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Appendix D Selected Solutions 
 

Chapter 1 
 

1. Let 𝐮 =  1, 2  and 𝐯 =  3,−4 .  Perform the following computations and draw the 
vectors relative to a 2D coordinate system. 
 

a) 𝐮 + 𝐯 
b) 𝐮 − 𝐯 

c) 2𝐮 +
1

2
𝐯 

d) −2𝐮 + 𝐯 
 
Solution:  
 

a)  1, 2 +  3,−4 =  1 + 3, 2 +  −4  =  4,−2  

b)  1, 2 −  3,−4 =  1, 2 +  −3, 4 =  1 − 3, 2 + 4 =  −2, 6  

c) 2 1, 2 +
1

2
 3, −4 =  2, 4 +  

3

2
, −2 =  

7

2
, 2  

d) −2 1, 2 +  3,−4 =  −2,−4 +  3,−4 =  1,−8  
 
3. This exercise shows that vector algebra shares many of the nice properties of real 
numbers (this is not an exhaustive list).  Assume 𝐮 =  𝑢𝑥 , 𝑢𝑦 , 𝑢𝑧 , 𝐯 =  𝑣𝑥 , 𝑣𝑦 , 𝑣𝑧 , and 

𝐰 =  𝑤𝑥 , 𝑤𝑦 , 𝑤𝑧 .  Also assume that 𝑐 and 𝑘 are scalars.  Prove the following vector 

properties. 
 
 a) 𝐮 + 𝐯 = 𝐯 + 𝐮     (Commutative Property of Addition) 
 b) 𝐮 +  𝐯 + 𝐰 =  𝐮 + 𝐯 + 𝐰     (Associative Property of Addition) 
 c)  𝑐𝑘 𝐮 = 𝑐 𝑘𝐮       (Associative Property of Scalar Multiplication) 
 d) 𝑘 𝐮 + 𝐯 = 𝑘𝐮 + 𝑘𝐯     (Distributive Property 1) 
 e) 𝐮 𝑘 + 𝑐 = 𝑘𝐮 + 𝑐𝐮     (Distributive Property 2)  
 
Solution: 
 

a)  
𝐮 + 𝐯 =  𝑢𝑥 , 𝑢𝑦 , 𝑢𝑧 +  𝑣𝑥 , 𝑣𝑦 , 𝑣𝑧  

=  𝑢𝑥 + 𝑣𝑥 , 𝑢𝑦 + 𝑣𝑦 , 𝑢𝑧 + 𝑣𝑧  

=  𝑣𝑥 + 𝑢𝑥 , 𝑣𝑦 + 𝑢𝑦 , 𝑣𝑧 + 𝑢𝑧  

=  𝑣𝑥 , 𝑣𝑦 , 𝑣𝑧 +  𝑢𝑥 , 𝑢𝑦 , 𝑢𝑧  

= 𝐯 + 𝐮 
 

b)  

𝐮 +  𝐯 + 𝐰 =  𝑢𝑥 , 𝑢𝑦 , 𝑢𝑧 +   𝑣𝑥 , 𝑣𝑦 , 𝑣𝑧 +  𝑤𝑥 , 𝑤𝑦 , 𝑤𝑧   
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=  𝑢𝑥 , 𝑢𝑦 , 𝑢𝑧 +  𝑣𝑥 + 𝑤𝑥 , 𝑣𝑦 + 𝑤𝑦 , 𝑣𝑧 +𝑤𝑧  

=  𝑢𝑥 +  𝑣𝑥 + 𝑤𝑥 , 𝑢𝑦 +  𝑣𝑦 + 𝑤𝑦 , 𝑢𝑧 +  𝑣𝑧 + 𝑤𝑧   

=   𝑢𝑥 + 𝑣𝑥 + 𝑤𝑥 ,  𝑢𝑦 + 𝑣𝑦 + 𝑤𝑦 ,  𝑢𝑧 + 𝑣𝑧 + 𝑤𝑧  

=  𝑢𝑥 + 𝑣𝑥 , 𝑢𝑦 + 𝑣𝑦 , 𝑢𝑧 + 𝑣𝑧 +  𝑤𝑥 , 𝑤𝑦 , 𝑤𝑧  

=   𝑢𝑥 , 𝑢𝑦 , 𝑢𝑧 +  𝑣𝑥 , 𝑣𝑦 , 𝑣𝑧  +  𝑤𝑥 , 𝑤𝑦 , 𝑤𝑧  

=  𝐮 + 𝐯 + 𝐰 
 

c)  
 𝑐𝑘 𝐮 =  𝑐𝑘  𝑢𝑥 , 𝑢𝑦 , 𝑢𝑧  

=   𝑐𝑘 𝑢𝑥 ,  𝑐𝑘 𝑢𝑦 ,  𝑐𝑘 𝑢𝑧  

=  𝑐 𝑘𝑢𝑥 , 𝑐 𝑘𝑢𝑦 , 𝑐 𝑘𝑢𝑧   

= 𝑐 𝑘𝑢𝑥 , 𝑘𝑢𝑦 , 𝑘𝑢𝑧  

= 𝑐 𝑘𝐮  
 

d)  

𝑘 𝐮 + 𝐯 = 𝑘   𝑢𝑥 , 𝑢𝑦 , 𝑢𝑧 +  𝑣𝑥 , 𝑣𝑦 , 𝑣𝑧   

= 𝑘 𝑢𝑥 + 𝑣𝑥 , 𝑢𝑦 + 𝑣𝑦 , 𝑢𝑧 + 𝑣𝑧  

=  𝑘 𝑢𝑥 + 𝑣𝑥 , 𝑘 𝑢𝑦 + 𝑣𝑦 , 𝑘 𝑢𝑧 + 𝑣𝑧   

=  𝑘𝑢𝑥 + 𝑘𝑣𝑥 , 𝑘𝑢𝑦 + 𝑘𝑣𝑦 , 𝑘𝑢𝑧 + 𝑘𝑣𝑧  

=  𝑘𝑢𝑥 , 𝑘𝑢𝑦 , 𝑘𝑢𝑧 +  𝑘𝑣𝑥 , 𝑘𝑣𝑦 , 𝑘𝑣𝑧  

= 𝑘𝐮 + 𝑘𝐯 
 

e)  
𝐮 𝑘 + 𝑐 =  𝑢𝑥 , 𝑢𝑦 , 𝑢𝑧  𝑘 + 𝑐  

=  𝑢𝑥 𝑘 + 𝑐 , 𝑢𝑦 𝑘 + 𝑐 , 𝑢𝑧 𝑘 + 𝑐   

=  𝑘𝑢𝑥 + 𝑐𝑢𝑥 , 𝑘𝑢𝑦 + 𝑐𝑢𝑦 , 𝑘𝑢𝑧 + 𝑐𝑢𝑧  

=  𝑘𝑢𝑥 , 𝑘𝑢𝑦 , 𝑘𝑢𝑧 +  𝑐𝑢𝑥 , 𝑐𝑢𝑦 , 𝑐𝑢𝑧  

= 𝑘𝐮 + 𝑐𝐮 
 

5. Let 𝐮 =  −1, 3, 2  and 𝐯 =  3,−4, 1 .  Normalize 𝐮 and 𝐯. 
 
Solution:  
 

 𝐮 =   −1 2 + 32 + 22 =  1 + 9 + 4 =  14 
 

𝐮 =
𝐮

 𝐮 
=  −

1

 14
,

3

 14
,

2

 14
  

 

 𝐯 =  32 +  −4 2 + 12 =  9 + 16 + 1 =  26 



Appendix D Selected Solutions, Introduction to 3D Game Programming with DirectX 12, by 

Frank D. Luna 
 

Page 3 of 51 
 

 

𝐯 =
𝐯

 𝐯 
=  

3

 26
, −

4

 26
,

1

 26
  

 

7. Is the angle between 𝐮 and 𝐯 orthogonal, acute, or obtuse? 
 
 a) 𝐮 =  1, 1, 1 , 𝐯 =  2, 3, 4  
 b) 𝐮 =  1, 1, 0 , 𝐯 =  −2, 2, 0  
 c) 𝐮 =  −1,−1,−1 , 𝐯 =  3, 1, 0  
 

a) 𝐮 ∙ 𝐯 = 1 2 + 1 3 + 1 4 = 9 > 0 ⇒ acute 
b) 𝐮 ∙ 𝐯 = 1 −2 + 1 2 + 0 0 = 0 ⇒ orthogonal 
c) 𝐮 ∙ 𝐯 = −1 3 +  −1  1 +  −1  0 = −4 < 0 ⇒ obtuse 

 
9. Let 𝐮 =  𝑢𝑥 , 𝑢𝑦 , 𝑢𝑧 , 𝐯 =  𝑣𝑥 , 𝑣𝑦 , 𝑣𝑧 , and 𝐰 =  𝑤𝑥 , 𝑤𝑦 , 𝑤𝑧 .  Also let 𝑐 and 𝑘 be scalars.  

Prove the following dot product properties. 
 
 a) 𝐮 ∙ 𝐯 = 𝐯 ∙ 𝐮 
 b) 𝐮 ∙  𝐯 + 𝐰 = 𝐮 ∙ 𝐯 + 𝐮 ∙ 𝐰 
 c) 𝑘 𝐮 ∙ 𝐯 =  𝑘𝐮 ∙ 𝐯 = 𝐮 ∙  𝑘𝐯  
 d) 𝐯 ∙ 𝐯 =  𝐯 2 
 e) 𝟎 ∙ 𝐯 = 0 
 
Solution: 
 

𝐮 ∙ 𝐯 =  𝑢𝑥 , 𝑢𝑦 , 𝑢𝑧 ∙  𝑣𝑥 , 𝑣𝑦 , 𝑣𝑧  

= 𝑢𝑥𝑣𝑥 + 𝑢𝑦𝑣𝑦 + 𝑢𝑧𝑣𝑧  

=  𝑣𝑥 , 𝑣𝑦 , 𝑣𝑧 ∙  𝑢𝑥 , 𝑢𝑦 , 𝑢𝑧  

= 𝐯 ∙ 𝐮 
 

𝐮 ∙  𝐯 + 𝐰 =  𝑢𝑥 , 𝑢𝑦 , 𝑢𝑧 ∙  𝑣𝑥 + 𝑤𝑥 , 𝑣𝑦 + 𝑤𝑦 , 𝑣𝑧 + 𝑤𝑧  

= 𝑢𝑥 𝑣𝑥 + 𝑤𝑥 + 𝑢𝑦 𝑣𝑦 + 𝑤𝑦 + 𝑢𝑧 𝑣𝑧 + 𝑤𝑧  

= 𝑢𝑥𝑣𝑥 + 𝑢𝑥𝑤𝑥 + 𝑢𝑦𝑣𝑦 + 𝑢𝑦𝑤𝑦 + 𝑢𝑧𝑣𝑧 + 𝑢𝑧𝑤𝑧  

=  𝑢𝑥𝑣𝑥 + 𝑢𝑦𝑣𝑦 + 𝑢𝑧 +  𝑢𝑥𝑤𝑥 + 𝑢𝑦𝑤𝑦 + 𝑢𝑧𝑤𝑧  

= 𝐮 ∙ 𝐯 + 𝐮 ∙ 𝐰 
 

𝑘 𝐮 ∙ 𝐯 = 𝑘 𝑢𝑥𝑣𝑥 + 𝑢𝑦𝑣𝑦 + 𝑢𝑧𝑣𝑧  

=  𝑘𝑢𝑥 𝑣𝑥 +  𝑘𝑢𝑦 𝑣𝑦 +  𝑘𝑢𝑧 𝑣𝑧  

=  𝑘𝐮 ∙ 𝐯 
= 𝑢𝑥 𝑘𝑣𝑥 + 𝑢𝑦 𝑘𝑣𝑦 + 𝑢𝑧 𝑘𝑣𝑧  

= 𝐮 ∙  𝑘𝐯  
 

𝐯 ∙ 𝐯 = 𝑣𝑥𝑣𝑥 + 𝑣𝑦𝑣𝑦 + 𝑣𝑧𝑣𝑧  
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=  𝑣𝑥2 + 𝑣𝑦2 + 𝑣𝑧2
2

 

=  𝐯 2 
 

𝟎 ∙ 𝐯 = 0𝑣𝑥 + 0𝑣𝑦 + 0𝑣𝑧 = 0 
 

11. Let 𝐧 =  −2, 1 .  Decompose the vector 𝐠 =  0,−9.8  into the sum of two orthogonal 
vectors, one parallel to 𝐧 and the other orthogonal to 𝐧.  Also, draw the vectors relative to a 
2D coordinate system. 
 
Solution: 
 

𝐠∥ = proj𝐧 𝐠 =
 𝐠 ∙ 𝐧 

 𝐧 2
𝐧 =

−9.8

5
 −2,1 = −1.96 −2,1 =  3.92, −1.96  

 
𝐠⊥ = 𝐠 − 𝐠∥ =  0,−9.8 −  3.92,−1.96 =  −3.92,−7.84  

 
13. Let the following points define a triangle relative to some coordinate system: 
𝐀 =  0, 0, 0 , 𝐁 =  0, 1, 3 , and 𝐂 =  5, 1, 0 .  Find a vector orthogonal to this triangle.  Hint: 
Find two vectors on two of the triangle’s edges and use the cross product. 
 
Solution: 
 

𝐮 = 𝐁 − 𝐀 =  0, 1, 3  
𝐯 = 𝐂 − 𝐀 = (5,1,0) 

 
𝐧 = 𝐮 × 𝐯 =  𝑢𝑦𝑣𝑧 − 𝑢𝑧𝑣𝑦 , 𝑢𝑧𝑣𝑥 − 𝑢𝑥𝑣𝑧 , 𝑢𝑥𝑣𝑦 − 𝑢𝑦𝑣𝑥  

=  0 − 3, 15 − 0, 0 − 5  
= (−3, 15,−5) 

 
15. Prove that  𝐮 × 𝐯  gives the area of the parallelogram spanned by 𝐮 and 𝐯; see Figure 
below. 
 

 
[Figure D.1: Parallelogram spanned by two 3D vectors 𝐮 and 𝐯; the parallelogram has base  𝐯  

and height 𝑕.] 
 
Solution: 
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The area is the base times the height: 
 

𝐴 =  𝐯 𝑕 
 
Using trigonometry, the height is given by 𝑕 =  𝐮 sin⁡(𝜃).  This, along with the application 
of Exercise 14, we can conclude: 
 

𝐴 =  𝐮  𝐯 sin⁡(𝜃) =  𝐮 × 𝐯  
 
17. Prove that the cross product of two nonzero parallel vectors results in the null vector; 
that is, 𝐮 × 𝑘𝐮 = 0.  Hint: Just use the cross product definition. 
 
Solution: 
 

𝐮 × 𝑘𝐮 =  𝑢𝑦𝑘𝑢𝑧 − 𝑢𝑧𝑘𝑢𝑦 , 𝑢𝑧𝑘𝑢𝑥 − 𝑢𝑥𝑘𝑢𝑧 , 𝑢𝑥𝑘𝑢𝑦 − 𝑢𝑦𝑘𝑢𝑥  

=  𝑘𝑢𝑦𝑢𝑧 − 𝑘𝑢𝑧𝑢𝑦 , 𝑘𝑢𝑧𝑢𝑥 − 𝑘𝑢𝑥𝑢𝑧 , 𝑘𝑢𝑥𝑢𝑦 − 𝑘𝑢𝑦𝑢𝑥  

= 𝟎 
 

Chapter 2 
 

1. Solve the following matrix equation for 𝐗: 3   
−2 0
1 3

 − 2𝐗 = 2  
−2 0
1 3

 . 

 
Solution:  
 

3   
−2 0
1 3

 − 2𝐗 = 2  
−2 0
1 3

  

 
−6 0
3 9

 − 6𝐗 =  
−4 0
2 6

  

−6𝐗 =  
−4 0
2 6

 −  
−6 0
3 9

  

−6𝐗 =  
2 0
−1 −3

  

𝐗 =  
−

1

3
0

1

6

1

2

  

 
3. Compute the transpose of the following matrices: 
 

a)  1, 2, 3 ,     b)  
𝑥 𝑦
𝑧 𝑤

 ,     c)  

1 2
3 4
5 6
7 8
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Solution:  
 

 1, 2, 3 𝑇 =  
1
2
3
  

 

 
𝑥 𝑦
𝑧 𝑤

 
𝑇

=  
𝑥 𝑧
𝑦 𝑤  

 

 

1 2
3 4
5 6
7 8

  

𝑇

=  
1 3 5 7
2 4 6 8

  

 
5. Show that 
 

𝐀𝐁 =  

𝐴11 𝐴12 𝐴13

𝐴21 𝐴22 𝐴23

𝐴31 𝐴32 𝐴33

  
𝐵11 𝐵12 𝐵13

𝐵21 𝐵22 𝐵23

𝐵31 𝐵32 𝐵33

 =  

⟵ 𝐀1,∗𝐁⟶

⟵ 𝐀2,∗𝐁⟶

⟵ 𝐀3,∗𝐁⟶
  

 
Solution: 
 
Let 𝑖 be an arbitrary row in 𝐀𝐁.  By definition of matrix multiplication, we know that the ith 
row is given by  
 

 𝐀𝐁 𝑖,∗ =  𝐀𝑖,∗ ∙ 𝐁∗,1 𝐀𝑖,∗ ∙ 𝐁∗,2 𝐀𝑖,∗ ∙ 𝐁∗,3  

 
However, by definition of matrix multiplication, this is equal to the vector-matrix 
product 𝐀𝑖,∗𝐁.  That is, 

 
 𝐀𝐁 𝑖,∗ =  𝐀𝑖,∗ ∙ 𝐁∗,1 𝐀𝑖,∗ ∙ 𝐁∗,2 𝐀𝑖,∗ ∙ 𝐁∗,3 = 𝐀𝑖,∗𝐁 

 
Since 𝑖 was an arbitrary row, we just substitute 𝑖 = 1,2,3 to complete the proof: 
 

𝐀𝐁 =  

 𝐀𝐁 1,∗

 𝐀𝐁 2,∗

 𝐀𝐁 3,∗

 =  

⟵ 𝐀1,∗𝐁⟶

⟵ 𝐀2,∗𝐁⟶

⟵ 𝐀3,∗𝐁⟶
  

 
7. Prove that the cross product can be expressed by the matrix product: 

 

𝐮 × 𝐯 =  𝑣𝑥 𝑣𝑦 𝑣𝑧  

0 𝑢𝑧 −𝑢𝑦
−𝑢𝑧 0 𝑢𝑥
𝑢𝑦 −𝑢𝑥 0

  

Solution:  
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 𝑣𝑥 𝑣𝑦 𝑣𝑧  

0 𝑢𝑧 −𝑢𝑦
−𝑢𝑧 0 𝑢𝑥
𝑢𝑦 −𝑢𝑥 0

 =  𝑢𝑦𝑣𝑧 − 𝑢𝑧𝑣𝑦 𝑢𝑧𝑣𝑥 − 𝑢𝑥𝑣𝑧 𝑢𝑥𝑣𝑦 − 𝑢𝑦𝑣𝑥  

= 𝐮 × 𝐯 
 

9. Let 𝐀 =  
1 2
3 4

 .  Is 𝐁 =  
−2 1
3/2 1/2

  the inverse of 𝐀? 

 
Solution:  
 

𝐀𝐁 =  
1 2
3 4

  
−2 1
3/2 1/2

 =  
1 2
0 5

  

 
Since 𝐀𝐁 ≠ 𝐈 we can conclude that 𝐁 is not the inverse of 𝐀. 
 

11. Find the inverse of the following matrices: 

 

 
21 −4
10 7

  

 

 

Solution: 
 

For the 2 × 2 matrix, we have the formula: 

 

 
2 0 0
0 3 0
0 0 7

  

 

𝐀−1 =
1

𝐴11𝐴22 − 𝐴12𝐴21
 
𝐴22 −𝐴12

−𝐴21 𝐴11
  

=
1

187
 

7 4
−10 21

  

 

To verify: 

 

=
1

187
 

7 4
−10 21

  
21 −4
10 7

  

=
1

187
 

7 21 + 4(10) 7 −4 + 4(7)

−10 21 + 10(21) −10 −4 + 21(7)
  

=
1

187
 
187 0

0 187
  

=  
1 0
0 1

  

 

For the 3 × 3 matrix, we use the formula: 

 

𝐀−1 =
𝐀∗

det 𝐀
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The cofactor matrix is: 

 

𝐂𝐀 =  

 −1 1+1 det𝐀 11  −1 1+2 det𝐀 12  −1 1+3 det𝐀 13

 −1 2+1 det 𝐀 21  −1 2+2 det𝐀 22  −1 2+3 det𝐀 23

 −1 3+1 det 𝐀 31  −1 3+2 det𝐀 32  −1 3+3 det𝐀 33

  

=  
21 0 0
0 14 0
0 0 6

  

 

So 𝐀∗ = 𝐂𝐀
𝑇 =  

21 0 0
0 14 0
0 0 6

  and 

 

𝐀−1 =
1

42
 
21 0 0
0 14 0
0 0 6

 =

 
 
 
 
 
 
1

2
0 0

0
1

3
0

0 0
1

7 
 
 
 
 
 

 

 

To verify: 

 

 

 
2 0 0
0 3 0
0 0 7

 

 
 
 
 
 
 
1

2
0 0

0
1

3
0

0 0
1

7 
 
 
 
 
 

=  
1 0 0
0 1 0
0 0 1

  

 
13. Show that  𝐀−1 𝑇 =  𝐀𝑇 −1, assuming 𝐀 is invertible.   
 
Solution: 
 

𝐀𝑇 𝐀−1 𝑇 =  𝐀−1𝐀 𝑇 = 𝐈𝑇 = 𝐈 
 𝐀−1 𝑇𝐀𝑇 =  𝐀𝐀−1 𝑇 = 𝐈𝑇 = 𝐈 

 
Therefore,  𝐀−1 𝑇  is the inverse of 𝐀𝑇 . 
 
 

15. Prove that the 2D determinant  
𝑢𝑥 𝑢𝑦
𝑣𝑥 𝑣𝑦

  gives the signed area of the parallelogram spanned 

by 𝐮 =  𝑢𝑥 , 𝑢𝑦  and 𝐯 =  𝑣𝑥 , 𝑣𝑦 .  The result is positive if 𝐮 can be rotated counterclockwise to 

coincide with 𝐯 by an angle 𝜃 ∈  0, 𝜋 , and negative otherwise.   
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[Figure D.2: Parallelogram spanned by two 2D vectors 𝐮 and 𝐯; the parallelogram has base  𝐮  

and height 𝑕.] 

 
Solution: 
 

The area is given by base times height: 
 

𝐴 =  𝐮 𝑕 
=  𝐮  𝐯 sin 𝜃 

=  𝐮  𝐯  1 − cos2 𝜃 
 
Squaring both sides: 
 

𝐴2 =  𝐮 2 𝐯 2 −   𝐮  𝐯 cos 𝜃 2 
=  𝐮 ∙ 𝐮  𝐯 ∙ 𝐯 −  𝐮 ∙ 𝐯 2 

=  𝑢𝑥
2 + 𝑢𝑦

2  𝑣𝑥
2 + 𝑣𝑦

2 −  𝑢𝑥𝑣𝑥 + 𝑢𝑦𝑣𝑦 
2

 

= 𝑢𝑥
2𝑣𝑥

2 + 𝑢𝑥
2𝑣𝑦

2 + 𝑢𝑦
2𝑣𝑥

2 + 𝑢𝑦
2𝑣𝑦

2 − 𝑢𝑥
2𝑣𝑥

2 − 2𝑢𝑥𝑣𝑥𝑢𝑦𝑣𝑦 − 𝑢𝑦
2𝑣𝑦

2 

= 𝑢𝑥
2𝑣𝑦

2 + 𝑢𝑦
2𝑣𝑥

2 − 2𝑢𝑥𝑣𝑥𝑢𝑦𝑣𝑦  

=  𝑢𝑥𝑣𝑦 − 𝑢𝑦𝑣𝑥 
2

 

 
Taking the square root:  
 

𝐴 =  𝑢𝑥𝑣𝑦 − 𝑢𝑦𝑣𝑥   

=  det  
𝑢𝑥 𝑢𝑦
𝑣𝑥 𝑣𝑦

   

 

17. Let 𝐀 =  
𝐴11 𝐴12

𝐴21 𝐴22
 , 𝐁 =  

𝐵11 𝐵12

𝐵21 𝐵22
 , and 𝐂 =  

𝐶11 𝐶12

𝐶21 𝐶22
 .  Show that 𝐀 𝐁𝐂 =  𝐀𝐁 𝐂.  

This shows that matrix multiplication is associative for 2 × 2 matrices.  (In fact, matrix 
multiplication is associative for general sized matrices, whenever the multiplication is 
defined.) 
 
Solution: 
 
For 2 × 2 matrices, we will just do the computations: 
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𝐁𝐂 =  
𝐵11𝐶11 + 𝐵12𝐶21 𝐵11𝐶12 + 𝐵12𝐶22

𝐵21𝐶11 + 𝐵22𝐶21 𝐵21𝐶12 + 𝐵22𝐶22
  

 

𝐀𝐁 =  
𝐴11𝐵11 + 𝐴12𝐵21 𝐴11𝐵12 + 𝐴12𝐵22

𝐴21𝐵11 + 𝐴22𝐵21 𝐴21𝐵12 + 𝐴22𝐵22
  

 

𝐀 𝐁𝐂 =  
𝐴11 𝐵11𝐶11 + 𝐵12𝐶21 + 𝐴12 𝐵21𝐶11 + 𝐵22𝐶21 𝐴11 𝐵11𝐶12 + 𝐵12𝐶22 + 𝐴12 𝐵21𝐶12 + 𝐵22𝐶22 

𝐴21 𝐵11𝐶11 + 𝐵12𝐶21 + 𝐴22 𝐵21𝐶11 + 𝐵22𝐶21 𝐴21 𝐵11𝐶12 + 𝐵12𝐶22 + 𝐴22 𝐵21𝐶12 + 𝐵22𝐶22 
  

 

=  
𝐴11𝐵11𝐶11 + 𝐴11𝐵12𝐶21 + 𝐴12𝐵21𝐶11 + 𝐴12𝐵22𝐶21 𝐴11𝐵11𝐶12 + 𝐴11𝐵12𝐶22 + 𝐴12𝐵21𝐶12 + 𝐴12𝐵22𝐶22

𝐴21𝐵11𝐶11 + 𝐴21𝐵12𝐶21 + 𝐴22𝐵21𝐶11 + 𝐴22𝐵22𝐶21 𝐴21𝐵11𝐶12 + 𝐴21𝐵12𝐶22 + 𝐴22𝐵21𝐶12 + 𝐴22𝐵22𝐶22
  

 

 𝐀𝐁 𝐂 =  
 𝐴11𝐵11 + 𝐴12𝐵21 𝐶11 +  𝐴11𝐵12 + 𝐴12𝐵22 𝐶21  𝐴11𝐵11 + 𝐴12𝐵21 𝐶12 +  𝐴11𝐵12 + 𝐴12𝐵22 𝐶22

 𝐴21𝐵11 + 𝐴22𝐵21 𝐶11 +  𝐴21𝐵12 + 𝐴22𝐵22 𝐶21  𝐴21𝐵11 + 𝐴22𝐵21 𝐶12 +  𝐴21𝐵12 + 𝐴22𝐵22 𝐶22
  

 

=  
𝐴11𝐵11𝐶11 + 𝐴12𝐵21𝐶11 + 𝐴11𝐵12𝐶21 + 𝐴12𝐵22𝐶21 𝐴11𝐵11𝐶12 + 𝐴12𝐵21𝐶12 + 𝐴11𝐵12𝐶22 + 𝐴12𝐵22𝐶22

𝐴21𝐵11𝐶11 + 𝐴22𝐵21𝐶11 + 𝐴21𝐵12𝐶21 + 𝐴22𝐵22𝐶21 𝐴21𝐵11𝐶12 + 𝐴22𝐵21𝐶12 + 𝐴21𝐵12𝐶22 + 𝐴22𝐵22𝐶22
  

 

Comparing the terms element-by-element, we see 𝐀 𝐁𝐂 =  𝐀𝐁 𝐂. 
 

Chapter 3 

 

1. Let 𝜏: ℝ3 → ℝ3 be defined by 𝜏 𝑥, 𝑦, 𝑧 =  𝑥 + 𝑦, 𝑥 − 3, 𝑧 .  Is 𝜏 a linear transformation?  If it 

is, find its standard matrix representation. 

 

Solution: 

 

If 𝜏 is linear, then we must have: 

 

1. 𝜏 𝐮 + 𝐯 = 𝜏 𝐮 + 𝜏 𝐯  
2. 𝜏 𝑘𝐮 = 𝑘𝜏 𝐮  

 

Let 𝐮 =  𝑢𝑥 , 𝑢𝑦 , 𝑢𝑧  and 𝐯 =  𝑣𝑥 , 𝑣𝑦 , 𝑣𝑧 .   
 

𝜏 𝐮 + 𝐯 = 𝜏 𝑢𝑥 + 𝑣𝑥, 𝑢𝑦 + 𝑣𝑦, 𝑢𝑧 + 𝑣𝑧  

= (𝑢𝑥 + 𝑣𝑥 + 𝑢𝑦 + 𝑣𝑦 , 𝑢𝑥 + 𝑣𝑥 − 3, 𝑢𝑧 + 𝑣𝑧) 

=  𝑢𝑥 + 𝑢𝑦 , 𝑢𝑥 − 3, 𝑢𝑧 +  𝑣𝑥 + 𝑣𝑦 , 𝑣𝑥 , 𝑣𝑧  

= 𝜏 𝐮 +  𝑣𝑥 + 𝑣𝑦 , 𝑣𝑥 , 𝑣𝑧  

= 𝜏 𝐮 +  𝑣𝑥 + 𝑣𝑦 , 𝑣𝑥 − 3 + 3, 𝑣𝑧  

= 𝜏 𝐮 +  𝑣𝑥 + 𝑣𝑦 , 𝑣𝑥 − 3, 𝑣𝑧 +  0, 3, 0  

= 𝜏 𝐮 + 𝜏 𝐯 +  0, 3, 0  
 

So 𝜏 𝐮 + 𝐯 ≠ 𝜏 𝐮 + 𝜏 𝐯 ; therefore 𝜏 is not a linear transformation. 

 

3. Assume that 𝜏: ℝ3 → ℝ3 is a linear transformation.  Further suppose that 𝜏 1, 0, 0 =  3, 1, 2 , 
𝜏 0, 1, 0 =  2,−1, 3 , and 𝜏 0, 0, 1 =  4, 0, 2 .  Find 𝜏 1, 1, 1 . 
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Solution: 

 

We are given that 𝜏 is a linear transformation and its behavior on the standard basis vectors 

𝜏 𝐢 , 𝜏 𝐣 , 𝜏 𝐤 .  Therefore, the standard matrix representation of 𝜏 is: 

 

 
3 1 2
2 −1 3
4 0 2

  

 

Then  

 

𝜏 1, 1, 1 =  1, 1, 1  
3 1 2

2 −1 3

4 0 2

 =  3 + 2 + 4, 1 − 1, 2 + 3 + 2 =  9, 0, 7  

 

5. Build a rotation matrix that rotates 30° along the axis  1, 1, 1 . 
 

Solution: 

 

 

 𝑥, 𝑦, 𝑧 = (
1

 3
,

1

 3
,

1

 3
) 

𝑐 = cos 30° =
 3

2
 

𝑠 = sin 30° =
1

2
 

 

𝐑𝐧 =  

𝑐 +  1 − 𝑐 𝑥2  1 − 𝑐 𝑥𝑦 + 𝑠𝑧  1 − 𝑐 𝑥𝑧 − 𝑠𝑦

 1 − 𝑐 𝑥𝑦 − 𝑠𝑧 𝑐 +  1 − 𝑐 𝑦2  1 − 𝑐 𝑦𝑧 + 𝑠𝑥

 1 − 𝑐 𝑥𝑧 + 𝑠𝑦  1 − 𝑐 𝑦𝑧 − 𝑠𝑥 𝑐 +  1 − 𝑐 𝑧2

  

=

 
 
 
 
 
 
 
  3

2
+  1 −

 3

2
 

1

3
  1 −

 3

2
 

1

3
+

1

2

1

 3
 1 −

 3

2
 

1

3
−

1

2

1

 3

 1 −
 3

2
 

1

3
−

1

2

1

 3

 3

2
+  1 −

 3

2
 

1

3
 1 −

 3

2
 

1

3
+

1

2

1

 3

 1 −
 3

2
 

1

3
+

1

2

1

 3
 1 −

 3

2
 

1

3
−

1

2

1

 3

 3

2
+  1 −

 3

2
 

1

3  
 
 
 
 
 
 
 

 

=

 
 
 
 
 
 
 
  3

2
+

2 −  3

6
  

1

3
−
 3

6
 +

 3

6
 

1

3
−
 3

6
 −

 3

6

 
1

3
−
 3

6
 −

 3

6

 3

2
+

2 −  3

6
 

1

3
−
 3

6
 +

 3

6

 
1

3
−
 3

6
 +

 3

6
 

1

3
−
 3

6
 −

 3

6

 3

2
+

2 −  3

6  
 
 
 
 
 
 
 

 



Appendix D Selected Solutions, Introduction to 3D Game Programming with DirectX 12, by 

Frank D. Luna 
 

Page 12 of 51 
 

=

 
 
 
 
 
 
 2 3 + 2

6
 

1

3

1 −  3

3

1 −  3

3

2 3 + 2

6

1

3

1

3

1 −  3

3

2 3 + 2

6  
 
 
 
 
 
 

 

 

7. Build a single transformation matrix that first scales 2 units on the x-axis, -3 units on the y-

axis, and keeps the z-dimension unchanged, and then translates 4 units on the x-axis, no units on 

the y-axis, and -9 units on the z-axis. 

 

Solution: 
 

𝐒 =  

2 0 0 0
0 −3 0 0
0 0 1 0
0 0 0 1

  

𝐓 =  

1 0 0 0
0 1 0 0
0 0 1 0
4 0 −9 1

  

 

Then the desired transformation matrix is obtained by the product 

 

𝐌 = 𝐒𝐓 =  

2 0 0 0
0 −3 0 0
0 0 1 0
4 0 −9 1

  

 

9. Redo Example 3.2, but this time scale the square 1.5 units on the x-axis, 0.75 units on the y-

axis, and leave the z-axis unchanged.  Graph the geometry before and after the transformation to 

confirm your work. 

 

Solution: 

 

The corresponding scaling matrix is: 

 

𝐒 =  
1.5 0 0
0 . 75 0
0 0 1

  

Now to actually scale (transform) the square, we multiply both the minimum point and 

maximum point by this matrix: 

  −4,−4, 0  
1.5 0 0
0 . 75 0
0 0 1

 =  −6,−3, 0            4, 4, 0  
1.5 0 0
0 . 75 0
0 0 1

 =  6, 3, 0  
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[Figure D.3: Scaling transform.] 

 

11. Redo Example 3.4, but this time translate the square -5 units on the x-axis, -3.0 units on the 

y-axis, and 4.0 units on the z-axis.  Graph the geometry before and after the transformation to 

confirm your work. 

 

Solution: 
 

The corresponding translation matrix is: 

𝐓 =  

1 0 0 0
0 1 0 0
0 0 1 0
−5 −3 4 1

  

Now to actually translate (transform) the square, we multiply both the minimum point and 

maximum point by this matrix: 

 −8, 2, 0, 1  

1 0 0 0
0 1 0 0
0 0 1 0
−5 −3 4 1

 =  −13, −1, 4, 1  

 −2, 8, 0, 1  

1 0 0 0
0 1 0 0
0 0 1 0
−5 −3 4 1

 =  −7, 5, 4, 1  

 



Appendix D Selected Solutions, Introduction to 3D Game Programming with DirectX 12, by 

Frank D. Luna 
 

Page 14 of 51 
 

 
[Figure D.4: Translation transform.] 

 

13. Prove that the rows of 𝐑𝐲 are orthonormal.  For a more computational intensive exercise, the 

reader can do this for the general rotation matrix (rotation matrix about an arbitrary axis), too. 

 

𝐑𝐲 =  
cos 𝜃 0 − sin 𝜃

0 1 0
sin 𝜃 0 cos 𝜃

  

 

Solution: 

 

Let 𝐫1 =  cos 𝜃 , 0, − sin 𝜃 , 𝐫2 =  0, 1, 0 , and 𝐫3 =  sin 𝜃 , 0, cos 𝜃 . 
 

First we show all the rows are unit length: 

 

 𝐫1 =  cos2 𝜃 + sin2 𝜃 = 1 

 𝐫2 = 1 

 𝐫3 =  sin2 𝜃 + cos2 𝜃 = 1 
 

Next we show the rows are mutually orthogonal: 

 

𝐫1 ∙ 𝐫2 = 0 

𝐫2 ∙ 𝐫3 = 0 

𝐫1 ∙ 𝐫3 = cos 𝜃 sin 𝜃 − sin 𝜃 cos 𝜃 = 0 
 

14. Prove the matrix 𝐌 is orthogonal if and only if 𝐌𝑇 = 𝐌−1. 

 

Solution: 
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For concreteness, we will prove for 3 × 3 matrices since 3D rotation matrices are the only kind 

of orthogonal matrices we care about in this book.  However, the same argument we present 

generalizes to 𝑛 × 𝑛 matrices. 

 

Suppose 𝐌 is a 3 × 3 orthogonal matrix: 

 

𝐌 =  

⟵ 𝐫1 ⟶
⟵ 𝐫2 ⟶
⟵ 𝐫3 ⟶

      and     𝐌𝑇 =  
↑ ↑ ↑
𝐫1 𝐫2 𝐫3

↓ ↓ ↓

  

 

Then, by the definition of matrix multiplication  𝐌𝐌𝑇 𝑖𝑗 = 𝐫𝑖 ∙ 𝐫𝑗 .  But, because 𝐌 is orthogonal 

we have that 

 

 𝐌𝐌𝑇 𝑖𝑗 = 𝐫𝑖 ∙ 𝐫𝑗 =  
1     if 𝑖 = 𝑗
0    if 𝑖 ≠ 𝑗

  

 

It is true that 𝑖 = 𝑗 only for the diagonal elements of the matrix.  Thus the resulting matrix has 

1’s along the diagonal and zeros everywhere else.  But this is exactly the identity matrix.  Hence, 

𝐌𝐌𝑇 = 𝐈.  A similar argument shows 𝐌𝑇𝐌 = 𝐈.  Therefore, we must have that 𝐌𝑇 = 𝐌−1. 

 

Now suppose that 𝐌𝑇 = 𝐌−1.  In particular, this implies that 𝐌𝐌𝑇 = 𝐈.  In turn, this means: 

 

 𝐌𝐌𝑇 𝑖𝑗 = 𝐫𝑖 ∙ 𝐫𝑗 =  
1     if 𝑖 = 𝑗
0    if 𝑖 ≠ 𝑗

  

 

Therefore, the row vectors or 𝐌 are mutually orthogonal and unit length; thus, 𝐌 is orthogonal. 

 

15. Compute: 

 

  𝑥, 𝑦, 𝑧, 1  

1 0 0 0
0 1 0 0
0 0 1 0
𝑏𝑥 𝑏𝑦 𝑏𝑧 1

      and      𝑥, 𝑦, 𝑧, 0  

1 0 0 0
0 1 0 0
0 0 1 0
𝑏𝑥 𝑏𝑦 𝑏𝑧 1

  

 

Does the translation translate points?  Does the translation translate vectors?  Why does it not 

make sense to translate the coordinates of a vector in standard position?    

 

Solution: 

 

 

 𝑥, 𝑦, 𝑧, 1  

1 0 0 0
0 1 0 0
0 0 1 0
𝑏𝑥 𝑏𝑦 𝑏𝑧 1

 = [𝑥 + 𝑏𝑥 , 𝑦 + 𝑏𝑦 , 𝑧 + 𝑏𝑧 , 1] 

 

The translation translates points. 
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 𝑥, 𝑦, 𝑧, 0  

1 0 0 0
0 1 0 0
0 0 1 0
𝑏𝑥 𝑏𝑦 𝑏𝑧 1

 =  𝑥, 𝑦, 𝑧, 0  

 

The translation does not translate vectors.  Translation does not make sense for vectors because a 

vector only describes direction and magnitude, independent of location. 

 

17. Suppose that we have frames A and B.  Let 𝐩𝐴 =  1,−2, 0  and 𝐪𝐴 =  1, 2, 0  represent a 

point and force, respectively, relative to frame A.  Moreover, let 𝐐𝐵 =  −6, 2, 0 , 𝐮𝐵 =

 
1

 2
,

1

 2
, 0 , 𝐯𝐵 =  −

1

 2
,

1

 2
, 0 , and 𝐰𝐵 =  0, 0, 1  describe frame A with coordinates relative to 

frame B.  Build the change of coordinate matrix that maps frame A coordinates into frame B 

coordinates, and find 𝐩𝐵 =  𝑥, 𝑦, 𝑧  and 𝐪𝐵 =  𝑥, 𝑦, 𝑧 .  Draw a picture on graph paper to verify 

that your answer is reasonable. 

 

Solution: 

 

From Equation 3.9, the change of coordinate matrix is: 

 

 

← 𝐮𝐵 →
← 𝐯𝐵 →
← 𝐰𝐵 →
← 𝐐𝐵 →

 =

 
 
 
 
 
 
 

1

 2

1

 2
0 0

−
1

 2

1

 2
0 0

0 0 1 0
−6 2 0 1 

 
 
 
 
 
 

 

 
Then to transform points and vectors from frame A into frame B we multiply the frame A coordinate 

vectors by the matrix: 

 

𝐩𝐵 =  1 −2 0 1 

 
 
 
 
 
 

1

 2

1

 2
0 0

−
1

 2

1

 2
0 0

0 0 1 0

−6 2 0 1 
 
 
 
 
 

 

=  
3

 2
− 6 −

1

 2
+ 2 0 1  

≈  −3.88 1.29 0 1  

𝐪𝐵 =  1 2 0 0 

 
 
 
 
 
 

1

 2

1

 2
0 0

−
1

 2

1

 2
0 0

0 0 1 0

−6 2 0 1 
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=  −
1

 2

3

 2
0 0  

≈  −.707 2.12 0 0  
 

 

 
[Figure D.5: Change of coordinates from frame A to frame B.] 

 

19. Consider the triangle defined by the points 𝐩1 =  0, 0, 0 , 𝐩2 =  0,1,0 , and  𝐩3 =  2, 0, 0 .  
Graph the following points:  

 

 a) 
1

3
𝐩1 +

1

3
𝐩2 +

1

3
𝐩3 

 b) 0.7𝐩1 + 0.2𝐩2 + 0.1𝐩3 

 c) 0.0𝐩1 + 0.5𝐩2 + 0.5𝐩3 

 d) −0.2𝐩1 + 0.6𝐩2 + 0.6𝐩3 

 e) 0.6𝐩1 + 0.5𝐩2 − 0.1𝐩3 

 f) 0.8𝐩1 − 0.3𝐩2 + 0.5𝐩3 

 

What is special about the point in part (a)?  What would be the barycentric coordinates of 𝐩2 and 

the point  1, 0, 0  in terms of 𝐩1 , 𝐩2, 𝐩3?  Can you make a conjecturer about where the point 𝐩 

will be located relative to the triangle if one of the barycentric coordinates is negative? 

 

Solution: 

 

a) 
1

3
𝐩1 +

1

3
𝐩2 +

1

3
𝐩3 =

1

3
 0, 0, 0 +

1

3
 0,1,0 +

1

3
 2, 0, 0 =  

2

3
,

1

3
, 0  

 

b) 0.7𝐩1 + 0.2𝐩2 + 0.1𝐩3 = 0.7 0, 0, 0 + 0.2 0,1,0 + 0.1𝐩3 2, 0, 0 =  0.2, 0.2, 0  
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c) 0.0𝐩1 + 0.5𝐩2 + 0.5𝐩3 = 0.0 0, 0, 0 + 0.5 0,1,0 + 0.5𝐩3 2, 0, 0 =  1, 0.5, 0  
 

d) −0.2𝐩1 + 0.6𝐩2 + 0.6𝐩3 = −0.2 0, 0, 0 + 0.6 0,1,0 + 0.6𝐩3 2, 0, 0 =  1.2, 0.6, 0  
 

e) 0.6𝐩1 + 0.5𝐩2 − 0.1𝐩3 = 0.6 0, 0, 0 + 0.5 0,1,0 − 0.1𝐩3 2, 0, 0 =  −0.2, 0.5, 0  
 

f) 0.8𝐩1 − 0.3𝐩2 + 0.5𝐩3 = 0.8 0, 0, 0 − 0.3 0,1,0 + 0.5𝐩3 2, 0, 0 =  1,−0.3, 0  
 

The point in part (a) is the centroid.  𝐩2 = 0𝐩1 + 1𝐩2 + 0𝐩3 so the barycentric coordinates are 

 0, 1, 0 .   1, 0, 0 =
1

2
𝐩1 +

1

2
𝐩3 so the barycentric coordinates are  

1

2
, 0,

1

2
 .  For negative 

barycentric coordinates, the points lie outside the triangle.   

 

 
[Figure D.6: Plotting barycentric coordinates.] 

 

21. Consider Figure 3.16.  A common change of coordinate transformation in computer graphics 

is to map coordinates from frame A (the square  −1,1 2) to frame B (the square  0,1 2 where the 

y-axes aims opposite to the one in Frame A).  Prove that the change of coordinate transformation 

from Frame A to Frame B is given by: 

  

 𝑥, 𝑦, 0 1  

0.5 0 0 0
0 −0.5 0 0
0 0 1 0

0.5 0.5 0 1

 =  𝑥′, 𝑦′, 0 1  
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[Figure D.7: Change of coordinates from frame A (the square  −1,1 2) to frame B (the square 

 0,1 2 where the y-axes aims opposite to the one in Frame A)] 

 

Solution: 

 

From Equation 3.9, the change of coordinate matrix is: 

 

 𝑥′, 𝑦′, 𝑧′, 𝑤 =  𝑥, 𝑦, 𝑧, 𝑤  

← 𝐮𝐵 →
← 𝐯𝐵 →
← 𝐰𝐵 →
← 𝐐𝐵 →

  

 

That is, we need to describe the coordinate system of frame A (origin and axes) with coordinates relative 

to frame B.  (We use homogeneous coordinates.)  The origin in frame A is the center of the square, which 

has coordinates 𝐐𝐵 =  0.5, 0.5, 0, 1 .  The x-axis of frame A aims in the same direction as frame B, and, 

along this axis, one unit in frame A is half a unit in frame B; therefore, 𝐮𝐵 =  0.5, 0, 0, 0 .  The y-axis of 

frame A aims in the opposite direction as frame B, and along this axis, one unit in frame A is half a unit in 

frame B; therefore, 𝐯𝐵 =  0,−0.5, 0, 0 .  Since this is a 2D problem, we will just assume that the z-axes 

are the same in both coordinate systems; therefore, 𝐰𝐵 =  0, 0, 1, 0 .  Substituting these numbers into the 

above yields the desired transformation matrix: 

 

 

0.5 0 0 0
0 −0.5 0 0
0 0 1 0

0.5 0.5 0 1

  

 

 

23. Consider the transformation 𝜏 that warps a square into a parallelogram given by: 

 

𝜏 𝑥, 𝑦 =  3𝑥 + 𝑦, 𝑥 + 2𝑦  
 

Find the standard matrix representation of this transformation, and show that the determinant of 

the transformation matrix is equal to the area of the parallelogram spanned by 𝜏 𝐢  and 𝜏(𝐣). 
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[FigD.8.bmp: Transformation that maps square into parallelogram.] 

 

Solution: 

 

𝜏 1, 0 =  3, 1  
𝜏 0, 1 =  1, 2  

 

𝐀 =  
3 1
1 2

  

 

det 𝐀 = 6 − 1 = 5 
 

The area of the parallelogram spanned by by 𝜏 𝐢  and 𝜏(𝐣) is given by: 

 

𝐴𝑟𝑒𝑎 = 𝐵𝑎𝑠𝑒 × 𝐻𝑒𝑖𝑔𝑕𝑡 
=  𝜏(𝐢)  𝜏(𝐣) sin 𝜃 

=  𝜏 𝐢 × 𝜏(𝐣)  
 

The cross product is not defined in 2D, but we can do a trick and augment to 3D space with 

𝑧 = 0 so that we can use the cross product.  Note that using 𝑧 = 0 does not affect the magnitude 

or direction of the vectors. 

 

 3, 1, 0 ×  1, 2, 0 =  0, 0, 5  
 

=   3, 1, 0 ×  1, 2, 0   

=   0, 0, 5   

= 5 
 

Also see Chapter 2, Exercise 15.  So observe that the area of the parallelogram (square) defined 

by the standard basis vectors 𝐢 and 𝐣 is 1, and the area of the parallelogram spanned by 𝜏 𝐢  and 

𝜏(𝐣) is 5.  Therefore, the transformation 𝜏 changed the volume (or area in 2D) from 1 to 5 when it 

warped it from a unit square to the parallelogram spanned by 𝜏 𝐢  and 𝜏(𝐣). 

 

25. A rotation matrix can be characterized algebraically as an orthogonal matrix with 

determinant equal to 1.  If we reexamine Figure 3.7 along with Exercise 24 this makes sense; the 

rotated basis vectors 𝜏 𝐢 , 𝜏 𝐣 , and 𝜏 𝐤  are unit length and mutually orthogonal; moreover, 

rotation does not change the size of the object, so the determinant should be 1.  Show that the 
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product of two rotation matrices 𝐑1𝐑2 = 𝐑 is a rotation matrix.  That is, show 𝐑𝐑𝑇 = 𝐑𝑇𝐑 = 𝐈 
(to show 𝐑 is orthogonal), and show det 𝐑 = 1. 

 

Solution: 

 

𝐑1𝐑2 𝐑1𝐑2 
𝑇 = 𝐑1𝐑2𝐑2

𝑇𝐑1
𝑇 = 𝐑1𝐑1

𝑇 = 𝐈 
 𝐑1𝐑2 

𝑇𝐑1𝐑2 = 𝐑2
𝑇𝐑1

𝑇𝐑1𝐑2 = 𝐑2
𝑇𝐑2 = 𝐈 

 

Using the fact that det 𝐀𝐁 = det𝐀 ∙ det 𝐁: 

 

det 𝐑1𝐑2 = det 𝐑1 det 𝐑2 = 1 
 

27. Find a scaling, rotation, and translation matrix whose product transforms the line segment 

with start point 𝐩 =  0,0,0  and endpoint 𝐪 =  0,0,1  into the line segment with length 2, 

parallel to the vector  1, 1, 1 , with start point  3,1,2 . 
 

Solution: 

 

The line segment currently aims along the z-axis with a length of 1.  To make it have a length of 

2, we first scale it 2-units on the z-axis.  In order to rotate the line segment so that it is parallel to 

(1, 1, 1) we need to rotate by an angle 𝜃 in the plane that contains the vectors  0,0,1  and 

(1, 1, 1) (see Figure).  The axis of rotation is given by 𝐮 × 𝐯 =  0,0,1 ×  1, 1, 1 =  −1, 1, 0 .  
The angle we need to rotate is given by the angle between the vectors  0,0,1  and (1, 1, 1): 

 

𝜃 = cos−1
𝐮 ∙ 𝐯

 𝐮  𝐯 
= cos−1

1

 3
= 54.73° 

 

Finally, we must apply a translation 𝐓 3,1,2 . 
 

 
[FigD.9: To rotate 𝐮 so that it aims in the same direction as 𝐯, we must rotate 𝐮 by an angle 𝜃 

about the axis 𝐰 = 𝐮 × 𝐯.] 

 

Chapter 5 

 

1. Construct the vertex and index list of a pyramid, as shown in Figure 5.35.   
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Solution: 
 

  
[FigD.10: Vertices of the pyramid.] 

 
Vertex vertices[5] = {v0, v1, v2, v3, v4}; 

UINT indices[] = { 

    0, 1, 2, 

    1, 3, 2, 

    1, 4, 0, 

    0, 4, 2, 

    2, 4, 3,  

    3, 4, 1 

}; 

 

3. Relative to the world coordinate system, suppose that the camera is positioned at 

 −20, 35,−50  and looking at the point  10, 0, 30 .  Compute the view matrix assuming  0,1,0  
describes the “up” direction in the world. 

 

Solution: 
 

Figure 5.20 shows the setup.  Let 𝐐 =  −20, 35,−50 , 𝐓 =  10, 0, 30  and 𝐣 =  0, 1, 0 .  The 

direction the camera is looking is given by: 

 

𝐰 =
𝐓 − 𝐐

 𝐓 − 𝐐 
=
 30,−35, 80 

5 341
=  . 3249, −.3791, .8664  

 

This vector describes the local z-axis of the camera.  A unit vector that aims to the “right” of 𝐰 is 

given by: 

 

𝐮 =
𝐣 × 𝐰

 𝐣 × 𝐰 
=
 . 8664, 0, −.3249 

. 9254
=  . 9363, 0, −.3511  

 

This vector describes the local x-axis of the camera.  Finally, a vector that describes the local y-

axis of the camera is given by: 
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𝐯 = 𝐰 × 𝐮 =  . 1331, .9253, .3549  
 

The view matrix is: 

 

𝐕 =  

𝑢𝑥 𝑣𝑥 𝑤𝑥 0
𝑢𝑦 𝑣𝑦 𝑤𝑦 0

𝑢𝑧 𝑣𝑧 𝑤𝑧 0
−𝐐 ∙ 𝐮 −𝐐 ∙ 𝐯 −𝐐 ∙ 𝐰 1

 =  

. 9363 . 1331 . 3249 0
0 . 9253 −.3791 0

−.3511 . 3549 . 8664 0
1.170 −11.98 63.09 1

  

 

You can verify the answer by writing the following code and inspecting the matrix elements: 

 
XMMATRIX K = XMMatrixLookAtLH( 

  XMLoadFloat3(&XMFLOAT3(-20.0f, 35.0f, -50.0f)), 

  XMLoadFloat3(&XMFLOAT3(10.0f, 0.0f, 30.0f)), 

  XMLoadFloat3(&XMFLOAT3(0.0f, 1.0f, 0.0f))); 

 

5. Suppose that the view window has height 4.  Find the distance 𝑑 from the origin the view 

window must be to create a vertical field of view angle 𝜃 = 60°. 

 

Solution: 
 

tan 30° =
2

𝑑
 

∴ 𝑑 =
2

tan 30°
= 3.464 

 

7. Suppose that you are given the following perspective projection matrix with fixed 𝐴, 𝐵, 𝐶, 𝐷: 

 

 

𝐴 0 0 0
0 𝐵 0 0
0 0 𝐶 1
0 0 𝐷 0

  

 

Find the vertical field of view angle 𝛼 the aspect ratio 𝑟, and the near and far plane values that 

were used to build this matrix in terms of 𝐴, 𝐵, 𝐶, 𝐷.  That is, solve the following equations: 

 

𝐴 =
1

𝑟 tan 𝛼/2 
 

𝐵 =
1

tan 𝛼/2 
 

𝐶 =
𝑓

𝑓 − 𝑛
 

𝐷 =
−𝑛𝑓

𝑓 − 𝑛
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Solving these equations will give you formulas for extracting the vertical field of view angle 𝛼 

the aspect ratio 𝑟, and the near and far plane values from any perspective projection matrix of the 

kind described in this book.   

 

Solution: 
 

Dividing the second equation by the first equation yields: 

 

𝐵

𝐴
=

1

tan 𝛼/2 
∙
𝑟 tan 𝛼/2 

1
= 𝑟 

 

The second equation implies: 

 

tan  
𝛼

2
 =

1

𝐵
 

∴ 𝛼 = 2 tan−1  
1

𝐵
  

 

We solve the third equation for 𝑓: 

 

𝐶 =
𝑓

𝑓 − 𝑛
 

𝐶𝑓 − 𝑓 − 𝐶𝑛 = 0 

𝑓 =
𝐶𝑛

𝐶 − 1
 

 

Now we plug 𝑓 into the fourth equation and solve for 𝑛: 

 

𝐷 =
−𝑛𝑓

𝑓 − 𝑛
 

𝐷𝑓 − 𝐷𝑛 = −𝑛𝑓 

𝐷
𝐶𝑛

𝐶 − 1
− 𝐷𝑛 = −𝑛

𝐶𝑛

𝐶 − 1
 

𝐶𝐷𝑛 − 𝐷𝑛(𝐶 − 1) = −𝐶𝑛2 

𝐷𝑛 = −𝐶𝑛2 

𝐷 = −𝐶𝑛 

𝑛 = −
𝐷

𝐶
 

 

Now, 

 

𝑓 =
𝐶𝑛

𝐶 − 1
=

−𝐷

𝐶 − 1
=

𝐷

1 − 𝐶
 

 

In summary, 
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𝑟 =
𝐵

𝐴
 

𝛼 = 2 tan−1  
1

𝐵
  

𝑛 = −
𝐷

𝐶
 

𝑓 =
𝐷

1 − 𝐶
 

 

8. For projective texturing algorithms, we multiply an affine transformation matrix 𝐓 after the 

projection matrix.  Prove that it does not matter if we do the perspective divide before or after 

multiplying by 𝐓.  Let, 𝐯 be a 4D vector, 𝐏 be a projection matrix, 𝐓 be a 4 × 4 affine 

transformation matrix, and let a 𝑤 subscript denote the 𝑤-coordinate of a 4D vector, prove: 

 

 
𝐯𝐏

 𝐯𝐏 𝑤
 𝐓 =

 𝐯𝐏𝐓 

 𝐯𝐏𝐓 𝑤
 

  

Solution: 
 

Using the properties of matrix algebra, we have: 

 

 
𝐯𝐏

 𝐯𝐏 𝑤
 𝐓 =

1

 𝐯𝐏 𝑤
 𝐯𝐏𝐓  

 

But 𝐓 is given as an affine transformation matrix, which means it does not modify the w-

coordinate.  Hence, we have  𝐯𝐏 𝑤 =   𝐯𝐏 𝐓 
𝑤

=  𝐯𝐏𝐓 𝑤 .  Hence, 

 

 
𝐯𝐏

 𝐯𝐏 𝑤
 𝐓 =

1

 𝐯𝐏 𝑤
 𝐯𝐏𝐓 =

 𝐯𝐏𝐓 

 𝐯𝐏𝐓 𝑤
 

 

10. Let  𝑥, 𝑦, 𝑧, 1  be the coordinates of a point in view space, and let  𝑥𝑛𝑑𝑐 , 𝑦𝑛𝑑𝑐 , 𝑧𝑛𝑑𝑐 , 1  be the 

coordinates of the same point in NDC space.  Prove that you can transform from NDC space to 

view space in the following way: 

 

 𝑥𝑛𝑑𝑐 , 𝑦𝑛𝑑𝑐 , 𝑧𝑛𝑑𝑐 , 1 𝐏−1 =  
𝑥

𝑧
,
𝑦

𝑧
, 1,

1

𝑧
 
𝑑𝑖𝑣𝑖𝑑𝑒  𝑏𝑦  𝑤
          𝑥, 𝑦, 𝑧, 1  

 

Explain why you need the division by 𝑤.  Would you need the division by 𝑤 if you were 

transforming from homogeneous clip space to view space? 

 

Solution: 
 

Recall from Equation 5.1 and §5.6.3.5 that: 
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𝑥𝑛𝑑𝑐 =
𝑥

𝑟𝑧 tan 𝛼/2 
 

𝑦𝑛𝑑𝑐 =
𝑦

𝑧 tan 𝛼/2 
 

𝑧𝑛𝑑𝑐 =
𝑓

𝑓 − 𝑛
+

−𝑛𝑓

 𝑓 − 𝑛 𝑧
 

 

where  𝑥, 𝑦, 𝑧  are view space coordinates.   

 

 𝑥𝑛𝑑𝑐 , 𝑦𝑛𝑑𝑐 , 𝑧𝑛𝑑𝑐 , 1 

 
 
 
 
 
 
 
 𝑟 tan  

𝛼

2
 0 0 0

0 tan  
𝛼

2
 0 0

0 0 0 −
𝑓 − 𝑛

𝑛𝑓

0 0 1
1

𝑛  
 
 
 
 
 
 
 

 

=  𝑥𝑛𝑑𝑐 𝑟 tan  
𝛼

2
 , 𝑦𝑛𝑑𝑐 tan  

𝛼

2
 , 1, −𝑧𝑛𝑑𝑐

𝑓 − 𝑛

𝑛𝑓
+

1

𝑛
  

=  
𝑥

𝑟𝑧 tan 𝛼/2 
𝑟 tan  

𝛼

2
 ,

𝑦

𝑧 tan 𝛼/2 
tan  

𝛼

2
 , 1, −  

𝑓

𝑓 − 𝑛
+

−𝑛𝑓

 𝑓 − 𝑛 𝑧
 
𝑓 − 𝑛

𝑛𝑓
+

1

𝑛
  

=  
𝑥

𝑧
,
𝑦

𝑧
, 1,  

−𝑓

𝑓 − 𝑛
+

𝑛𝑓

 𝑓 − 𝑛 𝑧
 
𝑓 − 𝑛

𝑛𝑓
+

1

𝑛
  

=  
𝑥

𝑧
,
𝑦

𝑧
, 1,  

−𝑓

𝑛𝑓
+
𝑛𝑓

𝑧𝑛𝑓
 +

1

𝑛
  

=  
𝑥

𝑧
,
𝑦

𝑧
, 1,

−1

𝑛
+

1

𝑧
+

1

𝑛
  

=  
𝑥

𝑧
,
𝑦

𝑧
, 1,

1

𝑧
  

 

 
𝑥

𝑧
,
𝑦

𝑧
, 1,

1

𝑧
 
𝑑𝑖𝑣𝑖𝑑𝑒  𝑏𝑦  𝑤
          𝑥, 𝑦, 𝑧, 1  

  

The steps to go from view space to NDC space are multiplying by the projection matrix, 

followed by a division by 𝑤 = 𝑧.  Therefore, to transform back from NDC space to view space, 

we multiply by the inverse projection matrix followed by a division by 𝑤 = 1/𝑧 (which is 

equivalent to multiplying by 𝑤 = 𝑧).   

If you are given points in homogeneous clip space (before the divide by 𝑤 = 𝑧), then you 

do not need to divide by 𝑤 in the inverse transformation.  In homogeneous clip space, the point 
 𝑥𝑛𝑑𝑐 , 𝑦𝑛𝑑𝑐 , 𝑧𝑛𝑑𝑐 , 1  has coordinates  𝑧𝑥𝑛𝑑𝑐 , 𝑧𝑦𝑛𝑑𝑐 , 𝑧𝑧𝑛𝑑𝑐 , 𝑧 : 
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 𝑧𝑥𝑛𝑑𝑐 , 𝑧𝑦𝑛𝑑𝑐 , 𝑧𝑧𝑛𝑑𝑐 , 𝑧 

 
 
 
 
 
 
 
 𝑟 tan  

𝛼

2
 0 0 0

0 tan  
𝛼

2
 0 0

0 0 0 −
𝑓 − 𝑛

𝑛𝑓

0 0 1
1

𝑛  
 
 
 
 
 
 
 

 

=  𝑥𝑛𝑑𝑐 𝑟 tan  
𝛼

2
 , 𝑦𝑛𝑑𝑐 tan  

𝛼

2
 , 𝑧, −𝑧𝑛𝑑𝑐

𝑓 − 𝑛

𝑛𝑓
+

1

𝑛
  

=  
𝑧𝑥

𝑟𝑧 tan 𝛼/2 
𝑟 tan  

𝛼

2
 ,

𝑧𝑦

𝑧 tan 𝛼/2 
tan  

𝛼

2
 , 𝑧, −𝑧  

𝑓

𝑓 − 𝑛
+

−𝑛𝑓

 𝑓 − 𝑛 𝑧
 
𝑓 − 𝑛

𝑛𝑓
+

1

𝑛
  

=  𝑥, 𝑦, 𝑧, 1  
 

13. Consider the 3D shear transform given by 𝑆𝑥𝑦  𝑥, 𝑦, 𝑧 =  𝑥 + 𝑧𝑡𝑥 , 𝑦 + 𝑧𝑡𝑦 , 𝑧 .  This 

transformation is illustrated in Figure 5.37.  Prove that this is a linear transformation and has the 

following matrix representation: 

 

𝐒𝑥𝑦 =  

1 0 0
0 1 0
𝑡𝑥 𝑡𝑦 1

  

 
[FigD.11: The x- and y-coordinates sheared by the z-coordinate.  The top face of the box lies in 

the 𝑧 = 1 plane.  Observe that the shear transform translates points in this plane.] 

 

Solution: 

 

𝑆𝑥𝑦  𝐮 + 𝐯 =   𝑢𝑥 + 𝑣𝑥 +  𝑢𝑧 + 𝑣𝑧 𝑡𝑥 ,  𝑢𝑦 + 𝑣𝑦 +  𝑢𝑧 + 𝑣𝑧 𝑡𝑦 , 𝑢𝑧 + 𝑣𝑧  

=   𝑢𝑥 + 𝑢𝑧𝑡𝑥 +  𝑣𝑥 + 𝑣𝑧𝑡𝑥 ,  𝑢𝑦 + 𝑢𝑧𝑡𝑦 +  𝑣𝑦 + 𝑣𝑧𝑡𝑦 , 𝑢𝑧 + 𝑣𝑧  

=  𝑢𝑥 + 𝑢𝑧𝑡𝑥 , 𝑢𝑦 + 𝑢𝑧𝑡𝑦 , 𝑢𝑧   +  𝑣𝑥 + 𝑣𝑧𝑡𝑥 , 𝑣𝑦 + 𝑣𝑧𝑡𝑦 , 𝑣𝑧  
= 𝑆𝑥𝑦  𝐮 + 𝑆𝑥𝑦  𝐯  

 
𝑆𝑥𝑦  𝑘𝐮 =  𝑘𝑢𝑥 + 𝑘𝑢𝑧𝑡𝑥 , 𝑘𝑢𝑦 + 𝑘𝑢𝑧𝑡𝑦 , 𝑘𝑢𝑧  

= 𝑘 𝑢𝑥 + 𝑢𝑧𝑡𝑥, 𝑢𝑦 + 𝑢𝑧𝑡𝑦, 𝑢𝑧   

= 𝑘𝑆𝑥𝑦 𝐮  
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So 𝑆𝑥𝑦  is a linear transformation.  To find the matrix representation, we apply it to the standard 

basis vectors: 
 

𝑆𝑥𝑦  𝐢 = 𝑆𝑥𝑦  1, 0, 0 =  1, 0, 0  

𝑆𝑥𝑦  𝐣 = 𝑆𝑥𝑦  0, 1, 0 =  0, 1, 0  

𝑆𝑥𝑦  𝐤 = 𝑆𝑥𝑦  0, 0, 1 =  𝑡𝑥 , 𝑡𝑦 , 1  

 
The matrix representation is found by inserting the above three vectors into the rows of a matrix: 
 

𝐒𝑥𝑦 =  

← 𝑆𝑥𝑦 𝐢 →

← 𝑆𝑥𝑦 𝐣 →

← 𝑆𝑥𝑦 𝐤 →

 =  

1 0 0
0 1 0
𝑡𝑥 𝑡𝑦 1

  

 

Chapter 9 

 

5. Let 𝐩0, 𝐩1, and 𝐩2 be the vertices of a 3D triangle with respective texture coordinates 𝐪0, 𝐪1, 

and 𝐪2.  Recall from §8.2 that for an arbitrary point on a 3D triangle 𝐩 𝑠, 𝑡 = 𝐩0 +
𝑠 𝐩1 − 𝐩0 + 𝑡 𝐩2 − 𝐩0  where 𝑠 ≥ 0, 𝑡 ≥ 0, 𝑠 + 𝑡 ≤ 1, its texture coordinates  𝑢, 𝑣  are found 

by linearly interpolating the vertex texture coordinates across the 3D triangle by the same 𝑠, 𝑡 
parameters: 

 

 𝑢, 𝑣 = 𝐪0 + 𝑠 𝐪1 − 𝐪0 + 𝑡 𝐪2 − 𝐪0  
 

a) Given  𝑢, 𝑣  and 𝐪0, 𝐪1, and 𝐪2, solve for  𝑠, 𝑡  in terms of 𝑢 and 𝑣 (Hint: Consider the vector 

equation  𝑢, 𝑣 − 𝐪0 = 𝑠 𝐪1 − 𝐪0 + 𝑡 𝐪2 − 𝐪0 . 
b) Express 𝐩 as a function of 𝑢 and 𝑣; that is, find a formula 𝐩 = 𝐩 𝑢, 𝑣 . 
c) Compute 𝜕𝐩/𝜕𝑢 and 𝜕𝐩/𝜕𝑣 and give a geometric interpretation of what these vectors mean. 

 

Solution: 
 

a) Let 𝐪0 =  𝑢0, 𝑣0 , 𝐪1 =  𝑢1, 𝑣1 , and 𝐪2 =  𝑢2, 𝑣2 : 
 

 𝑢, 𝑣 −  𝑢0, 𝑣0 = 𝑠 𝑢1 − 𝑢0 , 𝑣1 − 𝑣0 + 𝑡 𝑢2 − 𝑢0, 𝑣2 − 𝑣0  
 

 
𝑢1 − 𝑢0 𝑢2 − 𝑢0

𝑣1 − 𝑣0 𝑣2 − 𝑣0
  
𝑠
𝑡
 =  

𝑢 − 𝑢0

𝑣 − 𝑣0
  

 

From Example 2.10, the inverse of a 2 × 2 matrix 𝐀 =  
𝐴11 𝐴12

𝐴21 𝐴22
  is given by: 

 

𝐀−1 =
1

𝐴11𝐴22 − 𝐴12𝐴21
 
𝐴22 −𝐴12

−𝐴21 𝐴11
  

 

We can solve for  
𝑠
𝑡
  by multiplying by the inverse: 
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∴  
𝑠
𝑡
 =  

𝑢1 − 𝑢0 𝑢2 − 𝑢0

𝑣1 − 𝑣0 𝑣2 − 𝑣0
 
−1

 
𝑢 − 𝑢0

𝑣 − 𝑣0
  

 

=
 
𝑣2 − 𝑣0 𝑢0 − 𝑢2

𝑣0 − 𝑣1 𝑢1 − 𝑢0
  
𝑢 − 𝑢0

𝑣 − 𝑣0
 

 𝑢1 − 𝑢0  𝑣2 − 𝑣0 −  𝑢2 − 𝑢0  𝑣1 − 𝑣0 
 

 

In other words, given the texture coordinates  𝑢, 𝑣  of a point on a triangle, we can solve for the 

parametric coordinates  𝑠, 𝑡  that yield the 3D point corresponding to the texture point  𝑢, 𝑣 . 
 

b) Part (a) showed that 𝑠 = 𝑠 𝑢, 𝑣  and 𝑡 = 𝑡 𝑢, 𝑣 .  Therefore: 𝐩 𝑠, 𝑡 = 𝐩0 + 𝑠 𝐩1 − 𝐩0 +
𝑡 𝐩2 − 𝐩0  can be expressed in terms of  𝑢, 𝑣 : 
 

𝐩 𝑢, 𝑣 = 𝐩 𝑠 𝑢, 𝑣 , 𝑡 𝑢, 𝑣   

= 𝐩0 + 𝑠 𝑢, 𝑣  𝐩1 − 𝐩0 + 𝑡 𝑢, 𝑣  𝐩2 − 𝐩0  
 

c) First, note that: 

 

 
𝑠(𝑢, 𝑣)
𝑡(𝑢, 𝑣)

 =
 
𝑣2 − 𝑣0 𝑢0 − 𝑢2

𝑣0 − 𝑣1 𝑢1 − 𝑢0
  
𝑢 − 𝑢0

𝑣 − 𝑣0
 

 𝑢1 − 𝑢0  𝑣2 − 𝑣0 −  𝑢2 − 𝑢0  𝑣1 − 𝑣0 
 

 

 

 

 

𝜕𝑠

𝜕𝑢
(𝑢, 𝑣)

𝜕𝑡

𝜕𝑢
(𝑢, 𝑣)

 =
 
𝑣2 − 𝑣0

𝑣0 − 𝑣1
 

 𝑢1 − 𝑢0  𝑣2 − 𝑣0 −  𝑢2 − 𝑢0  𝑣1 − 𝑣0 
 

 

 

𝜕𝑠

𝜕𝑣
(𝑢, 𝑣)

𝜕𝑡

𝜕𝑣
(𝑢, 𝑣)

 =
 
𝑢0 − 𝑢2

𝑢1 − 𝑢0
 

 𝑢1 − 𝑢0  𝑣2 − 𝑣0 −  𝑢2 − 𝑢0  𝑣1 − 𝑣0 
 

 

Now the partial derivatives are given by: 

 
𝜕𝐩

𝜕𝑢
=
𝜕𝐩

𝜕𝑠

𝜕𝑠

𝜕𝑢
+
𝜕𝐩

𝜕𝑡

𝜕𝑡

𝜕𝑢
 

=  𝐩1 − 𝐩0 
𝜕𝑠

𝜕𝑢
+  𝐩2 − 𝐩0 

𝜕𝑡

𝜕𝑢
 

=
 𝐩1 − 𝐩0  𝑣2 − 𝑣0 +  𝐩2 − 𝐩0  𝑣0 − 𝑣1 

 𝑢1 − 𝑢0  𝑣2 − 𝑣0 −  𝑢2 − 𝑢0  𝑣1 − 𝑣0 
 

=
 𝐩1 − 𝐩0  𝑣2 − 𝑣0 −  𝐩2 − 𝐩0  𝑣1 − 𝑣0 

 𝑢1 − 𝑢0  𝑣2 − 𝑣0 −  𝑢2 − 𝑢0  𝑣1 − 𝑣0 
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=
Δ𝑣1𝐞0 − Δ𝑣0𝐞1

Δ𝑢0Δ𝑣1 − Δ𝑢1Δ𝑣0
 

 

where we use the notation: 

 

𝐞0 = 𝐩1 − 𝐩0 

𝐞1 = 𝐩2 − 𝐩0 

Δ𝑢0 = 𝑢1 − 𝑢0 

Δ𝑢1 = 𝑢2 − 𝑢0 

Δ𝑣0 = 𝑣1 − 𝑣0 

Δ𝑣1 = 𝑣2 − 𝑣0 
 

Similarly, 

 
𝜕𝐩

𝜕𝑣
=
𝜕𝐩

𝜕𝑠

𝜕𝑠

𝜕𝑣
+
𝜕𝐩

𝜕𝑡

𝜕𝑡

𝜕𝑣
 

=  𝐩1 − 𝐩0 
𝜕𝑠

𝜕𝑣
+  𝐩2 − 𝐩0 

𝜕𝑡

𝜕𝑣
 

=
 𝐩1 − 𝐩0  𝑢0 − 𝑢2 +  𝐩2 − 𝐩0  𝑢1 − 𝑢0 

 𝑢1 − 𝑢0  𝑣2 − 𝑣0 −  𝑢2 − 𝑢0  𝑣1 − 𝑣0 
 

=
− 𝐩1 − 𝐩0  𝑢2 − 𝑢0 +  𝐩2 − 𝐩0  𝑢1 − 𝑢0 

 𝑢1 − 𝑢0  𝑣2 − 𝑣0 −  𝑢2 − 𝑢0  𝑣1 − 𝑣0 
 

=
−Δ𝑢1𝐞0 + Δ𝑢0𝐞1

Δ𝑢0Δ𝑣1 − Δ𝑢1Δ𝑣0
 

 

In summary, 

 
𝜕𝐩

𝜕𝑢
=

Δ𝑣1𝐞0 − Δ𝑣0𝐞1

Δ𝑢0Δ𝑣1 − Δ𝑢1Δ𝑣0
 

 
𝜕𝐩

𝜕𝑣
=
−Δ𝑢1𝐞0 + Δ𝑢0𝐞1

Δ𝑢0Δ𝑣1 − Δ𝑢1Δ𝑣0
 

 

 
←
𝜕𝐩

𝜕𝑢
→

←
𝜕𝐩

𝜕𝑣
→

 =
1

Δ𝑢0Δ𝑣1 − Δ𝑣0Δ𝑢1
 

Δ𝑣1 −Δ𝑣0

−Δ𝑢1 Δ𝑢0
  
← 𝐞0 →
← 𝐞1 →

  

 

Compare this result to the one derived in §19.3; we have simple derived the forumla in §19.3 in a 

different way. 

 The 3D vector 
𝜕𝐩

𝜕𝑢
 gives us the “velocity” we move in 3D space when we move in the u-

direction in texture space.  Put another way, it tells us the direction of the texture space u-axis in 

3D space.  Likewise, the 3D vector 
𝜕𝐩

𝜕𝑣
 gives us the “velocity” we move in 3D space when we 
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move in the v-direction in texture space (i.e., the direction of the texture space v-axis in 3D 

space). 

 

6. See “TexColumns” on the DVD. 

 

Chapter 11 

 

2. Prove that 𝐬 = 𝐩 −
𝐧∙𝐩+𝑑

𝐧∙ 𝐩−𝐋 
 𝐩 − 𝐋 = 𝐩𝐒𝑝𝑜𝑖𝑛𝑡  by doing the matrix multiplication for each 

component, as was done in §10.5.1 for directional lights. 
 

Solution: 

 

Let 𝐩 =  𝑝1, 𝑝2, 𝑝3, 1 .  For 𝑖 ∈  1,2,3 , the ith coordinate of 𝐬 = 𝐩𝐒𝑝𝑜𝑖𝑛𝑡  is given by: 

 

𝑠𝑖
′ =  𝐧 ∙ 𝐋 + 𝑑 𝑝𝑖 − 𝐿𝑖 𝐧 ∙ 𝐩 + 𝑑  

= 𝑝𝑖𝐧 ∙ 𝐋 + 𝑝𝑖𝑑− 𝐿𝑖𝐧 ∙ 𝐩 − 𝐿𝑖𝑑 

= 𝑝𝑖𝐧 ∙ 𝐋 + 𝑝𝑖𝑑 +  𝑝𝑖𝐧 ∙ 𝐩 − 𝑝𝑖𝐧 ∙ 𝐩 − 𝐿𝑖𝐧 ∙ 𝐩 − 𝐿𝑖𝑑 

= 𝑝𝑖𝐧 ∙ 𝐋− 𝑝𝑖𝐧 ∙ 𝐩 + 𝑝𝑖 𝐧 ∙ 𝐩 + 𝑑 − 𝐿𝑖 𝐧 ∙ 𝐩 + 𝑑  
= 𝑝𝑖𝐧 ∙  𝐋 − 𝐩 + 𝑝𝑖 𝐧 ∙ 𝐩 + 𝑑 − 𝐿𝑖 𝐧 ∙ 𝐩 + 𝑑  
= −𝑝𝑖𝐧 ∙  𝐩 − 𝐋 + (𝑝𝑖 − 𝐿𝑖) 𝐧 ∙ 𝐩 + 𝑑  

 

and the fourth coordinate is given by: 

 

𝑠4
′ = −𝐧 ∙ 𝐩 + 𝐧 ∙ 𝐋 

= −𝐧 ∙  𝐩 − 𝐋  
 

Doing the homogeneous divide we obtain: 

 

𝑠𝑖
′′ =

−𝑝𝑖𝐧 ∙  𝐩 − 𝐋 + (𝑝𝑖 − 𝐿𝑖) 𝐧 ∙ 𝐩 + 𝑑 

−𝐧 ∙  𝐩 − 𝐋 
 

 

= 𝑝𝑖 −
𝐧 ∙ 𝐩 + 𝑑

𝐧 ∙  𝐩 − 𝐋 
 𝑝𝑖 − 𝐿𝑖  

 

But this is exactly the ith coordinate of 𝐬 = 𝐩 −
𝐧∙𝐩+𝑑

𝐧∙ 𝐩−𝐋 
 𝐩 − 𝐋 , so 

 

𝐬 = 𝐩 −
𝐧 ∙ 𝐩 + 𝑑

𝐧 ∙  𝐩 − 𝐋 
 𝐩 − 𝐋 = 𝐩𝐒𝑝𝑜𝑖𝑛𝑡  

 

 

 

Chapter 13 

 

5. See “WavesCS” on the DVD. 
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6. See “SobelFilter” on the DVD. 

 

Chapter 15 

 

1. Given the world space axes and origin in world coordinates: 𝐢 =  1,0,0 , 𝐣 = (0,1,0), 𝐤 =
 0,0,1  and 𝐎 =  0,0,0 , and the view space axes and origin in world coordinates: 𝐮 =

 𝑢𝑥 , 𝑢𝑦 , 𝑢𝑧 , 𝐯 = (𝑣𝑥 , 𝑣𝑦 , 𝑣𝑧), 𝐰 =  𝑤𝑥 , 𝑤𝑦 , 𝑤𝑧  and 𝐐 =  𝑄𝑥 , 𝑄𝑦 , 𝑄𝑧 , derive the view matrix 

form 

 

𝐕 =  

𝑢𝑥 𝑣𝑥 𝑤𝑥 0
𝑢𝑦 𝑣𝑦 𝑤𝑦 0

𝑢𝑧 𝑣𝑧 𝑤𝑧 0
−𝐐 ∙ 𝐮 −𝐐 ∙ 𝐯 −𝐐 ∙ 𝐰 1

  

 

using the dot product.  (Remember, to find the change of coordinate matrix from world space to 

view space, you just need to describe the world space axes and origin with coordinates relative to 

view space.  Then these coordinates become the rows of the view matrix.) 
 

Solution: 
 

 
[Figure D.12: Finding the world space coordinates in view space.] 

 

All the given vectors have coordinates in world space, and all the axis vectors are unit vectors.  

However, using the dot product, we can obtain view space coordinates of the world space.  From 

the figure, we see: 

 

 𝐢 𝑉 =  𝐢 ∙ 𝐮, 𝐢 ∙ 𝐯, 𝐢 ∙ 𝐰 =  𝑢𝑥 , 𝑣𝑥 , 𝑤𝑥  
 𝐣 𝑉 =  𝐣 ∙ 𝐮, 𝐣 ∙ 𝐯, 𝐣 ∙ 𝐰 =  𝑢𝑦 , 𝑣𝑦 , 𝑤𝑦  

 𝐤 𝑉 =  𝐤 ∙ 𝐮, 𝐤 ∙ 𝐯, 𝐤 ∙ 𝐰 =  𝑢𝑧 , 𝑣𝑧 , 𝑤𝑧  
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 𝐎 𝑉 =   𝐎 − 𝐐 ∙ 𝐮,  𝐎 − 𝐐 ∙ 𝐯,  𝐎 − 𝐐 ∙ 𝐰 =  −𝐐 ∙ 𝐮,−𝐐 ∙ 𝐯, −𝐐 ∙ 𝐰  
 

Augmenting to homogeneous coordinates and putting these vectors into the rows of a matrix 

yields the view matrix.   

 

Chapter 16 

 

2. The plane equations in NDC space take on a very simple form.  All points inside the view 

frustum are bounded as follows: 

 

−1 ≤ 𝑥𝑛𝑑𝑐 ≤ 1 

−1 ≤ 𝑦𝑛𝑑𝑐 ≤ 1 

0 ≤ 𝑧𝑛𝑑𝑐 ≤ 1 
 

In particular, the left plane equation is given by 𝑥 = −1 and the right plane equation is given by 

𝑥 = 1 in NDC space.  In homogeneous clip space before the perspective divide, all points inside 

the view frustum are bounded as follows: 

 

−𝑤 ≤ 𝑥𝑕 ≤ 𝑤 

−𝑤 ≤ 𝑦𝑕 ≤ 𝑤 

0 ≤ 𝑧𝑕 ≤ 𝑤 
 

Here, the left plane is defined by 𝑤 = −𝑥𝑕  and the right plane is defined by 𝑤 = 𝑥𝑕 .  Let 

𝐌 = 𝐕𝐏 be the view-projection matrix product, and let 𝐯 =  𝑥, 𝑦, 𝑧, 1  be a point in world space 

inside the frustum.  Consider  𝑥𝑕 , 𝑦𝑕 , 𝑧𝑕 , 𝑤 = 𝐯𝐌 =  𝐯 ∙ 𝐌∗,1, 𝐯 ∙ 𝐌∗,2, 𝐯 ∙ 𝐌∗,3, 𝐯 ∙ 𝐌∗,4  to 

show that the inward facing frustum planes in world space are given by: 

 

Left 0 = 𝐩 ∙  𝐌∗,1 + 𝐌∗,4  

Right 0 = 𝐩 ∙  𝐌∗,4 −𝐌∗,1  

Bottom 0 = 𝐩 ∙  𝐌∗,2 + 𝐌∗,4  

Top 0 = 𝐩 ∙  𝐌∗,4 −𝐌∗,2  

Near 0 = 𝐩 ∙ 𝐌∗,3 

Far 0 = 𝐩 ∙  𝐌∗,4 −𝐌∗,3  

 

[Notes] 

 

a) We ask for inward facing normals.  That means a point inside the frustum has a positive 

distance from the plane; in other words, 𝐧 ∙ 𝐩 + 𝑑 ≥ 0 for a point 𝐩 inside the frustum. 

 

b) Note that 𝑝𝑤 = 1, so the above dot product formulas do yield plane equations of the form 

𝐴𝑥 + 𝐵𝑦 + 𝐶𝑧 + 𝐷 = 0.   

 

c) The calculated plane normal vectors are not unit length; see Appendix C for how to normalize 

a plane. 
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[/Notes] 

 
Solution: 

 

We assume 𝐯 =  𝑥, 𝑦, 𝑧, 1  is a point inside the frustum.  Therefore, its coordinates 

 𝑥𝑕 , 𝑦𝑕 , 𝑧𝑕 , 𝑤 = 𝐯𝐌 =  𝐯 ∙ 𝐌∗,1 , 𝐯 ∙ 𝐌∗,2 , 𝐯 ∙ 𝐌∗,3 , 𝐯 ∙ 𝐌∗,4  in homogeneous space are bounded as 

follows: 

 

−𝑤 ≤ 𝑥𝑕 ≤ 𝑤 

−𝑤 ≤ 𝑦𝑕 ≤ 𝑤 

0 ≤ 𝑧𝑕 ≤ 𝑤 
 

We can make substitutions to find the plane bounds in world space. 
 

Left Plane: 
 

−𝑤 ≤ 𝑥𝑕  

−𝐯 ∙ 𝐌∗,4 ≤ 𝐯 ∙ 𝐌∗,1 

0 ≤ 𝐯 ∙  𝐌∗,1 + 𝐌∗,4  

 

That is, 𝐯 is in the positive half-space of the world space plane 𝐩 ∙  𝐌∗,1 + 𝐌∗,4 = 0. 

 

Right Plane:  

 

𝑥𝑕 ≤ 𝑤 

𝐯 ∙ 𝐌∗,1 ≤ 𝐯 ∙ 𝐌∗,4 

0 ≤ 𝐯 ∙  𝐌∗,4 −𝐌∗,1  
 

That is, 𝐯 is in the positive half-space of the world space plane 𝐩 ∙  𝐌∗,4 −𝐌∗,1 = 0. 

 

Bottom Plane: 

 

−𝑤 ≤ 𝑦𝑕  

−𝐯 ∙ 𝐌∗,4 ≤ 𝐯 ∙ 𝐌∗,2 

0 ≤ 𝐯 ∙  𝐌∗,2 + 𝐌∗,4  
 

That is, 𝐯 is in the positive half-space of the world space plane 𝐩 ∙  𝐌∗,2 + 𝐌∗,4 = 0. 

 

Top Plane: 

 

𝑦𝑕 ≤ 𝑤 

𝐯 ∙ 𝐌∗,2 ≤ 𝐯 ∙ 𝐌∗,4 

0 ≤ 𝐯 ∙  𝐌∗,4 −𝐌∗,2  
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That is, 𝐯 is in the positive half-space of the world space plane 𝐩 ∙  𝐌∗,4 −𝐌∗,2 = 0. 

 

Near Plane: 

 

0 ≤ 𝑧𝑕  

0 ≤ 𝐯 ∙ 𝐌∗,3 

 

That is, 𝐯 is in the positive half-space of the world space plane 𝐩 ∙ 𝐌∗,3 = 0. 

 

Far Plane: 

 

𝑧𝑕 ≤ 𝑤 

𝐯 ∙ 𝐌∗,3 ≤ 𝐯 ∙ 𝐌∗,4 

0 ≤ 𝐯 ∙  𝐌∗,4 −𝐌∗,3  
 

That is, 𝐯 is in the positive half-space of the world space plane 𝐩 ∙  𝐌∗,4 −𝐌∗,3 = 0. 

 

4. An OBB can be defined by a center point 𝐂, three orthonormal axis vectors 𝐫0, 𝐫1, and 𝐫2 

defining the box orientation, and three extent lengths 𝑎0, 𝑎1, and 𝑎2 along the box axes 𝐫0, 𝐫1, 

and 𝐫2, respectivey, that give the distance from the box center to the box sides.   

 

a) Consider Figure 15.13 (which shows the situation in 2D) and conclude the projected “shadow” 

of the OBB onto the axis defined by the normal vector is 2𝑟, where  

 

𝑟 =  𝑎0𝐫0 ∙ 𝐧 +  𝑎1𝐫1 ∙ 𝐧 +  𝑎2𝐫2 ∙ 𝐧  
 

b) In the previous formula for 𝑟, explain why we must take the absolute values instead of just 

computing 𝑟 =  𝑎0𝐫0 + 𝑎1𝐫1 + 𝑎2𝐫2 ∙ 𝐧?   

 

c) Derive a plane/OBB intersection test that determines if the OBB is in front of the plane, 

behind the plane, or intersecting the plane. 

 

d) An AABB is a special case of an OBB, so this test also works for an AABB.  However, the 

formula for 𝑟 simplifies in the case of an AABB.  Find the simplified formula for 𝑟 for the 

AABB case. 
 

Solution: 
 

b) If one of the 𝐫𝑖 ∙ 𝐧 terms is negative, the sum  𝑎0𝐫0 + 𝑎1𝐫1 + 𝑎2𝐫2 ∙ 𝐧 will not give the 

“radius” of the OBB.  To explain it another way (in 2D), let the vectors from the box center to 

the corners be given by: 

 

𝐯0 = +𝑎0𝐫0 + 𝑎1𝐫1 

𝐯1 = +𝑎0𝐫0 − 𝑎1𝐫1 

𝐯2 = −𝑎0𝐫0 − 𝑎1𝐫1 
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𝐯3 = −𝑎0𝐫0 + 𝑎1𝐫1 
 

 
[Figure D.13: The corner vectors.  Note that these are not the corner points, but the vectors from 

the center point to the corner points.] 

 

The OBB “radius” is the corner vector that gives the largest projection onto 𝐧:   

 

𝑟 = max(𝐧 ∙ 𝐯0, 𝐧 ∙ 𝐯1, 𝐧 ∙ 𝐯2, 𝐧 ∙ 𝐯3)  
 

𝐧 ∙ 𝐯0 = 𝐧 ∙ 𝑎0𝐫0 + 𝐧 ∙ 𝑎1𝐫1 

𝐧 ∙ 𝐯1 = 𝐧 ∙ 𝑎0𝐫0 − 𝐧 ∙ 𝑎1𝐫1 

𝐧 ∙ 𝐯2 = −𝐧 ∙ 𝑎0𝐫0 − 𝐧 ∙ 𝑎1𝐫1 

𝐧 ∙ 𝐯3 = −𝐧 ∙ 𝑎0𝐫0 + 𝐧 ∙ 𝑎1𝐫1 
 

The maximum will be the one where all terms are positive (or all terms are negative) so that 

there is no cancellation between the terms.  In other words, the maximum will be equal to: 

 

𝑟 = max(𝐧 ∙ 𝐯0, 𝐧 ∙ 𝐯1, 𝐧 ∙ 𝐯2 , 𝐧 ∙ 𝐯3) =  𝑎0𝐫0 ∙ 𝐧 +  𝑎1𝐫1 ∙ 𝐧  
 

The same argument generalizes to 3D where there are 8 corner vectors. 

 

c) The signed distance from the center of the OBB to the plane is 𝑘 = 𝐧 ∙ 𝐜 + 𝑑.  If  𝑘 ≤ 𝑟 then 

the sphere intersects the plane.  If 𝑘 < −𝑟 then the OBB is behind the plane.  If 𝑘 > 𝑟 then the 

OBB is in front of the plane and the sphere intersects the positive half-space of the plane.   

 

d) In the case of an AABB, 𝐫0 =  1,0,0 , 𝐫1 =  0,1,0 , and 𝐫2 =  0,0,1 ; therefore: 

 

𝑟 =  𝑎0𝐫0 ∙ 𝐧 +  𝑎1𝐫1 ∙ 𝐧 +  𝑎2𝐫2 ∙ 𝐧  
=  𝑎0𝑛𝑥  +  𝑎1𝑛𝑦  +  𝑎2𝑛𝑧   

 

Chapter 20 

 

6. Derive the matrix that maps the box  𝑙, 𝑟 ×  𝑏, 𝑡 ×  𝑛, 𝑓 →  −1,1 ×  −1,1 ×  0,1 .  This is 

an “off center” orthographic view volume (i.e., the box is not centered about the view space 
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origin).  In contrast, the orthographic projection matrix derived in §21.2 is an “on center” 

orthographic view volume. 
 

Solution: 
 

For all three coordinates, we need to remap an interval onto another interval.  We can solve this 

problem generally once, and then apply it to each coordinate.  We want to map  𝑠, 𝑡 →  𝑢, 𝑣 .  
We assume the mapping takes the form 𝑔 𝑥 = 𝑎𝑥 + 𝑏 (i.e., a scaling and translation).  We have 

the conditions 𝑔 𝑠 = 𝑢 and 𝑔 𝑡 = 𝑣, which allow us to solve for 𝑎 and 𝑏: 

 

 

𝑎𝑠 + 𝑏 = 𝑢 

𝑎𝑡 + 𝑏 = 𝑣 
 

The first equation implies 𝑏 = 𝑢 − 𝑎𝑠.  Plugging this into the second equation we get: 
 

𝑎𝑡 + 𝑢 − 𝑎𝑠 = 𝑣 

𝑎 𝑡 − 𝑠 = 𝑣 − 𝑢 

𝑎 =
𝑣 − 𝑢

𝑡 − 𝑠
 

 

And so: 

 

𝑏 = 𝑢 − 𝑎𝑠 

= 𝑢 −
𝑣 − 𝑢

𝑡 − 𝑠
𝑠 

=
𝑢 𝑡 − 𝑠 − 𝑣𝑠 + 𝑢𝑠

𝑡 − 𝑠
 

=
𝑢𝑡 − 𝑢𝑠 − 𝑣𝑠 + 𝑢𝑠

𝑡 − 𝑠
 

=
𝑢𝑡 − 𝑣𝑠

𝑡 − 𝑠
 

 

Therefore, 

 

𝑔 𝑥 =
𝑣 − 𝑢

𝑡 − 𝑠
𝑥 +

𝑢𝑡 − 𝑣𝑠

𝑡 − 𝑠
 

 

Applying this formula to our specific intervals, we obtain the transformations: 

 

 𝑙, 𝑟 →  −1,1  
 

𝑥′ =
2

𝑟 − 𝑙
𝑥 +

𝑙 − 𝑟

𝑟 − 𝑙
 

 

 𝑡, 𝑏 →  −1,1  
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𝑦′ =
2

𝑡 − 𝑏
𝑦 +

𝑏 − 𝑡

𝑡 − 𝑏
 

 

 𝑛, 𝑓 →  0,1  
 

𝑧′ =
1

𝑓 − 𝑛
𝑧 +

−𝑛

𝑓 − 𝑛
 

 

Or in terms of matrices: 

 

 𝑥′ , 𝑦′ , 𝑧′ , 1 =  𝑥, 𝑦, 𝑧, 1 

 
 
 
 
 
 
 
 
 

2

𝑟 − 𝑙
0 0 0

0
2

𝑡 − 𝑏
0 0

0 0
1

𝑓 − 𝑛
0

𝑙 − 𝑟

𝑟 − 𝑙

𝑏 − 𝑡

𝑡 − 𝑏

−𝑛

𝑓 − 𝑛
1
 
 
 
 
 
 
 
 
 

 

 

7. In Chapter 17 we learned about picking with a perspective projection matrix.  Derive picking 

formulas for an off-centered orthographic projection. 

 

Solution: 
 

Let  𝑠𝑥 , 𝑠𝑦  be the picked point in screen space.  Inverting the viewport transformation, we get 

the corresponding point in NDC space: 

 

𝑥𝑛𝑑𝑐 =
2𝑠𝑥
𝑤

− 1 

𝑦𝑛𝑑𝑐 = −
2𝑠𝑦

𝑕
+ 1 

 

The orthographic projection matrix transforms the view volume from view space to NDC space.  

The off-centered orthographic projection transformation is: 

 

 𝑥𝑣 , 𝑦𝑣 , 𝑧𝑣 , 1 

 
 
 
 
 
 
 
 
 

2

𝑟 − 𝑙
0 0 0

0
2

𝑡 − 𝑏
0 0

0 0
1

𝑓 − 𝑛
0

𝑙 − 𝑟

𝑟 − 𝑙

𝑏 − 𝑡

𝑡 − 𝑏

−𝑛

𝑓 − 𝑛
1
 
 
 
 
 
 
 
 
 

=  𝑥𝑛𝑑𝑐 , 𝑦𝑛𝑑𝑐 , 𝑧𝑛𝑑𝑐 , 1  

 

In particular, this gives the two equations: 
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2𝑥𝑣
𝑟 − 𝑙

+
𝑙 − 𝑟

𝑟 − 𝑙
= 𝑥𝑛𝑑𝑐  

2𝑦𝑣
𝑡 − 𝑏

+
𝑏 − 𝑡

𝑡 − 𝑏
= 𝑦𝑛𝑑𝑐  

 

We can then solve for the view space coordinates  𝑥𝑣 , 𝑦𝑣  in terms of  𝑠𝑥 , 𝑠𝑦 : 
 

2𝑥𝑣
𝑟 − 𝑙

+
𝑙 − 𝑟

𝑟 − 𝑙
= 𝑥𝑛𝑑𝑐  

2𝑥𝑣
𝑟 − 𝑙

= 𝑥𝑛𝑑𝑐 −
𝑙 − 𝑟

𝑟 − 𝑙
 

𝑥𝑣 =
𝑟 − 𝑙

2
𝑥𝑛𝑑𝑐 −

𝑟 − 𝑙

2
∙
𝑙 − 𝑟

𝑟 − 𝑙
 

𝑥𝑣 =
𝑥𝑛𝑑𝑐 − 𝐏30

𝐏00
 

𝑥𝑣 =

2𝑠𝑥
𝑤 − 1 − 𝐏30

𝐏00
 

2𝑦𝑣
𝑡 − 𝑏

+
𝑏 − 𝑡

𝑡 − 𝑏
= 𝑦𝑛𝑑𝑐  

2𝑦𝑣
𝑡 − 𝑏

= 𝑦𝑛𝑑𝑐 −
𝑏 − 𝑡

𝑡 − 𝑏
 

𝑦𝑣 =
𝑡 − 𝑏

2
𝑦𝑛𝑑𝑐 −

𝑡 − 𝑏

2
∙
𝑏 − 𝑡

𝑡 − 𝑏
 

𝑦𝑣 =
𝑦𝑛𝑑𝑐 − 𝐏31

𝐏11
 

𝑦𝑣 =
−

2𝑠𝑦
𝑕

+ 1 − 𝐏31

𝐏11
 

 

Then our picking ray in view space is given by 𝐫 𝑡 =  𝑥𝑣 , 𝑦𝑣 , 0 + 𝑡 0, 0, 1 .  Note that in an 

orthographic projection, all the rays are parallel to the z-axis direction  0, 0, 1 .   
 

Sample code: 

 
Ray3 CalcWorldPickRay(XMMATRIX P, Point s, Size viewport) 

{  

 float sx = (float)s.X; 

 float sy = (float)s.Y; 

 

 float w = (float)viewport.Width; 

 float h = (float)viewport.Height; 

 

 float x = (2.0f*sx/w - 1.0f)/P(0,0)  - P(3,0)/P(0,0); 

 float y = (-2.0f*sy/h + 1.0f)/P(1,1) – P(3,1)/P(1,1); 

 

 Ray3 pickRay; 

 pickRay.Origin    = XMFLOAT3(x, y, 0.0f); 

 pickRay.Direction = XMFLOAT3(0.0f, 0.0f, 1.0f); 

  

 return pickRay; 

} 
 

Note: This works for an off-centered orthographic projection matrix and a centered one since a 

centered one is just a special case of the off-centered one. 

 

Chapter 22 

 

3. Rotate the vector  2, 1  30° using complex number multiplication. 



Appendix D Selected Solutions, Introduction to 3D Game Programming with DirectX 12, by 

Frank D. Luna 
 

Page 40 of 51 
 

 

Solution: 
 

𝐳 = 2 + 𝑖 

𝐳2 =  cos 30° + 𝑖 sin 30° =
 3

2
+

1

2
𝑖 

 

𝐳′ = 𝐳𝐳2 =  2 + 𝑖  
 3

2
+

1

2
𝑖  

=  3 + 𝑖 +
 3

2
𝑖 −

1

2
 

=
2 3 − 1

2
+
 3 + 2

2
𝑖 

 

We can verify this by seeing if we get the same answer with a rotation matrix: 

 

 2, 1  
cos 30° sin 30°
− sin 30° cos 30°

 =  2, 1 

 
 
 
 
  3

2

1

2

−
1

2

 3

2  
 
 
 
 

=  
2 3 − 1

2
,
 3 + 2

2
  

 

5. Let 𝐳 = 𝑎 + 𝑖𝑏.  Show  𝐳 2 = 𝐳𝐳 . 
 

Solution: 
 

𝐳𝐳 =  𝑎 + 𝑖𝑏  𝑎 − 𝑖𝑏  
= 𝑎2 − 𝑎𝑏𝑖 + 𝑎𝑏𝑖 − 𝑏2𝑖2 

= 𝑎2 + 𝑏2 

=   𝑎2 + 𝑏2 
2

 

=  𝐳 2 
 

6. Let 𝐌 be a 2 × 2 matrix.  Prove that det𝐌 = 1 and 𝐌−1 = 𝐌𝑇  if and only if 𝐌 =

 
cos 𝜃 sin 𝜃
− sin 𝜃 cos 𝜃

 .  That is, if and only if 𝐌 is a rotation matrix.  This gives us a way of testing if 

a matrix is a rotation matrix. 

 

Solution: 
 

Let 𝐌 =  
𝑀11 𝑀12

𝑀21 𝑀22
  and suppose det𝐌 = 1 and 𝐌−1 = 𝐌𝑇 .   

 

det𝐌 = 1 along with   
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𝐌𝐌𝑇 =  
𝑀11 𝑀12

𝑀21 𝑀22
  
𝑀11 𝑀21

𝑀12 𝑀22
 =  

1 0
0 1

  

 

imply the following equations: 

 

𝑀11
2 + 𝑀12

2 = 1 

𝑀21
2 + 𝑀22

2 = 1 

𝑀11𝑀22 −𝑀12𝑀21 = 1 
 

Now, 

 

 𝑀11
2 + 𝑀12

2  +  𝑀21
2 + 𝑀22

2  = 2 

2 𝑀11𝑀22 −𝑀12𝑀21 = 2 
 

Therefore, 

 

𝑀11
2 + 𝑀12

2 + 𝑀21
2 + 𝑀22

2 − 2𝑀11𝑀22 + 2𝑀12𝑀21 = 0 

 𝑀11
2 − 2𝑀11𝑀22 + 𝑀22

2  +  𝑀12
2 + 2𝑀12𝑀21 + 𝑀21

2  = 0 

 𝑀11 −𝑀22 
2 +  𝑀12 + 𝑀21 

2 = 0 
 

Both terms are positive; hence, we must have: 

 

𝑀11 = 𝑀22  
 

and  

 

𝑀21 = −𝑀12 
 

So our matrix has the form: 

 

𝐌 =  
𝐴 𝐵
−𝐵 𝐴

  

 

Finally, because det𝐌 = 𝐴2 + 𝐵2 = 1 there exists a 𝜃 such that 𝐴 = cos 𝜃 and 𝐵 = sin 𝜃, and 

we get our result: 

 

𝐌 =  
𝐴 𝐵
−𝐵 𝐴

 =  
cos 𝜃 sin 𝜃
− sin 𝜃 cos 𝜃

  

 

Now suppose 𝐌 =  
cos 𝜃 sin 𝜃
− sin 𝜃 cos 𝜃

 .  Then 

 

det  
cos 𝜃 sin 𝜃
− sin 𝜃 cos 𝜃

 = cos2 𝜃 + sin2 𝜃 = 1 

 

𝐌𝑇 =  
cos 𝜃 − sin 𝜃
sin 𝜃 cos 𝜃
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𝐌𝐌𝑇 =  
cos 𝜃 sin 𝜃
− sin 𝜃 cos 𝜃

  
cos 𝜃 − sin 𝜃
sin 𝜃 cos 𝜃

 =  
1 0
0 1

  

𝐌𝑇  𝐌 =  
cos 𝜃 − sin 𝜃
sin 𝜃 cos 𝜃

  
cos 𝜃 sin 𝜃
− sin 𝜃 cos 𝜃

 =  
1 0
0 1

  

 

Therefore, det𝐌 = 1 and  𝐌−1 = 𝐌𝑇 .  In other words, all rotation matrices have determinant 1 

and are orthogonal, and every orthogonal matrix with determinant 1 must be a rotation matrix.   

 

7. Let 𝐩 =  1, 2, 3, 4  and 𝐪 =  2,−1, 1, −2  be quaternions.  Perform the indicated quaternion 

operations. 

 

a. 𝐩 + 𝐪 

b. 𝐩 − 𝐪 

c. 𝐩𝐪 

d. 𝐩∗ 
e. 𝐪∗ 
f. 𝐩∗𝐩 

g.  𝐩  

h.  𝐪  

i. 𝐩−1 

j. 𝐪−1 

 

Solution: 
 

a. 𝐩 + 𝐪 =  3, 1, 4, 2  
b. 𝐩 − 𝐪 =  −1, 3, 2, 6  

c. 𝐩𝐪 =  

𝑝4 −𝑝3 𝑝2 𝑝1

𝑝3 𝑝4 −𝑝1 𝑝2

−𝑝2 𝑝1 𝑝4 𝑝3

−𝑝1 −𝑝2 −𝑝3 𝑝4

  

𝑞1

𝑞2

𝑞3

𝑞4

 =  

4 −3 2 1
3 4 −1 2
−2 1 4 3
−1 −2 −3 4

  

2
−1
1
−2

 =  

11
−3
−7
−11

  

d. 𝐩∗ =  −1,−2,−3, 4  
e. 𝐪∗ =  −2, 1, −1,−2  
f. 𝐩∗𝐩 =  𝐩 2 = 12 + 22 + 32 + 42 = 1 + 4 + 9 + 16 = 30 

g.  𝐩 =  30 

h.  𝐪 =  22 + 12 + 12 + 22 =  10 

i. 𝐩−1 =
𝐩∗

 𝐩 2 =
 −1,−2,−3,4 

30
 

j. 𝐪−1 =
𝐪∗

 𝐪 2
=

 −2,1,−1,−2 

10
 

 
 XMVECTOR p = XMVectorSet(1.0f, 2.0f, 3.0f, 4.0f); 

 XMVECTOR q = XMVectorSet(2.0f, -1.0f, 1.0f, -2.0f); 

 

 XMVECTOR a = p + q; 

 XMVECTOR b = p - q; 

 XMVECTOR c = XMQuaternionMultiply(q,p ); 

 XMVECTOR d = XMQuaternionConjugate(p); 
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 XMVECTOR e = XMQuaternionConjugate(q); 

 XMVECTOR f = XMQuaternionMultiply(XMQuaternionConjugate(p),p); 

 XMVECTOR g = XMQuaternionLength(p); 

 XMVECTOR h = XMQuaternionLength(q); 

 XMVECTOR i = XMQuaternionInverse(p); 

 XMVECTOR j = XMQuaternionInverse(q); 

 

 cout << "p + q = " << a << endl; 

 cout << "p - q = " << b  << endl; 

 cout << "pq = " << c << endl; 

 cout << "p* = " << d << endl; 

 cout << "q* = " << e << endl; 

 cout << "p*p = " << f << endl; 

 cout << "||p|| = " << g << endl; 

 cout << "||q|| = " << h << endl; 

 cout << "invP = " << i << endl; 

 cout << "invQ = " << j << endl; 

 

9. Write the unit quaternion 𝐪 =  
 3

2
, 0, 0, −

1

2
  in polar notation. 

 

𝑤 = cos 𝜃 ⇒ 𝜃 = cos−1  −
1

2
 = 120° 

 

𝐧 =

 
 3
2 , 0, 0 

sin 120° 
=

 
 3
2 , 0, 0 

 3
2

=  1, 0, 0  

 

𝐪 =  sin 120°  1, 0, 0 , cos 120°   
 

10. Find the unit quaternion that rotates 45° about the axis  1, 1, 1 . 
 

𝐪 =  sin  
𝜃

2
 𝐧, cos  

𝜃

2
   

=  sin 22.5°  
1

 3
,

1

 3
,

1

 3
 , cos 22.5°    

=  . 22094, .22094, .22094, .92388  
 

The division by 2 is to compensate for the 2𝜃 in Equation 24.3 because we want to rotate by the 

angle 𝜃, not 2𝜃.   

 
XMVECTOR p = XMQuaternionRotationAxis( 

XMVectorSet(1.0f, 1.0f, 1.0f, 0.0f),  

XMConvertToRadians(45.0f)); 

cout << "p = " << p << endl; 

 

11. Find the unit quaternion that rotates 60° about the axis  0, 0, −1 . 
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𝐪 =  sin  
𝜃

2
 𝐧, cos  

𝜃

2
   

=  sin 30°  0, 0, −1 , cos 30°   

=  0, 0, −
1

2
,
 3

2
  

 

The division by 2 is to compensate for the 2𝜃 in Equation 24.3 because we want to rotate by the 

angle 𝜃, not 2𝜃.   

 
XMVECTOR p = XMQuaternionRotationAxis( 

XMVectorSet(0.0f, 0.0f, -1.0f, 0.0f),  

XMConvertToRadians(60.0f)); 

 cout << "p = " << p << endl; 

 

12. Let 𝐩 =  
1

2
, 0, 0,

 3

2
  and 𝐪 =  

 3

2
, 0, 0,

1

2
 .  Compute slerp  𝐩, 𝐪,

1

2
  and verify it is a unit 

quaternion. 

 

Solution: 
 

It is easy to verify that  𝐩 =  𝐪 = 1.  The angle between the quaternions is given by: 

 

𝜃 = cos−1 𝐩 ∙ 𝐪 = cos−1  
 3

4
+
 3

4
 = cos−1  

 3

2
 = 30° 

 

slerp 𝐚, 𝐛, 𝑡 =
sin  1 − 𝑡 𝜃 𝐚 + sin 𝑡𝜃 𝐛

sin𝜃
 

 

𝐫 = slerp  𝐩, 𝐪,
1

2
 =

sin 15° 𝐩 + sin 15° 𝐪

sin 30°
 

=

 6 −  2
4 𝐩 +

 6 −  2
4 𝐪

1
2

 

=
 6 −  2

2
 

1

2
, 0, 0,

 3

2
 +

 6 −  2

2
 
 3

2
, 0, 0,

1

2
  

=  
 6 −  2

4
, 0, 0,

3 2 −  6

4
 +  

3 2 −  6

4
, 0, 0,

 6 −  2

4
  

 =  
2 2

4
, 0, 0,

2 2

4
  

=  
 2

2
, 0, 0,

 2

2
  

 

The interpolated quaternion is easily seen to be unit length:   
 2

2
 

2

+  
 2

2
 

2

=  
2

4
+

2

4
= 1. 
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Observe that 𝑅𝐩 rotates about the axis  1, 0, 0  by an angle 2𝜃 = 2 cos−1  
 3

2
 = 2 ∙ 30° = 60°, 

that 𝑅𝐪 rotates about the axis  1, 0, 0  by an angle 2𝜃 = 2 cos−1  
1

2
 = 2 ∙ 60° = 120°, and that 

𝑅𝐫 rotates about the axis  1, 0, 0  by an angle 2𝜃 = 2 cos−1  
 2

2
 = 2 ∙ 45° = 90°.  With the 

interpolation parameter being the midpoint 
1

2
, this makes sense, as 90° is right in the middle 

between 60° and 120°. 

 
XMVECTOR p = XMVectorSet(0.5f, 0.0f, 0.0f, sqrt(3.0)/2.0f); 

 XMVECTOR q = XMVectorSet(sqrt(3.0)/2.0f, 0.0f, 0.0f, 0.5f); 

 

 XMVECTOR r = XMQuaternionSlerp(p, q, 0.5f); 

 cout << "r = " << r << endl; 

 

14. Prove that 𝐪𝐪∗ = 𝐪∗𝐪 = 𝑞1
2 + 𝑞2

2 + 𝑞3
2 + 𝑞4

2 =  𝐮 2 + 𝑞4
2 

 

Solution: 
 

Let 𝐪 =  𝐮,𝑤 =  𝑞1, 𝑞2, 𝑞3, 𝑞4 .   
 

𝐪𝐪∗ =  𝐮,𝑤  −𝐮,𝑤  
=  −𝑤𝐮 + 𝑤𝐮 + 𝐮 ×  −𝐮 ,𝑤2 + 𝐮 ∙ 𝐮  
=  𝟎,  𝐮 2 + 𝑤2  
=  𝐮 2 + 𝑤2 

= 𝑞1
2 + 𝑞2

2 + 𝑞3
2 + 𝑞4

2 
 

Because the quaternion has zero vector part, we convert it to a real number as discussed in 

§24.2.4.  Similarly, it can be shown 𝐪∗𝐪 = 𝑞1
2 + 𝑞2

2 + 𝑞3
2 + 𝑞4

2. 

 

16. Prove the following properties: 

 

a.  𝐩𝐪 ∗ = 𝐪∗𝐩∗ 
b.  𝐩 + 𝐪 ∗ = 𝐩∗ + 𝐪∗ 
c.  𝑠𝐪 ∗ = 𝑠𝐪∗    for     𝑠 ∈ ℝ 

d.  𝐩𝐪 =  𝐩  𝐪  

 

Solution: 
 

Let 𝐩 =  𝐮, 𝑎  and 𝐪 =  𝐯, 𝑏  so that 𝐩∗ =  −𝐮, 𝑎  and 𝐪∗ =  −𝐯, 𝑏 . 
 

 

a)  

𝐪∗𝐩∗ =  −𝐯, 𝑏  −𝐮, 𝑎 =  𝑏 −𝐮 + 𝑎 −𝐯 +  −𝐯 ×  −𝐮 , 𝑏𝑎 − (−𝐯) ∙ (−𝐮)  
=  −𝑏𝐮 − 𝑎𝐯 − 𝐮 × 𝐯, 𝑏𝑎 − 𝐮 ∙ 𝐯  
=  −𝑎𝐯 − 𝑏𝐮 − 𝐮 × 𝐯, 𝑎𝑏 − 𝐮 ∙ 𝐯  
=  𝐩𝐪 ∗ 
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b) 

 𝐩 + 𝐪 ∗ =  −𝐮 − 𝐯, 𝑎 + 𝑏  
=  −𝐮, 𝑎 +  −𝐯, 𝑏  
= 𝐩∗ + 𝐪∗ 

 

c) 

 𝑠𝐪 ∗ =  𝑠𝐯, 𝑠𝑏 ∗ 
=  −𝑠𝐯, 𝑠𝑏  
= 𝑠 −𝐯, 𝑏  
= 𝑠𝐪∗ 

 

d)  
 𝐩𝐪 2 =  𝐩𝐪  𝐩𝐪 ∗ 

= 𝐩𝐪𝐪∗𝐩∗ 
= 𝐩 𝐪 2𝐩∗ 
= 𝐩𝐩∗ 𝐪 2 

=  𝐩 2 𝐪 2 

∴  𝐩𝐪 =  𝐩  𝐪  

 

17. Prove 𝐚 ∙
sin   1−𝑡 𝜃 𝐚+sin  𝑡𝜃 𝐛

sin 𝜃
= cos 𝑡𝜃  algebraically. 

 

Solution: 
 

The key component is to apply the trig identity: 

 

sin  1 − 𝑡 𝜃 = sin 𝜃 − 𝑡𝜃 = sin 𝜃 cos 𝑡𝜃 − cos 𝜃 sin 𝑡𝜃  
 

Now, 

 

𝐚 ∙
sin  1 − 𝑡 𝜃 𝐚 + sin 𝑡𝜃 𝐛

sin 𝜃
 

=
sin  1 − 𝑡 𝜃 𝐚 ∙ 𝐚 + sin 𝑡𝜃 𝐚 ∙ 𝐛

sin 𝜃
 

=
sin  1 − 𝑡 𝜃 + sin 𝑡𝜃 cos 𝜃

sin 𝜃
 

=
sin 𝜃 cos 𝑡𝜃 − cos 𝜃 sin 𝑡𝜃 + sin 𝑡𝜃 cos 𝜃

sin 𝜃
 

=
sin 𝜃 cos 𝑡𝜃 

sin 𝜃
 

= cos 𝑡𝜃  
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Appendix C 
 

1. Let 𝐩 𝑡 =  1,1 + 𝑡 2,1  be a ray relative to some coordinate system.  Plot the points on the 

ray at t = 0.0, 0.5, 1.0, 2.0, and 5.0. 

 

Solution: 
 

 
[FigD.14: Plotting points on a line] 

 

3. For each part, find the vector line equation of the line passing through the two points. 

 

a) 𝐩1 =  2,−1 , 𝐩2 =  4,1  
b) 𝐩1 =  4,−2, 1 , 𝐩2 =  2, 3, 2  
 

Solution: 
 

a) 

𝐩2 − 𝐩1 =  4,1 −  2,−1 =  2,2  
 

𝐩 𝑡 = 𝐩1 + 𝑡 𝐩2 − 𝐩1  
=  2,−1 + 𝑡 2,2  

b)  

𝐩2 − 𝐩1 =  2, 3, 2 −  4,−2, 1 =  −2, 5, 1  
 

𝐩 𝑡 = 𝐩1 + 𝑡 𝐩2 − 𝐩1  
=  4, −2, 1 + 𝑡 −2, 5, 1  

 

5. Let 𝐋 𝑡 =  4, 2, 2 + 𝑡 1, 1, 1  be a line.  Find the distance from the following points to the 

line: 

 

𝐪 =  0, 0, 0  
𝐪 =  4, 2, 0  
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𝐪 =  0, 2, 2  
Solution: 
 

Apply the formula from the previous exercise. 

 

𝑑 =
  𝐪 − 𝐩 × 𝐮 

 𝐮 
 

=
   0, 0, 0 −  4, 2, 2  ×  1, 1, 1  

  1, 1, 1  
 

=
  −4,−2,−2 ×  1, 1, 1  

 3
 

=
  0, 2, −2  

 3
 

=
2 6

3
 

 

𝑑 =
  𝐪 − 𝐩 × 𝐮 

 𝐮 
 

=
   4, 2, 0 −  4, 2, 2  ×  1, 1, 1  

  1, 1, 1  
 

=
  0, 0, −2 ×  1, 1, 1  

 3
 

=
  2,−2, 0  

 3
 

=
2 6

3
 

 

𝑑 =
  𝐪 − 𝐩 × 𝐮 

 𝐮 
 

=
   0, 2, 2 −  4, 2, 2  ×  1, 1, 1  

  1, 1, 1  
 

=
  −4, 0, 0 ×  1, 1, 1  

 3
 

=
  0, 4, −4  

 3
 

=
4 6

3
 

 

7. Let  
1

 3
,

1

 3
,

1

 3
, −5  be a plane.  Define the locality of the following points relative to the 

plane:  3 3, 5 3, 0 ,  2 3,  3, 2 3 , and   3,− 3, 0 . 
 

Solution: 
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𝑥

 3
+
𝑦

 3
+

𝑧

 3
− 5 = 0 

 

The plane equation is: 
𝑥

 3
+

𝑦

 3
+

𝑧

 3
− 5 = 0.  Plugging these points into the left-hand side of the 

equation gives: 

 

3 3

 3
+

5 3

 3
+

0

 3
− 5 = 3 ⇒ Front of plane 

 

2 3

 3
+
 3

 3
+

2 3

 3
− 5 = 0 ⇒ On plane 

 

 3

 3
+
− 3

 3
+

0

 3
− 5 = −5 ⇒ Behind plane 

 

9. Let  −
1

 2
,

1

 2
, 0,

5

 2
  be a plane.  Find the reflection of the point  0,1,0  about the plane. 

 

Solution: 
 

From the previous exercise, we know that  3, −2,0  is a point on the plane.   
 

Because 𝐧 =  ( −
1

 2
,

1

 2
, 0) = 1, we have that 

 
proj𝐧(𝐩 − 𝐩0) =  𝐧 ∙ 𝐩 − 𝐧 ∙ 𝐩0 𝐧 

=  𝐧 ∙ 𝐩 + 𝑑 𝐧 
 

Now we can apply the formula from §C.4.9: 

 
𝐪 = 𝐩 − 2 proj𝐧(𝐩 − 𝐩0) 

= 𝐩 − 2 𝐧 ∙ 𝐩 + 𝑑 𝐧 

= 𝐩 − 2 
1

 2
+

5

 2
 𝐧 

=  0,1,0 −
12

 2
( −

1

 2
,

1

 2
, 0) 

=  0,1,0 +  6,−6, 0  
=  6,−5, 0  

 

10. Let  
1

 3
,

1

 3
,

1

 3
, −5  be a plane, and let 𝐫 𝑡 =  −1,1,−1 + 𝑡 1,0,0  be a ray.  Find the 

point at which the ray intersects the plane.  Then write a short program using the 

XMPlaneIntersectLine function to verify your answer. 

 

Solution: 
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𝑡0 =
−𝐧 ∙ 𝐩0 − 𝑑

𝐧 ∙ 𝐮
=

1

 3
+ 5

1

 3

= 1 + 5 3 

 

𝐫 1 + 5 3 =  −1,1, −1 +  1 + 5 3  1,0,0  

=  −1,1, −1 +  1 + 5 3, 0,0  

=  5 3, 1, −1  
 

We plug  5 3, 1, −1  into the plane equation to verify it indeed lies on the plane: 

 

5 3

 3
+

1

 3
+
−1

 3
− 5 = 0 ⇒ On plane 

 

The code is given by: 

 
#include <windows.h> // for FLOAT definition 

#include <DirectXMath.h> 

#include <iostream> 

using namespace std; 

 

// Overload the  "<<" operators so that we can use cout to  

// output XMVECTOR objects. 

ostream& operator<<(ostream& os, FXMVECTOR v) 

{ 

 XMFLOAT4 dest; 

 XMStoreFloat4(&dest, v); 

 

 os << "(" << dest.x << ", " << dest.y << ", " << dest.z <<  

           ", " << dest.w << ")"; 

 return os; 

} 

  

int main() 

{ 

 XMVECTOR p0 = XMVectorSet(-1.0f, 1.0f, -1.0f, 1.0f); 

 XMVECTOR u  = XMVectorSet(1.0f, 0.0f, 0.0f, 0.0f); 

 

 // Construct plane by specifying its (A, B, C, D)  

       // components directly. 

 float s = 1.0f / sqrtf(3); 

 XMVECTOR plane = XMVectorSet(s, s, s, -5.0f); 

 

 // Function expects a line segment and not a ray; so we just 

 // truncate our ray at p0 + 100*u to make a line segment. 

 XMVECTOR isect = XMPlaneIntersectLine(plane, p0, p0 + 100*u);  

 

 cout << isect << endl; 

 

 return 0; 

} 

 

The output is (in homogeneous coordinates so 𝑤 = 1 for points): 
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(8.66025, 1, -1, 1) 

Press any key to continue . . . 

 

We note 5 3 ≈ 8.66025, so the computer result agrees with our calculation. 

 

 

 


