, each containing
a different pattern, and then select a pattern and pass it to the pattern
processor very efficiently.

To process the pattern instructions, all you need is a big switch() state-
ment that interprets each instruction and instructs the game creature to do
what it is supposed to do, like this:

// points to first instruction (2 words per instruction)

int instruction_ptr = 0;

// first extract the number of cycles

int cycles = square_stop_spin[instruction_ptr+1];

// now process instruction

switch(square_stop_spin[instruction_ptr])

{

case GO_FORWARD:  // move creature forward...

break;

case GO_BACKWARD: // move creature backward...

break;

case TURN_RIGHT_90: // turn creature 90 degrees right...

break;

case TURN_LEFT_90:  // turn creature 90 degrees left...

break;

case SELECT_RANDOM_DIRECTION: // select random dir...

break;

case STOP: // stop the creature

break;

} // end switch
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// advance instruction pointer (2 words per instruction)

instruction_ptr+=2;

// test whether end of sequence has been detected...

if (instruction_ptr > num_instructions*2)

   { /* sequence over */ }

And of course, you would add the logic to track the cycle counter and make
the motion happen.

There’s one catch to all this pattern stuff: reasonable motion. Because the
game object is feeding off of a pattern, it may decide to select a pattern that
forces the object to smash into something. If the pattern AI doesn’t take this
possibility into consideration, then patterns will be followed blindly. Thus,
you must have a feedback loop with your pattern AI (as with any AI for that
matter) that instructs the AI that it has done something illegal, impossible,
or unreasonable, and it must reset to another pattern or strategy (as shown
in Figure 23-6).

Stop for a minute to think about the power of patterns. With them, you can
record hundreds of moves and flight patterns. You can create in minutes and
play back patterns that would be nearly impossible to create in any reason-
able amount of time using other AI techniques. By using patterning, you can
make a game creature look as if it is extremely intelligent. This is one of the
AI techniques used by nearly all games, including most fighting games such
as TeKeN, Soul Blade, and Mortal Kombat.

Furthermore, you don’t need to stop with motion patterns. You can use
patterns to control weapon selection, animation control, and so on. There’s
no limit to what you can apply patterns to.

Figure 23-6:
Pattern

engine with
feedback

control.
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For an example of patterns in action, take a look at PROG23_4.CPP and its
executable PROG23_4.EXE. It demonstrates a monster that moves around
using a number of patterns and that periodically selects a new random
pattern.

Patterns with conditional logic
Patterns are cool, but they are extremely deterministic. That is, once the
player has memorized a pattern, the game’s challenge is over. The player
can always beat your AI because he or she knows what’s going to happen
next.

The solution to this problem and to others that pop up with patterns is to
add a bit of conditional logic that selects patterns based on more than
random selection — based on the conditions of the game world and the
player himself. Take a look at Figure 23-7 to see this abstractly.

Figure 23-7:
Patterns

with
conditional

logic.

Patterns with conditional logic give one more level of abstraction to your AI
model. You can select patterns that within them have conditional branches,
as well as the patterns being selected based on conditional logic. For
example, you may add a new instruction to the pattern language that is a
conditional, such as the following:

TEST_DISTANCE 7

The TEST_DISTANCE conditional may work by testing the distance that the
player is to the object performing the pattern. If the distance is too close or
too far, the pattern AI engine may change what the object is doing to create
a seemingly more intelligent opponent.
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For example, you can insert a TEST_DISTANCE instruction every few instruc-
tions in a standard pattern like this:

TURN_RIGHT_90, GO_FORWARD, STOP, ...TEST_DISTANCE,
...TURN_LEFT_90,...TEST_DISTANCE, ... GO_BACKWARD

The pattern does its thing, but every time a TEST_DISTANCE instruction is
encountered, the pattern AI uses the operand following the TEST_DISTANCE
instruction as a measure to test the player’s position. If the player is getting
too far away, then the pattern AI stops the current pattern and branches to
another pattern or, better yet, switches to a deterministic tracking algorithm
to get closer to the player. Take a look at the following code:

if (instruction_stream[instruction_ptr] == TEST_DISTANCE)

{

// obtain distance; note that on the test

// instructions the operand is no

// longer a time or cycle count

// but becomes context-dependent

int min_distance = instruction_stream[instruction_ptr];

// if statement to test whether player is too far

if (Distance(player, object) > min_distance)

{

// set system state to switch to track

ai_state = TRACK_PLAYER;

// or you can insert code that just switches to

// another pattern and waits for

// the object to possibly get closer

} // end if

} // end if

Of course, you can perform conditional tests of almost limitless complexity
in the pattern script. In addition, you may want to create patterns on the fly
and use them, for example, to mimic the player’s motion. You can sample
what the player does each time she kills one of your game characters and
then use the same tactic against her!

In conclusion, technology like this (much more sophisticated, of course) is
used in many sports games, such as football, baseball, and hockey, as well
as action and strategy games. It enables the game objects to make predict-
able moves — but if they need to change their minds, they can.

As an example, PROG23_5.CPP and its executable PROG23_5.EXE illustrate
the conditional technique. You control a bat creature with the arrow keys,
and an AI skeleton is on the screen. The skeleton performs randomly
selected patterns until you get too far away; then it gets lonely and chases
you because it wants your attention. Reflect on what I just said. . . . I’m
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describing a codependent skeleton. In fact, I placed an emotional motive
on 100 lines of computer code. But isn’t that what it seems like from a
spectator’s point of view?

Behavioral State Systems
If you’ve read this book from the first page to here, you have seen quite a
few finite state machines ( FSMs) in various forms — a blinking light, the
main event loop state machine, and so on. Now, I want to formalize how
FSMs generate AIs that exhibit intelligence.

To create a truly robust FSM, you need two properties:

A reasonable number of states that each represent a different goal or
motive

Lots of input to the FSM, such as the state of the environment and the
other objects

The need for a reasonable number of states is easy enough to understand
and appreciate. Humans have hundreds, if not thousands, of emotional
states that direct our motives and goals. And within each of these emotional
states, we may have further substates. The point is, a game character
should be able to act as if it is motivated by emotion. At the very least, the
character should move around in a free manner. For example, you may set
up the following states:

State 1: Move forward.

State 2: Move backward.

State 3: Turn.

State 4: Stop.

State 5: Fire weapon.

State 6: Chase player.

State 7: Evade player.

States 1 to 4 are straightforward, but states 5, 6, and 7 may need substates
to be properly modeled; I mean, states 5, 6, and 7 may need more than one
phase. For example, chasing the player may involve turning and then moving
forward. ( Take a look at Figure 23-8 to see the concept of substates.)
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However, don’t think that substates must be based on states that exist; they
may be totally artificial for the state in question. My point in this discussion
on states is that the game object needs to have enough variety to do intelli-
gent things. If the only two states are Stop and Forward, there isn’t going to
be much action! ( Did you ever have one of those stupid remote-control cars
that only had two directions: forward and reverse in a left turn?)

Moving on to the second property of robust FSM AIs, you need to have
feedback or input from the other objects in the game world and from the
player and environment. Entering a state and running it until completion is
pretty dumb. The state may have been intelligently selected 100 millisec-
onds ago, but now events have changed and the AI needs to respond to the
player’s most recent action. Thus, the FSM needs to track the game state
and, if needed, be preempted from its current state into another one.

If you take these ideas into consideration, you can create an FSM that
models commonly experienced behaviors such as aggression, curiosity, and
so on. In the following sections, you can see how this approach works with
some concrete examples, beginning with simple state machines and follow-
ing up with more advanced personality-based FSMs.

Figure 23-8:
A master
FSM with

substates.
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Using simple state machines
At this point, you should be seeing a lot of overlap in the AI techniques. For
example, the pattern techniques are based on state machines at the lowest
level that perform the actual motion or effect. What I want to do now is take
state machines to another level and talk about high-level states that can be
implemented with simple conditional logic, randomness, and patterns. In
essence, I want to create a virtual brain model that directs and dictates the
action of the “creature” that it is controlling.

You can better understand what I’m talking about if you model a few behav-
iors with the aforementioned techniques. Then, on top of these behaviors,
you can place a master FSM to run the show and set the general direction of
events and goals.

Most games are of the conflict genre. Whether conflict is the main idea of
the game or its underlying theme, in many games the player is running
around destroying the enemies and blowing things up. Hence, you can arrive
at a few behaviors that a game creature may need to survive, given the
constant onslaught of the human opponent. Take a look at Figure 23-9, which
illustrates the relationship of the following states:

Master state 1: Attack.

Master state 2: Retreat.

Master state 3: Move randomly.

Master state 4: Stop or pause for a moment.

Master state 5: Look for something, such as food, energy, light, dark, or
other computer-controlled creatures.

Master state 6: Select a pattern and perform it.

Right off, you can see the difference in these states in comparison to the
previous examples (in the introduction to this section). These states are
much higher level, and definitely contain possible substates and/or further
logic to make happen. So, analyzing the states from the simplest to the most
complex: States 1 and 2 can be accomplished by using a deterministic
algorithm. States 3 and 4 are nothing more than a couple of lines of code.
State 6 is very complex because the creature must be able to perform
complex patterns controlled by the master FSM. Finally, state 5 could be yet
another deterministic algorithm or may be a mix of deterministic algorithms
along with preprogrammed search patterns that are successful.
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As you can see, the AI is getting fairly sophisticated. You want to model a
creature from the top down — first thinking of how complex you want the AI
of the creature to be and then implementing each state and algorithm.

If you refer to Figure 23-9, you see that in addition to the master FSM that
selects the states themselves, another part of the AI model is doing the
selection. This part represents the “will” or “agenda” of the creature. You
can implement this module in a number of ways, such as random selection,
conditional logic, and so on. But for now, just know that the states must be
selected in an intelligent manner based on the current state of the game.

The following code fragment implements a crude version of the master state
machine I discuss earlier in this subsection. Of course, the code is only
partially functional because a complete AI would cover many pages, but the
most important structural elements are there. Fill in all the blanks and
details, generalize, and drop it into your code. For now, just assume that the
game’s world consists of the AI creature and the player. Here’s the code:

// these are the master states

#define STATE_ATTACK  0 // attack the player

#define STATE_RETREAT 1 // retreat from player

#define STATE_RANDOM  2 // move randomly

#define STATE_STOP    3 // stop for a moment

Figure 23-9:
Building a

better brain.

  
 

     

(continued)
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#define STATE_SEARCH  4 // search for energy

#define STATE_PATTERN 5 // select a pattern and execute it

// variables for creature

int creature_state = STATE_STOP, // state of creature

    creature_counter = 0,   // used to time states

    creature_x       = 320, // position of creature

    creature_y       = 200,

    creature_dx      = 0,   // current trajectory

    creature_dy      = 0;

// player variables

int player_x = 10,

    player_y = 20;

// main logic for creature

// process current state

switch(creature_state)

{

case STATE_ATTACK:

          {

          // step 1: move toward player

          if (player_x > creature_x) creature_x++;

          if (player_x < creature_x) creature_x--;

          if (player_y > creature_y) creature_y++;

          if (player_y < creature_y) creature_y--;

          // step 2: fire cannon, which has

          // 20 percent probability to hit

          if ((rand()%5)==1)

               Fire_Cannon();

   } break;

case STATE_RETREAT:

           {

    // move away from player

           if (player_x > creature_x) creature_x--;

           if (player_x < creature_x) creature_x++;

           if (player_y > creature_y) creature_y--;

           if (player_y < creature_y) creature_y++;

           } break;

case STATE_RANDOM:

   {

           // move creature in random direction

           // that was set when this state was entered

           creature_x+=creature_dx;

           creature_y+=creature_dy;

   } break;

(continued)
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case STATE_STOP:

            {

            // do nothing!

            } break;

case STATE_SEARCH:

            {

            // pick an object to search for, such as

            // an energy pellet, and then track it

            // as you would the player

if (energy_x > creature_x) creature_x--;

            if (energy_x < creature_x) creature_x++;

            if (energy_y > creature_y) creature_y--;

            if (energy_y < creature_y) creature_y++;

            } break;

case STATE_PATTERN:

            {

            // continue processing pattern

            Process_Pattern();

            } break;

default: break;

} // end switch

// update state counter and test whether a state

// transition is in order

if (--creature_counter <= 0)

    {

    // pick a new state, use logic, random, script, etc.

    // for now just random

    creature_state = rand()%6;

    // now depending on the state, we might need some

    // setup code goes here...

if (creature_state == STATE_RANDOM)

        {

        // set up random trajectory

        creature_dx = -4+rand()%8;

        creature_dy = -4+rand()%8;

        } // end if

    // perform setups on other states if needed

    // set time to perform state, use appropriate method...

// at 30 fps, 1 to 5 seconds for the state

    creature_counter = 30 + 30*rand()5;

    } // end if
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In the beginning of this code block, the current state is processed. This task
involves local logic, algorithms, and even function calls to other AIs, such as
pattern processing. After the state has been processed, the state counter is
updated and the code tests to see whether the state is complete. If so, then
a new state is selected. Furthermore, if the new state needs setup, then the
setup is performed. Finally, a new state count is selected using a random
number, and the cycle continues.

A lot of improvements can be made. For example, you can mix the state
transitions with the state processing. And you may want to use much more
involved logic to make state transitions and decisions.

Adding more personality
Personality is nothing more than a set of predictable behaviors. For ex-
ample, I have a friend that has a very “tough guy” personality. I can guaran-
tee that, if you say something he doesn’t like, he’ll probably let you know
with a swift blow to the head. Furthermore, he’s very impatient and doesn’t
like to think much. On the other hand, I have a friend that’s very small and
wimpy. He has learned that, due to his size, he can’t speak his mind because
he may get smacked. He has developed a much more passive personality.

Of course, human beings are a lot more complex than the previous ex-
amples, but these are still good descriptions of those people. Thus, you can
model personality types using logic and probability distributions that track
a few behavioral traits and place a probability on each. Then this probability
graph can make state transitions. Take a look at Figure 23-10 to see what I’m
talking about.

Figure 23-10:
Personality
distribution

for states.
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This model contains these four states or behaviors:

State 1: Attack

State 2: Retreat

State 3: Stop

State 4: Random

Now, instead of randomly selecting a new state, you can create a probability
distribution that defines the “personality” of each creature based on these
states. For example, Table 23-2 describes my friends Rex (the tough one)
and Joel (the wimpy one).

Table 23-2 Personality Probability Distributions
State Rex p(x) Joel p(x)

Attack 50% 15%

Retreat 20% 40%

Stop 5% 30%

Random 25% 15%

The hypothetical data seems to make sense. Rex likes to attack without
thinking, and Joel likes to run if he can and thinks much more. In addition,
Rex isn’t that much of a planner, so he often acts randomly — smashing
walls and eating glass. However, Joel knows what he is doing most of the
time.

Of course, the entire example was totally fictitious, but I bet that you have a
picture of Rex and Joel in your head, or you know people like them. There-
fore, my supposition is true: The outward behaviors of a person define, at
least in a general way, their personality as perceived by others. Thus,
behavioral simulation is a very important asset to your AI modeling and
state selection.

To use this technique, simply set up a table consisting of 20 to 50 entries,
with each entry as a state. Then fill the table with desired probabilities.
When you select a new state, you’ll get one that has a little personality in it.
For example, here’s Rex’s probability table in the form of a 20-element array,
which means that each element has a 5-percent weight:

int rex_pers[20] =

          {1,1,1,1,1,1,1,1,1,1,2,2,2,2,3,4,4,4,4,4}
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In addition to this technique, you may want to add a radius of influence. This
term means that, based on some variable such as distance to the player or
some other object, the program switches probability distributions (as
shown in Figure 23-11). As the figure illustrates, whenever the game creature
gets too far away from the player, the creature switches to a nonaggressive
search mode rather than the aggressive combat mode it’s in whenever it’s in
close quarters to the player.

Memory and Learning
The last elements of a good AI are memory and learning. As the AI-controlled
creatures in your game run around, they are controlled by state machines,
conditional logic, patterns, random numbers, probability distributions, and
so on. However, the creatures always “think” on the fly. They never look at
their past history to help them make a decision.

For example, what if a creature is in attack mode, and the player keeps
dodging to the right, and the creature keeps missing? The creature should
track the player’s motions and remember that the player moves right during
every attack, and then the creature should change its targeting a little.

Figure 23-11:
Switching

personality
probabilities

based on
distance.
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For another example, imagine that your game forces creatures to find
ammunition, just like the player must, to make the game more realistic.
However, every time the creature wants ammo, it has to search randomly for
it (maybe with a pattern). But wouldn’t it be more realistic if the AI-controlled
creature could “remember” locations in which it found ammo last and try
that position first?

These are just a couple of examples of using memory and learning to make a
game AI seem more intelligent. Frankly, implementing memory is easy to do,
but few game programmers ever do it, because they don’t have time or they
believe that the results aren’t worth the effort. No way!

Memory and learning in a game program are very cool, and your players will
notice the difference, so it’s worth trying to find areas in which simple
memory and learning can be implemented with reasonable ease and have a
visible effect on the AIs decision making.

All right, so that’s the general motive for you to use memory, but how do
you do it? The method depends on the situation. For example, take a look at
Figure 23-12, which shows a map of a game world with a record attached to
each room.

Figure 23-12:
Using

geographical-
temporal
memory.
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The records in the figure store the following information:

Kills

Damage from player

Ammo found

Time in room

Now every time the creature processes its AI to have a more robust selec-
tion process (that is based on memory and learning), you would refer to the
record of events within the creature’s memory for the room. For example,
when the creature enters a room, you can make a quick check to see
whether the creature has sustained a great deal of damage in the room. If so,
you can have it back out and try another room.

On the other hand, the creature may run out of ammo; instead of hunting
randomly for it, the creature can scan through its memory of all the rooms it
has visited and see which one had the best ammo lying around. Of course,
for the memory to work, the AI has to continually update the memory every
few cycles with new information, but that part is simple.

In addition, you can let creatures exchange information! For example,
suppose that one creature bumps into another in a hallway; then they can
merge memory records so that they both know of each others’ travels. Or
maybe, the creature that is stronger performs a force upload on the weaker
creature, because it obviously has a better set of probabilities and experience.

The kinds of game innovations you can do with memory and learning are
unlimited. The tricky part is working them into the AI in a fair manner. For
example, letting the game AI “see” the whole world and memorize it is unfair.
The AI should have to explore the game world just like the player does.

A lot of game programmers like to use bit strings or vectors to memorize
data. This method is much more compact, and it’s easy to flip single bits
simulating memory loss or degradation.

Making Your Very Own Frankenstein
Earlier sections in this chapter show you a few techniques to get you started
with AI, but you may not know which technique to use in a particular
situation or how to mix different techniques to make new models. Here are
some basic guidelines:

Use simple deterministic AIs for objects that have simple behaviors to
begin with, such as rocks, missiles, and so on.
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For objects that are supposed to be smart but are more a part of the
environment rather than the main action (such as birds that fly around
or a spaceship that flies by once in a while), use a deterministic AI
coupled with patterns and a bit of randomness.

For your important game characters that the player interacts with, you
definitely need FSMs coupled with the other supporting techniques.
However, some creatures don’t have to be as smart as others; the FSMs
for your basic creatures don’t need to have probability distributions for
personality coupled with memory for learning.

Finally, the main computer-controlled character(s) in the game should
be very smart. Integrate everything. The AI should be state-driven with
a lot of conditional logic, probability, and memory that is used to
control state transitions. In addition, the AI should be able to change
from one state to another even when the state hasn’t come to comple-
tion — if conditions arise that make a change necessary.

Basically, you don’t need to go all out programming AI for a randomly
moving rock; but for a tank that plays against the player, you should invest
the time and effort. A model that works well for me is as follows:

I like to make an AI that has at its highest level a set of conditionals and
probabilities that select states. The states emulate a number of behav-
iors, and usually there are about five to ten.

I like to use memory to track key elements in the game and use them to
make better decisions. Also, I like to throw random generators in a lot
of the decisions, even if those decisions are totally simple. This ap-
proach adds a little uncertainty to the AI.

I definitely like to have scripted patterns available to create the illusion
of complex thought. However, again, I throw random events into the
patterns themselves. For example, my AI moves into a pattern state and
selects a circle, but sometimes as it’s creating the circle, it makes an
egg shape! The point of this randomness is that people aren’t perfect,
and sometimes we make mistakes. This random quality is very impor-
tant in game AI, so a lot of virtual coin tosses in the code help to shake
things up.

And, finally, a very complex system can evolve from very simple constitu-
ents. In other words, even though the AI for each individual creature may
not be that complex, their own interaction will create an emergent behav-
ioral system that seems to go beyond its programming. Thus, it’s important
to help facilitate this evolution with some kind of sharing or merging of
information or states between creatures whenever they get close enough or
at specific intervals.
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Neural Networks, Genetic Algorithms,
and Other Esoteric Topics for $1,000

We’re on the brink of the 21st century, and it’s about time for computers to
really start thinking. The technologies of neural nets, genetic algorithms, and
fuzzy logic are going to make this idea a reality very soon. Maybe we won’t
like the results — Sky Net, Cylons, or maybe something worse — but every
computer scientist in the world knows that it’s only a matter of time. Maybe
video games are the first place that advanced AI will be used, so read on.

Artificial neural networks
Artificial neural networks have been a popular topic for theory and specula-
tion, but the reality seemed elusive. Well, those days are gone. I can tell you
for a fact that in the past three to five years, humankind has made leaps and
bounds in the area of artificial neural networks. Not because a major break-
through has occurred, but because people are finding an interest in them,
experimenting with them, and using them. In fact, a number of games use
extremely advanced neural networks: Creatures, Dogz, Fin Fin, and others.

A neural network is a model of our brain. Our brain consists of 10 to 100
billion brain cells. Each of these cells can both process information and
send information. Figure 23-13 is a biological model of a human brain cell
containing three main parts: the soma, axon, and dendrites. The soma is the
main cell body and performs the processing, and the axon transmits the
signal to the dendrites which then pass the signal to other neurons.

Figure 23-13:
A biological

neuron.



________________ Bonus Chapter 23: The Lowdown on Artificial Intelligence 27
Each neuron has a fairly simple function: to process input and fire or not to
fire. Firing means sending an electrochemical signal. So, basically, neurons
have a number of inputs and a single output (that may be distributed), and
some rule that it uses to process the inputs and generate an output. The
rules for processing are extremely complex and beyond the little space I
have in this book, but suffice it to say that a summation of signals occurs,
and the results of the summation cause the neuron to fire.

Well, that’s great, but how can you use this information to make games
think? Well, instead of trying to accomplish something as bold as thought or
consciousness, maybe you can begin by creating computer models for
simple memory, pattern recognition, and learning. I recommend this ap-
proach because our organic brains are very good at these tasks, and their
digital counterparts are very bad. So it’s intriguing to explore a biological
computer to perform these tasks. Implementations of simple biological
computing models are exactly what artificial neural networks — or simply
neural networks — are. They are simple digital models that can process
information in parallel similar to the way our brains function.

Take a look at the most basic kinds of artificial neuron or neurode. The
first artificial neural networks were created in 1943 by electrical engineers
W. McCulloch and W. Pitts, who wanted to model electronic hardware after
the human brain. So they came up with what they called a neurode. Today,
the form of the neurode hasn’t changed much, as shown in Figure 23-14.

Figure 23-14:
Basic

artificial
neurons.
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Neurodes ad nauseam
The neurode consists of a number of inputs
X(i ) that are scaled by weights w (i ), summed
up, and then processed by an activation func-
tion. This activation function may be a simple
threshold as in the McCulloch-Pitts (MP)
model or a more complex step, linear, or expo-
nential function. But in the case of the MP
model, the sum is compared to threshold value
θ (theta). If the sum is greater than theta, then
the neurode fires; otherwise it doesn’t. So
mathematically, you have:

McCulloch-Pitts Neurode Summation
Function:
n

Output Y = ∑ Xi * wi

i =1

General Neurode with Bias:

n

Output Y = B*b + ∑ Xi * wi

i =1

To see how a basic neurode works, assume
that two inputs X1, and X2 can take on the

binary values 0 and 1. Then set the threshold
at 2 and w1=1 and w2=1. The summation func-
tion looks like this:

Y = X1*w1 + X2*w2

Then compare the result to the threshold theta
of 2. If Y is greater than or equal to 2, then the
neurode fires and outputs a 1.0; otherwise it
outputs a 0. The following truth table shows
what this single neurode network does.

X1 X2 Sum Y Final Output

0 0 0 0

0 1 1 0

1 0 1 0

1 1 2 1

If you stare at the truth table for a moment,
you’ll realize that it basically represents an
AND circuit. Cool, huh! So a simple little
neurode can perform an AND operation. In
fact, by using neurodes, you can build any
logic circuit you want to. For example, the fol-
lowing figure shows an OR and an XOR.
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Real neural networks are very complex, of course. Neural nets can consist of
multiple layers, complex activation functions, and hundreds or thousands of
neurodes, but if you read the sidebar, you can understand their fundamental
building block. Neural networks will continue to bring an unprecedented
new level of competition and AI to games. Soon, games will be able to make
decisions, learn, and even come up with creative solutions to problems
based on making pseudo-random attempts.

Because this is such an important area of interest and I don’t have time to
properly cover it here, I include on the CD an article on neural networks that
I wrote a while ago. This information gives you a more solid foundation on
the topic. It covers all the various types of networks, shows you learning
algorithms, and illustrates just what they can do. It’s called NETWARE.ZIP
and is in Microsoft Word 95 format. As a bonus, NETWARE.ZIP includes a
number of programs that will enable you to create some simple neural nets.

Genetic algorithms
Genetic algorithms are a method of computing that relies on biological
models to evolve solutions (if you’re reading this, Dr. Koza, don’t have a
heart attack). Nature is great at evolution, and genetic algorithms try to
capture some of the essence of natural selection and genetic evolution in
computer models to help solve problems that normally couldn’t be solved
by standard means of computing.

Basically, genetic algorithms work like this. You string together a number of
informational indicators into a bit vector just like a strand of DNA (as shown
in Figure 23-15). This bit vector represents the strategy or coding of an
algorithm or solution. You need a few of these bit vectors to begin. Then you
process the bit string and whatever it represents by some objective func-
tion. The results are it’s score. This score is used to compare various
strategies to each other.

Hence, a bit vector is really a concatenation of various control variables or
settings for some algorithm. You must come up with a few experimental sets
of values to start with. Then you run each set, and you get the score of each
set. You find that out of the five you created manually, two of them did really
well, and the other three did really bad. Now here’s where the genetic
algorithm comes in.
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You could just tweak from this point, knowing that you’re on the right track.
Or you could let genetic algorithms do the task for you. What you do is mix
the two solutions or control vectors together to create two new offspring (as
shown in Figure 23-16). To add a little bit of uncertainty, flip a bit here and
there during the crossover process to simulate mutation. Then try your new
solutions along with the last generation’s best solutions and see what
happens with the scores. Pick the best results out of the generation and do
the process again. This is the process of genetic evolution. Amazingly, the
best possible solution will slowly evolve, and the result may be something
you never imagined.

The key idea about genetic algorithms is that they try new ideas, and they
can search a very large search space that normally you couldn’t manually
search one-by-one. This search space coverage property is due to the fact
that mutations occur that represent completely random evolutionary
events. These mutations may or may not be better adapted.

Figure 23-15:
Binary

encoding of
genetic

information.

Figure 23-16:
Digital

reproduction.



________________ Bonus Chapter 23: The Lowdown on Artificial Intelligence 31
So how do you use this information in a game? There are millions of ways I
can think of off the top of my head, but I’m giving you just one to get you
started. You can use the probability settings of your AI as the genetic source
for digital DNA. Then you can merge and evolve the probabilities of the
game creatures that have survived the longest, thus giving the best traits to
future generations. Of course, you would only do this when you need to
spawn a new creature, but you get the idea.

Fuzzy logic
Fuzzy logic is the last technology I’m going to cover and perhaps one of the
most interesting. Fuzzy logic should really be referred to as fuzzy set theory.
In other words, fuzzy logic is a method of analyzing sets of data so that the
elements of the sets can have partial inclusion.

Most people are accustomed to crisp logic, in which something is either
included or it isn’t. For example, if I were to create the sets child and adult, I
would fall into the adult category and my three-year-old nephew would be
part of the child category.

Fuzzy logic, on the other hand, allows objects to be contained within a set
even if they aren’t totally in the set. For example, I may say that I am 10
percent part of the child set and 100 percent part of the adult set. Similarly,
my nephew may be 2 percent part of the adult set and 100 percent part of
the child set. These are fuzzy values. Also, you’ll notice that they don’t have
to add up to 100 percent; they can be more or less.

The cool thing about fuzzy logic is that it enables you to make decisions that
are based on fuzzy or error-ridden data, and the decisions are usually
correct. With a crisp logic system, you can’t do this. If you’re missing a
variable or input, then the analysis won’t work. But a fuzzy system can still
function and function well, just like a human brain.

I mean, how many decisions do you make each day that feel fuzzy to you?
You don’t have all the facts, but you’re still fairly confident of the decision.
This is fuzzy logic and its application to game AI is obvious in the areas of
decision making, behavioral selections, and input/output filtering.
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